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ABSTRACT

In this work, we study variations in the parabolic scintillation arcs of the binary millisecond pulsar PSR J1643—1224 over five
years using the Large European Array for Pulsars (LEAP). The two-dimensional (2D) power spectrum of scintillation, called
the secondary spectrum, often shows a parabolic distribution of power, where the arc curvature encodes the relative velocities
and distances of the pulsar, ionized interstellar medium, and Earth. We observe a clear parabolic scintillation arc, which varies in
curvature throughout the year. The distribution of power in the secondary spectra is inconsistent with a single scattering screen,
which is fully 1D or entirely isotropic. We fit the observed arc curvature variations with two models: an isotropic scattering
screen and a model with two independent 1D screens. We measure the distance to the scattering screen to be in the range
114-223 pc, depending on the model, consistent with the known distance of the foreground large-diameter H I region Sh 2-27
(112 &+ 17 pc), suggesting that it is the dominant source of scattering. We obtain only weak constraints on the pulsar’s orbital
inclination and longitude of ascending node, since the scintillation pattern is not very sensitive to the pulsar’s motion and the
screen is much closer to the Earth than the pulsar. More measurements of this kind — where scattering screens can be associated
with foreground objects — will help to inform the origins and distribution of scattering screens within our galaxy.

Key words: pulsars: general —pulsars: individual: PSR J1643—1224 —H 1I regions.

1 INTRODUCTION

Pulsars are remarkably stable clocks. This property has proved them
to be incredibly successful laboratories for testing the predictions of
general relativity using pulsar timing (Taylor, Fowler & McCulloch

* E-mail: gmall @mpifr-bonn.mpg.de

1979; Kramer et al. 2006). Pulsar timing arrays (PTAs) aim to detect
gravitational waves (GWs) by monitoring many millisecond pulsars
(MSPs) over time to measure a spatially correlated signal in their
timing residuals (Hellings & Downs 1983). The primary PTAs to date
are the European Pulsar Timing Array (EPTA; van Haasteren et al.
2011), which combines data from different European telescopes;
the North American Nanohertz Observatory for Gravitational Waves
(NANOGrav; Demorest et al. 2013); the Parkes Pulsar Timing Array
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(PPTA; Manchester et al. 2013); and the International Pulsar Timing
Array (IPTA; Hobbs et al. 2010), which is a collaboration between
the aforementioned individual PTAs.

Recently, several PTAs reported a detection of a common red-
noise process in their 12.5 yr data set (Arzoumanian et al. 2020;
Chen et al. 2021; Goncharov et al. 2021), but did not observe the
significant spatial correlation needed to claim a GW detection, further
explored by Goncharov et al. (2021), who argue that a signal of this
type can arise from pulsars with independent red-noise properties.
As PTAs may be nearing the detection of a GW signal, we need to
better understand all sources of correlated noise in timing residuals;
a large contributing factor is the ionized interstellar medium (IISM),
which introduces time-varying, chromatic variations in the electron
column density and multipath propagation.

The effects of multipath propagation can often be seen through
scintillation, a pattern in time and frequency caused by interference
between different deflected images of the pulsar. Scintillation is
now commonly studied using the secondary spectrum — the two-
dimensional (2D) power spectrum of scintillation — where a single
dominant scattering screen results in a parabolic distribution of power
(Stinebring et al. 2001; Walker et al. 2004; Cordes et al. 2006).
While pulsar timing is primarily sensitive to changes in radial motion,
the rate of scintillation (or equivalently, the scintillation time-scale)
depends on the velocity on the plane of the sky. Measurements of
variable scintillation rate can then be used to obtain an additional
constraint on the pulsar’s orbit (Lyne 1984; Rickett et al. 2014;
Reardon et al. 2019).

Measurements of the scintillation time-scale are dependent on the
distribution of power along the scattering screen, while the curvatures
of scintillation arcs are far less model-dependent. Annual and orbital
variations in arc curvature can be used to measure the screen
distance and geometry, and precisely measure orbital inclinations
and longitude of ascending node, as shown in 16 years of scintillation
arc measurements of PSR J0437—4715 by Reardon et al. (2020).

