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ABSTRACT
We have constructed a new time-scale, TT(IPTA16), based on observations of radio pulsars
presented in the first data release from the International Pulsar Timing Array (IPTA). We
used two analysis techniques with independent estimates of the noise models for the pulsar
observations and different algorithms for obtaining the pulsar time-scale. The two analyses
agree within the estimated uncertainties and both agree with TT(BIPM17), a post-corrected
time-scale produced by the Bureau International des Poids et Mesures (BIPM). We show that
both methods could detect significant errors in TT(BIPM17) if they were present. We estimate
the stability of the atomic clocks from which TT(BIPM17) is derived using observations of
four rubidium fountain clocks at the US Naval Observatory. Comparing the power spectrum
of TT(IPTA16) with that of these fountain clocks suggests that pulsar-based time-scales are
unlikely to contribute to the stability of the best time-scales over the next decade, but they will
remain a valuable independent check on atomic time-scales. We also find that the stability of
the pulsar-based time-scale is likely to be limited by our knowledge of solar-system dynamics,
and that errors in TT(BIPM17) will not be a limiting factor for the primary goal of the IPTA,
which is to search for the signatures of nano-Hertz gravitational waves.

Key words: time – pulsars: general.

1 IN T RO D U C T I O N

International Atomic Time (TAI) is the basis for terrestrial time.
It is also used to form Coordinated Universal Time (UTC), which
approximates the rotational phase of the Earth and provides a real-
ization of the theoretical time-scale Terrestrial Time (TT) through
TT(TAI) = TAI + 32.184 s. Once TAI is defined, it is not changed,

� E-mail: george.hobbs@csiro.au (GH); dick.manchester@csiro.au (RNM);
rshannon@swin.edu.au (RMS)

but it is reviewed annually and departures of TAI from the SI second
are incorporated into a post-processed time-scale published by the
Bureau International des Poids et Mesures (BIPM; Petit 2003) as
TT(BIPMXY), where XY indicates the year of creation. The version
we have used for this analysis is TT(BIPM17), which is available
from ftp://ftp2.bipm.org/pub/tai/ttbipm/TTBIPM.17.

Atomic time-scales continue to improve in accuracy and stability
(Petit 2013). Such time-scales are created from an ensemble of
atomic clocks (e.g. hydrogen masers) which have good short-term
stability but are weaker over longer periods. To provide stability over
years and decades TAI is ‘steered’ by comparison with ‘primary and
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secondary representations of the second’ (presently caesium and
rubidium fountains respectively) to keep the TAI second as close as
possible to the SI second (Arias, Panfilo & Petit 2011). This leads to
a time-scale which is statistically non-stationary and for which the
stability over decades is difficult to determine. It would be valuable
to have an independent time-scale with comparable stability over
decades.

Guinot & Petit (1991), Matsakis & Foster (1996), Petit & Tavella
(1996), Rodin (2011), Hobbs et al. (2012), Manchester et al. (2017),
and Yin, Gao & Zhao (2017) have shown that a time-scale based
on the spin of radio pulsars with millisecond periods (MSPs) can
have a stability comparable to that of atomic time-scales. Whereas
normal (longer period) pulsars often show irregular rotation, such as
glitch events or low-frequency timing noise, MSPs are significantly
more stable. Pulse times of arrival (ToAs) from MSPs can also be
determined more precisely than those from normal pulsars because
they are shorter and there are more pulses to average.

More than 50 MSPs are currently being observed as part of
the International Pulsar Timing Array (IPTA) project, with the
primary goal of detecting ultralow frequency gravitational waves
(e.g. Hobbs et al. 2010; Verbiest et al. 2016). The IPTA combines
the Parkes PTA (PPTA; Manchester et al. 2013) in Australia with
the European PTA (EPTA; Desvignes et al. 2016) and with the
North American PTA (NANOGrav; Arzoumanian et al. 2018, The
NANOGrav Collaboration 2015) and it will continue to expand in
the future.

The IPTA team expects to identify the quadrupolar signature of
gravitational waves unambiguously by searching for the correlations
between the timing residuals of different pulsars (see e.g. Verbiest
et al. 2016). As shown by Tiburzi et al. (2016) and references therein,
other processes can also produce correlated timing residuals. Errors
in the planetary ephemeris will introduce an approximately dipolar
correlation between pulsars, and time-scale errors will introduce a
monopolar correlation. Since the strongest gravitational waves are
expected to have long periods, the stability of the reference time-
scale over decades is important for gravitational wave searches.

Two methods have been used for extracting a pulsar-based
time standard from PTA data, and for comparing it with a given
realization of TT. The first, described in Hobbs et al. (2012), uses
a frequentist-based method that includes the clock signal as part of
the pulsar timing model and carries out a global, least-squares-fit
to estimate that signal. The second, a Bayesian technique described
in Caballero et al. (2016), uses a maximum-likelihood estimator
and optimal filtering, described in Lee et al. (2014), to estimate the
clock signal.

In this paper, we:

(i) make use of the first IPTA data set to produce a pulsar-based
time standard TT(IPTA16),

(ii) improve the Hobbs et al. (2012) algorithm by accounting for
non-stationarity in the noise processes (as described by Reardon
et al. 2016),

(iii) extend the Caballero et al. (2016) algorithm to estimate both
the covariance of the noise processes and the clock signal using
independent Bayesian algorithms. This improves the accuracy of
the uncertainty of clock signal waveform,

(iv) compare the two different methods for developing the pulsar-
based time standard, and

(v) provide a direct comparisons between TT(IPTA16) with
respect to TT(BIPM17), and the best atomic frequency standards at
the US Naval Observatory.

2 TH E DATA S E T A N D A NA LY S I S

The pulsar timing analysis is a well-developed process of fitting
a model, which describes both the pulsar and the propagation of
the pulses to Earth, to a set of observed pulse ToAs (see Hobbs,
Edwards & Manchester 2006, for details of how this process is
implemented within the TEMPO2 software package). For this work,
we use ToAs from the first IPTA data release by Verbiest et al. (2016)
and Lentati et al. (2016). The data set consists of observations of 49
pulsars from the EPTA telescopes (Lovell, Effelsberg, Westerbork
and Nançay), the NANOGrav telescopes (Arecibo and Green Bank),
and the Parkes telescope. Of the 49 pulsars,1 13 are solitary and 36
are in binary systems.2 The pulsars have been observed in numerous
observing bands from around 300 to 3000 MHz. The observations
are performed with an irregular observing cadence of 2 to 4 weeks
(depending on the pulsar and the telescope). For the basic timing
analysis we used TEMPO2 (Hobbs et al. 2006) with the DE421 solar-
system ephemeris (Folkner, Williams & Boggs 2009).

The ToAs were estimated by fitting a pulse template to the
observed average pulse profile. This provides both a ToA and an
estimate of its measurement error. The uncertainties of the observed
ToAs are more complex than the measurement errors (see Verbiest &
Shaifullah 2018 for a review). For instance, the strength of the
observed pulse varies rapidly because of interstellar scintillation
(see e.g. Rickett 1970), and so the signal-to-noise ratio changes
rapidly. The pulse shape itself shows significant jitter from pulse
to pulse (see e.g. Liu et al. 2012; Shannon et al. 2014; Lam et al.
2019). Such effects cause independent errors in each measurement,
which we refer to as ‘white noise’.

The timing residuals are also affected by low frequency noise
processes, which we refer to as ‘red noise’. The pulsar timing
method (details are provided in Edwards, Hobbs & Manchester
2006) relies on an initial set of models that includes the pulsar spin
frequency and its spin-down rate, its position on the sky and proper
motion and parallax, the binary orbital parameters if any, and the
electron column density of the interstellar medium (known as the
dispersion measure, DM). It also includes instrumental parameters
such as phase differences between receivers. However, pulsars often
spin irregularly, the interstellar medium changes, and the observing
hardware and software change (see details in e.g. Manchester et al.
2013; Lentati et al. 2016; Arzoumanian et al. 2018). Such effects
lead to red noise in the timing residuals. The covariance matrices of
all sources of noise must be estimated to optimize the least-squares
(or maximum-likelihood) fits and to obtain valid uncertainties on
the parameters of the timing model. Recent reviews of such issues in
pulsar timing residuals in relation to PTA experiments were recently
published by Hobbs & Dai (2017) and Tiburzi (2018).

Verbiest et al. (2016) provided the first IPTA data release in three
different forms: (i) a ‘raw’ format with only minimal pre-processing,
(ii) a format usable for standard TEMPO2 analysis, and (iii) a data set
using the Bayesian parametrization for TEMPONEST analysis. These
data sets are available from http://www.ipta4gw.org. The primary
difference between these three data sets is the way in which the noise
models are included. For our analysis we started with the IPTA data
combination ‘A’, which is the raw form without any noise models.

