Process design, simulation, and techno-economic analysis of integrated production of furfural and glucose derived from palm oil empty fruit bunches

Muhammad Zafran Raja Mohammed^{1#}, Zi Wei Ng^{1#}, Aditya Putranto^{1*}, Zong Yang Kong², Jaka Sunarso², Muhammad Aziz³, Sharif H. Zein⁴

¹Discipline of Chemical Engineering, School of Engineering, Monash University, Bandar Sunway, Malaysia

²Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching, 93350 Sarawak, Malaysia

> ³Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

⁴Department of Chemical Engineering, Faculty of Science and Engineering, University of Hull , Kingston Upon Hull, HU6 7RX, UK

Both authors contributed equally to this manuscript.

*Corresponding author: aditya.putranto1@monash.edu

Appendix A: PFD, Mass and Energy Balance Table and ASPEN Simulation Flow Diagram

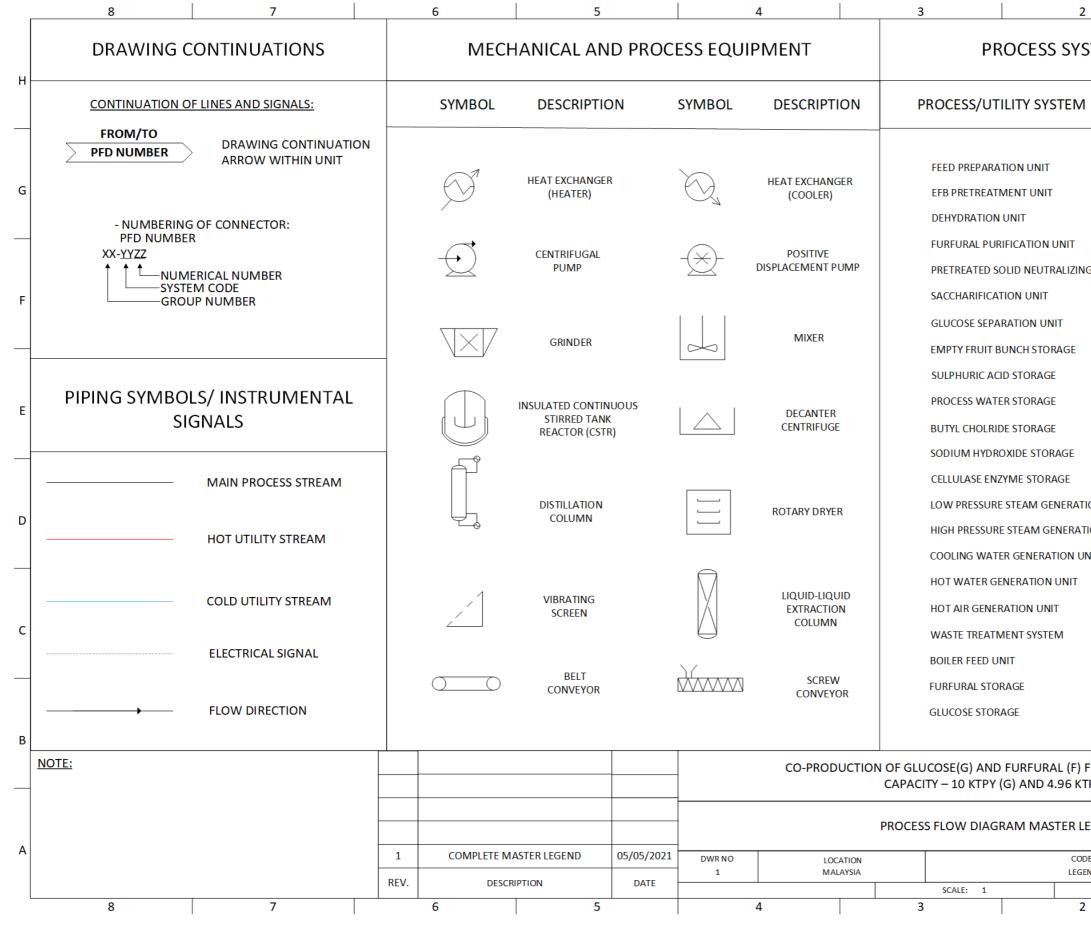


Fig. A.1. Legend of process flow diagram.

2	1	
stem	IDENTIFIER	
1	SYSTEM CODE	Η
	10	~
	11	G
	12	
	13	
IG UNIT	14	
	15	F
	16	
	20	
	21	
	22	Е
	23	
	24	
	25	
ION UNIT	30	D
TION UNIT	31	0
INIT	32	
	33	
	34	
	40	С
	50	
	60	
	70	
		В
FROM EF TPY (F)	B IN MALAYSIA	
EGEND		
DE EN D	REV 02	A
2	0 of 6	
-		

