
Energy Conversion and Management 256 (2022) 115370

Available online 16 February 2022
0196-8904/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Optimal sizing of a hybrid PV-WT-battery storage system: Effects of split-ST 
and combined ST + ORC back-ups in circuit charging and load following 

Godfrey T. Udeh a,b, Stavros Michailos b,*, Derek Ingham b, Kevin J. Hughes b, Lin Ma b, 
Mohamed Pourkashanian b 

a Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, Nigeria 
b Energy 2050, Department of Mechanical Engineering, University of Sheffield, Sheffield S3 7RD, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Techno-enviro-economic 
Multi-objective optimisation 
Split ST back-up 
Combined power 
Dispatch strategy 
TOPSIS 

A B S T R A C T   

This study explores the opportunities in deploying split Stirling and combined Stirling and organic Rankine cycle 
(ORC) in circuit charging and load following dispatch modes, respectively as the back-up of a hybrid renewable 
energy system. The optimal number of system components in each dispatch mode that simultaneously minimises 
the loss of power supply probability (LPSP), levelised cost of energy (LCOE) and dumped power have been found 
by implementing an evolutionary algorithm-based multi-objective optimisation approach. Then, a multi-criteria 
decision making tool is deployed to select the best configuration from the Pareto set. The optimal hybrid system 
configuration obtained have been compared to the traditional diesel generator back-up system base case, to 
demonstrate performance improvements with the deployment of the proposed back-ups. The results show 
deploying Stirling + ORC back-up in load following leads to 60.70% and 33.71% reductions in the LCOE and CO2 
emissions, respectively compared to the base case but with slightly higher LPSP. While 61.4%, 33% and 24.47% 
reductions in the LCOE, CO2 emissions and LPSP have been observed with the deployment of split Stirling in 
circuit charging mode. Further results from the dynamic simulation highlight the energy cost, reliability, dumped 
power and battery performance of the optimal system respond to seasonal changes in the test location. Other 
observed results show the change in the market price and number of the photo-voltaic generator that generates 
50% of the total power, strongly affect the performance of the optimal system. The proposed biomass powered 
Stirling based back-ups are promising alternatives to replace the traditional diesel generator back-ups in 
improving the green energy system’s reliability.   

1. Introduction 

Green energy solutions hybridising many renewable energy re-
sources are becoming more competitive for meeting the energy demand 
at off-grid locations, mainly because of the steady decline in the cost of 
system components and improving efficiencies. Most renewable energy 
resources, especially solar and wind, are spasmodic in nature; hence, it is 
compelling to hybridise them so as to improve their reliability and 
minimise costs [1]. Notwithstanding the improved reliability of hybrid 
renewable energy systems (HRES), back-up power blocks are still 
required to minimise the mismatch between the electricity generation 
from these stochastic resources and the demand [2–3]. Internal com-
bustion (IC) engines, such as the diesel generator (DG) have been 
popularly deployed as the back-up in HRES, and are in some designs 
combined with battery storage. There are also HRES configurations that 

deployed external combustion engines, such as the Stirling engine (ST), 
organic Rankine cycle (ORC) and micro-turbine (MT) or even fuel cell 
(FC), as the back-up. 

Hybrid renewable energy systems present different unique configu-
rations depending on the available local resources [4]. This also suggests 
that they may contain many components, and would require some 
complex control strategies to coordinate their operation. Consequently, 
it is necessary to optimally determine the best HRES configuration 
considering the available local resources, the weather data, the control 
strategies and the load characteristics of the intended users. Due to the 
complexity, non-convex nature and non-linearity of the mathematical 
models used to predict the performance of HRES components, and the 
many plausible combinations of components and strategies, memetic 
algorithms have been popularly deployed to determine the optimal 
number of the system components [5–6]. Also, the sizing of HRES has 
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been performed in the literature using single and multi-objective opti-
misation approaches that are formulated based on technical, economic, 
environmental and social considerations. 

Several recent studies on sizing optimisation of different HRES 
configurations have been undertaken from single and multi-objective 
perspectives. Kraa et al. [7] obtained the optimum number of wind 
turbines (WT), solar photovoltaic panels (PV) and battery storage sys-
tems (BSS) required in a HRES system, by minimising the 20-year round 
total system cost. Dufo-Lopez and Cristobal-Monreal [8] found the 
optimal configuration of a HRES, by solely minimising the weight or the 
cost of energy (COE) of the system as the objective function. Ramli et al. 
[9] sized the components of a hybrid WT, PV, BSS, with DG back-up 
system designed to supply the electric load of a location in Saudi Ara-
bia. They found the optimal system configuration by simultaneously 
minimising the loss of power supply probability (LPSP), renewable 
fraction (RF) and COE. It was reported that a decrease in the number of 
PV in the optimal configuration leads to an increase in the LPSP, i.e., 
high reliance of the system on the DG back-up. Wu et al. [10] found the 
optimal system configuration by minimising the total system cost and 
power curtailment of a WT, PV, battery and MT back-up HRES and 
observed some reductions in power curtailment cost with the deploy-
ment of battery storage. Barakat et al. [11] determined the optimal 
number of components of a WT, PV, BSS and DG back-up system for a 
location in Egypt, by considering the LPSP, COE and RF as the objective 
functions. 

Yuan and Zhao [12] studied the optimal sizing of a standalone solar, 
wind, battery and DG back-up system designed for Dongao island, 
China, by minimising the annual total cost and pollutant emissions, 
using a novel improved fruit fly optimisation algorithm. They revealed 
that the configuration without DG back-up produced zero emissions; 
however, it was comparatively too expensive. This result further high-
lights the conflict between emissions and the cost of energy. Moradi 
et al. [13] optimally sized the components of a HRES system that con-
tains WT, PV and deploys DG, MT and FC as back-ups, while excess 
power produced is stored in ultra-capacitors and BSS. The authors 
minimised the cost and emissions of the system and reported 8.5% 
savings in cost when BSS is deployed to store the excess power. Rathish 
et al. [14] considered the number and types of the components as the 
decision variables in the multi-objective sizing of a hybrid WT and PV 
system with DG back-up. Also, they adopted the net present cost (NPC), 
unmet load and CO2 emissions as the objective functions and found the 
optimal system using a genetic algorithm (GA) based multi-objective 
evolutionary algorithm (MOEA). Dufo-Lopez et al. [15] performed 
sizing optimisation of a solar PV, WT and DG back-up HRES, based on 
the simultaneous minimisation of cost and maximisation of the human 
development index (HDI) and job creation (JC). 

Sadeghi et al. [16] demonstrated that the introduction of electric 
vehicles (EV) into a hybrid WT, PV and BSS system improves the reli-
ability of the system, by comparing the LPSP of the HRES with and 
without EVs. First, the authors found the optimal number of components 
of the HRES through the simultaneous minimisation of the life cycle cost 
(LCC) and LPSP, before simulating its dynamic behaviour with the 
introduction of EVs. Xu et al. [17] found the optimal size of the com-
ponents of a standalone PV, WT, hydro-power system by considering 
two objectives: the levelised cost of energy (LCOE) and LPSP. It was 
observed that a decrease in the curtailment ratio of the wind turbine 
power leads to an increase in the LCOE and they recommended reducing 
the size of the WT and PV to minimise the dumped power. Bukar et al. 
[18] minimised the COE and deficiency of power supply probability 
(DPSP) by deploying the grasshopper optimisation algorithm (GOA), to 
obtain the optimal size of the components of a HRES comprising solar, 
wind, battery and DG back-up. This study increased the penetration of 
renewable resources in the system, by constraining it to a DPSP of 0% 
and realised high dumped power and COE of 0.36 $/kWh, due to the 
oversizing of the WT and PV generators. 

It is clear from the presented literature that power curtailment and 

the use of fossil fuel powered back-ups are some of the main issues 
affecting the cost, emissions and reliability of HRES. Nonetheless, the 
deployment of split DG appears to be promising to minimise the emis-
sions, dumped power and cost of HRES with DG back-up. Ayodele et al. 
[19] found the optimal number of system components of a hybrid PV, 
WT, battery system with three-split DG back-up, by minimising the LCC, 
CO2 emissions and dumped power. The authors regulated the hourly 
commitment of the DGs to the HRES, by operating at any time, a min-
imum number of DGs to match the deficit power in the system. They 
compared the results to single DG back-up system and found 46%, 28%, 
82%, and 94% reductions in LCC, COE, CO2 emissions and dumped 
power, respectively. 

Other studies have deployed biomass fired engines or fuel cells as 
back-ups to reduce the emissions and the cost of energy of HRES. Gon-
zalez et al. [20] found the size of the components of a solar, wind and 
biomass grid connected energy system by optimising the LCC and life 
cycle environmental impacts using GA. It has been reported that the 
optimum HRES has low environmental impact and cost compared with 
the DG back-up system. Sawle et al. [21] sized a HRES comprising WT, 
PV and biomass back-up power and compared the results from two 
different optimisation approaches. Maleki et al. [22] performed the cost 
optimisation of a grid integrated HRES comprising solar PV, WT, solar 
thermal collector and FC and found the optimal system configuration. 
Ghaem Sigharchian et al. [23] investigated the feasibility of deploying 
biogas driven gas engine as a back-up for a solar PV-WT system designed 
for Garissa community in Kenya. Patel and Singal [24] proposed a 
generator fired by biofuel from wheat straw, mustard stalks and fuel 
wood, and biogas from animal dungs as the back-up in a WT-PV HRES, 
designed for a village settlement in India. 

Although biomass driven back-up has been deployed by a few studies 
to augment the power supply of HRES, there are limited studies that 
proposed ST as the back-up in HRES configurations. Stirling engines 
have many attractive features: good part load performance, quiet 
operation, low vibration, easy maintenance and ability to utilise multi-
ple clean energy sources of low, medium and high grade quality, such as 
biomass fuels [25–26]. The limited deployment of ST to augment the 
reliability of HRES may be as a result of its low electrical efficiency 
especially at micro-power scale [27–28]. Even so, this challenge can be 
overcome by exploring combined cycle configurations. Also, the high 
emissions and cost of energy that characterize the deployment of DG 
back-up, particularly when it is compelled to operate outside the rated 
conditions whilst following the load could be minimised by a similar 
approach. It is well established that combined power generation 
whereby the exhaust waste heat of the topping cycle is recovered by the 
bottoming cycle, results in improved efficiency, and reduces the con-
sumption of primary energy and emissions. In particular, Udeh et al. 
[29] reported 63.4% increase in the electrical efficiency of a combined 
ST and ORC bottoming cycle powered by biomass. 

To the best of our knowledge, there are limited recorded studies in 
the literature where a biomass fired ST + ORC has been deployed as the 
back-up in a HRES. Further, although there are evidence of studies 
deploying split DG to reduce the dumped power and emissions from a 
HRES, there are no records of studies where a renewable spilt solution, 
such as the split ST has been deployed in a HRES. Moreover, the issue of 
excessive power dumping, especially for standalone HRES can be miti-
gated at the design stage of the system, by including dumped power as 
one of the objective functions. 

Overall, this paper therefore proposes the deployment of two new 
biomass powered back-ups to augment the reliability of a hybrid PV, WT 
and BSS energy system. The optimal number of system components that 
simultaneously minimises the levelised cost of energy, loss of power 
supply probability and dumped power will be found by deploying a 
memetic algorithm. The optimal system will be compared to the sole DG 
back-up base case and sole ST from the stand-points of reliability, cost, 
emissions and dumped power. 

