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ABSTRACT
Using data from the Large European Array for Pulsars, and the Effelsberg telescope, we study the scintillation parameters of the
millisecond pulsar PSR J0613−0200 over a 7 yr timespan. The ‘secondary spectrum’ – the 2D power spectrum of scintillation –
presents the scattered power as a function of time delay, and contains the relative velocities of the pulsar, observer, and scattering
material. We detect a persistent parabolic scintillation arc, suggesting scattering is dominated by a thin, anisotropic region. The
scattering is poorly described by a simple exponential tail, with excess power at high delays; we measure significant, detectable
scattered power at times out to ∼5μs, and measure the bulk scattering delay to be between 50 to 200 ns with particularly strong
scattering throughout 2013. These delays are too small to detect a change of the pulse profile shape, yet they would change the
times of arrival as measured through pulsar timing. The arc curvature varies annually, and is well fitted by a one-dimensional
scattering screen ∼40 per cent of the way towards the pulsar, with a changing orientation during the increased scattering in
2013. Effects of uncorrected scattering will introduce time delays correlated over time in individual pulsars, and may need to
be considered in gravitational wave analyses. Pulsar timing programmes would benefit from simultaneously recording in a way
that scintillation can be resolved, in order to monitor the variable time delays caused by multipath propagation.

Key words: pulsars: general – pulsars: individual: PSR J0613−0200.

1 IN T RO D U C T I O N

Radio emission from pulsars experiences several propagation effects
from the ionized interstellar medium (ISM), as the index of refraction
varies with electron density and frequency. The signal acquires a
group delay �t, known as dispersion, scaling as �t ∝ DM ν−2,
where DM is the integrated column density of free electrons, and ν

is the observing frequency. Spatial variations in the electron density
result in multipath propagation, with deflected paths acquiring a
geometric time delay from the path-length difference compared to
the direct line of sight. When these delays are large (compared to the
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pulse duration), it is observed as scattering, a one-sided broadening
of pulses often resembling an exponential tail. When these delays are
small, we observe it as scintillation, the constructive and destructive
interference of different deflected images at the observer, resulting in
a time and frequency dependence of the observed flux. These delays
are steeper in frequency than dispersion, and are expected to scale
roughly as τ ∼ ν−4.

One of the central goals of pulsar timing is to directly detect
gravitational waves, in a so-called pulsar timing array (PTA, Hobbs
2013; Desvignes et al. 2016; Verbiest et al. 2016; Arzoumanian et al.
2018). The most stable pulsars are observed on weekly to monthly
cadence over many years, and ∼nHz gravitational waves could be
observed in timing residuals correlated in time and position on the
sky (Hellings & Downs 1983). This effect is expected to be tiny, with
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Interstellar delays of J0613−0200 with LEAP 1469

a fractional change of the arrival time compared to the gravitational
wavelength of order 10−15, so it requires careful understanding of all
other effects that would change the arrival times of pulses. While PTA
pulsars are selected for their stability, they all experience variable
dispersion and scattering to some degree due to the relative motion of
the pulsar and observer with respect to the ISM. Variable dispersion
measures have been measured and corrected using multifrequency
data (e.g. Keith et al. 2013), while changes in scattering time are
often estimated using the statistical relation between the scintillation
bandwidth (the frequency width of scintillation) and scattering time
(e.g. Levin et al. 2016; Shapiro-Albert et al. 2020, see Verbiest &
Shaifullah 2018 for a review of how these effects limit precision
pulsar timing). Dispersion and scattering both scale strongly with
frequency, and are often covariant. One can look for variable delays
following a ν−2 and ν−4 scaling (Lam et al. 2019); the technique of
wide-band template matching has recently been developed as a way
to jointly fit for these effects (Liu et al. 2014; Pennucci, Demorest &
Ransom 2014; Pennucci 2019; Alam et al. 2020b).

In this paper, we begin to apply the methods of Hemberger &
Stinebring (2008) to PTA pulsars, in which scintillation arcs are used
to estimate time delays from multipath propagation. We analyse
PSR J0613−0200 over 7 yr, in roughly monthly cadence, using
data from the Large European Array for Pulsars (LEAP) (Stappers
& Kramer 2011; Bassa et al. 2016), and a 3-month bi-weekly
observing campaign using the 100-m Effelsberg radio telescope.
This pulsar is of particular interest; it shows the strongest evidence
of a 15 nHz strain, but since the signal appears most strongly in this
pulsar, it is believed to arise from an unmodelled non-GW signal
(Aggarwal et al. 2019). In Section 2, we give an overview of some
necessary background of scintillation, and summarize the methods
of Hemberger & Stinebring (2008). In Section 3, we describe our
observations with the LEAP telescope, our short-term observing
campaign with the Effelsberg telescope. In Section 4, we outline
our methods, in Section 5 we present our results, and we discuss the
ramifications and future prospects in Section 6.

2 BAC K G RO U N D O N T H E O RY O F
SCINTILLATION

2.1 Thin screen theory and stationary phase approximation

The theory of scattering in thin screens is outlined in detail in Walker
et al. (2004) and Cordes et al. (2006), and we summarize some of
the pertinent relations here.