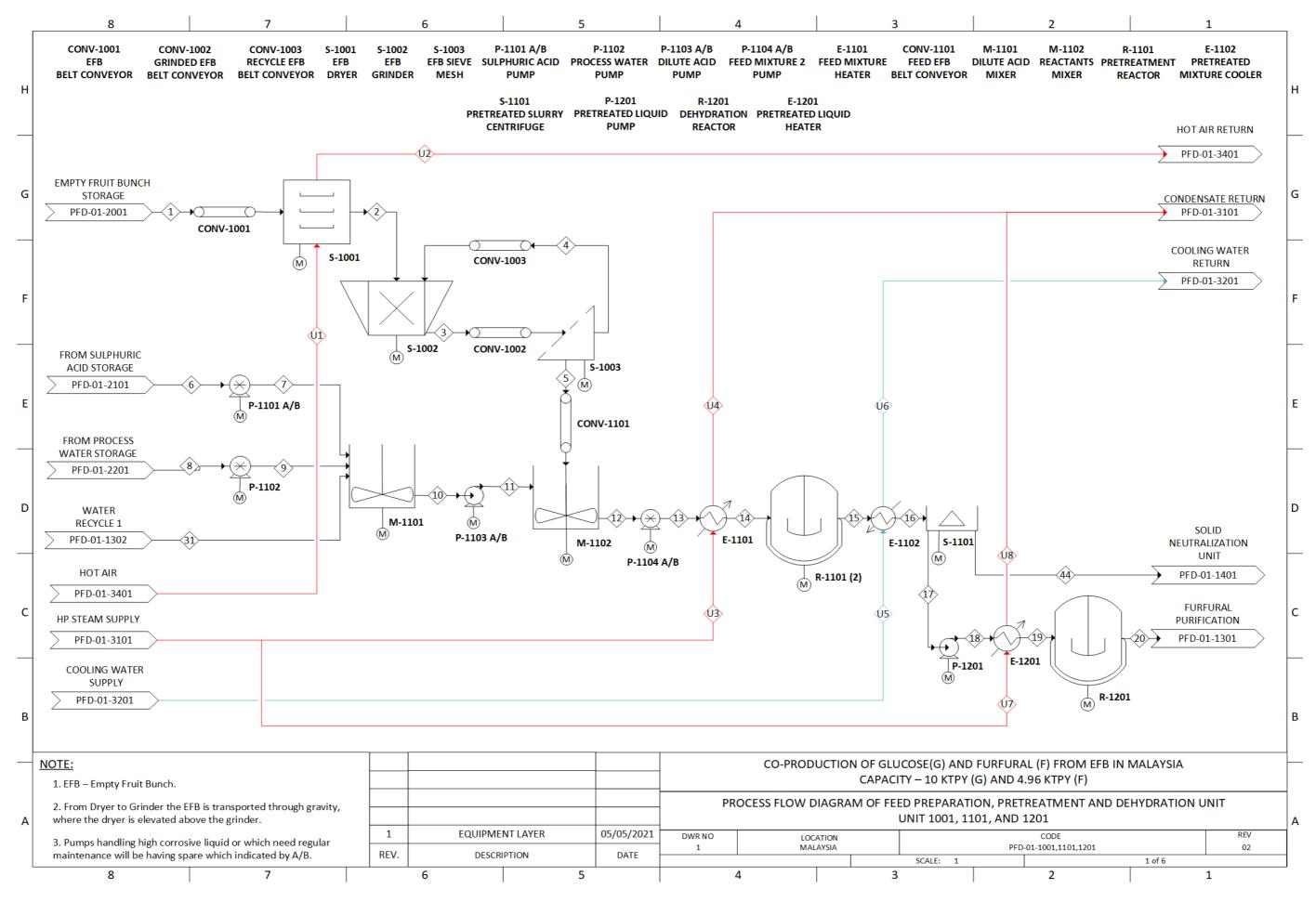
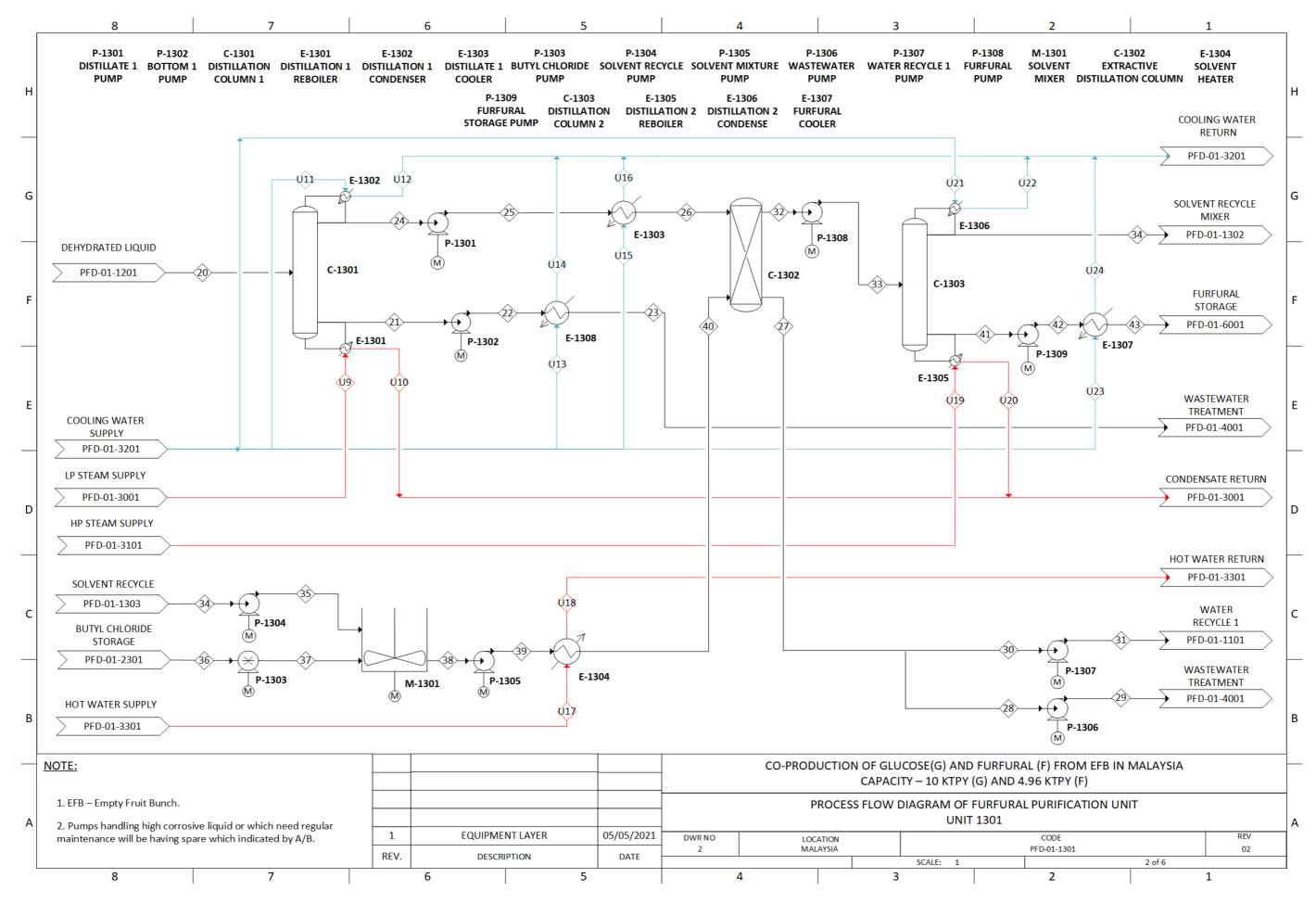



Fig. A.2. Process flow diagram of feed preparation, pretreatment, and dehydration unit (Unit 1001, 1101 and 1201).

Fig. A.3. Process flow diagram of furfural purification unit (Unit 1301).

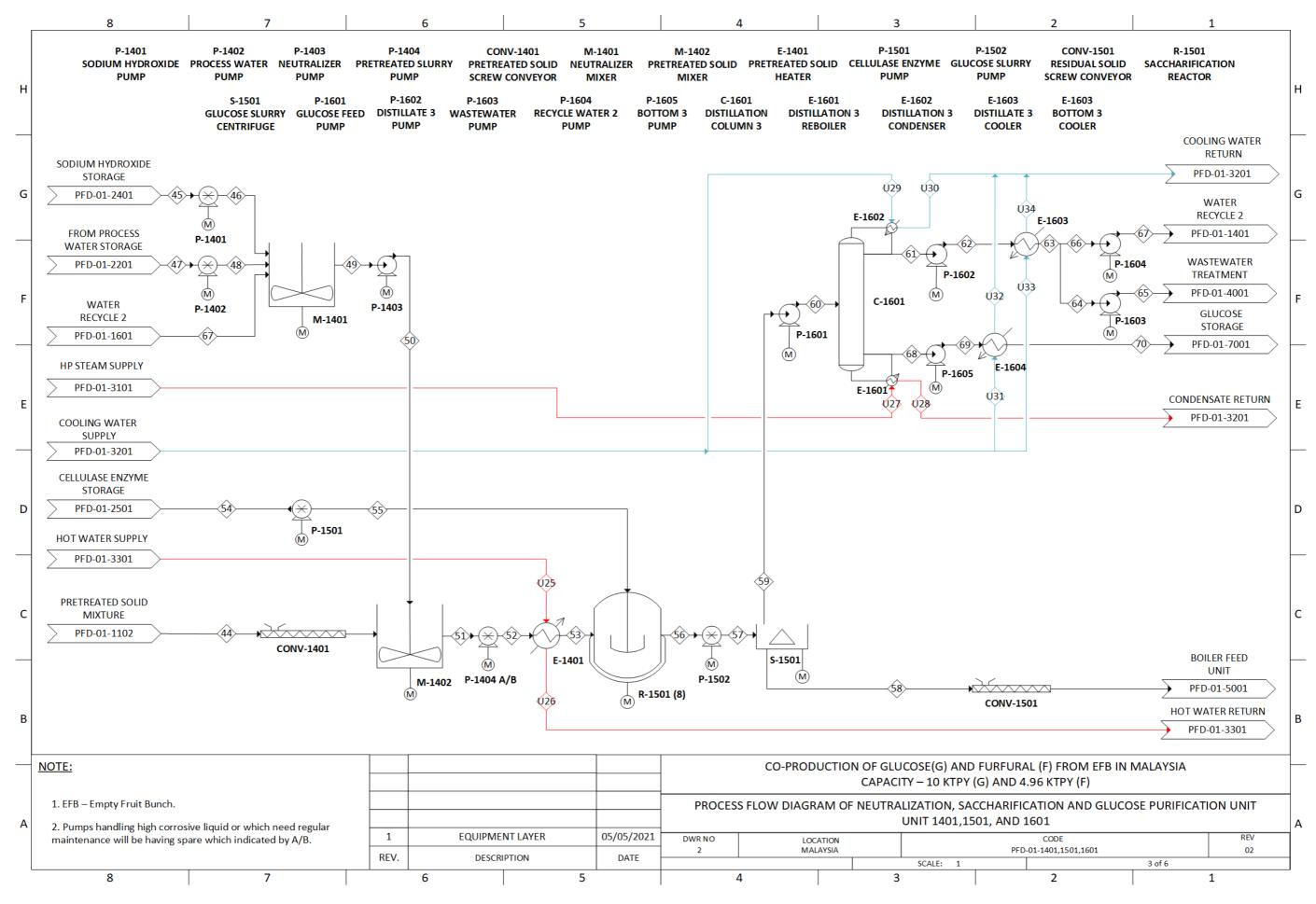


Fig. A.4. Process flow diagram of neutralization, saccharification and glucose purification unit (Unit 1401, 1501 and 1601).

