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Solution processed bilayer photovoltaic devices with nematic liquid

crystals

The crosslinking of polymerisable liquid crystalline semiconductors is a

promising approach to solution processable, multilayer, organic photovoltaics.

Here we demonstrate an organic bilayer photovoltaic with an insoluble electron

donating layer formed by crosslinking a nematic reactive mesogen. We

investigate a range of perylene diimide materials, some of which are liquid

crystalline, as the overlying electron acceptor layer. We find that the carrier

mobility of the acceptor materials is enhanced by liquid crystallinity and that

mobility limits performance of the photovoltaic devices.

Liquid crystals, photovoltaics, bilayer, crosslinking, reactive mesogen, perylene,

bulk heterojunction. .

1. Introduction

There is increasing interest in the development of organic photovoltaics based on charge

separation at the interface between electron donating and accepting organic materials.

There are two distinct processing routes to organic photovoltaics; solution processing of

polymeric materials[1, 2] and thermal evaporation of small molecules.[3] The latter

allows the fabrication of more sophisticated multiple layers devices whist the former,

although more suitable for low cost manufacturing, requires deposition from

incompatible solvents to build multilayer devices. The bulk heterojunction device, in

which photogenerated electrons and holes are disassociated within a thin film of a

phase-separated blend of donor and acceptor materials, was invented to optimise

efficiency in a single active layer.[1, 2, 4-8] However multi-layer configurations have

added functionality such as carrier and exciton blocking layers to prevent quenching of
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the two species at the electrodes.[9, 10] The tandem device, in which two or more

devices are superimposed to increase the spectral coverage or absorption length, is a

very promising approach to further increase the efficiency of organic photovoltaics.[11]

The polymerization and crosslinking of reactive mesogens is a promising approach to

multi-layer devices based on solution processing. Reactive mesogens are similar to

small molecule LCs, but with two additional polymerizable groups, one at each end of a

flexible aliphatic spacer attached to the aromatic core. Thin films can be formed by

solution processing, Nematic reactive mesogens adopt a planar alignment with the long

molecular axis aligned in the substrate plane.[12] They can be uniaxially aligned using

rubbing or photoalignment techniques resulting in very high order parameters

particularly for materials with extended molecular cores.[13-15] Polymerization and

crosslinking occur either by the thermal or photoinduced generation of free radicals

using ultraviolet light or by ionic photoinitation resulting in insoluble thin films.[14, 16-

18] Photopolymerisation offers the further advantage of pixellation by

photolithography: unexposed regions are simply removed by washing in the original

spin-casting solvent. Previously we have investigated the light-emission and charge

transporting properties of a class of semiconducting nematic reactive mesogens.[19, 20]

which are to create a D-A bilayer with a distributed interface.[21-23]

In this paper we report on bilayer and bulk heterojunction photovoltaics using liquid

crystalline reactive mesogen donors and a range of acceptors with perylene diimide

groups combined with fluorene or carbazole moieties. The acceptors are characterized

optically and electronically. We show that the acceptor molecules studied have no

measurable charge transfer characteristics. The electron and hole mobility is enhanced

when the acceptors have liquid crystalline phases. The efficiency of a photovoltaic
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blend is not affected by ultraviolet photopolymerisation of the active bulk

heterostructure layer. Bilayer devices are investigated to identify the parameters which

limit performance.

2. Experimental Section

2.1 Materials Synthesis.

The perylene 1 was prepared as reported previously.[22] The perylene 2 exhibits a

symmetrical A-B-A molecular structure with a fluorene moiety decoupled by a short

aliphatic spacer from the perylene core. It was prepared by a short convergent synthesis

shown in reaction scheme 1. The perylene 3 was synthesized as shown in reaction

scheme 2. The perylene 4 was synthesized as shown in reaction scheme 3. The perylene

5 is very similar in shape to compound 1 and was prepared in a similar fashion

according to a modified literature method as shown in reaction scheme 4.[22]

Compound 5 has a carbazole moiety in place of the fluorene moiety in compound 1 and

has a branched aliphatic (nonadecyl) chain in place of the two octyl chains in compound

5. The perylene 6 was synthesized in a similar fashion to perylene 4 as shown in

reaction scheme 5. The liquid crystalline and electron-donating monomer 7 (a reactive

mesogen) with two terminal substituents comprising a methacrylate photopolymerisable

group at the end of an aliphatic spacer joined to the aromatic core was synthesised

according to a modified literature method.[22]

[Insert schemes 1-5 here]

The structures of intermediates and final products were confirmed by proton (1H)

nuclear magnetic resonance (NMR) spectroscopy (JOEL JMN-GX270 FT nuclear

resonance spectrometer), infra-red (IR) spectroscopy (Perkin Elmer 783 infra-red
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spectrophotometer) and mass spectrometry (MS) (Finnegan MAT 1020 automated

GC/MS). Reaction progress and product purity was checked using a CHROMPACK CP

9001 capillary gas chromatograph fitted with a 10 m CP-SIL 5CB (0.12 m, 0.25 mm)

capillary column. All of the final products were more than 99.5% pure by GLC.

Transition temperatures were determined using an Olympus BH-2 polarising light

microscope together with a Mettler FP52 heating stage and a Mettler FP5 temperature

control unit. The analysis of transition temperatures and enthalpies was carried out by a

Perkin-Elmer DSC7-PC differential scanning calorimeter. The octyloxy chain was used

as a protecting group during the synthesis of compound 1 as the starting material for

scheme 1 because it was available from another programme and longer chains are easier

to remove than shorter ones. We now usually use branched alkoxy chains, such as

citronenyloxy groups, since they act as a better protecting group in terms of lowering

the melting point of the reaction intermediates and increasing their solubility in organic

solvents.

2.2 Analytical Methods.

The ionization potential (IP) and electron affinity (EA) of the materials were measured

electrochemically in solution by cyclic voltammetry (CV) using a computer-controlled

scanning potentiostat (Solartron 1285). 1 mM of the compound was dissolved in an

electrolytic solution of 0.3M tetrabutylammonium hexafluorophosphate in

dichloromethane. The solution was placed in a standard three-electrode electrochemical

cell. A glassy carbon electrode was used as the working electrode. Saturated

silver/silver chloride and platinum wire formed the reference and counter electrodes

respectively. The electrolyte was recrystallized twice before use and oxygen

contamination was avoided by purging the solution with dry nitrogen before each
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measurement. The measured potentials were corrected using an internal ferrocene

reference added at the end of each measurement. The onset potential for oxidation

(reduction), ௢௫ܧ
௢௡௦௘௧ ௥௘ௗܧ)

௢௡௦௘௧), were estimated from the intersection of the two tangents at

the rising (descending) oxidation (reduction) current and the background current

respectively in the cyclic voltammogram. We use the relationships

IP(eV) = ௢௫ܧ
௢௡௦௘௧+ 4.7 + ;ߜ� EA(eV) = ௥௘ௗܧ

௢௡௦௘௧+ 4.7 + ߜ� (1)

since the potential of the Ag/AgCl electrode is 4.7 eV with respect to the vacuum.[24,

25]  is a calibration parameter equal to 0.425 − ி௖ିܧ ெ
ଵ ଶ⁄ , where ி௖ିܧ ெ

ଵ ଶ⁄ is the measured

half-wave potential of the ferrocence oxidation peak.[26]

The charge carrier mobility was measured using the photocurrent time-of-flight method.

