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ABSTRACT
Symmetries play a fundamental role in modern theories of gravity. The strong equivalence
principle (SEP) constitutes a collection of gravitational symmetries which are all implemented
by general relativity. Alternative theories, however, are generally expected to violate some
aspects of SEP. We test three aspects of SEP using observed change rates in the orbital period
and eccentricity of binary pulsar J1713+0747: (1) the gravitational constant’s constancy
as part of locational invariance of gravitation; (2) the universality of free fall (UFF) for
strongly self-gravitating bodies; (3) the post-Newtonian parameter α̂3 in gravitational Lorentz
invariance. Based on the pulsar timing result of the combined data set from the North American
Nanohertz Gravitational Observatory and the European Pulsar Timing Array, we find Ġ/G =
(−0.1 ± 0.9) × 10−12 yr−1, which is weaker than Solar system limits, but applies for strongly
self-gravitating objects. Furthermore, we obtain an improved test for a UFF violation by a
strongly self-gravitating mass falling in the gravitational field of our Galaxy, with a limit of
|�| < 0.002 (95 per cent C.L.). Finally, we derive an improved limit on the self-acceleration
of a gravitationally bound rotating body, to a preferred reference frame in the Universe, with
−3 × 10−20 < α̂3 < 4 × 10−20 (95 per cent C.L.). These results are based on direct UFF and
α̂3 tests using pulsar binaries, and they overcome various limitations of previous tests of this
kind.

Key words: gravitation – binaries: general – stars: neutron – pulsars: individual (PSR
J1713+0747).

1 IN T RO D U C T I O N

Einstein’s equivalence principle (EEP) is one of the guiding ideas
that aided Einstein to conceive the theory of general relativity (GR).

� E-mail: zhuww@mpifr-bonn.mpg.de (WWZ); wex@mpifr-bonn.mpg.de
(NW)

EEP states that non-gravitational experiments in a local Lorentz
frame should give the same result regardless of when and where they
take place. This principle helped in establishing the idea that gravity
is the manifestation of curved spacetime, which can be abstracted
as a four-dimensional manifold endowed with a Lorentzian metric,
where freely falling test bodies follow geodesics of that metric
(universality of free fall), and the local non-gravitational laws of
physics are those of special relativity. Gravity theories built upon
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this concept are called ‘metric theories of gravity’, like GR and
scalar–tensor theories. See Will (1993) for details.

The strong equivalence principle (SEP) extends the EEP by in-
cluding local gravitational aspects of the test system (Will 2014).
The universality of free fall (UFF) is extended to self-gravitating
bodies, which fall in an external gravitational field. Furthermore,
local test experiments, including gravitational ones, should give the
same results regardless of the location or velocity of the test system.
It is conjectured that GR is the only gravity theory that fully em-
bodies SEP.1 Although in metric theories of gravity all matter fields
couple only to one physical metric (‘universal coupling’), alterna-
tives to GR generally introduce auxiliary gravitational fields (e.g.
one or more scalar fields) which ultimately lead to a violation of
SEP at some point. For this reason, testing the symmetries related
to SEP has strong potential to either exclude (or tightly constrain)
alternative gravity theories or falsify GR. It is therefore a powerful
tool in searching for new physics. To date, all experimental evidence
supports SEP and therefore GR (Will 2014; Shao & Wex 2016).

The post-Newtonian parametrization (PPN) is a formalism in-
troduced by Thorne & Will (1971) and Will & Nordtvedt (1972)
to describe generically the potential deviation from GR in met-
ric theories of gravitation at the post-Newtonian level. Through a
set of simple assumptions, such as slow-motion, weak field, and
no characteristic length scales in the gravitational interaction, the
PPN formalism can encompass most metric theories using only
10 parameters. Most of these PPN parameters (or combinations
of them) are directly related to a violation of specific aspects of
SEP. For strongly self-gravitating bodies, like neutron stars, these
PPN parameters become kind of body-dependent quantities, which
are functions of the compactness of the bodies of the system (see
e.g. Damour 2009). Hence, one can have situations where a theory
is in (nearly) perfect agreement with GR in the Solar system, but
shows significant violations of SEP in the presence of strongly self-
gravitating bodies. A particularly extreme example is spontaneous
scalarization, which is a non-perturbative strong-gravity effect that
is known for certain scalar–tensor theories (Damour & Esposito-
Farese 1993).

Alternative theories of gravity, generally, also predict a temporal
change in the locally measured Newtonian gravitational constant G,
which is caused by the expansion of the Universe (Will 1993; Uzan
2011). Such a change in the local gravitational constant constitutes
a violation of the local position invariance, which also refers to
position in time. Hence, a varying G directly violates one of the
three main pillars of SEP. One of the testable consequences of a
change in G are changes in the orbital parameters of the Solar
system and binary systems, in particular the size of an orbit and
the orbital period. Again, the situation is more complicated in the
presence of strongly self-gravitating bodies (Nordtvedt 1990; Wex
2014). Specifically, most gravitational theories that violate SEP also
predict the existence of dipolar gravitational radiation (DGR). The
presence of DGR would be a very efficient way of draining orbital
energy from a pulsar-white dwarf binary. Therefore, in a strong field
test using pulsar, one often has to consider both the variation of G
and the existence of DGR simultaneously as is done in this work.

Another important pillars of SEP is the extension of the UFF
to objects with significant gravitational binding energy, Egrav, i.e.
the weak equivalence principle (WEP) is valid for test particles as
well as for self-gravitating bodies. Every metric theory of gravity,

1There is one known exception, which however is falsified by Solar system
experiments (Deruelle 2011).

by definition, fulfills WEP for test particles. On the other hand,
alternatives to GR are usually expected to violate WEP in the in-
teraction of self-gravitating bodies (Will 1993, 2014). According to
such theories, objects with different binding energy feel different
accelerations in an external gravitational field g. More specifically,
a binary system composed of two stars with different compactness
would undergo a ‘gravitational Stark effect’ that polarizes the bi-
nary orbit in a characteristic way. In the Earth-Moon system, this
is called the Nordtvedt effect and has been tightly constrained by
Lunar Laser Ranging (LLR; Nordtvedt 1968; Müller, Hofmann &
Biskupek 2012; Williams, Turyshev & Boggs 2012). Pulsar bi-
nary systems falling in the gravitational field of our Galaxy would
(slowly) oscillate between a more and less eccentric configuration.
This makes pulsar-white dwarf binary a viable laboratory for testing
strong-field UFF (Damour & Schäfer 1991).

