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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• New rule-based schemes have been 
proposed to manage a multi-carrier en-
ergy system. 

• Number of system components is ob-
tained by implementing a bi-level 
optimisation. 

• Optimal system’s performance in a test 
location has been examined for a 48 h 
period. 

• Back-up commitment reduces with 
increasing splits, but its start-up soars by 
36%. 

• Dumped power and emissions decline 
with increase in split back-up but cost 
deepens.  
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A B S T R A C T   

In this study, rule-based energy management strategies (EMS) based on the modifications of the traditional load 
following (LF) and circuit charging (CC) have been proposed and developed to effectively coordinate the operation of 
an integrated multi-carrier hybrid energy system. The proposed EMS aim to overcome some of the challenges of the 
traditional rule-based EMS and broaden their application to the management of complex energy systems. The study 
deploys a bi-level optimisation scheme to obtain the optimal number of system components that simultaneously 
minimises the cost, reliability and emissions, in the outer-loop and implements the rule-based EMS in the inner-loop. 
Also, the results of the optimal system have been simulated for a 48 h timespan, to investigate the effects of the proposed 
EMS on the Stirling back-up start-ups, battery storage limits, and generation of other energy vectors. The results indicate 
the deployment of split back-up and batteries minimise the commitment of the back-up, dumped power and emissions. 
However, the number of start-ups of the back-up increases appreciably by 15.34% and 36%, with the deployment of 2- 
split and 4-split Stirling, respectively in CC with battery storage. Correspondingly, the operational cost of the system 
rises as the number of splits increases, but only a slight change in the energy cost is observed, because of the significant 
reductions in the capacity of the green generators. Interestingly, the batteries record many duty cycles, store less energy 
and attain lower discharge limits as many small capacity ST back-ups are deployed. Other results demonstrate the 
additional capabilities of the proposed EMS in handling complex energy systems by the substantial increase in the 
generation of heating and cooling with increasing splits of the back-up and inclusion of batteries in the optimal system.  
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1. Introduction 

Multi-carrier decentralised energy systems (MDES) deploy a number 
of dispatchable and non-dispatchable energy generating and storage 
units, to satisfy customer energy needs. The effective management of the 
flow of energy in the numerous generation and storage units that 
comprise a MDES is crucial to reduce system operational cost, improve 
efficiency and reliability [1]. Consequently, an energy management 
system (EMS) is required to efficiently programme the flow of energy 
through the generating and storage units of a MDES and for its subse-
quent dispatch to satisfy the loads. EMS are mainly deployed to ensure 
the continuous supply of energy to the load, maximise the renewable 
energy penetration, minimise the cost of energy, ensure components 
protection due to overloading of the system and increase the stability of 
the energy system [1]. In the literature, heuristic, fuzzy-logic, unit 
commitment (UC) problem based and smart tools have been proposed as 
EMS approaches for different energy system configurations [1,2]. 

Traditionally, the load following scheme (LF), circuit charging (CC) 
and peak shaving are the popular heuristic energy management schemes 
deployed in managing the flow of energy in a hybrid renewable energy 
system (HRES) [2,3]. These dispatch strategies have extensive applica-
tion in the management of the operation of HRES in the literature. Un-
fortunately, the traditional heuristic approaches present some 
challenges. The deployment of the back-up to follow the load in the LF 

mode results in the engine operating outside its rated conditions. As a 
result, the back-up consumes more fuel, which leads to higher emissions 
and increases the operating cost of the system [4]. On the other hand, 
the CC mode is characterised by the excessive dumping of power [5,6] 
and the frequent charging and discharging of the batteries that is 
inimical to the component’s life [7,8]. While the peak shaving presents 
problem of over sizing of the system leading to excessive dumping of 
power [9]. There have been attempts to solve these challenges by pro-
posing a hybrid of the LF and CC [10] and the deployment of several 
small back-ups in CC [11,12]. Das et al. [12] compared the cost of en-
ergy (COE), life cycle emissions (LCE) and excess power generated from 
a solar photovoltaic (PV) system when one large and two small capac-
ities internal combustion engine (ICE) and micro-turbine (MT) were 
deployed as the back-up, respectively. The recorded COE in both cases 
were comparable, due to the fewer number of PV panels deployed in the 
split back-up case, thereby neutralising the high initial cost of the back- 
ups. However, they observed the system with split back-up emits more 
harmful gases but reduces excessive dumping of power compared to the 
one large capacity back-up case. 

In more complex energy systems, the EMS is implemented in the 
form of a unit commitment (UC) scheduling problem, by formulating 
mixed integer linear (or non-linear) programming (MILP) models [13]. 
The formulated MILP is solved by deploying the receding horizon 
approach that relies on the forecasting of the hourly energy demand and 

Nomenclature 

General 
c unit cost ( $kg or $/l)
n component life (year)
v wind speed (m/s)
A area (m2)

C cost ($), capacity (Ah)
COE cost of energy, ($/kWh)
F power loss (W)

G solar irradiance 
(

W
m2

)

HV heating value (J/kg)
LCE life cycle emissions (kgCO2) 
N number ( − )

P power (W)

T temperature (K)
V voltage (V)
Z height (m)

Abbreviations 
BSS battery storage system 
CC circuit charging 
CHP combined heat and power 
DG diesel generator 
EMS Energy management system 
FC fuel consumption 
HRES hybrid renewable energy system 
GHG greenhouse gas 
ICE Internal combustion engine 
LF load following 
MDES multi-carrier decentralised energy system 
MILP mixed integer linear programming 
MT Micro turbine 
ORC organic Rankine cycle 
PV photovoltaic 
SOC state of charge 
ST stirling engine 

STC standard test condition 
UC unit commitment 
WT wind turbine 

Subscript 
a ambient 
ave average 
bat battery 
c cell 
ch charge 
disch discharge 
gen generation 
h horizontal 
inf inflation 
int interest 
k shape factor 
l load 
max maximum 
min minimum 
o surface 
p parallel 
r,R Rate 
ref reference 
rep replacement 
s serial 
Ann annualised 
c scale index 
C cut-in 
F cut-out 

Superscript 
F fuel 

Greek 
α temperature coefficient (%/◦C) 
σ standard deviation ( − )

x mean ( − )

χ emission factor (kgGHG/kgfuel)
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generation from the system units, to schedule its operation [13]. 
Mazzola et al. [13] proposed a MILP cost minimisation problem to 

manage the energy of a multi-good system. This study penalises the 
system for not meeting the demand of any good at a time step and the 
severity of the penalty is determined by the priority of the good. The 
scheduling problem is solved over a time horizon based on forecasted 
weather and demand data for a test location. The MILP approach 
resulted in savings in the operational cost of the system by 8.5% 
compared with the CC approach. In Parpergiougio and Silvente [14], a 
MILP model was formulated to minimise the operational cost of a 
combined heating and power (CHP) system. The proposed EMS con-
tributes about 5% savings in the system’s operational cost and results in 
significant reductions in power purchases from the grid. Parisio et al. 
[15] proposed a MILP with a day ahead forecasting of the energy gen-
eration and demand to minimise the operating cost of a MDES. 

However, most of these studies did not undertake the sizing opti-
misation of the energy system, which is strongly tied to the energy 
management of the system. Roshandel and Forough [16] solely deter-
mined the optimal number of the components of a hybrid PV, wind 
turbine (WT), battery storage and diesel generator (DG) back-up system, 
by minimising the total life cost of the system. Also, the receding horizon 
has been applied to minimise the real time cost of operation of the 
optimal system. They observed that with the increment in the length of 
the prediction horizon, the penetration of the renewable energy re-
sources increases, and this minimises the deployment of the back-up. 
Although this approach is an improvement over the previous studies, 
it is still lacking because the EMS of the system is not coupled to its sizing 
optimisation. 

Thus, bi-level optimisation that couples the sizing optimisation and 
the energy management of the system has been proposed. Li et al. [17] 
found the optimal configuration and control strategy of a HRES that 
utilises battery and hydrogen storages, by deploying a bi-level optimi-
sation of the system. The optimal configuration of the HRES was found 
in the outer-loop by the genetic algorithm (GA), while the EMS was 
implemented in the inner-loop at every time step of the prediction ho-
rizon, based on the minimisation of the MILP model. The proposed 
approach reportedly reduces the operational cost of the system 
compared to the rule-based approaches. Similarly, Rullo et al. [18] 
proposed a bi-level sizing and energy management of a HRES. In this 
study, the authors jointly considered the economic and reliability 
functions in determining the optimal size of the components of the HRES 
in the outer-loop. The inner-loop implements the EMS as a MILP 
scheduling problem involving cost minimisation. 

