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Abstract

This workbook on Research Toolkits for economists aims to present
basic econometric methods that economists have developed over years
for testing various propositions of standard economic theories. It focuses
on basics of OLS estimators, their applications, problems including mul-
ticollinearity, heteroskedasiticity and autocorrelation and remedial mea-
sures, unit root and cointegration, simultaneous equations and panel data
analysis. Tutorial problems and assignments are integral parts of the mod-
ule and models discussed here could be applied to analyse economic issues
and to write research reports or journal articles.
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1 What is research toolkit for economists?

The major objective of research in economics is to find out the truth about
economic questions that is bothering individual households, communities, policy
makers in the local and national governments or the international community as
a whole. Some questions are quantitative by nature such as the distribution of
income, employment level by sectors, prices and costs of commodities, demand
and supply of various goods and services in the economy, international trade,
growth rates of output employment, capital stock, investment, rate of returns
on financial assets, primary, secondary or the university level education. Others
are qualitative and philosophical. Effective analyses of economic issues such
as the effi ciency of firms, the welfare of individuals or households require both
quantitative and qualitative techniques. The major aim of these is to understand
the behavioural and psychological factors that underpin the decision making
process of individuals and firms or the policy makers and be able to predict the
course of variables in coming years.
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Economists have developed many theories regarding how the various mar-
kets function or should function. How the various pieces of economic activities
make the national or international economy. Economic research therefore is
divided into two main groups 1) theoretical research 2) applied research. The-
oretical research often involves derivation of demand, supply and equilibrium
conditions using some sort of optimising process. Diagrams, equations or sim-
ply the logical statements are often used for theoretical deduction. Standard
micro or macroeconomic models (or extensions of those models in various fields
of economics) are applied to study how consumers and producers optimise and
how those determine prices for goods and services or factors of production in
related markets. The general equilibrium models quantify the entire economy.
Intertemporal models show the process of accumulation, investment and growth.
Statistical inferences based on marginal or cumulative distributions of popula-
tions, samples with law of large numbers are used to test claims of these theories.
Abstract models require algebra, calculus, matrix, econometrics, real analysis
or stochastic probability theory to represent and test these theoretical ideas.
Theories need to be applied in practice to make them useful for improvement

in the welfare of human society. The application involves systematic collection
of information on variables identified by the relevant theory. Empirical research
tests the claims made by those theories stated in linear or non-linear functions
using various estimation or computation techniques. As the amount of informa-
tion has grown so has the need to process the information. The applied research
is basically about processing information consistently, coherently, systematically
using inductive methods. Applied research can also vary according to the nature
of method used in analysis. There are mainly four categories of applied research:
1) statistical and econometric analysis 2) calibration and computations of system
of equations 3) strategic analysis 4) experimental analysis. Statistical analysis
involves designing, implementing and collecting data on economic variables sci-
entifically in an unbiased manner. This also involves determining the properties
of distribution of those variables, collecting information on central tendencies,
finding correlations and the pattern of causality among variables. Econometric
analysis involves techniques and applications to process data for testing vari-
ous economic theories based on cross sections and time series data. Calibration
and computation of system of equations involves solving N number of equations
on the basis of certain assumption about their behaviour, such as market de-
mand and supply functions, or input-output analysis or a general equilibrium
system. Linear, non-linear or dynamic programming is often used to determine
such a system. Game theory is becoming increasingly popular tool to analyse
inter-dependence among economic agents where the action to be taken by one
is determined by the beliefs or perception of that individual about the action
taken by other people in the economy. They are applied to analyse the process
and outcome of bargaining, strategic contingency planning or just in describing
the behaviours of economic agents. Experimental analysis has the concept of
using control groups for testing economic theories, such as impacts of certain
policy in economic stability, such as the adoption of the euro, effect of certain
drugs, or certain measures on productivity, health or educational attainment.
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The broader aim of the research toolkit module is to raise level of con-
fidence of students in economics to engage themselves in analysis of these chal-
lenging problems around the world and urge them to develop skills that enable
them to exchange ideas effi ciently for the benefit of humankind by maintaining
steady progress of our economies and to contribute to improve the living stan-
dards of millions of people around the globe. Given the tight time framework
this module will focus on the basics of econometric techniques. This workbookd
ncludes aims and objectives of the module, teaching programme and learning
outcomes, assignments, essential readings, contact addresses of relevant staffand
other information essential for students. Essentially this complements various
other modules.
Introduction to the empirical economics by an example:
Consider a problem of a consumer who maximises utility subject to the

budget constraint as:

maxU = Cα1 C
1−α
2 s.t. P1C1 + P2C2 = I (1)

Where U denotes utility, C1 and C2 amount of goods 1 and 2 respectively
with P1 and P2 as their prices,α is the share of income spent in good 1 and
(1− α) is in good 2, I is income. Following the optimisation (i.e. after solving
the first order conditions of Lagrangian constrained optimisation) this results
in separate demand functions for two goods as:

C1 =
αI

P1
(2)

C2 =
(1− α) I

P2
(3)

Now consider estimating only the demand for C1. Taking log both sides of
the first demand function one gets an estimable demand function:

lnC1 = lnα+ ln I − lnP1 (4)

For a market demand function assume that there are i = 1...n consumers in
a community. Define variables for a standard regression model as:

lnC1,i = Yi; β1 = lnα+ ln I; lnP1,i = β2Xi. Then a simple linear regres-
sion model of standard demand function based economic theory of consumer
optimisation is:

Yi = β1 + β2Xi + ei (5)

Here β1 measures income effect as well as preference for good one (α) by
consumers, slope β2 measures the impact of price on demand; ei includes all
other elements (omitted variables, misspecification bias). Expected signs β1 > 0
and β2 < 0. Income (Ii) can be explicitly included and it is expected to have
positive impact on demand (β3 > 0)

Yi = β1 + β2Xi + β3 ln Ii + ei (6)
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This is an example on the theoretical basis of a linear regression model1 .
For many products (i.e. car, house, food, clothes, sports) demand is determined
by their prices of products and income of consumers. Empirical economics
discusses techniques to test propositions of economic theory from the evidence
available in the real data on variables Yi, Xi and Ii by estimating (or calibrating)
parameters.

1.0.1 Guidelines for Empirical Research

1. Construction of hypotheses: specify one or more equations of a model
based on economic theory.

(a) Macroeconomic theory:

i. determinants of growth across regions or countries
ii. total factor productivity
iii. growth, inequality and environment
iv. models of fluctuation or business cycle (interest rate rule)
v. determinants of consumption, saving, investment, exports, im-
ports, output, employment

vi. inflation and unemployment
vii. interest rate, exchange rate, inflation, trade balance,
viii. deposit expansion, credit flows

(b) Microeconomic theory

i. Demand for a commodity (necessary, luxury or normal goods;
durable or perishable items)

ii. Cost of production of certain commodity (car, plane, computer,
TV, electronic goods, machines)

iii. Market price for a certain commodity (rice, wheat, maize, millet;
meat and other livestock products)

iv. Profits, revenue of a certain company or industry (Barclays,
British Airways, BT, Train/Bus, Low cost airlines)

v. Wage rates, rental rate of capital, salary of executives (job sat-
isfaction and performance)

vi. structure of markets (competition, monopoly, oligopoly or mo-
nopolistic compitition)

vii. foreign direct investment (joint ventures, franchising, licensing)
viii. merger and acquisition; economies of scale (concentration ratios)
ix. research and development; new management practices; business

models
x. Effi ciency and welfare

1Parameters of the systems of equations are estimated together using a simultaneous equa-
tion model or a VAR model. This is discussed later.
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(c) Trade theory: trade, prices, wages, capital flows; revealed compara-
tive advantage, gravity of trade ; terms of trade, real and nominal
exchange rates

(d) Public finance

i. Determinants of revenue and spending
ii. Budget deficit, public debt
iii. Impact of taxes on demand and supply of goods and products;

income distribution and welfare
iv. Impacts of taxes, spending and debt on long run growth and

short run fluctuations

(e) Environment

i. Determinants of pollution and costs of abatement
ii. Global warming and carbon footprints

(f) Employment and labour markets

i. Demand and supply of labour
ii. Employment/labour force, population
iii. skill, qualifications and performance
iv. Unemployment and inflation
v. Earnings, wages and work hours, pensions
vi. Migration, remittances

(g) Finance

i. Savings and accumulation of wealth by households and invest-
ment by firms

ii. Deposits, loans and interest rate spreads
iii. Cost and benefit and networth of projects
iv. Optimal portfolio, allocation, risk free return, return on financial

assets
v. Prices of stocks, bonds; spot, option and future prices
vi. Liquidity and effi ciency of the financial system and growth
vii. Foreign exchange market, commodity markets

(h) Economic development

i. Education and manpower development
ii. Investment and growth
iii. Human capital and productivity
iv. Structural transformation
v. Estimation of surplus labour in dual labour market
vi. Gini coeffi cient

Theoretical derivation requires using first and second order conditions and
solving a system of equations of a model; survey experiments.
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2. Represent theory using a set of interlinked diagrams. Indicate optimum
conditions in the diagram.

1. Preparation of data

Once clear about the hypothesis, required data can be obtained by primary
survey or downloaded from standard secondary sources like

1. (a) Economic and social data (ESDS) www.esds.ac.uk/international

(b) datastream

(c) http://finance.yahoo.com/

(d) http://www.unctad.org; www.wto.org

(e) Eurostat: http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/themes

(f) BHPS: http://www.esds.ac.uk/government/; http://www.esds.ac.uk/government/surveys/

(g) http://www.data-archive.ac.uk/findingData/bhpsTitles.asp

(h) http://www.statistics.gov.uk

(i) http://www.economicsnetwork.ac.uk/links/data_free#uk

(j) see links at http://www.hull.ac.uk/php/ecskrb/Confer/research.html

3. Data files from http://www.data-archive.ac.uk/

(a) Excel or CSV format for PcGive.

(b) Large scale data are available on SPSS or

(c) STATA format (*.dat).

You can get lost at this stage if you are not precise on the research question
or the hypothesis. Be focused and get only data you require. Ask for help if
confused.

4. Estimations and interpretation of results

(a) Specify equations according to the hypothesis set in stage 1

(b) Derive equations for the OLS estimators

(c) Examine the properties of those estimators - do they have expected
signs, are they significant? what do they mean?

(d) Mean and variance of those estimators; reliability and confidence
interval for estimated parameters.

(e) Estimate parameters using the data collected above.

5. Analyse variance by R2, t, F and χ2 tests as appropriate

(a) Write analytical forms for t, F and χ2 tests.
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(b) Determine the degrees of freedom and critical values from the theo-
retical tables.

(c) Compare empirical results with those theoretical values and deter-
mine the significance.

(d) Take a decision regarding significance of the model or coeffi cient
based on these tests.

(e) Think of improving the model based on tests.

(f) see http://www.medcalc.org/manual/t-distribution.php.

6. Tests of multicollinearity

(a) Write estimators at least with two explanatory variables.

(b) Show how the estimator breaks down with perfect multicollinearity.

(c) Determine variables that are correlated to each other based on analy-
sis of correlation among explanatory variables.

(d) Determine the variance inflation factor.

(e) Drops correlated variables and re-estimate the model until getting
the sensible results.

7. Restrictions and dummy variables

(a) Consider theoretically appropriate restrictions in the model.

(b) Write analytical forms of F-test that can be used to test restrictions.

(c) Determine the validity of restrictions.

(d) Introduce dummy variables to capture structural changes in time
series or individual effects in the cross section Analysis.

8. Heteroskedasticity

(a) Write the analytical form of the heteroskedasticity problem.

(b) Show how the properties of the OLS estimators are affected by pres-
ence of heteroskedasticity.

(c) Write test statistics to detect heteroskedasticity.

(d) Transform the model to remove heteroskedasticity.

(e) Construct a cross section data appropriate for heteroskedacity analy-
sis.

(f) Interpreted meaning of the heteroskedasticity consistent standard er-
rors.

9. Autocorrelation

(a) Find causes why there is autocorrelation and consequences of it.
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(b) Write analytical form of the Durbin-Watson Statistics.

(c) Show how the properties of the OLS estimators are affected by pres-
ence of autocorrelation.

(d) Estimate the model with AR(1) autocorrelation.

(e) Transform the model to remove autocorrelation using iterative pro-
cedure.

10. Stationarity

(a) Explain when a variable is stationary and when non-stationary.

(b) Show the impact of non-Stationarity in the variance of the variable
in an AR(1) model.

(c) What is Dickey-Fuller test and Augmented Dickey-Fuller test? Phillip-
Peron tests.

(d) Determine whether your series are stationary based on DF and ADF
statistics.

11. Causality and cointegration

(a) Show the procedure for Granger causality test.

(b) What is order of integration and what is cointegration?

(c) Show analytical forms to test cointegration.

(d) Determine cointegration in a single equation model.

13. Write an essay or article based on research experience gained in following
steps 1 to 11

2 Linear Regression Model

• Consider a linear regression model:

Yi = β1 + β2Xi + εi i = 1...N (7)

Error term (εi) represents all missing elements from this relationship; a
positive error term indicates that true observation is above the fitted line
and a negative error term indicates that actual observation is below the
fitted line. On average these pluses and minuse errors cancel out resulting
in a mean zero value for each error. Therefore the Gauss-Markov thoerem
assumes that these errors (εi) are normally distributed random variables
with a zero mean and a constant variance, σ2 , represented as follows:

εi ∼ N
(
0, σ2

)
(8)
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• Normal equations of above regression (derivation is given in the next sec-
tion): ∑

Yi = β̂1N + β̂2
∑

Xi (9)∑
YiXi = β̂1

∑
Xi + β̂2

∑
X2
i (10)

Each dot in the above graph represents an observation. Some observations lie
above the least square Ŷi line and other observations lie below it. These errors
represent all sorts of elements missing from this relationship. Some of them
might be due to the missing variables, others might be due to measurement
errors, still other may be from the mis-specification of the relationship. The
least square line is the line of best fit; line that fits the data set with minimum
sum of square of errors. Differences between each observation and the line Ŷi is
represented by error terms ei. As some of them are above the line and others
below the line, positive errors cancel out with the negative errors. Note that the
least square line passes through the average values of variables X and Y (prove
it).
A system method of estimation is required when variables are endogenously

related to each other (see sections of simultaneous equation and VAR for such
models).

2.0.2 Ordinary Least Square (OLS): Assumptions

List the OLS assumptions on error terms ei .
1) Normality of Errors

E (εi) = 0 (11)

2) Homoskedasticity

var (εi) = σ2 for ∀ i (12)

3) No autocorrelation

covar (εiεj) = 0 (13)

4) Independence of errors from dependent variables

covar (εiXi) = 0 (14)

Details on what happens if above assumptions are violated is explained in
sections of heteroskedasticity, autocorrelation and specification bias.
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2.0.3 Derivation of normal equations for the OLS estimators

Standard problem of the ordinary least square (OLS) method is to choose pa-
rameters β̂1 and β̂2 to minimise sum of square errors as:

Min S
β̂1β̂2

=
∑

ε2i =
∑(

Yi − β̂1 − β̂2X1,i

)2
(15)

First order conditions of minimisation are2 :

∂S

∂β̂1
= 0;

∂S

∂β̂2
= 0; (16)

∑(
Yi − β̂1 − β̂2Xi

)
(−1) = 0 (17)∑(

Yi − β̂1 − β̂2Xi

)
(−Xi) = 0 (18)

Normal equations are obtained by re-ordering these first order conditions
as: ∑

Yi = β̂1N + β̂2
∑

Xi (19)∑
YiXi = β̂1

∑
Xi + β̂2

∑
X2
i (20)

There are two unknown β̂1 and β̂2 and two equations. One way to find
β̂1and β̂2 is to use the substitution and reduced form method.

Determine the slope estimator by the reduced form equation method as
follows:

Multiply the second equation by N and first by
∑
Xi∑

Xi

∑
Yi = β̂1N

∑
Xi + β̂2

(∑
Xi

)2
(21)

N
∑

YiXi = β̂1N
∑

Xi + β̂2N
∑

X2
i (22)

By subtraction this reduces to∑
Xi

∑
Yi −N

∑
YiXi = β̂2

(∑
Xi

)2
− β̂2N

∑
X2
i (23)

β̂2 =

∑
Xi

∑
Yi −N

∑
YiXi

(
∑
Xi)

2 −N
∑
X2
i

=

∑
xiyi∑
x2i

(24)

This is the OLS Estimator of β̂2, the slope parameter;
∂Y
∂X = β̂2. It measures

how much change in Y occurs after a change in one unit of X.

2Notice that there are as many first order conditions as many parameters to be estimated.
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When β̂2 is known, it is easy to find the intercept estimator β̂1 by averaging
out the regression Yi = β1 + β2Xi + εi as:

β̂1 = Y − β̂2X (25)

Proof for deviation method:∑
Xi

∑
Yi−N

∑
YiXi

(
∑
Xi)

2−N
∑
X2
i

=
∑
xiyi∑
x2i

;

LHS =

∑
Xi

∑
Yi −N

∑
YiXi

(
∑
Xi)

2 −N
∑
X2
i

=
NXNY −N

∑
YiXi(

NX
)2 −N∑X2

i

=
NXNY −N

∑
YiXi(

NX
)2 −N∑X2

i

=
NXY −

∑
YiXi

NX
2 −

∑
X2
i

=

∑
YiXi − NXY∑
X2
i − NX

2

=

(∑
Yi - Y

) (∑
Xi - X

)(∑
Xi - X

)2 =

∑
xiyi∑
x2i

= RHS; QED. (26)

Matrix method of finding β̂1 and β̂2 is more general and convenient; partic-
ularly useful for a multiple regression model (review determinant and inverse of
a matrix in the matrix section).

2.0.4 Normal equations in matrix form

Let Y be N×1 vector of a dependent variable (regressor); X be N×K matrix of
independent variables (regressands); β be K×1 vector of unknown paramerters
e be N × 1 vectro of errors. That means data and parameters in matrix are:

Y =


y1
y1

y1

 ; X =


1 x1,1 .. xk,1
1 x1,2 .. xk,2
0
1 x1,N .. xk,N

 ; β =


β0
β1
.
βk

 ; e =


e1
e1

e1

 .
Then a regression model can be written as:

Y = Xβ + e (27)

β̂ = (X ′X)
−1
X ′Y (28)

For a case of simple regression model with k = 2:

y
1

= β0 + β1x1 + e
1

(29)

.. (30)

14



y
N

= β0 + β1xN + e
N

(31)

Sum and cross products are required to evaluate the normal equations:∑
Yi = β̂1N + β̂2

∑
Xi (32)∑

YiXi = β̂1
∑

Xi + β̂2
∑

X2
i (33)

Represtantion of above normal equations in matrix form:

[ ∑
Yi∑
YiXi

]
=

[
N

∑
Xi∑

Xi

∑
X2
i

] [
β̂1
β̂2

]
; β̂ = (X ′X)

−1
X ′Y (34)

Estimators in matrix form:[
β̂1
β̂2

]
=

[
N

∑
Xi∑

Xi

∑
X2
i

]−1 [ ∑
Yi∑
YiXi

]
(35)

Consider a small example with only 8 data observations.

2.0.5 Data Table: An Example

DATA
y Contant x
4 1 5
6 1 8
7 1 10
8 1 12
11 1 14
15 1 17
18 1 20
22 1 25

V



Y

4
6
7
8
11
15
18
22


8×1

=



X

1 5
1 8
1 10
1 12
1 14
1 17
1 20
1 25


8×2


β

β̂1
β̂2


2×1

+



e

e1
e2
e3
e4
e5
e6
e7
e8


8×1
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Derivation of OLS Estimators:

Matrix multiplication:
[(
X
′
X
)

=
N

∑
Xi∑

Xi

∑
X2
i

]

(
X
′
X
)

=

[
1 1 1 1 1 1 1 1
5 8 10 12 14 17 20 25

]
2×8



1 5
1 8
1 10
1 12
1 14
1 17
1 20
1 25


8×2

=

[
8 111

111 1843

]
2×2

(36)

OLS in Matrix

(
X
′
Y
)

=

[
1 1 1 1 1 1 1 1
5 8 10 12 14 17 20 25

]
2×8



4
6
7
8
11
15
18
22


8×1

=

[
91

1553

]
2×1

(37)

2.0.6 Summary of Data[ ∑
Yi = 91∑

YiXi = 1553

]
=

[
N = 8

∑
Xi = 111∑

Xi = 111
∑
X2
i = 1843

][
β̂1
β̂2

]
(38)

[
β̂1
β̂2

]
=

[
8 111

111 1843

]−1 [
91

1553

]
(39)

Solving by the Cramer’s rule
Determinant (cross-product)

|X ′X| =
∣∣∣∣ 8 111

111 1843

∣∣∣∣ = (8× 1843)− (111× 111) = 2423 (40)
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2.0.7 Estimates

β̂1 =
1

2423

∣∣∣∣ 91 111
1553 1843

∣∣∣∣ =
167713− 172383

2423
=
−4670

2423
= −1.9274 (41)

β̂2 =
1

2423

∣∣∣∣ 8 91
111 1553

∣∣∣∣ =
12424− 10101

2423
=

2323

2423
= 0.9587 (42)

You can evaluate the inverse of a matrix in Excel easily using following steps:
1. select the cell where to put the result and press shift and control conti-

nously by two fingers of left hand
2. use mouse by right hand to choose math and trig function
3. choose MINVERSE
4. Select matrix for which to evaluate the determinant
5. press OK and you will see the reslut.
To evaluate a determinant - select a cell where you want to put the result,

then choose MDETERM; select the matrix, then press ok.
For matrix multiplication follow conformability of matrix multiplication.

This means number of columns in the first matrix should equal the number
of rows in the second matrix. When a X matrix of order N ×K is multiplied to
a B matrix of order K × 1 then the resutling matrix Y will be of N × 1 order,
K cancels out.