Some alternative theories of gravity violate SEP by introducing a
preferred frame of reference for the gravitational interaction. Gen-
erally, this preferred frame can be identified with the global mass
distribution in the Universe, which is the frame in which the cos-
mic microwave background (CMB) is isotropic, i.e. has no dipole.
In the PPN formalism, there are three parameters, α1, α2, and α3,
which are related to such kinds of symmetry breaking. The pa-
rameter α3 is linked to two effects, a preferred frame effect and a
violation of conservation of total momentum (Will 1993). In this
paper, we test the PPN parameter α3 through the fact that it causes
an anomalous self-acceleration of a spinning body, which is pro-
portional to and perpendicular to the object’s spin and motion with
respect to the preferred frame. Such acceleration would lead to an
observable effect in a binary system, such as an anomalous drift
in the eccentricity of the binary. PSR J1713+0747, due to its high
spin frequency and measurable proper motion, has the best figure
of merit for testing α3 in the present. More precisely, with binary
pulsars one tests the quantity α̂3, which is a generalization of α3 to
a situation with strongly self-gravitating objects. Therefore, α̂3 also
contains preferred frame effects related to the binding energy of the
neutron star (cf. discussion in Damour & Esposito-Farèse 1992b;
Will 2018).

Some pulsar binary systems are particularly useful for certain
tests of SEP (see Shao & Wex 2016, for a recent review). In this
paper, we measure the change rate in the orbital periodicity and
eccentricity of the pulsar-white dwarf binary PSR J1713+0747 and
use that to test the following three aspects of SEP: (1) the gravita-
tional constant’s constancy; (2) the UFF for strongly self-gravitating
bodies; (3) the PPN parameter α̂3 in the context of Lorentz invari-
ance of gravitation and conservation of total momentum. Section 2.1
describes the pulsar timing; Sections 2.2, 2.3, and 2.4 describe the
test for the gravitational constant’s constancy, the UFF test, and the
test for α̂3. In Section 3, we give the conclusion and the summary.

2 ME T H O D A N D R E S U LTS

PSR J1713+0747 is a millisecond pulsar orbiting a 0.29 M� white
dwarf. The pulsar’s short spin period (4.5 ms) and narrow pulse
profile enable us to measure its pulse time of arrivals (TOAs) at
sub-microsecond precision. This pulsar is monitored by the North
American Nanohertz Gravitational Observatory (NANOGrav), the
European Pulsar Timing Array (EPTA), and the Parkes Pulsar Tim-
ing Array for the purpose of detecting nHz gravitational waves. A
major part of the data used in this work comes from the NANOGrav2

2www.nanograv.org
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and EPTA programs. The EPTA3 is a collaboration of European in-
stitutes to work towards the direct detection of low-frequency grav-
itational waves and the running of the Large European Array for
Pulsars. These data were taken between 1993 and 2014 using ob-
servatories including William E. Gordon Telescope of Arecibo ob-
servatory, Robert C. Byrd Green Bank Telescope, Effelsberg Tele-
scope, Lovell Telescope of Jodrell Bank observatory, Nançay Ra-
dio Telescope, and Westerbork Synthesis Radio Telescope. Splaver
et al. (2005) published the early data set for J1713+0747 from
Arecibo and Green Bank Telescope (GBT). Subsequently, Zhu et al.
(2015) published the combined J1713+0747 data from Splaver et al.
(2005) and NANOGrav 9 yr data release (Arzoumanian et al. 2015).
Desvignes et al. (2016) published the data and timing analysis for the
EPTA pulsars including J1713+0747. This work presents the first
timing analysis of the combined J1713+0747 data published in Zhu
et al. (2015) and Desvignes et al. (2016). We are able to model very
accurately the binary system’s orbit through various time-delaying
effects like Römer delay, Shapiro delay, and annual-orbital paral-
lax. From these we can measure the masses of the two stars, the sky
orientation and inclination angle of the orbit, and the position and
proper motion of the system. The modelling was performed using
the pulsar timing software TEMPO2 (Edwards, Hobbs & Manchester
2006) and the ting parameters are listed in Table 1.

2.1 Pulsar binary timing

For the timing of PSR J1713+0747, we employ an extended version
of the ELL14 pulsar binary model (Lange et al. 2001), which is valid
for e ≡ |e| � 1, where e is the eccentricity vector of the orbit. ELL1
models a pulsar binary orbit with small eccentricity by decomposing
e into two orthogonal vectors ex and ey, where ex ≡ e cos ω and ey ≡
e sin ω, and ω is the longitude of periastron, i.e. the angle between
e and the ascending node. We use ex to represent the component
of e pointing from the centre of the orbit to the ascending node
and ey represents the part pointing from Earth to the pulsar. Lange
et al. (2001) showed that the Römer delay of a small eccentricity
orbit can be expressed simply as �R = x[sin φ + (ey/2)sin 2φ −
(ex/2)cos 2φ], omitting higher order terms proportional to O(xe2).
Here x is the projected semimajor axis of the pulsar orbit in units
of light seconds, and φ ≡ nb(T − Tasc), where nb = 2π/Pb is the
orbital frequency, T the time of the pulsar, and Tasc the so-called
time of the ascending node (see Lange et al. 2001 for details).
However, we find that the precision of this expression is insufficient
for modelling PSR J1713+0747’s Römer delay due to its timing
precision. To increase the precision of our timing model, we extend
the ELL1 model by including the second-order terms:

�R = x
(

sin φ − ex

2
cos 2φ + ey

2
sin 2φ

)

− x

8

(
5e2

x sin φ − 3e2
x sin 3φ − 2exey cos φ

+ 6exey cos 3φ + 3e2
y sin φ + 3e2

y sin 3φ
)

+ O(xe3) . (1)

This extended ELL1 model (ELL1 + ) is sufficient for modeling
PSR J1713+0747 since its xe3 ∼ 0.01 ns. Furthermore, we express e
as a function of time [ex(t) = ex(t0) + ėx t and ey(t) = ey(t0) + ėy t]
to model the effect of a changing eccentricity, where ėx and ėy

represent the change rate of e in time. The higher order terms of

3www.epta.eu.org
4The name ELL1 comes from the fact that eccentricity (e) is much less (LL:
less less) than one (1).

Table 1. Timing model parametersa from TEMPO2.

Parameter Best-fitting values

Measured parameters
Right ascension, α (J2000) 17:13:49.5320247(9)
Declination, δ (J2000) 7:47:37.50612(2)
Proper motion in α, μα = α̇ cos δ (mas yr−1) 4.918(3)
Proper motion in δ, μδ = δ̇ (mas yr−1) −3.915(5)
Parallax, π (mas) 0.87(4)
Spin frequency, ν (s−1) 218.8118438547250(3)
Spin down rate, ν̇ (s−2) −4.08379(4) × 10−16

Dispersion measureb (pc cm−3) 15.970
Orbital period, Pb (d) 67.8251299228(5)c

Change rate of Pb, Ṗb (10−12 s s−1) 0.34(15)
x̂ component of the eccentricity, ex −0.0000747752(7)
ŷ component of the eccentricity, ey 0.0000049721(19)
Change rate of ex, ėx (s−1) 0.4(4) × 10−17