The UC scheduling EMS approaches offer reduced operational costs 
when deployed for a day ahead scheduling of the MDES and are more 
suitable to coordinate co-production of energy vectors and other useful 
goods. Nonetheless, their reliance on the forecast of the future produc-
tion of renewable generators and demand of the consumers limit the 
model accuracy because of the associated prediction errors. In addition, 
with the increasing complexity of the system, the computational time 
will increase prolonging the response time in this EMS approach. This is 
even made worse as the length of the prediction horizon increases [16]. 

For these reasons, the fuzzy-logic based EMS are becoming very 
attractive for managing the flow of energy in MDES. They rely on the 
formulation of some set of rules based on if-then constructs that do not 
require complex mathematical modelling to manage the system. Several 
studies have integrated the rule-based EMS with the optimal sizing of the 
components of a HRES. In these studies, some rules are formulated based 
on the experience of the designer to manage the system, while key 
system control variables are optimised by deploying memetic 
algorithms. 

Dufo-lopez et al. [19] proposed a rule-based approach for managing 
the operation of a hybrid PV, WT, DG and battery storage system. This 
study optimised the control parameters of the system including the 
minimum state of charge of the battery, minimum output power and 
critical power of the DG using the GA. Bukar et al. [20] proposed a fuzzy- 

logic strategy that deploys four operational modes to coordinate the 
power generation from a standalone HRES and match it with the energy 
consumption. Sun et al. [21] initiated a methodology that operates by 
matching the charging time with the time of use of the energy, to co-
ordinate the charging of electric vehicles with grid power or power 
generated from a HRES. Lu et al. [22] formulated two rule-based EMS 
modes to minimise the system operational costs and environmental 
protective costs of a hybrid WT-PV-DG-MT and vehicle to grid (V2G) 
system. Bracco et al. [23] developed mathematical models to minimise 
the daily operational cost of a smart micro-grid that simultaneously 
supplies electric power, cooling and heating loads to a university 
campus in Spain and also charge electric vehicles. Bhatti and Salam [24] 
proposed fuzzy-logic approach to optimise the cost of charging of elec-
tric vehicles with power supplied either by a PV-battery system or the 
grid, with the main goal of achieving a fixed energy price during 
operation. 

Although the rule-based EMS are popular for managing HRES, only a 
few authors have deployed this approach to manage complex energy 
systems in which other energy vectors and goods are co-produced. This 
opportunity needs to be fully explored and it is the main goal of this 
paper. Further, the deployment of split back-up is promising for 
reducing the size of the non-programmable generators and minimising 
the dumped power, which are some of the drawbacks of the traditional 
heuristic approaches. However, it is not clear how this will impact the 
performance of the battery storage. Further, as the number of splits of 
the back-up increases, the frequency of start-ups of the back-up may 
increase and this could increase the operational cost of the system. 
Unfortunately, there is limited knowledge of the global impact of the 
deployment of split back-ups on the cost of energy of the system with or 
without the inclusion of batteries. Finally, for a multi-carrier energy 
system, it will be insightful to investigate the impact of the combined 
inclusion of batteries and split back-up on the generation of other energy 
vectors. 

Therefore, this paper proposes the bi-level integration of the optimal 
component sizing based on the genetic algorithm and rule-based energy 
management of a HRES integrated multi-carrier decentralised energy 
system. Here, some parameters that control the dispatch of the back-up 
have been optimised in the outer-loop. The obtained optimal system 
configurations have been dynamically simulated to investigate the 
impact of the deployment of split Stirling (ST) in the proposed rule- 
based EMS on the cost, reliability, emissions, dumped power, battery 
use optimisation and start-up costs of the system. 

The main contributions of this paper are: 

• Proposing a bi-level approach to determine the optimal configura-
tion of a MDES. The optimal system and control strategy that 
simultaneously minimises the loss of power supply probability, lev-
elised cost of energy and dumped power is found with a memetic 
algorithm. Each candidate optimal configuration from the outer-loop 
is evaluated in the inner-loop based on the proposed rule-based EMS 
approaches.  

• Investigating the global impact of split back-up on the frequency of 
start-ups of the ST back-up and the associated operational costs as 
well as the impact on the battery use, by undertaking hourly dynamic 
simulation of the optimal system. Also, the impact of split ST on the 
energy cost, reliability, carbon emissions and dumped power will be 
studied from a broader perspective.  

• Examining the overall effects of the proposed rule-based energy 
management systems on the hourly behaviour of the integrated 
multi-carrier system, by simulating the system performance for two 
days of operation. Additional insights into the combined impact of 
the inclusion of battery storage and split ST on the simultaneous 
generation of cooling, heating and electricity from the multi-carrier 
energy system will be gained from the dynamic simulation. 
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2. Energy system description 

Fig. 1 depicts the proposed multi-carrier energy system intended to 
meet the cooling, heating and electricity demands of the test location: 
Onye-Okpan community; a coastal community in southern Nigeria 
(latitude: 5.976515◦ N and longitude: 8.47067◦ E) with 500 households. 
The energy system integrates a HRES that comprises solar PV modules, 
horizontal axis wind turbines (WT), battery storage, split Stirling en-
gines (ST) and Organic Rankine cycle (ORC) back-up power to an ab-
sorption chiller and a waste heat recovery boiler. The ST + ORC back-up 
plays the dual role of augmenting the reliability of the HRES and driving 
the heating and cooling system. The flue gas produced from the com-
bustion of woodchips fuel fires the ST, the thermal chiller and the waste 
heat economiser before being deployed to dry the wet woodchips, while 
the exhaust waste heat from the ST is recovered to power the ORC. 

3. Components modelling and problem formulation 

In this section, the modelling of the HRES and back-up components 
are presented. Further, the optimisation problem is formulated by 
considering technical, economic and environmental metrics. 

3.1. Development of component models 

This section presents the mathematical models for predicting the 
performance of the components of the proposed HRES. These models are 
the basis for building the objective functions deployed in the sizing 
optimisation. 

3.1.1. Photovoltaic modules 
The hourly simulation of the generation of power from the photo-

voltaic models can be obtained from [25]: 

PPV(t) = PSTC

[
Gh(t)
GSTC

(
1 +

α
100

(Tc(t) − Ta(t))
)]

Fdiss (1)  

where PSTC(W) is the module maximum power at standard test condi-
tions, Gh(

W
m2) is the hourly global solar radiation, GSTC(

W
m2) is the solar 

radiation at the test conditions, α(%/◦C) is the temperature coefficient, 
Ta(◦C) is the ambient temperature and Fdiss(− ) is a factor that accounts 
for power dissipation due to dirt, wires, modules mismatch, and other 
losses. 

The cell temperature Tc(◦C) is obtained from the following expres-
sion [25]: 

Tc(t) = Ta(t)+
(

NOCT − 20
0.8

)
Gh(t)
GSTC

(2)  

where NOCT(◦C) is the nominal operating cell temperature. 
Consequently, the power produced from the PV array at any time 

step, t, can be obtained as follows: 

Parray(t) = IV = PPV(t)NsNp (3)  

Np(− ) is the number of PV panels in parallel. 
The number of PV modules arranged in series, Ns is given as a 

function of the bus voltage, Vbus and the rated voltage of the PV panel 
provided by the manufacturer, VPV: 

Ns =
Vbus

VPV
(4)  

3.1.2. Wind turbines 
The modelling of the power from the wind turbine is presented in this 

Fig. 1. Schematic of the multi-carrier energy system showing the central controller.  
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section. The actual power output from the wind turbine can be estimated 
from the power curve in Fig. 2 which is usually furnished by the 
manufacturer. 

Based on the power curve provided by the manufacturer, the power 
that can be extracted from a moving stream of air at any given speed and 
hub height can be quantified directly using the following expression 
[27–29]: 

PWT(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

νk − νk
c

νk
R − νk

c
.PR νC ≤ ν ≤ νR

PR νR ≤ ν ≤ νF

0 ν ≤ νC and ν ≥ νF

(5)  

where ν(m/s) is the wind speed in the test location, νC(m/s) is the cut-in 
wind speed, νR(m/s) is the rated wind speed, νF(m/s) is the cut-out wind 
speed and PR(W) is the rated power of the turbine. The wind speed data 
at the location has been obtained from PVGIS [30] for a period of one 
year and was measured at 10 m hub height. 