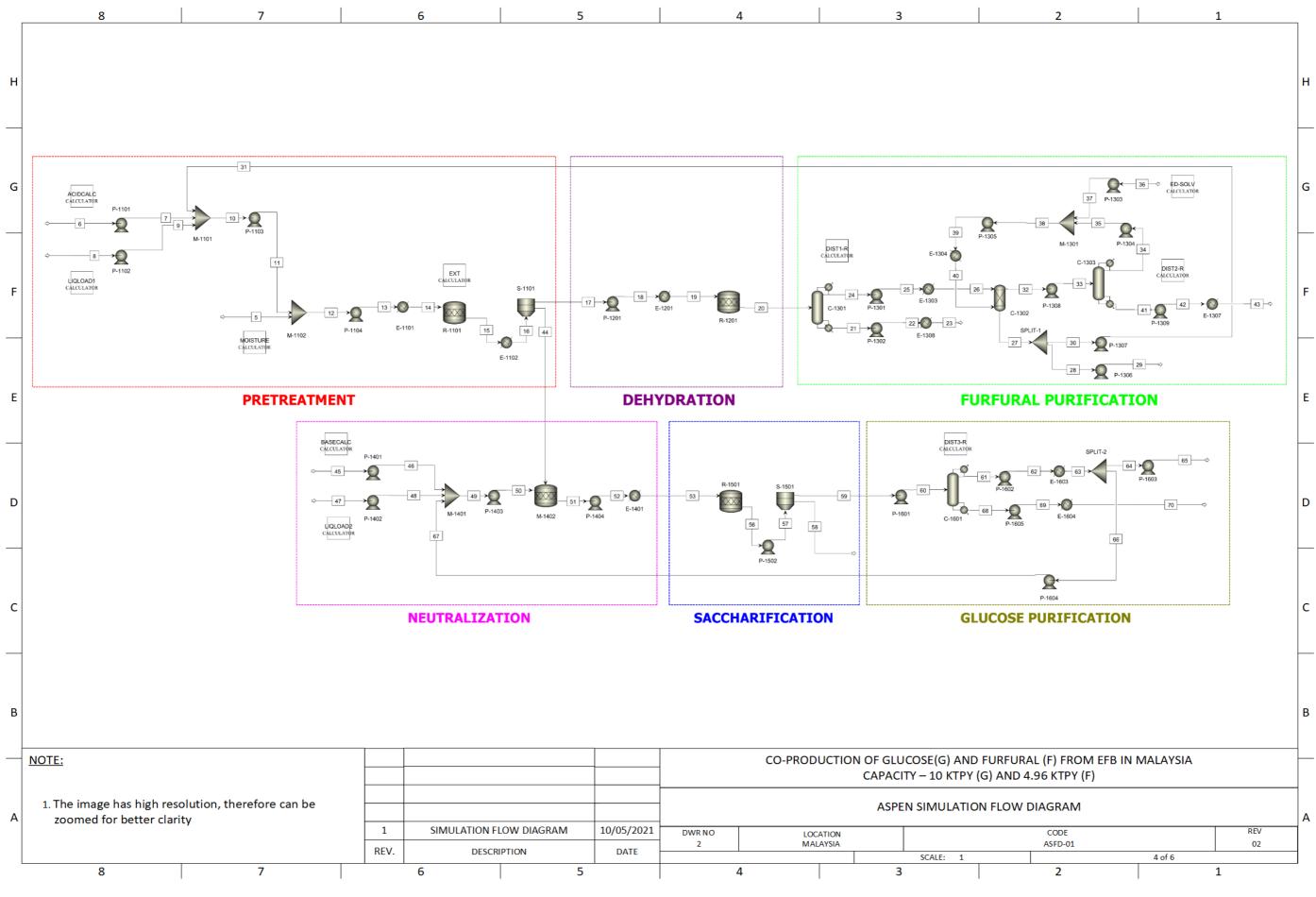


Fig. A.5. Aspen simulation flow diagram.

Steam Number Temperature		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Г
	С	30.00	49.97	30.00	30.00	30.00	30.00	30.01	30.00	30.01	38.75	38.75	36.90	37.28	158.00	158.00	50.00	30.00	30.68	170.00	170.00	101.59	101.60	45.00	8
Pressure	bar	1.0133	1.0133	1.0133	1.0133	1.0133	1.0133	1.1146	1.0133	1.1146	1.1146	1.1146	1.0133	6.5861	6.0795	6.0795	6.5861	1.0133	9.1193	8.6126	8.9166	1.0133	1.1146	1.0133	1.
Enthalpy Flow	kW	-18136.6	-18136.6	-18136.6	-18136.6	-18136.6	-264.5	-264.5	-2270.8	-2270.8	-34457.5	-34457.5	-52594.1	-52590.8	-51020.1	-50889.3	-52327.4	-37569.6	-37564.6	-36011.5	-36005.4	-3484.8	-3484.8	-3540.6	-33
Volume Flow	cum/hr	4.2648	4.2648	4.2648	4.2648	4.2648	0.0731	0.0731	0.5216	0.5216	8.0480	8.0480	12.3007	12.3031	25.1840	20.4798	12.3941	8.9937	8.9982	10.8739	10.8604	0.9756	0.9751	0.9160	8.
											Mass	s Flowrate													
GLUCAN	kg/hr	1312.79	1312.79	1312.79	1312.79	1312.79	0.00	0.00	0.00	0.00	0.00	0.00	1312.79	1312.79	1312.79	1177.57	1177.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(
XYLAN	kg/hr	922.50	922.50	922.50	922.50	922.50	0.00	0.00	0.00	0.00	0.00	0.00	922.50	922.50	922.50	23.99	23.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
LIGNIN	kg/hr	1015.64	1015.64	1015.64	1015.64	1015.64	0.00	0.00	0.00	0.00	0.00	0.00	1015.64	1015.64	1015.64	1015.64	1015.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
ASH	kg/hr	239.50	239.50	239.50	239.50	239.50	0.00	0.00	0.00	0.00	0.00	0.00	239.50	239.50	239.50	239.50	239.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
ACETYL	kg/hr	66.53	66.53	66.53	66.53	66.53	0.00	0.00	0.00	0.00	0.00	0.00	66.53	66.53	66.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
GLUCOSE	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	150.24	150.24	148.28	148.28	148.28	148.28	148.28	148.28	148.28	TR
XYLOSE FURFURAL	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 6.63	0.00	0.00	0.00 6.63	0.00 6.63	950.84 51.55	950.84 51.55	938.42 50.88	938.42 50.88	938.42 50.88	32.84 630.45	32.84 TRACE	32.84 TRACE	32.84 TRACE	63
WATER	kg/hr kg/hr	878.15	395.22	395.22	395.22	395.22	27.44	27.44	515.97	515.97	7801.55	7801.55	8196.77	8196.77	8196.77	8084.50	8084.50	7978.85	7978.85	7978.85	8304.85	664.69	664.69	664.69	764
SULPHURIC ACID	kg/hr	0.00	0.00	0.00	0.00	0.00	64.03	64.03	0.00	0.00	64.03	64.03	64.03	64.03	64.03	64.03	64.03	63.19	63.19	63.19	63.19	63.19	63.19	63.19	TR
SODIUM HYDROXIDE	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
ACETIC ACID	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	23.50	23.50	23.50	23.50	23.50	90.06	90.06	88.89	88.89	88.89	88.89	63.16	63.16	63.16	2
SODIUM SULPHATE	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
SODIUM ACETATE	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
BUTYL CHLORIDE	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.51	8.51	8.51	8.51	TRACE	TRACE	TRACE	8
CELLULASE ENZYME	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Total Mass Flow	kg/hr	4435.10	3952.16	3952.16	3952.16	3952.16	91.46	91.46	515.97	515.97	7904.33	7904.33	11856.49	11856.49	11856.49	11856.53	11856.53	9277.01	9277.01	9277.01	9277.01	972.16	972.16	972.16	83
Changer Muserhau		25	26	27	28	29	30	21	22	33	34	35	36	37	38	20	40	41	42	43	44	45	46	47	
Steam Number	- C	87.00	40.00	39.41	39.41	39.42	39.41	31 39.42	39.62	39.79	34.20	34.22	30.00	30.02	34.21	39 34.21	40.00	180.80	180.81	35.00	30.00	30.00	30.02	30.00	30
Temperature Pressure	bar	1.1146	1.0133	1.0133	1.0133	1.1146	1.0133	1.1146	1.0133	1.8239	1.7225	1.8239	1.0133	1.1146	1.1146	1.1146	1.0133	1.7225	1.8239	1.0133	1.0133	1.0133	1.1146	1.0133	1.1
Enthalpy Flow	kW	-33504.6	-33960.7	-33602.3	-1680.1	-1680.1	-31922.2	-31922.2	-935.4	-935.2	-579.5	-579.4	-1.4	-1.4	-580.8	-580.8	-577.0	-315.3	-315.3	-360.2	-14995.4	-10.2	-98.7	-4595.3	-45
Volume Flow	cum/hr	8.8000	8.3669	7.8394	0.3920	0.3920	7.4474	7.4474	1.7275	1.7279	1.1734	1.1734	0.0028	0.0028	1.1762	1.1762	3.6490	0.6394	0.6394	0.5481	3.2126	0.0029	0.0029	1.0556	1.0
												s Flowrate													
GLUCAN	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1177.57	0.00	0.00	0.00	0
XYLAN	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	23.99	0.00	0.00	0.00	0
LIGNIN	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1015.64	0.00	0.00	0.00	0
ASH	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	239.50	0.00	0.00	0.00	0
ACETYL	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
GLUCOSE	kg/hr	TRACE	TRACE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.96	0.00	0.00	0.00	0
	kg/hr	TRACE	TRACE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.43	0.00	0.00	0.00	0
XYLOSE	kg/hr	630.45	630.45	6.98	0.35	0.35	6.63	6.63	623.48	623.48	TRACE	TRACE	0.00	0.00	TRACE	TRACE	TRACE	623.48	623.48	623.48	0.67	0.00	0.00	0.00	0
FURFURAL	kg/hr	7640.16	7640.16		382.01	382.01	7258.15	7258.15	1.82	1.82	1.82	1.82	0.00	0.00	1.82	1.82	1.82	TRACE	TRACE	TRACE	105.65	1.61	1.61	1044.13	-
FURFURAL WATER		TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.84	0.00	0.00	0.00	0
FURFURAL WATER SULPHURIC ACID	kg/hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.61	1.61	0.00	0
FURFURAL WATER SULPHURIC ACID SODIUM HYDROXIDE	kg/hr	0.00	25.72	24.74		1.24	23.50	23.50	1.05	1.05	0.06	0.06	0.00	0.00	0.06	0.06	0.06	0.99	0.99	0.99	1.18	0.00	0.00	0.00	0
FURFURAL WATER SULPHURIC ACID SODIUM HYDROXIDE ACETIC ACID	kg/hr kg/hr	25.72	25.72	24.74	1.24			0.00	0.00				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
FURFURAL WATER SULPHURIC ACID SODIUM HYDROXIDE ACETIC ACID SODIUM SULPHATE	kg/hr kg/hr kg/hr	25.72 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	-
FURFURAL WATER SULPHURIC ACID SODIUM HYDROXIDE ACETIC ACID SODIUM SULPHATE SODIUM ACETATE	kg/hr kg/hr kg/hr kg/hr	25.72 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
FURFURAL WATER SULPHURIC ACID SODIUM HYDROXIDE ACETIC ACID SODIUM SULPHATE	kg/hr kg/hr kg/hr	25.72 0.00	0.00	0.00	0.00	0.00	0.00									0.00 1022.98 0.00	0.00 1022.98 0.00	0.00 1.88 0.00	0.00 1.88 0.00	0.00 1.88 0.00	0.00 0.11 0.00	0.00 0.00 0.00		0.00	