Change rate of ey, ėy (s−1) −1.7(4) × 10−17

Time of ascending node, Tasc (MJD) 53727.836759558(6)
Projected semimajor axis, x (lt-s) 32.34242184(12)
Orbital inclination, i (deg) 71.69(19)
Companion mass, Mc/M� 0.290(11)
Position angle of ascending node, 
 (deg) 89.7(6)
Profile frequency dependency parameter, FD1d −0.00016376(18)
Profile frequency dependency parameter, FD2d 0.0001363(3)
Profile frequency dependency parameter, FD3d −0.0000672(6)
Profile frequency dependency parameter, FD4d 0.0000152(5)

Fixed parameters
Solar system ephemeris DE421
Reference epoch for α, δ, and ν (MJD) 53729
Red noise amplitude −13.451
Red noise spectral index −1.867

Derived parameters
Intrinsic period derivative, ṖInt(s s−1) 8.96(3) × 10−21

Pulsar mass, Mp/M� 1.33(10)
Dipole magnetic field, B (G) 2.048(3) × 108

Characteristic age, τ c (yr) 8.08(3) × 109

Notes. aWe extend TEMPO2’s T2 binary model to include higher order cor-
rections from the ELL1 model. The numbers in parentheses indicate the
uncertainties on the last digit(s). Uncertainties on parameters are estimated
from the result of MCMCnb = 2π /Pb process in which the timing and noise
model were evaluated.
bThe averaged DM value based on the DMX model.
cMost pulsar timing model parameters presented in this paper are consistent
with those reported in Zhu et al. (2015) except for the orbital period Pb.
This is because Pb is defined differently in ELL1 model used here from the
DD model used in Zhu et al. (2015). In DD model, Pb is defined as the
time between two periastron passings, while in ELL1 model, Pb is the time
between two ascending node passings.
d See Zhu et al. (2015) and Arzoumanian et al. (2015) for the description
and discussion of the FD model.

equation (1) could then straightforwardly be added to the existing
implementation of the ELL1 model in TEMPO2 (Edwards et al. 2006).

Apart from the changes in the binary model, the rest of
the timing analysis follows those in Zhu et al. (2015) and
Desvignes et al. (2016). For a high-timing precision pulsar such
as PSR J1713+0747, it is necessary to employ a comprehensive
noise model including dispersion measure (DM) variation, jitter
noise, and red noise.

For example, the latest Arecibo 1400 MHz and 2300 MHz band
observations have 800 MHz bandwidth broken into multiple sub-
bands. A single wideband observation like this is already constrain-
ing DM very well. Additionally, in every NANOGrav observing
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session, we often observe a pulsar using a high-frequency receiver
and a low-frequency receiver ‘back-to-back’ in less than two days.
These two observations when combined offer even wider effec-
tive bandwidth than a single receiver observation. This observing
scheme would enable us to very precisely measure DM in the two
days where multiband observations happened but does not constrain
the pulsar’s DM for the days between the observations as precisely.
For this reason, the DMX model is well suited for fitting NANOGrav
data and is agnostic to sudden changes in dispersion as observed
in the 2008 J1713+0747 data (Zhu et al. 2015; Desvignes et al.
2016). In contrast, the EPTA TOAs typically have a slightly smaller
bandwidth and are often not grouped into tight sessions, but there
are many EPTA observations forming a slightly higher observa-
tion cadence than NANOGrav observations. These TOAs are better
modelled using a continuous power-law Gaussian process model
plus a special DM event model to fit both the slow changes in dis-
persion and the aforementioned sudden non-Gaussian dispersion
changes.

In this work, we use two different approaches to model the DM
variation. The first one is based on the noise analysis technique
described in van Haasteren & Levin (2013), Ellis (2013), Dolch
et al. (2014), Zhu et al. (2015), Arzoumanian et al. (2015), and
Dolch et al. (2016). In this approach, we use the DMX model that
groups TOAs into epochs and fit one DM value for each epoch. We
use a dynamic scheme to group TOAs: we put the Arecibo/GBT
wideband TOAs into small groups and attach to them any TOAs
within five days. We then group the rest of TOAs, including most
EPTA TOAs and early-day NANOGrav TOAs, into DMX bins span-
ning less than 11 d. This scheme allows us to put all TOAs into
small groups and fit each group with one DM value, respectively.
We model jitter noise as correlated noises between TOAs from the
same observations and the red noise as a stationary Gaussian process
with a power-law spectrum. This analysis is conducted using the
PAL2 software package5 (Ellis & van Haasteren 2017). The second
approach models DM variation as a power-law Gaussian process
(Lentati et al. 2013) with 21 coefficients plus a special DM event
model to fit the 2008 ‘dipping’ of J1713+0747’s DM. This analy-
sis is conducted using the TEMPONEST6 software package (Lentati
et al. 2014). Despite the different ways of treating DM variations,
we find completely consistent results in the best-fitting timing and
noise model from both approaches, with the second approach yield-
ing slightly smaller parameter uncertainties. Since we are mostly
interested in testing theories of gravitation, we choose to base our
tests on the result from the first approach (presented in Table 1)
because it yields slightly more conservative uncertainty on ė. The
new timing solutions based on the ELL1 model and the combined
data set are also in good agreement with the previous solutions from
fitting DD model to NANOGrav-only data set (Zhu et al. 2015) and
EPTA-only data set (Desvignes et al. 2016).

We use the Solar system ephemeris DE421 (Folkner, Williams &
Boggs 2009) in the timing analysis instead of the more recent DE436
(Folkner & Park 2016). Arzoumanian et al. (2018) showed that using
DE436 leads to some marginally different timing results from using
DE421. The discrepancies in different Solar system ephemerides
are in the masses and orbits of the outer Solar system bodies; they
cause extra timing residuals in time-scales of the orbital periods
of these bodies. PSR J1713+0747’s orbital period is substantially
smaller than those Solar system bodies. Therefore, different Solar

5https://github.com/jellis18/PAL2
6https://github.com/LindleyLentati/TempoNest

Figure 1. A comparison between DE436 and DE421 timing solution when
fitting a simulated data set. The plot shows (vi − vDE421

i )/σDE421
i , where

vi is the value of parameter i and σ i is the uncertainty of parameter i from
Table 1. The blue error bars indicate the DE421-based timing parameters
with their uncertainties scaled to unity, while the red dots are the DE436-
based parameters we get from fitting the simulated data set.

Table 2. Parameters changed for >3σ when switching from DE421 to
DE436 based on our simulated data set.

Parameter DE421 DE436

Right ascension, α (J2000) 17:13:49.5320247(9) 17:13:49.5320424

system ephemerides would only marginally impact on our primary
parameters of interest: Ṗb and ė.

To evaluate Solar system ephemerides’ impact on our timing
solution, we use TEMPO2 to generate a synthetic data set following
our DE421 solution in Table 1. We then fit the data set using DE436
to see if any timing parameters would change significantly. Indeed,
we find that astrometry parameters such as position and proper
motion of the system to change, but orbital parameters such as Ṗb

and ė are not affected. Fig. 1 shows a comparison between the
DE421 parameters and the DE436 parameters based on the same
simulated data set and Table 2 lists the astrometry parameter that
varied significantly.