1The data set for one of these pulsars, PSR J1939+2134, was removed from
our sample. The data are affected by significant low-frequency timing noise
and the pulsar does not contribute to determination of the clock signal.
2This includes PSR J1024−0719, which is thought to be in a long-period
orbit; see Bassa et al. (2016) and Kaplan et al. (2016).
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The derived pulsar time-scale described in this paper is named
TT(IPTA16) as our data set is based on Verbiest et al. (2016), which
was published in 2016. However, we note that the data set only
extends until the end of 2012.

2.1 Data and processing for the frequentist analysis

We have independently processed the data using both frequentist
and Bayesian methodologies. Here we describe the frequentist
processing. The Bayesian analysis is presented in Section 2.2.

For our data set, any irregularities in TT(BIPM17) are much
smaller than the noise in the ToAs for any particular pulsar.3

Consequently, we made noise models from the residuals formed
from ToAs with respect to TT(BIPM17) and used those models
in all fits. This allowed us to avoid iteration of the global clock
fit. Modelling of the noise is perhaps the most difficult part of the
timing analysis. The fundamental reason for this is that all pulsars
are different and we only have one realization of each pulsar. Thus
it is difficult to estimate the covariance matrix without making some
constraining assumptions, for example, assuming that the red timing
noise is wide-sense stationary and parametrizing its power spectrum
with a simple analytical model.

The noise models refer to the residuals after all the deterministic
effects have been removed. Variations in the reference clock can
be included in the timing model, estimated and removed from
the residuals. So in our frequentist approach to fitting the timing
model, we estimate the noise models iteratively. Fortunately such
iterations converge quite quickly because least-squares solutions
are not strongly sensitive to small changes in the noise models.

In Table 1 we summarize the data set, providing, in column
order, the pulsar J2000 name, the MJD range, and corresponding
span in years, the range of the observing frequencies available,
the number of arrival times, and the telescopes used to provide
observations. We also provide three rankings to indicate which
of these pulsars contributes to the clock signals (these final three
columns in the table will be described later). The observational
coverage is shown graphically in Fig. 1. Appendix A describes
our scripts for processing the data and forming the initial noise
model, with Table A1 listing the noise model parameters. We note
that, as described in the Appendix, some of the PPTA observations
were missing from the IPTA data release. These observations were
included in our frequentist-based analysis.

With the final parameter and arrival time files, we applied the
Hobbs et al. (2012) technique to derive the common mode, CM(t),
clock signal using a simultaneous global fit to all pulsar data sets.4

We constrained the fit for the clock signal so that it does not include
an offset, linear or quadratic component. We also switch off fitting
for the pulsar parameters (apart from the pulse frequency and its
first time derivative). The clock, CM(t), is parametrized by a grid
of samples (separated by 0.5 yr intervals) and linear interpolation
between the samples.5

During the work described here, the software TEMPO2 (available
from https://bitbucket.org/psrsoft/tempo2) was updated and the
default least-squares solver was changed to a scheme using the QR

3This is clear from the results of Hobbs et al. (2012), which covered
approximately the same data span as the IPTA data processed here.
4Note that the term ‘common-mode’ is being used here in a general manner
and refers to the signal common to a group of signals.
5We have also re-run the algorithm with a 1 yr and a 100 d sampling. These
results are available as part of our data release; see Appendix C.

decomposition6 from the previous scheme based on the singular
value decomposition (SVD). The QR based solver is faster, but we
found a small difference in the clock estimate for the full sample
of pulsars. The worst-case difference was 0.6 times the error bar.
When we used only the eight most significant pulsars the difference
between QR and SVD based schemes became insignificant. Further
testing revealed that the covariance matrix of the parameters had
full rank, but the condition number of that matrix had increased
by a factor of 40 when all pulsars were used. This behaviour is
not unexpected. The SVD approach is particularly useful when
the covariance matrix of the observations is singular, but it is also
valuable when the whitened model matrix is ill-conditioned. Users
of TEMPO2 who stress the algorithm with global solutions for many
pulsars should take care to test both QR and SVD methods on their
problem. The results presented in this paper were obtained with the
SVD approach.

2.2 Data and processing for the Bayesian analysis

The frequentist method, as described above, relies on the manual
modelling of the noise properties, as well as the careful subjective
checking of the resulting data sets and fits. The Bayesian method is
independent: it fits both the timing model and the noise models
for the pulsars simultaneously. This avoids the iteration in the
frequentist method, however, it requires that the analyst make a
choice of prior distributions for the model parameters.

For the Bayesian analysis, we used the IPTA data set without
excluding any data from specific observing systems or including
the additional PPTA data used in the frequentist method. We did,
however, keep the same time-spans as in the frequentist analysis.
Because of the significant computational cost in carrying out the
Bayesian analysis, we used a restricted list of eight pulsars. The
selection process is discussed in Section 3.3.

Bayesian approaches to analysing pulsar-timing data, whether
to search for spatially correlated signals or single-pulsar timing
and noise analysis, have appeared in various publications (e.g. van
Haasteren et al. 2009; Lee et al. 2014; Lentati et al. 2014) and have
been applied to real data sets (e.g. Caballero et al. 2016; Desvignes
et al. 2016; Arzoumanian et al. 2018). The results from Bayesian
and frequentist methods have been compared and have shown to be
generally consistent (for instance, Babak et al. 2016; Li et al. 2016).

With Bayesian parameter estimation, we estimate the probability
distribution of the values of a set of parameters, ζ , taking into
account the data, X, a model (hypothesis), H, such as a physical
model, describing how the parameters are related with each other.
Bayesian inference is the process by which we use the information
from the observed data to update our knowledge of the probability
distribution of the unknown parameters, for which we necessarily
have a prior belief, described by the prior probability distribution.
The inferred distribution is called the posterior probability distri-
bution. Via Bayes’ theorem, we perform the parameter estimation
using the relation

Ppos ∝ Ppr�. (1)

Using P to denote probabilities, the posterior probability distri-
bution, Ppos = P(ζ |X, H), is therefore the conditional probability
of the parameters of interest given the model and the data. The
likelihood function, � = �(X|ζ , H), is the conditional probability
of the data given the model and its parameters. Finally, the prior

6Note that ‘QR’ is not an acroynm. See e.g. Press et al. (1996) for details.
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Table 1. Summary of the data used.

Pulsar MJD range Span Frequency Ntoa Telescopes Max diff. (ns) Ratio Bayesian
range (Significance) (Rank) rank

(yr) (MHz)

J0030+0451 53333–55925 7.1 1346–2628 723 A,E,N 11 (#23) 1.00 (#25) #9
J0034−0534 53670–55808 5.9 1394–1410 57 N 1 (#48) 1.00 (#26) #10
J0218+4232 50371–55925 15.2 1357–2048 757 E,J,N,W 8 (#27) 0.98 (#42) –
J0437−4715 50191–55619 14.9 1295–3117 4320 P 254 (#3) 1.54 (#3) Top
J0610−2100 54270–55926 4.5 1366–1630 347 J,N 5 (#29) 0.99 (#38) #20

J0613−0200 50932–55927 13.7 1327–3100 1460 E,G,J,N,P,W 24 (#17) 0.93 (#46) –
J0621+1002 50693–55922 14.3 1354–2636 568 E,J,N,W 3 (#39) 0.99 (#40) –
J0711−6830 49589–55619 16.5 1285–3102 427 P 74 (#7) 1.15 (#6) –
J0751+1807 50363–55922 15.2 1353–2695 1124 E,J,N,W 34 (#10) 1.08 (#10) –
J0900−3144 54285–55922 4.5 1366–2206 575 J,N 4 (#31) 1.00 (#29) #15

J1012+5307 50647–55924 14.4 1344–2636 1117 E,G,J,N,W 44 (#8) 0.79 (#48) –
J1022+1001 50361–55923 15.2 1341–3102 1133 E,J,N,P,W 31 (#11) 1.25 (#4) –
J1024−0719 50118–55922 15.9 1285–3102 804 E,J,N,P,W 11 (#25) 1.00 (#31) –
J1045−4509 49406–55620 17.0 1260–3102 510 P 14 (#22) 0.96 (#44) –
J1455−3330 53375–55926 7.0 1246–1699 395 J,N 3 (#34) 0.99 (#37) #6

J1600−3053 52302–55919 9.9 1341–3104 999 G,J,N,P 28 (#15) 1.01 (#17) #8
J1603−7202 50026–55619 15.3 1285–3102 381 P 18 (#19) 0.97 (#43) –
J1640+2224 50459–55924 15.0 1353–2636 532 A,E,J,N,W 27 (#16) 1.09 (#9) #13
J1643−1224 49422–55919 17.8 1280–3102 1066 E,G,J,N,P,W 23 (#18) 1.02 (#15) –
J1713+0747 49422–55926 17.8 1231–3102 1833 A,E,G,J,N,P,W 1319 (#1) 3.12 (#1) Top

