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Abstract

The use of data-driven techniques such as artificial neural network (ANN) models for outdoor air pollution

forecasting has been popular in the past two decades. However, research activity on uncertainty surrounding

the development of ANN models has been limited. Therefore, this review outlines the approaches for ad-

dressing model uncertainty according to the steps for building ANN models. Based on 128 articles published

from 2000 to 2022, the review reveals that input uncertainty was predominantly addressed while less focus

was given to the structure, parameter and output uncertainties. Ensemble approaches have been mostly

employed, followed by neuro-fuzzy networks. However, the direct measurement of uncertainty received less

attention. The use of bootstrapping, Bayesian, and Monte Carlo simulation techniques which can quantify

uncertainty was also limited. In conclusion, this review recommends the development and application of

approaches that can both handle and quantify uncertainty surrounding the development of ANN models.

Keywords: Air pollution forecasting, Artificial neural networks, Uncertainty quantification, Bayesian,

Monte Carlo Simulation, Fuzzy

1. Introduction

1.1. Data-driven models in air pollution forecasting

The use of data-driven models in outdoor air pollution (AP) forecasting has been widely reported in

the literature in the last two decades (Shahraiyni and Sodoudi, 2016; Cabaneros et al., 2019; Masood and

Ahmad, 2021). The attractiveness of data-driven models can be explained in two respects: (1) better perfor-

mance over traditional approaches, and (2) the emergence of big data and more powerful computing software.

Data-driven models have been shown to understand the complex dynamics between environmental variables

and outdoor AP without using physics-based formulae. This allows researchers to bypass the strong the-

oretical requirements to employ traditional approaches such as Gaussian dispersion, 3-D gridded Eulerian,

Photochemical and Lagrangian trajectory models. As such, data-driven models for AP forecasting have been
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shown to be effective alternatives to the traditional deterministic ones (Cabaneros et al., 2019; Gardner and

Dorling, 1998; Lv et al., 2016; Zhao et al., 2019). Big data and more powerful computing resources has

also paved the way for research communities to apply data-driven models in AP forecasting (Bishop, 2006;

Montáns et al., 2019). In particular, the smart city concept that integrates Information and Communication

Technology (ICT) and fixed/mobile sensors have generated a tremendous amount of data, especially outdoor

pollution measurements, which has enabled decision-makers in providing early warnings to citizens in urban

cities (Bekkar et al., 2021). Finally, the past few years have witnessed the development and emergence of

accessible and powerful computing tools that support machine learning processes (Giray, 2021). Free and

open-source programming languages such as Python, R, and Java have been popularly used for coding many

data-driven techniques (TIOBE, 2022).

Popular data-driven approaches utilised for AP forecasting include statistical models, e.g Multiple Lin-

ear Regression (MLR) (Ng and Awang, 2018) and Autoregressive Integrated Moving Average (ARIMA),

machine learning (ML), e.g. Artificial Neural Network (ANN) (Gardner and Dorling, 1997), Support Vector

Machine (SVM) (Lu and Wang, 2005), Fuzzy expert system (Heo and Kim, 2004), and more recently, deep

learning models, e.g. Deep Neural Network (DNN) (Freeman et al., 2018). The approaches clearly have their

pros and cons which have been thoroughly discussed in the literature (Masood and Ahmad, 2021; Chen et al.,

2008).

ANN models are among the most employed data-driven tools for AP forecasting. ANNs are parallel-

computing structures that mimics the information-processing paradigm of the human brain. This makes

them capable of learning from any previously unknown information from any given training dataset (Mc-

Culloch and Pitts, 1943; Basheer and Hajmeer, 2000). ANN model development generally consists of eight

steps: (1) data collection, (2) data preprocessing, (3) input variable selection, (4) data division, (5) model

architecture selection, (6) model structure optimisation, (7) model training, and (8) model validation. A de-

tailed description of each step can be found elsewhere (Cabaneros et al., 2019; Maier et al., 2010). However,

performing each step entails the selection of one or more methods/processes which are problem-specific. This

lack of a clean-cut approach makes the process of building ANN models not straightforward. Consequently,

the influence of the various approaches in performing each of the steps on the model results has become a well-

established research area. In their review of articles dealing with the use of ANNs in outdoor AP forecasting,

Cabaneros et al. (2019) revealed that novel methods for implementing one or a combination of the steps for

building ANN models have been proposed to outperform the traditional ones. The authors reported that the

articles mainly focused on the development of more novel and sophisticated predictor selection techniques,

model architectures, and model training algorithms. A similar observation was reported in earlier related

works by Maier et al. (2010) and Wu et al. (2014) which reviewed case studies using ANN models but applied
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in forecasting of hydrological variables. Finally, a recent review by Masood and Ahmad (2021) on the use

of techniques based on Artificial Intelligence (AI) in AP forecasting has also shown similar findings. The

authors revealed that models with deeper architectures, e.g. DNN models, have been employed and reported

to provide superior AP predictions.

1.2. Uncertainty incurred from developing data-driven models

Given their black-box nature, ANN models cannot provide explicit insights regarding the influence

of several model-building choices, e.g. inputs, architecture, structure, and training parameters, on their

results. This ambiguity surrounding the modelling process exists and has been commonly referred to as model

uncertainty. Model uncertainty has been reported to limit the potential of using ANN models especially tasks

involving decision-making (Vardoulakis et al., 2002; Borrego et al., 2008). In particular, the uncertainty

surrounding ANN models that were not carefully designed can limit the reproducibility and reliability of

model results (Arhami et al., 2013; Elshorbagy et al., 2010; Noori et al., 2010).

Current efforts have mostly focused on the improvement of the point estimates of pollution levels, while

the incorporation of model uncertainty has received less attention (Cabaneros et al., 2019; Maier et al., 2010).

Kasiviswanathan and Sudheer (2017) has reviewed research articles dealing with hydrological modelling that

employed methods addressing model uncertainty. They revealed that the methodological issues for building

ANN models, not model uncertainty, have been mostly examined. Among those that tackled uncertainty,

only a few investigated the mutual interaction among sources of prediction uncertainty, e.g. inputs, training

parameters, and model structure.

Given the increasing popularity of ANN models, a thorough review of existing research that accounts

for uncertainty is significant. Hence, the main objective of this paper is to provide an extensive framework

of methods used for addressing the uncertainty surrounding the development of ANN models for outdoor

AP forecasting. Through the results of this paper, the authors aim to promote good practice in reporting

ANN model results by accounting for both accuracy and uncertainty. To the best of the authors’ knowledge,

a comprehensive survey of articles that deal with the uncertainty of ANN models for AP forecasting has not

yet been undertaken. Another novelty of this review paper is that it aims to describe the interplay between

various sources of model uncertainty. This is carried out by relating each uncertainty source to the eight

steps of building ANN models.

The remainder of this review paper is organised as follows. In Section 2, details regarding the methods for

selecting the appropriate articles for this review are presented. In Section 3, the sources of model uncertainty

and the approaches for addressing them are described. Section 4 presents the methods utilised for quantifying

the model uncertainty. Section 5 provides the conclusions of this review, while Section 6 presents a number
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of recommendations for future research.

2. Overview

Articles that deal with the application of ANN models in outdoor AP forecasting were collected from

international peer-reviewed journals. Databases such as ScienceDirect, IEEE Access, PLOS One, ACM,

Springer, Taylor & Francis Online Google Scholar, and MDPI were searched for relevant literature published

from January 2000 to August 2022. The selection process of this review consisted of three stages. Since the

main focus of this paper is on the incorporation of uncertainty that arises from ANN model development,

the search items were firstly narrowed down to include the terms “uncertainty” and/or methods that are

well-known to account for uncertainty. The search items for the methods included “air pollution forecast-

ing”, “artificial neural networks”, “deep learning”, “machine learning”, “ANN”, “deep neural networks”,

“Bayesian neural networks”, “Monte Carlo”, “ensemble”, “confidence interval”, “sensitivity analysis”, “AN-

FIS”, and “Fuzzy neural networks” with different combinations. A second search query was carried out

containing “neural networks” and “air pollution” because many of the appropriate articles for this review

do not necessarily have to mention the term “uncertainty”. The third selection stage from both identified

and unidentified papers was performed in an ad-hoc manner based on the subject matter of this review. For

instance, many articles do mention the term “uncertainty” yet only a subset of them addressed it in their

model-building process. The observation can be made for other articles mentioning one or a set of search

terms mentioned above. Another important criterion for inclusion in the review is that the said methods need

to be applied in conjunction with ANNs. For instance, several articles on plain models solely applying fuzzy

inference systems and linear forecasters were removed. The results from a recent review article by Cabaneros

et al. (2019) were also utilised to locate the relevant articles for this review. Lastly, articles presented at

conference proceedings were manually removed from the initial list of search results. The search methodology

above has identified 128 relevant articles for this review.

Table 1 provides a list of journals alongside their respective latest impact factors where the selected arti-

cles were published. The leading position in terms of the number of publications was held by both the Atmo-

spheric Environment and Atmospheric Pollution Research journals which accounted for approximately 12%

of the total number of articles. Both the Environmental Modelling & Software and IEEE Access journals had

the next highest proportions of articles (8% each) followed by the Science of the Total Environment (7%).

The rest of the identified journals had fewer proportions of articles, e.g. 5 articles or less.
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Table 1: List of journals selected for this review.

