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Abstract

PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial
intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16
European partners in the consortium, including the European Society for Paediatric Oncology, two imaging
biobanks, and three prominent European paediatric oncology units. The project is constructed as an
observational in silico study involving high-quality anonymised datasets (imaging, clinical, molecular, and
genetics) for the training and validation of machine learning and multiscale algorithms. The open cloud-based
platform will offer precise clinical assistance for phenotyping (diagnosis), treatment allocation (prediction), and
patient endpoints (prognosis), based on the use of imaging biomarkers, tumour growth simulation, advanced
visualisation of confidence scores, and machine-learning approaches. The decision support prototype will be
constructed and validated on two paediatric cancers: neuroblastoma and diffuse intrinsic pontine glioma.
External validation will be performed on data recruited from independent collaborative centres. Final results
will be available for the scientific community at the end of the project, and ready for translation to other
malignant solid tumours.
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Key points

� An open-cloud platform for decision support in
neuroblastoma and diffuse intrinsic pontine glioma
is being developed.

� A decision support system guided by imaging and
paediatric oncology experts under a user-centric ap-
proach will be developed.

� The platform will validate imaging biomarkers
(computed tomography, magnetic resonance,
positron emission tomography, 131I-meta-
iodobenzylguanidine imaging) and integrated data.

� The system will develop diagnostic multiscale
models to predict disease progression.

Background
The digital transformation of healthcare systems has fos-
tered innovative clinical workflows and quality improve-
ments through value-based healthcare [1]. Nowadays,
digital diagnosis tools (such as imaging, pathology, gen-
omic analytics, wearable sensors) and patient electronic
records (clinical profiling, treatment, endpoints) are key
enabling factors for a new paradigm in routine clinical
practice. This change is expected to promote clinical
innovation models via real-world data-driven inferences
revealing insights implicit in the data [2]. Real-world evi-
dence can help answering existing questions and gener-
ating new knowledge in a more reproducible way [3].
Another key enabling factor to untap the enormous po-

tential of in silico tools to assist in clinical healthcare is
the current level of adoption of high-throughput screening
techniques for diagnosis and disease progression monitor-
ing. The amount of clinical, pathological, molecular and
imaging data available is enormous. The possibility of in-
tegrating large volumes of highly heterogeneous data into
in silico predictive tools has proven crucial to enhance
model performance in various applicability domains [4].
Computational imaging allows the extraction of multi-

parametric data, leading to a new era in radiomics, char-
acterised by high-throughput extraction, storage and
analysis of a large amount of quantitative imaging fea-
tures and parameters (imaging biomarkers) able to pro-
vide quantitative relevant information (virtual biopsies)
for the early disease diagnosis, disease phenotyping, dis-
ease grading, targeting therapies, and evaluation of dis-
ease response to treatment [5].
The development of predictive models using computa-

tional algorithms and artificial intelligence, taking into ac-
count all types of clinical, pathology, molecular, and
imaging information able to predict valid disease-related
outcomes by learning from retrospective data, is a hot topic
of scientific debate. The validity of these predictive models
depends on the quantity, quality, and representativeness of
the datasets used, being major limiting factors [6].

Imaging biobanks and in silico models
Oncologic imaging represents a suitable field for the dis-
covery and validation of new biomarkers from different
imaging modalities (such as computed tomography, mag-
netic resonance, positron emission tomography, and ultra-
sound), since cancer patients are frequently monitored for
staging and treatment response follow-up [7]. Many im-
aging biomarkers have been proposed over the last years
to measure tumour anatomy, morphology, pathophysi-
ology, metabolism, or molecular profiles in order to esti-
mate different cancer hallmarks, such as proliferation/
growth, angiogenesis, and evasion or metastasis [8]. How-
ever, very few biomarkers have so far entered routine clin-
ical practice to guide clinical decisions [9, 10]. The
majority of oncology imaging biomarkers still require ex-
ternal validation at different centres before they can be
properly qualified as robust and reproducible.
Mathematical and computational modelling of bio-