2.2 Testing the time variation of G

Through pulsar timing, we measure the apparent change rate of the
binary’s orbital period (Ṗb = (0.34 ± 0.15) × 10−12 s s−1, Table 1).
Despite being not statistically significant, the observed Ṗb is consis-
tent with what one expects from the apparent orbital period change
caused by the binary’s transverse motion (a.k.a. Shklovskii effect;
Shklovskii 1970) and line-of-sight acceleration:

Ṗ Shk
b = (μ2

α + μ2
δ )

d

c
Pb = (0.65 ± 0.03) × 10−12 s s−1 , (2)

Ṗ Gal
b = AG

c
Pb = (−0.34 ± 0.02) × 10−12 s s−1 . (3)

Here, μα and μδ are the proper motion in right ascension and dec-
lination, respectively, d is the distance from timing parallax, c is
the speed of light, and AG is the system’s line-of-sight accelera-
tion computed using the Galactic potential in McMillan (2017) (see
discussion in Appendix). Subtracting these two (external) contribu-
tions from the observed Ṗ Obs

b yields the residual change rate of the
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orbital period

Ṗ Res
b = Ṗ Obs

b − Ṗ Shk
b − Ṗ Gal

b = (0.03 ± 0.15) × 10−12 s s−1 , (4)

which is consistent with the much smaller and undetectable intrin-
sic change Ṗ GR

b = −6 × 10−18 s s−1 from quadrupolar gravitational
radiation as predicted by GR.

This apparent consistency allows us to test the change rate of
the (local) gravitational constant (Ġ) over the time span of the
observation, since a Ġ could lead to an observable change in Pb

(Damour, Gibbons & Taylor 1988), which has already been used
to constrain Ġ with binary pulsars (Damour et al. 1988; Kaspi,
Taylor & Ryba 1994; Nice et al. 2005; Verbiest et al. 2008; Deller
et al. 2008; Lazaridis et al. 2009; Freire et al. 2012; Zhu et al. 2015).

Nordtvedt (1990) pointed out that a change of the gravitational
constant also leads to changes in the neutron star’s compactness
and mass, and consequently leads to an additional contribution to
Ṗb which needs to be incorporated in our Ġ tests with binary pulsars.
If the companion is a weakly self-gravitating body, like in the case
of PSR J1713+0747, then one finds to leading order (cf. equation 18
in Nordtvedt 1990)

Ṗ Ġ
b � −2

Ġ

G

[
1 − 2Mp + 3Mc

2(Mp + Mc)
sp − 2Mc + 3Mp

2(Mp + Mc)
sc

]
Pb , (5)

where Mp and Mc are the pulsar mass and the companion mass,
respectively. The quantity sp denotes the ‘sensitivity’ of the neutron
star and the white dwarf and are given by (cf. Will 1993)

sp ≡ − ∂ ln Mp

∂ ln G

∣∣∣∣
N

and sc ≡ − ∂ ln Mc

∂ ln G

∣∣∣∣
N

, (6)

respectively, where the number of baryons N is held fixed. The sen-
sitivity sp of a neutron star depends on its mass, its equation of state
(EoS), and the theory of gravity under consideration. As a reference,
for Jordan–Fierz–Brans–Dicke (JFBD) gravity and the EoS AP4 in
Lattimer & Prakash (2001) one finds for a 1.33 M� neutron star,
like PSR J1713+0747, sp � 0.16. Following Damour & Esposito-
Farèse (1992a), we further assume, as a first order approximation,
that sp is proportional to the mass

sp = 0.16

(
Mp

1.33 M�

)
. (7)

We will use this (simplified) relation in our generic calculations be-
low but will keep in mind that depending on the EoS and the theory
of gravity, equation (7) might only be a rough estimate. Furthermore,
it is important to note that the usage of the sensitivity (6) and equa-
tion (7) comes with certain assumptions about how gravity can devi-
ate from GR in the strong field of neutron stars. It is evident that such
a description cannot capture non-perturbative strong-field effects,
like those discussed by Damour & Esposito-Farese (1993). For a
weakly self-gravitating body A, one has sA � −E

grav
A /MAc2, where

E
grav
A is the gravitational binding energy of the body. Hence, one has

sc � 3 × 10−5 for the white dwarf companion to PSR J1713+0747
– negligible in equation (5).

A time-varying gravitational constant generally indicates a vio-
lation of SEP. On the other hand, most gravitational theories that
violate SEP also predict the existence of DGR. Such waves are very
efficient in draining orbital energy from a (asymmetric) binary. The
gravitational wave damping due to DGR enters the equations of
motion of a binary already at the 1.5 post-Newtonian (v3/c3) level
(see e.g. Mirshekari & Will 2013), and to leading order adds the
following change to the orbital period

Ṗ D
b � −2G

c3
nb

MpMc

Mp + Mc
κD(sp − sc)2 + O(s3

p ) , (8)

Figure 2. Confidence contours of Ġ/G and κD computed from MCMC
simulations based on timing results of PSRs J0437−4715, J1738+0333,
and J1713+0747. The shaded area and grey area mark the 95 per cent con-
fidence limit from LLR (Hofmann, Müller & Biskupek 2010) and planetary
ephemerides (Fienga et al. 2015), respectively.

where nb ≡ 2π /Pb (Will 1993). The quantity κD is a body-
independent constant, which depends on the fundamental parame-
ters of the gravity theory under consideration. In JFBD gravity, for
instance, one finds that

κD = 2

ωBD + 2
, (9)

where ωBD is the Brans–Dicke parameter (Will 1993).7 For com-
pleteness, we have kept sc in equation (8) although, as mentioned
above, it is negligible in our case.

As emphasized by Lazaridis et al. (2009), in a theory-agnostic
approach the test of Ġ and κD requires at least two pulsar binary sys-
tems with different orbital periods to break the degeneracy between
the two contributions: equation (5) and equation (8). This is because
the extra variation in the orbital period due to DGR is stronger in bi-
naries with shorter orbits (∝ P −1

b ) while that caused by Ġ increases
with orbital period (∝ Pb). Therefore, testing Ġ/G using binaries
of significantly different orbital periods breaks the degeneracy be-
tween the two effects (see Lazaridis et al. 2009, for further details).
Here, we adapt the method of Lazaridis et al. (2009) and incorpo-
rate results from three different pulsar-white dwarf systems, namely
PSRs J0437−4715 (Reardon et al. 2016) and J1738+0333 (Freire
et al. 2012), in combination with the results for PSR J1713+0747
obtained in this work. Each pulsar provides a constraint on
Ṗ D

b + Ṗ Ġ
b , and hence via equations (5) and (8) excludes certain

regions in the Ġ/G–κD plane. As a result of the large difference
in orbital period, these constraints are complementary and conse-
quently lead to a small region of allowed values in the Ġ/G–κD

plane (see Fig. 2). The individual constraints on Ġ and κD are

Ġ/G = (−0.1 ± 0.9) × 10−12 yr−1 , (10)

7In JFBD gravity the effective scalar coupling αA and the sensitivity sA of
a neutron star are related by αA = α0(1 − 2sA) (cf. chapter 8 in Damour &
Esposito-Farèse 1992a).
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κD = (−0.7 ± 2.2) × 10−4 . (11)

They improve the Zhu et al. (2015) results based on NANOGrav-
only PSR J1713+0747 data by ∼20 per cent in Ġ/G and
∼30 per cent in κD.