2.0.8 Predicted Y

Ŷi = β̂1 + β̂2Xi =⇒ Ŷi = −1.9274 + 0.9587Xi (43)

Both slope and intercepts make economic sense. In this sample expenditure
on food (Y ) is determined by weekly income of an individual (X), people spend
95.6% percent of their weekly income in food expenditure. Poor people who do
not have any income, receive a subsidy of 1.93 pence per week.
• Mean prediction
We can use this estimated equation to find the predicted value ŷi for each

observation of xi. If the weekly income is 40, predicted food expenditure will
be 36.42.

Ŷi = −1.9274 + 0.9587Xi = −1.9274 + 0.9587 (40) = 36.42
Predicted values of Yi for the entire sample is as follows:

Ŷ1 = −1.9274 + 0.9587 (5) = 2.866 ( 4 4 )

Ŷ2 = −1.9274 + 0.9587 (8) = 5.742 ( 4 5 )

Ŷ3 = −1.9274 + 0.9587 (10) = 7.660 ( 4 6 )

Ŷ4 = −1.9274 + 0.9587 (12) = 9.577 ( 4 7 )

Ŷ5 = −1.9274 + 0.9587 (14) = 11.495 ( 4 8 )

Ŷ6 = −1.9274 + 0.9587 (17) = 14.371 ( 4 9 )

Ŷ7 = −1.9274 + 0.9587 (20) = 17.247 ( 5 0 )
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Ŷ8 = −1.9274 + 0.9587 (25) = 22.041 ( 5 1 )

Error terms are also estimated using the definition of error as:
êi = Yi − (−1.9274)− 0.9587Xi = Yi + 1.9274− 0.9587Xi

êi = Yi − β̂1 − β̂2Xi = Yi − (−1.9274 + 0.9587Xi) (52)

ê1 = 4 + 1.9274 − 0.9587 (5) = 1.134 ( 5 3 )

ê2 = 6 + 1.9274 − 0.9587 (8) = 0.258 ( 5 4 )

ê3 = 7 + 1.9274 − 0.9587 (10) = −0.660 ( 5 5 )

ê4 = 8 + 1.9274 − 0.9587 (12) = −1.580 ( 5 6 )

ê5 = 11 + 1.9274 − 0.9587 (14) = −0.495 ( 5 7 )

ê6 = 15 + 1.9274 − 0.9587 (17) = 0.629 ( 5 8 )

ê7 = 18 + 1.9274 − 0.9587 (20) = 0.753 ( 5 9 )

ê8 = 22 + 1.9274 − 0.9587 (25) = 0.000 ( 6 0 )

• Use of regression estimates to calculate the elasticities
The definition of elasticity of food expenditure on income evaluated at the

mean values of Y and X is given by

η =
∂Y
Y
∂X
X

= 0.9587× 13.857

11.375
= 1.1683 (61)

This suggests that the expenditure on food is elastic around the mean. There
will be £ 1.17 pence more expenditure to every £ 1 rise in weekly income.

TSS =
∑[

Yi − Y i
]2

=
∑[

Ŷi − Y i + êi

]2
=

∑(
Ŷi − Y i

)2
+
∑

ê2i + 2
∑(

Ŷi − Y i
)
êi

=
∑(

Ŷi − Y i
)2

+
∑

ê2i ∵ 2
∑(

Ŷi − Y i
)
êi = 0 (62)

Consider 2
∑(

Ŷi − Y i
)
êi = 2

∑(
Xβ̂ − Y i

)
êi = 2

(
Xβ̂ − Y i

)∑
êi = 0

; this is try by assumption covar (εiXi) = 0.
[Total variation] = [Explained variation] + [Residual variation]
[Total variation] = [Regression Sum Square] + [Residual sum square]

TSS = RSS + ESS (63)
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2.0.9 Degrees of freedom (df)

Degrees of freedom for N observations and K explanatory variables:
[Total variation] = [Explained variation] + [Residual variation]
[Total variation] = [Regression Sum Square] + [Residual sum square]
df : N-1 K-1 N-K

2.0.10 Variances∑
ê2i = ê21 + ê22 + ê23 + ê24 + ê25 + ê26 + ê27 + ê28 = (1.134)

2
+ (0.258)

2
+ (−0.660)

2
+

(−1.580)
2

+ (−0.495)
2

+ (0.629)
2

+ (0.753)
2

+ (0.000)
2

= 5.484

var ( êi) = E
(
ε̂2i

)
=

∑
ê2i

N − k = σ̂2 (64)

Where k is the number of parameters in the regression; N is the number of
observations. ∑

ê2i
N − k =

5.4841

8− 2
= 0.914 (65)

Easy way to calculate total sum squares:

∑
y2i =

∑(
Yi − Y

)2
=
∑

Y 2i −NY
2

= 1319− 8× 11.3752 = 283.875 (66)

∑
x2i =

∑(
Xi −X

)2
=
∑

X2
i −NX

2
= 1843− 8× 13.8752 = 302.875 (67)

2.0.11 R-square and F Statistic

Regression Y on X is the line of the best fit for the data; R2 indicates how
well the model fits to the data. It is called the coeffi cient of determination. It
is given by R2 =

∑
ŷ2i∑
y2i

= Regression sum square
Total sum square . Its value is between zero and one,

0 ≤ R2 ≤ 1. That R2 = 1 means that the model explains everything and R2 = 0
means that it does not explain anything. Most often it is in between these two
extremes; the higher the value of R2 better is the fit of the model.∑

ŷ2i = β̂
2

2

∑
x2i = 0.95872 × 302.875 = 278.390 (68)

Coeffi cient of determination is a measure in the regression analysis that
shows the explanatory power of independent variables (regressors) in explaining
the variation on dependent variable (regressand). The total variation on the
dependent variable can be decomposed as following:
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R2 =

∑
ŷ2i∑
y2i

=
278.390

283.875
= 0.981 (69)

For N observations and K explanatory variables
[Total variation (TSS)] = [Explained variation (RSS)] + [Residual variation

(ESS)]
df = N-1 K-1 N-K

F =
RSS/(K − 1)

ESS/(N − k)
=

278.390
1

5.4841
6

=
278.390

0.9140
= 304.579 (70)

R
2

= 1− (1−R2) N − 1

N −K = 1− (1− 0.981)
8− 1

8− 2
= 0.978 (71)

R2 > R
2

Prove that two forms R
2

= 1− (1− R2) N−1N−K or R
2

= R2 N−1N−K −
K−1
N−K are

equivalent.

Relation between Rsquare and Rbarsquare Prove that two forms R
2

=

1− (1−R2) N−1N−K or R
2

= R2 N−1N−K −
K−1
N−K are equivalent.

Proof

LHS = R
2

= 1− (1−R2) N − 1

N −K = R2 +
(
1−R2

)
−
(
1−R2

) N − 1

N −K

= R2 −
(
1−R2

) [ N − 1

N −K − 1

]
= R2 +

(
1−R2

) [N − 1−N +K

N −K

]
= R2 −

(
1−R2

) [ K − 1

N −K

]
= R2 +R2

K − 1

N −K −
K − 1

N −K

= R2
(

1 +
K − 1

N −K

)
− K − 1

N −K

= R2
(
N −K +K − 1

N −K

)
− K − 1

N −K = R2
(
N − 1

N −K

)
− K − 1

N −K
RHS; QED (72)

2.0.12 Variance, Standard Error and t-value of Slope Parameter

V ar
(
β̂2

)
= var

[ ∑(
Xi −X

)∑(
Xi −X

)2
]
var (yi) =

1∑
x2i
σ̂2 (73)

Using 67 and 65 above:

var
(
β̂2

)
=

0.914

302.875
= 0.0030 (74)

Standard error of β̂2 :
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SE
(
β̂2

)
=
√

0.0030 = 0.0548 (75)

t-value of β̂2 from the sample :

tβ̂2
=

β̂2 − β2
SE

(
β̂2

) =
0.9587− 0

0.0548
= 17.495 (76)

Compare it to the the table of value of t for degrer of freedom N-K = 8-2=6
for chosen level of significance (α); usually α is either 1 percent (more accu-
rate) or 5 percent (acceptable); but α really depends on the degree of precision
required in accepting or rejecting the hypothesis.

Variance, Standard Error and T value of Intercept Parameter

var
(
β̂1

)
=

[
1

N
+

X
2∑
x2i

]
σ̂2 (77)

var
(
β̂1

)
=

[
1

8
+

13.8752

302.875

]
× 0.914 (78)

var
(
β̂1

)
= [0.125 + 0.634]× 0.914 = 0.6937 (79)

SE
(
β̂1

)
=
√

0.6937 = 0.833 (80)

tβ̂1
=

β̂1 − β1
SE

(
β̂1

) =
−1.9774− 0

0.833
= −2.374 (81)

Matrix method is easier to calcuate variance of a parameter:

cov
(
β̂
)

= (X ′X)
−1
σ̂2 =

[
8 111

111 1843

]−1
×0.914 =

1

2423

[
1843 −111
−111 8

]
×0.914

(82)

cov
(
β̂
)

=

[
1843
2423 × 0.914 − 111

2423 × 0.914
− 111
2423 × 0.914 8

2423 × 0.914

]
=

[
0.6952 −0.0419
−0.0419 0.0030

]
(83)

Diagonal elements of this matrix gives variances of parameters; var
(
β̂1

)
=

0.6952 and var
(
β̂2

)
= 0.0030. These are almost the same as above but the

matrix method more precise than the hand-calculation.
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2.1 Review of Matrix Algebra

A =

[
a11 a12
a21 a22

]
; B =

[
b11 b12
b21 b22

]
; C =

[
c11 c12
c21 c22

]
;

Addition:

A+B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
(84)

Subtraction:

A−B =

[
a11 a12
a21 a22

]
−
[
b11 b12
b21 b22

]
=

[
a11 − b11 a12 − b12
a21 − b21 a22 − b22

]
(85)

Multiplication:

AB =

[
a11 a12
a21 a22

]
×
[
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
(86)

Algebra

2.1.1 Determinant and Transpose of a Matrix

Determinant of A (difference of cross products)

|A| =
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = (a11a22 − a21a12) ; (87)

Determinant of B |B| =
∣∣∣∣ b11 b12
b21 b22

∣∣∣∣ = (b11b22 − b21b12)

Determinant of C |C| =
∣∣∣∣ c11 c12
c21 c22

∣∣∣∣ = (c11c22 − c21c12)

Transposes of A, B and C (interchange of rows to columns and columns to
rows)

A′ =

[
a11 a21
a12 a22

]
; B′ =

[
b11 b21
b12 b22

]
; C ′ =

[
c11 c21
c12 c22

]
(88)

Singular matrix |D| = 0. non-singular matrix |D| 6= 0.

2.1.2 Inverse of A

A−1 =

[
a11 a12
a21 a22

]−1
=

1

|A|adj (A) (89)

adj (A) = C ′ (90)

For C cofactor matrix. For this cross the row and column corresponding to
an element and multiply by (−1)i+j
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C =

[
|a22| − |a21|
− |a12| |a11|

]
=

[
a22 −a21
−a12 a11

]
(91)

C ′ =

[
a22 −a21
−a12 a11

]′
=

[
a22 −a12
−a21 a11

]
(92)

Inverse of A

A−1 =
1

(a11a22 − a21a12)

[
a22 −a12
−a21 a11

]
=

[
a22

(a11a22−a21a12) − a12
(a11a22−a21a12)

− a21
(a11a22−a21a12)

a11
(a11a22−a21a12)

]
(93)

2.1.3 Exercise on matrix manipulations

1) Find B−1.

2) Some examples for addition, subtraction, determinant and inverse of ma-
trices.
An electronic store has branches both in Hull and York and sells computers

and TV before and after the Christmas. Quantities and prices are as given
below.

Table 1: Hypothetical Data on Quantities and Prices
Hull York

Computer TV Computer TV
Before After Before After Before After Before After

Quantities (Yi) 300 500 600 400 300 500 600 800
Prices (Xi) 500 400 100 60 525 400 120 80

Represent quantities and prices in the matrix form

1. (a) Total quantities and prices sold in both markets before and after, i.e.
(QB) and (QA) and (PB) and (PA) .

(b) Difference in sales in these two places (QB −QA) .

(c) Total sales revenue in both places before and after the Christmas
(RB = QBPB , RA = QAPA). Remember in Hull store can sell its
product in Hull prices or price of York and York can sell its prod-
ucts in Hull pirces (diagonal element represent revenue from saling
products in local price and the off-diagonal elements show revenue in
price of another city; clue for covariance term).
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(d) If total revenue (RB , RA) and quantities (QB , QA) are known, show
formula to find prices (PB , PA).[P = Q−1R; here all P , R and Q−1

matrices are 2× 2).

3) Portfolio of stocks in A, B, C, and D companies is P =
[

200 300 −1100 600
]

and their prices in good and bad economic states are

S′ =

[
G 1.3 1.2 1.0 1.5
B 1.5 0.83 0.95 1.2

]
respectively. Find the expected values

of above portfolio in good and bad states (PS).

2.1.4 Exercise 1

Regress demand for a product (Yi) on its own prices (Xi) as following

Yi = β1 + β2Xi + ei i = 1 ...N

where ei is a randomly distributed error term for observation i.

1. (a) List the OLS assumptions on error terms ei .

(b) Derive the normal equations and the OLS estimators of β̂1 and
β̂2.

(c) A shopkeeper observed the data quantities and prices as given in
Table 2 below. What are the OLS estimates of β̂1 and β̂2 implied by
these data? Is this a normal good?

(d) What are the variances of ei and Yi?

(e) What are R2 and R
2
?

(f) Determine the overall significance of this model by F -test at 5 percent
level of significance. [Critical value of F for df(1,4) =7.71]

(g) What are the variances and standard errors of β̂1 and β̂2?

(h) Compute t-statistics and determine whether parameters β̂1 and β̂2
are statistically significant at 5 percent level of significance [Critical
value of t for five percent significance for 4 degrees of freedom is
2.776(i.e tcrit,0.05,4 = 2.777) ].

(i) What is the prediction of Y when X is 0.5?

(j) What is the elasticity of demand evaluated at the mean values of Yi
and Xi?

(k) Reformulate the model to include price of a substitute product in the
model. What will happen to this estimation if these two prices are
exactly correlated?

(l) How would you decide whether the demand for this product varies
by gender?
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Table 2: Data on Quantities and Prices
Quantities (Yi) 5 10 15 20 25 30
Prices (Xi) 10 8 6 4 2 1

Hints:
[∑

Xi = 31
∑
X2
i = 221

∑
Y 2i = 2275;

∑
Yi = 105

∑
YiXi = 380

]
; (X ′X)

−1
=[

0.605 −0.085
−0.085 0.0164

]
Test whether work-hours depend on weekly or annual pay among UK coun-

ties using data Unempl_pay-couties.csv.
After estimating slopes and intercepts of demand and supply functions in two

interdependent markets, the equilibrium prices and quantities could be found
by solving the simultaneous equation system as:
Market 1:

Xd
1 = 10− 2p1 + p2 (94)

XS
1 = −2 + 3p1 (95)

Market 2:
Xd
2 = 15 + p1 − p2 (96)

XS
2 = −1 + 2p2 (97)

Equilibrium in both markets implies:

Xd
1 = XS

1 implies 10− 2p1 + p2 = −2 + 3p1
Xd
1 = XS

1 implies 15 + p1 − p2 = −1 + 2p2

This in matrix notation:[
5 −1
−1 3

] [
p1
p2

]
=

[
12
16

]
(98)

Application of Matrix in solving equations[
p1
p2

]
=

[
5 −1
−1 3

]−1 [
12
16

]
(99)

Determinant

|A| =
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ =

∣∣∣∣ 5 −1
−1 3

∣∣∣∣ = (5× 3− (−1) (−1)) = 15− 1 = 14;

Cofactor transpose:

C ′ =

[
a22 −a21
−a12 a11

]′
=

[
a22 −a12
−a21 a11

]
=

[
3 1
1 5

]
Solution by matrix inversion:
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[
p1
p2

]
=

1

14

[
3 1
1 5

] [
12
16

]
=

1

14

(
(3× 12) + (1× 16)
(1× 12) + (5× 16)

)
=

(
52
14
92
14

)
=

(
26
7
46
7

)
(100)

Cramer’s Rule is easier

p1 =

∣∣∣∣ 12 −1
16 3

∣∣∣∣∣∣∣∣ 5 −1
−1 3

∣∣∣∣ =
36 + 16

15− 1
=

26

7
; p2 =

∣∣∣∣ 5 12
−1 16

∣∣∣∣∣∣∣∣ 5 −1
−1 3

∣∣∣∣ =
80 + 12

15− 1
=

46

7

(101)
Market 1:

LHS = 10− 2p1 + p2 = 10− 2

(
26

7

)
+

(
46

7

)
=

64

7
= −2 + 3p1 =

64

7
= RHS

(102)
Market 2:

LHS = 15 + p1 − p2 = 15 +
26

7
− 46

7
=

85

7
= −1 + 2p2 =

85

7
= RHS (103)

QED.
Extension to N-markets is obvious. Matrix makes solving large models much

easier.

3 Statistical inference

What is the statistical inference?

• Inference is statement about population based on sample information.

• Economic theory provides basic relations among variables. Statistical in-
ference is about empirically testing whether those relations are true based
on available cross section, time series or panel data.

• Hypotheses are set up according to the economic theory, parameters are
estimated using OLS (similar other) estimators.

• Consider a linear regression

Yi = β1 + β2Xi + εi i = 1 ...N (104)
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Here the true values of β1 and β2 are unknown parameters. Their values
can be estimated using the OLS technique. β̂1 and β̂2 are such estimates.
Validity of these estimates are tested using statistical distributions. Two
most important tests for a linear regression are:

1. Significance of an individual coeffi cient: t-test

2. Overall significance of the model: F -test

3. Overall fit of the data to the model is indicated by R2. (χ2, Durbin-
Watson, Unit root tests to be discussed later).

Suppose z is a normally distributed variable. The ordinate at z (probability
of z) is given by the standard normal density function

f (z) =
1√
2π
e−z

2/2

The probability of gettin x ≤ z is given by the area under standard normal
distribution function:

F (z) =
1√
2π

∫ z

−∞
e−t

2/2 dt.

See normal.xls file to feel about the normal distributions.

3.1 Hypothesis Tests: t-test, F-test

A hypothesis is a statement about the relationship between economic variables
based on the economic theory. For example in normal circumstances, the mar-
ginal propensity to conusume is positive but less than one. Given a regression
model of the form Yi = β1 + β2Xi + εi there are two major hypotheses. First
one is about the significance of individual coeffi cients, t-test of β1 and β2 , and
second one is is about the validity of the overal model.

t-test Null hypothesis: value of intercept and slope coeffi cients are zero;

e.g. there is no meaningful relationship between Yi and Xi. This is stated as:

H0 : β1 = 0
H0 : β2 = 0

Alternative hypotheses: intercept and slope coeffi cients are non -zero; there
is a meaningful relationship between Yi and Xi.

HA : β1 6= 0
HA : β2 6= 0
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Parameter β2 is slope,
∂Y
∂X ; it measures how much Y will change when X

changes by one unit. Parameter β1 is intercept. It shows amount of Y when
X is zero.
Economic theory: a normal demand function should have β1 > 0 and β2 < 0;

a normal supply function should have β1 6= 0 β2 > 0. This is the hypothesis to
be tested empirically.

F-test Overal validity of the model model is determined by the F-test. It

states whether a model is significant as a whole. An individual coeffi cient can
be insignificant but the model can still be meaningful.

Null hypothesis: both intercept and slope coeffi cients are zero; model is
meaningless and irrelevant:

H0 : β1 = β2 = 0

Alternative hypotheses: at least one of the parameters is non -zero, model
is relevant:

HA :either β1 6= 0 or β2 6= 0 or both β1 6= 0, β2 6= 0

As is often seen, some of the coeffi cients in a regression model may be in-
significant but F-statistics is significant and model is valid.

An Exmaple : An Example of regression on deviations from the mean

Table 3: Data Table:Price and Quantity
X (price) 1 2 3 4 5 6
Y (demand) 6 3 4 3 2 1

A standard linear demand is given by a regression where demand for a prod-
uct (Y ) depends on its price (P) as:

Yi = β1 + β2Xi + εi i = 1 ...N

Hypotheis about the coeffi cients of the model:

H0 : β1 ≥ 0
H0 : β2 ≤ 0

What are the estimates of β̂1 and β̂2?
Here

∑
Xi = 21 ;

∑
Yi = 19 ;

∑
YiXi =52

∑
X2
i =91

∑
Y 2i =75

Y = 3.17 X = 3.5
OLS estimators

β̂2 =

∑
yixi∑
x2i

; β̂1 = Y − β̂2X (105)
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3.1.1 Normal equations and its deviation form

• Normal equations of above regression∑
Yi = β̂1N + β̂2

∑
Xi∑

YiXi = β̂1
∑
Xi + β̂2

∑
X2
i

Define deviations as
xi =

(
Xi −X

)
(106)

yi = (Yi − y) (107)

∑(
Xi −X

)
= 0;

∑
(Yi − y) = 0 (108)

Putting these in the Normal equations∑
(Yi − y) = β̂1N + β̂2

∑(
Xi −X

)
(109)∑(

Xi −X
)

(Yi − y) = β̂1
∑(

Xi −X
)

+ β̂2
∑(

Xi −X
)2

(110)

Since terms
∑(

Xi −X
)

= 0;
∑

(Yi − y) = 0 the first equation drop out.

From the second equation
∑(

Xi −X
)

(Yi − y) =
∑
xiyi and

∑(
Xi −X

)2
=∑

x2i
This is a regression through origin. Therefore estimator of slope ceof-

ficient with deviation

β̂2 =

∑
xiyi∑
x2i

(111)

β̂1 = Y − β̂2X (112)

• The reliability of β̂2 and β̂1 depends on their variances; t-test is used to
determine their significance.