J1721−2457 52076–55854 10.3 1360–1412 152 N,W 2 (#45) 1.00 (#32) –
J1730−2304 49422–55921 17.8 1285–3102 480 E,J,N,P 37 (#9) 1.10 (#8) –
J1732−5049 52647–55582 8.0 1341–3102 190 P 10 (#26) 1.04 (#12) –
J1738+0333 54103–55906 4.9 1366–1628 206 N 3 (#35) 0.99 (#39) #17
J1744−1134 49921–55925 16.4 1264–3102 823 E,J,N,P 260 (#2) 2.39 (#2) #4

J1751−2857 53746–55837 5.7 1398–1411 78 N 3 (#40) 1.00 (#28) #21
J1801−1417 54184–55921 4.8 1396–1698 86 J,N 3 (#38) 1.00 (#19) –
J1802−2124 54188–55903 4.7 1366–2048 433 J,N 2 (#44) 1.00 (#24) #14
J1804−2717 53747–55915 5.9 1397–1520 76 J,N 2 (#43) 1.00 (#20) –
J1824−2452A 53519–55619 5.7 1341–3100 234 P 4 (#33) 1.00 (#23) –

J1843−1113 53156–55924 7.6 1374–1630 174 J,N,W 5 (#30) 0.99 (#36) –
J1853+1303 53371–55923 7.0 1370–1520 102 A,J,N 11 (#24) 1.01 (#16) #11
J1857+0943 50459–55916 14.9 1341–3102 625 A,E,J,N,P,W 29 (#12) 1.10 (#7) –
J1909−3744 52618–55914 9.0 1341–3256 1398 G,N,P 172 (#5) 1.24 (#5) Top
J1910+1256 53371–55887 6.9 1366–2378 106 A,J,N 5 (#28) 1.00 (#21) #12

J1911−1114 53815–55881 5.7 1398–1520 81 J,N 4 (#32) 1.00 (#18) –
J1911+1347 54093–55869 4.9 1366–1408 45 N 17 (#20) 1.03 (#14) –
J1918−0642 52095–55915 10.5 1372–1520 265 G,J,N,W 29 (#13) 1.08 (#11) #5
J1955+2908 53798–55919 5.8 1386–1520 132 A,J,N 2 (#41) 1.00 (#33) #16
J2010−1323 54087–55918 5.0 1366–2048 296 J,N 17 (#21) 1.03 (#13) #18

J2019+2425 53446–55921 6.8 1366–1520 80 J,N 2 (#47) 1.00 (#27) –
J2033+1734 53894–55918 5.5 1368–1520 130 J,N 2 (#46) 1.00 (#30) –
J2124−3358 49490–55925 17.6 1260–3102 1028 J,N,P 97 (#6) 0.98 (#41) –
J2129−5721 49987–55618 15.4 1252–3102 343 P 29 (#14) 0.96 (#45) –
J2145−0750 49518–55923 17.5 1285–3142 1476 E,J,N,P,W 198 (#4) 0.92 (#47) –

J2229+2643 53790–55921 5.8 1355–2638 234 E,J,N 3 (#36) 1.00 (#22) #19
J2317+1439 50459–55918 14.9 1353–2638 409 E,J,N,W 3 (#37) 1.00 (#34) #7
J2322+2057 53916–55921 5.5 1395–1698 199 J,N 2 (#42) 1.00 (#35) –

Note. Telescope codes: (A) Arecibo, (E) Effelsberg, (G) Green Bank, (J) Jodrell Bank, (N) Nancay, (P) Parkes, and (W) Westerbork

probability distribution, Ppr = P(ζ |H), is the conditional probability
of the parameters given only the model hypothesis. The prior is
therefore a mathematical tool to express the degree of knowledge
or ignorance on the real probability distribution and is mandatory
in Bayesian inference. Bayesian inference is often used when the

model’s complexity is high and closed-form solutions are not readily
available. In such cases, as is the case with our analysis, the posterior
distribution is then inferred by randomly drawing samples from
the prior distribution using Monte Carlo methods and testing their
likelihood.
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Figure 1. Data spans and sampling for the IPTA pulsars used in our analysis. Each point indicates an observation, but neither the ToA nor its uncertainty are
shown. The uncertainties typically are smaller for more recent data.

For the Bayesian analysis in this work, the pulsar timing and noise
analysis was performed in the same way as in Caballero et al. (2018).
The noise model consists of three basic components: the white-noise
parameters which regulate the uncertainties of the ToAs, as well as
the red- and DM-noise components. We summarize the noise model
and mathematical details in Appendix B (see Caballero et al. 2018
for more details).

As in Lentati et al. (2015) and Caballero et al. (2016), we
model the clock signal as a stationary, power-law, red noise process
correlated between the pulsars (a monopolar correlation). The power
spectrum of the clock signal is modelled as

Sclk(f ) = A2
clk

f

(
f

fr

)2αclk

, (2)

where f is the Fourier frequency and fr is a reference frequency set to
1 yr−1. In Caballero et al. (2016) the pulsar noise parameters were
held fixed at their maximum-likelihood values and the maximum-
likelihood values for the clock-noise parameters were calculated
in a frequentist way, with a maximum-likelihood estimator. In this
study, while we still keep the pulsar noise parameters fixed, we
perform Bayesian inference for the clock-error signal parameters
while we analytically marginalize over the timing parameters (the
analytical marginalization of the timing parameters is also implicitly
assumed in Caballero et al. 2016 in the formation of the likelihood
function, as in this study). Fixing the noise offered the ability to
perform the analysis faster, having first verified that this approach
was sufficient to detect and reconstruct the simulated TT(TAIx2)
signal, as discussed in Section 3.

Once we obtain the posterior distributions of the clock-signal
parameters, we estimate the waveform and uncertainties of the clock
signal with the following procedure:

(i) we calculated the 1σ (68 per cent credible interval) boundary
of the 2D probability distribution of the two clock parameters
using the posterior distribution obtained from the Bayesian
inference.

(ii) we constructed the updated total covariance matrix, Cupd,
by summing the inferred covariance matrix of the clock signal
(Cclk) and pulsar-noise covariance matrices. We used this updated
covariance matrix to re-fit the linear timing parameters using
generalized least-squares fitting in the presence of correlated noise
and calculated the post-fit timing residuals, described by the vector
tgls.

(iii) we used the method described in Lee et al. (2014) to re-
construct clock waveforms for all values of the clock signal’s
posterior distribution within the 1σ boundary. The clock waveform
for each case is then

tclk = CclkC
−1
upd tgls. (3)

The final clock waveform is the average of these waveforms and
the upper and lower envelope of the waveforms provides the
reported 1σ boundary. This is different from the original method,
which estimated the maximum-likelihood waveform and the 1σ

uncertainty levels as the standard deviation of the maximum-
likelihood estimator, an approximation that is valid only if the
noise is uncorrelated. Since the noise is in general correlated, this
approach gives a more reliable estimate of the clock waveform
uncertainties.

3 R ESULTS AND D I SCUSSI ON

Fig. 2 shows TT(IPTA16) with respect to three different refer-
ence time-scales: TT(TAI), TT(BIPM17), and a test case labelled
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5956 G. Hobbs et al.

Figure 2. The derived clock signal, TT(IPTA16) (top row) referred to TT(BIPM17) (left-hand column), TT(TAI) (central column), and a test reference which
is effectively TT(BIPM17)−2 ×[TT(TAI) – TT(BIPM17)] (right-hand column). The open circles with error bars result from the frequentist analysis and the
dark blue lines are the Bayesian determinations of the signal (with 1σ uncertainties indicated with the cyan lines). The red line gives the expected signal in each
case. The difference between the expected signal and the derived clock signal is shown in the middle row. The uncertainties on the clock signal as a function
of time are given in the bottom row for the two analysis methods.

TT(TAIx2).7 The three columns correspond to the different refer-
ence time-scales. The top row shows the derived clock signal for
each reference time-scale. provides the clock waveform. The black
points, with uncertainties, give the frequentist-derived clock signal.
The blue, solid curve indicates the Bayesian waveform with its
1σ boundaries in light blue lines. The expected clock waveform is
shown as a solid red line. The second row shows the difference from
the expected waveform. The frequentist-derived values are points
with errors and the Bayesian values are solid lines. The third row
provides the one-sided error bar, σ .