To obtain the wind speed at the hub height of the selected turbines, 
the following logarithmic law is employed [27,29]: 

νhub = νr.
ln Zhub

Z0

ln Zr
Z0

(6)  

where νhub (m/s) is the wind speed at the hub height, Zhub (m) is the 
desired hub height, Zr(m) is the reference height, νr(m/s) is the wind 
velocity at the hub height, Z0(m) is the surface roughness height. 

3.1.3. Combined Stirling and ORC engine 
As previously stated, this work proposes a combined ST and ORC as 

the back-up to the HRES system, deployed to augment the electricity 
generation from the renewable generators. The power supplied by the 
combined ST + ORC back-up at any time step is determined by the 
availability of the renewable generators, the control strategy and the 
state of charge of the battery. In this study, the biomass fuel consump-
tion of the ST + ORC , FCST+ORC (kg) will be determined from the energy 
balance of the heat engine and is expressed as: 

FCST+ORC(t) =
3600Pgen,ST+ORC(t)

ηcombustorHVwoodchipsηST+ORC
(7)  

where Pgen,ST+ORC(W) is the power delivered by the back-up at a given 
time step, ηcombustor(− ) is the efficiency of the biomass combustor, 
HVwoodchips (J/kg) is the calorific value of woodchips and ηST+ORC ( − ) is 
the electrical efficiency of ST + ORC back-up. The combined efficiency 
of the ST + ORC and combustor efficiency in Eq. (7) have been extracted 
from Ref. [31,32] and are given as 38 % and 88 %, respectively. 

In addition, the greenhouse gas (GHG) emitted by the back-up from 
each of the proposed control strategies has been modelled, to evaluate 
the impact of the control strategies on the GHG emissions. The GHG 
emitted by the ST + ORC is determined according to the guidelines of 
the international panel on climate change (IPCC) and is given as [33]: 

yF
GHG = HVFχF

GHG

∑
FCST+ORC(t) (8)  

where HVF(J/kg) is the heating value of the fuel, χF
GHG (g GHG/J fuel) is 

the emission factor. The value of these constants have been extracted 
from [33,34] and presented in Table 1. 

3.1.4. Battery storage 
The battery is one of the dispatchable units deployed to meet the 

power deficit in the proposed HRES configuration. In this study, the 
amount of energy the battery supplies or retains is determined by the 
WT + PV generation, consumer electric load, power dispatching strat-
egy, the state of charge (SOC) of the battery and the power generation 
from the back-up. At any time, t, the energy stored or released by the 

Fig. 2. Power curve of the Enercon E-18 wind turbine [26].  

Table 1 
Constants for the evaluation of the GHG emissions [33,34].  

Woodchips Value 

Heating value (MJ/kg) 19.2 
CO2 Emissions factor (kg Co2/ MJ) 0.112 
N2O Emissions factor (kg N2O / MJ) 4.0 × 10− 6  

G.T. Udeh et al.                                                                                                                                                                                                                                 



Applied Energy 312 (2022) 118763

6

battery banks can be obtained from the following expressions: 

Charging :

discharging :

SOC(t+Δt) = SOC(t) −
(
(PL(t) − PPV(t) − PWT(t) − PST+ORC(t) )

ηdisch.VBat

)

.Δt/CBat

(10)  

where ηch(− ), ηdisch(− ), VBat(V), CBat(Ah) are the charging efficiency, 
discharge efficiency, voltage and nominal capacity of the battery, 
respectively, PPV (W), PWT(W), and PST+ORC(W) are the electric power 
produced by the PV, WT and ST + ORC, respectively, PL(W) is the 
electric load, Δt(s) is the time interval. The time interval used in this 
study is 1 h. The specification and cost of the components of the system 
are given in Table 2. 

4. Formulation of the proposed dispatch strategies 

The energy management of an integrated multi-carrier energy sys-
tem is a critical aspect of the design and operation of the system [18]. 
Therefore, it is important to consider the EMS at the point of the design 

of the energy system and study its impact on the system’s dynamic 
operation. 

Consequently, four main control strategies based on the modification 

of the traditional rule-based control strategies have been formulated 
herein. They are, the load following (LF) strategy without battery, load 
following with battery, circuit charging (CC) without battery and circuit 
charging with battery. The CC also considers sole and split ST back-ups. 
The net load, Pnet(t) = (PL(t) − PPV(t) − PWT(t) ) i.e., the difference be-
tween the load and the power generated from the PV and WT generators, 
the state of charge of the battery (SOC) and the split of the ST are the 
control parameters that are used for the ON/OFF control of the ST back- 
up and the discharging and charging of the batteries. To achieve the 
efficient management of the system, the central controller is expected to 
check the SOC of the battery and Pnet at each time step (every 1 h). The 
other conditions required for the efficient control of the energy system 
are:  

• Uninterrupted energy flow from the PV, WT, battery storage and the 
main and auxiliary back-up at every time step must be maintained.  

• All power generators may operate simultaneously when necessary.  
• All excess power generation from the generating units should be 

dumped via resistive loads when the battery is fully charged to 
protect the load from over-voltage. 

• Battery charging and discharging limits must be maintained to pre-
vent excessive charging and total discharge of the battery.  

• When the ST is powered ON, the low grade flue gas should be 
deployed to produce some cooling and heating.  

• To avoid wet expansion in the turbine of the ORC due to low grade 
waste heat from the ST, the ORC should only be operated when the 
ST is operating above a minimum threshold. 

The rule-based formulations and operational conditions for the 
storage, generation and dispatch of energy for each of the proposed 
control strategies are presented in the supplementary materials. 

5. Formulation of the optimisation problem 

The bi-level optimisation of the energy system has been formulated 
as a multi-objective problem in the outer-loop that deals with the sizing 
of the system components. Thus, the optimal system configuration is 
found by the simultaneous minimisation of the loss of power supply 
probability (LPSP), levelised cost of energy (LCOE) and dumped power. 
For a predefined load profile of the consumer, the optimisation problem 
aims to determine the optimal number of system components, type of 
components, control strategy and split of the ST back-up that will 
minimise the levelised cost of energy (LCOE), loss of power supply 
(LPSP), dumped power (PDumped) and greenhouse gas (GHG) emissions 
(yF

GHG) over the plant life of 20 years. This section presents the mathe-
matical formulation of the objective functions and the constraints that 
must be satisfied to select an optimum system configuration. 

5.1. Optimisation function 

The formulated evaluation metrics are the mathematical expressions 
of the objective functions. The optimisation problem is formulated as a 

Table 2 
Specification of the components of the HRES.  

Component Type Specification Value 

Batteries (3 types)  
[35] 

Hoppecke Sun 
AGM 

Voltage, (V) 2   

Capacity, (Ah) 1120  
Hoppecke Sun 
AGM 

Voltage, (V) 2   

Capacity, (Ah) 890  
Hoppecke Sun 
AGM 

Voltage, (V) 2   

Capacity, (Ah) 620 
Wind turbines (2 

types) [26] 
EWT DW 52–250 
HH40 

Cut-in speed, (m/s) 2.5   

Cut-out speed, (m/s) 25   
Rated speed, (m/s) 8   
Rated power, (kW) 250  

Enercon E-18 Cut-in speed, (m/s) 2.5   
Cut-out speed, (m/s) 25   
Rated speed, (m/s) 12   
Rated power, (kW) 80 

PV modules (1 type)  
[36] 

Canadian solar 
Hiku 7 

Rated power, (W) 665   

Module efficiency, (%) 21.1   
Operating current, (A) 17.28   
Operating voltage, (V) 38.5   
Open circuit voltage, (V) 45.6   
Short circuit current, (A) 18.51   
NOCT, (◦C) 42 ± 3   
Temperature coefficient, 
(%/◦C) 

− 0.26   

Lifetime, (years) 20 
MLPE inverter AC rated Capacity, (kVA) 48  

SOC(t+Δt) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SOC(t) + ηch

(
(PPV (t) + PWT(t) − PL(t))

VBat

)

Δt/CBat, LF

SOC(t) + ηch

(
(PPV(t) + PWT(t) + PST+ORC(t) − PL(t))

VBat

)

Δt/CBat,CC
(9)   
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three-objectives function problem aimed at simultaneously minimising 
the objectives and is presented as follows: 

minimise f (X) = fi(X), fj(X), fk(X) i ∕= j ∕= k  

∀ : gi(X) = 0 and hi(X) ≤ 0 (11)  

X∊{Xi, i = 1, 2,⋯⋯n − 1, n} (12)  

where i,j,k∊{1, 2, 3}, the objective functions, f∊
{

LCOE,LPSP, Pdumped
}
, gi 

are the equality constraints, hi are the inequality constraints and X are 
the decision variables. X1 = number of PV modules in parallel, X2 =

number of wind turbines, X3 = type of wind turbine, X4 = the capacity 
of the ST + ORC back-up, X5 = number of batteries in parallel, X6 =

type of battery, X7 = number of split and X8 = control strategy. 
The objective functions are formulated as follows:  