No. Name of the journal Latest impact No. of papers

factor published

1 Air Quality, Atmosphere & Health 3.763 5

2 Atmosphere 3.110 4

3 Atmospheric Environment 4.798 15

4 Atmospheric Pollution Research 4.352 15

5 Building and Environment 7.093 2

6 Chaos, Solitons & Fractals 9.992 1

7 Chemosphere 7.086 4

8 Clean - Soil, Air, Water 1.770* 1

9 Computers & Geosciences 5.168 1

10 Ecological Informatics 3.142 1

11 Ecological Modelling 2.974 2

12 Ecotoxicology and Environmental Safety 6.291 1

13 Engineering Applications of Artificial Intelligence 6.212 3

14 Entropy 2.738 1

15 Environment International 9.621 1

16 Environmental Modeling & Assessment 2.016 1

17 Environmental Modelling & Software 5.288 10

18 Environmental Modelling and Assessment 2.333* 2

19 Environmental Monitoring and Assessment 3.307 1

20 Environmental Pollution 8.071 2

21 Environmental Science & Policy 5.190 4

22 Environmental Science and Pollution Research 4.223 3

23 Environmental Technology & Innovation 5.263 1

24 Expert Systems with Applications 8.665 1

25 IEEE Access 3.476 10

26 IEEE Sensors Journal 4.325 1

27 IEEE Transactions on Big Data 4.271 1

28 IEEE Transactions on Instrumentation and Measurement 5.332 1

29 IEEE Transactions on Intelligent Transportation Systems 6.492 1

5



Table 1 continued from previous page

30 International Journal of Applied Mathematics and Computer Science 2.157 1

31 International Journal of Environmental Research and Public Health 4.614 1

32 International Journal of Environmental Science and Technology 3.519 1

33 Journal of Cleaner Production 9.297 1

34 Journal of Environmental Engineering and Science - 1

35 Journal of Environmental Management 6.789 1

36 Journal of the Air & Waste Management Association 2.636 2

37 Mathematical Geosciences 2.508 1

38 Mathematics 2.592 1

39 Neural Computing and Applications 5.102 1

40 Neural Networks 8.050 1

41 Neurocomputing 5.719 1

42 Pattern Recognition Letters 4.575 1

43 PLOS One N/A 1

44 Remote Sensing 5.349 1

45 Science of the Total Environment 7.693 9

46 Sensors 3.847 1

47 Sustainability 3.889 2

48 Sustainable Cities and Society 7.587 3

49 Urban Climate 6.663 3

Details of the selected articles such as the name of the authors, year of publication, study location, air

pollutants examined, and methods used to address model uncertainty are given in Table 2. It should be

noted that several articles employed two or more approaches in addressing uncertainty in their ANN model

development process.

Table 2: Key details of the articles reviewed.

No. Authors (year) Case study Examined Methods used to

location pollutants handle uncertainty

1 Chelani et al. (2002) Delhi, India O3; SO2 Convergence criteria
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Table 2 continued from previous page

2 Morabito and Versaci (2003) Villa San Giovanni, SO2; CO; Fuzzy

Italy O3; NO;

NO2; HC;

TSP; PM10

3 Hasham et al. (2004) Edmonton, Canada NOx Factorial design

concepts

4 Niska et al. (2004) Helsinki, Finland NO2 MOGA

5 Niska et al. (2005) Helsinki, Finland NO2; PM2.5 Sensitivity analysis

& MOGA

6 Ordieres et al. (2005) Ciudad Juarez & PM2.5 Stepwise regression

El Paso, Mexico

7 Agirre-Basurko et al. (2006) Bilbao, Spain O3; TSP Stepwise regression

with tolerance

filtering &

generalisation rule

8 Grivas and Chaloulakou (2006) Athens, Greece PM10 Genetic algorithm

& bootstrapping

9 Karakitsios et al. (2006) Ioannina, Greece Benzene Bayesian

10 Slini et al. (2006) Thessaloniki, Greece PM10 CART

11 Yildirim and Bayramoglu (2006) Zonguldak, Turkey SO2; TSP Fuzzy

12 Dutot et al. (2007) Orleans, France O3 BIC-like criterion,

stepwise regression &

confidence interval

13 Dı́az-Robles et al. (2008) Temuco, Chile PM10 Regression

14 Ibarra-Berastegi et al. (2008) Bilbao, Spain SO2; CO; Genetic algorithm,

O3; NO; sensitivity analysis

NO2; HC; & bootstrapping

TSP; PM10

15 Perez and Salini (2008) Santiago, Chile PM2.5 Correlation analysis

16 Solaiman et al. (2008) Ontario, Canada O3 Sensitivity analysis

& Bayesian

17 Zito et al. (2008) Leicestershire, UK CO; NO2 Sensitivity analysis

18 Hrust et al. (2009) Zagreb, Croatia NO2; O3; Fourier analysis

CO; PM10

19 Inal (2010) Istanbul, Turkey O3 Sensitivity analysis

20 Jain and Khare (2010) Delhi City, India CO Fuzzy

21 Noori et al. (2010) Tehran, Iran CO Monte Carlo,
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Table 2 continued from previous page

bootstrapping,

& fuzzy

22 Feng et al. (2011) Beijing, China O3 Genetic algorithm

23 Prakash et al. (2011) New Delhi, India PM10 Ensemble ANN

24 Voukantsis et al. (2011) Thessaloniki, Greece PM10; PM2.5 Bootstrapping

& Helsinki,

Finland

25 Hájek and Olej (2012) Pardubice micro-region, O3 Genetic algorithm

Czech Republic Fuzzy &

26 Shekarrizfard and Hadad (2012) Shiraz, Iran PM10 Ensemble ANN

27 Singh et al. (2012) Lucknow, India RSPM; SO2; Stepwise regression

NO2 & sensitivity analysis

28 Siwek and Osowski (2012) Warsaw, Poland PM10 Ensemble ANN

29 Antanasijević et al. (2013) 26 EU countries PM10 Individual smoothing

factor

30 Kadiyala et al. (2013) Toledo, USA Genetic algorithm

& sensitivity analysis

31 Rahman and Khondaker (2013) Empty Quarter, Saudi O3 Fuzzy

Arabia

32 Russo et al. (2013) Lisbon, Portugal NO2 Stepwise regression

33 de Mattos Neto et al. (2014) Helsinki, Finland Genetic algorithm

34 Elangasinghe et al. (2014) Auckland, New Zealand NO2 Genetic algorithm &

sensitivity analysis

35 He et al. (2014) Mong Kok, Hong Kong PM10; PM1 Correlation analysis

& a method by

Fletcher and Goss (1993)

36 Russo and Soares (2014) Lisbon, Portugal PM10 Stepwise regression

37 Zhou et al. (2014) Xi’an Province, China PM10; PM1 Ensemble ANN

38 Cortina-Januchs et al. (2015) Salamanca, Mexico PM10 Fuzzy

39 de Mattos Neto et al. (2015) Kallio & Vallila, PM10; PM2.5 Ensemble ANN &

Finland genetic algorithm

40 Dunea et al. (2015) Oltenia, Romania O3; PM10; Ensemble ANN

41 Dursun and Taylan (2015) Konya City, Turkey PM2.5 SO2 Fuzzy

42 Feng et al. (2015) Jing-Jin-Ji area, PM2.5 Ensemble ANN

China

43 Mishra et al. (2015) Agra, India NO2 PCA

44 Russo et al. (2015) Lisbon, Portugal PM10 Forward selection

45 Ausati and Amanollahi (2016) Sanandaj, Iran PM2.5 Fuzzy
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Table 2 continued from previous page

46 Bai et al. (2016) Chongqing, China PM10; SO2; Correlation analysis,

NO2 ensemble ANN & an

empirical formula

by Shen et al. (2008)

47 Catalano et al. (2016) London, UK NO2 Ensemble ANN &

Weight regularisa-

tion formula by

Bishop (1995)

48 Ding et al. (2016) Hong Kong NO2; NOx; Monte Carlo

O3; SO2;

PM2.5

49 Durao et al. (2016) Sines, Portugal O3 CART

50 Gong and Ordieres-Meré (2016) Hong Kong O3 Ensemble ANN

51 Hoshyaripour et al. (2016) Sao Paulo, Brazil O3 Forward selection

52 Mishra and Goyal (2016) Delhi, India O3 Correlation analysis

& fuzzy

53 Shaban et al. (2016) Doha, Qatar O3; NO2; Sensitivity analysis

SO2

54 Siwek and Osowski (2016) 2 sites in Warsaw, PM10; SO2; Forward/backward

Poland NO2; O3 selection & ensemble

ANN

55 Suleiman et al. (2016) London, UK O3; NO2; Elastic net LASSO

SO2 & PCA

56 de Mattos Neto et al. (2017) Helsinki, Finland PM2.5; PM10 Ensemble ANN &

genetic algorithm

57 Gorai and Mitra (2017) Kolkatta, India O3 Forward selection

algorithm

58 Jiang et al. (2017) Jing-Jin-Ji & Pearl PM2.5 Fuzzy

River Delta, China

59 Peng et al. (2017) Canada O3; PM10; Bootstrapping

NO2

60 Stamenković et al. (2017) 17 EU countries, USA, NOx Correlation analysis

China, Japan, Russia & sensitivity

& India analysis

61 Taylan (2017) Jeddah, Saudi Arabia O3 Fuzzy

62 Yeganeh et al. (2017) Queensland, Australia PM2.5 Fuzzy & LASSO

63 Alimissis et al. (2018) Athens, Greece NO2; NO; Correlation analysis

O3; CO;
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Table 2 continued from previous page

SO2

64 Dotse et al. (2018) Brunei Darussalam PM10 Genetic algorithm

with random forest

65 Franceschi et al. (2018) Bogota, Colombia PM2.5; PM10 PCA

66 Freeman et al. (2018) Kuwait O3 Decision Trees

67 Gao et al. (2018) Jinan, China O3 Forward selection

68 Li and Zhu (2018) China PM2.5; PM10; Fuzzy

CO

69 Mahajan et al. (2018) Taiwan PM2.5 Ensemble ANN

70 Radojević et al. (2018) Belgrade, Serbia SO2; NOx Empirical rule by

Kalogirou (2003)