Thick samples (1-2 m) of each of the materials were prepared by spin-casting from a

solution of concentration 50 -100 mg/ml of toluene onto an Indium Tin Oxide substrate.

The substrate was uniformly coated with the filtered (0.2 m) solution. After lying for 

20 minutes in a solvent rich environment, the samples were spun at 900 rpm for 30s,

with an acceleration of 590 rpm2. They were dried in a vacuum and an Al electrode

deposited on top. A Wyko white-light interferometer (Wyko NT1100) was used to

measure the film thickness d. A Laser Science Inc. VSL-337ND Nitrogen laser with pulses

of wavelength 337 nm and 6 ns duration optically pumped the sample, which was

maintained in an inert environment. A uniform electric field was applied across the organic

layer and the photocurrent was measured as a function of time using LABVIEW controlled

software. The transit time,, was obtained from the intercept of the photocurrent plateau and

tail, plotted on a logarithmic scale. The carrier mobility, , is obtained from the equation

=d/(E) . Molecular mechanics using MM2 energy minimisation was carried out to obtain

the orbital wavefunctions of compounds. ChemBio3D Ultra software was used.
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2.3. Device Fabrication.

Indium-tin oxide (ITO, 13Ω) coated glass was used as substrates for the photovoltaic 

devices. The substrates were first etched in an oxygen plasma (0.5 mbar, 1W, 10min).

Polystyrene sulphonate/polyethylene dioxythiophene (PSS/PEDOT, Baytron P VP Al

4083) was deposited by spin-casting at 4000rpm. The PSS/PEDOT layer was baked at

160 oC for 30 minutes. For the bilayer devices, the cross-linkable donor material was

spin-coated from a chlorobenzene solution onto the PSS/PEDOT surface and cross-

linked by irradiation using light from a HeCd laser at 325 nm, using a total fluence of

300 J cm-2. After washing the film with chlorobenzene, the acceptor layer was spin-

coated on top. The blend device contained a blended layer consisting of an equal

fraction of 7 and 1 by weight spin-cast from a 1.5 weight % solution in chlorobenzene.

The films were then annealed at 120 C for 60 mins. All these were done in a nitrogen

glover-box. As a top electrode, 0.6 nm of lithium fluoride (LiF) followed by 60 nm of

aluminum was deposited through a mask. The devices were illuminated with a Xenon

lamp, dispersed through a monochromator and attenuated with neutral light filters over

an area of 0.25cm2. The current-voltage characteristics of the photovoltaic devices were

measured in an inert atmosphere using a Visual-Basic controlled picoammeter.

2.4. Experimental Details.

2-(4-Bromobutyl)-9,9-dioctylfluorene (9) A solution of n-butyllithium (10.65 cm3, 2.5

M, 26.60 mmol) was added dropwise to a cooled (0 o C) solution 2-bromo-9,9-

dioctylfluorene (10.00 g, 21.33 mmol) in diethyl ether (200 cm3). The mixture was

stirred for 1 hr while maintaining the temperature then the reaction mixture rapidly

quenched with 1,4-dibromobutane (22.99 g, 106.50 mmol). The solution was allowed to
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gradually warm to room temperature then heated under reflux for 4 h. The cooled

reaction mixture was quenched with water (100 cm3) and the product extracted into

hexane (3 x 100 cm3). The combined organic extracts were washed with brine (3 x 50

cm3) dried (MgSO4), filtered and concentrated under reduced pressure. The excess 1,4-

dibromobutane was removed using Kugelrohr distillation and the remaining oil purified

using column chromatography to yield a colourless oil (6.9 g, 62%). 1H NMR (400

MHz, CDCl3 δ): 7.52 – 7.56 (4H, m), 7.44 – 7.49 (3H, m) 3.44 (3H, t, j = 7.0 Hz), 2.64 

(2H, t, j = 7.0 Hz), 1.86 – 1.92 (2H, m), 1.72 – 1.80 (2H, m). MS (EI) (m/z): 525 (M+).

2-[4-(9,9-Dioctylfluoren-2-yl)butyl]isoindoline-1,3-dione (11) A mixture of

potassium phthalamide (10) (2.20 g, 11.89 mmol), 2-(4-bromobutyl)-9,9-

dioctylfluorene (9) (5.00 g, 9.50 mmol) and toluene (100 cm3) was stirred under reflux

overnight. The cooled reaction mixture was poured into water (100 cm3) and the crude

product extracted into diethyl ether (3 x 50 cm3). The combined organic extracts were

washed with brine (2 x 50 cm3) dried (MgSO4), filtered and concentrated under reduced

pressure. The crude product was purified using column chromatography (silica gel,

dichloromethane, Hexane, 1:1) and recrystallisation from ethanol to yield a white

crystalline solid (2.9 g, 51%). 1H NMR (400 MHz, CDCl3 δ): 7.53 – 7.56 (4H, m), 7.44 

– 7.51 (3H, m) 3.75 (2H, t, j = 6.5 Hz), 2.65 (2H, t, j = 6.0 Hz), 1.98 (2H, pent), 1.77 –

1.88 (2H, m). MS (EI) (m/z): 591 (M+).

4-(9,9-Dioctylfluoren-2-yl)butan-1-amine (12) A mixture of 2-[4-(9,9-dioctylfluoren-

2-yl)butyl]isoindoline-1,3-dione (11) (2.00 g, 3.38 mmol) hydrazine hydrate (25 cm3)
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and ethanol (100 cm3) was heated under reflux for 3 h, then allowed to cool to RT. The

reaction mixture was concentrated under reduced pressure and the crude product

triturated with hexane to yield a yellow waxy solid (quantative yield, 1.6 g). The

product was used without further purification due the unstable nature of alkyl amines.

1H NMR (400 MHz, CDCl3 δ): 7.50 – 7.55 (4H, m), 7.44 – 7.49 (3H, m), 2.71 (2H, t, j = 

7.5 Hz), 2.62 (2H, t, j = 7.5 Hz), 1.65 (2H, pent), 1.47 (2H, pent), 1.29 (2H, br, s). MS

(EI) (m/z): 461 (M+).