The ‘stationary phase approximation’ assumes that the observed
signal can be described as a coherent summation over all images
of the pulsar (stationary phase points, regions where light can be
deflected to the observer). Each image has a geometric time delay τ i

and a fringe rate (or Doppler rate) fD,i, with a magnification μi and
intrinsic phase φi. In this approximation, the contribution of all of
the images is

gE(τ, fD) =
∑

i

√
μie

−iφi δ(fD − fD,i)δ(τ − τi). (1)

What we observe is the intensity as a function of time and frequency
I(ν, t) = |E(ν, t)|2, called the dynamic spectrum, formed using suf-
ficiently fine channels to fully resolve the scintillation in frequency1

1Equivalently, one must Fourier transform over a long enough timespan of
E(t) fully encompassing g(t) (by a factor of 2, due to the Nyquist Theorem) –
the longest time-scales correspond to the finest frequencies.

and each time bin averaged over many pulse rotations. The 2D power
spectrum of I(ν, t) is referred to as the secondary spectrum, which
expresses the intensity in terms of its conjugate variables fD and τ ,
and contains the contribution of interference between all pairs of
images

|Ĩ (τ, fD)|2 ≈
∑
i,j

μiμj δ(fD − fD,ij )δ(fD + fD,ij )δ(τ − τij )

× δ(τ + τij ), (2)

where fD,ij and τ ij are the differences between two interfering images,

fD,ij = (θi − θ j ) · veff

λ
, (3)

τij = deff

(
θ2
i − θ2

j

)
2c

. (4)

We note that, since the dynamic spectrum is a real function, the
secondary spectrum is point symmetric.

The effective distance deff and effective velocity veff depend on the
fractional distance of the screen from the pulsar s as

deff = (1/s − 1)dpsr, (5)

veff = (1/s − 1)vpsr + v⊕ − vscr/s, (6)

s = 1 − dscr/dpsr, (7)

where dpsr and vpsr are the pulsar’s distance and velocity, v⊕ and vscr

are the velocities of the Earth and scattering screen, respectively (and
where we are only considering the 2D velocity on the plane of the
sky).

Considering one image as the direct line of sight, then θ i or θ j =
0, and τ and fD are related through their common dependence on θ :

τ = ηf 2
D, with η = deffλ

2/2cv2
eff,||, (8)

where λ is the observing wavelength, and where veff,|| is the effective
velocity along the position vector θ̂ to the image. For a 1D distribution
of images, we denote the angle of the screen’s axis with ψ . Many
images along a line interfering with the direct line of sight then results
in a parabolic distribution of power in the secondary spectrum, while
the commonly seen ‘inverted arclets’ (e.g. Stinebring et al. 2001)
arise from the interference between subimages.

The curvature η depends on the distance to the screen, the effective
velocity, and the angle between the velocity and the screen. Structures
in the secondary spectrum move along the main parabola from left
to right (negative to positive fD) due to the effective velocity as

dfD

dt
= 1

2ην

(
1 − νfD

dη

dt

)
. (9)

The motion of points in the secondary spectrum is uniquely defined
by the curvature of the parabolic arc and its time-derivative – in
other words, clumps of power in the secondary spectrum must move,
and the resulting bulk scattering time is necessarily variable. Variable
motion from the Earth’s or the pulsar’s orbit will contribute to νfD

dη

dt
.

2.2 The interstellar response

In this section, we summarize and expand upon the method of
Hemberger & Stinebring (2008), to use the secondary spectrum to
estimate the total time delays from multipath propagation.

The electric field that we observe is the intrinsic signal of the
pulsar convolved with the impulse response function of the ISM,

E(t) = (Eint ∗ gE)(t), (10)
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1470 R. A. Main et al.

where Eint is the intrinsic signal of the pulsar, and gE(t) is the
interstellar impulse response function of the field.

We measure the time-averaged intensity, not the direct electric
field. The quantity of interest is then the time shift of the intensity
〈τ 〉I(t), where

I (t) = 〈|E(t)|2〉 = 〈|(Eint ∗ gE)(t)|2〉, (11)

where 〈〉 denotes the average over many pulses. First, we must find
a suitable way to describe the effect of response function of the field
gE(t) on the intensity. Under the assumption that the intrinsic field is
temporally incoherent, then

〈Eint(t1)E∗
int(t2)〉 = Iint(t1)δ(t1 − t2), (12)

and it can be shown that the observed intensity can be written as

I (t) = (Iint ∗ gI )(t), (13)

where gI(t) = |gE(t)|2 can be thought of as the intensity response
function. Equation (12) is written unrigorously for infinite bandwidth
– in the real case of a finite bandwidth, the delta function would be
replaced by a sinc function with width ∼1/BW.

With the above assumptions, we now have the intensity written in
a form resembling Hemberger & Stinebring (2008), and can follow
their steps. The goal of this method is to estimate the time shift
from the intensity response function, 〈τ 〉gI (t) ≡ τs . Two properties of
convolutions are important for this method, that the centroid and the
variance of two convolved functions are additive

〈τ 〉f ∗g = 〈τ 〉f + 〈τ 〉g, and σ 2
f ∗g = σ 2

f + σ 2
g (14)

For simplicity, we define the centre of the pulse to be at t = 0, and
define the pulse width to be w. When w � τ s (as is the case for
this paper, as the ∼μs delays are much smaller than the ∼ ms pulse
width), then using the two convolution properties above, we have

〈τ 〉I = 〈τ 〉Iint + 〈τ 〉gI
= τs, (15)

and

σ 2
I = σ 2

Iint
+ σ 2

gI
∼ w2 + τ 2

s ≈ w2, (16)

since 〈τ 〉Iint = 0 by definition. This means that the shape of the pulse
is effectively unchanged, yet it still has a bulk time delay from the
response.

