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ABSTRACT Percentile-value ceilings/thresholds have been mandated by governments around the world on
roadway traffic sound-level. Such percentile values, by definition, change with the sound-level’s underlying
probability distribution, i.e., the same percentile can imply different percentile values for different probability
distributions. Whether the underlying probability distribution is Gaussian or not for the roadway traffic
sound-level: contrary reports populate the open literature but such reports are typically weak in statistical
rigor. This decades-long but ongoing debate will be surveyed comprehensively in this paper for the first time
in the open literature. Then, this paper will present two new datasets measured in two separate evenings
at exactly the same location up in a high-rise building, and will employ the Jarque-Bera hypothesis test to
rigorously show that neither dataset is Gaussian.

INDEX TERMS Acoustic noises, environmental noise, soundscape, transportation noise sources.

I. INTRODUCTION
A. THE ROADWAY SOUND-LEVEL’S PROBABILITY
DISTRIBUTION - ITS PRACTICAL SIGNIFICANCE
Roadway vehicular traffic sound constitutes a noise pollutant
in urban areas [1], [2], [3]. Roadway sounds adversely affect
human health and the quality of life; those effects have been
an ongoing topic of research [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16]. Indeed, the level of
human annoyance [5], [6] can be well predicted by an envi-
ronment’s ‘‘noise climate’’ [17] and ‘‘traffic noise index’’ [4],
both of which are mathematically defined in terms of the
noise-level’s ‘‘percentile value’’ [17], [18], [19], [20]. For
such noise-level ‘‘percentile values’’, governments around
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the world have mandated/stipulated thresholds. Please see
[21] issued by the U.S. federal government, [22] commanded
by the Canadian federal government, [23] declared by the
Singaporean government, [24] ordered by the Toronto city
government in Canada, [25] mandated by the Queensland
state government in Australia, and [26] dictated by the Hong
Kong S.A.R. government.

Such ‘‘percentile values’’ depend on the noise-level’s
governing probability density. That is, the same ‘‘per-
centile’’ could mean drastically different ‘‘percentile values’’
for different probability densities. For example, compare
a Gaussian-distributed percentile value and a log-normal-
distributed (thus non-Gaussian) percentile value:

1) AGaussian (i.e., normal) random variable’s cumulative
distribution function FG(·) may be expressed explicitly
in terms of its statistical mean µG and its standard
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deviation σG:

FG(x) =
1
2

[
1+ erf

(
x − µG
√
2σG

)]
,

∀x ∈ (−∞,∞), (1)

where erf(·) denotes the ‘‘error function’’. Therefore,
the Gaussian distribution’s mth-percentile value equals

LG,m = F−1G

(
1−

m
100

)
, ∀m ∈ [0, 100], (2)

where the superscript −1 refers to the inverse of the
function superscripted.

2) A ‘‘log-normal’’ random variable’s cumulative distri-
bution function FLN(·) may be expressed explicitly
in terms of its statistical mean µLN and its standard
deviation σLN:

FLN(x) =
1
2

[
1+ erf

(
ln(x) − µLN
√
2σLN

)]
,

∀x ∈ (0,∞). (3)

Hence, the log-normal distribution’s mth-percentile
value equals

LLN,m = F−1LN

(
1−

m
100

)
,∀m ∈ [0, 100]. (4)

These two probability distributions’ percentile values’ dif-
ference is plotted in Fig. 1. at the 10th, the 50th, and the
90th percentiles. Clearly, the two distributions’ correspond-
ing ‘‘percentile values’’ are disparate even while both are
preset at the same ‘‘percentile’’, whether the 10th, the 50th,
or the 90th. That is, the probability density distribution
would principally influence the roadway traffic sound-level
percentile-value in relation to various governments’ policy
requirements. Consequentially, it is of practical interest to test
out the Gaussian assumption that has often (implicitly) been
made of the roadway traffic noise-level.

B. ROADWAY SOUND-LEVEL DISTRIBUTION’s EMPIRICAL
NORMALITY – A LITERATURE REVIEW
Is traffic sound level normally (Gaussian) distributed? Differ-
ent responses have emerged over the decades, often without
much (or any) rigorous statistical analysis. E.g.,

#1 Gaussian - In the 1960s, [27] presumed, but did not
empirically test for, statistical normality of the noise
level in its empirical data analysis.