71 Soh et al. (2018) 76 sites in Taiwan PM2.5 NN methods &

ensemble ANN

72 Wang et al. (2018) Beijing, China CO; NO2; Ensemble ANN

SO2; O3;

PM10; PM2.5

73 Yeganeh et al. (2018) Queensland, Australia NO2 Fuzzy & ADDRESS

74 Zhai and Chen (2018) Beijing, China PM2.5 Genetic algorithm &

ensemble ANN

75 Zhu et al. (2018) China PM2.5 Grey correlation

analysis

76 Abdullah et al. (2019) East Coast of Peninsular PM10 Empirical formula

Malaysia

77 Bai et al. (2019) Beijing, China PM2.5 Ensemble ANN

78 Balram et al. (2019) Zuoying district, Taiwan PM2.5 Forward selection

& Bayesian

79 Caraka et al. (2019) Pingtung & Chaozhou, PM2.5 PSO algorithm

Taiwan optimisation

80 Di et al. (2019) Hong Kong PM2.5 Ensemble ANN

81 Gu et al. (2019) 12 sites in Beijing, PM2.5 Ensemble ANN &

China bootstrapping

82 Liu et al. (2019a) Beijing, China PM2.5 Genetic algorithm

& ensemble ANN

83 Liu et al. (2019b) Beijing, China PM2.5; SO2; Ensemble ANN

NO2; CO

84 Macia̧g et al. (2019) London, UK PM10 Ensemble ANN

85 Mo et al. (2019) Beijing, Tianjin & PM2.5; PM10; Ensemble ANN

NO2; SO2;
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Table 2 continued from previous page

Shijiazhuang, China CO; O3

86 Qiao et al. (2019) 6 sites in China PM2.5 Ensemble ANN

87 Tao et al. (2019) Beijing, China PM2.5 Correlation analysis

88 Valput et al. (2019) Madrid, Spain NO2 Ensemble ANN

89 Van Roode et al. (2019) Bay of Algeciras, Spain NO2 Ensemble ANN

90 Wu and Lin (2019) Beijing & Guilin, AQI (PM2.5; Ensemble ANN

China PM10; CO;

O3; SO2;

NO2)

91 Zhao et al. (2019) Beijing, China PM2.5 Ensemble ANN

92 Cabaneros et al. (2020) London, UK NO2 Correlation analysis

& ensemble ANN

93 Chang et al. (2020) Several sites in Taiwan PM2.5 Ensemble ANN

94 de Mattos Neto et al. (2020) Helsinki, Finland; So PM2.5; PM10 Ensemble ANN

Paulo, Campinas, &

Ipojuca, Brazil

95 Han et al. (2020) 35 sites in Beijing, PM2.5; PM10 Ensemble ANN &

China & 24 sites in Bayesian

London, UK

96 Huang et al. (2020) Chongqing, China PM2.5; PM10; Empirical formula

O3; NO2;

CO; SO2

97 Jin et al. (2020) Beijing, China PM2.5 Ensemble ANN

98 Liu and Chen (2020) 4 sites in China NO2 Ensemble ANN

99 Ma et al. (2020) Michigan, USA PM2.5 Bayesian

100 Photphanloet and Lipikorn (2020) Nan Province, Thailand PM10 Genetic algorithm,

MDSF algorithm

& methods by

Kotu and Deshpande (2018)

& Roiger (2017)

101 Sharma et al. (2020) Queensland, Australia TSP Correlation analysis

& ensemble ANN

102 Yang and Lee (2020) Seoul, Korea PM2.5; PM10 Correlation analysis

103 Zeinalnezhad et al. (2020) Tehran, Iran CO; SO2; Fuzzy

O3; NO2

104 de Mattos Neto et al. (2021) 8 sites in Brazil & PM2.5; PM10 Ensemble ANN

Finland
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Table 2 continued from previous page

105 Dong et al. (2021) Harbin, Xi’an & PM10 Correlation analysis

Guangzhou, China & ensemble ANN

106 Ebrahimi and Qaderi (2021) Tehran, Iran SO2 Fuzzy

107 Gonzalez-Enrique et al. (2021) Bay of Algeciras, NO2 Mutual information,

Spain correlation analysis,

& Bayesian

108 Han et al. (2021) Beijing, China PM2.5 Bootstrapping &

Bayesian

109 Liu et al. (2021) Beijing, China NO2 Ensemble ANN

110 Menares et al. (2021) Santiago, Chile PM2.5 Correlation analysis

111 Mokhtari et al. (2021) Dugway Proving Ground, C3H6 Monte Carlo

Utah, USA

112 Shahid et al. (2021) Aarhus, Denmark CO; NO2; Boosting

SO2; O3;

PM2.5; PM10

113 Shams et al. (2021) Tehran, Iran SO2 Sensitivity analysis

114 Taylan et al. (2021) Jeddah, Saudi Arabia AQI (SO2; Fuzzy

CO; H2S;

O3; NOx,

PM10)

115 Wang et al. (2021) Shanghai, Hangzhou & PM2.5; PM10 Pearson correlation,

Nanjing, China Fuzzy, & relief-F

116 Yu et al. (2021) Online motor vehicle NOx Ensemble ANN

exhaust monitoring

platform in China

117 Zhang et al. (2021) Beijing, China PM2.5 Correlation analysis

118 Alkabbani et al. (2022) Al-Jahra, Kuwait PM2.5; PM10; Boruta algorithm

O3; SO2;

NO2; CO

119 Kow et al. (2022) 74 sites in Taiwan PM2.5 Ensemble ANN

120 Kristiani et al. (2022) Multiple sites in Taiwan PM2.5 Correlation analysis

121 Lin et al. (2022) Haikou, China PM2.5 Bayesian

122 Tan et al. (2022) Changsha, China PM2.5 Ensemble ANN

123 Teng et al. (2022) Shanghai, China PM2.5 Ensemble ANN

124 Tian et al. (2022) 6 sites in Chengdu, PM2.5; PM10 Correlation analysis

China & empirical formula

125 Wang et al. (2022a) Chengdu, Shenzhen & PM2.5; PM10 Ensemble ANN,

Xi’an, China Gaussian & T location-
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Table 2 continued from previous page

scale distributions

126 Wang et al. (2022b) Beijing, China PM2.5 Ensemble ANN

& fuzzy

127 Zeng et al. (2022) Beijing, China PM2.5 Ensemble ANN

128 Zheng et al. (2022) Harbin, Nanjing, & PM2.5 Ensemble ANN

Shijiazhuang, China

ADDRESS: A Distance Decay Regression Selection Strategy; AQI: Air Quality Index; BIC: Bayesian Information Criterion;

CART: Classification and Regression Trees; HC: Hydrocarbon; LASSO: Least Absolute Shrinkage and Selection Operator;

MDSF: Modified Depth-first Search; MOGA: Multi-objective Genetic Algorithm; NN: Nearest Neighbourhood; PCA: Principal

Component Analysis; PSO: Particle Swarm Optimisation; and TSP: Total Suspended Particle.

The distribution of papers by years of publication is shown in Figure 1. There has been a growing number

of articles on AP forecasting using ANNs that address model uncertainty more recently. In particular,

approximately 65% of the identified articles have been published since 2016 alone. Not much increased

activity has been observed between 2006 and 2011 while a sudden growth of activity has occurred post-2015.

However, it is worth noting that these values are still comparably lesser than the overall number of published

articles per year that deploy ANN models for AP forecasting (Cabaneros et al., 2019). Nonetheless, it is still

evident that a considerable amount of attention has been aimed toward the point prediction of AP levels

using ANN models while handling uncertainty.
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Figure 1: Distribution of papers by years of publication.
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3. Sources of Model Uncertainty

To characterise the uncertainty surrounding ANN model development, several notations need to be first

described. Any regression-type ANN model generally take the following form:

ŷ = f (x,w) + σnoise, (1)

where x ∈ RN×d represents the input vector, e.g. corresponding to N samples and d predictors, ŷ ∈ RN is

vector of model outputs, e.g. estimates of vector y ∈ RN containing the actual observations, w is the vector

of model parameters, e.g. connection weights and biases, f (·) is a function describing the dynamics between

x and y, and σnoise is the irreducible (or data) noise which directly influences model errors.

Uncertainty surrounding the development of ANN models has been characterised in a plethora of ways

yet they can be generally categorised as either aleatoric or epistemic (Kiureghian and Ditlevsen, 2009).

Aleatoric uncertainties refer to those inherent to the dynamics of systems under investigation. This includes

the stochasticity of physical and chemical properties of environmental systems, predictor excitations, and

noisiness or imperfections of the collected data. On the other hand, epistemic uncertainties occur during the

modelling stage from the lack of knowledge about the underlying system being studied, lack of data, and

development of imperfect models. Epistemic uncertainty is also referred to as model uncertainty as this is

caused by the limitations during the model development process. The two terms in Eq. (1) correspond to

the sources of model uncertainty and aleatory uncertainty, respectively. Hence, the total uncertainty of ŷ,

assuming that the two uncertainties are independent, can be estimated as follows:

σ2 = σ2
ep + σ2

al, (2)

where σ2
ep refers to the model uncertainty, σ2

al refers to the aleatory uncertainty. It is often a challenge

to classify the uncertainties encountered during the modelling stage as real-world applications like outdoor

AP forecasting involve both forms of uncertainties. This review will however limit its scope by only focusing

on model uncertainty. In particular, the authors propose to characterise model uncertainty by identifying its

sources during the building stage of models. That is, each of the steps in the ANN model development process

entails a combination of several methods, and it is reasonable to link uncertainty to all of them. As such, this

review closely highlights the link between sources of model uncertainty and the said steps. Figure 2 shows

the eight general steps for building ANN models and their relationship with the sources of uncertainty which

will be discussed in the following subsections. (Detailed information on the inner workings of ANN models

can be found from several references: (Gardner and Dorling, 1998; Maier et al., 2010; Hagan et al., 1995;
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Bishop, 2006)).