3.1.2 Deviations from the mean

Useful short-cuts ( though matrix method is more accurate, some-
times quick short cuts like this can be handy)

∑
x2i =

∑(
Xi −X

)2
=
∑

X2
i −NX

2
= 91− 6(3.5)2 = 17.5 (113)

∑
y2i =

∑(
Yi − Y

)2
=
∑

Y 2i −NY
2

= 91− 6(3.17)2 = 14.7 (114)
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∑
yixi =

∑(
Yi − Y

)∑(
Xi −X

)
=

∑
YiXi − Y

∑
Xi −X

∑
Yi +NYX =∑

YiXi − Y NX −XNY +NYX

=
∑

YiXi − Y NX = 52− (3.5) (6) (3.17) = −14.57 (115)

3.1.3 OLS estimates by the deviation method

Estimate of the slope coeffi cient:

β̂2 =

∑
yixi∑
x2i

=
−14.57

17.5
= −0.833 (116)

This is negative as expected.
Estimate of the intercept coeffi cient.

β̂1 = Y − β̂2X = 3.17− (−0.833) (3.5) = 6.09 (117)

It is positive as expected.
Thus the regression line fitted from the data

Ŷi = β̂1 + β̂2Xi = 6.09− 0.833Xi (118)

How reliable is this line? Answer to this should be based on the analysis of
variance and statistical tests.

3.1.4 Variation of Y, predicted Y and error

Total variation to be explained:

∑
y2i =

∑(
Yi − Y

)2
=
∑

Y 2i −NY
2

= 75− 6(3.17)2 = 14.707 (119)

Total sum of square (TSS): Variation explained by regression:

∑
ŷ2i =

∑
(β̂2xi)

2 = β̂
2

2

∑
xi
2 =

(∑
yixi∑
x2i

)2∑
xi
2

=
(
∑
yixi)∑
x2i

2

=
(−14.57)

2

17.5
=

212.28

17.5
= 12.143 (120)

Note that in deviation form:
∑

ŷi =
∑

β̂2xi.
Unexplained variation (accounted by various errors):∑

ê2i =
∑

y2i −
∑

ŷ2i = 14.707− 12.143 = 2.564 (121)
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3.1.5 Measure of Fit: R-square and Rbar-square

Themeasure of fit R2 is ratio of total variation explained by regression
(∑

ŷ2i
)

to total variation that need to be explained
(∑

y2i
)

R2 =

∑
ŷ2i∑
y2i

=
12.143

14.707
= 0.826 (122)

This regression model explains about 83 percent of variation in y.

R
2

= 1− (1−R2) N − 1

N −K = 1− (1− 0.826)
5

4
= 0.78 (123)

Variance of error indicates the unexplained variation

var (êi ) = σ̂2 =

∑
ê2i

N −K =
2.564

4
= 0.641 (124)

var (yi ) =

∑
y2i

N − 1
=

14.7

5
= 2.94 (125)

3.1.6 Variance of parameters

Reliability of estimated parameters depends on their variances, standard errors
and t-values

var
(
β̂2

)
=

1∑
xi2

σ̂2 =
0.641

17.5
= 0.037 (126)

var
(
β̂1

)
=

[
1

N
+

X
2∑
xi2

]
σ̂2 =

[
1

6
+

3.52

17.5

]
0.641 = (0.867) 0.641 = 0.556

(127)
Prove these formula (see later on).
Standard errors

SE
(
β̂2

)
=

√
var

(
β̂2

)
=
√

0.037 = 0.192 (128)

SE
(
β̂1

)
=

√
var

(
β̂1

)
=
√

0.556 = 0.746 (129)
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3.1.7 Test of significance of parameters (t-test)

t
(
β̂2

)
=

β̂2

SE
(
β̂2

) =
−0.833

0.192
= −4.339 (130)

t
(
β̂1

)
=

β̂1

SE
(
β̂1

) =
6.09

0.746
= 8.16 (131)

These calculated t-values need to be compared to t-values from the theoret-
ical t-table.
Test of significance of parameters (t-test)
Theoretical values of t are given in a t Table, often given in the appendix of

every econometrics or statistical text (http://mathworld.wolfram.com/Studentst-
Distribution.html; http://www.statsoft.com/textbook/distribution-tables/).
Column of t-table have level of significance (α) and rows have degrees of

freedom.
Here tα,df is t-table value for degrees of freedom (df = n− k) and α level of

significance. df = 6-2=4.

Table 4: Relevant t-values (one tail) fron t-Table
(n, α) 0.05 0.025 0.005
1 6.314 12.706 63.657
2 2.920 4.303 9.925
4 2.132 2.776 4.604

t
(
β̂1

)
= 8.16 > tα,df = t0.05,4 = 2.132. Thus the intercept is statistically

significant; t
(
β̂2

)
= |−4.339| > tα,df = t0.05,4 = 2.132. Thus the slope is also

statistically significant at 5% and 2.5% level of significance.
Decision rule: (one tail test following economic theory)

• Accept H0 : β1 > 0 if t
(
β̂1

)
< tα,df ;

• Reject H0 : β1 > 0 or accept HA : β1 � 0 if t
(
β̂1

)
> tα,df

• Accept H0 : β2 < 0 if t
(
β̂2

)
< tα,df

• Reject H0 : β2 < 0 or accept HA : β2 � 0 if t
(
β̂2

)
> tα,df

P-value: Probability of test statistics exceeding that of the sample statistics.
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3.1.8 Level of significance in a t-test

3.1.9 One- and Two-Tailed Tests

If the area in only one tail of a curve is used in testing a statistical hypothesis,
the test is called a one-tailed test; if the area of both tails are used, the test
is called two-tailed.
The decision as to whether a one-tailed or a two-tailed test is to be used

depends on the alternative hypothesis.

One-tailed test
X ≤ z

Two-tailed test
−z ≤ X ≤ z

3.1.10 Confidence interval on the slope parameter

A researcher may be interested more in knowing the interval in which the true
parameter may lie than in the point estimte where α is the level of significance or
the probability of error such as 1% or 5%. That means accuracy of the estimate
is (1− α) %.

A 95% level confidence interval for β1 and β2 is:

P
[
β̂2 − SE

(
β̂2

)
tα,n < β2 < β̂2 + SE

(
β̂2

)
tα,n

]
= (1− α) (132)

P [−0.833− 0.192 (2.132.) < β2 < −0.833 + 0.192 (2.132.)]

= (1− 0.05) = 0.95 (133)

P [−1.242 < β2 < −0.424] = 0.95 (134)

There is 95 confidence that the true value of slope β2 lies between −0.424
and −1.242.
Confidence interval on the intercept parameter
95 % confidence interval on the slope parameter:

P
[
β̂1 − SE

(
β̂2

)
tα,n < β1 < β̂1 + SE

(
β̂2

)
tα,n

]
= (1− α) (135)

P [6.09− 0.746 (2.132.) < β1 < 6.09 + 0.746 (2.132.)]

= (1− 0.05) = 0.95 (136)
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P [4.500 < β2 < 7.680] = 0.95 (137)

There is 95 confidence that the true value of intercept β1 lies between 4.500
and 7.680.

3.1.11 F-test

F-value is the ratio of sum of squared normally distributed variables (χ2) ad-
justed for relevant degrees of freedom.

F =
V1/n1
V2/n2

= F (n1, n2) (138)

Where V1 and V2 are variances of numberator and denomenator and n1and
n2 are degrees of freedom of numberator and denomenator; e.g. F = RSS/(K−1)

ESS/(N−k) .

H0: Variance are the same; HA: Variance are different. Fcrit values are
obtained from F-distribution table. Accept it if FCalc < Fcrit and reject if
FCalc > Fcrit .
F- is ratio of two χ2 distributed variables with degrees of freedom n2 and

n1.

Fcalc =

∑
ŷ2i

K−1∑
ê2i

N−K

=
12.143
1

2.564
4

=
12.143

0.641
= 18.94 (139)

Table 5: Relevant F-values from the F-Table
1% level of significance 5% level of significance

(n2, n1) 1 2 3 1 2 3
1 4042 4999.5 5403 161.4 199.5 215.7
2 98.50 99.00 99.17 18.51 19.00 19.16
4 21.20 18.00 16.69 7.71 6.94 6.59

n1 = degrees of freedom of numerator; n2 =degrees of freedom of denomi-
nator; for 5% level of significance Fn1,n2 = F1,4 = 7.71; Fcalc > F1,4;for 1% level
of significance Fn1,n2 = F1,4 = 21.20; Fcalc > F1,4 =⇒imply that this model is
statistically significant at 1% as well as at 5% level of significance. Model is
meaningful.
Exercise: Revise data as following and do all above calculations.
This should give a line of perfect fit. What does it impy to

∑
ê2i ?
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Table 6: Data Table:Price and Quantity
X 1 2 3 4 5 6
Y 6 5 4 3 2 1

3.1.12 Exercise 2

A sport centre has a gym. A hypothetical data set on the monthly charges (X)
and number of people using the gym (Y) are given in the following table.

Table 7: Monthy charges and number of customers
Xi 10 8 7 6 3 5 9 12 11 10
Yi 60 75 90 100 150 120 125 100 80 65

1. Represent X and Y in a Scattered diagram.

2. Draw horizontal and vertical lines with the mean of X and Y in that
diagram.

3. Draw a line by your hand that best represents all sample observations.

4. Write a classical linear regression model in which X causes Y.

5. Write the assumptions of the error terms.

6. Derive normal equations of the OLS estimator minimising sum of squared
errors. Estimate parameters of the model using above information. Use
the deviation technique in your estimation.

7. What is your prediction of Y when X is 13?

8. Calculate the sum of variation in Y.

9. Decompose this total variance into explained and residual components.

10. Find the coeffi cient of determination or the R-square of this model.

11. Find the variance and standard error of the slope parameter.

12. Calculate the t-statistics and determine its level of significance using the
T-table.

13. Construct a 95 percent confidence interval for the slope parameter.

14. Find the variance and the standard error of the intercept parameter.
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3.1.13 Exercise 3

One major use of an econometric model is prediction. Suppose that a local
supermarket wants you to estimate a model that determines expenditure on
food in terms of income, and to predict food demand next year. Consider a
simple regression model of the following form:

Yt = β1 + β2Xt + εt t = 1...T (140)

where Yt is expenditure on food, Xt is income and εt is independently and
identically distributed random error term with a zero mean and a constant
variance.
From the sample information on food expenditure and income contained in

“food.csv”file find estimated values of β1 , β2 and σ
2. You also want to predict

the amount of expenditure on food Y0 next year using information on likely
income next year, X0 . You may safely assume that as before ε0 ∼ N(0, σ2).

1. Write down your prediction equation. Give an equation for the mean
prediction, E (Y0) .

2. What is your prediction of food expenditure if the income is £ 250? How
can you compute your prediction error?

3. What is the variance of prediction error?

4. Construct a 95% confidence interval for your prediction. Explain what
this interval means. How would you modify your model if the confidence
interval of prediction is very large?

5. Give a graphical explanation of your answers in (a)-(d), labelling your
diagrams carefully.

4 Economic theory underlying an empirical es-
timation

Setting up the labour demand for the firms that sells its product (Q) at price
(P ) produced employing labour (L) at wage rate (w) and with productivity α.
Firms problem:

max Π = PQ− wL s.t. Q = Lα (141)

Differentiate it with respect to L. Then based on the first order condition
the optimal demand for labour is:

Lα−1 =
w

αP
; L =

(
αP

w

) 1
1−α

(142)
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Taking logs:

lnL =
1

1− α lnα+
1

1− α lnP − 1

1− α lnW (143)

There are i = 1...n firms. Define lnL = Yi; β1 = 1
1−α lnα + 1

1−α lnP ;

lnWi = Xi; β2 = 1
1−α ;

Yi = β1 + β2Xi (144)

Expected signs β1 > 0 and β2 < 0. Firms will employ more worker if
wages are lower but fewer workers when wages are high. This is the theoretical
predication. Is it true? Need to test with the data. Cross section or time series
data could be constructed on employment and real wages to test this hypothesis.

Application: Estimating Elasticities
Elasticity of Y with respect to X measures the proportionate change in Y

due to change in X; dy/ydx/x . Regression coeffi cient are helpful in measuring these
elasticities and the exact value of elasticities depend on the form of regression
as illustrated below.
Elasticity in a linear regression model:

• Yi = β1 + β2Xi + ei

∂Yi
∂Xi

= β2 e = ∂Yi
∂Xi

X
Y

= β2
X
Y

Elasticity in a log dependent variable linear regression model:

• ln (Yi) = β1 + β2Xi + ei
∂Yi
∂Xi

1
Yi

= β2 e = ∂Yi
∂Xi

X
Y Y = β2X

Elasticity in a log explanatory variable linear regression model:

• Yi = β1 + β2 ln (Xi) + ei
∂Yi
∂Xi

= β2
1
Xi

e = ∂Yi
∂Xi

X
Y = β2

1
Xi

X
Y = β2

1
Y

Elasticity in a double log linear regression model:

• ln (Yi) = β1 + β2 ln (Xi) + ei .
∂Yi
∂Xi

1
Yi

= β2
1
Xi

e = ∂Yi
∂Xi

X
Y = β2

Y
Xi

X
Y = β2

Elasticity in a regression model linear in reciprocal of an explanatory vari-
able:

• Yi = β1 + β2
1
Xi

+ ei .

∂Yi
∂Xi

= −β2 1
X2
i

e = ∂Yi
∂Xi

X
Y = −β2 1

X2
i

X
Y = β2

1
Xi

1
Yi

Elasticity in a quadratic regression model:

• Yi = β1 + β2Xi + β3X
2
i + ei

∂Yi
∂Xi

= β2 + 2β3X
2
i ; e = ∂Yi

∂Xi
X
Y = (β2 + 2β3Xi)

X
Y

Use MacKinnon, White and Davison test to choose between linear and log-
linear models.
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Return in a portfolio Investor’s net return from a selection of portfolios Rp
is risky assets is Rp is given by return on the asset adjusted for the risk free
return (Rf ), which is a return in safe asset like the treasury bill.

Rp = Rs − hRf (145)

The investor like to choose the hedging factor, 0 < h < 1, to minimise the
variance on portfolio.

var (Rp) = var (Rs)− 2hcov(hRf ) + h2var(Rf ) (146)

By minimise the variance of the portfolio w.r.t. h

var (Rp)

∂h
= −2hcov(Rs, Rf ) + 2hvar(Rf ) = 0 (147)

h =
cov(Rs, Rf )

var(Rf )
=

√
var(Rs)

√
var(Rf )√

var(Rs)
√
var(Rf )

cov(Rs, Rf )

var(Rf )
= ρ

σs
σf

(148)

Empirical question then would be to estimate the value of h from given data
on Rp, Rs and Rf . See the Datastream or http://download.finance.yahoo.com/
have data on stock prices.

4.1 Regression in Matrix Notations

Let Y is N ×1 vector of dependent variables, X is N ×K matrix of explanatory
variables, e is N × 1 vector of independently and identically distributed normal
random variable with mean equal to zero and a constant variance e ∼ N(0, σ2I);
β is a K × 1 vector of unknown coeffi cients

Y = βX + e (149)

4.1.1 Objective

Objective is to choose β that minimise sum square errors

Min
β

S (β) = e′e = (Y − βX)
′
(Y − βX)

= Y ′Y − Y ′ (βX)− (βX)
′
Y + (βX)

′
(βX) (150)

= Y ′Y − 2βX ′Y + (βX)
′
(βX) (151)

First order condition:

∂S (β)

∂β
= −2X ′Y + 2β̂X ′X = 0 =⇒ β̂ = (X ′X)

−1
X ′Y (152)
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(X ′X)
−1

=

(
N

∑
Xi∑

Xi

∑
X2
i

)−1
=

1

N
∑
X2
i − (

∑
Xi)

2

[ ∑
X2
i −

∑
Xi

−
∑
Xi N

]
(153)

(X ′X)
−1

=

 ∑
X2
i

N
∑
X2
i−(

∑
Xi)

2 −
∑
Xi

N
∑
X2
i−(

∑
Xi)

2

−
∑
Xi

N
∑
X2
i−(

∑
Xi)

2
N

N
∑
X2
i−(

∑
Xi)

2

 (154)

β̂ = (X ′X)
−1
X ′Y ;

[
β̂1
β̂2

]
=

 ∑
X2
i

N
∑
X2
i−(

∑
Xi)

2 −
∑
Xi

N
∑
X2
i−(

∑
Xi)

2

−
∑
Xi

N
∑
X2
i−(

∑
Xi)

2
N

N
∑
X2
i−(

∑
Xi)

2

[ ∑
Yi∑
X ′iYi

]
(155)

Derivation of Parameters (with Matrix Inverse)[
β̂1
β̂2

]
=

 ∑
X2
i

∑
Yi−

∑
Xi

∑
X′iYi

N
∑
X2
i−(

∑
Xi)

2

N
∑
X′iYi−

∑
Xi

∑
Yi

N
∑
X2
i−(

∑
Xi)

2

 =

 ∑
Xi

∑
X′iYi−

∑
X2
i

∑
Yi

N
∑
X2
i−(

∑
Xi)

2∑
Xi

∑
Yi−N

∑
X′iYi

N
∑
X2
i−(

∑
Xi)

2

 (156)

Compare to what we had earlier:

β̂2 =

∑
Xi

∑
Yi −N

∑
YiXi

(
∑
Xi)

2 −N
∑
X2
i

=

∑
xiyi∑
x2i

(157)

ê =
(
Y − β̂X

)
(158)

σ̂2 =

∑
ê2i

N − k =
e′e

N − k (159)

∑
ê2i =

∑
y2i −

∑
ŷ2i (160)

∑
ŷ2 =

∑
(xβ)

′
(βx) x = X −X (161)

∑
ŷ2i =

∑
(β̂2xi)

2 = β̂
2

2

∑
xi
2 (162)

R2 =

∑
ŷ2i∑
y2i
and Fcalc =

∑
ŷ2i

K−1∑
ê2i

N−K

; Fcalc =
R2

K − 1

N −K
(1−R2) (163)
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4.2 Variance in matrix notation

Yi = β0 + β1X1,i + β2X2,i + εi

Y = Ŷ + e = β̂X + e (164)

V ar(Y ) =
∑

y2i = Y ′Y −NY 2 (165)

When there are two explantory variables in deviation from the mean form:

ŷ = β̂1x1 + β̂1x2 (166)

∑
ŷ2 =

(
β̂1
∑

x1 + β̂2
∑

x2

)2
=

β̂
2

1

∑
x21 + β̂1β̂2

∑
x1x2 + β̂1β̂2

∑
x1x2 + β̂

2

2

∑
x22

= β̂1

(
β̂1
∑

x21 + β̂2
∑

x1x2

)
+ β̂2

(
β̂1
∑

x1x2 + β̂2
∑

x21

)
= β̂1

∑
x1y + β̂2

∑
x2y (167)

∑
ê2i =

∑
y2i −

∑
ŷ2i (168)

In matrix notation:

∑
ŷ2 =

[
β̂1 β̂2

] [
x11 x12 . x1N
x21 x22 . x2N

]
y1
y2
.
yN

 = β̂
′
x′y (169)

e′e = Y ′Y − β̂
′
x′y (170)

R2 =
β̂
′
x′y

Y ′Y
and Fcalc =

∑
ŷ2i

K−1
e′e
N−K

; Fcalc =
R2

K − 1

N −K
(1−R2) (171)

4.2.1 Blue Property in Matrix: Linearity and Unbiasedness

β̂ = (X ′X)
−1
X ′Y (172)

β̂ = aY ; a = (X ′X)
−1
X ′ (173)

Linearity proved.

E
(
β̂
)

= E
[
(X ′X)

−1
X ′ (Xβ + e)

]
(174)
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E
(
β̂
)

= E
[
(X ′X)

−1
X ′Xβ

]
+ E

[
(X ′X)

−1
X ′e

]
(175)

E
(
β̂
)

= β + E
[
(X ′X)

−1
X ′e

]
(176)

E
(
β̂
)

= β (177)

Unbiasedness is proved.
Blue Property in Matrix: Minimum Variance

E
(
β̂
)
− β = E

[
(X ′X)

−1
X ′e

]
(178)

E
[
E
(
β̂
)
− β

]2
= E

[
(X ′X)

−1
X ′e

]′ [
(X ′X)

−1
X ′e

]
(179)

= (X ′X)
−1
X ′XE (e′e) (X ′X)

−1
= σ̂2 (X ′X)

−1 (180)

Take an alternative estimator b

b =
[
(X ′X)

−1
X ′ + c

]
Y (181)

b =
[
(X ′X)

−1
X ′ + c

]
(Xβ + e) (182)

b− β = E
[
(X ′X)

−1
X ′e+ ce

]
(183)

4.2.2 Blue Property in Matrix: Minimum Variance

Now it need to be shown that

cov (b) > cov
(
β̂
)

(184)

Take an alternative estimator b

b− β = E
[
(X ′X)

−1
X ′e+ ce

]
(185)

cov (b) = E
[
(b− β) (b− β)

′]
= E

[
(X ′X)

−1
X ′e+ ce

] [
(X ′X)

−1
X ′e+ ce

]
= σ2 (X ′X)

−1
+ σ2c2 (186)

cov (b) > cov
(
β̂
)

(187)

Proved.
Thus the OLS is BLUE = Best, Linear, Unbiased Estimator.
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5 Multiple Regression Model in Matrix

Consider a multiple linear regression model in which there are more than one
eplanatory variables as:

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ....+ βkXk,i + εi i = 1 ...N (188)

Basic assumptions are the same as in the single explanatory variable model
discussed so far as:

E (εi) = 0 (189)

E (εixj,i) = 0; var (εi) = σ2 for ∀ i; εi˜N
(
0, σ2

)
(190)

covar (εiεj) = 0 (191)

One more important assumption in the multiple linear regression model is
that the explanatory variables are uncorrelated.