The main contributions of this study are summarised as follows: 

G.T. Udeh et al.                                                                                                                                                                                                                                 



Energy Conversion and Management 256 (2022) 115370

3

Proposing a novel HRES configuration that deploys a carbon neutral 
biomass fired combined ST and ORC as the back-up and undertaking the 
system sizing optimisation by the simultaneous minimisation of the 
LCOE, LPSP and dumped power. 

Investigating the impact of using 4-split ST instead of one big ST or 
DG as the HRES back-up in circuit charging mode on the reliability, cost, 
emissions and dumped power of the system. 

Evaluating the reductions in the greenhouse gas emissions, dumped 
power, LCOE and LPSP of the HRES utilising combined ST + ORC back- 
up compared to sole ST or DG back-up in load following mode. 

This paper has been structured as follows: Section 2 presents the 
configuration of the HRES. Section 3 formulates the mathematical 
models deployed in predicting the performance of the components of the 
HRES and develops the objective functions and constraints. In addition, 
the rule-based dispatch strategies for managing the energy system is 
presented in this section. Section 4 discusses the solution algorithm and 
the methodology for implementing the optimisation problem. This sec-
tion also presents the multi-criteria decision making scheme deployed to 
select the optimum configuration from the Pareto optimal set. Section 5 
describes the test location and the load and weather data recorded for a 
period of one year in this location and compares the results of the 
optimal system configuration obtained to the base case. Also, it exam-
ines the influence of seasonal variations in the test location on the dy-
namic performance of the optimal system and analyses the impact of the 
variations in size and cost of some system components on the optimal 
system. Finally, Section 6 is the concluding section of this paper where 
the key findings from the study are highlighted and future works 
recommended. 

2. System description 

The examined HRES integrates solar PV modules, horizontal axis 
wind turbines (WT), battery storage and Stirling engines (ST) and ORC 
back-up power block fired by biomass fuel (woodchips) as configured in 
Fig. 1. Here, the primary power sources are the PV and WT generators, 
while n-small split STs and battery banks are deployed to match the 
unmet electricity demand. The number of small STs that are switched on 

to fulfill the electricity demand is determined by a set of rules based on 
the net load in the system, i.e., difference between the electric load and 
the generated power from the PV and WT generators, the state of charge 
of the battery and the dispatch strategy. Four rules based on circuit 
charging and load following have been proposed to manage the flow of 
energy from the generating and storage units. The operating details of 
these dispatch modes will be discussed in the methodology. Also, in this 
system design, the battery system is the first priority to meet the deficit 
power, while the ST back-up will only be deployed when the battery 
system is unable to meet the net positive load. The back-up has two 
commitments in the circuit charging rule-based dispatch strategy: to 
charge the battery system with any excess power generated and to 
supply the net positive load in the system. Conversely, in the load 
following strategy, the back-up will simply follow the load and is not 
expected to charge the battery. 

3. Components modelling and problem formulation 

In this section, the modelling of the HRES and back-up components 
are presented. Further, the optimisation problem is formulated by 
considering technical, economic and environmental metrics. 

3.1. Development of component models 

This section presents the mathematical models for predicting the 
performance of the components of the proposed HRES. These models 
have been pivotal in formulating the objective functions deployed in the 
sizing optimisation of the HRES performed in this paper. 

3.1.1. Photovoltaic modules 
The hourly simulation of the power generation from one photovol-

taic module can be obtained from [30]: 

Ppv(t) = ηPV APV Gh(t) = PSTC

[
Gh(t)
GSTC

(
1 +

α
100

(Tc(t) − Ta(t) )
)]

Fdiss (1)  

where PSTC(W) is the module maximum power at standard test condi-
tions, Gh(

W
m2) is the hourly global solar radiation, GSTC(

W
m2) is the solar 

Fig. 1. Schematic of the HRES showing the operating modes and control strategies and the split of the Stirling engine.  
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radiation at the test conditions, α (%/
◦C) is the temperature coefficient, 

Ta (
◦C) is the ambient temperature and Fdiss(− ) is a factor that accounts 

for power dissipation due to dirt, wires, modules mismatch, and other 
losses. 

The cell temperature Tc (
◦C) is obtained from the following expres-

sion: 

Tc(t) = Ta(t)+
(

NOCT − 20
0.8

)
Gh(t)
GSTC

(2)  

where NOCT (
◦C) is the nominal operating cell temperature and Ta (

◦C)
is the ambient temperature. 

Consequently, the power produced from the PV array at any time 
step, t, can be obtained as follows: 

Parray(t) = IV = Ppv(t)NsNp (3) 

The number of PV modules arranged in series, Ns is given as a 
function of the bus voltage, Vbus and the rated voltage of the PV panel 
provided by the manufacturer, VPV: 

Ns =
Vbus

VPV
(4)  

3.1.2. Wind turbines 
The modelling of the power generated from the wind turbine is 

presented in this section. The actual power output from the wind turbine 
can be estimated from the power curve in Fig. 2 that is provided in the 
manufacturer’s catalogue. 

Based on the power curve provided by the manufacturer, the power 
that can be extracted from a moving stream of air at any given speed and 
hub height can be quantified directly using the following expression 
[15,32–33]: 

PWT(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν3 − ν3
c

ν3
R − ν3

c
.PRνC ≤ ν ≤ νR

PRνR ≤ ν ≤ νF

0ν ≤ νC and ν ≥ νF

(5)  

where ν (m/s) is the wind speed in the test location, νC(m/s) is the cut-in 
wind speed, νR (m/s) is the rated wind speed, νF (m/s) is the cut-out 
wind speed and PR(W) is the rated power of the turbine. The wind 
speed data at the location has been obtained from PV GIS [34] for a 
period of one year and was measured at 10 m hub height. 

Regarding the stochastic nature of wind, the Weibull function has 
been deployed to estimate the frequency of the wind speed in the test 
location and it is given as: 

PDFw(ν) =
(

k
ς

)(v
ς

)k− 1
exp
(

−
(υ

ς

)k
)

(6) 

The Weibull shape factor, k can be obtained from the following 
expression [13]: 

k =

(
σ(ν)
x− (ν)

)− 1.086

(7) 

And the wind scale index, ς is given as: 

ς
x− (ν)

=

(

0.568 +
0.433

k

)− 1/k

(8) 

If k = 2 is substituted in Eq. (6), a Rayleigh function is obtained and is 
expressed as [13]: 

PDFr(ν) =
2ν
ς2 exp

(

−
(υ

ς

)2
)

(9) 

The Rayleigh wind scale index can be estimated from [13]: 

ς =
2̅
̅̅
π

√ νave ≈ 1.18νave (10) 

To obtain the wind speed at the hub height of the selected turbines, 
the following logarithmic law is employed [15,32]: 

νhub = νr .
ln Zhub

Z0

ln Zr
Z0

(11)  

where νhub (m/s) is the wind speed at the hub height, Zhub (m) is the 
desired hub height, Zr (m) is the reference height, νr (m/s) is the wind 
velocity at the hub height, Z0(m) is the surface roughness height. 

3.1.3. Combined Stirling and ORC engine 
As previously stated, this paper proposes a combined ST and ORC as 

the back-up to the HRES system, which is deployed to augment the 
electricity generation from the renewable generators. However, sole 
Stirling back-up is also proposed to compare results and assess the 
performance improvements. The power supplied by the combined ST +
ORC back-up at any time step is determined by the availability of the 
renewable generators, the dispatch strategy and the state of charge of 
the battery. In this study, the biomass fuel consumption of the ST + ORC 
(or Stirling only), FCSTorST+ORC (kg) will be determined from the energy 
balance of the heat engine and it has been expressed as: 

FCj(t) =
3600Pgen,j(t)

ηcombustorHVwoodchipsηj
, j = STorST +ORC (12)  

where Pgen,ST+ORC (W) is the power delivered by the back-up at a given 
time step, ηcombustor(− ) is the efficiency of the biomass combustor, 
HVwoodchips (J/kg) is the calorific value of woodchips and ηST+ORC ( − ) is 
the electrical efficiency of ST + ORC back-up. The sole efficiency of the 
ST, combined efficiency of the ST and ST + ORC and combustor effi-
ciency in Eq. (12) have been extracted from Ref. [29 35] and are given as 
21%, 38% and 88%, respectively. 

3.1.4. Diesel generator 
The deployment of the ST in combined mode operation with an ORC 

has been proposed as the back-up to augment the net load in this HRES 
configuration. Nonetheless, the DG that has been popularly deployed as 
the back-up to HRES systems will be modelled here and will serve as the 
base case for benchmarking the performance improvements of the pro-
posed back-ups. The power supplied by the DG at any time step is 
determined by the power generation capacity of the PV and WT, the 
load, the dispatch strategy and the SOC of the battery. It is modelled 
based on the hourly fuel consumption, FCDG (l/Wh) and can be 
expressed as [15]: Fig. 2. Power curve of the Enercon E-18 wind turbine [31].  
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FCDG(t) = APgen,DG(t) +BPrated,DG (13) 

The experimental constants, A (l/Wh) and B (l/Wh) in the above 
equation have been obtained from [8] and are given as 0.246 and 
0.08415, respectively. 

In addition, the greenhouse gas (GHG) emissions produced by the 
traditional DG back-up has been compared to that of the proposed 
biomass fired ST + ORC (and ST only) back-up. The GHG emitted by the 
DG or ST is determined according to the guidelines of the international 
panel on climate change (IPCC) and is given as [36]: 

yF
GHG = HVFχF

GHGFCj, j = DGorST (14)  

where HVF (J/kg) is the heating value of the fuel, χF
GHG (g GHG/J fuel) is 

the emission factor. The value of these constants have been extracted 
from [36–37] and presented in Table 1. 

3.1.5. Battery storage 
The battery is one of the dispatchable units deployed to meet the 

power deficits in the HRES configuration proposed here. In this study, 
the amount of energy the battery supplies or retains is determined by the 
excess power generated by the green generators, consumer electric load, 
power dispatching strategy, the state of charge (SOC) of the battery and 
the power generation from the back-up. At any time, t, the energy stored 
or released by the battery banks can be obtained from the following 
expressions: 

Charging :

discharging :

SOC(t + Δt) = SOC(t) −
(
(PL(t) − PPV(t) − PWT(t) − PST+ORC(t) )

ηdisch.VBat

)

.Δt/CBat

(16)  

where ηch(− ), ηdisch(− ), VBat(V), CBat(Ah) are the charging efficiency, 
discharge efficiency, voltage and nominal capacity of the battery, 
respectively, PPV (W), PWT(W), and PST+ORC(W) are the electric power 
produced by the PV, WT and ST + ORC, respectively, PL(W) is the 
electric load, Δt(s) is the time interval. The time interval used in this 

study is 1 h. The specification and cost of the components of the system 
are given in Table 2. 