1. Data Collection

2. Data Pre-processing

3. Predictor Selection

4. Data Division

5. Model Architecture 
Selection

6. Model Structure
Selection 7. Model Training

8. Model Output
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Figure 2: Sources of uncertainty and their relationship to the ANN model development steps.

3.1. Input uncertainty

Input uncertainty results from the lack of complete knowledge on the use of appropriate input x and y

for training ANN models. Given the data-intensive nature of ANN models, input uncertainty is generally

influenced by factors such as data density and number of predictors which can lead to varied model structures,

training parameters, and irreproducible results. Data density refers to the number of samples, N , needed to

train an ANN model. Although model uncertainty is commonly regarded to be inversely proportional to data

density (Lai et al., 2022), there is no general formula for identifying the optimal amount of data needed for

training without incurring unnecessary computational costs. On the other hand, certain types of predictors,

e.g. air pollutant, meteorological, and temporal variables, have been known to better capture the important

system dynamics that ANN models attempt to simulate. However, this results in the inclusion of too few or

too many ANN model predictors, d, greatly influences input uncertainty.

3.2. Structure uncertainty

Structure uncertainty results from the simplification, ambiguity, and/or lack of information of the gov-

erning equation(s) used by ANN models to describe a real-world process (Shrestha and Solomatine, 2008).

Due to the empirical nature of ANN models, dealing with structure uncertainty seems inevitable. Structure
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uncertainty arises from the selection of the following: (i) model architecture, e.g. feedforward, recurrent,

etc., (ii) transfer function, e.g log-sigmoid, hyperbolic tangent, linear, etc., and (iii) structure, e.g. number of

hidden layers and nodes. (It should be noted that the term ’structure’ here has been used in the literature in

two different ways: as a governing formula of a model, and as a specific term among ANN modellers referring

to the dimension of one or more hidden layers.) Model architecture and transfer function both govern the

functional relationship f (·) in Eq. (1) which then determines the model structure, e.g. the dimension of w.

As a result, structure uncertainty directly influences the uncertainty surrounding of model parameters.

3.3. Parameter uncertainty

Parameter uncertainty refers to the lack of a general method for identifying the optimal set of network

parameters w as well as the selection of non-optimum algorithms for training ANN models. A common

practice to address parameter uncertainty is the assignment of a range of training parameters from which

random values are then initially selected (Cabaneros et al., 2019; Hagan et al., 1995). However, such training

values are impossible to replicate due to the stochastic nature of most training algorithms. Data division also

has a great impact on the level of parameter uncertainty. The selection of a subset of the input data for model

training, e.g. D = {xn, yn}nD
n=1 given nD training samples, also affects how the network connection weights

are initialised and optimised. Various data division schemes, e.g. ad-hoc, stratified, v-fold cross-validation,

and random splitting methods, bring varying levels of complexity to training parameters. Since the number

of predictors is directly proportional to the number of connection weights that need to be calibrated, input

uncertainty also directly impacts the magnitude of parameter uncertainty.

3.4. Output uncertainty

Output uncertainty pertains to the lack of reliability of ANN model results either due to the use of

inappropriate validation techniques or the inability to replicate the same accuracy of point predictions.

Directly linked to parameter uncertainty, output uncertainty limits the ability of ANN models to produce

similar quality of results. Output uncertainty is often referred to as the total model uncertainty which is

described as the sum of all uncertainties surrounding all steps in the ANN model development process, e.g. the

first term in Eq. 2. However, the majority of the identified validation techniques in the literature only deal

with the measurement of the accuracy of the prediction outputs (using the training and testing sets) (Maier

et al., 2010). Consequently, the model accuracy indices presented in most case studies are difficult to replicate

which often leads to the difficulty of future modellers to build upon previous results.
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3.5. Results

As shown in Figure 3, input uncertainty was the most addressed type of uncertainty source, e.g. 112

times, compared with 59, 52, and 14 occasions on which parameter, output, and structure uncertainty sources

were addressed, respectively. Input uncertainty was addressed alongside parameter and output uncertainties

in 43 of the 112 instances. Furthermore, structure and parameter uncertainties were simultaneously dealt

with on 5 occasions. However, the incorporation of all uncertainty sources only occurred twice in this review.
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Figure 3: Distribution of papers by source(s) of uncertainty.

4. Methods for addressing model uncertainty

In this review paper, the methods used to address model uncertainty have been classified into eight types,

namely (1) Bootstrapping, (2) Bayesian, (3) Fuzzy method, (4) Monte Carlo simulation, (5) Optimisation-

based, (6) Sensitivity analysis, (7) Ensemble, and (8) miscellaneous approaches. The classification is similar to

those presented in Alvisi and Franchini (2011) and Kasiviswanathan and Sudheer (2017). However, separate

types were assigned to ensemble approaches since their use has been prevalent in the field of AP forecasting

during the time period that this review covers.

4.1. Bootstrap method

The bootstrap method (or bootstrapping) is an intensive resampling technique with replacement that

operates under the assumption that input samples (or bootstraps) follow the statistical characteristics of
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the population and mimic the underlying random component of the modelled process (Kasiviswanathan and

Sudheer, 2017; Efron, 1979). Bootstrapping is carried out by sampling various realisations of input-output

patterns to estimate statistical characteristics such as bias, variance, distribution functions, and confidence

intervals (Belayneh et al., 2016). As such, bootstrapping has been applied to estimate the confidence interval

of the AP predictions which can be used to quantify output uncertainty (see Figure 4).

Bootstrap
method

ANN

ANN

ANN

Confidence
intervals

Figure 4: General scheme for handling uncertainty using the bootstrap method.

In theory, the utilisation of more bootstraps should provide a more reliable estimation of the confidence

bounds on the model error indices. However, there is no general formula for determining the optimal number

of bootstraps. Table 3 provides details of the studies that employed the bootstrap method, including the

different number of bootstrap samples used and the statistical indices computed for each of the bootstrap

samples. Three studies utilised at least 5000 bootstrap samples which is considered a good practice (Chernick,

1999), although the computational costs should always be considered (Bowden et al., 2005).

Table 3: List of studies that utilised bootstrap samples.

No. Authors (year) No. of bootstraps Indices studied

1 Grivas and Chaloulakou (2006) 100 MAE, RMSE, r, IA

2 Ibarra-Berastegi et al. (2008) 10000 R2, d1, FA2, RMSE

3 Noori et al. (2010) 1000 d-factor

4 Voukantsis et al. (2011) 1000 IA

5 Peng et al. (2017) 5000 SS

6 Han et al. (2021) 10000 ARE

The reported studies also revealed the improved reliability of their model results after adopting the boot-

strap method. Grivas and Chaloulakou (2006) calculated the standard error of their calculated performance

indices from the test results of their predictive models. Their findings revealed that the associated standard

error from the bootstraps of the best-performing models were also the lowest values. Ibarra-Berastegi et al.

(2008) evaluated the overall performance of their models by estimating the 95% confidence levels of the
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statistical indices obtained from the model results. The authors carried out this method if the mean values

of the said indices for the two models are quite similar. Several studies also applied a similar methodology

involving the 95% confidence intervals of their model results and expressed them as error bars. The authors

used any confidence intervals lying entirely above zero as indicators that a model performs significantly better

than the benchmark ones (Voukantsis et al., 2011; Peng et al., 2017; Han et al., 2021). Noori et al. (2010)

accounted for the output uncertainty of their ANN models by showing the plots of the range 95% confidence

intervals for their AP level estimates. The authors calculated the 95% prediction uncertainty (95 PPU) of

their developed models by finding the 2.5th and 97.5th percentiles of the cumulative distribution of every

simulated AP level result. Metrics such as the d-factor (Abbaspour et al., 2007), e.g. the average distance

between the upper and lower 95 PPU, and R2 helped the authors determine their best-performing model.

4.2. Bayesian method

Bayesian method is an approach based on Bayes’ theorem which states that any prior beliefs regarding

an uncertain quantity are updated, on the basis of new information, to yield a posterior probability of the

unknown quantity. In detail, the method begins by defining the network weights w as a probability density

function (PDF). A prior PDF, p0(w), is assigned to the network parameters which is then updated using the

training data D and Bayes’ theorem to yield the posterior PDF, p (w|D), as

p (w|D) =
p (D|W) p0 (w)

p (D)
. (3)

By means of the posterior distribution, the predictive probability distribution of the model output can then

be estimated as follow

p (ŷ|D) =

∫
p (ŷ|x,w) p (w|D) dw. (4)

The integration of the Bayesian method with ANN models, or Bayesian Regularised Neural Network (BRNN),

was first employed by Mackay (1992) and Neal (1992) to overcome model overfitting and complexity. Fig-

ure 5 illustrates how BRNN models vary from standard ANN models which utilise only a single optimum

vector w.
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Figure 5: Traditional deterministic ANN models vs. Probabilistic BRNN models.

In summary, Figure 6 shows the general schematic of how BRNN models are employed by case studies to

handle parameter uncertainty.

Bayes'
theorem ANN

Figure 6: General scheme for handling uncertainty using the Bayesian method.

The use of BRNN models also provides predictions with extra information regarding the precision of

the outputs in the form of error bars of the confidence intervals which are very important metrics if the

reliability of model results is of particular concern (Bishop, 1995). Table 4 reveals a few identified studies

that employed the Bayesian regularisation method. All identified studies except the one by Solaiman et al.

(2008) reported superior model performances of BRNN models when compared to a range of benchmark

models (from regression to deterministic models).

Table 4: List of studies that employed BRNN models.

No. Authors (year) Benchmark model(s) Results

1 Karakitsios et al. (2006) Semi-empirical DET The evaluation parameter of the BRNN

model was better than the benchmark one.