5

4

3

2

-	NOTE:							CO-PRODU	ICTION	OF GLUC	COSE(G) AND	FURFURA	AL (
										CAPACIT	Y - 10 KTPY	G) AND 4	.96
										MARC	AND ENERG		ст
A	1. TRACE denotes for mas	s flow lower than 10E-2 kg/hr								IVIA55	AND ENERGY	BALANC	E 1/
			1	STREAM TABL	E INSERTION	10/05/2021	DWR NO	LOCA					
			REV.	DESCRI	PTION	DATE	2	MALA	YSIA		SCALE: 1		N
	8	7		6	5		4	L		3			

8

7

6

Table A.1. Mass and energy balance table 1.

L (F) FROM EFB IN MALAYSIA .96 KTPY (F)

E TABLE 1 CODE REV MEBT-01 02 5 of 6 2 1

1

H

G

F

E

D

C

B

8			7			6				5			4				3			2			1	
Stream Number	-	49	50	51	52	53	54	L	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70
Temperature	С	34.47	34.47	30.00	30.01	48.00	30.0	00 30	0.00	48.00	48.01	48.00	48.00	48.01	110.18	110.18	35.00	35.00	35.01	35.00	35.01	208.12	208.13	35.00
Pressure	bar	1.1146	1.1146	1.0133	1.1146	1.0133	1.01	33 1.	0133	1.0133	1.1146	1.0133	1.0133	1.1146	1.0133	1.1146	1.0133	1.0133	1.1146	1.0133	1.1146	1.0133	1.1146	1.013
Enthalpy Flow	kW	-42628.0	-42628.0	-57676.3	-57676.2	-57442.1	1 -98	.7 -9	98.7 -	57458.6	-57458.5	-12875.9	-44582.7	-44582.6	-41516.7	-41516.6	-42247.2	-4224.7	-4224.7	-38022.5	-38022.5	-2316.1	-2316.1	-2493.
Volume Flow	cum/hr	9.8521	9.8521	13.0233	13.0233	13.2036	5 0.01	96 0.	0196 :	13.1454	13.1455	2.4264	10.7191	10.7191	10.4513	10.4514	9.7712	0.9771	0.9771	8.7941	8.7941	1.2016	1.2009	1.052
												s Flowrate												
GLUCAN	kg/hr	0.00	0.00			1177.57	_		0.00	56.52	56.52	56.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
XYLAN	kg/hr	0.00	0.00	23.99	23.99	23.99	0.0		0.00	23.99	23.99	23.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LIGNIN ASH	kg/hr kg/hr	0.00	0.00	1015.64 239.50	1015.64 239.50	1015.64 239.50				1015.64 239.50	1015.64 239.50	1015.64 239.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACETYL	kg/hr	0.00	0.00	0.00	0.00	0.00	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
GLUCOSE	kg/hr	TRACE	TRACE	1.96	1.96	1.96	0.0	_		1247.57	1247.57	7.61	1239.96	1239.96	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	1239.96	1239.96	1239.9
XYLOSE	kg/hr	TRACE	TRACE	12.43	12.43	12.43	0.0		0.00	12.43	12.43	0.08	12.35	12.35	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	1235.50	12.35	12.35.5
FURFURAL	kg/hr	5.67	5.67	6.35	6.35	6.35	0.0		0.00	6.35	6.35	0.08	6.31	6.31	6.31	6.31	6.31	0.63	0.63	5.67	5.67	TRACE	TRACE	TRACE
WATER	kg/hr	9695.69	9695.69	9801.99	9801.99	9801.99		_			9677.44	59.03	9618.40	9618.40	9611.04	9611.04	9611.04	961.10	961.10	8649.93	8649.93	7.37	7.37	7.37
SULPHURIC ACID	kg/hr	0.00	0.00	0.00	0.00	0.00	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SODIUM HYDROXIDE	kg/hr	1.61	1.61	0.15	0.15	0.15	0.0		0.00	0.15	0.15	TRACE	0.15	0.15	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	0.15	0.15	0.15
ACETIC ACID	kg/hr	0.00	0.00	0.00	0.00	0.00	0.0	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SODIUM SULPHATE	kg/hr	TRACE	TRACE	1.21	1.21	1.21	0.0	0 0	0.00	1.21	1.21	TRACE	1.20	1.20	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	1.20	1.20	1.20
SODIUM ACETATE	kg/hr	TRACE	TRACE	1.61	1.61	1.61	0.0	0 0	0.00	1.61	1.61	TRACE	1.60	1.60	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	1.60	1.60	1.60
BUTYL CHLORIDE	kg/hr	0.95	0.95	1.07	1.07	1.07	0.0	0 0	0.00	1.07	1.07	TRACE	1.06	1.06	1.06	1.06	1.06	0.11	0.11	0.95	0.95	TRACE	TRACE	TRACE
CELLULASE ENZYME	kg/hr	0.00	0.00	0.00	0.00	0.00	23.5	55 2	3.55	23.55	23.55	3.47	20.08	20.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.08	20.08	20.08
Total Mass Flow	kg/hr	9703.93	9703.93	12283.45	12283.45	12283.4	5 23.5	55 2	3.55 1	2283.45	12283.45	1402.42	10881.03	10881.03	9618.40	9618.40	9618.40	961.84	961.84	8656.56	8656.56	1262.63	1262.63	1262.6
				Tempera Pressure Phase Mass Flo Utility St Descript	e low l	bar	105.00 1.01 Gas 9762.24 U13 CW 30.00	49.00 1.01 Gas 20245.17 U14 CW 45.00	212.39 20.00 Vapour 2992.11 U15 CW 30.00	20.00 Liquid 2992.11 U16 CW	1.01 Liquid 1 82372.5 U17 HW	1.01 Liquid 1 82372.5 U18 HW	1 3189.45 U19 HP	20.00 Liquid 3189.45 U20 HP	U21 CW	133.53 3.00 Liquid 15001.77 U22 CW 45.00	30.00 1.01 Liquid 572757.80 U23 CW 30.00	45.00 1.01 Liquid 572757.84 U24 CW 45.00	0					
				Pressure		bar	1.01	1.01	1.01	1.01	1.01	1.01	20.00	20.00	1.01	1.01	1.01	1.01	-					
				Phase			Liquid	Liquid	Liquid				_		Liquid	Liquid	Liquid	Liquid	1					
				Mass Flo	ow I					7 26128.5			552.91			14308.10		2567.90						
					tility Stream		U			U26								34						
					escription	-	C			HW	HP							w						
					emperature ressure	C bar	45.											.00						
					nase	-	Liq									iquid Liq		uid						
					ass Flow	kg/h			46.38 57		-	-	3607.44 693	-										
														1										
IOTE:												_		CO-PI	RODUCTI	ON OF GL						MALAYS	SIA	
1. TRACE denotes for m	ass flow lo	ower than 1	10E-2 kg/hr	r												CAPA	CITT - 10	KIPY (G) AND 4.9	JOKIPY	(r)			
												\neg				MA	SS AND E	NERGY I	BALANCE	TABLE 2	2			
2. CW- COOLING WATER			HP-HIGH P	KESSUKE	1		STREAM	A TABLE I	NSERTIO	N	10/05/202	1								CODE				REV
STEAM; LP-LOW PRES	SURE STE				1 1		JINEAN		JENHO		10/05/202	T DM	RNO		LOCATION					CODE			1	
STEAM; LP- LOW PRES	SUKE STE				REV	/.		DESCRIPTI			DATE		2		LOCATION		SCALE	. 1		MEBT-02		6 of 6		02