logical processes can be used to enhance quantitative un-
derstanding of biomedical phenomena, such as cancer
progression [11], potentially incorporating patient-specific
data to enrich the scope of therapeutic target identifica-
tion. Models can describe the growth of solid tumours
using discrete or continuous representations, with or with-
out accounting for stochasticity [12]. PRIMAGE (predict-
ive in silico multiscale analytics to support cancer
personalised diagnosis and prognosis, empowered by im-
aging biomarkers) is a funded Horizon 2020 project (RIA,
topic SC1-DTH-07-2018) where a combination of these
approaches ensures the best of both worlds.
The PRIMAGE project focuses on the further develop-

ment of in silico tools for a more personalised clinical
management of childhood cancer by targeting clinical
endpoints (CEPs), considering the progression of the
growth of the tumour post-diagnosis, but not including
the initial oncogenic processes active during embryogen-
esis. The project will utilise novel high-performance
computing (HPC) approaches to provide computation-
ally efficient and large scale in silico models resulting in
a decision support system (DSS) which will hopefully
provide improved health outcomes (Fig. 1).

Neuroblastoma and diffuse intrinsic pontine glioma
(DIPG)
Data infrastructure, imaging biomarkers and models for
in silico medicine research will be developed and vali-
dated in the context of neuroblastoma (NB) and diffuse
intrinsic pontine glioma (DIPG).
NB is the most frequent solid cancer of the early child-

hood [13], and the diagnosis age has proven to be a cru-
cial factor in its prognosis [14]. A number of risk factors
have been identified and are already in use by the Inter-
national Neuroblastoma Risk Group (INRG) [15, 16].
Major European groups involved in PRIMAGE have
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advanced standard of care treatments in low [17–19],
intermediate [20, 21] and high-risk NB [22–24].
DIPG is the leading cause of brain tumour-related

death in children [25]. Given the rarity of childhood tu-
mours, international cooperative networks are essential
to agglutinate relevant retrospective data and/or pro-
spective cases for clinical trials, facilitating identification
of effective tools for earlier diagnosis and potentially ef-
fective therapeutics.
The aim of the project is the development of an

open hybrid cloud and HPC platform with later im-
plementation and validation in non-interventional tri-
als, which will support decision-making in the clinical
management of malignant solid tumours. The
PRIMAGE platform will implement the latest ad-
vancement of in silico computational image analysis
and modelling which may be run on central process-
ing unit (CPU) or general purpose graphics process-
ing unit resources as needed.

The results are expected to have great impact not only on
NB and DIPG but also on the management of other malig-
nant solid tumours, since the proposed methodologies for
data management, in silicomodels and visualisation tools will
be available to be transferred to other cancer types.
The development process of the PRIMAGE platform

following a user-centric approach is summarised in Fig. 2.

Methods
The partnership
For the successful design and implementation of
PRIMAGE, a very high level of interdisciplinarity con-
sortium was required, with expertise ranging from HPC
infrastructures to visual analytics [26] and multiscale
simulation, bringing together public and private organi-
sations across Europe to perform collaborative research
and development, a key aspect of the PRIMAGE inter-
disciplinary approach. Partners from eight European
countries were selected (hospitals, research and

Fig. 1 PRIMAGE technological development
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development centres, medical associations, private com-
panies, and universities), constituting a pan-European
ecosystem of knowledge, infrastructures, biobanks, and
technologies in the area of oncology, in silico, and cloud
computing/HPC healthcare-related computing. Follow-
ing a recruitment process, 16 organisations were incor-
porated, all of them are well known and with remarkable
expertise in their respective areas. The University and
Polytechnic Hospital La Fe in Spain is the project coord-
inator institution.
On the clinical side, the PRIMAGE consortium has

tried to reunite leading European clinical centres to-
gether with key opinion leaders specialised in NB and
DIPG (as these cancers are the context of the application
proposed for the validation works of PRIMAGE in silico
tools during this project) (Table 1). The University and
Polytechnic Hospital La Fe in Spain, the Children’s