Compound 2. A mixture of 3,4,9,10-perylene tetracarboxylic dianhydride (13) (0.21 g,

0.542 mmol) 4-(9,9-dioctylfluoren-2-yl)butan-1-amine (12) (1.00 g, 2.166 mmol) zinc

acetate diyhdrate (0.06 g, 0.268 mmol) and dimethylacetamide (50 cm3) was heated

(160 oC) overnight. The cooled reaction mixture was poured into methanol (50 cm3) and

the resulting precipitate filtered then purified by column chromatography on silica gel

and recrystallised from dichloromethane/dimethylsulfoxide to yield a red crystalline

solid (0.37 g, 54%). 1H NMR (400 MHz, CDCl3 δ):8.77 (4H, d, j = 7.9 Hz), 8.66 (4H, d, 

j = 8.1 Hz), 7.52 – 7.56 (10H, m), 7.44 – 7.49 (6H, m), 4.21 (4H, t, j = 7.7 Hz), 1.86

(4H, pent), 1.71 (4H, pent). MS HABA (m/z): 1279.256. Anal. Calcd C: 84.86, H: 8.35,

N: 2.19. Anal Obt. C: 84.94, H: 8.33, N: 2.05.

2-Bromo-7-iodo-9,9-dioctylfluorene (15). Powdered potassium hydroxide (4.69 g,

83.6 mmol) was added in small portions to a solution of 2-bromo-7-iodofluorene (14)

(7.30 g, 19.7 mmol), 1-bromooctane (7.98 g, 41.3 mmol), potassium iodide (0.33 g,

1.97 mmol) and dimethyl sulfoxide (140 cm3) at room temperature. The resultant
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mixture was stirred for 3 h then poured into water (300 cm3). The crude product was

extracted into hexane (4 x 100 cm3) and the combined organic extracts washed with

dilute hydrochloric acid (20%, 100 cm3) and brine (2 x 100 cm3). The organic layer was

dried (MgSO4), filtered and concentrated under reduced pressure. Purification of the

crude product was carried out by recrystallisation from ethanol to yield a white

crystalline solid (11.72 g, 92%). 1H NMR (400 MHz, CDCl3 δ): 7.64 – 7.66 (2H, m), 

7.52 (1H, dd j = 7.9, 0.8 Hz), 7.39 – 7.46 (3H, m), 1.87 – 1.92 (4H, m), 1.05 – 1.26

(20H, m), 0.83 (6H, t, j = 7.0 Hz), 0.55 – 0.61 (4H, m) MS (EI) (m/z): 594 (M+).

2-Bromo-7-(4-methoxyphenyl)-9,9-dioctylfluorene (17). A mixture of 2-bromo-7-

iodofluorene-9,9-dioctylfluorene (15) (10.00 g, 16.78 mmol), 4-methoxyphenyl boronic

acid (16) (2.93 g, 19.30 mmol), potassium carbonate (5.80 g, 41.99 mmol), palladium

tetrakistriphenyl phosphine (0.97 g, 0.840 mmol) and tetrahydrofuran (68 cm3) was

heated at 80 oC overnight. The cooled reaction mixture was poured into methanol (50

cm3) and the resulting precipitate filtered and purified using column chromatography on

silica gel using 3:2 mixture of hexane and dichloromethane as eluent and recrystallised

from ethanol to yield a yellow precipitate (6.33 g, 66%) 1H NMR (CDCl3 δ): 7.76 (1H, 

d, j = 0.92 Hz), 7.74 (1H, d, = 8.8 Hz), 7.61 – 7.66 (4H, m), 7.48 (1H, dd, j = 8.0, 1.1

Hz), 7.35 (1H, d, j = 8.0 Hz), 6.98 (2H, d, j = 8.8 Hz), 3,43 (3H,s), 2.01 – 2.09 (4H, m),

1.04 – 1.28 (24H, m), 0.82 (6H, t, j = 5.4 Hz). MS (m/z): 576 (M+).

4-[7-(4-Methoxyphenyl)-9,9-dioctylfluoren-2-yl]-phenylamine (19). A mixture of 2-

bromo-7-(4-methoxyphenyl)-9,9-dioctylfluorene (17) (3.25 g, 5.65 mmol) 4-(4,4,5,5-
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tetramethyl-1,3,2 dioxborolan-2-yl aniline (18) (1.24 g, 5.65 mmol), palladium

tetrakistriphenyl phosphine (0.33, 0.282 mmol), potassium phosphate (1.80 g, 8.47

mmol) and degassed dimethylformamide (40 cm3) was heated at 80 oC overnight. The

cooled reaction mixture was poured into water (50 cm3) and the crude product extracted

into diethyl ether (3 x 100 cm3). The combined extracts were washed with dilute

hydrochloric acid (20%, 100 cm3) and brine (2 x 100 cm3), dried (MgSO4), filtered and

concentrated under reduced pressure. The crude product was purified by column

chromatography on silica gel using a 1:1 mixture of hexane and dichloromethane as

eluent to yield a yellow waxy solid (2.65 g, 80%). 1H NMR (400 MHz CDCl3 δ): 7.72 

(1H, d, j = 3.3 Hz), 7.70 (1H, d, j = 3.3 Hz), 7.61 (2H, d, j = 8.8 Hz), 7.49 – 7.52 (6H,

m), 7.01 (2H, d, j = 8.8 Hz), 6.79 (2H, d, j = 8.6 Hz), 3.88 (3H, s), 1.98 – 2.02 (4H, m),

1.05 – 1.19 (20H, m), 0.79 (6H, t, j = 7.0 Hz), 0.68 – 0.73 (4H, m). MS (EI) (m/z): 588

(M+).

Compound 3. A mixture of 3,4,9,10-perylene tetracarboxylic dianhydride (13) (0.45 g,

1.10 mmol) 4-[7-(4-methoxyphenyl)-9,9-dioctylfluoren-2-yl] phenylamine (19) (1.14 g,

2.30 mmol) zinc acetate diyhdrate (0.13 g, 0.574 mmol) and imidazole (8.00 g) was

heated at 160 o C overnight. The cooled reaction mixture was extracted into

dichloromethane (4 x 50 cm3) and the resulting solution filtered to remove precipitate

formed. The filtrate was concentrated under reduced pressure and the crude product

purified by column chromatography on silica gel using dichloromethane as eluent and

recrystallised from a mixture dichloromethane and dimethyl suphoxide to yield a red

crystalline solid (1.31 g, 74%). 1H NMR (400 MHz CDCl3 δ): 8.65 (4H, d, j = 7.7 Hz), 

8.55 (4H, d, j = 8.1 Hz), 7.79 (4H, d, j = 8.2 Hz), 7.67 (4H, dd, j = 7.6, 5.1 Hz), 7.54 –
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7.57 (8H, m), 7.48 (4H, d, j = 8.8 Hz), 7.41 (4H, d, j = 8.8 Hz), 6.95 (4H, d, j = 8.6 Hz),

3.81 (6H, s), 1.97 – 1.98 (8H, m), 1.01 – 1.13 (40H, m), 0.73 (12H, t, j = 7.0 Hz), 0.66 –

0.68 (8H, m). MS (HABA) (m/z): 1531.231 Anal. Calc. C: 84.67, H: 7.24, N: 1.83,

Anal. Obt. C:84.37, H: 7.30, N: 1.75. Cr - N = 285 oC; N - I = >350 oC.