2.3 Testing the universality of free fall for strongly
self-gravitating bodies

Damour & Schäfer (1991) showed that, in the presence of a UFF
violation, the observed eccentricity of the pulsar-white dwarf orbit
could be expressed as a combination of an intrinsic eccentricity and
a forced eccentricity:

eF = � · g⊥c2

2FG(Mp + Mc)n2
b

. (12)

Here F is a theory-dependent (and ‘sensitivity’-dependent) factor
that accounts for potential deviations from GR in the rate of pe-
riastron advance ω̇. By definition, F = 1 in GR and indeed, it is
constrained to be close to one by observations. For instance, from
the Double Pulsar PSR J0737−3039A/B (Burgay et al. 2003; Lyne
et al. 2004) one can quite generically infer that |F − 1| � 10−3

(Kramer & Wex 2009). Therefore, we can safely assume F = 1 in
our analysis, in particular since the mass of PSR J1713+0747 is
comparable to the masses in the Double Pulsar. G ≈ G is the ef-
fective gravitational constant in the interaction between the pulsar
and the white dwarf. The vector g⊥ is the projection of the Galactic
acceleration g on to the orbital plane, and � is the fractional differ-
ence in the accelerations between the pulsar and white dwarf, and
therefore a dimensionless measure of the significance of the UFF
violation.

Damour & Schäfer (1991) have put forward a method to con-
strain � from small-eccentricity binary pulsars with white dwarf
companions, utilizing in probabilistic considerations the smallness
of the observed eccentricities. This so-called ‘Damour-Schäfer’ test
has been extended to make use of an ensemble of suitable pulsar-
white dwarf systems (Wex 1997; Stairs et al. 2005) of which the
precise orbital orientations and proper motions are unknown. The
currently best limits from this method are |�| < 5.6 × 10−3 (Stairs
et al. 2005) and |�| < 4.6 × 10−3 (Gonzalez et al. 2011).8 The
validity and effectiveness of the Damour–Schäfer test rely on some
(strong-field and probabilistic) assumptions. It does not improve
with timing precision and is not capable of actually detecting a
violation of the UFF (see discussions in Damour 2009; Freire,
Kramer & Wex 2012). For this reason, it is desirable to have a
direct test with a single binary pulsar. Freire et al. (2012) already
identified PSR J1713+0747 as a potential candidate for such a test.
In Zhu et al. (2015), PSR J1713+0747 had been used in a (single
system) Damour–Schäfer test. In this work, we utilize the exquisite
timing precision of PSR J1713+0747 and the tight limit on ė to
directly test the violation of UFF in the strong-field regime.

Based on the equation of motion, Damour & Schäfer (1991)
derived that the eccentricity vector of the pulsar orbit would change

8As discussed in detail in Wex (2014), the ∼20 per cent improvement from
Stairs et al. 2005’s |�| limit by Gonzalez et al. (2011) comes with a caveat,
because of the inclusion of a seemingly particularly constraining pulsar
which, however, violates the necessary conditions for a Damour–Schäfer
test.

Figure 3. The normalized likelihood distribution of � derived from the
MCMC of PSR J1713+0747’s timing and noise parameters. The solid line
is the 95 per cent confidence limit and dashed line marks the 99 per cent
confidence limit.

according to (neglecting terms of order e2 and smaller)

ė � 3

2VO

� g × k̂ + ω̇PN k̂ × e , (13)

for given violation parameter of UFF, �. Here the vector e points at
periastron, k̂ is a unit vector parallel to orbital angular momentum,
VO ≡ [G(Mp + Mc)nb]1/3 is the relative orbital velocity between the
two stars. The second term describes the post-Newtonian periastron
advance rate:

ω̇PN � 3F(VO/c)2nb + O(e2). (14)

The extended ELL1 timing model allows us to measure the change
rate of the eccentricity vector, and we do detect an apparent ėy =
(−1.7 ± 0.4) × 10−17 s−1 along the line of sight, likely coming
from the periastron advance of the orbit. After removing the contri-
butions of periastron advance [ėPN

x = (−0.07 ± 0.01) × 10−17 s−1,
ėPN
y = (−1.0 ± 0.1) × 10−17 s−1] according to the measured system

masses and orbital parameter (Table 1 and equation 14), the result-
ing excess eccentricity change rate [ėexc

x = (0.4 ± 0.4) × 10−17 s−1,
ėexc
y = (0.7 ± 0.4) × 10−17 s−1] is consistent with zero. We perform

a Monte Carlo Markov Chain (MCMC) simulation that simultane-
ously fits both the timing model and the dispersion, jitter and red
noises, using the PAL2 software. The MCMC allows us to obtain a
large sample of possible timing parameter values along with their
likelihood. We then use these MCMC results to calculate the �

needed to account for the residual ė excess. Fig. 3 shows the pos-
terior distribution of �. From this result we derive that −0.0007 <

� < 0.0023 with 95 per cent confidence level (C.L.). The deviation
from GR is insignificant. For the ease of comparison with previous
results, we also derive from the above results:

|�| < 0.002 (95 per cent C.L.) . (15)

This constraint improves the previous test of UFF in gravitation
using this pulsar (Gonzalez et al. 2011) by more than a factor of
two. More importantly, it is a direct test and therefore, as discussed
above, more robust than previous Damour–Schäfer test based limits.
The limit in equation (15) provides currently the best test for the
UFF of a strongly self-gravitating object falling in the gravitational
field of the Galaxy. We discuss the theoretical meaning of that in
Section 3, in particular in view of the much tighter UFF limit from a
pulsar in a stellar triple system, which has been published recently
Archibald et al. (2018).
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2.4 Testing the Lorentz invariance and conservation
of momentum in gravitation