Cancer Research Institute in Austria, the University
Hospital Cologne in Germany, and the Pisa University
Hospital in Italy constitute the clinical team. All of them
belong to the European Research Network in NB and
DIPG, facilitating PRIMAGE access to their datasets for
further secondary used studies, in addition to their own
biobanks and databanks of existing DIPG and NB cases.
Moreover, the European Society for Paediatric Oncology
(SIOPE) joined PRIMAGE, leading its dissemination and
communication activities.
The knowledge and expertise of universities, research

centres and private companies are essential for success-
ful development of PRIMAGE. Partners include Quanti-
tative Imaging Biomarkers in Medicine (QUIBIM SME),
Institute for Molecular Imaging Technologies and Mech-
anical Engineering Department at Valencia Polytechnical
University, Chemotargets SME, and Matical Innovation
in Spain; the Department of Computer Science at Uni-
versity of Konstanz in Germany; Medical Imaging Tech-
nologies (Medexpim) in France; the University of
Sheffield in United Kingdom; Simulation, Modelling and
Engineering software (Ansys group) in France; Akademia
Gorniczo-Hutnicza Im (Cyfronet) in Poland; and the De-
partment of Industrial Engineering at the University of
Bologna in Italy.
The consortium partners ensure complementarity and

bring the necessary combination of skill, knowledge,
technology, and motivation, comprising a highly moti-
vated team, fully committed to turning PRIMAGE into a
case study in the use of existing datasets, service-
oriented architectures and in silico technologies for bet-
ter diagnosis and treatment of oncology diseases.
An advisory board consisting of a recognised group of

experts in the fields of paediatric oncology, imaging bio-
markers and related information and communication
technologies, General Data Protection Regulation and

Fig. 2 PRIMAGE approach

Table 1 Clinical centres and networks data registries involved in data collection with an estimation of cases for neuroblastoma (NB)
and diffuse intrinsic pontine glioma (DIPG)

Responsible entity Characteristics

Clinical partners for NB and DIPG
University and Polytechnic Hospital La Fe, Spain
Children’s Cancer Research Institute, Austria
University Hospital Cologne, Germany
Pisa University Hospital, Italy

Target sample: approximately 900 cases with imaging, clinical, and molecular data.
Data type: imaging (magnetic resonance, computed tomography, 131I-metaiodine-benzylguanidine
scintigraphy and single-photon emission tomography, positron emission tomography/computed
tomography), histology (if available), complete molecular biology studies according to SIOPE
(blood, urine, and bone marrow, cerebrospinal fluid), genetic (next generation sequencing,
fluorescence in situ hybridisation), and clinical data (patient profile, prescribed treatment, survival).

Data on patients with NB
GPOH

Target sample: approximately 1,000 NB (high, low, and intermediate risk) patients participants in
academia-promoted clinical trials.
Data type: diagnosis and longitudinal data (clinical, follow-up, and biology data for all patients
registered in GPOH database).

Data on patients with DIPG
SIOPE registry

Target sample: approximately 700 DIPG patients from European Union countries, both inside
and outside clinical trials.
Data type: diagnostic and follow-up magnetic resonance scans linked to e-data transmittal form
including demographics, medical history, and physical exam at time of diagnosis, results from
radiological, results from pathological review (if available), treatment (including radiotherapy,
chemotherapy, surgery and supportive), clinical data, and last known status of the patient.

GPOH German Society of Paediatric Oncology and Haematology, SIOPE European Society for Paediatric Oncology
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industry representatives of manufacturers of drugs and
picture archiving and communication systems has been
designated to give general advice and guidance to the
consortium.

