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A B S T R A C T 

The European Pulsar Timing Array (EPTA) collaboration has recently released an extended data set for six pulsars (DR2) and 

reported evidence for a common red noise signal. Here we present a noise analysis for each of the six pulsars. We consider 
several types of noise: (i) radio frequency independent, ‘achromatic’, and time-correlated red noise; (ii) variations of dispersion 

measure and scattering; (iii) system and band noise; and (iv) deterministic signals (other than gravitational waves) that could be 
present in the PTA data. We perform Bayesian model selection to find the optimal combination of noise components for each 

pulsar. Using these custom models we revisit the presence of the common uncorrelated red noise signal previously reported 

in the EPTA DR2 and show that the data still supports it with a high statistical significance. Next, we confirm that there is no 

preference for or against the Hellings–Downs spatial correlations expected for the stochastic gra vitational-wa ve background. The 
main conclusion of the EPTA DR2 paper remains unchanged despite a very significant change in the noise model of each pulsar. 
Ho we ver, modelling the noise is essential for the robust detection of gravitational waves and its impact could be significant when 

analysing the next EPTA data release, which will include a larger number of pulsars and more precise measurements. 

Key w ords: gravitational w aves – methods: data analysis – pulsars: general. 
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 I N T RO D U C T I O N  

illisecond pulsars are remarkable for their long-term rotational
tability, comparable with that of the most accurate atomic clocks
n Earth (Matsakis, Taylor & Eubanks 1997 ; Verbiest et al. 2009 ;
obbs et al. 2020 ). The highly beamed radio emission interacts with
ra vitational wa ves (GWs) causing deviations in the time of arri v al
f pulses observed by radio-telescopes. Pulsar timing arrays (PTAs)
re used to search for ultralow-frequency (nHz- μHz) gravitational-
aves by looking for their characteristic imprints on the times-of-

rri v al (ToAs) of the radio signals (Sazhin 1978 ; Detweiler 1979 ;
oster & Backer 1990 ; Perera et al. 2018 ). 
The most promising GW source in the PTA frequency band is

 population of nearby ( z ≤ 2) slowly inspiralling supermassive
 ≥10 7 M �) black hole binaries (SMBHBs) with orbital periods
0.1 −10 yr. Those binaries were formed as a result of galaxy
 E-mail: aurelien.chalumeau@cnrs-orleans.fr (AC); stas@apc.in2p3.fr (SB) 

N  

e  

e  

Pub
ollisions and their mergers will be observed in the LISA band,
hile PTA will see only the early and long lasting inspiral (Sesana

t al. 2004 ). The most massive and closest binaries might be resolved
s individual sources emitting continuous GWs (Sesana, Vecchio &
olonteri 2009 ; Babak et al. 2015 ), but the bulk of the SMBHB
opulation emits rather weak GW signals which superpose and
orm a stochastic GW background (GWB) signal at low (nano-
z) frequencies (Rajagopal & Romani 1995 ; Jaffe & Backer 2003 ;
yithe & Loeb 2003 ). The key feature of this noise-like signal is a

ery specific spatial correlation in the data which depends only on
he angular separation between two pulsars and is described by the
ellings–Downs curve (Hellings & Downs 1983 ) assuming general

elativity. 
Several PTA collaborations are working actively on the detection

nd characterization of such GWs. The three historical PTAs: Parkes
ulsar timing array (PPTA; Kerr et al. 2020 ), the North American
anohertz Observatory for Gra vitational-wa ves (NANOGra v; Alam

t al. 2021 ), and the European pulsar timing array (EPTA; Desvignes
t al. 2016 ) cooperate with the emerging Indian pulsar timing array
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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InPTA) 1 as the International pulsar timing array (IPTA; Verbiest 
t al. 2016 ; Perera et al. 2019 ). The PPTA, NANOGrav, and the
PTA have recently published results produced using with their own 

ndependently processed data sets that show consistent evidence for 
he presence of a red (time-correlated) signal common among pulsars 
Arzoumanian et al. 2020 ; Chen et al. 2021 ; Goncharov et al. 2021a )
ut without the necessary evidence for Hellings–Downs correlations, 
hich would confirm the detection of a GWB. Encouraged by these 
romising results, the IPTA is planning to combine extended data 
ets from each PTA collaboration, in the hope that the GW nature of
he observed signal can be confirmed (or disproved). 

The biggest problem with PTA data is the lack of control of the
oise: there are many potential sources which could contribute to the 
bserved data which we model in a parametrized (and sometimes 
implified) way when it is included in the ‘global fit’ (i.e. that fits
ll pulsars simultaneously). The high frequency end of PTA data is
sually dominated by measurement white noise. The low frequency 
nd is expected to be dominated by red noise processes. Besides the
WB discussed abo v e, some of the red noise is also expected to
e correlated among pulsars as a function of angular separation of
ach pair of pulsars on the sky (Tiburzi et al. 2015 ). Such sources
f correlated noise are errors in the clock time standard (causing 
onopolar-type correlations) or systematic errors in the Solar system 

phemeris (causing dipolar-type correlations). Moreo v er, we also 
xpect the presence of spatially uncorrelated red noise, which is 
ndividual to each pulsar in the array. This is the spin noise (or
iming noise), which is caused by the rotational variations of the 
ulsar arising from a variety of different phenomena (e.g. intrinsic 
rocesses, unmodelled objects in the vicinity of the neutron star, 
tc.). The red noise types described abo v e are commonly referred to
s achromatic red noise since they are independent of the observing 
adio frequency. Most of the PTA data also show the presence of
hromatic red noise that depends on the radio frequency of the 
bservations. In particular, we will consider the long-term variations 
f dispersion measure (DM), which add time delays to the ToAs as
 t ∝ ν−2 , and scattering variations ( � t ∝ ν−4 ), which are both caused

y the time-varying electron column density between the pulsar and 
he radio telescope. 

The sensitivity of PTA data to GWs is significantly affected by the
evels of red noise and our ability to both detect and to characterize
W signals strongly depends on the faithfulness of the pulsar noise 
odel (Caballero et al. 2016 ; Lentati et al. 2016 ; Hazboun et al. 2020 ;
oncharov et al. 2021b ), which can vary significantly from pulsar to
ulsar. Due to the large choice of possible noise components (we see
t as various possible models of the noise) and their description or
arametrization, the search for a GWB usually assumes a common 
and simplified) noise model that is the same for each pulsar. The
arameters of that simplified model are then inferred together with the 
arameters characterizing the GWB. It was shown (see for example 
oncharov et al. 2021b , and the references therein) that the actual
oise model could vary significantly from pulsar to pulsar, which 
ould influence the detectability of a GWB (Hazboun et al. 2020 ).
his is the main moti v ation behind this paper. We consider this paper
s a companion of Chen et al. ( 2021 ), where the main focus was on
nding and characterizing the common red signal (CRS) using two 

ndependent pipelines. 
Based on previous exploratory investigations for each pulsar in 

he DR2, we suggest a finite set of noise models and use Bayes
actors as a ranking statistic to choose between them, assuming that 
 ht tps://inpt a.gitlab.io/profile/index.ht ml 

T  

S
T  
ll models are equally probable a priori. When the Bayes factor is not
nformative (close to one) we make the selection based either on the
implicity of the model or on the basis of computational efficiency
ith very few exceptions, which we explicitly discuss below. Once 
e had customized the noise model for each pulsar, we reproduced

he main results of Chen et al. ( 2021 ), namely we confirmed the high
tatistical significance of a common red signal, but without sufficient 
vidence for a GWB induced Hellings–Downs correlation. We want 
o emphasize that the final noise model used for each pulsar was
uite different from the simpler model assumed in Chen et al. ( 2021 )
or all pulsars. The noise model selection method described in this
aper will be used on the extended (25 pulsars) EPTA data. 
The rest of the paper is organized as follo ws. We gi ve a brief

escription of DR2 data in the section 2. Section 3 gives a detailed
escription of each noise process that will be used in building the
oise model. Section 4 summarizes the Bayesian framework used 
n this paper. The details of the single-pulsar noise model selection
re given in Section 5. In Section 6 we consider the presence of a
ommon red noise and we summarize our results in Section 7. 

 BRI EF  DESCRI PTI ON  O F  EPTA  D R 2  

he EPTA Data Release 2 (DR2) – six pulsars data set (Chen
t al. 2021 ) – comprises up to 24 yr of high cadence observations
f PSRs J0613 −0200, J1012 + 5307, J1600 −3053, J1713 + 0747,
1744 −1134, and J1909 −3744. These pulsars are observed in single-
ish mode at four European radio telescopes: the Effelsberg 100-m 

adio telescope (EFF), the Nan c ¸ay Radio telescope (NRT), the Lo v ell
elescope at the Jodrell Bank Observatory (JBO), and the Westerbork 
ynthesis Radio Telescope (WSRT). In addition, EPTA DR2 includes 
ata from the Large European Array of Pulsars (LEAP), which is
ased on the combination of these four telescopes with the Sardinia
adio Telescope (SRT), forming a tied-array telescope (Bassa et al. 
015 ). The five radio telescopes contribute to all pulsars except
SR J1909 −3744, which has a data set that contains only NRT
bservations because of its low -declination. Upgrades of telescopes, 
ncluding impro v ements to or changes of receivers or backends,
ave been applied during the observational period, which makes 
he data set heterogeneous in timing precision and radio frequency 
o v erage. We label the data by the telescope (or observatory) and the
ystem that collected it, followed by the radio frequency in MHz (e.g.
FF.P200.1400). Having multiple systems in a PTA data set is both a
urse, as we need to combine the data from all systems together
aking into account possible systematics, and a blessing as the 

ultiband observations are required to disentangle and characterize 
he chromatic noise and the system specific instrumental red noise 
e.g. system noise; Lentati et al. 2016 ). 

A characteristic ToA is computed from the time and frequency 
veraged profile of each observation, except for JBO.R OA CH and
RT.NUPPI backends, which use, respectively, 2 and 4 (radio- 

requency) sub-band ToAs per epoch. The ToAs of each pulsar are
ssembled together and used to fit the timing model (TM) parameters
hat describe the pulsars’s sky position and proper-motion, its spin 
requency and corresponding deri v ati ve, and the DM and its two
rst deri v ati v es. F or pulsars in binary systems, the timing model
lso accounts for the orbital motion including Keplerian and post- 
eplerian parameters. Phase jumps are included in the TM for each

ystem and also for each of the JBO.R OA CH & NRT.NUPPI.1484
ub-bands. The fits for the TM parameters were obtained using the
EMPO 2 package (Hobbs, Edwards & Manchester 2006 ) with the JPL
olar system ephemeris DE438 [to transform the local observatory 
oAs to the Solar system barycentre) and with the clock corrections
MNRAS 509, 5538–5558 (2022) 
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T(BIPM2019) (time conversion from the observatory time standard
o the Terrestrial Time (TT) given by the Bureau International des
oids et Mesures (BIPM)]. The end result are the timing residuals ,

.e. the differences between the observed ToAs and those predicted
y the TM, which are then analysed to search for GW signals. 

