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ABSTRACT The aim of the study was to design, develop and evaluate a general-purpose EEG platform
which integrates with a smartphone. The target specification was a system with 19 EEG channels and data
stored onto the smartphone via a Wi-Fi connection. The hardware was developed using three ADS1299 inte-
grated circuits, and the game engine, Unity, was used to develop the smartphone app. An evaluation of the
system was conducted using recordings of alpha waves during periods of eye closure in participants (Bland-
Altman statistical comparison with a clinical grade EEG system). The smartphone was also used to deliver
time-locked auditory stimuli using an oddball paradigm to evaluate the ability of the developed system to
acquire event related potentials (ERP) during sitting and walking. No significant differences were found for
the alpha wave peak amplitude, frequency and area under the curve for the intra-system (two consecutive
periods of alpha waves) or inter-system (developed smartphone-based EEG system versus FDA-approved
system) comparisons. ERP results showed the peak amplitude of the auditory P300 component to deviant
tones was significantly higher when compared to standard tones for sitting and walking activities. It is
envisaged that our general-purpose EEG system will encourage other researchers to design and build their
own specific versions rather than being limited by the fixed features of commercial products.

INDEX TERMS Alpha waves, Bland-Altman, EEG, ERP, P300, smartphone.

I. INTRODUCTION
Electroencephalography (EEG) is the measurement of elec-
trical activity from the brain acquired at the scalp surface.
It is used to aid the diagnosis of clinical conditions including
epilepsy [1], [2], sleep disorders [3] and coma [4] as well as
in the study of stroke [5] and brain death [6]. EEG is an estab-
lished research tool in a wide range of research applications
such as brain-computer interfacing (BCI) [7], psychological
studies [8], sports activity [9], and emotion monitoring [10].

EEG recordings are traditionally undertaken in restricted
laboratory-orientated environments where the system is typ-
ically static, of relatively high specification but bulky in
weight/size and is directly linked to a PC/laptop [11] for
signal capture, processing and analysis. In addition, since
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EEG signals are in the microvolt range, investigators will
typically undertake studies within a controlled environment
to minimise noise including electromagnetic interference.
Although static EEG systems linked to a PC/laptop in con-
trolled laboratory settings have provided awealth of scientific
output they have limitations. For example, it is difficult to use
static EEG systems in natural settings or where participant
and device mobilities are required.

The limitations of using static EEG equipment are being
addressed by using ambulatory EEG systems. Ambula-
tory EEG systems have the advantage of being smaller in
size/weight and have the capacity to be utilised in a variety
of applications and scenarios such as outdoor urban environ-
ments [12]–[14], sports performance [15] and brain-computer
interfacing [16]–[18]. However, many mobile EEG systems
have relatively lower system specifications compared to static
EEG systems. For example, in the study by Debener et al.
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a wireless EEG headset (14-bit resolution, 128Hz sampling
rate, 14 channels) was used to a acquire time-locked auditory
event related potentials (ERPs) in combination with a PC
mounted within a rucksack on the participant’s back during
outdoor walking [19]. In investigations using participants
walking/running on a treadmill, a higher specification EEG
system (24-bit resolution, 512Hz sampling rate, 248 chan-
nels) was utilised by mounting all the bulky equipment on
an overhead rack [20], [21].

One approach to reducing the weight and size of equip-
ment, improving mobility, and enabling EEG investiga-
tions in new settings would be to take a smartphone-based
approach. Smartphones are smaller in size and lighter in
weight than PCs/laptops and thereby provide a reduction
in size/weight that participants are required to carry in
EEG investigations. Smartphone technology is improving
at a rapid rate [22] with advances in low-power, high-
performancemicrocontroller technology at the centre of these
advancements such that the processing capacity differences
between smartphones and PCs/laptops is diminishing. Cur-
rent smartphone devices typically have powerful multi-core
processors [23], secure digital (SD) card storage and Wi-Fi
connectivity [24] which could all be exploited in the next gen-
eration of EEG systems. In addition, the smartphone’s range
of functionality can be enabled via software application (app)
development and apps coded for specific research use cases.

Table 1 lists the published studies which have used EEG
systems that link to a smartphone/tablet (in ascending order
of publication year). A smartphone-based EEG approach
using various operating platforms including iOS and Android
have been used in the detection of epileptiform abnormali-
ties [25], [26], BCI for communication [27]–[30], real-time
3D brain imaging of finger movements [31], behind ear
monitoring of resting states and auditory evoked poten-
tials [30], [32], [33], driver drowsiness [34], [35], neurofeed-
back [36] and polysomnography [37]. In published studies
that use smartphone-based EEG systems, the range of oper-
ations that the smartphone undertakes have included data
analysis/classification, stimulus presentation, plotting, relay-
ing data and source reconstruction (Table 1). Whilst all these
features are indeed useful in EEG investigations, it would be
advantageous to have a smartphone appwith the following set
of core operations which are required for all EEG recordings:
electrode impedance checking, live data plotting and data
acquisition/storage.

The studies listed in Table 1 have all used Bluetooth
as the wireless technology for communication between the
smartphone and the EEG system with the exception of one
investigation which used a wired connection [33]. How-
ever, Bluetooth has limitations of bandwidth, has relatively
slower data rates and is not able to connect to the internet.
There is therefore the potential to exploit Wi-Fi technology
in smartphone-based EEG systems. Furthermore, by incor-
porating Wi-Fi communications rather than Bluetooth into
the design it allows for future cloud storage and process-
ing of EEG data as well as having potential in clinical

and home monitoring applications. Investigators have used
a variety of bespoke EEG systems for specific applications,
commercial systems (Emotiv EPOC and Smarting) and those
which have been modified (Emotiv EPOC) that link to smart-
phones. Table 1 shows that these systems have a range
of sampling rates (128-512Hz) and bit resolutions (8 to
24-bits). The recommendation of the International Federation
of Clinical Neurophysiology [38] is for a minimum sam-
pling rate of 200Hz and bit resolution of 12-bit. More than
half of the studies listed in Table 1 only have a sampling
rate of 128Hz although all investigations have a bit reso-
lution of at least 12-bit. In terms of the number of elec-
trodes used, smartphone-based EEG systems have typically
used a limited number (1-16 electrodes). There is a mix of
arrangements in the 10/20 configuration and those which
are non-standard although two studies have used 24 elec-
trodes in a 10/20 arrangement [30], [39]. Table 1 lists only
one smartphone-based EEG study which has used additional
differential channels, in this case to acquire electrooculog-
raphy (EOG) and electromyography (EMG) signals [36].
It would be advantageous to have the ability to acquire such
signals in smartphone-based systems as they are useful, for
example, for artifact identification and rejection. We applied
our previously developed scoring scheme [40] for EEG
devicemobility (D), participant mobility (P) and system spec-
ification (S) to the investigations listed in Table 1. Compared
to static EEG systems, the device mobility score for 12 out
of 14 smartphone-based EEG studies presented in Table 1was
relatively high at 4D (maximum score = 5), participant
mobility in 11 out of 14 studies had low scores of 0-1P
(maximum score= 5) and system specification for all studies
was relatively low (range 5-12S, maximum score = 20).
Recent advances in EEG technologies have enabled systems
to be mounted upon the head such as during walking [39]
thus providing advantages in terms of reduced electrode dis-
placement and thereby a reduction in artifacts. Scores of
devicemobility which are≥3 reflect a head-mounted position
(Table 1).

