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Background 

 

In this study, we provide an audit of the potential blue carbon resources present in 

the coastal waters around Orkney, bounded by the 12 nautical mile limit and 

including the Loch of Stenness brackish water lagoon. This report builds on previous 

work by Burrows et al. (2017) in which blue carbon stocks in Marine Protected Areas 

in Scottish waters were estimated from i) contributions of biological material to the 

fixation of carbon, also referred to as production, and ii) contributions of sediments to 

blue carbon storage. The methodology has been further developed here to allow 

regional-scale estimation of habitat extent and provides estimates of blue carbon 

associated with habitats and surface sediments. 

 

Main findings  

 

1. The overall estimated blue carbon in Orkney regional waters is 67 Mt. 

2. This is divided into 61.4 Mt in sedimentary stores and 5.9 Mt in living 

biological habitats.   

3. The audit found that the largest blue carbon source in Orkney waters came 

from the inorganic carbon in sediments. This was divided into 59.1 Mt C in 

inorganic carbon stores and 2.27 Mt carbon in organic stores. 
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4. In a local geographical context, the coastal waters around Sanday and North

Ronaldsay contained large accumulations of organic carbon due to the kelp

forest habitats in the shallow coastal zone and carbon deposits in sediments.

The maerl beds at Wyre and Rousay also constitute a hotspot of both organic

and inorganic carbon. In Scapa Flow, the area to the north-west of Cava

Island and also through Gutter Sound represent key areas for blue carbon

due to accumulations of horse mussel beds and flame shell nests.

5. In a Scottish context, Orkney waters account for 8.1% of Scottish inshore

waters (defined by a 12 nm boundary), holding 67 Mt of blue carbon.  In

Orkney we find 67 Mt in a sea area of 7,290 km2. This equates to a density of

9,190 tonnes C per km2 in Orkney waters. This figure is likely to increase

when further data on the thickness of deposits underlying the biological

habitats becomes available.
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Executive summary 

In May 2019, the Scottish Government declared a global climate emergency in 

response to climatic change linked to elevated CO2 levels in the atmosphere. The 

most obvious effects of climate change include increased atmospheric and sea 

surface temperatures, ocean acidification, and greater occurrences of ‘extreme’ 

weather events. While the world’s ocean forms the largest natural ‘sink’ for carbon, 

the rate of capture and storage in sea water is reduced by increasing levels of 

atmospheric CO2, rising global temperatures, and stratification of the surface ocean. 

The term ‘blue carbon’ has been used to describe carbon stored in the marine 

environment. As part of the Scottish Government’s objectives to lead the world in 

adopting evidence-based policies to mitigate climate change, an audit of blue carbon 

resources has been commissioned for the waters around the Orkney Islands 

archipelago. This report is the most comprehensive regional audit of blue carbon 

resources to date. 

Blue carbon refers to carbon captured by biological metabolic processes, i.e. in the 

soft tissues, shells, and skeletons of plants and animals, and buried in the marine 

environment in sediment. In some regions this may also include carbon of 

terrigenous origin. In this audit, the evaluation of carbon storage includes shallow 

habitats created by marine organisms, and also, the resources stored in surface 

marine sediments. Once living tissue dies, the resulting organic carbon in biological 

material may be transported, and ultimately deposited and accumulated in seabed 

sediments. Carbon stocks in sediments that accumulate in this fashion may remain 

stored over far longer time scales, for example in the hundreds of years to thousands 

of years and in much larger amounts than stocks found in biological habitats, 

although the longevity of certain biological features, such as reefs, is poorly 

understood.  

Currently, detailed understanding of blue carbon capture and storage is limited to a 

few, relatively well-studied coastal ecosystems, including mangroves, saltmarshes 

and seagrass beds. In Scotland few published papers report on the contribution of 

marine habitats to blue carbon.  

The Orkney Blue Carbon Audit was conducted using a four-stage approach: 1) 

assessment of habitat abundance based on data collected during in situ surveys; 2) 

mapping of areas of known habitats compiled from various data sources to inform 

habitat prediction models; 3) determination of carbon content for specific habitats 

based on recent and current in situ sample collection and laboratory analysis; 4) 
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calculation of total organic and inorganic carbon contribution by combining areas and 

estimated carbon content of known habitats. Methods developed here will help inform 

similar studies as part of future audits of regional marine resources. 

Key blue carbon habitats evaluated in this audit included a wide variety of biological 

and sedimentary environments. The Orkney Blue Carbon Audit estimated 67 million 

tonnes (Mt) of blue carbon resources in Orkney, composed of 5.9 Mt in biological 

stocks and 2.27 Mt organic carbon and 59. 1 Mt the figure for inorganic carbon will 

increase in future when data gaps on the thickness of sediment deposits underlying 

biological habitats are addressed (e.g. horse mussel beds, flame shell beds, 

brittlestar beds, maerl beds) along with information on the extent of shell banks.  

Organic carbon stock figures are also likely to increase as there are stocks of 

organic carbon associated with inorganic carbon and trapped in the anoxic layers 

where carbon becomes recalcitrant. 

In biological habitats in Orkney, the most important stocks of blue carbon are found 

in maerl beds, kelp forest, and seagrass beds (Zostera). In particular, maerl beds 

had the highest contribution of blue carbon to the audit as well as having the highest 

density of carbon (tonnes per hectare1). New research generated for this report has 

provided greater details on carbon stocks in several habitats, such as saltmarsh, 

brittlestar beds, and bryozoan thickets. 

Knowledge gaps have been identified and suggestions made to prioritise future 

research. Additional habitat surveys and sample analysis will further reduce 

uncertainty in evaluating carbon resources. ‘Ground-truthing’ will improve predicted 

habitat models in locations where real data are not currently available. 

While uncertainties remain, the general conclusions presented here on blue carbon 

resources in Orkney waters are robust. The audit will inform the Orkney Islands 

Marine Region: State of the Environment Assessment. The extent to which blue 

carbon issues could be addressed as part of the statutory regional marine planning 

process will need to be considered through engagement with stakeholders and 

public consultation. 

Informed management could enhance the capacity of key habitats in providing a 
carbon sink, while at the same time encouraging sustainable use of the marine 
environment.

1 1 A conversion table for units commonly used throughout the report can be found in Appendix D. 
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1. Introduction 

 

1.1. Project background 

 

This first regional blue carbon audit has been commissioned by the Scottish 

Government with the overall aim of developing robust methods to assess blue 

carbon stocks associated with key habitat types. The Scottish coastline is complex 

with Scottish inshore territorial waters comprising about 20% (90,404 km2) of the 

total area of 462,263 km2 of Scotland’s seas (Marine Scotland, 2019a). 

 

The focus of this regional audit is on Orkney coastal waters primarily bounded by the 

12 nautical mile limit. The geographical boundaries of this audit encompass a sea 

area of some 7290 km2 and a coastline of approximately 1220 km along the Mean 

High Water Spring mark, accounting for 8.1% of Scottish territorial waters. 

 

It is estimated that over half of total carbon captured by marine habitats occurs in the 

relatively shallow coastal waters extending from the shore to the edge of continental 

shelf (Borges, 2005). Following discussions with the Scottish Government, 

Scotland’s Blue Carbon Forum, and other stakeholders (including the Orkney Islands 

Council Marine Planning Team), the following additional caveats were included in 

defining the extent of this Orkney audit (Figure 1.1): 

 

 12 nautical miles, except for the waters separating Orkney from the 

neighbouring county of Caithness, i.e. the Pentland Firth. In these areas, 

Orkney waters are defined up to the midpoint between regions. See also 

documentation on Scottish Marine Regions and Offshore Marine Regions 

(Marine Scotland, 2019b). 

 Exclusion of the waters surrounding Sule Stack and Sule Skerry.  

 Inclusion of the Loch of Stenness. This brackish lagoon is a designated 

Special Area of Conservation (SAC) featuring saltmarsh habitats. 

 

The complex coastline of Orkney is matched by a diverse range of different biotopes 

and geological features. Biological habitats include kelp forests, maerl beds, 

seagrass (Zostera) beds, saltmarshes, horse mussel beds, flame shells, brittlestar 

beds, and bryozoan thickets; geological habitat features include bare rock and a 

variety of mobile sediments from muds and sands to gravel and boulders. 

 

When undertaking a regional assessment of this type, it is important to bear in mind 

that key physical factors such as the tidal flow regime and wave exposure, along with 

the underlying geology will combine to influence the diversity of the communities that 
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thrive by living on and in the habitats in the area. 

 

 

Figure 1.1: The boundary of the Orkney Blue Carbon Audit. A detailed map with place 
names can be found in Appendix C. 

 

In this region, two large water masses, the North Sea and the Atlantic Ocean, meet 

producing a wide range of hydrodynamic conditions. The East Shetland Atlantic 

Inflow and the Fair Isle Current are major influences, as described by Turrell et al. 

(1996) (Figure 1.2). Tidal heights and times on the west coast of Orkney are 

dominated by the Atlantic Ocean, while on the east side, tides are dominated by the 
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North Sea. Within Orkney waters, low tide occurs at markedly different relative times 

depending on location within the islands. As these large water masses pass through 

narrow channels strong tidal currents are generated. The Pentland Firth regularly 

experiences flows of 4 m s-1 (Miller, 1994; Goddjin-Murphy et al., 2012), acting like a 

river in the sea as the tide surges from the Atlantic to the North Sea and back again. 

In contrast, the natural deep-water harbour of Scapa Flow experiences a range of 

current flow regimes from 3 m s-1 at Hoy Sound to <0.5 m s-1 in the sheltered 

embayments.  

 
Figure 1.2: Key topographic features of the northern North Sea and adjacent oceanic areas 
in relation to the location of the standard hydrographic sections. Solid arrows represent 
surface circulation and broken arrows sub-surface; NF-Nolso-Flugga standard hydrographic 
section; MFI-Munken-Fair Isle section; Ni/AI-North of Iceland/Arctic intermediate water; 
NSDW-Norwegian Sea Deep Water (modified from Turrell et al., 1996). 

 

With a maximum fetch in excess of 3,000 km, the west coast of Orkney can 

experience wave heights in excess of 18 m during storm events (EMEC, 2019). In 

contrast, reduced fetch in Scapa Flow and between islands greatly diminishes wave 

exposure. This gradient of wave exposure is a key component influencing marine 
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habitat type and extent (Lewis, 1964; Want, 2017). 

 

1.2. Terminology 

 

Describing the dynamics of the ocean carbon sink is complex and requires clarity of 

terminology. In this report, stores of carbon in living material are referred to as 

standing stocks, stores of carbon in sediments are called stocks. The conversion 

of carbon dioxide to carbon in living material is referred to as fixation or capture, 

and the addition of carbon to sediment stocks is referred to as burial. Sequestration 

refers to the addition of carbon to long-term stocks. Production refers to the annual 

amount of carbon captured. A sink is where carbon exists in marine sediments 

where dead organic and inorganic material may be buried. 

 

With the ocean absorbing about one third of atmospheric CO2 (Woolf et al., 2019), a 

critical factor in mitigation of elevated CO2 levels is the rate of carbon sequestration 

into marine habitats (Doney et al., 2009). A major ‘sink’ of carbon exists in marine 

sediments where dead organic and inorganic material may be buried (referred to as 

stock). In addition, a significant standing stock is stored within living marine 

organisms. These organisms include animals and plants that produce calcium 

carbonate skeletons and shells such as molluscs, corals, and coralline algae, 

including maerl. In addition, significant amounts of carbon are captured in the soft 

tissues of all marine organisms including major photosynthesising producers such as 

kelp, other marine algae (not included in this audit) and Zostera. Carbon production 

by kelp forest is significant, but how much of that goes into the longer-term stores by 

sequestration, is still unclear. 

 

The identification, and management of such carbon resources are important for 

allowing us to understand the contribution they make to the overall carbon budget for 

the region.  

 

This audit provides an estimate of the blue carbon stocks in Orkney coastal waters, 

based on the latest research and survey work on mapping distributions and 

measuring of carbon content within the key habitats. The figures generated include 

designated sites such as the Wyre and Rousay Sound Marine Protected Area 

(MPA). The inshore waters of Orkney host a range of biological habitats and 

geological features, many of which (such as horse mussel reefs) may potentially 

provide high carbon capture rates through the retention of carbon in shell material, 

as well as the burial of organic carbon in the underlying sediments. 
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1.3. Project objectives 

 

The objectives of the project were:  

 

 Creation of a database of all available information on blue carbon habitats in 

Orkney.  

 Development and testing of methods allowing estimates of blue carbon using 

available data. These methods should be readily applicable to other regional 

and national audits. 

 Identification of knowledge gaps and priority targets for future research.  

 Assessment of pressures on blue carbon stocks.  

 

It should be noted that carbon sequestration rates are not included as part of this 

audit. Insufficient data currently exists for many of the key habitats on the processes 

of sequestration. 

 

2. Methodology 

 

The aim of this study is to produce a first quantitative assessment of the blue organic 

carbon and inorganic carbon present in the coastal waters of Orkney. 

 

The audit was conducted using a four-stage approach: 

 

1) assessment of abundance of specific blue carbon habitat types based on data 

 collected during in situ surveys, i.e. drop-down video, diver surveys, shore 

 surveys;  

2) mapping of habitats compiled from publicly available data sources to produce 

 habitat prediction models, to cover geographical areas for which actual survey 

 data was not available;  

3) determination of carbon content of habitat types based on past and current 

 sample collection and laboratory analysis using Loss of Ignition (LOI) or 

 volumetric based protocols;  

4  calculation of total organic carbon (OC) and inorganic carbon (IC) 

 contributions from each habitat type using the geographical extent estimated 

 from the predictive models (stage 2) and the carbon values generated (stage 

 3).  