We assume that TT(BIPM17) is an accurate time-scale over
the sampled data span so the expected clock waveform is zero
for time reference TT(BIPM17). For time reference TT(TAI), it
is −[TT(BIPM17) − TT(TAI)] but with a best-fitting quadratic
removed. This is necessary because the pulsar timing model must
always fit for the spin period and spin-down rate as these are
not known a priori. This removes a quadratic polynomial from
the residuals of every pulsar, so there can be no quadratic in
the resulting clock waveform. This is handled differently in the
Bayesian procedure, so we carried out unweighted fits for the
quadratic coefficients in both frequentist and Bayesian procedures to

7This test case was formulated using TT(TAIx2) = TT(TAI) −3 ×[TT(TAI)
− TT(BIPM17)] as the time reference.

make the results comparable. For the third case, the expected signal
is +2 ×[TT(BIPM17) − TT(TAI)] with the quadratic removed.

The error bars on the two analysis schemes are less comparable.
The Bayesian lines are 68 per cent confidence limits on the estimated
signal at a given time. The frequentist bars are the estimated standard
deviation of that particular sample. They depend on the sampling
interval. We also note that the clock signal measurements and
uncertainties are not independent. As described by Hobbs et al.
(2012), the effect of fitting, irregular sampling, differing data spans,
and the linear interpolation between adjacent grid points all lead to
correlated values. The Bayesian procedure constrains the variation
of the clock estimate by its statistical model as a stationary power-
law red process, so it is harder to define an interval between
independent estimates. The frequentist estimate has a normalized
chi-square of 1.08, indicating that the error bars are consistent with
the variation in the clock estimate. The Bayesian estimates are also
self-consistent.

The following results are easily seen in the figure:

(i) the test signals TAI and TAIx2 are recovered within the
confidence limits using both frequentist and Bayesian schemes
(more details are given below),

(ii) the residuals (the difference between the expected signal
and the derived clock signal) for both methods with TT(BIPM17)
and TAI are almost the same, indicating that both algorithms are
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operating linearly at that signal level – a much larger signal than
expected in TT(BIPM17),

(iii) the residuals for TAIx2 are slightly different to those for the
preceding two cases, indicating that some non-linearity is becoming
evident at this level, i.e. the assumption that the clock signal is small
compared to the pulsar noise level starts to fail for this case,

(iv) the pulsar time-scale, TT(IPTA16), with respect to
TT(BIPM17) is consistent with zero. Note that the variations of
±500 ns before 1998 are not as significant as they appear because
the frequentist error bars are 25 per cent correlated (see Section 3.2).

(v) the IPTA data rate and the receiver performance improved
markedly in 2003 and this is reflected in the error bars for both
methods, especially in the Bayesian estimates.

Although the known signal in the top central panel of Fig. 2 is
clearly detected, an unknown signal would be less obvious. However
an unknown signal of the same variance could be detected purely
from the χ2 of the frequentist samples. The reduced χ2 of the left-
hand panel TT(BIPM17) is 1.08, confirming that the error estimates
are good. The reduced χ2 of the central panel is 2.0 and the number
of degrees of freedom is reduced from 37 to 33 by the correlation
between samples. Thus a χ2 of 2.0 indicates a 3.6σ detection of a
variance increase.

The mean frequentist error bar size in our clock comparison drops
from ∼300 ns in the first half of the data to ∼150 ns in the second
half. This implies that our existing data sets could have made a 3σ

detection of a common signal of ∼900 ns that lasted for 6 months
in the early data or ∼450 ns in the later data. Longer lasting events
could have been detected at lower amplitudes. For instance, an
event lasting 10 yr with an amplitude ∼70 ns could be detected in
the recent data. We note that large time offsets are not expected from
atomic time-scales, however frequency instabilities are possible. At
the level that we could detect, such instabilities would likely be
caused by planned steering, as in TT(TAI). We have no prior reason
to expect any such detectable instabilities in TT(BIPM17).

We have produced a publicly available data collection containing
our input data, processing pipelines, and results. A description of
this data collection is given in Appendix C.

3.1 Noise power spectra

The power spectral densities of the noise and the clock estimate
are shown in Fig. 3. The blue solid line, which is the same in each
panel of Fig. 3, represents the power spectrum of the frequentist-
derived clock (the spectrum of the Bayesian-derived result is shown
in Fig. 4 and discussed later). The spectrum was formed for data
with MJD > 51 000 (i.e. from the top left-hand panel in Fig. 2
ignoring the oldest clock samples; this date corresponds to 1998
July 6). The horizontal blue dashed lines represent the mean of the
spectrum and 95 per cent confidence levels assuming χ2

2 statistics
(i.e. exponential statistics, with two degrees of freedom). Although
there is a suggestion that the spectrum might be starting to rise at
the lowest frequency sample, the spectrum is consistent with white
noise and we will assume it is white in further analyses.

The four panels in this Figure provide noise spectra for important
pulsars in the sample. The white noise spectrum corresponding to
the measured ToA uncertainties that have been corrected for the
EFAC and EQUAD parameters (see equation A1) are shown as
the horizontal black, dotted line for the four listed pulsars. The red
noise model as used in the frequentist analysis is shown as the black,
solid curve and that from the Bayesian analysis as the red curve.
For comparison we also show the red-noise model for J1713+0747

and J1744−1134 given in the IPTA data release B (blue dot-dashed
curve). The red-noise estimates for PSR J0437−4715 in the IPTA
B data set is negligible and no red-noise model was provided for
PSR J1909−3744.

The frequentist noise modelling includes a corner frequency in
the power spectrum; see equation (A2). There was no evidence for
a turnover in the spectrum for PSRs J0437−4715, J1713+0747,
and J1909−3744, but we did not wish to assume a low-frequency
variation that we were unable to verify. We therefore used a corner
frequency of f0 = 1/[dataspan]. We note that the quadratic fitting
procedure applied to all pulsars implies that our choice of noise
model below a frequency of f0 has little effect on the final results.

In contrast, the Bayesian analysis does not include a corner
frequency and the Bayesian procedures will estimate signal com-
ponents with f < f0, albeit with reduced confidence. Comparison
between our frequentist-derived noise models and the previous
IPTA analysis shows basic consistency, but also that the match
is not always close. This highlights the subjective component to
the noise analysis. The Bayesian procedure provides a reproducible
method to produce the noise models, but a subjective bias remains
in the choice of Bayesian prior. One key result from our work is
that the clock estimates computed with different noise models and
different algorithms are consistent within their confidence limits.
Clearly the clock fitting process is robust to these changes.

Fig. 3 shows that the clock spectrum is much higher than the
white noise spectrum for these pulsars below f = 1 yr−1. This shows
the importance of the red noise models. The clock spectrum for
such frequencies is completely dominated by red noise in the pulsar
timing residuals.

3.2 Anomalies

In analysing the data we found occasional anomalies that depended
on a few observations of a single pulsar. On checking these carefully
we found some errors in the data and either corrected or removed
them. However there were a few anomalies remaining for which we
could find no reason to remove the data. One particular example
relates to the apparent offset seen in Fig. 2 around the year 1996.
This offset is very similar to that reported by Hobbs et al. (2012),
which only used PPTA data sets.

In order to study this anomalously high clock waveform around
1996, we have obtained the frequentist-based clock waveform after
removing each pulsar in turn. We find that only PSRs J0437−4715
and J1713+0747 significantly affect the pulsar-derived clock signal
around this date. If PSR J1713+0747 is removed then the anomaly
in the year 1996 disappears (although the uncertainties on the clock
signal significantly increase). Around this time the IPTA data set
contains observations from both the Parkes and Effelsberg tele-
scopes and they both indicate a dip of around 2μs. The observations
of PSR J1713+0747 around this time are complex. The Parkes
data were recorded at multiple observing frequencies from 1285
to 1704 MHz and there is very sparse sampling around the centre
of the dip. However, it does seem that an event occurred around
this time that is not included in our noise modelling procedures.
As we only have a few pulsars contributing to the clock signal at
this time, this does lead to an apparent significant clock offset. We
know that the timing residuals for PSR J1713+0747 occasionally
show unusual behaviour (see e.g. Lentati et al. 2016) that cannot be
modelled using simple, power-law red noise models.

The ‘bump’ in the clock waveform spectrum seen in Fig. 3 around
frequency 0.4 yr−1 is entirely caused by PSR J0437−4715 (note that
the anomaly is missing from the dashed spectrum in Fig. 3 produced
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5958 G. Hobbs et al.