Acquiring EEG data from the scalp surface in digital form
involves a number of signal processing stages. Integrated
circuits (ICs) are now available that can perform these sig-
nal processing stages within one component. The ADS1299
(Texas Instruments, USA) is such an IC and makes use of
high levels of integration of the various signal processing
stages (including gain, analogue to digital conversion and
filtering) and has eight differential channels. ADS1299 ICs
can be combined to provide a higher number of EEG and
differential channels to enable the development of scalable
medical instrumentation systems at lower power, smaller size
and lower cost [41].

One of the limitations of commercial EEG systems is
that it is difficult for researchers to modify the electron-
ics, associated software and features for their specific use
cases. The developmental aim of our study was to design a
general-purpose EEG platform (smartphone-based EEG sys-
tem) based upon using ADS1299 ICs which integrate with the
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TABLE 1. Smartphone/tablet-based EEG systems utilised in published investigations.

capabilities of a smartphone with the capacity for adaptation
to a range of specific research uses. Our target system was
based upon technical specifications and the 10-20 system
configuration for clinical EEG devices [38], and involved
developing a system using three combined ADS1299 ICs to
form a 24channel system with a resolution of 24-bit and a
sampling frequency of 250Hz. The EEG system partners with
a smartphone (Android operating system) via a Wi-Fi link
with an app developed to have the core features of impedance
checking, live data plotting and data acquisition/storage. The
mounting position of the EEG system was chosen to be at
the waist since the clinically approved device (Morpheus) for
comparison is also mounted here. We selected a head cap
which was able to link with both the Morpheus and the devel-
oped smartphone-based EEG system to enable the convenient
EEG system exchange without removal of the head cap.
We applied our previously developed scoring scheme [40]
for EEG device mobility (D), participant mobility (P), system
specification (S) and number of channels (C) to our proposed
system which scores as follows: (2D, 3P, 11S, 24C).

For the development of medical devices an evaluation is
required against an approved (e.g. US Food Drug Admin-
istration, FDA) or established system to determine if they
are comparable [42], [43]. Although a statistical correla-
tion approach can be taken to compare two devices, this is
questionable for use when attempting to measure agreement
between two systems as it measures linear association and not
agreement [42], [44]. A commonly accepted and established
statistical approach which compares two devices is the Bland
and Altman method [42], [44]. This method quantifies the

agreement between the measurements from the two devices
by plotting the difference on the ordinate axis and the average
on the abscissa axis for each measurement pair taken and
constructing limits of agreement either side of a mean differ-
ence line [45], [46]. In contrast to devices which only acquire
a single data measurement and use a Bland and Altman
analysis, acquired EEG data comes from a series of samples
taken over time and at many scalp electrode locations. It is
thus not immediately evident as to which EEG measure-
ment parameter should be selected for the Bland and Altman
analysis. One highly identifiable brain oscillation in human
participants is the alpha rhythm (8-13Hz) which is recorded
in participants with their eyes closed and is dominant in the
posterior locations of the head such as at electrode locations
O1 and O2 [47], [48]. Power spectral analysis of EEG data
during eye closure produces a clear and distinct peak in the
alpha frequency range [49]. By extracting features from spec-
trograms such as the alpha peak power amplitude, peak fre-
quency and area under the curve (AUC) these can be used as
themeasurements in the Bland andAltman statistical method.
This enables comparisons of these alpha wave measurement
parameters within the same EEG system (intra-system agree-
ment) and between two EEG systems (inter-system agree-
ment). In the evaluation phase of our study, we compare
our developed smartphone-based EEG system to an FDA
approved EEG device using a Bland and Altman approach by
analysing power spectral features of alpha rhythms in human
participants with eyes closed at electrode locations O1 and
O2. In addition, we utilise the capability of the smartphone
to deliver time-locked auditory stimuli [50] and determine
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whether a P300 ERP response could be acquired using the
developed smartphone-based EEG system in response to an
established oddball paradigm [19], [51]–[53] during sitting.
Furthermore, we attempted to make use of the portability of
our developedwaist-mounted smartphone-based EEG system
to determine whether oddball auditory P300 ERPs could be
acquired during a walking activity.

II. METHODS
A. ELECTRONIC HARDWARE DEVELOPMENT
Three ADS1299 ICs [41] were interconnected (each channel
resolution at 24-bit and 250Hz sampling rate) to achieve
an arrangement of 24 differential channels (19 dedicated to
EEG). The approach to interconnecting three ADS1299 ICs
could have been achieved by using either a daisy-chain
mode or standard mode of connection [41]. The standard
mode of connection was adopted in the current study, with
the three ADS1299 ICs sharing the same serial peripheral
interface (SPI) bus connected to a microcontroller, and each
ADS1299 IC having an individual chip select pin connection
(used for selecting each ADS1299). Connecting the three
ADS1299 ICs to a microcontroller in this manner facilitates
individual reading/writing of register values and thereby the
individual channel configuration which would not have been
possible if a daisy-chain mode approach had been taken. The
three ADS1299 ICs were synchronised by utilising an exter-
nal clock signal to maintain synchronous sampling across
them.

The process of selecting a microcontroller considered the
size and power consumption aspects whilst ensuring that
it was also capable of transferring the sampled data via
a wireless local area network (LAN) module to a smart-
phone. An LPC1769 ARM processor [54] was selected as
the microcontroller for the design as it provides low power
consumption, a small physical footprint and high process-
ing performance relative to its size and power consump-
tion. An RN131 wireless LAN module was connected to the
LPC1769 ARM processor via a serial connection (using the
RS232 standard) to provide a means of wirelessly connecting
to a smartphone via a Wi-Fi link. The Wi-Fi link was fur-
ther enhanced by using an omni-directional external antenna
(Molex, USA) with a gain of 3.5 decibels (dB). The power
supply and management of the design was accomplished
using aMCP73871 power management IC that allows power-
ing of the system via a lithium-ion battery (3.7V, 2430mAh,
Business Batteries, Japan) and charging through a universal
serial bus (USB) when connected to a power source. The
USB connection was wired to allow firmware updating of
the microcontroller to take place via In-Circuit Programming.
The functional block diagram of the system developed is
shown in Fig. 1. To provide resistance to breakage of the
EEG system, all the electronic components of the EEG sys-
tem were housed in a robust grounded aluminium case with
dimensions of 43 × 78 × 120mm and 1.5mm in thickness
(Hammond Manufacturing, Canada). The overall weight of
the developed EEG system was 338g.