 

Appendix A details the steps taken to achieve this. A caveat of the LOI method for 

estimating carbon values is that during the burn off of the organic carbon at 550 ºC, 

carbon is not the only material being lost, e.g. Nitrogen and Phosphorus are also 
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being lost during this process. For some organisms the relative proportions of C, N 

and P are known and so burn up figures can be adjusted (e.g. blue mussels - see 

Table 3.6) while for others (e.g. flame shells – Table 3.7) they are not. Using the 

amount of organic matter (OM) generated from the LOI method will be an 

overestimate of the amount of organic carbon present in the sample because of the 

presence of additional elements (Santisteban et al., 2004). In some studies, 

estimation of OC is enhanced by including additional factors. There can also be 

variability in the results of LOI from different labs; to reduce this variability between 

studies, a standard protocol was adopted (Heiri et al., 2001).  

 

2.1. Data review and blue carbon classification scheme 

 

At the initiation of this study, Scottish Natural Heritage (SNH) supplied existing 

habitat distribution data in the form of a GIS database (GeMS V2i10 Geodatabase). 

Further data were acquired from the NBN Atlas (NBN, 2019), SeaSearch (Hirst, 

pers. comm.), the British Geological Survey (BGS), Cooke Aquaculture, Heriot-Watt 

University, Scottish Association for Marine Science, University of Glasgow, and the 

University of St. Andrews.  

 

Table 2.1 

Summary of the blue carbon category classification scheme used for this study; these are 
defined by the pre-existing mapped habitats and sediment types. Note: in Orkney waters, 
mud has not been mapped in the BGS sediment database. 

 

Biological 

Kelp forest 

Maerl beds 

Zostera beds 

Saltmarshes 

Horse mussel (Modiolus modiolus) 

Flame shell (Limaria hians) 

Brittlestar bed (Ophiothrix fragilis) 

Bryozoan thicket (Flustra foliacea) 

Sedimentary 

Gravel 

Gravelly muddy sand 

Gravelly sand 

Muddy sand 

Muddy sandy gravel 

Rock 

Sand 

Sandy gravel 

Slightly gravelly muddy sand 

Slightly gravelly sand 
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2.2. Assessment of spatial extents of habitats 

 

Habitat data included both point records and habitats mapped as polygons. In some 

cases, blue carbon habitat point data had been extrapolated into habitat polygons 

with attendant spatial data.  

 

A tiered approach was used to deal with the variability in data quality between the 

blue carbon habitat types, in common with the Burrows et al. (2017) report. The data 

supplied reflected that sampling effort had been concentrated in certain blue carbon 

habitats, especially where these coincided with priority marine features for protected 

areas while other habitat types received much less attention. In many studies, 

attention has been focused on determining area of distribution and organism 

abundance, rather than the critical third dimension of habitat thickness.  

 

Models of the location and extent of geological and biological habitats were built 

using data in declining order of quality. Where mapped polygon data were available 

these were used as the primary data source. Where no polygon data existed, known 

databases were examined for alternative data. In the case of geological substrate, 

sediment grain size could be inferred from sediment data held by the BGS. Existing 

publicly available BGS data (BGS 1:250 000 superficial sediments) were imported 

into ArcGIS for further analysis. Substrate polygon data were used in preference to 

point data as a second-tier option. Such alternative data maps were available at a 

much lower resolution than the SNH polygon data, but the method was preferable to 

interpolation from point data. 

 

With regards to Kelp forest, Modiolus modiolus, Zostera marina, Limaria hians, 

Flustra foliacea and Ophiothrix fragilis habitats, Maxent models were deployed to 

create predicted extents from known presence points using various environmental 

variables predictors as seen in Table 2.2 below. These came from a variety of open 

source platforms and Aquatera Ltd.’s data bank and research outlets. Presence 

points of each species were acquired through the MNCR Public Snapshot database 

and the NBN Atlas Gateway service. Additional details on predictive modelling can 

be found in the Appendix. In the case of maerl, carbon estimates were based on 

more extensive point data captured by in situ diver observations and drop-down 

video. Some limited interpolation between point data was used when data points 

were close together to create an area polygon. 

 

In some cases habitats co-occur, creating the possibility of ‘double counting’ of 

carbon particularly in sediments underlying the habitats. For example, in areas 

where brittlestars overlay horse mussel bed, double counting is avoided because we 
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only have figures for the underlying sedimentary carbon of horse mussels at the 

present time. In the case where seagrass is growing together with maerl (e.g. at 

Tingwall), sediment estimates of the latter only are applied to avoid double counting. 

 

Table 2.2 
 
Environmental variables used in predictive modelling of biological habitats used in the 
Orkney Blue Carbon Audit. 

 

Species Data 

Presence occurrence 
points 

MNCR Marine Recorder Public 
Snapshot 

NBN Atlas 
Gateway 

Environmental Variables 

Bathymetry Aquatera Ltd Bathymetry Data Layer 

Wave exposure Mike Burrows Log10 Wave Fetch Layer 

Fraction of light 
penetration at 
seabed 

EU SeaMap 2011  

Maximum Tidal 
Current 

Mohammed-Alaa Almoghayer / Heriot-Watt University / 
Aquatera Ltd - PhD Research (Unpublished) 

Substrate EMODNet EUSeaMap 2016 

Biozone EMODNet EUSeaMap 2016 

 

Following the habitat modelling, spatial data for each habitat and substrate blue 

carbon category were extracted. Standing stock of carbon was calculated for each 

habitat in turn, and itemised in this report, using data generated as part of this study 

or gathered from peer-reviewed literature as identified in Section 3 and 4. Results of 

the calculations have been tabulated in Section 5. The most valuable habitats and 

substrates from a blue carbon perspective have been identified following this 

analysis and are discussed in Section 6. 

 

3. Habitat identification: Biological environments  

 

3.1. Introduction 

 

Habitats identified as having distinct contributions to blue carbon stocks and distinct 

rates of production and burial follow those of Burrows et al. (2014), excluding the 

production from phytoplankton. Some additional classes are added as habitats of 

particular local importance as blue carbon habitats. For some habitats, values used 

for the biomass per unit area (g C m-2), modified by habitat thickness, were taken 
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directly from Burrows et al. (2014) (see Annex 1 for more details) which gives details 

of the literature and methods used to obtain values for each habitat. In other cases, 

new data were generated. 

 

3.2. Biological habitats 

 

3.2.1. Kelp forest  

 

Estimates of the extent and biomass of five dominant kelp species in the sea around 

Orkney were made using existing models that describe the associations between 

presence and abundance of kelp and the main predictors of their presence across 

the UK (fully described in Annex A in Burrows et al., 2018; Burrows et al., 2014a; 

Burrows et al., 2014b) (Figure 3.1). The main determinants of kelp presence, 

abundance and biomass are: 

 

(1) depth, because of the need for light for photosynthesis;  

(2) wave exposure, a major influence on the dominant species in the kelp forest;  

(3) water clarity, implemented here using satellite-estimated chlorophyll a 

 concentrations and influencing the amount of light reaching the sea bed; and 

(4) summer average water temperature (Figure 3.2).  

 

The last of these, temperature, does not vary significantly across the Orkney Islands 

archipelago but is important in determining species presence and abundance at the 

UK scale, and for considering the future threat to kelp species from climate change. 

Kelp species in the UK are in the warmer part of their global geographical 

distributions and are likely to decline or disappear with warming in areas close to 

their warm distribution limits in SW England. While populations in Orkney are likely to 

persist with sea temperature rises of up to 2°C, declines in abundance over time are 

likely following the spatial pattern of reduced abundance from NE Scotland to SW 

England with increasing summer water temperatures (12-13°C to 16-17°C). 
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Figure 3.1: Laminaria hyperborea can be found in extensive ‘forests’, this is an example 
from habitat at Tingwall, north mainland of Orkney. 
 

The existing Generalised Additive Models (GAMs; Wood, 2011) used here had been 

fitted to data on kelp abundance from the Joint Nature Conservation Committee’s 

Marine Nature Conservation Review, collected mostly during the 1980s and 1990s. 

Divers surveyed kelp along short transects and assigned them to categories 

according to the density of stipes per m2 (Superabundant >9 m-2; Abundant 1-9 m-2; 

Common 1-9/10 m-2; Frequent 1-9/100 m-2; Occasional 1-9/1,000 m-2; Rare <1/1,000 

m-2) (Hiscock, 1996). Kelp was assumed absent if surveys were made in an area, 

but no kelp was recorded. GAMs predicted the likelihood of kelp presence and were 

scaled to biomass using a conversion method that predicted associated likelihoods 

of each abundance category and assigned biomass values to each category (Table 

3.1).  
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Figure 3.2: Extensive debris from Laminaria spp. following a winter storm. Warebeth Beach, 
West Mainland, Orkney. Photo: Joanne S Porter. 

 

Predictive layers were produced using the Aquatera 22-m resolution bathymetry 

dataset for Orkney as the baseline. Wave fetch was estimated for each grid cell up to 

5 km away from the coast and less than 50 m deep. Fetch estimation was achieved 

using a modified version of the model presented in Burrows et al. (2008) and 

Burrows (2012). The model involved multiple searches (2000) for the nearest land 

around each cell in random directions and at randomly selected distances up to a 

maximum of 200 km. Wave fetch was then expressed as the summed distance to 

the nearest land in the 32 sectors of 11.25° width around each point. The resulting 

fetch values were calibrated against the existing UK-scale wave fetch layer (200 m 

scale, Ordnance Survey Great Britain) used in the original fitting of the GAM models 

(Figure 3.3). This novel wave fetch layer was also used in the Maxent models for the 

prediction of the extent and location of other biological blue carbon habitats (except 

saltmarshes).  
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Figure 3.3: Wave fetch for coastal cells around Orkney. Values are expressed as log10 of 
summed fetch in 32 11.25° sectors, in multiples of 200 m. The maximum fetch value for cells 
surrounded by 200 km of open sea would be log10 of 32000 or 4.5. 

 

Summer sea surface temperatures (averaged for July, August, September and 

October) had been found to best predict kelp presence across the UK, and so 1989-

2014 values were used from a NEMO-ERSEM (Butenschön et al., 2016) model run 

obtained from the National Oceanography Centre Southampton. Ocean colour, as 

chlorophyll a in mg m-3, was taken from the MODIS Aqua L3m analysis product for 
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2002-2010 at 9 km resolution. Temperature and ocean-colour datasets were re-

projected, resampled and interpolated into the 22 m resolution depth grid to match 

the wave fetch and depth datasets. These prediction layers were then presented as 

new prediction layers for the GAM models for each of the five kelp species, 

producing the models shown in Figures 3.3-3.5 and Appendix A.  

 

Known records of the occurrence of each of kelp (Laminaria hyperborea, Saccharina 

latissima, Saccorhiza polyschides, Laminaria digitata, Alaria esculenta) were 

extracted from the National Biodiversity Network Gateway (https://nbn.org.uk/) in 

May and June 2019. These occurrence records report only the presence of a 

particular species of kelp and not the absence of other species. Surveys such as the 

MNCR were, however, known to have collected information (including abundance) 

on multiple species and so records were merged by unique latitude, longitude and 

date combinations to recreate the kelp surveys. Where more than one species was 

recorded per survey, no data for unreported species were interpreted as true 

absence. Where only one kelp species was reported for a location, no data were 

interpreted as that species not having been recorded (i.e. unconfirmed absence). 

The aim of this process was to allow direct comparison with model predictions. 

Accuracy of locations of occurrence was rarely sufficient to allow comparison with a 

22 m-resolution prediction. Survey locations (see Figure 3.3 for example) were often 

in depths known not to support kelp populations, and were even on land in some 

instances.  

 

Notwithstanding the lack of accurate model validation, the predicted extents and 

patterns of abundance of each species follow observations reasonably well. The 

model appears credible based on what we know of the general ecology of the 

species and appears to broadly match the Orkney records shown as symbols.  

Additional survey data are required in the future to fully validate the model 

predictions. There are only a handful of kelp biomass estimates from around Orkney: 

some historical (e.g. ISR surveys, Walker and Richardson 1956) and some recent 

from the Wildweed report from diver and acoustic/drop down surveys. Most of the 

other data for kelp presence are not spatially accurate enough to match with model 

predictions. 

 

 

 

https://nbn.org.uk/
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Figure 3.4: Predicted biomass density of Laminaria hyperborea across Orkney. Symbols 
indicate recorded abundance of the species in surveys with absence (0, grey) and 
categories Rare to Superabundant as integers (1-6).  
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Figure 3.5: Predicted biomass density of Laminaria hyperborea around Stromness and the 
western entrance to Scapa Flow. Symbols indicate recorded abundance of the species in 
surveys with absence (0, grey) and categories Rare to Superabundant as integers (1-6).  

 

Exposed-coast species Laminaria hyperborea (Figure 3.4) and Alaria esculenta 

(Figure A3) were predicted and observed on the outer coasts and were generally 

less abundant in more sheltered locations. The less prevalent, moderately exposed 

kelp species, Saccorhiza polyschides, tended to be seen more in the vicinity of 

Scapa Flow and northern Mainland, as well as the more protected parts of Sanday 
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and Westray (Figure A2). Sheltered coastal areas supported higher predicted and 

observed abundance of sugar kelp Saccharina latissima (Figure A4). The ubiquitous 

shallow water species Laminaria digitata was widespread (Figure A5) and notably 

absent among deeper water observations. 

 

 Habitat extent, total biomass and standing stocks of carbon 

 

Areas of habitat for each species were taken from the maps of predicted presence. 

For the common kelp species, Laminaria hyperborea, Saccharina latissima and 

Alaria esculenta, areas were summed for places where the species were predicted 

to be more likely than not to be present (P (Abundance ≥ Rare) >0.5). Laminaria 

hyperborea habitat was predicted to occupy nearly 300 km2, with sugar kelp 

Saccharina latissima 180 km2 and Alaria esculenta 7 km2 (Table 3.1). These species 

were predicted to occupy distinct and largely non-overlapping regions (Figure 3.6), 

with Laminaria and Saccharina separated by wave exposure, and Alaria habitat 

restricted to only the most wave-exposed places. Setting a lower threshold of >10% 

likely to be found gave extent estimates for the rarer species of 5.2 and 2.6 km2 for 

Laminaria digitata and Saccorhiza polyschides, respectively.  