2.3 Estimating time delays from the secondary spectrum

Now we address how to estimate the time delays of the intensity
response function in practice. As we are only concerned with
measuring time delays, in this section we drop the time dependence
for simplicity, focusing on the imprint of the impulse response
function on the spectrum.

The Fourier transform of the intensity spectrum is

Ĩ (ν) = Ĩint(ν)g̃I (ν), (17)

where the convolution between the pulsar’s signal and impulse
response becomes a direct multiplication. The intrinsic profile Iint is
assumed to be stable, and only slowly varying across frequency after
averaging over many pulse rotations, so we treat it as a constant.
The secondary spectrum is obtained by Fourier transforming and
squaring the spectrum I(ν), resulting in

|I (τ )|2 = I 2
int(gI (τ ) ∗ g∗

I (−τ )). (18)

This is the autocorrelation of the intensity impulse response function,
and we see that this form cannot necessarily recover the total time
delay as it only measures differences in τ , not an absolute time.

To simplify, we return to the stationary phase approximation, as
discussed in Section 2.1. The intensity response function is the square
modulus of the field as given in equation (1), where if we assume that
the images lose coherence when integrating over the full observation
we have

gI (τ ) =
∑

i

μiδ(τi). (19)

We wish to estimate this from the secondary spectrum. To examine a
limiting case, let us assume most of the power is near the undeflected
line of sight (defined as j = 0), then τ 0 = 0, μ0 ≈ 1, and μ0 �
μi. Then, taking only positive τ , and averaging over fD, equation (2)
becomes

|I (τ )|2 ≈
∑

i

μ0μiδ(τi), (20)

In this limit, there will be a visibly strong parabolic arc without
inverted arclets. The total time delay would then be determined from
the expectation value in τ , where the contribution of the bright central
image divides out

〈τ 〉I =
∑

i μ0μiτi∑
i μ0μi

(21)

=
∑

i μiτi∑
i μi

(22)

= 〈τ 〉gI
. (23)

The contribution of the phases can be neglected if every pixel in the
secondary spectrum contains only one pair of interfering images –
while not necessarily the case, this is aided by the time axis of the
dynamic spectrum and many channels, which separates the power in
the secondary spectrum in fD as well as τ .

We see that in the limit of a strong central image, we can recover the
total time delays from the secondary spectrum. More generically, how
well the time delays can be computed from the secondary spectrum is
dependent on the unknown distribution of images [or the functional
form of gI(τ )]. In the case of strong scattering, there is no reason
to expect a single undeflected line-of-sight image, but rather there
may be many bright, scattered images at small angular separation.
In this case, the time delay computed from the above formula will
be overestimated, due to the cross-terms of bright central images
interfering. This will bias the result high by a factor of ∼2m/(m + 1),
where m is the number of bright images, leading to a difference as
large as a factor of 2. In the case of a discretized secondary spectrum,
this will only begin to matter if the image separations are larger than
one pixel in τ , otherwise it will approximate the case of one bright
central image. Additionally, we are still limited by the fact that the
secondary spectrum measures differences in time delays, rather than
absolute time delays; if there is a time-shift applied to all images, it
would not be captured by our estimate.

With the above caveats mentioned, we use equations (20) and (23)
as our basis to measure time delays throughout the paper. These
include the assumption of a strong central image, which we believe
gives a reasonable estimate for our purposes. We describe how to
compute time delays in practice from our data in Section 4.3, after
detailing our data reduction and secondary spectra creation.

3 O BSERVATI ONS

3.1 LEAP

The LEAP is a phased array of five large radio telescopes in
Europe; the Effelsberg telescope, the Lovell telescope at Jodrell Bank
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Interstellar delays of J0613−0200 with LEAP 1471

Observatory, the Westerbork Synthesis Radio Telescope, the Nançay
Radio Telescope, and the Sardinia Radio Telescope (Stappers &
Kramer 2011). The coherent addition of radio signals from all these
telescopes results in an effective 195 m diameter dish. The overview
of LEAP is given in Bassa et al. (2016). Observations have been
made monthly since 2012, with whichever subset of these telescopes
was available.

The voltage data from each site are shipped or transferred to
Jodrell Bank Observatory to be correlated and coherently added on
a designated CPU cluster, using a specifically designed software
correlator (details in Smits et al. 2017). Correlation involves a
polarization calibration based on an observation of PSR J1022+1001
or PSR B1933+16 from the same epoch, correlation on a calibrator
to find an initial phasing solution, then self-calibration on the
pulsar to determine the time delays and fringe drift rates for each
telescope throughout the observation, using Effelsberg as a time and
position reference. The coherently added voltages are stored on tape,
allowing us to re-reduce the data with arbitrary time or frequency
resolution. The high sensitivity, and the flexibility offered by storing
the baseband data has enabled LEAP to do single pulse studies of
MSPs (Liu et al. 2016; McKee et al. 2019); for these same reasons, it
is an ideal telescope for the scintillation work presented in this paper.
Typical observing lengths are 30−60 minutes, with bandwidths of
80−128 MHz (comprised of 16 MHz subbands), depending on the
subset of telescopes used for a given observation. As we will show in
Section 5.2, the angular extent of the scattering screen is unresolved
by LEAP, so we can safely treat it as a single-dish instrument for our
purposes.