E (X1,iX1,j) = 0 (192)

Objective of the estimation is to choose parameters that minimise the sum
of squared errors as:

Min S
β̂0β̂1β̂2...β̂k

=
∑

ε2i =
∑(

Yi − β̂0 − β̂1X1,i − β̂2X2,i − β̂3X3,i − ....− β̂kXk,i

)2
(193)

Minimisartion results in following first order conditions:

∂S

∂β̂0
= 0;

∂S

∂β̂1
= 0;

∂S

∂β̂2
= 0;

∂S

∂β̂3
= 0; ......

∂S

∂β̂k
= 0 (194)

This equations result in the normal equations.

5.0.3 Normal equations in a multiple regression model

Normal equations for two explanatory variable case:∑
Yi = β̂0N + β̂1

∑
X1,i + β̂2

∑
X2,i (195)∑

X1,iYi = β̂0
∑

X1,i + β̂1
∑

X2
1,i + β̂2

∑
X1,iX2,i (196)∑

X2,iYi = β̂0
∑

X2,i + β̂1
∑

X1,iX2,i + β̂2
∑

X2
2,i (197) ∑

Yi∑
X1,iYi∑
X2,iYi

 =

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i


 β̂0
β̂1
β̂2

 (198)
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5.0.4 Normal equations in matrix form: β̂0
β̂1
β̂2

 =

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

−1  ∑
Yi∑

YiX1,i∑
YiX2,i

 (199)

β = (X ′X)
−1
X ′Y (200)

β̂0 =

∣∣∣∣∣∣
∑
Yi

∑
X1,i

∑
X2,i∑

YiX1,i

∑
X2
1,i

∑
X1,iX2,i∑

YiX2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣
(201)

5.0.5 Cramer Rule to find estimators of model paramers:

β̂1 =

∣∣∣∣∣∣
N

∑
Yi

∑
X2,i∑

X1,i

∑
YiX1,i

∑
X1,iX2,i∑

X2,i

∑
YiX2,i

∑
X2
2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣
(202)

β̂2 =

∣∣∣∣∣∣
N

∑
X1,i

∑
Yi∑

X1,i

∑
X2
1,i

∑
YiX1,i∑

X2,i

∑
X1,iX2,i

∑
YiX2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣
(203)

Matrix must be non-singular to get a meaningful estimator:

(X ′X)
−1

=

∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣ 6= 0 (204)

Covariance of Parameters

cov
(
β̂
)

=

 var(β̂1) cov(β̂1β̂2) cov(β̂1β̂3)

cov(β̂1β̂2) var(β̂2) cov(β̂2β̂3)

cov(β̂1β̂3) cov(β̂2β̂3) var(β̂3)

 (205)

cov
(
β̂
)

= (X ′X)
−1
σ2 (206)
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cov
(
β̂
)

=

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

−1 σ̂2 (207)

It is easier to consider normal equations in the deviation form:[
β̂1
β̂2

]
=

[ ∑
x21,i

∑
x1,ix2,i∑

x1,ix2,i
∑
x22,i

]−1 [ ∑
yix1,i∑
yix2,i

]
(208)

β = (X ′X)
−1
X ′Y (209)

β̂1 =

∣∣∣∣ ∑ yix1,i
∑
x1,ix2,i∑

yix2,i
∑
x22,i

∣∣∣∣∣∣∣∣ ∑
x21,i

∑
x1,ix2,i∑

x1,ix2,i
∑
x22,i

∣∣∣∣ (210)

β̂2 =

∣∣∣∣ ∑
x21,i

∑
yix1,i∑

x1,ix2,i
∑
yix2,i

∣∣∣∣∣∣∣∣ ∑
x21,i

∑
x1,ix2,i∑

x1,ix2,i
∑
x22,i

∣∣∣∣ (211)

[ ∑
x21,i

∑
x1,ix2,i∑

x1,ix2,i
∑
x22,i

]−1
=

1∑
x21,i

∑
x22,i − (

∑
x1,ix2,i)

2

[ ∑
x22,i −

∑
x1,ix2,i

−
∑
x1,ix2,i

∑
x21,i

]
(212)

Total sum of squared errors:∑
ê2i =

∑
y2i −

∑
ŷ2i (213)

E (ε̂i)
2

=

∑
ê2i

N − k = σ̂2 (214)

var
(
β̂1

)
=

∑
x22,i∑

x21,i
∑
x22,i − (

∑
x1,ix2,i)

2σ
2 (215)

var
(
β̂2

)
=

∑
x21,i∑

x21,i
∑
x22,i − (

∑
x1,ix2,i)

2σ
2 (216)

All done by a calculator:
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Table 8: Price, Income and Sales
X1,i 11 7 6 5 3 2 1
X2,i 2 2 4 5 6 5 4
Yi 1 2 3 4 5 6 7

 β̂0
β̂1
β̂2

 =

 7 35 28
35 245 117
28 117 126

−1  28
97
126

 (217)

Inverse: Determinants and Cofactors
j. It can be solved by the Cramer rule but it is easier to derive variance

when solved by the inverse method:

 β̂0
β̂1
β̂2

 =
1∣∣∣∣∣∣

7 35 28
35 245 117
28 117 126

∣∣∣∣∣∣
(218)



∣∣∣∣ 245 117
117 126

∣∣∣∣ −
∣∣∣∣ 35 117

28 126

∣∣∣∣ ∣∣∣∣ 35 245
28 117

∣∣∣∣
−
∣∣∣∣ 35 28

117 126

∣∣∣∣ ∣∣∣∣ 7 28
28 126

∣∣∣∣ −
∣∣∣∣ 7 35

28 117

∣∣∣∣∣∣∣∣ 35 28
245 117

∣∣∣∣ −
∣∣∣∣ 7 28

35 117

∣∣∣∣ ∣∣∣∣ 7 35
35 245

∣∣∣∣



T  28
97
126

 (219)

Evaluating Inverse

 β̂0
β̂1
β̂2

 =
1(

216090 + 114660 + 114660
−192080− 95823− 154350

) (220)

 17181 −1134 −2765
−1134 98 161
−2765 161 490

T  28
97
126

 (221)

OLS Estimates β̂0
β̂1
β̂2

 =
1

(3157)

 17181 −1134 −2765
−1134 98 161
−2765 161 490

 28
97
126

 (222)

 β̂0
β̂1
β̂2

 =

 5.44 −0.360 −0.876
−0.360 0.031 0.051
−0.876 0.051 0.155

 28
97
126

 (223)
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OLS Estimates

 β̂0
β̂1
β̂2

 =

 (5.44× 28) + (−0.360× 97) + (−0.876× 126)
(−0.360× 28) + (0.031× 97) + 0.051× 126
(−0.876× 28) + (0.051× 97) + 0.155× 126

 (224)

=

 8.158
−0.647
−0.051

 (225)

Using OLS estimates for prediction
These hand-calculations are very close to the Excel routines. Dis-

crepancy must be due the rounding errors as excel has precision of
12 decimal points.  β̂0

β̂1
β̂2

 =

 7.18
−0.621
−0.020

 (226)

Ŷi = β̂0 + β̂1X1,i + β̂2X2,i = 7.18− 0.621X1,i − 0.020X2,i (227)

k. Prediction when X1,i = 5 and X2,i = 4.

Ŷi = 7.18− 0.621 (5)− 0.020 (4) = 3.995 (228)

5.1 Testing for Restrictions

When a research has some prior information about the value and sign of coef-
ficient in a regression model, such infromation could be put in the estimation
process as a restriction. There can be one or several restrictions in a model but
the validity of these restrictions could be tested using F-statistics.

• Consider a linear regression

Yi = β1X1,i + β2X2,i + β3X3,i + εi i = 1 ...N (229)

and assumptions

E (εi) = 0 (230)

E (εixj,i) = 0 (231)

var (εi) = σ2 for ∀ i (232)

covar (εiεj) = 0 (233)

εi˜N
(
0, σ2

)
(234)
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• Objective is to choose parameters that minimise the sum of squared errors

Min S
β̂1,β̂2 ,̂β3

=
∑

ε2i =
(
Yi − β̂1X1,i − β̂2X2,i − β̂3X3,i

)2
(235)

Derivation of Normal Equations

∂S

∂β̂1
= 0;

∂S

∂β̂2
= 0;

∂S

∂β̂3
= 0; (236)

• Normal equations for three explanatory variable case∑
X1,iYi = β̂1

∑
X2
1,i + β̂2

∑
X1,iX2,i + β̂3

∑
X1,iX3,i (237)∑

X2,iYi = β̂1
∑

X1,iX2,i + β̂2
∑

X2
2,i + β̂3

∑
X2,iX3,i (238)∑

X3,iYi = β̂1
∑

X1,iX3,i + β̂2
∑

X2,iX3,i + β̂3
∑

X2
3,i (239) ∑X1,iYi∑

X2,iYi∑
X3,iYi

 =

 ∑
X2
1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2
2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2
3,i


 β̂1
β̂2
β̂3


(240)

Normal equations in matrix form

 β̂1
β̂2
β̂3

 =

 ∑
X2
1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2
2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2
3,i

−1  ∑X1,iYi∑
X2,iYi∑
X3,iYi

 (241)

β = (X ′X)
−1
X ′Y (242)

β̂1 =

∣∣∣∣∣∣
∑
X1,iYi∑
X2,iYi∑
X3,iYi

∑
X1,iX2,i

∑
X1,iX3,i∑

X2
2,i

∑
X2,iX3,i∑

X2,iX3,i

∑
X2
3,i

∣∣∣∣∣∣∣∣∣∣∣∣
∑
X2
1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2
2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2
3,i

∣∣∣∣∣∣
(243)

Use Cramer Rule to solve for paramers

β̂2 =

∣∣∣∣∣∣
∑
X2
1,i

∑
X1,iX2,i

∑
X1,iYi∑

X1,iX2,i

∑
X2
2,i

∑
X2,iYi∑

X1,iX3,i

∑
X2,iX3,i

∑
X3,iYi

∣∣∣∣∣∣∣∣∣∣∣∣
∑
X2
1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2
2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2
3,i

∣∣∣∣∣∣
(244)
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β̂2 =

∣∣∣∣∣∣
∑
X2
1,i

∑
X1,iYi

∑
X1,iX3,i∑

X1,iX2,i

∑
X2,iYi

∑
X2,iX3,i∑

X1,iX3,i

∑
X3,iYi

∑
X2
3,i

∣∣∣∣∣∣∣∣∣∣∣∣
∑
X2
1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2
2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2
3,i

∣∣∣∣∣∣
(245)

Covariance of Parameters

5.1.1 Matrix must be non-singular

(X ′X)
−1 6= 0 (246)

cov
(
β̂
)

=

 var(β̂1) var(β̂1β̂2) var(β̂1β̂3)

var(β̂1β̂2) var(β̂2) var(β̂2β̂3)

var(β̂1β̂3) var(β̂2β̂3) var(β̂3)

 (247)

cov
(
β̂
)

= (X ′X)
−1
σ2 (248)

cov
(
β̂
)

=

 ∑
X2
1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2
2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2
3,i

−1 σ̂2 (249)

Data (text book example Carter, Griffi th and Hill)

Table 9: Data for a multiple regression
y 1 -1 2 0 4 2 2 0 2
x1 1 -1 1 0 1 0 0 1 0
x2 0 1 0 1 2 3 0 -1 0
x3 -1 0 0 0 0 0 1 1 1

 ∑
X2
1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2
2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2
3,i

 =

 5 0 0
0 16 −1
0 −1 4

 and ∑X1,iYi∑
X2,iYi∑
X3,iYi

 =

 8
13
3


Estimation of Parameters β̂1

β̂2
β̂3

 =

 5 0 0
0 16 −1
0 −1 4

−1  8
13
3

 (250)
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 β̂1
β̂2
β̂3

 =

 0.2 0 0
0 0.063 0.016
0 0.016 0.254

 8
13
3

 =

 1.6
0.873
0.968

 (251)

Estimated equation

Ŷi = 1.6X1,i + 0.873X2,i + 0.968X3,i (252)

Estimation of Errors

êi = Yi − 1.6X1,i + 0.873X2,i + 0.968X3,i (253)

ê1 = 1− 1.6 (1) + 0.873 (0) + 0.968 (−1) = 0.368 (254)

ê2 = −1− 1.6 (−1) + 0.873 (1) + 0.968 (0) = −0.273 (255)

ê3 = 2− 1.6 (1) + 0.873 (0) + 0.968 (0) = 0.4 (256)

ê4 = 0− 1.6 (0) + 0.873 (1) + 0.968 (0) = −0.873 (257)

ê5 = 4− 1.6 (1) + 0.873 (2) + 0.968 (0) = 0.654 (258)

ê6 = 2− 1.6 (0) + 0.873 (3) + 0.968 (0) = −0.619 (259)

ê7 = 2− 1.6 (0) + 0.873 (0) + 0.968 (1) = 1.032 (260)

ê8 = 0− 1.6 (1) + 0.873 (−1) + 0.968 (1) = −1.695 (261)

ê9 = 2− 1.6 (0) + 0.873 (0) + 0.968 (1) = 1.032 (262)

Sum of Error square, variance and covariance of Beta

∑
ê2i = 0.3682 + (−0.273)

2
+ 0.42

+ (−0.873)
2

+ (0.654)
2

+ (−0.619)
2

+ 1.0322

+ (−1.695)
2

+ 1.0322 = 6.9460 (263)

Variance of errors

var(e) = E (ε̂i)
2

=

∑
ê2i

N − k =
6.9460

9− 3
= 1.1577 = σ̂2 (264)

cov
(
β̂
)

=

 ∑
X2
1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2
2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2
3,i

−1 σ̂2 (265)

=

 0.2 0 0
0 0.063 0.016
0 0.016 0.254

 (1.1577) =

 0.232 0 0
0 0.074 0.018
0 0.018 0.294


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Test of Restrictions

var
(
β̂1

)
= 0.232; var

(
β̂2

)
= 0.074; var

(
β̂1

)
= 0.294; (266)

cov
(
β̂1β̂2

)
= cov

(
β̂1β̂3

)
= 0; cov

(
β̂2β̂3

)
= cov

(
β̂3β̂2

)
= 0; (267)

F-test

F =
(Rb− r)′ [Rcov (b)R′]

−1
(Rb− r)

J
(268)

Hypothesis H0: β1 = β2 = β3 = 0 against HA: β1 6= 0; β2 6= 0; or
β3 6= 0
Here J = 3 is the number of restrictions

R =

 1 0 0
0 1 0
0 0 1

 ; b =

 β̂1
β̂2
β̂3

 ; r =

 0
0
0

 (269)

Test of Restrictions

F =


 1 0 0

0 1 0
0 0 1


 β̂1
β̂2
β̂3

−
 0

0
0



′


 1 0 0

0 1 0
0 0 1

 0.232 0 0
0 0.074 0.018
0 0.018 0.294

 1 0 0
0 1 0
0 0 1


′
−1


 1 0 0

0 1 0
0 0 1


 β̂1
β̂2
β̂3

−
 0

0
0




J = 3
(270)

See matrix_restrictions.xls for calculations.
Test of Restrictions

F =

(
1.6 0.873 0.968

) 4.3190 0 0
0 13.821 −0.8638
0 −0.8638 3.455

 1.6
0.873
0.968


3

(271)

F =

(
1.6 0.873 0.968

) 6.91042
11.22943
2.59141


3

=
23.37

3
= 7.79 (272)
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F(m1,m2),α = F(3,6),5% = 4.76.
Critical value for F at degrees of freedom of (3,6) at 5% confidence interval

is 4.76.
F calculated is bigger than F critical => Reject null hypothesis, which says

H0: β1 = β2 = β3 = 0

At least one of these parameters is significant and explains variation in y, in
other words accept

HA: β1 6= 0; β2 6= 0; or β3 6= 0

Instructions for testing linear restrictions in PcGive for cross sec-
tion data like this:
a. regress Y on X1,i X2,i , X3,i and X4,i .
b. click on test/linear restriction, put the restrictions in the matrix box. one

line for each restriction. For instance if β0+β1+β2+β3+ β4 = 0. to be tested
then type 1 1 1 1 1 0 , then click ok , it will test validity of that restriction. If
there are two restrictions

β0+β1+β2+β3+ β4 = 0 and β3- β4 = 0 then
1 1 1 1 1 0
0 0 0 1 -1 0
put this input in the matrix box, then click OK. This will test for both

restrictions.

6 Dummy Variables in a Regression Model

Qualitative data can be incorporated in a regression model using a set of dummy
variables. Consider some examples:

• It represents qualitative aspect or characteristic in the data
Quality : good, bad; Location: south/north/east/west; characterisitcs:
fat/thin or tall/short

Time: Annual 1970s/ 1990s.; seasonal: Summer,Autumn, Winter, Spring;

• Industry or sectors of production: agriculture, mining, transportation,
manufacturing, tourism, education, public services;

• Gender: male/female; Education: GCSE/UG/PD/PhD
Subjects: Math/English/Science/Economics

• Ethnic backgrounds: Black, White, Asian, Cacasian, European, Ameri-
can, Latinos, Mangols, Ausis.

Yi = β1 + β2Xi + β3Di + γDiXi + εi i = 1 ...N (273)

εi ∼ N
(
0, σ2

)
(274)
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• Here Di is special type of variable

Di =

∫
1 = if the certain quality exists
0 = otherwise

(275)

The term γDiXi picks up the interaction effect between Di and Xi .

• Three types of dummy

1. Intercept dummy

2. Slope dummy

3. Interaction between slope and intercept

Draw diagrams for this.
Examples:

• 1. —Earnding differences by gender, region, ethnicity or religion, oc-
cupation, education level.

—Unemployment duration by gender, region, ethnicity or religion,
occupation, education level.

—Demand for a product by by weather, season, gender, region,
ethnicity or religion, occupation, education level.

—Test scores by gender, previous background, ethnic origin
—Growth rates by decades, countries, exchange rate regimes

Dummy Variables Trap: Consider seasonal dummies as

Yi = β1 + β2Xi + β2D1 + β3D2 + β4D3 + β5D4 + εi (276)

where

D1 =

∫
1 = if summer
0 otherwise

(277)

D2 =

∫
1 = if autumn
0 otherwise

(278)

D3 =

∫
1 = if winter
0 otherwise

(279)

D4 =

∫
1 = if spring
0 otherwise

(280)

• Since
∑
Di = 1, it will cause multicollinearity as:

D1 +D2 +D3 +D4 = 1 (281)

drop on of Di to avoid the dummy variable trap.
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Dummy Variables in a piecewise linear regression models

• Threshold effects in sales

• tariff charges by volume of transaction -mobile phones

• Panel regression: time and individual dummies

• Pay according to hierarchy in an organisation

• profit from whole sale and retail sales

• age dependent earnings -Scholarship for students, pensions and allowances
for elderly

• tax allowances by level of income or business

• Investment credit by size of investment

• prices, employemnts, profits or sales for small, medium and large scale
corporations

• requirements according to weight or hight of body

6.0.2 Test of Structural Change

Chow Test for stability of parameters or structural change based on sum of
squared residuals.

• Use n1 and n2 observations to estimate overall and separate regressions
with (n1+n2-k, n1-k, and n2-k) degrees of freedoms;

• obtain SSR1(with n1+n2-k dfs),

• SSR2 (with n1-k dfs),

• SSR3 (with n2-k dfs) and

• SSR4 = SSR1+ SSR2 (with n1+n2-2k dfs),

• obtain S5 = SSR1-SSR4;

• do F-test

F =
SSR1
k
S5

(n1+n2−2k)
(282)

The advantage of this approach to the Chow test is that it does not require
the construction of the dummy and interaction variables.

53



6.1 Exercise 4

Suppose that you are interested in estimating the demand for beer in Yorkshire
pubs and consider the following multiple regression model:

ln (Yi) = β0+β1 ln (X1,i)+β2 ln (X2,i)+β3 ln (X3,i)+β4 ln (X4,i)+εi i = 1 ...N
(283)

where Yi is the demand for beer, X1,i is the price of beer, X2,i is the price
of other liquor products, X3,i is the price of food and other services, X4,i is
consumer income. Coeffi cients β0,β1,β2,β3,and β4 are the set of unknown elas-
ticity coeffi cients you would like to estimate. Again assume that errors εi are
independently normally distributed, εi ∼ N(0, σ2).

1. (a) Estimate the unknown parameters of this model using data in Beer1.csv.

(b) How would you determine the overall significance of this model?
Write down your test criterion. Compare that test statistic with
another test statistic that you would use to test whether a particular
coeffi cient, such as β3, is statistically significant or not.

(c) How would you establish whether a particular variable is helping to
explain the variation in beer consumption?

(d) Further suppose that you have some non-sample information on the
relation between the price and income coeffi cients as following:

i. sum of the elasticities equals zero: β1+β2+β3+ β4 = 0.

ii. two cross elasticities are equal: β3=β4 = 0 or β3- β4 = 0

iii. income elasticity is equal to unity: β5 = 1

(e) How do you test whether these restrictions are valid or not ?

(f) In addition to the variables listed in the above model you suspect
that gender and level of education of individuals are important de-
terminants of beer consumption. Explain how you could incorporate
these variables in this model.

(g) The income of an individual also depends upon his/her age. Income
in turn determines the consumption of beer. Thus age interacts with
income. How would you introduce this age-income interaction effect
in the above model?

Instructions for testing linear restrictions in PcGive for cross section data
like this:
a. regress Y on X1,i, X2,i , X3,i and X4,i .
b. click on test/linear restriction, put the restrictions in the matrix box. one

line for each restriction. For instance if β0+β1+β2+β3+ β4 = 0 to be tested
then type 1 1 1 1 1 0 , then click ok , it will test validity of that restriction. If
there are two restriction
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β0+β1+β2+β3+ β4 = 0 and β3- β4 = 0 then
1 1 1 1 1 0
0 0 0 1 -1 0
put this input in the matrix box, then click OK. This will test for thoth

restrictions.