 

Summing values for predicted biomass gave similar rankings for the standing stock 

of each species to their habitat area (Table 3.1). By far the most kelp carbon 

standing stock (82%) was projected to be in living Laminaria hyperborea (83 000 tC), 

with the remainder sugar kelp Saccharina latissima (14%) and only 4% from Alaria 

esculenta, Laminaria digitata and Saccorhiza polyschides combined. 
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Figure 3.6: Predicted habitat for Laminaria hyperborea (green), Saccharina latissima 
(brown), and Alaria esculenta (purple), as areas where each species was expected to be 
more than likely to be present. Overlapping areas with both Laminaria hyperborea and 
Saccharina latissima are indicated in dark green. 
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Table 3.1 
 
Estimated total biomass and standing stocks of kelp species in Orkney. 

 

Species  Habitat 
area 
hectares 

a 

1000 
tonnes 
wet 
weight 

1000 
tonnes 
organic 
C c 

Scale 

d 
kg m-2 per abundance class 

(R,O,F,C,A,S) 

Alaria 
esculenta 

730 a 43 1.9 4 c(0.0003,0.003,0.03,0.3,3,3) 

Laminaria 
digitata 

520 b 18 0.8 4 c(0.0003,0.003,0.03,0.3,3,3) 

Saccorhiza 
polyschides 

260 b 24 1.1 4 c(0.0003,0.003,0.03,0.3,3,3) 

Saccharina 
latissima 

18000 a 311 14.0 3 c(0.0002,0.002,0.02,0.2,6,6) 

Laminaria 
hyperborea 

29200 a 1845 83.0 2 c(0.0017,0.0083,0.083,0.83,8.3,25) 

Total 48710 2241    

 

Notes: a where species is >50% likely to be present, b >10% likely to be present. c 

assuming that dry weight is 15% of fresh weight, and a 30% carbon content of dry 

matter (from Krumhansl and Scheibling, 2011). d Biomass scale from Burrows et al. 

(2017). 

 

3.2.2. Maerl beds 

 

The location of maerl observations were obtained from survey (observational) 

records including Phymatolithon calcareum and Lithothamnion glaciale (Marine 

Scotland, 2019c) (Figure 3.7). These included some presence/absence data without 

extent (Figure 3.8). To generate bed extent, mapped maerl locations were assessed 

by individuals with local expert knowledge. Only sites classed as “beds” were 

retained (rather than accumulations of a few small pieces). Beds were defined as per 

Burrows et al. (2014) covering areas greater or equal to 10,000 m2. Where extent 

was known (multiple adjacent observational data in SNH surveys and expert 

observation) this was defined by polygonal area. Where extent was not known, the 

average extent from Burrows et al. (2014) 10,000 m2 was applied.  
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Figure 3.7: Example of habitat classified as a maerl bed for this report, photographed at 
Tingwall, north mainland, Orkney. 

 

 
 
Figure 3.8: Quadrat-based quantification of maerl surface abundance, image taken by 
Heriot Watt Scientific Dive team at Weddell Sound, Scapa Flow, Orkney. Quadrat size is 0.5 
m2. 
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Figure 3.9: Maerl bed habitat (Phymatolithon calcareum and Lithothamnion glaciale) 
generated from SNH survey observations and local expert knowledge for extent. These 
distributions do not include observations of single or small numbers of thalli which are less 
likely to be large contributors to maerl TOC.  

 

3.2.2.1 Maerl bed thickness 

 

Very little information is available on maerl bed deposit thickness in Orkney waters, 

with the exception of the Wyre sound bed, which preliminary observations suggest 

has a mean thickness of at least 117.5 cm (Sanderson, Porter and Want, pers. 

comm.). Thus, while assessing organic and inorganic carbon, accumulations in the 

top 25 cm were used (see below) apart from Wyre sound where the thickness of 
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117.5 cm was used. These are still likely underestimates of the organic and 

inorganic carbon buried in Orkney maerl beds and thus provide the minimum value 

we can expect until more widespread deposit thickness data become available. 

 

3.2.2.2 Organic carbon 

 

Average total organic carbon (TOC) in the top 25 cm of maerl beds has been 

recently calculated for Scottish maerl beds at 7.38 tonnes TOC ha-1 (0.000723 

tonnes m-2) (Mao et al., 2019); this was applied to the maerl bed extent to generate 

Orkney maerl bed TOC with the exception of Wyre sound where this was 

extrapolated to its recorded thickness (117.5 cm). We note this extrapolation does 

not therefore include temporal variation in organic carbon accumulation and 

breakdown.  

 

3.2.2.3 Inorganic carbon 

 

Net inorganic carbon production by maerl bed-forming coralline algae is 22 g Cinorganic 

m2 y-1 (Van der Heijden and Kamenos, 2015) and the historic accumulation rate of 

Orkney maerl beds is estimated at 80 mm ky-1 (Van der Heijden and Kamenos, 

2015; Farrow et al., 1984). Together with maerl bed thickness, these suggest 

inorganic carbon standing stocks plus stocks combined of 323,180 g Cinorganic m-2 for 

Wyre sound and 68,750 g Cinorganic m-2 for all other Orkney maerl beds assuming 

deposit thicknesses of 120 and 25 cm respectively. 

 

Table 3.2 
 
Estimated areal extent and standing stocks plus stocks of maerl in Orkney. 

 

 Areal 
extent in 
hectares 

Thickness 
of maerl 

bed 

Tonnes 
OC m-2 

(Mao et 
al., 2019) 

Total 
OC 

(1000 t) 

Tonnes 
IC m-2 

(Mao et 
al., 

2019) 

Total IC 
(1000 t) 

Wyre 
Sound 

1120 120 cm 0.003469  38.8 0.32318 3618.5 

Rest of 
Orkney 
beds 

2526 25 cm 0.000738 18.6 0.06875 1736.8 

Total 3645  0.004207 57.5 0.39193 5355.2 
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3.2.3. Seagrass beds (Zostera) 

 

In Scotland, members of the seagrass genus Zostera typically occur from the lower 

saltmarsh limit (Zostera noltii) into the sublittoral zone (Zostera marina) (Figure 3.10) 

down to approximately 10 m below the surface (Burrows et al., 2014). Laffoley and 

Grimsditch (2009) suggested that although the seagrasses only cover a relatively 

small area of the global ocean floor (~1%), they are responsible for about 15% of the 

total carbon storage in the ocean (these figures include Posidonia species). 

Furthermore, these authors state that the slow turnover time of seagrass biomass 

and its sediment trapping and binding capacity makes this habitat an important sink 

for carbon with an average net sequestration rate of 83 g C m-2 y-1, translating into 

global storage of 27-40 Tg C y-1.  

 

Regarding the estimation of standing stocks of blue carbon contained in Orcadian 

Zostera beds, there are no currently available data for Zostera in Orkney waters. 

Röhr et al. (2016) reported values from the Baltic Sea area where organic carbon 

values were integrated to include the top 25 cm of sediment. This study reported 

organic carbon values of 627 g C m-2 in Finland Zostera (averaged over 10 beds) 

and almost six times more in Denmark Zostera (averaged over 10 beds) at 4324 g C 

m-2. A further publication on the blue carbon storage capacity of temperate seagrass 

meadows was published by Röhr et al., (2018). In this study three Zostera marina 

locations were studied in the Eastern Atlantic region including Ireland, France and 

Portugal but these data were aggregated together and so not considered suitable for 

use in the Orkney audit due to the wide latitudinal variation in the sites. From the 

Röhr et al. papers two key points arise: firstly, there is a great deal of variation in the 

organic carbon values between beds and between geographical regions; therefore, a 

large element of uncertainty is introduced when extrapolating from one bed to 

another. Secondly, there is a great deal more carbon stored in the underlying 

sediment than in the plants themselves and so it is essential to incorporate this 

aspect into programmes of work when Zostera beds are being sampled. 

 

In this audit direct contact with Dr Maria Potouroglou resulted in the provision of 

some data on Scottish Zostera from her PhD Thesis (Napier University, 2017). 

Estimates of organic carbon from the sediment of both intertidal Zostera marina and 

Zostera noltii meadows were provided to a sediment thickness of 100 cm. Samples 

of vegetated and unvegetated plots were sampled across seven broad locations 

down the east coast of Scotland including Forth, Tay, Montrose, Beauly, Moray, 

Cromarty and Dornoch. The mean organic carbon stock across the seven locations 

for the top 100 cm of sediment was 114 Mg C ha-1 (Appendix B). Further to this, 

there has been one small study estimating the organic carbon from subtidal 
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sediment of Zostera marina meadows produced, from samples taken in 2017 as part 

of an ongoing PhD project (Whitlock, in prep.). Samples of vegetated and 

unvegetated plots were sampled near Eynhallow, Orkney. The Eynhallow meadow 

was chosen as it is one of the known subtidal Zostera meadow in Orkney where 

seagrass beds are the dominant habitat. The Tingwall meadows is dominated by 

maerl making organic carbon estimates more difficult to retrieve, it is not included in 

the calculations here for that reason. The mean organic carbon stock for the top 100 

cm of sediment from the subtidal Zostera meadow was 77.94 Mg C ha-1. Both 

intertidal and subtidal Zostera studies used a regression equation from Potouroglou 

(2017) to convert organic matter via the loss on ignition method (at a 500 C burn) 

into organic carbon content. The two studies emphasise the difference in carbon 

content between intertidal and subtidal Zostera meadows, therefore both have been 

applied within this audit to produce the most accurate audit of the Orkney Zostera 

meadows at this time. 

 

With respect to the calculation of the areal coverage of Zostera in Orkney waters we 

first referred to the Scottish Natural Heritage commissioned report No. 765 (2014) 

which contained information regarding the presence of Zostera beds in Orkney 

(Thomson et al., 2014). In this report, the team used a combination of predictive 

modelling using the Maxent approach along with ground-truthing of some of the 

predicted points using a WEMo wave exposure model (NOAA, 2019). In the 

discussion of that report it was noted that overlaying known presence of Zostera on 

the predictive map for Orkney highlights that Zostera is predominantly found not only 

at specific depths and wave exposures, but that offshore slope is very important and 

that its inclusion in future models would improve the accuracy of the Orkney model. 

This was taken into consideration in Maxent in the new model we generated for this 

audit, however there was not a huge difference between the results whether that 

raster layer was included or not. 
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Figure 3.10: Zostera in Orkney, photographed off Tingwall harbour, north mainland. (Image: 
Dr Richard Shucksmith). 

 

The extracted areal extent for the Zostera from the predictive model was 14.23 km2. 

Carbon estimates for Zostera are presented in Table 3.3. 
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Figure 3.11: Maxent predictive model for Zostera in Orkney waters. 
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Table 3.3 
 
Estimated areal extent and standing stocks plus stocks of Zostera in Orkney. 

 

Species Areal extent 
of Zostera in 

hectares 

Mg of OC in 
top 100 cm 
of intertidal 
sediment 

per hectare 
(Potouroglo

u, 2017) 

Mg of OC in top 
100 cm of 
subtidal 

sediment per 
hectare 

(Whitlock, in 
prep.) 

Total organic 
carbon (1000 t) 

Zostera 
marina 

1243  77.94 96.8 

Zostera 
noltii 

180 114  20.5 

Total 1423   117.3 

 

3.2.4. Saltmarshes 

 

Saltmarshes are coastal wetland situated on sheltered coastlines from the Arctic to 

the tropics but are most common in temperate regions. Approximately 3% of the 

Scottish coastline is covered by saltmarsh occupying 5840 ha (58.4 km2) (Haynes, 

2012). The larger Scottish saltmarshes are mainly concentrated in the low-lying 

estuaries of the eastern and south-west coasts, with a large number of small highly 

restricted marshes located at the heads of sea lochs and in embayment’s in the west 

and north of the country.  

 

The Orkney Islands have a sparse coverage of saltmarsh, extending to 55.05 ha 

(0.55 km2) (Haynes, 2012) (Figure 3.12). The marshes are all estuarine in nature 

with the majority being situated behind spits of land providing a level of protection not 

found on exposed coastlines (Figure 3.13).  
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Figure 3.12: Saltmarsh at Waulkmill Bay, Orkney (Image: Simone Riegel). 

 
Figure 3.13: Waulkmill marsh (5.54 ha) a typical example of the saltmarshes found on the 
Orkney Islands (a) Aerial photo of the marshes (b) Spatial extent (HabMoS) of the 
saltmarsh. 

 

The spatial extent of the saltmarsh was assessed using data accessed through the 

Habitat Map of Scotland (HabMoS). By comparing the HabMoS data to aerial photos 

(Digimap: aerial) inconsistences were identified between the two data sets. Within 

the HabMoS data clifftop sites were identified as saltmarsh (Figure 3.14). These 
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clifftop sites were covered by saline tolerant vegetation similar to that of saltmarsh 

habitats but do not have any significant underlying soil and to include them as part of 

this audit would result in a small overestimation of the quantity of OC held with the 

Orkney saltmarshes.  

 
Figure 3.14: An example of the misidentification of saltmarsh habitat on the Orkney Islands 
(a) HabMoS saltmarsh extent (b) Aerial photograph illustrating that the site is on a clifftop 
south of the Bay of Skaill.  
 

All saltmarshes identified in the HabMoS were checked against aerial photos to 

assure that all saltmarsh was correctly classified. Through this process the spatial 

extent of saltmarsh on the Orkney Islands was revised to 48.94 ha (0.49 km2). 
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3.2.4.1 Saltmarsh carbon values  

 

Globally it has been shown that saltmarsh habitats can trap several orders of 

magnitude more OC per area unit than the world’s forests (McLeod et al., 2011). It is 

estimated that globally saltmarshes soils store between 0.4-6.5 Gt OC (Duarte et al., 

2013) with a further 4.8-87.3 Mt OC being buried annually (McLeod et al., 2011). The 

global average saltmarsh store of OC is 162 tonnes ha-1 (Pendleton et al., 2012) with 

an estimated 218 ± 24 g OC m-2 y-1 being sequestered (McLeod et al., 2011).  