Platform architecture
The PRIMAGE in silico models to be developed require sig-
nificant computational and data storage resources to process.
Our intention is to deliver a bespoke information technology
solution, combining large-scale HPC and versatile cloud
computing resources for optimum efficiency and reliability.
The infrastructure will be ultimately based on a DSS

which will be designed for cancer management with ad-
vanced functionality and usability under a user-centric
approach, guided by the clinical partners. A diagram of a
high-level architecture can be appreciated in Fig. 3. This
DSS will make use of the following:

� Large-scale processing on HPC resources (CPU or
general purpose graphics processing unit), overlaid
by a convenient representational state transfer-based
process controller called Rimrock [27] and data ac-
cess suite called Polish Grid Infrastructure (PL-grid)
Data [28].

� Hybrid cloud resources, composed of both private
and public cloud sites (based on the Europen open
science cloud, EOSC, services), which will host
PRIMAGE data repositories. Computational tasks can
be deployed and coherently managed by a single
access tool, such as the Atmosphere platform (project
number 777154, European Commission) [29].

� An integration middleware, consisting of a set of
protocols and interfaces between HPC/storage
(models), private and public cloud computing/
storage (repositories, sandboxed processing), and
external data sources (anonymised clinical and
biobanking data). The middleware will be put in
place to achieve an adequate level of solution
coherency.

� Upper layer service exposing the features of the
underlying infrastructure to researchers as a
convenient graphical user interface, to manage
definition, execution, and comparison of results of
computationally intensive modelling pipelines. The
tool will feature security management and application
programming interface for programmatic access, and
it will be based on the model execution environment
(MEE) [30], which has been developed and
successfully deployed in the EurValve project [31–33].

Data repositories
Stored clinical data (imaging, clinical, pathology and mo-
lecular) from 2002 onwards will be collected by the clin-
ical centres and the paediatric oncological associations

involved in PRIMAGE project. Clinical, molecular and
imaging data in PRIMAGE will be undertaken under the
strictest administrative and contractual procedures to
ensure legal and ethical compliance under the General
Data Protection Regulation in Europe. All cases included
within the data repository, both for model development
and platform validation, will have to be approved by the
Ethics Committees of their respective centres. Even
more, the observational in silico trial design for the in-
ternal platform validation, including new data from 2020
to 2022, will be constructed in parallel to standard clin-
ical practice after signed consent is obtained.
Relevant data will be used following extraction, anon-

ymisation and curation for computational simulation de-
velopments and testing the integrated PRIMAGE DSS
platform. The datasets used for the training and the de-
velopment of the different in silico models will differ
from the datasets used for the later validation of the in-
tegrated platform. Therefore, the use of clinical data (in
the big data domain) for model training and model test-
ing will be done in two phases:

� Phase 1: compilation of clinical, molecular and
imaging data for PRIMAGE training, knowledge
extraction, and multiscale testing of the in silico
models for tumour growth, advanced visualisation
solutions, identification and analysis of imaging
biomarkers and training of predictive models for
CEPs.

� Phase 2: extensive in silico testing of the integrated
PRIMAGE DSS platform will be undertaken using
cases from the same retrospective dataset, split by
cross validation from the curated initial clinical
dataset to ensure that these specific datasets are not
used in the training phase.

Big data techniques will be applied to generate new
knowledge from the advanced in silico tools. The use of
retrospective data for training models, testing and valid-
ation will require extensive curation and quality control
procedures. Automated tools will be implemented in this
project to streamline the processes of extracting, map-
ping data, controlling the quality and homogenisation,
translation, and completion of data feeds. Allocation of
significant human resources is also foreseen, as human
intervention is essential to achieve excellence in the
training data sets.
Clinical data used in the international staging and

stratifying criteria for NB and DIPG, including age, dis-
ease extension, image defined risk factors, histological
type, grade of tumour differentiation, genetic, and mo-
lecular features will be used at the models construction
phase. Imaging biomarkers will be extracted and vali-
dated for their use in cancer management, in
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combination with already available biological biomarker
panels. PRIMAGE is defined as an observational in silico
study that will be validated also in silico in data recorded
from new clinical observations. Image radiomics and dy-
namic parameters will be obtained from standard of care
real-world ultrasound, computed tomography, magnetic
resonance, positron emission tomography, and 123I-
metaiodobenzylguanidine scintigraphy or single-photon
emission computed tomography images.