3.2 Effelsberg 100-m Telescope

From March to June 2020, we had a roughly bi-weekly monitor-
ing campaign using the Effelsberg telescope. Baseband data were
recorded as 8-bit ‘dada’2 files using the PSRIX backend (described
in Lazarus et al. 2016), using the central feed of the 7-beam receiver
(‘P217mm’). The data were recorded in 25 MHz subbands, with
a usable bandwidth of 1250–1450 MHz, and typical observation
lengths of 90 min. While Effelsberg alone is less sensitive than
LEAP, this is compensated through the larger exposure times and
bandwidth.

4 ME T H O D S

4.1 Creating dynamic and secondary spectra

We created folded archives from the baseband data using dspsr
(van Straten & Bailes 2011), coherently de-dispersing and folding
with 10 s bins, 128 phase bins, and sufficient channels to fully resolve
scintillation −62.5 and 50.0 kHz channels for LEAP and Effelsberg,
respectively. The subbands were combined in frequency using the
psrchive tool psradd (Hotan, van Straten & Manchester 2004)
to form one combined archive per observation. The following
processing steps for data from either telescope are identical unless
expressly stated otherwise.

After summing polarizations, each folded archive contains a data
cube I(t, ν, phase). We use a fixed off-pulse region relative to the
pulse, a contiguous 50 per cent section with no apparent pulsed
emission (in Fig. 2, phase 0.5–1.0) We divide by the time average
of the off-pulse region across the full observation to approximately

2http://psrdada.sourceforge.net/

remove the bandpass, and in each time and frequency bin, we subtract
the mean of the off-pulse region to remove variable background flux.
Subintegrations with an off-pulse standard deviation >5× the mean
rms value were masked, as were any time bins or frequency channels
with >30 per cent of flagged subintegrations.

The LEAP dada files are saved separately in each subband, in
individual 10 s files; a small number of these files were missing, and
were filled with zeros, and included in our mask. To reduce artefacts
caused by Fourier transforming over a window function, masked
pixels were iteratively in-painted using the mean of the nearest
pixels. While more sophisticated methods of inpainting exist, this
is sufficient for our analysis, as typically no more than 5 per cent of
data are flagged.

A time and frequency averaged profile was created, and zeroed
everywhere the S/N was below 5 σ . This profile was used to weight
each phase bin, before summing over pulse phase to create the
dynamic spectrum I(t, ν). Over a narrow band, it is sufficient to
simply use a 2D FFT, which we used for this analysis (over a wider
band, the ν−2 scaling of η causes arcs to smear in the secondary
spectrum, summarized in Gwinn & Sosenko 2019). Before taking a
FFT, we padded the edges by a factor of two with the mean value
of the dynamic spectra, to mitigate artefacts caused by edge effects.
A few representative LEAP dynamic and secondary spectra, at the
same time of several years, are shown in Fig. 1.

4.2 Measuring arc curvatures

The main power in the secondary spectrum of PSR J0613−0200
follows a parabolic arc, suggesting scattering dominated by a highly
anisotropic, thin screen. As described in Section 5.2, the arc curvature
encodes veff and deff; we wish to measure the arc curvature for each
observation, to probe the changing velocities of the system, and to
localize power for measuring time delays. One method often used
to measure parabolic curvatures is the Hough transform, finding
the peak of the power summed over different possible parabolic
curvatures (Bhat et al. 2016). While this technique works very
well for thin parabolic arcs, it leads to a broad maximum (and
correspondingly large uncertainties) for broad parabolae, as seen
in our data. We determine the curvature in a different way; in τ

steps of 0.125μs in the secondary spectrum (where τ > 0.5μ s, to
avoid confusion in the bright centre), we find the peak value of I(fD)
for both positive and negative fD. We keep only points where the
peak is >4× the rms of the background, estimated from the region
of I (|fD| > 10μs). This set of points in fD and τ is fitted with a
parabola, using an orthogonal minimization routine, to find the best-
fitting curvature and error.

4.3 Integrating the secondary spectrum

For purposes of measuring time delays, the x-axis fD is not important,
except to localize the scattered power in this parameter space. We
isolate the power in a 1 mHz region surrounding the main arc, as
defined by our measured arc curvatures. We subtract the averaged
background far from the main arc, assuming the noise is well
described as a function of time delay. We measure the total time
delay through the expectation value of τ , computed as

〈τ 〉 =
∫ T

0 τ |I (τ )|2 dτ∫ T

0 |I (τ )|2 dτ
, (24)

where T = 8μs, defined by our choice of channelization.
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1472 R. A. Main et al.

Figure 1. Top: Dynamic spectra of five observations around the same time of year, to have comparable contributions from the Earth’s velocity. The colourbar
extends from 2σ below the mean to 5σ above. Bottom: Corresponding secondary spectra, with a logarithmic colourbar extending three orders of magnitude.
Clear arcs with noticeable localized clumps of power are seen, these correspond to prominent diagonal features in the above dynamic spectra. The observation
from 2013 is anomalous, showing extremely fine stripes in the dynamic spectrum, corresponding to power at large time delays.