(i) Levelised cost of energy 

The levelised cost of energy (LCOE) is the unit cost of the energy 
produced from the system over its life cycle. It is the ratio of the net 
present cost (NPC) of the generating power from the system to the total 
electricity demand [37]. The NPC comprises the installation and 
acquisition cost of the components, the operating and maintenance 
(O&M) cost, the replacement cost of components, and the cost of fuel for 
the entire life of the system converted back to the initial time of purchase 
of the components (year 1). Considering the interest and inflation rates, 
the NPC can be expressed as [28,29]: 

NPC =
∑

j

(
AnncI&A,j +AnncO&M,j +Anncrep,j +Anncfuel,j +Anncstart− up,j

)
,

j ≡ PV,WT,Bat,ORC, ST, Inv (13)  

where the annualised acquisition and installation cost, AnncI&A, annual 
operating and maintenance cost, AnncO&M,j, annual replacement cost, 
Anncrep,j, annual fuel cost, Anncfuel,j, and annual start-up cost, 
Anncstart− up, respectively of a component, j are given by [38 28,29]: 

AnncI&A =
∑

j
CI&A,j × Nj (14)  

AnncO&M =
∑nsystem

i=1
CO&M,j

((
1 + rinf

)nsystem

(1 + rint)
nsystem

)

(15)     

Anncfuel,j =
∑nsystem

i=1
Cfuel,j

((
1 + rinf

)nsystem

(1 + rint)
nsystem

)

(17)  

Cstart− up,j = σj + δj

[

1 − exp
(
− Toff ,j

τj

)]

(18)  

where Nj(− ) is the number of components j, CI&A,j($) is the installation 
and acquisition cost, CO&M,j($) is the operating and maintenance cost, 
Nrep,j(− ) is the number of replacements of component j, Cfuel,j($) is the 
cost of fuel, n( − ) is the life of the component or system, rinf (%) is the 

inflation rate, rint(%) is the interest rate, σj is the hot start-up cost of the 
engine, cold start-up cost of the engine, Toff is the period of engine shut 
down and τj is the constant for engine cooling time. 

The cost of fuel, Cfuel,j is given as: 

Cfuel =
{

cfuel

∑8760

t=0
FCST+ORC(t) (19)  

where cfuel($/kg) is the unit cost of the fuel. The levelised cost of energy 
is therefore given as [39]: 

LCOE =
NPC

∑t=8760
t=1 PL(t)

(20) 

The cost data of the components and other financial assumptions 
used to evaluate the economic objective in this study are provided in 
Table 3.  

(ii) Loss of power supply probability 

The loss of power supply probability (LPSP) is a statistical parameter 
that assesses the reliability of the renewable energy resources in meeting 
the electricity demand of the design location. It is also a measure of the 
renewable fraction of the system. Low LPSP connotes high renewable 

fraction and reliability of the energy system. The LPSP has been 
expressed as follows [37,39]: 

LPSP =

∑t=8760
t=1

(
PL(t)− (PPV (t) + PWT(t))+PST+ORC(t) + PBat,SOCmin

)

∑t=8760
t=1 PL(t)

(21)    

(iii) Dumped power 

The dumped power quantifies the amount of excess electricity being 
generated by the HRES that is dumped via resistive loads. The genera-
tion of excess power is inevitable in a HRES because PV and WT power 
generation is at variance with the electricity consumption. Hence, excess 

Table 3 
Key system components cost and other assumptions.  

Component Description Value 

Acquisition and installation cost 
Wind turbine Enercon E-18 per kW (US $) 700 [40]  

EWT DW 52–250 per kW (US $) 700 [40] 
Solar PV Hiku 7 cost per panel (US $) 987 [36] 
Battery Hoppecke 620 Ah (US $) 350 [35]  

Hoppecke 890 Ah (US $) 405 [35]  
Hoppecke 1120 Ah (US $) 530 [35] 

Stirling engine Acquisition cost per kW (US $) 500 [41] 
ORC engine Acquisition cost per kW (US $) 1700 [42] 
MLPE inverter Cost per kW (US $) 120 [40] 
Operating and maintenance cost 
Fuel cost Nigerian woodchips (US $) 85 
Wind turbine Maintenance cost per kW (US $) 0.02 [43] 
PV Maintenance cost per kW (US $) 0.005 [43] 
Stirling engine Maintenance cost per kW (US $) 0.0095 [41] 
ORC engine Maintenance cost per kW (US $) 0.008 [42] 
Financial assumptions 
Interest rate Bank interest rate on capital (%) 12.5 
Inflation rate Inflation rate on capital (%) 15 
Battery life Life span of battery (years) 7 
Plant life Life span of the system (years) 20  

Anncrep =
∑Nrep,j

m=1
CI&A,j

((
1 + rinf

)m.nj

(1 + rint)
m.nj

)

− Cj

(
nj −

(
nsystem − Nrep,jnj

)

nj

)((
1 + rinf

)nsystem

(1 + rint)
nsystem

)

(16)   
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power is generated from the HRES, which indicates that the system is 
over-sized and this results in high energy cost. On the other hand, power 
curtailment with the intention of reducing dumped power, results to 
high energy cost and increased emissions, because of the increased 
reliance on the back-up to augment the load. It is therefore, important to 
minimise the dumped power from the renewable generators in a HRES, 
while simultaneously minimising the deployment of the back-up. The 
dumped power from the HRES can be obtained as follows: 

PDumped =

{
∑t=8760

t=1

(
(PPV(t) + PWT(t))− PL(t)

)
, (PPV (t) + PWT(t) > PL(t)

(PST+ORC(t) − PL(t) ),PST+ORC(t) > PL(t)

(22)  

5.2. System design and operating constraints 

The optimal solution must satisfy the following conditions:  

(i) Energy generation and consumption matching: This constraint 
ensures that at every time step, the total generation from 
renewable generators and the back-up match with the load and 
power stored in the battery or dumped via resistive loads. 

PL(t)+Pch,Bat(t)+Pdumped(t)≤PST+ORC(t)+NPV PPV (t)+NWT PWT(t)+Pdisch,Bat(t)
(23) 

(ii) Back-up power limits: hourly power generation from the back-up 
shall not exceed these limits, 

Pmin
j ≤ Pj(t) ≤ Pmax

j , j = ST or ORC (24)    

(ii) Battery storage and discharge limits: the maximum depth of 
discharge (DOD) of the battery has been furnished by the 
manufacturer. In this study, the battery is only expected to 
discharge power when its capacity is above SOCmin. By contrast, 
in the charging mode, the power stored in the battery is not ex-
pected to exceed SOCmax. 

(1 − DOD)

(
NBat

NBat,S

)

CBat,max ≤ CBat(t) ≤
(

NBat

NBat,S

)

CBat,max (25)  

where NBat(− ) is the total number of batteries, NBat,S = VBus
VBat 

is the number 
of batteries in series, VBus(V) is the bus voltage, CBat,max(Ah) is the 
maximum capacity of the battery. Furthermore, the power stored in the 
battery or discharged from the battery must not exceed the capacity of 
the battery. 

Battery discharge mode : Pdisch,Bat(t) ≤
(

NBat

NBat,S

)

CBat,maxVBat (26)  

Battery charge mode : Pch,Bat(t) ≤
(

NBat

NBat,S

)

CBat,maxVBat (27)    

(iii) Battery capacity: here the battery storage has been designed to 
handle mainly the constant base load demand in the morning and 
the transient load at peak hours. Hence, a constraint to ensure the 
battery capacity is sufficient to match the base load when it is in 
the power discharge mode has been introduced into the system 
sizing optimisation: 

Battery capacity : NBat.CBat,max ≥ zf PL (28)  

where zf(− ) is the battery capacity factor.  

(iv) Limits on components: upper and lower limits have been set on 
the number of components and types of components. In the case 
of the type of components, the absolute value of the random 
number generated within the given range represents the type of 
the component, j selected and this will prompt the release of the 
corresponding component data. 

Xj,min ≤ Xj ≤ Xj,max (29)  

where Xj,min(− ) is the lower bound, Xj,max(− ) is the upper bound and 
Xj(− ) is the number or type of component, j. The range of values of the 
decision variables are given in Table 4. These range of values are 
selected considering the constraint on land availability and other eco-
nomic and environmental considerations. 