Figure 3. Power spectrum of the IPTA clock signal (light blue) with its mean and 95 per cent confidence levels (horizontal light blue dashed lines) overlaid.
Each panel also contains the red noise models for the specified pulsar from this paper (black for the frequentist analysis and red for the Bayesian analysis) and
in the IPTA data release (dot-dashed, blue). The spectral density corresponding to the ToA uncertainties for each pulsar scaled by the white noise error factors
is shown as the dotted line. The purple dot-dashed line indicates the power spectrum of the clock signal after the specified pulsar has been removed from the
sample. The spectral frequency corresponding to f0 = 1/[data span] for the specified pulsar is shown as a vertical dashed line.

when PSR J0437−4715 is removed). We have been unsuccessful
in determining the cause of this anomaly. We note that this pulsar
is only observed by one telescope in the IPTA and so we have no
ability, as we do for other pulsars, either to identify and then fix, or
to average over, any instrumental effects that may be occurring for
a single telescope.

PSR J1909−3744 does not contribute as much as expected in
the frequentist analysis, but leads to an anomaly in the clock
waveform in the Bayesian analysis around the year 2004. Shannon
et al. (2015) indicated that the PSR J1909−3744 timing residuals
were statistically white, whereas our work indicates red noise. This
is because Shannon et al. (2015) showed that PPTA observations
at high frequencies, which were not corrected for DM variations,
produced whiter (and lower rms residual) data sets compared with
the DM-corrected lower frequency data. Lam et al. (2017) also
identified excess, observing-frequency-dependent noise in the tim-
ing residuals for this pulsar. We therefore believe that uncorrected
interstellar medium effects, or instrumental effects are leading to the
observed red noise in the IPTA data set for this pulsar. We repeated
the frequentist data processing to re-form the clock waveform after
removing the IPTA data set for PSR J1909−3744 and replacing
it with the Shannon et al. (2015) data set. Variations of �250 ns
are seen comparing this clock signal with that shown in Fig. 2
between the years 2005 and ∼2008, which covers the range where

this pulsar was observed by the Green Bank Telescope. The changes
that occur when using the IPTA and the Shannon et al. (2015)
data sets and when comparing the Bayesian and frequentist noise
estimates highlights both the importance and the challenges of such
noise modelling. Such issues have relatively little effect on the pulsar
time-scale with existing data, but as data sets become longer and
ToA precision continues to improve, such modelling will become
more important.

3.3 Which pulsars contribute?

The time taken to produce the pulsar-based time-scale from both the
frequentist and Bayesian algorithms significantly increases as more
pulsars are included in the analysis, but not all pulsars are equal.
The pulsars that most constrain the pulsar time-scale are those with
(1) long data spans, (2) minimal red noise, and (3) few data gaps.

Our next analysis is based on the data shown in the top left-
hand panel of Fig. 2. The simplest measure of whether a pulsar
contributes is therefore to determine whether the data points in
the Figure would change if that pulsar were removed from the
analysis. The maximum change in the frequentist-derived clock
signal with the removal of each pulsar is listed in the seventh column
of Table 1 along with the ranking of the significance of the pulsar
using this measure (from 1 to 48). This ranking highlights that the
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Figure 4. Power spectra of the frequentist-derived (cyan, with mean and
68 per cent confidence levels indicated by horizontal dashed lines) and
Bayesian-derived (black) pulsar time standard overlaid with the expected
power-spectral density of the timing residuals induced by a gravitational
wave background with amplitude 10−15 (red dotted line). Note that only the
monopolar contribution of the gravitational wave background signal would
affect the measurement of the clock signal. The purple solid line indicates
the average power-spectral density of the four USNO rubidium fountain
clocks after subtraction of the common-mode signal. The orange spectrum
is derived from the difference in the clock signal when using JPL ephemeris
DE436 compared to the default analysis using DE421.

pulsars with the largest influence on the resulting clock signal are
PSRs J1713+0747, J1744−1134, J0437−4715, J2145−0750, and
J1909−3744 each producing variations to the pulsar time-scale at
a level >100 ns for at least one time sample. PSR J1713+0747
has the largest contribution because the IPTA data release includes
the early pre-NANOGrav Green Bank and Arecibo data for this
pulsar providing a very long span of high-quality data. There are
22 pulsars whose removal only changes the resulting time-scale by
<10 ns. Removing all 22 causes no visible change (the maximum
change being 13 ns) to the pulsar-based time-scale.

The analysis described above shows that the removal of some
pulsars changes the resulting clock signal. It does not indicate
whether the removal of a pulsar improved the pulsar time-scale,
or not. We have considered various statistics to determine whether
the inclusion of a pulsar has a positive or detrimental effect. We
have found that comparing the power spectrum of the resulting
clock signal (determined on a 100 d grid) with and without the
inclusion of each pulsar in turn indicates most clearly which pulsars
are contributing.

The ratios of the mean of the power spectral densities for
f ≤ 0.5 yr−1 without and with each pulsar in turn are listed in
the second last column of Table 1. The pulsars that are most signif-
icant by this measure (in order) PSRs J1713+0747, J1744−1134,
J0437−4715, J1022+1001, J1909−3744, and J0711−6830. In
contrast to the first ranking procedure, PSR J2145−0750 is poorly
ranked using this method as its inclusion slightly increases the power
spectral density of the pulsar-derived clock signal. We highlight
using a bold font (in column 7) those pulsars for which this ratio
indicates that the inclusion of the pulsar does not improve the pulsar
time-scales.

The Bayesian analysis also provided a ranking of pulsars. This
ranking was based on the contribution of each pulsar to the signal-
to-noise ratio of the recovered TT(TAIx2) simulated clock signal
using the Bayesian procedure. The procedure was iterative. Starting

with only the three pulsars that dominated the initial frequentist
analysis (listed as ‘Top’ in Table 1), we determined the simulated
clock signal. We then repeated the analysis, but each time adding in
a different fourth pulsar. We chose as the fourth pulsar of the subset
the one that increased the signal-to-noise ratio of the detection
the most. We then continued following this method to add the
fifth, sixth, etc. pulsars. The contribution beyond the eighth pulsar
was negligible, while adding significant computational time and
therefore we used the eight most dominant pulsars to our analysis.
These were the top three, PSRs J0437−4715, J1713+0747, and
J1909−3744, followed by (in order) J1744−1134, J1918−0642,
J1455−3330, J2317+1439, and J1600−3053 (the full ranking is
given in the last column of Table 1). The exact choice of pulsars was
therefore slightly different in the Bayesian and frequentist methods,
but the final results are consistent.

Both the frequentist and Bayesian tests highlight the importance
of PSR J1713+0747 as the most significant pulsar and then
PSRs J0437−4715 and J1744−1134 as other key pulsars. This
is not a surprise. We have long, high-quality data sets on all these
pulsars. PSR J1909−3744 is also important, but it has a shorter data
span than the preceding three.

3.4 Implications for terrestrial time standards

Until 2012 the primary clocks used to steer TAI were not operated
continuously, so evaluating the stability of the periodically steered
time-scale required a very sophisticated analysis. However in 2012
the US Naval Observatory (USNO) began operating a set of four
rubidium (Rb) fountains continuously (Peil et al. 2014). Their time
offsets with respect UTC(USNO), which is very close to TAI, were
included in the five-day reports which are published monthly by
BIPM. We have retrieved these data sets,8 which have a 7-yr data
span, and used them to estimate the stability of the atomic clocks
used in generating TAI. The USNO Rb fountains are not ‘secondary
representations of the second’, they are operated as clocks, but they
are among the most stable clocks in the TAI ensemble (Peil et al.
2014). We expect that their stability is at least as good as that of
TAI.

The data are uniformly sampled and the noise is stationary so
we have used standard spectral analysis to compare the fountain
clocks. As the spectral exponents are of the order of −3 we pre-
whitened the data with a first difference linear filter to avoid spectral
leakage and post-darkened it after the Fourier transformation. We
can eliminate the effects of variations in the reference time-scale,
any environmental variations common to all of the Rb fountains,
and any variations in the time transfer between USNO and BIPM, by
comparing the clocks with each other. Rather than do this pairwise,
we find a signal common to all four clocks.

We subtract this common-mode signal from each clock indepen-
dently and, for comparison with the pulsar-derived time-scale, we
also fit and remove a quadratic before estimating the power spectra.
We find that the four Rb fountains corrected for the common-mode
signal have similar power spectra, so we took an average of all
four to provide the best spectral estimate. The average spectrum,
corrected for the common signal, is shown as a solid purple line

8The USNO Rb fountains have been submitted to BIPM with the other
USNO clocks since 2012. They can be identified by number: 1930002
through 1930005. The data are filed by year and month on the BIPM ftp site,
e.g. ftp://62.161.69.5/pub/tai/data/2018/clocks/usno1801.clk corresponds to
2018 January.
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in Fig. 4. The spectrum of the common-mode signal, which is not
shown in the figure, is very similar to that of the average but about
a factor of ten higher.