#2 Gaussian - Still in the 1960s, [28] used subjective
assessment (without any rigorous statistical test statis-
tic) to conclude that ‘‘noise levels in the range between
10% and 90% appears sufficiently near normal’’ for
free-flowing traffic in a rural setting.

#3 Inconclusive - In the early 1970s, [29] used
non-rigorous statistical testing to examine if the pres-
sure level data is Gaussian, but came to no definite
conclusion. There was no description of where nor
when the traffic data was taken.

FIGURE 1. The difference between the Gaussian percentile-value and the
log-normal percentile-value at the 10th, 50th, 90th percentiles.

#4 Non-Gaussian - In the late 1970s, [30] found the sound
power itself to be Gaussian, thereby implicitly imply-
ing the sound pressure level as not Gaussian.

#5 Non-Gaussian - In the 1980s, [31] found its inner-
city ‘‘banked’’ traffic sound to have numerical values
of mean, standard deviation, skewness, and kurtosis
that were incompatible with any Gaussian distribution.
This ‘‘disproof by contradiction’’ is statistically less
rigorous than direct statistical hypothesis testing.

#6 Non-Gaussianmostly - In the 1990s, [32] analyzed data
measured at heights between 34 to 80 meters up on
the high-rise buildings, on both sides of the fac̀ade.
This reference presented ad hoc quantitative arguments
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(but not statistically rigorous hypothesis testing) to
conclude that Gaussian distribution could apply for
some datasets only for free-flowing traffic. (These ad
hoc arguments could preclude statistical normality but
cannot statistically affirm normality.)

#7 Non-Gaussian - In the early 2000s, [18] presented noise
level datasets that are close to log-tanh distributed (thus
implicitly not Gaussian), according to only subjective
inspection of data graphs but without any rigorous
statistical testing.

#8 Gaussian occasionally - Also in the early 2000s, [33]
presented noise-level empirical datasets measured near
the fac̀ade of buildings of unspecified heights, with
a conclusion that some of these datasets are possi-
bly Gaussian, based simply on visual inspection of
(i) scatter plots of those datasets’ sample noise-climate
and sample variance – by checking if the scattered
points (on the ‘‘noise-climate / variance’’ plane) lie in
the subregions allowed by Gaussian distributions; (ii)
scatter plots of the empirical datasets’ sample kurtosis
and sample skewness – by checking if the scattered
points (on the ‘‘kurtosis-skewness’’ plane) lie in the
subregions allowed by Gaussian distributions. These
are, again, ad hoc quantitative arguments that could
merely preclude statistical normality but cannot statis-
tically affirm normality.

#9 Non-Gaussian - In the mid-2000s, [34] presented
noise-level empirical datasets measured near the fac̀ade
of buildings of unspecified heights, assessing them as
non-Gaussian, based on only visual inspection of scat-
ter plots of the empirical datasets’ sample kurtosis and
sample skewness – to check if the scattered points (on
the ‘‘kurtosis-skewness’’ plane) lie in the subregions
allowed by Gaussian distributions. Like [32], [33],
these are only ad hoc arguments.

#10 Non-Gaussian - In the late 2000s, [35] mentioned of
a heavy right tail in its sound data taken in ‘‘shielded
areas’’ of a neighborhood with ‘‘traffic events’’, but
made no direct reference to the statistical normality
issue.

#11 Gaussian - In the early 2010s, [36] claimed ‘‘when
. . . stationary traffic . . . , [sound pressure levels have]
close to normal distribution density’’, but did not state
what statistical test, what statistic, nor the definition of
‘‘stationary’’.

#12 Gaussian mostly - In the mid-2010s, [37] analyzed data
measured on the exterior of the fac̀ade of high-rise
buildings, at heights that varied between 1.5 meters
and 90 meters up on the high-rise buildings. The
Kolmogorov-Smirnov test indicated that ‘‘65% of day-
time noise datasets and 70% of nighttime noise datasets
were normally distributed.’’ This reference appears to
be the only reference that subjects the data to statisti-
cally rigorous hypothesis-testing; however, this present
work will improve on the statistical rigor and will arrive
at a rather different conclusion.

This paper will add to the above empirical research liter-
ature regarding the statistical normality of the traffic sound
level, by using conceptually rigorous statistical tests on new
datasets, which were measured during two distinct evenings
but at precisely the same location up at a high-rise building
overlooking a highway.