7 Multicollinearity

Multiple Regression Model in Matrix

• Consider a linear regression

Yi = β0+β1X1,i+β2X2,i+β3X3,i+ ....+βkXk,i+ εi i = 1 ...N (284)

and assumptions

E (εi) = 0 (285)

E (εixj,i) = 0; var (εi) = σ2 for ∀ i; εi ∼ N
(
0, σ2

)
(286)

covar (εiεj) = 0 (287)

Explanatory variables are uncorrelated.

E (X1,iX1,j) = 0 (288)

• Objective is to choose parameters that minimise the sum of squared errors

Min S
β̂0β̂1β̂2...β̂k

=
∑

ε2i =
∑(

Yi − β̂0 − β̂1X1,i − β̂2X2,i − β̂3X3,i − ....− β̂kXk,i

)2
(289)

Derivation of Normal Equations

∂S

∂β̂0
= 0;

∂S

∂β̂1
= 0;

∂S

∂β̂2
= 0;

∂S

∂β̂3
= 0; ......

∂S

∂β̂k
= 0 (290)

• Normal equations for two explanatory variable case∑
Yi = β̂0N + β̂1

∑
X1,i + β̂2

∑
X2,i (291)∑

X1,iYi = β̂0
∑

X1,i + β̂1
∑

X2
1,i + β̂2

∑
X1,iX2,i (292)∑

X2,iYi = β̂0
∑

X2,i + β̂1
∑

X1,iX2,i + β̂2
∑

X2
2,i (293) ∑

Yi∑
X1,iYi∑
X2,iYi

 =

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i


 β̂0
β̂1
β̂2

 (294)
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Normal equations in matrix form

 β̂0
β̂1
β̂2

 =

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

−1  ∑
Yi∑

YiX1,i∑
YiX2,i

 (295)

β = (X ′X)
−1
X ′Y (296)

Use Cramer Rule to solve for paramers:

β̂0 =

∣∣∣∣∣∣
∑
Yi

∑
X1,i

∑
X2,i∑

YiX1,i

∑
X2
1,i

∑
X1,iX2,i∑

YiX2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣
(297)

β̂1 =

∣∣∣∣∣∣
N

∑
Yi

∑
X2,i∑

X1,i

∑
YiX1,i

∑
X1,iX2,i∑

X2,i

∑
YiX2,i

∑
X2
2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣
(298)

β̂2 =

∣∣∣∣∣∣
N

∑
X1,i

∑
Yi∑

X1,i

∑
X2
1,i

∑
YiX1,i∑

X2,i

∑
X1,iX2,i

∑
YiX2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣
(299)

Evaluate the determinant:

|X ′X| =

∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣ (300)

For this calculation, repeate first two columns as:

|X ′X| =

∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

N
∑
X1,i∑

X1,i

∑
X2
1,i∑

X2,i

∑
X1,iX2,i

∣∣∣∣∣∣ (301)

Dederminant = (sum of cross product from to left to right - sum of cross
product from bottom left to right) as:
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|X ′X| = N
∑
X2
1,i

∑
X2
2,i+

∑
X1,i

∑
X1,iX2,i

∑
X2,i+

∑
X2,i

∑
X1,iX2,i

∑
X1,i

−
∑
X2,i

∑
X2,i

∑
X2
1,i −N

∑
X1,iX2,i

∑
X1,iX2,i −

∑
X2
2,i

∑
X1,i

∑
X1,i

7.0.1 Exact multicollinearity: Singularity

In existence of exact multicollinearity X ′X is singular, i.e. |X ′X| = 0

If X1,i = λX2,i then
|X ′X| = N

∑
X2
1,i

∑
X2
2,i+

∑
X1,i

∑
X1,iX2,i

∑
X2,i+

∑
X2,i

∑
X1,iX2,i

∑
X1,i

−
∑
X2,i

∑
X2,i

∑
X2
1,i −N

∑
X1,iX2,i

∑
X1,iX2,i −

∑
X2
2,i

∑
X1,i

∑
X1,i

Substituting out X1,i

|X ′X| = Nλ2
∑
X2
2,i

∑
X2
2,i+λ

2∑X2,i

∑
X2
2,i

∑
X2,i+λ

2∑X2,i

∑
X2
2,i

∑
X2,i

−λ2
∑
X2,i

∑
X2,i

∑
X2
2,i −Nλ

2∑X2
2,i

∑
X2
2,i − λ

2∑X2
2,i

∑
X2,i

∑
X2,i

= 0

|X ′X| =

∣∣∣∣∣∣
N λ

∑
X2,i

∑
X2,i

λ
∑
X2,i λ2

∑
X2
2,i λ

∑
X2,iX2,i∑

X2,i λ
∑
X2,iX2,i

∑
X2
2,i

∣∣∣∣∣∣ = 0 (302)

Parameters are indeterminate in model with exact multicollinearity

β̂0 =

∣∣∣∣∣∣
∑
Yi

∑
X1,i

∑
X2,i∑

YiX1,i

∑
X2
1,i

∑
X1,iX2,i∑

YiX2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣
0

=∞ (303)

β̂1 =

∣∣∣∣∣∣
N

∑
Yi

∑
X2,i∑

X1,i

∑
YiX1,i

∑
X1,iX2,i∑

X2,i

∑
YiX2,i

∑
X2
2,i

∣∣∣∣∣∣
0

=∞ (304)

β̂2 =

∣∣∣∣∣∣
N

∑
X1,i

∑
Yi∑

X1,i

∑
X2
1,i

∑
YiX1,i∑

X2,i

∑
X1,iX2,i

∑
YiX2,i

∣∣∣∣∣∣
0

=∞ (305)

Covariance of parameters cannot be estimated in model with exact multi-
collinearity

(X ′X)
−1

=∞ (306)
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cov
(
β̂
)

=

 var(β̂1) cov(β̂1β̂2) cov(β̂1β̂3)

cov(β̂1β̂2) var(β̂2) cov(β̂2β̂3)

cov(β̂1β̂3) cov(β̂2β̂3) var(β̂3)

 =∞ (307)

cov
(
β̂
)

= (X ′X)
−1
σ2 =∞ (308)

cov
(
β̂
)

=

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

−1 σ̂2 =∞ (309)

Table 10: Data for testing multicollinearity
y 3 5 7 6 9 6 7
x1 1 2 3 4 5 6 7
x2 5 10 15 20 25 30 35

Numerical example of exact multicollinearity Evaluate the determinant

|X ′X| =

∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2
1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2
2,i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
7 28 140
28 140 700
140 700 3500

∣∣∣∣∣∣ ; (310)

 ∑
Yi∑

YiX1,i∑
YiX2,i

 =

 43
188
980


Numerical example of exact multicollinearity

|X ′X| = N
∑
X2
1,i

∑
X2
2,i+

∑
X1,i

∑
X1,iX2,i

∑
X2,i+

∑
X2,i

∑
X1,iX2,i

∑
X1,i

−
∑
X2,i

∑
X2,i

∑
X2
1,i −N

∑
X1,iX2,i

∑
X1,iX2,i −

∑
X2
2,i

∑
X1,i

∑
X1,i

= (7× 140× 3500 + 28× 700× 140 + 140× 700× 28
−140× 140× 140− 7× 700× 700− 28× 28× 3500) = 0

Evaluate determinants easily in excel using following steps:
1. select the cell where to put the result.and press shift and control conti-

nously by two fingers of left hand
2. use mouse by right hand to choose math and trig function
3. choose MDETERM
4. Select matrix for which to evaluate the determinant
5. press OK and you will see the reslut.
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Normal equations of a multiple regression in deviation form:[
β̂1
β̂2

]
=

[ ∑
x21,i

∑
x1,ix2,i∑

x1,ix2,i
∑
x22,i

]−1 [ ∑
yix1,i∑
yix2,i

]
(311)

β = (X ′X)
−1
X ′Y (312)

β̂1 =

∣∣∣∣ ∑ yix1,i
∑
x1,ix2,i∑

yix2,i
∑
x22,i

∣∣∣∣∣∣∣∣ ∑
x21,i

∑
x1,ix2,i∑

x1,ix2,i
∑
x22,i

∣∣∣∣ (313)

β̂2 =

∣∣∣∣ ∑
x21,i

∑
yix1,i∑

x1,ix2,i
∑
yix2,i

∣∣∣∣∣∣∣∣ ∑
x21,i

∑
x1,ix2,i∑

x1,ix2,i
∑
x22,i

∣∣∣∣ (314)

Variances of parameters:

[ ∑
x21,i

∑
x1,ix2,i∑

x1,ix2,i
∑
x22,i

]−1
=

1∑
x21,i

∑
x22,i − (

∑
x1,ix2,i)

2

[ ∑
x22,i −

∑
x1,ix2,i

−
∑
x1,ix2,i

∑
x21,i

]
(315)

var
(
β̂1

)
=

∑
x22,i∑

x21,i
∑
x22,i − (

∑
x1,ix2,i)

2σ
2 (316)

var
(
β̂2

)
=

∑
x21,i∑

x21,i
∑
x22,i − (

∑
x1,ix2,i)

2σ
2 (317)

Variance Inflation Factor (VIF) in inexact multicollinearity Signifi-
cant R2 but insignificant t-ratios. why?
When Variance is high the standard errors are high and that makes t-

statistics very small and insignificant

SE
(
β̂2

)
=

√
var

(
β̂2

)
; SE

(
β̂1

)
=

√
var

(
β̂1

)
;

tβ̂1
=

β̂1 − β1
SE

(
β̂1

) ; tβ̂2
=

β̂2 − β2
SE

(
β̂2

) (318)

.since 0 < r12 < 1 it raises the variance and hence stancard errors and lowers
t-values.
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1. First detect the pairwise correlations between explalantory variables such
X1,i and X3,i be given by r12.

2. Drop highly correlated variables.

3. Adopts Klein’s rule of thumb:

4. Compare R2y from overall regression to R2x from auxiliary regression. De-
termine multicollinearity if R2x > R2y. Drop highly correlated variables.

Let correlations between X1,i and X2,i be given by r12. Then Variance
inflation factor is 1

(1−r212)

var
(
β̂2

)
=

∑
x21,i[∑

x21,i
∑
x22,i − (

∑
x1,ix2,i)

2
]σ2

=
1[∑

x21,i
∑
x22,i∑

x21,i
− (

∑
x1,ix2,i)

2∑
x21,i

]σ2
=

1∑
x22,i

[∑
x21,i∑
x21,i
− (

∑
x1,ix2,i)

2∑
x22,i

∑
x21,i

]σ2
=

1∑
x22,i [1− r212]

σ2

=
1

(1− r212)
1∑
x22,i

σ2 (319)

Let correlations between X1,i and X2,i be given by r12. Then Variance
inflation factor is 1

(1−r212)

var
(
β̂1

)
=

∑
x22,i∑

x21,i
∑
x22,i − (

∑
x1,ix2,i)

2σ
2

1[∑
x21,i

∑
x22,i∑

x22,i
− (

∑
x1,ix2,i)

2∑
x22,i

]σ2
=

1∑
x21,i

[∑
x22,i∑
x22,i
− (

∑
x1,ix2,i)

2∑
x21,i

∑
x22,i

]σ2
=

1∑
x21,i [1− r212]

σ2 (320)
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Table 11: Data on income, performace and quality of work
y 3 5 7 6 9 6 7
x1 1 2 3 4 5 6 7
x2 5 10 15 20 25 30 35

7.0.2 Exercise 5

1. Data on income (y), performance indicator (x1) and quality of workers (x2)
in a certatin reputable company is given as following.
Fit a regression model Yi = β0 + β1X1,i + β2X2,i + εi for this company. If

any problem suggest remedial measures.

8 Heteroskedasticity

Heteroskedasticity occurs when variances of errors are not constant, var (εi) 6=
σ2i variance of errors vary for each i. This is mainly a cross section problem.
OLS estimator is still unbiased as:

E
(
β̂2

)
= β2 (321)

But it is not consistency as its variance tends to infinity

V ar
(
β̂2

)
=

1∑
x2i
σ̂2 (322)

OLS estimators are still unbiased but they are no long effi cient:

Yi = β1 + β2Xi + εi i = 1 ...N (323)

and assumptions

E (εi) = 0 (324)

E (εixi) = 0 (325)

var (εi) = σ2 for ∀ i (326)

covar (εiεj) = 0 (327)

Then the OLS Regression coeffi cients are:

β̂2 =

∑
xiyi∑
x2i

; β̂1 = Y − β̂2X (328)

Main reason for this are

• Learning reduces errors;
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— driving practice, driving errors and accidents

— typing practice and typing errors,

— defects in productions and improved machines

• Improved data collection: better formulas and goods software

• More heteroscedasticity exists in cross section than in time series data.

Nature of Heteroskedasticity

E (εi)
2

= σ2i (329)

β̂2 =

∑
xiyi∑
x2i

(330)

E
(
β̂2

)
=
∑

wiyi (331)

where

wi =
xi∑
x2i

=

(
Xi −X

)∑(
Xi −X

)2 (332)

V ar
(
β̂2

)
= var

[ ∑(
Xi −X

)∑(
Xi −X

)2
]
var (yi) =

∑
x2iσ

2
i

[
∑
x2i ]

2 (333)

8.1 Graphical detection of the Heteroskedasticity

Under heteroskedasticity there is systematic pattern of errors with explanatory
variable:

62



63



As mentioned before when errors are homoskedastic parameters are sunbi-

ased E
(
β̂2

)
= β2 and effi cient, V ar

(
β̂2

)
= 1∑

x2i
σ̂2 and V ar

(
β̂2

)
lim N → ∞

=
σ̂2

N∑
x2
i

N

= 0

lim N → ∞.
OLS Estimator is still unbiased

β̂2 =

∑
xiyi∑
x2i

=
∑

wiyi (334)

E
(
β̂2

)
= E

(∑
wiyi

)
= E

∑
wi (β1 + β2Xi + εi) (335)

E
(
β̂2

)
= β1E

(∑
wi

)
+ β2E

(∑
wixi

)
+ E

(∑
wiεi

)
(336)

But the OLS parameter is inconsistent in the presence of heteroskedasticity

E
(
β̂2

)
=
∑

wiyi (337)

E
(
β̂2

)
= E

(∑
wiyi

)
= E

∑
wi (β1 + β2Xi + εi) (338)

E
(
β̂2

)
= β1E

(∑
wi

)
+ β2E

(∑
wixi

)
+ E

(∑
wiεi

)
(339)

E
(
β̂2

)
= β2 + E

(∑
wiεi

)
(340)
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V ar
(
β̂2

)
= E

[
E
(
β̂2

)
− β2

]2
= E

(∑
wiεi

)2
(341)

V ar
(
β̂2

)
= E

(∑∑
w2i ε

2
i

)
+
∑∑

cov (εiεj)
2 (342)

V ar
(
β̂2

)
=

∑
x2iσ

2
i

[
∑
x2i ]

2 (343)

OLS Estimator is inconsistent assymptotically becasue V ar
(
β̂2

)
⇒∞ and

the sample size becomes larger, N → ∞.

V ar
(
β̂2

)
=

∑
x2iσ

2
i

[
∑
x2i ]

2 (344)

V ar
(
β̂2

)
lim N → ∞

=

∑
x2iσ

2
i

[
∑
x2i ]

2 ⇒∞

lim N → ∞

(345)

Various tests of heteroskedasticity

• Spearman Rank Test

• Park Test

• Goldfeld-Quandt Test

• Glesjer Test

• Breusch-Pagan,Godfrey test

• White Test

• ARCH test
(See food_hetro.xls excel spreadsheet for some exmaples on how to com-
pute these. Gujarati (2003) Basic Econometrics,McGraw Hill is a good
text for Heteroskedasticity; x-hetro test in PcGive). STATA and Eview
have many options to test for the heterskedsticity.
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Spearman rank test of heteroskedactity

rs = 1− 6×

∑
i

d2i

n (n2 − 1)
(346)

• steps:

• run OLS of y on x.

• obtain errors e

• rank e and y or x

• find the difference of the rank

• use t-statistics if ranks are significantly different assuming n>8 and rank
correlation coeffi cient ρ=0.

t = 1− 6× rs
√
n− 2√

1− r2s
with df (n− 2) (347)

• If tcal > tcrit there is heteroskedasticity.

Glesjer Test of heteroskedasticity

• Model
Yi = β1 + β2Xi + ei i = 1 ...N (348)

• There are a number of versions of it:

|ei| = β1 + β2Xi + vi (349)

|ei| = β1 + β2
√
Xi + vi (350)

|ei| = β1 + β2
1

Xi
+ vi (351)

|ei| = β1 + β2
1√
Xi

+ vi (352)

|ei| =
√
β1 + β2Xi + vi (353)

|ei| =
√
β1 + β2X

2
i + vi (354)

• In each case dot-test H0: βi = 0 against HA: βi 6= 0. If is significant then
that is the evidence of heteroskedasticity.
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White test White test of heteroskedasticity is more general test
Yi = β0 + β1X1,i + β2X2,i + εi i = 1 ...N

• run OLS and obtain error squares ê2i
• regress ê2i = α0+α1X1,i+α2X2,i+ +α3X3,i+α4X

2
1,i+α5X

2
2,i+α6X

2
3,i+

α7X1,iX2,i + α8X2,iX3,i + vi

• Compute test statistics n.R2 = χ2df

• If the calculated χ2df value is greater that the χ2df table value then, there
is evidence of heteroskedasticity.

Park test of heteroskedasticity

• Model
Yi = β1 + β2Xi + ei i = 1 ...N (355)

• Error square:
σ2i = σ2Xβ

i e
vi
i (356)

• Or taking log
lnσ2i = lnσ2 + β2Xi + vi (357)

• steps : run the OLS regression for (Yi) and get the estimates of error terms
(ei ) .

• Square ei , and then run a regression of lne2i with x variable. Do t-test
H0: β2 = 0 against HA: β2 6= 0. If is significant then that is the evidence
of heteroskedasticity.

Goldfeld-Quandt test of heteroskedasticity

• Model
Yi = β1 + β2Xi + ei i = 1 ...N (358)

• Steps:

—Rank observations in ascending order of one of the x variable
—Omit c numbers of central observations leaving two groups N−C2 with
number of osbervations

—Fit OLS to the first N−C
2 and the last N−C

2 observations and find
sum of the squared errors from both of them.

— Set hypothesis σ21 = σ22 against σ21 6= σ22 .

— compute λ = ERSS2/df2
ERSS1/df1

.

— It follows F distribution.
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Breusch-Pagan,Godfrey test of heteroskedasticity Yi = β0 + β1X1,i +
β2X2,i + β3X3,i + ....+ βkXk,i + εi i = 1 ...N

• run OLS and obtain error squares

• Obtain average error square σ̂2 =

∑
i
e2i

n and pi =
e2i
σ̂2

• regress pi on a set of explanatory variables

• pi = α0 + α1X1,i + α2X2,i + α3X3,i + ....+ αkXk,i + εi

• obtain squares of explained sum (EXSS)

• θ = 1
2 (EXSS)

• θ = 1
m−1 (EXSS) ∼ χ2m−1

• H0 : α0 = α1 = α2 = α3 = .. = αk = 0

• No heteroskedasticity and σ2i = α1 a constant. If calculated χ2m−1 is
greater than table value there is an evidence of heteroskedasticity.

ARCH test of heteroskedasticity Engle (1987) autoregressive conditional
heteroskedasticy (ARCH): more useful for time series data
Model has mean and variance equations.
Yt = β0 + β1X1,t + β2X2,t + β3X3,t + ....+ βkXk,t + et

εt ∼ N
(
0,
(
α0 + α2e

2
t−1
))

Variance equation is:
σ2t = α0 + α2e

2
t−1 (359)

Here σ2t not observed. Simple way is to run OLS of Yt and get ê
2
t

• ARCH (1)

ê2t = α0 + α2ê
2
t−1 + vt

• ARCH (p)

ê2t = α0 + α2ê
2
t−1 + α3ê

2
1−1 + α4ê

2
1−1 + ..+ αpê

2
1−p + vt

• Compute the test statistics

n.R2 ∼ χ2df
Again if the calculated χ2df is greater than table value there is an evidence

of ARCH effect and heteroskedasticity.
Both ARCH and GARRCH modesl are estimated using iterative Maximum

Likelihood procedure.
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GARCH tests of heteroskedasticity Bollerslev’s generalised autoregres-
sive conditional heteroskedasticy (GARCH) process is more general

• GARCH (1)
σ2t = α0 + α2ê

2
t−1 + βσ2t−1 + vt (360)

Here α terms measure the impact of unknown elements, and β measure
conditional elements.

• GARCH (p,q)

• σ2t = α0 + α2ê
2
t−1 + α3ê

2
t−2 + α4ê

2
t−3 + .. + αpê

2
t−p + β1σ

2
t−1 + β2σ

2
t−2 +

..βqσ
2
t−q + ..+ vt

• Compute the test statistics n.R2˜χ2df
• Sometimes written as

• ht = α0 + α2ê
2
t−1 + α3ê

2
t−2 + α4ê

2
t−3 + .. + αpê

2
t−p + β1ht−1 + β2ht−2 +

..βqht−q + ..+ vt

• where ht = σ2t

• Various functional forms of ht
• ht = α0+α2ê

2
t−1+β1

√
ht−1+vi or ht = α0+α2ê

2
t−1+

√
β1ht−1 + β2ht−2+

vi

• Both ARCH and GARCH modesl are estimated using iterative Maximum
Likelihood procedure. Volatility package in PcGive estimates ARCH-
GARCH models; Eviews, STATA or RATS also have these routines.