Artefacts in the dynamic spectrum, such as radio-frequency
interference (RFI), phasing imperfections, and the window function
lead to correlated features in the secondary spectrum. As such,
the noise properties are not always well behaved, and direct error
propagation underestimates the error on 〈τ 〉. We estimate our errors
directly from the cumulative function in equation (24); at high
enough T the integral plateaus, with residual variations caused by
the effect of integrating noise in the secondary spectrum. We take the
mean and standard deviation of equation (24) between T = 4–8μs
as our measurement and error of 〈τ 〉, respectively.

4.4 ‘Timing’ a convolved template

To illustrate the effects of scattering on a profile, we can directly
convolve our measure of the amplitude of gI(τ ) into a template profile
and measure the time offset using the standard Fourier template-
matching algorithm outlined in the appendix of Taylor (1992). We
create an analytic template using the standard psrchive tool
paas (Hotan et al. 2004), fitting the profile with a series of von
Mises functions, and interpolate the solution to have the equivalent
31.25 ns bins of our measured |I(τ )|2. We convolve the two, and
measure the relative time delay between the convolved template

against the original one. Fig. 2 shows this convolution applied
to one of our observations. The measured time delay in this way
agrees perfectly with the method in the previous section; timing
recovers the shift correctly, even when the effects are not visibly
noticeable.

We note again that this is not precisely the intensity impulse
response, but rather its autocorrelation, but it is close enough in
amplitude to demonstrate that the convolved template is visually
identical (with residuals at the 0.1 per cent level after aligning the
template), yet is measurably delayed. In addition, |I(τ )|2 is noticeably
clumpy and poorly described by an exponential, even after being
effectively smoothed by the autocorrelation.

4.5 Inferred time delay from the frequency ACF

A standard way to infer the time delays from scattering is to construct
the autocorrelation functions (ACF) R(�ν) = (I∗I)(�ν). Fitting the
width (specifically, the HWHM) of the ACF in frequency gives the
scintillation bandwidth νscint, which is inversely proportional to the
bulk scattering delay as 〈τ 〉 = C/2πνscint (C is commonly assumed to
be 1, and depends on the assumptions of the scattering distribution).
This method is often used when arcs cannot be resolved nicely, as
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Interstellar delays of J0613−0200 with LEAP 1473

Figure 2. The effects of scattering on a pulse profile. Top: Analytic
profile, before and after convolving with the scattering tail measured from
scintillation. The inset panel shows Ĩ (τ ) measured on 2017 February 17 in the
way described in Section 4.3. The resulting convolved profile looks identical
by eye to the original, as the time delays are largely subbin. Middle: The
residual of the original and convolved profile, bottom: the residual between
the template and shifted profile, after shifting them into closest alignment.
The middle, uncorrected residuals are only as large as 1 per cent, while after
aligning the residuals are below the 0.1 per cent level. This reinforces the
fact that the main contribution of scattering is a bulk time shift, rather than a
noticeable change in profile shape.

�ν can typically be measured simply and robustly. However, if gE(t)
is not smooth, then the ACF will be poorly described as a single
Gaussian. Two such examples of an ACF, one well described, and
one poorly described by a 1D Gaussian fit are shown in Fig. 3, along
with their derived νscint and 〈τ 〉. In the second case, a single Gaussian
would preferentially fit the broad component, and result in an inferred
time delay which is low, while power at large time delays results in
the narrow peak smaller than 1 MHz.

Our error includes both the measurement error of the fit, in addition
to the ‘finite scintle error’, which is a counting error of

√
Nscintles,

estimated in the same manner as Levin et al. (2016) as

δ〈τ 〉/〈τ 〉 ≈ [(1 + ηtTobs/tscint)(1 + ηνBW/νscint)]
−1/2. (25)

The values of η are the filling fraction of scintles, assumed here to
be 0.2.

5 R ESULTS

5.1 Evolution of scattering time from LEAP: month to year
time-scales

We present our measurements of the bulk time delay in the top panel
of Fig. 4. We find significant persistent scattering at the ∼80 ns level,
and a few cases of strong scattering variability on several month to
year time-scales. The time-scales are set by the time it takes power to
move through the secondary spectrum, as described in Section 2. The

Figure 3. Two examples of 2D ACFs. The cut through dt = 0 is fit with a
Gaussian to measure the scintillation bandwidth, to infer the bulk scattering
time. Top: the same data as in Fig. 2, well fit by a 1D Gaussian. Bottom: ACF
of the leftmost panel of Fig. 1, showing three distinct frequency scales.

most striking feature is the strong excess scattering in 2013, where the
bulk scattering is variable and extends above 200 ns. This is not cap-
tured very well by the ACF method, as the Gaussian fit latches on to
the broad-scale scintillation rather than the narrow peak caused by the
large time delays, as described in Section 4.5. As hinted at in Fig. 3,
this could potentially be remedied by using a multicomponent model
to the ACF, as in principle the ACF contains the equivalent informa-
tion as the secondary spectrum, only differing by a Fourier transform.