In this paper, we study PSR J1643—1224, a 4.622 ms period pulsar
in a 147d binary orbit with a white dwarf companion, which is
observed as part of all aforementioned PTAs. We summarize the
relevant theory of scintillation arcs needed for our paper in Section 2,
discuss our observations and data reduction in Section 3, and interpret
our arc curvature measurements in Section 4. In Section 5, we
describe the models used for the arc curvature variations, and we
present our results in Section 6. Finally, we discuss the ramifications
of our results in Section 7.

2 BACKGROUND ON SCINTILLATION

Pulsar scintillation is caused by deflection of pulsar signals by
inhomogeneities in the electron densities in the IISM between the
pulsar and observer. These deflections create multiple images, which
interfere with each other and produce an interference pattern, which
changes with time due to the relative velocities between the pulsar,
the IISM, and the Earth. The dynamic spectrum I(f, f) shows the
observed intensity as a function of frequency fand time ¢. The squared
modulus of the 2D Fourier transform of the dynamic spectrum,
L, = |i (fp., 7)|%, is called the secondary spectrum, where the I
denotes a Fourier transform. The secondary spectrum expresses the
power as a function of the Doppler rate f, and geometric time delay
T between each pair of interfering images (Stinebring et al. 2001;
Walker et al. 2004; Cordes et al. 2006).

A notable feature of secondary spectra is parabolic arcs (and
sometimes inverted arclets), which imply the presence of a dominant
and often anisotropic scattering screen between the pulsar and

1105

observer (Stinebring et al. 2001; Walker et al. 2004; Cordes et al.
2006). The arc curvature 1 of a parabolic arc at a central observing
wavelength A is given by

defr M
= —F, 1
7 2c v cos?a %
where c is the speed of light, « is the angle between the anisotropy
axis of the screen on the plane of the sky and the effective velocity
vefr, Which depends on the velocities of the pulsar vy, the IISM vy,
and the Earth vg perpendicular to the line of sight

1 1
Veff = (; - l)”psr + Vp — ;vscr, ()

and the effective distance d.s is given by

dor = (5 = 1)dy 3

where dp, and d, are the distance to the pulsar and screen,
respectively, and s = 1 — dye /dpg.

The variation of the observed arc curvature with time then depends
on the distance, geometry, and velocity of the scattering screen, as
well as the distance and velocity of the pulsar. These properties will
be used in Section 5.

3 OBSERVATIONS AND DATA

The data description and reduction in this work are largely the same
as in Main et al. (2020); in this section, we reiterate the important
points, and specific reduction parameters for PSR J1643—1224.

3.1 LEAP data

The Large European Array for Pulsars (LEAP) is an experiment
designed to increase the sensitivity of pulsar timing observations, by
coherently combining signals of the five largest European telescopes.
These telescopes are the Effelsberg Telescope, the Nangay Radio
Telescope, the Sardinia Radio Telescope, the Westerbork Synthesis
Radio Telescope, and the Lovell Telescope at Jodrell Bank. The
data from the five telescopes are coherently added, and the resulting
signal-to-noise ratio (S/N) is the linear sum of the S/N from the
individual telescopes (Bassa et al. 2016). Combining these dishes
results in an effective aperture equivalent a 195 m diameter circular
dish.

LEAP has been observing more than 20 MSPs monthly since
2012, at a frequency band centred on 1396 MHz with a bandwidth
of 128 MHz, divided into contiguous 16 MHz sub-bands. LEAP
observes with whichever telescopes are available, and the baseband
data are correlated and coherently added in software at the Jodrell
Bank Observatory (Smits et al. 2017). The coherently combined
baseband data are stored on magnetic tapes and can be retroactively
processed to generate pulse-profile data at arbitrary time and/or
frequency resolution. The high sensitivity and flexible data product
have allowed LEAP to carry out more than just timing analyses, such
as studies of MSP single pulses (Liu et al. 2016; McKee et al. 2019)
and scintillation properties (Main et al. 2020). Note that observations
in 2012 had short observing times of ~10 min to allow for periodic
scans on a phase calibrator, while from 2013 onwards, the typical
observing times were extended to 30—60 min. As such, in this work,
we select all observations of PSR J1643—1224 from 2013 until 2018,
beyond which this pulsar was no longer observed as part of the regular
monthly LEAP programme.
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3.2 Creating dynamic and secondary spectra