5.3. Bi-level optimisation solution method 

The solution approach for the bi-level optimisation performed in this 
paper to determine the optimal size of the components of the HRES 
system, by integrating the system sizing optimisation and the control 
strategy is presented in this section. The modified non-dominated sort-
ing genetic algorithm (NSGA-II) has been deployed to solve the formu-
lated optimisation problem. Further, the solution of the GA is utilised as 
initial guess for a secondary optimizer to ensure that the local optimum 
of the global optimum neighborhood is identified. In the past, GA al-
gorithms have used for bi-level sizing optimisation of similar systems 
and in particular in the outer-loop to determine the optimum number of 
the system components. The details of the GA operators are presented in 
Table 5. These values are ideal for obtaining good results and have been 
deployed in Ref. [25]. 

In Fig. 3, the algorithm for implementing the multi-objective opti-
misation has been represented. As seen in Fig. 3, it starts by generating 
the initial cluster of possible solutions to the optimisation problem, 
which is a set of combinations of the component types, number and 
capacity including the control strategy and number of split of the ST. The 
initial population of individuals, Popi in the first generation, Gi, com-
prises n different configurations of the HRES that will be evaluated to 
determine the configuration that best minimises the LPSP, LCOE and 
dumped power, after several generations. The initial population, Popi is 
represented in a vector form as: 

Table 4 
The upper and lower bounds of the decision variables.  

Parameter Lower bound Upper bound 

Number of PV in parallel 1 1200 
Number of type 1 wind turbine 0 5 
Number of type 2 wind turbine 0 8 
Wind turbine type 1 2 
ST + ORC capacity 140 220 
Number of batteries in parallel 1 30 
Battery type 1 3  

Table 5 
Specifications of the GA operator.  

Parameter Value 

Population size 250 
Population type Double vector 
Pareto fraction 0.5 
Maximum generation 500 
Cross-over operator Intermediate 
Cross-over fraction 0.8 
Mutation rate 0.01 
Hybrid function fgoalattain  
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Popi =
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⎥
⎥
⎥
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(30)  

where X is a vector representing the genotype of each individual in the 
population. 

Fig. 4 illustrates the interconnection between the HRES sizing opti-
misation and the implementation of the control strategy. As it is evident 
from Fig. 4, the control parameters, xk ∋

(
Pnet(t), SOC(t), uj, uk

)
are sent 

to the inner-loop to simulate the hourly energy dispatch for a given 
control strategy, uj ∈ (1,4) as described previously. Then, the computed 
output signals including the power supplied by the ST + ORC and bat-
tery are relayed to the outer-loop at the end of one year, (t = 8760), to 

compute the objective functions. This step is repeated for all the in-
dividuals in the population, then the optimisation operators are 
deployed to generate the next generation of individuals. 

These iterative steps are performed until the stopping criteria is met. 
The optimal system configuration, Xbest=

[
Xbest

1 Xbest
2 Xbest

3 Xbest
4 Xbest

5 Xbest
6 

Xbest
7 Xbest

8
]

is selected from the Pareto set of non-dominated solutions by 
deploying the TOPSIS decision making tool. 

Finally, the hourly performance of the optimal HRES configuration 
for each control strategy is simulated by deploying the algorithms 
already described. The implementation of the optimisation and dynamic 
simulation have been performed in MATLAB. A connection was made 
between MATLAB and Aspen plus environment as described in a pre-
vious work done by the authors in Ref. [31], to control the operation of 
the Aspen models of the thermal chiller, ORC, boiler and the drying and 
combustion of the woodchips fuel. However, the models for the pre-
diction of the generation from the PV and WT have been built in 
Simulink and the input weather and load data of the test location have 
been linked to the ports of the Simulink block from Excel spreadsheet. 

Fig. 3. Algorithm for the simulation and optimisation of the energy system based on genetic algorithm.  
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Fig. 4. Algorithm for the bi-level optimisation of the HRES and EMS.  

Fig. 5. Weather and load data of the test location [44,30].  
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6. Results and discussion 

The bi-level system sizing and control strategy optimisation have 
been implemented in MATLAB on a 16.0 GB four cores Intel Xeon 
computer with the weather and load data obtained from a test location. 
The test location is a remote location in Southern Nigeria with total 
electricity demand of 2.952 MWh/day. Fig. 5 presents the hourly local 
weather data of global solar irradiance and wind speed and the load 
demand of the test location [30,44]. The location’s solar irradiance 
varies between 150 W/m2 to 1000 W/m2, while the wind velocity 
measured at 10 m hub height indicates an average speed of 3.0 m/s as 
seen in Fig. 5 (a) and (b), respectively. Also, the peak load in the test 

location is 210 kW and it is observed at the 19 h in the day as seen in 
Fig. 5 (c). 

The optimal system configuration and control strategy that minimise 
the LPSP, LCOE and dumped power have been obtained after 150 gen-
erations of the GA. The computing speed of the optimisation problem 
has been enhanced by deploying parallel computing and it converged in 
26.68 min. Fig. 6 shows the Pareto optimal solutions obtained from the 
bi-level multi-objective optimisation of the HRES sub-system of the in-
tegrated multi-carrier system. The conflicting nature of the multi- 
objective problem is evidenced from the high degree of scatter in the 
Pareto front. It is further demonstrated by the trend in the Pareto 
optimal solutions presented in Fig. 6, and this is expected particularly for 
a bi-level multi-objective optimisation problem integrating component 
sizing with the EMS optimisation. It can be seen that, the LPSP exhibits a 
direct relationship with the CO2 emitted from the system, i.e., high 
renewable energy penetration yields reduced emissions, while the latter 
is inversely correlated to the dumped power because of the periodic 
nature of renewable generators. On the other hand, low LCOE coincides 
with high LPSP and vice versa, whereas the former enjoys a positive 
relationship with the dumped power. 

Also, the ideal solutions from the perspective of reliability, eco- 
friendliness, compact size and affordability have been featured in 
Fig. 6. It is clear from these results that, no single solution satisfies all the 
four objectives equally. Hence, TOPSIS decision making tool has been 
deployed to obtain the best configuration in each case as highlighted in 
Fig. 6 and the corresponding configurations of the TOPSIS best optimal 
system for each control strategy have been specified in Table 6. The 
TOPSIS best evidently ensures a reasonable trade-off in the objectives. 
As has been previously mentioned, in this study, control strategy 1 is 
load following without batteries, control strategy 2 is load following 
(LF) with battery, control strategy 3 is circuit charging (CC) without 
battery and control strategy 4 is circuit charging with battery. 

It can be noticed in Table 6 that, the optimal configuration obtained 
for control strategy 2 deploys the least number of renewable generators 
(PV and WT) to fulfill the load and generates 688.16 MWh and 330.26 
MWh of solar and wind power, respectively. On the contrary, the 

Fig. 6. Pareto optimal solutions obtained from the bi-level optimisation of the energy system.  

Table 6 
Results of optimal system configuration of HRES components for different 
control strategies.  

Control strategy 1 2 3 4 

LCOE (cent/kWh) 5.835 6.08 9.09 6.32 
LPSP (-) 0.4074 0.3962 0.8924 0.3801 
Dumped power (MWh) 385.10 287.8 987.4 337.3 
Number of PV 4× 982 4× 934 4× 1032 4× 982 
Wind Turbine type EWT 

52–250 
EWT 
52–250 

EWT 
52–250 

EWT 
52–250 

Number of WT 4 5 5 5 
Battery Type − Type 2 − Type 3 
Number of batteries − 4× 26 − 4× 30 
Capacity of ST + ORC 

(kW) 
180 193 180 180 

Annual PV power 
(MWh) 

723.53 688.16 760.37 723.53 

Annual WT power 
(MWh) 

264.21 330.26 330.26 330.26 

Annual ST + ORC power 
(MWh) 

408.81 361.71 937.50 387.50 

CO2 emissions (kg CO2) 0.542 ×
106 

0.479 ×
106 

1.291 ×
106 

0.5140 ×
106  
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optimal system configuration in CC without battery storage utilises the 
most number of PV generators and generates 760.37 MWh and 330.26 
MWh of PV and wind power, respectively. Regarding the deployment of 
battery storage, if the optimal system configuration in control strategy 1 
is compared to that in control strategy 2, it is notable that the total 
power generated by the renewable generator in the latter exceeds the 
former by 30.68 MWh. However, the former deploys the ST + ORC back- 
up more and consumes 47.1 MWh more power from the back-up 
compared to the LF with battery. The higher power generation from 
the renewable generator in control strategy 2 compared with control 
strategy 1 is driven by the need to store excess power in the batteries and 
minimise the utilisation of the ST + ORC back-up. Consequently, the 
LPSP, LCOE, dumped power, CO2 emissions obtained in control strategy 
2 is lower when compared with control strategy 1. The dumped power, 
CO2 emissions and LPSP reduce by 25.3%, 11.62%, 2.75%, respectively, 
while the LCOE increases by 4.18%, with the deployment of battery 
storage in load following. 