2-Bromo-7-nitro-9,9-dioctylfluorene (21). Powdered potassium hydroxide (15.62 g,

278.30 mmol) was added in small portions over 30 min to a mixture of 2-bromo-7-

nitrofluorene (20) (19.00 g, 65.50 mmol), 1-bromooctane (27.83 g, 144.10 mmol)

potassium iodide (1.09 g, 6.55 mmol) and dimethyl suphoxide (280 cm3) at RT. The

solution was stirred for 4 h then poured into water (400 cm3). The crude product was

extracted into ethyl acetate (4 x 100 cm3). The combined organic extracts were washed

with dilute hydrochloric acid (20%, 100 cm3) and brine (2 x 200 cm3), then dried

(MgSO4), filtered and concentrated under reduced pressure. Purification of the crude

product was carried out by recrystallisation from ethanol to yield yellow needles (22.37

g, 66%). 1H NMR (400 MHz, CDCl3 δ): 8.25 (1H, d, j = 2.2 Hz), 8.23 (1H, d, j = 2.0 

Hz), 7.80 (1H, dd, j = 7.5. 1.1 Hz), 7.77 – 7.83 (3H, m) MS (EI) (m/z): 513 (M+).

4,4,5,5-Tetramethyl-2-(7-nitro-9,9-dioctylfluoren-2-yl)-[1,3,2]-dioxaborolane (24).

Pd(dppf)Cl2 (0.29 g, 0.389 mmol) was added to a degassed solution of 2-bromo-9,9-

dioctylfluorene (21) (10.00 g, 19.40 mmol), bis(pinacolato)diboron (5.43 g, 21.38

mmol), potassium acetate (5.72 g, 58.28 mmol) and dimethyl suphoxide (97 cm3). The

mixture was heated overnight at 80 oC, allowed to cool to RT then poured into water
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(300 cm3). The crude product was extracted into ethyl acetate (3 x 100 cm3) and the

combined organic extracts were washed with brine (2 x 100 cm3), dried (MgSO4),

filtered and concentrated under reduced pressure. Purification of the crude product was

carried out by column chromatography on silica gel using a 3:2 mixture of hexane and

dichloromethane as eluent to yield a yellow way solid (7.65 g, 70%). 1H NMR (400

MHz, CDCl3 δ): 8.27 (1H, d, j = 2.2 Hz), 8.25 (1H, d, j = 2.0 Hz), 7.86 (1H, dd, j = 7.6. 

0.9 Hz), 7.77 – 7.83 (3H, m), 2.02 – 2.07 (4H, m), 1.40 (12H, s), 1.02 – 1.78 (22H, m),

0.81 (6H, t, j = 6.9 Hz), 0.49 – 0.60 (4H, m). MS (EI) (m/z): 561 (M+).

7-Nitro-9,9-dioctyl-9',9'-dipentyl-[2,2']-bifluorene (25). A mixture of 4,4,5,5-

tetramethyl-2-(7-nitro-9,9-dioctylfluoren-2-yl)-[1,3,2]-dioxaborolane (24) (3.50 g, 6.23

mmol), 2-bromo-9,9-dipentylfluorene (23) (2.40 g, 6.23 mmol), tetrakis palladium

triphenylphosphine (0.22 g, 0.19 mmol) potassium phosphate (1.98 g, 9.33 mmol) and

dimethyl formamide (45 cm3) was heated at 80 oC overnight. The reaction mixture was

allowed to cool to room temperature and poured into methanol (50 cm3). The resulting

precipitate was filtered and purified by column chromatography on silica gel using a 3:2

mixture of dichloromethane and hexane as eluent to yield an orange cystalline solid

(2.01 g, 43%). 1H NMR (400 MHz, CDCl3 δ): 8.21 – 8.27 (2H, m), 7.60 – 7.85 (8H, m), 

7.33 – 7.40 (3H, m), 2.01 – 2.06 (8H, m), 1.07 – 1.26 (36H, m), 0.69 – 0.80 (12H, m).

MS (EI) (m/z): 739 (M+).

9,9-Dioctyl-9',9'-dipentyl-[2,2']-bifluorenyl-7-ylaniline (26). Tin chloride dihydrate

(3.43 g, 15.20 mmol) was added to solution of 7-nitro-9,9-dioctyl-9',9'-dipentyl-[2,2']-
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bifluorene (25) (2.25 g, 3.00 mmol) and ethanol (250 cm3) and the mixture heated under

reflux for 6 h. The cooled reaction mixture was filtered through a celite pad and the

celite washed with dichloromethane (5 x 50 cm3). The filtrate was concentrated under

reduced pressure and the crude product used without further purification due to the

unstable nature of aromatic amines and the high conversion yield (2.05 g, 95%). 1H

NMR (400 MHz, CDCl3 δ): 7.72 – 7.77 (2H, m), 7.50 – 7.63 (6H, m), 7.30 – 7.35 (3H, 

m), 6.66 – 6.69 (2H, m), 2.00 – 2.03 (8H, m), 1.07 – 1.21 (36H, m), 0.70 – 0.83 (12H,

m). MS (HABA) (m/z): 709.661 (M+).

Compound (4). A mixture of 3,4,9,10-perylene-tetracarboxylic dianhydride (13) (0.50

g, 1.30 mmol) 9,9-dioctyl-9',9'-dipentyl-[2,2']-bifluorenyl-7-ylaniline (26) (1.90 g, 2.70

mmol) zinc acetate diyhdrate (0.14 g, 0.637 mmol) and imidazole (10.00 g) was heated

at 160 oC overnight. The cooled reaction mixture was dissolved in dichloromethane (4 x

50 cm3) and the resultant solution filtered to remove the precipitate formed. The filtrate

was concentrated under reduced pressure and the crude product purified by column

chromatography on silica gel using dichloromethane as the eluent and recrystallisation

from a mixture of dichloromethane and dimethyl suphoxide to yield a red crystalline

solid (1.17 g, 52%). 1H NMR (400 MHz, CDCl3 δ): 8.81 (4H, d, j = 7.9 Hz), 8.73 (4H, 

d, j = 8.1 Hz), 7.92 (2H, d, j = 8.4 Hz), 7.85 (2H, d, j = 7.9 Hz), 7.79 (2H, d, j = 7.7 Hz),

7.75 (2H, d, j = 6.4 Hz), 7.64 – 7.70 (8H, m), 7.32 – 7.38 (8H, m), 2.01 – 2.06 (16H, m),

1.07 – 1.22 (40H, m), 0.72 – 0.90 (40H, m). MS (HABA) (m/z): 1776.201 Anal. Calc.