B. EMBEDDED SOFTWARE DEVELOPMENT
The embedded software was written in the programming
language C [55] because of its common usage and support
available in the field of embedded systems. The manufac-
turer of the LPC1769 microcontroller (NXP, Netherlands)
provides a software development environment called LPCX-
presso [56], which utilises the C programming language, and
was used for the embedded software development. In addi-
tion, an operating system (FreeRTOS)was used to provide the
software framework and simplify application development
and debugging of the EEG system. FreeRTOS is a market
leading Real Time Operating System (RTOS) written in the
C programming language, and is a free-to-use de-facto stan-
dard solution for microcontrollers [57]. FreeRTOS provides
support for the chosen microcontroller (LPC1769) along with
accompanying software libraries such as support for SPI and
RS232 communication protocols. A command line interface
facility was available as a part of FreeRTOS, and this was
utilised for convenient control of the EEG system. FreeRTOS
was used to provide the system with the ability to perform
specific tasks under instruction.

C. SMARTPHONE APP DEVELOPMENT
To integrate the Android smartphone with the EEG system,
an app was developed using the Unity game engine [58]. The
scripts for Unity were developed in the C# language [59]. The
main thread of the app utilised a state machine methodol-
ogy [60] to provide a structured approach towards software
development and enabled additional states to be added if
required in the future. In the current study, functionality was
selected to include impedance checking, live data plotting,
ERP (stimulus delivery and acquisition) and data recording
via a graphical user interface (GUI). Each feature is enabled
by sending a command from the smartphone app to the
EEG system. The app subsequently interprets the information
returned by the EEG system. In the case of live data plotting,
the digital sample values received for each channel were
converted into a live plot of the data. When recording EEG
data was received over Wi-Fi, the smartphone’s free internal
storage capacity was utilised by the app. Each EEG data file
was stored anonymously under a unique participant number
as the filename.

D. EVALUATING THE DEVELOPED SMARTPHONE-BASED
EEG SYSTEM: ALPHA WAVES
1) PARTICIPANTS
Twenty-one participants were recruited (range 18 to 55 years,
mean ± standard error of the mean (SEM) age 35.4 ±
3.1, 5 males and 16 females). Informed written consent was
gained from each participant before partaking in the study.
The data from one participant was excluded from the anal-
ysis due to excessive noise levels in the EEG channels. All
participants were healthy with no self-reported history of
neurological disorders. The Hull York Medical School Ethics
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FIGURE 1. The system functional block diagram showing the key sub-systems and their interconnections. The EEG channels,
differential channels, active ground and reference connections are labelled. An external interrupt is only taken from the first
ADS1299 as all three ADS1299 are synchronised by the external clock. A user button is included for data marking.

Committee provided ethical scrutiny and approval for the
study. No monetary compensation was given to participants.

2) EEG SYSTEMS
To enable comparisons to be made with the developed
smartphone-based EEG system, a commercial EEG system
was used (Morpheus, Micromed, Mogliano Veneto, Italy).
The Morpheus system is a clinically FDA approved system
with a16-bit resolution and 256Hz sampling rate. The outer
dimensions of the Morpheus system are 44 × 83 × 120mm,
and a weight of 250g. An EEG head cap with 20 tin electrodes
(Softcap, SPES Medica, Italy) was used with 19 electrodes
conforming to the international 10/20 standard configuration
and a ground electrode connection. The smartphone-based
EEGor theMorpheus systemwas connected to the 19 channel
electrode head cap via a 25-way D-type connector. This
enabled easy and convenient EEG system exchange with
the same head cap without changing the impedance and
location of the scalp surface electrodes. When either EEG
system was used, they were mounted on the participant via
a waist-mounted harness and connected to the same EEG
head cap.

3) PARTICIPANT PROTOCOL
The electrode wells of the EEG head cap were filled with con-
ductive gel (Neurgel, SPESMedica, Italy) and the impedance

brought below 5k� before data acquisition. Each participant
continued to wear the same head cap, without removal, while
testing each of the EEG systems. All scalp electrodes were
referenced to the right ear using an ear clip (EAR1026T0,
SPES Medica, Italy). The sequence in which the EEG sys-
tems were tested was pseudo-randomised for each partici-
pant to mitigate for potential ordering effects of the EEG
system used. The testing of the second system was performed
within 30 minutes of the first EEG system.

The participants were guided through a protocol of eyes
open and eyes closed using recorded audio instructions for
each of the two EEG systems under test. To mark the start
of eyes open or eyes closed, participants pressed a handheld
button connected to the EEG system under test. Each button
press generated an event marker on a dedicated channel on the
EEG recording. The lying down period (inclined to an angle
of 45◦ whilst supine on a clinical examination couch) was
composed of three consecutive periods, each period consist-
ing of 20s of eyes closed followed by 20s of eyes open. The
first period of eyes closed/eyes open served to acclimatise
the participant to the procedure. The remaining two periods
where the eyes were closed are henceforth referred to as
period 1 and period 2, respectively, and were used for the
intra- and inter-system EEG comparisons. The first 10s of
artifact-free data was selected for period 1 and 2 for all
participants.
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During the protocol using the developed smartphone-based
EEG system, the accompanying smartphone (Asus T00G
Zenfone 2, Android version 4.3 Jellybean, Quad-core
2.3GHz, 4GB RAM model, free internal storage capacity
of 12.2GB) was placed on a bench.

4) ALPHA WAVE ANALYSIS
The data for the Morpheus system (16-bit) and our
smartphone-based EEG system (24-bit) were both resam-
pled so that all data was in 16-bit resolution format with a
sampling rate of 250Hz. The data was saved in EDF+ file
format and imported into the open source software toolbox,
EEGLAB [61]. Band pass filtering was performed on the
acquired data (0.5 to 40Hz) to filter high frequencies and
baseline drift. Artifact free data was identified by visual
inspection. Power spectrum density (PSD) plots of the time
series data (10s duration) were generated (units: x-axis =
Hz, y axis = 10∗log10(µV2/Hz), and the alpha wave peak
frequency, amplitude and area under the curve (AUC) deter-
mined. The alpha band AUCwas defined to be the alpha band
power (area under power spectral density 8 to 13Hz) divided
by the EEG power in the spectral range 2 to 30Hz based upon
the approach of Schier [62]. These three spectral data parame-
ter values (for each individual, for periods 1 and 2) were used
to undertake the intra- and inter-system comparisons of the
EEG systems.