 Table A.2. Mass and energy balance table 2.

Appendix B: ASPEN Simulation Description

Solid components can be created manually with the following parameters as the property obtained from the literature review. As the acetyl group is the derivative of xylan, the property of the acetyl group is similar to the xylan property.

	Molecular	Heat of	Solid Molar Volume	Solid Heat Capacity
Component	weight	Formation	(CPSPO1-1)	(VSPOLY-1)
	(kg/kmol)	(J/kmol)	(m3/kmol)	(J/kmol.K)
			0.106	-11704
			0	672.07
			0	0
Glucan	162.1436	-976.362E+6	0	0
			0	0
			298.15	298.15
			1000	1000
			0.0864	-9529.9
			0	547.25
			0	0
Xylan	132.11	-762.416E+6	0	0
			0	0
			298.15	298.15
			1000	1000
			0.0817	31431.7
			0	394.427
			0	0
Lignin	122.493	-1592.659E+6	0	0
			0	0
			298.15	298.15
			1000	1000
			0.106	-11704
			0	672.07
			0	0
Ash	162.1436	-976.362E+6	0	0
			0	0
			298.15	298.15
			1000	1000
			0.0864	-9529.9
			0	547.25
			0	0
Acetyl Group	132.11	-762.416E+6	0	0
			0	0
			298.15	298.15
			1000	1000

 Table B.1. Solid components definition in ASPEN Plus (Wooley & Putsche 1996).

B.1 Equipment Block Selection

For the equipment selection, **RSTOIC** is chosen as a reactor since the process involves chemical reactions. It requires inputs such as stoichiometric reaction and conversion rate or extent of reaction while the product mixture goes through a series of separations directly after the reaction. For solid-liquid separation, **CFUGE** is used as a decanter centrifuge with its given separation ratio and moisture content. The **RADFRAC** is used as a distillation column for the VLE mixture separation, where it requires input for a number of stages, reflux ratio, and distillate rate. For the LLE mixture separation, **EXTRACT** is used as an extraction column with its defined feed, solvent, and number of stages. Other equipment such as a mixer, heat exchanger, and pump (i.e., **MIXER, HEATER**, and **PUMP**) is used for mixing purposes, altering the temperature, and operating pressure of each main equipment, respectively. For ease of calculation and to minimize repetition, a few calculator blocks are included to automatically modify the parameters of specific equipment blocks by changing the flowrate of the feed.

B.2 Calculator Block

The equation and calculation used in each calculator block for each unit is shown below,

Unit	Calculator	Description	Equation
	ACIDCAL	Used to calculate the amount of required acid using the process condition and solid loading.	ACID=(18*SOLID/1000)/0.7
	LIQLOAD1	Used to calculate the amount of required freshwater using the process condition and recycle water.	WATER=(((1-0.3) *SOLID)- (0.3*(ACID+MOISTURE+RECYCLE)))/0.3
Pretreatment	MOISTURE	Used to calculate the required moisture in EFB with appropriate dry EFB.	MOISTURE=0.1*SOLID/0.9
	EXT	Used to calculate the extent of the reaction for the secondary reaction using mole flow of xylan, conversion rate and molecular weight of furfural.	E3=(XYLAN*0.974*0.05)/96.08556
	DIST1-R	Used to calculate the distillate rate of the column using the feedwater flowrate.	DIST=WATER
Furfural Purification	DIST2-R	Used to calculate the distillate rate of the column using the feed solvent flowrate.	DIST=SOLV
	ED-SOLV	Used to calculate the amount of fresh solvent required using the furfural to solvent ratio and recycled solvent flow.	EXSOLV = ((DILFUR-SOLV)/8.11) - SOLVDIST

Table B.2.Calculator block definition in ASPEN Plus.

Neutralization	BASECAL	Used to calculate the amount of required base using the process condition, solid loading and 10 mol% excess.	NAOH=(((H2SO4*2)+(ACETIC))/MOLEFRAC)*1.1
Neutranzation	LIQLOAD2	Used to calculate the amount of required freshwater using the process condition and recycle water with solid loading,	
Glucose Purification	DIST3-R	Used to calculate the distillate rate of column using the feedwater flowrate.	DIST=WATER

Appendix C: Fixed Capital Investment

C.1 Inside Battery Limit

The total cost required to purchase and install all the process equipment inside the process boundary is defined as the Inside battery limit (IBL). These costs are adjusted with installation, material, electrical system, erection, instrumental control system and piping cost within the process boundary.

The cost of equipment can be determined from Chemical Engineering Design by Gavin and Sinnott and Plant Design and Economics for Chemical Engineers by Peters. Plant Design and Economics for Chemical Engineers by Peters is used for equipment with complex internal structures. These costs are adjusted with the location factor and cost indices. Gavin's Chemical Engineering Design uses the cost of equipment obtained at the U.S. Gulf in 2006. Peter's Plant Design and Economics for Chemical Engineers applied graphical correlation to determine the cost of the equipment with motor and internal tray in the USA in 2002. The location factor and the cost indices are adapted to Malaysia and the year 2020, respectively. It can be converted into MYR, as in May 2021, the exchange rate of USD to MYR is 4.12 MYR **(XE currency 2021)**. The final equipment cost with the inside battery limit cost is shown below. The following shows the Chemical Engineering Plant Cost Index (CEPCI) and location.

Towler 2020).												
Equipment tag	Material of constr.	No. of unit	Ce, Cost US 2006 (USD)	Ce, Cost MY 2020 (USD)	Lang Factor	Phase	C, Cost including installation	Final Cost MY 2020 (mil. MYR)				
P-1103	CI	2	3426.04	3414.30	2.56	Fluid	8740.61	0.04				
P-1201	CI	1	3444.01	3432.21	2.56	Fluid	8786.46	0.04				
P-1301	CI	1	3440.30	3428.51	2.56	Fluid	8776.98	0.04				
P-1302	CI	1	3310.02	3298.68	2.56	Fluid	8444.61	0.03				
P-1304	CI	1	3312.50	3301.15	2.56	Fluid	8450.95	0.03				
P-1305	CI	1	3312.54	3301.19	2.56	Fluid	8451.04	0.03				
P-1306	CI	1	3303.35	3292.03	2.56	Fluid	8427.61	0.03				

 Table C.1. Adjusted equipment cost with lang factor in Malaysia in 2020 from Sinnott (Sinnott & Towler 2020).