C. ROADWAY SOUND-LEVEL DISTRIBUTION’S
NORMALITY – MEASURED UP AT A HIGH-RISE BUILDING
High-rise buildings (commercial or residential) are ubiqui-
tous in the world’s metropolises, especially in East Asia.
There, roads are urban canyons, boxed in on both sides by
cement cliffs formed by the fac̀ades of high-rise buildings.
As roadway sounds reverberate up these cement cliffs, the
sound levels change.

Some studies empirically recorded roadway sound data up
at a high-rise building; the aforementioned [32], [33], [34],
[37] were, in fact, empirical measurements up the high-rise
buildings near their fac̀ades. Besides these four references,
all other studies (on traffic noise propagating up a high-rise
building) did not investigate the sound level’s probability
distribution. Those other studies include:

(a) [7] investigated how children’s auditory discrimination
and reading ability were affected differently according
to the floor level in the building.

(b) [38], [39] investigated how the noise level varied along
the height up the exterior of the building.

(c) [40] reported that the sound energy increased from
ground level up to the 9th floor and then monotonically
decreased as the floor level increases.

(d) [41] statistically related the noise exterior to the build-
ing fac̀ade with the noise interior of the fac̀ade.

(e) [42] related the noise level data with the daily motor
traffic volume and the neighborhood’s human popula-
tion density.

(f) [16] measured roadway sound-level data at 24 inde-
pendent high-rise buildings in Hong Kong, each for
more than 24 hours. Among other insights, [16] found
that an arbitrarily chosen 30-minute period sufficed to
characterize the noise climate in the ‘‘evening’’ time
(19:00 – 21:00) within +/-3 dB, for 85% of the cases.

However, none of these studies in (a)-(f) modeled the road-
way sound-level distribution, though the aforementioned
[32], [33], [34], [37] did.

D. THIS PAPER’S OBJECTIVE
This work will follow up the pioneering studies in [32], [33],
[34], and [37] concerning traffic sound-level measurements
up on high-rise buildings, by presenting and analyzing two
previously unpublished empirical datasets, respectively col-
lected in two separate evenings but at the same exact location
up on a high-rise building.

The statistical analysis here will be conceptually rigorous
using the Jarque-Bera test, and will arrive at very different
conclusions from [37] (which is the open literature’s only
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FIGURE 2. Google Earth’s 3D-viewer snapshot, showing the
measurement’s physical environment and the microphone’s exact
37th-floor location.

other reference on traffic sound as measured up a high-rise
building) about the sound level’s statistical normality.

The rest of this paper is organized as follows: Section II
will describe the to-be-analyzed measurements’ urban set-
ting, apparatus, metric, and data cleansing. Section III will
present the exploratory data analysis which will hint that
the datasets might be non-Gaussian. Section IV will present
the confirmatory data analysis, statistically proving (via the
Jarque-Bera statistical test) these datasets to be not Gaussian.
Section V will conclude this investigation and will suggest
follow-up studies.

II. THE ROADWAY TRAFFIC SOUND MEASUREMENTS’
ENVIRONMENT, APPARATUS, METRIC, AND DATA
CLEANSING
A. MEASUREMENT ENVIRONMENT
The datasets were measured at exactly the same location in
a particular neighborhood [43] in Hong Kong. There, a high-
way (the ‘‘West Kowloon Corridor’’) runs left/right as shown
in Fig. 2. and extends for 4.2 km. The roadway sound of
this West Kowloon Corridor has been found in [44] to be the
major acoustic noise source to the Wing Cheong Estate. This
highway is four-lane, bi-directionally divided, elevated above
surface streets, bordered on one side by high-rise residential
buildings, but open on the other side.

No traffic signal exists for over 1 km from the Wing
Cheong Estate, so no red light could arise to back up the
otherwise free-flowing traffic. Therefore, vehicular traffic
flows freely on this highway with no temporally cyclic
non-stationarity in the traffic sound time series.

Within this Wing Cheong Estate, on the 37th floor of a 40-
floor high-rise building [45], a microphone was hanged about
a meter outside the building fac̀ade, exactly as photographed
in Fig. 3. This high-rise building was aside from the highway
by 30 meters on the ground. The microphone was 106 meters
above the elevated highway.

FIGURE 3. The microphone was positioned about one meter outside the
building fac̀ade. A 1.5-meter stick provided mechanical support to the
microphone, with the other end of the stick fastened to a tripod. A Brüel
& Kjaer windscreen covered the microphone.