 

To determine OC values for the saltmarsh found on the Orkney Islands two 

saltmarshes were sampled in April 2019 as part of the NERC C-SIDE project (C-

SIDE, 2019). The saltmarshes at the Loch of Stenness (58.975343,              -

3.248660) and Waulkmill marsh (58.942162, -3.086477) were the focus of the 

sampling where a total of 17 and 11 gouge cores (3 cm diameter) were collected at 

each site, respectively. The samples were returned to the University of St Andrews 

for analysis with key data (Table 3.4). 

 

Table 3.4 
 
Physical property and elemental data from two Orkney saltmarshes provided by the C-SIDE 
project to allow the calculation of OC stocks 

 

Saltmarsh Saltmarsh 
Area 

Saltmarsh 
Thickness 

Dry 
Bulk 

Density 

OC 
Content 

Soil OC 
Stock 

OC 
Density 

 (ha) (m) (kg m-3) (%) (tonnes) (tonnes 
ha-1) 

Stenness 3.77 0.18 ± 0.11 420 ± 
200 

14.64 ± 
7.98 

417 ± 66 110 ± 17.5 

Waulkmill 5.54 0.18 ± 0.17 390 ± 
170 

16.59 ± 
8.29 

645 ± 135 116 ± 24 

 

To calculate the quantity of OC held within the Orkney saltmarshes the average OC 

density for the two surveyed marshes (113 ± 20.9 tonnes ha-1) was applied to the 

saltmarsh areal coverage (48.94 ha) to calculate the total saltmarsh OC stock of 

5569 ±1022 tonnes (Table 5.1). 

 

3.2.5. Horse mussel (Modiolus modiolus) 

 

The horse mussel Modiolus modiolus is well represented in shallow subtidal waters 

around Orkney (Mair et al., 2000) (Figure 3.15). Some records are of isolated 
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individuals or of sparse, low-density populations, but areas where the number of 

individuals is dense enough to be regarded as beds are formed in at least three 

localities in the region. Records of horse mussel beds in the region have increased 

recently as Marine Protected Area (MPA) search feature surveys have applied 

modern habitat mapping methods to poorly known regions of the Scottish seas (Hirst 

et al., 2012; Moore et al., 2012, 2013). In Orkney waters Modiolus beds have been 

recorded within Scapa Flow close to the wreck of SMS Karlsruhe (Sanderson et al., 

2014) covering an area of around 0.2 km2 (Figure 3.16). Off the small island of 

Copinsay an area of 0.42 km2 has been recorded (Hirst et al., 2012). In total the 

extent of the known beds and other patches modelled in Orkney waters give rise to a 

total estimate of 38.28 km2 of Modiolus coverage. Currently a limited number of the 

predicted areas have been ground truthed by a series of drop down video surveys, in 

situ diver video or photography. This is almost certainly an underestimate of the full 

extent, and further survey in future will no doubt add to the knowledge of the extent, 

connectedness and thickness of sedimentary deposits underlying the habitat in 

Orkney regional waters (Mackenzie et al., 2018). 

 

Modiolus modiolus is a large bivalve with a robust shell, and where it occurs in dense 

beds the accumulated relict shells may be important repositories of biogenic 

carbonate. In the Burrows et al. (2017) report, a mean thickness of 75 cm of 

Modiolus beds was used to calculate blue carbon contributions based on field 

sampling. It is possible that the Orkney deposits are thicker than 75 cm but until core 

samples are conducted, it is difficult to estimate the full extent of the underlying 

carbonate stores. This knowledge gap represents a very significant underestimate of 

the carbon storage attributable to horse mussel beds. 
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Figure 3.15: Example of a feeding horse mussel (Modiolus modiolus) at the site of the 
shipwreck of Karlsruhe, west of Cava Island, Orkney. 

 

Density of living M. modiolus within the Orkney beds is patchy but the SACFOR 

category of Superabundant (10-90 individuals m-2) was recorded at several stations 

at the Karlsruhe site (Sanderson et al., 2014), Copinsay and Pentland Firth (Hirst et 

al., 2012).  
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Figure 3.16: Clumps of horse mussels at the Karlsruhe bed, overlain by dense aggregation 
of the brittlestar Ophiothrix fragilis. 

 

Previous Inorganic carbon estimates were reported by Burrows et al. (2014) based 

on 5-7 cm deep grab samples of 2219 g CaCO3 m-2 and a 12% inorganic carbon 

percentage of CaCO3. The estimates were based on a bed of 75 cm thickness. From 

this a calculation was made of 4000 g IC m-2 as the area-specific stock estimate 

(Burrows et al., 2014). This estimate was used in the audit for Inorganic Carbon. 

 

Despite extensive literature review, no measurements could be found for the amount 

of organic carbon present within the tissue of horse mussels. This knowledge gap 

was addressed in the audit by performing LOI burn ups on a modest number of 

horse mussels (n=6) (Length = 86-111 mm, Mean length = 99.66 mm, Standard 

Deviation = ± 8.63) collected from the bed adjacent to Cava Island.  

 

From the LOI results a mean value of 13.78 ± 6.6 S.D. g C (as organic matter) per 

individual was calculated. No data are available for horse mussels regarding the 

relative contribution of Carbon, Nitrogen and Phosphorus in the tissue or the shell. In 

Table 3.5 a summary of mean values is given from the recent review by Olivier et al. 

(2018) for the closely related genus Mytilus. In the absence of empirical data on C N 

P ratios for horse mussel tissue, in the audit we base calculations for organic carbon 

in horse mussel tissue on the value of 45.98% of the dry weight. This was used to 

adjust the value for tissue organic carbon obtained in the LOI method to account for 

the N and P components. 
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Table 3.5 
 
Chemical composition (carbon (C), nitrogen (N), phosphate (P) (% dry weight) of shellfish, 
organised by species of mussel and average values. A dash indicates no value presented. 
Table adapted from Olivier et al., 2018. 

 

 Tissue Tissue Tissue Reference 

Species C N P  

Mytilus edulis 45.98 11.40 0.708 Zhou et al. (2002) 

Mytilus edulis - 10.6 0.80 Haamer (1996) 

Mytilus edulis - 8.1 1.24 Cantoni et al. (1977) 

Mytilus 
galloprovincialis 

- 6.2 - Miletic et al. (1991) 

Mussel mean  

(± 1SE) 

45.98 9.08 ± 1.19 0.92 ± 0.16 Olivier et al. (2018) 

 

The areal extent of horse mussel bed in Orkney waters was modelled using the 

Maxent method. A caveat of the model in this instance is that because there were no 

estimates of horse mussel presence in depths of more than 50 m, the model was not 

able to predict whether the presence of horse mussels beyond the 50 m contour. 

This does not mean that there are not any horse mussels present in those depths, 

just that the model cannot predict them due to the lack of data. 

 

Figure 3.17 illustrates the results from the model. Using a probability of occurrence 

value of >0.9 the predicted area of horse mussel reef in Orkney waters is 38.28 km2. 

Estimated areal extent and standing stocks plus stocks of horse mussel carbon in 

Orkney are shown in Table 3.6. 
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Figure 3.17: Maxent model illustrating the predicted extent of horse mussel beds in Orkney 
regional waters.  
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Table 3.6 
 
Estimated areal extent and standing stocks plus stocks of carbon in horse mussel habitats in 
Orkney. 

 

Areal 
extent 

hectares 

Abundance 
of individuals 

m-2 

Inorganic 
Carbon 

m-2 
(Burrows 

et al., 
2014) in g 

(top 75 
cm) 

Inorganic 
Carbon 

(1000 t) in 
top 75 cm 

Organic 
carbon 
tissue g 

m-2 

Organic 
carbon 
(tissue) 
(1000 t) 

3828 SACFOR 
Super 

Abundant 
(10-90 

individuals 
m-2) 

4000 153.1 348.63 13.35 

 

3.2.6. Flame shell (Limaria hians) 

 

The flame shell Limaria hians is an epifaunal bivalve that constructs a “nest” made of 

secreted protein byssus threads (Figure 3.18). Woven in amongst the threads are 

pieces of shell and algae. Sediment gets trapped among the nest material and is 

used to help form the galleries that are built by the flame shell (Hall-Spencer and 

Moore, 2000a) (Figure 3.19).  

 
 
Figure 3.18: Flame shell (Limaria hians) among nest material comprising the red seaweed 
Phylophora crispa. 
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In dense populations these nests can form continuous reef-like structures up to 50 

cm thick and several hectares in extent.  

 
 
Figure 3.19: Flame shell (Limaria hians) nests forming continuous reef-like structure in 
Gutter Sound, Scapa Flow. 

 

Limaria nest samples were gathered by Heriot Watt Scientific Dive Team from the 

‘Mystery Block’ location at Lyness, using four replicate 21 cm depth buckets with a 

diameter of 21 cm, as macrofaunal cores. These were pushed down by hand into the 

sediment, twisted around to enable capturing of the nest material and then lids were 

carefully manoeuvred into place to retain the collected material. These sealed bucket 

cores were recovered to the surface and landed onto the survey vessel. A limitation 

of this method is that it does not sample any deeper than 21 cm into the nest and 

sediment surface. Thicker nest material and the deposits laid down underneath the 

surface sediment could extend much further and need to be investigated in future 

studies to ascertain the sediment thickness and its carbon content. Detailed analysis 

of the collected material was conducted back at the laboratory 

 

Each bucket was emptied into a large sorting tray and examined thoroughly by hand, 

to sort out the L. hians individuals from within the nest structures. This process of 

sorting through material was repeated several times to ensure that all Limaria were 

separated from the nest material and the number of L. hians was counted for each of 

the core samples. The mean number of L. hians per core was 46 ± 18.3 S.D. (N=4) 

(Hood, 2016). 
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A total of 45 whole individuals of L. hians from across the size range were selected 

and weighed. Each individual was then separated into tissue and shell material and 

the wet weight of these components recorded. Sub- samples of wet nest material 

were also weighed. All these samples were oven-dried at 100 ºC for 24 hours, then 

reweighed to obtain a dry weight, before going into a carbon burn-up in the muffle 

furnace. A standard LOI protocol was used to derive carbon values for Limaria shell, 

tissue and nest material. Average organic and inorganic carbon values were 

measured. For Limaria shell the amount of carbon was 83.9% inorganic and 16.1% 

organic carbon. The ratio of overall inorganic to organic carbon in the Limaria 

individuals (tissue and shell combined) works out at an average of 77% organic 

carbon to 23% inorganic carbon. Average organic carbon of shell and tissue per 

Limaria individual was 0.716 g (N=45, Standard Deviation = 0.205). Average 

Inorganic carbon per Limaria individual was 0.197 g (N=45, Standard Deviation = 

0.23). 

 

Nest materials contained a mixture of stones, shell fragments, algae and associated 

invertebrate fauna all held together by copious protein-based byssus threads. The 

ratio of shell:stone:byssus:algae in the nest material was 1:4.4:9.1:2) across the 4 

replicate bucket core samples. From the replicate carbon burn ups of nest material 

minus the stones, the OC represented 36% of the dry weight, with IC representing 

64%. 

 

The carbon values of the shell, tissue and the nest material were scaled up and 

combined to estimate the amount of carbon per square metre. A caveat here is that 

the OC values generated during the LOI are not adjusted for the presence of N and 

P due to a lack of data on the proportions of those within Limaria tissue. 

 

Areal extent of the L. hians was modelled using the Maxent tool, and checked by 

comparing with in situ spot records or extent records from either diver or drop down 

video surveys. Mean density of L. hians individuals was estimated at 412 m-2 (Hood, 

2016). In Figure 3.20, the areal extent of L. hians cover is illustrated. Using a 

Probability of Occurrence level of >0.9, an area of 17.99 km2 is predicted for the 

extent of L. hians nest cover in Orkney regional waters. Estimated areal extent and 

standing stocks of L.hians in Orkney are shown in Table 3.7. 
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Figure 3.20: Areal extent of Limaria hians in Orkney regional waters as predicted by Maxent 
model. 
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Table 3.7 
 
Estimated areal extent and standing stocks of Flame shells in Orkney. Note that Total 
Carbon is a combined figure including shell, tissue and nest carbon values. This is 
calculated from the top 21 cm of nest material. 

 

Areal 
extent 

hectares 

Estimated 
number of 
individuals  

m-2 

Total number 
of individuals 

OC 
1000 t 

IC 
1000 t 

Total Carbon 
(Limaria 

hians and 
nest material) 

(1000 t) 

1799 412 7,411,880,000 1.1 6 7.1 

 

3.2.7. Brittlestar beds 

 

It is common to find dense beds of brittlestars in Scottish inshore waters. This is 

particularly the case in west coast sea loch environments, however, extensive 

brittlestar beds have also been reported from Orkney and Shetland waters (Hughes, 

1998) (Figure 3.21). In Orkney waters, the main bed-forming species is Ophiothrix 

fragilis, which forms dense accumulations on the hulls of shipwrecks and on the 

seabed (Figure 3.22). 

 

 
 
Figure 3.21: Dense Ophiothrix fragilis bed overlying horse mussel bed off Cava Island, 
Scapa Flow, Orkney with the predatory Seven-armed seastar (Luidia ciliaris). 
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Figure 3.22: Dense aggregations of Ophiothrix fragilis on the hull of the SMS Karlsruhe, off 
Cava Island, Scapa Flow, Orkney. 

