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Abstract

Econometric techniques are changing very rapidly along with developments in economic the-
ories. Advanced level of economic analysis requires training in advanced econometrics. Most
important theoretical developments in econometrics including fundamental techniques required
for specifying, estimating, testing and applying sophisticated time series, cross section or panel
data models are presented here for advanced students in econometrics. Solving original prob-
lems, reading and reviewing articles to relate findings in refereed journals should complement
exercises in this workbook to achieve the learning objectives.
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1 L1: Basics of Linear Regression Model

Theories and application of econometrics have evolved over time to analyse econmic relations with
cross section,time series and panel data modelling techniques. Classical and Bayesian methods
have been applied widely in estimating parameters in single and multiple equation models with the
OLS, maximum likelihood, GMM and more recently with non-parametric analysis. While tests for
unit roots, Granger causality, cointegration, ARMA, ARIMA and VAR models are essential for time
series analysis, cross section models require probit, logit, tobit estimations, duration analysis. Single
equation or system methods for static and dynamic panel are becoming increasingly relevant in all
areas of economics. BVAR models are becoming more popular in DSGE modelling in recent years.
Contributions of prominent economists including Fisher (1923), Durbin and Watson (1950), Klein
(1956), McFadden (1963), Box and Jenkins (1976), Heckman (1979), Sims (1980), Hansen (1982),
Doan, Litterman and Sims (1984), Phillips (1987), Engle and Granger (1987), Lancaster (1990),
Pesaran and Smith (1995), Hendry (1997), Smith (1997), Wooldridge (2002), Chesher (2010) and
others made this development possible. Scope of economtrics is expanding very rapidly every year.

• Econometric theory has evolved over time from contributions of many eminent economists in-
cluding the econometrics methods and cross section analysis contained in Fisher (1923),
Cochrane and Orcutt (1949), Durbin and Watson ( 1950), Theil (1956), Klein and Naka-
mura (1962),McFadden (1963), Farrar and Glauber (1967), Glejser (1969),Ramsey (1969),
Rao (1972), Kadane and Anderson (1977), Heckman(1978), Hausman (1978), Blomquist
(1980), Hansen (1982) Godfreyand Wickens (1981), Chesher (1984), Zellner (1985), Davidson
and Mackinnon (1985),Kiviet (1986),Smith (1987, 1997), White (1987), Wooldridge (1994),
Staigler and Stock (1997), Blundell and Preston (1998), Hall (2000), Chesher (2010).

• time sereis techniques illustrated in Klein (1956), Box and Jenkins (1976), Hamil-
ton(1994), Harvey (1976), Dickey and Fuller (1979), Hendry(1995), Engle (1982), Engle and
Granger (1987), Phillips (1987), Stock and Watson (2002), Nelson and Plosser (1982), Pagan
and Wickens (1989), Pyndick and Rubinfeld (1998), Wooldridge (1994) , Enders (2010) Sims
(1980), Beveridge and Nelson (1981), Pesaran (1982) Johansen (1988), Baltagi Badi H. (1992),
Pesaran and Smith (1995), Garratt, Lee, Phillips (2003) Pesaran and Shin (2003), Hendry
(1997), Mills , Pelloni, Zervoyianni (1995), Nelson (1987), Stock and Watson (2001).

• Bayesian methods developed in Lancaster(1979), Lancaster and Chesher (1983), Im-
bens and Lancaster (1994), Bauwens, Lubrano and Richard (1999), Koop (2003), Anscombe
(1961),Pratt (1965), Doan, Litterman and Sims (1984), Berger (1990), Chib (1993), Rust
(1996) Phillips and Ploberger (1996) Bauwens, Lubrano and Richard (1999) Judge,Griffi ths,
Hill, Lutkepohl and Lee (1990) Geweke and Keane (2000), Chib, Nardarib and Shephard
(2002), Heckelei and Mittelhammer (2003) Canova and Ciccarelli (2004),George, Sun and Ni
(2008), Levine, Pearlman, Perendia and Yang (2012).

• panel date techniques improved by Wallace and Hussain (1969), Balestra and Nerlove
(1966), Hausman (1978), Chamberlain (1984), Arulampalam and Booth(1998), Blundell and
Smith (1989),Chesher (1984) , Hansen (1982), Hausman (1978), Heckman (1979), Im, Pesaran
and Shin (2003), Imbens and Lancaster (1994), Keifer (1988), Kao (1999), Kwaitkowski,
Phillips, Schmidt and Shin (1992), Larsson, Lyhagen and Lothgren (2001) Levin, Lin and
Chu (2002), Pedroni (1999), Pesaran and Smith (1995) Phillips (1987), McCoskey and Kao
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(1999), Johansen Soren (1988), Johansen Soren (1988) Staigler Stock (1997), Lancaster (1979)
Lancaster and Chesher (1983) Zellner A. (1985), Weidmeijer (2005);

• macroeconometric models developed by Hicks (1937), Stone (1942-43), Meade(1951,
1956), Meade et al. (1978), Mirrlees (1971), Pissarides (1984), Mirrlees et al. (2011), Good-
hart (1989), Hendry (1997), Blake, Weale (1998), Holly and Weale (2000), King (2004), Bean
(1998, 2009), Hendry (1997), Gilhooly, Weale and Wieladek (2012) Wilson (1949), Ash and
Smyth (1973), Desai and Weber (1988) and Wallis (1989) were early studies for the UK.
Contributions by Mundell (1962), Fleming (1962), Fry and Lilien (1986), Cook, Holly and
Turner (2000), Greensdale, Hall, Henry and Nixon (2000), Mellis and Whittaker (2000), Leith
and Wren-Lewis (2000), Fisher and Whitley (2000); Blake, Weale and Young (2000) in Holly
and Weale (2000); Church, Mitchel, Sault and Wallis (1997), Bean (1998, 2009), Hendry and
Clement (2000) Garratt, Lee,Pesaran and Shin (2003), Berentsen, Camera, Waller (2007),
Benhabib and Eusepi (2005), Ellison and Pearlman (2011), Driscoll et al. (1983); Den Haan
and Marcet (1990),Price (1997), Holland and Scott (1998), Gai, Kapadia, Millard and Perez
(2008), Liu and Mumtaz (2011);

• Similarly there are number of excellent texts and eBooks Baltagi (1995), Davidson and MacK-
innon(2004) ,Greene (2000), Hsiao (1993) Lancaster (1990), Ruud (2000) Verbeek (2004)
Wooldridge (2002) (see detailed list at the end). This section will reviews basic concepts in
econometrics. It will review underlying principles of ordinary least square estimators and
properties and potential problems and remedial measures to solve above problems. Each
concept is supported by examples and dataset that accompany it. Students are expected to
look into archives of standard journals to update by replicating results in articles as far as
practicable.

• Econometrica (www.econometricsociety.org)

• Econometric Journal (http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1368-423X)

• Journal of Econometrics (http://www.sciencedirect.com/science/journal/03044076)

• Journal of applied econometrics (http://qed.econ.queensu.ca/jae/)

• Phillips P.C.B. (2003) Laws and Limits of Econometrics, Economic Journal, 113, 486, C26-C52

• Hendry, D. F. (1980). ’Econometrics: alchemy or science?’, Economica, 47, 387-406. "The
three golden rules of econometrics are test, test and test".

A number of software including Excel, OX-GiveWin/PcGive/STAMP, Eviews, Shazam, microfit,
JMulti, RATS, LIMDEP, GAUSS, STATA/SPSS, Dynare, GAMS/MPSGE are used to make esti-
mations. More details can be found at:

• http://www.feweb.vu.nl/econometriclinks/

• https://www.aeaweb.org/rfe/

Consider a linear regression model:

Yi = β1 + β2Xi + εi i = 1...N (1)
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• Errors represent all missing elements from this relationship; plus and minuses cancel out
resulting in zero mean. Errors are random therefore has constant variance.

εi ∼ N
(
0, σ2

)
(2)

• Normal equations of above regression∑
Yi = β̂1N + β̂2

∑
Xi (3)∑

YiXi = β̂1

∑
Xi + β̂2

∑
X2
i (4)

Each dot in the above graph represents an observation. Some observations lie above the least
square Ŷi line and other observations lie below it. These errors represent all sorts of elements
missing from this relationship. Some of them might be due to the missing variables, others might
be due to measurement errors, still other may be from the mis-specification of the relationship. The
least square line is the line best fits the data set. Differences between each observation and the line
Ŷi is represented by error terms ei. As some of them are above the line and others below the line,
positive errors cancel out with the negative errors. Note that the least square line passes through
the average values of variables X and Y .

1.1 Ordinary Least Square (OLS)

1.1.1 Assumptions

List the OLS assumptions on error terms ei .
Normality of Errors
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E (εi) = 0 (5)

Homoskedasticity

var (εi) = σ2 for ∀ i (6)

No autocorrelation

covar (εiεj) = 0 (7)

Independence of errors from dependent variables

covar (εiXi) = 0 (8)

1.1.2 Derivation of normal equations for the OLS estimators

Choose β̂1 and β̂2 to minimise sum of square errors:

Min S
β̂1β̂2

=
∑

ε2
i =

∑(
Yi − β̂1 − β̂2X1,i

)2

(9)

First order conditions
∂S

∂β̂1

= 0;
∂S

∂β̂2

= 0; (10)

∑(
Yi − β̂1 − β̂2Xi

)
(−1) = 0 (11)
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∑(
Yi − β̂1 − β̂2Xi

)
(−Xi) = 0 (12)∑

Yi = β̂1N + β̂2

∑
Xi (13)∑

YiXi = β̂1

∑
Xi + β̂2

∑
X2
i (14)

There are two unknown β̂1 and β̂2 and two equations. One way to find β̂1and β̂2 is to use
substitution and reduced form method.
Slope estimator by the reduced form equation method; Multiply the second equation by N and

first by
∑
Xi ∑

Xi

∑
Yi = β̂1N

∑
Xi + β̂2

(∑
Xi

)2

(15)

N
∑

YiXi = β̂1N
∑

Xi + β̂2N
∑

X2
i (16)

By subtraction this reduces to∑
Xi

∑
Yi −N

∑
YiXi = β̂2

(∑
Xi

)2

− β̂2

∑
X2
i (17)

β̂2 =

∑
Xi

∑
Yi −N

∑
YiXi

(
∑
Xi)

2 −N
∑
X2
i

=

∑
xiyi∑
x2
i

(18)

This is the OLS Estimator of β̂2, the slope parameter.
Intercept estimator by the reduced form equation method; When β̂2 is known it is easy to find

β̂1 by averaging out the regression Yi = β1 + β2Xi + εi as:

β̂1 = Y − β̂2X (19)

Proof:∑
Xi
∑
Yi−N

∑
YiXi

(
∑
Xi)

2−N
∑
X2
i

=
∑
xiyi∑
x2
i

;

LHS =

∑
Xi

∑
Yi −N

∑
YiXi

(
∑
Xi)

2 −N
∑
X2
i

=
NXNY −N

∑
YiXi(

NX
)2 −N∑X2

i

=
NXNY −N

∑
YiXi(

NX
)2 −N∑X2

i

=
NXY −

∑
YiXi

NX
2 −

∑
X2
i

=

∑
YiXi − NXY∑
X2
i − NX

2

=

(∑
Yi - Y

) (∑
Xi - X

)(∑
Xi - X

)2 =

∑
xiyi∑
x2
i

= RHS (20)
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1.1.3 Normal equations in matrix form

Y = XB + e (21)

∑
Yi = β̂1N + β̂2

∑
Xi (22)∑

YiXi = β̂1

∑
Xi + β̂2

∑
X2
i (23)

[ ∑
Yi∑
YiXi

]
=

[
N

∑
Xi∑

Xi

∑
X2
i

][
β̂1

β̂2

]
; β̂ = (X ′X)

−1
X ′Y (24)

1.1.4 Estimators: [
β̂1

β̂2

]
=

[
N

∑
Xi∑

Xi

∑
X2
i

]−1 [ ∑
Yi∑
YiXi

]
(25)

1.1.5 Data table: an example

DATA
y Contant x
4 1 5
6 1 8
7 1 10
8 1 12
11 1 14
15 1 17
18 1 20
22 1 25

=⇒



Y
4
6
7
8
11
15
18
22


=



X
1 5
1 8
1 10
1 12
1 14
1 17
1 20
1 25



(
β̂1

β̂2

)
+



e
e1

e2

e3

e4

e5

e6

e7

e8


Derivation of OLS Estimators

Matrix multiplication:
[
(X′X) =

N
∑
Xi∑

Xi

∑
X2
i

]

(X ′X) =

[
1 1 1 1 1 1 1 1
5 8 10 12 14 17 20 25

]
2×8



1 5
1 8
1 10
1 12
1 14
1 17
1 20
1 25


8×2

=

[
8 111

111 1843

]
2×2

(26)
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OLS in Matrix

(X ′Y ) =

[
1 1 1 1 1 1 1 1
5 8 10 12 14 17 20 25

]
2×8



4
6
7
8
11
15
18
22


8×1

=

[
91

1553

]
2×1

(27)

1.1.6 Summary of data[ ∑
Yi = 91∑

YiXi = 1553

]
=

[
N = 8

∑
Xi = 111∑

Xi = 111
∑
X2
i = 1843

] [
β̂1

β̂2

]
(28)

[
β̂1

β̂2

]
=

[
8 111

111 1843

]−1 [
91

1553

]
(29)

Solving by the Cramer Rule
Determinant (cross-product)

|X ′X| =
∣∣∣∣ 8 111

111 1843

∣∣∣∣ = (8× 1843)− (111× 111) = 2423 (30)

1.1.7 Estimates

β̂1 =
1

2423

∣∣∣∣ 91 111
1553 1843

∣∣∣∣ =
167713− 172383

2423
=
−4670

2423
= −1.9274 (31)

β̂2 =
1

2423

∣∣∣∣ 8 91
111 1553

∣∣∣∣ =
12424− 10101

2423
=

2323

2423
= 0.9587 (32)

1.1.8 Predicted Y

Ŷi = β̂1 + β̂2Xi =⇒ Ŷi = −1.9274 + 0.9587Xi (33)

Both slope and intercepts make economic sense. In this sample expenditure on foods is deter-
mined by weekly income of an individual, people spend 95.6% percent of their weekly income in
food expenditure. People who do not have any income receive a income subsidy of 1.93 pence per
week.

• Mean prediction

16



We can use equation this estimate to find the predicted values for each observation on . These
are reported as YPRED in the above table. If the weekly income is 40 predicted food expenditure
will be 36.42.

Ŷi = −1.9274 + 0.9587Xi = −1.9274 + 0.9587 (40) = 36.42
Error terms are also estimated using the fact that
êi = Yi − (−1.9274)− 0.9587Xi = Yi + 1.9274− 0.9587Xi

Ŷ1 = −1.9274 + 0.9587 (5) = 2.866 ( 3 4 )

Ŷ2 = −1.9274 + 0.9587 (8) = 5.742 ( 3 5 )

Ŷ3 = −1.9274 + 0.9587 (10) = 7.660 ( 3 6 )

Ŷ4 = −1.9274 + 0.9587 (12) = 9.577 ( 3 7 )

Ŷ5 = −1.9274 + 0.9587 (14) = 11.495 ( 3 8 )

Ŷ6 = −1.9274 + 0.9587 (17) = 14.371 ( 3 9 )

Ŷ7 = −1.9274 + 0.9587 (20) = 17.247 ( 4 0 )

Ŷ8 = −1.9274 + 0.9587 (25) = 22.041 ( 4 1 )

1.1.9 Estimated errors

êi = Yi − β̂1 − β̂2Xi = Yi − (−1.9274 + 0.9587Xi) (42)

ê1 = 4 + 1.9274 − 0.9587 (5) = 1.134 ( 4 3 )

ê2 = 6 + 1.9274 − 0.9587 (8) = 0.258 ( 4 4 )

ê3 = 7 + 1.9274 − 0.9587 (10) = −0.660 ( 4 5 )

ê4 = 8 + 1.9274 − 0.9587 (12) = −1.580 ( 4 6 )

ê5 = 11 + 1.9274 − 0.9587 (14) = −0.495 ( 4 7 )

ê6 = 15 + 1.9274 − 0.9587 (17) = 0.629 ( 4 8 )

ê7 = 18 + 1.9274 − 0.9587 (20) = 0.753 ( 4 9 )

ê8 = 22 + 1.9274 − 0.9587 (25) = 0.000 ( 5 0 )

• Use of regression estimates to calculate the elasticities

The definition of elasticity of food expenditure on income is given by

η =
∂Y
Y
∂X
X

= 0.0.9587× 13.857

11.375
= 1.1683 (51)

This suggests that the expenditure on food is elastic around the mean. There will be 17 pence
more expenditure to every £ 1 rise in weekly income.

17



var ( Yi) =
∑[

Yi − Y i
]2

=
∑[

Ŷi − Y i + êi

]2
=

∑(
Ŷi − Y i

)2

+
∑

ê2
i + 2

∑(
Ŷi − Y i

)
êi

=
∑(

Ŷi − Y i
)2

+
∑

ê2
i (52)

TSS = RSS + ESS (53)

For N observations and K explanatory variables
[Total variation] = [Explained variation] + [Residual variation]
df = N-1 K-1 T-K

1.1.10 Variances

∑
ê2
i = ê2

1 + ê2
2 + ê2

3 + ê2
4 + ê2

5 + ê2
6 + ê2

7 + ê2
8

=

[
(1.134)

2
+ (0.258)

2
+ (−0.660)

2
+ (−1.580)

2
+ (−0.495)

2

+ (0.629)
2

+ (0.753)
2

+ (0.000)
2

]
= 5.484

var ( êi) = E
(
ε̂2
i

)
=

∑
ê2
i

N − k = σ̂2 (54)

Where k = number of parameters in the regression; N = number of observations∑
ê2
i

N − k =
5.4841

8− 2
= 0.914 (55)

∑
y2
i =

∑(
Yi − Y

)2
=
∑

Y 2
i −NY

2
= 1319− 8× 11.3752 = 283.875 (56)

∑
x2
i =

∑(
Xi −X

)2
=
∑

X2
i −NX

2
= 1843− 8× 13.8752 = 302.875 (57)

1.1.11 R-square and F statistics∑
ŷ2
i = β̂

2

2

∑
x2
i = 0.95872 × 302.875 = 278.390 (58)

Coeffi cient of determination (line of best fit)
Coeffi cient of determination is a measure in the regression analysis that shows the explana-

tory power of independent variables (regressors) in explaining the variation on dependent variable
(regressand). The total variation on the dependent variable can be decomposed as following:

R2 =

∑
ŷ2
i∑
y2
i

=
278.390

283.875
= 0.981 (59)

For N observations and K explanatory variables
[Total variation] = [Explained variation] + [Residual variation]
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df = N-1 K-1 T-K

F =
RSS/(K − 1)

ESS/(N − k)
=

278.390
1

5.4841
6

=
278.390

0.9140
= 304.579 (60)

R
2

= 1− (1−R2)
N − 1

N −K = 1− (1− 0.981)
8− 1

8− 2
= 0.978 (61)

R2 > R
2

Prove that two forms R
2

= 1− (1−R2) N−1
N−K or R

2
= R2 N−1

N−K −
K−1
N−K are equivalent.

Relation between Rsquare and Rbarsquare Prove that two forms R
2

= 1 − (1 − R2) N−1
N−K

or R
2

= R2 N−1
N−K −

K−1
N−K are equivalent

Proof

LHS = R
2

= 1− (1−R2)
N − 1

N −K = R2 +
(
1−R2

)
−
(
1−R2

) N − 1

N −K

= R2 −
(
1−R2

) [ N − 1

N −K − 1

]
= R2 +

(
1−R2

) [N − 1−N +K

N −K

]
= R2 −

(
1−R2

) [ K − 1

N −K

]
= R2 +R2 K − 1

N −K −
K − 1

N −K

= R2

(
1 +

K − 1

N −K

)
− K − 1

N −K

= R2

(
N −K +K − 1

N −K

)
− K − 1

N −K = R2

(
N − 1

N −K

)
− K − 1

N −K
RHS; QED (62)

1.1.12 Variance, standard error and t-value of slope parameter

V ar
(
β̂2

)
= var

[ ∑(
Xi −X

)∑(
Xi −X

)2
]
var (yi) =

1∑
x2
i

σ̂2 (63)

var
(
β̂2

)
=

0.914

302.875
= 0.0030 (64)

SE
(
β̂2

)
=
√

0.0030 = 0.0548 (65)

tβ̂2
=

β̂2 − β2

SE
(
β̂2

) =
0.9587− 0

0.0548
= 17.495 (66)
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Variance, Standard Error and T value of Intercept Parameter

var
(
β̂1

)
=

[
1

N
+

X
2∑
x2
i

]
σ̂2 (67)

var
(
β̂1

)
=

[
1

8
+

13.8752

302.875

]
× 0.914 (68)

var
(
β̂1

)
= [0.125 + 0.634]× 0.914 = 0.6937 (69)

SE
(
β̂1

)
=
√

0.6937 = 0.833 (70)

tβ̂1
=

β̂1 − β1

SE
(
β̂1

) =
−1.9774− 0

0.833
= −2.374 (71)

For a review of matrix algebra see the appendix.

1.1.13 Exercise 1

Regress demand for a product (Yi) on its own prices (Xi) as following

Yi = β1 + β2Xi + ei i = 1 ...N

where ei is a randomly distributed error term for observation i.

1. (a) List the OLS assumptions on error terms ei .

(b) Derive the normal equations and the OLS estimators of β̂1 and β̂2.

(c) A shopkeeper observed the data quantities and prices as given in Table 2 below. What
are the OLS estimates of β̂1 and β̂2 implied by these data? Is this a normal good?

(d) What are the variances of ei and Yi?

(e) What are R2 and R
2
?

(f) Determine the overall significance of this model by F -test at 5 percent level of significance.
[Critical value of F for df(1,4) =7.71]

(g) What are the variances and standard errors of β̂1 and β̂2?

(h) Compute t-statistics and determine whether parameters β̂1 and β̂2 are statistically sig-
nificant at 5 percent level of significance.

i. [Critical value of t for five percent significance for 4 degrees of freedom is 2.776
(i.e tcrit,0.05,4 = 2.777)]

(i) What is the prediction of Y when X is 0.5?

(j) What is the elasticity of demand evaluated at the mean values of Yi and Xi?
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Table 1: Data on Quantities and Prices
Quantities (Yi) 5 10 15 20 25 30
Prices (Xi) 10 8 6 4 2 1

(k) Reformulate the model to include price of a substitute product in the model. What will
happen to this estimation if these two prices are exactly correlated?

(l) How would you decide whether demand for this product varies by gender?

Hints:
[∑

Xi = 31
∑
X2
i = 221

∑
Y 2
i = 2275;

∑
Yi = 105

∑
YiXi = 380

]
;

(X ′X)
−1

=

[
0.605 −0.085
−0.085 0.0164

]
Test whether work-hours depend on weekly or annual pay among UK counties using data

Unempl_pay-couties.csv.

1.2 Statistical inference

What is the statistical inference?

• Inference is statement about population based on sample information.

• Economic theory provides these relations. Statistical inference is about empirically testing
whether those relations are true based on available cross section, time series or panel data.

• Hypotheses are set up according to the economic theory, estimates of parameters are esti-
mated using OLS (similar other) estimators.

• Consider a linear regression

Yi = β1 + β2Xi + εi i = 1 ...N (72)

Here the true values of β1 and β2 are unknown parameters. Their values can be estimated
using the OLS technique. β̂1 and β̂2 are such estimates. Validity of these estimates are tested
using statistical distributions. Two most important tests for a linear regression are

1. Significance of an individual coeffi cient: t-test

2. Overall significance of the model: F -test

3. Overall fit of the data to the model is indicated by R2. (χ2, Durbin-Watson, Unit root
tests to be discussed later).

The ordinate at z is given by the standard normal density function

f (z) =
1√
2π
e−z

2/2.

The probabilities and areas are given by the standard normal distribution function

F (z) =
1√
2π

∫ z

−∞
e−t

2/2 dt.
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1.2.1 Hypothesis

Standard hypothesis about individual coeffi cients (t-test)
Null hypothesis: value of intercept and slope coeffi cients are zero.

H0 : β1 = 0
H0 : β2 = 0

Alternative hypotheses: Intercept and slope coeffi cients are non -zero.

HA : β1 6= 0
HA : β2 6= 0

Parameter β2 is slope,
∂Y
∂X ; it measures how much Y will change when X changes by one unit.

Parameter β1 is intercept. It shows amount of Y when X is zero.
Economic theory: a normal demand function should have β1 > 0 and β2 < 0; a normal supply

function should have β1 6= 0 β2 > 0. This is the hypothesis to be tested empirically.
Standard hypothesis about the validity of the model (F-test)
Null hypothesis: both intercept and slope coeffi cients are zero; model is meaningless and irrele-

vant:

H0 : β1 = β2 = 0

Alternative hypotheses: at least one of the parameters is non -zero, model is relevant:

HA :either β1 6= 0 or β2 6= 0 or both β1 6= 0, β2 6= 0
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As is often seen, some of the coeffi cients in a regression model may be insignificant but F-
statistics is significant and model is valid.

An Example of regression on deviations from the mean

Table 2: Data Table:Price and Quantity
X 1 2 3 4 5 6
Y 6 3 4 3 2 1

What are the estimates of β̂1 and β̂2?
Here

∑
Xi = 21 ;

∑
Yi = 19 ;

∑
YiXi =52

∑
X2
i =91

∑
Y 2
i =75 Y = 3.17 X = 3.5

OLS estimators

β̂2 =

∑
yixi∑
x2
i

; β̂1 = Y − β̂2X (73)

1.2.2 Normal equations and its deviation form

• Normal equations of above regression∑
Yi = β̂1N + β̂2

∑
Xi (74)∑

YiXi = β̂1

∑
Xi + β̂2

∑
X2
i (75)
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Define deviations as
xi =

(
Xi −X

)
(76)

yi = (Yi − y) (77)

∑(
Xi −X

)
= 0;

∑
(Yi − y) = 0 (78)

Normal Equations and Deviation Form
Putting these in the Normal equations∑

(Yi − y) = β̂1N + β̂2

∑(
Xi −X

)
(79)∑(

Xi −X
)

(Yi − y) = β̂1

∑(
Xi −X

)
+ β̂2

∑(
Xi −X

)2
(80)

Terms
∑(

Xi −X
)

= 0;
∑

(Yi − y) = 0 drop out
∑(

Xi −X
)

(Yi − y) =
∑
xiyi

and
∑(

Xi −X
)2

=
∑
x2
i

This is a regression through origin. Therefore estimator of slope ceoffi cient with deviation

β̂2 =

∑
xiyi∑
x2
i

(81)

β̂1 = Y − β̂2X (82)

• The reliability of β̂2 and β̂1 depends on their variances; t-test is used to determine their
significance.

1.2.3 Deviations from the mean

Useful short-cuts ( though matrix method is more accurate, sometimes quick short
cuts like this can be handy)∑

x2
i =

∑(
Xi −X

)2
=
∑

X2
i −NX

2
= 91− 6(3.5)2 = 17.5 (83)

∑
y2
i =

∑(
Yi − Y

)2
=
∑

Y 2
i −NY

2
= 91− 6(3.17)2 = 14.7 (84)

∑
yixi =

∑(
Yi − Y

)∑(
Xi −X

)
=

∑
YiXi − Y

∑
Xi −X

∑
Yi +NYX =∑

YiXi − Y NX −XNY +NYX

=
∑

YiXi − Y NX = 52− (3.5) (6) (3.17) = −14.57 (85)
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1.2.4 OLS estimates by the deviation method

Estimate of the slope coeffi cient:

β̂2 =

∑
yixi∑
x2
i

=
−14.57

17.5
= −0.833 (86)

This is negative as expected.
Estimate of the intercept coeffi cient.

β̂1 = Y − β̂2X = 3.17− (−0.833) (3.5) = 6.09 (87)

It is positive as expected.
Thus the regression line fitted from the data

Ŷi = β̂1 + β̂2Xi = 6.09− 0.833Xi (88)

How reliable is this line? Answer to this should be based on the analysis of variance and
statistical tests.

1.2.5 Variation of Y, predicted Y and error

Total variation to be explained:∑
y2
i =

∑(
Yi − Y

)2
=
∑

Y 2
i −NY

2
= 75− 6(3.17)2 = 14.707 (89)

Variation explained by regression:

∑
ŷ2
i =

∑
(β̂2xi)

2 = β̂
2

2

∑
xi

2 =

(∑
yixi∑
x2
i

)2∑
xi

2

=
(
∑
yixi)∑
x2
i

2

=
(−14.57)

2

17.5
=

212.28

17.5
= 12.143 (90)

Note that in deviation form:
∑

ŷi =
∑

β̂2xi.
Unexplained variation (accounted by various errors):∑

ê2
i =

∑
y2
i −

∑
ŷ2
i = 14.707− 12.143 = 2.564 (91)

1.2.6 Measure of Fit: R-square and Rbar-square

The measure of fit R2 is ratio of total variation explained by regression
(∑

ŷ2
i

)
to total variation

that need to be explained
(∑

y2
i

)
R2 =

∑
ŷ2
i∑
y2
i

=
12.143

14.707
= 0.826 (92)

This regression model explains about 83 percent of variation in y.
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R
2

= 1− (1−R2)
N − 1

N −K = 1− (1− 0.826)
5

4
= 0.78 (93)

Variance of error indicates the unexplained variation

var (êi ) = σ̂2 =

∑
ê2
i

N −K =
2.564

4
= 0.641 (94)

var (yi ) =

∑
y2
i

N − 1
=

14.7

5
= 2.94 (95)

1.2.7 Variance of parameters

Reliability of estimated parameters depends on their variances, standard errors and t-values

var
(
β̂2

)
=

1∑
xi2

σ̂2 =
0.641

17.5
= 0.037 (96)

var
(
β̂1

)
=

[
1

N
+

X
2∑
xi2

]
σ̂2 =

[
1

6
+

3.52

17.5

]
0.641 = (0.867) 0.641 = 0.556 (97)

Prove these formula (see later on).
Standard errors

SE
(
β̂2

)
=

√
var

(
β̂2

)
=
√

0.037 = 0.192 (98)

SE
(
β̂1

)
=

√
var

(
β̂1

)
=
√

0.556 = 0.746 (99)
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1.2.8 t-test

Theoretical value of T distribution is derived by dividing mean by standard error. Mean is a
normally distributed variable and the standard error χ2 distribution. Originally t-distribution was
established by W.S. Gossett of Guiness Brewery in 1919.
One- and Two-Tailed Tests
If the area in only one tail of a curve is used in testing a statistical hypothesis, the test is called

a one-tailed test; if the area of both tails are used, the test is called two-tailed.
The decision as to whether a one-tailed or a two-tailed test is to be used depends on the

alternative hypothesis.

1.2.9 Test of significance of parameters (t-test)

t
(
β̂2

)
=

β̂2

SE
(
β̂2

) =
−0.833

0.192
= −4.339 (100)

t
(
β̂1

)
=

β̂1

SE
(
β̂1

) =
6.09

0.746
= 8.16 (101)

These calculated t-values need to be compared to t-values from the theoretical t-table.
Decision rule: (one tail test following economic theory)

• Accept H0 : β1 > 0 if t
(
β̂1

)
< tα,df ;

• Reject H0 : β1 > 0 or accept HA : β1 � 0 if t
(
β̂1

)
> tα,df
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• Accept H0 : β2 < 0 if t
(
β̂2

)
< tα,df

• Reject H0 : β2 < 0 or accept HA : β2 � 0 if t
(
β̂2

)
> tα,df

P-value: Probability of test statistics exceeding that of the sample statistics.
Test of significance of parameters (t-test)
Theoretical values of t are given in a t Table. Column of t-table have level of significance (α)

and rows have degrees of freedom.
Here tα,df is t-table value for degrees of freedom (df = n− k) and α level of significance. df =

6-2=4.

Table 3: Relevant t-values (one tail) fron t-Table
(n, α) 0.05 0.025 0.005
1 6.314 12.706 63.657
2 2.920 4.303 9.925
4 2.132 2.776 4.604

t
(
β̂1

)
= 8.16 > tα,df = t0.05,4 = 2.132. Thus the intercept is statistically significant; t

(
β̂2

)
=

|−4.339| > tα,df = t0.05,4 = 2.132. Thus the slope is also statistically significant at 5% and 2.5%
level of significance.

1.2.10 Confidence interval on the slope parameter

A researcher may be interested more in knowing the interval in which the true parameter may lie
than in the point estimte where α is the level of significance or the probability of error such as 1%
or 5%. That means accuracy of the estimate is (1− α) %.

A 95% level confidence interval for β1 and β2 is:

P
[
β̂2 − SE

(
β̂2

)
tα,n < β2 < β̂2 + SE

(
β̂2

)
tα,n

]
= (1− α) (102)

P [−0.833− 0.192 (2.132.) < β2 < −0.833 + 0.192 (2.132.)]