The PPN parameters α1, α2, and α3 describe different symmetry
breaking effects in gravitational theories that violate local Lorentz
invariance in the gravitational sector. The parameters α1 and α2

have already been tightly constrained through binary and isolated
pulsars (Shao & Wex 2012; Shao et al. 2013). In this paper, we
focus on the test of α3, but we also account for those effects related
to α1 and α2 which in principle could have an influence on our α3

limits.
The parameter α3 describes a gravitational symmetry breaking

that leads to both the existence of a preferred frame and a violation of
conservation of momentum (Will 1993). A non-zero α3 would give
rise to an anomalous self-acceleration for a spinning self-gravitating
body that moves in the preferred reference frame. One often assumes
that the universal matter distribution selects the rest frame of the
CMB as the preferred frame. Following the same idea, we choose
CMB frame as the preferred frame in our analysis. However, our
constraint on α̂3 should be robust for preferred frames that moves
at low velocity with respect to the pulsar, and it gets stronger when
the selected frame is moving very fast with respect to the pulsar.
A weakly self-gravitating body with mass M, gravitational binding
energy Egrav, rotational frequency ν, and velocity vCMB in the CMB
frame, would undergo acceleration induced by α3 effects:

aα3 = −α3

3

Egrav

Mc2
2πν n̂s × vCMB . (16)

Here n̂s is a unit vector in the direction of the body’s spin
(Will 1993). For strongly self-gravitating bodies, following Bell &
Damour (1996), we replace Egrav/Mc2 by the sensitivity of the pulsar
sp.9 Furthermore, we replace α3 by α̂3, where the hat symbol serves
as a reminder that we are testing the (body-dependent) strong-field
extension of α3, which may be different from the weak-field α3,
but is expected to be of the same order (see Section 3 for a more
detailed discussion).

Similar to the violation of UFF, the acceleration caused by α̂3

would lead to a polarization of the orbit of a rapidly rotating pul-
sar (Bell & Damour 1996). For fully recycled millisecond pulsars
like PSR J1713+0747, n̂s likely aligns with the orbital angular
momentum. For this reason, we can set n̂s = k̂ in our calculations.

Besides the influence of a non-vanishing α3, one also needs to
account for contributions of α1 and α2 to the orbital dynamics,
since in general one cannot assume α1 and α2 to be zero in a theory
that breaks local Lorentz invariance in the gravitational sector and
gives rise to an α3. In a near-circular binary, a non-vanishing α2

would lead to a precession of the orbital angular momentum around
the direction of w, which in turn leads to a temporal change in
the projected semimajor axis x (Shao & Wex 2012). On the other
hand |α2| is constrained by pulsar experiments to be less than about
10−9, which corresponds to a change in x that is about six orders of
magnitude smaller than the contribution from proper motion, which
is used to determine 
. Therefore, effects from α2 can be safely
neglected in our α3 test.

A non-vanishing α1 adds to the polarization of the orbit in the
same way as a non-vanishing α3, and analogous to equation (13)
one finds for the change of the orbital eccentricity vector

ė = ėα̂1 + ėα̂3 + ω̇PN k̂ × e , (17)

9Bell & Damour (1996) introduced the compactness cp = 2sp.

where

ėα̂1 � α̂1

4c2

Mp − Mc

Mp + Mc
nbVO w⊥ (18)

(Damour & Esposito-Farèse 1992b) and

ėα̂3 � 3

2VO

aα̂3 × k̂ = −α̂3π
spν

VO

w⊥ (19)

(Bell & Damour 1996). The velocity w⊥ is the projection of the
systemic CMB frame velocity into the orbital plane of the binary
pulsar. To independently constrain α̂3 from PSR J1713+0747 tim-
ing, we will include the α̂1 limits obtained from PSR J1738+0333
by Shao & Wex (2012) in our analysis. Conversely, owing to its
small orbital period, PSR J1738+0333’s possible α̂3 effects would
be much smaller than its α̂1 effects and would have insignificant im-
pact on the α̂1 limits derived from this system. There is one assump-
tion, however, that we have to make here. Since PSR J1713+0747
and PSR J1738+0333 have different masses, and therefore different
sensitivities sp, we cannot assume that they would lead to identical
α̂1. For this reason, our analysis only applies to deviations from GR
which exhibit only a moderate mass dependence of the strong-field
parameter α̂1, at least for neutron stars in the range of 1.3–1.5 M�.

All parameters involved in the evaluation of ė are measurable
through the timing of PSR J1713+0747 (Table 1), except for the
radial velocity of the pulsar binary with respect to the Solar sys-
tem vr. To calculate ė from equation (17) one needs the system’s
three-dimensional velocity vCMB in the CMB rest frame. vCMB can
in principle be computed from the binary’s three-dimensional ve-
locity v about our Solar system by adding the Solar system speed
in the CMB rest frame, which is well known from the measure-
ment of the CMB dipole (see Aghanim et al. 2014, for the latest
measurement). We measure the pulsar’s proper motion and distance
(Table 1), which allows us to determine the transverse component
of v. The white dwarf companion of PSR J1713+0747 is relatively
faint (Lundgren, Foster & Camilo 1996), and a measurement of
the radial velocity vr through optical spectroscopy is currently not
available. Therefore, we treat vr as a free parameter and calculate
the limits on α̂3 as a function of vr. A limit for vr comes from the
plausible assumption that the PSR J1713+0747 system is bound to
the Galaxy and therefore must be slower than the Galactic escape
velocity. Taking the Galactic potential of McMillan (2017), we find
vr to be within the range of about −680 to +460 km s−1.10 As shown
in Fig. 4, the constraint on α̂3 tightens as |vr| gets larger because
large vr lead to large vCMB, which enhance the polarization effects.
We find the most conservative bounds for α̂3 from the minimum
value on left side of the 95 per cent C.L. contour and the maximum
value of the right side of the contour, despite the fact that the two
values correspond to different values of vr:

−3 × 10−20 < α̂3 < 4 × 10−20 (95 per cent C.L.) . (20)

This result is better than the previous best constraint on α̂3,
|α̂3| < 5.5 × 10−20 from (Gonzalez et al. 2011), which is based
on a Damour–Schäfer type of test using an ensemble of pulsars.

In this section, we present our direct α̂3 test as a stand-alone
test independent of the previous tests. However, both our UFF and
α̂3 tests rely on the measurement of ė. For that reason, there is a
correlation between � and α̂3, and in principle there is even the
possibility that they cancel each other, although this would require

10As a cross-check we also used the potential by Kenyon et al. (2008), which
gives very similar results.
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Figure 4. The likelihood distribution of α̂3 derived from the MCMC of
PSR J1713+0747’s timing and noise parameters as a function of the as-
sumed line-of-sight velocity vr. The black solid curves corresponds to the
95 per cent C.L. and the black dashed line to the 99 per cent C.L. The red
curves show the same limits with α̂1 taken into account (see Section 2.4
for details). The two horizontal lines label the escape velocity of the pulsar
binary.

rather unrealistically large vr due to the geometrical orientation
of the system. Nevertheless, our α̂3 limit given above could be
slightly optimistic. However, the recent strong-field UFF test from
Archibald et al. (2018), for a more massive pulsar, have pushed
� to ∼3 orders of magnitude better than constrained in this paper
(Section 2.3). When taking Archibald et al. 2018’s UFF test into
account, our α̂3 limit is still valid and unaffected by the degeneracy
between the two tests.