For each 16 MHz sub-band, we use DSPSR (van Straten & Bailes
2011) to fold the coherently added baseband data into 10 s time bins,
16 phase bins, and 2048 frequency channels of width 7.8125 kHz.
These are combined in frequency using PSRADD from PSRCHIVE
(Hotan, van Straten & Manchester 2004; van Straten, Demorest &
Oslowski 2012) to create the final folded spectrum. The small channel
width of 7.8125kHz allows us to resolve time delays caused by
scintillation up to 64 ps. We sum polarizations to form total intensity,
resulting in a 3D data cube with dimensions of time, frequency, and
phase.

Before creating the dynamic spectrum, we flag and mask sub-
integrations influenced by radio frequency interference, and remove
the influence of the bandpass. We sum over time and frequency
to form the pulse profile; the bottom half of the profile is selected
as the off-pulse region. For every sub-integration, we compute the
standard deviation in the off-pulse region, and values more than 5o
greater than the mean of the off-pulse region are masked. The off-
pulse region, rather than the full phase window, is used so as to not
inadvertently mask bright sub-integrations caused by scintillation
maxima. The data cube is then divided by the time average of the
off-gates to remove the effects of the bandpass. The cleaned time-
and frequency-averaged pulse profile is used as a template. We use
the template to weight each phase bin, and then sum over phase to
create the dynamic spectrum I(z, f).

The arc curvature changes as a function of frequency (see equa-
tion 1); approaches to deal with this include Fourier transforming
over A instead of frequency (Reardon et al. 2020) or over a time
axis scaled by frequency (Sprenger et al. 2021). In our case, the
fractional bandwidth is small, so we compute the secondary spectrum
‘i (fp, ‘E)‘z directly as the squared amplitude of the 2D Fourier
transform of the dynamic spectrum I(z, f).

4 SECONDARY SPECTRA

4.1 Interpretation of the observed arcs

Fig. 1 shows the secondary spectra created for each of our obser-
vations, obtained using the methods described in Section 3.3. We
see clear scintillation arcs, varying annually. Orbital variation would
be clearly observable by comparing arcs on the same month across
several years; the 147 d pulsar orbital period is coincidentally close
to a 2/5 of a year, effectively causing a 2:5 orbital resonance. After
one year, the pulsar will have moved over 2.5 orbits, while after
two years, the pulsar will have moved over 5 orbits, and the orbital
motion and Earth’s motion will then be aligned and anti-aligned
on alternating years. However, we do not see a strong effect of the
orbital motion on our data, with the arc curvature of a given month
appearing similar at every year.

An immediately apparent feature of the secondary spectra is
how their distribution of power varies throughout the year. Months
September—February show a clear arc indicative of a dominant
anisotropic scattering screen. However, months March—July do not
show discernible arcs, but rather a more diffuse distribution of power
across fp. In these months, it often appears that the power at low and
high time delays follows parabolae of different curvatures.

The observed secondary spectra cannot be explained either through
a single 1D screen or a fully isotropic screen. A 1D screen may
explain the clean arcs, but would collapse to a line on fp = 0 when
v2; cos? @ = 0, while an isotropic screen would likely not show
such clear arcs and would have a qualitatively similar distribution

MNRAS 511, 1104-1114 (2022)

of power when seen at different angles of v.g. To fully explain our
observations, we need either a second misaligned screen or for the
dominant screen to be elongated with an axial ratio 2 2. We consider
both of the possible models in our analysis in the later sections. The
possible screen geometries and their resultant secondary spectra are
explored further using simple illustrative simulations in Appendix A.

4.2 Measuring arc curvatures

To measure arc curvatures, we first average the secondary spectrum
to 256 sub-samples of width 0.5 us along the t-axis. For each t
sub-sample, we then fit a double-peaked Gaussian curve as

_ s )2
logyy (I1(fo, 7)) = aexp (%)
_ )2
+bexp (7(](‘3 + i) ) 4)
202

While not a physically motivated choice, this approximation is
useful for finding the power centroid for each 7;, used to fit for arc
curvatures. We take only values with a or b greater than four times
the rms of the background noise for each I(fp, 7;) and remove
points that converged to an anomalously large (¢ > 5 mHz) or small
(0 < 0.1 mHz) Gaussian width. We then have a series of independent
data points 7;, and dependent data points j 4, ; with uncertainties,
which we fit with | fp| = +//n. The proportionality constant 1/./7
from the square root fitting is directly proportional to |veg|.