B. DATA METRIC
The data metric is the T -equivalent A-weighted sound pres-
sure level L(T )Aeq ,1 where T represents the time period of

each data sample, set to one second. The unit of L(T )Aeq is
decibel, denoted as dB(A), where (A) highlights the data as
A-weighted.
L(T )Aeq is based on the sound pressure level,

L := 10 log10

(
p
p0

)2

, (5)

where p symbolizes the instantaneous sound pressure mea-
sured by the microphone, and p0 signifies the reference sound
pressure set to 20 µPa. The A-weights [48] are applied by the
sound level meter on the 1

3 -octave bands of L’s spectrum to
give L(T )Aeq, which is the time-averaged value within a duration
of T .
The use of L(T )Aeq for roadway sound-level measurements

has been suggested by [11]. Moreover, earlier empirical stud-
ies [16], [39], [49], [50] of Hong Kong roadway sound-level
have also used L(T )Aeq. Indeed, Hong Kong’s Environmental
Protection Department assesses the environmental (acoustic)
noise in terms of L(T )Aeq [51].

Furthermore, L(T )Am is defined for anym ∈ [0, 100] such that
Prob(X ≤ L(T )Am) = 1− m

100 .

1Human ears do not have flat spectral response in the audible range (20Hz
to 20KHz). [46] experimentally calculated the ‘‘equal-loudness contours’’
for the first time by applying weights to the frequency spectrum in audi-
ble range in order to quantify the subjective human response to different
acoustic-noise events. There exist various types of weightings: A-, B-, C-
, and D-weighting. Among these, the A-weighting is the commonest, as it
has been commissioned by the international standard IEC 61672 for use
in sound-level meters [47]. In contrast, B-weighting adds a larger offset to
the low-frequency components (below 1 KHz) of loud sounds than the A-
weighting, and has been shown to better suit music; however, B-weighting
is obsolete and is not included in the newer IEC 61672:2003 [47]. C-
weighting adds an even larger offset than B-weighting to the low-frequency
components of loud sounds. D-weighting is designed for aircraft noise but is
now obsolete.
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TABLE 1. The two datasets’ respective measurement windows and traffic
conditions.

C. DATA ACQUISITION
The measurements used a Brüel & Kjaer sound-level meter
type 2250, with a type 4189 microphone, at a sensitivity of
about 50 milli-volts/pascal. The microphone was connected
to the sound-level meter with a wire extension. The loss due to
the wire extensionwasmanaged by a Brüel &Kjaer calibrator
of type 4231. The sound-level meter automatically logged
the data as L(1sec)Aeq , which was retrieved by the Brüel & Kjaer
software of ‘‘Evaluator 782’’.

There was no rain, the wind speed was under
5 meters/second (according to the local weather report), and
the microphone was covered with a wind shield.

The measurement time windows of the measured data are
reported in Table 1. Both days were work days, not public
holidays [52], [53]. The measurements were taken during the
evening rush hours. 2

D. DATA CLEANSING
Loud non-vehicular events are manually identified and
excised from the datasets. Such non-vehicular loud events
include ambulance sirens, horns, the technician adjusting
the microphone, hammering, and other construction noises.
Not excised are the vehicular sounds of loud trucks, cars,
or motorcycles.

Each loud event (vehicular or non-vehicular) is not only
audible from the audio file with its L(1sec)Aeq value shown in
a time-series chart in the aforementioned Brüel & Kjaer
‘‘Evaluator 782’’ software, but is temporally synchronized
to a video of the roadway to identify the loud events’ likely
sources. Hence, non-vehicular loud events may be cleansed
out manually, whereas vehicular loud events are not excised.

Table 2 compares the datasets’ sample statistics before and
after the cleansing of their loud non-vehicular events. Evident
therein, this data cleansing has onlyminor effects (≤0.1%) on
the sound-levels at the 10th, 50th, and 90th percentiles.

III. EXPLORATORY DATA ANALYSIS
Both datasets’ normalized histograms, after excising
the non-vehicular loud events, are shown in Fig. 4.
Each normalized histogram is visually unimodal but the right

2The present measurements, each exceeding an hour in duration, would
be enough for estimating the noise climate of ‘‘evening time’’ (19:00 –
21:00) [54]). For instance, [16] examined 24 datasets (each more than
24 hours and measured at various high-rise buildings) and observed that
more than 85% of arbitrarily chosen 30-minute contiguous datasets in the
‘‘evening’’ hours predicted the overall noise climate of the ‘‘evening’’ within
an accuracy of ±3 dB(A).