5) BLAND AND ALTMAN STATISTICAL ANALYSIS
Bland and Altman [44] plots were constructed for the
intra- and inter-EEG system comparisons at electrode loca-
tions O1 and O2. Since the 95% limits of agreement on a
Bland-Altman plot do not comment upon their appropriate-
ness [45], the acceptability level must be defined a priori by
the investigator. This is partly based uponmaking a subjective
judgement by considering the context of use, such as clinical
importance, and not only upon statistical significance [46].
Bland and Altman have indicated that it is inevitable for at
least some lack of agreement between different methods of
measurement, but it is to what extent the two systems disagree
that is of relevance [46]. We considered and set the following
a priori limits of agreement for alpha peak amplitude, AUC
and frequency:

a: ALPHA PEAK AMPLITUDE AND AUC
For intra-system comparisons, the alpha peak ampli-
tude/AUC acceptable limits of agreement for the smartphone-
based EEG system were set to be equal to or within those
obtained for the FDA-approved Morpheus system at each
electrode location. For the inter-system comparison, the lim-
its of agreement were set at twice the limits of those for the
Morpheus intra-system limits of agreement. Our reasoning
here was that, i) although the same head cap was used for both
EEG systems, the impedance of electrodes can alter over time
leading to a change in waveform peak amplitudes [63]–[65],
ii) there is likely to be intra- and inter-participant variations in
alpha peak amplitude/AUCover time (EEGdatawas acquired

∼30 mins apart in the two systems) and iii) there may be vari-
ations in the underlying hardware/software for the two EEG
systems leading to differences in measurements obtained.

b: ALPHA PEAK FREQUENCY
For intra-system comparisons, the alpha peak frequency lim-
its of agreement were set to be within ±2.5Hz (from the
bias line on the Bland-Altman plot). For inter-system com-
parisons, the limits of agreement were increased by 0.5Hz
and set to ±3.0Hz (from the bias line). We selected these
a priori values based upon intra- and inter-participant vari-
ation that is known to occur for the alpha frequency band
oscillation [66], [67], and to account for our EEG data being
acquired approximately 30 mins apart for the two EEG
systems.

It is appropriate to report confidence intervals (CIs) for
bias (mean difference), as well as upper and lower limits of
agreement [68]. However, CIs have not been added to the
Bland-Altman plots as this detracts from the visual simplicity
that is a strength of this technique. Instead, CIs are only
reported textually in the Results section. The CIs have been
used to ascertain if a bias is significant or not based upon
whether the line of equality (zero) is inside or outside the CIs
of the bias (mean difference).

E. EVALUATING THE DEVELOPED SMARTPHONE-BASED
EEG SYSTEM: AUDITORY P300 ERPs
1) PARTICIPANTS
Paired auditory ERP data (sitting and walking) was acquired
from ten participants (age range 18 to 22 years, mean± SEM
age 19.6 ± 0.4, 8 males and 2 females). All participants
were healthy with no self-reported history of neurological
disorders. The Hull York Medical School Ethics Committee
provided ethical scrutiny and approval for the study. No mon-
etary compensation was given to participants.

2) ACQUISITION OF ERPs
We used the same developed smartphone-based EEG system
and the head cap as utilised for the alpha waves study. The
smartphone was used to deliver the tone stimuli in WAV
file format. The incoming ERP data from the EEG system
was time marked by the smartphone according to the type of
tone presented to the participant (standard or deviant tone).
A plug-in for EEGLAB was coded to enable importing of the
stored ERP data from the smartphone. This plug-in incorpo-
rated an additional 8-bit marker channel required for ERP
analysis, with the capacity for up to 255 different events
(0 = no marker, 1 to 255 = individual event markers).

3) PARTICIPANT PROTOCOL
Two pure tones were presented binaurally with consumer in-
ear headphones (Samsung EO-EG920BW). Both the smart-
phone and the developed EEG system were housed together
in a pouch mounted at the participant’s waist. Before the
experiment was started, participants were presented with a
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brief practice run to establish a comfortable volume and
to clarify the distinction between the two tones. Standard
(600 Hz) and deviant (1200 Hz) audio tones were presented
by the smartphone in a randomized order (ratio of 5 standard
to 1 deviant) at a fixed inter-stimulus interval of 1000ms and a
duration of 62 ms. A total of 417 trials were recorded for each
participant. Participants were asked to sit (gazed fixed upon
a fixation cross), or walk around the perimeter of a∼4× 5m
room (usual natural strides with forward gaze), while under-
going the auditory oddball paradigm. The order for sitting and
walking was randomised across the participants. Participants
were tasked to silently count the number of deviant tones
heard.

4) ERP ANALYSIS
For each participant, EEG channels were bandpass fil-
tered from 1 to 30 Hz by implementing a zero-phase
Hamming-windowed sinc FIR filter in EEGLAB. Trial
epochs for each participant were extracted (−200 to 800 ms)
and baseline corrected (−200 to 0 ms). All epochs were
included in the analysis for sitting or walking activities.
Epochs were averaged to generate standard and deviant ERP
waveforms for the sitting and walking activities at Fz, Cz and
Pz electrode locations. These fronto-centro-parietal electrode
locations were selected as they have previously been shown to
generate a clear P300 response [17], [19], [69]. We combined
together the ERP waveforms at Fz, Cz and Pz electrodes
for the standard tones, and separately for the deviant tones.
The peak amplitude of the P300 response for standard and
deviant tones was determined as the largest positive peak
amplitude between 250 - 500 ms post-stimulus. The associ-
ated P300 peak latency was measured as the time to the peak
amplitude in the 250-500ms timewindow. A paired t-test was
used to statistically compare the peak amplitudes between the
standard and deviant tones for sitting, and for the walking
activity.

III. RESULTS
A. HARDWARE AND SOFTWARE DEVELOPMENT OF THE
SMARTPHONE-BASED EEG SYSTEM
Figure 2 shows the smartphone-based EEG system which
we developed and named as the ‘‘io:bio’’ system. Figure 2a
shows the top panel of the system with connections for the
EEG channels, the reference electrode and the active ground.
The bottom panel has a USB port (for battery charging), a par-
ticipant eventmarker push button, various LED indicators and
an On/Off switch (Fig. 2b). On the side panel of the system
there is a Wi-Fi antenna located under a rubber foam pad
(Fig. 2c). The electrical noise floor measured peak-to-peak
of the io:bio and Morpheus systems both had an amplitude of
approximately 1µV when both sides of a differential channel
were shorted.