C: 86.54, H: 8.28, N: 1.58, Anal. Obt. C: 86.47, H: 8.50, N: 1.51. MP. 261 oC
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9-(1-Octylnonyl)-carbazol-2-ylamine (30). Tin chloride dihydrate (2.25 g, 10.00

mmol) was added to solution of 9-(heptadecan-9-yl)-2-nitro-carbazole (29) (0.90 g, 2.00

mmol) and ethanol (50 cm3) and the mixture heated under reflux for 6 h. The cooled

reaction mixture was filtered through a celite pad and the celite washed with

dichloromethane (5 x 50 cm3). The filtrate was concentrated under reduced pressure and

the crude product used without further purification due to the unstable nature of

aromatic amines and the high conversion yield, which gave a yellow crystalline solid

(0.83 g, 99%). HABA (m/z): 420.114 Anal. Calc. C: 82.80, H: 10.54, N: 6.66, Anal.

Obt. 82.62, H: 10.37, N: 6.44.

Compound (5). A mixture of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (13)

(0.19 g, 0.484 mmol) 9-(1-octylnonyl)-carbazol-2-ylamine (30) (0.81 g, 1.90 mmol)

zinc acetate diyhdrate (0.05 g, 0.242 mmol) and imidazole (10.00 g) was heated at 160

oC overnight. The cooled reaction mixture was extracted into dichloromethane (4 x 50

cm3) and the resulting solution filtered to remove precipitate formed. The filtrate was

concentrated under reduced pressure and the crude product purified by column

chromatography [silica gel, dichloromethane] and recrystallised from a mixture of

dichloromethane and dimethyl suphoxide to yield a red crystalline solid (0.35 g, 60%).

1H NMR (400 MHz, CDCl3 δ): 8.75 (4H, s, br), 8.56 (4H, s, br), 8.26 (2H, m, br), 8.14 

(2H, m, br), 7.58 – 7.68 (2H, m, br), 7.40 – 7.50 (4H, br, m), 7.16 – 7.28 (4H, m, br),

4.50 – 4.60 (2H, m, br), 2.20 – 2.30 (4H, m, br), 1.80 – 2.00 (4H, m, br), 1.10 – 1.30

(40H, m), 0.83 (12H, t, j = 7.3 Hz). MS(HABA) (m/z): 1196.87 Anal. Calc. C: 82.24, H:

7.74, N: 4.68, Anal Obt. C: 82.11, H: 8.03, N: 4.38. MP. 348 oC.
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7-(Methoxyphenyl)-7'-nitro-9,9,9',9'-tetraoctyl-[2,2']-bifluorene (31). Tetrakis

palladium triphenylphosphine (0.20 g, 0.174 mmol), was added to a degassed mixture

of 2-bromo-7-(4-methoxyphenyl)-9,9-dioctylfluorene (17) (2.00 g, 3.50 mmol), 4,4,5,5-

tetramethyl-2-(7-nitro-9,9-dioctylfluoren-2-yl)-[1,3,2]-dioxaborolane (24) (2.15 g, 3.80

mmol), potassium phosphate (1.60 g, 5.20 mmol) and dimethyl formamide (15 cm3).

The mixture was heated at 80 oC overnight, allowed to cool and the mixture

concentrated under reduced pressure. The crude product was purified by column

chromatography on silica gel using a 3:2 mixture of hexane and dichloromethane to

yield a yellow waxy solid (2.46 g, 76 %). 1H NMR (400 MHz, CDCl3 δ): 8.30 (1H, dd, j 

= 8.3, 2.2 Hz), 8.23 (1H, d, j = 2.2 Hz), 7.77 – 7.87 (4H, m), 7.65 – 7.76 (6H, m), 7.54 –

7.58 (2H, m), 7.02 (2H, d, j = 8.8 Hz). 3.86 (3H,s), 1.94 – 2.06 (8H, m), 1.08 – 1.26

(40H, m), 0.77 – 0.83 (20H, m). MS (HABA) (m/z): 930.39.

7'-(4-Methoxyphenyl)-9,9,9'9',tetraoctyl-[2,2']-bifluorenyl-7-ylamine (32). Tin

chloride dihydrate (2.98 g, 13.20 mmol) was added to solution of 7-(methoxyphenyl)-7'-

nitro-9,9,9',9'-tetraoctyl-[2,2']-bifluorene (31) (2.46 g, 2.60 mmol) and ethanol (200

cm3) and the mixture heated under reflux for 6 h. The cooled reaction mixture was

filtered through a celite pad, which was then washed with dichloromethane (7 x 50

cm3). The combined filtrate was concentrated under reduced pressure. The crude

product obtained was used without further purification due to the unstable nature of

aromatic amines and the high conversion yield, which gave a yellow crystalline solid in

near quantitative yield (2.18 g). 1H NMR (400 MHz, CDCl3 δ): 7.76 (1H, d, j = 3.1 Hz), 

7.75 (1H, d, j = 3.3 Hz), 7.60 – 7.64 (6H, m), 7.52 – 7.55 (4H, m), 7.02 (2H, d, j = 9.0

Hz), 6.67 – 6.70 (2H, m), 3.88 (3H, s), 3.67 (2H, br), 1.90 – 2.07 (8H, m), 1.08 – 1.28
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(40H, m), 0.77 – 0.83 (20H, m). MS (HABA) (m/z): 899.836.

Compound (6). A mixture of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (13)

(0.39 g, 0.994 mmol) 7'-(4-methoxyphenyl)-9,9,9'9',tetraoctyl-[2,2']-bifluorenyl-7-

ylamine (32) (1.87 g, 2.10 mmol) zinc acetate diyhdrate (0.11 g, 0.497 mmol) and

imidazole (8.00 g) was heated at 160 oC overnight. The cooled reaction mixture was

extracted into dichloromethane (4 x 50 cm3) and the resultant solution filtered to remove

the precipitate formed. The filtrate was concentrated under reduced pressure and the

crude product purified by column chromatography on silica gel, using dichloromethane

as eluent and recrystallisation from a mixture of dichloromethane and dimethyl

suphoxide to yield a red crystalline solid (0.62 g, 29%). 1H NMR (400 MHz, CDCl3 δ): 

8.80 (4H, d, j = 7.9 Hz), 8.73 (4H, d, j = 8.4 Hz), 7.93 (2H, d, j = 8.4 Hz), 7.85 (2H, d, j

= 7.9 Hz), 7.79 (4H, t, j = 8.5 Hz), 7.62 – 7.71 (12H, m), 7.55 – 7.57 (4H, m), 7.35 –

7.37 (4H, m), 7.03 (4H, d, j = 8.8 Hz), 3.89 (6H, s), 2.05 – 2.08 (16H, m), 1.10 – 1.24

(80H, m), 0.79 – 0.90 (40H, m). MS (HABA) (m/z): 2156.907 Anal. Calc. C: 85.75, H:

8.50, N: 1.30 Anal. Obt. C: 86.13, H: 8.09, N: 1.34. Trans. Temp. Cr - SmC = 229 oC;

SmC - I = 183 oC.