3.2. Rule based dispatch strategies 

The renewable generators in the proposed system rely strongly on 
the local weather data for their power generation. Consequently, the 
energy system cannot satisfactorily match the electric load demand at all 
times in a day. It has been mentioned that battery storage systems and 
ST + ORC back-up will be deployed to fulfill the electricity demand of 
the test location. Further, the battery storage system is designed to serve 
as the first priority to match the positive net load in the system, and 
when it is fully discharged, the ST + ORC back-up will be deployed. 
Additionally, four small STs have been proposed to minimise the hourly 
commitment of the back-up when deployed to supply the deficit power. 
The number of the small STs that are switched ON in parallel to augment 
the load is determined by the net load and the state of charge (SOC) of 
the battery. 

Correspondingly, some set of rules are required to efficiently manage 
the flow of electricity in the proposed HRES. Therefore, the circuit 
charging (CC) with split ST option and the load following (LF) rule based 
energy management strategies have been proposed in this study. In these 
strategies, four rules based on if-then constructs are deployed to control 
the charging and discharging of the battery storage system, the dispatch 
of power from the back-up and the dumping of excess power from the 
WT and PV. These rules are formulated based on the state of charge of 
the battery at a given time step, SOC(t) and the net load, Pnet(t), where, 

Table 1 
Constants for the evaluation of the GHG emissions [36–37].  

Parameter Value 

Diesel  
Heating value (MJ/kg) 45 
CO2 Emissions factor (kg Co2/ MJ) 0.074 
N2O Emissions factor (kg N2O / MJ) 6.0 × 10− 7 

Woodchips  
Heating value (MJ/kg) 19.2 
CO2 Emissions factor (kg Co2/ MJ) 0.112 
N2O Emissions factor (kg N2O / MJ) 4.0× 10− 6  

SOC(t + Δt) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SOC(t) + ηch

(
(PPV(t) + PWT(t) − PL(t) )

VBat

)

Δt/CBat
, LF

SOC(t) + ηch

(
(PPV(t) + PWT(t) + PST+ORC(t) − PL(t) )

VBat

)

Δt/CBat
,CC

(15)   

Table 2 
Specification of the components of the HRES.  

Component Type Specification Value 

Batteries (3 types)  
[38] 

Hoppecke Sun 
AGM 

Voltage, (V) 2   

Capacity, (Ah) 1120  
Hoppecke Sun 
AGM 

Voltage, (V) 2   

Capacity, (Ah) 890  
Hoppecke Sun 
AGM 

Voltage, (V) 2   

Capacity, (Ah) 620 
Wind turbines (2 

types) [31] 
EWT DW 52–250 
HH40 

Cut-in speed, (m/s) 2.5   

Cut-out speed, (m/s) 25   
Rated speed, (m/s) 8   
Rated power, (kW) 250  

Enercon E-18 Cut-in speed, (m/s) 2.5   
Cut-out speed, (m/s) 25   
Rated speed, (m/s) 12   
Rated power, (kW) 80 

PV modules (1 type)  
[39] 

Canadian solar 
Hiku 7 

Rated power, (W) 665   

Module efficiency, (%) 21.1   
Operating current, (A) 17.28   
Operating voltage, (V) 38.5   
Open circuit voltage, (V) 45.6   
Short circuit current, (A) 18.51   
NOCT, (◦C) 42 ± 3   
Temperature coefficient, 
(%/◦C) 

− 0.26   

Lifetime, (years) 20 
MLPE inverter AC rated Capacity, (kVA) 48  
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Pnet(t) = PL(t) − PPV(t) − PWT(t) [40]. Fig. 3 and Fig. 4 represent the al-
gorithm for managing the energy flow in the HRES based on the 
following rules: 

Battery charging mode: In this energy management strategy, two 
conditions control the charging of the battery. 

Condition 1 : [PL(t) − PPV(t) − PWT(t) < 0 ][SOC(t) < SOCmax ]When 
Pnet(t) < 0, i.e., the total generation by the WT and PV exceeds the load 
and the charge stored in the battery is below its maximum capacity, the 
excess power generated is stored in the battery until it is fully charged. 
To achieve the charging of the battery by the excess power generated 
from the WT and PV, switches S4 and S5 in Fig. 1 are closed allowing the 
excess power to flow to the batteries. 

Condition2 : [Pnet(t) > 0 ][Pnet(t) < PST+ORC(t) ][SOC(t) < SOCmax ]

In this case, the net load in the system is positive and the ST + ORC 
back-up is deployed to simultaneously augment the power and charge 
the BSS. Switches S4, S5 and S7 in Fig. 1 are switched on to accomplish 
this task in practice. Note that in the LF strategy, only the excess power 
from the renewable generators is deployed to charge the batteries; 
hence, this condition is not applicable in this mode. 

Power dumping mode: Similarly, additional two conditions, which 
are mirrored from the charging mode are implemented here to dump the 
excess power produced in the system. 

Condition1 : [PL(t) − PPV(t) − PWT(t) < 0 ][SOC(t) = SOCmax ]

This rule controls the dumping of excess power produced from the 

renewable generators. Therefore, if there is negative net load in the 
system and the battery is fully charged, the excess power is dumped via 
resistive loads. 

Condition2 : [Pnet(t) < 0 ][Pnet(t) < PST+ORC(t) ][SOC(t) = SOCmax ]

Condition 2 controls the dumping of excess power produced from the 
ST + ORC back-up after fulfilling its commitments to augment the power 
supply in the system and charge the batteries. Any excess power pro-
duced at this point is dumped via resistive loads. Note that in the LF 
strategy, the back-up follows the load strictly; thus, this condition does 
not apply in this approach. 

Battery discharging mode: Condition : [Pnet(t) > 0 ][SOC(t) >
SOCmin ] When the total generation from the WT and PV is insufficient to 
match the load, i.e., there is positive net load in the system and the 
battery is above its minimum SOC, it is switched on to supply the load. 
Therefore, switch S3 is closed and this will allow the battery discharge 
its power through the inverter to the load bus. However, the battery is 
not expected to discharge power below its minimum SOC: SOCmin. 

Back-up power dispatching mode: The dispatch of power from the 
back-up is determined by the net positive load in the system. Addi-
tionally, this study proposed four-split Stirling engines back-up. To 
compare performance improvements between split ST and one big ST, a 
control vector, uj has been deployed to switch from one ST to split ST as 
seen in Fig. 3 and Fig. 5. So, if uj = 1, one big ST is deployed in the 
simulation of the dispatch strategy, otherwise, small split STs are 

Fig. 3. Algorithm for circuit charging rule based dispatch strategy with split Stirling engine option.  
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deployed. Note that Xn in these figures is the total capacity of the back- 
up system. Also, the split ST option does not apply in the LF strategy, 
where the back-up is expected to follow the load (See, Fig. 4. Based on 
these two factors, the power dispatch by the back-up is controlled by the 
following conditions.  

o condition1 : [Pnet(t) > 0 ]
[
uj = 1

]

In this case, the ST + ORC back-up is deployed to match the unmet 
load while operating at its rated capacity. This is achieved by closing all 
the Switches, S8 to S11 controlling the small ST. In the load following 
strategy, the ST + ORC back-up will operate mostly below its rated ca-
pacity to follow the load. 

Condition2 : [Pnet(t) > 0 ][Pnet(t) ≤ P1− ST ]
[
uj = 2

]

Here, one small ST is deployed if the net load in the system is positive 
but below the capacity of one small ST. Therefore, one of the STs in the 
4-split STs back-up is switched ON by closing any of the switches S8 to 
S11. 

Condition3 : [Pnet(t) > 0 ][P1− ST < Pnet(t) ≤ P2− ST ]
[
uj = 2

]

In contrast to condition two, two of the STs are powered ON here to 
meet the deficit power, because it is above the capacity only one ST in 
the split can handle. Thus, any two switches from switches S8 to S11 are 
closed to power ON two STs to operate in parallel and supply the unmet 
load. 

Condition4 : [Pnet(t) > 0 ][P2− ST < Pnet(t) ≤ P3− ST ]
[
uj = 2

]

Here, three-split STs are simultaneously deployed to match the 
positive net load in the system by switching ON any of the three switches 

Fig. 4. Algorithm for load following dispatch strategy.  

Fig. 5. Algorithm for implementing the power dispatch from split Stir-
ling engines. 
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controlling the split STs (S8 – S11). Obviously, two-split STs are unable 
to handle the deficit power here. 

Condition5 : [Pnet(t) > 0 ][Pnet(t) ≥ P3− ST ]
[
uj = 2

]

If the deficit power in the system is higher than that can be handled 
by 3-split ST back-ups, all the switches controlling the split STs are 
closed and the engines will be powered ON simultaneously. Condition 5 
is similar to the first condition. These rules have been deployed to 
manage the flow of energy in the HRES in the inner loop of the sizing 
optimisation procedure and fulfil the hourly commitments of its 
components. 

3.3. Problem formulation 

The formulation of the optimisation problem is performed in this 
section. The metrics for evaluating the design of the HRES are first 
presented and the optimisation problem is developed. 

3.3.1. Evaluation metrics 
Based on the reviewed literature and the objectives of this study, the 

loss of power supply probability (LPSP), levelised cost of energy (LCOE) 
and dumped power have been selected as the metrics for undertaking 
the sizing optimisation of the HRES. 

(a) Levelised cost of energy 
The levelised cost of energy (LCOE) is an economic indicator that 

quantifies the cost of the energy produced from the system over its life 
cycle. It is the ratio of the net present cost (NPC) for generating power 
from the system to the total electricity demand [41]. The NPC comprises 
the installation and acquisition cost of the components, the operating 
and maintenance (O&M) cost, the replacement cost of components, and 
the cost of fuel for the entire life of the system converted back to the 
initial time of purchase of the components (year 1). Considering the 

interest and inflation rates, the NPC can be expressed as [15,33]:  

where the annualised acquisition and installation cost, AnncI&A, 
annualised operating and maintenance cost, AnncO&M,j, annualised 
replacement cost, Anncrep,j and annualised fuel cost, Anncfuel,j, respec-
tively of a component, j are given by: 

AnncI&A =
∑

j
CI&A,j × Nj (18)  

AnncO&M =
∑nsystem

i=1
CO&M,j

((
1 + rinf

)nsystem

(1 + rint)
nsystem

)

(19)     

Anncfuel,j =
∑nsystem

i=1
Cfuel,j

((
1 + rinf

)nsystem

(1 + rint)
nsystem

)

(21) 

The cost of fuel, Cfuel,j is given as: 

Cfuel,j =
{

cfuel,j

∑8760

t=0
FCi=DG,ST,ST+ORC(t) , j = dieselorwoodchips (22) 

Thus, the levelised cost of energy is therefore given as [9]: 

LCOE =
NPC

∑t=8760
t=1 PL(t)

(23) 

The cost data of the components and other financial assumptions 
used to evaluate the economic objective in this study are provided in 
Table 3. 

(b) Loss of power supply probability 
The loss of power supply probability (LPSP) is a statistical parameter 

that assesses the reliability of the renewable energy resources in meeting 
the electricity demand of the design location. A low LPSP indicates that 

the renewable energy resources are sufficiently matching the load re-
quirements. On the contrary, high LPSP implies that the renewable en-
ergy resources are unable to meet the energy demand of the location and 
as a result, the system may rely more on the back-up power sources to 

Table 3 
Market price of the system components.  