Conversely, it is evident from the optimal system configuration ob-
tained in CC mode that, the inclusion of batteries to store excess power 
generated from the dispatchable and non-dispatchable units (control 
strategy 4), reduces the capacity of the generators compared to the case 
of CC without battery (control strategy 3). A huge difference in the 
power delivered by the ST + ORC back-up of 550 MWh (58.6% higher) 
in control strategy 3 compared with control strategy 4 is remarkable. 
This is because the ST + ORC back-up operates at its rated capacity in CC 
mode and the absence of BSS in control strategy 3 suggests that the 
excess power generated in its operation will all be dumped. Addition-
ally, the absence of BSS results to more frequent deployment of the ST +
ORC back-up in this EMS strategy. Consequently, the LCOE, LPSP, and 
CO2 emissions of the optimal system in control strategy 3 drastically 
reduce by 30.47%, 57.41%, and 60.18% with the deployment of BSS in 

control strategy 4. It is evident that with the inclusion of battery storage 
in the optimal system, the renewable generators compared to the system 
without BSS, particularly in the LF mode, generate lesser power. Finally, 
the optimal configuration in control strategy 2 (load following with 
battery) offered the lowest LCOE, LPSP, dumped power and CO2 
emissions. 

Table 7 and Table 8 present the results of the optimal system con-
figurations obtained with the deployment of two and four-split ST cases 
in control strategies 3 and 4, respectively. Here, deploying two-split ST 
and four-split ST in control strategy 3 have been represented by (Ctr 3a) 
and (Ctr 3b), respectively, while deploying two-split ST and four-split ST 
in strategy 4 are represented as (Ctr 4a) and (Ctr 4b), respectively. As 
can be seen in Table 7, the number of components of the renewable 
generators and BSS and the generation capacity of the ST +ORC back-up 
reduce with the increase in the number of splits deployed in CC without 
battery (control strategy 3) [11]. 

Consequently, the LCOE, LPSP, dumped power and CO2 emissions 
decline with the increase in the number of splits. The most remarkable 
reductions are seen in the dumped power that records 30.75% and 
35.9% decrease and CO2 emissions with observed decrease of 46.32% 
and 52.22%, with the deployment of 2-split ST and 4-split ST, respec-
tively. Therefore, the deployment of split ST reduces the capacity of the 
system and significantly improves its global performance in circuit 
charging without battery. 

Similarly, when batteries are deployed to store the excess power 
generated by the renewable generators in control strategy 4, the 
deployment of split ST reduces the dumped power with the increase in 
the number of splits. Further, the deployment of 2-split ST in Ctr 4a 
reduces the LCOE slightly, but contrary to the claim in the literature [11] 
and the findings in CC without battery storage, further reduction in the 
LCOE is not seen with the deployment of 4-split ST [12]. As it is 
noticeable in Fig. 7 that represents the annual start-ups of the back-up 
and the associated costs, the number of start-ups in CC with BSS in-
creases with the increase in the number of split. 

There were 1205 start-ups when 4-split ST is deployed, which is 183 
and 319 start-ups more than when 2-split and 1-big ST are deployed, 
respectively. By comparison, the number of start-ups in CC without BSS 
increases slightly from 586 to 592 with the deployment of 2-split ST but 

Table 7 
Results of optimal system configuration of HRES with the deployment of split ST 
in control strategy 3.  

Number of split 1 (Ctr 3) 2 (Ctr 3a) 4 (Ctr 3b) 

LCOE (cent/kWh) 9.09 7.26 6.39 
LPSP (-) 0.8924 0.6682 0.5378 
Dumped power (MWh) 987.4 632.9 471.8 
Number of PV 4× 1032 4× 964 4× 944 
Wind Turbine type EWT 52–250 EWT 52–250 EWT 52–250 
Number of WT 5 5 5 
Battery Type − − −

Number of batteries − − −

Capacity of ST + ORC (kW) 180 180 180 
Annual PV power (MWh) 760.37 710.26 695.52 
Annual WT power (MWh) 330.26 330.26 330.26 
Annual ST + ORC power (MWh) 937.50 673.04 522.70 
CO2 emissions (kg CO2) 1.291 × 106 0.894 × 106 0.693 × 106  

Table 8 
Results of optimal system configuration of HRES with the deployment of split ST 
in control strategy 4.  

Number of split 1 (Ctr 4) 2 (Ctr 4a) 4 (Ctr 4b) 

LCOE (cent/kWh) 6.32 6.131 6.144 
LPSP (-) 0.3801 0.3978 0.3929 
Dumped power (MWh) 337.3 323.5 320.0 
Number of PV 4× 982 4× 959 4× 965 
Wind Turbine type EWT 52–250 EWT 52–250 EWT 52–250 
Number of WT 5 5 5 
Battery Type Type 3 Type 2 Type 2 
Number of batteries 4× 30 4× 29 4× 29 
Capacity of ST + ORC (kW) 180 186 190 
Annual PV power (MWh) 723.53 703.70 711.00 
Annual WT power (MWh) 330.26 330.26 330.26 
Annual ST + ORC power (MWh) 387.50 393.99 361.52 
CO2 emissions (kg CO2) 0.514 × 106 0.523 × 106 0.504 × 106  

Fig. 7. Start-up frequency and costs from the back-up in the control strategies.  
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Fig. 8. Hourly commitments of system units in fulfilling customer electricity demand by the load following mode (a) without battery and (b) with battery.  

Fig. 9. Hourly commitments of system units in fulfilling customer electricity demand by the circuit charging mode (a) without battery and (b) with battery.  
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did not change with further increase in the number of splits. On the other 
hand, in the LF, the inclusion of BSS reduces the number of start-ups, 
because the battery will be deployed a few times, minimising the 
dependence on the back-up. 

On the contrary, the inclusion of batteries produce an opposite effect 
in CC with BSS, because of the dual role of the ST + ORC back-up in this 
case. Therefore, as the commitment of the ST to fulfilling the net load 
reduces with the increase in the number of splits in Control strategy 4, its 
capacity to charge the batteries reduces. Consequently, there will be 
more start-ups and corresponding increase in the running cost of the 
system which is responsible for the slight increase in the LCOE. Never-
theless, the LCOE in Ctr 4b is still lower than Ctr 4 that uses one big ST, 
because of the fewer components deployed in the former and signifi-
cantly reduced deployment of ST + ORC back-up (15.9 MWh less) [12]. 
Further, the CO2 emissions and LPSP decline with the deployment of 4- 
split ST in Ctr 4b but increase slightly when 2-split ST is deployed 
compared to 1-big ST case [12]. Thus, the deployment of 4-split ST 
improves the system performance slightly in this case but introduces 
some augmented start-up costs. 

6.1. Influence of rule-based EMS on MDES electricity generation and 
consumption 

Several rule-based EMS strategies have been proposed in this study to 
coordinate the generation, storage and dispatch of energy from the units 
of the system. This section presents the results of the simulations of the 
hourly electricity generation and storage of the optimal system config-
urations in the proposed strategies, for two consecutive days with 
slightly different weather conditions. The hourly commitment of the 
programmable and non-programmable units of the energy system to-
wards the fulfillment of the electric load of the energy consumers in the 
test location are presented in Fig. 8 and Fig. 9 for the LF and CC control 
strategies, respectively. The optimal system configuration found from 
the bi-level optimisation vary for all the control strategies as observed in 
Table 6. 

Simulations are presented on a 48 h timespan and it is noticeable that 
Day 1 is characterised by an extended period of generating activities by 
the renewable generators (20 h of generation). On the other hand, Day 2 
did not show much prospects for generation from the WT in the morning 
(0 h − 6 h) and could be representative of a day with a low wind speed. 
Based on the frequency of start-ups of the back-up, battery storage limits 

and the dumped power, the following striking points are noted:  

• The LF approach limits the frequency of start-ups of the ST + ORC 
back-up, contrary to the claims in [13]. The CC mode (Fig. 9) re-
quires four start-ups of the back-up to fulfil the load, which is double 
the number in the LF mode (Fig. 8) and this will result in high system 
operational cost in this EMS mode. It is seen that the green generators 
did not generate any power from the 22 h in the first day to the 6 h in 
the next day. This long period of inactivity of the green generators 
forced the system to rely on the battery and back-up. However, un-
like in CC that the back-up goes through a cycle of start-up and shut- 
down with the battery, in LF, once the battery is discharged, the ST +
ORC back-up simply follows the load minimising the number of start- 
ups  

• The utilisation of BSS to store the excess power from the non- 
programmable generators reduces the dumping of power in the LF 
and CC EMS modes (Fig. 8 and Fig. 9). The worst case of power 
dumping occurs in the CC without battery, where the ST +ORC back- 
up operates at its rated capacity when in operation. Consequently, 
the programmable power block contributed to the dumping of power 
since it operates at the rated capacity while fulfilling the load, unlike 
in the LF without battery where it simply follows the load. 