TABLE 2. The two datasets’ sound levels before versus after the cleansing
of non-vehicular loud events. Here, T equals the entire duration listed in
Table 1.

FIGURE 4. The normalized histograms of the two cleansed datasets.

tail is heavier than the left tail. The right tail is due to the
occasional very loud vehicular sounds, producing outliers in
the histograms. Moreover, dataset (a) has a heavier right tail
and a sharper/taller peak than dataset (b).

The sample statistics of the two datasets after excising
the non-vehicular loud events are reported in Table 3. This
table’s every sample metric is mathematically defined and
explained below, by conceptualizing L(1sec)Aeq as a continuous-
valued random scalar. Recall that the probability density of
any random scalar X (X = L(1sec)Aeq here) is characterized by
(a) a ‘‘location parameter’’ that fixes the probability den-

sity’s ‘‘location’’ (or the shift) on the abscissa,
(b) a ‘‘scale parameter’’ that governs the probability den-

sity’s spread on the abscissa, and
(c) ‘‘shape parameters’’ (a.k.a. ‘‘form parameters’’) that

affect the probability density’s shape other than by
shifting, shrinking, or stretching the density.

Each above metric can be estimated from a dataset
{x1, x2, . . . , xN } of N samples realized from that probability
density.
∗ The statistical mean µ := E[X ] equals the probability

density’s first moment. It serves as the density’s ‘‘loca-
tion parameter’’. The true mean may be estimated from
the data by the ‘‘sample mean’’, µ̂ := 1

N

∑N
n=1 xn.

∗ The statistical variance σ 2
:= E[(X − µ)2] equals

the probability density’s ‘‘second central moment’’.
The ‘‘sample variance’’ can be computed as σ̂ 2

:=
1
N

∑N
n=1(xn − µ̂)

2.
∗ The ‘‘Pearson’s moment of coefficient of skewness’’ is

defined as the density’s ‘‘third standardized moment’’:

γ1 = E
[(

X−µ
σ

)3]
. ‘‘Skewness’’ acts as a ‘‘shape

parameter’’ on the density’s asymmetry about the
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TABLE 3. Comparative sample statistics of the two cleansed datasets.

mean. If a unimodal density has a positive (negative)
‘‘skewness’’, the density’s right (left) tail would be
longer/fatter than the other tail. If a unimodal den-
sity has a zero ‘‘skewness’’, the density’s mean equals
its median, but the density could yet be asymmetric
in shape. The Gaussian distribution, being symmetric
about its mean, has a zero γ1. One ‘‘sample skew-
ness’’ is the ‘‘Fisher-Pearson coefficient of skewness’’,
defined as (page 6 of [55])

γ̂1 :=

1
N

∑N
n=1

(
xn − µ̂

)3[
1
N

∑N
n=1

(
xn − µ̂

)2]3/2 , (6)

which simply equals the ‘‘sampled third central
moment’’ 3 normalized by the 3

2 -power of the ‘‘sampled
second central moment’’: The ‘‘skewness risk’’ arises if
a symmetric density model (e.g., the Gaussian density)
is mis-applied to skewed data.

∗ ‘Kurtosis’’ is commonly defined as the density’s
‘‘fourth standardized moment’’:

γ2 := E

[(
X − µ
σ

)4
]
. (7)

‘‘Kurtosis’’ serves as another ‘‘shape parameter’’ to
characterize the density’s ‘‘tailedness’’. A larger kur-
tosis implies more frequent outliers and more extreme
outliers. ‘‘Kurtosis’’ does not characterize the density’s
shape near the mean. The Gaussian distribution’s kur-
tosis equals 3. ‘‘Excess kurtosis’’ is defined as γ2 − 3.
A leptokurtic distribution, by definition, has γ2 > 3;
its tails are heavier/fatter (i.e., decay slower along the
abscissa) than the Gaussian distribution’s. The ‘‘sample
kurtosis’’ may be computed from the sampled data
as the ‘‘sampled fourth central moment’’ 4 power-
normalized by the ‘‘sampled second central moment’’:

γ̂2 :=

1
N

∑N
n=1

(
xn − µ̂

)4[
1
N

∑N
n=1

(
xn − µ̂

)2]2 , (8)

The ‘‘kurtosis risk’’ (a.k.a. the ‘‘fat-tail risk’’) arises
when the Gaussian density is mis-applied to data with
a positive ‘‘excess kurtosis’’.