8.1.1 Relation between a GARCH and ARCH process

GARCH (1,1) process is infinite ARCH(p) process. It is proved as following:
Let error variance as ht = σ2t and write GARCH (1,1) for 0 < δ < 1 as:

ht = γ0 + γ1ê
2
t−1 + δht−1 (361)

Now contineously substitute out ht−q tersm as:

ht = γ0 + γ1ê
2
t−1 + δ

[
γ0 + γ1ê

2
t−2 + δht−2

]
= γ0 + γ1ê

2
t−1 + δγ0 + δγ1ê

2
t−2 + δ2ht−2 (362)

= γ0 + γ1ê
2
t−1 + δγ0 + δγ1ê

2
t−2 + δ2

[
γ0 + γ1ê

2
t−3 + δht−3

]
(363)

= γ0 + γ1ê
2
t−1 + δγ0 + δγ1ê

2
t−2 + δ2γ0 + δ2γ1ê

2
t−3 + δ3ht−3 (364)

= .. (365)

= γ0 + δγ0 + δ2γ0 + ...+ γ1ê
2
t−1 + δγ1ê

2
t−2 + δ2γ1ê

2
t−3 + ..+ δJht−J(366)

' γ0
1− δ + γ1

[
ê2t−1 + δê2t−2 + δ2ê2t−3

]
=

γ0
1− δ + γ1

∞∑
J=1

δj−1ê2t−j (367)
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Now ht = γ0
1−δ + γ1

∞∑
J=1

δj−1ê2t−j is just ARCH(∞) process.

STATA and Eviews are very handy in estimating ARCH/GARCH models.
Eviews gives mean and variance estimates simultaneouly. With a date file in
*.csv format, use File/option/foreign data as worksheet file/quick/estimation/ARCH
sequnce of command to estimate an ARCH model. From view command check
all diagnostic. Do forecsts and study the conditional volatility as given by the
model.

8.1.2 Weighted Least Square Method

GLS Solution of the heteroskedasticity problem when the variance is known:

Yi
σi

=
β1
σi

+ β2
Xi

σi
+
εi
σi

i = 1 ...N (368)

Variance with this tranformation equals 1. var
(
εi
σi

)
=

σ2i
σ2i

= 1

if
σ2i = σ2Xi (369)

Yi
Xi

=
β1
Xi

+ β2 +
εi
Xi

; var

(
εi
xi

)
=
σ2x2i
x2i

= σ2 (370)

In matrix notation
βOLS = (X ′X)

−1
(X ′Y ) (371)

βGLS =
(
X ′Ω−1X

)−1 (
X ′Ω−1Y

)
(372)

Ω−1 is inverse of variance covariance matrix.

9 Autocorrelation

Autocorrelation occurs when covariances of errors are not zero, covar (εtεt−1)
6= 0 covariance of errors are nonnegative This is mainly a problem observed in
time series data.
Consider a linear regression

Yt = β1 + β2Xt + εt t = 1 ...T (373)

Classical assumptions

E (εt) = 0 (374)

E (εtxt) = 0 (375)
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var (εt) = σ2 for ∀ t covar (εtεt−1) = 0 (376)

In presence of autocorrelation (first order)

εt = ρεt−1 + vt (377)

Then the OLS Regression coeffi cients are:

β̂2 =

∑
xtyt∑
x2t

; β̂1 = Y − β̂2X ; ρ̂ =

∑
etet−1∑
e2t

(378)

Causes of autocorrelation

• inertia , specification bias, cobweb phenomena

• manipulation of data

Consequences of autocorrelation

1. (a) Estimators are still linear and unbiased, but

(b) they there not the best, they are ineffi cient.

Remedial measures

1. (a) When ρ is known - transform the model

(b) When ρ is unknown estimate it and transform the model
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9.0.3 Nature of Autocorrelation

β̂2 =

∑
xtyt∑
x2t

(379)

E
(
β̂2

)
=
∑

wtyt (380)

where
E (εt)

2
= σ2 (381)

E
(
β̂2

)
= β2 + E

(∑
wtεt

)
(382)

E
(
β̂2

)
= β1E

(∑
wt

)
+ β2E

(∑
wtxt

)
+ E

(∑
wtεt

)
(383)

V ar
(
β̂2

)
= E

[
E
(
β̂2

)
− β2

]2
= E

(∑
wtεt

)2
(384)

V ar
(
β̂2

)
=

1∑
x2t
σ2 +

∑∑
cov (εtεt−1) (385)

OLS Estimator is still unbiased

εt = ρεt−1 + vt (386)

β̂2 =

∑
xtyt∑
x2t

=
∑

wtyt (387)

E
(
β̂2

)
= E

(∑
wtyt

)
= E

∑
wt (β1 + β2Xt + εt) (388)

E
(
β̂2

)
= β1E

(∑
wt

)
+ β2E

(∑
wtxt

)
+ E

(∑
wtεt

)
(389)

E
(
β̂2

)
= β2 (390)

9.0.4 OLS Parameters are ineffi cient with Autocorrelation

E
(
β̂2

)
=
∑

wtyt (391)

E
(
β̂2

)
= E

(∑
wtyt

)
= E

∑
wt (β1 + β2Xt + εt) (392)

E
(
β̂2

)
= β1E

(∑
wt

)
+ β2E

(∑
wtxt

)
+ E

(∑
wtεt

)
(393)

E
(
β̂2

)
= β2 + E

(∑
wtεt

)
(394)
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V ar
(
β̂2

)
= E

[
E
(
β̂2

)
− β2

]2
= E

(∑
wtεt

)2
(395)

V ar
(
β̂2

)
= E

(∑∑
w2t ε

2
t

)
+ 2

∑∑
wtwt−1cov (εtεt−1) (396)

V ar
(
β̂2

)
=

1∑
x2t
σ2

[
1 + 2

∑
xtxt−1

[
∑
x2t ]

cov (εtεt−1)√
var (εt)

]
∵ var (εt) = var (εt−1)

(397)

V ar
(
β̂2

)
=

1∑
x2t
σ2

[
1 + 2

∑
(xt−x)(xt−1−x)∑

x2t
ρ1+

+2
∑
(xt−x)(xt−1−x)∑

x2t
ρ2 + ..+ 2

∑
(xt−x)(xt−1−x)∑

x2t
ρs

]
(398)

OLS Estimator is inconsistent assymptotically

V ar
(
β̂2

)
=

1∑
x2t
σ2

[
1 + 2

∑
(xt−x)(xt−1−x)∑

x2t
ρ1+

+2
∑
(xt−x)(xt−1−x)∑

x2t
ρ2 + ..+ 2

∑
(xt−x)(xt−1−x)∑

x2t
ρs

]
(399)

V ar
(
β̂2

)
lim N → ∞

=
1∑
x2t
σ2

[
1 + 2

∑
(xt−x)(xt−1−x)∑

x2t
ρ1+

+2
∑
(xt−x)(xt−1−x)∑

x2t
ρ2 + ..+ 2

∑
(xt−x)(xt−1−x)∑

x2t
ρs

]
⇒∞

(400)

9.0.5 Durbin-Watson test of autocorrelation

d =

T∑
t=1

(et − et−1)2

T∑
t=1

e2t

(401)

d =

T∑
t=1

(
e2t − 2etet−1 + e2t−1

)
T∑
t=1

e2t

= 2 (1− ρ) ; ∵
T∑
t=1

e2t '
T∑
t=2

e2t−1 (402)

Autocorrelation coeffi cient is given by:

ρ =

T∑
t=1

etet−1

T∑
t=1

e2t

(403)
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Autocorrelation and Durbin-Watson Statistics

d = 2 (1− ρ) (404)

ρ = 0 =⇒ d = 2 (405)

ρ = −1 =⇒ d = 4 (406)

Durbin-Watson Distribution

Transformation of the model in the presence of autocorrelation
when autocorrelation coeffi cient is known

Yt = β1 + β2Xt + ε
t

t = 1 ...T (407)

εt = ρεt−1 + vt (408)

Yt − ρYt−1 = (β1 − ρβ1) + β2 (Xt − ρXt−1) + ε
t
− ρεt−1 (409)

Y ∗t = β∗1 + β2X
∗
t + ε∗

t
(410)

Apply OLS in this transformed model β∗1 and β2 will have BLUE properties.
When autocorrelation coeffi cient is unknown, this method is similar to the

above ones, except that it involves multiple iteration for estimating ρ . Steps
are as following:
1. Get estimates β̂1 and β̂2 from the original model; get error terms êi

and estimate ρ̂
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2. Transform the original model multiplying it by ρ̂ and by taking the
first difference,

3. Estimate ̂̂β1 and ̂̂β2 from the transformed model and get errors ̂̂ei of
this transformed model
4. Then again estimate ̂̂ρ and use those values to transform the original

model as

Yt − ρ̂Yt−1 = (β1 − ρ̂β1) + β2 (Xt − ρ̂Xt−1) + εt − ρ̂εt−1 (411)

5. Continue this iteration process until ̂̂ρ converges.
PcGive suggests using differences in variables. Diagnos /ACF options in

OLS in Shazam will generate these iterations.

Use Durbin h-statistic when the lagged value of the dependent variable is an
explanatory variable. This statistic is derived from the WD statistic as

h =

(
1− d

2

)
×
√

n

1− nσ2y
(412)

9.0.6 Breusch-Godfrey LM-test of Serial Correlation

Breusch-Godfrey LM test of serial correlation is another popular test of auto-
correlation.

LM = (n− p)R2 ∼ χ2df (413)

The hypothesis is set up for this as follows:

Yt = β1 + β2Xt + e
t

t = 1 ...T (414)

et = ρ1et−1 + ρ2et−2 + ...+ ρpet−p + ε
t

p = 1 ...p (415)

Null hypothesis is that there no autocorrelation:

H0 : ρ1 = ρ2 = +...+ = ρp = 0 (416)

Alternative hypothesis is that there is at leat one of ρ1 is significant. Then
compare the statistics with the critical value. If the calculated LM is greater
than critical value χ2df there null of no autocorrelation is rejected. There is an
evidence for autocorrelation.
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9.1 GLS to solve autocorrelation

In matrix notation
βOLS = (X ′X)

−1
(X ′Y ) (417)

βGLS =
(
X ′Ω−1X

)−1 (
X ′Ω−1Y

)
(418)

Ω−1 is inverse of variance covariance matrix.
Generalised Least Square
Take a regression

Y = Xβ + e (419)

Assumption of homoskedasticity and no autocorrelation are violated

var (εi) 6= σ2 for ∀ i (420)

covar (εiεj) 6= 0 (421)

The variance covariance of error is given by

Ω = E (ee′) =


σ21 σ12 .. σ1n
σ21 σ22 .. σ2n

: : : :
σn1 σn2 .. σ2n

 (422)

Q′ΩQ = Λ (423)

Generalised Least Square

Ω = QΛQ′ = QΛ
1
2 Λ

1
2Q′ (424)

P = QΛ
1
2 (425)

P ′ΩP = I ; P ′P = Ω−1 (426)

Transform the model

PY = βPX + Pe (427)

Y ∗ = βX∗ + e∗ (428)

Y ∗ = PY X∗ = PX and e∗ = Pe βGLS =

(X ′P ′PX)
−1

(X ′P ′PY )

βGLS =
(
X ′Ω−1X

)−1 (
X ′Ω−1Y

)
(429)
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10 Time Series

Time series models aim to explain the data generating process for {yt}∞−∞ =
{y−∞.....y−1.y0.y1.y2........yT .yT+1.yT+1.....}

A Time series consists of trend, cycle, season and irregular component

Y = T × C × S × I (430)

In a simple method the moving average gives T ×C components and is used
to isolate the S × I components. For instance for a 12 monthly moving average

Y i =
1

12
(Y1 + Y2 + ......+ Y12) (431)

S × I =
T × C × S × I

T × C =
Yi

Y i
= zt (432)

Now to isolate the Irregular component I from S × I take out the seasonal
elements from zt assuming monthly data for 5 years (60 observations) compute
the seasonal indices as following:

Month1 : z1 =
1

5
(z1 + z13 + z25 + z39 + z48) (433)

Month2 : z2 =
1

5
(z2 + z14 + z26 + z40 + z49) (434)

Month3 : z3 =
1

5
(z3 + z15 + z26 + z41 + z50) (435)

............................................

Month11 : z11 =
1

5
(z11 + z23 + z35 + z47 + z59) (436)

Month12 : z12 =
1

5
(z12 + z24 + z36 + z46 + z60) (437)

Deseasonalisation of data Y di = Yi
zi
and irregular component should be i = zt

zi
.

Trends:
Simple extrapolation

Yt = c1 + c2t (438)

Exponential growth

Yt = Aert (439)

Autoregressive model
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Yt = c1 + c2Yt−1 (440)

Log trend
ln (Yt) = c1 + c2 ln (Yt−1) (441)

Quadratic trends:

Yt = c1 + c2t+ c3t
2 (442)

Logistic trend:

Yt =
1

k + bt
b > 1 (443)

Yt = ek1−
k2
t (444)

ln (Yt) = k1 −
k2
t

(445)

auto lagged with declining weights α < 1

Yt = αYt−1 + α (1− α)Yt−2 + α (1− α)
2
Yt−2 + ...+ α (1− α)

n
Yt−2 (446)

Forecasting forward with these models is obvious.

10.1 Time Series Process

Simplest of these is a trend model

Yt = βt+ εt (447)

with mean E(Yt) = βt and variance E (Yt − βt )
2

= E (εt)
2

= σ2ε
Or it could have been just a constant plus a Gaussian white noise εt ∼

N
(
0, σ2

)
as:

Yt = µ+ εt (448)

with mean E(Yt) = µ and variance E (Yt − µ )
2

= E (εt)
2

= σ2ε

Autocovariance of {yt}∞−∞ for I realisations is

γtj = E (Yt − µ )E (Yt−j − µ ) = E (εt)E (εt−j) = 0 for j 6= 0 (449)

Stationarity
when neither mean µ nor the autocovariance γij depend on time t then the

Yt is covariance stationary or weakly stationary.
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E(Yt) = µ for ∀ t (450)

E (Yt − µ)E (Yt−j − µ) = γj for any t and j = {σ
2
ε for j=0
0 for j 6=0 (451)

For instance 448 is stationary while 447 not covariance stationary because
its mean βt is function of time.
If the process is stationary γj is the same for any value of t γj = γ−j

γj = E (Yt+j − µ)E
(
Y(t+j)−j − µ

)
= E (Yt+j − µ)E (Yt − µ) = E (Yt − µ)E (Yt+j − µ) = γ−j

(452)

10.2 Stationarity

What is a stationary variable?
When its mean and variance are constant.

E (Yt) = µ (453)

var (Yt) = σ2 (454)

When mean and variances are not constant, that variable is non-starionary,
for instance a random walk

Yt = Yt−1 + εi t = 1 ...T (455)

In an autoregressive model

Yt = ρYt−1 + εi t = 1 ...T (456)

if the autocorrlation coeffi cient ρ = 1 then it becomes a random walk. This
variable is non-stationary.

Yt =

∞∑
s=1

ρsεt−s (457)

Current realisations are accumulation of past errors.
Prove that variance of this is given by:

var (Yt) = t.σ2 (458)

Regression among non-stationary variables becomes spurious unless they are
cointegrated.
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10.2.1 Unit root and order of integration

A Non-Stationary variable can be made stationary by taking first difference as:

∆Yt = Yt − Yt−1 (459)

If a variable becomes stationary by taking the first difference it is said to be
intergrated of order one

I (1) (460)

If it becomes stationary after differencing d time then it is called I (d) vari-
able.
Dickey-Fuller and Phillip-Perron unit root tests are used to determine sta-

tionarity of a variable.

Yt = ρYt−1 + εi (461)

10.2.2 Level, drift, trend and lag terms in unit root test

Dickey-Fuller and Phillip-Perron unit root tests are used to determine station-
arity of a variable.

Yt = ρYt−1 + εi (462)

∆Yt = (ρ− 1)Yt−1 + ε
i
; ∆Yt = γYt−1 + ε

i
; (463)

Random walk with drift

∆Yt = α0 + γYt−1 + εi (464)

trend stationary

∆Yt = α0 + α1t+ γYt−1 + εi (465)

Augmented Dickey-Fuller test

∆Yt = α0 + α1t+ γYt−1 +

m∑
i=1

ρs∆Yt−i + ε
i

(466)

Cointegration in a regression

Yt = β1 + β2Xt + ε
t

(467)

First do the regression and then estimate the error as

ε̂t = Yt − β̂1 − β̂2Xt (468)

Yt and Xt are cointegrated if the estimated error is stationary ε̂t ∼ I (0)

80



ε̂t = ρε̂t−1 + εt (469)

if ρ < 1 the error ε̂t is stationary and Yt and Xt are cointegrated. They
have a long run relationship.
When variables are cointegrated there is an error correction mechanism.

Yt = ϕ2Xt + εt (470)

Yt = Xt + εt ; ϕ2 = 1 (471)

Cointegration: Engle-Granger Representation Theorem

εt = Yt −Xt (472)

For test of cointegration

∆εt = γεt−1 + ut (473)

∆ (Yt −Xt) = γ (Yt−1 −Xt−1) + ut (474)

∆Yt = ∆Xt + γ (Yt−1 −Xt−1) + ut (475)

This is an error correction model.Term γ (Yt−1 −Xt−1) gives the adjustment
towards the long run equilibrium and ∆Xt denotes the short run impact.

H0 : No cointegration; t- statistics can be used instead of DF test in error
correction model.

Granger Causality Test Estimate the following model where Mt is money
Yt is GDP and test the causality as below:

Yt =

n∑
i=1

αiMt−i +

m∑
j=1

βjYt−j + u1,t (476)

Mt =

n∑
i=1

λiMt−i +

m∑
j=1

δjYt−j + u2,t (477)

Unidirection causality from Mt to Yt requires
n∑
i=1

αi 6= 0 and
m∑
j=1

δj = 0

Unidirection causality from Yt to Mt requires
m∑
j=1

δj 6= 0 and
n∑
i=1

αi = 0

Bilateral causality between Yt to Mt requires
n∑
i=1

αi 6= 0 and
m∑
j=1

δj 6= 0

Independence of Yt to Mt from each other
n∑
i=1

αi = 0 and
m∑
j=1

δj = 0
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10.2.3 Exercise 8

Stationarity, Unit Root and Cointegarion

1. Study the monthly data on unemployment rate and inflation since 1972:1
to 2004:8 as given in “unmnth.xls”file. Use GiveWin PcGive to

• Draw diagrams to represent the rates of unemployment among males
and females and the RPI over this period.
• Ascertain whether unit root exists in the overall unemployment rate,

URT and RPI at 5% and 1% level of significance in level, in log and in the first
difference of these series.
• Detrend the data with Hodrik-Prescott filter and conduct stochastic

volatility tests.

2. Regress unemployment rate on inflation rate in levels and in the first
differences. Test whether these series are cointegrated using the Engle-
Granger procedure. (hint: stationarity of residuals).

3. The time series and represent the underlying data generating processes
(DGP) of consumption {Ct} and income {Yt}. Answer the following ques-
tions regarding the properties these series.

(a) What is meant by saying that{Ct} and {Yt} are stationary series?
Why is it important that the series are stationary for a robust re-
gression analysis?

(b) How do you determine whether {Ct} and {Yt} are stationary series,
or not?

(c) Analyse the properties of these series when they follow a random
walk, or have a unit root.

(d) What is the meaning of the order of integration in this respect? Dis-
cuss any three different methods of checking for stationarity.

(e) What is the meaning of cointegration between the series and ? How
would you decide whether these series{Ct} and {Yt} are co-integrated,
or not?

(f) If the original series {Ct} and {Yt} are not co-integrated, what trans-
formation can be applied to achieve co-integration? How do you
decide the order of co-integration?

(g) Use time series of consumption and income contained in Quarterly_cons.xls.
Determine the order of integration for both consumption and income.
Is there an evidence of cointegration between consumption and in-
come in levels or in the first differences?
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11 Linear probability, probit and logit models

• Alternative names: dichotomous dependent variables, discrete dependent
random variable, binary variable, either or choice variables

Yi =

∫
Yi = β1 + β2Xi + εi if the event occurs
0 = otherwise

(478)

Examples

• the labour force participation (1 if a person participates in the labour
force, 0 otherwise)

• yes or no vote in particular issue ; to marry or not to marry; to study
further or to start a job

• to buy or not to buy a particular stock

• choice of transportation mode to work (1 if a person drives to work, 0
otherwise)

• Union membership (1 if one is a member of the union, 0 otherwise)

• Owning a house (1 if one owns 0 otherwise)

• Multinomial choices: work as a teacher, or as a clerk, or as a self employed
or professional or as a factory worker

• Multinomial ordered choices: strongly agree, agree, neutral, disagree

Linear Probability Model

Yi = β1 + β2Xi + εi (479)

where Yi = 1 if person owns a house, 0 otherwise; Xi is family income.
E [(Yi = 1) /Xi] probability that the event y will occur given x

E [(Yi = 1) /Xi] = 0× [1− Pi] + 1× Pi = Pi (480)

0 6 E [(Yi = 1) /Xi] = Pi = β1 + β2Xi 6 1 (481)

• Problem: Errors are heteroscedastic

εi = 1− β1 − β2Xi with (1− Pi) (482)

εi = −β1 − β2Xi with Pi (483)
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Variance of error in a linear probability model

var (εi) = (1− β1 − β2Xi)
2

(1− Pi) + (−β1 − β2Xi )
2
Pi (484)

σ2 = (1− β1 − β2Xi)
2

(−β1 − β2Xi)+(−β1 − β2Xi )
2

(1− β1 − β2Xi) (485)

σ2 = (1− β1 − β2Xi) (β1 + β2Xi) = (1− Pi) Pi (486)

Variance depends on X.
Limitations of a linear probability model
It is possible to transform this model to make it homescedastic by dividing

the original variables by√
(1− β1 − β2Xi) (β1 + β2Xi) =

√
(1− Pi) Pi =

√
Wi (487)

Yi√
Wi

=
β1√
Wi

+ β2
Xi√
Wi

+
εi√
Wi

(488)

• It does not guarantee that the probability lies inside (0,1) bands

• Probability in non-linear phenomenon: at very low level of income a family
does not own a house; at very high level of income every one owns a house
; marginal effect of income is very negligible. The linear probability model
does not explain this fact well.