Experimental and computational methodologies will be
used for the identification and validation of novel imaging
biomarkers and the development of shared instruments
for knowledge extraction from imaging biomarkers, clearly
focused on improving disease diagnosis and follow-up.
The development of a biomarker involves defining its rela-
tionship with the objective reality (structural, physio-
logical, biological, or molecular), monitoring its technical
validity and the relationship with the final CEPs. The path

Fig. 3 PRIMAGE platform concept diagram
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to handcrafted biomarker development, expansion and
subsequent implementation is based on available guide-
lines and recommendations [34]. Main outcomes to be
predicted relate to tumour phenotyping, treatment alloca-
tion, response to treatment and children survival.
Machine learning and image processing deep learning

algorithms extract pattern information from the images
and link outcome results to known ground-truth diagno-
sis. For this task, QUIBIM, a start-up company working
in the field of artificial intelligence and imaging bio-
markers applied to radiology data, will provide the meth-
odologies for identification and validation of imaging
biomarkers and related algorithms for the automatic
analysis of images towards their validation in clinical
trials through a PRIMAGE-specific customisation of
QUIBIM precision platform (SME Instrument Phase 2,
project number 778064). The computational equation-
based handcrafted methods will be used first to have a
ground truth for the training of machine learning algo-
rithms. On a furthermore advanced stage, at the end of
the project, it is envisioned that deep learning tools will
directly provide clinical estimations from the source im-
ages, clinical and molecular data information.

In silico scale models
PRIMAGE’s proposed in silico model spans three scales:

▪ The tumour scale model describes the evolution of
volume and cellularity in the primary tumour, as well
as its biomechanical interactions with the surrounding
tissues, and the diffusion of nutrients and metabolites
to and from the closest blood vessels. These quantities
are described as spatial fields, whose temporal
evolution is governed by a system of partial differential
equations. These equations are discretised and then
integrated over a period of time using a finite element
method. Reduced order techniques will be applied on
tumour parameters (variability of tumour size, material
properties and treatment type) to enable real-time
simulation at the tumour scale.
▪ The tissue scale model requires two complementary
methodologies—firstly, a continuous, partial
differential equation-based model that includes the
chemical, biological and biomechanical interactions
of the NB/DIPG cells with each other and with their
extracellular matrix and vasculature. Model outputs
will be the population sizes of different cell types
and their evolution over time. In parallel to this, we
will develop an agent-based model [35], wherein
each cell is represented as an individual within a re-
gion of interest, explicitly capturing cellular behav-
iours including cell cycle progression, cell cycle
arrest, cell death, production and degradation of the
extracellular matrix, physical intercellular

interactions, and cell-microenvironment interactions.
This model may be used independently to explore
hypotheses about specific regions of the tumour at a
high resolution, or be fully integrated with other
PRIMAGE models using state-of-the-art optimisation
and acceleration techniques [36] and multiscale
modelling approaches, as described below.
▪ The cell scale model describes the evolution of
chemical and biological properties over time inside a
single NB/DIPG cell, when it is exposed to different
environmental conditions including various treatments.

Computational strategy
This project proposes a dataflow strategy to enable the
proposed multiscale model to be executed using avail-
able HPC resources, in an effective and robust manner,
considering that the proposed tumour model will need
to be coupled to hundreds of thousands of tissue
models, each coupled to also hundreds of thousands cell
models.
In the proposed dataflow strategy, each single-scale

model is described as a black box that takes as input an
array of input sets and produces as output an array of
output sets. Bi-directional resampling modules are pro-
posed between the database that contains the input sets
as computed, and those as required by the next model.
Thus, resampling modules are used on value sets that
are computed at lower scales and homogenised at upper
scales, and on value sets that are computed at upper
scales and then particularised at lower scales, at each
scale transition.
The proposed workflow for the implementation of the

described dataflow approach is:

▪ Implementation of the software infrastructure to
manage the multiple databases. This infrastructure
includes frameworks for coupling of the models at
different scales via resampling functions, and
repositories for the three single-scale models as they
develop.
▪ Models execution without resampling. At this stage,
no resampling will be provided as the software
developments are focused on delivery and validation of
the dataflow architecture to execute the multiscale
model under suboptimal conditions, as efficiently as
possible (using acceleration techniques).
▪ Models execution with resampling. Tissue-to-organ
and cell-to-tissue modules will be incorporated in the
dataflow, using progressively sophisticated multidimen-
sional sampling techniques.
▪ Testing alternative approaches for enhancing
computational efficiency. The use of surrogate
modelling methods such as Gaussian processes will be
explored as an alternative of resampling techniques.
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Although operating under completely different
principles, they can be used to produce same result.

Even more, deep learning solutions will be developed,
tested and validated for image segmentation (convolu-
tional neural network architectures), radiomics analysis
(support vector machine, linear discriminant, quadratic
discriminant, decision trees, logistic regression, nearest
neighbour, deep neural networks, and their combination
in ensemble models) and CEPs (e.g., tumour subtypes,
patient’s prognosis), to estimate most accurate lesion
diagnosis, treatment prediction, and patient prognosis.
Models will be adapted to each application context (NB,
DIPG) in order to more specifically address the clinical
problems.

Performance platform validation
The proposed in silico tools will help tackle the relevant
CEPs on the clinical target applications. The following
CEPs have been prioritised by the Consortium clinicians
as highly relevant to these diseases and suitable for being
supported by in silico models, contributing to enhance
reliability of current diagnosis and prognosis procedures:

� Prognosis of NB spontaneous regression capacity for
low and intermediary risk patients;

� Identification of high-risk NB patients with
imminent risk of relapse (50% currently);

� Identification of NB high-risk patients that will not
respond to induction chemotherapy (30% currently);

� Identification of DIPG patients who will respond to
treatment (10% currently);

� Estimation of the expected survival period for DIPG
responder patients.

A functional version of the PRIMAGE platform will be
extensively evaluated in order to assess the platform’s
performance, thus its capacity to guide clinical decisions
in a precise, reliable, and relevant manner. The datasets
used for the validations includes imaging data, clinical
data and genetics and other molecular data (Table 2).
The internal validation of PRIMAGE platform will be

performed using datasets provided by the clinical centres
and organisations involved in PRIMAGE project which
never were used for the models and platform development.
In addition, in order to guarantee its correct perform-

ance under general conditions when using any datasets
from the real world, PRIMAGE platform will be exter-
nally validated using data from clinical centres out of
PRIMAGE environment. To get access to this data,
other hospitals not involved in the project as partners
have already been invited to participate by providing NB
and DIPG cases to the PRIMAGE platform as independ-
ent collaborative international centres.

Table 3 describes the methodologies that will be used
in the evaluation of PRIMAGE platform performance.
During the evaluations, it will be also assessed other
metrics such as security, reproducibility, interoperability
and usability amongst others (Table 4).

Expected results
The state of the art for production-quality hybrid
computational cloud and HPC for in silico processing
of clinical cases is currently represented by projects
such as EurValve [30, 31, 37] and GoSmart [38, 39],
having achieved significant progress in developing in-
tegrated, comprehensive frameworks. EurValve has
also come up with an integrated cloud/HPC comput-
ing solution to back up its MEE, dedicated for simu-
lations of valvular heart conditions. This environment
is now used in EurValve to perform clinical validation
of the resulting DSS, which is a preliminary step to-
wards development of an integrated, non-distributed
clinical DSS.
The significant novelty of PRIMAGE with regard to

this state of the art is to bring the cloud and HPC com-
puting solutions, already successfully utilised for devel-
opment and validation of in silico models, considerably
closer to clinical use. The project will carefully evaluate
available strategies, and it will deploy the selected solu-
tion to remotely provision the computationally intensive
elements of the proposed clinical DSS, thus enabling the
advantages of in-cloud computation for today’s DSSs.
The PRIMAGE approach combines the training and val-
idation of models for medical imaging biomarkers and
tumour growth simulation on open scientific cloud in-
frastructures, which constitutes the most computing in-
tensive part, with the use of those models for
personalised diagnosis, prognosis and optimisation of