= (1− 0.05) = 0.95 (103)

P [−1.242 < β2 < −0.424] = 0.95 (104)

There is 95 confidence that the true value of slope β2 lies between −0.424 and −1.242.
Confidence interval on the intercept parameter
95 % confidence interval on the slope parameter:

P
[
β̂1 − SE

(
β̂2

)
tα,n < β1 < β̂1 + SE

(
β̂2

)
tα,n

]
= (1− α) (105)

P [6.09− 0.746 (2.132.) < β1 < 6.09 + 0.746 (2.132.)]

= (1− 0.05) = 0.95 (106)
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P [4.500 < β2 < 7.680] = 0.95 (107)

There is 95 confidence that the true value of intercept β1 lies between 4.500 and 7.680.

1.2.11 F-test

F-value is the ratio of sum of squared normally distributed variables (χ2 ) adjusted for relevant
degrees of freedom.

F =
V1/n1

V2/n2
= F (n1, n2) (108)

Where V1 and V2 are variances of numberator and denomenator and n1and n2 are degrees of
freedom of numberator and denomenator.

H0: Variance are the same; HA: Variance are different. Fcrit values are obtained from F-
distribution table. Accept it if FCalc < Fcrit and reject if FCalc > Fcrit

F- is ratio of two χ2 distributed variables with degrees of freedom n2 and n1.

Fcalc =

∑
ŷ2
i

K−1∑
ê2i

N−K

=
12.143

1
2.564

4

=
12.143

0.641
= 18.94 (109)

n1 = degrees of freedom of numerator; n2 =degrees of freedom of denominator; for 5% level of
significance Fn1,n2 = F1,4 = 7.71; Fcalc > F1,4;for 1% level of significance Fn1,n2 = F1,4 = 21.20;
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Table 4: Relevant F-values from the F-Table
1% level of significance 5% level of significance

(n2, n1) 1 2 3 1 2 3
1 4042 4999.5 5403 161.4 199.5 215.7
2 98.50 99.00 99.17 18.51 19.00 19.16
4 21.20 18.00 16.69 7.71 6.94 6.59

Fcalc > F1,4 =⇒imply that this model is statistically significant at 1% as well as at 5% level of
significance. Model is meaningful.
Exercise: Revise data as following and do all above calculations.

Table 5: Data Table:Price and Quantity
X 1 2 3 4 5 6
Y 6 5 4 3 2 1

This should give a line of perfect fit. What does it impy to
∑
ê2
i ?

1.3 Type I and Type II errors

Table 6: Type I and Type II Errors
True False

Accept Correct Decision Type II Error, (β)
Reject Type I Error, (α) Correct Decision

α : level of significance (probability of type I error) β : probability of type II error

• Type II occurs when the Null hypothesis is wrong.

• Power of test: probability of rejecting the null while it is false.

• Power= 1-beta = 1- Prob(type II error)

1.3.1 Prediction and error of prediction

What is the prediction of Y when X is 0.5?

Ŷi = β̂1 + β̂2Xi = 6.09− 0.833 (0.5) = 5.673 (110)

Prediction error

f = Y0 − Ŷ0 = β1 + β2Xi + ε0 − β̂1 − β̂2Xi (111)
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Mean of prediction error

E (f) = E
(
β1 + β2Xi + ε0 − β̂1 − β̂2Xi

)
= 0 (112)

Predictor is ubiased.

1.3.2 t-test for variance of forecast

tf =
Y0 − Ŷ0

SE (f)
∼ tN−2 (113)

Standard error of forecast. Find var (f) .

SE (f) =
√
var (f) (114)

Confidence interval of forecast

Pr

[
−tc ≤

Y0 − Ŷ0

SE (f)
≤ tc

]
= (1− α) (115)

Pr
[
Ŷ0 − tcSE (f) ≤ Y0 ≤ Ŷ0 + tcSE (f)

]
= (1− α) (116)

Variance of Y and error

E (ε̂i)
2

=

∑
ê2
i

N − k = σ̂2 (117)

where N is is number of observations and k is the number of parameters including intercept.

var (Yi) = E
(
Yi − Y

)2
= E

[
β1 + β2Xi + εi − β̂1 − β̂2X

]2
=

[
β1 + β2E (Xi) + E (εi)− E

(
β̂1

)
− E

(
β̂2

)
X
]2

=
[
β1 + β2X + E (εi)− β1 − β2X

]2
=

[
β1 + β2X + E (εi)− β1 − β2X

]2
= [E (εi) ]

2
= σ2 (118)

1.3.3 Variance of slope parameter

β̂2 =

∑
xiyi∑
x2
i

(119)

E
(
β̂2

)
=
∑

wiyi (120)

where

wi =
xi∑
x2
i

=

(
Xi −X

)∑(
Xi −X

)2 (121)

V ar
(
β̂2

)
= var

[ ∑(
Xi −X

)∑(
Xi −X

)2
]
var (yi) =

1∑
x2
i

σ̂2 (122)
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1.3.4 Variance of intercept parameter

β̂1 = Y − β̂2X (123)

var
(
β̂1

)
= var

(
Y − β̂2X

)
= E

[∑
yi

N
−X

∑
xiyi∑
x2
i

]2

= E
∑[

1

N
−X xi∑

x2
i

]2

E
[∑

yi

]2
=

[
N

N2
+X

2∑
w2
i − 2

1

N
X
∑

wi

]
σ̂2 (124)

=

[
1

N
+

X
2∑
x2
i

]
σ̂2 (125)

−2 1
NX

∑
wi = 0 because

∑
wi = 0′

1.3.5 Covariance of parameters (with matrix)

b =

(
β̂1

β̂2

)
= (X ′X)

−1
X ′Y = (X ′X)

−1
X ′ (Xβ + e)

= β + (X ′X)
−1
X ′e (126)

b− β = (X ′X)
−1
X ′e (127)

cov (b− β) = E
[
(X ′X)

−1
X ′ee′X (X ′X)

−1
]

= (X ′X)
−1
σ2 (128)

(X ′X)
−1

=

(
N

∑
Xi∑

Xi

∑
X2
i

)−1

(129)

cov (b− β) = (X ′X)
−1
σ2 =

1

N
∑
X2
i − (

∑
Xi)

2

[ ∑
X2
i −

∑
Xi

−
∑
Xi N

]
(130)

1.3.6 Covariance of parameters (with matrix)

(X ′X)
−1

=

(
N

∑
Xi∑

Xi

∑
X2
i

)−1

(131)

cov (b− β) =

[
var (b1) var (b1, b2)

var (b1, b2) var (b2)

]
=

 (
∑
Xi)

2

N
∑

(Xi−X)
2

−X∑
(Xi−X)

2

−X∑
(Xi−X)

2
1∑

(Xi−X)
2

 (132)
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1.3.7 Variance of forecast (advanced topic)

var (f) = var
(
Ŷ0

)
+ var (ε̂0) (133)

var
(
Ŷ0

)
= σ̂2

[
1

N
+

(
X0 −X

)2∑(
Xi −X

)2
]

(134)

var (f) = σ̂2

[
1

N
+

(
X0 −X

)2∑(
Xi −X

)2
]

+ σ̂2 (135)

var (f) = σ̂2

[
1 +

1

N
+

(
X0 −X

)2∑(
Xi −X

)2
]

(136)

1.3.8 Variance of prediction error

var
(
β̂1

)
=

[
1 +

1

N
+

(x0 − x)
2∑

(x0 − x)
2
i

]
σ̂2 (137)

Proof

Y0 = Ŷ0 + ε̂0 (138)

var (Y0) = var
(
Ŷ0

)
+ var (ε̂0) (139)

var
(
Ŷ0

)
= var

(
β̂1 + β̂2X0

)
= var

(
β̂1

)
+X2

0var
(
β̂2

)
+ 2X0covar

(
β̂1β̂2

)
(140)

1.3.9 Variance of prediction

var
(
Ŷ0

)
=

∑(
Xi −X

)2
N
∑(

Xi −X
)2 σ̂2 +X2

0

∑(
Xi −X

)∑(
Xi −X

)2 σ̂2

+2X0

(
−X 1∑(

Xi −X
)2
)
σ̂2 (141)

add and subtract
N
∑

(Xi−X)
2

N
∑

(Xi−X)
2 σ̂

2

var
(
Ŷ0

)
=

∑(
Xi −X

)2
N
∑(

Xi −X
)2 σ̂2 −

N
∑(

Xi −X
)2

N
∑(

Xi −X
)2 σ̂2 +X2

0

∑(
Xi −X

)∑(
Xi −X

)2 σ̂2

+2X0

(
−X 1∑(

Xi −X
)2
)
σ̂2 +

N
∑(

Xi −X
)2

N
∑(

Xi −X
)2 σ̂2 (142)
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1.3.10 Variance of prediction

Taking common elements out

var
(
Ŷ0

)
= σ̂2


∑

(Xi−X)
2−N

∑
(Xi−X)

2

N
∑

(Xi−X)
2

+
X2

0−2X0X+
∑

(Xi−X)
2∑

(Xi−X)
2

 (143)

var
(
Ŷ0

)
= σ̂2

[ ∑(
Xi −X

)2
N
∑(

Xi −X
)2 +

(
X0 −X

)2∑(
Xi −X

)2
]

(144)

1.3.11 Homework:

One major use of an econometric model is prediction. Suppose that a local supermarket wants you
to estimate a model that determines expenditure on food in terms of income, and to predict food
demand next year. Consider a simple regression model of the following form:

Yt = β1 + β2Xt + εt t = 1...T (145)

where Yt is expenditure on food, Xt is income and εt is independently and identically distributed
random error term with a zero mean and a constant variance.
From the sample information on food expenditure and income contained in “food.csv”file find

estimated values of β1 , β2 and σ
2. You also want to predict the amount of expenditure on food Y0

next year using information on likely income next year, X0 . You may safely assume that as before
ε0 ∼ N(0, σ2).

1. (a) Write down your prediction equation. Give an equation for the mean prediction, E (Y0)
.

(b) What is your prediction of food expenditure if the income is £ 250? How can you compute
your prediction error?

(c) What is the variance of prediction error?

(d) Construct a 95% confidence interval for your prediction. Explain what this interval
means. How would you modify your model if the confidence interval of prediction is very
large?

(e) Give a graphical explanation of your answers in (a)-(d), labelling your diagrams carefully.

1.3.12 Exercise 2

A sport centre has a gym. A hypothetical data set on the monthly charges (X) and number of
people using the gym (Y) are given in the following table with the values of cross products and
square terms

Table 7: Monthy charges and number of customers
Xi 10 8 7 6 3 5 9 12 11 10
Yi 60 75 90 100 150 120 125 100 80 65
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1. (a) Represent X and Y in a Scattered diagram.

(b) Draw horizontal and vertical lines with the mean of X and Y in that diagram.

(c) Draw a line by your hand that best represents all sample observations.

(d) Write a classical linear regression model in which X causes Y.

(e) Write the assumptions of the error terms.

(f) Derive normal equations of the OLS estimator minimising sum of squared errors. Esti-
mate parameters of the model using above information. Use the deviation technique in
your estimation.

(g) What is your prediction of Y when X is 13?

(h) Calculate the sum of variation in Y.

(i) Decompose this total variance into explained and residual components.

(j) Find the coeffi cient of determination or the R-square of this model.

(k) Find the variance and standard error of the slope parameter.

(l) Calculate the t-statistics and determine its level of significance using the T-table.

(m) Construct a 95 percent confidence interval for the slope parameter.

(n) Find the variance and the standard error of the intercept parameter.

1.4 Best, Linear, Unbiasedness of OLS estimators (BLUE)

The Gauss-Markov theorems for a linear regression model
Linearity of slope and intercept parameters:

• Consider a linear regression

Yi = β1 + β2Xi + εi i = 1 ...N (146)

εi ∼ N
(
0, σ2

)
(147)

Intercept and slopes are linear on dependent varibales

β̂2 =

∑
xiyi∑
x2
i

=
∑

wiyi (148)

Where wi = xi∑
x2
i
is a constant.

β̂1 = Y − β̂2X =
∑
yi

N
−X

∑
wiyi (149)

• Thus β̂2 and β̂1 are linear on yi
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1.4.1 Unbiasedness of intercept parameter

β̂1 = Y − β̂2X =

∑
yi

N
−X

∑
wiyi (150)

E
(
β̂1

)
= E

(∑
(β1 + β2Xi + εi)

N

)
− E

(
β̂2X

)
(151)

E
(
β̂1

)
= E

(
Nβ1

N
+
β2

∑
Xi

N
+

∑
εi

N

)
− E

(
β̂2X

)
(152)

E
(
β̂1

)
= β1 + β2X − E

(
β̂2X

)
(153)

(
E
(
β̂1

)
− β1

)
= X

(
β2 − E

(
β̂2

))
(154)

E
(
β̂1

)
= β1 (155)

1.4.2 Unbiasedness of slope parameter

β̂2 =

∑
xiyi∑
x2
i

=
∑

wiyi (156)

E
(
β̂2

)
= E

(∑
wiyi

)
= E

∑
wi (β1 + β2Xi + εi) (157)

E
(
β̂2

)
= β1E

(∑
wi

)
+ β2E

(∑
wixi

)
+ E

(∑
wiεi

)
(158)

E
(
β̂2

)
= β2 (159)

1.4.3 Minimum variance of slope parameter

E
(
β̂2

)
=
∑

wiyi (160)

V ar
(
β̂2

)
= var

[ ∑(
Xi −X

)∑(
Xi −X

)2
]
var (yi) =

1∑
x2
i

σ̂2 (161)

Take b2 any other linear and unbiased estimator. Then need to prove that var(b2) > var(β̂2)

E (b2) =
∑

kiyi ki = wi + ci (162)

E (b2) = E
[∑

ki (β1 + β2Xi + εi)
]

= (163)

E
[ ∑

wi (β1 + β2Xi + εi) +
∑

ci (β1 + β2Xi + εi)
]

(164)
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E (b2) = E
[
β1

∑
wi + β2

∑
wixi +

∑
wiεi + β1

∑
ci + β2

∑
cixi +

∑
ciεi

]
(165)

E (b2) = β2 (166)

Minimum Variance of Slope Parameter (cont.)

E (b2) = β2 (167)

var (b2) = E [b2 − β2]
2

= E
[∑

kiεi

]2
= E

[∑
(wi + ci) εi

]2
(168)

var (b2) =
1∑
x2
i

σ̂2 + σ̂2
∑

c2i = var(β̂2) + σ̂2
∑

c2i (169)

var(b2) > var(β̂2) (170)

QED. Thus the OLS slope parameter is the best, linear and unbiased (BLUE).
Similar proof can be applied for V ar

(
β̂1

)
.

Consistency of OLS Estimator: Large Sample or Assymptotic Property

V ar
(
β̂2

)
=

1∑
x2
i

σ̂2 (171)

V ar
(
β̂2

)
lim N → ∞

=
σ̂2

N∑
x2
i

N

= 0

lim N → ∞

(172)

1.4.4 Covariance between slope and intercept parameters

cov
(
β̂1, β̂2

)
= E

(
β̂1 − E

(
β̂1

))(
β̂2 − E

(
β̂2

))
= E

(
β̂1 − β1

)(
β̂2 − β2

)
= −XE

(
β̂2 − β2

)2

∵
(
E
(
β̂1

)
− β1

)
= X

(
β2 − E

(
β̂2

))
(173)

= −X 1∑
x2
i

σ̂2 (174)

.
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1.4.5 Regression in matrix notations

Let Y is N × 1 vector of dependent variables, X is N × K matrix of explanatory variables, e is
N × 1 vector of independently and identically distributed normal random variable with mean equal
to zero and a constant variance e ∼ N(0, σ2I); β is a K × 1 vector of unknown coeffi cients

Y = βX + e (175)

Objective Objective is to choose β that minimise sum square errors

Min
β

S (β) = e′e = (Y − βX)
′
(Y − βX)

= Y ′Y − Y ′ (βX)− (βX)
′
Y + (βX)

′
(βX) (176)

= Y ′Y − 2βX ′Y + (βX)
′
(βX) (177)

First order condition:

∂S (β)

∂β
= −2X ′Y + 2β̂X ′X = 0 =⇒ β̂ = (X ′X)

−1
X ′Y (178)

(X ′X)
−1

=

(
N

∑
Xi∑

Xi

∑
X2
i

)−1

=
1

N
∑
X2
i − (

∑
Xi)

2

[ ∑
X2
i −

∑
Xi

−
∑
Xi N

]
(179)

(X ′X)
−1

=

 ∑
X2
i

N
∑
X2
i−(

∑
Xi)

2 −
∑
Xi

N
∑
X2
i−(

∑
Xi)

2

−
∑
Xi

N
∑
X2
i−(

∑
Xi)

2
N

N
∑
X2
i−(

∑
Xi)

2

 (180)

β̂ = (X ′X)
−1
X ′Y ;

[
β̂1

β̂2

]
=

 ∑
X2
i

N
∑
X2
i−(

∑
Xi)

2 −
∑
Xi

N
∑
X2
i−(

∑
Xi)

2

−
∑
Xi

N
∑
X2
i−(

∑
Xi)

2
N

N
∑
X2
i−(

∑
Xi)

2

[ ∑
Yi∑
X ′iYi

]
(181)

Derivation of Parameters (with Matrix Inverse)[
β̂1

β̂2

]
=

 ∑
X2
i

∑
Yi−

∑
Xi
∑
X′iYi

N
∑
X2
i−(

∑
Xi)

2

N
∑
X′iYi−

∑
Xi
∑
Yi

N
∑
X2
i−(

∑
Xi)

2

 =

 ∑
Xi
∑
X′iYi−

∑
X2
i

∑
Yi

N
∑
X2
i−(

∑
Xi)

2∑
Xi
∑
Yi−N

∑
X′iYi

N
∑
X2
i−(

∑
Xi)

2

 (182)

Compare to what we had earlier:

β̂2 =

∑
Xi

∑
Yi −N

∑
YiXi

(
∑
Xi)

2 −N
∑
X2
i

=

∑
xiyi∑
x2
i

(183)

ê =
(
Y − β̂X

)
(184)

σ̂2 =

∑
ê2
i

N − k =
e′e

N − k (185)
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∑
ê2
i =

∑
y2
i −

∑
ŷ2
i (186)

∑
ŷ2 =

∑
(xβ)

′
(βx) x = X −X (187)

∑
ŷ2
i =

∑
(β̂2xi)

2 = β̂
2

2

∑
xi

2 (188)

R2 =

∑
ŷ2
i∑
y2
i

and Fcalc =

∑
ŷ2
i

K−1∑
ê2i

N−K

; Fcalc =
R2

K − 1

N −K
(1−R2)

(189)

1.4.6 Variance in matrix notation

Yi = β0 + β1X1,i + β2X2,i + εi

Y = Ŷ + e = β̂X + e (190)

V ar(Y ) =
∑

y2
i = Y ′Y −NY 2

(191)

When there are two explantory variables in deviation from the mean form:

ŷ = β̂1x1 + β̂1x2 (192)

∑
ŷ2 =

(
β̂1

∑
x1 + β̂2

∑
x2

)2

= β̂
2

1

∑
x2

1 + β̂1β̂2

∑
x1x2 + β̂1β̂2

∑
x1x2 + β̂

2

2

∑
x2

2

= β̂1

(
β̂1

∑
x2

1 + β̂2

∑
x1x2

)
+ β̂2

(
β̂1

∑
x1x2 + β̂2

∑
x2

1

)
= β̂1

∑
x1y + β̂2

∑
x2y (193)

∑
ê2
i =

∑
y2
i −

∑
ŷ2
i (194)

∑
ŷ2 =

[
β̂1 β̂2

] [
x11 x12 . x1N

x21 x22 . x2N

]
y1

y2

.
yN

 = β̂
′
x′y (195)

e′e = Y ′Y − β̂
′
x′y (196)

R2 =
β̂
′
x′y

Y ′Y
and Fcalc =

∑
ŷ2
i

K−1
e′e
N−K

; Fcalc =
R2

K − 1

N −K
(1−R2)

(197)
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1.4.7 Blue property in matrix: linearity and unbiasedness

β̂ = (X ′X)
−1
X ′Y (198)

β̂ = aY ; a = (X ′X)
−1
X ′ (199)

Linearity proved.

E
(
β̂
)

= E
[
(X ′X)

−1
X ′ (Xβ + e)

]
(200)

E
(
β̂
)

= E
[
(X ′X)

−1
X ′Xβ

]
+ E

[
(X ′X)

−1
X ′e

]
(201)

E
(
β̂
)

= β + E
[
(X ′X)

−1
X ′e

]
(202)

E
(
β̂
)

= β (203)

Unbiasedness is proved.
Blue Property in Matrix: Minimum Variance

E
(
β̂
)
− β = E

[
(X ′X)

−1
X ′e

]
(204)

E
[
E
(
β̂
)
− β

]2
= E

[
(X ′X)

−1
X ′e

]′ [
(X ′X)

−1
X ′e

]
(205)

= (X ′X)
−1
X ′XE (e′e) (X ′X)

−1
= σ̂2 (X ′X)

−1 (206)

Take an alternative estimator b

b =
[
(X ′X)

−1
X ′ + c

]
Y (207)

b =
[
(X ′X)

−1
X ′ + c

]
(Xβ + e) (208)

b− β = E
[
(X ′X)

−1
X ′e+ ce

]
(209)

1.4.8 Blue property in matrix: minimum variance

Now it need to be shown that

cov (b) > cov
(
β̂
)

(210)

Take an alternative estimator b

b− β = E
[
(X ′X)

−1
X ′e+ ce

]
(211)
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cov (b) = E
[
(b− β) (b− β)

′]
= E

[
(X ′X)

−1
X ′e+ ce

] [
(X ′X)

−1
X ′e+ ce

]
= σ2 (X ′X)

−1
+ σ2c2 (212)

cov (b) > cov
(
β̂
)

(213)

Proved.
Thus the OLS is BLUE = Best, Linear, Unbiased Estimator.

1.5 Multiple Regression Model in Matrix

Consider a multiple linear regression model:

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ....+ βkXk,i + εi i = 1 ...N (214)

Assumptions:

E (εi) = 0 (215)

E (εixj,i) = 0; var (εi) = σ2 for ∀ i; εi ∼ N
(
0, σ2

)
(216)

covar (εiεj) = 0 (217)

Explanatory variables are uncorrelated.

E (X1,iX1,j) = 0 (218)

Objective is to choose parameters that minimise the sum of squared errors

Min S
β̂0β̂1β̂2...β̂k

=
∑

ε2
i =

(
Yi − β̂0 − β̂1X1,i − β̂2X2,i − β̂3X3,i − ....− β̂kXk,i

)2

(219)

Derivation of Normal Equations

∂S

∂β̂0

= 0;
∂S

∂β̂1

= 0;
∂S

∂β̂2

= 0;
∂S

∂β̂3

= 0; ......
∂S

∂β̂k
= 0 (220)

1.5.1 Normal equations

Normal equations for two explanatory variable case∑
Yi = β̂0N + β̂1

∑
X1,i + β̂2

∑
X2,i (221)∑

X1,iYi = β̂0

∑
X1,i + β̂1

∑
X2

1,i + β̂2

∑
X1,iX2,i (222)∑

X2,iYi = β̂0

∑
X2,i + β̂1

∑
X1,iX2,i + β̂2

∑
X2

2,i (223) ∑
Yi∑

X1,iYi∑
X2,iYi

 =

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i


 β̂0

β̂1

β̂2

 (224)
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1.5.2 Normal equations in matrix form β̂0

β̂1

β̂2

 =

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

−1  ∑
Yi∑

YiX1,i∑
YiX2,i

 (225)

β = (X ′X)
−1
X ′Y (226)

β̂0 =

∣∣∣∣∣∣
∑
Yi

∑
X1,i

∑
X2,i∑

YiX1,i

∑
X2

1,i

∑
X1,iX2,i∑

YiX2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣
(227)

1.5.3 Cramer Rule to solve for paramers

β̂1 =

∣∣∣∣∣∣
N

∑
Yi

∑
X2,i∑

X1,i

∑
YiX1,i

∑
X1,iX2,i∑

X2,i

∑
YiX2,i

∑
X2

2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣
(228)

β̂2 =

∣∣∣∣∣∣
N

∑
X1,i

∑
Yi∑

X1,i

∑
X2

1,i

∑
YiX1,i∑

X2,i

∑
X1,iX2,i

∑
YiX2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣
(229)

Covariance of Parameters Matrix must be non-singular

(X ′X)
−1 6= 0 (230)

cov
(
β̂
)

=

 var(β̂1) cov(β̂1β̂2) cov(β̂1β̂3)

cov(β̂1β̂2) var(β̂2) cov(β̂2β̂3)

cov(β̂1β̂3) cov(β̂2β̂3) var(β̂3)

 (231)

cov
(
β̂
)

= (X ′X)
−1
σ2 (232)

cov
(
β̂
)

=

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

−1

σ̂2 (233)

Consider the deviation form:
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Variance of errors∑
ê2
i =

∑
y2
i −

∑
ŷ2
i = 23.12− 21.64 = 1.48

E (ε̂i)
2

=

∑
ê2
i

N − k = σ̂2 (234)

It is easier to consider normal equations in the deviation form:[
β̂1

β̂2

]
=

[ ∑
x2

1,i

∑
x1,ix2,i∑

x1,ix2,i

∑
x2

2,i

]−1 [ ∑
yix1,i∑
yix2,i

]
(235)

β = (X ′X)
−1
X ′Y (236)

β̂1 =

∣∣∣∣ ∑ yix1,i

∑
x1,ix2,i∑

yix2,i

∑
x2

2,i

∣∣∣∣∣∣∣∣ ∑
x2

1,i

∑
x1,ix2,i∑

x1,ix2,i

∑
x2

2,i

∣∣∣∣ (237)

β̂2 =

∣∣∣∣ ∑
x2

1,i

∑
yix1,i∑

x1,ix2,i

∑
yix2,i

∣∣∣∣∣∣∣∣ ∑
x2

1,i

∑
x1,ix2,i∑

x1,ix2,i

∑
x2

2,i

∣∣∣∣ (238)

[ ∑
x2

1,i

∑
x1,ix2,i∑

x1,ix2,i

∑
x2

2,i

]−1

=
1∑

x2
1,i

∑
x2

2,i − (
∑
x1,ix2,i)

2

[ ∑
x2

2,i −
∑
x1,ix2,i

−
∑
x1,ix2,i

∑
x2

1,i

]
(239)

var
(
β̂1

)
=

∑
x2

2,i∑
x2

1,i

∑
x2

2,i − (
∑
x1,ix2,i)

2σ
2 (240)

var
(
β̂2

)
=

∑
x2

1,i∑
x2

1,i

∑
x2

2,i − (
∑
x1,ix2,i)

2σ
2 (241)

1.5.4 Application

Numerical Example: Does level of unempolyment depend on claimant count, strikes and work
hours?
How does the level of unemployment (Yi)relate to the level of claimant counts (X1,i), numbers

of stopages(X2,i) because of industrial strikes and number of work hours (X3,i)in UK? Data from
the Labour Force Surve for 19 years;N = 19.

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + εi i = 1 ...N (242)
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N

∑
X1,i

∑
X2,i

∑
X3,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

∑
X2,iX3,i∑

X3,i

∑
X1,iX3,i

∑
X2,iX3,i

∑
X2

3,i


=


19 29057 4109 16904.6

29057 53709128.8 6872065.8 25461639.46
4109 6872065.8 1132419 3638145

16904.6 25461639.46 3638145 15059252.96


Numerical Example: OLS Setup

∑
Yi∑

X1,iYi∑
X2,iYi∑
X3,iYi

 =


37326

63415261.4
8476146
32958009



β̂0

β̂1

β̂2

β̂3

 =


19 29057 4109 16904.6

29057 53709128.8 6872065.8 25461639.46
4109 6872065.8 1132419 3638145

16904.6 25461639.46 3638145 15059252.96


−1 

37326
63415261.4

8476146
32958009


Numerical Example: Estimates of parameters, their standard errors and t-values
β̂0
β̂1
β̂2
β̂3

 =


402.4319485 −0.018888662 0.013959234 −0.423181717
−0.018888662 1.00E − 06 −9.85E − 07 1.97E − 05
0.013959234 −9.85E − 07 5.37E − 06 −1.53E − 05
−0.423181717 1.97E − 05 −1.53E − 05 0.000445415




37326
63415261.4

8476146
32958009



β̂0
β̂1
β̂2
β̂3

 =


−5560.880967

0.98458293
−0.223288328
6.820108368



SE

(
β̂0

)
SE

(
β̂1

)
SE

(
β̂2

)
SE

(
β̂3

)

 =


871.2384101
0.04348893
0.100627026
0.916586018



t
(
β̂0

)
t
(
β̂1

)
t
(
β̂2

)
t
(
β̂3

)

 =


−6.382731641
22.63985164
−2.218969753
7.440772858



t - t e s t
H y p o th e s e s : H0 : βi = 0 a g a in s t HA : βi 6= 0
C r i t i c a l va lu e s o f t f o r 1 5 d e g r e e s f o f r e e d om a t 5% le v e l o f s i g n ific a n c e = 2 .1 3 ;
E a ch o f a b ov e c om p u t e d t - va lu e s a r e g r e a t e r t h a n t a b le va lu e s . T h e r e f o r e s t a t i s t i c a l e n o u g h e v id e n c e t o r e j e c t t h e n u l l h y p o t h e s s . A l l o f

f o u r p a r am e t e r s a r e s t a t i s t i c a l ly s ig n ific a n t .

Numerical Example:Sum Square Error and Covariance of Beta

var(e) = E
(
ε̂i
)2

=

∑
ê2i

N − k
=

28292.59842

19 − 4
= 1886.173228 = σ̂

2 ( 2 4 3 )

cov
(
β̂
)

=


402.4319485 −0.018888662 0.013959234 −0.423181717
−0.018888662 1.00E − 06 −9.85E − 07 1.97E − 05
0.013959234 −9.85E − 07 5.37E − 06 −1.53E − 05
−0.423181717 1.97E − 05 −1.53E − 05 0.000445415

 (1886.173228) ( 2 4 4 )

=


759056.3673 −35.62728928 26.32953287 −798.1940248
−35.62728928 0.001891287 −0.001858782 0.037244366
26.32953287 −0.001858782 0.010125798 −0.028859446
−798.1940248 0.037244366 −0.028859446 0.840129929



R-Square and Adjusted R-Square

R2 =
4428800.138

4457092.737
= 0.99365223 (245)
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R
2

= 1−
(
1−R2

) N − 1

N −K = 0.992382676 (246)

1.5.5 Analysis of Variance

Table 8: Testing overall significance by F-test
Source of Variance Sum Degrees of freedom Mean F-value
Total sum square (TSS) 4457092.737 18 247616.2632
Regression Sum Square (RSS) 4428800.138 3 1476266.713 782.6782243
Sum of square error 28292.59842 15 1886.173228

Hypothesis: H0 : β0 = β1 = β2 = β3 = 0 or model is meaningless against HA : β0 6= β1 6=
β2 6= β3 6= 0 or at least one βi 6= 0 model explains something.
Critical values of F for degrees of freedom of 3 and 15 at 5 percent level of significance = 3.29.
Calculated F-statistics is much higher than critical value. Thereofre there is statistical evidence

to reject the null hypothesis.
That means in general this model is statistically siginificant.
Table of results summarising all above calculations are presented as:

Table 9: Determinants of Unemployment Rate
Coeffi cient Stadard Error t-value

Intercept -5560.881 871.238 -6.383
Claiment Count 0.985 0.043 22.640
Stoppages -0.223 0.101 -2.219
Workhours 6.820 0.917 7.441
R2 = 0.99 , F = 782.7 , N = 19.

Higher the number of claiment count higher the rate of unemployment - this makes intuitive
sense. Greater the number of work-hours more people unemployed, this also is as expected as less
extra jobs are created when people work more hours. European experience in the recent recession
is good example where work sharing is common practice. Stoppages and industrial strikes reduce
unemployment as such threats to employers reduce possibility of firing of existing workers.

Normal equations for K variables∑
Yi = β̂0N + β̂1

∑
X1,i + β̂2

∑
X2,i + β̂3

∑
X3,i + ..+ β̂k

∑
Xk,i (247)∑

YiX1,i = β̂0

∑
X1,i + β̂1

∑
X2

1,i + β̂2

∑
X1,iX2,i + .+ β̂k

∑
X1,iXk,i (248)

...............................................................................∑
YiXk,i = β̂0

∑
Xk,i + β̂1

∑
X1,iXk,i + β̂2

∑
Xk,iX2,i + .+ β̂k

∑
X2
k,i (249)

Process is similar to the three variable model - except that this general model will have more
coeffi cients to evaluate and test; and requires data on more variables.
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1.5.6 Exercise 3

Suppose you have the following data set on number of tickets sold in a football match (Y ), price of
tickets (X1 ) and income of the customers (X2). and Y are measured in 10 thousand pounds. You
want to find out the exact relation between tickets sold and prices and income of people watching
football games.