Component Description Value 

Acquisition and installation cost 
Wind turbine Enercon E-18 per kW (US $) 700 [42]  

EWT DW 52–250 per kW (US $) 700 [42] 
Solar PV Hiku 7 cost per panel (US $) 987 [39] 
Battery Hoppecke 620 Ah (US $) 350 [38]  

Hoppecke 890 Ah (US $) 405 [38]  
Hoppecke 1120 Ah (US $) 530 [38] 

Stirling engine Acquisition cost per kW (US $) 500 [43] 
ORC engine Acquisition cost per kW (US $) 1700 [44] 
Diesel generator Acquisition cost per kW (US $) 1000 [18] 
MLPE inverter Cost per kW (US $) 120 [42] 
Operating and maintenance cost 
Fuel cost Nigerian woodchips (US $/tonne) 85 
Fuel cost Diesel fuel (US $/liter) 0.689 
Wind turbine Maintenance cost per kW (US $) 0.02 [7] 
PV Maintenance cost per kW (US $) 0.005 [7] 
Stirling engine Maintenance cost per kW (US $) 0.0095 [43] 
ORC engine Maintenance cost per kW (US $) 0.008 [44] 
Diesel generator Maintenance cost per per kW (US $) 0.064 [18] 
Financial assumptions 
Interest rate Bank interest rate on capital 12.5 
Inflation rate Inflation rate on capital 15 
ST life Lifespan of ST (years) 10 
ORC life Lifespan of ORC (years) 10 
Diesel generator Life span of DG (years) 5 
Plant life Life span of the system 20  

Anncrep =
∑Nrep,j

m=1
CI&A,j

((
1 + rinf

)m.nj

(1 + rint)
m.nj

)

− Cj

(
nj −

(
nsystem − Nrep,jnj

)

nj

)((
1 + rinf

)nsystem

(1 + rint)
nsystem

)

(20)   

NPC =
∑

j

(
AnncI&A,j +AnncO&M,j +Anncrep,j +Anncfuel,j

)
, j ≡ PV,WT,Bat,ORC, ST, Inv (17)   
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match the demand. While it is desirable to have low LPSP, i.e., high 
penetration of renewable energy resources, it is important to ensure that 
the system is not oversized to avoid excessive dumping of energy. The 
LPSP has been expressed as follows [9,41]: 

LPSP =

∑t=8760
t=1

(
PL(t)− (PPV(t) + PWT(t))+PST+ORC(t) + PBat,SOCmin

)

∑t=8760
t=1 PL(t)

(24) 

(c) Dumped power 
The dumped power quantifies the amount of excess electricity being 

generated by the HRES that is dumped via resistive loads. The genera-
tion of excess power is inevitable in a HRES because PV and WT power 
generation is at variance with the electricity consumption. Hence, excess 
power is generated from the HRES, which is largely an evidence that the 
system is over-sized and this results in high energy cost. On the other 
hand, power curtailment with the intention of reducing dumped power, 
results to high energy cost and increased emissions, because of the 
increased reliance on the DG to fulfill the net load. It is, therefore, 
important to minimise the dumped power from the renewable genera-
tors in a HRES, while simultaneously minimising the deployment of the 
back-up. The dumped power from the HRES can be obtained as follows: 

PDumped =

{
∑t=8760

t=1

(
(PPV(t) + PWT(t))− PL(t)

)
, (PPV (t) + PWT(t) > PL(t)

(PST+ORC(t) − PL(t) ),PST+ORC(t) > PL(t)

(25)  

3.3.2. Optimisation problem 
The mathematical formulation of the evaluation metrics has been 

undertaken and the expressions presented in Eq. (17) – (25). For a 
predefined load profile of the consumer, the optimisation problem aim 
to determine the optimal number and types of system components that 
will minimise the levelised cost of energy (LCOE), loss of power supply 
(LPSP), dumped power (PDumped) and greenhouse gas (GHG) emissions 
(yF

GHG) over the plant life of 20 years. This section presents the mathe-
matical formulation of the objective functions and the constraints that 
must be satisfied to select an optimum system configuration. 

(a) Optimisation function 
The formulated evaluation metrics are the mathematical expressions 

of the objective functions. The optimisation problem is formulated as a 
multi-objective problem aimed at simultaneously minimising the three 
objective functions and is presented as follows: 

minimisef (X) = fi(X), fj(X), fk(X)i ∕= j ∕= k∀ : gi(X) = 0andhi(X) ≤ 0 (26)  

X∊{Xi, i = 1, 2,⋯⋯n − 1, n} (27) 

where i, j, k∊{1, 2, 3}, the objective functions, 
f∊
{

LCOE,LPSP, Pdumped
}
, gi are the equality constraints, hi are the 

inequality constraints and X are the decision variables. X1 = number of 
PV modules in parallel, X2 = number of wind turbines, X3 = type of 
wind turbine, X4 = the capacity of the back-up power block and X5 =

number of batteries in parallel and X6 = type of battery. Here, two wind 
turbine types of different specifications and from different manufactures 
have been selected while three battery types of different capacities were 
selected. 

(b) Constraints 
The optimal solution must satisfy the following conditions:  

(i) Energy generation and consumption matching: for the worst 
days, i.e., days characterised by bad weather and poor energy 
generation from the renewable energy sources: 

∑t=24

t=1
(PPV(t)+PWT(t)) ≥

∑t=24

t=1
(PL(t) ) (28) 

Note that the total generation on a day marked by heavy thunder-
storms will be insufficient to meet the demand for obvious reasons. 

Besides, PV and WT are only able to generate power for some hours even 
on a bright day, because of the periodic and stochastic nature of solar 
and wind resources. Hence, back-ups cannot be dispensed in these 
systems. 

(ii) Back-up power and demand matching: total capacity of the ST +
ORC should not go below a threshold, 

∑n

i=1
PST+ORC(t) ≥ xf PL (29)  

where xf(− ) is the minimum capacity threshold of the back-up. 
(iii) Battery storage and discharge limits: the maximum depth of 

discharge (DOD) of the battery has been supplied by the manufacturer. 
In this study, the battery is only expected to discharge power when its 
capacity is above SOCmin. By contrast, in the charging mode, the power 
stored in the battery is not expected to exceed SOCmax. 

(1 − DOD)

(
NBat

NBat,S

)

CBat,max ≤ CBat(t) ≤
(

NBat

NBat,S

)

CBat,max (30)  

where NBat,S = VBus
VBat 

is the number of batteries in series, VBus(V) is the bus 
voltage, CBat,max(Ah) is the maximum capacity of the battery. Further-
more, the power stored in the battery or discharged from the battery 
must not exceed the capacity of the battery 

Batterydischargemode : Pdisch,Bat(t) ≤
(

NBat

NBat,S

)

CBat,maxVBat (31)  

Batterychargemode : Pch,Bat(t) ≤
(

NBat

NBat,S

)

CBat,maxVBat (32) 

(iv) Battery capacity: here the battery storage has been designed to 
handle mainly the constant base load demand in the morning and the 
transient load at peak hours. Hence, a constraint to ensure the battery 
capacity is sufficient to match the base load when it is in the power 
discharge mode has been introduced into the system sizing optimisation: 

Batterycapacity : NBat.CBat,max ≥ zf PL (33)  

where zf(− ) is the minimum threshold of the capacity of the BSS. 
(v) Limits on components: upper and lower limits have been set on 

the number of components and types of components. In the case of the 
type of components, the absolute value of the random number generated 
within the given range represents the type of the component, j selected 
and this will prompt the release of the corresponding component data. 

Table 4 
The upper and lower bounds of the decision variables.  

Parameter Lower bound Upper bound 

Number of PV in parallel (-) 1 1200 
Number of type 1 wind turbine (-) 0 5 
Number of type 2 wind turbine (-) 0 8 
Wind turbine type (-) 1 2 
ST + ORC capacity (kW) 140 220 
Number of batteries in parallel (-) 1 30 
Battery type (-) 1 3  

Table 5 
Specifications of the GA operator.  

Parameter Value 

Population size (-) 250 
Population type (-) Double vector 
Pareto fraction (-) 0.5 
Maximum generation (-) 500 
Cross-over operator (-) Intermediate 
Cross-over fraction (-) 0.8 
Hybrid function (-) fgoalattain  
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Xj,min ≤ Xj ≤ Xj,max (34)  

where Xj,min(− ) is the lower bound, Xj,max(− ) is the upper bound and 
Xj(− ) is the number or type of component, j. The range of values of the 
decision variables are given in Table 4. 

4. Solution approach 

The solution approach to the optimisation problem that has been 
earlier formulated is presented in this section. As can be seen from the 
models developed in Section 3.1, the power generation from the HRES 
components is strongly dependent on the unpredictable weather and 
electricity demand data, which introduces some complexity in the 
optimisation problem. Consequently, different heuristic tools have been 
deployed to solve optimisation problems that involve HRES sizing 
including, genetic algorithm (GA) [3,7–8,45], particle swarm optimi-
sation (PSO) [17,24,46], fruit fly optimisation [12], grasshopper opti-
misation [6,18] and multi-objective self-adaptive differential evolution 
(MOSaDE) [9]. GA has been widely deployed in sizing HRES among all 
the heuristic tools. GA is a robust evolution algorithm with the advan-
tage of avoiding getting trapped in the local optima; however, like most 
memetic algorithms, it does not converge at the global optimal [5,8]. 

This problem is overcome by hybridising the GA with other classical 
optimisation tools. Therefore, the elitist Pareto front non-dominated 
sorting genetic algorithm (NSGA-II) hybridised with a classical optimi-
sation search tool was deployed in solving the multi-objectives optimi-
sation problem. The details of the GA operators are presented in Table 5. 

The NSGA II is an elitist optimisation method that emphasises only 
the non-dominated solutions while ensuring the diversity of the popu-
lation is preserved [47]. It achieves this by combining the population of 
the parent and offspring in a given generation and groups them into non- 
dominated classes. Then, it populates the spaces in the Pareto front of 
the new generation with strong individuals from the respective classes 
and deletes individuals which cannot be accommodated in the Pareto 
front [47]. On the other hand, fgoalattain is a goal attainment classical 
optimisation method that works with the weighted approach. The 
weights are computed from the solutions generated in the last genera-
tion of the GA approach. 

The algorithm for implementing the solution to the optimisation 
problem is presented in Fig. 6. Matlab Simulink blocks of the PV and WT 
generators were built with the models presented in Section 3.1, for the 
hourly simulation of the renewable generators. These Simulink blocks 
rely on the local weather data (solar irradiance, wind speed and tem-
perature) and the manufacturers’ data of the components to simulate the 

Fig. 6. Algorithm for the HRES system sizing optimisation.  
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power generation of the renewable generators. Therefore, as seen in 
Fig. 6, the load and weather data (solar irradiance, wind speed and 
temperature) for a period of one year are fed into the Simulink blocks. 

These weather and load data and system configuration data (number 
and types of component) encoded in the initial random population of 
individuals generated by the GA, have been used to compute the hourly 
power generation from the PV and WT generators. The initial population 
of individuals, Popi in the first generation, Gi comprises n different 
configurations of the HRES that need to be evaluated to obtain the 
configuration that best satisfies the objectives and meets all the con-
straints. It is represented in a vector form as: 

Popi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1
1X1

2X1
3 X1

4X1
5X1

6

X2
1X2

2X2
3 X2

4X2
5X2

6

X3
1X3

2X3
3 X3

4X3
5X3

6

......