		r				·		_
P-1307	CI	1	3414.84	3403.14	2.56	Fluid	8712.03	0.04
P-1308	CI	1	3319.89	3308.51	2.56	Fluid	8469.79	0.03
P-1309	CI	1	3306.03	3294.71	2.56	Fluid	8434.45	0.03
P-1403	CI	1	3460.66	3448.80	2.56	Fluid	8828.94	0.04
P-1601	CI	1	3477.77	3465.86	2.56	Fluid	8872.59	0.04
P-1602	CI	1	3472.46	3460.56	2.56	Fluid	8859.03	0.04
P-1604	CI	1	3440.19	3428.40	2.56	Fluid	8776.70	0.04
P-1603	CI	1	3310.04	3298.69	2.56	Fluid	8444.66	0.03
P-1605	CI	1	3312.86	3301.51	2.56	Fluid	8451.87	0.03
E-1101	CS	1	13346.94	13301.21	2.60	Fluid-Solid	34583.14	0.14
E-1102	CS	1	18415.66	18352.56	2.60	Fluid-Solid	47716.65	0.20
E-1201	CS	1	13569.78	13523.28	2.60	Fluid	35160.52	0.15
E-1301	CS	1	35575.21	35453.30	2.60	Fluid	92178.59	0.38
E-1302	CS	1	29367.63	29267.00	2.60	Fluid	76094.19	0.31
E-1303	CS	1	16429.13	16372.84	2.60	Fluid	42569.38	0.18
E-1304	CS	1	10038.03	10003.63	2.60	Fluid	26009.44	0.11
E-1305	CS	1	10384.50	10348.91	2.60	Fluid	26907.18	0.11
E-1306	CS	1	10726.02	10689.27	2.60	Fluid	27792.10	0.11
E-1307	CS	1	10355.64	10320.15	2.60	Fluid	26832.40	0.11
E-1308	CS	1	10391.82	10356.21	2.60	Fluid	26926.14	0.11
E-1401	CS	1	12295.63	12253.50	2.60	Fluid-Solid	31859.10	0.13
E-1601	CS	1	42258.82	42114.01	2.60	Fluid	109496.42	0.45
E-1602	CS	1	22239.32	22163.11	2.60	Fluid	57624.09	0.24
E-1603	CS	1	21266.99	21194.12	2.60	Fluid	55104.71	0.23
E-1604	CS	1	10429.49	10393.75	2.60	Fluid	27023.75	0.11
S-1001	CS	1	545212.02	543343.7 6	2.60	Fluid-Solid	1412693.78	5.83
S-1002	CS	1	27517.83	27423.54	2.15	Solid	58960.61	0.24
CONV-1001	CS	1	40250.00	40112.08	2.15	Solid	86240.97	0.36
CONV-1002	CS	1	28750.00	28651.48	2.15	Solid	61600.69	0.25
CONV-1003	CS	1	28750.00	28651.48	2.15	Solid	61600.69	0.25
CONV-1101	CS	1	34500.00	34381.78	2.15	Solid	73920.83	0.31
CONV-1401	CS	1	31625.00	31516.63	2.15	Solid	67760.76	0.28
CONV-1502	CS	1	40250.00	40112.08	2.15	Solid	86240.97	0.36
			Total				2790825.39	11.52

According to Peter's Plant Design and Economics for Chemical Engineers that is used to calculate the cost of equipment, the graph of purchase cost with their respective unit size or capacity is used to find the cost at U.S.A in 2002 (Peters et al. 2003).

Equipment tag	Material of constr.	No. of unit	Ce, Cost US 2002 (USD)	Ce, Cost MY 2020 (USD)	Lang Factor	Phase	Cost including installation	Final Cost MY 2020 (Mil. MYR)
P-1101	CI	2	550	672.46	2.56	Fluid	3443.01	0.01
P-1102	CI	1	600	733.60	2.56	Fluid	1878.01	0.01
P-1104	CI	2	1600	1956.26	2.57	Fluid- Solid	10055.16	0.04
P-1303	CI	1	550	672.46	2.56	Fluid	1721.51	0.01

Table C.2. Adjusted equipment cost with lang factor at Malaysia in 2020 (Peters et al. 2003).

P-1401	CI	1	550	672.46	2.56	Fluid	1721.51	0.01
P-1402	CI	1	680	831.41	2.56	Fluid	2128.41	0.01
P-1404	CI	2	1650	2017.39	2.57	Fluid- Solid	10369.39	0.04
P-1501	CI	1	550	672.46	2.56	Fluid	1721.51	0.01
P-1502	CI	1	1700	2078.52	2.57	Fluid- Solid	5341.81	0.02
S-1003	CS	1	33000	40347.81	2.15	Solid	86747.79	0.36
M-1101	CS	1	10080	12324.42	2.60	Fluid	32043.50	0.13
M-1102	CS	1	11700	14305.13	2.60	Fluid- Solid	37193.34	0.15
M-1301	CS	1	4280	5232.99	2.60	Fluid	13605.77	0.06
M-1401	CS	1	10780	13180.28	2.60	Fluid	34268.74	0.14
M-1402	CS	1	11780	14402.94	2.60	Fluid- Solid	37447.66	0.15
R-1101	CS	2	13820	16897.17	2.60	Fluid- Solid	87865.30	0.36
R-1201	CS	1	130500	159557.24	2.60	Fluid	414848.83	1.71
R-1501	CS	8	141000	172395.18	2.60	Fluid- Solid	3585819.76	14.80
S-1101	SS 316	1	85000	103926.17	2.78	Fluid- Solid	288914.76	1.19
S-1501	SS 316	1	85000	103926.17	2.78	Fluid- Solid	288914.76	1.19
C-1302	CS	1	137100	167626.80	2.60	Fluid	435829.69	1.80
C-1301	CS	1	192000	234750.88	2.60	Fluid	610352.30	2.52
C-1303	CS	1	116000	141828.66	2.60	Fluid	368754.51	1.52
C-1601	CS	1	107200	131069.24	2.60	Fluid	340780.03	1.41
			Total				6701767.04	27.66

Therefore, the total equipment cost is calculated as MYR 39.17 million.

C.2 Outside Battery Limit

Table C.3. OBL cost of each facility.

Facilities	Percentage of FCI (%) (Peters et al. 2003)	Cost (Million MYR)						
Building	7.00	5.71						
Yard Improvements	2.50	2.04						
Steam Generation	3.00	2.45						
Steam Distribution	1.00	0.82						
Air Compression and Distribution	0.20	0.16						
Water Supply, Cooling, and Pumping	1.80	1.47						
Water and Effluent Treatment	1.30	1.06						
Water Distribution	0.80	0.65						
Process Waste Disposal	0.50	0.41						
Raw Material Storage	0.50	0.41						
Finished-Product Storage	1.50	1.22						
Electric Substation	1.30	1.06						
Electric Distribution	1.00	0.82						

Sanitary Waste Disposal	0.40	0.33
Communications	0.20	0.16
Fire Protection System	0.30	0.24
Safety Installations	0.20	0.16
Total	24.00	19.18

C.3 Indirect Cost

Legal expenses, construction cost, contractor fee, etc. are some examples of Indirect costs. The cost estimation is similar to OBL cost, where it is calculated using a percentage of FCI. The typical value is determined from Peter's Plant Design and Economics for Chemical Engineers (Peters et al. 2003). Since the FCI is yet to be known, using the circular referencing method, FCI can be iterated accordingly. The total cost of OBL is calculated as MYR 23.26 million, which is shown below.

Table (C.4. Indirect cost using the percentage of FCI.	

Parameter	Percentage of FCI (Peters et al. 2003)	Cost (million MYR)							
Engineering and Supervision	8.00	6.53							
Legal Expenses	1.50	1.22							
Construction Expenses	8.00	6.53							
Contractor Fee	3.00	2.45							
Contingencies	8.00	6.53							
Total indirect cost (million (MYR) 23.26									

Appendix D: Operating Cost

Product 1 (glucose) is chosen as the basis of calculation because the production rate of product 2

(furfural) follows the ratio of glucose to furfural produced in the process plant.

Product 1		Glucose						
Product 2		Furfural						
Capacity of Product 1 (tonne/year)		10000					
Capacity of Product 2 (tonne/year)		4960.64					
Total Fixed Capital (FCI)	(million MYR)		81.60719615					
Product 1 Selling Price	(MYR/tonne)		2140.453189					
Product 2 Selling Price	(MYR/tonne)		8879.5					
	Mar	ufacturing Cost						
Raw Material	Unit Usage (Unit/ tonne Product 1)	Unit Cost (MYR/Unit)	Cost (MYR/tonne Product 1)	Annual Cost (Million MYR/year)				
Empty Fruit Bunch (EFB)	3.513	50.00 ((Lo et al. 2020)	175.63					
Sulphuric Acid (70 wt%)	0.072	264.32 (ECHEMI 2021)	19.15	0.19				
Sodium Hydroxide (50 wt%)	0.003	552.51 (MERCK 2021)	1.41	0.01				
Butyl Chloride	0.002	333.26 (Thermo Fisher Scientific 2021)	0.64	0.01				
Cellulase Enzyme	0.019	61600.00 1149.01 11.49						

Table D.1. Operating cost table.