3 D ISCUSSION

In this paper, we present new tests of the constancy of G, and the
violations of UFF, Lorentz invariance, and conservation of momen-
tum in gravitation. These violations of gravitational symmetries
lead to changes in the orbital period and eccentricity particularly in
binaries such as pulsar-white dwarf systems like J1713+0747. We
conduct these tests through the measurement of an excess change
in the orbital period and eccentricity from the timing analysis of
PSR J1713+0747.

We repeat the combined Ġ/G, κD test presented in Zhu et al.
(2015) by incorporating more PSR J1713+0747 timing data from
EPTA and find that the result improves [Ġ/G = (−0.1 ± 0.9) ×
10−12 yr−1 and κD = (−0.7 ± 2.2) × 10−4]. The improvement on
Ġ/G could be attributed to the inclusion of EPTA data which in-
creased the number of TOAs used in the experiment, whereas the
changes in κD limits are mostly due to the change from using a fidu-
cial sensitivity function that scales linearly with neutron star mass
to using a more realistic non-linear neutron star sensitivity func-
tion. Our κD test is a generic test of DGR, included for the purpose
of generalizing the Ġ/G test for general SEP-violating theories.
More stringent tests of the DGR effects could be done with pulsar
timing if one takes into account the nature of the SEP-violating
theories (Freire et al. 2012). In some theories, O(s3

p ) terms cannot

be neglected (cf. equation 8) even in a first-order estimation. In
some theory-specific tests, a more stringent limit on κD could come
from non-radiative tests, for instance from the Solar system mea-
surements based on the Cassini experiment, like for JFBD gravity
where Cassini implies |κD| � 9 × 10−5 with 95 per cent confidence
(cf. equation 9).

When compared directly to the Solar system tests (LLR,
Hofmann et al. 2010) and planetary ephemerides (Fienga et al. 2015,
Fig. 2), our Ġ/G constraint is not as constraining. But the pulsar
binary tests involve objects of much stronger self-gravitation than
objects in the Solar system. The pulsar timing limits of Ġ/G and
κD are testing SEP-violating effects beyond linear extrapolations
from the weak-field limit. Wex (2014) demonstrated that in certain
theories of gravitation, Ġ/G effects could be greatly enhanced by a
strongly self-gravitating body while remaining insignificant in the
Solar system.

Previous pulsar UFF tests, such as Wex (1997), Stairs et al.
(2005), and Gonzalez et al. (2011) employed the idea of Damour &
Schäfer (1991), which uses an ensemble of wide-orbit small-
eccentricity pulsar-white dwarf binaries. The approach’s effective-
ness relies on the how close the orbits to being circular. And the
approach’s validity relies on the statistical argument that the un-
known orbital orientations of a collection of pulsars are randomly
and uniformly distributed. Hence the Damour & Schäfer (1991)
tests cannot directly detect SEP violation and may only improve
when a new pulsar binary with a better figure of merit is found.
There comes a further caveat with previous tests, as these tests
are based on an ensemble of systems with different neutron star
masses. Hence, for this mix of neutron star masses a priori assump-
tions about the strong-field behaviour of gravity had to be made
(Damour 2009). For our tests this is not the case, since these tests
are based on a single neutron star with well-determined mass.

Damour & Schäfer (1991) also pointed out the possibility of
directly testing UFF violations by constraining temporal changes
in the orbital eccentricity. Such a test has the advantage of not
depending on a group of pulsar binaries, the smallness of their e and
assumptions on their orbital orientations. The effectiveness of this
test improves with timing precision. Freire et al. (2012) identified
PSR J1713+0747 as one of the best candidates for such a direct test.
But at that time ė was not directly modelled in the timing of that
pulsar, and Freire et al. (2012) used an estimate of the upper limit
of ė based on the uncertainties of the measured e. As a result, Freire
et al. (2012) could put some preliminary limits on UFF violations.
In this paper, we conduct the first direct UFF test using a measured
ė, which in principle could detect a violation of UFF, should the
effect be strong enough.

Using an extended version of the ELL1 timing model of Lange
et al. (2001) in our analysis, we find ė � (0.4 ± 0.4, −1.7 ± 0.4) ×
10−17 s−1 (see Table 1), which is consistent with being caused by
post-Newtonian periastron advance predicted by GR. We find no
evidence for a violation of UFF with |�| < 0.002, a result that
improves by more than a factor of 2 from the previous constraint
(Stairs et al. 2005; Gonzalez et al. 2011) based on this pulsar system.
Similarly, we find −3 × 10−20 < α̂3 < 4 × 10−20, which is also
better than the previous best result. These limits go beyond the
PPN framework since they also capture strong-field deviations. To
illustrate this, for example for α3, we expand α̂3 with respect to the
sensitivity

α̂3 = α3 + α
(1)
3 sp + α

(2)
3 s2

p + · · · , (21)

then the limit in equation (20) not only constrains the weak-field
counterpart, α3, at the level of O(10−20), but also poses strong con-
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straints on higher order terms, α(1)
3 , α(2)

3 , and so on. The same applies
for the strong-field generalization of the Nordtvedt parameter that
is given by � ≡ η̂Nsp. Detailed accurate mapping of strong-field
generalization and weak-field counterpart needs explicit calcula-
tions in specified gravity theories. Note that equations like (21)
ultimately fail to capture non-perturbative strong-field deviations,
like spontaneous scalarization (Damour & Esposito-Farese 1993).

The recently discovered pulsar triple system J0337+1715
(Ransom et al. 2014) is a superior laboratory for testing UFF than
PSR J1713+0747 because the pulsar and its inner companion are
subjected to much higher gravitational accelerations from the outer
companion star. Simulations suggest improvement by at least three
orders of magnitude (Berti et al. 2015; Shao 2016; Kramer 2016).
Indeed, Archibald et al. (2018) timed the J0337+1775 over six years
and achieved a strong field constraint on UFF of |�| < 2.6 × 10−6.
However, PSR J1713+0747 will remain to be one of the best sys-
tems for testing Ġ with pulsars, due to its wide orbit and high timing
precision, and for testing α̂3 because of the fast rotation of this pulsar
and its well-constrained orbit.

Shao, Wex & Kramer (2018) explored using pulsar binaries to
limit the UFF violations towards dark matter in the Galaxy. Their
results show that pulsar binaries are promising laboratories for such
test that would probe whether gravity is the only interaction between
normal matter and dark matter. For such kind of test, the � obtained
from PSR J1713+0747 currently provides the best test for the UFF
of a strongly self-gravitating object with respect to dark matter. We
would like to emphasize that the triple system pulsar J0337+1715
does not provide any constraints here, as its limit applies only for
the UFF towards ordinary matter, i.e. the outer white dwarf.