......

......

......

Xn
1Xn

2Xn
3 Xn

4Xn
5Xn

6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1
X2
X3
.

.

.

.

Xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(35)  

where X is a vector representing the genotype of each individual in the 
population. 

Then, the net load in the system is determined and based on its 
magnitude, the optimisation algorithm will implement the rule-based 
dispatch strategies described in Section 3.2 and obtain Pdisch,Bat(t),
Pch,Bat, PST+ORC(t), PDumped(t) and SOC(t) for every hour in one year (t =
8760). Thereafter, the objective functions, i.e., fitness of the individuals 
are computed. Subsequently, the GA operators (selection, cross-over and 
mutation) are deployed to generate the parent generation and the entire 
process is repeated until the stopping criteria is met. 

In the case of the simultaneous optimisation of two or more con-
flicting objective functions, the NSGA-II presents the optimal system 
configuration in the form of a Pareto front that contains non-dominated 

optimal solutions. Thus, it is necessary to deploy a multi-criteria deci-
sion making (MCDM) tool to select the best system configuration from 
the Pareto set. This paper used the technique for order preference by 
similarity to ideal solution (TOPSIS), which has been described in [48] 
and was deployed for the first time in sizing HRES by Perera et al. [49], 
to select the best optimal system configuration. The TOPSIS decision 
making process is described in Fig. 7. To obtain the weight for the 
objective functions, a decision matrix is developed based on a scoring 
criteria and then solved to determine the maximum eigenvalue 
(max|det(A − λI) = 0 |) and corresponding eigenvector ((A − λI)= 0). 
The scoring criteria [54] and the resulting decision matrix are presented 
in the Appendix. The TOPSIS MCDM selects the best system configura-
tion from the Pareto set of optimal solutions: 

Xbest =
[
Xbest

1 Xbest
2 Xbest

3 Xbest
4 Xbest

5 Xbest
6

]
(36)  

5. Results and discussion 

This section evaluates the weather data in the proposed test location. 
It also presents the results obtained from the sizing optimisation of the 
system and undertakes comparative analysis of the optimal configura-
tions to highlight the impact of split ST and combined ST + ORC back-up 
in circuit charging and load following dispatch modes. Finally, the 
section discusses the influence of seasonal variations and changes in the 
cost and size of components on the optimum system configuration. 

5.1. Design location 

The proposed hybrid energy system sizing optimisation has been 
undertaken with the data from a remote location in the coastal area of 
Southern Nigeria (Onye-Okpan community; latitude: 5.976515◦ N and 
longitude: 8.47067◦ E) with 500 households and situated seven kilo-
meters away from the nearest electrified town. This location is notable 
for medium scale commercial activities involving the processing and 
trading of agricultural products (yam, cassava and cocoa beans), weld-
ing and fabrication of farm implements, and other artisan related ac-
tivities [50]. It requires 230 kW (60 kW for households and 170 kW for 
commercial activities and total daily consumption of 2.952 MWh/day) 
to meet the daily electric load of the residents. 

5.2. Load and weather data of the design location 

The hourly load data for this location is presented in Fig. 8 and it also 
shows the electricity consumption for one representative day. As it is 
seen from the data, the daily energy consumption is 2.952 MWh/day 
with a peak load of 219.19 kW recorded at 21:00 h. At the beginning of 

Fig. 7. TOPSIS decision making process.  Fig. 8. Hourly electricity consumption at the design location [50].  
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the day, the electricity consumption is about 20 kW, it starts to increase 
from the dawn and reaches the first peak at 11:00 h. Subsequently, the 
electricity consumption fluctuates around this value with increased 
productive activities. 

In Fig. 9, the global solar irradiance of the location is depicted for a 
typical meteorological year. The daily solar irradiance for two typical 
days in the dry and wet seasons that are characterised by bright weather 
with a clear sky and stormy weather have been highlighted in Fig. 9 as A 
and B, respectively. It can be observed that, the solar insolation at the 
location records a high value of about 900 W/m2 on a bright day, while 
the peak insolation on a typical stormy day with poor weather is about 
330 W/m2. Furthermore, this location enjoys a daily average sunshine of 
7 h with an average solar insolation of 4.52 kWh/m2. This amount of 
solar insolation is sufficient to support a stand-alone hybrid renewable 
energy system [51]. 

Fig. 10 depicts the hourly average ambient temperature and solar 
insolation per square area of the PV surface that is recorded in a period 

of one year, in the test location. As Fig. 10 (a) shows, high hourly 
average solar insolation between 500–800 W/m2 is experienced in the 
mid-day from late October to early March, which are the months in the 
dry season. It is seen that in the rainy season (April – October), the 
average hourly solar insolation reduces in intensity as expected, due to 
the stormy weather. 

Similarly, in Fig. 10 (b) that shows the average hourly ambient 
temperature of the test location, the ambient temperature starts to in-
crease just towards the end of the rainy season. It is seen to attain a peak 
of 31 ◦C in December, before it starts to drop albeit, slowly. Relative 
stability in the ambient temperature is notable from late January to early 
May. It is also evident, that the rainy season is characterised by low 
ambient temperature due to cloud cover, and this explains the low 
irradiance observed for the rainy season months. 

Conversely, Fig. 11 depicts the annual hourly wind speed in the test 
location measured at 50 m hub height. As seen in Fig. 11, sharp variation 
in the wind speed in the test location can be observed all year round, 

Fig. 9. Hourly solar irradiation at the design location [34].  

Fig. 10. Heat map of (a) average solar irradiance, Go (W/m2) and (b) average daily hourly ambient temperature, Ta (◦C) in the test location.  
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although not as drastic as in the case of the solar insolation. From the 
seasonal perspective, high wind speed is notable in the rainy season 
where some months recorded hourly wind speeds of 7.5 m/s. 

Regarding the stochastic behavior of wind, the Weibull distribution 
of the wind speed in the test location is shown in Fig. 12 for different hub 
heights. Fig. 12 shows that wind speed of 3.0 m/s has the highest fre-
quency of occurrence in the year at 50 m hub height. With the decrease 
in the hub height, the peak Weibull frequency increases, while the 
average wind speed decreases. Meanwhile, wind speed v > 3.5 s is 
observed for more than 65 % of the curve at the design hub height of 50 
m. Fig. 13 is the hourly average wind speed in the location for the 
different months in a year. It is evident that there are two peak wind 
speed periods between May – June and August – September with an 
hourly average wind speed of about 3.5–4 m/s. However, it is evident 
that all the months in the year experienced periods of average wind 
speed of 3.0 m/s. 

The high wind speed periods experienced during the rainy season, 
which doubles as the period in the year with poor solar insolation, 
highlights the complementarity that exists between wind and solar en-
ergy resources; hence, the motivation for their hybridisation. Finally, 
the test location has a considerable share of solar and wind energy 
resource to support the siting of a HRES. 

Fig. 14 represents the estimates of the quantity and energy content of 
some biomass resources in Nigeria. It is evident that more than 70% of 
the available biomass resource in Nigeria is derived from wood [52]. 
This under-utilised biomass resource has an estimated energy content of 
over 500 GJ and are commonly found in remote locations. It is, there-
fore, a promising fuel to power a programmable generator that can be 
deployed to ensure the reliability of a hybrid system designed to meet 
the energy needs of a remote off-grid location. 

5.3. Results of optimal hybrid system configurations 

In this paper, several HRES cases based on the two main dispatch 
strategies examined have been formulated to compare results to the base 
case: HRES with DG back-up. The Pareto optimal set, which are a 
combination of the number and types of the components of the proposed 
HRES and the formulated cases that simultaneously minimises the LPSP, 
LCOE and dumped power have been found after 150 generations of the 
GA optimisation procedure. Fig. 15 presents the Pareto optimal solu-
tions obtained from the multi-objective optimisation of the HRES for the 
LF system case with ST + ORC back-up. The conflicting nature of the 
multi-objective problem is evidenced by the degree of scatter in the 
Pareto front. This is even clearer in the functional relationship 

Fig. 11. Hourly wind speed at the design location [34].  

Fig. 12. Weibull distribution of wind speed in the test location for a period of 
one year. 

Fig. 13. Heat map of average daily hourly wind speed at 30 m hub height in the 
test location. 

Fig. 14. Estimates from different sources of biomass in Nigeria [52].  
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demonstrated by the objective functions presented in Fig. 15. 
As Fig. 15 (a) shows, the LCOE and dumped power noticeably exhibit 

a positive relationship, since an increase in the size of the system will 
raise the energy cost and contribute to the increase in the dumped 
power. On the other hand, the dumped power and the CO2 emitted from 
the energy system conflict as observed in Fig. 15 (b), because high 
penetration of green energy generators that are periodic and anti- 
correlated with the load demand, reduces the carbon emissions but in-
creases the dumped power. For a similar reason, the LPSP is consistent 
with the CO2 emissions as it is evident in Fig. 15 (c). While the LCOE 
exhibits an indirect relationship with the LPSP, i.e., increasing system 
reliability increases energy cost (Fig. 15 (d)). 

Further, the ideal solutions from the perspective of reliability, eco- 
friendliness, compactness and affordability have been marked in 
Fig. 15 and it is evident that no solution simultaneously meets the ideal 
conditions from these standpoints. Hence, TOPSIS decision making tool 
has been deployed to obtain the best system configuration from the 
Pareto set in each case as highlighted in Fig. 15. The TOPSIS best in 
Fig. 15 (a) indicates the cheapest solution but is tangential to the indi-
cated positive ideal solution from the perspective of dumped power. 
Similarly, in Fig. 15 (b), the TOPSIS best prioritizes reducing carbon 
emissions over dumped power and indicates a solution that is in close 
proximity to the positive ideal solution for carbon emissions mini-
misation. Regarding LPSP and CO2 emissions, as it is evident in Fig. 15 
(c), the TOPSIS best ensured comparable trade-off in these two objec-
tives, while the LCOE is slightly prioritised more than the reliability 
(LPSP) in Fig. 15 (d). The priorities demonstrated in selecting the 
TOPSIS best reflect the weight assigned to each of these objectives in the 
selection process. It is clear that the reduction in the energy cost has 
been given the top priority, while reliability and sustainability are rated 
second and over the size. 

Similar steps have been replicated to obtain the best system config-
uration in each of the examined system cases. The next section presents 
the comparison of the optimal system configurations obtained from the 
different cases to the base case (DG back-up HRES) from technical, 
economic and environmental perspectives. These HRES cases have been 
primarily formulated to evaluate the performance of different possible 
system configurations and compare results to the base case. 

5.3.1. Optimal system configurations in load following 
Two hybrid system configuration cases that utilise the load following 

(LF) dispatch strategy have been proposed in this study. Table 6 presents 
the optimal system configuration obtained for these cases and for the 
base case, while Fig. 16 presents the comparative analysis of the nor-
malised results of the optimal system performance. 