 M O D E L L I N G  NOISE  IN  PTA  DATA  

n this section we describe the basic noise models. We will use an
legant description based on the Gaussian Process (GP) introduced
n van Haasteren & Vallisneri ( 2014 ). Later, we will use those basic
oise components to build a complete noise model for each pulsar in
R2 using Bayesian techniques. 
Let us very briefly introduce the likelihood for Gaussian processes

ollo wing v an Haasteren & Vallisneri ( 2014 ). We assume that all
oise components are Gaussian and stationary and we separate the
hite noise component N from the rest. The Gaussian process can
e introduced in two equi v alent ways: (i) As a sum of deterministic
asis functions 

∑ 

i F i ( t ) w i , where w i are weights – random Gaussian
istributed variable N ( w 

0 
i , � ij ), where w 

0 
i is a mean value for each

eight, � ij is a covariance matrix, and F i ( t ) are the basis functions.
his is the weight-space view. (ii) As a continuous function such

hat the ensemble average is E [ f ( t)] = m ( t) and the covariance is
 [( f ( t) − m ( t))( f ( t ′ ) − m ( t ′ ))] = C( t, t ′ ). This is the function space
iew. Those two descriptions are related via 

( t , t ′ ) = 

∑ 

a,b 

F a ( t ) � ab F b ( t 
′ ) , (1) 

ith a , b = 1,..., N . The red noise covariance matrix C ( t , t 
′ 
) was

ntroduced in van Haasteren & Levin ( 2012 ) and it was approximated
sing an incomplete Fourier basis in Lentati et al. ( 2013 ). Applying
he Gaussian process approach to the PTA likelihood function we get
van Haasteren & Vallisneri 2014 ): 

( δt | w a , GP ) = 

e −
1 
2 
∑ 

ij ( δt i −
∑ 

a F a ( t i ) w a )( N ij ) 
−1 ( δt j −

∑ 

a F a ( t j ) w a ) 

√ 

(2 π) n det ( N ) 

× e −
1 
2 
∑ 

a,b w a ( � ab ) −1 w b 

√ 

(2 π) m det ( �) 
, (2) 

here δt i the i -th observed residuals with i , j = 1,..., n . The equi v alent
epresentation is given by 

( δt | GP ) = 

e −
1 
2 . 

∑ 

ij δt i ( N + C ij ) −1 δt j 

√ 

(2 π) n det ( N + C ) 
, (3) 

here C 

rn 
ij = 

∑ 

a,b F a ( t i ) � ab F b ( t j ). The convenience of the latter
escription is that it can be computed efficiently using the Woodbury
quality: 

 N + C ) −1 	 

(
N + F �F 

T 
)−1 

= N 

−1 − N 

−1 F 

(
� 

−1 + F 

T N 

−1 F 

)−1 
F 

T N 

−1 . (4) 

n what follows we consider C as a combination of several (chromatic
nd achromatic) red noise components each decomposed in its own
et of basis functions. 

.1 Mar ginalization o v er timing model 

efore we introduce the noise components, we should explain how
e treat the timing model. We assume that an initial fit of the timing
odel obtained with LIBSTEMPO (Vallisneri 2020 ) reduces it to a

inear model where the coefficients are given by a design matrix.
e analytically marginalize the likelihood o v er the TM parameter
NRAS 509, 5538–5558 (2022) 
rrors described by that linear model. The analytic marginalization
as first demonstrated in van Haasteren et al. ( 2009 ), but van
aasteren & Vallisneri ( 2014 ) have shown that it is equi v alent to

he marginalization of a corresponding Gaussian process with an
mproper prior. 

The implementation of this marginalization in ENTERPRISE (Ellis
t al. 2019 ; the package that we use throughout this project) uses
he equi v alence of weight space and function space description
f a Gaussian process. The design matrices ( M a ( t i )) are used as
asis functions, the covariance for the TM process is given as
 

TM = 

∑ 

a,b M a ( t i ) � 

TM 

ab M b ( t j ), where the prior on the parameter
rrors is modelled as � = λI with I being a diagonal unit matrix
nd λ is a large numerical number (see van Haasteren & Vallisneri
014 , for details). In the limit λ → ∞ this prior becomes improper,
ut in this analysis the values of λ are fixed but large so the prior is
ormally proper. The marginalization o v er timing errors (‘weights’)
f equation (2) leads to equation (3) (this is a manifestation of the
uality of the two descriptions). 
The use of a very wide or improper prior in Bayesian model

election should be taken with great caution, especially when
omparing two models where only one of them uses marginalization
 v er the improper prior (this was also discussed in Chen et al. 2021 ).
he penalization which is embedded in the prior (for being too
ide) and propagates into the computation of the evidence is lost

nd reliable results from evidence-based model selection cannot be
uaranteed. Ho we ver in all noise models described below we perform
arginalization o v er the TM parameters which brings them all to a

ommon starting point for further comparison. 

.2 White noise 

s mentioned earlier, the white noise dominates the high frequency
nd of the PTA sensitivity band. The ToA errors ( σ ToA ) are estimated
ithin the template-matching method (Taylor 1992 ) that is used to

ompute the ToAs. This method is based on the Fourier domain cross-
orrelation of a template profile with the integrated pulse profile at
he corresponding epoch. The uncertainties of each ToA are further

odified as 

= 

√ 

E 

2 
f σ

2 
ToA + E q 

2 . 

FAC (E f ) is a multiplicative factor that takes into account ToA
easurement errors (or radiometer noise). EQUAD (E q ) is added in

uadrature to account for any other white noise (such as stochastic
rofile variations Liu et al. 2012 ; Shannon et al. 2014 ; Lam et al.
016 ) and for possible systematic errors. The white noise model
herefore is given as 

 = 

(
E f 

2 σ 2 
ToA ( t i ) + E q 

2 
)
δi,j , (5) 

here i and j indexing the ToAs of the corresponding backend. EFAC
nd EQUAD are phenomenological parameters that characterize the
hite noise for each system and for each pulsar. 

.3 Stochastic red signals 

t is essential for PTA analysis to properly describe the intrinsic
ed noise because of its possible correlation with low-frequency
W signals (Shannon & Cordes 2010 ). Results from simulations

n Hazboun et al. ( 2020 ) have clearly demonstrated the impact of
naccurate red noise modelling on GWB results. 

The single-pulsar stochastic red noise is a time-correlated signal
odelled as a stationary Gaussian process. In this work we adopted
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Table 1. Models and priors used for the single-pulsar model selection. 

Model Parameters Priors (or fixed val.) 
(abbrev.) 

White-noise EFAC U (0 . 1 , 5) 

(WN) EQUAD [s] log 10 U (10 −9 , 10 −5 ) 

Achromatic red-noise A RN log 10 U (10 −18 , 10 −10 ) 

(RN) γ RN U (0 , 7) 

DM variations A DM 

log 10 U (10 −18 , 10 −10 ) 

(DMv) γ DM 

U (0 , 7) 

Scattering variations A Sv log 10 U (10 −18 , 10 −10 ) 

(Sv) γ Sv U (0 , 7) 

Free-chromatic noise A FCN log 10 U (10 −18 , 10 −10 ) 

(FCN) γ FCN U (0 , 7) 

χFCN U (0 , 7) 

System-noise A SN log 10 U (10 −18 , 10 −10 ) 

(SN or DMv-SN) γ SN U (0 , 7) 

χSN 0 or 2 

Band-noise A BN log 10 U (10 −18 , 10 −10 ) 

(BN) γ BN U (0 , 7) 

DM events A E [s] log 10 U (10 −10 , 10 −2 ) 

(E) τE [day] log 10 U (1 , 10 2 . 5 ) 

t 0 [MJD] U (54650 , 54850) or 

U (57490 , 57530) 

χE 1, 2, 4 or U (0 , 7) 

Annual chrom. A Y [s] log 10 U (10 −10 , 10 −2 ) 

(Y) φY U (0 , 2 π ) 

χy 2 or U (0 , 7) 
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he ‘weight-space’ representation of the Gaussian Process. The 
iming residuals due to red noise at each epoch t i are approximated as: 

t SRS ( t i ) = 

N ∑ 

l= 1 

X l cos ( 2 πt i f l ) + Y l sin ( 2 πt i f l ) , (6) 

here X l and Y l are playing the role of weights and the basis
unctions are 

 2 l−1 ( t i ) = cos ( 2 π t i f l ) , 

F 2 l ( t i ) = sin ( 2 π t i f l ) , (7) 

here l = 1,..., N . This representation would correspond to the usual
ourier transform if f l = l / T (where T is the total time span) and we
ad regularly spaced epochs, t i . Ho we ver, the radio observ ations are
uite irregular (besides maybe the last 5 yr or so) which makes the
ourier basis not exactly orthogonal. In addition, we do not use a
omplete set: we usually truncate it at some low frequency as we
re interested in modelling the red noise. The optimal choice of
requencies was considered in van Haasteren & Vallisneri ( 2015 ); 
o we ver, for all results presented here, we have used an evenly
paced � f = 1/ T set of frequencies, starting at f = 1/ T and truncating
t N / T where N is one of the parameters in the model selection. 

The covariance matrix � for the Fourier coefficients (weights X l , 
 l ) is defined by the power spectral density (PSD), S ( f ). The simplest
odel for the PSD of a stochastic red process in a single pulsar data

et is a power law: 

 P ( f ; A, γ ) = 

A 

2 

12 π2 

(
f 

yr −1 

)−γ

yr 3 , (8) 

here the amplitude A is the normalized value at the frequency of one
 v er 1 yr ( f = 1/yr). The covariance matrix is given in the frequency
omain by 

 kα,lβ = S P ( f k ; A α, γα) δkl δαβ / T (9) 

here k , l = 1,..., N , and α, β are pulsar indices – we consider spatially
ncorrelated red noise – therefore, we have placed the Kronecker 
elta-function on the right-hand side. 
An alternative description takes into account that the data is 

ominated by white noise at high frequencies, and that is captured 
n the broken power law (Arzoumanian et al. 2020 ): 

 BPL ( f ; A, γ, δ, f b , κ) = 

A 

2 

12 π2 

(
f 

yr −1 

)−γ
( 

1 + 

(
f 

f b 

)1 /κ
) κ ( γ−δ) 

yr 3 , (10) 

n which A is the amplitude at frequency f = 

1 
yr , f b is the transition

requency, γ and δ are, respectively, the slopes below and above f b , 
nd κ defines the smoothness of the transition. Jumping a bit ahead, 
e will perform Bayesian analysis of the data with priors on κ and f b 

s uniform U(0 . 01 , 0 . 5) and log-uniform log 10 U(10 −10 , 10 −6 ), and
he priors on A and γ are the same as for the simple power-laws mod-
ls given in Table 1 . The high-frequency spectral index δ is fixed at 0.

A completely different approach is not to impose any particular 
pectral shape but rather estimate it from the data itself: this is the
ree-spectrum method (Lentati et al. 2016 ) in which 

 FS ( f i ; ρi ) = ρ2 
i T , (11) 

here ρ i is the spectral amplitude at frequency f i = i / T , with i =
,..., N , in units of residuals. This modelling is particularly useful for
nderstanding the spectral content and for interpreting the results for 
he red noise models given above. The number of parameters in the
ree-spectrum approach is equal to the number of Fourier bins and 
t is therefore computationally more e xpensiv e. The priors used for
ach ρ i will be log-uniform: log 10 U(10 −10 , 10 −4 ). 

In the rest of this subsection, we give more details on each specific
ype of red noise that will be included in the total noise budget for
ach pulsar. 