The smartphone app was coded to provide impedance
checking, live data plotting, ERP (stimulus delivery) and
data recording via a GUI. Figure 3a shows the main GUI

menu that provides access to each of these functions in a
simple and intuitive manner. The impedance check feature
provides a measure of the impedance of all 19 EEG elec-
trodes via a diagrammatic representation of the electrodes
in a 10/20 standard EEG electrode configuration (Fig. 3b).
When the impedance of an electrode connection exceeds
8k�, the corresponding electrode on the diagram changes
to red colour. However, when the impedance of an electrode
connection to the scalp is less than 3k�, the corresponding
electrode on the diagram becomes green in colour. The inter-
mediate range of 3-8k� is indicated by the corresponding
electrode on the diagram in amber colour. The ‘Log Data’
feature records the received EEG data onto the smartphone’s
internal memory storage. Every block of received data is
indicated by an incremental count on the smartphone and
the time duration of the recording displayed (Fig. 3c). This
enables a researcher to detect any loss of data by observing
the time count advancing but not the received data count. The
live data-plotting feature displays the channels in groups of
eight (Fig. 3d).

B. EVALUATING THE DEVELOPED SMARTPHONE-BASED
EEG SYSTEM: ALPHA WAVES
Figure 4a,b shows an example of a ten second time series
period for each system, taken sequentially in time with the
participant lying down with eyes closed at electrode O2. The
PSD plots in Fig. 4c show an overlapping profile for channel
O2 for both EEG systems. Figure 5 shows comparative bar
chart plots (io:bio versus Morpheus) at all 19 EEG channels
for the peak amplitude (Fig. 5a), peak frequency (Fig. 5b) and
AUC (Fig. 5c) of the alpha waves during eyes closed.

1) BLAND-ALTMAN PLOTS: INTRA-SYSTEM AGREEMENT
Bland-Altman plots were constructed for the alpha peak
amplitude intra-system agreement between period 1 ver-
sus period 2 of participants lying down with eyes closed
using the Morpheus and io:bio systems. Bland-Altman plots
for the Morpheus system had limits of agreement ranging
from −5.83 to 5.73µV2/Hz (95% CI −8.22 to −3.44 and
3.34 to 8.12) for channel O1, and −6.73 to 6.14µV2/Hz
(95% CI −9.32 to −4.14 and 3.34 to 8.12) for channel
O2 (Fig. 6a). No significant bias towards either period was
found for the Morpheus system (O1 bias = −0.05µV2/Hz,
95% CI −1.43 to 1.33; O2 bias = −0.29µV2/Hz, 95% CI
−1.79 to 1.20) as the line of equality resides inside the
CIs of each bias. The corresponding Bland-Altman plots for
the io:bio intra-system comparison produced limits of agree-
ment ranging from −4.61 to 4.50µV2/Hz (95% CI −6.49 to
−2.72 and 2.62 to 6.39) for channel O1, and −4.27 to
4.46µV2/Hz (95% CI −9.32 to −4.14 and 3.55 to 8.72)
for channel O2 (Fig. 6a). These are within the limits of
agreement obtained for the Morpheus system and therefore
satisfy the a priori criteria for intra-system agreement. No sig-
nificant bias towards either period was found for the io:bio
system (O1 bias = −0.05µV2/Hz, 95% CI −1.14 to 1.04;
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FIGURE 2. Photographs of the developed io:bio smartphone-based EEG system showing a) top panel, b) bottom panel with LED indicators (from left
to right: power, charging, connection status and data activity) and c) side panel. The electronics and battery are encased in an aluminium case.

O2 bias= 0.09µV2/Hz, 95% CI−0.92 to 1.11) as the line of
equality resides inside the CIs of each bias.

Bland-Altman plots for the Morpheus system had limits
of agreement for the peak frequency ranging from −2.55 to
1.58Hz (95%CI−3.38 to−1.72 and 0.75 to 2.41) for channel
O1, and−2.37 to 1.92Hz (95%CI−3.23 to−1.50 and 1.06 to
2.79) for channel O2 (Fig. 6b). No significant bias towards
either period was found for the Morpheus system (O1 bias
= −0.49Hz, 95% CI −1.43 to 1.33; O2 bias = −0.22Hz,
95% CI −1.43 to 1.33) as the line of equality resides inside
the CIs of each bias. The corresponding Bland-Altman plots
for the io:bio system produced limits of agreement ranging
from −1.60 to 1.84Hz (95% CI −2.29 to −0.91 and 1.15 to
2.53) for channel O1, and−2.73 to 1.76Hz (95% CI−3.64 to
−1.83 and 0.85 to 2.66) for channel O2 (Fig. 6b). These are
within the limits of agreement obtained for the Morpheus
system and therefore satisfy the a priori criteria for intra-
system agreement. No significant bias towards either period
was found for the io:bio system (O1 bias = 0.12Hz, 95% CI
−0.06 to 0.06. O2 bias = −0.49Hz, 95% CI −0.08 to 0.07)
as the line of equality resides inside the CIs of each bias.

Bland-Altman plots for the Morpheus system had lim-
its of agreement ranging for the AUC from −0.25 to 0.31

(95% CI −0.36 to −0.13 and 0.19 to 0.43) for channel O1,
and−0.26 to 0.30 (95% CI−0.37 to−0.15 and 0.19 to 0.41)
for channel O2 (Fig. 6c). No significant bias towards either
period was found for the Morpheus system (O1 bias = 0.03,
95% CI −0.04 to 0.10; O2 bias = 0.02, 95% CI −0.04 to
0.09) as the line of equality resides inside the CIs of each
bias. The corresponding Bland-Altman plots for the io:bio
system produced limits of agreement ranging from −0.26 to
0.26 (95% CI −0.36 to −0.15 and 0.15 to 0.36) for channel
O1, and −0.33 to 0.32 (95% CI −0.36 to −0.15 and 0.15 to
0.36) for channel O2 (Fig. 6c). These are within the limits of
agreement obtained for the Morpheus system and therefore
satisfy the a priori criteria for intra-system agreement. No sig-
nificant bias towards either period was found for the io:bio
system (O1 bias = 0.00, 95% CI −0.06 to 0.06; O2 bias =
−0.01., 95% CI−0.08 to 0.07) as the line of equality resides
inside the CIs of each bias.