Table 10: Price, Income and Sales
X1,i 11 7 6 5 3 2 1
X2,i 2 2 4 5 6 5 4
Yi 1 2 3 4 5 6 7

1. (a) Write a simple regression model to explain the number of tickets sold in terms of the
price of the ticket. Explain briefly underlying assumptions and expected signs of the
parameters in this model.

(b) Estimate the slope and intercept parameters. Calculate cross products and squared
terms needed for estimation from the above data table.

(c) Use your estimates in (b) find the explained squared sum
∑
ŷ2
i , sum of squared errors∑

ê2
i and the R

2and R
2
.

(d) Estimate the variance of the error term and the slope coeffi cient. Explain its importance.

(e) Test whether the slope term is significant at 5% confidence level.

(f) Build 95 percent confidence interval for estimate of slope and intercept terms.

(g) Discuss how reducing type I error may cause increase in type II errors.

(h) Calculate the elasticity of demand for football around the mean of Y and X1.

(i) Write a multiple regression model to explain the number of tickets sold in terms of the
price of the ticket and the income of individuals going to the football game. What addi-
tional assumption(s) do you need while introducing an additional variable.

(j) Estimate the parameters of that multiple regression model.

(k) What is your prediction of the number of tickets sold if X1= 5 and X2=4?

(l) Introduce dummy variables in your multiple regression model to show differences in
demand for football ticket based on gender differences (1 for male and 0 for females),
four seasons (autumn, winter, spring and summer) and interaction between gender and
income.

1.5.7 Homework

Suppose that a leading supermarket in the city centre requests to estimate a demand function for
beef. Your are considering estimating a model where demand for beef depends on price of beef ,
price of pork, price of chicken and consumer income as following:

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + β4X4,i + εi i = 1 ...N (250)

where is Yi demand for beef, X1,i is price of beef, X2,i is price of pork, X3,i is price of chicken,X4,i

is income of consumer and εi is a normally and εi ∼ N(0, σ2) identically distributed random variable.

46



1. (a) Using your knowledge of microeconomics, write down the expected signs of β0, β1, β2,
β3,and β4 in this model and explain why?

(b) Write major assumptions of the ordinary least square approach to this model.

(c) Suppose you have a data set on these variables over last 35 years and you want to
estimate parameters β0, β1, β2, β3,and β4. Derive normal equations that you will use
get OLS estimators of these parameters?

(d) Compute the variances of parameters β1, β2, β3,and β4.

(e) Compute variance-covariance matrix for the random term.

(f) Construct a confidence interval on β1, β2, β3, and β4 and predicted Yi.

(g) How would your result be affected if you find that X1,i = 0.6X2,i?

(h) How would you modify your model to correct a problem in reported in (g)?

1.5.8 Testing for Restrictions

Multiple Regression Model in Matrix

• Consider a linear regression

Yi = β1X1,i + β2X2,i + β3X3,i + εi i = 1 ...N (251)

and assumptions

E (εi) = 0 (252)

E (εixj,i) = 0 (253)

var (εi) = σ2 for ∀ i (254)

covar (εiεj) = 0 (255)

εi˜N
(
0, σ2

)
(256)

• Objective is to choose parameters that minimise the sum of squared errors

Min S
β̂1,β̂2 ,̂β3

=
∑

ε2
i =

(
Yi − β̂1X1,i − β̂2X2,i − β̂3X3,i

)2

(257)

Derivation of Normal Equations

∂S

∂β̂1

= 0;
∂S

∂β̂2

= 0;
∂S

∂β̂3

= 0; (258)
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• Normal equations for three explanatory variable case∑
X1,iYi = β̂1

∑
X2

1,i + β̂2

∑
X1,iX2,i + β̂3

∑
X1,iX3,i (259)∑

X2,iYi = β̂1

∑
X1,iX2,i + β̂2

∑
X2

2,i + β̂3

∑
X2,iX3,i (260)∑

X3,iYi = β̂1

∑
X1,iX3,i + β̂2

∑
X2,iX3,i + β̂3

∑
X2

3,i (261) ∑X1,iYi∑
X2,iYi∑
X3,iYi

 =

 ∑
X2

1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2

2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2

3,i


 β̂1

β̂2

β̂3

 (262)

Normal equations in matrix form β̂1

β̂2

β̂3

 =

 ∑
X2

1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2

2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2

3,i

−1  ∑X1,iYi∑
X2,iYi∑
X3,iYi

 (263)

β = (X ′X)
−1
X ′Y (264)

β̂1 =

∣∣∣∣∣∣
∑
X1,iYi∑
X2,iYi∑
X3,iYi

∑
X1,iX2,i

∑
X1,iX3,i∑

X2
2,i

∑
X2,iX3,i∑

X2,iX3,i

∑
X2

3,i

∣∣∣∣∣∣∣∣∣∣∣∣
∑
X2

1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2

2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2

3,i

∣∣∣∣∣∣
(265)

Use Cramer Rule to solve for paramers

β̂2 =

∣∣∣∣∣∣
∑
X2

1,i

∑
X1,iX2,i

∑
X1,iYi∑

X1,iX2,i

∑
X2

2,i

∑
X2,iYi∑

X1,iX3,i

∑
X2,iX3,i

∑
X3,iYi

∣∣∣∣∣∣∣∣∣∣∣∣
∑
X2

1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2

2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2

3,i

∣∣∣∣∣∣
(266)

β̂2 =

∣∣∣∣∣∣
∑
X2

1,i

∑
X1,iYi

∑
X1,iX3,i∑

X1,iX2,i

∑
X2,iYi

∑
X2,iX3,i∑

X1,iX3,i

∑
X3,iYi

∑
X2

3,i

∣∣∣∣∣∣∣∣∣∣∣∣
∑
X2

1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2

2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2

3,i

∣∣∣∣∣∣
(267)

Covariance of Parameters
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1.5.9 Matrix must be non-singular

(X ′X)
−1 6= 0 (268)

cov
(
β̂
)

=

 var(β̂1) var(β̂1β̂2) var(β̂1β̂3)

var(β̂1β̂2) var(β̂2) var(β̂2β̂3)

var(β̂1β̂3) var(β̂2β̂3) var(β̂3)

 (269)

cov
(
β̂
)

= (X ′X)
−1
σ2 (270)

cov
(
β̂
)

=

 ∑
X2

1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2

2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2

3,i

−1

σ̂2 (271)

Data (text book example Carter, Griffi th and Hill)

Table 11: Data for a multiple regression
y 1 -1 2 0 4 2 2 0 2
x1 1 -1 1 0 1 0 0 1 0
x2 0 1 0 1 2 3 0 -1 0
x3 -1 0 0 0 0 0 1 1 1

 ∑
X2

1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2

2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2

3,i

 =

 5 0 0
0 16 −1
0 −1 4

 and ∑X1,iYi∑
X2,iYi∑
X3,iYi

 =

 8
13
3


Estimation of Parameters  β̂1

β̂2

β̂3

 =

 5 0 0
0 16 −1
0 −1 4

−1  8
13
3

 (272)

 β̂1

β̂2

β̂3

 =

 0.2 0 0
0 0.063 0.016
0 0.016 0.254

 8
13
3

 =

 1.6
0.873
0.968

 (273)

Estimated equation

Ŷi = 1.6X1,i + 0.873X2,i + 0.968X3,i (274)

Estimation of Errors
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êi = Yi − 1.6X1,i + 0.873X2,i + 0.968X3,i (275)

ê1 = 1− 1.6 (1) + 0.873 (0) + 0.968 (−1) = 0.368 (276)

ê2 = −1− 1.6 (−1) + 0.873 (1) + 0.968 (0) = −0.273 (277)

ê3 = 2− 1.6 (1) + 0.873 (0) + 0.968 (0) = 0.4 (278)

ê4 = 0− 1.6 (0) + 0.873 (1) + 0.968 (0) = −0.873 (279)

ê5 = 4− 1.6 (1) + 0.873 (2) + 0.968 (0) = 0.654 (280)

ê6 = 2− 1.6 (0) + 0.873 (3) + 0.968 (0) = −0.619 (281)

ê7 = 2− 1.6 (0) + 0.873 (0) + 0.968 (1) = 1.032 (282)

ê8 = 0− 1.6 (1) + 0.873 (−1) + 0.968 (1) = −1.695 (283)

ê9 = 2− 1.6 (0) + 0.873 (0) + 0.968 (1) = 1.032 (284)

Sum of Error square, variance and covariance of Beta

∑
ê2
i = 0.3682 + (−0.273)

2
+ 0.42

+ (−0.873)
2

+ (0.654)
2

+ (−0.619)
2

+ 1.0322

+ (−1.695)
2

+ 1.0322 = 6.9460 (285)

Variance of errors

var(e) = E (ε̂i)
2

=

∑
ê2
i

N − k =
6.9460

9− 3
= 1.1577 = σ̂2 (286)

cov
(
β̂
)

=

 ∑
X2

1,i

∑
X1,iX2,i

∑
X1,iX3,i∑

X1,iX2,i

∑
X2

2,i

∑
X2,iX3,i∑

X1,iX3,i

∑
X2,iX3,i

∑
X2

3,i

−1

σ̂2 (287)

=

 0.2 0 0
0 0.063 0.016
0 0.016 0.254

 (1.1577) =

 0.232 0 0
0 0.074 0.018
0 0.018 0.294
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Test of Restrictions

var
(
β̂1

)
= 0.232; var

(
β̂2

)
= 0.074; var

(
β̂1

)
= 0.294; (288)

cov
(
β̂1β̂2

)
= cov

(
β̂1β̂3

)
= 0; cov

(
β̂2β̂3

)
= cov

(
β̂3β̂2

)
= 0; (289)

F-test

F =
(Rb− r)′ [Rcov (b)R′]

−1
(Rb− r)

J
(290)

Hypothesis H0: β1 = β2 = β3 = 0 against HA: β1 6= 0; β2 6= 0; or β3 6= 0
Here J = 3 is the number of restrictions

R =

 1 0 0
0 1 0
0 0 1

 ; b =

 β̂1

β̂2

β̂3

 ; r =

 0
0
0

 (291)

Test of Restrictions

F =


 1 0 0

0 1 0
0 0 1


 β̂1

β̂2

β̂3

−
 0

0
0



′


 1 0 0

0 1 0
0 0 1

 0.232 0 0
0 0.074 0.018
0 0.018 0.294

 1 0 0
0 1 0
0 0 1


′
−1


 1 0 0

0 1 0
0 0 1


 β̂1

β̂2

β̂3

−
 0

0
0




J = 3
(292)

See matrix_restrictions.xls for calculations.
Test of Restrictions

F =

(
1.6 0.873 0.968

) 4.3190 0 0
0 13.821 −0.8638
0 −0.8638 3.455

 1.6
0.873
0.968


3

(293)

F =

(
1.6 0.873 0.968

) 6.91042
11.22943
2.59141


3

=
23.37

3
= 7.79 (294)

F(m1,m2),α = F(3,6),5% = 4.76;
Critical value for F at degrees of freedom of (3,6) at 5% confidence interval is 4.76.
F calculated is bigger than F critical => Reject null hypothesis, which says

H0: β1 = β2 = β3 = 0
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At least one of these parameters is significant and explains variation in y, in other words accept

HA: β1 6= 0; β2 6= 0; or β3 6= 0

1.5.10 Dummy variables in a regression model

• It represents qualitative aspect or characteristic in the data
Quality : good, bad; Location: south/north/east/west; characterisitcs: fat/thin or tall/short

Time: Annual 1970s/ 1990s.; seasonal: Summer, Autumn, Winter, Spring;

• Gender: male/female; Education: GCSE/UG/PD/PhD
Subjects: Math/English/Science/Economics

• Ethnic backgrounds: Black, White, Asian, Cacasian, European, American, Latinos, Mangols,
Ausis.

Yi = β1 + β2Xi + β2Di + εi i = 1 ...N (295)

εi ∼ N
(
0, σ2

)
(296)

• Here Di is special type of variable

Di =

∫
1 = if the certain quality exists
0 = otherwise

(297)

Dummy Variables in a Regression Model

• Three types of dummy

1. Slope dummy

2. Intercept dummy

3. Interaction between slope and intercept
Examples

—Earnding differences by gender, region, ethnicity or religion, occupation, education
level.

—Unemployment duration by gender, region, ethnicity or religion, occupation, edu-
cation level.

—Demand for a product by by weather, season, gender, region, ethnicity or religion,
occupation, education level.

—Test scores by gender, previous background, ethnic origin
—Growth rates by decades, countries, exchange rate regimes

Dummy Variables Trap: Consider seasonal dummies as

Yi = β1 + β2Xi + β2D1 + β2D2 + β2D3 + β2D4 + εi (298)

where

D1 =

∫
1 = if summer
0 otherwise

(299)
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D2 =

∫
1 = if autumn
0 otherwise

(300)

D3 =

∫
1 = if winter
0 otherwise

(301)

D4 =

∫
1 = if spring
0 otherwise

(302)

• Since
∑
Di = 1, it will cause multicollinearity as:

D1 +D2 +D3 +D4 = 1 (303)

drop on of Di to avoid the dummy variable trap.

Dummy Variables in a piecewise linear regression models

• Threshold effects in sales

• tariff charges by volume of transaction -mobile phones

• Panel regression: time and individual dummies

• Pay according to hierarchy in an organisation

• profit from whole sale and retail sales

• age dependent earnings -Scholarship for students, pensions and allowances for elderly

• tax allowances by level of income or business

• Investment credit by size of investment

• prices, employemnts, profits or sales for small, medium and large scale corporations

• requirements according to weight or hight of body

1.5.11 Test of structural change

Chow Test for stability of parameters or structural change

• Use n1 and n2 observations to estimate overall and separate regressions with (n1+n2-k, n1-k,
and n2-k) degrees of freedoms;

• obtain SSR1(with n1+n2-k dfs),

• SSR2 (with n1-k dfs),

• SSR3 (with n2-k dfs) and

• SSR4 = SSR1+ SSR2 (with n1+n2-2k dfs),

• obtain S5 = S1-S4;
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• do F-test

F =
S5

k
S5

(n1+n2−2k)

(304)

The advantage of this approach to the Chow test is that it does not require the construction of
the dummy and interaction variables.

1.6 Exercise 4

Suppose that you are interested in estimating the demand for beer in Yorkshire pubs and consider
the following multiple regression model:

ln (Yi) = β0 + β1 ln (X1,i) + β2 ln (X2,i) + β3 ln (X3,i) + β4 ln (X4,i) + εi i = 1 ...N (305)

where Yi is the demand for beer,X1,i is the price of beer,X2,i is the price of other liquor products,
X3,i is the price of food and other services, X4,i is consumer income. Coeffi cients β0,β1,β2,β3,and
β4 are the set of unknown elasticity coeffi cients you would like to estimate. Again assume that
errors εi are independently normally distributed, εi ∼ N(0, σ2).

1. (a) Estimate the unknown parameters of this model using data in Beer1.csv.

(b) How would you determine the overall significance of this model? Write down your test
criterion. Compare that test statistic with another test statistic that you would use to
test whether a particular coeffi cient, such as β3, is statistically significant or not.

(c) How would you establish whether a particular variable is helping to explain the variation
in beer consumption?

(d) Further suppose that you have some non-sample information on the relation between the
price and income coeffi cients as following:

i. sum of the elasticities equals zero: β1+β2+β3+ β4 = 0.

ii. two cross elasticities are equal: β3=β4 = 0 or β3- β4 = 0

iii. income elasticity is equal to unity: β5 = 1

(e) How do you test whether these restrictions are valid or not ?

(f) In addition to the variables listed in the above model you suspect that gender and level
of education of individuals are important determinants of beer consumption. Explain
how you could incorporate these variables in this model.

(g) The income of an individual also depends upon his/her age. Income in turn determines
the consumption of beer. Thus age interacts with income. How would you introduce this
age-income interaction effect in the above model?

Instructions for testing linear restrictions in PcGive for cross section data like this:
a. regress Y on X1,i X2,i , X3,i and X4,i .
b. click on test/linear restriction, put the restrictions in the matrix box. one line for each

restriction. For instance if β0+β1+β2+β3+ β4 = 0. to be tested then type 1 1 1 1 1 0 , then click
ok , it will test validity of that restriction. If there are two restriction
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β0+β1+β2+β3+ β4 = 0 and β3- β4 = 0 then
1 1 1 1 1 0
0 0 0 1 -1 0
put this input in the matrix box, then click OK. This will test for thoth restrictions.

1.7 Multicollinearity

Multiple Regression Model in Matrix

• Consider a linear regression

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ....+ βkXk,i + εi i = 1 ...N (306)

and assumptions

E (εi) = 0 (307)

E (εixj,i) = 0; var (εi) = σ2 for ∀ i; εi ∼ N
(
0, σ2

)
(308)

covar (εiεj) = 0 (309)

Explanatory variables are uncorrelated.

E (X1,iX1,j) = 0 (310)

• Objective is to choose parameters that minimise the sum of squared errors

Min S
β̂0β̂1β̂2...β̂k

=
∑

εi =
(
Yi − β̂0 − β̂1X1,i − β̂2X2,i − β̂3X3,i − ....− β̂kXk,i

)
(311)

Derivation of Normal Equations

∂S

∂β̂0

= 0;
∂S

∂β̂1

= 0;
∂S

∂β̂2

= 0;
∂S

∂β̂3

= 0; ......
∂S

∂β̂k
= 0 (312)

• Normal equations for two explanatory variable case∑
Yi = β̂0N + β̂1

∑
X1,i + β̂2

∑
X2,i (313)∑

X1,iYi = β̂0

∑
X1,i + β̂1

∑
X2

1,i + β̂2

∑
X1,iX2,i (314)∑

X2,iYi = β̂0

∑
X2,i + β̂1

∑
X1,iX2,i + β̂2

∑
X2

2,i (315) ∑
Yi∑

X1,iYi∑
X2,iYi

 =

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i


 β̂0

β̂1

β̂2

 (316)
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Normal equations in matrix form β̂0

β̂1

β̂2

 =

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

−1  ∑
Yi∑

YiX1,i∑
YiX2,i

 (317)

β = (X ′X)
−1
X ′Y (318)

β̂0 =

∣∣∣∣∣∣
∑
Yi

∑
X1,i

∑
X2,i∑

YiX1,i

∑
X2

1,i

∑
X1,iX2,i∑

YiX2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣
(319)

Use Cramer Rule to solve for paramers

β̂1 =

∣∣∣∣∣∣
N

∑
Yi

∑
X2,i∑

X1,i

∑
YiX1,i

∑
X1,iX2,i∑

X2,i

∑
YiX2,i

∑
X2

2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣
(320)

β̂2 =

∣∣∣∣∣∣
N

∑
X1,i

∑
Yi∑

X1,i

∑
X2

1,i

∑
YiX1,i∑

X2,i

∑
X1,iX2,i

∑
YiX2,i

∣∣∣∣∣∣∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣
(321)

Evaluate the determinant

|X ′X| =

∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣ (322)

|X ′X| = N
∑
X2

1,i

∑
X2

2,i +
∑
X1,i

∑
X1,iX2,i

∑
X2,i +

∑
X2,i

∑
X1,iX2,i

∑
X1,i

−
∑
X2,i

∑
X2,i

∑
X2

1,i −N
∑
X1,iX2,i

∑
X1,iX2,i −

∑
X2

2,i

∑
X1,i

∑
X1,i

For this calculation, repeate first two columns as

|X ′X| =

∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

N
∑
X1,i∑

X1,i

∑
X2

1,i∑
X2,i

∑
X1,iX2,i

∣∣∣∣∣∣ (323)

Dederminant = (sume of cross product from to left to right - sum of cross product from bottom
left to right)
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1.7.1 Exact pulticollinearity: singularity

Significant R2 but insignificant t-ratios. why?
In existence of exact multicollinearity X ′X is singular, i.e. |X ′X| = 0
X1,i = λX2,i

|X ′X| = N
∑
X2

1,i

∑
X2

2,i +
∑
X1,i

∑
X1,iX2,i

∑
X2,i +

∑
X2,i

∑
X1,iX2,i

∑
X1,i

−
∑
X2,i

∑
X2,i

∑
X2

1,i −N
∑
X1,iX2,i

∑
X1,iX2,i −

∑
X2

2,i

∑
X1,i

∑
X1,i

Substituting out X1,i

|X ′X| = Nλ2∑X2
2,i

∑
X2

2,i + λ2∑X2,i

∑
X2

2,i

∑
X2,i + λ2∑X2,i

∑
X2

2,i

∑
X2,i

−λ2∑X2,i

∑
X2,i

∑
X2

2,i −Nλ
2∑X2

2,i

∑
X2

2,i − λ
2∑X2

2,i

∑
X2,i

∑
X2,i

= 0

|X ′X| =

∣∣∣∣∣∣
N λ

∑
X2,i

∑
X2,i

λ
∑
X2,i λ2∑X2

2,i λ
∑
X2,iX2,i∑

X2,i λ
∑
X2,iX2,i

∑
X2

2,i

∣∣∣∣∣∣ = 0 (324)

Parameters are indeterminate in model with exact multicollinearity

β̂0 =

∣∣∣∣∣∣
∑
Yi

∑
X1,i

∑
X2,i∑

YiX1,i

∑
X2

1,i

∑
X1,iX2,i∑

YiX2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣
0

=∞ (325)

β̂1 =

∣∣∣∣∣∣
N

∑
Yi

∑
X2,i∑

X1,i

∑
YiX1,i

∑
X1,iX2,i∑

X2,i

∑
YiX2,i

∑
X2

2,i

∣∣∣∣∣∣
0

=∞ (326)

β̂2 =

∣∣∣∣∣∣
N

∑
X1,i

∑
Yi∑

X1,i

∑
X2

1,i

∑
YiX1,i∑

X2,i

∑
X1,iX2,i

∑
YiX2,i

∣∣∣∣∣∣
0

=∞ (327)

Covariance of parameters cannot be estimated in model with exact multicollinearity

(X ′X)
−1

=∞ (328)

cov
(
β̂
)

=

 var(β̂1) cov(β̂1β̂2) cov(β̂1β̂3)

cov(β̂1β̂2) var(β̂2) cov(β̂2β̂3)

cov(β̂1β̂3) cov(β̂2β̂3) var(β̂3)

 =∞ (329)

cov
(
β̂
)

= (X ′X)
−1
σ2 =∞ (330)

cov
(
β̂
)

=

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

−1

σ̂2 =∞ (331)

Numerical example of exact multicollinearity
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Table 12: Data for testing multicollinearity
y 3 5 7 6 9 6 7
x1 1 2 3 4 5 6 7
x2 5 10 15 20 25 30 35

Evaluate the determinant

|X ′X| =

∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
7 28 140
28 140 700
140 700 3500

∣∣∣∣∣∣ ; (332)

 ∑
Yi∑

YiX1,i∑
YiX2,i

 =

 43
188
980


Numerical example of exact multicollinearity

|X ′X| = N
∑
X2

1,i

∑
X2

2,i +
∑
X1,i

∑
X1,iX2,i

∑
X2,i +

∑
X2,i

∑
X1,iX2,i

∑
X1,i

−
∑
X2,i

∑
X2,i

∑
X2

1,i −N
∑
X1,iX2,i

∑
X1,iX2,i −

∑
X2

2,i

∑
X1,i

∑
X1,i

= (7× 140× 3500 + 28× 700× 140 + 140× 700× 28
−140× 140× 140− 7× 700× 700− 28× 28× 3500) = 0
You can evaluate determinants easily in excel using following steps:
1. select the cell where to put the result.and press shift and control continously by two fingers

of left hand
2. use mouse by right hand to choose math and trig function
3. choose MDETERM
4. Select matrix for which to evaluate the determinant
5. press OK and you will see the reslut.
Normal equations of a multiple regression in deviation form:[

β̂1

β̂2

]
=

[ ∑
x2

1,i

∑
x1,ix2,i∑

x1,ix2,i

∑
x2

2,i

]−1 [ ∑
yix1,i∑
yix2,i

]
(333)

β = (X ′X)
−1
X ′Y (334)

β̂1 =

∣∣∣∣ ∑ yix1,i

∑
x1,ix2,i∑

yix2,i

∑
x2

2,i

∣∣∣∣∣∣∣∣ ∑
x2

1,i

∑
x1,ix2,i∑

x1,ix2,i

∑
x2

2,i

∣∣∣∣ (335)

β̂2 =

∣∣∣∣ ∑
x2

1,i

∑
yix1,i∑

x1,ix2,i

∑
yix2,i

∣∣∣∣∣∣∣∣ ∑
x2

1,i

∑
x1,ix2,i∑

x1,ix2,i

∑
x2

2,i

∣∣∣∣ (336)
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Variances of parameters:

[ ∑
x2

1,i

∑
x1,ix2,i∑

x1,ix2,i

∑
x2

2,i

]−1

=
1∑

x2
1,i

∑
x2

2,i − (
∑
x1,ix2,i)

2

[ ∑
x2

2,i −
∑
x1,ix2,i

−
∑
x1,ix2,i

∑
x2

1,i

]
(337)

var
(
β̂1

)
=

∑
x2

2,i∑
x2

1,i

∑
x2

2,i − (
∑
x1,ix2,i)

2σ
2 (338)

var
(
β̂2

)
=

∑
x2

1,i∑
x2

1,i

∑
x2

2,i − (
∑
x1,ix2,i)

2σ
2 (339)

Variance Inflation Factor in Inexact Multicollinearity
Let correlations between X1,i and X2,i be given by r12. Then Variance inflation factor is
1

(1−r2
12)

var
(
β̂2

)
=

∑
x2

1,i[∑
x2

1,i

∑
x2

2,i − (
∑
x1,ix2,i)

2
]σ2

=
1[∑

x2
1,i

∑
x2

2,i∑
x2

1,i
− (

∑
x1,ix2,i)

2∑
x2

1,i

]σ2

=
1∑

x2
2,i

[∑
x2

1,i∑
x2

1,i
− (

∑
x1,ix2,i)

2∑
x2

2,i

∑
x2

1,i

]σ2

=
1∑

x2
2,i [1− r2

12]
σ2

=
1

(1− r2
12)

1∑
x2

2,i

σ2 (340)

Variance Inflation Factor in Inexact Multicollinearity
Let correlations between X1,i and X2,i be given by r12. Then Variance inflation factor is
1

(1−r2
12)

var
(
β̂1

)
=

∑
x2

2,i∑
x2

1,i

∑
x2

2,i − (
∑
x1,ix2,i)

2σ
2

1[∑
x2

1,i

∑
x2

2,i∑
x2

2,i
− (

∑
x1,ix2,i)

2∑
x2

2,i

]σ2

=
1∑

x2
1,i

[∑
x2

2,i∑
x2

2,i
− (

∑
x1,ix2,i)

2∑
x2

1,i

∑
x2

2,i

]σ2

=
1∑

x2
1,i [1− r2

12]
σ2 (341)
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Solutions for Multicollinearity Problem
When Variance is high the standard errors are hish and that makes t-statistics very small and

insignificant

SE
(
β̂2

)
=

√
var

(
β̂2

)
; SE

(
β̂1

)
=

√
var

(
β̂1

)
tβ̂1

=
β̂1 − β1

SE
(
β̂1

) ; tβ̂2
=

β̂2 − β2

SE
(
β̂2

) (342)

.since 0 < r12 < 1 it raises the variance and hence stancard errors and lowers t-values.

1. First detect the pairwise correlations between explalantory variables such X1,i and X3,i be
given by r12.

2. Drop highly correlated variables.

3. Adopts Klein’s rule of thumb:

4. Compare R2
y from overall regression to R2

x from auxiliary regression. Determine multi-
collinearity if R2

x > R2
y. Drop highly correlated variables.

1.7.2 Exercise 5

1. Data on income (y), performance indicator (x1) and quality of workers (x2) in a certatin reputable
company is given as following.

Table 13: Data on income, performace and quality of work
y 3 5 7 6 9 6 7
x1 1 2 3 4 5 6 7
x2 5 10 15 20 25 30 35

Fit a regression model Yi = β0 + β1X1,i + β2X2,i + εi for this company. If any problem suggest
remedial measures.
2. Some international macroeconomists argue that the devaluation has expansionary effect on

output through its positive impact on exports and negative impacts on imports. Others think that
devaluation has contractionary impact on output. As an econometrician you would like to test
which one of these two claims bear close relation to the empirical facts. Based on literature review
you come up with the following model

gy,t = β0 + β1time+ β2

(
G

Y

)
+ β3 [∆ lnM −∆lmM∗] + β4TOT + β5REt + εt (343)

Where gy,t is the growth rate of real output, time is time trend, GY is the ratio of government
expenditure to GNP, M is the money supply, M∗ is expected money supply , TOT is the term of
trade as provided by the ratio of indices of price of exports to the prices of imports, RE is the real
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exchange rate. Terms β0,β1,β2,β3,and β4 are unknown coeffi cients to be estimated. As before is
the error term, it has a zero mean and constant variance, εi ∼ N(0, σ2) .
Relevant data are proveded in juk.xlsx file. Estimate the above parameters and answer following

questions studying the regression results.

1. (a) Explain significance of coeffi cients β0,β1,β2,β3,β4and β5 in the above model and state
whether the estimates are consistent with the economic theory. Is a devaluation, an
increase in RE, contractionary or expansionary from the results of this model?

(b) Explain how you can test three of the following restrictions (1) separately and (2) jointly
in this model.

i. Restriction 1: β5 = 0

ii. Restriction 2: β2 = 0 and β4 = 0

iii. Restriction 3: β3 + β4 = 0

iv. Discuss your test statistic for (i) to (iv).

(c) If the data series used in this model is non-stationary, mention how does it affect the
estimates of the parameters? What would you do to correct it?

• Koutsoyiannis A. (1984) Goals of Oligopolistic Firms: An Empirical Test of Competing Hy-
potheses. Southern Economic Journal, 51, 2, 540-567

1.8 Heteroreskedastity

Consider a linear regression

Yi = β1 + β2Xi + εi i = 1 ...N (344)

and assumptions

E (εi) = 0 (345)

E (εixi) = 0 (346)

var (εi) = σ2 for ∀ i (347)

covar (εiεj) = 0 (348)

Then the OLS Regression coeffi cients are:

β̂2 =

∑
xiyi∑
x2
i

; β̂1 = Y − β̂2X (349)

Heteroskedasticity occurs when variances of errors are not constant, var (εi) 6= σ2
i variance of

errors vary for each i. This is mainly a cross section problem. Main reason for this are

• Learning reduces errors;

— driving practice, driving errors and accidents

— typing practice and typing errors,
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— defects in productions and improved machines

• Improved data collection: better formulas and goods software

• More heteroscedasticity exists in cross section than in time series data.

Nature of Heteroskedasticity

E (εi)
2

= σ2
i (350)

β̂2 =

∑
xiyi∑
x2
i

(351)

E
(
β̂2

)
=
∑

wiyi (352)

where

wi =
xi∑
x2
i

=

(
Xi −X

)∑(
Xi −X

)2 (353)

V ar
(
β̂2

)
= var

[ ∑(
Xi −X

)∑(
Xi −X

)2
]
var (yi) =

∑
x2
iσ

2
i

[
∑
x2
i ]

2 (354)

1.8.1 Graphical detection of the heteroskedasticity
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OLS Estimator is still unbiased

β̂2 =

∑
xiyi∑
x2
i

=
∑

wiyi (355)

E
(
β̂2

)
= E

(∑
wiyi

)
= E

∑
wi (β1 + β2Xi + εi) (356)

E
(
β̂2

)
= β1E

(∑
wi

)
+ β2E

(∑
wixi

)
+ E

(∑
wiεi

)
(357)

E
(
β̂2

)
= β2 (358)

OLS Parameter is ineffi cient with Heteroskedasticity

E
(
β̂2

)
=
∑

wiyi (359)

E
(
β̂2

)
= E

(∑
wiyi

)
= E

∑
wi (β1 + β2Xi + εi) (360)

E
(
β̂2

)
= β1E

(∑
wi

)
+ β2E

(∑
wixi

)
+ E

(∑
wiεi

)
(361)

E
(
β̂2

)
= β2 + E

(∑
wiεi

)
(362)

V ar
(
β̂2

)
= E

[
E
(
β̂2

)
− β2

]2
= E

(∑
wiεi

)2

(363)

V ar
(
β̂2

)
= E

(∑∑
w2
i ε

2
i

)
+
∑∑

cov (εiεj)
2 (364)
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V ar
(
β̂2

)
=

∑
x2
iσ

2
i

[
∑
x2
i ]

2 (365)

OLS Estimator is inconsistent assymptotically

V ar
(
β̂2

)
=

∑
x2
iσ

2
i

[
∑
x2
i ]

2 (366)

V ar
(
β̂2

)
lim N → ∞

=

∑
x2
iσ

2
i

[
∑
x2
i ]

2 ⇒∞

lim N → ∞

(367)

1.8.2 Various tests of heteroskedasticity

• Spearman Rank Test

• Park Test

• Goldfeld-Quandt Test

• Glesjer Test

• Breusch-Pagan,Godfrey test

• White Test

• ARCH test
(See food_hetro.xls excel spreadsheet for some exmaples on how to compute these. Gujarati
(2003) Basic Econometrics, McGraw Hill is a good text for Heteroskedasticity; x-hetro test in
PcGive).