2 Solaiman et al. (2008) MLP, TLFN and RNN The performance of the BRNN model

is not superior to the benchmark ones.

However, the BRNN model is less com-

plex in terms of number of hidden ne-
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Table 4 continued from previous page

urons.

3 Balram et al. (2019) Linear SVM, LIN, Fine The performance of the BRNN model with

tree, Bagged trees, and forward predictor selection provided

Gaussian process regression the lowest MSE, RMSE and MAE than

those from the benchmark ones.

4 Han et al. (2020) LASSO and RNN with An ensembling scheme which involved the

GRU units combining the results of two Bayesian-

regularised RNN models based on corres-

ponding uncertainty measures provided

the best results.

5 Ma et al. (2020) LASSO, Ridge, ARIMA, The performance of the Lag-FLSTM model

SVR, ANN, RNN and based on Bayesian optimisation yielded

LSTM the lowest RMSE values compared to

the benchmark ones.

6 Gonzalez-Enrique et al. (2021) ANN LSTM models with Bayesian optimisation

provided the best results.

7 Han et al. (2021) SVR and RF The Bayesian-regularised LSTM model

outperformed the benchmarks models.

8 Lin et al. (2022) AR, MA, ARMA, ANN, The causal CNN model tuned by Bayesian

SVR, GRU, LSTM, and optimisation achieved the best performance.

causal CNN

AR: Autoregressive: ARMA: Autoregressive Moving Average; DET: Deterministic; GRU: Gate Recurrent Unit; TLFN: Time-

lagged feed-forward Network; SVM: Support Vector Machine; LIN: Linear Regression; ARIMA: Autoregressive Integrated Moving

Average; SVR: Support Vector Regression; and LSTM: Long Short-term Memory units.

4.3. Fuzzy method

Fuzzy method is based on fuzzy logic (FL) that operates by using if-then rules. FL deals with high-level

reasoning using linguistic information acquired from domain experts. As such, FL provides approximate

reasoning and explanation abilities which are important attributes of models employed in real-life operations

especially air pollution forecasting (Mishra and Goyal, 2016). An FL-based system has three main phases:

(1) fuzzification, (2) inference, and (3) defuzzification (see Figure 7). The fuzzification process is where
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the numerical values of the predictors are transformed into membership functions (MFs). Various types of

MFs include the triangular, Gaussian, and trapezoidal. The number and type of MFs per predictor are

usually determined empirically and can be decided by experts on the basis of experiment, observation, and

experience (Mishra and Goyal, 2016). The Gaussian MF which is based is commonly used due to the nonlinear

dynamics between predictors. Inference then follows as the membership grades are processed through a set of

if-then rules to generate a fuzzy output. Finally, defuzzification takes place as the fuzzy output is transformed

into a quantitative or qualitative output (Yeganeh et al., 2018).

Fuzzification Inference Defuzzification

In
pu

t

O
ut
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t 

Fuzzy system

Figure 7: Structure of a fuzzy logic system (adapted from Masood and Ahmad (2021)).

However, the fuzzy method lacks the self-learning capabilities exhibited by ANN models. On the other

hand, ANN models are not capable of interpreting linguistic information (Nunnari et al., 1998; Pao, 1989).

The combination of fuzzy principles and ANNs, e.g. the adaptive neuro-fuzzy inference system (ANFIS), can

therefore analyse any form of information, e.g. numeric, linguistic and logical. This makes ANFIS models

capable of addressing input uncertainty by revealing the influence of their model inputs on their outputs

according to the presented if-then rules. Table 5 provides a list of studies that employed ANFIS models

in forecasting AP levels alongside the type of MFs they utilised. However, the identified papers only fo-

cused on improving the accuracy of ANFIS model predictions (similar to the findings of a related review

by Kasiviswanathan and Sudheer (2017)).

Table 5: List of studies that employed ANFIS models.

No. Authors (year) ANFIS model features

1 Morabito and Versaci (2003) Gaussian MF

2 Yildirim and Bayramoglu (2006) Four Gaussian MFs per input

3 Jain and Khare (2010) Three Gaussian MFs per input

4 Noori et al. (2010) Five to seven Gaussian MFs per input

5 Dursun and Taylan (2015) Five Gaussian MFs per input

6 Mishra and Goyal (2016) Four Gaussian MFs per input

7 Jiang et al. (2017) Twenty-four to Thirty-two fuzzy rules
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Table 5 continued from previous page

8 Taylan (2017) Five fuzzy rules

9 Yeganeh et al. (2017) Gaussian MFs

10 Yeganeh et al. (2018) Gaussian MFs

11 Zeinalnezhad et al. (2020) Fifteen Gaussian MFs per input

12 Ebrahimi and Qaderi (2021) Eight Gaussian MFs per input

13 Taylan et al. (2021) Gaussian MFs

14 Wang et al. (2021) Number of fuzzy rules is auto-adjusted

interval type-2 quantum MF

15 Wang et al. (2022b) Gaussian MFs

4.4. Monte Carlo simulation

Monte Carlo simulation (MCS) is a sampling technique used for obtaining a probabilistic approximation

to the solution of an optimisation model (Metropolis and Ulam, 1949; Rubinstein, 1981). The method

operates by sampling different realisations of model inputs and/or parameters by assigning the ranges and

PDF of each predictor (Kasiviswanathan and Sudheer, 2017). As illustrated in Figure 8, the PDFs of each

predictor are then propagated through f(·) in order to yield the PDF of the model predictions ŷ. As such,

MCS has been performed to handle the input and output uncertainty of ANN models.

Sampling
method

ANN

ANN

ANN

Figure 8: General scheme for handling uncertainty using Monte Carlo simulation.

The application of MCS for uncertainty analysis in AP forecasting with ANN models was only reported

three times in this paper. Firstly, Ding et al. (2016) carried out MCS to address the parameter uncertainty
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when developing their ANN models trained via sparse-response back-propagation algorithm. The authors

determined the mean performance of their proposed models based on ten different patterns of weights and

biases. Secondly, Noori et al. (2010) performed MCS to quantify the output uncertainty of their developed

ANN and ANFIS models. The authors initially generated random samples according to the probability

distribution on which their model inputs are based, yielding thousands of model outputs. The authors

performed the scheme until the results of a new run do not affect the probability distribution of the output

variable. The authors used two metrics in their uncertainty analysis, namely, the d-factor (Abbaspour et al.,

2007) and the 95 percent prediction uncertainties (95 PPU). The authors also utilised their MCS results

to provide plots of the range 95% confidence intervals for their model forecasts during the training stage.

Finally, Mokhtari et al. (2021) incorporated uncertainty quantification methods into the predictions of their

proposed CNN-LSTM models. The authors constructed prediction intervals (PIs) for their predictions using

MCS dropout and quantile regression methods. Specifically, two metrics for PIs, e.g. prediction interval

coverage probability (PICP) and mean prediction interval width (MPIW), were considered in the study.

4.5. Genetic algorithm

Genetic algorithm is an optimisation method based on the idea of the survival of the fittest from the

mechanics of genetics. It provides robust solutions for highly complex, non-linear search and optimisation

problems (Holland, 1975). Figure 9 illustrates the flowchart of the standard processes involved when per-

forming genetic algorithm. The algorithm operates by initialising a competitive set of possible solution

candidates, e.g. chromosomes, and then the solutions are set through the process of natural selection. The

solution candidates are then evaluated through a fitness function (or objective function) which ranks the

chromosomes in the population. Fitness functions are formulated depending on the problem being solved.

The selection of parent chromosomes is then performed which entails two parents for the crossover and the

mutation. Crossover involves the exchange of information between two parents. In the mutation stage, the

genes of the chromosomes of the crossed offspring are changed. The entire process is carried out until a

certain condition is met (Michalewicz, 1996).
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Figure 9: A diagram of the general framework of genetic algorithm.

Genetic algorithm has been integrated with ANN models for AP forecasting to address model uncertainty.

For instance, the use of the algorithm to optimise model weights and biases was observed 5 times (Ibarra-

Berastegi et al., 2008; Feng et al., 2011; Kadiyala et al., 2013; de Mattos Neto et al., 2017; Zhai and Chen,

2018). The said papers reported the superior performance of ANN models when trained using the method.

However, the use of genetic algorithm does not always guarantee superior model performance although despite

being able to reduce model complexity (Grivas and Chaloulakou, 2006). The method was also carried out

to address input uncertainty via predictor selection on 7 occasions (Grivas and Chaloulakou, 2006; Hájek

and Olej, 2012; Elangasinghe et al., 2014; Siwek and Osowski, 2016; Dotse et al., 2018; Liu et al., 2019b;

Photphanloet and Lipikorn, 2020). On the other hand, Elangasinghe et al. (2014) employed the method

to optimise the step size, momentum rate and processing elements of their proposed ANN models, hence

tackling parameter uncertainty. Finally, the use of genetic algorithm to handle both input and parameter

uncertainties was observed in this work three times. Ibarra-Berastegi et al. (2008) employed the method

during data division to optimise the combination of training and validation sets in terms of mean, standard

deviation, maximum and minimum values. The authors also used the method to identify the most relevant

predictors of their proposed models. de Mattos Neto et al. (2014) employed the method to optimise several

variables of their MLP model such as the number of predictors (in terms of time lags), number of hidden
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nodes, and training parameters. A similar method for addressing both input and parameter uncertainties

was also carried out by de Mattos Neto et al. (2015) in their development of a hybrid MLP model.

4.6. Sensitivity analysis

Sensitivity analysis is a general method used for assessing the relative importance of variables selected

as inputs for an ANN model. The method is usually performed to reduce network complexity by eliminating

unnecessary predictors while keeping the significant ones. By examining the variations of the model output

by the minor perturbations of the predictors, sensitivity analysis can account for the input uncertainty when

building ANN models.