.3.1 Achromatic red noise 

he achromatic red-noise (which we henceforth denote as RN) 
s commonly used in single-pulsar noise models in order to 
haracterize the long-term variability of the pulsar spin. Also 
eferred to as ‘timing noise’ or ‘spin noise’, RN is a dominant
eature in the ToAs of younger pulsars, and several physical 
rocesses have been suggested to explain it, such as magneto- 
pheric variability (e.g. Lyne et al. 2010 ; Tsang & Gourgouliatos
013 ) or interactions between the pulsar’s superfluid core and 
olid crust (Cordes & Shannon 2010 ). The origins of RN in

SPs may differ from that of young pulsars: due to their much
eaker magnetic fields, superfluid turbulence has been suggested 

s a possible contributor to the RN in MSPs (Melatos & Link
014 ). 
We model RN using the descriptions given above: the power-law 

odel will be our standard approach; ho we ver, we will also use the
ree spectrum and broken power law (red noise becomes white after
ome frequency) to guide the selection of the truncation frequency 
n the sum given by equation (6). This noise component is unique,
ndependent of the observational radio frequency, and uncorrelated 
etween different pulsars. 
MNRAS 509, 5538–5558 (2022) 
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.3.2 Chromatic red noise 

uring its propagation, the pulsar radio emission passes through
nd interacts with the ionized interstellar medium (IISM), the Solar
ystem interplanetary medium and the Earth’s ionosphere, which
eads to frequency-dependent delays on the observed signal. 

An important effect is the interstellar dispersion that induces a
elay in the arri v al time � t DM ∝ ν−2 DM, where ν is the radio
bserving frequency and DM is the dispersion measure, which is the
ath integral of the free-electron density (Lorimer & Kramer 2004 ).
his effect is taken into account during the observations and inside the

iming model which considers its value at a reference epoch together
ith its first and second deri v ati ves. Ho we ver, the inhomogenious and

urbulent nature of the IISM also induces chromatic (i.e. dependent
n the observing radio frequency ν) red noise that are important on
he decade-long time-scales of PTA data (You et al. 2007 ; Keith et al.
013 ). In addition, the orbital motion of the Earth around the Sun
ay induce an additional deterministic chromatic signal. 
Another result of the radio signal’s interaction with the IISM are

cattering variations (Sv), corresponding to the multipath propaga-
ion of the radio signal due to diffraction and refraction in the IISM
Lorimer & Kramer 2004 ; Lyne et al. 2010 ). This causes a chromatic
ulse broadening and a time delay with ∼ν−4 chromaticity. The
cattering variations are described as a stochastic red signal such that
 t Sv ∝ ν−4 . 
We describe phenomenologically any general chromatic red noise

sing the basis functions 

 

chrom . 
j ( t i ) = F ( t i ) ∗

( νj 

1 . 4 GHz 

)−χ

, (12) 

here F is the incomplete set of sin/cos basis functions, ν j is
n observational radio frequency for a corresponding residual at
he epoch t i , and χ is the chromatic index. We use the same
ovariance matrices for chromatic red noise as for achromatic red
oise (power law, broken power law, free spectrum). It is essential
o have multiband radio observations to disentangle chromatic from
chromatic red noise (otherwise they are completely degenerate; see
or example Caballero et al. 2016 ). 

During model selection, we will consider the following chromatic
ed processes: (i) dispersion measurement variations (DMv) with

= 2; (ii) scattering variations (Sv) with χ = 4; and (iii) a
henomenological ‘free chromatic noise’ model (FCN) with χ

aken to be a free parameter with prior U(0 , 7). The FCN was
rst introduced in Goncharov et al. ( 2021b ) and is used here as a
iagnostic to verify the combined noise model. 

.3.3 System and band noise 

he EPTA DR2 data set is a combination of ToAs produced by
ve radio telescopes which use different systems observing at radio
requencies ranging from ∼300 MHz to ∼5 GHz. Following Lentati
t al. ( 2016 ) we introduce ‘system’ and ‘band’ red noise. The system
oise (SN) term is a stochastic red signal specific to a single receiver
ystem. Such a signal could, for example, arise from a miscalibration
f polarizations or specific radio frequency interferences. We model
his process as a stochastic red noise applied to the ToAs of only
ne considered system at a time. This noise is considered to be
chromatic for every system except for NRT.NUPPI.1484 that is
ivided into four sub-bands and will be probed for the presence of
oth chromatic red process SN and DMv (labelled as DMv-SN). 
The band noise (BN) is a stochastic red noise assigned to a

pecific radio frequency band. This is to account either for a possible
requency-dependent DM in the amplitude (additional to the o v erall
NRAS 509, 5538–5558 (2022) 
−2 factor) caused by multipath propagation of radio emission
Cordes, Shannon & Stinebring 2016 ) or by frequency-dependent
alibration errors (van Straten 2013 ). Given the frequency coverage
f the EPTA DR2 data set (Chen et al. 2021 ), we consider four radio
ands for the BN: 

(i) Band.1: < 1 GHz 
(ii) Band.2: [1, 2] GHz 
(iii) Band.3: [2, 3] GHz 
(iv) Band.4: > 3 GHz. 

.4 Common red noise 

n this subsection we describe the red noise common to all pulsars and
ifferentiate between two groups of common stochastic red signals:
i) a common spatially uncorrelated red noise (CURN) signal; and
ii) a correlated common red noise signal. The CURN shares spectral
roperties across all pulsars but does not appear with any particular
patial correlation (random) for each pair of pulsars, its covariance
atrix is described as 

 kα,lβ = S P ( f k ; A CURN , γCURN ) δkl δαβ / T , (13) 

here the amplitude and spectral index ( A CURN , γ CURN ) are the same
or all pulsars. 

On the other hand, the stochastic GWB, and the clock and
phemerides errors are examples of truly spatially correlated red
ignals. We describe in detail the GWB, which is the only correlated
ed process considered in this paper (clock and ephemerides errors in
he EPTA DR2 were investigated in Chen et al. 2021 and their pres-
nce was not supported by the data). The dimensionless characteristic
train spectrum of the GWB is given as a power law (Maggiore 2000 ;
enet et al. 2006 ) with a reference frequency at 1 yr −1 : 

 c ( f ) = A GWB 

(
f 

yr −1 

)αGWB 

, (14) 

ith A GWB and αGWB, respectively, the GWB strain amplitude and
pectral index. The corresponding PSD S GWB 

P ( f ) can then be written
s 

 

GWB 
P ( f ) = 

1 

12 π2 

1 

f 3 
h 

2 
c ( f ) 

= 

A 

2 
GWB 

12 π2 

(
f 

yr −1 

)−γGWB 

yr 3 (15) 

ith γ GWB = 3 − 2 αGWB . 
The spectral slope of a GWB generated by a population of SMB-

Bs on circular and GW-driven orbits (Jaffe & Backer 2003 ; Chen,
esana & Del Pozzo 2017 ) is expected to be αGWB = −2/3, or γ GWB =
3/3. We use the same incomplete set of Fourier basis function as
or the achromatic red noise described abo v e but with a covariance
atrix with spatial correlation coefficients �( θab ) corresponding to

he Hellings–Downs curve (Lee, Jenet & Price 2008 ): 

 kα,lβ = S P ( f k ; A GWB , γGWB ) δkl �( θαβ ) / T , (16) 

here θαβ is the angular separation of a pair of pulsars. This model
escribes an isotropic component of the GWB. 
Note that it is the spatial correlation that distinguishes a GWB

rom the CURN; therefore to clearly identify this it is necessary to
nfer �( θab ). This is not possible with six pulsars and with the present
PTA timing precision as shown in Chen et al. ( 2021 ). 
In addition, a CURN could be mimicked by the RN of the most

ensitive pulsars, so it is crucial to study in detail the red processes
n each pulsar in order to understand the significance of the CURN
eported in Chen et al. ( 2021 ). 
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.5 Deterministic signals 

n addition to stochastic processes, we also consider two types 
f deterministic signals of non-GW nature. We have used prior 
nformation about the (possible) presence of these signals in the 
ata of some pulsars. 

xponential dips 

ev eral pulsars hav e displayed e xponential timing-residual dips (E),
n which there is a sudden frequency-dependent advance in the ToAs. 
t is rele v ant to our analysis that such ev ents hav e been observ ed at
east twice for PSR J1713 + 0747 o v er our observational time span,
n 2008 ( ∼ MJD 54757) and in 2016 ( ∼ MJD 57510). 

The first event, reported in Coles et al. ( 2015 ), Zhu et al. ( 2015 ),
nd Desvignes et al. ( 2016 ), is interpreted as a ‘DM event’, i.e. a
rop in the electron column density along the line of sight producing
 sudden reduction of DM that returns to the previously observed 
ev el e xponentially o v er time. 

The second event, reported in Lam et al. ( 2018 ), was accompanied
y a pulse shape change and corresponding chromatic index lower 
han 2, so it is not compatible with a DM-related process. It was
roposed instead (Goncharov et al. 2021b ) that this event is related
o processes in the pulsar’s magnetosphere. 

We model the exponential dip delay at epoch t i and radio frequency
k as: 

d E ( t i , νk ; A E , τ, t 0 , χE ) = ⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , if t i < t 0 

A E 

( νk 

1 . 4 GHz 

)−χE 

exp 

(
− t i − t 0 

τ

)
, if t i ≥ t 0 , 

(17) 

here A E is the amplitude in residual units, t 0 is the reference epoch
f the event, τ is the relaxation time, and χE is the chromatic index,
ither fixed or being a free parameter with prior U(0 , 7). 

nnual chromatic signals 

he second deterministic signal which could be present in the data is
n annual chromatic process (which we label as ‘Y’) that results from
lectron density variations as the line of sight to the pulsar changes
uring the annual Earth motion around the Sun. 
Previous investigations (Keith et al. 2013 ; Main et al. 2020 )

ndicated such a signal is present in PSR J0613 −0200, which we
odel as (Lentati et al. 2016 ; Goncharov et al. 2021b ): 

 

Y ( t i , f l ; A Y , φ, χy ) = A Y 

(
f l 

1 . 4 GHz 

)−χy 

sin 

(
2 π

t i 

yr 
+ φ

)
, 

(18) 

here A Y is the characteristic amplitude in residual units, χ y is the 
hromatic index, and φ is the initial phase. We consider either annual 
M variations or annual scattering variations, with a chromatic index 
xed at 2 or 4, respectively. 

 BAYESIAN  INFERENCE  F R A M E WO R K  

n this section, we briefly describe the Bayesian framework that will 
e applied to the model selection (see for example Sivia & Skilling
006 for further reading). The main purpose of this section is to
ntroduce notation that will be used in the following sections. 

We will consider a set of models, M a , each characterized by
arameters θa , where the subscript a enumerates the models. The 
robability of a given model M a given the observed residuals δ t can
e written using Bayes theorem: 

 ( M a | δ t ) = 

P ( δ t | M a ) πM a 

P ( δ t ) 
, (19) 

here πM a 
is the prior probability of model M a , P( δ t | M a ) is the

robability of observing δ t assuming that model M a is the correct 
ne (this is the evidence of model M a and we denote it as Z M a 

),
nd P( δ t ) = 

∑ 

b P( δ t | M b ) πM b 
is the probability of the observed

ata set, which we consider as a normalization factor. We have used
reviously published results as a guide for selecting models for a
iven pulsar, assuming that all considered models have equal prior 
robabilities unless otherwise specified. The model selection is based 
n the odds ratio: 

P ( M a | δ t ) 
P ( M b | δ t ) 

= 

Z M a 

Z M b 

πM a 

πM b 

(20) 

ince we use equal priors, the odds ratio reduces to the Bayes factor
 

M a 

M b 
= Z M a 

/ Z M b 
. 