 

Brittlestars are not recognised as a Priority Marine Feature and are not designated 

under other protective status categories. As such, estimates of brittlestar extent and 

abundance are sparse in Scottish waters (Burrows et al., 2014). From a blue carbon 

perspective brittlestars are significant, as they have an endoskeleton of calcareous 

plates. As they are often abundant in benthic marine environments it is likely that 

they may play an important role in the marine carbon cycle (Lebrato et al., 2010). A 

study by Migne et al. (1998) in the Dover Strait recorded a range in the density of 

individuals over a twelve-month period in June 1992 to June 1993 between 31 to 

1188 individuals m-2. The mean abundance was 476 ± 400.7 (N=26), showing that 

the density of the brittlestars between the sample stations was highly variable. 

Carbon burn ups gave an estimate of 66.2 g C m-2. In Orkney waters a large 

brittlestar bed was surveyed north of Cava Island. As no previous data on the 

brittlestar abundance were available for Orkney waters and in view of the high 

variability recorded by the Migne study (1998), a single in situ diver transect (25 m) 

across the brittlestar bed adjacent to the Karlsruhe wreck was undertaken in March 

2019 by Heriot Watt Scientific Dive team. A series of high-resolution photo quadrats 

were obtained (N=10) (Figure 3.23). This allowed zooming in to the image and 

counting the disks of the brittlestars. Subsequent analysis of the digital images 

allowed the calculation of an average abundance per 0.5 m2 quadrat of Ophiothrix 

fragilis along the transect, of 59.9 ± 38.4 S.D. brittlestars (N=10) scaling up to 240 

individuals m-2. 
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Figure 3.23: Dense Ophiothrix fragilis overlying clumps of the horse mussel Modiolus 
modiolus along a 25 m transect line adjacent to the wreck of SMS Karlsruhe, Scapa Flow, 
Orkney.  

 

Carbon LOI burn up experiments gave an average total carbon content (organic 

carbon plus inorganic carbon added together) of 0.566 g C per brittlestar (N=5); OC 

represented 41.7% of total C and IC represented 58.3%.  

 

Using Maxent, the predicted distribution of Ophiothrix fragilis in Orkney waters is 

47.56 km2 (Figure 3.24). Estimated areal extent and standing stocks of brittlestar 

beds in Orkney are shown in Table 3.8. These estimates do not account for the 

underlying sediment stocks on which the brittlestar beds are lying, and hence the 

numbers presented here will be an underestimate of the total carbon within the 

habitat. In areas where brittlestars overly horse mussel bed, sediment estimates of 

carbon are estimated only on the basis of horse mussel sediment thickness. In future 

work, it may be useful to consider areas with co-occurring habitats to be analysed 

and compared against ‘pure’ Modiolus and ‘pure’ brittlestar estimates. This may help 

to elucidate the relative contribution of each habitat type to the carbon 

measurements in these co-occurring habitat types. 
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Figure 3.24: Maxent model prediction of extent of Ophiothrix fragilis in Orkney waters. 

 

Table 3.8 
 
Estimated areal extent and standing stocks of brittlestar beds in Orkney. 

 

Areal 
extent of 

Ophiothrix 
fragilis 

hectares 

Number of 
individual

s / m2 

Total number 
of individuals 

Organic 
Carbon 

(1000 t) 

Inorganic 
Carbon 

(1000 t) 

Standing 
stock 

Carbon 
(1000 t) 

4756 240 11,414,400,000 2.71 3.79 6.5 
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3.2.8. Bryozoan thicket 

 

In surveys of Orkney waters by SNH and by Seasearch, observations of bryozoan 

communities have recorded two main types of thickets or turfs. The first of these is 

dominated by the large erect colonies of species such as Flustra foliacea (also 

known as Hornwrack) (MarLIN, 2019a) and its closely related species Securiflustra 

securifrons (Figure 3.25). These species are found attached to bedrock or large 

boulders, cobbles and shells. They are tolerant to scour and often flourish in strong 

tidal flow conditions, such as those experienced around parts of the Orkney 

coastline. There are for example dense aggregations of Flustra foliacea on bedrock 

and boulders around the wreck of the fishing trawler James Barrie in the mouth of 

Hoxa Sound (Scapa Flow Wrecks, 2019). The second type of bryozoan thicket or turf 

is a relatively short turf found as an understorey in kelp forest and/or as a coating on 

the surfaces of deeper rocky reef, boulders and cobbles (Figure 3.26). This type of 

turf often consists of species mixes with Bugulina flabellata, Scrupocellaria reptans, 

Crisia species, Bicellariella ciliata and Cellaria species (Figure 3.27). There is a third 

type of Bryozoa thicket occurs in wider Scottish waters beyond Orkney, particularly 

off the west coast, which is dominated by those with coral like colony structures or 

twiggy branched structures, for example Pentapora foliacea or Omalesecosa 

ramulosa. This third type of thicket may form an important component in future 

regional audit projects. In the Orkney Blue Carbon Audit our focus is on the most 

dominant type i.e. the first one described, in this case, Flustra foliacea. It should also 

be noted that there is a current lack of data on the carbon content of many species of 

Bryozoa. Our estimate of the contribution of bryozoan thicket to the Blue Carbon 

stores of Orkney will necessarily be an underestimate, however, it is useful to 

undertake an initial estimate. This will be the first of its kind, as Bryozoa don’t have 

any kind of conservation designation status and so have not been the subject of 

previous search feature work. The skeleton of Flustra foliacea comprises a mix of 

calcium carbonate and of chitinous material (Figure 3.28). This blend of materials 

gives the colonies a flexibility, allowing them to flex and bend in strong tidal 

conditions, well suited to the hydrodynamic conditions around Orkney’s coastline.  
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Figure 3.25: Thickets of Flustra foliacea besides the wreck of the trawler ‘James Barrie’ in 
Scapa Flow, Orkney (Image: Bob Anderson). 

 

 
 
Figure 3.26: Mixed bryozoan crusts and turf on bedrock and boulders, typical of habitats 
along the west coast of Orkney. 
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Figure 3.27: Crisia-dominated Bryozoan turf among Jewel Anemones, typical of submerged 
bedrock and pinnacle habitats off Orkney west coast. 

 

 
 
Figure 3.28: A dense turf of the bryozoan Flustra foliacea in Orkney waters. 

 

Using in situ diver surveys, data were collected on the density of Flustra foliacea 

using estimates of percentage cover in 10 x 10 cm quadrats. Average number of 
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Flustra foliacea fronds and average wet weight of material per quadrat were also 

recorded. LOI analysis was performed to determine the amount of organic and 

inorganic carbon in replicate subsamples taken from Flustra foliacea colonies. The 

average total carbon of Flustra foliacea is 0.701 kg m-2. 

 

The areal extent of Flustra foliacea dominated bryozoan thicket was estimated by 

using a Maxent predictive model (Figure 3.30). The overall predicted cover as 

extracted from the model was 94.16 km2 with 47.4 ton C (Table 3.9). 

 

 
Figure 3.30: Maxent predicted model of Flustra foliacea extent in Orkney waters. 
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Table 3.9 
 
Estimated areal extent and standing stocks of Flustra foliacea in Orkney. 

 

Areal extent of 
Flustra foliacea 

hectares 

OC/IC g m-2 Organic 
Carbon 
(1000 t) 

Inorganic 
Carbon 
(1000 t) 

Standing 
Stock of C 

(1000 t) 

9416 473/30 44.6 2.8 47.4 

 

4. Habitat identification: Sedimentary environments  

 

4.1. Introduction 

 

Marine sediments are known to be environments where large quantities of C are 

trapped and stored over long periods of time (> 103 y) (Hedges, 1995; Smeaton et 

al., 2016, 2017). Currently there is no global estimate of the quantity of C stored in 

sediments but within Scottish territorial waters it is estimated that 592 Mt of OC and 

1738 Mt of IC are stored in the top 10 cm of the sediment (Burrows et al., 2014, 

2017). Furthermore, the sea lochs (fjords) of Scotland are estimated to store 252.4 ± 

62 Mt OC and 214.7 Mt of IC in their postglacial sediments (Smeaton et al., 2017).  

 

These sedimentary environments do not directly capture CO2 from the atmosphere 

rather they are recipients of C from other environments. The source of the C buried 

in these sediments is derived from marine (Santschi et al., 1990; Glud, 2008; 

Krause-Jensen and Duarte, 2016), terrestrial (Bianchi, 2011; Bauer et al., 2013; 

Smeaton and Austin, 2017; Cui et al., 2017) and geological sources (Dicken et al., 

2014; Galy et al., 2017). Globally it is estimated that marine sediments bury 

approximately 160 Mt OC y-1 (Hedges et al., 1995; Smith et al., 2014) with non-

deltaic shelf sediments such as those found surrounding the Orkney Islands 

representing 42% of this total. The quantity of IC being buried in sediments globally 

remain poorly constrained.  

 

Within Scottish waters there are very few data available on the rate at which C is 

buried in marine sediments therefore it is currently not possible to include annual C 

burial rates for Orkney; instead, the focus of the audit is to quantify the C held within 

the surficial sediments surrounding the Orkney Islands.  

 

4.2. Substrate identification and spatial extent  

 

The Folk sediment classification scheme (Folk, 1954) was chosen as it is 

internationally prevalent, allowing this audit to benefit from existing sedimentological 
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and OC data (i.e. BGS sediment maps). Furthermore, by using the Folk classification 

scheme the outputs from the mapping can be easily integrated and compared with 

other such studies (e.g. Diesing et al., 2017). 

 

The Folk sediment classification can be used at three resolutions comprising 16, 7 

and 5 classes (Figure 4.1) (Kaskela et al., 2019). Where existing data resolution 

allowed, the most detailed Folk classification was used. 

 

4.2.1. Sediment type (folk classification) 

 

 
Figure 4.1: The Folk sediment triangle and the hierarchy of Folk classification (15, 6 and 4 
classes), plus an additional class “rock and boulders,” indicated by the arrow) used in the 
EMODnet Geology project (from Kaskela et al., 2019).  

 

  Sediment spatial distribution (BGS 250k)  

 

The sediment type data were extracted from the 250k BGS SeaBed Sediment Map 

(accessed from: Digimap: Geology) and used to map the spatial distribution of the 

different sediment types within the 12 nm zone around the Orkney Islands (Figure 

4.2)  
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Figure 4.2: Spatial distribution of the different sediment types surrounding Orkney derived 
from the 250k BGS SeaBed Sediment Map (Accessed from: Digimap: Geology). See Figure 
4.3 for details of the central unmapped region.  
 

The sediments around Orkney can be classified as 10 separate sediment types 

(Table 4.1) in accordance with the Folk classification (Folk, 1954). In total the BGS 
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data covers an area of 6250 km2 leaving an area of 1040 km2 between the islands 

unmapped at this resolution (Figure 4.2). 

 

Table 4.1 
 
Areal extent of the different sediment types found with the 12 nm zone surrounding Orkney.  

 

Sediment Type 
Areal Extent  

Sediment Type 
Areal 
Extent  

 (km2)  (km2) 

Gravelly Muddy Sand 55 Sandy Gravel  2293 

Gravel 13 Slightly Gravelly Muddy Sand 78 

Gravelly Sand 1932 Slightly Gravelly Sand 723 

Muddy Sandy Gravel 82 Sand 806 

Muddy Sand  9 Rock 259 

 

 Sediment spatial distribution (BGS 1:1 Million)  

 

To map the sediment type in the 1040 km2 area between the islands a coarser 

resolution (1:1 million) sediment map was utilised (Figure 4.3).  
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Figure 4.3: Spatial distribution of the different sediment types within the unmapped region 
between the islands of Orkney derived from the 1:1 million BGS Sediment Map (Accessed 
from: BGS Offshore Geoindex) 

 

The data were accessed through the BGS Offshore Geoindex, unlike the 250K BGS 

SeaBed sediment map that uses the full Folk classification this lower resolution map 

uses the simpler 5 Folk classification (Figure 4.1). Within the unmapped region four 

seabed types were identified (Table 4.2)   
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Table 4.2 
 
Areal extent of the different sediment types found within 1040 km2 area between the islands 
of Orkney. 
 

Sediment Type Areal Extent 

 (km2) 

Coarse Sediment 689 

Sand and Muddy Sand 94 

Mixed Sediment 51 

Rock  207 

 
4.2.2.  Sediment thickness 

 

In this audit a conservative approach has been taken, with only the top 10 cm of 

sediment included in the calculations, as there are limited data on sediment 

thickness, dry bulk density and OC content beyond the surficial sediments. Through 

examination of the limited legacy seismic reflection data (1970s) from the area the 

sediment thickness varies between approximately 2 to 20 m which is supported by 

the BGS Quaternary Deposits Map which suggests that around Orkney the majority 

of the sediment is between 5 to 20 m thick. Therefore, it is recognised that stocks 

reported here represent a small fraction of full-thickness sedimentary carbon stocks.  

 

4.3. Geological Blue Carbon Values 

 

4.3.1. Data availability and quality 

 

 Organic carbon  

 

Within the 12 nm boundary of the study there are few OC data available that are 

representative of the whole 12 nm area. Previous sampling of Orkney sediments has 

been undertaken for specific reasons such a Polycyclic Aromatic Hydrocarbon (PAH) 

monitoring (Webster et al., 2001) which found surficial sediment OC values of 

between 0.1 and 5% across nine coastal sites. Additionally, monitoring of local 

aquaculture sites is undertaken regularly, though data from around such sites cannot 

be used because of the increased organic matter loading associated with the 

aquaculture but the control sites used in this monitoring are potentially an important 

data resource. Cooke Aquaculture provide data for 26 control sites which are 

regularly monitored, 24 of these sites only had % organic matter (OM) content 

measured by Loss on Ignition (LOI). The organic matter content of these samples 



57 

 

ranges between 0.58 and 4.65 % OM. The other two sites have OC data which 

ranges between 0.43-0.75% OC. Both the aquaculture and the PAH monitoring 

(Webster et al., 2001) data comes from near shore environments and is not 

representative of the sediments found within the 12 nm zone which is largely similar 

to continental shelf in nature (Figure 4.2).  