In the following, the applications of sensitivity analysis for predictor selection during the development

of ANN models are presented:

• Niska et al. (2005) performed a sensitivity analysis alongside MOGA to identify an optimal set of

predictors for their MLP models. The authors defined the sensitivity of their predictor subset as the

absolute difference between the model performance achieved by using a predictor subset and the model

performance achieved when using all predictors.

• Solaiman et al. (2008) selected the predictors for their models based on linear autocorrelation and partial

autocorrelation analysis and nonlinear sensitivity analysis. They calculated a metric called the relative

sensitivity of a predictor which is the ratio between the standard deviation of the model outputs and the

standard deviation of the predictor. The authors initially performed partial autocorrelation analysis

between past predictor and predictand values to identify significant time lags. Secondly, sensitivity

analysis was then applied for the final stage of screening predictors according to the identified significant

lags. Zito et al. (2008) carried out a sensitivity analysis by studying the response of their models to

small and equal changes of the predictors. They found out that if an increase in predictor value causes

a significant change to the model output, the examined predictor should be retained in the model.

• Kadiyala et al. (2013) carried out predictor selection by performing analysis of variance (ANOVA)

alongside the regression tree method.

• Shaban et al. (2016) investigated the influence of incorporating multiple types of predictors, e.g tem-

poral, meteorological, and gaseous, on the performance of their models. They used metrics such as

prediction trend accuracy (PTA) and RMSE to assess the results of the models trained using multiple

combinations of predictors.

• Stamenković et al. (2017) performed sensitivity analyses of their model predictors through correlation

analysis in conjunction with calculating the variance inflation factor (VIF) which is based on the
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linear relationship between predictors. The authors sequentially removed predictors with highest the

VIF values which indicate multicollinearity between predictors.

• Shams et al. (2021) performed a sensitivity analysis by setting the value of one predictor within the

range of the standard deviation while the rest were fixed at their mean values. Then, the standard

deviation of the model outputs for each predictor changes was measured as model sensitivity for that

predictor. The authors then selected the variables with high values in the output standard deviation.

On the other hand, sensitivity analysis is usually performed in conjunction with other methods.

4.7. Ensemble approach

Ensembling is a modelling approach that integrates the prediction results of multiple models trained on

the training set into one final output. One main advantage of the approach is the ability of the ensemble

model (or meta-learner) to possess the individual strengths and simultaneously overcome the limitations of the

single models (base learners) (Chen et al., 2008). One of the key limitations exhibited by single models is the

inability to accurately predict peak AP levels (Niska et al., 2005; Grivas and Chaloulakou, 2006; Kolehmainen

et al., 2001). However, the independence of the base learners and their comparable performance have been

pointed out as two important conditions for the ensemble model to perform well (Haykin, 1999; Kuncheva,

2004). The ensemble approach creates multiple input-output realisations of the examined AP system which

could be used to account for the input, parameter, and output uncertainties when developing the models.

In particular, the resulting ensemble model will contain some diversity and the variance of its predictions

can be interpreted as an estimation of model uncertainty (Lai et al., 2022). This review classifies ensemble

ANN models into two types, namely, the model- and data-intensive ensemble models (see Figure 10). Under

the model-intensive type, the input data are being fed to train multiple base learners and the results are used

as inputs to the meta-learner. On the other hand, the data-intensive type initially extracts important features

of the input data to train the base learners and then integrates the multiple outputs based on the feature

extractor technique used. It is worth noting that the base learners need not consist of entirely ANN-based

or ML-based models in general. As shown in the discussion below, many ensemble models are comprised of

linear (statistical) and non-linear (ML) base learners.
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(a) Model-intensive 

(b) Data-intensive 

Figure 10: Diagrams of the types of ensemble modelling approaches.

Table 6 shows the identified works that adapted the ensemble modelling approach. The review has

identified a variety of meta-learners employed to develop ensemble models. The majority of the said meta-

learners are ANN-based such as MLP, SVR, ELM, and LSTM models. Other non-ANN meta-learners have

been identified including RF fusion and weighted averaging (Siwek and Osowski, 2016), and linear regression

and normal copula-based models (de Mattos Neto et al., 2021). Other forms of base learners to create ensemble

models were also identified in this review. Catalano et al. (2016) employed an ensembling approach by

choosing the maximum of the predictions of their base learners since they had the tendency to underestimate

pollution peaks. Gong and Ordieres-Meré (2016) employed a stacking ensemble algorithm that linearly

combined the results of their base learners. The authors used the cross-validation data and least squares

under non-negativity constraints to determine the coefficients of the linear combination. Di et al. (2019)

utilised a generalised additive model that accounted for geographical differences to predict daily PM2.5 levels

at a resolution of 1 km × 1 km across a certain geographical area through ensembling. In particular, the

authors developed an ensemble model which incorporated the level of AP concentration against thin-plate

splines of latitude and longitude. As such, the results of their base learners were geographically-weighted

28



instead of the traditional approach of using constant weights for each base learner. Similarly, Valput et al.

(2019) used an ensemble approach to provide local predictions using regional numerical AP predictions.

Their proposed model utilised the forecasts of seven neighbouring air quality models and combined them

by calculating their average and weighted-average values. Finally, Sharma et al. (2020) adapted a method

that involved entirely non-ANN base learners, e.g. RF, Volterra, M5 tree, and MLR models, and an LSTM

meta-learner.

Table 6: List of papers that utilised the ensemble modelling approach alongside the details of the base learners and meta-learners
involved.

No. Authors (year) Model-intensive type

Base learner(s) Meta-learner(s)

1 Siwek and Osowski (2012) MLP, SVR, Elman, RBF, ARX, ANN and SVR

W-MLP, W-SVR, W-Elman,

and W-RBF

2 Gong and Ordieres-Meré (2016) SVM, ANN, RF, CART, GBM, Linear stacking ensemble

Adaboost and Bagging

3 Catalano et al. (2016) ANN and SARIMAX Max function

4 Siwek and Osowski (2016) MLP, RBF, and SVR RF fusion and weighted

averaging

5 Wang and Song (2018) LSTM SVR

6 Soh et al. (2018) ANN and LSTM ANN

7 Di et al. (2019) ANN, RF, Gradient boosting Geographically weighted

generalised additive model

8 Gu et al. (2019) SVR SVR-based regression for

stacking

9 Van Roode et al. (2019) LASSO and IDW ANN

10 Zhao et al. (2019) LSTM (using spatial data) ANN

11 Valput et al. (2019) MLP, deep MLP, LSTM, Averaging and weighted

CNN, and LIN averaging model

12 Chang et al. (2020) LSTM LSTM

13 Han et al. (2020) Bayesian RNN Uncertainty-based fusion

14 Sharma et al. (2020) RF, Volterra, M5 model LSTM

tree, and MLR
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Table 6 continued from previous page

15 de Mattos Neto et al. (2021) AR, ARMA, IIR, MLP, RBF, LR, LR with predictor

ELM, ESN, and ANFIS selection, MLP, ELM,

ELM with CR, and NC

16 Kow et al. (2022) Multiple CNNs ANN

17 Tan et al. (2022) Graph attention network LSTM-CNN

18 Wang et al. (2022a) ELM, BPNN, SVM, Elman Weighting algorithm

Data-intensive type

Feature learner(s) Feature extractor(s)

19 Prakash et al. (2011) Elman Symlet(8) wavelet

20 Shekarrizfard and Hadad (2012) ANN Wavelet transform

21 Dunea et al. (2015) ANN Db3 Daubechies wavelet

22 Feng et al. (2015) MLP Wavelet transform

23 Bai et al. (2016) MLP SWT

24 Bai et al. (2019) LSTM, ANN EMD

25 Liu et al. (2019a) ANN Db1 Daubechies wavelet

26 Liu et al. (2019b) NARX EWT

27 Macia̧g et al. (2019) Spiking ANN Clustering algorithm

28 Qiao et al. (2019) SAE-LSTM Wavelet transform

29 Wu and Lin (2019) LSTM Wavelet transform

30 Mo et al. (2019) ELM CEEMDAN

31 Cabaneros et al. (2020) LSTM Daubechies wavelets

32 de Mattos Neto et al. (2020) MLP, RBF, ELM and ESN Partition methods

33 Jin et al. (2020) GRU EMD with CNN classifier

34 Liu and Chen (2020) ELM EWT

35 Dong et al. (2021) SVR, BPNN, MLP, Incremental Noise-assisted EMD

ELM, GRU, and LSTM

36 Liu et al. (2021) LSTM, ANN, Bi-LSTM DWT

37 Yu et al. (2021) LSTM CEEMDAN

38 Teng et al. (2022) Bi-LSTM EMD

39 Zeng et al. (2022) Nested LSTM Extended SWT
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40 Zheng et al. (2022) GRU Wavelet transform, Sample

entropy and VMD

ARMA: Autoregressive and Moving Average; ARX: Auto-regressive with external variables; BPNN: Backpropagation

Neural Network; CEEMDAN: Complete Ensemble Empirical Mode decomposition with Adaptive Noise; CR: Coeffi-

cient of regularization; ELM: Extreme Learning Machine; EMD: Empirical Mode Decomposition; ESN: Echo State

Network; EWT: Empirical Wavelet Transform; GBM: Gradient Boosting Machine; GRU: Gated Recurrent Unit;

IDW: Inverse Distance Weight; IIR: Infinite Impulse Response Filter; LR: Linear regression; NC: Normal Copula-

based; RBF: Radial Basis Function; RF: Random Forest; SAE: Stacked Autoencoder; SARIMAX: Seasonal Auto-

regressive Integrated moving average with exogenous variables; SWT: Stationary Wavelet Transform; VMD: Varia-

tional Mode Decomposition; W-Elman: Wavelet-based Elman; W-MLP: Wavelet-based MLP; W-RBF: Wavelet-based

RBF; and W-SVR: Wavelet-based SVR.