∗ The ‘‘peakedness’’ provides still another ‘‘shape
parameter’’, characterizing the density’s shape at/near

3The ‘‘third central moment’’ is defined as µ3 := E(X − µ)3. The
Gaussian distribution has µ3 = 0. The ‘‘sample third central moment’’ may
be computed as µ̂3 :=

1
N
∑N

n=1(xn − µ̂)
3.

4The ‘‘fourth central moment’’ is defined as µ4 := E[(X − µ)4]. The
Gaussian distribution has µ4 = 3σ 4. The ‘‘sample fourth central moment’’
may be computed as µ̂4 :=

1
N
∑N

n=1

(
xn − µ̂4

)
.

the peak. The ‘‘peakedness’’can be defined as (see Eq.
(1) in each of [56], [57], [58]):

Pa(h) := Prob (|X − a| ≤ h) , ∀h ≥ 0, (9)

where a can be any real value but is often set to equal the
distribution’s mode. The Gaussian density’s ‘‘peaked-
ness’’ can be expressed as FG(a + h) − FG(a − h).
For a larger ‘‘peakedness’, the density’s peak would be
taller and sharper than the Gaussian peak. The ‘‘sample
peakedness’’ can be computed as

P̂a(h) := F̂X (a+ h)− F̂X (a− h),

∀h ≥ 0, (10)

where F̂X (x) := 1
N

∑N
n=1 I(xn ≤ x), and I(·) symbol-

izes the indicator function.
∗ The ‘‘fourth cumulant’’, defined as K4 := µ4 − 3µ2

2,
represents yet another ‘‘shape parameter’’. ‘‘Cumu-
lants’’ can be mathematically more convenient than
the ‘‘central moments’’, because the jth-order cumulant
of the sum of two statistically independent random
variables equals the sum of the two random variables’
individual jth-order cumulants. 5 The sample ‘‘fourth
cumulant’’ may be computed as K̂4 := µ̂4 − 3µ̂2

2.
Compare the sample metric values in Table 3 against the

traffic conditions in Table 1: Table 3 reveals that dataset
(b) has 16.2% more vehicular traffic than dataset (a), and
2.2% more of the vehicular traffic being heavy relative to
that of dataset (a). Dataset (b)’s higher traffic flow rate and
a larger percentage of heavy vehicles expectedly give dataset
(b) a higher noise level overall (i.e., a larger mean). These,
however, need not imply more skewness or a larger kurtosis,
because the heavier/louder traffic could produce a noise level
that is more steady over time. Moreover, the sample skewness
and the sample kurtosis both have the sample variance in their
denominators, but the sample variance is larger for dataset (b),
resulting in a smaller sample skewness and a smaller sample
excess kurtosis for dataset (b).

The above-discovered patterns raise doubts whether either
dataset can be considered Gaussian. Comparing either
dataset’s sample metrics to a Gaussian density’s, clear dis-
agreements appear for the skewness, the excess kurtosis, the
third central moment, and the fourth cumulant – all of these
would be zero for a Gaussian dataset. Instead, both datasets
have skewness >0 (meaning both empirical distributions are
skewed to the right) and an ‘‘excess kurtosis’’ >0 (mean-
ing both empirical distributions are heavier-tailed than the

5The ‘‘first cumulant’’, by definition, is same as the ‘‘first moment’’, i.e.,
the statistical mean. The ‘‘second cumulant’’, by definition, is same as the
‘‘second central moment’’, i.e., the statistical variance.
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Gaussian distribution). These apparent discrepancies from
the Gaussian model raise reasonable doubts whether either
dataset can each be considered as statistically realized from
a Gaussian probability space. However, these doubts do not
constitute any rigorous inference. For example, any nonzero
sample skewness γ̂1 needs to be interpreted in relation to
the estimation variance of γ̂1. Similar judgment is needed
with regard to the nonzero excess kurtosis, etc. Furthermore,
the above analysis is not inference at rigorously preset to
any statistical ‘‘confidence level’’. Indeed, this is why the
present exploratory data analysis is followed in the upcoming
Section IV, which will use the Jarque-Bera test for confirma-
tory data analysis.