(i) Case 1: Hybrid WT-PV-BSS with ST back-up 
This hybrid system case deploys sole Stirling engine to follow the 

positive net load in the system, when the renewable generators are 
unable to match the consumer’s energy demand. Unlike in the base case 
where the DG is deployed for a similar purpose, the obtained optimal 
configuration in case 1 utilises slightly more PV generators (983 PV 
panels in parallel) as seen in Table 6. Therefore, the total power 
generated from the renewable generators increased marginally by 
0.42% compared to the base case; hence, the slight increase in the 
dumped power by 2 MWh in case 1, since the both cases deployed equal 
amount of BSS to store the excess power. Correspondingly, the LPSP in 
case 1 (LPSP of 0.3501) is better than in the base case (LPSP of 0.3962), 
because the former utilised more PV generators (see, Fig. 16. Thus, the 
optimum configuration in case 1 is more reliable compared to the base 
case. On the other hand, LCOE of 7.72 cents/kWh is obtained in case 1, 
which represents a decrease of 50.45% compared to the base case (LCOE 
of 15.58 cents/kWh). This decrease is attributable to the lower unit cost 

Fig. 15. Pareto front of the optimal system configuration found from the multi-objective optimisation for the load following with ST + ORC back-up case.  

Table 6 
Optimal system configuration in load following for all the examined cases.  

Objective function Case 1 Case 2 Base case 

LCOE (cent/kWh) 7.72 6.08 15.58 
LPSP (-) 0.3507 0.3962 0.3527 
Dumped power (MWh) 309.7 287.8 305.9 
CO2 emissions (kg CO2) 8.342 × 105 4.795 × 105 7.232 × 105 

Number of PV 4× 983 4× 935 4× 977 
Wind Turbine type EWT 52–250 EWT 52–250 EWT 52–250 
Number of WT 5 5 5 
Battery Type Type 3 Type 2 Type 3 
Number of batteries 4× 30 4× 26 4× 30 
Capacity of back-up engine (kW) 190 193 182.12 
Annual PV Power (MWh) 724.25 688.16 719.84 
Annual WT power (MWh) 330.26 330.26 330.26 
Annual back-up power (MWh) 347.59 361.71 345.30  
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of fuel, cost of maintenance, capital cost, and even replacement cost 
associated with the deployment of the biomass fired ST back-up 
compared with the DG back-up. However, slight increase in the car-
bon emissions of 2.12% is notable in case 1 compared with the base case, 
due to the marginal increase in the utilisation of the ST back-up in the 
former compared to the latter as can be seen in Table 6. 

(ii) Case 2: Hybrid WT-PV-BSS with ST + ORC back-up 
This case proposes the deployment of combined ST + ORC to serve as 

the back-up to the HRES and augment its reliability. As it is evident in 
Table 6, the optimal system in case 2 employs fewer number of PV 
modules (935 PV panels in parallel) and BSS (26 type 2 BSS in parallel) 
with slightly higher capacity of ST + ORC back-up, to match the load. 
Consequently, the renewable generators produce 3.01% and 3.42% less 
power compared with the base case and case 1, respectively, and this 
reduces the dumped power by 18.1 MWh and 21.9 MWh in case 2 
compared to the base case and case 1, respectively. As a result of the 
reduction in the deployment of renewable generators in the optimal 
configuration in this case, the system relies more on the ST + ORC back- 
up and this is evidenced by the slightly higher LPSP of 0.3962 compared 
to the base case (LPSP of 0.3527) and case 1 (LPSP of 0.3507) recorded 
in Fig. 16. 

Interestingly, the high LPSP evident in case 2, which also implies the 
increased deployment of the ST + ORC back-up, did not generate an 
increase in the energy cost or emissions. This is because, the ORC utilises 
the recovered waste heat from the ST cooler to produce additional 
power; consequently, less fuel is consumed by the back-up to fulfill the 
net load. Moreover, unlike in case 1, the ST + ORC back-up operates at a 
higher efficiency, which implies more useful work is produced with less 
fuel. So, an energy cost of 6.08 cents/kWh is obtained and this is 60.79% 
lower than the base case but represents 21.14% reduction in LCOE 
compared with the sole ST back-up case. Similarly, the optimal config-
uration that deploys ST + ORC back-up reduces emissions by 33.70% 
(4.795 × 105 kg of CO2) compared to the base case (7.232 × 105 kg of 
CO2) and 42.52% compared to case 1 (8.342 × 105 kg of CO2), because 
of the reduced consumption of woodchips fuel and higher efficiency of 
the heat engine. 

Finally, from these results, it is evident that the optimal system 
configuration in case 3 that deploys combined ST + ORC back-up to 
follow the unmet load, offers reduced emissions, and cheaper energy due 
to the reduced fuel consumption, and a compact system size indicated by 
the lower dumped power. However, it relies more on the ST +ORC back- 

up because of the higher system efficiency of the combined power 
configuration. 

5.3.2. Optimal system configurations in circuit charging 
For the circuit charging dispatch strategy, five different system 

configurations have been formulated. The optimal system configuration 
obtained in these cases have been presented in Table 7, while Fig. 17 
presents the comparison of the normalised results of the optimal system 
performance. 

(i) Case 1: Hybrid WT-PV-BSS with 4-split DG back-up 
Here, four-split DG have been deployed to fulfill the load when the 

renewable generators are unable to match the energy demand. The split 
DG will also charge the BSS while supplying the deficit power. The 
optimal system configuration obtained in this case has similar number of 
components as in the base case with the exception of six additional PV 
panels in parallel deployed to fulfill the energy demand more than in the 
base case. On the other hand, case 1 generates far less power from the 
DG back-up and this reduces the dumped power by 5% compared with 
the base case [19]. Similarly, the optimal system in this case has higher 
renewable fraction as indicated by the considerable lower LPSP of 
0.3513 compared to the LPSP of 0.3796 obtained for the base case as 

Fig. 16. Comparison of the results obtained from the optimal system configu-
ration of the various system cases in load following for the normalised objec-
tive functions. 

Table 7 
Optimal system configuration in circuit charging for all the examined back-up 
cases.  

Objective function Base case Case 1 Case 2 Case 3 

LCOE (cent/kWh) 15.89 8.13 7.88 15.91 
LPSP (-) 0.3513 0.3677 0.3447 0.3796 
Dumped power (MWh) 326.3 351.5 333.6 343.6 
CO2 emissions (kg CO2) 7.53 × 105 7.42 × 105 9.21 × 105 7.53 × 105 

Number of PV 4× 993 4× 999 4× 1007 4× 1009 
Wind Turbine type EWT 

52–250 
EWT 
52–250 

EWT 
52–250 

EWT 
52–250 

Number of WT 5 5 5 5 
Battery Type Type 3 Type 3 Type 3 Type 3 
Number of batteries 4× 30 4× 30 4× 30 4× 29 
Capacity of back-up 

(kW) 
180 185 182 187 

Annual PV Power 
(MWh) 

731.62 736.05 741.94 743.09 

Annual WT power 
(MWh) 

330.25 330.25 330.25 330.25 

Annual back-up power 
(MWh) 

386.40 360.00 383.77 360.14  

Fig. 17. Comparison of the results of the normalised objective functions ob-
tained from the optimal system configuration of the various HRES cases in 
circuit charging. 
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seen in Fig. 17. With the deployment of split DG, the commitment of the 
back-up to fulfilling the positive net load in the system is minimised; 
hence, the observed reduction in the dumped power and LPSP. 
Notwithstanding the remarkable reductions in the power dispatched 
from the DG back-up in this case, the LCOE of the optimal system did not 
change significantly compared to the base case, because of the higher 
number of PV generators deployed. Finally, the deployment of 4-split DG 
in this case minimises the carbon emissions of the one big DG case 
marginally by 1.41%, as can be seen in Fig. 17 where a slight drop in the 
normalised carbon emissions is evident. 

(ii) Case 2: Hybrid WT-PV-BSS with one big ST back-up 
This hybrid system configuration proposes the utilisation of one big 

ST back-up to augment the system reliability and charge the batteries. As 
Table 7 shows, the optimal configuration in case 2 has similar configu-
ration as in the base case; however, it deploys more PV generators and 
produces 10.32 MWh more power from the renewable generators than 
the latter. On the contrary, it generates slightly less power from the ST 
back-up and correspondingly, yields lower LPSP of 0.3611 but with 
higher dumped power of 351.50 MWh compared to the base case (LPSP 
of 0.3796 and dumped power of 343.60 MWh). Further, the deployment 
of ST back-up to augment the reliability of the hybrid system minimises 
the energy cost by 48.9 % (LCOE of 8.13 cent/kWh) compared with the 
base case (LCOE of 15.91 cent/kWh), due to the higher cost of mainte-
nance, replacement cost of DG and fuel cost (see, Fig. 17. Unfortunately, 
the carbon emissions increased by 22.38 % with this HRES arrangement 
compared to the base case, because of the low electrical efficiency of the 
heat engine (ηST = 0.21). Finally, compared to case 1, this system case 
only offers an advantage in the form of reduced energy cost but dumps 
more power and has lower reliability and higher emissions than the 
former. 

Case 3: Hybrid WT-PV-BSS with 4-split ST back-up 
In this HRES configuration, four-split STs are deployed to fulfil the 

net load while simultaneously charging the batteries. It is seen in Table 7 
that, the optimal configuration deploys more PV generators and slightly 
higher BSS compared to the base case and generates 11.47 MWh more 
power from the renewable generators. Consequently, it is 9.19% more 
reliant on renewable generators as represented by the lower LPSP of 
0.3447 compared to 0.3796 for the base case. The notable power re-
ductions in the deployment of 4-split STs back-up compared to one big 
ST (or DG) seen in Fig. 18 is another evidence of the high system reli-
ability. Therefore, the dumped power is lower (10 MWh less) in this case 
compared to the base case. Also, the reduction in the commitment of the 
ST back-up to fulfilling the load with the utilisation of 4-split STs, the 
lower maintenance cost and fuel cost culminate in 50.5% decline in the 
LCOE in this case (LCOE of 7.88 cent/kWh) compared to the base case 
(LCOE of 15.91 cent/kWh). Nonetheless, the optimal configuration in 
case 3 emits 14.5% more CO2 than in the base case, due to the low 

electrical efficiency of the ST although not as significant as in case 2, 
because of the reduction in the woodchips consumption with the uti-
lisation of split STs. Finally, case 3 offers lower LCOE and LPSP but 
higher emissions and dumped power compared to case 1, while it per-
forms better than the one big ST case in all indices (see also, Fig. 17). 

5.3.3. Impact of deploying ST + ORC on optimal system in circuit charging 
Two additional hybrid system configurations have been proposed to 

evaluate the optimal system performance when ST + ORC is deployed in 
circuit charging dispatch mode. The optimal configurations from these 
cases are presented in Table 8, while the performance indicators are 
presented in Fig. 19 and have been compared to the previous cases. 

Case 4: Hybrid WT-PV-BSS with ST + ORC back-up 
This configuration utilises ST + ORC as the back-up to the HRES 

while operating at the rated capacity of the topping cycle and also 
charging the BSS with the excess power generated. It is seen in Table 8 
that the optimal system configuration obtained in this case utilises fewer 
number of PV generators but generates more power from the combined 
cycle back-up compared to cases 2 and 3. Consequently, the HRES in this 
case depends more on the back-up to fulfil the load demand and that is 
evidenced by the higher LPSP of 0.3801 compared to 0.3677 and 0.3447 
for cases 2 and 3, respectively (see also, Fig. 19. Also, the dumped power 
in this optimal configuration is less than in case 2 but higher than case 3 
that deploys 4-split STs. In spite of some of these observed unfavourable 
performance data, the utilisation of combined ST + ORC back-up in case 
4 reduces the LCOE and CO2 emissions by 22.26% and 44.25% and 
19.79% and 40.53%, respectively compared with cases 2 and 3, 
respectively. This is a result of the higher efficiency of the ST + ORC 
back-up and the reduction in the fuel consumption compared to ST only. 
In contrast to the base case (one big DG back-up), the optimal system in 
this case offers 60.27% and 31.7% (slightly higher for case 3) lower 
LCOE and CO2 emissions, respectively. 