As described in Section 4.1, at certain months of the year, we
see wide and diffuse arcs at low time delays, which cannot be
explained by a single 1D or isotropic screen. In such cases, the
secondary spectrum may not follow a single parabola. To account
for the presence of a second screen, or a secondary screen axis, we
restrict our fit to low time delays (taken as t < 6 us). The wide
parabola at low time delays represents the screen with the highest
projected velocity — either a second scattering screen or the points
along the axis of motion in a 2D screen. Attempting to measure a
curvature of the points at high time delays is more difficult and may
lead to a biased measurement depending on the screen model. An
example fit is shown in Fig. 2, showing a case where there is a clear
and dominant arc (top panels), and other case where the curvature
at low time delays does not match the curvature at high time delays
(bottom panels). The transition between the behaviour at low and
high values of t happens at ~ 6-9 ps, motivating our choice of the
7 cutoff in our fitting.

5 MODELLING THE VARYING ARC
CURVATURE

From equations (1) and (2), the changing velocity from the Earth’s
and pulsar’s orbit results in arc curvature variations. A model of the
arc curvature will include properties of the pulsar, specifically the
distance and proper motion, which are already constrained through
pulsar timing, and unknown values of orbital inclination (i) and
longitude of ascending node (£2). We take measurements of the
pulsar’s distance (dp= 0.85 £0.35 kpc) from the EPTA timing
results of Desvignes et al. (2016). During modelling, we fix proper
motions to their timing values, but allow distance to vary, using the
timing value as a Gaussian prior.

The distance measurement dp,= 0.85 &= 0.35 kpc comes directly
from the parallax measurement (7 = 1.17 £ 0.26 mas from Desvi-
gnes et al. 2016) and is consistent with the recent PPTA distance
(Reardon et al. 2021) of 7 = 0.82 =+ 0.17 mas, dps= 1.2%3 5 kpc.
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Figure 1. Secondary spectra showing parabolic arcs for all of observations of PSR J1643—1224 used in this paper. Rows correspond to months (Jan—Dec)
and columns correspond to years (2013-2018). The blank entries in our data correspond to missing observations. We can see variations in arc curvature by
comparing the parabolae. This variation is due to annual and orbital variations from the velocity of Earth and the pulsar, respectively, as described in Section 4.1.
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Figure 2. Dynamic and secondary spectra, with curvature fits for 2014 February (left-hand panel) and 2013 July (right-hand panel) observations. In each panel:
Left-hand images: dynamic spectra zoomed into a bandwidth of 4 MHz to discern the fine-scale of scintillation. Dynamic spectra were binned to 30 s for plotting
purposes. Top right-hand images: corresponding secondary spectra, with the same scaling as in Fig. 1. Bottom right-hand sub-plots: Fitted points 4 7, ; in slices
7;, as described in Section 4.2, from which 7 is measured. 2014 February shows a distinct arc well described by one screen and associated diagonal striping in
the dynamic spectra. In comparison, 2013 July shows power distributed in a way inconsistent with a single 1D or isotropic screen, as can be seen in the different

behaviour at low and high 7.

The quoted distance from Desvignes et al. (2016) is dpy= 0.76 £
0.16 kpc, which applies the Lutz—Kelker bias correction including
a constraint from the pulsar’s luminosity estimate. This reduces the
error by more than a factor of 2 compared to the direct parallax
distance — we adopt the above value and errors to be conservative.
The proper motion values are i, = 6.04 4 0.04 masyr—', us =
4.07 £0.15mas yr'.

For a given screen model, we must also include the screen distance
(dsr), and parameters related to the screen velocities and geometry,
which we explicitly describe in the following sections. The function
to compute arc curvatures from the the pulsar’s orbital motion
and Earth’s known velocity was taken from SCINTOOLS' described
in Reardon et al. (2020), slightly modified to fit for 1/,/7 o v
instead of fitting n directly, and adding a two-screen model as
described below. Our Markov chain Monte Carlo (MCMC) fits are
performed using the EMCEE implementation in LMFIT (Newville et al.
2014).