GLS Solution of the Heteroskedasticity Problem When Variance is Known

Yi
σi

=
β1

σi
+ β2

Xi

σi
+
εi
σi

i = 1 ...N (368)

Variance with this tranformation equals 1. var
(
εi
σi

)
=

σ2
i

σ2
i

= 1

if
σ2
i = σ2Xi (369)

Yi
Xi

=
β1

Xi
+ β2 +

εi
Xi

; var

(
εi
xi

)
=
σ2x2

i

x2
i

= σ2 (370)

In matrix notation
βOLS = (X ′X)

−1
(X ′Y ) (371)

βGLS =
(
X ′Ω−1X

)−1 (
X ′Ω−1Y

)
(372)

Ω−1 is inverse of variance covariance matrix.
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Spearman rank test of heteroskedactity

rs = 1− 6×

∑
i

d2
i

n (n2 − 1)
(373)

• steps:

• run OLS of y on x.

• obtain errors e

• rank e and y or x

• find the difference of the rank

• use t-statistics if ranks are significantly different assuming n > 8 and rank correlation coeffi -
cient ρ = 0.

t = 1− 6× rs
√
n− 2√

1− r2
s

with df (n− 2) (374)

• If tcal > tcrit there is heteroskedasticity.

Glesjer Test of heteroskedasticity

• Model
Yi = β1 + β2Xi + ei i = 1 ...N (375)

• There are a number of versions of it:

|ei| = β1 + β2Xi + vi (376)

|ei| = β1 + β2

√
Xi + vi (377)

|ei| = β1 + β2

1

Xi
+ vi (378)

|ei| = β1 + β2

1√
Xi

+ vi (379)

|ei| =
√
β1 + β2Xi + vi (380)

|ei| =
√
β1 + β2X

2
i + vi (381)

• In each case test H0: βi = 0 against HA: βi 6= 0. If is significant then that is the evidence of
heteroskedasticity.

White test
White test of heteroskedasticity is more general test

1. This is a more general test
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2. Model Yi = β0 + β1X1,i + β2X2,i + β3X3,i + εi

3. Run an initial OLS to this and get ê2
i . Then regress ê

2
i to squares and cross products of Xj,i

4. ê2
i = α0 +α1X1,i+α2X2,i+α3X3,i+α4X

2
1,i+α5X

2
2,i+α6X

2
3,i+α7X1,iX2,i+α8X2,iX3,i.+εi

5. Compute the test statistics; H0: no heteroskedasticity.

6. n.R2 ∼ χ2
df

7. Again if the calculated χ2
df is greater than table value there is an evidence of heteroskedasticity.

Park test of heteroskedasticity

• Model
Yi = β1 + β2Xi + ei i = 1 ...N (382)

• Error square:
σ2
i = σ2Xβ

i e
vi
i (383)

• Or taking log
lnσ2

i = lnσ2 + β2Xi + vi (384)

• steps : run the OLS regression for (Yi) and get the estimates of error terms (ei ) .

• Square ei , and then run a regression of lne2
i with x variable. Do t-test H0: β2 = 0 against

HA: β2 6= 0. If is significant then that is the evidence of heteroskedasticity.

Goldfeld-Quandt test of heteroskedasticity

• Model
Yi = β1 + β2Xi + ei i = 1 ...N (385)

• Steps:

—Rank observations in ascending order of one of the x variable

—Omit c numbers of central observations leaving two groups N−C2 with number of osber-
vations

—Fit OLS to the first N−C
2 and the last N−C

2 observations and find sum of the squared
errors from both of them.

— Set hypothesis σ2
1 = σ2

2 against σ2
1 6= σ2

2 .

— compute λ = ERSS2/df2
ERSS1/df1 .

— It follows F distribution.

Breusch-Pagan,Godfrey test of heteroskedasticity
Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ....+ βkXk,i + εi i = 1 ...N

• run OLS and obtain error squares
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• Obtain average error square σ̂2 =

∑
i
e2i

n and pi =
e2i
σ̂2

• regress pi on a set of explanatory variables

• pi = α0 + α1X1,i + α2X2,i + α3X3,i + ....+ αkXk,i + εi

• obtain squares of explained sum (EXSS)

• θ = 1
2 (EXSS)

• θ = 1
m−1 (EXSS) ∼ χ2

m−1

• H0 : α0 = α1 = α2 = α3 = .. = αk = 0

• No heteroskedasticity and σ2
i = α1 a constant. If calculated χ2

m−1 is greater than table value
there is an evidence of heteroskedasticity.

ARCH test of heteroskedasticity
Engle (1987) autoregressive conditional heteroskedasticy (ARCH): more useful for time series

data
Model Yt = β0 + β1X1,t + β2X2,t + β3X3,t + ....+ βkXk,t + et

1. • εt ∼ N
(
0,
(
α0 + α2e

2
t−1

))
σ2
t = α0 + α2e

2
t−1 (386)

• Here σ2
t not observed. Simple way is to run OLS of Yt and get ê

2
t

• ARCH (1)
• ê2

t = α0 + α2ê
2
t−1 + vt

• ARCH (p)
• ê2

t = α0 + α2ê
2
t−1 + α3ê

2
1−1 + α4ê

2
1−1 + ..+ αpê

2
1−p + vt

• Compute the test statistics
• n.R2 ∼ χ2

df

2. Again if the calculated χ2
df is greater than table value there is an evidence of ARCH effect

and heteroskedasticity.

3. Both ARCH and GARCH models are estimated using iterative Maximum Likelihood proce-
dure.

GARCH tests of heteroskedasticity
Bollerslev’s generalised autoregressive conditional heteroskedasticy (GARCH) process is more

general

• GARCH (1)
σ2
t = α0 + α2ê

2
t−1 + βσ2

t−1 + vt (387)

• GARCH (p,q)

• σ2
t = α0 + α2ê

2
t−1 + α3ê

2
t−2 + α4ê

2
t−3 + ..+ αpê

2
t−p + β1σ

2
t−1 + β2σ

2
t−2 + ..βqσ

2
t−q + ..+ vt
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• Compute the test statistics n.R2 ∼ χ2
df

• Sometimes written as

• ht = α0 + α2ê
2
t−1 + α3ê

2
t−2 + α4ê

2
t−3 + ..+ αpê

2
t−p + β1ht−1 + β2ht−2 + ..βqht−q + ..+ vt

• where ht = σ2
t

• Various functional forms of ht

• ht = α0 + α2ê
2
t−1 + β1

√
ht−1 + vi or ht = α0 + α2ê

2
t−1 +

√
β1ht−1 + β2ht−2 + vi

• Both ARCH and GARCH models are estimated using iterative Maximum Likelihood pro-
cedure. Volatility package in PcGive estimates ARCH-GARCH models; Eviews, STATA or
RATS also have these routines.

1.8.3 Exercise 6

Take a simple linear regression model of the following form.

Yi = β1 + β2Xi + ei i = 1 ...N (388)

Where the variance of the error term differs for different observations of Xi.

1. (a) Discuss how the graphical method be used to detect the heteroskedasticity.

(b) Prove that parameters β1and β2 are still unbiased.

(c) Analyse consequences of heteroskedasticity on the BLUE properties of the OLS estima-
tors.

(d) Discuss how the Goldfeld and Quandt and Glesjer tests can be used to determine exis-
tence of the heteroskedasticity problem.

(e) Illustrate procedure for the White test of heteroskedasticity.

(f) Illustrate any two remedial measures of removing the heteroskedasticity when the vari-
ance and is known and when it is unknown.

(g) From a sample of 6772 observations on pay work-hours and taxes contained in PAYHRTX.XLS
determine whether heteroskedasticity exists or not on the basis of cross section estimates
from the the PcGive. Feel free to use Shazam if you know and prefer it.

(h) From a sample of 201 counties of Great Britain contained in Unempl_pay_counties.csv
regress work-hours on annual pay and determine whether heteroskedasticity is present
in this estimation using the White test.

(i) Suggest remedial measures to remove heteroskedasticity in models like above.

(j) Explains concepts of ARCH and GARCH models briefly.

Do more exercises with cross section data such as the annual population survey, customer
satisfacton survey, job satisfaction survey, Family Expenditure Survey or other surveys you know.
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1.9 Autocorrelation

Consider a linear regression

Yt = β1 + β2Xt + εt t = 1 ...T (389)

Classical assumptions

E (εt) = 0 (390)

E (εtxt) = 0 (391)

var (εt) = σ2 for ∀ t covar (εtεt−1) = 0 (392)

In presence of autocorrelation (first order)

εt = ρεt−1 + vt (393)

Then the OLS Regression coeffi cients are:

β̂2 =

∑
xtyt∑
x2
t

; β̂1 = Y − β̂2X ; ρ̂ =

∑
etet−1∑
e2
t

(394)

Autocorrelation occurs when covariances of errors are not zero, covar (εtεt−1) 6= 0 covariance
of errors are nonnegative This is mainly a problem observed in time series data.
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Causes of autocorrelation

• inertia , specification bias, cobweb phenomena

• manipulation of data

Consequences of autocorrelation

1. (a) Estimators are still linear and unbiased, but

(b) they there not the best, they are ineffi cient.

Remedial measures

1. (a) When ρ is known - transform the model

(b) When ρ is unknown estimate it and transform the model

1.9.1 Nature of autocorrelation

β̂2 =

∑
xtyt∑
x2
t

(395)

E
(
β̂2

)
=
∑

wtyt (396)

where
E (εt)

2
= σ2 (397)

E
(
β̂2

)
= β2 + E

(∑
wtεt

)
(398)

E
(
β̂2

)
= β1E

(∑
wt

)
+ β2E

(∑
wtxt

)
+ E

(∑
wtεt

)
(399)

V ar
(
β̂2

)
= E

[
E
(
β̂2

)
− β2

]2
= E

(∑
wtεt

)2

(400)

V ar
(
β̂2

)
=

1∑
x2
t

σ2 +
∑∑

cov (εtεt−1) (401)

OLS Estimator is still unbiased

εt = ρεt−1 + vt (402)

β̂2 =

∑
xtyt∑
x2
t

=
∑

wtyt (403)

E
(
β̂2

)
= E

(∑
wtyt

)
= E

∑
wt (β1 + β2Xt + εt) (404)

E
(
β̂2

)
= β1E

(∑
wt

)
+ β2E

(∑
wtxt

)
+ E

(∑
wtεt

)
(405)

E
(
β̂2

)
= β2 (406)
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1.9.2 OLS Parameters are ineffi cient with autocorrelation

E
(
β̂2

)
=
∑

wtyt (407)

E
(
β̂2

)
= E

(∑
wtyt

)
= E

∑
wt (β1 + β2Xt + εt) (408)

E
(
β̂2

)
= β1E

(∑
wt

)
+ β2E

(∑
wtxt

)
+ E

(∑
wtεt

)
(409)

E
(
β̂2

)
= β2 + E

(∑
wtεt

)
(410)

V ar
(
β̂2

)
= E

[
E
(
β̂2

)
− β2

]2
= E

(∑
wtεt

)2

(411)

V ar
(
β̂2

)
= E

(∑∑
w2
t ε

2
t

)
+ 2

∑∑
wtwt−1cov (εtεt−1) (412)

V ar
(
β̂2

)
=

1∑
x2
t

σ2

[
1 + 2

∑
xtxt−1

[
∑
x2
t ]

cov (εtεt−1)√
var (εt)

]
∵ var (εt) = var (εt−1) (413)

V ar
(
β̂2

)
=

1∑
x2
t

σ2

[
1 + 2

∑
(xt−x)(xt−1−x)∑

x2
t

ρ1+

+2
∑

(xt−x)(xt−1−x)∑
x2
t

ρ2 + ..+ 2
∑

(xt−x)(xt−1−x)∑
x2
t

ρs

]
(414)

OLS Estimator is inconsistent assymptotically

V ar
(
β̂2

)
=

1∑
x2
t

σ2

[
1 + 2

∑
(xt−x)(xt−1−x)∑

x2
t

ρ1+

+2
∑

(xt−x)(xt−1−x)∑
x2
t

ρ2 + ..+ 2
∑

(xt−x)(xt−1−x)∑
x2
t

ρs

]
(415)

V ar
(
β̂2

)
lim N → ∞

=
1∑
x2
t

σ2

[
1 + 2

∑
(xt−x)(xt−1−x)∑

x2
t

ρ1+

+2
∑

(xt−x)(xt−1−x)∑
x2
t

ρ2 + ..+ 2
∑

(xt−x)(xt−1−x)∑
x2
t

ρs

]
⇒∞ (416)

1.9.3 Durbin-Watson test of autocorrelation

d =

T∑
t=1

(et − et−1)
2

T∑
t=1

e2
t

(417)

d =

T∑
t=1

(
e2
t − 2etet−1 + e2

t−1

)
T∑
t=1

e2
t

= 2 (1− ρ) ; ∵
T∑
t=1

e2
t '

T∑
t=2

e2
t−1 (418)

Autocorrelation coeffi cient is given by:
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ρ =

T∑
t=1

etet−1

T∑
t=1

e2
t

(419)

Autocorrelation and Durbin-Watson Statistics

d = 2 (1− ρ) (420)

ρ = 0 =⇒ d = 2 (421)

ρ = −1 =⇒ d = 4 (422)

Durbin-Watson Distribution

Transformation of the model in the presence of autocorrelation
when autocorrelation coeffi cient is known

Yt = β1 + β2Xt + ε
t

t = 1 ...T (423)

εt = ρεt−1 + vt (424)

Yt − ρYt−1 = (β1 − ρβ1) + β2 (Xt − ρXt−1) + ε
t
− ρεt−1 (425)

Y ∗t = β∗1 + β2X
∗
t + ε∗

t
(426)

Apply OLS in this transformed model β∗1 and β2 will have BLUE properties.
When autocorrelation coeffi cient is unknown, this method is similar to the above ones, except

that it involves multiple iteration for estimating ρ . Steps are as following:
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1. Get estimates β̂1 and β̂2 from the original model; get error terms êi and estimate ρ̂
2. Transform the original model multiplying it by ρ̂ and by taking the first difference,

3. Estimate ̂̂β1 and
̂̂
β2 from the transformed model and get errors ̂̂ei of this transformed

model
4. Then again estimate ̂̂ρ and use those values to transform the original model as

Yt − ρ̂Yt−1 = (β1 − ρ̂β1) + β2 (Xt − ρ̂Xt−1) + ε
t
− ρ̂εt−1 (427)

5. Continue this iteration process until ̂̂ρ converges.
PcGive suggests using differences in variables. Diagnos /ACF options in OLS in Shazam will

generate these iterations.

1.9.4 GLS to solve autocorrelation

In matrix notation
βOLS = (X ′X)

−1
(X ′Y ) (428)

βGLS =
(
X ′Ω−1X

)−1 (
X ′Ω−1Y

)
(429)

Ω−1 is inverse of variance covariance matrix.
Generalised Least Square
Take a regression

Y = Xβ + e (430)

Assumption of homoskedasticity and no autocorrelation are violated

var (εi) 6= σ2 for ∀ i (431)

covar (εiεj) 6= 0 (432)

The variance covariance of error is given by

Ω = E (ee′) =


σ2

1 σ12 .. σ1n

σ21 σ2
2 .. σ2n

: : : :
σn1 σn2 .. σ2

n

 (433)

Q′ΩQ = Λ (434)

Generalised Least Square

Ω = QΛQ′ = QΛ
1
2 Λ

1
2Q′ (435)

P = QΛ
1
2 (436)

P ′ΩP = I ; P ′P = Ω−1 (437)

Transform the model
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PY = βPX + Pe (438)

Y ∗ = βX∗ + e∗ (439)

Y ∗ = PY X∗ = PX and e∗ = Pe βGLS = (X ′P ′PX)
−1

(X ′P ′PY )

βGLS =
(
X ′Ω−1X

)−1 (
X ′Ω−1Y

)
(440)

1.9.5 Exercise 7

Suppose that you are estimating a log linear consumption function of the following form:

ln (Ct) = β0 + β1 ln (Yt) + β2 ln (Pt) + εt t = 1 ...T (441)

where C, Y and P are consumption, income and prices and εt is the random error
term. Use information in conyp.xls to estimate unknown parametersβ0,β1and β2

and answer following questions using these results.

1. (a) What are the estimates of β1and β2? Do these estimates have signs as you expected and
why?

(b) Does the Durbin-Watson Statistic show evidence of autocorrelation in the model? If so
how does it affect the properties of the OLS estimators of β1and β2?

(c) What is the 95 and 90 percent of confidence interval estimate of β1and β2?

(d) How well does this model can explain variation in consumption? How do you decide
overall fit of this model? What statistics do you use to decide at least there is one
significant variable in the model?

2. Consider a simple linear regression model.

Yt = β0 + β1Xt + εt t = 1 ...T (442)

Now assume that errors are correlated to each other over time with AR(1) process as:

εt = ρεt−1 + vt (443)

where vt is identically and normally distributed error term with zero mean and constant variance,
vt ∼ N(0, σ2).

1. (a) Illustrate how the graphical method can be applied to detect autocorrelation in a simple
regression model like above?

(b) What are consequences of autocorrelation in a regression model? Show how the existence
of such autocorrelation among the error terms affects the BLUE properties of the OLS
estimators.

(c) Define and derive the Durbin-Watson test statistics. Show how it can test for existence
or non existence of autocorrelation in a given estimation?

(d) How the autocorrelation can be removed if the ρ is known?
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(e) What is a spurious regression? Why does it arise and how does it affect the usefulness
of estimation from an OLS regression? What can be done to correct it?

Application:
Read data on growth rate of per capita GDP, exchange rate and inflation rates from the

www.imf.org for year 1980 to 2003 for China, India, South Africa, UK, USA and Brazil as con-
tained in PERCAP6.GLS. Test whether inflation and the exchange rate are the significant variables
in explaining the growth rate of per capita output (in PPP) in these economies. Determine whether
heteroskedasticity and autocorrelation exist in this regression using PcGive. Feel free to use Shazam
if you know and prefer it. Suggest a remedy for autocorrelation in a model like this.

1.10 Time Series

Time series models aim to explain the data generating process for {yt}∞−∞ =

{
y−∞.....y−1.y0.y1.y2...
.....yT .yT+1.yT+1.....

}
A Time series consists of trend, cycle, season and irregular component

Y = T × C × S × I (444)

In a simple method the moving average gives T ×C components and is used to isolate the S× I
components. For instance for a 12 monthly moving average

Y i =
1

12
(Y1 + Y2 + ......+ Y12) (445)

S × I =
T × C × S × I

T × C =
Yi

Y i
= zt (446)

Now to isolate the Irregular component I from S × I take out the seasonal elements from zt
assuming monthly data for 5 years (60 observations) compute the seasonal indices as following:

Month1 : z1 =
1

5
(z1 + z13 + z25 + z39 + z48) (447)

Month2 : z2 =
1

5
(z2 + z14 + z26 + z40 + z49) (448)

Month3 : z3 =
1

5
(z3 + z15 + z26 + z41 + z50) (449)

............................................

Month11 : z11 =
1

5
(z11 + z23 + z35 + z47 + z59) (450)

Month12 : z12 =
1

5
(z12 + z24 + z36 + z46 + z60) (451)

Deseasonalisation of data Y di = Yi
zi
and irregular component should be i = zt

zi
.

Trends:
Simple extrapolation
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Yt = c1 + c2t (452)

Exponential growth

Yt = Aert (453)

Autoregressive model

Yt = c1 + c2Yt−1 (454)

Log trend
ln (Yt) = c1 + c2 ln (Yt−1) (455)

Quadratic trends:

Yt = c1 + c2t+ c3t
2 (456)

Logistic trend:

Yt =
1

k + bt
b > 1 (457)

Yt = ek1− k2
t (458)

ln (Yt) = k1 −
k2

t
(459)

auto lagged with declining weights α < 1

Yt = αYt−1 + α (1− α)Yt−2 + α (1− α)
2
Yt−2 + ...+ α (1− α)

n
Yt−2 (460)

Forecasting forward with these models is obvious.

1.10.1 Time series process

Simplest of these is a trend model

Yt = βt+ εt (461)

with mean E(Yt) = βt and variance E (Yt − βt )
2

= E (εt)
2

= σ2
ε

Or it could have been just a constant plus a Gaussian white noise εt ∼ N
(
0, σ2

)
as:

Yt = µ+ εt (462)

with mean E(Yt) = µ and variance E (Yt − µ )
2

= E (εt)
2

= σ2
ε

Autocovariance of {yt}∞−∞ for I realisations is

γtj = E (Yt − µ )E (Yt−j − µ ) = E (εt)E (εt−j) = 0 for j 6= 0 (463)

Stationarity
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when neither mean µ nor the autocovariance γij depend on time t then the Yt is covariance
stationary or weakly stationary.

E(Yt) = µ for ∀ t (464)

E (Yt − µ)E (Yt−j − µ) = γj for any t and j = {σ
2
ε for j=0

0 for j 6=0 (465)

For instance 836 is stationary while 835 not covariance stationary because its mean βt is function
of time.
If the process is stationary γj is the same for any value of t γj = γ−j

γj = E (Yt+j − µ)E
(
Y(t+j)−j − µ

)
= E (Yt+j − µ)E (Yt − µ) = E (Yt − µ)E (Yt+j − µ) = γ−j

(466)

1.10.2 Stationarity

What is a stationary variable?
When its mean and variance are constant.

E (Yt) = µ (467)

var (Yt) = σ2 (468)

When mean and variances are not constant, that variable is non-starionary, for instance a
random walk

Yt = Yt−1 + εi t = 1 ...T (469)

In an autoregressive model

Yt = ρYt−1 + εi t = 1 ...T (470)

if the autocorrlation coeffi cient ρ = 1 then it becomes a random walk. This variable is non-
stationary.

Yt =

∞∑
s=1

ρsεt−s (471)

Current realisations are accumulation of past errors.
Prove that variance of this is .

var (Yt) = t.σ2 (472)

Regression among non-stationary variables becomes spurious unless they are cointegrated.
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1.10.3 Unit root and order of integration

A Non-Stationary variable can be made stationary by taking first difference as:

∆Yt = Yt − Yt−1 (473)

If a variable becomes stationary by taking the first difference it is said to be intergrated of order
one

I (1) (474)

If it becomes stationary after differencing d time then it is called I (d) variable.
Dickey-Fuller and Phillip-Perron unit root tests are used to determine stationarity of a variable.

Yt = ρYt−1 + ε
i

(475)

1.10.4 Level, drift, trend and lag terms in unit root test

Dickey-Fuller and Phillip-Perron unit root tests are used to determine stationarity of a variable.

Yt = ρYt−1 + ε
i

(476)

∆Yt = (ρ− 1)Yt−1 + ε
i
; ∆Yt = γYt−1 + ε

i
; (477)

Random walk with drift

∆Yt = α0 + γYt−1 + ε
i

(478)

trend stationary

∆Yt = α0 + α1t+ γYt−1 + ε
i

(479)

Augmented Dickey-Fuller test

∆Yt = α0 + α1t+ γYt−1 +

m∑
i=1

ρs∆Yt−i + ε
i

(480)

Cointegration in a regression

Yt = β1 + β2Xt + ε
t

(481)

First do the regression and then estimate the error as

ε̂t = Yt − β̂1 − β̂2Xt (482)

Yt and Xt are cointegrated if the estimated error is stationary ε̂t ∼ I (0)

ε̂t = ρε̂t−1 + εt (483)

if ρ < 1 the error ε̂t is stationary and Yt and Xt are cointegrated. They have a long run
relationship.
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When variables are cointegrated there is an error correction mechanism.

Yt = ϕ2Xt + εt (484)

Yt = Xt + εt ; ϕ2 = 1 (485)

Cointegration: Engle-Granger Representation Theorem

εt = Yt −Xt (486)

For test of cointegration

∆εt = γεt−1 + ut (487)

∆ (Yt −Xt) = γ (Yt−1 −Xt−1) + ut (488)

∆Yt = ∆Xt + γ (Yt−1 −Xt−1) + ut (489)

This is an error correction model.Term γ (Yt−1 −Xt−1) gives the adjustment towards the long
run equilibrium and ∆Xt denotes the short run impact.

H0 : No cointegration; t- statistics can be used instead of DF test in error correction model.

Granger Causality Test Estimate the following model where Mt is money Yt is GDP and test
the causality as below:

Yt =

n∑
i=1

αiMt−i +

m∑
j=1

βjYt−j + u1,t (490)

Mt =

n∑
i=1

λiMt−i +

m∑
j=1

δjYt−j + u2,t (491)

Unidirection causality from Mt to Yt requires
n∑
i=1

αi 6= 0 and
m∑
j=1

δj = 0

Unidirection causality from Yt to Mt requires
m∑
j=1

δj 6= 0 and
n∑
i=1

αi = 0

Bilateral causality between Yt to Mt requires
n∑
i=1

αi 6= 0 and
m∑
j=1

δj 6= 0

Independence of Yt to Mt from each other
n∑
i=1

αi = 0 and
m∑
j=1

δj = 0
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1.10.5 Exercise 8

Stationarity, Unit Root and Cointegarion

1. Study the monthly data on unemployment rate and inflation since 1972:1 to 2004:8 as given
in “unmnth.xls”file. Use GiveWin PcGive to

• Draw diagrams to represent the rates of unemployment among males and females and the
RPI over this period.
• Ascertain whether unit root exists in the overall unemployment rate, URT and RPI at 5%

and 1% level of significance in level, in log and in the first difference of these series.
• Detrend the data with Hodrik-Prescott filter and conduct stochastic volatility tests.

2. Regress unemployment rate on inflation rate in levels and in the first differences. Test whether
these series are cointegrated using the Engle-Granger procedure. (hint: stationarity of resid-
uals).

3. The time series and represent the underlying data generating processes (DGP) of consumption
{Ct} and income {Yt}. Answer the following questions regarding the properties these series.

(a) What is meant by saying that{Ct} and {Yt} are stationary series? Why is it important
that the series are stationary for a robust regression analysis?

(b) How do you determine whether {Ct} and {Yt} are stationary series, or not?
(c) Analyse the properties of these series when they follow a random walk, or have a unit

root.

(d) What is the meaning of the order of integration in this respect? Discuss any three
different methods of checking for stationarity.

(e) What is the meaning of cointegration between the series and ? How would you decide
whether these series{Ct} and {Yt} are co-integrated, or not?

(f) If the original series {Ct} and {Yt} are not co-integrated, what transformation can be
applied to achieve co-integration? How do you decide the order of co-integration?

(g) Use time series of consumption and income contained in Quarterly_cons.xls. Determine
the order of integration for both consumption and income. Is there an evidence of
cointegration between consumption and income in levels or in the first differences?

1.11 Restricted Least Square

Restrictions in Multiple Regression: Restricted Least Square Estimation (Judge-Hill-Griffi th-Lutkopohl-
Lee (1988): 236)
OLS procedure to minimise the sum of squared error terms.

Min
β

S (β) = e′e = (Y − βX)
′
(Y − βX)

= Y ′Y − Y ′ (βX)− (βX)
′
Y + (βX)

′
(βX) (492)

= Y ′Y − 2βX ′Y + (βX)
′
(βX) (493)
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∂S (β)

∂β
= −2X ′Y + 2β̂X ′X = 0 =⇒ β̂ = (X ′X)

−1
X ′Y (494)

Imposing a restriction involves constrained optimisation with a Lagrange multiplier.

L = e′e+ 2λ
(
r′ − β′R′

)
= (Y − βX)

′
(Y − βX) + 2λ

(
r′ − β′R′

)
= Y ′Y − 2βX ′Y + (βX)

′
(βX) + 2λ

(
r′ − β′R′

)
(495)

Partial derivation of this constrained minimisation function (Lagrangian function) wrt β and λ
yields

∂L

∂β
= −2X ′X + 2X ′Xb− 2λR′ = 0 (496)

∂L

∂λ
= −2 (r −Rb) = 0 (497)

X ′Xb = X ′Y + λR′ (498)

b = (X ′X)
−1
X ′Y + (X ′X)

−1
R′λ (499)

b = β̂ + (X ′X)
−1
R′λ (500)

This is the restricted least square estimator but need still to be solved for λ. For that multiply
the above equation both sides by R

Rb = Rβ̂ +R (X ′X)
−1
R′λ (501)

λ =
[
R (X ′X)

−1
R′
]−1 [

Rb−Rβ̂
]

(502)

λ =
[
R (X ′X)

−1
R′
]−1

[r −Rb] (503)

b = β̂ + (X ′X)
−1
R′λ = β̂ + (X ′X)

−1
R′
[
R (X ′X)

−1
R′
]−1

[r −Rb] (504)

Thus the restricted least square estimator is a linear function of the restriction, [r −Rb].

E (b) = E
(
β̂
)

+ (X ′X)
−1
R′
[
R (X ′X)

−1
R′
]−1

[r −RE (b)] (505)

E (b) = E
(
β̂
)

(506)

For variance we need to use property of an idempotent matrix AA=A.
Such as
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A =

[
0.4 0.8
0.3 0.6

]
(507)

Recall in unrestricted case β̂ = (X ′X)
−1
X ′Y = β + (X ′X)

−1
X ′e

E (b)− β = (X ′X)
−1
X ′e+ (X ′X)

−1
R′
[
R (X ′X)

−1
R′
]−1 [

r −RE (b)−R (X ′X)
−1
X ′e

]
(508)

Since Rb− r = 0

E (b)− β = M (X ′X)
−1
X ′e (509)

Where M is the idempotent matrix:

M = I − (X ′X)
−1
R′
[
R (X ′X)

−1
R′
]−1

R (510)

The variance covariance matrix of

cov (b) = [E (b)− β] [E (b)− β]
′

= E
[
M (X ′X)

−1
X ′ee′X (X ′X)

−1
M ′
]

(511)

cov (b) = σ2M (X ′X)
−1
M (512)

cov (b) = σ2M (X ′X)
−1 (513)

M = σ2

{
I − (X ′X)

−1
R′
[
R (X ′X)

−1
R′
]−1
}
R (514)

Thus the variance of the restricted least square estimator is smaller than the variance of the
unrestricted least square estimator.

1.11.1 Instrumental variables

Normal equations with instrumental variables

Yt = α0 + α1Xt + α2Yt−1 + ut (515)

Xt−1 as instrument for α2Yt−1

Normal equations for two explanatory variable case∑
Yt = α̂0N + α̂1

∑
Xt + α̂2

∑
Xt−1 (516)∑

XtYt = α̂0

∑
Xt + α̂1

∑
X2
t + α̂2

∑
Xt−1Yt−1 (517)∑

Xt−1Yt = α̂0

∑
Xt−1 + α̂1

∑
XtXt−1 + α̂2

∑
Xt−1Yt−1 (518)

This is different than the normal equations when instruments were not used.∑
Yt = α̂0N + α̂1

∑
Xt + α̂2

∑
Yt−1 (519)∑

XtYt = α̂0

∑
Xt + α̂1

∑
X2
t + α̂2

∑
Xt−1Yt−1 (520)∑

Yt−1Yt = α̂0

∑
Yt−1 + α̂1

∑
XtYt−1 + α̂2

∑
Y 2
t−1 (521)
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1.11.2 Sargan test (SARG) is used for validity of instruments

• Divide variables which are uncorrelated and correlated with the error terms X1, X2, ..., Xp

and Z1, Z2, ..., Zs . Use instruments.W1,W2, ...,Wp

• Obtain estimates of ût from the original regression.
• Replace Z1, Z2, ..., Zs by instruments, W1,W2, ...,Wp .
• Regress on all and but exclude . Obtain R2 of the regression.
• Compute SARG statistics SARG = (n− k)R2 where n is the number of observations and

k is the number of coeffi cients; SARG follows χ2 distribution with df = s− p.
• H0: W instruments are valid if the computed SARG exceed the χ2critical value ; if H0: is

rejected at least one instrument is not valid.
Chesher A. and A. Rosen, “An instrumental variable random coeffi cients model for binary

outcomes,”forthcoming, Econometrics Journal
Chesher A., A. Rosen and K. Smolinski (2013) “An instrumental variable model for multiple

discrete choice,”Quantitative Economics, 4, 157-196.

1.12 Distributed Lag Models : Koyck, Almon, ARDL

Ct = β0 + β1Xt + β2Xt−1 + β3Xt−2 + β4Xt−3 + ...+ +βkXt−k + εt

t = 1 ...T (522)

Reasons for lags
• Psychological reasons: it takes time to believe something.
• Technological reasons: takes time to change new machines or to update.
• Institutional reasons: rules, regulations, notices, contracts.
Lagged marginal effect in consumption of an increase in income at period 0.
Koyck’s Model
• short run multiplier : β1

• intermediate run multiplier: β1 + β2 + β3

• long run multiplier:
∑
β1 + β2 + β3 + ...+ βk

• proportion of the long run impact at a certain period: β∗ = β1

β

Koyck’s procedure: β2 = λβ1;β3 = λ2β1; βk = λkβ1 and so on.