In the bottom panel of Fig. 4, we plot the DM values of PSR
J0613−0200 from NANOGrav’s 12.5 yr release (Alam et al. 2020a).
The DM is steeply decreasing prior to 2013, and there is clear annual
variation; this was studied in detail in Jones et al. (2017), with data
spanning from 2006 until near the end of 2013. The authors fit
the time variations of DM with a 1-yr period sinusoid and a linear
trend, to capture the contribution of the pulsar’s observed trajectory
through the ISM from the pulsar’s and Earth’s velocity, respectively.
The residuals of the DM show a borderline significant dip of
2−3 × 10−3 pc cm−3 at MJDs 56300–56400, the beginning of 2013.

Although the ecliptic latitude of the pulsar is quite large (−25.4◦),
part of the annual variation that appears in the DM time series might
be explained with the contribution of the Solar wind. The time of
closest approach for PSR J0613−0200 is in mid-June each year,
and by modelling the distribution of electrons in the Solar wind as
spherical (Edwards, Hobbs & Manchester 2006) with an electron
density of 7.9 cm−3 at the Earth orbit (Madison et al. 2019), we
expect a DM displacement of the order of 2 × 10−4 pc cm−3 at
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1474 R. A. Main et al.

Figure 4. Top: Variations in the bulk scattering time from every LEAP observation. Black points are estimated through integrating Ĩ (τ ), as described in
Section 4.3. The red points are delays inferred from the measurements of νscint from the ACF, described in Section 4.5. Middle: The measured arc curvatures
for each observation, with a best-fitting model of a 1D scattering screen from 2014 onwards overplotted. Bottom: Measured DM values from NANOGrav 12.5
yr data release (Alam et al. 2020a).

the closest approach. By allowing the amplitude of the Solar wind
approximation to vary year by year, we find a model that accounts
for both the ISM and the Solar wind is preferred in 7 yr across the
data set, while an ISM-only model favoured elsewhere. The years in
which the complete model is preferred show a general compatibility
with an amplitude of 7.9 cm−3, and after the subtraction of the time-
dependent approximation of the Solar wind the most significant
remaining feature is the steep gradient of the DM leading into
2013.

Similar events of increased scattering have been seen in PSR
J1017−7156 and PSR J1603−7202 by the Parkes Pulsar Timing
Array (PPTA), in which the scintillation bandwidth and time-
scale decrease suddenly associated with a jump in DM of several
10−3 pc cm−3 , interpreted as an extreme scattering event (Coles
et al. 2015). While we do not see an increase in DM of this order,
the increased scattering we observe in PSR J0613−0200 may be of
similar origin.

5.2 Location and nature of the scattering screen

As mentioned in Section 4.3, we fit the parabolic curvature of each
observation to determine the masks for estimating the time delays.
The arc curvatures contain the effective velocity, and vary throughout
the year from the Earth’s motion. The existence of parabolic arcs
suggests highly anisotropic scattering; for a one-dimensional screen,

Table 1. Fit parameters of 1D screen to the arc curvatures, as defined in
Section 5.2.

s ψ scr (deg) vism,|| (km s−1)

2014 onwards 0.62 ± 0.06 16 ± 2 − 1.2 ± 2.5
2013 event 0.58 ± 0.10 -36 ± 9 12.8 ± 2.8

the arc curvature then depends only on the effective velocity parallel
to the screen. By measuring the change in arc curvature over the
year, one can measure the distance and orientation of the scattering
screen.

We perform only a simple analysis here, currently ignoring the
contribution from the pulsar’s orbital motion. We fit the observed
curvature values beyond 2013 with a one-dimensional screen,
using measured values of the pulsar’s distance of 780 ± 80 pc
and proper motion of μra = 1.822 ± 0.008 mas yr−1, μdec =
−10.355 ± 0.017 mas yr−1 from Desvignes et al. (2016). The three
free parameters are the fractional screen distance s, the orientation
of the screen ψ , and vism,||, the velocity of the scattering screen
parallel to its axis of anisotropy. A 1D screen fits the data well,
shown in the middle panel of Fig. 4, while the best-fitting values
are in Table 1. Using the screen distance, and the largest detectable
time delays of τ ≈ 5μs, the largest angular extent of the screen is
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Interstellar delays of J0613−0200 with LEAP 1475

Figure 5. Secondary spectra of all observations covering the anomalous scattering in 2013, with a logarithmic colourbar extending four orders of magnitude.
The power can be seen to cross the fD = 0 line, indicating the sign of veff is changing throughout the year, and power can be seen to travel from left to right
along the parabola.

θ ≈ √
2cτ/deff ≈ 3 mas, smaller than the resolution of the longest

baselines of LEAP.
During the increased scattering of 2013, the best-fitting model

poorly matches the data. Here, we investigate this year separately.
The secondary spectra spanning 2013 are shown sequentially in
Fig. 5. Persistent clumps of power can be tracked throughout the
year, and features can be seen to cross the line of fD = 0, indicating a
changing sign of veff . From this, we can fit directly the signed value of
1/

√
η ∝ veff (with the same free parameters s, ψ , and vism,||), where

the locations of velocity zero-crossings are quite constraining. The
measures of veff , and best-fitting model are shown in Fig. 6.

The best-fitting screen parameters for 2013, and for all data
beyond 2013 are tabulated in Table 1. The distance of the screen
is consistent between both fits, with the orientation and parallel
screen velocity differing between the two. This implies that the
strong scattering plausibly arises from the same physical region. In
addition, the absolute velocity of the screen need not be changing, as
the orientation differs and we are only sensitive to the component of
the screen velocity parallel to ψ ; the results of both fits are consistent
with a screen velocity of |vscr| = 15 ± 2 km s−1 at an angle of φvel =
-75 ◦ ± 10◦ (East of North).