5.1 Isotropic model

In an isotropic screen, cos 20 = 1 for any orientation of v.g, and the

arc curvature depends only on the magnitude of v.g on the plane of
the sky. A full model of the screen needs only three parameters, the
screen distance, the two components of the 2D screen velocity on
the plane of the sky.

As discussed in Section 4.1 and Appendix A, the observed
secondary spectra cannot be fully described by a single isotropic
screen, needing either multiple screens or an elongated screen with
axial ratio > 2. However, in measuring the arc curvatures at low
enough time delays, we are always measuring the magnitude of v
on the plane of the sky, and the model for the arc curvature variations
of any 2D screen is equivalent to the isotropic case. This was one
of the primary motivations for restricting time delays to t < 6 s,
below the visible transition. A fit to the full power distribution of

Uhttps://github.com/danielreardon/scintools/
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the secondary spectrum for an elongated 2D screen would require
at least two more parameters: the axial ratio and orientation of the
screen.

5.2 Anisotropic two-screen model

For the case of a 1D screen model, it is only possible to measure
ver parallel to the screen. The observed secondary spectra can
be qualitatively produced through the existence of two screens
(Section 4.1 and Appendix A). In this model, we have two screens,
each with a separate distance ds; and dy,, angle ¥, and ¥,, and
velocity along the screen’s axis Vi y, and Vi y,.

The measured curvature at low time delays is a measure of the
screen with maximum projected effective velocity at any given time
(or more precisely, the screen with minimum arc curvature at any
given time). For any set of model parameters, there are model
predictions of 7 arising from both screens, and our final model that is
fit takes the minimum curvature between these models at any given
time.

5.3 Treatment of uncertainties

In Section 4.2, we described our measurements of the arc curvature
n and the formal statistical uncertainties 6n. However, the formal
uncertainties §7 may be underestimated due to unmodelled system-
atic errors, which could arise from, for example, asymmetric power
distribution of the arcs, unresolved arclets, or contribution to the
arc curvature from a dimension perpendicular to the primary screen
axis. Underestimated errors will lead to biases in the final posterior
distributions. To address this issue, we take the approach of using
‘EQUAD’ and ‘EFAC’ values typically used in pulsar timing, which
describe the corrected errors as

Mo = \/ (EFAC x 8n)?> + EQUAD?. (5)

In a grid of EQUAD, EFAC values (EQUAD ranging from O to 2,
EFAC ranging from 0.5 to 5 in 100 steps), we perform a Kolmogorov—
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Table 1. The main table shows the resulting values from the fit, xz, degrees
of freedom (dof), and Bayesian information criterion (BIC) values for both
models. The parameters are defined in Section 5.

Parameters Isotropic Anisotropic
dpse (kpe) 1.0 £0.3 1.2+0.34
dser (kpe) 0.2 -

Vier, a (km S_I) 7.6 +0.8 —

Vier, s (km's™") —11+1 -

ds; (kpe) - 0.13
Vi, (kms™) - 10+1
vy (%) - 150 £ 4
ds (kpe) - 03£0.1
Va,w, (kms™) - —643
Vs () - 3149
i(°) 135+ 19 95 + 320
Q) 278 + 17 231 + 109?
x* 459 373
dof 35 32
BIC 23.2 25.9

Note. “As mentioned in Section 5, we take a Gaussian prior of
dpsr=0.85 & 0.35kpc. bFor the anisotropic model, the solution for i and
2 converges to two local minima at i= 68° & 16°, 2 = 101° & 44° and
i=117° £ 17°, Q = 284° 4 43° (see Fig. B2).

Smirnov (KS) test on the scaled residuals to test how well they are
described by a standard normal distribution. We find a maximum
value at EFAC = 3.0, EQUAD = 0.36; we adopt these values to
correct the errors on 1/,/7 before performing MCMC fits.

6 DISCUSSION

6.1 Results of model fitting

The best-fitting parameters to the variations in arc curvature are listed
in Table 1, and the data alongside the model fits are shown in Fig. 3.
The bottom panels show the isolated effects of the annual and orbital
variation, after subtracting the model velocity of either the pulsar or
the Earth from the data. Figs B1 and B2 in Appendix B show the full
posterior probability distributions for the two models.