2) BLAND-ALTMAN PLOTS: INTER-SYSTEM AGREEMENT
Bland-Altman plots were constructed for inter-system agree-
ment between Morpheus versus io:bio systems for peak
amplitude. Bland-Altman plots comparing the two sys-
tems for agreement for period 1 has limits of agreement
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FIGURE 3. Smartphone app showing a) main GUI menu, b) impedance checking, c) data recording and d) live data plotting (high pass
filtering 0.1Hz) of 19 EEG channels, an EOG channel (Diff 1) and an ECG channel (Diff 2). Note that a blink artifact is visible in the
frontal EEG electrodes.

ranging from −11.54 to 8.21µV2/Hz (95% CI −15.62 to
−7.46 and 4.12 to 12.29) for channel O1, and −11.51 to
7.61µV2/Hz (95% CI −15.36 to −7.66 and 3.77 to 11.46)
for channel O2 (Fig. 7a). The limits of agreement for period
2 range from −12.56 to 9.21µV2/Hz (95% CI −17.06 to
−8.05 and 4.71 to 13.71) for channel O1, and range from
−12.85 to 9.74µV2/Hz (95% CI −17.39 to −8.31 and
5.20 to 14.29) for channel O2 (Fig. 7a). No significant
bias towards either system was found for period 1 (channel
O1 bias = −1.67µV2/Hz, 95% CI −4.03 to 0.69; O2 bias
= −1.95µV2/Hz, 95% CI −4.17 to 0.27) or for period 2
(O1 bias=−1.67µV2/Hz, 95% CI−4.27 to 0.93; O2 bias=
−1.55µV2/Hz, 95% CI−4.18 to 1.07) as the line of equality
resides inside the CIs of each bias.

Bland-Altman plots comparing the two systems for agree-
ment for periods 1 have peak frequency limits of agreement

ranging from −3.32 to 2.10Hz (95% CI −4.42 to −2.23 and
1.01 to 3.19) for channel O1, and −1.91 to 1.93Hz (95% CI
−2.67 to −1.13 and 1.16 to 2.70) for channel O2 (Fig. 7b).
The limits of agreement for period 2 range from −1.93 to
1.93Hz (95%CI−2.71 to−1.16 and 1.16 to 2.71) for channel
O1 and from −2.54 to 2.03Hz (95% CI −3.45 to −1.62 and
1.11 to 2.94) for channel O2 (Fig. 7b). No significant bias
towards either system was found for period 1 (channel O1
bias = −0.61Hz, 95% CI −1.24 to 0.02; O2 bias = 0.01Hz,
95% CI −0.43 to 0.46) or for period 2 (O1 bias = 0Hz, 95%
CI−0.45 to 0.45; O2 bias=−0.26Hz, 95%CI−0.79 to 0.27)
as the line of equality resides inside the CIs of each bias.

For AUC, Bland-Altman plots comparing the two sys-
tems using period 1 have limits of agreement ranging from
−0.38 to 0.41 (95% CI −0.54 to −0.22 and 0.24 to 0.57) for
channel O1, and −0.35 to 0.40 (95% CI −0.50 to −0.20 and
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FIGURE 4. Example 10s periods of a single participant’s time series EEG trace taken sequentially during period 1 of lying down with eyes
closed for the a) Morpheus and b) io:bio systems at channel location O2 and c) the respective PSD plots for the two systems at electrode O2.

0.25 to 0.55) for channel O2 (Fig. 7c). The limits of agree-
ment for Period 2 range from−0.48 to 0.45 (95%CI−0.67 to
−0.29 and 0.26 to 0.64) for channel O1 and from −0.46 to
0.46 (95% CI −0.65 to −0.28 and 0.28 to 0.65) for channel
O2 (Fig. 7c). No significant bias towards either system was
found for period 1 (channel O1 bias= 0.01, 95% CI−0.08 to
0.11; O2 bias = 0.03, 95% CI −0.06 to 0.12) or for period 2
(O1 bias = −0.02, 95% CI −0.13 to 0.10; O2 bias = 0, 95%
CI−0.11 to 0.11) as the line of equality resides inside the CIs
of each bias.

C. EVALUATING THE DEVELOPED SMARTPHONE-BASED
EEG SYSTEM: AUDITORY P300 ERPs
The deviant tones, delivered by the smartphone to participants
via headphones, evoked P300 ERP waveforms for sitting,
and for the walking activity. Figure 8 shows the ERP plots
for the grand mean P300 responses to standard and deviant
tones during sitting and walking for combined Fz + Cz +
Pz electrodes. A visual inspection of the pre-tone stimulus
period indicates a higher level of baseline noise for walking
compared to sitting (Fig. 8a,b). A statistically significant
higher peak amplitude was found for the P300 deviant tone
compared to the standard tone for sitting or walking (Table 2).
There were no significant difference for the P300 peak
latency between the deviant and standard tones for sitting or
for the walking activity (p > 0.05, paired t-test).

IV. DISCUSSION
In this study we have designed and developed a general-
purpose smartphone-based EEG platform which we have
named ‘‘io:bio’’. The io:bio smartphone-based EEG system
and associated app was evaluated against a clinical grade
FDA approved system in human participants using recordings

of alpha waves during periods of eye closure. No significant
differences were found for the intra-system or inter-system
comparisons using a Bland-Altman statistical approach. Fur-
thermore, we were able to acquire using the developed
smartphone-based EEG system P300 ERPs in response to
an auditory oddball paradigm during sitting and walking
activities. Our developed smartphone-based EEG system has
therefore the potential to be utilised in a plethora of applica-
tions and environments.

The hardware design architecture consisted of three
ADS1299 ICs. Their connection to the microcontroller was
achieved using a standard mode of connection rather than
a daisy-chain connection. This mode of connection enabled
configuration of the gain settings for each channel indepen-
dently as indicated in the ICs datasheet [41]. Had this con-
nection approach not been taken, the ability to use channels
for other applications such as EMG, ECG or EOG, which
have larger signal amplitudes, would not have been possible
as all channels would have had the same settings for gain
which could result in signal clipping. The design approach
taken relies upon the microcontroller having sufficient time
to read the data from each ADS1299 IC in turn before the next
hardware interrupt, and in turn new data is received. Increas-
ing sampling rates will reduce the time period available to
achieve the necessary data transfer and this will necessitate
a higher performance microcontroller to support the higher
sampling rates available via the ADS1299 IC. The Wi-Fi
module is communicated to via a serial connection; this is a
performance limitation of the current design as the maximum
data rate of the system cannot exceed this limit. A Wi-Fi
module with an SPI interface and higher bandwidth could
be used to support higher sampling rates but would come
at the cost of higher power consumption. The higher power
consumption could be mitigated by using a battery with an
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FIGURE 5. Comparison of Morpheus and io:bio systems during period 2 of eyes closed for alpha band a) peak power amplitude, b)
peak frequency, and c) area under the curve (normalised). Data are presented as mean ± SEM (n = 16-21).
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FIGURE 6. Bland-Altman plots for alpha peak a) amplitude, b) frequency and c) AUC intra-system comparisons made using Morpheus or io:bio systems
during participants lying down with eyes closed at electrode O2 (n = 20). The x-axis represents the mean [(period 1 + period 2)/2] and the y-axis the
difference (period 1 – period 2) for each pair of measures, for the Morpheus and io:bio systems.

FIGURE 7. Bland-Altman plots for alpha peak a) amplitude, b) frequency and c) AUC inter-system comparisons made between the Morpheus and io:bio
systems during participants lying down with eyes closed at electrode O2 (n = 20). The x-axis represents the mean [(Morpheus + io:bio)/2)] and the y-axis
the difference (Morpheus - io:bio) for each pair of measures, for periods 1 and 2.

increased storage capacity but this would increase the overall
system size and weight.