We fitted a power-law model to the corrected average spectrum
using a weighted least-squares fit, assuming that the spectral
estimates were distributed as χ2

8 . The fitted power-law model, which
has a spectral exponent of −3.0, is shown as a dashed purple line.
The first sample was not included in the fit because it is partially
suppressed by removing the quadratic. Frequencies above 20 y−1

were not included in the fit either, as the spectrum begins to flatten
at higher frequencies. A spectral exponent of −3 is characteristic of
‘flicker’ frequency modulation. The spectrum at frequencies above
20 y−1 appears to have an exponent ∼−2, which is characteristic of
white frequency modulation, but we do not have enough frequency
range to establish this clearly.

The extrapolated mean spectrum of the IPTA pulsar-based time-
scale (central dashed cyan line) and the extrapolated average
spectrum of the Rb fountains intersect at a period of ∼15 yr.
However, no individual clock is likely to be operating over this time-
scale. Consequently, pulsar timing provides a valuable, independent,
and long-term, check on terrestrial time-scales. The question of
whether TT(IPTA) can contribute to the stability of TT(BIPM) is
unclear, and probably premature, as it will be more than 10 yr before
its long-term stability can match that of the best Rb fountains – see
e.g. Arias & Petit (2019) for a recent analysis of the frequency
stability of TT(BIPM).

3.5 The Solar system ephemeris and gravitational waves

The timing residuals processed in this paper were determined using
the DE421 solar-system ephemeris (which was also used in the
Verbiest et al. 2016 publication describing the IPTA data set).
Recent work within the PTAs have highlighted that the choice of
solar-system ephemeris has a large effect on the amount of noise
seen in the timing residuals (e.g. Arzoumanian et al. 2018). For
currently unknown reasons, some of the more recent ephemerides
produce noisier pulsar timing residuals than earlier ones for decade-
long data sets. We have reprocessed the frequentist-based analysis
using the DE436 solar-system ephemeris9 and find deviations in
the resulting clock waveform at the ±50 ns level. The spectrum
of the difference between the frequentist-based clock waveforms
obtained using DE421 and DE436 is shown as the orange line in
Fig. 4. These deviations have no significant effect on the results
presented here, but unless the solar-system ephemerides are better
understood, they will have a major effect within the next few years.
We note that some of the signatures seen in this spectrum may be
related to individual Solar system objects and so periodicities may
emerge from the spectrum with longer data spans (instead of the
low-frequency, red-noise signal, that we currently see).

The primary goal of the IPTA project is to detect ultralow
frequency gravitational waves (see e.g. Burke-Spolaor et al. 2018).
The power spectral density of the timing residuals induced by an
isotropic, stochastic, gravitational wave background (GWB) can be
approximated as (e.g. Hobbs et al. 2009)

P (f ) = A2

12π2

(
f

f1yr

)−13/3

. (4)

Current bounds (e.g. Shannon et al. 2015) suggest that A < 10−15

and predictions give A ∼ 5 × 10−16 (Sesana et al. 2016). The present

9Available from https://ssd.jpl.nasa.gov/?ephemerides

upper bound on the power spectrum of timing residuals that would
result from a GWB is shown as a dotted line in Fig. 4. This spectrum
rises above the pulsar clock noise spectrum at a frequency of about
0.2 yr−1 and remains well above the spectrum of the best atomic
clocks. This suggests that, unless the GWB amplitude is orders-of-
magnitude lower than the current predictions, errors in terrestrial
time standards will not be a limiting factor in the detection of
gravitational waves.

An unambiguous detection of a GWB requires that the timing
residuals for multiple pulsars are shown to be correlated as described
by Hellings & Downs (1983). The expected angular correlation
has quadrupolar and higher order terms, but its measurement is
also affected by (and a GWB affects the measurement of) other
spatially correlated processes, including monopolar and dipolar
signals (see e.g. Tiburzi et al. 2016). In particular, the expected
angular correlation has a non-zero mean of 0.08. This term would
therefore appear as a clock error with a spectrum significantly below
that of the GWB itself. However if the GWB signal is detected then
its effects on the monopole are known and can be subtracted, so the
pulsar-based clock can be recovered without distortion by a GWB.

3.6 Importance of the international pulsar timing array

The most recent data in the current IPTA data release were obtained
in 2012. The upcoming second data release will have a further
5 yr of data, more pulsars, and improved timing precision on the
most recent observations. This new data set should significantly
improve the pulsar-based time-scale as (1) any extra observations
prior to 2005 will help constrain the variations seen in the early
data, (2) new, high-quality data on a large number of pulsars since
2012 will enable the extension of the time-scale and an improved
understanding of its long-term stability, and (3) up-to-date analysis
methods will be applied when producing the data set, which should
reduce the number of artefacts and anomalies within the data. Of
course, the longer data spans and improved timing precision will
also mean that low-frequency noise processes (such as pulsar timing
noise) will become more important.

Millisecond pulsars are known to undergo sudden changes,
including small glitch events (McKee et al. 2016 described a glitch
event in the timing residuals of PSR J0613−0200), magnetospheric
changes (Shannon et al. 2016 reported on such changes for
PSR J1643−1224 although note that Brook et al. 2018 suggest that
profile variations in this pulsar may be caused by the interstellar
medium and not magnetospheric variations) and effects relating to
sudden changes in the interstellar medium (see e.g. fig. 13 in Lentati
et al. 2016; Lam et al. 2018). As our data sets become longer and
more extensive, similar events will occur in more pulsars. Many such
events will be challenging to model deterministically and the noise
modelling will need to be updated to account better for such non-
stationary noise processes. Of course, with sufficient numbers of
equally contributing pulsars, any individual event will be averaged-
down, but unless such events can be better understood and modelled
they may present a fundamental limit to the stability of the pulsar-
based time-scale.

In Hobbs et al. (2012) only observations from the Parkes telescope
were used. This meant that any discrepancies found between the
pulsar-based time-scale and a terrestrial time-scale could arise from
errors in the observatory time-scale. In contrast the IPTA sample
includes data from many observatories, often for a given pulsar.
The most dominant pulsar in the IPTA sample, PSR J1713+0747,
includes observations from seven telescopes each with their own
independent observatory time-scale. We note that the participating

MNRAS 491, 5951–5965 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/491/4/5951/5612203 by guest on 16 January 2023

https://ssd.jpl.nasa.gov/?ephemerides


A pulsar-based time-scale 5961

observatories in the IPTA do not have a well-defined common
reference time. For instance, the data processing to form pulse
ToAs was carried out using by cross-matching the observations
using reference template profiles. These reference profiles were not
identical between the observatories leading to constant phase offsets
between results from different observatories. Similarly, Manchester
et al. (2013) describes how derived pulse ToAs from the Parkes
observatory are related to the intersection of the azimuth and
elevation axes (the topocentric reference point) of the telescope;
however, a similar process is not carried out at all the IPTA
observatories. These offsets are accounted for in the fitting process
by allowing for an arbitrary phase offset between data from different
observatories for each pulsar. Apart from the very earliest data,
the observatory-based time-scales are transferred to UTC using
GPS, and from there to TT(BIPM17). Any inaccuracy in that time
transfer would be common to all observatories and any variations
that do not take the form of a quadratic-polynomial (and hence, not
affected by the fitting procedures) would affect our comparisons
between TT(IPTA16) and terrestrial time standards. An analysis in
Hobbs et al. (2012) suggested that any such errors will be <10 ns
and therefore have no effect on the results presented here. More
detailed studies of the precision for each step in the process from
measuring the ToA to the resulting timing residuals have been
presented elsewhere (for instance, see the analysis of instrumental
noise in Lentati et al. 2016). We currently see no evidence for a
statistically significant common signal in our results (when referred
to TT(BIPM17)) and note that it is becoming easier to search for
common offsets in PTA data sets as observatory instrumentation
becomes more standardized and more telescopes observe the same
set of pulsars with similar timing precision.

Pulsar searches are underway at many of the major observatories
and we expect the discovery of a large number of new millisecond
pulsars. However, as we have shown in this paper, only a few bright
nearby pulsars contribute significantly to the pulsar time-scale. We
are not confident that a large number of similarly bright pulsars that
can be timed with high precision remain to be discovered. Improving
the pulsar time scale by adding more bright pulsars will require use
of the next generation of telescopes such as FAST and MeerKAT.

4 C O N C L U S I O N S

We have used the IPTA DR1 data set with two different analysis
algorithms, one frequentist and one Bayesian, to establish a pulsar-
based time-scale which we call TT(IPTA16). Consistent results are
obtained from the two analysis methods. We show that TT(IPTA16)
is consistent with the time-scale TT(BIPM17). We confirm that
TT(BIPM17) is currently the most stable time-scale in existence
and that current efforts to detect nano-Hertz gravitational waves
through pulsar timing using a post-corrected BIPM time-scale as a
reference are not limited by instabilities in the reference time-scale.