The isotropic and anisotropic models yield x> values of 45.9
and 37.3, respectively, suggesting that the anisotropic model is a
better fit to the data. However, the anisotropic model has more free
parameters, so we compute the Bayesian information criterion (BIC)
for both, resulting in BIC values of 23.2 and 25.9 for the isotropic
and anisotropic models, respectively — by this criterion, the isotropic
model is slightly preferred to describe the variations in arc curvature.

The scattering screens in both models lie closer to the Earth than
the pulsar, so the effective velocity ves of the system is more sensitive
to the motion of the Earth than to that of the pulsar, resulting
in relatively poor constraints on orbital parameters. Despite this,
the isotropic model clearly gives i > 90°, resolving the sense of
the orbit, while the anisotropic two-screen model finds two local
solutions for i and . In addition, the values of i and Q are
consistent with recent PPTA constraints from the annual-orbital
parallax of PSR J1643—1224 (Reardon et al. 2021, fig. 3). As
can be seen in Figs B1 and B2, we observe strong degeneracies
between pulsar distance dps; and screen parameters, so obtaining
accurate measurements is highly dependent on the accuracy of
the priors on distance. As there has been slight tension between
PTA measurements, with the previous IPTA value appearing lower
(Verbiest et al. 2016) and the recent PPTA value appearing higher
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(Reardon et al. 2021) than the EPTA value (Desvignes et al.
2016), we adopted a conservative distance prior, as described in
Section 5.

6.2 Screen association with Sh 2-27

The H1i region Sh 2-27, behind which PSR J1643—1224 lies, is
ionized by the O-star ¢ Oph at a distance of 112 £ 3 pc (Ocker,
Cordes & Chatterjee 2020) and has an inferred diameter of 0.034 kpc
assuming spherical symmetry (Harvey-Smith, Madsen & Gaensler
2011). The distance to the screen is then 0.112 £ 0.003 4 0.017 kpc,
with uncertainties of the distance and the H II region’s radius.

Sh 2-27 is commonly assumed to be the major contributing region
for the scattering of PSR J1643—1224. In addition, several features
have been observed in PSR J1643—1224, which may be attributed to
propagation. A variation in the flux density of PSR J1643—1224 was
observed from 1997 to 2000, interpreted as an extreme scattering
event and modelled as arising from a single ionizing cloud (Maitia,
Lestrade & Cognard 2003). Between 2010 and 2016, timing residuals
for PSR J1643—1224 were measured by Shannon et al. (2016) using
the Parkes radio telescope, and in 2015 the pulsar displayed a timing
event when a new component of emission suddenly appeared in its
pulse profile. The L-band (1-2 GHz) pulse profile for 2015 March
showed significant time of arrival (TOA) shifts (10 ps), with larger
deviations at 3 GHz, and no observed shift at 600 MHz. Due to the
opposite expected scaling of the time delays with frequency, Shannon
et al. (2016) concluded this event to be of magnetospheric in origin,
intrinsic to the pulsar. However, a following study by NANOGrav
suggests that the pulse variation may be caused by propagation,
given the qualitative resemblance of the additional profile component
with an echo (Brook et al. 2018). We, however, do not notice any
significant, qualitative change in the secondary spectra spanning this
period (see Fig. 1). A quantitative analysis of the scattering time
delays measured for this pulsar from LEAP data will be addressed
in a future paper.

In our isotropic model, we measured the distance to the scattering
screen to be dy, = 0.208 £+ 0.015kpc, while in our two-screen
anisotropic model, we measured the distance to the dominant scatter-
ing screen to be dg; = 0.129 &£ 0.015 kpc, with the secondary screen
at dyp = 0.34 £ 0.09 kpc. Depending on our choice of modelling,
the scattering screen is consistent with being entirely within (in the
anisotropic case) or near the boundary of (isotropic case) Sh 2-
27, strongly suggesting that the scattering resulting in the observed
scintillation arcs is associated with Sh 2-27.