Water	0.827	1.50 (MIDA 2021)	1.24	0.01		
Total Raw Material Cost			1347.08	13.47		
(Hilitian (20% Allowance)	Unit Usage (Unit/	Unit Cost	Cost (MYR/tonne	Annual Cost		
Utilities (20% Allowance)	tonne Product 1)	(MYR/Unit)	Product 1)	(Million MYR/year)		
Electricity	168.24	0.34 (Nasional 2021)	56.70	0.57		
Low Pressure Steam	0.71	73.50	52.40	0.52		
Medium Pressure Steam	1.48	75.58	112.17	1.12		
Hot Water	0.28	3.73	1.04	0.01		
Cooling Water	68.76	1.50 (MIDA 2021)	103.14	1.03		
Total Utilities Cost			325.43	3.25		
Total Variable Cost			1672.52	16.73		
Process Labor	Number	Salary/year (MYR)	Cost (MYR/tonne Product 1)	Annual Cost (Million MYR/year)		
Operators	10	20090 (Malaysia Indeed 2021)	2.01	0.02		
Shifts per day	4	-	-	-		
Total Shift Operators (SO)	40	803600	80.36	0.80		
Supervisory & Clerical Labor	15% SC) Salary	12.05	0.12		
Total Process Labor Wage (PL)		92.41	0.92		
Maintenance Cost (MC)	7% c	of FCI	571.25	5.71		
Operating Supplies	15% (of MC	85.69	0.86		
Plant Overheads	10% c	of TMC	449.63	4.50		
Property Insurance	1%	FCI	81.61	0.82		
Financing Interest	5% c	of FCI	408.04	4.08		
Book Depreciation	13.91%	6 of FCI	1135.16	11.35		
Total Capital Related Cost (CR) (Peters et al. 2003)		2733.37	2731.37		
Total Fixed Cost (PL + CR)			2825.78	2823.78		
		Fixed	2823.78	28.24		
Total Manufacturing Cost (TM	IC)	Variable	1672.52	16.73		
		Total	4496.30	44.96		
	Non-Manufactur	ring Cost (Peters et a	l. 2003)			
Administration	20%	of SO	16.07	0.16		
Research and Development	2% 01	f TMC	89.93	0.90		
Distributing and Marketing	2% 01	f TMC	89.93	0.90		
Total Non-Manufacturing Cos	t (TNMC)		195.92	1.96		
Total Operat	ing Cost (TNMC + TN	1C)	4692.22	46.92		

Appendix E: Working Capital

 Table E.1.
 Working capital table.

· · · · · · · · · · · · · · · · · · ·										
Product 1			Glucose							
Product 2			Furfural							
Process Routes		Enzymatic Hydrolysis o	of cellulose (1) and Dehydration	of xylose (2)						
Capacity of Product 1 (tonne	/year)	10000								
Capacity of Product 2 (tonne	/year)	4960.642								
Capacity Utilization (%))	100								
		Raw Material Invento	ry							
ltem Inventor (weeks)		Amount	Unit Cost	Value (MYR)						

	•			1		
Empty Fruit Bunch (EFB)	3	2235.29	tonnes	50.00 (Lo et al. 2020)	MYR/tonne	111764.46
Sulphuric Acid (70 wt%)	3	46.10	tonnes	264.32 (ECHEMI 2021)	MYR/tonne	12184.63
Sodium Hydroxide (50 wt%)	3	1.63	tonnes	552.51 (MERCK 2021)	MYR/tonne	898.26
Butyl Chloride	3	1.23	tonnes	333.26 (Thermo Fisher Scientific 2021)	MYR/tonne	410.42
Cellulase Enzyme	3	11.87	tonnes	61600.00 (Indiamart 2021)	MYR/tonne	731187.11
Water	1	175.41	tonnes	1.50 (MIDA 2021)	MYR/tonne	263.12
Total Raw Material Inventory	Value (Millio	on MYR)				0.86
		Product	Inventory			
ltem	Inventory (weeks)	Amou		Unit Co	ost	Value (MYR)
Glucose (96.67 wt%)	3	636.36	tonnes	2140.45 (UN Data 2018)	MYR/tonne	1362106.57
Furfural (99.54 wt%)	3	315.68 tonr		8879.50 (Krishna et al. 2018)	MYR/tonne	2803055.76
Total Finished Product Invent	ory Value (M	illion MYR)	1	· · ·	•	4.17
	<u> </u>		Receivable			
ltem	Inventory (weeks)	Amou	nt	Unit Co	Value (MYR)	
Glucose (96.67 wt%)	6	1272.73	tonnes	2140.45 (UN Data 2018)	MYR/tonne	2724213.15
Furfural (99.54 wt%)	6	631.35	tonnes	8879.50 (Krishna et al. 2018)	MYR/tonne	5606111.51
Total Debtor Amount (Million	MYR)					8.33
		Account	t Payable			
Item	Inventory (weeks)	Amou	nt	Unit Co	ost	Value (MYR)
Feedstock				1		1
Empty Fruit Bunch (EFB)	6	4470.58	tonnes	50.00 (Lo et al. 2020)	MYR/tonne	223528.91
Sulphuric Acid (70 wt%)	6	92.20	tonnes	264.32 (ECHEMI 2021)	MYR/tonne	24369.27
Sodium Hydroxide (50 wt%)	6	3.25	tonnes	552.51 (MERCK 2021)	MYR/tonne	1796.52
Butyl Chloride	6	2.46	tonnes	333.26 (Thermo Fisher Scientific 2021)	MYR/tonne	820.85
Cellulase Enzyme	6	23.74	tonnes	61600.00 (Indiamart	MYR/tonne	1462374.21

Water	6 1052.49		tonnes	1.50 (MIDA 2021)	MYR/tonne	1578.73					
Utilities											
Electricity	6	178432.76	kWh/h	0.34 (Nasional 2021)	MYR/kWh	60131.84					
Low Pressure Steam	6	756.09	tonnes	73.50	MYR/tonne	55572.56					
Medium Pressure Steam	6	1574.04	tonnes	75.58	MYR/tonne	118965.79					
Hot Water	6	294.39	tonnes	3.73	MYR/tonne	1098.06					
Cooling Water	6	72925.45	tonnes 1.50 (MIDA 2021)		MYR/tonne	109388.18					
Total Creditor Amount (Million MYR)											
	Total Worki	ng Capital (Mi	llion MYR			11.29					

Appendix F: Cumulative Cash Flow

F.1 Tax Depreciation Allowance

The declining balance method is used to compute tax depreciation allowance, with a residual value equal to 5% of the initial investment that is returned at the end of this project. The tax depreciation rate can be calculated as **13.91%**

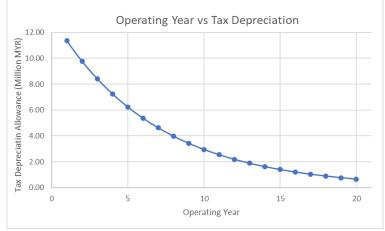


Fig. F.1. Graph of the operating year against tax depreciation allowance.

F.2 Cash Flow Table

For the first two years of construction, it is assumed that the fixed capital investment (FCI) is divided equally. In the first year, the plant is assumed to produce 70% of its nominal capacity, followed by 85% and 100% from the third operating year until its lifetime. As the plant runs at 70% of its capacity in the first operating year, it is assumed that 70% of the total working capital is used in that year, and 15% of total working capital is shared equally in the following years as the growth rate in production is linear. At the end of the project, it is anticipated that the total working capital will be recovered.

The declining balance method is used to compute tax depreciation allowance, with a 5% residual value that is recoverable at the end of this project. The fixed capital begins to depreciate at a rate of **13.91%**. Tax payment is not required in the operating year where the tax depreciation allowance exceeds the

cash flow before tax. So, the extra tax depreciation allowance can be pushed forward to the following year as a carried forward allowance from the previous year. In Malaysia, corporate tax is paid at the end of each year (final month). A company with a fixed capital of more than 2.5 million pays a corporate tax of 24%, which has remained consistent from 2016 to 2020 (LHDN Malaysia 2020). Malaysia's inflation rate is forecasted to be at around 2% in 2022, but the minor impact of inflation during the lifetime of operation of the plant is estimated to be negligible (Trading Economics 2021).