A. DEVELOPMENT OF THE SMARTPHONE-BASED EEG
SYSTEM
Our io:bio smartphone-based EEG system specification used
three ADS1299 ICs in standard configuration to enable
the recording of EEG channels with a sampling frequency
of 250Hz at a resolution of 24-bit. This specification exceeds
the recommendation of the International Federation of Clin-
ical Neurophysiology [38] of a minimum sampling rate

of 200Hz and bit resolution of 12-bit. As the ADS1299 IC
has the capability for data sampling rates of up to 16kHz, it is
possible to have system specifications where higher sampling
rates are required. For example, higher rates are required
by epileptologists to record ultra-fast oscillations [70] and
for perceptual and cognitive processing investigations related
to autism [71]. However, with higher sampling rates there
will be increased demands upon the systems microcon-
troller along with the requirements for a higher bandwidth
from the Wi-Fi module and additional data storage capac-
ity. Our io:bio system was developed at 24-bit resolution,
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FIGURE 8. Grand mean P300 waveforms for standard and deviant tones during participant a) sitting and b) walking
for combined Fz + Cz + Pz electrodes using the developed waist-mounted io:bio smartphone-based ERP system (n =
10).

TABLE 2. Grand mean peak amplitude and latency for the P300 ERP component in response to standard and deviant tones during participant sitting and
walking for combined Fz + Cz + Pz electrode locations using the developed io:bio smartphone-based ERP system (n = 10).

which is the same resolution as some of the studies listed
in Table 1 [30], [32]–[34], [37], [39], and is at the upper level
of resolution for smartphone-based EEG systems.

We opted in our io:bio smartphone-based EEG system
to utilise Wi-Fi technology, instead of Bluetooth, for the
wireless link between the acquisition electronics and the
smartphone. In contrast, all the smartphone/tablet-based EEG
investigations listed in Table 1 have used Bluetooth tech-
nology. Although Bluetooth allows peer-to-peer connection,
it has limitations in its communication range available com-
pared to Wi-Fi and has no capability to connect to net-
work infrastructure. For example, in the smartphone-based
EEG study by Blum et al. [30], the Bluetooth used has a
restricted range (SMARTING system, range of 10 metres).
Bluetooth also has limitations in data rate, which are gen-
erally lower than Wi-Fi, and is less energy efficient [72].
Unlike Bluetooth, Wi-Fi can be used for both peer-to-peer
connection and connection to a network infrastructure such
as a hospital, home or research facility. Such Wi-Fi enabled
network connection allows for functions such as data cloud

storage/processing and is therefore advantageous in terms
of future research potentials related to clinical and home
monitoring applications. Furthermore, by using Wi-Fi rather
than Bluetooth it is possible to dispense with the participant
having to carry the smartphone in locations where Wi-Fi
coverage is available.

Our developed io:bio EEG system was similar in size
dimensions and weight to the Morpheus system. To enable
greater resistance to possible breakage, we encased our
developed io:bio system in a robust aluminium case instead
of a plastic encasement. A robust encasement would be
desirable if EEG studies were required to be undertaken
in real-world environments outside the laboratory setting
such as urban environments [12], [73], [74], whilst walk-
ing [20], [75]–[77] and rehabilitation applications [78], [79].
The underlying design of our io:bio system could be adapted
for utility in consumer-orientated EEG applications, as was
undertaken in the investigations by Khushaba et al. [80] and
Yadava et al. [81] using a plastic head-mounted case. In addi-
tion, it should be feasible to integrate our EEG electronics into

75662 VOLUME 9, 2021



A. D. Bateson, A. U. R. Asghar: Development and Evaluation of a Smartphone-Based EEG System

wearable fabrics such as a head cap or helmet using a flexible
PCB approach [32], [82], [83].

As is possible with the FDA-approved Morpheus sys-
tem, the io:bio system was also able to acquire data from
19 EEG channels (in standard 10-20 configuration). Previous
investigations using smartphone-based EEG systems have
recorded from a relatively low number of EEG channels
(ranging from 1-16 channels) in either 10-20 arrangements or
in non-standard configurations (see Table 1). The 10-20 elec-
trode arrangement offers the advantages of convenient and
expeditious participant set up times and enables standardised
testing to allow comparisons with the results of the EEG
literature. There is the potential to increase the number of
EEG channels in our developed io:bio system. For instance,
a smartphone-based EEG system could be developed which
has the capability to record using the 10-10 or 10-5 electrode
arrangements [84]. This could be achieved by incorporating
additional ADS1299 ICs to our existing electronics architec-
ture. However, a more powerful microprocessor and a Wi-Fi
module with higher bandwidth are likely to be required to
process the additional data throughput.

Our developed EEG io:bio system was paired via Wi-Fi
to a smartphone running the Android operating system.
Compared with tethering the EEG system to a PC/laptop,
our smartphone-based approach has advantages in terms
of size, weight and thereby greater portability of the sys-
tem. Such portability of the smartphone could be exploited
in research investigations which aim to acquire EEG data
in natural/real-life settings such as outdoor urban environ-
ments [12], [13] or sports activities [15]. Furthermore, a
smartphone-linked EEG system offers the experimenter the
potential for higher levels of participant mobility as there is
no physical tethering to a PC/laptop (see Bateson et al. [40]).
In our study, we used a relatively inexpensive smartphone
and were able to successfully acquire and store data from
all 24 differential channels along with a marker channel. The
free internal storage capacity of 12.2GB in the smartphone
used in our current study is likely to be of sufficient memory
capacity for the majority of EEG investigations including
those where 24 hour recordings are required [85] as the
system will generate approximately 64Mb of data per hour.
However, if higher sampling rates and number of channels are
required this would lead to larger file sizes. In this scenario
an SD card could be installed or a smartphone utilised which
has a higher capacity internal memory.

In our current study, the functions of the smartphone
focused upon checking impedance at each EEG electrode,
plotting live data, and acquisition/storage of data via a GUI
as we regarded these as core features required in any EEG
investigation. We envisage that minimising the app to these
core functions in the current configurationwould enablemore
intuitive operation of the smartphone-based EEG system by
the non-specialist. The core functions we developed were
achieved by coding an app for the smartphone using the
game engine, Unity. A major benefit of using Unity is that
it opens the potential for future deployment of our app to

additional platforms such as iOS, PC/laptop, virtual reality
or augmented reality headsets, games consoles and smart
TVs. Such deployment to these platforms in conjunction with
the io:bio EEG system could be used to advance neurofeed-
back systems [29], [78], [86], gamification projects [87]–[89]
and BCI testbeds [90], [91]. There is opportunity for future
expansion of the features on our smartphone app by utilising
Unity. For instance, additional functionality could be added
to our app, as has been incorporated by other investigators
in their smartphone-based EEG systems, for stimulus presen-
tation [27], [34], [36], data interpretation [28], [34], source
reconstruction [29], classifiers [35], and relaying data to
external servers [25]. However, these applications are likely
to require a smartphone with higher specification and perfor-
mance capabilities than the one used in the current study.