The pulsar-based time standard will improve with continued
observations using the existing IPTA programs. The IPTA is
currently preparing a second data release that includes significantly
more pulsars, uses more telescopes and upgraded instruments at the
observatories. In the longer term, even more telescopes will start to
contribute to the IPTA data set. Within a few years, we expect
high precision observations from the FAST telescope currently
being commissioned in China, and the MeerKAT telescope in South
Africa.

Of course, atomic clocks will also continue to improve, as fast, or
faster, than pulsar observations. However, since pulsar time-scales
are based on entirely different physics compared to atomic time-

scales, and are essentially unaffected by any terrestrial phenomena,
they form a valuable independent check on atomic time-scales. In
addition, they provide a time-scale that is, in principle, continuous
over billions of years.
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APPENDIX A : FREQU ENTIST N OISE
M O D E L L I N G

Table A1 contains, in column order, each pulsar name, the DM,
its first time derivative, annual sinusoidal, and cosinusoidal com-
ponents to DM(t), the grid spacing for measuring DM(t), extra
DM-covariance parameters (a and b; see below), and the band-
independent low-frequency noise parameters (α, P0 and fc; see
below).

Scripts were used to produce the data products based on the
original IPTA data sets. The scripts are available from our data
release (see Section C) and contains RUNPROCESSSCRIPT.TCSH,
which provides the basic processing steps as follows:

(i) A check is carried out to ensure that the required software
packages are installed. The frequentist-style processing described
here was carried out within a virtual machine on a single laptop.

(ii) The arrival time and parameter files are corrected for known
issues. Such issues include correcting telescope observing codes,
removing any very early, or very recent observations (to ensure
a well-defined time range for obtaining the clock signal). IPTA-
defined parameters such as phase jumps, white noise models etc.
are removed. The arrival times are subsequently sorted into time or-
der. PSRs J0437−4715, J0711−6830, J1045−4509, J1603−7202,
J1732−5049, J1824−2452A, and J2129−5721 are only observed
by the PPTA. For these pulsars we use the more recent Reardon
et al. (2016) arrival time and parameter files instead of the IPTA
data release. The Parkes observations for PSR J1909−3744 were
also taken directly from Reardon et al. (2016).

(iii) The parameter files were updated to ensure that the JPL
DE421 solar ephemeris was used in the timing procedure and the
ToAs referred to TT(BIPM17). Default TEMPO2 parameters (such
as models for the dispersion measure variations caused by the solar
wind) were used.

(iv) The NANOGrav data sets are provided in multiple sub-
bands. We have used the AVERAGEDATA plugin in TEMPO2 to
produce a single ToA and corresponding uncertainty for each
independent observation. The AVERAGEDATA plugin (1) identifies
observations close in time (for us we select all simultaneous
observations over different bands observed by NANOGrav), (2)
for each block of data the non-weighted mean of the observation
times are determined and all the time-dependent parameters in the
timing model updates to this epoch, (3) a weighted fit is carried
out for a phase offset and its uncertainty using only the specific
block of data, (4) a pseudo-observation is added with the arrival
time being the new epoch and the frequency and observatory site-
code being determined from the closest, in time, actual observation.
The uncertainty of this point is set to the uncertainty on the fitted
phase offset, (5) timing residuals are re-formed using this pseudo-
data point and the residual subtracted from its arrival time and this
process repeated until convergence. A new arrival time file is then
produced with only the pseudo-observations. This process has been
carefully tested and the long-term timing results (as used when
determining the clock signal) are unchanged when the averaged
data points are used.

(v) The EFACEQUAD plugin to TEMPO2 is run on each observing
system for each pulsar. This plugin determines the white noise
corrections ‘EFAC’ and ‘EQUAD’ to allow for a scaling error in
each ToA uncertainty along with an independent source of white
noise. They have the form

σ ′
i = EFAC

(
σ 2

i + EQUAD2
)0.5

, (A1)
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Table A1. Parameters describing the DM model (columns 2–8) and the red-noise model (last 3 columns) used for each pulsar. Note that the DM modelling
was carried out using all the available observations (including the lowest frequency data, which was removed for subsequent processing).

Pulsar DM0 dDM/dt Sine Cosine Grid a b α P0 fc

(cm−3pc) (cm−3pc yr−1) (cm−3pc) (cm−3pc) (	tDM yr) (s2) (d) (yr3) (yr−1)

J0030+0451 4.33 3.5 × 10−5 – – – – – 2 6.79851 × 10− 28 0.3
J0034−0534 13.77 − 3.5 × 10−5 – – – – – 4 9.5249 × 10− 26 0.5
J0218+4232 61.25 − 8.9 × 10−4 – – – – – 4 2.41121 × 10− 26 0.6
J0437−4715 2.64 – – – 0.2 – – 3 1.14 × 10− 27 0.0673
J0610−2100 60.64 – – – – – – 3 3.04161 × 10− 27 0.4

J0613−0200 38.78 − 1.7 × 10−4 − 1.0 × 10−4 − 1.0 × 10−4 0.3 – – 3 9.89339 × 10− 27 0.2
J0621+1002 36.47 − 1.1 × 10−2 – – – – – 4 3.4345 × 10− 25 0.8
J0711−6830 18.41 1.0 × 10−4 – – 0.5 – – 2.5 1.03113 × 10− 27 0.6
J0751+1807 30.25 − 2.2 × 10−4 – – – – – 6 4.84735 × 10− 27 0.6
J0900−3144 75.70 − 6.2 × 10−5 – – – – – 2 5.0048 × 10− 27 0.2

J1012+5307 9.02 3.4 × 10−5 – – 0.3 – – 4 1.02144 × 10− 27 1
J1022+1001 10.25 − 4.3 × 10−6 – – 0.5 – – 6 2.295 × 10− 27 1
J1024−0719 6.49 1.3 × 10−4 – – – – – 4 6.70908 × 10− 24 0.07
J1045−4509 58.14 − 3.7 × 10−3 − 7.3 × 10−4 1.9 × 10−4 0.5 1.668 × 10−11 179 3 2 × 10− 24 0.0587
J1455−3330 13.56 7.9 × 10−4 – – – – – 2 1.76702 × 10− 26 0.2

J1600−3053 52.33 − 5.9 × 10−4 – – 0.3 – – 4 1.22878 × 10− 27 0.4
J1603−7202 38.05 – – – 0.3 6.276 × 10−13 64 2.5 1.2 × 10− 25 0.065
J1640+2224 18.42 1.5 × 10−4 – – – – – 4 1.42107 × 10− 27 1
J1643−1224 62.41 − 1.2 × 10−3 − 2.9 × 10−4 − 5.9 × 10−4 1.0 – – 3 1.59602 × 10− 25 0.1
J1713+0747 15.99 2.7 × 10−5 – – 0.3 – – 3 4.71009 × 10− 27 0.07

J1721−2457 48.62 – – – – – – 4 2.4091 × 10− 25 1
J1730−2304 9.61 3.9 × 10−5 – – 0.3 – – 4 2.01716 × 10− 26 0.3
J1732−5049 56.84 8.8 × 10−4 – – – – – 4 1.82694 × 10− 26 0.2
J1738+0333 33.79 – – – – – – 3 1.8891 × 10− 27 0.5
J1744−1134 3.14 − 1.7 × 10−4 – – 0.3 – – 1.5 1.17822 × 10− 28 0.2

J1751−2857 42.89 – – – – – – 3 1.05861 × 10− 26 0.4
J1801−1417 57.21 – – – – – – 4 1.33307 × 10− 25 0.3
J1802−2124 149.62 3.3 × 10−4 – – – – – 4 4.99447 × 10− 26 0.4
J1804−2717 24.63 – – – – – – 3 1.95346 × 10− 26 0.5
J1824−2452A 119.89 1.1 × 10−3 – – 0.5 – – 3.5 6.26696 × 10− 25 0.17

J1843−1113 59.97 – – – – – – 4 2.69402 × 10− 26 0.2
J1853+1303 30.55 – – – – – – 4 4.37242 × 10− 28 2
J1857+0943 13.30 3.6 × 10−4 – – – – – 1.5 4.26553 × 10− 27 0.07
J1909−3744 10.39 − 3.1 × 10−4 – – 0.3 – – 1.5 2.55001 × 10− 28 0.07
J1910+1256 38.09 3.8 × 10−3 – – – – – 3 5.86889 × 10− 27 0.3

J1911−1114 31.07 – – – – – – 3 9.95153 × 10− 28 0.8
J1911+1347 30.98 – – – – – – 3 3.77936 × 10− 28 0.4
J1918−0642 26.61 – – – – – – 4 1.71992 × 10− 27 0.5
J1955+2908 104.47 – – – – – – 5 9.46096 × 10− 27 0.8
J2010−1323 22.18 5.5 × 10−4 – – – – – 4 8.09517 × 10− 28 0.3