Probit Model

•

Pr (Yi = 1) = Pr (Z∗i ≤ Zi) = F (Zi) =
1√
2π

∫
Zi
−∞ e−

te

2 dt

=
1√
2π

∫
β1 + β2Xi + εi

−∞ e−
te

2 dt (489)

• Here t is standardised normal variable, t˜N (0, 1)

probability depends upon unobserved utility index Zi which depends upon
observable variables such as income. There is a thresh-hold of this index
when after which family starts owning a house, Zi > Z∗i

Logit Model

• variable Yi which takes value 1 (Yi = 1) if a student gets a first class mark,
value 0 (Yi = 0)otherwise.
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• Probability of getting a first class mark in an exam is a function of student
effort index denoted by .Zi ; where Pi = 1

1+e−Zi

Zi = β1 + β2Xi + εi An example of a logit model: what determines that
a student gets the first class degree?

Zi = β1 + β2Hi + β3Ei + β4Ai + β2)i + εi (490)

H = hours of study, E= exercises, A = attendance in lectures and classes;
P = papers written for assignment.

• Ratio of odds: Pi
1−Pi = 1+eZi

1+e−Zi
= eZi ;taking log of the odds ln

(
Pi
1−Pi

)
=

Zi

Features of a logit Model

• — probability goes from 0 to 1 as the index variable goes from -∞ to
+∞. Probability lies between 0 and 1.

— Log of the odds is linear in x, characteristic variables but probabilities
themselves are not linear but non linear function of the parameters.
Probabilities are estimated using the maximum likelihood method.

—Any explanatory variable that determines the value of Zi , measures
how the log of odds of an event (i.e. owning a house) changes as a
result of change in explanatory variable such as income.

—We can calculate Pi for given estimates of β1and β2or all other .βi

— Limiting case when Pi =1; ln
(
Pi
1−1

)
or when Pi =0 ; ln

(
0
1−0

)
OLS

cannot be applied in such case but the maximum likelihood method
may be used to estimate the parameters.

Logit model on probability of getting married from the dataset constructed
from the BHPS (Hours.csv)

Tobit Model

• — It is an extension of the probit model, named after Tobin. We observe
variables if the event occurs: ie if some one buys a house. We do
not observe explanatory variables for people who have not bought a
house. The observed sample is censored, contains observations for
only those who buy the house.

Yi =

∫
Yi = β1 + β2Xi + εi if the event occurs
0 = otherwise

(491)

— is equal to is the event is observed equal to zero if the event is not
observed.
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Table 12: Probability of Getting Married
Coeffi cient t-value t-prob

Intercept -2.99 -8.44 0.000
Log workhours 0.277 2.13 0.034
Gender 0.269 4.33 0.000
Labour 0.187 2.74 0.006
Liberal 0.330 3.28 0.001
Conservative 0.381 4.60 0.000
Health 0.189 6.56 0.000
Money -0.036 -2.49 0.013
Children 0.253 23.5 0.000
Job -0.124 -7.43 0.000
State =2 , AIC = 7244.8 N = 5790; LL -3612.4

— It is unscientific to estimate probability only with observed sample
without worrying about the remaining observations in the truncated
distribution. The Tobit model tries to correct this bias.

— Inverse Mill’s ratio: Example first estimate probability of work then
estimate the hourly wage as a function of socio-economic background
variables

Summary of Probability Models
The effect of observed variables on probability

• —
∂Pi
∂xi,j

=


βj
βjPj (1− Pj)
βjφ (Zi)

(492)

—where Zi =β0+
k∑
i=1

βiXi,j and φ is the standard normal density func-

tion.

Estimate probability models using data in Hours.csv.

11.0.4 AR, MA, ARMA and ARIMA Forecasting

AR(1) forecast

yt = δ + θ1yt−1 + et (493)

h =1 ahead Forecast

y
T+1

= δ + θ1yT + e
T+1

e
T+1

˜ N (0, 1) (494)
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Mean forecast:

ŷ
T+1

= E
(
y
T+1

)
= δ + θ1yT (495)

Estimate of Forecast error

ê
T+1

= y
T+1
− ŷ

T+1
= δ + θ1yT + e

T+1
− δ − θ1ŷT (496)

Variance of h =1 Forecast error

var
(
ê
T+1

)
= σ2e (497)

h =2 ahead Forecast

yT+2 = δ + θ1yT+1 + e
T+1

e
T+2

˜ N (0, 1) (498)

Mean forecast:

ŷ
T+2

= E
(
y
T+2

)
= δ + θ1yT+1 (499)

Estimate of Forecast error

ê
T+2

= y
T+2
− ŷ

T+2
= δ + θ1yT+1 + e

T+2
− δ − θ1ŷT+1

= e
T+2

+ θ1
(
y
T+1
− ŷ

T+1

)
= e

T+2
+ θ1eT+1 (500)

Variance of Forecast error

var
(
ê
T+2

)
= σ2e

(
1 + θ21

)
(501)

h period ahead Forecast

yT+h = δ + θ1yT+h−1 + eT+h e
T+h

˜ N (0, 1) (502)

Mean forecast:

ŷ
T+h

= E
(
y
T+h

)
= δ + θ1ŷT+h−1 (503)

Estimate of Forecast error

ê
T+h

= y
T+h
− ŷ

T+2
= δ + θ1yT+h−1 + e

T+h
− δ − θ1ŷT+h−1

= e
T+h

+ θ1
(
y
T+h−1 − ŷT+h−1

)
= e

T+h
+ θ1eT+h−1 (504)

Variance of Forecast error

var
(
ê
T+h

)
= σ2e

(
1 + θ21 + θ21 + ...+ θ

2(h−1)
1

)
(505)
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MA(1) forecast Forecast with MA(1)

yt = µ+ et + α1et−1 (506)

h=1 period ahead forecast

y
T+1

= µ+ e
T+1

+ α1eT (507)

Mean forecast

E
(
y
T+1

)
= ŷ

T+1
= µ+ α1eT (508)

Forecast error

y
T+1
− ŷ

T+1
= µ+ e

T+1
+ α1eT − µ− α1eT+1 = e

T+1
(509)

Variance of forecast:

var
(
y
T+1
− ŷ

T+1

)
= var

(
e
T+1

)
= σ2e (510)

h=2 period ahead Forecast

y
T+2

= µ+ e
T+2

+ α1eT+1 (511)

Mean forecast

E (yT+2) = ŷ
T+2

= µ (512)

Forecast error

y
T+2
− ŷ

T+2
= µ+ e

T+2
+ α1eT+1 − µ = e

T+2
+ α1eT+1 (513)

var
(
y
T+2
− ŷ

T+2

)
= var (eT+2) = var

(
e
T+2

+ α1eT+1
)

= σ2e
(
1 + α21

)
(514)

Similarly mean and variance of h period ahead forecast:

y
T+h

= µ+ e
T+h

+ α1eT+h−1 (515)

E (yT+h) = ŷ
T+h

= µ (516)

Forecast error

y
T+h
− ŷ

T+h
= µ+ e

T+h
+ α1eT+h−1 − µ = e

T+h
+ α1eT+h−1 (517)

var
(
y
T+2
− ŷ

T+2

)
= var (eT+h) = var

(
e
T+h

+ α1eT+h−1
)

= σ2e
(
1 + α21

)
(518)
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ARMA(1,1) forecast Forecasts using ARMA(1,1) process:

yt = δ + θ1yt−1 + et + α1et−1 (519)

h=1 period ahead Forecast

y
T+1

= δ + θ1yt−1 + e
T+1

+ α1eT (520)

Mean forecast

E
(
y
T+1

)
= ŷ

T+1
= δ + θ1yt−1 + α1eT (521)

Forecast error

ê
T+1

=
(
y
T+h
− ŷ

T+h

)
=

δ + θ1yt−1 + e
T+1

+ e
T+1

+ α1eT − δ − θ1yt−1 − α1eT = e
T+1

(522)

Forecast error

ê
T+1

=
(
y
T+h
− ŷ

T+h

)
= δ + θ1yt−1 + e

T+1
+ e

T+1

+α1eT − δ − θ1yt−1 − α1eT = e
T+1

(523)

Variance of Forecast error

var
(
ê
T+1

)
= var

(
y
T+h
− ŷ

T+h

)
= var

(
e
T+1

)
= σ2e (524)

yt = δ + θ1yt−1 + et + α1et−1 (525)

h=2 period ahead Forecast

y
T+2

= δ + θ1yt+1 + e
T+2

+ α1eT+1 (526)

Mean forecast and Forecast error

E (yT+2) = ŷ
T+2

= δ + θ1yt+1 (527)

ê
T+2

=
(
y
T+2
− ŷ

T+2

)
= δ + θ1yt+1 + e

T+2
+ α1eT+1 − δ − θ1ŷT+1

= θ1
(
y
t+1
− ŷT+1

)
+ e

T+2
+ α1eT+1 = (θ1 + α1) eT+1 + e

T+2
(528)

Variance of Forecast error

var
(
ê
T+1

)
= var

[
(θ1 + α1) eT+1 + e

T+2

]
= var

(
e
T+1

)
= σ2e

[
(θ1 + α1)

2
+ 1
]

(529)
h=3 period ahead Forecast
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y
T+2

= δ + θ1yt+2 + e
T+3

+ α1eT+2 (530)

Mean forecast

E (yT+3) = ŷ
T+3

= δ + θ1ŷt+2 (531)

Forecast error and Variance of Forecast error

ê
T+3

=
(
y
T+3
− ŷ

T+3

)
= δ + θ1yt+2 + e

T+3
+ α1eT+2 − δ − θ1ŷT+2

= θ1
(
y
t+2
− ŷT+2

)
+ e

T+3
+ α1eT+2

= e
T+3

+ α1eT+2 + (θ1 + α1) eT+2 + e
T+2

(532)

var (êT+3) = var
[
e
T+3

+ α1eT+2 + (θ1 + α1) eT+2 + e
T+2

]
= σ2e

[
1 + (1 + α1)

2
+ (θ1 + α1)

2
]

(533)

see: http://www.hull.ac.uk/php/ecskrb/Stochastic_GE_IJTGM%204(2)%20Paper%207.pdf

12 Panel Data Model

Panel Data
for i = 1,. . . .N countries and t = 1,. . . .,T years

Table 13: Structure of Panel Data
Dependent Variable Explanatory Variable Random Error

y1,1 x1,1 e1,1
. . .

y1,T x1,T e1,T
y2,1 x2,1 e2,1
. . .

y2,T x2,T e2,T
. . .

yN,1 xN,1 e,1
. . .

y2,T x2,T e2,T
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12.0.5 Panel Data Model: Fixed Effect Model

yi,t = αi + xi,tβ + ei,t ei,t ∼ IID
(
0, σ2e

)
(534)

where parameter αi picks up the fixed effects that differ among individuals,β
is the vector of coeffi cients on explanatory variables. These parameters can be
estimated by OLS when N is small but not when that is large but the model
need to be transformed to the least square dummy variable method when N is
too large.

yi = αi + xiβ + ei yi = T−1
∑
i

yi,t (535)

yi,t − yi = (xi,t − xi)β + (ei,t − ei ) (536)

fixed effect least square dummy variable estimator of β is

βFE =

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′
)−1 T∑

t

N∑
i

(xi,t − xi) (yi,t − yi)
′ (537)

αi = yi − xiβFE (538)

fixed effect least square dummy variable estimator of β is

βFE =

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′
)−1 T∑

t

N∑
i

(xi,t − xi) (yi,t − yi)
′ (539)

αi = yi − xiβFE (540)

These estimators are unbiased, consistent and effi cient with corresponding
covariance matrix given by:

cov (βFE) = σ2e

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′
)−1

(541)

σ2e =
1

N (T − 1)

T∑
t

N∑
i

(yi,t − αi − xi,tβFE) (542)

Static Panel Data Model of House Price in England :
Datafile: HousePrice_regional.csv: (Coeffi cients of regional dummies are

not as expected; let us look at dynamic panel then)
Exercise: Do this exercise for the UK including London, Wales, Scotland

and Northern Ireland.
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Table 14: Static Panel Data Model of House Price in England
Coeffi cient t-value t_Prob

Real income 4.64 46.0 0.000
Population 1.25 0.692 0.490
Mortgage rate -11.51 -0.050 0.960
Mortgate House Price ratio -237240 -10.0 0.000
Current deposit 1.94 2.52 0.000
Saving deposit 1.10 2.32 0.012
Constant 124143 6.30 0.021
North East base region
North West -14780.4 -1.68 0.094
York_Humber -8229.6 -1.57 0.117
Soth West -12905.4 -2.76 0.006
England -170937.9 -1.74 0.083
East Midland -9977.2 -2.54 0.011
West Midland -10441.1 -2.02 0.044
East Englia -6245.6 -0.83 0.409
Galaway -17390.6 -2.07 0.039
South East -22845.3 -2.13 0.034
R2 = 0.97; N =9; T = 48; Chi2 =12250 [0.000] **

12.0.6 Panel Data Model: Random Effect

Random effect models are more appropriate for analysing determinants of growth
as

yi,t = µ+ xi,tβ + αi + ei,t (543)

where αi˜IID
(
0, σ2α

)
are individual specific random errors and ei,t˜IID

(
0, σ2e

)
are remaining random errors.

αiιT + ei where ι
T

= (1, 1, .....1) (544)

var (αiιT + ei) = Ω = σ2αιT ι
′
T

+ σ2eIT (545)

Errors are correlated therefore this requires estimation by the Generalised
Least Square estimator. Transform the model by pre-multiplying by Ω−1 where

Ω−1 = σ2e

[
IT −

σ2α
σ2e + Tσ2α

ι
T
ι′
T

]
(546)
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Table 15: Dynamic Panel Data Model of House Price in England)l
Coeffi cient t-value t_Prob

House price (-1) 0.729 38.6 0.000
Real income 1.297 16.0 0.000
Population -0.938 -1.56 0.120
Mortgage rate 110.387 1.03 0.305
Mortgate House Price ratio -89015.9 -19.5 0.000
Current deposit 0.0429 0.34 0.734
Saving deposit 0.594 3.95 0.000
Constant 54443 17.0 0.000
North East base region
North West 1943.2 0.876 0.382
York_Humber 1301.2 1.03 0.305
Soth West -1233.1 -1.65 0.100
England 19171.9 0.78 0.438
East Midland -598.1 -0.85 0.398
West Midland 335.6 0.27 0.786
East Englia 4402.0 2.86 0.005
Galaway 2068.9 1.07 0.286
South East 715.5 0.316 0.752
R2 = 0.99; N =10; T = 47; Chi2 =190200 [0.000] **

βGLS =

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′ +
N

ψT
∑
i

(xi,t − xi) (xi,t − xi)′
)−1

(
T∑
t

N∑
i

(xi,t − xi) (yi,t − yi)
′
+ ψT

N∑
i

(xi,t − xi) (yi,t − yi)
′
)
(547)

Ω =


σ2α + σ2e σ2α σ2α . . σ2α
σ2α σ2α + σ2e . . . .
. . . . . .
. . . . . .
. . . . . .
σ2α σ2α σ2α . . σ2α + σ2e

 (548)

Ω−
1
2 =

1

σe

[
IT − 1− σe√

σ2e + Tσ2α

]
(549)

βGLS =
∑
i

(
X ′Ω−1X

)−1∑
i

(
X ′Ω−1Y

)
(550)

Panel Data Model: GMM Estimator

93



generalised method of moments (GMM) as proposed by Hansen (1982).

yi,t = γyi,t−1β + αi + ei,t γ < 1 (551)

which generates the following estimator

γ
FE

=

T∑
t

N∑
i

(yi,t − yi)
(
yi,t − yi,t−1

)
T∑
t

N∑
i

(
yi,t − yi,t−1

)2 ; yi = T−1
∑
i

yi,t; and yi,−1 = T−1
∑
i

yi,t−1

(552)
This is not asymptotically unbiased estimator:

γ
FE

= γ +

(
1
NT

) T∑
t

N∑
i

(ei,t − ei)
(
yi,t − yi,t−1

)
(
1
NT

) T∑
t

N∑
i

(
yi,t − yi,−1

)2 (553)

p lim
N→∞

(
1

NT

) T∑
t

N∑
i

(ei,t − ei)
(
yi,t − yi,t−1

)
= − σ

2
e

T 2
(T − 1)− Tγ + γT

(1− γ)
2 6= 0

(554)
Panel Data Model: Instrumental Variables for GMM

Instrumental variable methods have been suggested to solve this inconsis-
tency

γ̂
IV

=

T∑
t

N∑
i

yi,t−2
(
yi,t−1 − yi,t−2

)
T∑
t

N∑
i

yi,t−2 (yi,t−1 − yi,t−2)
(555)

where yi,t−2 is used as instrument of (yi,t−1 − yi,t−2)
It is asymptotically

p lim
N→∞

(
1

NT

) T∑
t

N∑
i

(ei,t − ei) yi,t−2 (556)

13 VAR Analysis

Consider a vector autoregressive model of order 2, VAR(2) given below.

yt = a10 + a11yt−1 + a12yt−2 + b11xt−1 + b12xt−2 + e1,t (557)

xt = a20 + a21yt−1 + a22yt−2 + b21xt−1 + b22xt−2 + e2,t (558)

94



where and are two variables for time t range from 1 . . . T periods. Errors
of each equation, e1and e2, are identically and independently distributed with
zero mean and constant variance and covariance between and is assumed zero.
a. Evaluate the relationship between and in the long run.
Answer: Long run relationship is obtained by imposing the steady state

relations:

y = a10 + a11y + a12y + b11x+ b12x (559)

y =
a10

1− a11 − a12
+

(b11 + b12)

1− a11 − a12
x (560)

x = a20 + a21y + a22y + b21x+ b22x (561)

x =
a20

1− b21 − b22
+

(a21 + a22)

1− b21 − b22
y (562)

b. Provide impulse response analysis for and of a unit shock in e1,t and
e2,t.
Use lag operator yt−1 = Lyt; yt−2 = Lyt−1 = L2yt;Then the system changes

to

yt = a10 + a11Lyt + a12L
2yt + b11Lxt + b12L

2xt + e1,t (563)

xt = a20 + a21Lyt + a22L
2yt + b21Lxt + b22L

2xt + e2,t (564)

yt =
a10

1− a11L− a12L2
+

(b11 + b12)

1− a11L− a12L2
xt +

1

1− a11L− a12L2
e1,t (565)

xt =
a10

1− b11L− b12L2
+

(a11 + a12)

1− b11L− b12L2
yt +

1

1− b11L− b12L2
e2,t (566)

Terms 1
1−a11L−a12L2 e1,t and

1
1−b11L−b12L2 e2,t give the impulse response of

the first and second equations respectively.
c. Indicate and explain criteria to determine the order of a VAR model

like this:
It is wise to use from general to specific approach of David Hendry to deter-

mine the order of VAR . First start the model with a large number of lags and
then keep reducing the number of lags until the significant relation is found.
Likelihood ratio tests are suggested for this.
d. What extra information is needed to make a h period ahead forecast

using the above model? VAR is a time series model. Given the past values
of time series, it requires distribution of the error terms for h period ahead
forecasts.
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e. A diagram can show how the variance of the forecast error and the
confidence interval of a forecast are sensitive to the number of periods in the
forecast horizon. The confidence level of forecast increases with the larger hori-
zon of the forecasts.

Relevant web pages

http://www.khanacademy.org/
http://www.econometricsociety.org/; http://www.aeaweb.org/aer/index.php;

http://www.res.org.uk/economic/ejbrowse.asp
http://www.imf.org/external/pubs/ft/weo/2010/01/weodata/index.aspx;
http://www.ifs.org.uk/publications/789
http://www.esds.ac.uk/international/; http://www.bankofengland.co.uk/;
http://www.hm-treasury.gov.uk/
http://www.eea-esem.com/EEA/2010/Prog/ - look at fiscal policy sessions.
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14 Tutorial Problems in Empirical Economics

14.0.10 Tutorial 1 (page 21)

Regress demand for a product (Yi) on its own prices (Xi) as following

Yi = β1 + β2Xi + ei i = 1 ...N

where ei is a randomly distributed error term for observation i.

1. List the OLS assumptions on error terms ei .

2. Derive the normal equations and the OLS estimators of β̂1 and β̂2.

3. A shopkeeper observed the data quantities and prices as given in Table 2
below. What are the OLS estimates of β̂1 and β̂2 implied by these data?
Is this a normal good?

4. What are the variances of ei and Yi?

5. What are R2 and R
2
?

6. Determine the overall significance of this model by F -test at 5 percent
level of significance. [Critical value of F for df(1,4) =7.71]

7. What are the variances and standard errors of β̂1 and β̂2?

8. Compute t-statistics and determine whether parameters β̂1 and β̂2 are sta-
tistically significant at 5 percent level of significance [Critical value of t for
five percent significance for 4 degrees of freedom is 2.776(i.e tcrit,0.05,4 = 2.777)
].

9. What is the prediction of Y when X is 0.5?

10. What is the elasticity of demand evaluated at the mean values of Yi and
Xi?

11. Reformulate the model to include price of a substitute product in the
model. What will happen to this estimation if these two prices are exactly
correlated?