• The cumulative power handled by the battery, i.e., stored and dis-
charged power and the energy flux have been presented in Fig. 10 for 
control strategies 2 and 4, where batteries are included in the 
optimal system configuration. It can be observed that the BSS is more 
active in the CC dispatch mode as evidenced by the high cumulative 
power of 1.4 MWh handled by the battery, which is 0.35 MWh more 
than in the LF mode. However, the BSS experiences many cycles of 
charging and discharging in CC mode, particularly in the second day 
marked by low generation from the WT and PV. These many cycles of 
charging and discharging may result to high wear of the batteries 
[13,45]. Nevertheless, similar storage and discharge limits are indi-
cated by the BSS for both dispatch strategies.  

• Regarding the use of the ORC to supply the unmet power when the ST 
back-up is operational, the trend of the commitment of ST and ORC is 
presented in Figs. 11–14. The ORC is deployed only six times in 
control strategy 2 (Fig. 11 (b)), because the ST back-up is forced to 
follow the load. Consequently, the quality of the waste heat is 
inadequate most times to power the bottoming cycle, which helps to 
reduce the operating cost of the system. On the contrary, with the 

Fig. 10. Hourly energy flow through the batteries for different control strategies.  
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Fig. 11. Hourly generation of cooling and commitment of the dispatchable generators in load following (a) without battery and (b) with battery.  

Fig. 12. Hourly generation of cooling and commitment of the dispatchable generators in circuit charging (a) without battery and (b) with battery.  
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Fig. 13. Hourly generation of heating and commitment of the dispatchable generators in load following (a) without battery and (b) with battery.  

Fig. 14. Hourly generation of heating and commitment of the dispatchable generators in circuit charging (a) without battery and (b) with battery.  
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increase in the quality of the waste heat produced by the topping 
cycle in CC charging without battery (Fig. 12 or Fig. 14 (a)), the ORC 
is operated 25 times in the two days; the highest number of times for 
all the control strategies. 

Overall, the deployment of battery storage minimises the commit-
ment of the back-up to fulfilling the load and plays a crucial role in the 
reduction of the carbon emissions as well as the dumped power. Un-
fortunately, the inclusion of battery storage in the optimal system con-
tributes to the increase in the frequency of start-ups of the ST back-up in 
the CC mode, because of the need to charge the batteries. Finally, BSS is 
more actively deployed in CC mode to fulfil the unmet load in the system 
in this test location compared to the LF mode. 

6.2. Impact of dispatch strategies on the cooling generation 

The investigation of the impact of the proposed control strategies on 
the cooling generation of the multi-carrier energy system is another 
notable contribution in this study. A single effect lithium bromide-water 
thermal chiller that has a fixed capacity of 96.6 kW has been deployed to 
produce the cooling and would be fired by the waste heat from the flue 
gas produced from woodchips combustion. Due to the unavailability of 
the cooling demand for the test location, this paper has been focused on 
the variation in the cooling generation from the proposed EMS. 

Fig. 11 and Fig. 12 present the hourly generation of cooling effect by 
the thermal chiller when the biomass fired ST + ORC back-up is oper-
ational in the LF and CC control strategies, respectively. It is evident that 
the control strategies that deploy the programmable back-up more 
frequently produce more cooling (Fig. 11 (a) and Fig. 12 (a)). Hence, the 
LF and CC without battery produce more cooling (Fig. 11 (a) and Fig. 12 
(a)) compared to the LF and CC with battery that deploy the ST + ORC 

back-up few times to supply the deficit power as seen in Fig. 11 (b) and 
Fig. 12 (b), respectively. Finally, the absorption chiller is only deployed 
to produce cooling nine times (in two days) in control strategy 4 (Fig. 12 
(b)), because batteries supply most of the unmet power in this strategy 
compared with any other control strategy and that shows the negative 
impact of deploying battery storage on cooling generation. 

6.3. Impact of dispatch strategies on the heating generation 

This section presents the simulated results of the impact of the pro-
posed rule-based dispatch strategies on the heating generation of the 
multi-carrier system. Unlike in the case of the cooling generation, the 
capacity of the boiler in this case is determined by the available energy 
in the flue gas. In principle, the heating load and buffer storage will 
determine the amount of heating that is generated on an hourly basis 
[13]. Unfortunately, because the proposed system is designed for a 
remote test location, the daily hourly heating load is unknown. Hence, 
this simulation has been focused mainly on the generation potential of 
the energy vector. 

Fig. 13 and Fig. 14 represent the hourly heating generation from the 
water boiler for the LF and CC control strategies proposed in this study, 
respectively. It is seen clearly in Fig. 13 and Fig. 14 that the heating 
generation varies for all the control strategies. In particular, as the 
commitment of the ST + ORC back-up in fulfilling the electric load in-
creases, the generation of heating reduces, because less thermal energy 
is available to produce additional goods in the form of heating or hot 
water. The heating load generation is generally high in the LF mode 
(Fig. 13) compared with the CC (Fig. 14), because in the former, the ST 
+ ORC back-up is 

forced to follow the load. Hence, at most times in its operation, the 
ST main driver consumes a small fraction of the energy in the flue gas, 

Fig. 15. Hourly commitments of the system units to meet the electricity load in circuit charging mode without battery storage for (a) 2-split ST and (b) 4-split 
ST cases. 
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Fig. 16. Hourly commitments of the system units to meet the electricity load in circuit charging mode with battery storage for (a) 2-split ST and (b) 4-split ST cases.  

Fig. 17. Hourly energy flow through the batteries in circuit charging mode with split Stirling.  
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and this makes more energy available for the production of heating. In 
addition, since in the LF with battery storage (Fig. 13 (b)) the ST + ORC 
back-up does not produce excess power to charge the BSS, the system 
becomes more reliant on the dispatchable unit to fulfil the load in the 
absence of the green generators. 

Overall, the CC with battery storage mode produces the least amount 
of heating, due to the increased deployment of batteries to supply the 
unmet power (Fig. 14 (b)). Finally, the inclusion of battery storage in the 
HRES design and the availability of the WT and PV generators affect the 
heating generation. Where batteries are not deployed to store the excess 
power produced by the renewable generators, more heating will be 
generated on days with poor weather, because of the inexorable increase 
in the dispatch of the ST + ORC back-up to fulfil the electricity demand. 
This is evident in the second day with fairly poor weather, in Fig. 13 and 
Fig. 14. 

6.3.1. Impact of split of Stirling engine on electricity generation 
The impact of deploying split ST to match the electric load of the test 

location has been evaluated for two split (2-split ST) and four split (4- 
split ST) ST cases. Split ST was only deployed in the CC strategy where it 
is applicable. 

Fig. 15 and Fig. 16 represent the hourly commitments of the ST +
ORC back-up and battery storage when split ST is deployed in CC to 
fulfill the electricity demand. It can be observed that the number of start- 
ups of the ST + ORC back-up is invariant when 2-split ST and 4-split ST 
were deployed to augment the positive net electric load without battery 
storage (Fig. 15 (a) and (b)). However, the dumped power from the 
system notably reduces, because of the reductions in the commitment of 
the back-up to fulfilling the load. The tangible reductions in the 
commitment of the back-up is responsible for the observed reductions in 
fuel consumption and emissions recorded in Table 8. 

Conversely, in Fig. 16 (a) and (b) where 2-split and 4-split ST were 
deployed, respectively with battery storage, the number of start-ups of 
the back-up increases remarkably as the number of split increases. When 
compared with the case with one big ST (Fig. 9 (b)), it is seen that, with 

the increase in the number of splits, the excess power produced by the 
dispatchable back-up reduces. Hence, it becomes difficult to charge the 
batteries once the non-programmable renewable generators are un-
available to generate excess power and this forces the ST + ORC back-up 
to operate more frequently. 