Finally, the first direct detection of gravitational waves by LIGO
opened up the possibility to test gravity in the dynamical strong-field
regime (Abbott et al. 2016). This promises qualitatively new tests
of GR and its alternatives, complementary to tests obtained from
binary pulsars (Berti et al. 2015; Will 2018). Concerning the effects
tested here, they become particularly prominent in wide systems.
Hence, LIGO/Virgo observations are much less constraining. For
instance, the Ġ limit obtained from the binary black hole merger
GW151226 (Yunes, Yagi & Pretorius 2016) is about 17 orders of
magnitude weaker than the limit presented here. It is important to
note that tests with neutron stars and tests with black holes are
qualitatively different. For instance, in the presence of a no-hair
theorem black holes are expected to behave according to GR while
the dynamics of neutron stars might be very different (cf. Damour &
Esposito-Farèse 1992a).
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A P P E N D I X : G A L AC T I C C O R R E C T I O N S

In Section 2.2, we discuss how the changing Doppler effect related
to the systemic motion of a binary pulsar causes apparent varia-
tions in the orbital parameters. An important part of the changing
Doppler effect comes from the Galactic contribution to the line-of-
sight acceleration between the pulsar binary and the Solar system.
There are two orthogonal components in this Galactic contribution:
the difference in the centrifugal acceleration in our circular motion
around the Galactic centre, and the difference in the vertical ac-
celeration caused mainly by the Galactic disc. We can derive the
expected Ṗ Gal

b /Pb based on our knowledge of the Galactic rotation
curve and the local surface density of the Galactic disc.

Based on Damour & Taylor (1991), Nice & Taylor (1995) derived
an analytical formula for calculating the apparent orbital variation
using a flat rotation curve and the vertical acceleration model for
the Solar vicinity. The subsequent pulsar timing works (Deller et al.
2008; Verbiest et al. 2008; Lazaridis et al. 2009; Freire et al. 2012;
Zhu et al. 2015) used the same formula with the most recent Galactic
disc model coming from Holmberg & Flynn (2004) and Reid et al.
(2014). However, the analytical approach put forward by Damour &
Taylor (1991) and Nice & Taylor (1995) is a good approximation
only when the pulsar systems are close to the Solar system or have
a comparable distance to the Galactic centre. As shown in Fig. A1,
J1713+0747 is about 1 kpc closer to the Galactic centre than the
Sun. Therefore, it experiences a slightly higher vertical gravity than
modelled previously in Zhu et al. (2015).

In this work, we employ a new Galactic model by McMillan
(2017), which fits the rotation curve and the stellar dynamic data
with an axisymmetric Galactic potential and provides a code for
computing the Galactic gravitational acceleration. It is worth noting
that the key input data for constraining their model regarding verti-
cal forces were from Kuijken & Gilmore (1991) – an earlier study
than Holmberg & Flynn (2004). But as shown in Fig. A1, the later
Holmberg & Flynn (2004) result fits McMillan (2017) model
better and the changes were relatively small. Table A1 shows
J1713+0747’s Ṗ Gal

b computed using various Galactic potential
models and the observed excess after removing Shklovskii and GR
effects. One can see that most realistic models (Dehnen & Binney
1998; Binney & Tremaine 2008; Piffl et al. 2014; McMillan 2017)
fit the observed excess better than the analytical approximation.

Fig. A2 shows the �Ṗ Gal
b /Pb using the McMillan (2017) model

instead of Nice & Taylor (1995) model for a putative pulsar binary at
1 kpc distance as a function of Galactic longitude and latitude. The
correction becomes of the same order of magnitudes as the observed
effect |Ṗb/Pb| (∼10−12 yr−1) for J1713+0747. PSR J0437−4715 is
another pulsar binary system that is sensitive to this effect (Verbiest
et al. 2008; Deller et al. 2008; Reardon et al. 2016). However, at a
distance of only 0.16 kpc, this pulsar’s Galactic acceleration could
be computed fairly accurately by Nice & Taylor (1995) model, with
a |�Ṗ Gal

b /Pb| < 0.2 × 10−12 yr−1. For the other pulsar binary used
in our Ġ/G analysis – PSR J1738+0333, the correction is similar
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Table A1. PSR J1713+0747’s Ṗ Gal
b components in units of 10−12 s s−1, in

comparison to the observed Ṗb where only the Shklovskii contribution has
been subtracted.

Galactic potential/model horizontal vertical total

McMillan (2017) 0.16 −0.50 −0.34
Piffl et al. (2014) 0.14 −0.46 −0.33
Binney & Tremaine (2008) 0.16 −0.43 −0.27
Dehnen & Binney (1998) 0.17 −0.46 −0.29
Nice & Taylor (1995)a 0.27 −0.36 −0.10

Ṗ obs
b − Ṗ Shk

b – – −0.31(15)

aAnalytical model including updates from
Lazaridis et al. (2009), Freire et al. (2012), and Zhu et al. (2015).

Figure A1. The solid curves show the models of Galactic disc surface
density as a function of Galactic radius from McMillan (2017). The error bars
indicate disc surface densities from studies of the dynamics of stars in the
Solar vicinity by Kuijken & Gilmore (1991) (red diamond) and Holmberg &
Flynn (2004) (blue circle). The vertical lines mark the positions of the pulsar
and the Sun.

Figure A2. The difference between the Galactic corrections (Ṗ Gal/P and
Ṗ Gal

b /Pb) derived from McMillan (2017) and the Nice & Taylor (1995)
approximation as a function of Galactic longitude (l) and latitude (b) for a
pulsar binary at 1 kpc distance from us in units of 10−12 yr−1.

to that of J1713+0747, but still relatively insignificant compared to
the observational uncertainty δṖb/Pb of ∼4 × 10−12 (Freire et al.
2012).

Since Nice & Taylor (1995) used the local disc surface density
and assumed a flat rotation curve, the real Galactic potential deviates

Figure A3. The difference between the Galactic corrections (Ṗ Gal/P and
Ṗ Gal

b /Pb) derived from McMillan (2017) and the Nice & Taylor (1995)
approximation as a function of Galactic longitude (l) and latitude (b) for a
pulsar binary at 3 kpc distance in units of 10−12 yr−1.

more from it at greater distances from the Sun. In Fig. A3, we show
that at a distance of 3 kpc the extra Galactic correction |�Ṗb/Pb|
(or |�Ṗ/P | for the pulsar period) comes close to 10−11 yr−1 for
some directions therefore a more realistic model must be used for
pulsars in this situation.

Presently, there are only a handful of pulsars that are sensitive
to the Galactic acceleration. In future, new telescopes such as the
Five hundred meter Aperture Spherical Telescope (FAST, Nan et al.
2011; Li & Pan 2016) and the Square Kilometer Array (SKA,
Kramer & Stappers 2015) could improve both the timing and dis-
tance measurement for many more pulsars such that this correction
becomes significant for them. It might be possible to start using
some pulsars as accelerometers for probing the Galactic gravity
field and improving our knowledge of the Galactic potentials, inde-
pendent to the improvements expected from GAIA11 (Prusti et al.
2016) .
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