 

Currently there is a knowledge gap in terms of the bulk density and OC content of 

sediment in the Orkney area and therefore generic values from the adjacent North 

Sea area were applied (Diesing et al., 2017). 

 

 Carbon values for geological substrate type 

 

Below the dry bulk density values and the associated OC values derived from North 

Sea (Deising et al., 2017). 

 

Table 4.3 
 
Dry bulk density (kg m-3) and OC (%) values for each of the 9 Folk classes derived from 
North Sea samples (Diesing et al., 2017). The lower and upper bounds of our estimates 
(based on the 5th and 95th percentiles). 

 

 Dry Bulk Density (kg m-3) OC (%) 

Substrate Type P5 P95 Mean SD P5 P95 Mean SD 

Mud 536 624 580 29 0.59 1.11 0.88 0.2 

Sandy Mud 646 1011 828 120 0.54 1.11 0.78 0.21 

Muddy Sand 1111 1429 1323 99 0.27 0.92 0.54 0.22 

Sand  1454 1535 1511 25 0.1 0.5 0.24 0.12 

Slightly gravelly sandy mud 789 1030 945 73 0.55 0.93 0.67 0.16 

Slightly gravelly muddy 
sand 

1192 1433 1357 80 0.32 0.82 0.54 0.22 

Slightly gravelly sand 1467 1534 1512 21 0.07 0.43 0.22 0.11 

Gravelly mud 845 1080 1011 102 0.7 1.69 0.91 0.51 

Gravelly muddy sand 1287 1447 1397 51 0.3 0.77 0.49 0.23 

Gravelly sand 1486 1534 1515 16 0.12 0.44 0.23 0.1 

Muddy Gravel 1234 1394 1314 125 0.62 0.62 0.62 0.01 

Muddy sandy gravel 1438 1510 1482 25 0.16 0.45 0.29 0.1 

Sandy gravel 1492 1534 1521 13 0.12 0.35 0.19 0.09 

Gravel 1511 1535 1529 8 0.13 0.25 0.18 0.05 
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The data extracted from Diesing et al. (2017) can be directly applied to the sediment 

data from the 250K BGS SeaBed sediment data but the dry bulk density and OC 

(Table 4.3) does not directly map onto the 1:1 million scale sediment data. To 

remedy this, different sediment types were reclassified using the simplified 5 Folk 

classes and mean values for dry bulk density and OC data calculated (Table 4.4). 

 

Table 4.4 
 
Dry bulk density (kg m-3) and OC (%) values for sediment classified using the 5 Folk Class 
scheme. The lower and upper bounds of our estimates (based on the 5th and 95th 
percentiles). 

 

 Dry Bulk Density (kg m-3) OC (%) 

Substrate Type P5 P95 Mean SD P5 P95 Mean SD 

Coarse Sediment 1496 1534 1522 12 0.12 0.35 0.16 0.08 

Sand and Muddy Sand 1129 1331 1253 64 0.31 0.78 0.49 0.17 

Mixed Sediment 1177 1354 1291 83 0.45 0.90 0.56 0.21 

 

 Inorganic carbon 

 

BGS collected significant numbers of surficial sediment samples during the 1970s 

and 80s, and, as part of this programme, carbonate content of the sediments was 

regularly analysed. All carbonate data for the 12 nm zone around Orkney were 

extracted from the BGS Offshore Geoindex (Figure 4.4). 
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Figure 4.4: Carbonate content of surficial sediment (data accessed from: BGS Offshore 
Geoindex). 

 
4.4. Calculations 

 

4.4.1. Organic carbon stocks 

 

calculations. The sedimentary spatial maps provided the area (km2) of the different 

sediment types (Table 4.1, 4.2). Multiplying the area by a uniform thickness of the 

sediment (0.1 m) allows the volume of sediment to be calculated. The sediment 

volume is converted to mass (kg) by multiplying it by the appropriate dry bulk density 

(kg m-3) value (Table 4.3, 4.4). Using the %OC for each sediment type, the total OC 

held within the surface 10 cm of the sediment was calculated. 

 

4.4.2. Inorganic Carbon Stocks  

 

The carbonate data extracted from the BGS Offshore Geoindex was initially 

corrected to %IC (12% of CaCO3 is C). The IC data were linked to the underlying 

sediment type (Figures 4.2 and 4.3) for each point, allowing IC values to be 

associated with different sediment types (Table 4.5). The same calculation method 
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discussed in Section 4.4.1 was then used to estimate the quantity of IC stored in the 

surficial sediments.  

 

Table 4.5 
 
IC (%) values for each of the sediment types found around Orkney derived from the BGS 
point data (Figure 4.4) and the lower and upper bounds of our estimates (based on the 5th 
and 95th percentiles). 

 

 IC (%) 

Substrate Type P5 P95 Mean SD 
1:250K Scale 

Gravelly Muddy Sand 3.11 5.94 4.56 1.02 
Gravel 0.45 6.87 2.07 2.06 
Gravelly Sand  2.05 8.25 6.70 1.58 
Muddy sandy gravel  6.79 7.54 7.17 0.53 
Sandy Gravel 0.23 8.20 5.38 2.51 
Slightly Gravelly Muddy Sand 3.14 3.36 3.25 0.15 
Slightly Gravelly Sand 2.43 8.08 6.20 1.68 
Sand  0.16 7.67 5.19 2.22 

1:1 Million Scale 
Coarse Sediment 0.91 7.77 4.72 2.05 
Sand and Muddy Sand 3.11 5.94 4.56 1.02 
Mixed Sediment 6.79 7.54 7.17 0.53 
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4.4.3. Sedimentary C density  

 

The OC and IC density was calculated by normalizing the C stocks by the areal 

extent of each of the sediment types; the C density estimates were then applied to 

the sediment type map (Figure 4.2) to allow wide-scale mapping of the concentration 

of carbon (tonnes ha-1) across Orkney waters (Figure 4.5).  

 
Figure 4.5: Carbon density (Area normalized Carbon Values; tonnes ha-1) across the 
surficial sediments (top 10 cm) within the study area (a) OC density (b) IC density.  
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5. Blue carbon results of Orkney Waters 

 
5.1. Carbon audit results   

 

In Table 5.1 the results from the audit are given by biological habitat type following 

the classification scheme described in Section 2. In Table 5.2 and 5.3, the results are 

given for OC and IC, respectively, from surficial sediments in Orkney. 

 

Table 5.1 
 
Minimum estimated Carbon estimates for biological habitats in Orkney. 

 

 Hectares OC 
Stock* 

OC Density IC 
Stock 

IC Density 

  (1000 t) (tonnes ha-1) (1000 t) (tonnes ha-1) 

Kelp Forest 48710 100.8 2.07 NA NA 

Maerl Beds 3645 57.5 15.77 5,355.2 1,469.1 

Zostera Beds 1423 117.3 114/78** M M 

Saltmarsh 48.94 5.6 ± 
1.0*** 

112.8 ± 
20.9*** 

NA NA 

Horse Mussel  3828 13.35 3.48 153.1 39.9 

Flame Shell  1799 1.1 0.61 6.0 3.3 

Brittlestar Beds 4756 2.71 0.56 3.79 0.79 

Bryozoan Thicket 9416 44.6 6.6 2.8 0.29 

Total (Biological)  342.96  5520.8
9 

 

Overall Total 
(OC+IC) 

 5863.85    

 
Note: *OC values for flame shells, brittlestars and bryozoans are derived using the Loss on 
Ignition method. **Z. noltii/Z. marina. ***Saltmarsh error defined here as Standard Deviation 
of the mean. NA-Not applicable. M-not measured. 

 

Significant caveats arise from these numbers as have been itemised specifically 

within each of the habitat sections. In general, these fall into two major areas. Firstly, 

it is important to note that the lack of data on the thickness of sediment underlying 

the biological habitats is a key data gap and therefore the numbers reported here will 

be an underestimate. Secondly, the areal extent of some habitats is not well 

documented and therefore we are reliant on predictive habitat models to produce the 

areal extent figures. While a conservative approach has been taken to the predictive 
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mapping by using a cut-off point of 0.90 (see also the AUC confidence levels 

reported in Appendix A), the predictive model result is based on where the habitat is 

predicted to be suitable for the organism in question as calculated from the raster 

layers. This is not the same as knowing that the organism is actually there. There 

may be some reason why an organism is not able to fulfil the predicted niche even if 

the model identifies the location as suitable. The only way to prove the accuracy of 

the model is to go and survey the sites that have been predicted. We did this to a 

certain extent by splitting our known data points between a training set and a testing 

set. The testing sets did sit within the predicted areas of the models, however, the 

sparseness of the available test points still means that there are some areas of the 

predicted habitat that are not well covered by test points. Ground-truthing of these in 

future would improve the robustness of the predicted models. A ‘heat-map’ showing 

total carbon resources found in biological habitats identified in the Orkney Blue 

Carbon Audit is provided in Figure 5.1. Significant areas of blue carbon are found 

around the islands of Sanday and North Ronaldsay due to the dense stands of kelp 

forest in those areas. Less extensive but nonetheless carbon rich deposits are 

shown through Wyre and Rousay Sound due to the maerl beds there. 

 

Table 5.2 
 
Surficial sediment (top 10 cm) OC stocks (Mt) and OC density (tonnes ha-1). 

 

 
  

Substrate Type Mean OC 
Stock 
(Mt) 

OC Stock 
Range (Mt) 

Mean OC 
Density 

(tonnes ha-1) 

OC Density 
Range (tonnes 

ha-1) 

1:250K Scale 

Gravelly Muddy Sand 0.038 ± 0.018 0.021 – 0.061 6.85 ± 3.21 3.86 – 11.14 

Gravel 0.004 ± 0.001 0.003 – 0.005 2.75 ± 0.76 1.96 – 3.84 

Gravelly Sand 0.673 ± 0.293 0.345 – 1.304 3.48 ± 1.52 1.78 – 6.75 

Muddy Sandy Gravel 0.035 ± 0.012 0.019 – 0.056 4.30 ± 1.48 2.30 – 6.80 

Muddy Sand 0.006 ±0.003 0.003 – 0.012 7.14 ± 2.91 3.00 – 13.15 

Sandy Gravel 0.663 ± 0.314 0.411 – 1.231 2.89 ± 1.37 1.79 – 5.37 

Slightly Gravelly Muddy 
Sand 

0.057 ± 0.023 0.030 – 0.092 7.33 ± 2.99 3.81 – 11.75 

Slightly Gravelly Sand 0.240 ± 0.120 0.074 – 0.477 3.33 ± 1.66 1.03 – 6.60 

Sand 0.292 ± 0.146 0.117 – 0.619 3.63 ± 1.81 1.45 – 7.68 

1:1 Million Scale 

Coarse Sediment 0.168 ± 0.084 0.127 – 0.366 2.43 ± 1.22 1.85 – 5.32 

Sand and Muddy Sand 0.058 ± 0.020 0.033 – 0.097 6.16 ± 2.17 3.54 – 10.36 

Mixed Sediment 0.037 ± 0.014 0.027 – 0.062 7.20 ± 2.71 5.30 – 12.12 

     

Total 2.271 ± 1.048 1.209 – 4.382 3.11 ± 1.44 1.66 – 6.01 
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Table 5.3 
 
Surficial sediment (top 10 cm) IC stocks (Mt) and IC density (tonnes ha-1). 

 

Substrate Type Mean IC 
Stock 
(Mt) 

IC Stock 
Range (Mt) 

Mean IC 
Density 

(tonnes ha-1) 

IC Density 
Range 

(tonnes ha-1) 

1:250K Scale 

Gravelly Muddy Sand 0.350 ± 
0.078 

0.22 – 0.473 63.70 ± 14.25 40.03 – 85.95 

Gravel 0.041 ±0.041 0.009 – 
0.137 

31.65 ± 31.50 6.80 – 105.45 

Gravelly Sand 19.611 ± 
4.625 

5.885 – 
24.450 

101.51 ± 
23.94 

30.46 – 126.56 

Muddy Sandy Gravel 0.871 ± 
0.064 

0.801 – 
0.934 

106.26 ± 7.85 97.64 – 113.85 

Muddy Sand 0.039 ± 
0.002 

0.002 – 
0.043 

43.00 ± 2.04 2.56 – 48 

Sandy Gravel 18.764 ± 
8.754 

10.745 – 
28.843 

81.83 ± 38.18 46.86 –125.79 

Slightly Gravelly Muddy 
Sand 

0.344 ± 
0.016 

0.226 – 
0.375 

44.10 ± 2.10 28.97 –48.14 

Slightly Gravelly Sand 6.778 ± 
1.837 

0.170 – 
8.961 

93.74 ± 25.40 2.35 –123.95 

Sand 6.321 ± 
2.704 

0.188 – 
9.489 

78.42 ± 33.54 2.33 –117.73 

1:1 Million Scale 

Coarse Sediment 4.949 ± 
2.149 

0.938 – 
8.214 

71.82 ± 31.19 13.62 – 119.22 

Sand and Muddy Sand 0.537 ± 
0.120 

0.412 – 
0.841 

57.14 ± 12.78 43.82 –89.42 

Mixed Sediment 0.472 ± 
0.035 

0.408 – 
0.521 

92.56 ± 6.84 79.94 – 102.11 

     

Total 59.08 ± 
20.43 

20.01 – 
83.28 

81.03 ± 28.01 27.44 – 114.23 
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Figure 5.1: A ‘heat-map’ of total carbon resources found in biological habitats in Orkney. 

 

5.2. Uncertainty analysis 

 

In order to assess the uncertainty associated with the estimates of blue carbon in 

Orkney waters we applied the Delta method. This involves multiplying together the 

sources of error (calculated as standard error). There are three main sources of 

potential error in this audit approach; biomass density estimates, blue carbon 

biomass estimates and areal extent estimates. In general, of these, the blue carbon 

estimates have the least error associated with them, followed by the biomass density 

estimates and then the areal extent being the major source of error as for all the 
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habitats except for maerl and saltmarsh, the areal extent is based on the MAXENT 

predictive modelling. In these cases we have assumed a coefficient of variance of 

25%. 