A few special cases of model-intensive ensemble methods have also been found in this review. For

instance, Mahajan et al. (2018) proposed a hybrid ensemble approach that utilises both linear and nonlinear

base learners. In particular, the authors initially used an ARIMA model to capture the linear tendencies of

their PM2.5 time series. The model residuals, e.g. difference between actual time series and model results,

were then fed to a lagged-input ANN model. The results of both base learners were then given equal weights

before they were combined. Gu et al. (2019) employed several SVR models as base learners and then applied

pruning techniques to eliminate the negative learners. The results of the selected base learners were then fed

to an SVR-based regression model for stacking. Finally, Han et al. (2020) employed an approach of integrating

the results of two Bayesian RNN base learners according to their uncertainty measures. In particular, the

authors employed two weighting methods to fuse the results of the base learners, (1) uncertainty-averaged

outputs, and (2) selection of a base learner output with the lowest uncertainty measure.

Under the data-intensive category, the most commonly-used feature extractors are wavelet-based tech-

niques (see Table 6). For instance, many authors employed wavelet transformation to decompose their original

data into several coefficients which were then fed to their base learners (or feature learners, more accurately

speaking). Wavelet decomposition techniques were especially applied to improve the performance of plain

ANN models when dealing with peak AP concentration levels (Shekarrizfard and Hadad, 2012; Feng et al.,

2015). Other similar feature extractors were utilised such as Empirical Mode Decomposition (EMD) (Bai

et al., 2019) and its variants such as the Noise-assisted EMD (Dong et al., 2021), and Clustering algo-

rithm (Macia̧g et al., 2019). Overall, the general conclusion of the identified papers suggested the superiority

of their proposed ensemble models to the involved base learners. However, the trade-off between the overall

complexity of ensemble models and performance should be carefully accounted for especially in real-world
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scenarios where computational cost is a major constraint (Cabaneros et al., 2019).

A few special cases of data-intensive ensemble methods have also been identified. For instance, de Mat-

tos Neto et al. (2017) employed an approach that involved forecasting both the AP time series and the model

residuals. The authors only conducted the latter if the residual is not white noise, e.g. a series of independent

and identically distributed random values with zero mean and constant variance. A nonlinear base learner,

e.g. MLP model, was utilised for the initial forecasting while both linear and nonlinear ones, e.g. ARIMA,

MLP, and SVR models, for the residual. The approach falls under the ensemble type since both forecasting

results were all combined using an MLP model. Earlier work by de Mattos Neto et al. (2015) applied the

same method which included the forecasting of the model residuals. However, the work was model-intensive

in that the residuals of the final ensemble model output were further fed to a series of MLP models until the

scheme generates residuals having a white noise behaviour. Finally, de Mattos Neto et al. (2020) addressed

the seasonality of PM2.5 and PM10 pollutants by decomposing the time series into non-overlapping monthly

partitions and then applied several models, e.g. as meta-learners. Their decomposition method involved

creating n subseries from the original time series according to the coefficient of variation of each subseries.

4.8. Miscellaneous approaches

Several other methods that address model uncertainty have also been identified in this review and they

are briefly described below:

• Several techniques have been adapted to identify the most significant model predictors, hence tackling

input uncertainty: ADDRESS method (Yeganeh et al., 2018), Boruta algorithm (Alkabbani et al.,

2022), Correlation analysis (Perez and Salini, 2008; He et al., 2014; Mishra et al., 2015; Bai et al., 2016;

Stamenković et al., 2017; Alimissis et al., 2018; Tao et al., 2019; Dong et al., 2021; Menares et al.,

2021; Zhang et al., 2021; Kristiani et al., 2022; Tian et al., 2022) Fourier analysis (Hrust et al., 2009),

Grey Correlation analysis (Zhu et al., 2018), Individual Smoothing Factors (Antanasijević et al., 2013),

LASSO (Yeganeh et al., 2017), MDSF algorithm (Photphanloet and Lipikorn, 2020), and Stepwise

Regression (Ordieres et al., 2005; Singh et al., 2012; Russo et al., 2013; Russo and Soares, 2014; Siwek

and Osowski, 2016; Agirre-Basurko et al., 2006).

• Many approaches have also been employed to address structure uncertainty by determining the optimal

number of nodes in the hidden layer and consequently reducing overall model complexity. Dutot et al.

(2007) employed a stepwise method using BIC-like information criterion to tackle structure uncertainty

by determining the optimal number of nodes in the hidden layer. Chelani et al. (2002) convergence

criteria according to the error minimization criterion, and a formula by Kinnebrock (1995). Catalano
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et al. (2016) applied the weight generalisation formula by Bishop (1995) which utilises an extra error

term that penalises small weights during model training. Finally, Agirre-Basurko et al. (2006) employed

a generalisation rule by Amari et al. (1997) in which the model is considered optimally trained when

the ratio of the number of training samples to the number of connection weights exceeds 30.

• Hasham et al. (2004) adopted an approach based on factorial design concepts to assess the influence

of model predictors, structure and parameters on the model output (Box et al., 1978). The approach

operates by moving various input factors are moved between high and low settings in combination with

other input factors, hence investigating the interaction of uncertainties between the said factors.

• Empirical formulas which provide either or both the upper and lower bounds of the optimal number of

of nodes in the hidden layer were also used: formula proposed by Fletcher and Goss (1993) (He et al.,

2014; Abdullah et al., 2019), empirical formula by Shen et al. (2008) with trial and error (Bai et al.,

2016), empirical rule by Kalogirou (2003) (Radojević et al., 2018), a formula by Kotu and Deshpande

(2018) and Roiger (2017) (Photphanloet and Lipikorn, 2020), and a method by Tian et al. (2022).

• Dutot et al. (2007) used a metric called leverage which provides a confidence interval of the predicted

values of their models to address output uncertainty. Leverage is a metric used to assess the effect

of a particular observation on the fitted regression according to the position of the observation in the

predictor space Monari and Dreyfus (2002).

• Powerful swarm intelligence algorithms have also been used to optimise the training parameters of

ANN models. For instance, Mo et al. (2019) utilised the Whale Optimisation meta-heuristic algorithm

to obtain the best parameters of their proposed ensemble ELM models. Caraka et al. (2019) employed

both PSO and backpropagation algorithms to train their ANN models.

• Shahid et al. (2021) employed a boosting algorithm to improve the results of their initial model,

e.g. SVR model, to address input uncertainty. The boosting technique works by assigning weights

to each instance of the input data and using them to train the SVR model, then identifying and up-

dating the weights of the misclassified instances. The weighted instances are finally passed to several

models including MLP, RF, Decision tree, MLR, Ridge regression, Gradient Boosting and SVR models

for the final training and prediction tasks.

• Wang et al. (2022a) applied a probabilistic approach by calculating the distribution of their model

prediction errors and comparing them to create confidence intervals of results. The approach was based

on the Gaussian and T location-scale distributions which were determined according to the R2, PE, and
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RMSE indices. The authors also calculated three metrics such as average coverage error (ACE), predic-

tion interval normalized average width (PINAW) and prediction interval coverage probability (PICP)

to measure the interval predictions. Zheng et al. (2022) decomposed their original PM2.5 time series

into several subseries using wavelet transforms and employed the reinforcement learning algorithm.

e.g. Q learning, for the predictor selection of each subseries.

4.9. Results

The distribution of papers by the methods used to handle model uncertainty is shown in Figure 11.

The majority of the identified papers, e.g. 45 occasions, adapted the ensemble modelling approach to address

uncertainty. Among these, approximately 69% have been recently published since 2019 indicating the emer-

gence of more sophisticated approaches as ANN computing technologies also become more powerful. Fuzzy

systems were applied alongside ANN models 20 times, while correlation analysis for predictor selection was

applied 18 times. The utilisation of the global search procedure, e.g. genetic algorithm, occurred 15 times,

followed by sensitivity analysis of trained models (11 times). The number of papers in which bootstrapping,

Bayesian, and empirical methods were applied was uniform, varying between 6 to 7, compared with only three

instances where the MCS was applied. Finally, the use of alternative methods for addressing uncertainty was

reported 28 times.
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Figure 11: Distribution of papers by methods used to address and/or quantify model uncertainty.

Table 7 presents the pros and cons of the identified methods that can address model uncertainty. Note

that the methods falling under ’miscellaneous approaches’ were excluded from the summary. The use of the
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said methods has been reported to improve the forecasting accuracy of ANN models which is usually the

primary motivation of most studies. This is especially true for those methods handling input and parameter

uncertainties to reduce model complexity. However, it can be seen that not all methods can directly quantify

model uncertainty. For instance, fuzzy systems, GA, and sensitivity analysis can only account for uncertainty

by addressing the ambiguity arising from predictor selection and parameter optimisation. Nonetheless, the use

of such methods is still considered a good practice when compared to the sole adoption of ad-hoc or knowledge-

based methods (Cabaneros et al., 2019; Maier et al., 2010). Another commonly identified drawback is the lack

of a one-size-fits-all approach for implementing the methods. This could be a potential stumbling block to

future researchers from addressing uncertainty when building ANN forecasting models. Finally, the majority

of the methods tend to demand higher computational costs when implemented. For instance, bootstrapping,

Monte Carlo simulation, GA, and ensembling involve the training of multiple ANN models.

Table 7: Pros and cons of the identified methods that can handle model uncertainty.