Also, the introduction of the split ST concept impacts the battery 
negatively. Fig. 17 represents the cumulative energy flux through the 
batteries when 2-split and 4-split ST are deployed to match the unmet 
load in the system in CC mode. It is self-evident that the cumulative 
power handled by the BSS reduces with the increase in the number of 
small ST back-up. Further, the BSS noticeably undergoes deep discharge 
of power with the deployment of split back-up. When 4-split ST is 
deployed, the maximum discharged power is 144.5 kW compared to 
121 kW recorded with 1-big ST. Meanwhile, the number of cycles of 
charging and discharging of the batteries increase with the deployment 
of split ST; however, comparable number of duty cycles are indicated for 
2-split and 4-split cases. Apparently, the reduction in the ST back-up 
capacity with the increase in the number of splits suggests that the 
battery will be insufficiently charged; hence, the undesirable increase in 
the number of deep cycles that is inimical to the life of the battery [29]. 

On a positive note, the introduction of split ST minimises the 
dumping of excess power from the back-up, which also translates to the 
reduction in the fuel consumption. Additionally, with increasing number 
of split ST, the number of start-ups and operational hours of the ORC 
bottoming cycle reduce as it is evident in Figs. 18–21, because of the 
drop in the quality of the waste heat from the ST. For this reason, the 
operational cost of the system will reduce, i.e., the cost of maintenance 
and start-ups of the ORC and the reduction will be remarkable in the 
second day, where the ORC has been deployed for an average of 2.5 h in 
all the examined dispatch cases. Finally, it is evident that as the number 
of splits of the back-up increases, the behaviour of the energy system in 
CC mode tends towards that of LF mode. Consequently, the dumped 
power is minimised. Sadly, this is accompanied by some augmented 
costs, mainly driven by the additional commitments to the battery 
storage, but it offers some additional benefits by the efficient operation 

Fig. 18. Hourly generation of cooling and commitment of the dispatchable generators in circuit charging mode without battery storage for (a) 2-split ST and (b) 4- 
split ST cases. 
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Fig. 19. Hourly generation of cooling and commitment of the dispatchable generators in circuit charging mode with battery storage for (a) 2-split ST and (b) 4-split 
ST cases. 

Fig. 20. Hourly generation of heating and commitment of the dispatchable generators in circuit charging mode without battery storage for (a) 2-split ST and (b) 4- 
split ST cases. 

G.T. Udeh et al.                                                                                                                                                                                                                                 



Applied Energy 312 (2022) 118763

21

of the back-up, thereby minimising fuel consumption and carbon 
emissions. 

6.3.2. Impact of split Stirling engine on cooling generation 
Fig. 18 and Fig. 19 present the hourly generation of cooling by the 

thermal chiller when many small split ST are deployed in the CC mode to 
follow the electric load in the test location, without battery storage and 
with battery storage, respectively. It is seen from Fig. 18 (a) and (b) that 
the amount of cooling generation did not change with the deployment of 
two-split and four-split ST. This is because the operational hours and 
number of start-ups of the ST back-up were invariant with the increase in 
the number of splits. Consequently, the thermal chiller operates equal 
number of times regardless of the number of split back-up deployed. 
Also, if one notes that this generating unit can be operated satisfactorily 
with low grade heat of temperature less than 100 ◦C to provide cooling 
[46–48], the increase in the capacity of the ST which will reduce the 
quality of the flue gas, will not strongly affect its performance. 

Contrarily, the generation of cooling increases with the increase in 
the number of splits as seen in Fig. 19 (a) and (b), due to the increase in 
the hours of operation of the ST back-up. Therefore, on cloudy days with 
less generation from the PV and WT, it is expected that there will be 
increase in the generation of cooling. Conclusively, while the inclusion 
of battery storage in the optimal system has a negative impact on the 
cooling generation, the combined deployment of battery storage and 
split ST favours the generation of cooling from the thermal chiller, 
because of the increased deployment of the back-up. 

6.3.3. Impact of split Stirling engine on heating generation 
The impact of deploying split Stirling engines on heating generation 

when the energy generation, storage and dispatch of the system is co-
ordinated by the CC approach has been evaluated Fig. 20 and Fig. 21 
illustrate the hourly generation of heating when 2-split ST and 4-split ST 
are deployed in CC without battery storage and with battery storage, 
respectively. It is evident in Fig. 20 (a) and (b) that the heating gener-
ation potential of the system more than doubled as the number of split of 

the ST increases. As the number of split increases, the quality of the flue 
gas that is sent to the boiler increases, because of the reductions in the 
capacity of the ST. This reduction in the capacity of the ST suggests that 
less energy will be required to fire the heat engine. 

Further, in Fig. 21 (a) and (b) where batteries were deployed, it has 
been remarked that the deployment of split ST in these cases, reduces the 
capacity of the back-up to charge the battery. Consequently, the number 
of times the ST is deployed increases; hence, the observed increase in the 
generation of heating with the increase in the number of splits. Day 2 
that is marked with reduced period of generation from the renewables 
generates more heating than Day 1. Again, the combined inclusion of 
battery and split back-up in the optimal system configuration promotes 
the generation of heating. 

7. Conclusion 

In this paper, modified rule-based energy management strategies 
(EMS) have been proposed to coordinate the continuous generation, 
storage and dispatch of several energy vectors and other goods from a 
hybrid solar PV-wind and battery storage utilising the Stirling (ST) and 
ORC as back-up and prime mover of the integrated multi-carrier system. 
First, bi-level sizing optimisation has been deployed to obtain the 
optimal number of system components that minimises the system 
operational cost and offers cheap energy (LCOE), loss of power supply 
probability (LPSP), CO2 emissions and dumped power in the outer-loop. 
While, the EMS was implemented in the inner-loop with the optimal 
system components including the control parameters generated in the 
outer-loop. Then, the best system configuration in each EMS case stud-
ied is selected from the Pareto optimal set by deploying the TOPSIS 
approach. Also, the hourly simulation of the optimal system configura-
tion obtained in this study has been undertaken to highlight its dynamic 
behaviour in fulfilling the energy demand. It is evident that the choice of 
control strategy formulated to manage the multi-carrier system, plays a 
key role in determining the optimal system configuration. Based on the 
obtained results, the following conclusions are notable from this study: 

Fig. 21. Hourly generation of heating and commitment of the dispatchable generators in circuit charging mode with battery storage for (a) 2-split ST and (b) 4-split 
ST cases. 
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• Inclusion of battery storage in the optimal system significantly im-
proves the LPSP, LCOE, dumped power and CO2 emissions of the 
HRES integrated multi-carrier system. However, while deploying 
battery storage reduces the number of start-ups of the back-up in the 
LF by 17%, it increases it by 51% in CC, increasing the operational 
cost. Consequently, the LCOE in LF is 4% less than in CC.  

• Increment in the number of split ST remarkably reduces the LPSP, 
LCOE, CO2 emissions and dumped power of the optimal system 
without battery storage and managed with the CC mode by 39.7%, 
29.7%, 52.2% and 35.9%, respectively but has no influence on the 
number of start-ups of the back-up. Contrarily, increasing the num-
ber of split ST from 2 to 4 increases the operational cost of the sys-
tem, because of the increase in the number of start-ups and results in 
a marginal increase in the LCOE.  

• As the commitment of the ST to fulfilling the load reduces, the 
number of duty cycles of the battery storage increases because of the 
reduction in the capacity of the back-up to charge the batteries, and 
this would contribute to high wear of the batteries. Also, an increase 
in the number of small ST reduces the quality of the waste heat 
produced from the ST topping cycle, thereby minimising the number 
of times the auxiliary ORC back-up is deployed. 

• While the generation of heating and cooling reduces with the in-
clusion of battery storage in the optimal system. It, however, in-
creases with the combined deployment of battery storage and split 
ST, because of the increase in the quality of the combustion flue that 
powers the boiler. 

Finally, the proposed modified traditional rule-based energy man-
agement system, which deploys split ST back-up, reduces the dumping 
of power and emissions from the optimal system, by reducing the hourly 
commitments of the back-up in fulfilling the load. In addition, it en-
hances the cooling and heating generation potentials of the multi-carrier 
energy system, by improving the quality of the combustion flue sent to 
these units. Although it produces many cycles of charging and dis-
charging of the battery storage when compared to the traditional LF and 
CC and augments the operational cost by increasing the number of start- 
ups of the split back-up, the LCOE is still slightly lower because of the 
tremendous reductions in the commitment of the back-up. However, the 
LCOE can be enhanced by simultaneously prioritising the charging of the 
batteries and fulfilment of the load in the dispatch of the split-back up 
and will be studied in a future work. 
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