 
In Table 5.4 there is a summary of the uncertainty calculations performed for the 

living habitats. These figures indicate that the highest levels of uncertainty are found 

with the kelp forest and horse mussel habitats. With the inclusion of further survey 

data points it is likely that the uncertainty associated with these numbers could be 

reduced. 

 

Table 5.4 
 
Summary of uncertainty calculations for living habitats contribution to blue carbon audit 
estimates. 

 

All figures in thousand tonnes 
   

   
95% CI 

Habitat Total C SE Lower Upper 

Kelp Forest 100.85 36.19 29.91 171.78 

Maerl Beds  5412.70 1353.18 2760.48 8064.92 

Zostera Beds 117.3 29.33 59.81 174.79 

Saltmarshes 5.60 0.72 4.19 7.01 

Horse Mussel 166.47 41.62 84.90 248.03 

Flame Shell 7.10 1.77 3.62 10.58 

Brittlestar Bed 5.69 1.86 2.05 9.33 

Bryozoan thicket 47.38 14.22 19.51 75.25 

Total 5863.85 1354.98 3252.22 8563.74 
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6. Discussion of the Orkney blue carbon audit   

 

6.1. Blue carbon assessment across the Orkney Region  

 

This report provides details on the first regional audit of blue carbon resources. 

Methods developed here are readily transferable for application to other regional 

audits. While this audit is based on the latest available survey data and carbon 

analysis, detailed studies of some key habitats are limited. In certain cases, carbon 

content has been estimated from samples out-with Orkney waters and model 

predictions of distribution are used to estimate the coverage of key habitat types. 

This is ground-truthed where possible with actual observations. New research has 

provided greater details on carbon stocks in several habitats, such as saltmarsh, 

brittlestar beds, and bryozoan thickets. Knowledge gaps are identified, and 

suggestions made to prioritise future research. While further studies will increase the 

accuracy of blue carbon estimates, the general findings presented here on blue 

carbon resources in key habitats in Orkney waters are sufficiently robust to provide 

important guidance to marine management policy-makers. 

 

6.1.1. Carbon standing stocks 

 

In this audit estimates have been made of the standing stock of key blue carbon 

habitat types known to be prevalent in Orkney waters. The overall total blue carbon, 

including surface sediments, in Orkney waters is estimated to be 67 million tonnes. 

This is a minimal estimate of the blue carbon resource going out to the 12 nm limit, 

given that it has not been possible to assess the full extent of the range out to 12 nm 

for some habitats due to limitations of available data for predictive modelling. In 

Orkney we find 67 Mt in a sea area of 7,290 km2. This equates to a density of 9,190 

tonnes C km-2 in Orkney waters. This contribution is likely to increase when further 

data on the thickness of deposits underlying the biological habitats becomes 

available.  

 

6.1.2. Sequestration rates  

 

The focus of the blue carbon audit was to develop for the first time an estimate of the 

standing stock of blue carbon in Orkney waters. For standing stocks to be 

maintained in future, it is also important to have an understanding of the annual rate 

at which blue carbon is produced, as well as understanding time-scales necessary 

for sequestration into long term storage. For many habitat types determination of 

sequestration rates is not currently possible owing to gaps in critical data. Data gaps 

necessary to allow sequestration rates determination are highlighted in Table 6.1. 



68 

 

6.1.3. Carbon budgets: Production versus sequestration 

 

In future it would be useful to work towards an understanding of the production and 

sequestration rates of the key habitat types, so that sources and sinks of blue 

carbon, and the dynamics between them, can be better understood.  

 

6.1.4. Current blue carbon protection measures 

 

Currently, there are five protected sites in the waters defined in the Orkney Blue 

Carbon Audit. While each of the four fully marine protected sites form part of the 

Orkney Carbonate Production Area, the sites were designated wholly on their 

biodiversity value and no consideration was given to the role played in carbon 

cycling. This network of MPAs and SACs, however, contains several habitats 

identified in this audit as important resources of blue carbon (Figure 1.1). The Wyre 

and Rousay Sounds MPA has been designated for three functionally linked 

protected features; the maerl beds and the kelp and seaweed communities on 

sublittoral sediment thrive in the tide-swept channels, forming a large-scale 

intermixed habitat mosaic. The maerl beds are also considered an integral part of the 

Orkney carbonate production system. The Papa Westray MPA has been designated 

to protect the cliffs and near-shore waters used for breeding and foraging by black 

guillemots (Cepphus grylle). The Sanday SAC was primarily selected for the 

presence of the Annex I habitat of rocky reefs which provide substrate for extensive 

forests of Laminaria spp. In addition, the waters within this SAC feature dense turfs 

of bryozoan and hydroids, and important beds of Modiolus and brittlestars below the 

kelp zone. The primary reason for selection of the Faray and Holm of Faray SAC is 

for protection of habitats important to breeding colonies of the Grey seal 

(Halichoerus grypus). Extensive kelp forests are located within this SAC.  

 

6.2. Pressures on blue carbon resources  

 

A summary of pressures on blue carbon resources is presented in Table 6.1. Some 

of the key pressures on the carbon stored in sediment and the carbon in organisms 

are discussed in further detail below. 

 

6.2.1. Pressures on carbon stored in sediment 

 

Multiple pressures arise from current management practices of the marine 

environment, most notably from the physical disturbance of the seabed. Where 

significant sedimentary carbon stores exist and where the stocks are high, there may 

be a greater risk of turning these long-term carbon stores into carbon sources. The 
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generally high IC contents of the sedimentary carbon resource may allow Orkney 

waters to effectively buffer some of the negative impacts of ocean acidification and 

the risks, apart from certain key habitats where calcifying organisms may be 

particularly vulnerable, are deemed to be relatively low. Deoxygenation of inshore 

Orkney waters in the near future is unlikely due to the combination of the relatively 

shallow and tidally well-mixed waters, which are well-exchanged with the 

atmosphere. This may not be the case for deeper waters further offshore. Sea-level 

rise is likely to play an increasingly important role in driving coastal erosion and 

Orkney’s saltmarsh habitats and blue carbon resources are therefore likely to come 

under increasing pressure unless effective coastal management and coastal 

realignment opportunities are in-place. Pressures and risks are highlighted in Table 

6.1, following from the Marlin (2019b) webpages. 

 

6.2.2. Pressures on carbon stored in organisms 

 

 Deoxygenation 

 

Deoxygenation of coastal waters, such as that experienced in parts of the Clyde Sea 

means that animals which sequester carbon could die off. Some animals are more 

tolerant to deoxygenation than others, but shellfish, for example, which cannot move 

out of a layer of deoxygenated water will suffocate. There have been studies of the 

impact of deoxygenation related to instances of toxic algal blooms - where the 

blooms decompose and sink to the sea bed, the biological oxygen demand 

increases in the water layers close to the sea bed and mass mortality of a wide 

range of organisms has been noted. This has been observed in Killary harbour on 

the west coast of Ireland where periodic bouts of algal bloom associated with 

deoxygenation occur (Silke et al., 2005). Recovery does occur but, depending on the 

type of organism and its rate of growth, this can take years or decades. From a blue 

carbon perspective, deoxygenation events could lead to a sudden release of carbon 

into the system when large quantities of plant and animal materials start to 

decompose simultaneously. On the other hand if a zone is fully anoxic, 

decomposition will not occur and so the likelihood then is that carbon will be buried 

and stored. Understanding the tipping points is key to being able to manage the 

resource in future.  

 

 Acidification 

 

It is now well documented that organisms which have a carbonate shell or skeleton 

are vulnerable to the impact of ocean acidification (Ciais et al., 2013; Koch et al., 

2013; Brodie et al., 2014). In terms of the blue carbon habitat types in this study, 
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horse mussel beds, flame shell beds, maerl, brittlestars and Bryozoa would be 

particularly vulnerable to ocean acidification. Limaria shells are composed largely of 

aragonite, and so are likely to be more vulnerable than horse mussel shells whose 

shells comprise layers of both aragonite and the more robust calcite. Studies on 

maerl revealed a short-term reduction in calcification rates in sea water with lower 

pH conditions (this was not sustained over longer periods, Form and Riebesell, 

2012). In contrast, it has been shown that macro-autotrophs such as Zostera and 

macroalgae such as kelps may do better than calcified or coralline algae in terms of 

being able to withstand the impacts of ocean acidification (Koch et al., 2013). Indeed, 

fleshy macroalgae show increased growth rates in reduced pH (Kroeker et al., 2013).  

 

 Temperature 

 

Warming of the oceans is underway and is occurring more quickly in the Arctic 

waters than in other regions. As Orkney is situated close to the Northern Periphery 

and Arctic region, warming will also be taking place here, but at a slower rate. In 

general, some marine organisms will be able to tolerate the warming conditions 

better than others will and so the likely impact will be a decrease in the abundance 

less tolerant ones and an increase in the more tolerant species. In terms of blue 

carbon habitats, it will depend very much on the rate of increase in water 

temperature and the adaptability of the organisms. If the maximum temperatures 

experienced by each species across their range give their temperature limits, then 

the difference  between local temperatures and such maxima give the ‘thermal safety 

margin’ for each species (Sunday et al., 2014). The fate of kelp and maerl may be 

quite different in a warmer (and more acidic) future north-eastern Atlantic (Brodie et 

al., 2014). Maerl beds may die out altogether, while kelp forests will persist around 

Orkney until sea temperature have increased above present-day values to those 

currently experienced at the warm range edge of the species. For the kelps 

Laminaria hyperborea and Saccharina latissima for example, these thermal maxima 

are around 15.5 °C annual average sea surface temperature. Compared to present-

day Orkney average sea temperatures of 10 °C, this gives thermal safety margins of 

around 5.5 °C for each species, implying that the climate can warm by this amount 

before the species become locally extinct, however. There will be associated issues 

around the decline of densities as the limit is reached. This will impact the ability of 

the kelp forest to maintain the level of standing stock and the contribution to burial 

and longer term sequestration. That said, however, seaweed populations away from 

range edges can also suffer under warming due to local adaptation to cooler 

temperatures (Bennett et al., 2015).  
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6.2.3. Pressures caused by land use changes  

 

Blue carbon resources in Orkney waters occur in close proximity to the terrestrial 

environment. This means that land use practices could potentially have a significant 

influence on the supply of carbon to the biological and sediment habitats referred to 

in this audit. Increases in terrestrial carbon input may result in changes to the 

turbidity of the water and consequently reduced light penetration. This in turn will 

have an impact on the capacity of the biological habitat to cycle and store carbon. An 

increase in the quantity of terrestrial carbon coming into the coastal seawaters will 

mean a higher rate of sedimentation. 
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Table 6.1 
 
Summary table of pressures on living blue carbon habitat types. (+) indicates a positive impact; (-) indicates a negative impact; (?) 
indicates impact unknown or not accessed) (MarLIN, 2019b). Temp. = temperature; Deoxy. = deoxygenation; Physical = dredging, 
pile-driving, etc.; Shading. *Based on data for Laminaria hyperborea; ** High sensitivity to organic enrichment; not sensitive to 
nutrient enrichment; not assessed for transition elements and organo-metal contamination, hydrocarbons, synthetic compounds, 
radionuclides; ***Based on the biotope Ophiothrix fragilis and/or Ophiocomina nigra brittlestar beds on sublittoral mixed sediment; 
****Based on Flustra foliacea. 
 

Habitat 
type 

Temp. 
increase 

Salinity 
increase 

Salinity 
decrease 

Deoxy. Physical  Shading  Chemical pollution 

Kelp forest* Moderate 
- 

Moderate 
- 

? ? - - Very low/non sensitive 
- 

Maerl beds Medium 
- 

? High 
- 

High 
- 

- - ?** 
 

Zostera 
beds 

Not sensitive Very low 
- 

? Very low 
- 

- - Very low-very high 
(nutrients) 
- 

Saltmarshes 
(pioneer) 

Very low 
- 

Very low 
- 

? Very low 
- 

- - Low – high  
(hydrocarbons) 
- 

Horse 
mussel beds 

High 
- 

? High 
- 

Very low 
- 

- ? Very low-high (synthetics) 
- 

Flame shell 
beds 

Not sensitive 
 

High 
- 

High 
- 

? - ? ? 

Brittlestar 
beds*** 

Not sensitive Medium 
-  

Medium 
- 

Low 
- 

- ? ? 

Bryozoan 
thicket**** 

+ and - ? ? ? - ? ? 
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6.3. Knowledge gaps and priority research areas 

 

During the development of the Orkney Blue Carbon Audit it has become apparent 

that there are a number of knowledge gaps which would be important to address in 

future work, to improve the usefulness of the work (Table 6.2). 

 

Table 6.2 
 
Knowledge gaps identified during the Orkney Blue Carbon Audit. 

 

Habitat type Knowledge gaps to be addressed 

Kelp forest  

 

Further ground truthing of the predicted 
habitat models 

Lack of knowledge on the fate and burial of 
kelp detritus in Orkney waters 

Maerl beds Further ground truthing of the predicted 
habitat models and in particular the extent 
of maerl beds and their health 

Further work needed on understanding the 
depth of carbonate sediment underlying the 
maerl beds (Figure 6.2) 

Lack of knowledge on age of maerl 
sediments 

Zostera beds Further ground truthing of the predicted 
habitat models 

Lack of organic/inorganic carbon values 
specific to Orkney waters 

Further work needed on understanding the 
depth of sediment underlying the maerl 
beds 

Lack of knowledge on growth rates of local 
Zostera beds 

Saltmarshes Further ground truthing of the mapped 
saltmarsh habitats. 