For a given model the posterior on the parameters θa is given again
y Bayes theorem: 

 ( θa | δ t , M a ) = 

P ( δ t | θa , M a ) P ( θa | M a ) 

P ( δ t | M a ) 

= 

L ( δ t | θa , M i ) π ( θa | M a ) 

Z M a 

, (21) 

here we will use the likelihood L ( δ t | θa , M a ) marginalized o v er
he timing model parameters (see discussion in the previous section) 
nd π ( θa | M a ) are priors on the model parameters. The evidence
f a given model is computed from the fully marginalized posterior
Sivia & Skilling 2006 ): 

 M a 
= 

∫ 
d θa L ( δ t | θa , M a ) π ( θa | M a ) . (22) 

Our decisions are based on the scale proposed in Jeffreys ( 1961 ),
hich is B 

M a 

M b 
> 100 indicates a preference for the model M a 

gainst M b with ‘decisi ve’ e vidence. This interpretation criteria has 
een set phenomenologically, and revised in Kass & Raftery ( 1995 ),
hich suggests using the threshold value of 150 ( log 10 B 

M a 

M b 
� 2 . 2).

herefore, we use the range 2 < | log 10 B 

M a 

M b 
| < 2 . 2 as a selection

riteria. In the case of a non-conclusive Bayes factor we follow the
ccam principle and select the model with the lowest prior volume

or computational cost). 
The dimensionality of models that we consider varies from 16 to

5 parameters. To infer the parameter posterior for each model, we
av e used sev eral numerical tools: (i) a parallel tempering Marko v
hain Monte Carlo (MCMC) sampler PTMCMCSAMPLER (Ellis & van 
aasteren 2017 ); and (ii) MC 

3 ( https:// gitlab.in2p3.fr/ stas/samplermc 
c ), both based on the Metropolis–Hastings algorithm (Metropolis 

t al. 1953 ; Hastings 1970 ). For computation of the evidence we
ave used the DYNESTY (Speagle 2020 ) package based on the nested
ampling algorithm (Skilling 2004 ; Skilling 2006 ). In addition, we
ave used the hyper-model method (proposed in Carlin & Chib 
995 , extended in Hee et al. 2015 and applied to PTA in Taylor, van
aasteren & Sesana 2020 ) to obtain Bayes factors without evidence 
 v aluation. In that approach models and their corresponding param-
ters are sampled using a hyper-parameter that switches between 
he models. We compare both approaches whenever possible. For 

ultichain MCMC runs, we check convergence by computing the 
elman–Rubin ratio (Gelman & Rubin 1992 ; Brooks & Gelman 
998 ). Finally, we use the Jensen–Shannon divergence (JSD; Man- 
ing & Sch ̈utze 1999 ) to compare marginalized posteriors across
odels. This is the symmetric version of the Kullback–Leibler 
MNRAS 509, 5538–5558 (2022) 
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Figure 1. Achromatic red-noise spectrum of PSR J1713 + 0747 using the 
model RN30 DMv100 , with the free-spectrum PSD (grey violin plot) and 
broken power-law (blue) PSDs, showing 1000 random realizations of the 
posterior distribution. The vertical thin dotted line displays the 1yr −1 

frequency and the solid vertical line show the 15th bin. 
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iv ergence (K ullback 1959 ), which is bound to the range 0 <

SD( A || B ) < ln(2) ∼ 0.69, with zero corresponding to two identical
robability distribution functions. 
In Table 1 , we summarize all noise models, their parameters, and

he prior range used in this paper. 

 CUSTO MIZING  T H E  NOISE  M O D E L  F O R  

AC H  PULSAR  

n this section, we describe the selection of the optimized noise
odel for each pulsar. The selection is performed in several steps in
 partially iterative way. We start with the base model used in Chen
t al. ( 2021 ) that contains only achromatic red noise and DM variation
omponents. Both these models depend on the number of Fourier
requency bins we use for the basis functions, or, in other words, on
he high frequency cut-off that roughly corresponds to the transition
rom the red-noise to the white-noise dominated region. The analysis
n Chen et al. ( 2021 ) used the 30 and 100 lowest Fourier frequencies
 k / T , where k = 1...30(100)) for RN and DMv , respectively , for all
ix pulsars, as a reasonable balanced choice given exploratory tests. 

We start with these two sources of noise and apply Bayesian model
election to find the number of frequency bins for each pulsar. We use
 simple power-law model for each red noise, and we use the broken
ower-law and free-spectrum models for guidance to minimize the
et of model trials. Next, we include stochastic chromatic noise and
eterministic signals to the noise budget, and, finally we test for the
resence of system and/or band noise. 
Each pulsar’s noise model al w ays includes white noise and we
arginalize o v er the TM parameter errors (as implemented in

NTERPRISE ). 

.1 Selection on number of Fourier modes for the achromatic 
ed noise and DM variation 

he importance of the choice of spectral binning has been discussed
n van Haasteren & Vallisneri ( 2015 ), where the authors show
imitations of the usual Fourier-sum approach with f k = { 1/ T ,...,
 / T } in the presence of linear and/or quadratic signals, or if the

tochastic red process spectral index is relatively high (i.e. γ ≥ 7).
arlier RN measurements have shown that such steeply rising noise

s highly unlikely in MSPs and absent in the six pulsars considered
ere (see Verbiest et al. 2009 ; Caballero et al. 2016 ; Reardon et al.
016 ). We therefore use a prior on the spectral index U(0 , 7), and,
s we will see later, this prior range is sufficiently broad. We have
hosen to use Fourier frequencies f k in our analysis. 

We begin by identifying the most fa v oured number of Fourier bins
or each pulsar. To do this, we assume that only the most commonly
sed noise components, RN and DMv, are present in each pulsar’s
ata. This is the noise model that was assumed in Chen et al. ( 20 2 1 ).
e reassess the presence of those noise components in Section 5.2.
e extend the short-hand notation for RN and DMv by appending

he number of bins (basis functions) used in its description. For
xample, RN30 DMv100 refers to a model marginalized o v er the
M parameter errors, including white-noise parameters, and both
N and DMv with 30 and 100 Fourier modes, respectively. 
The RN and DMv components could be highly correlated if we

ack multiband observations. The RN dominates in the several lowest
ourier bins but is covered by the white noise at high frequencies.
Mv, on other hand, depends on the observational radio frequency

nd therefore weakly (if at all) correlates with the white noise.
herefore, we should try to use a large number of Fourier bins to
ccommodate the dispersion information stored at high frequencies.
NRAS 509, 5538–5558 (2022) 
For the RN, we expect that a relatively small number of bins
ontribute to the analysis before the white noise becomes dominant.
 or e xample, we hav e found that the use of RN30 DMv30 (which
sed to be the default choice) is disfa v oured by a Bayes factor of more
han 10 5 compared to the most fa v ourable model RN30 DMv100
or PSR J1744 −1134. In addition, the use of 30 bins for both
oise components shows a very strong cross-model ‘leakage’ in
he posterior of the RN and DMv parameters, which disappears
ompletely in the fa v ourable model. 

We have analysed each pulsar using the broken power-law and
ree-spectrum models in order to get a rough indication on the
xpected range for the number of Fourier modes. Typical results of
uch an analysis (for RN) are given in Fig. 1 for PSR J1713 + 0747,
here the estimation of the power in each free-spectrum bin is
iven by the grey violin-type histograms and we have overplotted
000 realizations of the broken power law randomly drawn from the
osterior as blue solid lines. The broken power-law model suggests
hat the transitional frequency f b should be above 15 bins (as indicated
y a vertical dashed line in Fig. 1 ). Therefore, for this pulsar we try
5, 20, and 30 Fourier modes for the RN. Similar analysis was
erformed for DMv and we decided to use 30, 50, 70, 100, and
50 modes (to choose from) for every pulsar, which allowed us to
onsider frequencies up to f max 	 1/(2 months) for the pulsar with
he longest data set (PSR J1713 + 0747). 

We have performed Bayesian model selection across the pre-
elected number of modes for both RN and DMv. The fa v ourable
odels are summarized in Table 2 . It shows that the data supports

requencies higher than 100/T span for DMv, except for J0613 −0200
hich displays no difference, either in evidence or in the posterior
istribution of parameters, across the range of frequency-bin
umbers for DMv that we have tried. As expected, for the RN,
e require no more than 20 frequency bins for all pulsars except
SR J1012 + 5307, which requires 30. Where there was no clear
reference between two (or more) models (Bayes factor less than
0), we preferred the model with the smallest number of bins for
easons of computational efficiency. 

Let us give a few comments on the results presented in Table 2 .
ach quoted Bayes factor compares the selected model for the
umber of Fourier modes with the model used in Chen et al.
 2021 ). One can see a significant gain in the Bayes factor for
SRs J1012 + 5307 and J1713 + 0747, which is mainly due to the
xtension of DMv to higher frequencies. In fact, all pulsars give

art/stab3283_f1.eps
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Table 2. Fa v oured number of Fourier modes for RN and DMv for the sixp 
ulsars. The third and fourth columns compare the fa v oured model with 
RN30 DMv100 , respectively, showing the Bayes factors and the Jensen–
Shannon divergences for the RN amplitude (top) and spectral index (bottom). 
The models for PSR J1713 + 0747 also include the two exponential dips. 

Pulsar Fa v oured NBins log 10 B 

Fav . NBins 
RN30 DMv100 J–S div. A RN 

γ RN 

J0613 −0200 RN10 DMv30 0 .0 2.31 × 10 −3 

1.32 × 10 −3 

J1012 + 5307 RN30 DMv150 3 .1 2.68 × 10 −2 

2.99 × 10 −2 

J1600 −3053 RN20 DMv100 − 0 .3 4.44 × 10 −3 

4.03 × 10 −3 

J1713 + 0747 RN15 DMv150 6 .3 2.71 × 10 −3 

1.04 × 10 −3 

J1744 −1134 RN10 DMv100 − 0 .3 4.85 × 10 −3 

4.66 × 10 −3 

J1909 −3744 RN10 DMv100 − 0 .1 3.72 × 10 −3 

1.98 × 10 −3 
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Figure 2. Achromatic red-noise spectrum of J1909 −3744 using the model 
RN30 DMv100 , with a power law (black solid line drawn with the maximum 

a posteriori), and four free-spectrum (violin plots) PSDs computed with four 
different minimum frequencies: i /T span with i = 1 (blue), 1.2 (orange), 1.45 
(green), and 1.7 (pink). Here, 30 bins are drawn for the first one, 6 for the 
second, and 3 for the two others. 
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 slight preference to 150 bins but with the Bayes factor close
o one, and following our logic we have chosen to use 100 (30
or PSR J0613 −0200) bins to reduce the computational cost. The 
e gativ e, but close to zero, log-Bayes factor for PSRs J1600 −3053,
1744 −1134, J1909 −3744 indicates that the use of 30 modes for RN
as only a slight preference (what we would call inconclusive ) and
e have chosen the lo west allo wed number of bins. The residuals

n pulsar J0613 −0200 data did not fa v our any particular number
f modes. As we are mainly interested in the red noise, we have
uantified the difference in the posterior of the red noise between 
wo models by computing the Jensen–Shannon divergence. The last 
olumn indicates that there has been a statistically significant change 
n the RN relative to the base (Chen et al. 2021 ) models only for
1012 + 5307: the increase in the frequency range of the DMv process
as constrained the RN to lower frequencies (the amplitude of the 
N has slightly dropped while the spectral index has increased). We 
ill revisit model selection for this pulsar in Section 5.2. 

ed noise free-spectrum of PSR J1909 −3744 

n this paragraph we discuss PSR J1909 −3744. This is one of the
est timers, but it has the shortest observational span (about 11 yr)
nd the data was only acquired by NRT. The free spectrum and the
ower law (corresponding to the maximum a posteriori parameters) 
f the RN are plotted in Fig. 2 . The blue violin plot shows the power
istribution using our standard Fourier modes ( i /T span ). We performed
dditional runs (given by different colours) with scaled-down time 
pan values as, T span → (T span /1.2, T span /1.45, T span /1.7), to get better
esolution at low frequencies. Note that those frequency bins are not 
ndependent as we have used o v ersampling in the frequency domain,
nd the corresponding basis functions are not orthogonal even for 
venly spaced data. One can clearly see that the spectrum flattens 
ut and probably bends downwards at the lowest frequency bin. This
end is not v ery conclusiv e: the posterior at the lowest bin is poorly
onstrained, and could be caused by the gaps in the data (214 epochs
rom 2004 to 2011 with BON versus 695 from 2011 to 2020 with
UPPI backends). If this downturn is real, it could be related to
rocesses intrinsic to the neutron star (Goncharov, Zhu & Thrane 
020 ), or to a putative GWB produced by eccentric SMBHBs (Chen
t al. 2017 ). We require a longer time span to better constrain the
owest frequencies and refine our interpretation. 