IV. CONFIRMATORY DATA ANALYSIS – THE
JARQUE-BERA TEST
The Jarque-Bera test 6 can rigorously decide if a dataset fol-
lows the Gaussian distribution, by analytically examining the
dataset’s sample skewness and sample kurtosis, respectively
but simultaneously, against the Gaussian distribution’s skew-
ness and kurtosis. The Jarque-Bera test statistic is defined as

JB := N

(
γ̂ 2
1

6
+

(
γ̂2 − 3

)2
24

)
. (11)

The Jarque-Bera test is statistically more ‘‘powerful’’ than
the Kolmogorov-Smirnov test employed earlier in [37]. Here,
‘‘power’’ represents a formal statistical term referring to a
binary hypothesis test’s probability of correctly deciding a
non-Gaussian dataset as non-Gaussian. This advantage of the
Jarque-Bera test has been widely recognized in the statistics
literature, e.g. [60] (pp. 182-183), [61] (p. 88), [62], [63] (p.
343), [64], and [65] (Table 6.10). The Jarque-Bera test is
especially ‘‘powerful’’ if the dataset is only slightly skewed,
i.e., with a skewness magnitude under unity or at least not
exceeding 1.7 [65] (Table 6.10) – as for the two datasets being
tested; please see Table 4.

The statistical theory underlying the Jarque-Bera test is
explained below. To comprehend this JB metric intuitively:
Recall that γ̂1 symbolizes the sample skewness whereas
γ̂2 represents the sample kurtosis; the JB metric above simul-
taneously considers both of these sample metrics in deciding
whether the dataset is Gaussian. Furthermore, 6

N equals the
estimation variance of γ̂1 and 24

N is that of γ̂2, so the JB metric
interprets the sample skewness and the sample kurtosis in
light of their respective uncertainty.

This test statistic (JB) is asymptotically chi-squared dis-
tributed with two degrees-of-freedom, under the assumption
that the data realizes an underlying Gaussian random vari-
able. Define χ2

α(2) to denote the (100× α) percentile of
a χ -squared distribution with two degrees-of-freedom at a
specified significance level of α. 7 If JB > χ2

α(2), the dataset
is statistically decided as non-Gaussian, with a significance

6The Jarque-Bera test is implemented in the package ‘‘tseries’’ version
0.10-35 of the ‘‘R’’ software [59].

7(100× α)% = 100− CL%, where CL stands for confidence level.

TABLE 4. The sample skewness γ̂1, sample kurtosis γ̂2, the JB test
statistic, and the p-values from the Jarque-Bera test applied on the two
datasets of Table 1.

level α. The subsequent statistical analysis will set α to
0.05 and 0.01, respectively giving 95% and 99% confidence
levels. Here, χ2

0.05(2) = 5.99; χ2
0.01(2) = 9.21. 8

Even more revealing is the ‘‘p-value’’, which is defined as

p-value := 1− Fχ2(2) (JB) , (12)

where Fχ2(2) (.) denotes the cumulative distribution function
of a chi-squared distribution with two degrees-of-freedom.
9 If p-value < α, the data is decided, at the statistical
significance of α, as not a Gaussian realization. Setting α
smaller (i.e., setting a larger confidence level) means a lower
likelihood to reject the data as a realization of any Gaussian
random variable.

Table 4 reports the Jarque-Bera test results for both
datasets, along with their sample skewness and their sample
kurtosis. Therein, the p-values of less than 2.2× 10−16 reject
the Gaussian realization of the datasets at a confidence level
above 99.99%. The large positive JB’s and the extremely
small p-values imply, with very high levels of confidence, that
the datasets are non-Gaussian realizations. Hence, Table 4 has
confirmed the findings of [68] that its roadway LAeq data is
non-Gaussian, leptokurtic, and skewed.

V. CONCLUSION
This present work along with [37] constitute the entire open
literature’s only two statistically rigorous hypothesis testing
of roadway traffic sound level data for statistical normality.
This paper has presented new datasets of the roadway sound-
level, measured in two different weekday evenings from
exactly the same position up in the same high-rise building
using the same equipment. The statistically rigorous analysis
here has conclusively confirmed that they are non-Gaussian.
The next investigative step is to identify appropriate non-
Gaussian probability densities to model such roadway sound
levels measured up at a high-rise building.
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