Table 2 Datasets used for testing of the PRIMAGE platform

Imaging data Imaging data represents the highest challenge
in terms of storage and processing. In
PRIMAGE data repositories, for each patient,
imaging data is linkable to their available
pseudonymised biological, pathological, and
genetics. The use of common metadata
frameworks and image analysis techniques for
automated data annotation for each image is
proposed to generate common repositories

Genetics and other
molecular data

This project uses existing knowledge on
biological biomarkers (currently on clinical use
or at advanced clinical validation stage). This
type of data is used in combination with
imaging and clinical data, facilitating
multidisciplinary big data analytics.

Clinical data Use of natural language processing tools for
automated extraction of relevant pathological
data, including data on patient response to
specific treatment will be extracted from the
electronic health record. Data will then be
structured, curated, and stored.
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treatment, within hospital boundaries. The construction
of in silico clinical trials will allow decision-making from
causal inference from observational databases emulating
a pragmatic target trial if methodological pitfalls are
avoided [2].
This project will bring major advancements in the val-

idation of novel imaging biomarkers; it will create ad-
vanced computational models for tumour growth
simulation, given response to specific CEPs. A very lim-
ited number of imaging biomarkers have been used in
routine clinical practice to guide clinical decisions [7–9].

Therefore, PRIMAGE predictive models will enable un-
precedented effectiveness in the translation from clinical
Big Data to personalised predictors for malignant solid
tumours, particularly NB and DIPG, by incorporating
these assets for Big Data to usable clinical knowledge
translation. The PRIMAGE diagnosis guiding tool uses
quantification of imaging findings to improve sensitivity,
specificity, accuracy and reproducibility of diagnostic
and therapeutic decisions derived from image features
used in combination with clinically validated biological
biomarkers and cross-cohort machine learning from

Table 3 PRIMAGE platform testing methodologies and performance metrics

Main testing methodologies Main performance metric

Cloud
infrastructure

Definition of unitary and integration tests based on the
application requirements, monitoring along time, design-time
vulnerability analysis.

Performance (deployment and reconfiguration overheads,
performance penalties, scalability), reliability (correct results with
respect references), reproducibility (predictability of performance
and automation), robustness (reliability along time and under
different stress conditions), security (identification of
vulnerabilities and isolation), privacy (privacy risk estimation).

High-performance
computing
infrastructure

Continuous monitoring of infrastructure. Alerts for
administrators in case of malfunctions or failures.

VM start-up time. Resource consumption. Number of concur-
rently running computational tasks. Availability. Measured
through monitoring statistics, experiments and benchmarks.

Data repositories Testing on MR, 131I-MBIG imaging, CT, PET/CT data, from
retrospective studies of neuroblastoma and diffuse intrinsic
pontine glioma patients

Correlation between clusters of imaging biomarkers. Correlation
between radiomic signatures and genomic profiles, and/or
circulating tumour biomarkers from liquid biopsy (circulating
tumour cells, tumour nucleic acids, etc.)

Imaging
biomarkers

Testing on images (MR, 131I-MBIG imaging, CT, PET/CT) from
retrospective data of neuroblastoma and diffuse intrinsic
pontine patients

Precision, accuracy and clinical relationship measured in terms of
quantified limit of detection and limit of quantification,
reproducibility, sensitivity/specificity, coefficient of variation,
correlation to diagnosis/prognosis of a specific disease

Multiscale
modelling
framework

Qualitative and quantitative comparison of numerical
predictions with retrospective data

Quantitative correlation of the shape and size of tumour
between image-based data and computer-based results. Qualita-
tive correlation of vascular level and extracellular matrix proper-
ties in the tumour surroundings.