.2 Extending model selection to stochastic and deterministic 
ignals 

et us now investigate the different red signals presented in Section 3.
e start with the pulsar stochastic processes by (i) inspecting the

resence of the chromatic signals in the data; and (ii) performing
odel selection to obtain the most fa v oured signal combination with
N, DMv, and Sv. The selection of the optimal number of modes

or Sv was done in a manner similar to the one described in the
revious section. We have also checked that the selected number of
asis functions for RN and DMv is still optimal and found that to
e the case for all pulsars except PSR J1600 −3053, which we will
iscuss separately. 
Next, we fit for the presence of an annual chromatic signal in

SR J0613 −0200 data and exponential dips in PSR J1713 + 0747
as discussed in Section 3.5). Finally, we search for the presence of
ystem and band noise in each pulsar. 

.2.1 Stoc hastic c hromatic signals 

n the previous sub-section we assumed the presence of RN and
Mv and concentrated on choosing the number of basis functions 

o describe the noise by a Gaussian Process. Now we fix the number
f modes and check whether the data supports RN, DM, and Sv
oise components. The probed models and the Bayes factors (with 
espect to the most fa v ourable model indicated by the bold zeros)
re summarized in Table 3 . Below, we outline the procedure that we
ave followed. 
In parallel to the direct computation of the evidence for each
odel, we have also conducted a noise diagnostic by using a noise
odel with RN and FCN (free chromatic index), which covers RN

chromatic index χFCN = 0), DMv ( χFCN = 2), and Sv ( χFCN = 4).
he posterior on the chromatic index with RN FCN is shown as blue
istograms in Fig. 3 and in most cases it is centred around 2, indi-
ating the presence of DMv, with two exceptions: PSR J1012 + 5307
centred at 1.1) and J1909 −3744 (centred at 3). We add DMv in our
odel and repeat the analysis with RN DMv FCN . The FCN now
MNRAS 509, 5538–5558 (2022) 
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Table 3. Model selection for the stochastic chromatic signals. This table contains the log-10 
Bayes factors of the highest evidence model ( log 10 B = 0 . 0) o v er the set of other models that 
we have tried (given in columns). The selected model is indicated in bold. We have used 150 
Fourier modes for RN in PSR J1012 + 5307 and 2 exponential dips are al w ays included in the 
analysis of PSR J1713 + 0747. 

Pulsar RN DMv Sv RN DMv RN Sv DMv Sv RN DMv Sv 

J0613 −0200 − 12 .5 − 10 .3 − 37 .7 0 . 0 − 2 .2 − 1 .7 − 0 .3 
J1012 + 5307 − 25 .0 − 63 .0 − 143 .7 0 . 0 − 2 .0 − 47 .5 0 .4 
J1600 −3053 − 146 .1 − 10 .2 − 59 .3 −6.5 − 9 .1 0 . 0 0 .0 
J1713 + 0747 − 36 .8 − 42 .6 − 125 .0 0 . 0 − 30 .0 − 28 .5 − 0 .8 
J1744 −1134 − 12 .1 − 3 .1 − 27 .9 0 . 0 − 10 .7 − 2 .4 − 1 .8 
J1909 −3744 − 66 .7 − 82 .1 − 244 .4 −2.1 − 3 .4 − 21 .0 0 . 0 

Figur e 3. Mar ginalized posterior distributions of the chromatic index χFCN 

in RN FCN (solid blue) and RN DMv FCN (solid red) for the six pulsars. 
The number of frequency bins for the RN and DMv power law are taken from 

Table 2 . For PSR J1012 + 5307, we performed additional analyses with models 
RN150 FCN150 (dashed blue) and RN150 DMv150 FCN150 (dashed red). 
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aptures the remaining noise not co v ered by DMv and is indicated by
he red histograms in Fig. 3 . PSR J1600 −3053 shows the presence
f scattering noise ( χFCN = 4). For this pulsar, variable and clumpy
cintillation arcs in the secondary spectrum (i.e. the power-spectrum
f the dynamic spectrum; see e.g. Cordes & Wolszczan 1986 ) are
lso seen in the L -band LEAP data (Main et al. in preparation), with
ower extending up to 16 μs in delay, and averaged time delays at the
00ns level. These results add more confidence for the inclusion of
his process, and indeed its presence is confirmed by the Bayes factor.
o we ver, including Sv into the noise model absorbs most of the red
oise, making its presence inconclusive (as indicated in the table).
SRs J0613 −0200, J1713 + 0747, and J1744 −1134 show no sign of
cattering variation noise. The chromatic index remains unchanged
or J1909 −3744, and the model selection indicates (though not very
trongly) the presence of both DMv and Sv. 

It is important to see how the inclusion of Sv changes the RN
roperties. In Fig. 4 we show the corner plot of the RN parameters
or the model RN DMv in blue and the model RN DMv Sv in red,
or the two pulsars that fa v our Sv. As mentioned abo v e, the data is
on-informative on the presence of RN in PSR J1600 −3053 if we
dd Sv to the model and this can be seen by the poorly constrained
osterior (red) in the left-hand panel. For J1909 −3744, the inclusion
NRAS 509, 5538–5558 (2022) 
f Sv has a less drastic effect: it absorbs a small part of the RN at
ery low frequencies, which reduces the spectral index but pushes
he amplitude slightly up. 

eculiar red noise in PSR J1012 + 5307 

SR J1012 + 5307 required a special investigation given the rather
trong signal in model RN DMv FCN displayed in Fig. 3 , with
hromaticity index close to zero. It turned out to be unaccounted
N at high frequencies. In our initial analysis for the number of
ourier components we concentrated on low frequencies (up to 30
ins) for the RN and the FCN in RN DMv FCN picks up excess red
oise which extends also to high frequencies. 
Based on these findings we revisited the selection of Fourier modes

one in Section 5.1 for this pulsar by allowing the RN to go up to 150
ourier bins. The fa v oured model RN150 DMv30 has a Bayes factor

og 10 B 

RN150 DMv30 
RN30 DMv150 = 29 . 8 o v er the previous one, and therefore we

dopt it in further investigations. In Fig. 5 we show the evolution of
he red noise parameters (amplitude and spectral index) as we move
rom RN30 DMv150 (blue) to the new model RN150 DMv30 (red).
he parameters of the RN process are better constrained, the red
oise is significantly shallower (to accommodate the high frequency
ontrib ution) b ut the amplitude is slightly higher. The free spectrum
stimation for this pulsar can be seen in the second panel of the
ight-hand column of Fig. A1 . One can clearly see the low frequency
ed noise (well constrained power at the three lowest Fourier bins),
ut we also observe significant fluctuations at higher frequencies.
he high frequency red noise is also evident in the time realization
f this signal in the corresponding plot in the left-hand column. The
ed noise at high frequencies flattens out the power law of the overall
N process. Ho we ver, we do not exclude the possibility that the red
oise comprises two components of different origin. 
Using this number of modes, we have repeated the analysis of the

ata with the RN150 FCN150 and RN150 DMv30 FCN150 models.
he results are presented in Fig. 3 as dashed lines and confirm that
N150 DMv30 is sufficient to describe the data. The green histogram

n Fig. 5 shows that adding Sv does not change the properties of the
N process. 

.2.2 Deterministic chromatic signals 

he scattering and scintillation effects for J0613 −0200 have been
tudied by Main et al. ( 2020 ), who also discuss the presence of annual
ariations of the arc curv atures. Furthermore, K eith et al. ( 2013 ) has
hown the presence of annual chromatic signals which were reported
n Goncharov et al. ( 2021b ), suggesting the need for a noise model
hat includes an annual DM process (i.e. χy = 2). Ho we ver, we
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Figure 4. 2D distributions of achromatic red-noise amplitude and spectral index. Left plot: J1600 −3053, the model RN DMv is in blue and RN DMv Sv is red; 
Right plot: J1909 −3744, with RN DMv in blue and RN DMv Sv (fa v ourable) in red. 

Figure 5. 2D distribution of achromatic red-noise amplitude and spec- 
tral index for J1012 + 5307 with the noise models RN30 DMv150 (blue), 
RN150 DMv30 (red), and RN150 DMv30 SV150 (green). 
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id not find conclusive evidence for the presence of such a signal,
ith Bayes factors B 

RN DMv AnnualDM 

RN DMv = 8 . 3 and B 

RN DMv AnnualSv 
RN DMv = 

 . 0, which we do not consider sufficiently significant to justify its
nclusion in the noise model. Note that (at least part of) the annual
ariations in the timing residuals might be absorbed by the TM
arameter fit (through the pulsar sky position and proper motion). 
As for the exponential dip events, we found their presence in 

SR J1713 + 0747 data with high statistical confidence: the log- 
0 Bayes factors were 30.5, 13.9, and 46.8 fa v ouring models that
nclude, respecti vely, one single e vent at MJD 54757, one single event 
t MJD 57510, and both those events together. We found a chromatic
nde x v ery consistent with scattering variations ( χE 1 = 4 . 07 + 1 . 77 

−1 . 13 ,
ith errors corresponding to the 68 per cent confidence interval) for 

he first event (left-hand panel of Fig. 6 ), and an index χE 2 = 1 . 00 + 0 . 56 
−0 . 49 

or the second event. The index for the second event is consistent
ith Goncharov et al. ( 2021b ), who reported a profile change for this

vent and proposed a cause linked with the pulsar’s magnetosphere 
nstead of an IISM process. The posteriors for both events are shown
n Fig. 6 . Note that the posteriors of t 0 for both epochs are sharply
onstrained between the two consecutive ToAs that surround the 
ctual event dates and it is not railing against the prior range (see
able 1 ). For the rest of this work, we fix the chromatic indices of
oth events at 4 and 1 as discussed above. 
(

.2.3 System and band noise 

he data set for each pulsar is made from the combination of ToAs
roduced with different receiver systems integrated in different radio 
elescopes. It might happen that one (or several) of these systems
ne xpectedly introduce e xtra noise. The idea of the system-noise
odel is to check this hypothesis. 
The EPTA data have a large number of systems, and checking all

f them at the same time is computationally prohibitive. Instead, 
e have used an approach based on the hyper-model selection 

ramework (Hee et al. 2015 ) to check for the presence of a noise
n each system in turn. We introduce a switch (hyper) parameter
hich regulates the prior on the amplitude of the system noise being

ither significant/detectable or negligible. Those two models for each 
ystem imply that SN is al w ays present but it could be at a detectable
evel or not. Note that the prior on the amplitude (log-uniform) is
l w ays tak en into account and it has the same range for both models
nd therefore the main difference is in the likelihood, which gives
ome similarity to the dropout analysis (Arzoumanian et al. 2020 ).
he posterior mean, P i , of an y giv en hyper-parameter indicates the
robability of having red noise in the corresponding system. The 
atio P i /(1 − P i ) is the Bayes factor for the model including system
oise in that component o v er the model without. 
For this analysis, we exclude systems that have less than 

 yr of time span for any of the six pulsars. The excluded
ystems are JBO.DFB.1400, JBO.DFB.1520, WSRT.P1.323.C, 

SR T.P1.367.C, WSR T.P1.840.C, WSR T.P1.1380.C, 
SR T.P1.1380.1, WSR T.P1.1380.2.C, NR T.BON.1600, and 
RT.NUPPI.1854. We also do not investigate NRT.NUPPI.2154, 
hich contributes ∼2.4 yr for J1600 −3053 and about 4.7 yr for

1909 −3744, but with 16 epochs distributed in 1.1 yr, and only 2
pochs 4.6 yr after. 