Case 5: Hybrid WT-PV-BSS with 4-split ST + ORC back-up 
Case 5 deploys 4 small STs operating at their rated capacities as the 

back-up to the HRES with ORC bottoming cycle and will charge the 
batteries if generating excess power. As Table 8 reveals, the optimal 
configuration in this case is characterised by fewer PV generators (965 
PV panels in parallel), reduced battery capacity (29 type 2 batteries in 
parallel) and lower or comparable back-up power compared to the other 
cases. Consequently, it has high LPSP (LPSP of 0.3929), i.e., increased 
reliance on biomass powered back-up generators but reduced dumped 
power compared to the other cases. In terms of energy cost and emis-
sions, this HRES case reduces energy cost by 22.08%, 24.47% and 61.4% 
and emits less carbon (5.0429 × 105 kg of CO2), which is evidenced by 
reductions in emissions of 41.65%, 45.25% and 33% than that of case 3, 

Fig. 18. Comparing hourly power dispatch from one big ST and 4-split STs.  

Table 8 
Optimal system configuration in circuit charging for all the examined back-up 
cases.  

Objective function Case 2 Case 3 Case 4 Case 5 

LCOE (cent/kWh) 8.13 7.88 6.32 6.14 
LPSP (-) 0.3677 0.3747 0.3801 0.3929 
Dumped power (MWh) 351.5 333.6 337.3 320.0 
CO2 emissions (kg CO2) 9.21 × 105 8.64 × 105 5.14 × 105 5.04 × 105 

Number of PV 4× 1007 4× 1009 4× 995 4× 965 
Wind Turbine type EWT 

52–250 
EWT 
52–250 

EWT 
52–250 

EWT 
52–250 

Number of WT 5 5 5 5 
Battery Type Type 3 Type 3 Type 3 Type 2 
Number of batteries 4× 30 4× 29 4× 30 4× 29 
Capacity of back-up 

(kW) 
182 187 180 190 

Annual PV power 
(MWh) 

741.94 743.09 733.10 711.00 

Annual WT power 
(MWh) 

330.25 330.25 330.25 330.25 

Annual back-up power 
(MWh) 

383.77 360.14 387.50 361.52  
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case 2 and the base case, respectively, but marginally lower than case 4 
(See, Fig. 19). This can be attributed to the reduction in the commitment 
of the back-up to fulfilling the load demand, with the deployment of 4- 
split STs, on one hand and on the other hand, the utilisation of combined 
power configuration that minimises the fuel consumption of the ST +
ORC back-up, by recovering the waste heat from the topping cycle. 

It is clear from the presented results that the deployment of 4-split 
STs improve the performance of the HRES compared to the base case 
[19]. Further improvements in system performance indicators are 
notable with the deployment of ST + ORC back-up and split STs in CC. 
Nevertheless, the deployment of ST + ORC back-up in LF offers the best 
performance indicators. This solution is therefore, adopted for the 
simulation and sensitivity analysis undertaken in the subsequent 
sections. 

5.4. Optimal HRES configuration simulation results 

This section presents the results of the dynamic simulation of the best 
optimal configuration that gave the least LCOE, LPSP, CO2 emissions 
and dumped power for the test location. As has been previously stated, 
the HRES configuration in case 3 that deploys combined ST + ORC back- 
up to augment the system reliability in the LF mode offers the best 
performance indicators. Consequently, the hourly electricity generation 
from the system units to fulfil the electric load of the customers in the 
two main seasonal conditions experienced annually in the test location; 
the dry and wet seasons [18] has been evaluated. 

Fig. 20 represents the hourly power generation from the renewable 
generators in the test location for the best optimal system configuration. 
It is evident from Fig. 20 (a), that the power generation from the PV 
generator is strongly affected by the seasonal changes and drops from a 
peak generation of 450 kW at the beginning of the year (dry season) to a 
low value of 200 kW at the mid-year period (wet season). On the con-
trary, the power generation from the WT generator, Fig. 19 (b) is sto-
chastic and records a few high spikes of over 600 kW, especially in the 
mid-year period (wet season). It is also noticeable in Fig. 19 (c) that the 
combined generation from the renewable generators increased 
remarkably with the hybridisation of the WT and PV. This results in the 
minimisation of the low power generation in the wet season from the PV 
generator as well as the many high power spikes from the WT generator. 
The observed trend highlights the complementarity of wind and PV and 

supports their hybridisation. 
Further results of the dynamic performance of the best optimum 

HRES configuration, for two consecutive days in the (a) dry season and 
(b) wet season have been presented to gain additional insight into the 
impact of the seasonal variations on the optimal system performance. In 
Fig. 21, the dynamic simulation of the optimal system configuration in 
the test location has been presented for two-consecutive days in the dry 
season (Fig. 21 (a)) and wet season (Fig. 21 (b)). 

As Fig. 21 (a) depicts, due to the clear weather that characterises the 
dry season, more power is generated by the solar PV and WT; hence, the 
high excess power in the dry season compared to the wet season. 
Correspondingly, the battery is deployed more in the dry season to 
supply the unmet load as evidenced by the several cycles of charging and 
discharging of the battery in Fig. 21 (a) and Fig. 22. On the other hand, 
the ST + ORC back-up follows the load only a few times in the dry 
season, which helps to minimise its contribution to fulfilling the load. 
Unlike in the dry season, the wet season is marked with high deployment 
of the ST + ORC back-up to augment the reliability of the HRES, due to 
the low power generation from the green generators. Consequently, 
there is insufficient excess power to charge the batteries, which is 
responsible for the few cycles of charging and discharging of the battery 
noticeable in Fig. 21 (b) and Fig. 22, in the wet season. So, the battery 
remains in its minimum SOC most of the time in this season, and this 
regrettably may affect the life of this component [15]. 

Therefore, because batteries are utilised more in the dry season 
compared with the ST + ORC back-up, the energy cost is lower in the dry 
season than in the wet season. Nonetheless, high dumped power is 
evident in the dry season as can be seen in Fig. 23 compared to the wet 
season, because of the higher power generation from the non- 
programmable generators. Further, there may be challenges with the 
availability of the biomass fuel in the wet season, considering that the 
system is designed for use in a remote location, where the common 
practice is to deploy the traditional open solar drying to regulate the 
moisture content of the woodchips. To solve this problem, in-situ drying 
of the woodchips fuel has been proposed [29], whereby the waste flue 
gas will be deployed to dry the woodchips in the wet season. Thus the 

Fig. 19. Comparison of the results of the normalised objective functions ob-
tained from the optimal system configuration of the different HRES cases with 
ST back-up in circuit charging. 

Fig. 20. Hourly generated power from the renewable generators in the optimal 
HRES configuration. 
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Fig. 21. Dynamic simulation of the optimal system configuration for two consecutive days in the design location in (a) dry season and (b) wet season.  

Fig. 22. Battery state of charge in the dry and wet seasons when deployed to argument system reliability in the test location.  
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Fig. 23. Dumped power from the energy system when deployed to meet the electric load in the test load in the dry and wet seasons.  

Fig. 24. Impact of changes in component and fuel price on the (a) dumped power (MWh), (b) carbon emissions (kg CO2), (c) LPSP (–) and (d) LCOE (cent/kWh) of 
the best optimal configuration. 
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quality of the woodchips fuel is regulated and its availability is guar-
anteed all year round. 

5.5. Sensitivity analysis 

To investigate the effect of variation in the market price and size of 
key system components and other parameters on the performance of the 
optimal configuration, sensitivity analysis has been performed on the 
optimal system. For the sensitivity analysis on the impact of market 
price changes on the optimal HRES, each of the unit prices of the PV 
panel, wind turbine, woodchips fuel and battery has been varied be-
tween − 50% to +50% with a step increase of 10% while keeping the 
others constant. Then, the GA optimiser and TOPSIS were deployed for 
each step size, to find the optimum system configuration as well as 
obtain the corresponding LPSP, LCOE, dumped power and CO2 emis-
sions. On the other hand, the quantity (size) of one of the key system 
components (PV panel, WT, batteries and ST + ORC) in the optimal 
system configuration has been altered by − 50% to +50% with a step 
increase of 5%, while the others were fixed. Then, the optimum 
configuration is simulated and consequently, the LPSP, LCOE, dumped 
power and CO2 emissions for each step increase is obtained. Fig. 24 and 
Fig. 25 present the results of the sensitivity analysis carried out on the 
optimal system configuration on a radar chart. 

Fig. 24 (a), (b), (c) and (d) show the impact of the variations in the 
market price of the PV, WT, BSS and woodchips fuel on the dumped 
power, CO2 emissions, LPSP and LCOE, respectively, of the best optimal 
system configuration; load following dispatch mode with combined ST 
+ ORC back-up (case 3). As it is evident in Fig. 24 (a), the increase in the 
cost of the PV generators catalyses a decrease in the dumped power by as 
high as 28% for 150% increase in price, because fewer components are 
deployed. Consequently, the system emits more carbon pollutants (see, 
Fig. 23 (b)) and also becomes less reliable as evidenced by the high LPSP 
(more than 50% change) in Fig. 24 (c). This also confirms the indicated 
positive relationship between reliability and eco-friendliness in the 
Pareto front in Fig. 15. Meanwhile, the LCOE of the system increases 
marginally as the PV price increases and about 8.33% rise in LCOE is 
observed for a 150% hike in the component’s price as seen in Fig. 24 (d). 
An opposite effect is noticeable with the decrease in the cost of the 
component although, it is less evident for all other objective functions 
with the exception of the dumped power. 

Contrarily, an increase in the price of the WT generates a dramatic 
effect on the objective functions. The CO2 emissions and LPSP increase 
slightly before decreasing marginally (about 13% decline in the LPSP for 
150% price change) as noticeable in Fig. 24 (b) and (c), respectively. 
This dramatic trend is driven by the fact that with further increase in the 
cost of the WT, the system opts for cheaper PV generators to replace the 

Fig. 25. Impact of changes in component size on the (a) dumped power (MWh) (b) carbon emissions (kg CO2) (c) LPSP (–) and (d) LCOE (cent/kWh) of the best 
optimal configuration in load following. 
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former resulting in the observed decline. Consequently, the dumped 
power initially decreases with the increase in the price of the green 
generator, but increases substantially as more PV generators are 
deployed with the increase in price and contributed about 25% increase 
with 150% rise in component’s price as seen in Fig. 24 (a). On the other 
hand, as the price of the WT increases, the LCOE increases substantially 
by the same magnitude as in the PV (see, Fig. 24 (d)). However, the 
decrease in the price of this non-programmable generator produces 
similar and comparable effect as the decrease in the price of the PV 
generator. A decrease in the price of the WT induces a decrease in all the 
objective functions except the dumped power that notably increases 
because more clean generators are deployed. 