J2019+2425 17.10 – – – – – – 4 3.40917 × 10− 26 0.4
J2033+1734 25.00 – – – – – – 3 8.65127 × 10− 26 0.4
J2124−3358 4.60 9.9 × 10−5 – – 0.3 – – 3 2.61433 × 10− 25 0.07
J2129−5721 31.85 − 1.6 × 10−4 – – – – – 3 1.3839 × 10− 27 0.3
J2145−0750 9.00 2.1 × 10−4 – – 0.3 – – 3.5 2.10773 × 10− 25 0.07

J2229+2643 22.68 4.5 × 10−4 – – – – – 4 4.3802 × 10− 27 0.7
J2317+1439 21.90 − 5.5 × 10−4 – – 0.3 – – 3 2.04548 × 10− 24 0.07
J2322+2057 13.56 5.8 × 10−2 – – – – – 2 1.55902 × 10− 25 0.2

where σ i is the initial uncertainty for the specified ToA. The
residuals for a specific observing instrument and telescope site are
‘whitened’ using an interpolation scheme (known as ‘IFUNCS’).
The plugin then trials a well-defined number of EFAC and EQUAD
parameters. For each parameter pair a Kolmogorov–Smirnov (KS)
test is carried out to compare the normalized, whitened residuals

with Gaussian, white noise. The EFAC/EQUAD parameter pair that
yields residuals closest to white, Gaussian noise is subsequently
recorded and used for later processing.

(vi) A new set of arrival time flags are introduced including
specific observing bands with bandwidths of 500 MHz (i.e. 0–
500 MHz, 500–1000 MHz etc.).
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(vii) We add the data from each observing system into a final
arrival-time file in order of data span. We start with the longest
data span and then identify an overlapping data set in the same
observing band. We use the overlapping region to obtain an initial
measurement of the offset between the observing systems and then
repeat.

(viii) Some pulsars have only been observed in a single band.
However, other pulsars have been observed in multiple bands. For
such pulsars we fit for the dispersion measure and its first time
derivative as part of the timing model. Where necessary we also
fit for dispersion measure time variations following the Keith et al.
(2013) procedure.

(ix) Any observations relating to the lowest two bands (0–
500 MHz and 500–1000 MHz) are then removed as the high-
precision timing observations needed for determining the clock
signal are dominated by the higher frequency observations.

(x) For the majority of the pulsars we found that a single red noise
model (obtained with the SPECTRALMODEL plugin) was sufficient
for modelling the band-independent, low-frequency noise. The
power spectral density, P(f), of the red noise was assumed to have
the form

P (f ) = P0 (1 + (f /fc)2)−α/2. (A2)

An iterative process was subsequently carried out in which the low-
frequency noise modelling, jump fitting, and parameter estimation
were repeatedly checked. In a few cases, in which the noise was
significant, and there was only single-band data in the earlier
observations we used the Reardon et al. (2016) split-modelling
method in which the covariance function of the DM variations were
modelled by:

Cov[DM(τ )] = a exp (−(τ/b)2). (A3)

For PSRs J0613−0200, J1045−4509, and J1643−1224 we also
modelled annual sinusoidal dispersion measure variations (see
Reardon et al. 2016 for details).

APPENDIX B: BAY ESIAN MODELLING

Following the same reasoning as Caballero et al. (2018), we used
a simpler noise model for the individual pulsars than the ones
published in Lentati et al. (2016). Initial timing and noise models are
produced with a joint timing and noise analysis using MULTINEST

(Lentati et al. 2014), which utilizes the TEMPO2 routines to evaluate
the timing model and Feroz, Hobson & Bridges (2009) to perform
Bayesian inference of the timing and noise parameters via a nested-
sampling Monte Carlo sampling. The analysis and noise model
is the same as in Caballero et al. (2016). The uncertainties of
the observing systems were weighted using, as in the frequentists
analysis, a combination of EFAC and EQUAD per observing system
(grouped as in Lentati et al. 2016). Following the same notation as in
equation (A1), the rescaled uncertainties for each observing system
is

σ ′
i = [

(σ · EFAC)2 + EQUAD2
]0.5

. (B1)

The final noise models were produced using the FORTYTWO package.
The white-noise levels in this stage are then regulated by a ‘global
EFAC’ per pulsar, a method that is shown to perform adequately
well (Lentati et al. 2015). The pulsar red noise and stochastic
DM variations were modelled as stochastic, wide-sense stationary

processes, with power-spectra of the form

S(f ) = A2

f

(
f

fc

)2α

, (B2)

where the spectrum is fully described by two parameters, namely the
amplitude, A, and spectral index, α. These spectra have a sharp cut-
off at 1/[dataspan]. For values of spectral indices that are typical
for MSPs, this is sufficient as power at frequencies lower than
1/[dataspan] is fitted out by timing parameters. In the red noise
case, this is always true due to the presence of the spin and spin-
down parameters (van Haasteren et al. 2009; Lee et al. 2012). To
make the introduction of such a power-law spectrum in the model
for the stochastic DM-variations, we introduce in our timing models
for every pulsar a linear and a quadratic temporal variation term for
the DM, that act as analogues to the pulsar spin and spin-down
terms (Lee et al. 2014). The covariance matrices for the stochastic
red noise and DM-variation noise have elements calculated as (Lee
et al. 2014)

Cr,ij =
∫ ∞

1/T

Sr(f ) cos(2πf tij )df , and (B3)

Cdm,ij =
κ2

∫ ∞
1/T

Sd(f ) cos(2πf tij )df

ν2
i ν

2
j

. (B4)

In the above equations, the r and dm subscripts denote the case for
red noise or DM variations, respectively. The i, j indices denote
the time epochs, and tij is the time lag between the two respective
time epochs, ν denotes the observing frequency, f is as usual the
Fourier frequency, and κ = 4.15 × 10−3 s. The additional terms in
the case of DM variations are due to the fact that the ToA delays
from the dispersive effects of the interstellar medium are modelled
to follow the dispersive law of cold homogeneous plasma, i.e. the
time delay of a signal at two observing frequencies is proportional
to the difference of the inverse squares of those frequencies.

In the Bayesian determination of the clock signal, we reduced
the computational cost by keeping the pulsar noise properties
fixed to the their maximum-likelihood values, while performing
Monte Carlo sampling of the clock parameters using MULTINEST.
As detailed in Caballero et al. (2016), the likelihood function of
the problem can be written separating the parameters of stochastic
signals of interest, i.e. the clock and pulsar noise parameters, and the
timing, deterministic terms for which we do not need to estimate the
posterior distributions (nuisance terms). This approach is identical
to the approach of van Haasteren et al. (2009) estimating the
parameters of stochastic gravitational-wave background. Because
the timing parameters are linear, we can marginalize over them
analytically and use the reduced likelihood function (van Haasteren
et al. 2009) as

� ∝ 1√|CC′| × exp

⎛
⎝−1

2

∑
i,j ,I ,J

(δ tI ,i)
TC ′

I ,J ,i,j (δ tJ ,j )

⎞
⎠ . (B5)

The I, J indices denote the different pulsars while the indices i, j
denote the different time epochs. The timing model is now expressed
via the vector δ t = δ tpost − Dδ(ε), where D is the timing model’s
design matrix, δ tpost is the post-fit residual vector, and δ(ε) is a
linear perturbation. The covariance matrix, C, is the sum of the
clock covariance matrix and the covariance matrices of the pulsar
noise components (see Appendix B for relevant equations) and
ssC

′ = ssC−1 − ssC−1ssD(ssDssTssC−1ssD)−1ssDssTssC−1. As a
red-noise process, the clock signal will induce on each pulsar
an autocorrelation effect described by Cclk,ij , calculated with an
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equation analogous to equation (B3) for the pulsar red noise. The
clock signal is identical for all pulsars so we can easily add the cross-
correlation effect and denote the elements of the clock covariance
matrix, Cclk as

Cclk I ,J ,i,j = Cclk,ijCclk I ,J , Cclk I ,J = 1 ,∀I 
= J . (B6)

APPENDIX C : R ELEASING OUR DATA,
PROCESSING SCRIPTS, AND RESULTS

The first IPTA data release is available from http://www.ipta4gw.
org. We have also made available the exact input data used for the
frequentist and Bayesian data processing, along with the script used
to carry out the frequentist data processing. Our data release also
provides the pulsar-derived clock waveforms and spectra (such as
those shown in Fig. 3) for each pulsar. This data release can be
obtained from the IPTA website (http://www.ipta4gw.org) and also
from CSIRO’s data archive (https://doi.org/10.25919/5c354f2623a
c5).
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