The data set of PSR J1909 −3744 is composed by ToAs produced
nly from NRT observations, with three systems (BON backend) 
efore MJD ∼55812 and four systems (NUPPI backend) after that 
ate. This means that any possible system red noise will be totally
orrelated with RN, which will absorb it. 

In Table 4 we report the log-10 of the Bayes factor in fa v our of
ncluding red noise in that component, computed as described abo v e.

We observe three systems NRT.NUPPI.1484, JBO.R OA CH.1520, 
nd LEAP.1396 with a significant inclusion factor (10 5 , 10 4 , and
0 4 , respectively). We notice that these are three L -band systems
ctive between 2011 and 2020, which corresponds to the major part
f the data sets. The first two of the abo v e mentioned systems
especially NRT.NUPPI.1484) are the largest contributors to the 
MNRAS 509, 5538–5558 (2022) 
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Figure 6. Posterior distributions for the exponential dips found in J1713 + 0747 at MJD 54757 (left) and at MJD 57510 (right). The chromatic index χE was 
used as a model parameter. 
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PTA data and LEAP.1396 produces the ToAs with the lowest
ncertainties (mean at 1.86 μs for PSR J1012 + 5307 and lower
han 0.55 μs for the others). For PSR J1713 + 0747 two additional
ystems (EFF.S110.2639 and NRT.BON.2000) show signs of system
oise, and it might also be present in NRT.NUPPI.2539 for PSRs
1012 + 5307 and J1744 −1134. 

The systems with an inclusion factor abo v e 10 (presented in bold
n Table 4 ) were selected for a detailed analysis of all possible
ombinations of system noise. We have found that DM-type chro-
atic system noise (DM-SN) is al w ays f a v oured (in terms of Bayes

actor) o v er the achromatic SN for the NRT.NUPPI.1484 system
nd it is included in the total noise budget for PSRs J0613 −0200,
1012 + 5307, J1713 + 0747, and J1744 −1134. It is not entirely clear
hy the data does not support its presence in J1600 −3053 (where we
ave identified SN only in LEAP.1396). One plausible explanation
s that the NRT.NUPPI.1484 ToAs dominate the data for this pulsar
nd to clearly disentangle SN from RN we would need to include
ata from other PTAs to test this assumption (that is a plan for the
uture IPTA data combination, repeating the previous such effort in
entati et al. 2016 ). 
Polarization calibration errors and radio frequency interference

re possible causes for SN. Parameter posteriors for the SN of
RT.NUPPI.1484 and LEAP.1396 (Fig. 7 ) display o v erall consis-

ency across pulsars, which corroborates the assumption of a red
oise specific to these systems. We should emphasize again the
resence of data from other systems (as expected in the IPTA data
et) should greatly help to identify the system noise and disentangle
t from the RN as was demonstrated in Lentati et al. ( 2016 ) for
SR J1730 −2304 using the IPTA DR1 data set. 
The results of the SN selection are presented in Table 5 : in-

lusion of the SN leads to log-10 Bayes factors (15.9, 7.4, 13.8,
18.1, and 18.6) for PSRs J0613 −0200, J1012 + 5307, J1600 −3053,
1713 + 0747, and J1744 −1134, respectively. 

We switch now to the band noise investigation. The main radio
requency bands (cf. Table 4 ) in the data sets are Band.2 and
and.3, which contain the bulk of observations for all pulsars.
and.1 and Band.4 are only co v ered by one telescope: the WSRT
nd Ef felsberg, respecti v ely. As for SN, we do not inv estigate for
N if the corresponding time span of observations is less than 3
NRAS 509, 5538–5558 (2022) 
r. Unfortunately, this made investigations in Band.1 and Band.4
nconclusive due to lack of sufficient data. 

We found evidence of BN only in Band.3 of PSR J1713 + 0747
nd Band.2 of PSR J1744 −1134, with corresponding log-10 Bayes
actors of 6.5 and 6.2. This result is somewhat consistent with
oncharov et al. ( 2021b ), where Band-noise for both Band.2 and
and.3 were reported for these two pulsars. Ho we v er, we hav e found

hat the inclusion of Band.2 for PSR J1713 + 0747 and Band.3 for
SR J1744 −1134 results in insignificant log-10 Bayes factors, 0.6

n both cases. This points again to the importance of the IPTA data
ombination for the band noise analysis. Our results for BN are
ummarized in Table 5 . 

oor constraint on RN for PSR J1744 −1134 

 e revisited T able 3 after finding and fixing the set of noise
ources included for each pulsar. We noticed that the RN
or PSR J1744 −1134 becomes poorly constrained using the
N DMv SN BN model (see red histograms in Fig. 8 ). After further

nvestigation, we found that the Bayes factor B 

RN DMv SN BN 
DMv SN BN = 2

ardly supports the presence of the RN. A similar result was found in
oncharov et al. ( 2021b ), where the RN of this pulsar does not enter

he fa v oured noise model. As another confirmation, the time-domain
oise realizations of the red noise signal (see Fig. A1 ) are quite
educed for the RN DMv SN BN model (light grey) as compared to
N30 DMv100 (red). We have decided to keep the RN DMv SN BN
odel (as a conserv ati ve assumption); ho we ver, we will address its

mpact when we discuss the common red noise. 

.3 Summary of the model selection 

he results of the noise model selection for each pulsar are summa-
ized in Table 5 . We report the RN parameters for each model, giving
he median and 95 per cent confidence interval. We also compare
he custom-build noise model (M2) with the default noise model
M1) used in Chen et al. ( 2021 ). We quote the log-10 Bayes factors
howing a strong preference for the custom noise model (ranging
rom 2 to 195). The biggest impact on the Bayes factor was caused by
nclusion of the SN and BN components. Finally, we have e v aluated
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Table 4. Switch hyper-parameter (in log10-scale) for the achromatic system noise. Considered systems are given in the second column. The 
values abo v e 1 (shown in bold), indicate evidence for the presence of red noise in that system. These systems were selected for a detailed analysis. 

Radio band System J0613 −0200 J1012 + 5307 J1600 −3053 J1713 + 0747 J1744 −1134 J1909 −3744 

Band.1 WSRT.P1.328 −0.18 −0.23 – – – –

< 1 GHz WSRT.P1.328.C −0.23 −0.07 – – – –

WSRT.P1.382 −0.07 −0.10 – – – –

WSRT.P1.382.C −0.02 −0.01 – – – –

WSRT.P1.840 – – – −0.15 – –

WSRT.P1.840.C – – – −0.07 – –

WSRT.P2.350 – −0.11 – −0.16 – –

Band.2 EFF.EBPP.1360 −0.16 −0.15 – 0.24 −0.23 –

[1,2] GHz EFF.EBPP.1410 0.41 −0.16 – −0.18 −0.36 –

EFF.P200.1380 – 0.54 – – – –

EFF.P200.1400 −0.08 – −0.28 – – –

EFF.P200.1400.np – – – −0.44 – –

EFF.P217.1380 – 0.26 – – – –

EFF.P217.1400 −0.09 – −0.29 0.32 −0.14 –

EFF.P217.1400.np – – – −0.09 – –

JBO.R OA CH.1520 (JBO 1.5) 1 . 93 2 . 48 0.01 ≥ 5 . 00 ≥ 5 . 00 –

LEAP.1396 (LEAP 1.4) ≥ 5 . 00 0.42 ≥ 5 . 00 ≥ 5 . 00 ≥ 5 . 00 –

NRT.BON.1400 0.66 −0.23 −0.27 −0.13 0.62 −0.33 

NRT.NUPPI.1484 (NUP 1.4) ≥ 5 . 00 2 . 65 3 . 80 ≥ 5 . 00 ≥ 5 . 00 −0.41 

WSRT.P1.1380 −0.21 – – – – –

WSRT.P1.1380.2 – −0.18 – −0.22 – –

WSRT.P2.1380 −0.01 −0.13 −0.28 0.56 −0.16 –

Band.3 EFF.EBPP.2639 0.05 −0.29 −0.20 −0.19 –

[2,3] GHz EFF.S110.2487 – −0.30 – – −0.17 –

EFF.S110.2639 0.08 – −0.25 2 . 63 – –

NRT.BON.2000 (BON 2.0) −0.24 −0.23 −0.01 ≥ 5 . 00 −0.31 −0.30 

NRT.NUPPI.2539 (NUP 2.5) −0.23 1 . 53 −0.34 −0.24 1 . 48 −0.40 

WSRT.P1.2273.C – – – −0.10 – –

WSRT.P2.2273 – – – −0.03 – –

Band.4 EFF.S60.4850 – – – −0.06 – –

> 3 GHz EFF.S60.4857 – −0.16 – – 0.13 –
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he Anderson–Darling diagnostic A 

2 (Anderson & Darling 1952 ) for 
he whitened residuals, obtained after subtracting the time domain 
oise realization drawn from the maximum likelihood from the 
esiduals and dividing by the ToA uncertainties. While the Bayes 
actor measures the relative closeness of the whitened residuals to a 
aussian distribution, it does not tell us if the final result is actually
aussian (in other words, if the fa v oured model is actually good). The
nderson–Darling statistic addresses precisely this question. A 

2 = 

.5 is a value at which one fails to reject the null hypothesis (i.e.
ollowing a Gaussian distribution) at 95 per cent confidence level. A 

o wer v alue of the statistic corresponds to a better agreement with a
aussian distribution. We see the o v erall impro v ement for the M2
odel. The high values for PSR J1713 + 0747 could be caused by
 few outliers in the whitened residuals. To test this assumption, 
e recompute the statistic after removing outliers found with the 
rubbs’ test (Grubbs 1950 ), obtaining 3.2 and 2.1, respectively, for
1 (with 9 outliers) and M2 (with 6 outliers). The Anderson–Darling 

tatistic for PSR J1744 −1134 reduces to 1.0 if we exclude RN from
he fa v ourable (M2) model. 
In preparation for the next section where we consider a common
ed signal, we investigated how much the white noise parameters 
mpact the measurement of the RN. Following Lentati et al. ( 2015 ),
e have performed a noise analysis with all white noise param-

ters fixed to the maximum-likelihood values and compared the 
N posteriors to the previously obtained results. The results are 
uoted as Jensen–Shannon divergences (last column of Table 5 ) 
nd show a very good consistency (J–S div < 3 × 10 −3 ). This
onfirmed that we can safely fix the white noise parameters for
urther investigations. 