Further work needed to understand the 
depth of organic rich sediment underlying 
the modern saltmarsh 

Lack of knowledge on the age and 
sequestration rates of local marshes 

Horse mussel beds (Modiolus modiolus) Further ground truthing of the predicted 
habitat models and addition of data 
regarding sites deeper than 50 m. 
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Further work needed on understanding the 
depth of carbonate sediment underlying the 
horse mussel beds 

Lack of knowledge on age of the horse 
mussel sediments 

Lack of organic carbon values for the tissue 
and shell components of horse mussels 

Lack of knowledge of growth rates in 
Orkney waters 

Flame shell beds (Limaria hians) Further ground truthing of the predicted 
habitat models 

Further work needed on understanding the 
depth of carbonate sediment underlying the 
flame shell beds 

Lack of knowledge on age of the flame shell 
sediments 

Brittlestar beds (Ophiothrix fragilis) Further ground truthing of the predicted 
habitat models 

Further work needed on understanding the 
depth of carbonate sediment underlying the 
brittlestar beds as appropriate 

Lack of knowledge on growth rates in 
Orkney waters 

 

Bryozoan thickets (Flustra foliacea) Further ground truthing of the predicted 
habitat models 

Further work needed to understand the 
carbon contribution of the other types of 
bryozoan dominated animal turfs in Orkney 
waters 

Lack of knowledge on growth rates in 
Orkney waters 

Sediment Further ground truthing of the mapped 
sediments. 

Further work needed to understand the 
depth of sediments associated with each 
mapped unit. 

Further work needed, particularly in the 
finer-grained sediments, to understand the 
organic carbon content. 

Lack of knowledge on the age and burial 
rates of carbon associated with each 
sediment type. 
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6.4. Availability of accurate geological data  

 

Future outlook – detailed multibeam surveys of the seabed, supported by ground-

truthing (grab sampling and camera drops), will greatly enhanced the mapping of 

sedimentary carbon contents in the Orkney area. In particular, further effort to map 

and quantify carbon accumulation and storage in some of the depositional 

environments where fine-grained sediments accumulate is a priority.  

 

7. Conclusions  

 
7.1. Main findings from the work 

 

The main purpose of this report is to develop methods for auditing blue carbon 

resources at the regional scale, using Orkney coastal waters as a case example. 

During the development of the audit process we reviewed and collated the data 

sources available to us, identified gaps in the data sources and endeavoured to fill 

them where possible by appropriate available means, in order to provide a first 

assessment of the resource.  

 

1. The blue carbon present in Orkney regional waters is estimated at 67 Mt. The 

 total inorganic carbon stores hold 64.6 Mt while the total organic carbon 

 stores hold 2.7 Mt. 

2. Approximately 11 times more carbon was found in the inorganic stores in 

 sediment than in the biological habitats. This comprised 2.27 Mt organic 

 carbon and 59.1 Mt inorganic carbon in sediments.  

3 In biological habitats 5.9 Mt carbon was estimated. The largest carbon source 

 from the biological habitats in the audit came from maerl bed, mainly due to 

 the large amount of inorganic carbon content present in the 1.2 m thick maerl 

 deposits at Wyre Sound. 

4. Orkney waters account for 8.1% of the Scottish coastal waters and hold an 

estimated 67 Mt of blue carbon stores. The total organic and inorganic carbon 

estimate from blue carbon habitats in Scottish waters as reported in Burrows 

et al., 2014 is 1756 Mt across the 200 nautical mile area (470,000 km2). This 

equates to a density of 373.62 tonnes C km-2. In Orkney we find 67 Mt in a 

sea area of 7,290 km2. This equates to a density of 9,190 tonnes C km-2 in 

Orkney waters. This contribution is likely to increase when further data on the 

thickness of deposits underlying the biological habitats becomes available. 

These resources are derived from a range of important biological habitats. 

Appropriate recognition and management of these habitats is key to the future 

maintenance and sequestration of the Orcadian blue carbon resource. 
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7.2. Pressures on the resources 

 

7.2.1. Pressures on the blue carbon resources 

 

Significant overall pressures on blue carbon resources include increase in 

temperature and decrease in the pH of seawater leading to ocean acidification. In 

2010-13 a study in Australian waters showed that marine heatwaves caused the loss 

of more than 90% of kelp forests making up the north-western tip of the Great 

Southern Reef. This resulted in a loss of the rock lobster and abalone fisheries, 

worth about $10bn to the Australian economy. The death of the kelp caused a 

functional extinction of 370 square kilometres of rocky cool-climate reefs (Wernberg 

et al., 2016). These temperate rocky reef systems are functionally similar to those of 

Scottish waters, and it is likely that with increased incidence of heatwaves we could 

also lose areas of these ecosystems and consequently their ability to sequester 

carbon. Regarding increases in the pH of seawater a whole plethora of experimental 

studies have shown that plants and animals which have a skeleton composed of 

calcium carbonate will have a reduction of the ability to produce a calcified skeleton 

as the pH of seawater increases. In experimental work on horse mussels the 

cumulative impact of temperature and pH was tested, showing that temperature was 

the stronger of the drivers when it came to the ability to acclimate (Mackenzie, 2017).  

 

7.2.2. Pressures on the sequestration of the blue carbon resources 

 

Sequestration of carbon into long term stores can be impacted in a number of ways, 

depending on the specific habitat. For the plant based blue carbon resources such 

as kelp forest, maerl, Zostera and salt marsh, photosynthesis is key to the capture of 

carbon. Impacts which prevent photosynthesis from occurring will therefore impact 

on the sequestration ability. Activities which cause an increase in turbidity to coastal 

waters such as resuspension of sediments from dredging activity, increased inputs of 

organic material from coastal or land-based activity, and erosion from land caused 

by unstable soils and flooding could all cause reduction in capture. Physical loss of 

the habitats would also mean that the capture rates would be reduced. Increased 

storminess is likely to impact capture rates in that it could cause either damage or 

reduction in habitat and reduction in water clarity, meaning reduced opportunity for 

photosynthesis and carbon capture. Where the damage is reversible, it is possible 

that habitats may recover over time; kelp is more likely to recover within years, 

whereas maerl may take decades to recover. Introduction of shading as part of 

construction activities will impact the ability for successful photosynthesis. Pollution 

in the form of organ-metallic compounds such as TBT may impact molluscs e.g. 

horse mussels in terms of their ability to reproduce effectively. This will cause a 
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decline in functional populations over a period of years. In terms of the sedimentary 

resources, activities which damage the physical integrity of the resource may cause 

a release of carbon back into the ecosystem, and consequently impact on the 

balance of the long-term storage capacity.  

 

7.3. Knowledge gaps and recommendations for future work 

 

In view of the knowledge gaps highlighted in Table 6.2, recommendations for future 

work would include a programme of sediment coring for the various habitat types to 

understand the thickness of the sediment and to ascertain carbon content. For 

example, at the Wyre Sound maerl bed preliminary data has shown that cores 

collected by divers were containing maerl of a thickness up to 120 cm as shown in 

Figure 7.1. In the audit we could confidently apply this figure to the Wyre Sound 

maerl bed; it was not appropriate at this stage to apply it to the other Orkney maerl 

beds given the lack of field data for those locations where so far cores of 25 cm have 

been performed. Inevitably this means there is likely to be an underestimate of the 

maerl blue carbon resource. This type of issue also applies to other habitats e.g. 

horse mussels, brittlestar beds, where there is currently no available data regarding 

thickness of the underlying carbonate sediments. As an additional example 

Saltmarsh habitat average values are largely calculated from research conducted in 

Australia and Louisiana (USA) (Duarte et al., 2013). The marshes in these regions 

are highly organic in contrast to organo-mineral marshes of north-west Europe. 

Therefore, it is unlikely that these data are applicable to the saltmarsh found in 

Scotland. 

 

A further significant knowledge gap exists regarding the understanding of the longer-

term sequestration of blue carbon in Orkney waters. The lack of information on 

growth rates of the organisms in this region and also a general lack of knowledge on 

burial rates of organic material into sediments precludes estimates from being 

calculated at this point in time. Going forward, an understanding of sequestration 

rates is imperative so that these can be incorporated alongside carbon estimations 

for terrestrial components to generate a holistic carbon budget for the region. It will 

be important in the future to focus investigations into identifying the major sources 

and sinks of carbon and how they may be impacted spatially and temporally, to be 

able to incorporate into mitigation activities. 
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Figure 7.1:Cores collected by Heriot Watt Scientific Dive team from Wyre Sound showed 
maerl deposits in excess of 1.2 m (Image taken by Dr Bill Sanderson). 
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10. Appendices 

 

Appendix A - Maxent modelling methodology 

 

Maxent modelling uses the principle of maximum entropy on species presence-only 

data to predict or estimate a group of functions that link environmental variables and 

habitat suitability in order to approximate the probable geographic distribution 

(Philips et al., 2006). This approach is the most suitable when the primary species 

data are historical observations. 

 

Presence data for each species were filtered for quality assurance ensuring that 

outliers and spurious records were sense-checked (Records with Validity 

Confidence) and records with SACFOR scale values of “S” (Superabundant), “A” 

(Abundant) and “C” (Common). These are the levels of abundance which are 

believed correlate to densities for each species that form ‘beds’. These were then 

imported into the R ‘workspace’ using the ‘sf’ package, subsequently presence 

points for each species were randomly sampled into a training set (80%) and a 

testing set (20%) for testing validity of the model. 

 

The environmental variables already existed in a Raster format and were imported 

into R using the ‘raster’ package, all layers were resampled to the Aquatera Ltd 

bathymetry layer so that all rasters shared the same extent and resolution. All of 

these layers were then combined into a rasterstack ready to be used in the Maxent 

model, these can be viewed in Fig A1 in the appendix. 

 

Training subsets of each species presence points were then modelled with the 

rasterstack using the Maxent function in the ‘dismo’ package, the model was then 

used to predict the probable occurrence of the species throughout the rasterstack. 

The models were then evaluated using the testing subsets and 1000 randomly 

sampled background points of the raster stack to gain an AUC value for each model, 

these can be viewed in Table A1 in the appendix. The predicted maps were then 

exported as ‘.tif’ raster files for visualisation and extent analysis. 

 

To obtain a spatial extent for each species raster cells were extracted which had 

probability of occurrence >= 0.9, and the area of these cells was calculated within a 

GIS application. 
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Table A1 
 
Maxent model outputs and performance metrics. 

 

Species N Points 
Training 

N Points 
Testing 

Area (km2) AUC Model Score 

Ophiothrix fragilis 215 54 47.560 0.9383 

Limaria hians 19 5 17.99 0.9234 

Zostera marina 31 8 14.23 0.9619 

Flustra foliacea 40 10 94.15 0.9363 

Modiolus modiolus 98 24 38.28 0.9206 

  

 
 
Figure A1: Environmental variables used in rasterstack for Maxent modelling. 
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Figure A2: Predicted biomass density of Saccorhiza polyschides across Orkney. Symbols 
indicate recorded abundance of the species in surveys with absence (0, white) and 
categories Rare to Superabundant as integers (1-6).  
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Figure A3: Predicted biomass density of Alaria esculenta across Orkney. Symbols indicate 
recorded abundance of the species in surveys with absence (0, white) and categories Rare 
to Superabundant as integers (1-6).  
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Figure A4: Predicted biomass density of Saccharina latissima across Orkney. Symbols 
indicate recorded abundance of the species in surveys with absence (0, white) and 
categories Rare to Superabundant as integers (1-6).  



92 

 

 
 
Figure A5: Predicted biomass density of Laminaria digitata across Orkney. Symbols indicate 
recorded abundance of the species in surveys with absence (0, white) and categories Rare 
to Superabundant as integers (1-6).  
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Appendix B - Scottish Zostera information 

 

Scottish Zostera information kindly provided by Dr Maria Potouroglou from her PhD 

thesis (2017): Assessing the role of intertidal seagrasses as coastal carbon sinks in 

Scotland. Doctoral Thesis. Edinburgh, Scotland, UK: Edinburgh Napier University.  

Retrieved from http://researchrepository.napier.ac.uk/Output/975386  

We sampled both seagrass (either Zostera noltii, or Zostera marina, or mixed) and 

control (unvegetated) plots from the areas shown below.  

  
Figure B1: Study area showing locations of seagrass survey sites and sub-sites A-G along 
the East coast of Scotland (A: Firth of Forth, B: Tay Estuary, C: Montrose Basin, D: Beauly 
Firth, E: Moray Firth, F: Cromarty Firth, G: Dornoch Firth). Reproduced from Potouroglou 
(2017). 

 

We went down to 50 cm, and on the table below which summarises my results, you 

can see both organic carbon stocks for 50 cm and 100 cm for seagrass and control 

plots. Total Corg stored in the top 50 cm of the sediments of intertidal seagrasses in 

Scotland ranged from a minimum of 23 Mg C ha-1 at Moray Firth to a maximum of 

108 Mg C ha-1 at the Firth of Forth. Mean organic carbon stock across the 7 sites 

sampled was 57 Mg C ha-1 (for the top 50 cm), or 114 Mg C ha-1 as projected for the 

top meter of the sediment.  
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Table B1 Summary of study sites and sediment Corg stocks (Mg ha-1) over 50 cm and 

100 cm horizons for vegetated and [unvegetated] plots. Zn: Zostera noltii, Zm: 

Zostera marina. Reproduced from Potouroglou (2017). 
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Appendix C - Map of the study region with key place names 
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Appendix D - Unit conversion 

 

The table below shows the conversion between some of the units commonly used in 

this report.   

 

1 tonne (t) = 1 Mg 

 = 1,000 kg 

 = 1 million g 

1 Tg = 1 million tonnes (1 Mt) 

 = 1012 g 

1 hectare (ha) = 0.01 km2 

 = 10,000 m2 

1 Mg ha-1 = 1 tonne ha-1 

 = 100 tonne km-2 

 = 106 g ha-1 

 = 108 g km-2 

 = 102 g m-2 
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