Ct = β0 + β1Xt + λβ1Xt−1 + λ2β1Xt−2 + λ3β1Xt−3 + ...+ λkβ1Xt−k + εt (523)

Koyck’s procedure
Koyck procedure converts distributed lag model into an autoregressive model. It involves (a)

multiplying (2) by λ, which is between 0 and 1, 0 < λ < 1; (b) takking one period lag of that and
(c) subtracting from (2)

λCt = λβ0 + λβ1Xt + λ2β1Xt−1 + λ3β1Xt−2

+λ4β1Xt−3 + ...+ λk+1β1Xt−k + εt (524)
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Ct = β0 + β1Xt + λβ1Xt−1 + λ2β1Xt−2 + λ3β1Xt−3

+...+ λkβ1Xt−k + εt (525)

λCt−1 = λβ0 + λβ1Xt−1 + λ2β1Xt−2 + λ3β1Xt−3 + λ4β1Xt−4

+...+ λk+1β1Xt−k−1 + εt−1 (526)

Take the difference between these two

Ct − λCt−1 = (1− λ)β0 + β1Xt + λkβ1Xt−k + εt − εt−1 (527)

Term λkβ1Xt−k −→ 0 as 0 < λ < 1

Ct = (1− λ)β0 + β1Xt + λCt−1 + ut (528)

ut = εt −εt−1

By cancelling terms it transforms to an autoregressive equation as following:

In steady state Ct = Ct−1 = C ;

C = β0 +
β1

(1− λ)
Xt +

ut
(1− λ)

(529)

term β1

(1−λ) gives the long run impact of the change in Xt on Ct
Choice of Length of Lag in Koyck Model
Median lag: - log 2

log(λ) : 50% of the long run impact is felt over this lag

Mean lag:

∞∑
k=0

kβk

∞∑
k=0

βk

: mean of the total impact

Koyck mean lag: λ
(1−λ) : average lag length

How to choose lag length
Minimise Akaiki information criteria

AIC = ln
SSEN
T −N +

2 (n+ 2)

T −N (530)

Minimise Swartz criteria (minimise these values)

SC (N) = ln
SSEN
T −N +

2 (n+ 2) ln (T −N)

T −N (531)

Problems with Koyck Model
• It is very restrictive. The successive coeffi cient may not decline geometrically when 0 < λ < 1.
• There is no a-priori guide to the maximum length of lag ; Tinbergen suggests to use trial and

error, first regress Ct on Xt and Xt−1, if the coeffi cients are significant, keep introducing lagged
terms of higher order.
• But more lags implies fewer degrees of freedom
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• Multicollinearity may appear
• Data mining
• Autoregressive term is correlated with the error term, Durbin-Watson statistics cannot be

applied in this case. Need to use Durbin-h statistics which is defined as

h =

(
1− 1

d

)√
T − 1

1− (T − 1)SE (β2)
2 (532)

Almon’s polynomial lag model
Koyck procedure is very restrictive where the values of coeffi cients decline in geometric pro-

portions. However impact of economic variables may be better explained by a quadratic cubic or
higher order polynomial of the form:

Ct = β0 + β1Xt + λβ1Xt−1 + λ2β1Xt−2 + λ3β1Xt−3 + ...+ λkβ1Xt−k + εt (533)

quadratic impact structure: βi = α0 + α1 · i+ α2 · i2 + α3

cubic impact structure: βi = α0 + α1 · i+ α2 · i2 + α3 · i3
k-order polynomial lag structure: βi = α0 + α1 · i+ α2 · i2 + α3 · i3 + ...+ αk · ik

Ct = β0 +
β1

(1− λ)
Xt +

ut
(1− λ)

(534)

Ct = β0 +

∞∑
k=0

(
α0 + α1 · i+ α2 · i2 + α3 · i3 + ...+ αk · ik

)
Xt−1 + ut (535)

Advantages of Almon model over Koyck
a. Flexible; can incorporate variety of lag
b. do not have to decline geometrically, Koyck had rigid lag structure
c. No lagged dependent variable in the regression
d. Number of coeffi cient estimated significantly smaller than in the Koyck model
e. is likely to be multicollinear.
Estimates of a polynomial distributed lag model
Autoreggressive Distributed Lag Model: ARDL (1,1)

Yt = µ+ β0Xt + β1Xt−1 + γYt−1 + εt (536)

This can be represented by an infinitely distributed lag as following

Yt = µ+ β0Xt + β1Xt−1 +

l∑
i=0

γi−l (β1 + γβ0)Xt−1 + εt (537)

lag weights:
α0 = β0; α1 = (β1 + γβ0) ; α2 = γ (β1 + γβ0) = γ2α1; ....,αS = γSα1

ARDL (2,2)

Yt = µ+ β0Xt + β1Xt−1 + β2Xt−2 + γ1Yt−1 + γ2Yt−2 + εt (538)
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1.13 Simultaneous equation system

• Klein L. R. (1946) Macroeconomics and the Theory of Rational Behavior, Econometrica, 14,
2, 93-108

• Klein L. R. (1947) The Use of Econometric Models as a Guide to Economic Policy,Econometrica,
15, 2 , 111-151

• Klein L. R. (1971) Whither Econometrics?,Journal of the American Statistical Association,
66, 334, 415-421

Main Features of Simultaneous Equation System

• Single equation models have Y dependent variables to be determined by a set of X variables
and the error term.

• one way causation from independent variables to the dependent variables.

• However, many variables in economics are interdependent and there is two way causation.

• Consider a market model with demand and supply.

• Price determines quantity and quantity determines price.

• Same is true in national income determination model. Consumption and income.

Main Feature of Simultaneous Equation System

• Both quantities and prices and income and consumption are determined simultaneously.

• A system of equations, not a single equation, need to be estimated in order to be able to
capture this interdependency among variables.

• The main features of a simultaneous equation model are:
(i) two or more dependent (endogenous) variables; a number of exogenous variables

(ii) a set of equations

• Computationally cumbersome, highly non-linearity in parameters and errors in one equation
transmitted through the whole system

Indentification issue in a Market Model

• Consider a relation between quantity and price

Qt = α0 + α1Pt + ut (539)

• A priory it is impossible to say whether this is a demand or supply model, both of them have
same variables.

• If we estimate a regression model like this how can we be sure whether the parameters belong
to a demand or supply model?

• We need extra information. Economic theory suggests that demand is related with income of
individual and supply may respond to cost or weather condition; e.g. lagged price level Pt−1.
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1.13.1 Market Model

In equilibrium quantity demand equals quantity supplied
Qdt = Qst

α0 + α1Pt + α2It + u1,t = β0 + β1Pt + β2Pt−1 + u2,t (540)

Solve for Pt

α1Pt − β1Pt = β0 − α0 + β2Pt−1 + α2It + u2,t − u1,t (541)

Pt =
β0 − α0

α1 − β1

− α2

α1 − β1

It +
β2

α1 − β1

Pt−1 +
u2,t − u1,t

α1 − β1

(542)

Using this price to solve for quantity

Qdt = α0 +α1Pt+α2It+u1,t = α0 +α1

[
β0−α0

α1−β1
− α2

α1−β1
It + β2

α1−β1
Pt−1 +

u2,t−u1,t

α1−β1

]
+α2It+u1,t

Qt =
α1β0 − α0β1

α1 − β1

− α2β1

α1 − β1

It +
α1β2

α1 − β1

Pt−1 +
α1u2,t − β1u1,t

α1 − β1

(543)

Pt = Π1,0 + Π1,1Pt−1 + Π1,2It + V1,t (544)

Qt = Π1,0 + Π1,1Pt−1 + Π1,2It + V1,t (545)

Π1,0 =
β0 − α0

α1 − β1

Π1,1 =
−α2

α1 − β1

Π1,2 =
−β2

α1 − β1

;V1,t =
u2,t − u1,t

α1 − β1

Π2,0 =
α1β0 − α0β1

α1 − β1

Π2,1 = − α2β1

α1 − β1

Π2,2 =
α1β2

α1 − β1

; (546)

V1,t =
u2,t − u1,t

α1 − β1

;V2,t =
α1u2,t − β1u1,t

α1 − β1

(547)

1.13.2 Keynesian Model

Ct = β0 + β1Yt + ut (548)

Yt = Ct + It (549)

β0 and β1are structural parameters ; Yt and Ct are endogenous variables and It is exogenous
variable.
In the income determination model (example 2) the reduced form is obtained by expressing C

and Y endogenous variables in terms of I which is the only exogenous variable in the model.

Ct =
β0

1− β1

+
β1

1− β1

It +
1

1− β1

u1,t (550)

Yt =
β0

1− β1

+
1

1− β1

It +
1

1− β1

u1,t (551)
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Ct = Π1,1 + Π1,2It + V1,t (552)

Yt = Π2,1 + Π2,2It + V2,t (553)

Retrieving the structural parameters of the model:

Π1,1 =
β0

β1

Π1,2 =
β1

1− β1

Π2,1 =
β0

1− β1

Π2,2 =
1

1− β1

(554)

Keynesian Model: Simultaneity Bias

β̂1 =

∑
ctyt∑
y2
t

=

∑(
Ct − C

)
yt∑

y2
t

=

∑
Ctyt∑
y2
t

(555)

β̂1 =

∑
Ctyt∑
y2
t

=

∑
(β0 + β1Yt + ut ) yt∑

y2
t

(556)

cov(Y, e) = E (Yt − E (Yt))E (ut − E (ut)) = E

(
ut

1− β1

)
ut =

σ2
e

1− β1

(557)

p lim
(
β̂1

)
= β1 +

∑
ut yt∑
y2
t

= β1 +

∑
ut yt
T∑
y2
t

T

= β1 +

σ2
e

1−β1

σ2
y

(558)

Techniques of estimation of simultaneous equation models

• Single Equations Methods: Recursive OLS

• Ordinary Least Squares

• Indirect Least Squares

• Two Stage Least Squares Method

• System Method

• Generalised Least Square

• Seemingly Unrelated Regression Equations

1.14 Recursive and 2SLS estimation

Recursive estimation

Y1,t = β10 + γ11X1,t + γ12X2,t + e1,t (559)

Y2,t = β20 + β21Y1,t + γ21X1,t + γ22X2,t + e2,t (560)

Y3,t = β30 + β31Y1,t + β33Y2,t + γ31X1,t + γ32X2,t + e3,t (561)
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Apply OLS to (1) and get the predicted value of Ŷ1,t. Then use Ŷ1,t into equation (2) and apply
OLS to equation (2) to get predicted value of Ŷ2,t. And Finally use predicted values of Ŷ1,t and
Ŷ2,t to estimate in equation (3).
Two Stage Least Square Estimation (2SLS)
Consider a hybrid of Keynesian and classical model in which income Y1,t is function of money

Y2,t investment X1,t and government spending X2,t .

Y1,t = β1,0 + β11Y2,t + γ11X1,t + γ12X2,t + e1,t (562)

Y2,t = β2,0 + β21Y1,t + e2,t (563)

First estimate Y1,t is all exogenous variables.

Y1,t = Π̂1,0 + Π̂1,1X1,t + Π̂1,2X2,t + ê1,t (564)

Obtain predicted Ŷ1,t

Ŷ1,t = Π̂1,0 + Π̂1,1X1,t + Π̂1,2X2,t (565)

Then put in

Y1,t = Ŷ1,t + ê1,t (566)

In the second stage put this into the money supply equation Y2,t = β2,0 + β21Y1,t + e2,t

Y2,t = β2,0 + β21

(
Ŷ1,t + ê1,t

)
+ e2,t (567)

Y2,t = β2,0 + β21Ŷ1,t + β21ê1,t + e2,t (568)

Y2,t = β2,0 + β21Ŷ1,t + e∗2,t (569)

e∗2,t = β21ê1,t + e2,t (570)

Application of the OLS in this equation gives consistent estimators.
Instrumental variable Method
Rank and Order Conditions for Identification
Order condition:

K − k > m− 1 (571)

Rank condition: =>
ρ (A) > (M − 1) (M − 1) (572)

order of the matrix.
M = number of endogenous variables in the model
K = number of exogenous variables in the model including the intercept
m = number of endogenous variable in an equation
k = number of exogenous variables in a given equation
Rank condition is defined by the rank of the matrix, which should have a dimension (M-1),

where M is the number of endogenous variables in the model.
Determining the Rank of the Matrix
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• 1. Rank of matrix is the order of non-singular matrix

2. Rank matrix is formed from the coeffi cients of the variables (both endogenous and ex-
ogenous) excluded from that particular equation but included in the other equations in
the model.

3. The rank condition tells us whether the equation under consideration is identified or not.

4. The order condition tells us if it is exactly identified or overidentified.

Steps for Rank Condition

• 1. Write down the system in the tabular form

2. Strike out the coeffi cients corresponding to the equation to be identified

3. Strike out the columns corresponding to those coeffi cients in 2 which are nonzero.

4. The entries left in the table will give only the coeffi cients of the variables included in
the system but not in the equation under consideration. From these coeffi cients form all
possible A matrices of order M-1 and obtain a corresponding determinant. If at least
one of these determinants is non-zero then that equation is identified.

Summary of Order and Rank Conditions of Identification

• 1. If (K − k) > (m− 1) and the order of rank ρ (A) is M-1 then the concerned equation is
overidentified.

2. If (K − k) = (m− 1) and the order of rank ρ (A) is M-1 then the equation is exactly
identified.

3. If (K − k) > (m− 1) and he order of rank ρ (A) is less than M-1 then the equation is
underidentified.

4. If (K − k) < (m− 1) the structural equation is unidentified. The the order of rank ρ (A)
is less M-1 in this case.

1.14.1 Empirical part: procedure in PcGive

• 1. construct data set in macroeocnomic variables ( Y, C, I , G, T , X, M, MS, i, inflation,
wage rate, exchange rate etc)

2. save data in *.csv format; e.g. macro.csv

3. Start GiveWin and PcGive and open data file

4. choose multiple equation dynamic modelling

5. determine endogenous and exogenous variables and run simultaneous equation using
3SLS or FIML

6. Study coeffi cients

7. Change policy variables and construct few scenarios

Homeowrk: construct reasonable small scale macro model from the data in macro.csv. Project
values of exogenous variables; do forecasts.
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1.14.2 Excercise 9

1. Suppose that you have a simple model of consumption and income as following
Consumption function:

Ct = β0 + β1Yt + ut (573)

National income identity:
Yt = Ct + It (574)

1. (a) Use rank and order conditions to find whether the consumption function is identified in
this model.

(b) Write a reduced form for this system. Show how you could retrieve the structural
coeffi cientsβ0 and β1 if you applied OLS to this reduced form.

(c) Show that application of OLS to (1) generates a biased estimate of β1.

(d) What other method would you recommend to get an unbiased and best estimator for
this model? Write steps to be followed until you get the structural coeffi cients β0 and
β1.

(e) Write a short note on how this model could be used to make a historical simulation of
consumption and income series.

2. Consider a market model for a particular product.
Demand: Qdt = α0 + α1Pt + α2It + u1,t (1)
Supply: Qst = β0 + β1Pt + β2Pt−1 + u2,t (2)
Here Qdt is quantity demanded and Q

s
t is quantity supplied, Pt is the price of commodity,Pt−1

is price lagged by one period, It is income of an individual, u1,t and u2,t are independently and
identically distributed (iid) error terms with a zero mean and a constant variance.Qt and Pt are en-
dogenous variables and Pt−1and It are exogenous variables α0,α1,α2,and β0,β1,β2are six parameters
defining the system.

1. (a) How can simultaneity bias occur if one tries to apply OLS to each of the above equations.

(b) Use rank and order conditions to judge whether each of these two equations are over-,
under- or exactly identified.

(c) Write down the reduced form for this system.

(d) How would you estimate the coeffi cients of the reduced form equations? Write down the
estimator.

(e) If equations are identified explain how you may retrieve the structural parameters α0,α1,α2,and
β0,β1,β2, and from the coeffi cients of the reduced form equations.
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1.14.3 Seemming Unrelated Regression (SUR) MODEL

Pooling Cross Section and Time Series: Seemming Unrelated Regression (SUR) MODEL

• SUR if formed by stacking models

Y1 = X1β + e1 (575)

Y2 = X2β + e2 (576)

... (577)

Ym = Xmβ + em (578)

There are m equations and T observations in the SURE system (in growth rate example we
have 151 countries and 31 observations). They can be stacked into one large equation system as
following.
There are m equations and T observations in the SURE system (in growth rate example we

have 151 countries and 31 observations). They can be stacked into one large equation system as
following. 

Y1

Y2

.

.
Ym

 =


X1 0 . . 0
0 X2 . . 0
. . X3 . 0
. . . . .
0 0 . . Xm


β1

β2

.

.
βm

+


e1

e2

.

.
em

 (579)

• Each Ym and emhas a dimension of T by 1 and Xm has T by K dimension and each βm has
K by 1 dimension. The covariance matrix of errors has TM by TM dimension.

Seemming Unrelated Regression (SUR) MODEL: Assumptions

• Mean of ei,t is zero for every value of , E (ei,t) = 0

• variance of ei,t is constant for every ith observation, var (e1t) = σ2
i

• cov (ei,t, ei,s) = 0 for al t=s; this also means there is no autocorrelation

• All of the above assumptions are standard to the OLS assumptions.

• The major difference lies on assumption of contemporaneous correlation across the disturbance
terms in above two models.

• cov (ei,t, ej,s) = σ2
i,j The systems are related due to errors.

Variance Covariance Structure in SUR MODEL

• Dimension of each of the σi,j , like that of the identity matrix I, is T by T, and reflects the
variance covariance matrix of the stacked regression.
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• The Kronnecker product Σ⊗ Iis a short way of writing this covariance matrix.

• Σ is the variance covariance matrix

• ⊗ is the symbol for the Kronnecker product

• I is Identity Matrix with T×M by T×M dimension.

ee′ =


e1
e2
.
.
em

 [ e1 e2 . . em
]

=


e21 e1e2 e1e3 e1e4 e1e5
e1e2 e22 e2e3 e2e4 e2e5
e1e3 e2e3 e23 e3e4 e4e5
e1e4 e4e2 e4e3 e24 e4e5
e1e5 e5e2 e5e3 e5e4 e25

 ( 5 8 0 )

E (ee′) =


var (e1) cov (e1e2) cov (e1e3) cov (e1e4) cov (e1e5)
cov (e1e2) var (e2) cov (e2e3) cov (e2e4) cov (e2e5)
cov (e1e3) cov (e2e3) var (e3) cov (e3e4) cov (e4e5)
cov (e1e4) cov (e4e2) cov (e4e3) var (e4) cov (e4e5)
cov (e1e5) cov (e5e2) cov (e5e3) cov (e5e4) var (e5)

 ( 5 8 1 )

E (ee′) =


σ2

1 σ1,2 σ1,3 σ1,4 σ1,5

σ2,1 σ2
2 σ2,3 σ2,4 σ2,5

σ3,1 σ3,2 σ2
3 σ3,4 σ3,5

σ4,1 σ4,2 σ4,3 σ2
4 σ4,5

σ5,1 σ5,2 σ5,3 σ5,4 σ2
5

 = V = Σ⊗ I (582)

Application of the OLS technique individual equations generates inconsistent results. Sure
method aims to correct this problem by estimating all equations simultaneously.
The SURE method is essentially a generalised least square estimator. Note

V −1 = Σ−1 ⊗ I (583)

Aitken generalised least square

β̂ =
[
X ′V −1X

]−1
X ′V −1Y =

[
X ′
(
Σ−1 ⊗ I

)
X
]−1

X ′
(
Σ−1 ⊗ I

)
Y (584)

β̂ =


σ1,1X

′
1X1 σ1,1X

′
1X2 σ1,1X

′
1X3 σ1,mX

′
1Xm

σ2,1X
′
2X1 σ2,2X

′
2X2 σ2,3X

′
2X3 σ2,mX

′
2Xm

σm,1X
′
mX1 σm,2X

′
mX2 σm,3X

′
mX3 σm,4X

′
mXm





∑
σ1,jX

′
1Yj

∑
σm,jX

′
mYj

 ( 5 8 5 )

Steps for SUR Estimation

• Estimate each equation separately using the least square technique.

• Use the least square residuals from step 1 to estimate the error term.

• Use the estimates from the second step to estimate two equations jointly within a generalised
least square framework. If m=2 the variance covariance matrix will be as given below.

Estimation of Seemming Unrelated Regression (SUR) by GLS

•
Ω =

(
σ2

1 σ1,2

σ2,1 σ2
2

)
(586)

Using a theorem in matrix algebra W can be decomposed into two parts as
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P ′P = Ω−1 (587)

Use this partition of Ω to transform the original model as

Y = Xβ + ε (588)

βOLS = (X ′X)
−1

(X ′Y ) (589)

Estimation of Seemming Unrelated Regression (SUR) by GLS
Transform it to

P ′Y = P ′Xβ + P ′ε (590)

Y ∗ = X∗β + ε∗ (591)

βGLS = (X ′P ′PX)
−1

(X ′P ′PY ) (592)

In matrix notation

βGLS =
(
X∗′Ω−1X∗

)−1 (
X∗′Ω−1Y ∗

)
(593)

Ω−1 is inverse of variance covariance matrix.
The GLS estimates are best, linear and unbiased estimators of the coeffi cients in the SURE

system.

1.15 Panel Data Model

Panel Data
for i = 1,. . . .N countries and t = 1,. . . .,T years

Table 14: Structure of Panel Data
Dependent Variable Explanatory Variable Random Error

y1,1 x1,1 e1,1

. . .
y1,T x1,T e1,T

y2,1 x2,1 e2,1

. . .
y2,T x2,T e2,T

. . .
yN,1 xN,1 e,1
. . .

y2,T x2,T e2,T
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Panel Data Model: Fixed Effects

yi,t = αi + xi,tβ + ei,t ei,t ∼ IID
(
0, σ2

e

)
(594)

where parameter αi picks up the fixed effects that differ among individuals,β is the vector of
coeffi cients on explanatory variables. These parameters can be estimated by OLS when N is small
but not when that is large but the model need to be transformed to the least square dummy variable
method when N is too large.

yi = αi + xiβ + ei yi = T−1
∑
i

yi,t (595)

yi,t − yi = (xi,t − xi)β + (ei,t − ei ) (596)

fixed effect least square dummy variable estimator of β is

βFE =

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′
)−1 T∑

t

N∑
i

(xi,t − xi) (yi,t − yi)
′ (597)

αi = yi − xiβFE (598)

Panel Data Model: Fixed Effect
fixed effect least square dummy variable estimator of β is

βFE =

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′
)−1 T∑

t

N∑
i

(xi,t − xi) (yi,t − yi)
′ (599)

αi = yi − xiβFE (600)

These estimators are unbiased, consistent and effi cient with corresponding covariance matrix
given by:

cov (βFE) = σ2
e

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′
)−1

(601)

σ2
e =

1

N (T − 1)

T∑
t

N∑
i

(yi,t − αi − xi,tβFE) (602)

Panel Data Model: Random Effect
Random effect models are more appropriate for analysing determinants of growth as

yi,t = µ+ xi,tβ + αi + ei,t (603)

where αi ∼ IID
(
0, σ2

α

)
are individual specific random errors and ei,t ∼ IID

(
0, σ2

e

)
are

remaining random errors.

αiιT + ei where ι
T

= (1, 1, .....1) (604)
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var (αiιT + ei) = Ω = σ2
αιT ι

′
T

+ σ2
eIT (605)

Errors are correlated therefore this requires estimation by the Generalised Least Square estima-
tor. Transform the model by pre-multiplying by Ω−1 where

Ω−1 = σ2
e

[
IT −

σ2
α

σ2
e + Tσ2

α

ι
T
ι′
T

]
(606)

Panel Data Model: Random Effect

βGLS =

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′ +
N

ψT
∑
i

(xi,t − xi) (xi,t − xi)′
)−1

(
T∑
t

N∑
i

(xi,t − xi) (yi,t − yi)
′
+ ψT

N∑
i

(xi,t − xi) (yi,t − yi)
′
)

(607)

Ω =


σ2
α + σ2

e σ2
α σ2

α . . σ2
α

σ2
α σ2

α + σ2
e . . . .

. . . . . .

. . . . . .

. . . . . .
σ2
α σ2

α σ2
α . . σ2

α + σ2
e

 (608)

Ω−
1
2 =

1

σe

[
IT − 1− σe√

σ2
e + Tσ2

α

]
(609)

βGLS =
∑
i

(
X ′Ω−1X

)−1∑
i

(
X ′Ω−1Y

)
(610)

Panel Data Model: GMM Estimator

generalised method of moments (GMM) as proposed by Hansen (1982).

yi,t = γyi,t−1β + αi + ei,t γ < 1 (611)

which generates the following estimator

γ
FE

=

T∑
t

N∑
i

(yi,t − yi)
(
yi,t − yi,t−1

)
T∑
t

N∑
i

(
yi,t − yi,t−1

)2 ; yi = T−1
∑
i

yi,t; and yi,−1 = T−1
∑
i

yi,t−1 (612)

This is not asymptotically unbiased estimator:

97



γ
FE

= γ +

(
1
NT

) T∑
t

N∑
i

(ei,t − ei)
(
yi,t − yi,t−1

)
(

1
NT

) T∑
t

N∑
i

(
yi,t − yi,−1

)2 (613)

p lim
N→∞

(
1

NT

) T∑
t

N∑
i

(ei,t − ei)
(
yi,t − yi,t−1

)
= − σ

2
e

T 2

(T − 1)− Tγ + γT

(1− γ)
2 6= 0 (614)

Panel Data Model: Instrumental Variables for GMM
Instrumental variable methods have been suggested to solve this inconsistency

γ̂
IV

=

T∑
t

N∑
i

yi,t−2

(
yi,t−1 − yi,t−2

)
T∑
t

N∑
i

yi,t−2 (yi,t−1 − yi,t−2)

(615)

where yi,t−2 is used as instrument of (yi,t−1 − yi,t−2)
It is asymptotically

p lim
N→∞

(
1

NT

) T∑
t

N∑
i

(ei,t − ei) yi,t−2 (616)

Moment conditions with vector of transformed error terms

∆ei =


ei,2 − ei,1
ei,3 − ei,2

.

.
ei,T − ei,T−1

 (617)

Panel Data Model: Instrumental Variables for GMM 2

Zi =


[yi,0] 0 . . 0

0 [yi,0,yi,1,] 0 . .
0 0 . . 0
. . . . 0
0 0 . . [yi,0,yi,T−2]

 (618)

E
{
Z
′

i∆ei

}
= 0 (619)

Or for moment estimator write the transformed errors as

E
{
Z
′

i (∆yi,t − γ∆yi,t)
}

= 0 (620)

min
γ

((
1

N

) N∑
i=1

Z
′

i (∆yi,t − γ∆yi,t)

)′
WN

N∑
i=1

Z
′

i (∆yi,t − γ∆yi,t)
′ (621)

98



Panel Data Model: Instrumental Variables for GMM 2
GMM method includes the most effi cient instrument

γ
GMM

=

((
N∑
i=1

∆yi,tZi

)
WN

(
N∑
i=1

Z
′

i∆yi,t

))−1

×
((

N∑
i=1

∆yi,tZi

)
WN

(
N∑
i=1

Z
′

i∆yi,t

))
(622)

Blundell and Smith (1989) and Verbeek (2004), Wooldridge (2002) among others have more
extensive exposure in GMM estimation. The essence of the GMM estimation remains in find-
ing a weighting matrix that can guarantee the most effi cient estimator. This should be inversely
proportional to transformed covariance matrix.

W opt
N =

((
1

N

) N∑
i=1

Z
′

i∆ei,t∆e
,
i,tZi

)−1

(623)

Panel Data Model: Instrumental Variables for GMM 2
Doornik and Hendry (2001, chap. 7-10) provide a procedure on how to estimate coeffi cients

using fixed effect, random effect and the GMM methods including a lagged terms of dependent
variable among explanatory variables for a dynamic panel data model:

yi,t =

p∑
i=1

akyi,t−s + βt (L)xi,t + λt + αi + ei,t or inshortyi,t = Wiδ + ιiai + ei (624)

The GMM estimator with instrument (levels, first differences, orthogonal deviations, deviations
from individual means, combination of first differences and levels) used in PcGive is :

δ̂ =

((
N∑
i=1

W ∗i Zi

)
AN

(
N∑
i=1

Z
′

iWi

))−1(( N∑
i=1

W ∗i Zi

)
AN

(
N∑
i=1

Z
′

iy
∗
i

))
(625)

where AN =

(
N∑
i=1

Z
′

iHiZi

)−1

is the individual specific weighting matrix.

Panel Estimation

Panel Cointegration

1.15.1 Panel Cointegration

Long run relationship obtained in the dynamic general equilibrium are tested by the GMM estima-
tion of dynamic panel model. The determinants of growth of per capita output and the exchange
rates across eleven countries representing the global economy in fact validate the conclusion of gen-
eral equilibrium results. Estimates support the standard neoclassical theory of economic growth
and uncovered interest parity theory of exchange rate though country specific factors, including
preferences and technology, can also have significant influence in estimation of each of these mod-
els.
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Table 15: Determinants of growth rate of per capita income and Exchange Rate
G row th M o d e l E x ch a n g e R a t e M o d e l

D e t e rm in a n t s C o e ffi c i e n t t -p r o b C o e ffi c i e n t t - va lu e

In v e s tm e n t r a t io 0 .1 8 2 0 .0 0 0 6 0 - -

E x p o r t R a t io 0 .0 2 5 7 .3 8 3 0 - -

E x ch a n g e r a t e - 1 - - 0 .9 7 1 0 0 .0 0

R e a l In t e r e s t r a t e - - - 0 .0 2 9 0 0 .0 0

P o p u la t io n g r ow th r a t e - 0 .8 8 4 9 0 .1 5 4 0 0 .7 9 1 7 0 .0 0

C o n s t a n t 3 .0 1 1 6 0 .1 7 8 0 0 .3 4 0 0 0 .0 0

N e p a l - 3 .0 3 4 1 0 .0 0 0 0 0 .0 6 6 2 0 .0 0

In d ia - 2 .0 2 4 4 0 .0 0 0 0 0 .0 4 9 6 0 .0 0

S o u t h A f r i c a - 5 .1 0 7 0 0 .0 0 0 0 0 .0 7 0 9 0 .0 0

B r a z i l - 4 .5 5 2 9 0 .0 0 0 0 - 0 .0 3 2 4 0 .0 0

U K -4 .5 6 3 0 0 .0 0 2 0 0 .0 0 3 1 0 .0 0

J a p a n -5 .9 8 4 6 0 .0 0 0 0 - 0 .0 4 2 2 0 .0 0

U SA -3 .7 9 0 2 0 .0 0 0 0 0 .0 2 9 5 0 .0 0

G e rm a ny -5 .6 4 0 8 0 .0 0 0 0 - 0 .0 0 7 4 0 .0 0

N = 3 2 4 R2= 0.46 N = 3 1 2 R2= 0.9857

1.15.2 Exercise 10

Consider the cross-regional variation of expenditure on food in the UK. For simplicity, it is assumed
that food expenditure depends only on wage and salary income in each region.

1. (a) Formulate a model relating expenditure on food (F) and income (Y) that takes account
of region specific effects. Note that the equations for each region are independent but
that there is contemporaneous correlation among the error terms across the regions.
State the major assumptions of the model.

(b) Represent the model in terms of a system of stacked regressions that takes account of
both individual and system specific effects. What is the structure of the covariance
matrix of the error terms in this system?

(c) Show how the SURE or GLS estimator system can be applied to estimate the structural
parameters of this model. Write out their covariance structure in the matrix form.

(d) This model has been estimated using a pooled time series and cross section data set
(with the sample size of T=14 and N=13) available from the web site of the Offi ce of
the National Statistics (hhttp://www.statistics.gov.uk). The estimated coeffi cients, by
region, are given in the following table. Analyse and interpret these results.