 I M PAC T  O N  T H E  SEARCH  F O R  A  C O M M O N  

E D  NOI SE  

n this section, we investigate how the custom single-pulsar noise 
odel affects the results of the common red signal analyses reported

n Chen et al. ( 2021 ). We consider here the CRS either with Hellings–
owns spatial correlations (GWB; Hellings & Downs 1983 ) or 
ithout (CURN). 
MNRAS 509, 5538–5558 (2022) 



5550 A. Chalumeau et al. 

Figure 7. 2D distributions of amplitude and spectral slope of 
NRT.NUPPI.1484 DM-SN (top) and LEAP.1396 SN (bottom), using the final 
fa v oured model for each pulsar. 
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As in the previous section, we denote the default base noise model
sed for all pulsars in Chen et al. ( 2021 ), R N30 D Mv 100, as M1, and
abel the custom models (summarized in Table 5 ) for each pulsar as

2, and fix the white-noise parameters to their maximum-likelihood
alues (in the corresponding models). We model the common red
oise using 30 uniformly spaced Fourier modes f k = k /T tot , k =
...30, where T tot is the time span between the lowest and highest
poch from the combined data of all pulsars. 

.1 Contribution of each pulsar to the common red signal 

ollowing Arzoumanian et al. ( 2020 ), Goncharov et al. ( 2021a ),
nd Chen et al. ( 2021 ), we study the contribution of each pulsar
ata set to the inferred presence of a common red process using
ropout analysis. One additional parameter is added to the model
or each pulsar, with a uniform prior, and these are sampled as part
f the model. When the parameter is one, the common red signal is
ncluded in the model for that pulsar used in the likelihood and when
t is zero it is not. The dropout factor is the ratio of the fraction of
osterior samples when the CRS is included to the fraction when it
s not included. 
NRAS 509, 5538–5558 (2022) 
The resulting dropout factors (see Fig. 9 , blue hollow circles) with
1 + CURN are very similar to those presented in fig. 5 in Chen

t al. ( 2021 ). The dropout factor for PSR J1012 + 5307 is around 1
consistent with the results of Arzoumanian et al. 2020 ) and most
ikely caused by abnormal red noise at high frequency (see discussion
n 5.2.1). 

The contribution of each pulsar to the common red noise has
ecreased for the custom model M2 + CURN with the biggest
rop shown for PSR J1600 −3053 (the one which did not support
N). Despite that the o v erall result remains: these pulsars support

he presence of a CURN. Interestingly, if we discard RN from
he M2 + CURN model of PSR J1744 −1134 (see discussion in
ection 5.2.3), it is picked up by the CURN leading to an increase

n the drop-out factor (see hollow red circle in Fig. 9 ). Note
hat this poorly constrained (and poorly understood) signal could
otentially affect the sensitivity to the GWB. Our choice to keep
N inside the M2 model for PSR J1744 −1134 was a conserv ati ve
hoice. 

.2 Spectral properties of common red signal 

ig. 10 and Table 6 summarize the spectral properties of the CURN
nd GWB. We do not see significant changes in the new results
red) from those found previously (blue; Chen et al. 2021 ). The
mplitudes of both CURN and GWB are slightly lower and the
pectral indices are a bit shallower with the M2 models. The
edian amplitude is reduced from A CURN , M1 = 5 . 42 + 4 . 48 

−2 . 81 × 10 −15 

o A CURN , M2 = 4 . 88 + 4 . 94 
−2 . 85 × 10 −15 (95 per cent credible interval) and

he uncertainties of the spectral index are somewhat larger. The
hift in the amplitude of the CURN is most likely due to partial
bsorption of the noise components which are unmodelled in M1,
nd which are accounted for in the extended set of M2. Similarly for
he GWB we have A GWB , M1 = 5 . 01 + 4 . 34 

−2 . 63 × 10 −15 and A GWB , M2 =
 . 87 + 5 . 26 

−2 . 88 × 10 −15 . Note that the amplitude of the CRS in M2 is the
ame for the CURN and GWB models. 

We observe no changes in the CURN amplitude and spectral
ndex posteriors using M2 with or without RN for PSR J1744 −1134,
ith corresponding Jensen–Shannon divergences 2.95 × 10 −3 and
.84 × 10 −3 . 
We have also considered a free-spectrum model for CRS and plot

t in Fig. 11 . The M1 + CRS model is presented by the hollow violins
nd we plot M2 + CRS by filled blue violins. The left plot shows
he addition of CURN to the M1 and M2 noise models. We notice
he slight drop in the amplitude at the lowest frequency and slightly
etter constraint of amplitude at the second frequency bin. The free
pectrum for GWB (right plot) shows a slight drop in power at the
owest frequency. These results nicely confirm our main findings
ith the power-law model of a decreased amplitude and shallower

pectral index with M2 compared to M1. 

.3 Effects on the statistical significance of the common red 

ignal 

inally, we e v aluate Bayes factors considering M1/M2 +
URN/GWB against pulsar noise models without any common
rocess (PSRN), M1/M2. 
The results are summarized in Table 7 . We have used two methods

o compute Bayes factors (Dynesty, indicated by ‘Dyn.’ and the
yper-model, presented in Section 4, indicated by ‘Hyp’) for cross
hecking. First of all we hav e re-deriv ed the results of Chen et al.
 2021 ) for the M1 model: we observe strong evidence for the presence
f a CRS but the data is not informative about its nature (could equally
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Table 5. Final noise models for the six pulsars in EPTA DR2. The third and fourth columns show the median of the RN 

amplitude (A RN ) and spectral slope ( γ RN ), with corresponding 95 per cent confidence interval. The fifth column displays the log 10 

Bayes factors of the custom model o v er the model RN30 DMv100 . The sixth and seventh columns show the Anderson–Darling 
statistic applied to the whitened residuals for (i) RN30 DMv100 ; and (ii) the selected noise model. The last column shows the 
Jensen–Shannon divergences of the RN amplitude and spectral index posteriors of the selected noise model relative to the same 
model with fixed white-noise parameters. 

Pulsar Sel. model A RN γ RN log 10 B 

M2 
M1 A 

2 
M1 A 

2 
M2 J–S div WNf A RN 

γ RN 

J0613 −0200 RN10 DMv30 −14 . 93 + 1 . 26 
−1 . 17 5 . 07 + 1 . 83 

−2 . 34 15.9 0.4 0.3 2.36 × 10 −3 

DMv-SN NUP 1.4 1.82 × 10 −3 

J1012 + 5307 RN150 DMv30 −13 . 03 + 0 . 08 
−0 . 08 1 . 16 + 0 . 32 

−0 . 29 40.7 1.8 1.4 6.60 × 10 −4 

DMv-SN NUP 1.4 3.80 × 10 −4 

SN NUP 2.5 

J1600 −3053 DMv30 Sv150 – – 20.0 0.3 0.2 –

SN LEAP 1.4 –

J1713 + 0747 RN15 DMv150 −14 . 50 + 0 . 51 
−0 . 86 3 . 94 + 1 . 82 

−1 . 13 195.4 5.5 4.1 1.76 × 10 −3 

2 Exp. dips 1.92 × 10 −3 

DMv-SN NUP 1.4 

SN JBO 1.5 

SN LEAP 1.4 

SN BON 2.0 

BN Band.3 

J1744 −1134 RN10 DMv100 −15 . 31 + 2 . 03 
−2 . 50 3 . 68 + 3 . 13 

−3 . 46 22.6 1.0 1.2 4.39 × 10 −3 

DMv-SN NUP 1.4 1.79 × 10 −3 

BN Band.2 

J1909 −3744 RN10 DMv100 Sv150 −14 . 45 + 0 . 66 
−0 . 85 4 . 22 + 2 . 16 

−1 . 65 2.1 0.8 0.6 3.10 × 10 −4 

3.20 × 10 −4 

Figure 8. 2D posterior distribution of the red-noise parameters for 
PSR J1744 −1134 for model RN DMv (blue) and the most fa v oured model, 
RN DMv SN BN (red). 
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Figure 9. Dropout score for the contribution of each pulsar to the CURN 

model with M1 (pink dots) or M2 (empty blue dots). The same analysis for 
PSR J1744 −1134 but without intrinsic red-noise for this pulsar is also shown 
(empty red dot). 
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e CURN or GWB). Analysis with the custom noise model built in
his work confirms these findings. It is quite remarkable that even 
hough the custom noise models are very different from the standard 
nes, we can still confirm the presence of a CRS. This gives additional
onfidence in the presence of a CRS in the EPTA DR2 data. 

The results presented in Table 7 should be considered more 
s a comparison of the nature of the CRS: PSRN + GWB ver-
us PSRN + CURN. It is worth mentioning that in this view
he custom noise model M2 actually slightly prefers the GWB: 
og 10 B 

PSRN + GWB 
PSRN + CURN = 0 . 3, whereas it is slightly ne gativ e ( −0.2) for

1 as estimated with the hypermodel method. The observed signal 
ould also be caused by the spatially uncorrelated component of the
WB, which is expected to dominate over the cross-correlated terms. 
MNRAS 509, 5538–5558 (2022) 
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Figure 10. 2D posterior distributions of the CURN (top) and Hellings–Down 
correlated GWB (bottom) power-law parameters with M1 (blue) and M2 (red) 
single-pulsar noise models. 

Table 6. Median of amplitude and spectral index posterior (and 95 per cent 
credible interval) of both uncorrelated (CURN) and Hellings–Down (GWB) 
common processes computed with M1 and M2. The last two columns contain 
Jensen–Shannon di vergences v alues that compare the posteriors of a CRS 
added to M1 and M2. 

Model log 10 A γ JS div. A JS div. γ

M1 + CURN −14 . 27 + 0 . 26 
−0 . 32 3 . 73 + 0 . 68 

−0 . 61 0 0 

M2 + CURN −14 . 31 + 0 . 30 
−0 . 38 3 . 68 + 0 . 81 

−0 . 72 1.55 × 10 −2 9.40 × 10 −3 

M1 + GWB −14 . 30 + 0 . 27 
−0 . 32 3 . 82 + 0 . 70 

−0 . 65 0 0 

M2 + GWB −14 . 31 + 0 . 32 
−0 . 39 3 . 69 + 0 . 84 

−0 . 78 8.73 × 10 −3 2.60 × 10 −2 
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 C O N C L U S I O N  

e used a general Bayesian inference approach to select the most
a v oured noise model for each pulsar of EPTA DR2. These models
re summarized in Table 5 and show a significant impro v ement (in
erms of Bayes factor) o v er the default base model used in Chen
t al. ( 2021 ). In addition to conventional stochastic processes such
s achromatic red noise and DM variations, we have considered
cattering variations, system noise (both chromatic and achromatic),
NRAS 509, 5538–5558 (2022) 
and noise, and deterministic signals (annual DM variations, annual
cattering variations, and non-stationary DM event). Our model
election was guided by previously published investigations or using
uxiliary runs that helped to identify the list of models for further
onsideration. 