Year		2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044
Year of Opera	tion	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Fixed Capital Cost	Million MYR	0.00	-40.80	-40.80																					4.08
Working Capital Cost	Million MYR			-7.90	-1.69	-1.69																			11.29
Sales Volume 1	tonne/ year				7000	8500	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	
Sales Volume 2	tonne/ year				3472.4	4216.5	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	4960.6	
Sales Revenue 1	Million MYR				14.98	18.19	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	21.40	
Sales Revenue 2	Million MYR				30.83	37.44	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	44.05	
Total Variable Cost	Million MYR				-11.71	-14.22	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	-16.73	
Total Fixed Cost	Million MYR				-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	-28.24	
Cash Flow Before Tax	Million MYR	0.00	-40.80	-48.71	5.87	13.18	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	20.49	15.37
Tax Depreciation Allowance	Million MYR				11.35	9.77	8.41	7.24	6.24	5.37	4.62	3.98	3.43	2.95	2.54	2.19	1.88	1.62	1.39	1.20	1.03	0.89	0.77	0.66	
Carry forward Allowance	Million MYR				5.48	2.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Taxable Income	Million MYR				0.00	0.00	10.00	13.25	14.25	15.12	15.87	16.51	17.06	17.54	17.95	18.30	18.61	18.87	19.10	19.29	19.46	19.60	19.72	19.83	
Tax Payment	Million MYR				0.00	0.00	-2.40	-3.18	-3.42	-3.63	-3.81	-3.96	-4.10	-4.21	-4.31	-4.39	-4.47	-4.53	-4.58	-4.63	-4.67	-4.70	-4.73	-4.76	
Cash Flow After Tax	Million MYR		-40.80	-48.71	4.18	11.49	18.09	17.31	17.07	16.86	16.68	16.53	16.39	16.28	16.18	16.10	16.02	15.96	15.91	15.86	15.82	15.79	15.76	15.73	15.37
Cumulative Cash Flow After Tax	Million MYR	0.00	-40.80	-89.51	-85.33	-73.85	-55.76	-38.45	-21.38	-4.52	12.16	28.69	45.08	61.36	77.54	93.64	109.66	125.62	141.53	157.39	173.21	189.00	204.75	220.48	235.86

Table F.1. Cumulative cash flow table of glucose and furfural production plant from EFB, operating for 20 years.

Appendix G: Net Present Value

As highlighted in green in Table G.1, the internal return rate (IRR) can be calculated by fixing the net present value (NPV) to the value of zero, which gives a discount rate of **14.25%**.

Year	Year of	Discounted cash flow after tax at various discount rate (million M											
rear	operation	0	0.05	0.10	0.1425	0.20	0.30						
0	-	0.00	0.00	0.00	0.00	0.00	0.00						
1	-	-40.80	-40.80	-40.80	-40.80	-40.80	-40.80						
2	-	-48.71	-46.39	-44.28	-42.64	-40.59	-37.47						
3	1	4.18	3.79	3.45	3.20	2.90	2.47						
4	2	11.49	9.92	8.63	7.70	6.65	5.23						
5	3	18.09	14.88	12.36	10.62	8.72	6.33						
6	4	17.31	13.56	10.75	8.89	6.96	4.66						
7	5	17.07	12.74	9.63	7.68	5.72	3.54						
8	6	16.86	11.98	8.65	6.64	4.71	2.69						
9	7	16.68	11.29	7.78	5.75	3.88	2.04						
10	8	16.53	10.65	7.01	4.98	3.20	1.56						
11	9	16.39	10.06	6.32	4.33	4.33 2.65							
12	10	16.28	9.52	9.52 5.71 3		2.19	0.91						
13	11	16.18	9.01	9.01 5.16 3.27		1.81	0.69						
14	12	16.10	8.54	.54 4.66 2.85		1.50	0.53						
15	13	16.02	8.09	4.22	2.48	1.25	0.41						
16	14	15.96	7.68	3.82	2.17	1.04	0.31						
17	15	15.91	7.29	3.46	1.89	0.86	0.24						
18	16	15.86	6.92	3.14	1.65	0.71	0.18						
19	17	15.82	6.57	2.85	1.44	0.59	0.14						
20	18	15.79	6.25	2.58	1.26	0.49	0.11						
21	19	15.76	5.94	2.34	1.10	0.41	0.08						
22	20	15.73	5.65	2.13	0.96	0.34	0.06						
23	-	15.37	5.26	1.89	0.82	0.28	0.05						
Total	-	235.86	98.39	31.45	0.00	-24.52	-44.84						

Table G.1. Discounted cash flowrate after tax with a various discounted rates and IRR.

References

- ECHEMI
 (2021)
 Sulphuric
 Acid
 Selling
 Price.

 https://www.echemi.com/productsInformation/pid Rock19440-sulfuric-acid.html. Accessed

 15 April 2021
- Indiamart (2021) Cellulase Enzyme selling price. <u>https://www.indiamart.com/proddetail/cellulase-enzyme-9590230755.html</u>. Accessed 17 April 2021
- Krishna, SH, Huang, K, Barnett, KJ, He, J, Maravelias, CT, Dumesic, JA, Huber, GW, De Bruyn, M, Weckhuysen, BM (2018) Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles. AIChE J. 64:1910-1922.
- LHDNMalaysia(2020)Corporatetaxratein2020.http://www.hasil.gov.my/bt_goindex.php?bt_kump=5&bt_skum=2&bt_posi=5&bt_unit=1&http://www.hasil.gov.my/bt_goindex.php?bt_kump=5&bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_kump=5&bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_kump=5&bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_kump=5&bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_kump=5&bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_kump=5&bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_kump=5&bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_kump=5&bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_kump=5&bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_skum=2&bt_posi=5&bt_unit=1&<a href="http://www.hasil.gov.my/bt_goindex.php?bt_sku
- Lo, SLY, Choo, JJL, Kong, KGH, How, BS, Lam, HL, Ngan, SL, Lim, CH, Sunarso, J (2020) Uncertainty Study of Empty Fruit Bunches-based Bioethanol Supply Chain. Chem. Eng. Trans. 81:601-606.
- Malaysia Indeed (2021) Average base salary in Malaysia 2021. https://malaysia.indeed.com/career/factory-worker/salaries. Accessed 30 April 2021
- MERCK
 (2021)
 Sodium
 Hydroxide
 selling
 price.

 https://www.sigmaaldrich.com/catalog/product/sigald/415413?lang=en®ion=MY&cm_s
 p=lnsite-_-caSrpResults_srpRecs_srpModel_sodium%20hydroxide-_-srpRecs3-3.
 Accessed 17

 April 2021
 April 2021
 April 2021
 April 2021
 April 2021
- MIDA (2021) Process water selling price. <u>https://www.mida.gov.my/wp-</u> <u>content/uploads/2020/07/Utilities.pdf</u> Accessed 17 April 2021
- Nasional, T (2021) Electricity Price. <u>https://www.tnb.com.my/commercial-industrial/pricing-tariffs1/</u>. Accessed 5 May 2021
- Peters, MS, Timmerhaus, KD, West, RE (2003) Plant design and economics for chemical engineers, McGraw-Hill New York.
- Sinnott, R, Towler, G (2020). Chapter 6 Costing and project evaluation. In: R. Sinnott & G. Towler (Eds.), Chemical Engineering Design (Sixth Edition), Butterworth-Heinemann, pp. 275-369
- ThermoFisherScientific(2021)ButylChloridesellingprice.https://www.alfa.com/en/catalog/A13004/. Accessed 17 April 2021
- Trading Economics (2021) Malaysia Inflation Rate. <a href="https://tradingeconomics.com/malaysia/inflation-cpi#:~:text=In%20the%20long%2Dterm%2C%20the,according%20to%20our%20econometric%20models.&text=High%20of%203.3%25-,Malaysia's%20annual%20inflation%20increased%20to%20a%20five%2Dmonth%20high%20of,market%20estimates%20of%203.2%20percent.Accessed 25 December 2021
- UN Data (2018) Glucose and furfural Data. http://data.un.org/. Accessed 12 March 2021
- Wooley, RJ, Putsche, V, 1996. Development of an ASPEN PLUS physical property database for biofuels components. In. United States.
- XE currency (2021) Conversion rate of USD to MYR in May 2021. <u>https://www.xe.com/currencyconverter/convert/?Amount=1&From=USD&To=MYR</u>. Accessed 30 April 2021