B. EVALUATION OF THE SMARTPHONE-BASED EEG
SYSTEM: ALPHA WAVES
To test intra-system repeatability we determined the alpha
wave peak amplitude, frequency and AUC from PSD
plots in both the Morpheus EEG system versus the io:bio
smartphone-based system at occipital electrode locations. For
the FDA-approved Morpheus system, the Bland and Altman
plots showed no significant bias between the two consecutive
alpha activity test periods thus showing intra-system repeata-
bility. The Bland-Altman plots for the io:bio system had lim-
its of agreement which were within the limits of agreement
obtained for the Morpheus system and therefore satisfied our
a priori criteria for intra-system agreement. As found for the
Morpheus system, therewas no significant bias towards either
test period demonstrating the intra-system repeatability when
using the io:bio smartphone-based system. The intra-system
repeatability [45] is a critical feature when utilising EEG
systems within clinical and research settings, and since the
io:bio system has comparable system repeatability to the
FDA-approved Morpheus system it should have utility in
these environments.

The results obtained in the current study for inter-system
variability (Morpheus versus io:bio systems) were within our
a priori limits of agreement. The Bland and Altman plots
indicate that the io:bio smartphone-based EEG system can
therefore be used interchangeably with the Morpheus sys-
tem. The limits of agreement in the Bland-Altman plots for
inter-system variability were wider for peak amplitude and
AUC compared to the intra-system plots for Morpheus or the
io:bio smartphone-based system. These wider inter-system
limits could be accounted for by potential differences in
measures obtained when testing and comparing any two
electronic systems. In addition, the wider limits could be
attributed to the greater time period lapsed between testing
the two EEG systems in a sequential order. One limitation of
the Bland and Altman approach is that a subjective judgement
is required to be made by the investigator of what constitutes
an acceptable limit of agreement [42]. This is made more
challenging as the spectral EEG for inter-individual variation
is higher compared to the intra-individual variation [92].
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In the current investigation, we used a sequential method-
ological recording approach for the comparisons between two
EEG systems. An alternative approach is to record simulta-
neously from two EEG systems. For instance, in the study by
Badcock et al. [93] two separate electrode arrangements were
configured onto the head to compare the EPOC Emotiv sys-
tem with the Neuroscan Synamps one. This involved cutting
slits in the electrode head cap for the Neuroscan Synamps
to allow electrodes of the EPOC Emotiv to be inserted onto
the scalp surface. We did not take this approach as electrodes
would not have been in the exact same location between the
two EEG systems making it difficult to interpret the data and
evaluate the test EEG system. Jackson et al. [94] andOmurtag
et al. [95] used an approach where both EEG systems were
connected to a single electrode head cap in parallel using a
signal splitter arrangement. This has the advantage of being
able to record simultaneously from the same electrode sites.
However, it is possible that potential system interactions
could occur while the two systems are connected simulta-
neously, and we therefore did not adopt this approach. Per-
haps a future approach could be to combine our approach
with that of Jackson et al. [94] and Omurtag et al. [95] to
determine how the two systems would perform under the
same experimental conditions when connected separately and
simultaneously.

C. EVALUATION OF THE SMARTPHONE-BASED EEG
SYSTEM: AUDITORY P300 ERP
We utilised the processing capabilities of a smartphone
to deliver time-locked auditory stimuli to participants via
headphones, and captured the ERP data using the devel-
oped io:bio EEG system. Using this novel smartphone-based
ERP acquisition arrangement, we found significantly higher
peak amplitudes of the P300 component to the deviant
tone condition compared to the standard tone for the sit-
ting activity. This result is in line with previous stud-
ies which have demonstrated that the P300 response to a
deviant/uncommon tone is greater in amplitude compared
to a standard/common tone [19], [96]. Using the developed
waist-mounted smartphone-based io:bio system we sought to
determine if P300 auditory oddball ERP’s could be acquired
in participants undertaking a walking activity. We observed
a clear P300 ERP response to deviant tones. As for sitting,
the P300 ERP was significantly greater in peak amplitude
to the deviant tone condition compared to the standard tone.
Similar amplitude auditory oddball P300 ERP responses to
deviant tones have been reported during walking although
the baseline noise was less compared to our results as a
head-mounted EEG system was used [19].

D. FUTURE DIRECTIONS
In our current studywe compared the developed io:bio system
with the Morpheus system in terms of the noise floor and
alpha waves during eyes closed using a Bland and Altman
statistical approach. There are many other additional com-
parisons which could be undertaken in future comparative

evaluation studies of a developed EEG system with a clin-
ically approved or commercial EEG system which present,
for example, visual, auditory or somatosensory stimuli or
those which present cognitive paradigms. Although com-
mercial smartphone-based EEG systems are becoming avail-
able, an advantage of developing bespoke smartphone-based
EEG systems such as the io:bio is that specific mod-
ifications/enhancements can be readily made. Additional
hardware or existing features of the smartphone could be
incorporated into our smartphone-based EEG system. Some
examples include 3D accelerometery, motion sensing and
GPS for determination of geographical location/participant
tracking by the smartphone. A head-mounted configuration
of our io:bio system could also be developed based upon
the EEG system functional block diagram in Fig. 1. This
advancement would have the advantage of enabling greater
mobility of participants, reduced noise from EEG electrode
displacements thereby enabling the acquisition of EEG/ERP
data in natural/real-life environments. Our ERP study could
be extended to time-locked visual stimuli delivered to partici-
pants via the smartphone’s screen. Whilst all of the proposed
developments are potentially achievable, each development
would require its own separate evaluation.

V. CONCLUSION
We have developed and evaluated a general-purpose
smartphone-based EEG platform utilising a novel Wi-Fi
communications approach. The system and associated smart-
phone app is able to record data onto a smartphone’s internal
memory via aWi-Fi link. The smartphone-based EEG system
was evaluated against an FDA-approved EEG system in
human participants. Using recordings of alpha waves, no sig-
nificant differences were found in the results for intra-system
or inter-system comparisons using a Bland-Altman plot anal-
ysis approach suggesting that the two systems can be used
interchangeably. In addition, we utilised the capability of
the smartphone to deliver time-locked auditory stimuli and
acquired P300 ERPs in response to an oddball paradigm
during sitting and walking activities. Our smartphone-based
EEG system has the potential to be modified, unlike commer-
cial systems, for specific researcher-envisaged use cases.
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