The main result of this paper is that we confirm the presence of
 common red noise in EPTA DR2 despite the use of much more
omplicated single-pulsar noise models. The data is not informative
n the presence of Hellings–Downs spatial correlations, which is
ot surprising given that we have analysed only the six best EPTA
ulsars. Ho we ver, the use of custom noise models led to a marginal
ncrease in the evidence for the presence of a GWB against an
ncorrelated CRS. 
The second main result of this paper is that it lays the practical

cheme (protocol) for choosing a custom noise model which will be
pplied to a larger set of EPTA (and IPTA) pulsars on the path to
onfirming the nature of the observed common red noise process.
ven though we only found small differences, both in posteriors and
ayes factors, the analysis of noise in each pulsar data is essential

or the detection and interpretation of the common red signal. 
There are also several interesting side results obtained during this

nvestigation. 

(i) PSR J1909 −3744 shows signs of a downturn in its spectrum at
ow frequencies. This feature could be confirmed or dispro v ed with
 longer observational span. 

(ii) PSR J1012 + 5307 indicates the presence of a high level of red
oise at high frequencies of unclear origin. 
(iii) PSR J1600 −3053 and J1744 −1134 are not very informative

bout the presence of achromatic red noise, giving only a small
reference to the models with RN. 
(iv) We did not observe strong evidence for the annual DM

ariations signal previously reported for PSR J0613 −0200. 
(v) We found that the first exponential dip of PSR J1713 + 0747

as a chromatic index consistent with scattering variations, and
onfirmed the low chromatic index for the second event. 

In this work we have emphasized several times the need to
ombine the data from multiple systems (to disentangle SN and RN
rocesses) and multiband observations (to disentangle achromatic
nd chromatic red noise). This gives a strong reason for a joint
nalysis of combined IPTA data. 

In the Appendix we show the red noise free spectrum with the
efault model RN30 DM100 and its time-domain realization for each
ulsar. We also provide a Table B1 with the parameters of all noise
omponents. 

C K N OW L E D G E M E N T S  

he European Pulsar Timing Array (EPTA) is a collaboration
etween European and partner institutes, namely ASTRON (NL),
NAF/Osservatorio di Cagliari (IT), Max-Planck-Institut f ̈ur Ra-
ioastronomie (GER), Nan c ¸ay/Paris Observatory (FRA), the Univer-
ity of Manchester (UK), the University of Birmingham (UK), the
niversity of East Anglia (UK), the University of Bielefeld (GER),

he University of Paris (FRA), the University of Milan-Bicocca (IT)
nd Peking University (CHN), with the aim to provide high precision
ulsar timing to work towards the direct detection of low-frequency
ra vitational wa ves. An Advanced Grant of the European Research
ouncil to implement the Large European Array for Pulsars (LEAP)
lso provides funding. The EPTA is part of the International Pulsar
iming Array (IPTA), we would like to thank our IPTA colleagues
or their help with this paper. 
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Figure 11. Free-spectrum of the CURN (left) and the GWB (right) signals, either with M1 (empty black violin) or M2 (filled blue violin) single-pulsar noise 
models. 

Table 7. Bayes factors in fa v our of the inclusion of CRS signals (CURN or 
GWB) in the M1 or M2 single-pulsar noise models. Estimations are performed 
either through evidence ratios (Dyn.) or using the product-space method 
(Hyp.). 

CRS Model log 10 BF 
M1 Dyn. M1 Hyp. M2 Dyn. M2 Hyp. 

PSRN – – – –

PSRN + CURN 3.6 3.8 2.9 3.3 

PSRN + GWB 3.4 3.6 3.0 3.6 
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PPENDI X  A :  AC H RO M AT I C  RED-NOI SE  

ROPERTIES  

ere we provide additional plots which demonstrate our main
ndings about the RN in each pulsar. 
We reconstruct time-domain Gaussian process realizations of

his signal modelled with a power-law PSD. The left-hand panels
f Fig. A1 display the 68 per cent confidence interval of 100
andom realizations drawn from the posterior distributions of the
N amplitude and spectral index included in two different single-
ulsar noise models: the default base model, RN30 DMv100 (red),
nd the ‘custom’ model shown in Table 5 (grey). The peculiar
igh frequency red noise is clearly seen in PSR J1012 + 5307 (see
ection 5.2 for a detailed discussion). The RN in PSR J1744 −1134

s considerably reduced in the ‘custom’ model (see discussion at the
nd of Section 5.2). Note that we did not include RN in the custom
odel for PSR J1600 −3053. The RN in the default and custom
odels are quite similar for PSRs J0613 −0200, J1713 + 0747, and

1909 −3053. 
The right-hand panels of Fig. A1 display the spectrum of the

chromatic red-noise (using RN30 DMv100 ) for each pulsar com-
uted with (i) a free-spectrum PSD (grey violins); and (ii) a broken
ower-law PSD (blue), where we give 1000 realizations randomly
rawn from the posterior distributions. 
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Figure A1. (left-hand panels) 68 per cent confidence interval of 100 time-domain random realizations of the achromatic red-noise included in the default base 
( RN30 DM100 ) model (red) and the ‘custom’ selected models (light grey) (cf. Table 5 ) for each of the six pulsars. (right-hand panels) Achromatic red-noise 
spectrum for the corresponding pulsar (noted in left-hand panel) included in the default base model and described with (i) a free-spectrum PSD (grey violins); 
or (ii) a broken power law (blue), here showing 1000 random realizations drawn from the posterior distributions. 
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Figure A1 – continued 
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PPENDIX  B:  SINGLE-PULSAR  NOISE  M O D E L  

A R A M E T E R S  

n Table B1 we give median values for each noise component with
8 per cent confidence interval in the custom model of each pulsar. 
NRAS 509, 5538–5558 (2022) 
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Table B1. Medians and 16 –84 per cent credible intervals of the 1D marginalized posterior distributions of each single-pulsar noise model parameters for (i) the 
default base models used in Chen et al. ( 2021 ); and (ii) the final custom models. Note that DMv amplitudes are given with ENTERPRISE normalization set for the 
radio frequency at 1.4 GHz (see equation 8). 

Model Signal Parameter J0613 −0200 J1012 + 5307 J1600 −3053 J1713 + 0747 J1744 −1134 J1909 −3744 

Default RN log 10 A −14 . 72 + 0 . 56 
−0 . 60 −13 . 12 + 0 . 08 

−0 . 08 −14 . 05 + 0 . 33 
−0 . 53 −14 . 13 + 0 . 18 

−0 . 19 −15 . 16 + 0 . 69 
−0 . 72 −14 . 65 + 0 . 32 

−0 . 37 

γ 4 . 76 + 1 . 09 
−1 . 04 1 . 66 + 0 . 32 

−0 . 30 3 . 50 + 1 . 22 
−0 . 89 3 . 29 + 0 . 54 

−0 . 47 5 . 19 + 1 . 10 
−1 . 09 4 . 65 + 0 . 96 

−0 . 83 

DMv log 10 A −13 . 75 + 0 . 21 
−0 . 26 −13 . 36 + 0 . 05 

−0 . 05 −13 . 09 + 0 . 04 
−0 . 04 −13 . 47 + 0 . 04 

−0 . 04 −13 . 33 + 0 . 05 
−0 . 05 −13 . 56 + 0 . 04 

−0 . 04 

γ 2 . 89 + 0 . 66 
−0 . 59 1 . 20 + 0 . 18 

−0 . 16 2 . 08 + 0 . 12 
−0 . 11 1 . 49 + 0 . 20 

−0 . 19 1 . 23 + 0 . 21 
−0 . 21 1 . 53 + 0 . 15 

−0 . 14 

Custom RN log 10 A −14 . 82 + 0 . 64 
−0 . 67 −13 . 02 + 0 . 03 

−0 . 03 – −14 . 48 + 0 . 25 
−0 . 30 −15 . 25 + 1 . 31 

−1 . 39 −14 . 46 + 0 . 36 
−0 . 41 

γ 4 . 81 + 1 . 17 
−1 . 15 1 . 19 + 0 . 13 

−0 . 13 – 3 . 95 + 0 . 65 
−0 . 56 3 . 67 + 2 . 17 

−2 . 22 4 . 24 + 1 . 03 
−0 . 88 

DMv log 10 A −13 . 58 + 0 . 16 
−0 . 21 −13 . 66 + 0 . 12 

−0 . 14 −14 . 16 + 0 . 32 
−0 . 41 −13 . 78 + 0 . 05 

−0 . 06 −13 . 45 + 0 . 07 
−0 . 07 −13 . 92 + 0 . 27 

−1 . 21 

γ 2 . 47 + 0 . 55 
−0 . 47 2 . 09 + 0 . 42 

−0 . 39 4 . 69 + 0 . 92 
−0 . 76 1 . 16 + 0 . 20 

−0 . 21 0 . 46 + 0 . 36 
−0 . 30 2 . 64 + 2 . 67 

−0 . 93 

Sv log 10 A – – −13 . 26 + 0 . 04 
−0 . 04 – – −13 . 84 + 0 . 10 

−0 . 19 

γ – – 1 . 48 + 0 . 14 
−0 . 13 – – 0 . 78 + 0 . 31 

−0 . 34 

Exp. dip 1 log 10 A [s] – – – −5 . 54 + 0 . 05 
−0 . 04 – –

log 10 τ [day] – – – 1 . 54 + 0 . 07 
−0 . 07 – –

t 0 [MJD] – – – 54752 . 49 + 3 . 24 
−3 . 17 – –

Exp. dip 2 log 10 A [s] – – – −5 . 89 + 0 . 05 
−0 . 05 – –

log 10 τ [day] – – – 1 . 51 + 0 . 09 
−0 . 09 – –

t 0 [MJD] – – – 57510 . 65 + 2 . 17 
−2 . 20 – –

SN BON 2.0 log 10 A – – – −14 . 78 + 1 . 03 
−0 . 97 – –

γ – – – 4 . 36 + 1 . 59 
−1 . 80 – –

SN JBO 1.5 log 10 A – – – −13 . 10 + 0 . 21 
−0 . 22 – –

γ – – – 1 . 47 + 0 . 68 
−0 . 65 – –

SN LEAP 1.4 log 10 A – – −14 . 97 + 0 . 94 
−0 . 66 −13 . 42 + 0 . 20 

−0 . 21 – –

γ – – 5 . 16 + 1 . 19 
−1 . 75 1 . 70 + 0 . 60 

−0 . 59 – –

DMv-SN NUP 1.4 log 10 A −13 . 52 + 0 . 29 
−0 . 33 −14 . 10 + 0 . 72 

−0 . 91 – −14 . 05 + 0 . 63 
−0 . 64 −14 . 65 + 0 . 99 

−1 . 03 –

γ 2 . 88 + 0 . 95 
−0 . 85 3 . 17 + 1 . 60 

−1 . 31 – 2 . 75 + 1 . 20 
−1 . 14 4 . 23 + 1 . 68 

−1 . 75 –

SN NUP 2.5 log 10 A – −13 . 22 + 0 . 73 
−1 . 03 – – – –

γ – 2 . 50 + 1 . 84 
−1 . 44 – – – –

BN Band.2 log 10 A – – – – −13 . 84 + 0 . 35 
−0 . 42 –

γ – – – – 3 . 02 + 0 . 86 
−0 . 77 –

BN Band.3 log 10 A – – – −14 . 32 + 0 . 37 
−0 . 48 – –

γ – – – 2 . 68 + 1 . 02 
−0 . 87 – –
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