Harvey-Smith et al. (2011) estimated the maximum possible mean
electron density inside Sh 2-27 to be nep, = 10.1 £ 1.1 cm3.
Using this value, Ocker et al. (2020) estimated the Dispersion
Measure (DM) contribution of Sh 2-27 to the pulsar’s total observed
DM to be between DMy, = 34.4 £4.5 and 56.2 £ 0.4pc cm ™3,
comprising at least half of the total DM = 62.4 pccm™ [the range
is due to slight tension between the cited IPTA parallax (Verbiest
et al. 2016) compared to the EPTA (Desvignes et al. 2016) and
PPTA (Reardon et al. 2016) parallax measurements]. Given the large
electron density, scattering within Sh 2-27 is almost inevitable, and
the observed secondary spectra may even be the result of several
scattering screens within the H1I region.

We note that other studies have found associations with foreground
sources. The most clear associations are for pulsars within supernova
remnants — the screen in the Crab nebula has be used to probe pulsar
separation of giant pulse emission regions (Main et al. 2021), and
Yao et al. (2021) measured the distance between PSR J0538+2817
and the supernova remnant shell using scintillation arcs, suggesting
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Figure 3. Measurements and modelling of the variable arc curvature of PSR J1643—1224. The left-hand plots show the isotropic 2D screen model, and the
right-hand plots show the model with two independent 1D screens, as described in Section 5. Top panels show 1/,/5 versus time, with data points in black and
model fit in red. The bottom sub-plots show the variation of 1/,/n with time of year (left-hand plot) and variation with orbital phase (right-hand plot). The data
points and model corresponding to the second screen are shown in grey and blue, respectively.

a 3D spin—velocity alignment of the pulsar. Dexter et al. (2017) used
the Very Long Baseline Array (VLBA) + Very Large Array (VLA)
to measure angular broadening of several pulsars and were able to
associate scattering screens of three sources with foreground H 1
regions, and three sources within the Carina—Sagittarius spiral arm
of the Milky Way. Gupta, Rickett & Lyne (1994) found a persistent
slope in the autocorrelation function (ACF) of scintillation of PSR
B1642—03, which they postulate arises from the edge of Sh 2-27 (the
same H1I region studied in this paper). Bhat & Gupta (2002) used
scintillation from a sample of pulsars, finding enhanced scattering in
many pulsars, likely caused by the Loop I bubble. Reardon et al.
(2020) measured the distance to two scattering screens towards
PSR J0437—4715, which could be near the edges of the Local
Bubble.

7 CONCLUSIONS

We presented and modelled five years of variable scintillation arcs
of PSR J1643—1224. Depending on the choice of screen model, the
distance to the dominant scattering screen dg, is found to be within
~ 120-200 pc, likely associated with the foreground H 11 region Sh
2-27. We additionally measure an orbital inclination and longitude of
ascending node, which are consistent between our two models, but
poorly constrained because the scattering screen is much closer to the
Earth than to the pulsar. Generically, if we can associate scattering
screens with known astrophysical objects — particularly sources less
extended than Sh 2-27 — then scintillation arc modelling may allow
for an independent determination of precise pulsar distances.

We find that both an isotropic screen model and the two-screen
model can reproduce our observed variable arc curvature, with
a slight preference to the isotropic model, given its fewer free
parameters. However, the appearance of the power distributions in
our secondary spectra suggests that the scattering screen cannot be
fully isotropic (see Appendix A for more details). Therefore, to
fully describe this scattering screen, we would need at least two
more parameters: its degree of anisotropy and its orientation. A
full modelling of the observed secondary spectra may distinguish
between models, as the data are not uniquely described by a single
measurement of an arc curvature. Additionally, sensitive future
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observations of PSR J1643—1224 at higher frequencies could reveal
multiple, sharper arcs, which could be used to inform the choice
of model. Secondary spectra show a well-defined arc at higher
frequencies because the thickness of the arc is strongly dependent on
frequency (Stinebring, Rickett & Ocker 2019).

If the scattering of a pulsar is dominated by a single, highly
anisotropic scattering screen, we may be able to employ the 6—6
method, which transforms the secondary spectra variables t and
fo to angular coordinates and shows the secondary spectra with
parallel linear features, which are more convenient to interpret than
parabolic arcs. Sprenger et al. (2021) introduces and describes the
transformation, and Baker et al. (2022) show how it can be used
to measure precise arc curvatures. However, when multiple or 2D
scattering screens are present, as is the case for our observations,
there may be biases, as 6 —6 assumes highly anisotropic scattering
screens. The potential biases will first need to be explored in detail
using simulations.