Methods Pros (+) / Cons (-)

Bootstrapping + Can directly quantify output uncertainty via confidence intervals of the

model predictions

- No general formula for determining the optimal number of bootstraps

- Can be computationally expensive due to multiple model trainings

Bayesian + Can directly quantify parameter uncertainty via error bars of the confi-

dence intervals of model predictions

+ Can enable ANN models yield superior results

- Can be computationally expensive when being implemented

- Difficult to perform as several hypotheses regarding weight distributions

are needed

Fuzzy + Can provide superior results when applied alongside ANN models

- Difficult to perform as good memberships functions need to be identified

- Does not directly quantify input uncertainty

Monte Carlo + Can directly quantify parameter and output uncertainties

- Can be computationally expensive due to multiple model trainings

- No general scheme for implementing it

Genetic algorithm + Can provide robust optimisation solutions

+ Can improve model performance by addressing model complexity

- Does not directly quantify input and/or parameter uncertainties
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Table 7 continued from previous page

- Can be computationally expensive when implemented

Sensitivity analysis + Can be integrated with other techniques

+ Can improve model performance by reducing model complexity

- Does not directly quantify input uncertainty

Ensembling + Can improve final model performance by gaining (or overcoming) the

strengths (or weaknesses) of individual models

+ Can directly quantify output uncertainty of the final model via the com-

puted variance of several results of individual models

- Can be computationally expensive due to the multiple trainings of individual

models

- No general scheme for choosing the appropriate individual and final models

However, the adoption of metrics that directly quantified model uncertainty was limited in this review,

e.g. 11 of the 128 identified articles. Table 8 summarises the metrics which are predominantly based on the

confidence intervals of model outputs. Among the interval-based metrics, output uncertainty was visually

inspected 5 times either as confidence interval plots or error bars. On the other hand, output uncertainty

metrics were treated as separate model performance evaluators, e.g. d-factor, 95 PPU, PICP, MPIW, ACE,

and PINAW, in 3 occasions. An article was also found in which uncertainty metrics based on the posterior

distribution of network weights were used to guide the merging of two base learner results.

Table 8: List of identified methods and metrics that directly quantify model uncertainty.

No. Authors (year) Method Metrics

1 Grivas and Chaloulakou (2006) Bootstrapping Standard errors from

bootstrap samples

2 Dutot et al. (2007) Leverage metric Confidence interval

(Monari and Dreyfus, 2002)

3 Ibarra-Berastegi et al. (2008) Bootstrapping 96% confidence interval

of model metrics

4 Solaiman et al. (2008) Bayesian 95% confidence interval
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(as interval plots)

5 Noori et al. (2010) MCS 95 PPU, interval plots

and d-factor

(Abbaspour et al., 2007),

6 Voukantsis et al. (2011) Bootstrapping 95% confidence intervals

of model metrics

7 Peng et al. (2017) Bootstrapping 95% confidence interval

(plotted as error bars)

8 Han et al. (2020) Bayesian Two metrics based on the

posterior distribution of

network weight parameters

9 Han et al. (2021) Bootstrapping 95% confidence intervals

(as interval plots)

10 Mokhtari et al. (2021) MCS Interval-based metrics:

PICP and MPIW

11 Wang et al. (2022a) Gaussian and T location- (1 − α)% confidence intervals

scale distributions (as interval plots), ACE,

PINAW and PICP

5. Summary and conclusions

Data-driven approaches especially ANN models and their application to outdoor AP forecasting have

received a lot of attention in the past two decades. Their development has allowed researchers to provide

accurate AP forecasts without the theoretical understanding required by traditional physics-based models.

However, ANN models are empirical and their development inevitably possesses an intrinsic level of uncer-

tainty that can restrict the reliability of their results. Hence, this review was performed to investigate the

methods employed for addressing model uncertainty in the context of AP forecasting using ANN models.

Since the period January 2000 and August 2022, research activity in the incorporation of model uncer-

tainty when developing ANN models has increased rapidly. The average number of journal articles published
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during the said period was around 5.5 per year. It is also worth noting that 65% of the identified articles

have been published alone in the past six years. This is a significant development given the huge adoption

of ANN models in many decision-making tasks despite their black-box nature. However, there still is a huge

gap between the number of papers published per year that address model uncertainty and those that do

not. This is consistent with previous results reported by related reviews on the use of data-driven forecasting

models (see Maier et al. (2010), Kasiviswanathan and Sudheer (2017), Cabaneros et al. (2019) and Masood

and Ahmad (2021)).

In relation to sources of model uncertainty, there was a huge amount of research activity that covered

input uncertainty. For instance, approximately 89% of the identified articles employed various methods to

handle input uncertainty, and almost a third of those articles also addressed both parameter and output

uncertainties. Methods dealing with input uncertainty seem ubiquitous since ANN models are essentially

as good as their input data used. There was also a significant number of methods used to address the

uncertainties surrounding model parameters and outputs. However, methods handling structure uncertainty

received less attention as was in the findings of Cabaneros et al. (2019). In particular, optimal model structure

was still mostly determined using ad-hoc, e.g. trial-and-error and/or knowledge-based, approaches which were

excluded from this review. Consequently, there is a need to consider more analytical approaches for dealing

with structure uncertainty.

Efforts examining the interaction among four model uncertainty types were still not present in the

identified papers. Total model uncertainty was attributed conceptually as a sum of several components

related to the sources of uncertainty presented in this work (Arhami et al., 2013). However, none of the papers

provided any form of metric that attempts to quantify the overall uncertainty when building ANN models.

Given the black-box nature of ANN models, future modellers may not be able to quantify total model

uncertainty in terms of individual types of uncertainty, hence this field of research still demands further

attention.

The majority of the identified papers have been found to adopt the ensemble approach in handling model

uncertainty. This comes as no surprise given the availability of exceedingly more powerful computing tools

capable of handling complex model architectures such as deep learning. It is also worth noting that the

use of ensemble models has only emerged more recently, e.g. a large number of the identified papers have

only been published since 2019. An improvement in accuracy in the model results was also reported when

ensemble models were compared to their benchmark base learners. This is especially the case when dealing

with the accurate predictions of peak AP levels Masood and Ahmad (2021); Shekarrizfard and Hadad (2012);

Feng et al. (2015). However, the use of ensemble models has its drawbacks. As pointed out by Masood and

Ahmad (2021), ensembling techniques demand longer computational time which makes them unsuitable for
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rapid forecasting AP forecasting applications. Another prevailing issue is the uncertainty surrounding the

selection of the base learners and meta-learners. Since the selection is still mostly carried out in an ad-hoc

or knowledge-based manner, there is a need to examine this further in the future.

The use of methods such as fuzzy expert systems, correlation analysis, genetic algorithm, and sensitivity

analysis also received a significant amount of attention. The application of genetic algorithm for addressing

not just parameter but also input and structure uncertainties is significant progress. Global search opti-

misation techniques such as genetic algorithm are analytical model-based approaches that have previously

received less attention because it is computationally expensive to implement them (Cabaneros et al., 2019).

This review has also identified a wide array of miscellaneous procedures for handling model uncertainty,

ranging from correlation and mutual information techniques to meta-heuristic search algorithms. However,

the use of bootstrapping, Bayesian regularisation and Monte Carlo simulation which are especially capable of

quantifying output certainty remains limited and therefore requires further investigation (Cabaneros et al.,

2019; Wu et al., 2014; Kasiviswanathan and Sudheer, 2017).

In general, the majority of the identified methods have only attempted to handle but failed to quantify

model uncertainty. There are only 11 instances in which uncertainty was directly measured. Most of those

efforts expressed output uncertainty in terms of confidence interval plots, error bars, or separate metrics for

evaluating model performance. This could raise some issues especially when both accuracy and reliability of

prediction results are required. As such, the quantification of model uncertainty especially in the context of

AP forecasting needs to receive increased attention to ensure the reliability and transparency of ANN model

results. In particular, the standardisation of reporting ANN model results which include both accuracy and

uncertainty metrics should be encouraged. Such a practice not only enables a better comparison of proposed

model development methods, but it further increases the confidence in the use of ANN model results in

real-world applications, especially AP forecasting.

6. Recommendations for future research

Based on the review of 128 papers on the use of techniques for addressing model uncertainty in the field

of outdoor AP forecasting using ANN models conducted in this paper, the following recommendations for

future work are made:

1. More research needs to be undertaken on the improved reporting of both accuracy and uncertainty

of ANN model results. This is to further validate the use of data-driven models in real-world tasks

involving decision-making where both accuracy and reliability of the results are essential. Although

the primary aim of most studies is towards increasing the accuracy of model results, future attempts
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should also focus on the characterisation of confidence intervals as well as the development of metrics

for directly quantifying model uncertainty.

2. Greater attention should be given to the application of techniques for addressing structure, parameter,

and output uncertainties. The majority of identified papers in the review have placed more emphasis

on input uncertainty which is noteworthy given that ANN models are data-driven. However, the

ambiguity surrounding the structure, parameter and output of ANN models are ubiquitous which may

hinder future researchers from adapting black box approaches.

3. More work should continue on the use of model-based methods such as bootstrapping, Bayesian regu-

larisation, and Monte Carlo simulation. These methods have received less attention despite their ability

to address and quantify model uncertainty.

4. The relationship between model uncertainty and complexity of ensemble modelling frameworks should

be examined in the future. There clearly is a growing trend in the implementation of ensemble frame-

works in the field of AP forecasting using ANN models, especially deep learning. However, almost

all of the identified works have not attempted to measure model uncertainty. Furthermore, ensemble

approaches are computationally expensive which could hinder their deployment in real-world tasks.

5. A new area of research that deals with the interplay of single or multiple model uncertainty sources

should be carried out by future modellers. To the best of the authors’ knowledge, no work has been done

to examine this aspect of model uncertainty in the context of building ANN models. The resulting work

could be adopted from existing case studies on the accuracy aspect of their developed ANN models.

6. More software that provides a less difficult and computationally-efficient platform for handling and

quantifying uncertainty in ANN models should be developed to ensure that metrics assessing model

uncertainty become an essential requirement in reporting new ANN based methods.
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