3. Results and Discussion

3.1 Mesophase Identification.

[Insert Table 1 here]

The liquid crystalline transition temperatures and melting points of the compounds 1-6
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were investigated using a combination of differential scanning calorimetry (DSC) and

optical microscopy between crossed polarizers. Compounds 1, 2, 4 and 5 do not exhibit

observable liquid crystalline phases and just melt at 274 °C, 182 °C, 261 °C and 348°C

respectively, to form an isotropic liquid, see table 1. Only compounds 3 and 6 exhibit

thermotropic liquid crystalline mesophases. Compound 3 forms a nematic phase, above

the high melting point of 285 °C; bright nematic droplets were observed with the

polarizing microscope on cooling compound 3 from the black isotropic liquid to form a

highly birefringent Schlieren texture with two and four-point brushes characteristic of

the nematic phase. Some optically extinct homeotropic areas are also present in the

sample observed and as the sample was cooled further the texture often formed more of

these optically extinct homeotropic areas. This behavior indicates that the observed

phase is optically uniaxial. Both the birefringent and homeotropic areas flash brightly

under mechanical disturbance, which along with the simultaneous presence of both the

homeotropic texture and the Schlieren texture, confirms that the mesophase observed is

a nematic phase. Compound 6 only exhibits a monotropic smectic C liquid crystal and

forms a metastable supercooled LC phase in a thin film for room temperature

processing. The smectic C phase formed on supercooling the sample from the isotropic

liquid also exhibits a Schlieren texture, but only with four point brushes and no two

point brushes. There are no isotropic areas due to the biaxial nature of the smectic C

phase. These visual observations were confirmed by analysis of compounds 3 and 6

using DSC, which was also used to determine the glass transition temperature (tg).

There was good agreement (≈ 1-2 °C) between those values determined by optical 

microscopy for the liquid crystalline transitions (SmC-I and N-I) and those obtained

using DSC analysis. The DSC values were determined twice on heating and cooling

cycles on the same sample. The values obtained on separate samples of compounds 3
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and 6 are reproducible. No thermal degradation of the sample is observed even at

relatively high temperatures. The base line of the spectra is relatively flat in each case

and sharp transition peaks are observed for materials 3 and 6. Both the nematic-

isotropic liquid crystalline transition (N-I) and the smectic-isotropic transition (SmC-I)

are first order as expected. A significant degree of supercooling below the melting point

is observed on the cooling cycle and compounds 3 and 6 remain in the nematic glassy

state at room temperature without crystallizing. This behavior may be attributed, at least

in part, to the high viscosity of the nematic and smectic C phases of the compounds 3

and 6, respectively, both of which has a very long molecular core with eight aliphatic

chains in lateral positions and two methoxy chains in terminal positions in the case of

compound 6. Both compounds 3 and 6 contain the perylene moiety as well as four

fluorene moieties. These very large, highly conjugated molecular cores also contribute

to a very high viscosity of the isotropic melt. This combination of molecular

components may well explain the formation of the glassy state on rapid cooling from

the isotropic liquid formed above the melting point.

A spectrum of physical properties of the electron-acceptors 1-6 were investigated in

order to identify the most promising candidate for fabricating bilayer photovoltaic

devices with the liquid crystalline electron donor compound 7 shown in table 1. The

physical properties measured include the UV-vis absorption spectra, ionization potential

(IP), electron affinity (EA), energy levels, i.e., highest occupied molecular orbital

(HOMO), lowest occupied molecular orbital (LUMO), band gap between them (Eg) and

the charge carrier mobility (), see below.
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3.2. Absorption spectra.

[Insert figure 1 here]

Figure 1 shows the absorption spectrum from thin films of a selection of the perylene

containing materials. The spectra show distinct transitions from the electron-donating

and -accepting components of the molecules. For example, all spectra show two peaks

at 495 nm and 542 nm and an accompanying shoulder at 468 nm, originating from the

perylene central core, whereas the peak at 337 nm in the spectrum of compound 3 can

be assigned to a transition centered on the 2,7-diphenyl-9,9-dioctlyfluorenyl unit. There

are no significant transitions with charge transfer character, which would be red-shifted

from those localized on the individual moieties.[27] The absorption spectra show

additional evidence for negligible charge transfer character; the spectra from 1 and 2 are

very similar, although in the latter case the fluorene unit is decoupled from the PDI via

an aliphatic spacer. The absence of a charge transfer transition suggests that the LUMO

is localized on the PDI unit and the HOMO on the outer aromatic rings with no

significant transition dipole moment between them. This is supported by molecular

modeling of the HOMO and LUMO of 5. As figure 2 shows, the HOMO is mainly

localized on the PDI unit and the HOMO on the carbazole moiety.

[Insert figure 2 here]
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3.3. Electrochemistry.

[Insert figure 3 and table 2 here]

The IP and EA of the compounds were found by CV. Figure 3 shows a typical CV scan

showing two reversible oxidation and reduction peaks. The IP and EA of all compounds

are tabulated in table 2 as well as ௢௫ܧ
௢௡௦௘௧,ܧ௥௘ௗ

௢௡௦௘௧ and the band-gap of the materials. Eg
ec

is equal to IP-EA as obtained electrochemically and Eg
opt is the optical band-gap

estimated from the absorption edge. Compound 2 has a perylene diimide core,

decoupled from the fluorene units by aliphatic chains and has an EA value of 4.22 eV.

In the literature there is a wide range of EA values for perylene diimide from 3.4 eV

upwards.[28-31] The wide range relates to different measurement techniques and also

large variations in the values of the reference potential used. Our CV experiment gives

an EA value of 4.14 eV for phenyl-C61-butyric acid methyl ester (PCBM), which is

within 0.15 eV of accepted value of 4.3 eV[32]. eV The EA of compounds 1 – 6 are

approximately equal, suggesting that the LUMO is localized on the perylene diimide

core of the molecule. The variation in values of IP supports the hypothesis that the

HOMOs are centered on the outer aromatic units of the molecules. For compounds, 1-4

and 6, which contain the fluorene unit, the IP decreases with the length of the moiety.

The IP of 5 is significantly lower than that of 2 as a result of the electron-donating

nature of the nitrogen atom of the carbazole unit, which replaces the fluorene

moiety.[25, 33, 34] Most donor-acceptor materials have similar values of Eg
ec and Eg

opt

because the charge transfer transitions originate between the HOMO and LUMO.[35,

36] Here Eg
ec is significantly smaller than Eg

opt, providing confirmation that optical

transitions do not couple energy states localized on the donor and acceptor regions of

the molecules. A similar result was found for a perylene-carbazole polymer.[37] The

CV measurements confirm that there is no charge –transfer between the perylene core
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and the electron donating moieties of compounds 1 to 6. This is a different result to that

obtained for new copolymer materials where the electron deficient perylene diimide is

combined with electron donating units such as fluorene, and carbazole and some charge

transfer is observed.[38, 39] Interestingly the performance of photovoltaic devices

where the copolymers were used as the acceptor unit did not systematically vary with

their internal charge transfer properties. The IP of the electron donor material 7 is 5.52

eV.