Similar models could be counstructed to study demand for utilities -electricity, water, telephone,

transport; or regional variation in growth, investment, research and development, employment,
wage, credit flows, production and consumption of several agricultural products.
2. Consider a panel data regression model aimed to measure the impacts of FDI on economic

growth as following:
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Table 16: Cointegration Test of Growth and Exchange Rate Equations
Cointegration in Growth Model Cointegration in Exchange rate Model

ADF test (T=321; Constant; 5%=-2.87; 1% = -3.45)

Determinants ADF-Statistics Decision ADF-Statistics Decision

Investment ratio -4.449** Stationary - -

Export Ratio -1.9000 Non-Stationary - -

Exchange rate -1 - - -1.510 Non-Stationary

Real Interest rate - - -2.59 Non-Stationary

Population growth rate -6.171** Stationary -6.171** Stationary

Redidual -10.62** Stationary -4.96** Stationary

Conclusion: Variables in both growth and exchange rates equations are cointegrated.

yi,t = αi + β1yi,t−1 + β2Fi,t + β3Ti,t + β4Ii,t−1 + ei,t ei,t ∼ IID
(
0, σ2

e

)
(626)

where yi,t is the growth rate Fi,t FDI ratio to GDP, Ti,t is the ratio of tax revenue, Ii,t−1 is
the ratio of investment. Use data in panel_fdi.csv to estimate this model using PcGive. Interprete
your results.
3. Construct a panel data on growth rate of per capita income, investment ratio, population

growth, export, imports, exchange rate, inflation rate for any five country of your choice. Suggest
a panel growth model to be estimated.
Action:
Construct data on growth rate of per capita GDP, exchange rate and inflation rates from the

www.imf.org for year 1980 to 2009 for China, India, South Africa, UK, USA and Brazil from
the World Economic Outlook Database. Test whether inflation and the exchange rate are the
significant variables in explaining the growth rate of per capita output (in PPP) in these economies
using random or fixed effect models.

1.16 Linear probability, probit and logit models

• Alternative names: dichotomous dependent variables, discrete dependent random variable,
binary variable, either or choice variables

Yi =

∫
Yi = β1 + β2Xi + εi if the event occurs
0 = otherwise

(627)

Examples

• the labour force participation (1 if a person participates in the labour force, 0 otherwise)

• yes or no vote in particular issue ; to marry or not to marry; to study further or to start a
job

• to buy or not to buy a particular stock

• choice of transportation mode to work (1 if a person drives to work, 0 otherwise)
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• Union membership (1 if one is a member of the union, 0 otherwise)

• Owning a house (1 if one owns 0 otherwise)

• Multinomial choices: work as a teacher, or as a clerk, or as a self employed or professional or
as a factory worker

• Multinomial ordered choices: strongly agree, agree, neutral, disagree

Linear Probability Model
Yi = β1 + β2Xi + εi (628)

where Yi = 1 if person owns a house, 0 otherwise; Xi is family income.
E [(Yi = 1) /Xi] probability that the event y will occur given x

E [(Yi = 1) /Xi] = 0× [1− Pi] + 1× Pi = Pi (629)

0 6 E [(Yi = 1) /Xi] = Pi = β1 + β2Xi 6 1 (630)

• Problem: Errors are heteroscedastic

εi = 1− β1 − β2Xi with (1− Pi) (631)

εi = −β1 − β2Xi with Pi (632)

Variance of error in a linear probability model

var (εi) = (1− β1 − β2Xi)
2

(1− Pi) + (−β1 − β2Xi )
2
Pi (633)

σ2 = (1− β1 − β2Xi)
2

(−β1 − β2Xi) + (−β1 − β2Xi )
2

(1− β1 − β2Xi) (634)

σ2 = (1− β1 − β2Xi) (β1 + β2Xi) = (1− Pi) Pi (635)

Variance depends on X.
Limitations of a linear probability model
It is possible to transform this model to make it homescedastic by dividing the original variables

by √
(1− β1 − β2Xi) (β1 + β2Xi) =

√
(1− Pi) Pi =

√
Wi (636)

Yi√
Wi

=
β1√
Wi

+ β2

Xi√
Wi

+
εi√
Wi

(637)

• It does not guarantee that the probability lies inside (0,1) bands
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• Probability in non-linear phenomenon: at very low level of income a family does not own a
house; at very high level of income every one owns a house ; marginal effect of income is very
negligible. The linear probability model does not explain this fact well.

Probit Model

•

Pr (Yi = 1) = Pr (Z∗i ≤ Zi) = F (Zi) =
1√
2π

∫
Zi
−∞ e−

te

2 dt

=
1√
2π

∫
β1 + β2Xi + εi

−∞ e−
te

2 dt (638)

• Here t is standardised normal variable, t ∼ N (0, 1)

probability depends upon unobserved utility index Zi which depends upon observable variables
such as income. There is a thresh-hold of this index when after which family starts owning a
house, Zi > Z∗i

Logit Model

• variable Yi which takes value 1 (Yi = 1) if a student gets a first class mark, value 0 (Yi = 0)otherwise.

• Probability of getting a first class mark in an exam is a function of student effort index denoted
by .Zi ; where Pi = 1

1+e−Zi

Zi = β1 + β2Xi + εi An example of a logit model: what determines that a student gets the
first class degree?

Zi = β1 + β2Hi + β3Ei + β4Ai + β2)i + εi (639)

H = hours of study, E= exercises, A = attendance in lectures and classes; P = papers written
for assignment.

• Ratio of odds: Pi
1−Pi = 1+eZi

1+e−Zi
= eZi ;taking log of the odds ln

(
Pi

1−Pi

)
= Zi

Features of a logit Model

• probability goes from 0 to 1 as the index variable goes from -∞ to +∞. Probability lies
between 0 and 1.

• Log of the odds is linear in x, characteristic variables but probabilities themselves are not linear
but non linear function of the parameters. Probabilities are estimated using the maximum
likelihood method.

• Any explanatory variable that determines the value of Zi , measures how the log of odds of
an event (i.e. owning a house) changes as a result of change in explanatory variable such as
income.

• We can calculate Pi for given estimates of β1and β2or all other .βi
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• Limiting case when Pi =1; ln
(
Pi

1−1

)
or when Pi =0 ; ln

(
0

1−0

)
OLS cannot be applied in such

case but the maximum likelihood method may be used to estimate the parameters.

Logit model on probability of getting married from the dataset constructed from the BHPS
(Hours.csv)

Table 17: Probability of Getting Married
Coeffi cient t-value t-prob

Intercept -2.99 -8.44 0.000
Log workhours 0.277 2.13 0.034
Gender 0.269 4.33 0.000
Labour 0.187 2.74 0.006
Liberal 0.330 3.28 0.001
Conservative 0.381 4.60 0.000
Health 0.189 6.56 0.000
Money -0.036 -2.49 0.013
Children 0.253 23.5 0.000
Job -0.124 -7.43 0.000
State =2 , AIC = 7244.8 N = 5790; LL -3612.4

Tobit Model
It is an extension of the probit model, named after Tobin. We observe variables if the event

occurs: ie if some one buys a house. We do not observe explanatory variables for people who have
not bought a house. The observed sample is censored, contains observations for only those who
buy the house.

Yi =

∫
Yi = β1 + β2Xi + εi if the event occurs
0 = otherwise

(640)

is equal to is the event is observed equal to zero if the event is not observed.
It is unscientific to estimate probability only with observed sample without worrying about the

remaining observations in the truncated distribution. The Tobit model tries to correct this bias.
Inverse Mill’s ratio: Example first estimate probability of work then estimate the hourly wage

as a function of socio-economic background variables
Summary of Probability Models
The effect of observed variables on probability

∂Pi
∂xi,j

=


βj
βjPj (1− Pj)
βjφ (Zi)

(641)

where Zi =β0 +
k∑
i=1

βiXi,j and φ is the standard normal density function.

Estimate probability models using data in Hours.csv.
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1.16.1 AR, MA, ARMA and ARIMA Forecasting

AR(1) forecast
yt = δ + θ1yt−1 + et (642)

h =1 ahead Forecast

y
T+1

= δ + θ1yT + e
T+1

e
T+1

∼ N (0, 1) (643)

Mean forecast:

ŷ
T+1

= E
(
y
T+1

)
= δ + θ1yT (644)

Estimate of Forecast error

ê
T+1

= y
T+1
− ŷ

T+1
= δ + θ1yT + e

T+1
− δ − θ1ŷT (645)

Variance of h =1 Forecast error

var
(
ê
T+1

)
= σ2

e (646)

h =2 ahead Forecast

yT+2 = δ + θ1yT+1
+ e

T+1
e
T+2

∼ N (0, 1) (647)

Mean forecast:

ŷ
T+2

= E
(
y
T+2

)
= δ + θ1yT+1

(648)

Estimate of Forecast error

ê
T+2

= y
T+2
− ŷ

T+2
= δ + θ1yT+1

+ e
T+2
− δ − θ1ŷT+1

= e
T+2

+ θ1

(
y
T+1
− ŷ

T+1

)
= e

T+2
+ θ1eT+1

(649)

Variance of Forecast error

var
(
ê
T+2

)
= σ2

e

(
1 + θ2

1

)
(650)

h period ahead Forecast

yT+h = δ + θ1yT+h−1
+ eT+h e

T+h
∼ N (0, 1) (651)

Mean forecast:

ŷ
T+h

= E
(
y
T+h

)
= δ + θ1ŷT+h−1

(652)

Estimate of Forecast error

ê
T+h

= y
T+h
− ŷ

T+2
= δ + θ1yT+h−1

+ e
T+h
− δ − θ1ŷT+h−1

= e
T+h

+ θ1

(
y
T+h−1

− ŷT+h−1

)
= e

T+h
+ θ1eT+h−1

(653)
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Variance of Forecast error

var
(
ê
T+h

)
= σ2

e

(
1 + θ2

1 + θ2
1 + ...+ θ

2(h−1)
1

)
(654)

MA(1) forecast Forecast with MA(1)

yt = µ+ et + α1et−1 (655)

h=1 period ahead forecast

y
T+1

= µ+ e
T+1

+ α1eT (656)

Mean forecast

E
(
y
T+1

)
= ŷ

T+1
= µ+ α1eT (657)

Forecast error

y
T+1
− ŷ

T+1
= µ+ e

T+1
+ α1eT − µ− α1eT+1

= e
T+1

(658)

Variance of forecast:

var
(
y
T+1
− ŷ

T+1

)
= var

(
e
T+1

)
= σ2

e (659)

h=2 period ahead Forecast

y
T+2

= µ+ e
T+2

+ α1eT+1 (660)

Mean forecast

E (yT+2) = ŷ
T+2

= µ (661)

Forecast error

y
T+2
− ŷ

T+2
= µ+ e

T+2
+ α1eT+1 − µ = e

T+2
+ α1eT+1 (662)

var
(
y
T+2
− ŷ

T+2

)
= var (eT+2) = var

(
e
T+2

+ α1eT+1

)
= σ2

e

(
1 + α2

1

)
(663)

Similarly mean and variance of h period ahead forecast:

y
T+h

= µ+ e
T+h

+ α1eT+h−1 (664)

E (yT+h) = ŷ
T+h

= µ (665)

Forecast error

y
T+h
− ŷ

T+h
= µ+ e

T+h
+ α1eT+h−1 − µ = e

T+h
+ α1eT+h−1 (666)

var
(
y
T+2
− ŷ

T+2

)
= var (eT+h) = var

(
e
T+h

+ α1eT+h−1

)
= σ2

e

(
1 + α2

1

)
(667)
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ARMA(1,1) forecast Forecasts using ARMA(1,1) process:

yt = δ + θ1yt−1 + et + α1et−1 (668)

h=1 period ahead Forecast

y
T+1

= δ + θ1yt−1 + e
T+1

+ α1eT (669)

Mean forecast

E
(
y
T+1

)
= ŷ

T+1
= δ + θ1yt−1 + α1eT (670)

Forecast error

ê
T+1

=
(
y
T+h
− ŷ

T+h

)
=

δ + θ1yt−1
+ e

T+1
+ e

T+1
+ α1eT − δ − θ1yt−1 − α1eT = e

T+1
(671)

Forecast error

ê
T+1

=
(
y
T+h
− ŷ

T+h

)
= δ + θ1yt−1

+ e
T+1

+ e
T+1

+α1eT − δ − θ1yt−1 − α1eT = e
T+1

(672)

Variance of Forecast error

var
(
ê
T+1

)
= var

(
y
T+h
− ŷ

T+h

)
= var

(
e
T+1

)
= σ2

e (673)

yt = δ + θ1yt−1 + et + α1et−1 (674)

h=2 period ahead Forecast

y
T+2

= δ + θ1yt+1 + e
T+2

+ α1eT+1
(675)

Mean forecast and Forecast error

E (yT+2) = ŷ
T+2

= δ + θ1yt+1 (676)

ê
T+2

=
(
y
T+2
− ŷ

T+2

)
= δ + θ1yt+1

+ e
T+2

+ α1eT+1
− δ − θ1ŷT+1

= θ1

(
y
t+1
− ŷT+1

)
+ e

T+2
+ α1eT+1

= (θ1 + α1) e
T+1

+ e
T+2

(677)

Variance of Forecast error

var
(
ê
T+1

)
= var

[
(θ1 + α1) e

T+1
+ e

T+2

]
= var

(
e
T+1

)
= σ2

e

[
(θ1 + α1)

2
+ 1
]

(678)

h=3 period ahead Forecast

y
T+2

= δ + θ1yt+2 + e
T+3

+ α1eT+2
(679)
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Mean forecast

E (yT+3) = ŷ
T+3

= δ + θ1ŷt+2 (680)

Forecast error and Variance of Forecast error

ê
T+3

=
(
y
T+3
− ŷ

T+3

)
= δ + θ1yt+2

+ e
T+3

+ α1eT+2
− δ − θ1ŷT+2

= θ1

(
y
t+2
− ŷT+2

)
+ e

T+3
+ α1eT+2

= e
T+3

+ α1eT+2
+ (θ1 + α1) e

T+2
+ e

T+2
(681)

var (êT+3) = var
[
e
T+3

+ α1eT+2
+ (θ1 + α1) e

T+2
+ e

T+2

]
= σ2

e

[
1 + (1 + α1)

2
+ (θ1 + α1)

2
]

(682)

1.17 VAR Analysis

Consider a vector autoregressive model of order 2, VAR(2) given below.

yt = a10 + a11yt−1 + a12yt−2 + b11xt−1 + b12xt−2 + e1,t (683)

xt = a20 + a21yt−1 + a22yt−2 + b21xt−1 + b22xt−2 + e2,t (684)

where and are two variables for time t range from 1 . . . T periods. Errors of each equation,
e1and e2, are identically and independently distributed with zero mean and constant variance and
covariance between and is assumed zero.
a. Evaluate the relationship between and in the long run.
Answer: Long run relationship is obtained by imposing the steady state relations:

y = a10 + a11y + a12y + b11x+ b12x (685)

y =
a10

1− a11 − a12
+

(b11 + b12)

1− a11 − a12
x (686)

x = a20 + a21y + a22y + b21x+ b22x (687)

x =
a20

1− b21 − b22
+

(a21 + a22)

1− b21 − b22
y (688)

b. Provide impulse response analysis for and of a unit shock in e1,t and e2,t.
Use lag operator yt−1 = Lyt; yt−2 = Lyt−1 = L2yt;Then the system changes to

yt = a10 + a11Lyt + a12L
2yt + b11Lxt + b12L

2xt + e1,t (689)

xt = a20 + a21Lyt + a22L
2yt + b21Lxt + b22L

2xt + e2,t (690)
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yt =
a10

1− a11L− a12L2
+

(b11 + b12)

1− a11L− a12L2
xt +

1

1− a11L− a12L2
e1,t (691)

xt =
a10

1− b11L− b12L2
+

(a11 + a12)

1− b11L− b12L2
yt +

1

1− b11L− b12L2
e2,t (692)

Terms 1
1−a11L−a12L2 e1,t and 1

1−b11L−b12L2 e2,t give the impulse response of the first and second
equations respectively.
c. Indicate and explain criteria to determine the order of a VAR model like this:
It is wise to use from general to specific approach of David Hendry to determine the order of

VAR . First start the model with a large number of lags and then keep reducing the number of lags
until the significant relation is found. Likelihood ratio tests are suggested for this.
d. What extra information is needed to make a h period ahead forecast using the above

model? VAR is a time series model. Given the past values of time series, it requires distribution of
the error terms for h period ahead forecasts.
e. A diagram can show how the variance of the forecast error and the confidence interval of

a forecast are sensitive to the number of periods in the forecast horizon. The confidence level of
forecast increases with the larger horizon of the forecasts.

1.17.1 ARCH/GARCH modelling of volatility

OLS estimates are based on the normality of errors, which are assumed to have constant mean
and variance. Engle (1983) argued that many economic time series go through a series of ups and
downs. Upward trend continues up to a significant length of time. and so does the downward trend.
As such the conditional mean and variance of these series are not constant. Modelling mean and

vaiance of series simultaneously is the essence of the autoregressive conditional heteroskedasticity
(ARCH) model.
The variance of error term is persistent and shown by autoregressive process of variances.
This technique has been widely used to measure the volatitiy of financial time siries such as the

interest rate, inflation, stock prices, returns to assets, growth rates, trends in trades.
Bollersleve (1987) modified it to generalised autoregressive conditional heteroskedasticity (GARCH)

models.
How ARCH and GARCH models are used to test the heteroskedasticity are discussed first

followed by illustrations on variants of them used to study the clustering of heteroskedastic errors
commonly used in the literature.
Engle (1983) autoregressive conditional heteroskedasticy (ARCH): more useful for time series

data
Model Yt = β0 + β1X1,t + β2X2,t + β3X3,t + ....+ βkXk,t + et
εt ∼ N

(
0,
(
α0 + α2e

2
t−1

))
σ2
t = α0 + α2e

2
t−1 (693)

Here σ2
t not observed. Simple way to estimate this is to run OLS of Yt and get ê

2
t . Then assume

an ARCH (1) of errors as
ê2
t = α0 + α2ê

2
t−1 + vt or ARCH (p) ê2

t = α0 + α2ê
2
t−1 + α3ê

2
1−1 + α4ê

2
1−1 + ..+ αpê

2
1−p + vt

Compute the test statistics
n.R2 ∼ χ2

df
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Again if the calculated χ2
df is greater than table value there is an evidence of ARCH effect and

heteroskedasticity.
Economies are characterised by torbulent high volatility periods followed by quite and peaceful

low volatity periods.
Decision makers require some estimates of expected values as well as volatility to reflect on the

uncertainties causes by such phenomenon.
Recently stock prices rised contineously from 2002 to mid 2008 and then fell sharply in 2008

and 2009 and can be expected to rise in the next few years. Billions are lost and won because of
volatilities in these series.
Engle (1987) proposes modelling expected value and volatility simultaneously by ARCH using

iterative Maximum Likelihood procedure.as:

Yt = β0 + β1X1,t + et (694)

where et ∼ N
(
0, σ2

t

)
= N (0, ht) ; ht = σ2

t .

ht = α0 + α1e
2
t−1 (695)

Bollerslev (1987) generalised autoregressive conditional heteroskedasticy (GARCH) process is
more general. For instance GARCH (1,1). Mean and variance equations take the following form:

Yt = β0 + β1X1,t + et (696)

σ2
t = α0 + α2ê

2
t−1 + βσ2

t−1 + vt (697)

GARCH (p,q)
σ2
t = α0 + α2ê

2
t−1 + α3ê

2
t−2 + α4ê

2
t−3 + ..+ αpê

2
t−p + β1σ

2
t−1 + β2σ

2
t−2 + ..βqσ

2
t−q + ..+ vt

Compute the test statistics n.R2 ∼ χ2
df

Sometimes written as
ht = α0 + α2ê

2
t−1 + α3ê

2
t−2 + α4ê

2
t−3 + ..+ αpê

2
t−p + β1ht−1 + β2ht−2 + ..βqht−q + ..+ vt

where ht = σ2
t

1.17.2 Homework

1. Select one time series such as stock price or quarterly consumption. Estimate AR, MA,
ARMA models to make ten period ahead forecasts. Use data in stocks.csv.

2. Estiamte a VAR(2) of growth rate of DPD and inflation rate. Do impulse response analysis
using unit shocks to ten period horizon. Provide the forecast and the confidence interval of
forecasst.

3. Take daily stock price of a certain company. Fit appropriate ARCH/GARCH models to
explain volatility. Make a forecast.
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1.18 Theory of causal inference: propensity score matching and differ-
ence in difference methods

Theory of causal inference: propensity score matching and difference in difference methods
Theory of causal inference: propensity score matching and difference in difference methods

• mathematics of treatment-effects estimators; Following Angrist, J. and Imbens, G., 1995.
Identification and estimation of local average treatment effects:

• Let Yi(0) be the response without the treatment or program for individual i. Yi(1) is the
response with treatment; We observe Di and Y i = Y 1(Di) = Di ∗ Y i(1) + (1 −Di) − Y, (0)
for a random sample of individuals.

• The individual treatment effect, or causal effect, is Y i(1)− Y 1(0) but since Y i(1) and Y j(0)
are never observed for the same individual.

Theory of causal inference

• an unbiased estimator for the average treatment effect,E[Y (1) − Y i(O)], is available in the
difference of the treatment/control averages,

∑
DiY i∑
Di −

∑
(1−Di)Y i∑

(1−Di)

• the participation decision is typically modeled by a latent index D∗i = γo + Ziγ1 + vi with
the observed participation indicator, Di, related to the unobserved latent index, by Di =

{1 if D
∗
i > 0

0 if D∗i � 0 . The response,Y i, is related to the treatment via the equation Yi = β0+Diβ1+εi,.

• In this notation the counterfactuals are Yi (0) = β0 + εi, Yi (1) = β0 + β1 + εi,and Di =
1 {γo+ Ziγ1 + vi > 0}, where 1 {.} is the indicator function.

Propensity score matching and Difference in Diffference (PSM-DID)

• Matching pairs the observed outcome of a person in one treatment group with the outcome
of the “closest”person in the other treatment group.

• males are paired with males and females are paired with females.
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RA: Regression adjustment - know the determinants of the outcome
IPW: Inverse probability weighting - When you know the determinants of treatment status
IPWRA: Inverse probability weighting with regression adjustment -doubly robust estimators
AIPW: Augmented inverse probability weighting - doubly robust estimators
NNM: Nearest-neighbor matching -lots of continuous covariates
PSM: Propensity-score matching - When you know the determinants of treatment status
https://blog.stata.com/2015/08/24/introduction-to-treatment-effects-in-stata-part-2/

• Matching on continuous variables, such as age or weight, can be trickier because of the sparsity
of the data. It is unlikely that there are two 45-year-old white males who weigh 193 pounds
in a sample. In such situations match subjects who have approximately the same weight and
approximately the same age.

1.18.1 Literature on causal inference

• Abadie, A. and Imbens, G.W., 2006. Large sample properties of matching estimators for
average treatment effects. econometrica, 74(1), pp.235-267

• Athey, S. and Imbens, G.W., 2019. Machine learning methods that economists should know
about. Annual Review of Economics, 11, pp.685-725.

• Imbens, G.W. and Wooldridge, J.M., 2009. Recent developments in the econometrics of
program evaluation. Journal of economic literature, 47(1), pp.5-86.

• Imbens, G.W., 2004. Nonparametric estimation of average treatment effects under exogeneity:
A review. Review of Economics and statistics, 86(1), pp.4-29.

• Imbens, G.W. and Lemieux, T., 2008. Regression discontinuity designs: A guide to practice.
Journal of econometrics, 142(2), pp.615-635.

• Imbens, G. (2000) ). ‘The Role of the Propensity Score in Estimating Dose-Response Func-
tions’. Biometrika 87(3): 706—10

• Hirano, K., and G. Imbens (2001) ‘Estimation of Causal Effects using Propensity Score
Weighting: An Application to Data on Right Heart Catheterization’. Health Services and
Outcomes Research Methodology, 2(3): 259—78

• Imbens, G., and D. Rubin (2015) Causal Inference for Statistics, Social, and Biomedical
Sciences: An Introduction. Cambridge: Cambridge University Press.

• Unnikrishnan and Imai (2020) Does the old-age pension scheme improve household welfare?
Evidence from India. World Development, 134, p.105017

• Abaadie, A. and Imbens, G.W., 2006. Large sample properties of matching estimators for
average treatment effects. econometrica, 74(1), pp.235-267.

• Angrist, J. and Imbens, G., 1995. Identification and estimation of local average treatment
effects

• Heckman, J., 1997. Instrumental variables: A study of implicit behavioral assumptions used
in making program evaluations. Journal of human resources, pp.441-462.
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2 L2: Maximum Likelihood Method

Maximum Likelihood Method (MLE) is more general method of estimation of unknown parameters
and applies to both the linear and non-linear models. It also applied to estimate parameters in a sys-
tem of equations (Wald (1943), Hendry (1971), Rao (1972), Anderson(1974), Phillips (1976,1992),
Amemiya (1975, 1977) Lee (1993), Hillier and Armstrong (1999), Aït-Sahalia (2002), Hartley and
Mallela (1997), Nielsen (2004), Sweeting (1980), Durham, Gallant, Ait-Sahalia and Brandt (2002),
Nielsen (2004), Fukac and Pagan (2010). Main Featurs of a Maximum Likelihood Method include:

• Large sample and more general method

• Appropriate for functions non-linear in parameters

• Unbiased estimates

• Equivalent to the OLS estimates for linear models

• Asymptotically consistent and effi cient

• Source of Likelihood Ratio test, Wald Test and LM test

Main Features of a Maximum Likelihood Method
Equivalence of ML to OLS Estimators
Take linear regression model:

Yi = α+ βXi + ei (698)

Where the errors are ei ∼ N
(
0, σ2

)
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Then the joint distribution or the Likelihood function is given by:

L (α, β, σ) = L (y1, y2, ...yN ) =
N

Π
i=1

1√
2πσ2

exp

[
−1

2

(yi − α− βXi)
2

σ2

]
(699)

Take log of this function to get a log-liklihood function.

LogL (α, β, σ) =

N∑
i=1

− 1

2
log
(
2πσ2

)
− 1

2

N∑
i=1

(yi − α− βXi)
2

σ2

= c− N

2
log
(
σ2
)
− Q

2σ2
(700)

Equivalence of ML to OLS Estimators

where c = N
2 log (2π) and Q =

N∑
i=1

(yi − α− βXi)
2

Maximising this likelihood w.r.t. α, β and σ. is equivalent to minimizing Q , which is the
negative term in the likelihood function. Therefore the estimators of α, β and σ under the ML
method are the same as in the OLS method.
If we substitute the values of α̂, β̂ in the likelihood function, L (α, β, σ) it just becomes a function

of σ
This can be written as

L
(
α̂, β̂, σ

)
=

N∑
i=1

− 1

2
log
(
2πσ2

)
− 1

2

N∑
i=1

(
yi − α̂− β̂Xi

)2

σ2

= c−N log
(
σ2
)
− Q̂

2σ2
(701)

Equivalence of ML to OLS Estimators

∂L
(
α̂, β̂, σ

)
∂σ

= −N
σ

+
Q̂

2σ3
= 0 =⇒ σ̂2 =

Q̂

N
=
RSS

N
(702)

Min Q
α̂,β̂

=
∑

ε2
i =

∑(
Yi − α̂− β̂X1,i

)2

(703)

First order conditions
∂S

∂α̂
= 0;

∂S

∂β̂
= 0; (704)

∑(
Yi − α̂N − β̂Xi

)
(−1) = 0 (705)∑(

Yi − α̂N − β̂Xi

)
(−Xi) = 0 (706)

Equivalence of ML to OLS Estimators
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∑
Yi = α̂N + β̂

∑
Xi (707)∑

YiXi = α̂
∑

Xi + β̂
∑

X2
i (708)

[
α̂

β̂

]
=

[
N

∑
Xi∑

Xi

∑
X2
i

]−1 [ ∑
Yi∑
YiXi

]
(709)

var(εi) = σ̂2 =
∑
ε̂2i

N−K

Compare the corresponding estimate in the OLS .σ̂2 = Q̂
N−2 = RSS

N−2
Thus For large sample OLS and ML estimate are close to each other.
Evaluating the Likelihood Function
Substitituion this value in the likelihood

logL
(
α̂, β̂, σ

)
= c− N

2
log
(
σ2
)
− Q

2σ2
= c− N

2
log

(
Q̂

N

)
− N

Q̂

Q

2
(710)

log
(
α̂, β̂, σ

)
= c− N

2
log
(
Q̂
)
− N

2
= const− N

2
log
(
Q̂
)

(711)

Take antilog both sides

L
(
α̂, β̂, σ

)
= const× Q̂−N2 = const×RSS−N2 (712)

2.0.2 Likelihood Ratio Test

This is a general large sample test based on the ML method. Let θ be the set of parameters
defining the ML functions, in the above example. (α, β, σ)

H0 : α = 0; and β = 0 against alternative hypothesis HA : α 6= 0; and β 6= 0 and or HA : σ = 0;
and σ 6= 0 can be tested using the likelihood ratio test. LR test is defined as:

λ =
maxL (θ)R

maxL (θ)UR
=

const×
(
RSS−

N
2

)
R(

const×RSS−N2
)
UR

=

(
RSSR
RSSUR

)−N2
(713)

Where L (θ)R is the value of the likelihood function under restriction and L (θ)UR is the value
of likelihood function without restriction. As derived above
Value of λ is likely to be less than one since L (θ)R is expected to be less than L (θ)UR.
Taking log both sides and with some rearrangement, this equals

−2loge.λ = N.loge.

(
RSSR
RSSUR

)
= N (logeRSSR − logeRSSUR) (714)

2loge.λ is distributed χ2
k where k is the number of restrictions.

under H0 : α = 0; and β = 0
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−2loge.λ = N.loge.

(
RSSR
RSSUR

=
Syy

Syy (1− r2)

)
; r2 =

S2
xy

SxxSyy
=

(∑
xiyi

)2

∑
x2
i

∑
y2
i

−2loge.λ = N.loge

(
1

1− r2

)
= −N.loge

(
1− r2

)
(715)

This is distributed .χ2
1

2.0.3 Wald Test

Using notations Syy =
∑
y2
i ; Sxx =

∑
x2
i ; Sxy =

∑
xiyi; r2 =

S2
xy

SyySxx

This is like t-test t
(
β̂
)

= β̂−β
SE(β̂)

= β̂−β
SE(β̂)

∼ tT−K

W =

(
β̂
)2

var
(
β̂
) (716)

where var
(
β̂
)

= σ̂2

Sxx
This uses RSS of unrestricted Likelihood σ̂2 =

Syy(1−r2)
N

2.0.4 Lagrange multiplier test

LM test uses RSS from the restricted Likelihood ratio (under H0 : α = 0; and β = 0)

LM =

(
β̂
)2

var
(
β̂
) =

(
Sxy
Sxx

)2

σ̂2

Sxx

=

(
Sxy
Sxx

)2

Syy
N.Sxx

= N.r2 (717)

r2 =
S2
xy

SyySxx
; ‘This is distributed χ2

1.

Comparing Wald, LM and LR Tests Lagrange Multiplier Test
LM test uses RSS from the restricted Likelihood ratio (under H0 : α = 0; and β = 0)

LM =

(
β̂
)2

var
(
β̂
) =

(
Sxy
Sxx

)2

σ̂2

Sxx

=

(
Sxy
Sxx

)2

Syy
N.Sxx

= N.r2 (718)

r2 =
S2
xy

SyySxx

This is distributed χ2
1.

Wald uses RSS of unrestricted Likelihood σ̂2 =
Syy(1−r2)

N

W =

(
β̂
)2

var
(
β̂
) =

(
Sxy
Sxx

)2

Syy(1−r2)
N.Sxx

=
N.r2

(1− r2)
(719)
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This is distributed χ2
1

Liklihood ratio test (Neyman-Pearson (1928)): −2loge.λ = N.loge

(
1

1−r2

)
= −N.loge

(
1− r2

)
Wald Test (1943): W =

(β̂)
2

var(β̂)
= N.r2

(1−r2)

LM test Rao (1948)): LM =
(β̂)

2

var(β̂)
= N.r2

W > LR > LM (720)

W

N
=

.r2

(1− r2)
> LR

N
= loge

(
1

1− r2

)
= loge

(
1 +

W

N

)
> LM

N
= r2 =

W

N
/

(
1 +

W

N

)
(721)

with W
N = x it fulfills the inequality x > loge (1 + x) > x

(1+x)

2.0.5 Newton Ralphson Algorithm

Consider observations (y1, y2, ....yN ) with a density function f (y, θ) and L (θ) The log likelihood is
given by

LogL (θ) =

N∑
i=1

log f (y, θ) (722)

∂LogL (θ)

∂θ
|θ=θ̂ = 0 (723)
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Iteration procedure involves θ updating in successive iteration starting from θ0 as
δθ = (θ − θ0)
Newton Ralphson Algorithm

∂LogL (θ)

∂θ
=
∂LogL (θ)

∂θ0
+ δθ

∂2LogL (θ)

∂θ2
0

= 0 (724)

(θ − θ0) = δθ =

[
∂2LogL (θ)

∂θ2
0

]−1(
∂LogL (θ)

∂θ0

)
(725)

Then continue the correction process until . θn −→ θn+1

Gauss-Newton Algorithm

• Above algorithm is close to the Gauss-Newton algorithm used frequently to estimate the
parameters of a nonlinear equation Y = f(X1, X2, ...Xk; .β1, .......βp,0) with the Taylor series
approximations explained by Pindyck and Robinfeld (1998) as:

Y = f(X1, X2, ...Xk; .β1,0......βp,0) +
p∑
i=1

(
df
∂βi

)
0

(βi − β0)

+ 1
2

p∑
i=1

p∑
j=1

(
d2f

∂βi∂βj

)
0

(
βi − βi,0

) (
βj − βj,0

)
+ ....+ ε.