We note however that the models above are incomplete, as a proper
treatment needs to include the binary motion of the pulsar, which we
have neglected. The orbit is 1.2 d, and vorb sin(i) = 19.9 km s−1.
Each observation is much smaller in duration than the orbit, but is
at an effectively random orbital phase. This will add scatter in the
velocities, and thus the curvatures. To properly account for the orbital
velocity, one would need to jointly fit for i and � - such a fit has
been performed successfully on 16 years of arc curvature values of
PSR J0437-4715 by Reardon et al. 2020, measuring the inclination
with 0.3◦ precision and the longitude of ascending node with 0.4◦

precision. Regardless, a 1D screen is a good fit to the data beyond
2013 (where each year the curvature peaks around November and
is minimal around May), where the annual variation is the strongest
effect.

5.3 Arclet evolution with Effelsberg: scattering time on week to
month time-scales

We investigate the variability of scattering on week to month
time-scales with the Effelsberg observing campaign described in

Section 3.2. The secondary spectra of all of our observations are
shown in Fig. 7. A clear parabolic arc, with a hint of inverted arclets is
seen, and can be seen to clearly move through the secondary spectrum
from left to right. We show three examples of larger, zoomed in
secondary spectra in Fig. 8 to emphasize these features. We estimate
the total time delay from the secondary spectrum using the methods
of Section 4.3, shown in the bottom panel of Fig. 9. The total time
delays are consistent with what was found with LEAP’s monitoring,
showing steady scattering at around 60–100 ns, decreasing slightly
over 2 months.

We also attempt to measure the effect of a single arclet, which is
akin to contribution of a pulsar passing a single, compact point of
scattering in the ISM, not unlike an echo. We track the position, and
total fractional flux of the arclet seen travelling to the upper-right
in the final seven panels of Fig. 7. This same feature first appears
to be moving towards the origin in panels of MJD 58951−58958,
although it is less prominent. We fit a flux centroid in an ellipse
around the arc, to track its motion in fD and τ . We measure the
fraction of the flux in the arc, compared to that integrated over
the full parabola, which are plotted in the top panel of Fig. 9. The
motion of the arclet unsurprisingly traces out a parabola over time,
as seen in PSR B0834+06 (Hill et al. 2005), and is similar to echoes
seen in the Crab pulsar (e.g. Backer, Wong & Valanju 2000; Lyne,
Pritchard & Graham-Smith 2001). The strength of the arclet is quite
asymmetric about the origin, and at its peak contains ≈4 per cent of
the total pulsar flux. The total time shift arising from this arclet can
be estimated as 〈τ 〉arclet ≈ τ arclet(Iarclet/I), and is shown in the middle
panel of Fig. 9. The contribution from a single arclet as it passes in
front of the pulsar contributes a variable scattering of ∼20 ns over a
2-month period.

5.4 Comparison to earlier results

Previous analysis using the ACF in Levin et al. (2016) measures the
time delay from scintillation to be 〈τ 〉 = 11.7 ± 4.9 ns, monitoring
this pulsar up until 2013 October. Additionally, Shapiro-Albert
et al. (2020) estimate a time delay of 〈τ 〉 = 43.6 ± 2.3 ns in a
similar manner. The frequency channels used in these papers were
1.5625 MHz wide, a common standard in timing archives, and would
have averaged over the fine scintillation structures due to power at
high delays. Keith et al. (2013) estimate a scintillation bandwidth
of 1.64 MHz, for which one would infer a time delay of 97 ns. This
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Figure 6. Effective velocity of 2013 scattering event, and best-fitting 1D
model. The sign of veff was assigned to switch when the dominant power in
the secondary spectra was clearly seen to cross the fD = 0 axis.

measurement is from before we have data, so we cannot directly
compare, but this value is much closer to the order of the time delays
we measure.

5.5 Effects of uncorrected scattering

In this section, we aim to make from our measurements a simple
estimate of the single-pulsar gravitational wave signal arising from
unaccounted scattering. We stress that this is a conservative upper
limit, as we do not know the extent to which variable scattering is
absorbed in red-noise modelling, or in measurements of DM. The
GW strain h at a given periodicity P is related to the amplitude
TOA variations δt as roughly h ∼ 2πδt/P. Since Aggarwal et al.
(2019) find excess signal at 15 nHz, which is ∼2.1 yr, we estimate
this using the long-term variable time delays from LEAP shown in
Fig. 4. We perform a Lomb–Scargle periodogram on the measured
values of 〈τ 〉, and convert to a measure of h while taking into account
the proper normalizations, shown in Fig. 10. The measured value at
15 nHz is ∼10−15, still an order of magnitude lower than the single
pulsar limit of h = 9.7 × 10−15 from the EPTA (95 per cent upper
limit, from table 1 in Lentati et al. 2015). As PTA upper limits are

improved, scattering variations, if unaccounted for, may begin to
limit the timing precision.