3.4. Charge transport.

[Insert figure 4 here]

Figure 4 shows typical time-of flight traces for hole and electron photocurrents for

samples 1 and 6. The photocurrent is measured as a function of reduced time (time/d)

and the same electric field was used for each measurement. Therefore the different

reduced time-of-flight for the different samples shown in the figure reflects differences

in mobility rather than in sample thickness. The transients for sample 1 have been offset

50 for clarity. Both materials show dispersive transport so a log-log scale is needed to

show well defined reduced times-of-flight, the hole transit time for both materials being

indicated by arrows. The reduced transit times for both electrons and holes are over an

order of magnitude smaller for sample 6 than for sample 1. As figure 4 shows, all

transients show a gradual reduction in photocurrent before the reduced transit times,

with a change of slope occurring at early reduced times (< 10-6 s m-1). Positive and

negative carriers are generated by absorption over a short distance near the incident

electrode, and they travel in different directions according to the direction of the applied

field. Hence the change of slope may occur when all carriers have reached the near
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electrode and the continued reduction in photocurrent later results from carrier trapping.

[Insert figure 5 here]

Figure 5 shows the mobility as a function of electric field for both electrons and holes

for compounds 1-3, 5 and 6. We were unable to make a sufficiently thick sample of

compound 4 for measurement. We consider hole and electron mobility separately. The

hole mobility for all the perylene compounds is low  10-4 cm2 V-1 s-1 However there are

variations over nearly three orders of magnitude between the various materials with

increases in the order 5 < 1 < 2 « 3  6. Compounds 1, 2 and 5 have donor components

with two conjugated rings only and so have the smallest mobility; transport via the

fluorene unit is enhanced when it is decoupled from the perylene moiety in compound 2

while hole mobility is lowest in compound 5 despite the relatively high HOMO energy

of the carbazole units. Compounds 3 and 6 have much higher hole mobilities probably

because of their liquid crystalline organization; their extended hole transporting

components of the molecules gives an increased probability of overlap and hopping

between neighbors.

The wide variation in electron mobility, over two orders of magnitude, is more

surprising, given the similar LUMO energy of all compounds and the same perylene

electron transporting unit. Given that the donor-acceptor intra-molecular coupling is

small as discussed above, we attribute the variations in mobility to different

intermolecular coupling between neighbors. The electron mobility of 2 is over ten times

greater than that of 1 suggesting that intermolecular coupling is increased when the

electron and hole transporting units are separated by aliphatic chains. Interestingly the
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electron mobility of 3 is over twenty times lower than that of 6 despite their similar hole

mobilities. The higher mobility of 6 may relate to its smectic liquid crystalline

organization. Although bulk films have monotropic smectic phase (seen only on

cooling) thin films show LC phases when formed by solution processing. This may

improve intermolecular coupling between neighboring perylene units. The electron

mobility of 6 compares well to that of the compound (3,4,5Pr)12G1-3-

perylenetetracarboxyldiimide which has a columnar phase at room temperatures with a

mobility of  3  10-5 cm2 V-1 s-1.[40] Elsewhere it was found that the mobility of

discotic perylene materials varied enormously with processing conditions.[41]

3.5. Bilayer Photovoltaic devices.

[Insert figure 6 and table 3 here]

Figure 6 shows the photocurrent- voltage characteristics of bilayer photovoltaic devices

having the same donor 7 and different acceptors, 1, 3, 4 and 5, on irradiation with

~24mW/cm2 of light of wavelength 465 nm. The donor and acceptor were deposited

from 1.5 wt% and 1.0 wt % solutions in chlorobenzene respectively. Table 3

summarizes the performance of the devices. The short-circuit current density is JSC, the

open-circuit voltage is VOC and the power conversion efficiency P is defined as

inc

SCOC

inc
P

I

JVFF

I

JV 
 maxmax

(1)

where Iinc is the optical irradiance incident to the photovoltaic cell. The fill factor, FF, is

the ratio of the maximum power rectangle Vmax  Jmax to the rectangle VOC  JSC. The

series resistance (RS) results from the finite conductivity of the semiconducting material,
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the contact resistance between the semiconductors and the electrodes, as well as the

resistance associated with electrodes and interconnections. The shunt resistance (RP)

results from the loss of carriers via possible leakage paths. These paths include

collection at the wrong electrode giving continuous pathways for both electrons and

holes between the anode and cathode, structural defects such as pinholes in the film or

recombination centres. The parameter “n”, is the index in the formula n
incSC IaJ 

where a is a constant. In all cases Voc approaches the difference, to within 0.2 V,

between the HOMO of the donor and the LUMO of the acceptor. The differences in

performance of the devices relate mostly to JSC and the FF. Acceptor 1 has a higher

electron mobility than that of 3 and 5, which may account for the better performance of

the 7:1 device. However, device 7:5 is significantly better than 7:3 despite the similar

values of electron mobility for both acceptors. A rule of thumb is that the value of RS

must be small compared to the characteristic resistance defined as RCH =VOC/ISC while

RP must be large compared to RCH.[42] All devices, particularly 7:4 , have high values

of RS and low values of RP. In all devices n > 0.9 showing the recombination is mostly

monomolecular (geminate).

Table 4 compares the performance of bilayer devices, all based on the 7:1 combination

with different layer thickness. The layer thickness depends on the concentration (given

in % weight of solution) of the solution used for spin-casting. It suggests that the high

RS, low RP and low FF are related to the poor electron mobility, < 10-5 cm2 V-1 s-1, of the

acceptor 1: These parameters change substantially when the acceptor is deposited from

a solution concentration of 2.0wt % compared to 1.0 wt %. Note also that the former

device has substantially more bimolecular recombination. Changing the concentration

of the donor solution between 1.5 and 2.5 weight % has a much smaller effect on device



26

performance, possibly because of the relatively high hole mobility of 7.

The performance deteriorates as the thickness of the blend increases. There are some

striking albeit expected differences between the blend and bilayer devices. The FF and

Rp are worse for the blend devices suggesting the need of barrier layers to ensure that

carriers cannot reach the wrong contact. The blend photovoltaics show significantly

more bimolecular recombination than the bilayer devices as indicated by the

consistently low value of n for the former. This results from non-geminate

recombination, possibly at the heterojunctions of domains which are disconnected from

electrodes. The generation of space-charge caused by a large difference between

electron and hole mobility would also increase the rate of non-geminate recombination.

Of necessity, the donor layer of all of the bilayer devices is crosslinked by irradiation

with ultraviolet light to obtain an insoluble layer before depositing the acceptor layer.