• Linear approximation of this only involves the first term Y − f(X1, X2, ...Xk; .β1,0......βp,0) +
p∑
i=1

(
df
∂βi

)
0

(βi − β0) =
p∑
i=1

(
df
∂βi

)
0

(βi − β0) + ....+ ε..

• The ML is performed iteratively until the parameters converge;
∣∣∣βi,j+1−βi,j

βi,j

∣∣∣ < δ for any

small value of δ. Alternatively the convergence is checked using a damping factor α, βi,j+1 =

βi,j + α
(
β̂i,j+1 − βi,j

)
.

Parametarised Expectation Algorithm

• Computations of the stochastic intertemporal optimal accumulation model follows non-linear
iterative algorithm very popular in econometrics and growth models (Han and Marcet (1988)).

• The optimality condition in the stochastic asset accumulation model here are governed by
the first order Euler equation

βCκt,p(1+r(1−tk(p)))

Cκt+1,p
= 1 relates Ct,p and Ct+1,p and explains the

process of saving and asset accumulation.

• It essentially gives the marginal rate of substitution between the current and the future
consumptions for all states and periods. In the presence of transfers, capital and labour
income taxes 1

Cκt+1,p
term is estimated by following parameterised expectation function: ψt,p =

exp(δ0,t + δ1,t ln (x
1
z

1
) θt,p + δ2,t ln (x

2
z

2
) ∈t,p +δ3,t ln (x

3
z

3
) kt,p

Parametarised Expectation Algorithm

• ψt,p = exp(δ0,t + δ1,t ln (x1z1) θt,p + δ2,t ln (x2z2) ∈t,p +δ3,t ln (x3z3) kt,p
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• +δ4,t ln (x4z4)TRt,p + δ5,t ln (x5z5)TKt,p + δ6,t ln (x6z6)TLt,p. Now the 1
Cκt+1,p

is substituted

by ψt,p as βC
κ
t,p (1 + r (1− tk(p)))ψt,p = 1. The model converges to true solutions when the

values of 1
Cκt+1,p

and ψt,p are equal up to an arbitrarily small number.

• For quadratic approximation a regression is estimated to minimise the sum-squared errors

between 1
Cκt+1,p

and ψt,p as SS =
T∑
t=1

P∑
p=1

(
1

Cκt+1,p
− ψt,p

)2

and the iteration continues until

this sum of error square is very small.

Parametarised Expectation Algorithm

• Minor iterations are run to evaluate the expectation ψt,p and the original Euler equation.

• Then the major iterations are run until the difference between 1
Cκt+1,p

and ψt,p is statistically

insignificant.

• Average values and standard deviations of earnings, wealth, income, consumption and savings
,et,p Wt,p,Wt,p, Yt,p, Ct,p,and St,p are computed when the approximation is close.

• It is possible to fit the confidence intervals and do all other statistical tests with the mean
and variances computed in this manner. In a nutshell this algorithm involves following steps

Parametarised Expectation Algorithm
In a nutshell this algorithm involves following steps

1. Generate a series of stochastic earning process θt,p.

2. choose initial δi,t for ψt,p function; replace
1

Cκt+1,p
and ψt,p in the Euler equation to generate

series of consumption Ct,p.

3. compute the difference of the values of 1
Cκt+1,p

and ψt,p and fit a quadratic error sum minimi-

sation routines until 1
Cκt+1,p

and ψt,p converge.

4. compute the mean, standard deviations and confidence intervals for model variables ,et,p
Wt,p,Wt,p, Yt,p, Ct,p,and St,p.

5. compare results for different tax experiments.

2.0.6 MLE: example1

An urn contains N balls and N1 of them are red. The Bernauli probability distribution for red balls
in a draw as a discrete likelihood function is given by

p(n) = pN1(1− p)N−N1 (726)

The log likelihood function for this is given by:

ln(p) = N1 ln(p) + (N −N1) ln (1− p) (727)
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First order conditions for maximisation

∂ ln(p)

∂p
=
N1

p
− (N −N1)

(1− p) = 0 (728)

This implies N1

p −
(N−N1)

(1−p) = 0;or (1− p)N1 = p(N −N1)and

p =
N1

N
(729)

MLE: example1

• Second order condition for maximisation

∂2 ln(p)

∂p2
= −N1

p2
− (N −N1)

(1− p)2 < 0 (730)

• It proves that the estimate p = N1

N maximises the likelihood function.

• Thus for a given distribution of data, the maximum likelihood estimation procedure involves
determining the unknown parameters (here p) that maximises the likelihood of the observed
data.

2.0.7 MLE: Example 2

• Take a Poissoin likelihood denstity fucntion for f (y
1
, y

2,..............,yN /θ) =
N

Π
i=1
f(y/θ); poisson

density f (y/θ) = e−nθ

y1 !

MLE: example2

L(θ/y) =
e−n θθ

∑
yi

i=1

N

Π
i=1
y

1
!

(731)

Log liklihood of this is given by

lnL(θ/y) = −nθ + ln θ
∑

yi −
∑

ln (yi!) (732)

data example from Greene (485): n = 10; y: (5, 0, 1, 1, 0, 3, 2, 3, 4, 1)
∑
yi = 20 ;

∑
yi! =

207, 360

lnL(θ/y) = −10θ + 20 ln θ − 12.242 (733)

From the first order condition θ that maximises this function is given by ∂ lnL(θ/y)
∂θ = −10+ 20

θ = 0
θ = 20

10 = 2

This is maximum is ascertained by the negative second derivative: ∂
2 lnL(θ/y)
∂θ2 = − 20

θ2 < 0
MLE: example3
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Let YT be a random sample normally distributed with parameters N
(
β, σ2

)
. Here parameter

θ =
(
β, σ2

)
. Log likelihood function is defined as

lnL(θ/y) = ln

{
T

Π
i=1

1√
2πσ2

exp
[
− 1

2
(yi−β)2

σ2

]}
= ln

{
(2π)

−T2
(
σ2
)−T2 exp

[
− 1

2

T∑
i=1

(yi−β)2

σ2

]}
lnL(θ/y) =

{
−T

2
ln (2π)− T

2
ln
(
σ2
)
− 1

2

T∑
i=1

(yi − β)
2

σ2

}
(734)

The first order conditions for optimisations are :

∂lnL(θ/y)

∂β
=

1

σ2

(
T∑
yi

i=1

− Tβ
)

= 0 (735)

∂lnL(θ/y)

∂σ2
= − T

2σ2
+

1

2σ4

T∑
i=1

(yi − β)
2

= 0 (736)

MLE: example3
The first order conditions imply

T∑
yi

i=1

= Tβ; β =

T∑
i=1

yi

T
= y and σ2 =

T∑
i=1

(yi − β)
2

T
(737)

and the second order conditions are

∂2lnL(θ/y)

∂β2 = − T
σ2

< 0 (738)

∂2lnL(θ/y)

∂ (σ2)
2 = − T

2σ4
− 1

2σ6

T∑
i=1

(yi − β)
2
< 0 (739)

∂lnL(θ/y)

∂σ2∂β
= − 1

2σ2

T∑
i=1

(yi − Tβ) < 0 (740)

The second order conditions for maximisation are[
∂2lnL(θ/y)

∂β2
∂lnL(θ/y)
∂σ2∂β

∂lnL(θ/y)
∂β∂σ2

∂2lnL(θ/y)

∂(σ2)2

]
=

[
− T
σ2 0
0 − T

2σ2

]
(741)

This is a negative definite matrix, Hessians have alternate signs, that fulfills the conditions for
maximisation.
Likelihood ratio test λ = LR

LU
∼ χ2

df= # r

Lagrange test is obtained from restricted maximum likelihood: lnL∗ (θ) = lnL (θ) +λ [c(θ)− q]
Wald test needs only unrestricted estimation:

W =
(
c(θ̂)− q

)′ [
Assmptvar

(
c(θ̂)− q

)]−1 (
c(θ̂)− q

)′
∼ χ2

r
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2.0.8 MLE: Example 3

(Adapted from Greene (496)):
Let productivity (pleasure), as a function of income (y) and education (x) be given by the

following exponfunction:

f (yi, xi, β) =
1

β + xi
exp− yi

β + xi
(742)

This is a non-linear function. Liklihood for such dgp is given by L

L(θ) =
N

Π
i=1
f (yi, xi, β) =

N

Π
i=1

[
1

β + xi
exp− yi

β + xi

]
(743)

Log likelihood of this :

lnL(θ) = −
N∑
i=1

ln (β + xi)−
N∑
i=1

yi
β + xi

(744)

∂lnL(θ)

∂β
= −

N∑
i=1

1

(β + xi)
+

N∑
i=1

yi

(β + xi)
2 = 0 (745)

The assymptotic variance of the MLE is given by the second derivative (information matrix)
∂2lnL(θ)
∂β2 =

N∑
i=1

1
(β+xi)

2 −2
N∑

i=1

yi
(β+xi)

3

BHHH(Berndt, Hall, Hall and Hauseman (1974) estimate BHHH(Berndt, Hall, Hall and
Hauseman (1974) estimate BHHH = 1

N∑
i=1

[
1

(β+xi)
+

yi

(β+xi)
2

]2

3 BHHH Algorithm

1. The Berndt—Hall—Hall—Hausman (BHHH) algorithm is a numerical optimization algorithm
similar to the Newton—Raphson algorithm, but it replaces the observed negative Hessian
matrix with the outer product of the gradient.

2. It is named after the four originators: Ernst R. Berndt, Bronwyn Hall, Robert Hall, and Jerry
Hausman.

3. If a nonlinear model is fitted to the data one often needs to estimate coeffi cients through
optimization.

• A number of optimisation algorithms have the following general structure. Suppose that the
function to be optimized is Q(β).

• Then the algorithms are iterative, defining a sequence of approximations, βk given by
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βk+1 = βk − λkAk
∂Q

∂β
(βk)

where βk is the parameter estimate at step k, and λk is a parameter (called step size) which
partly determines the particular algorithm.

• For the BHHH algorithm λk is determined by calculations within a given iterative step,
involving a line-search until a point βk+1 is found satisfying certain criteria. In addition, for

the BHHH algorithm, Q has the form Q =

n∑
i=1

Qi and A is calculated using

Ak =

[
n∑
i=1

∂Q

∂β
(βk)

∂Q

∂β
(βk)

′
]−1

In other cases, e.g. Newton—Raphson, Ak can have other forms. The BHHH algorithm has the
advantage that, if certain conditions apply, convergence of the iterative procedure is guaranteed.

3.0.9 DFP Algorithm

The Davidon—Fletcher—Powell formula (or DFP; named after William C. Davidon, Roger Fletcher,
and Michael J. D. Powell) finds the solution to the secant equation that is closest to the current
estimate and satisfies the curvature condition. It was the first quasi-Newton method to generalize
the secant method to a multidimensional problem. This update maintains the symmetry and
positive definiteness of the Hessian matrix.
Given a function f(x) its gradient ∇f , and positive-definite Hessian matrix B, the Taylor series

is f(xk + sk) = f(xk) +∇f(xk)T sk + 1
2Bsk +....,

and the Taylor series of the gradient itself (secant equation)
∇f(xk + sk) = ∇f(xk)T sk +Bsk...
is used to update B.
The DFP formula finds a solution that is symmetric, positive-definite and closest to the current

approximate value of Bk:
Bk+1 =

(
I − γkyksTk

)
Bk
(
I − γkskyTk

)
+ γkyky

T
k

where yk = ∇f(xk + sk)−∇f(xk), γk = 1
yTk sk

and Bk is a symmetric and positive-definite matrix.
The corresponding update to the inverse Hessian approximation
Hk = B−1

k is given by

Hk+1 = Hk − Hkyky
T
k Hk

yTk Hkyk
+

sks
T
k

yTk sk

B is assumed to be positive-definite, and the vectors sTk and y must satisfy the curvature
condition

sTk yk = sTkBsk > 0
The DFP formula is quite effective, but it was soon superseded by the BFGS formula, which is

its dual (interchanging the roles of y and s).
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3.0.10 BFGS algorithm

BFGS algorithm-1
The Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm is an iterative method for solving

unconstrained nonlinear optimization problems.
The BFGS method belongs to quasi-Newton methods, a class of hill-climbing optimization

techniques that seek a stationary point of a (preferably twice continuously differentiable) function.
For such problems, a necessary condition for optimality is that the gradient be zero. Newton’s
method and the BFGS methods are not guaranteed to converge unless the function has a quadratic
Taylor expansion near an optimum. However, BFGS can have acceptable performance even for
non-smooth optimization instances.
In quasi-Newton methods, the Hessian matrix of second derivatives is not computed. Instead,

the Hessian matrix is approximated using updates specified by gradient evaluations (or approximate
gradient evaluations). Quasi-Newton methods are generalizations of the secant method to find the
root of the first derivative for multidimensional problems. In multi-dimensional problems, the
secant equation does not specify a unique solution, and quasi-Newton methods differ in how they
constrain the solution. The BFGS method is one of the most popular members of this class. Also in
common use is L-BFGS, which is a limited-memory version of BFGS that is particularly suited to
problems with very large numbers of variables (e.g., >1000). The BFGS-B variant handles simple
box constraints.
The algorithm is named after Charles George Broyden, Roger Fletcher, Donald Goldfarb and

David Shanno.
The optimization problem is to minimize f(x), where x is a vector in Rn, and f is a differentiable

scalar function. There are no constraints on the values that x can take.
The algorithm begins at an initial estimate for the optimal value x0 and proceeds iteratively to

get a better estimate at each stage.
The search direction pk at stage k is given by the solution of the analogue of the Newton

equation:
Bkpk = −∇f(xk)
where Bk is an approximation to the Hessian matrix, which is updated iteratively at each stage,

and ∇f(xk) is the gradient of the function evaluated at xk. A line search in the direction pk is then
used to find the next point xk+1 by minimizing f(xk + αpk) over the scalar α > 0.
The quasi-Newton condition imposed on the update of Bk is
Bk+1 (xk+1 − xk) = ∇f(xk+1)−∇f(xk)
Let yk = ∇f(xk+1)−∇f(xk) and sk = xk+1 − xk, then Bk+1 satisfies Bk+1sk+1 = yk, which is

the secant equation. The curvature condition sTk yk > 0 should be satisfied for Bk+1 to be positive
definite, which can be verified by pre-multiplying the secant equation with sTk . If the function is
not strongly convex, then the condition has to be enforced explicitly.
Instead of requiring the full Hessian matrix at the point xk+1 to be computed as Bk+1, the

approximate Hessian at stage k is updated by the addition of two matrices:
Bk+1 = Bk + Uk + Vk
Both Uk and Vk are symmetric rank-one matrices, but their sum is a rank-two update matrix.

BFGS and DFP updating matrix both differ from its predecessor by a rank-two matrix. Another
simpler rank-one method is known as symmetric rank-one method, which does not guarantee the
positive definiteness. In order to maintain the symmetry and positive definiteness of Bk+1, the
update form can be chosen as
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Bk+1 = Bk + α u uT + βvvT . Imposing the secant condition, Bk+1sk+1 = yk. Choosing u = yk
and v = Bk+1sk+1, we can obtain:

α = 1
yTk sk

and β = − 1
sTkBksk

Finally, we substitute α and β into Bk+1 = Bk +α u uT + βvvT and get the update equation of
Bk+1:

Bk+1 = Bk +
yky

T
k

yTk sk
− Bksks

T
kB

T
k

sTkBksk

From an initial guess x0 and an approximate Hessian matrix B0 the following steps are repeated
as xk converges to the solution:
Obtain a direction pk by solving Bkpk = −∇f(xk) .
Perform a one-dimensional optimization (line search) to find an acceptable stepsize αk in the

direction found in the first step, so αk = arg min f(xk + αpk)
Set sk = αpk and update xk+1 = xk + sk
yk = ∇f(xk+1)−∇f(xk)

Bk+1 = Bk +
yky

T
k

yTk sk
− Bksks

T
kB

T
k

sTkBksk

f(x) denotes the objective function to be minimized. Convergence can be checked by observing
the norm of the gradient,‖∇f(x)‖. If B0 is initialized with B0 = I, the first step will be equivalent
to a gradient descent, but further steps are more and more refined by Bk, the approximation to the
Hessian.
The first step of the algorithm is carried out using the inverse of the matrix Bk, which can

be obtained effi ciently by applying the Sherman—Morrison formula to the step 5 of the algorithm,
giving

B−1
k+1 =

(
I − (skyTk )

yTk sk

)
B−1
k

(
I − (yksTk )

yTk sk

)
+

(sksTk )
yTk xk

This can be computed effi ciently without temporary matrices, recognizing that B−1
k is symmet-

ric, and that yTk B
−1
k yk and sTk yk are scalars, using an expansion such as

B−1
k+1 = B−1

k +
(sTk yk+yTk B

−1
k yk)(sksTk )

(sTk yk)
2 − B−1

k yks
T
k +sTk y

T
k B
−1
k

yTk sk

In statistical estimation problems (such as maximum likelihood or Bayesian inference), credible
intervals or confidence intervals for the solution can be estimated from the inverse of the final
Hessian matrix. However, these quantities are technically defined by the true Hessian matrix, and
the BFGS approximation may not converge to the true Hessian matrix.
Exercises:

1. Construct STATA program file (*.do file) to implement a BHHH for a cross section analyis;
DFP and BFGS algorithms for time series or panel data analysis.

2. Construct Eviews program file (*.do file) to implement a BHHH for a cross section analyis;
DFP and BFGS algorithms for time series or panel data analysis.

3. Construct RATS program file (*.do file) to implement a BHHH for a cross section analyis;
DFP and BFGS algorithms for time series or panel data analysis.

4. Construct R program file (*.do file) to implement a BHHH for a cross section analyis; DFP
and BFGS algorithms for time series or panel data analysis.

5. Review three articles from Econometrics or applied econometric journals that apply BHHH,
DFP and BFGS algorithms
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MLE: AR(1) Likelihood function for AR(1) process

Yt = c+ φYt−1 + εt (746)

Its mean and variances are

µ =
c

1− φ ; σ2
y =

σ2

1− φ2 (747)

Likelihood functions:
The disnsity of the first orbservation:

Ly1(y1, θ) =
1√

2πσ2
y

exp

[
−1

2

(y1 − µ)
2

σ2
y

]

=
1√

2π σ2

1−φ2

exp

−1

2

(
y1 − c

1−φ

)2

σ2

1−φ2

 (748)

density for the second observation given that the first has been observed:

Ly2/y1
(y2/y1, θ) =

1√
2πσ2

y

exp

[
−1

2

(y2 − c− φy1)
2

σ2
y

]
(749)

L(yt/yt−1, yt−2, ....y1,θ) =
1√

2πσ2
y

exp

[
−1

2

(y2 − c− φyt−1)
2

σ2
y

]
(750)

Likelihood of the complete function

Lyt,yt−1,yt−2,....y1
(yt/yt−1, yt−2, ....y1,θ)

= Ly1
(y1, θ).

T

Π
t=2

L(yt/yt−1, yt−2, ....y1,θ) (751)

Logliklihood function

=(θ) = logLy1
(y1, θ) +

T∑
log

t=2

L(yt/yt−1, yt−2, ....y1,θ) (752)

Sustiting the relevant functions, the likelihood for sample T Gaussian process is

=(θ) = −1

2
log (2π)− 1

2
log

(
σ2

1− φ2

)−1

2

(
y1 − c

1−φ

)2

σ2

1−φ2

+

−T − 1

2
log (2π)− T − 1

2
−

T∑
t=2

[
(yt − c− φyt−1)

2

2 σ2

1−φ2

]
(753)
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MLE: MA(1) MA(1) process

Yt = µ+ εt + θεt−1 (754)

Lyt(yt/εt−1
, θ) =

1√
2πσ2

y

exp

[
−1

2

(y1 − µ− θεt−1)
2

σ2
y

]
(755)

ε1 = y1 − µ (756)

Ly2/y1
(y2/y1, θ) =

1√
2πσ2

y

exp

[
−1

2

(y2 − c− φy1)
2

σ2
y

]
(757)

ε2 = y2 − µ− θε1 (758)

ε2 = y2 − µ− θε1 (759)

εt = yt − µ− θεt−1 (760)

L(yt/yt−1, yt−2, ....y1,θ) =
1√

2πσ2
y

exp

[
−1

2

ε2t
σ2
y

]
(761)

Conditional log-likelihood for MA(1)

=(θ) = −T
2

log (2π)− T

2
log σ2 −

T∑
t=2

[
1

2

ε2t
σ2

1−φ2

]
(762)

MLE: MA(p,q) Similarly for the MA(p,q)

Yt = c+ φ1Yt−1 + φ2Yt−2 + ....+ φpYt−p + θ1εt−1 + θ2εt−2 + ....+ θpεt−q (763)

=(θ) = −T
2

log (2π)− T

2
log σ2 −

T∑
t=2

[
1

2

ε2t
σ2

1−φ2

]
(764)
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MLE: ARCH Joint realisations of e1 , e2 , e
T
is given by

L =
T

Π
t=1

(
1√

2πσ2

)
exp

(
−e2

t√
2σ2

)
(765)

in log form

lnL = −T
2

ln (2π)− T

2
ln
(
σ2
)
− 1

2σ2

T∑
t=1

(
e2
t

)
(766)

where et = Yt − β0 − β1Xt.

lnL = −T
2

ln (2π)− T

2
ln
(
σ2
)
− 1

2σ2

T∑
t=1

(Yt − β0 − β1Xt)
2 (767)

First order conditions for maximisations are

lnL

∂σ2
= − T

2σ2
+

T

2σ4

T∑
t=1

(Yt − β0 − β1Xt)
2 (768)

lnL

∂β1

=
T

2σ2

T∑
t=1

(
YtXt − β0Xt − β1X

2
t

)
(769)

For a model without intercept this gives

σ̂2 =

T∑
t=1

(
e2
t

)
T

; β̂1 =

T∑
ytxt

t=1

T∑
t=1

x2
t

(770)

This maximum likelyhood method applied to the ARCH errors generates

lnL = −nT
2

ln (2π)− 1

2

T∑
t=1

ln
(
α0 + α1e

2
t−1

)
− 1

2

T∑
t=1

e2
t

α0 + α1e2
t−1

(771)

Algorithm of ARCH process is non-linear iterative procedure. It is not possible to estimate β0,
β1 n Yt = β0 + β1X1,t + et without knowing et here errors are not normal. mean of et can still be
zero but its variance is modelled in the variance equation.
Thus the estimation is higly non-liner and maximul likelihoold method is used to estimate this.
First start with the initial values of α̂0, α̂1, α̂2, ..... α̂q, and et .. et−S . Estimate ht = σ2

t .
Secondly, estimate β̂0, β̂1 based on σ̂2

t . Then estimate êt from this estimate the variance σ̂2
t

and new vlaues of α̂0, α̂1, α̂2, ..... α̂q.
Then continue the process until the values of β̂0, β̂1 and α̂0, α̂1, α̂2, ..... α̂q converge.
MLE: GARCH
It is possible to add other explanatory variables in the variance equation
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ht = α0 +

q∑
αje

2
t−j

j=1

+

p∑
δjht

j=1

+

m∑
µk

j=k

Xk (772)

All forms of GARCH modesl are estimated using iterative Maximum Likelihood procedure.

lnL (θ) =
1

T

T∑
t=1

lt = − 1

2T

T∑
t=1

ln (ht)−
1

2T

T∑
t=1

e2
t

ht
(773)

Bayesian Likelihood

L(β, σ2) =
1

(2πσ2)
N
2

exp− 1

2σ2

[
N∑
i

(Y − β̂X)2 −
(
β − β̂

)2 N∑
i

X2
i

]
(774)

s =

∑
(Y−β̂X)2

N−1 = vs2 with v = N − 1

N∑
i

(Y − βX)
2

= −vs2 +
(
β − β̂

)2 N∑
i

X2
i (775)

L(β, σ2) =
1

(2π)
N
2


1√
σ2

exp

−
1

2

(
β − β̂

)2

σ2

(
N∑
i

X2
i

)−1


1(√
σ2
)v exp

[
− vs

2

2σ2

]


(776)

MLE: Limited Information Maximum Likelihood Single equation method for the simulta-
neous equation method (like 2SLS); For instance, example in Maddala(2001)

y1 = b1y2 + c1z1 + c2z2 + u1 (777)

y2 = b2y1 + c3z3 + u2 (778)

define

y∗1 = y1 − b1y2 = c1z1 + c2z2 + u1 (779)

First regress y∗1 on z1, z2 .; get the RSS1
Then regress y∗1 on z1, z2 .z3 get RSS2
Estimate b1 to minimise RSS1

RSS2
Determine c1, c2 after estimating b1 . LIML and 2SLS are almost same for the exactly identified

syste.
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3.1 Full Information Maximum Likelihood Method (FIML)

Classic example developed by Klein (1956) and reiterated by Koutsoyiannis (1973) is the easiest
way to understand the FIML

C = a0 + a1(Y − T ) + a2Yt−1 + u
1

(780)

I = b0 + b1Y + b2Kt−1 + b3r + b4E + u
2

(781)

M = c
0

+ c
1
Y + c

2
Pt−1 + u

3
(782)

Y = C + I +G+ E −M (783)

substituting out the income equation

C =
a0

1− a1
+

a1

1− a1
(I +G+ E −M − T ) +

a2

1− a1
Yt−1 +

u
1

1− a1
(784)

Full Information Maximum Likelihood Method (FIML)

I =
b0

1− b1
+

b1
1− b1

(C +G−M) +
b2

1− b1
Kt−1

+
b3

1− b1
r +

b1 + b4
1− b1

E +
u2

1− b1
(785)

M =
c0

1 + c1
+

c1

1 + c1
(C + I +G+ E) +

c2

1 + c1
Pt−1 +

u3

1 + c1
(786)

define the reduced form parameters as a0

1−a1
= α0; a1

1−a1
= α

1
; a2

1−a1
= α

3
;
u

1

1−a1
= u∗1;

b0
1−b1 = β0; b1

1−b1 = β1; b2
1−b1 = β2; b3

1−b1 = β3; b1+b4
1−b1 = β4; u2

1−b1 = u∗2
c0

1+c1
= γ

0
;
c1

1+c1
= γ

1
;
c2

1+c1
= γ

2
;
u3

1+c1
= u∗3

Full Information Maximum Likelihood Method (FIML)
Simplifying the notations for the endogenous and exogenous variables
Endogeneous variables: y1 = C; y2 = I; y3 = M ;
Exogenous variables: z1 = G; z

2
= E; z

3
= Kt−1; z

4
= T ; z

5
= Yt−1; z

6
= r; z

7
= Pt−1;

y
1

= α0 +α
1
(y

2
+z

1
+z

2
−y3−z4

)+α
2
z

5
+u∗

1
; y

2
= β0 +β1(y

1
+z

1
−y3)+β2z3

+β3z6
+β4z2

+u∗
2

and
y3 = γ

0
+ γ

1
(y1 + y2 + z1 + z2) + γ

2
z7 + u∗

3

y
1

= α0 + α
1
(y

2
)− α

1
(y3) + α

1
(z

1
) + α

1
(z

2
)− α

1
(z

4
) + α

2
z

5
+ u∗

1
(787)

y
2

= β0 + β1(y
1
)− β1(y3) + β1 (z

1
) + β2z3

+ β3z6
+ β4z2

+ u∗
2

(788)

y
3

= γ
0

+ γ
1

(
y

1
) + γ

1
(y

2
) + γ

1
(z

1
) + γ

1
(z

2

)
+ γ

2
z

7
+ u∗

3
(789)

• Step 1: Formulate the Likelihood functions for joint errors
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There are n observations for each random error terms
u11u12u13 ......u1n ;u21u22u23 ......u2n ;u31u32u33 ......u3n ;
Joint distribution of errors in this system assumming that there is no contemporaneous corre-

lation across errors

P (u
1i
.u

2i
.u

3i
) = P (u

1i
) .P (u

2i
) .P (.u

3i
) (790)

Assumption on errors
u

1
∼ N

(
0, σ2

u1

)
and E (u

1i
.u1.j) = 0

u2 ∼ N
(
0, σ2

u2

)
and E (u2i .u2.j) = 0

u3 ∼ N
(
0, σ2

u3

)
and E (u

3i
.u3.j) = 0

Normal density for each error term them is defined as

P (u1) =

{
1

σu1

√
2π

}n
.

[
exp

{
−1

2

(∑
u2

1i

σ2
u1

)}]
(791)

P (u2) =

{
1

σu2

√
2π

}n
.

[
exp

{
−1

2

(∑
u2

2i

σ2
u2

)}]
(792)

P (u3) =

{
1

σu3

√
2π

}n
.

[
exp

{
−1

2

(∑
u2

3i

σ2
u3

)}]
(793)

For the system as a whole the joint distribution of errors is made by combining these three
P (u1i .u2i .u3i) = P (u1i) .P (u2i) .P (.u3i) ={

1
2π
√

2π

}n
.
{

1
σu1σu2σu3

}2n

.
[
exp

{
−
(∑

u2
1i

2σ2
u1

+
∑
u2

2i

2σ2
u2

+
∑
u2

2i

2σ2
u2

)}]
• Step 2: Derive the likelihood functions of y from the likelihood functions of u

u
1

= y
1
− α0 − α1

(y
2
) + α

1
(y3)− α

1
(z

1
)− α

1
(z

2
) + α

1
(z

4
)− α

2
z

5
(794)

u
2

= y
2
− β0 − β1(y

1
) + β1(y3)− β1 (z

1
)− β2z3

− β3z6
− β4z2

(795)

u
3

= y
3
− γ

0
− γ

1

(
y

1
)− γ

1
(y

2
)− γ

1
(z

1
)− γ

1
(z

2

)
− γ

2
z

7
(796)

Jacobian determinants of above errors with respect to endogenous variabls

|J | =

∣∣∣∣∣∣∣
∂u1

∂y1

∂u1

∂y2

∂u1

∂y3
∂u2

∂y1

∂u2

∂y2

∂u2

∂y3
∂u3

∂y1

∂u3

∂y2

∂u3

∂y3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 −α

1
α

1

−β1 1 β1

−γ
1
−γ

1
1

∣∣∣∣∣∣ (797)

The likelihood functions for y variables are obtained using the transformation functions as:

P (y1i .y2i .y3i) = P (u1i .u2i .u3i) .

∣∣∣∣∂ (u
1i
.u

2i
.u

3i
)

∂ (y1i .y2i .y3i)

∣∣∣∣ (798)

Using above derivations the likelihood functions
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L = |J |n
{

1

2π
√

2π

}n
.

{
1

σu1σu2σu3

}n
.[

exp

{
−
(∑

u2
1i

2σ2
u1

+

∑
u2

2i

2σ2
u2

+

∑
u2

2i

2σ2
u2

)}]
(799)

The log likelihood function is given as

lnL = n ln |J | − n ln
(

2π
√

2π
)
− n ln (σu1σu2σu3)−

∑
u2

1i

2σ2
u1

−
∑
u2

2i

2σ2
u2

−
∑
u2

2i

2σ2
u2

u
i
can be expressed in terms of endogenous y and predetermined z variables.

• Step III: First order conditions for maximisation
∂lnL
∂α1

= 0; ∂lnL∂α2
= 0; ∂lnL∂β

1

= 0; ∂lnL∂β
2

= 0; ∂lnL∂β
3

= 0; ∂lnL∂β4
= 0; ∂lnL∂γ

1

= 0; ∂lnL∂γ
2

= 0; ∂lnL∂σu1
=

0; ∂lnL∂σu2
= 0; ∂lnL∂σu3

= 0;

∂lnL

∂α
i

= n
1

|J | .
∂ |J |
∂αi

+
∑ ∂lnL

∂u
1

∂u
1

∂α
i

= 0 for i = 1, 2 (800)

∂lnL

∂β
i

= n
1

|J | .
∂ |J |
∂βi

+
∑ ∂lnL

∂u
2

∂u2

∂β
i

= 0 for i = 1, 2, 3, 4 (801)

∂lnL

∂σ
i

= −n 1

∂σui
+

1

σ3
ui

∑
(ui)

2
= 0for i = 1, 2, 3 (802)

Solving for parameters from these first order conditions is quite involving task becuase of non-
linearities of functions in parameters.
For instance consider one case of parameter ∂lnL∂α

i
= 0 for α.

Given the log likelihood function: lnL = n ln |J | − n ln
(
2π
√

2π
)
− n ln (σu1σu2σu3) −

∑
u2

1i

2σ2
u1

−∑
u2

2i

2σ2
u2

−
∑
u2

2i

2σ2
u2

∂lnL
∂σu1

= − n
σu1
−
∑
u2

1i

(
− 1
σ3
u1

)
= − n

σu1
+
∑
u2

1i

σ3
u1

= 0 ; This implies n
σu1

=
∑
u2

1i

σ3
u1

or σ2
u1

=
∑
u2

1i

n .