12. How would you decide whether demand for this product varies by gen-
der?

Table 16: Data on Quantities and Prices
Quantities (Yi) 5 10 15 20 25 30
Prices (Xi) 10 8 6 4 2 1
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Hints:
[∑

Xi = 31
∑
X2
i = 221

∑
Y 2i = 2275;

∑
Yi = 105

∑
YiXi = 380

]
;

(X ′X)
−1

=

[
0.605 −0.085
−0.085 0.0164

]
Application
Test whether work-hours depend on weekly or annual pay among

UK counties using data Unempl_pay-couties.csv.

14.1 Tutorial 2 (page 40)

A sport centre has a gym. A hypothetical data set on the monthly charges (X)
and number of people using the gym (Y) are given in the following table with
the values of cross products and square terms

Table 17: Monthy charges and number of customers
Xi 10 8 7 6 3 5 9 12 11 10
Yi 60 75 90 100 150 120 125 100 80 65

1. Represent X and Y in a Scattered diagram.

2. Draw horizontal and vertical lines with the mean of X and Y in that
diagram.

3. Draw a line by your hand that best represents all sample observations.

4. Write a classical linear regression model in which X causes Y.

5. Write the assumptions of the error terms.

6. Derive normal equations of the OLS estimator minimising sum of squared
errors. Estimate parameters of the model using above information. Use
the deviation technique in your estimation.

7. What is your prediction of Y when X is 13?

8. Calculate the sum of variation in Y.

9. Decompose this total variance into explained and residual components.

10. Find the coeffi cient of determination or the R-square of this model.

11. Find the variance and standard error of the slope parameter.

12. Calculate the t-statistics and determine its level of significance using the
T-table.

13. Construct a 95 percent confidence interval for the slope parameter.
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14. Find the variance and the standard error of the intercept parameter.

Application
Get the medal table in the Beijing summer Olympics from the following web

(olympic.csv)
http://www.databaseolympics.com/
Determine whether the number of gold, silver or bronze medals won by a

country are related to percapita GDP of the country. Get GDP percapita for
these countries from the World Bank Development Indicators. Can you predict
medal tables for London Olympics from this exercise?

14.2 Tutorial 3 (page 52)

Q1. Suppose you have the following data set on number of tickets sold in a
football match (Y ), price of tickets (X1 ) and income of the customers
(X2). and Y are measured in 10 thousand pounds. You want to find out
the exact relation between tickets sold and prices and income of people
watching football games.

Table 18: Price, Income and Sales
X1,i 11 7 6 5 3 2 1
X2,i 2 2 4 5 6 5 4
Yi 1 2 3 4 5 6 7

1. Write a simple regression model to explain the number of tickets sold in
terms of the price of the ticket. Explain briefly underlying assumptions
and expected signs of the parameters in this model.

2. Estimate the slope and intercept parameters. Calculate cross products and
squared terms needed for estimation from the above data table.

3. Use your estimates in (b) find the explained squared sum
∑
ŷ2i , sum of

squared errors
∑
ê2i and the R

2and R
2
.

4. Estimate the variance of the error term and the slope coeffi cient. Explain
its importance.

5. Test whether the slope term is significant at 5% confidence level.

6. Build 95 percent confidence interval for estimate of slope and intercept
terms.

7. Discuss how reducing type I error may cause increase in type II errors.
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8. Calculate the elasticity of demand for football around the mean of Y and
X1.

9. Write a multiple regression model to explain the number of tickets sold
in terms of the price of the ticket and the income of individuals going
to the football game. What additional assumption(s) do you need while
introducing an additional variable.

10. Estimate the parameters of that multiple regression model.

11. What is your prediction of the number of tickets sold if X1= 5 and X2=4?

12. Introduce dummy variables in your multiple regression model to show
differences in demand for football ticket based on gender differences (1
for male and 0 for females), four seasons (autumn, winter, spring and
summer) and interaction between gender and income.

Q2. Suppose that a leading supermarket in the city centre requests to estimate
a demand function for beef. Your are considering estimating a model
where demand for beef depends on price of beef , price of pork, price of
chicken and consumer income as following:

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + β4X4,i + εi i = 1 ...N (567)

where is Yi demand for beef, X1,i is price of beef, X2,i is price of pork,
X3,i is price of chicken,X4,i is income of consumer and εi is a normally and
εi ∼ N(0, σ2) identically distributed random variable.

1. Using your knowledge of microeconomics, write down the expected signs
of β0,β1,β2,β3,and β4 in this model and explain why?

2. Write major assumptions of the ordinary least square approach to this
model.

3. Suppose you have a data set on these variables over last 35 years and you
want to estimate parametersβ0,β1,β2,β3,and β4. Derive normal equations
that you will use get OLS estimators of these parameters?

4. Compute the variances of parameters β1,β2,β3,and β4.

5. Compute variance-covariance matrix for the random term.

6. Construct a confidence interval on β1,β2,β3,and β4 and predicted Yi.

7. How would your result be affected if you find that X1,i = 0.6X2,i?

8. How would you modify your model to correct a problem in reported in
(g)?
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14.3 Tutorial 4 (page 61)

Suppose that you are interested in estimating the demand for beer in Yorkshire
pubs and consider the following multiple regression model:

ln (Yi) = β0+β1 ln (X1,i)+β2 ln (X2,i)+β3 ln (X3,i)+β4 ln (X4,i)+εi i = 1 ...N
(568)

where Yi is the demand for beer, X1,i is the price of beer, X2,i is the price
of other liquor products, X3,i is the price of food and other services, X4,i is
consumer income. Coeffi cients β0,β1,β2,β3,and β4 are the set of unknown elas-
ticity coeffi cients you would like to estimate. Again assume that errors εi are
independently normally distributed, εi ∼ N(0, σ2).

1. (a) Estimate the unknown parameters of this model using data in Beer1.csv.

(b) How would you determine the overall significance of this model?
Write down your test criterion. Compare that test statistic with
another test statistic that you would use to test whether a particular
coeffi cient, such as β3, is statistically significant or not.

(c) How would you establish whether a particular variable is helping to
explain the variation in beer consumption?

(d) Further suppose that you have some non-sample information on the
relation between the price and income coeffi cients as following:

i. sum of the elasticities equals zero: β1+β2+β3+ β4 = 1.

ii. two cross elasticities are equal: β3=β4 or β3- β4 = 0

iii. income elasticity is equal to unity: β5 = 1

(e) How do you test whether these restrictions are valid or not ?

(f) In addition to the variables listed in the above model you suspect
that gender and level of education of individuals are important de-
terminants of beer consumption. Explain how you could incorporate
these variables in this model.

(g) The income of an individual also depends upon his/her age. Income
in turn determines the consumption of beer. Thus age interacts with
income. How would you introduce this age-income interaction effect
in the above model?

Instructions for testing linear restrictions in PcGive for cross section data
like this:
a. regress Y on X1,i X2,i , X3,i and X4,i .
b. click on test/linear restriction, put the restrictions in the matrix box. one

line for each restriction. For instance if β0+β1+β2+β3+ β4 = 0. to be tested
then type 1 1 1 1 1 0 , then click ok , it will test validity of that restriction. If
there are two restrictions
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β0+β1+β2+β3+ β4 = 0 and β3- β4 = 0 then
1 1 1 1 1 0
0 0 0 1 -1 0
put this input in the matrix box, then click OK. This will test for both

restrictions.

14.4 Tutorial 5 (page 67-68)

Q1. Data on income (y), performance indicator (x1) and quality of workers (x2)
in a certain reputable company is given as following.

Table 19: Data on income, performace and quality of work
y 3 5 7 6 9 6 7
x1 1 2 3 4 5 6 7
x2 5 10 15 20 25 30 35

Fit a regression model Yi = β0 + β1X1,i + β2X2,i + εi for this company. If
any problem suggest remedial measures.
Q2. Some international macroeconomists argue that the devaluation has ex-

pansionary effect on output through its positive impact on exports and negative
impacts on imports. Others think that devaluation has contractionary impact
on output. As an econometrician you would like to test which one of these two
claims bear close relation to the empirical facts. Based on literature review you
come up with the following model

gy,t = β0 + β1time+ β2

(
G

Y

)
+ β3 [∆ lnM −∆lmM∗] + β4TOT + β5REt + εt

(569)
Where gy,t is the growth rate of real output, time is time trend, GY is the

ratio of government expenditure to GNP,M is the money supply,M∗ is expected
money supply , TOT is the term of trade as provided by the ratio of indices of
price of exports to the prices of imports, RE is the real exchange rate. Terms
β0,β1,β2,β3,and β4 are unknown coeffi cients to be estimated. As before is the
error term, it has a zero mean and constant variance, εi ∼ N(0, σ2) .
Relevant data are provided in juk.xlsx file (update this data if you can).

Estimate the above parameters and answer following questions studying the
regression results.

1. (a) Explain significance of coeffi cients β0,β1,β2,β3,β4and β5 in the above
model and state whether the estimates are consistent with the eco-
nomic theory. Is a devaluation, an increase in RE, contractionary or
expansionary from the results of this model?
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(b) Explain how you can test three of the following restrictions (1) sep-
arately and (2) jointly in this model.

i. Restriction 1: β5 = 0

ii. Restriction 2: β2 = 0 and β4 = 0

iii. Restriction 3: β3 + β4 = 0

iv. Discuss your test statistic for (i) to (iv).

(c) If the data series used in this model is non-stationary, mention how
does it affect the estimates of the parameters? What would you do
to correct it?

Instructions for testing linear restrictions in PcGive for cross section data
like this:
a. regress Y on X1,i X2,i , X3,i and X4,i .
b. click on test/linear restriction, put the restrictions in the matrix box. one

line for each restriction. For instance if β0+β1+β2+β3+ β4 = 0. to be tested
then type 1 1 1 1 1 0 , then click ok , it will test validity of that restriction. If
there are two restrictions

β0+β1+β2+β3+ β4 = 0 and β3- β4 = 0 then
1 1 1 1 1 0
0 0 0 1 -1 0
put this input in the matrix box, then click OK. This will test for both

restrictions.

14.5 Tutorial 6 (page 115)

Q1. What are elasticities of Yi with respect to Xi in the following regression
models

(a) Yi = β1 + β2Xi + ei

(b) ln (Yi) = β1 + β2Xi + ei .

(c) ln (Yi) = β1 + β2 ln (Xi) + ei .

(d) Yi = β1 + β2
1
Xi

+ ei .

(e) Yi = β1 + β2Xi + β2X
2
i + ei

II. Output (Yi) of a firm depends non-linearly on physical capital (Ki),
labour (Li) and energy (Ei)as given by

Yi = β0K
β1
i L

β2
i E

β3
i ei (570)

(a) How can OLS be applied to estimate β0, β1, β2 and β3?.
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(b) How can one test constant return to scale assumption (β1 + β2 + β3 = 0)
using this regression?

(c) What are the elasticities of output with respect to physical capital
(Ki), labour (Li) and energy (Ei) in this model? .

Q2. Consider a multiple regression model of certain product in which quan-
tity supply (Yi) depends on its own price (X1,i) and prices of two inputs
(X2,i, X3,i) as

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ei i = 1 ...N (571)

(a) Write normal equations to derive the OLS estimators of β0, β1, β2
and β3.

(b) Derive estimators of β0, β1, β2 and β3. (hint: use deviation form and
the Cramer’s rule).

(c) Write expression of the variance of the error term.

(d) What is the covariance matrix of β0, β1, β2 and β3? Write expression
of variances of β1, β2 and β3.

(e) Determine the test statistics for significance of each of β0, β1, β2 and
β3 and to test the general hypothesis that β0 = 0, β1 = 0, β2 = 0
and β3 = 0.

(f) What would be OLS estimators derived above if X2,i = 5X3,i? What
can be done to improve the validity of model like this?

(g) Assume that instead of estimating Yi = β0 + β1X1,i + β2X2,i +
β3X3,i + ei a researcher estimated Yi = β0 + β1X1,i + β2X2,i + ei.
How could you determine the statistical significance of the estimated
model?

Take a simple linear regression model of the following form.

Yi = β1 + β2Xi + ei i = 1 ...N (572)

Where the variance of the error term differs for different observations of Xi.

Q3 (a) Discuss how the graphical method be used to detect the heteroskedas-
ticity.

(b) Prove that parameters β1and β2 are still unbiased.

(c) Analyse consequences of heteroskedasticity on the BLUE properties
of the OLS estimators.

(d) Discuss how the Goldfeld and Quandt and Glesjer tests can be used
to determine existence of the heteroskedasticity problem.
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(e) Illustrate procedure for the White test of heteroskedasticity.

(f) Illustrate any two remedial measures of removing the heteroskedas-
ticity when the variance is known and when it is unknown.

(g) From a sample of 6772 observations on pay work-hours and taxes con-
tained in PAYHRTX.csv determine whether heteroskedasticity exists
or not on the basis of cross section estimates from the the PcGive.
Feel free to use Shazam if you know and prefer it.

(h) From a sample of 201 counties of Great Britain contained in Un-
empl_pay_counties.csv regress work-hours on annual pay and deter-
mine whether heteroskedasticity is present in this estimation using
the White test.

(i) Suggest remedial measures to remove heteroskedasticity in models
like above.

(j) Explains concepts of ARCH and GARCH models briefly.

14.6 Tutorial 7 (page 89)

Suppose that you are estimating a log linear consumption function of the fol-
lowing form:

ln (Ct) = β0 + β1 ln (Yt) + β2 ln (Pt) + εt t = 1 ...T (573)

where C, Y and P are consumption, income and prices and εt is the random
error
term. Use information in conyp.xls (update this to quarterly series from 1960

using OECD or Eurostat New Cronos) to estimate unknown parametersβ0,β1and
β2 and answer following questions using these results.

Q1. (a) What are the estimates of β1and β2? Do these estimates have signs
as you expected and why?

(b) Does the Durbin-Watson Statistic show evidence of autocorrelation
in the model? If so how does it affect the properties of the OLS
estimators of β1and β2?

(c) What is the 95 and 90 percent of confidence interval estimate of
β1and β2?

(d) How well does this model can explain variation in consumption? How
do you decide overall fit of this model? What statistics do you use
to decide at least there is one significant variable in the model?

Q2. Consider a simple linear regression model.
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Yt = β0 + β1Xt + εt t = 1 ...T (574)

Now assume that errors are correlated to each other over time with AR(1)
process as:

εt = ρεt−1 + vt (575)

where vt is identically and normally distributed error term with zero mean
and constant variance, vt ∼ N(0, σ2).

1. Illustrate how the graphical method can be applied to detect autocorrela-
tion in a simple regression model like above?

2. What are consequences of autocorrelation in a regression model? Show
how the existence of such autocorrelation among the error terms affects
the BLUE properties of the OLS estimators.

3. Define and derive the Durbin-Watson test statistics. Show how it can test
for existence or non existence of autocorrelation in a given estimation?

4. How the autocorrelation can be removed if the ρ is known?

5. What is a spurious regression? Why does it arise and how does it affect
the usefulness of estimation from an OLS regression? What can be done
to correct it?

6. Estimate aggregate supply function for UK using data in UKsupply.csv
and determine whether autocorrelation exists in it using the Durbin-
Watson statistics. Use remedial measures as necessary.

Application:
Read data on growth rate of per capita GDP, exchange rate and inflation

rates from the www.imf.org for year 1980 to 2003 for China, India, South Africa,
UK, USA and Brazil as contained in PERCAP6.csv. Test whether inflation and
the exchange rate are the significant variables in explaining the growth rate
of per capita output (in PPP) in these economies. Determine whether het-
eroskedasticity and autocorrelation exist in this regression using PcGive. Feel
free to use Shazam if you know and prefer it. Suggest a remedy for autocorre-
lation in a model like this.

14.7 Tutorial 8 (page 89)

Stationarity, Unit Root and Cointegarion

1. Study the monthly data on unemployment rate and inflation since 1972:1
to 2004:8 as given in “unmnth.xls”file. Use GiveWin PcGive to
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• Draw diagrams to represent the rates of unemployment among males
and females and the RPI over this period.
• Ascertain whether unit root exists in the overall unemployment rate,

URT and RPI at 5% and 1% level of significance in level, in log and in the first
difference of these series.
• Detrend the data with Hodrik-Prescott filter and conduct stochastic

volatility tests.

2. Regress unemployment rate on inflation rate in levels and in the first
differences. Test whether these series are cointegrated using the Engle-
Granger procedure. (hint: stationarity of residuals).

3. The time series and represent the underlying data generating processes
(DGP) of consumption {Ct} and income {Yt}. Answer the following ques-
tions regarding the properties these series.

(a) What is meant by saying that{Ct} and {Yt} are stationary series?
Why is it important that the series are stationary for a robust re-
gression analysis?

(b) How do you determine whether {Ct} and {Yt} are stationary series,
or not?

(c) Analyse the properties of these series when they follow a random
walk, or have a unit root.

(d) What is the meaning of the order of integration in this respect? Dis-
cuss any three different methods of checking for stationarity.

(e) What is the meaning of cointegration between the series and ? How
would you decide whether these series{Ct} and {Yt} are co-integrated,
or not?

(f) If the original series {Ct} and {Yt} are not co-integrated, what trans-
formation can be applied to achieve co-integration? How do you
decide the order of co-integration?

(g) Use time series of consumption and income contained in Quarterly_cons.xls.
Determine the order of integration for both consumption and income.
Is there an evidence of cointegration between consumption and in-
come in levels or in the first differences?

14.8 Tutorial 9 (page 94-95)

Q1. Suppose that you have a simple model of consumption and income as
following
Consumption function:

Ct = β0 + β1Yt + ut (576)
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National income identity:

Yt = Ct + It (577)

1. Use rank and order conditions to find whether the consumption function
is identified in this model.

2. Write a reduced form for this system. Show how you could retrieve the
structural coeffi cientsβ0 and β1 if you applied OLS to this reduced form.

3. Show that application of OLS to (1) generates a biased estimate of β1.

4. What other method would you recommend to get an unbiased and best
estimator for this model? Write steps to be followed until you get the
structural coeffi cients β0 and β1.

5. Write a short note on how this model could be used to make a historical
simulation of consumption and income series.

6. Estimate a simple macromodel using data in macro08_uk.csv

Empirical Procedure in PcGive

• construct data set in macroeocnomic variables ( Y, C, I , G, T , X, M,
MS, i, inflation, wage rate, exchange rate etc)

• save data in *.csv format; e.g. macro.csv

• Start GiveWin and PcGive and open data file

• choose multiple equation dynamic modelling

• determine endogenous and exogenous variables and run simultaneous equa-
tion using 3SLS or FIML

• Study coeffi cients

• Change policy variables and construct few scenarios

Q2. Consider a market model for a particular product.
Demand: Qdt = α0 + α1Pt + α2It + u1,t (1)
Supply: Qst = β0 + β1Pt + β2Pt−1 + u2,t (2)
Here Qdt is quantity demanded and Q

s
t is quantity supplied, Pt is the price

of commodity,Pt−1 is price lagged by one period, It is income of an individual,
u1,t and u2,t are independently and identically distributed (iid) error terms with
a zero mean and a constant variance.Qt and Pt are endogenous variables and
Pt−1and It are exogenous variables α0,α1,α2,and β0,β1,β2are six parameters
defining the system.
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1. How can simultaneity bias occur if one tries to apply OLS to each of the
above equations.

2. Use rank and order conditions to judge whether each of these two equations
are over-, under- or exactly identified.

3. Write down the reduced form for this system.

4. How would you estimate the coeffi cients of the reduced form equations?
Write down the estimator.

5. If equations are identified explain how you may retrieve the structural
parameters α0,α1,α2,and β0,β1,β2, and from the coeffi cients of the reduced
form equations.

14.9 Tutorial 10 (page 101)

Q1. Consider a panel data regression model aimed to measure the impacts of
FDI on economic growth as following:

yi,t = αi+β1yi,t−1+β2Fi,t+β3Ti,t+β4Ii,t−1+ei,t ei,t ∼ IID
(
0, σ2e

)
(578)

where yi,t is the growth rate Fi,t FDI ratio to GDP, Ti,t is the ratio of tax rev-
enue, Ii,t−1 is the ratio of investment. Use data in panel_growth_inflow_outflow.csv
to estimate this model using panel package in PcGive. Interprete your results.

Q2. Consider the cross-regional variation of expenditure on food in the UK.
For simplicity, it is assumed that food expenditure depends only on wage and
salary income in each region.

1. Formulate a model relating expenditure on food (F) and income (Y) that
takes account of region specific effects. Note that the equations for each re-
gion are independent but that there is contemporaneous correlation among
the error terms across the regions. State the major assumptions of the
model.

2. Represent the model in terms of a system of stacked regressions that takes
account of both individual and system specific effects. What is the struc-
ture of the covariance matrix of the error terms in this system?

3. Show how the SURE or GLS estimator system can be applied to esti-
mate the structural parameters of this model. Write out their covariance
structure in the matrix form.

4. This model has been estimated using a pooled time series and cross section
data set (with the sample size of T=14 and N=13) available from the web
site of the Offi ce of the National Statistics (food_exp_UK_regional_panel.csv:
hhttp://www.statistics.gov.uk). The estimated coeffi cients, by region, are
given in the following table. Analyse and interpret these results.
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Q3. Construct a panel data on growth rate of per capita income, investment
ratio, population growth, export, imports, exchange rate, inflation rate for any
five country of your choice. Suggest a panel growth model to be estimated.
(datafile Panel_growth_Exchangerate(1).csv).

Action:
Construct data on growth rate of per capita GDP, exchange rate and inflation

rates from the www.imf.org for year 1980 to 2009 for China, India, South Africa,
UK, USA and Brazil from the World Economic Outlook Database. Test whether
inflation and the exchange rate are the significant variables in explaining the
growth rate of per capita output (in PPP) in these economies using random or
fixed effect models. (See percap6.csv)

Q4. Study house price and related variables for economic regions in UK
contained in HousePrice_regional.csv file. Do SURE estimation and interprete
the results. [In in PcGive use 3SLS routine in simultaneous equation model].
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