CT Computed tomography, MR Magnetic resonance, MBIG Metaiodobenzylguanidine, PET Positron emission tomography

Table 4 Metrics assessed in PRIMAGE platform

Metrics to be assessed Methodology

Security/privacy Provision of authentication and authorisation and analysis of vulnerabilities from public databases. Assessment of the
platform’s robustness to preserve data integrity according to GDPR, evaluating the privacy risk (e.g., as the capability of a
model to infer information previously anonymised), and managing the fine-grain consent as GDPR requires.

Correctness/reliability Assess the correctness of the predictive results for the established clinical end points using testing datasets from clinical
data repositories for over 2000 neuroblastoma patients and over 500 diffuse intrinsic pontine glioma patients with
complete diagnosis and follow-up data, including treatment and outcomes.

Sensitiveness to
incomplete data

Assess dependence of correctness of the predictive results with the completeness of the diagnosis datasets, to establish
how new biomarkers modify minimum datasets required for correct diagnosis/prognosis.

Reproducibility Statistical assessments: dispersion in the results obtained for a subgroup of patients with a common clinical diagnosis,
belonging to different hospitals where the diagnosis studies were undertaken

Interoperability Assessment of failures in the integration with hospital picture archive and communication system and electronic health
record systems, as well as to on-premise and public cloud services

Malfunction Occurrence of any fatigue of integrity or potential to induce to use errors

Relevance Interviews to assess users’ own judgement of helpfulness of the platform to guide them beyond obvious decisions for a
given data available set

Added value Statistical assessment of occurrence of correct predictions for clinical end points that current diagnosis/prognosis
standard protocols could not predict correctly

Usability/user friendliness Observation of use patterns, users’ eye tracking, interviews to users

DIPG Diffuse intrinsic pontine glioma, GDPR General Data Protection Regulation
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European repositories for NB and DIPG. We aim to im-
pact current clinical guidelines [40].
PRIMAGE is designed to have a major impact on im-

proving the disease management of malignant solid tu-
mours. Upon successful validation in NB and DIPG,
evidencing how in silico tools can assist clinicians to
make improved informed decisions, PRIMAGE plat-
form’s architecture, repository infrastructure, simulation
frameworks, and web-based user interfaces will have the
potential to be adapted and completed for use in the
management of other types of cancer.
We do not foresee any intellectual property nor com-

mercial issues during the project: the intellectual prop-
erty background of each partner has been defined and
declared already, as well as the general framework on
the future exploitation and ownership of the project’s re-
sults. At the end of the project, there will be pieces of
software, computational models and other intellectual
property assets that will be owned by the partner(s) that
developed them. Exploitation and/or access rights on
these developments may be given to the rest of partners
under favourable conditions. This shall be set in specific
commercial agreements between the owner(s) and the li-
censee(s) after the end of the project. Finally, regarding
the access to the PRIMAGE platform as a whole, the
aim of the project is to give open access to the research
community. Means for the sustainability and continuity
over time of the PRIMAGE platform will be assessed
also during the project.

Conclusion
At the end of the project, the developed open cloud-
based platform will support phenotyping (diagnosis),
treatment stratification (prediction) and patient-specific
CEPs determination (prognosis), based on the use of im-
aging biomarkers, tumour growth simulation, advanced
visualisation of confidence scores, and machine learning
approaches. The decision support prototype will be con-
structed and validated on NB and DIPG cancers. The re-
sults will be available for the scientific community and
ready for transfer learning to other malignant solid tu-
mours. Data infrastructures, imaging biomarkers, and
predictive models for in silico medicine research will be
validated during this project. Given the rarity of these
tumours, international cooperative networking is essen-
tial to agglutinate relevant in silico data from clinical tri-
als and large real-world data repositories, facilitating
identification of effective clinical tools.
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