Many of our observations of secondary spectra display clear
asymmetry in their power distributions. While not investigated
here, such behaviour may be related to a potential local gradient
in DM in the scattering screen along the direction of vy (e.g.
Rickett et al. 2014). In addition, the secondary spectrum shows the
geometric time delay between interfering images, and under some
assumptions, it can be used to estimate the total time delay due to
multipath propagation, which may improve timing (Hemberger &
Stinebring 2008; Main et al. 2020). An investigation of the link
between DM, scattering time-scale, and scintillation arc variability
for PSR J1643—1224, along with other LEAP sources, will be the
focus of future work.
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APPENDIX A: SIMULATIONS OF DIFFERENT
SCREEN GEOMETRIES

In Section 4.1 and Fig. 1, we note that the power distribution we
see cannot be reproduced with a single 1D screen or a perfectly
isotropic screen, and we adopt the possibility of multiple screens, or
an elongated 2D screen. Here, we performed simulations to illustrate
the different models, with the same simulation code used in Baker
et al. (2022).

The simulation uses a set of image positions along a thin screen,
treating each image as a stationary phase point with a random
amplitude and phase at each point. The combination of dispersive
and geometric delays remains constant along the screen at a reference
frequency. For a grid of time and frequency values, the electric field
at the observer is computed as the coherent summation of each point,

E(, ) =) me™. (A1)
k

The relative geometric delays of the images change over time,
producing the time-variable electric field. The dynamic spectrum
is then calculated from the amplitude squared of the electric field,
and the secondary spectrum as the squared modulus of the 2D Fast
fourier transform (FFT) of the dynamic spectrum.

We perform these simulations for the four geometries: a 1D screen,
a statistically isotropic screen, a 2D screen with a 2:1 axial ratio, and
two misaligned 1D screens at different distances. In each case, we
simulate 200 random stationary phase points. In Fig. A1, we show
the image distribution of each simulation, and secondary spectra
corresponding to two different values of vey. For the case of two
screens, all pairs of images are allowed to interfere, while multiply
deflected paths are not considered.

Qualitatively, a 1D screen collapses to the f = 0 when v — 0,
inconsistent with what we see for PSR J1643—1224. The other two
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Figure Al. Simulations of different screen geometries, seen at two different effective velocity vectors. Grey-scale images show the wavefield |E(f;, 7)|?, while
the coloured images show the secondary spectra |I(f;, T)|> Top: a perfectly 1D screen, second row: a statistically isotropic 2D screen, third row: a 2D screen with
a 2:1 axial ratio, and bottom: two misaligned 1D screens. Details of the simulations are given in Appendix A. Qualitatively, neither the perfectly 1D screen nor
the fully isotropic screen fits the distribution of power observed for PSR J1643—1224 throughout the year, with the 1D screen collapsing too thin when veg —
0, and the isotropic screen never showing clear arcs. An anisotropic 2D screen or two 1D screens can produce clear primary arcs and a dominant lower curvature

at low time delays depending on the orientation of vefy.

models can qualitatively reproduce our results; when the velocity
is aligned with the dominant axis (either the elongated axis in 2D
or the dominant screen with two 1D screens), we can observe a
dominant scintillation arc, which is only slightly smeared. When
the velocity is misaligned with the dominant axis, the curvature at
low time delays is dominated by the velocity projected along the
second axis (proportional to vg for a 2D screen, |v.g| parallel to the
second screen for two screens), while the power at high time delays
is caused by images along the dominant axis interfering with all other
images.
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APPENDIX B: POSTERIOR DISTRIBUTIONS

Figs B1 and B2 show the posterior distributions between different
parameters. In these figures, blue lines indicate mean values and
contours show lo, 20, and 30 confidence levels. Fig. B1 shows
the distributions resulting from the isotropic model discussed in
Section 5.1, and Fig. B2 shows the distributions resulting from the
anisotropic two-screen model discussed in Section 5.2. In both of
these figures, we observe high covariances between pulsar’s and
screen’s distance and velocity.
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