6 C O N C L U S I O N S

We have measured variable time delays on a PTA millisecond pulsar,
using similar methods to those laid out in Hemberger & Stinebring
(2008). The next logical step will be to perform timing with scattering
time-scales subtracted from TOAs, to see if this improves the
timing residuals. One can apply this approach to study the variable
scattering in many PTA pulsars. With LEAP we can re-reduce the
data to whatever time and frequency resolution we like, but regular
timing observations would benefit with a second reduction with fine
frequency channels at the expense of phase bins. Going further,
methods to obtain the interstellar response directly may be important,
including holography (Walker et al. 2008), cyclic spectroscopy
(Demorest 2011; Walker, Demorest & van Straten 2013; Palliyaguru
et al. 2015; Dolch et al. 2020), or directly by using bright giant pulses
in special cases (Main et al. 2017). Only these methods, in which the
interstellar delays are measured directly (as opposed to measuring
delay differences, as we do in the secondary spectrum) can retrieve
overall delays that are not related to the characteristic time-scale of
the scattering tail. New analysis techniques such as the θ–θ diagram
(Sprenger et al. 2020), which expresses the secondary spectrum in
terms of the angular coordinates on the scattering screen, may be
useful as well. This technique can be used to precisely measure arc
curvatures, and could be used to efficiently perform holography of
1D screens (Baker et al., in preparation).

Scattering is statistically expected to follow ∼λ4, yet scattering
arising from discrete structures (observed as arclets, or localized
clumps of power in secondary spectra) will be localized at a fixed
τ as a function of wavelength. Observations over a wide frequency
range will help to inform the amplitude scaling of arclets, and thus the
contribution of discrete arclets to the total scattering time at different
frequencies. In addition, scattering occurs from density gradients in
the ISM, so the link between variable DM and scattering should be
explored in more detail. In the case where the DM and scattering
variations occur in the same scattering screen, they could potentially
be inferred from the other quantity; a predictive model of scattering
from DM (or vice versa) would be a great step towards removing
these effects from timing observations.

Figure 7. Secondary spectra of our roughly bi-weekly monitoring campaign with Effelsberg, with a logarithmic colourbar extending three orders of magnitude.
Power can be seen to travel from left to right along the parabola, most evident by following the power in the last six panels. The arc curvature does not abruptly
change between observations, despite being at random orbital phases, suggesting that the scattering screen resulting in these arcs is not very sensitive to the
pulsar’s orbit.
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Interstellar delays of J0613−0200 with LEAP 1477

Figure 8. Zoomed in Effelsberg secondary spectra from Fig. 7 for three
different epochs, panels 1, 2, and 4. The red dotted line shows our best-fitting
parabolic curvature, while blue dotted inverted parabolae are plotted with the
same curvature, with their apex on the main parabola – these are to guide the
eye towards faint structures in the secondary spectra which may be inverted
arclets, and to help visualize the general trend of power moving from left
to right along the parabola. More sensitive, or longer observations will be
required to reveal the possible structure of inverted arclets more clearly.

Figure 9. Arclet evolution, and time delays from bi-weekly observations
with Effelsberg. Top: Magnification (fraction of total intensity) and time
delay of one arclet seen moving through the secondary spectrum. Red crosses
are expected positions of the undetected arclet. Middle: Contribution of the
single arclet to the total time delay to the pulsar’s signal. Bottom: Estimate
of the bulk scattering time inferred from the secondary spectra.

Figure 10. Estimated strain signal which would arise from uncorrected
scattering, obtained from a Lomb–Scargle periodogram of the bulk time
delays 〈τ 〉 from Fig. 4.

Knowing the screen distance and orientation, the location of power
in the secondary spectrum is predetermined, but the amplitudes are
dependent on the physics of scattering and lens models. In recent
years, some predictive models of scintillation properties have been
developed (e.g. Simard & Pen 2018; Gwinn & Sosenko 2019),
which can be tested using measurements tracking arclets in time
and frequency.

We used annual variations in the arc curvature to determine
properties of the scattering screen, while orbital variations were
ignored. Orbital variations can give an additional orbital constraint,
such as the inclination (including the ‘sense’; Rickett et al. 2014;
Reardon et al. 2019; Reardon et al. 2020), and could possibly lead to
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precise pulsar distances (Boyle & Pen 2012). Such analysis would
be greatly improved with precise, quantitative measurements of the
arc curvature. Additionally, one could instantaneously measure the
scattering screen’s properties using the multiple telescopes of LEAP,
either using the visibilities (Brisken et al. 2010) or more simply using
the inter-station time delays of the dynamic spectra (Simard et al.
2019a, while the method of combining of visibilities and intensities
is outlined in Simard et al. 2019b). This is being investigated, and
will be the subject of future work.

As scattering screens are likely much smaller than the angular
separation between pulsars, scattering variations are very unlikely to
directly correlate between pulsars in a way that mimics a Hellings
& Downs curve (Hellings & Downs 1983). But while no direct
correlation is expected between pulsars, it is possible that scattering is
variable on similar time-scales if pulsar proper motions and distances
are comparable, and if the screen distance is not at an extreme (i.e.
not too close to the pulsar or to the Earth). Several of the EPTA
pulsars show variable scintillation arcs, similar to those shown in
this paper, and will be subject of future work. As PTAs become more
sensitive, any PTA result relying on a small number of pulsars may
need to consider the effects of variable scattering when interpreting
the significance of a potential gravitational wave signal.
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