The increase in the price of the batteries, significantly increases the 
dumped power as expected by about 30% for a 150% change in com-
ponent’s price (see, Fig. 24 (a)), due to the corresponding reduction in 
the storage capacity. Hence, more green generators are included in the 
optimal system to augment the apparent shortfall in the storage capacity 
of the batteries. Consequently, the carbon emissions and LPSP that are 
complementary (see, Fig. 15 evidently reduce albeit marginally, with 
the increase in the price of the batteries (see, Fig. 24 (b) and (c)). 
However, as can be observed, the LCOE increases significantly with the 
increase in the price of this component (Fig. 24 (d)). The opposite trend 
is evidenced as the price of the batteries fall and the most significant 
change can be observed in the LPSP. 

Similarly, as the price of the woodchips fuel increases, the dumped 
power increases substantially by about 11% for 150% change in price 
(Fig. 24 (a)), while the energy cost rose by almost 15% for a similar price 
change (Fig. 24 (d)). This is expected because more green generators are 
deployed to reduce the impact of the high cost of the fuel. Hence, the 
CO2 emissions and LPSP decrease with the increase in the cost of the fuel 
as it is evident in Fig. 24 (b) and (c). The opposite effect is noticeable 
with the reduction in the price of the woodchips fuel. Overall, the 
change in the price of the PV has the most impact on the optimal sys-
tem’s LPSP and CO2 emissions, while the change in the price of the 
battery and woodchips fuel have the most impact on the dumped power 
and LCOE, respectively. 

Fig. 25 presents the impact of the changes in the number of PV, WT, 
BSS and capacity of ST + ORC back-up on the dumped power, CO2 
emissions, LPSP and LCOE of the best optimal HRES configuration (Case 
3 in load following mode). It is evident in Fig. 25 (a) that increasing the 
size of the renewable generators leads to an increase in the dumped 
power, while the dumped power decreases with a decrease in the 
number of these components. The renewable generators are non- 
programmable and periodic or stochastic in their power generation; 
hence, their hourly power generation anti-correlates with the load de-
mand [53]. Correspondingly, the carbon emissions (Fig. 25 (b)) and 
LPSP (Fig. 25 (c)) decrease while the LCOE increases (Fig. 25 (d)) with 
the increase in the number of PV and WT. The opposite trend is indicated 
with the decrease in the number of these renewable generators. 

On the contrary, as the number of batteries in the optimum system 
configuration increases, the dumped power reduces as evident in Fig. 25 
(a), because more excess power is stored in the BSS, while the opposite 
effect is observed with a reduction in the number of this component in 
the optimum configuration. As a consequence, the carbon emissions 
reduce as seen in Fig. 25 (b), while the LPSP changes only marginally 
(Fig. 25 (c)), whereas the LCOE increases substantially with the increase 
in the number of the batteries (Fig. 25 (d)). The opposite trend is indi-
cated with the reduction in the number of batteries. 

Meanwhile, the variation in the capacity of the ST + ORC back-up 
did not impact the dumped power in the load following mode (Fig. 25 
(a)) as could be imagined, because the back-up merely follows the load. 
However, the system emits more CO2 and becomes less reliable as evi-
denced by the slight rise in the LPSP with the increase in the capacity of 
the ST + ORC back-up as represented in Fig. 25 (b) and (c), respectively. 
Similarly, the LCOE increases remarkably with the increase in the ca-
pacity of the engine. On the other hand, the LCOE and CO2 emissions 

decrease significantly as the capacity of the back-up decreases, while 
marginal increase in the LPSP is observed. 

Overall, the variation in the number of PV generators in the optimum 
system configuration altered the dumped power, LPSP and LCOE [9] 
more than any other component. The most significant change in the 
carbon emissions is observed with the variation in the number of PV and 
capacity of ST + ORC back-up in the optimum system configuration. 
While the change in the number of WT generator and ST + ORC back-up 
capacity have comparable impact on the system’s energy cost. The 
variation in the number of batteries in the optimal system configuration 
affects the LCOE only marginally. Finally, the change in the number of 
PV generators that generates about 50% of the total power supplied to 
the electric load by the HRES, expectedly has the most impact on the 
optimal system’s performance and this further highlights the signifi-
cance of the PV generator in the optimal HRES configuration for this test 
location. 

6. Conclusion and future work 

This paper proposes the deployment of woodchips biomass powered 
combined ST + ORC and split ST back-ups to increase the reliability of a 
hybrid WT-PV-BSS when the system is in the load following (LF) and 
circuit charging (CC) dispatch modes, respectively. First, the optimal 
number and types of the system components that simultaneously mini-
mises the levelised cost of energy (LCOE), loss of power supply proba-
bility (LPSP) and dumped power in each of the proposed HRES 
configurations were found by the deployment of the multi-objective 
genetic algorithm and the TOPSIS decision making tool. The LCOE, 
LPSP, dumped power and CO2 emissions of the optimal HRES configu-
ration have been compared to the base case; DG back-up system in both 
dispatch modes and other test cases formulated. Then, the hourly per-
formance of the best system configuration was simulated for the two 
seasons that characterise the test location. Finally, the impact of the 
change in the market price and size of the system components and fuel 
on the performance of the optimum system configurations were inves-
tigated by means of a sensitivity analysis. The following vital conclu-
sions can be drawn from the study: 

Replacing DG with sole ST in LF dispatch mode reduces the optimal 
system energy cost by 50% compared to the base case. However, addi-
tional reductions in LCOE, CO2 emissions and dumped power of 60.79%, 
33.70% and 2.91%, respectively are evident with the deployment of 
combined ST + ORC back-up compared to the base case, although the 
optimal system slightly becomes more reliant on the ST + ORC back-up 
evidenced by a marginal increase in the LPSP. 

While deploying four-split STs (4-split DG) in CC reduces the dumped 
power by 5.1% (5.03%) compared with the one big ST (DG) case. Higher 
reductions in dumped power by 8.96% is notable with the deployment of 
4-split ST + ORC compared with one big ST case and by 6.89% 
compared with one big DG (base case). Other reductions in the LCOE, 
LPSP and CO2 emissions of 61.4%, 33% and 24.5%, respectively are 
noticeable when 4-split ST + ORC is deployed as the HRES back-up in CC 
compared to the base case. 

Seasonal variation in the test location affects the performance of the 
optimal system configuration. The energy cost is evidently low in the dry 
season marked by high generation from the green generators and 
increased power storage in the batteries and consequently, low 
deployment of the ST + ORC back-up although increased power 
dumping is also observed. Contrarily, the wet season is notable for high 
energy cost, because of the increased utilisation of the biomass back-up, 
as a result of low generation from the green generators. 

The increase in the price of the battery and fuel reduces the carbon 
emissions and the LPSP but increases the dumped power, while the in-
crease in the price of the WT more dramatically impacts the LPSP, car-
bon emissions and dumped power. The change in the price of the PV 
yields the opposite effect on the optimal HRES compared to the battery 
or fuel, with the exemption of the system LCOE, where increment in the 

G.T. Udeh et al.                                                                                                                                                                                                                                 



Energy Conversion and Management 256 (2022) 115370

22

market price of any of the parameters produces corresponding increase 
and vice versa. The most variation in the system performance is 
observed with the change in the PV price. 

Increment in the number of green generators in the optimal system 
increases the dumped power and energy cost but reduces the carbon 
emissions and improves the system’s reliability and vice versa. The 
opposite trend is evidenced with the increase in the number of the 
battery storage and capacity of the ST + ORC back-up in the optimal 
HRES configuration. However, the inclusion of more PV generator or its 
reduction in the optimal HRES system configuration causes more vari-
ation in its performance. 

This study has established the performance improvements of a 
hybrid system that deploys biomass powered 4-split STs or combined ST 
+ ORC back-up to augment the system reliability in CC or LF dispatch 
strategies. It is clear from the presented results based on the data 
deployed for this study that the proposed back-ups for the HRES will 
offer lower energy cost, carbon emissions and dumped power, and 
improved system reliability compared to the traditional DG. Hence, it 
can be plausible replacements for the DG to augment the reliability of 
green energy based hybrid systems. Finally, it is evident that the 
dispatch strategy and split back-up have strong impact on the optimal 
number of components and performance of the hybrid system. There-
fore, bi-level optimisation of the HRES will be conducted in a future 
work, to simultaneously optimise the configuration and the control 
strategy as well as investigate the wider impact of split back-up on the 
energy system’s performance. 
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[15] Dufo-López R, Cristóbal-Monreal IR, Yusta JM. Optimisation of PV-wind-diesel- 
battery stand-alone systems to minimise cost and maximise human development 
index and job creation. Renew Energy 2016;94:280–93. https://doi.org/10.1016/j. 
renene.2016.03.065. 

[16] Sadeghi D, Hesami Naghshbandy A, Bahramara S. Optimal sizing of hybrid 
renewable energy systems in presence of electric vehicles using multi-objective 
particle swarm optimization. Energy 2020;209:118471. https://doi.org/10.1016/j. 
energy.2020.118471. 

[17] Xu X, Hu W, Cao D, Huang Q, Chen C, Chen Z. Optimized sizing of a standalone PV- 
wind-hydropower station with pumped-storage installation hybrid energy system. 
Renew Energy 2020;147:1418–31. https://doi.org/10.1016/j.renene.2019.09.099. 

[18] Bukar AL, Tan CW, Yiew LK, Ayop R, Tan WS. A rule-based energy management 
scheme for long-term optimal capacity planning of grid-independent microgrid 
optimized by multi-objective grasshopper optimization algorithm. Energy Convers. 
Manag. 2020;221. doi:10.1016/j.enconman.2020.113161. 

[19] Ogunjuyigbe ASO, Ayodele TR, Akinola OA. Optimal allocation and sizing of PV/ 
Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, 
carbon emission and dump energy of remote residential building. Appl. Energy 
2016;171:153–71. https://doi.org/10.1016/j.apenergy.2016.03.051. 

[20] Gonzalez A, Riba J-R-R, Esteban B, Rius A. Environmental and cost optimal design 
of a biomass–Wind–PV electricity generation system. Renew. Energy 2018;126: 
420–30. https://doi.org/10.1016/J.RENENE.2018.03.062. 

[21] Sawle Y, Gupta SC, Bohre AK. Optimal sizing of standalone PV/Wind/Biomass 
hybrid energy system using GA and PSO optimization technique. Energy Procedia 
2017;117:690–8. https://doi.org/10.1016/j.egypro.2017.05.183. 

[22] Maleki A, Rosen MA, Pourfayaz F. Optimal operation of a grid-connected hybrid 
renewable energy system for residential applications 2017. doi:10.3390/ 
su9081314. 

[23] Sigarchian SG, Paleta R, Malmquist A, Pina A. Feasibility study of using a biogas 
engine as backup in a decentralized hybrid (PV/wind/battery) power generation 
system – case study Kenya. Energy 2015;90:1830–41. https://doi.org/10.1016/j. 
energy.2015.07.008. 

[24] Patel AM, Singal SK. Economic analysis of integrated renewable energy system for 
electrification of remote rural area having scattered population. Int J Renew 
Energy Res 2018;8:523–39. 
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