We now show that crosslinking does not degrade device performance. Two bulk

heterojunction devices containing a single layer of a 1:1 (by weight) blend of 7 and 1

were prepared using identical conditions except that one was irradiated with ultraviolet

light of fluence 300 J cm-2 before deposition of the top electrode. This resulted in

crosslinking of the donor material only which has photopolymerizable end-groups.

Analysis using atomic force microscopy suggests that the domain size of the bulk

heterojunction was unchanged by photopolymerisation.[22, 43] This is not surprising

since the thin film is in a glassy solid state at room temperature so that there is minimal

material movement during polymerization.[43] Within experimental error, the

performance of both devices was identical showing that crosslinking does not degrade

performance. Interestingly the “n” parameter of the blended devices was significantly

lower, equal to 0.67, than that of the bilayer devices showing more bimolecular
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recombination

4. Conclusion

We demonstrate solution processed bilayer organic photovoltaics, where the lower

electron donating layer is crosslinked by photopolymerisation prior to depositing a

perylene based acceptor layer on top. These results demonstrate the potential of

crosslinking of reactive mesogens as a promising solution-processable route to

multilayer photovoltaics. It is particularly noteworthy that the performance of the

crosslinked and non-crosslinked blended devices are similar, allaying fears that

crosslinking would cause photodegradation. Further work is required to significantly

improve the series and parallel resistances of the devices by the development of electron

accepting materials with higher mobility and by the improvement of contact interfaces.
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Scheme 1. Reagents and conditions (i) a) n-BuLi, EtOEt, -78 oC, b) BrC4H8Br, (ii)

Toluene, 120 oC, (iii) H2NNH2.H2O, EtOH, 65 oC, (iv) Imadazole, Zn(OAc)2.2H2O,

(CH3)2NCOCH3, 180 oC.
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Scheme 2. Reagents and conditions (i) KOH, KI, DMSO, C8H17Br (ii) K2CO3,

Pd(PPh3)4, THF, 75 oC, (iii) DMF, K3PO4, Pd(PPh3)4, DMF, 100 oC, (iv) Imadazole,

Zn(OAc)2.2H2O, (CH3)2NCOCH3, 180 oC.
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Scheme 3. Reagents and conditions (i) KOH, KI, DMSO, C5H11Br (ii) KOH, KI,

DMSO, C8H17Br (iii) CH3CO2K, DMSO, 80 oC (iv) K2PO3, Pd(PPh3)4, DMSO, 80 oC,

(v) SnCl2.2H2O, EtOH, 65 oC, (vi) Imadazole, Zn(OAc)2.2H2O, (CH3)2NCOCH3, 180

oC.
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Scheme 4. Reagents and conditions (i) KOH, DMSO (ii) SnCl2.2H2O, EtOH, 65 oC,

(iii) Imadazole, Zn(OAc)2.2H2O, (CH3)2NCOCH3, 180 oC.
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Scheme 5. Reagents and conditions (i) K2PO3, Pd(PPh3)4, DMF, 80 oC, (ii)

SnCl2.2H2O, EtOH, 65 oC, (iii) Imadazole, Zn(OAc)2.2H2O, (CH3)2NCOCH3, 180 oC.
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Table 1. The chemical structure of the compounds used in this investigation and their

liquid crystalline transition temperatures.

1

Cr-I = 274 °C

2

Cr-I = 182 °C

3

O

O

O

O

NN

H3CO OCH3C8H17C8H17C8H17
C8H17

Cr-N = 285 oC N-I = >350 oC

4

Cr-I = 261 °C

5

Cr-I = 348°C

6

Cr-I = 229 oC; SmC-I = 183 oC

7

Tg = 23 oC; Cr-N = 151 oC
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Table 2. The onset oxidation and reduction potentials, ௢௫ܧ
௢௡௦௘௧ andܧ�௥௘ௗ

௢௡௦௘௧, measured with

reference to the Ag/AgCl electrode, ionization potential (IP), electron affinity (EA) for

compounds 1-7.The electrochemical band-gap is Eg
ec = IP-EA. The optical band-gap,

Eg
opt, is found from the absorption edge.

௢௫ܧ
௢௡௦௘௧ (V) ௥௘ௗܧ

௢௡௦௘௧ (V) IP EA Eg
ec (eV) Eg

opt (eV)

1 - -0.51 - 4.19 - 2.12

2 1.49 -0.48 6.19 4.22 1.97 2.10

3 1.19 -0.45 5.89 4.25 1.64 2.12

4 1.28 -0.49 5.98 4.21 1.77 2.12

5 0.85 -0.47 5.55 4.23 1.32 2.06

6 1.15 -0.48 5.85 4.20 1.65 2.12

7 0.82 - 5.52 - - 2.33
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Table 3. Performance parameters of bilayer photovoltaic devices with the same donor 7

and different acceptors. The devices were illuminated with light of irradiance ~24

mW/cm2 and wavelength 465 nm.

D:A P

(%)

FF

(%)

ISC

(mA

cm-2)

VOC

(V)

RS

(kcm2)

RP

(kcm2)

n

7:1 0.93 36 0.50 1.2 1.1 6.0 0.96

7:3 0.53 32 0.36 1.1 1.8 4.8 0.94

7:4 0.42 28 0.31 1.15 3.7 4.7 0.91

7:5 0.63 33 0.40 1.15 1.9 5.0 0.94
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Table 4. Performance parameters of bilayer photovoltaic devices with the same donor 7

and acceptor 1 but prepared with different concentration of the donor:acceptor spin-cast

solutions given in column 1 as the weight % in solvent. The devices were illuminated

with light of irradiance ~24mW/cm2 and wavelength 465 nm.

7:1

Wt %

P

(%)

FF

(%)

ISC

(mA

cm-2)

VOC

(V)

RS

(kcm2)

RP

(kcm2)

n

1.5:1.0 0.93 36 0.50 1.2 1.1 6.0 0.96

2.0:1.0 0.88 35 0.49 1.2 1.5 5.7 0.96

2.5:1.0 0.70 34 0.42 1.2 1.6 6.3 0.95

2.0:2.0 0.60 25 0.48 1.2 3.7 2.9 0.88
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Figure 1. Absorption spectra of thin films of compounds 1-3, 5 and 6.
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a)

b)

Figure 2. Molecular orbital contour plot of a) HOMO and b) LUMO levels of

compound 5.
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Figure 3 Cyclic voltammogram of 5 showing two reversible oxidation and reduction

transitions.
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Figure 4. Electron and hole photocurrent as a function of reduced time (time/l) for

samples 1 and 6 at an electric field of 7  105 V cm-1. The photocurrents from sample 1

are multiplied 50 for improved clarity. The reduced transit times for holes for both

samples are indicated by arrows.
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Figure 5. Room temperature mobility for holes (h) and electrons (e) of compounds 1-3,

5, 6 and 7 as a function of the (applied field E)1/2.
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Figure 6. Photocurrent voltage characteristics of bilayer photovoltaic devices on

excitation with light of irradiance 24 mW cm -2 and a wavelength of 4655 nm .