Similar derviation σ2
u2

=
∑
u2

2i

n forσ2
u2

=
∑
u2

2i

n and σ2
u3 =

∑
u2

3i

n for σu3.
Substitute the values of σ2

u1
, σ2
u2
and σ2

u3 in the loglikelihood function:

Similar derviation σ2
u2

=
∑
u2

2i

n and σ2
u3 =

∑
u2

3i

n .
Substitute the values of σ2

u1
, σ2
u2
and σ2

u3 in the loglikelihood function:

lnL = n ln |J | − n ln
(

2π
√

2π
)
− n ln (σu1σu2σu3)−

∑
u2

1i

2σ2
u1

−
∑
u2

2i

2σ2
u2

−
∑
u2

3i

2σ2
u2

= n ln |J | − n ln
(

2π
√

2π
)
− n ln (σu1σu2σu3)− n

∑
u2

1i

2
∑
u2

1i

− n
∑
u2

2i

2
∑
u2

2i

−
∑
u2

2i

2
∑
u2

3i

lnL = n ln |J | − n ln
(

2π
√

2π
)
− n ln (σu1σu2σu3)− 3n

2
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lnL = n ln |J | − n ln
(
2π
√

2π
)
− n ln (σu1σu2σu3)− 3n

2
or writing

lnL = n ln |J | − n ln
(

2π
√

2π
)
− n

2
ln
(
σ2
u1
σ2
u2
σ2
u3

)
− 3n

2

lnL = n ln |J | − n ln
(

2π
√

2π
)
− n

2

(
lnσ2

u1
+ lnσ2

u2
+ lnσ2

u3

)
− 3n

2

Now differentiale lnL wrt to α1

∂lnL

∂α
1

= n
1

|J | .
∂ |J |
∂α1

− n

2

1

σ2
u1

∂σ2
u1

∂α
1

substitue σ2
u1

=
∑
u2

1i

n this to ∂lnL∂α
1

= n 1
|J| .

∂|J|
∂α1
−n2

1∑
u2

1i

∂
∑
u2

1i

∂α
1

= n 1
|J| .

∂|J|
∂α1
−n2

1∑
u2

1i
(2
∑
u1i)

∂u1i

∂α
1

=

0
Evaluate the Jacobian determinant

|J | =

∣∣∣∣∣∣∣
∂u1

∂y1

∂u1

∂y2

∂u1

∂y3
∂u2

∂y1

∂u2

∂y2

∂u2

∂y3
∂u3

∂y1

∂u3

∂y2

∂u3

∂y3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 −α1 α1

−β1 1 β1

−γ
1
−γ

1
1

∣∣∣∣∣∣ =

∣∣∣∣ 1 β1

−γ
1

1

∣∣∣∣+α1

∣∣∣∣ −β1 β1

−γ
1

1

∣∣∣∣+α1

∣∣∣∣ −β1 1
−γ

1
−γ

1

∣∣∣∣
=
(
1 + γ

1
β1

)
+ α

1

(
−β1 + γ

1
β1

)
+ α

1

(
γ

1
β1 + γ

1

)
= 1 + γ

1
β1 + α

1

(
−β1 + γ

1
+ 2γ

1
β1

)
Now the partial derivative of Jacobian wrt to α1 is

∂|J|
∂α1

= −β1 + γ
1

+ 2γ
1
β1. Then take u1 as

defined above and differential wrt α1

u
1

= y
1
− α0 − α1

(y
2
) + α

1
(y3)− α

1
(z

1
)− α

1
(z

2
) + α

1
(z

4
)− α

2
z

5
∂u1i

∂α1
= −y

2
+ y3 − z1

− z
2

+ z
4

Substitution all these partial derivatives in the ∂lnL
∂α

1
= n 1

|J| .
∂|J|
∂α1
− n

2
1∑
u2

1i
(2
∑
u1i)

∂u1i

∂α
1

= 0

n(−β1+γ
1
+2γ

1
β1)

1+γ
1
β1+α1(−β1+γ

1
+2γ

1
β1)
−n

∑
(y1−α0−α1 (y2 )+α1 (y3)−α1(z1)−α1(z2)+α1 (z4 )−α2z5).(−y2+y3−z1−z2−z4)∑

(y1−α0−α1 (y2 )+α1 (y3)−α1(z1)−α1(z2)+α1 (z4 )−α2z5)
2 =

0
(−β1+γ

1
+2γ

1
β1).

∑
(y1
−α0−α1

(y
2
)+α

1
(y3)−α

1(z1)−α1(z2)+α
1
(z

4
)−α

2
z
5)

2

1+γ
1
β1+α

1(−β1+γ
1
+2γ

1
β1)

=
∑

(y
1
− α0 − α1

(y
2
) + α

1
(y3)− α

1
(z

1
)− α

1
(z

2
) + α

1
(z

4
)− α

2
z

5
) . (−y

2
+ y3 − z1

− z
2
− z

4
)

• This process should continue for all structural parameters α2,β1, β2, β3, β4, γ1
, γ

2
and for once

all these estimates are obtained; then need to evaluate the variances of errors σ2
u1
, σ2
u2
and σ2

u3
.

• After having estimates of all parameters α
1,α2,β1, β2, β3, β4, γ1

, γ
2
and σ2

u1
, σ2
u2
and σ2

u3
you

can evaluate the Likelihood function.

• Structural parameters should be obtained by solving these first order conditions as illustrated
in simple example above.
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3.2 Spectral Analysis

Time series Yt can be expressed in time domain and frequency domain (See Hamilton (1994).
Time domain:

Yt = µ+

∞∑
j=0

ϕjεt (803)

Frequency domain or spectral analysis

Yt = µ+

∫ π

0

α (ω) cos (ωt) dω +

∫ π

0

δ (ω) sin (ωt) dω (804)
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Spectral Analysis
A covariance stationary process {Yt}∞0 with E (Yt) = µ and j th covariance E (Yt − µ) (Yt−j − µ) =

γj .
Autocovariance generating function

gy (z) =

∞∑
j=−∞

γjz
j (805)

zj = e−iω i =
√
−1 (806)

Here ω is a frequency. It is assumed that these autocovariances γj are absolutely summable.
Population spectrum of Yt is given by

Sy (ω) =
1

2π
gy (z) =

1

2π
gy
(
e−iω

)
=

1

2π

∞∑
j=−∞

γj
(
e−iωj

)
(807)

Spectral Analysis
From De Moivre’s theorem e−iωj = cos (ωj)− i Sin (ωj)

Sy (ω) =
1

2π

∞∑
j=−∞

γj (cos (ωj)− i Sin (ωj)) (808)

Note the trigonometric rules cos (0) = 1; sin (0) = 0; cos (−θ) = cos θ; sin (−θ) = − sin(θ);
sin = cos θ ∂ sin θ

∂θ = cos θ; ∂ cos θ
∂θ = − sin θ;

Sy (ω) = 1
2πγ0 (cos (0)− iSin (0))+ 1

2π

∞∑
j=−∞

γj (cos (ωj) + cos (−ωj)− i Sin (ωj)− i Sin (−ωj))

For the covariance stationary proces γj = γ−j
Spectral Analysis

Sy (ω) =
1

2π

γ0 cos (0) + 2

∞∑
j=−∞

γj cos (ωj)

 (809)

Sy (ω) is a continous real valued function of ω.
Prove that population spectral representation of ARMA(p, q) process

Yt = c+ φ1Yt−1 + φ2Yt−2 + ....+ φpYt−p + θ1εt−1 + θ2εt−2 + ....+ θpεt−q (810)

is given by

Sy (ω) =
σ2

2π

(
1 + θ1e

−iω + θ2e
−i2ω + ......+ θqe

−iqω)((
1− φ1e

−iω + φ2e
−i2ω + ......+ φ2pe

−ipω
))

×
(
1 + θ1e

iω + θ2e
i2ω + ......+ θqe

iqω
)((

1− φ1e
iω + φ2e

i2ω + ......+ φ2pe
ipω
)) (811)
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3.2.1 Brownian Motion

Consider a random walk

yt = yt−1 + εt εt ∼ iid N (0, 1) (812)

yt = ε1 + ε2 + ε3 + ε4 + ε5 + ....+ εt (813)

change in value of yt between periods t and s

yt − ys = εt+1 + εt+2 + εt+3 + εt+4 + εt+5 + ....+ εs

∼ N (0, (s− t)) (814)

Divide the error
yt − yt−1 = εt

εt = e1t + e2t (815)

Now divite the time interval in infinitely small sections

εt = e1t + e2t + ........+ eNt ∼ N

(
0,

1

N

)
(816)

when N −→ ∞ it is called a Brownian motion, W (t). This is continous stochastic function
and has folliwng properties

• W (0). = 0

• For any dates 0 ≤ t1 ≤ t2 ≤ ... ≤ tk ≤ 1 the changes

• [W (t2)−W (t1)] , [W (t3)−W (t2)] , ..., [W (tk)−W (tk−1)] are independent multivariate Gaussian
with [W (s)−W (t)] ~N (0, (s− t))

• Any realisation of W (t) is continous intwith probability 1.

Other continous time process can be generated from standard Browning motions, as:

Z (t) = σW (t) ∼ N
(
0, σ2t

)
(817)

• Hamilton James D. (1994) Time Series Analysis, Princeton.

• For issues see http://www.weforum.org/
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4 L3: Time Series Analysis

A time series is a data generating process and it is characterised by its mean variance and autoco-
variance. Trends, cycles, seasonality and irregular components of a time series are often represented
in terms of autoregressive or moving average models or combinations of these. What is the right
order of autoregressive or moving average component and combination of these two and what sorts
of autocorrelation coeffi cients are required for stationary series and how can non-stationary series
be made stationary and used for economic analysis is one of the major topic in univariate time
series analyses.
Multivariate vector autoregressive (VAR) and simultaneous equation models are used to analysis

of economic systems. These involve a number of equations with various time series variables. What
is the long run relationship among variables? How do adjustments occur towards the long run
whenever these process deviate from the long run equilibrium? How can economic variables cbe
coitegrated are discussed in multivariate time series analyses? Works of Klein (1956), Box and
Jenkins (1976), Hamilton(1994), Harvey (1976), Dickey and Fuller (1979), Hendry (1995), Engle
(1982), Engle and Granger (1987), Phillips (1987), Stock and Watson (2002), Nelson and Plosser
(1982), Pagan and Wickens (1989), Pyndick and Rubinfeld (1998), Wooldridge (1994) , Enders
(2010) and others have build the body of knowledge in econometrics.
A series of macro time series models have appeared in the literature. Such modelling exercises

have become more intensive in recent years as more information on the major macroeconomic vari-
ables have become available. These have become even more relevant in torbullent times in recent
years along with availability, regularity and quality of high frequency data sets. These models
broadly can be divided into four main categories. First, the Keynesian IS-LM model for closed or
open economies are based on structural equations to explain demand sides of the economy assuming
a fixed supply in the short run. When supply shocks, such as the higher oil prices hit economies
around the world in 1970s scepticism increased on the outcome of the demand determined solutions
of the Keynesian model as they were inconsistent with the stagflationary experience of the many
advanced economies. Mainly, three other alternative models have been proposed to explain the
emerging realities of these economies. One approach is to use time series of a particular variable
for forecasting for the short run. It is done either by single equation model such as the ARIMA, or
multiple equation model such as the vector autoregression (VAR) models or structural cointegration
(CVAR) models. Another approach is to use small scale macro models with rational expectation
or/and micro foundation. Finally there are infinite horizon dynamic general equilibrium models for
the decentralised markets with clear focus on the real side of the economy. New classical macro
economists use market clearing models with stochastic shocks to technology or fiscal policy in ex-
plaining the evolution of the economy over time. New Keynesians, on the other hand, reinstate the
Keynesian conclusions using more sophisticated modelling technology that takes account of explicit
optimisation by households and firms as developed by new classical economists. There are excel-
lent surveys on macroeconometric modelling in the literature (Wallis (1989), Pagan and Wickens
(1989)). As they account how many authors have contributed to the macroeconometric modelling
and forecasting in the UK since 1969. Klein (1968), Sims (1967), Cairncorss (1969), Hendry (1974),
Granger and Newbold (1975), Ash and Smyth (1978), Doan, Litterman and Sim (1984), Burns
(1986) have either used simultaneous model based approach or the time series approach for fore-
casting. (see Holly and Weal (2000) for some recent development in this area). Though forecasting
has been in practice quite widely both by the government and the private sector appreciable differ-
ence remains across various forecasting groups such as the London Business School (LBS), National
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Institute of Social and Economic Research (NISER, NIGEM and NIDEM), Liverpool University
Research Group (LPL) and Cambridge University group (CUBS). Such experience is also evident
in the US models such as DRI, WHARTON or TAYLOR or the OECD models. Despite that model
based macroeconomic forecasts are found to have large prediction errors. Clements and Hendry
(2002) warrant for improved procedures so that the model based forecasts to be more accurate
than simple and plain extrapolative forecasts. More recently Garratt (et.al.) illustrate a struc-
tural cointegrating VAR approach to macroecometric modelling while comparing developments on
each of the above four models. Al most all of the above models lack dynamic general equilibrium
framework for decentralised markets where resources are allocated by prices that are determined
by underlying forces of demand and supply in the economy (see Bhattarai (2011) for illustration of
one of these models).
ARMA: Box and Jenkins (1976), Lütkepohl (1984), Evans and Honkapohja (1986), Campos

(1986), McCabe and Leybourne (1998), Pesaran, Shin, Smith (2001), Ling and McAleer (2003)
Bailey (2007) Pan, Wang and Yao (2007)
Time Series: Klein (1956), Box and Jenkins (1976), Hamilton(1994), Harvey (1976), Dickey

and Fuller (1979), Hendry(1995), Engle (1982), Engle and Granger (1987), Phillips (1987), Stock
and Watson (2002), Nelson and Plosser (1982), Pagan and Wickens (1989), Pyndick and Rubinfeld
(1998), Wooldridge (1994), Enders (2010), Sims (1980), Beveridge and Nelson (1981),Pesaran (1982)
Johansen (1988), Baltagi (1992), Pesaran and Smith (1995), Garratt, Lee, Phillips (2003) Pesaran
and Shin (2003), Hendry (1997),Mills, Pelloni, Zervoyianni (1995), Nelson (1987), Stock and Watson
(2001)
ARCH-GARCH:Engle (1982), Engle and Granger (1987), Bollerslev (1986, 1990) Engle (2001,

2002), Engle and Kroner (1995), Baillie and Myers(1991) Kleibergen and Van Dijk(1993) , Lums-
daine (1995), Bauwens, Laurent and Rombouts (2006),Huang, Wang and Yao (2008)

4.0.2 Definition of a time series

Time series is the data generating process {yt}∞−∞ =

{
y−∞.....y−1.y0.y1.y2....
....yT .yT+1.yT+1.....

}
A time series consists of trend, cycle, season and irregular component

Y = T × C × S × I (818)

In a simple method the moving average gives T ×C components and is used to isolate the S× I
components. For instance for a 12 monthly moving average

Y i =
1

12
(Y1 + Y2 + ......+ Y12) (819)

S × I =
T × C × S × I

T × C =
Yi

Y i
= zt (820)

Now to isolate the Irregular component I from S × I take out the seasonal elements from zt
assuming monthly data for 5 years (60 observations) compute the seasonal indices as following:

Month1 : z1 =
1

5
(z1 + z13 + z25 + z39 + z48) (821)

Month2 : z2 =
1

5
(z2 + z14 + z26 + z40 + z49) (822)
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Month3 : z3 =
1

5
(z3 + z15 + z26 + z41 + z50) (823)

............................................

Month11 : z11 =
1

5
(z11 + z23 + z35 + z47 + z59) (824)

Month12 : z12 =
1

5
(z12 + z24 + z36 + z46 + z60) (825)

Deseasonalisation of data Y di = Yi
zi
and irregular component should be i = zt

zi
.

Trends: Simple extrapolation

Yt = c1 + c2t (826)

Exponential growth

Yt = Aert (827)

Autoregressive model

Yt = c1 + c2Yt−1 (828)

Log trend
ln (Yt) = c1 + c2 ln (Yt−1) (829)

Quadratic trends:

Yt = c1 + c2t+ c3t
2 (830)

Logistic trend:

Yt =
1

k + bt
b > 1 (831)

Yt = ek1− k2
t (832)

ln (Yt) = k1 −
k2

t
(833)

auto lagged with declining weights α < 1

Yt = αYt−1 + α (1− α)Yt−2 + α (1− α)
2
Yt−2 + ...+ α (1− α)

n
Yt−2 (834)

Forecasting forward with these models is obvious.
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4.0.3 Time Series models

Time series models aim to explain the data generating process for {yt}∞−∞ = {y−∞.....y−1.y0.y1.y2........yT .yT+1.yT+1.....}
Simplest of these is a trend model

Yt = βt+ εt (835)

with mean E(Yt) = βt and variance E (Yt − βt )
2

= E (εt)
2

= σ2
ε

Or it could have been just a constant plus a Gaussian white noise εt ∼ N
(
0, σ2

)
as:

Yt = µ+ εt (836)

with mean E(Yt) = µ and variance E (Yt − µ )
2

= E (εt)
2

= σ2
ε

Autocovariance of {yt}∞−∞ for I realisations is

γtj = E (Yt − µ )E (Yt−j − µ ) = E (εt)E (εt−j) = 0 for j 6= 0 (837)

Stationarity: when neither mean µ nor the autocovariance γij depend on time t then the Yt is
covariance stationary or weakly stationary.

E(Yt) = µ for ∀ t (838)

E (Yt − µ)E (Yt−j − µ) = γj for any t and j = {σ
2
ε for j=0

0 for j 6=0 (839)

For instance (836) is stationary while (835) not covariance stationary because its mean βt is
function of time.
If the process is stationary γj is the same for any value of t γj = γ−j

γj = E (Yt+j − µ)E
(
Y(t+j)−j − µ

)
= E (Yt+j − µ)E (Yt − µ)

= E (Yt − µ)E (Yt+j − µ) = γ−j (840)

Ergodicity A covariance process is ergodic for the mean if the mean for certain observations

y ≡ 1
T

T∑
t=1

y
(1)
t converge in probability to E(Yt) as T −→∞. It is ergodic in mean if

T∑
t=1

∣∣γj∣∣ <∞ (841)

A covariance process is ergodic for the second moment if[
1

T − j

] T∑
t=1

(Yt − µ) (Yt−j − µ)
p−→ γj (842)

Stationarity and ergodicity are same in most applications, except few exceptions.
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4.1 Moving Average Process

First order moving average process: MA(1)

Yt = µ+ εt + θεt−1 (843)

Here µ, θ could be any constant. Yt is constructed from two most recent realisation of white
noise εt ∼ N

(
0, σ2

)
.

Mean of Yt

E (Yt) = E (µ+ εt + θεt−1) = µ+ E (εt) + θE (εt−1) = µ (844)

Variance of Yt

E (Yt − µ)
2

= γ0 = E (εt + θεt−1)
2

= E
(
ε2
t + 2θεtεt−1 + θ2ε2

t

)2
= σ2 + 0 + θ2σ2 = σ2

(
1 + θ2

)
(845)

MA(1) has a memory of only 1 period.
First autocovariance:

E (Yt − µ)E (Yt−1 − µ) = γ1 (846)

= E (εt + θεt−1) (εt−1 + θεt−2)

= E (εtεt−1 + θεtεt−2 + θεt−1εt−1 + θεt−1θεt−2)

= 0 + 0 + θσ2 + 0 = θσ2

Higher autocovariance:

E (Yt − µ)E (Yt−j − µ) = γj = E (εt + θεt−1) (εt−j + θεt−j−1) = 0

for j > 1 (847)

MA(1) process is ergotic for all moments.
Autocorrelation

ρj =
cov (Yt, Yt−j)√
var(Yt)

√
Yt−j

=
γj
γ0

(848)

ρ1 =
θσ2√

σ2
(
1 + θ2

)√
σ2
(
1 + θ2

) =
θ(

1 + θ2
) < 1 (849)

MA(q) process

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + ....+ θqεt−q (850)

Mean

E (Yt) = E (µ+ εt + θ1εt−1 + θ2εt−2 + ....+ θqεt−q) = µ (851)
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Variance

E (Yt − µ)
2

= γ0 = E (εt + θ1εt−1 + θ2εt−2 + ....+ θqεt−q)
2

= σ2 + θ2
1σ

2 + θ2
2σ

2 + ..+ θ2
qσ

2

=
(
1 + θ2

1 + θ2
2 + ..+ θ2

q

)
σ2 (852)

MA(q) has a memory up to q periods.
Autocovariance for j = 1, 2, q;

E (Yt − µ)E (Yt−1 − µ) = γ1

= E (µ+ εt + θ1εt−1 + θ2εt−2 + ....+ θqεt−q)

(µ+ εt−j + θ1εt−j−1 + θ2εt−j−2 + ....+ θqεt−j−q)

= E
(
θjε

2
t−j + θj+1θ1ε

2
t−j−1 + θj+2θ2ε

2
t−j−2 + ...+ θj+qθqε

2
t−j−q

)
= σ2 (θj + θj+1θ1 + θj+2θ2 + ...+ θj+qθq) (853)

γj ={
σ2(θj+θj+1θ1+θj+2θ2+...+θj+qθq) for j=1,2,...q
0 for j>q (854)

For MA(2) process

γ0 =
(
1 + θ2

1 + θ2
2

)
σ2

γ1 = (θ1 + θ2θ1)σ2

γ2 = (θ2)σ2

γ3 = γ4 = γ5 = .... = 0

Similarly autocovariance function is vanishes after q lags for the MA(q) process.

Yt = µ+

p∑
θj

j=1

εt−j (855)

Infinite order moving average process MA(∞)

Yt = µ+

∞∑
ψj

j=1

εt−j (856)

1) For Gausian white noise MA(∞) is ergodic
∞∑
ψ2
j

j=1

< ∞. Its covariances are absolutely sum-

mable
∞∑
j=1

∣∣γj∣∣ <∞. Prove it.
4.2 Autoregressive Process

First order AR(1)

Yt = c+ φYt−1 + εt (857)
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with white noise εt ∼ N
(
0, σ2

)
.

If φ > 1 time series Yt accumulates εt shocks and the Yt is not covariance stationary.
If φ < 1 impact of εt shocks die out and Yt is covariance stationary and Yt has stable solution

as

Yt = (c+ εt) + φ (c+ εt−1) + φ2 (c+ εt−2) + φ3 (c+ εt−3) + ..+ ..

=
c

1− φ + εt + φεt−1 + φ2εt−2 + φ3εt−3 + ..+ (858)

This is in fact MA(∞) process. When |φ| < 1

∞∑∣∣ψj∣∣
j=1

=

∞∑
|φ|j

j=1

=
1

1− φ (859)

Thus MA(∞) representation exists for any AR(1) process.
AR(1) process is ergodic
Mean of AR(1)

E (Yt) = E

(
c

1− φ + εt + φεt−1 + φ2εt−2 + φ3εt−3 + ..+

)
(860)

E (Yt) =
c

1− φ + 0 + 0 + +..+ (861)

µ =
c

1− φ (862)

Variance of AR(1)

E (Yt − µ)
2

= γ0 = E
(
εt + φεt−1 + φ2εt−2 + φ3εt−3 + ..+

)2
= E

(
1 + φ2εt−1 + φ4 + φ6 + ..+

)
σ2 (863)

γ0 =
σ2

1− φ2 (864)

c = µ (1− φ) (865)

Yt = µ (1− φ) + φYt−1 + εt (866)

Yt − µ = φ (Yt−1 − µ) + εt (867)

E (Yt − µ)
2

= φ2E (Yt−1 − µ)
2

+ 2φE (Yt−1 − µ) εt + E
(
ε2
t

)
(868)

E (Yt−1 − µ) εt = 0

γ0 = φ2γ0 + 0 + σ2 (869)
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γ0 =
σ2

1− φ2 (870)

Autocovariane of AR(1)

γj = E (Yt − µ)E (Yt−j − µ) =

E
(
εt + φεt−1 + φ2εt−2 + ..+ φjεt−j + φj+1εt−j−1..+ ..

)(
εt−j + φεt−j−1 + φ2εt−j−2 + φ3εt−j−3 + ..+

)
(871)

=
(
φj + φj+2 + φj+4 + ...

)
σ2 (872)

γ1 = E (Yt − µ)E (Yt−1 − µ) = φE (Yt−1 − µ) (Yt−1 − µ) (873)

+E (Yt−1 − µ) εt = φγ1−1 = φγ0 (874)

γj = E (Yt − µ)E (Yt−j − µ) = φE (Yt−1 − µ) (Yt−j − µ) (875)

+E (Yt−j − µ) εt = φγj = φjγ0 (876)

Autocorrelation in AR(1)

ρj =
cov (Yt, Yt−j)√
var(Yt)

√
Yt−j

=
γj
γ0

=
φjγ0

γ0

= φj (877)

Second order autocorrelation process AR(2)

Yt = c+ φ1Yt−1 + φ2Yt−2 + εt (878)

Yt(1− φ1L− φ2L
2) = ψ(L)Yt = c+ εt (879)

Let ψ(L) = (1− φ1L− φ2L
2)−1

A second order difference equation is stable if the roots of the polynomial are
outside the unit circle or eigen values lie inside the unit circle.
Dividing both sides by

Yt = ψ(L)c+ ψ(L)εt (880)

MA(∞) representation of AR(2) process.

ψ(L)c =
c

(1− φ1 − φ2)
(881)

And

∞∑
j=1

∣∣ψj∣∣ <∞ (882)
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∞∑
j=1

∣∣ψj∣∣ <∞ (883)

Alternatively

E (Yt) = c+ φ1E (Yt−1) + φ2E (Yt−2) + εt (884)

µ = c+ φ1µ+ φ2µ+ 0 =⇒ µ =
c

(1− φ1 − φ2)
(885)

Variance of AR(2)

c = µ (1− φ1 − φ2) (886)

Yt = µ (1− φ1 − φ2) + φ1Yt−1 + φ2Yt−2 + εt (887)

Yt − µ = φ1 (Yt−1 − µ) + φ2 (Yt−2 − µ) + εt (888)

Multiplying both sides by (Yt − µ) and taking expectations

γ0 = E [(Yt − µ) (Yt − µ)] = φ1E (Yt−1 − µ) (Yt − µ)

+φ2E (Yt−2 − µ) (Yt − µ) + E [εt (Yt − µ)] (889)

γ0 = φ1γ1 + φ2γ2 + σ2 (890)

E [εt (Yt − µ)] = σ2

E [εt (c+ φ1Yt−1 + φ2Yt−2 + εt − µ)] = σ2

For autocovariance multiply by (Yt−j − µ) and take the expectation

γj = E [(Yt − µ) (Yt−j − µ)] = φ1E [(Yt−1 − µ) (Yt−j − µ)]

+φ2E [(Yt−2 − µ) (Yt−j − µ)] + E [εt (Yt−j − µ)] (891)

γj = φ1γj−1 + φ2γj−2 for j = 1,2 (892)

The autocovariances follow the second order difference equation as Yt . AR(2) process is stable
if φ1 and φ2 lie inside the unit triangle.
Autocorrelation of AR(2) are found by dividing the autocovariance by variance ρj =

γj
γ0
Yule-

Walker equations

ρj =
γj
γ0

= φ1

γj−1

γ0

+ φ2

γj−2

γ0

(893)
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ρ1 = φ1 + φ2ρ1; ρ1 =
φ1

1− φ2

(894)

ρ2 = φ1

γ2−1

γ0

+ φ2

γ2−2

γ0

= φ1ρ1 + φ2 (895)

Pth order autocorrelation process: AR(p)

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt (896)

AR(p) is process stable if the roots of the polynomial 1− φ1z − φ2z
2 − ..− φpzp = 0 lie outside

the unit circle.

Yt(1− φ1L− φ2L
2 − ..− φpLp) = ψ(L)Yt = c+ εt (897)

Dividing both sides by MA(∞) representation of AR(p) process.

Yt = ψ(L)c+ ψ(L)εt (898)

ψ(L) = (1− φ1L− φ2L
2 − ..− φpLp)−1

ψ(L)c =
c(

1− φ1 − φ2 − ....− φp
) (899)

Alternatively

E (Yt) = c+ φ1E (Yt−1) + φ2E (Yt−2) + ....+ φpE (Yt−p) + εt (900)

µ = c+ φ1µ+ φ2µ+ ...+ φp + 0 =⇒ µ =
c(

1− φ1 − φ2 − ...− φp
) (901)

For autocovariance multiply by (Yt−j − µ) and take the expectation

γj = E [(Yt − µ) (Yt−j − µ)] = φ1E [(Yt−1 − µ) (Yt−j − µ)]

+φ2E [(Yt−2 − µ) (Yt−j − µ)] +

...+ φpE [(Yt−p − µ) (Yt−j − µ)] + E [εt (Yt−j − µ)] (902)

γj = {φ1γj−1+φ2γj−2+...+φpγj−pfor j = 1,2,...
φ1γ1+φ2γ2+...+φpγpfor j = 0 (903)

Yule-Walker equations

ρj = φ1

γj−1

γ0

+ φ2

γj−2

γ0

+ ...+ φp
γj−p
γ0

(904)

ρj = φ1ρj−1 + φ2ρj−2 + ...+ φpρj−p for j = 1,2,. (905)

Autocovariances and autocorrelation function follow the same pth order difference equations as
does the process itself.
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Box-Jenkis (1976) approach Box-jenkins (1976) suggest three stages for implementation time
series analysis - identification of lags, estimation and diagnostic checking.

• First is identification stage. Here lag order or AR(p) , MA(q) or ARMA(p, q), or ARIMA(p, d, q)
is selected. It should be based on analysis of ACF and PACF functions.

Inveritibility could be examined for finite autocovariance processes. For instance the AR(1)
has MA(∞) representation and MA(1) has AR(∞) representation. It is better to estimate the
parsimonious model.

• Second, estimation stage. Judge the goodness of fit of the model based on AIC or SBC
criteria.

AIC = T.ln
(∑

e2
)

+ 2n (906)

where n is number of parameters estimated (p,q and constant); T = number of observations.

SBC = T.ln
(∑

e2
)

+ n ln (T ) (907)

4.3 Box-Jenkis (1976) approach

• Smaller the value of AIC(SBC) better is the model; for a model with perfect fit these values
go to ∞. Increase the lags if the parameters fail to converge. If the series Yt is stationary
the process should converge after some iterations.

• Third important stage is diagnostic checking. Plot the residuals or standard residuals.

• Normally more than 5% values should not lie outside -2 or +2 band.

• If there is an evidence of increasing variance, it is better to use ARCH or GARCH models as
the residuals from estimates are serially correlated.

Box Pierce (1970) Q statistics or Lung and Box (1978) Q statistics could be used to determine
the autocorrelation of residuals.

BoxPierce Q = T
∑

r2
k (908)

LjungBox Q = T (T + 2)
∑ r2

k

T − k (909)

These are distributed χ2
s. If the calculated Q statistics exceed the table χ

2
s. then the correlation

coeffi cient is significant.
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4.4 Estimation: AR(1)

Likelihood function for AR(1) process

Yt = c+ φYt−1 + εt (910)

Its mean and variances are

µ =
c

1− φ ; σ2
y =

σ2

1− φ2 (911)

Likelihood functions:
The density of the first observation:

Ly1(y1, θ) =
1√

2πσ2
y

exp

[
−1

2

(y1 − µ)
2

σ2
y

]

=
1√

2π σ2

1−φ2

exp

−1

2

(
y1 − c

1−φ

)2

σ2

1−φ2

 (912)

density for the second observation given that the first has been observed:

Ly2/y1
(y2/y1, θ) =

1√
2πσ2

y

exp

[
−1

2

(y2 − c− φy1)
2

σ2
y

]
(913)

L(yt/yt−1, yt−2, ....y1,θ) =
1√

2πσ2
y

exp

[
−1

2

(y2 − c− φyt−1)
2

σ2
y

]
(914)

Likelihood of the complete function

Lyt,yt−1,yt−2,....y1(yt/yt−1, yt−2, ....y1,θ)

= Ly1(y1, θ).
T

Π
t=2

L(yt/yt−1, yt−2, ....y1,θ) (915)

Likelihood function

=(θ) = logLy1
(y1, θ) +

T∑
log

t=2

L(yt/yt−1, yt−2, ....y1,θ) (916)

Substituting the relevant functions, the likelihood for sample T Gaussian process is

=(θ) = −1

2
log (2π)− 1

2
log

(
σ2

1− φ2

)−1

2

(
y1 − c

1−φ

)2

σ2

1−φ2

+

−T − 1

2
log (2π)− T − 1

2
−

T∑
t=2

[
(yt − c− φyt−1)

2

2 σ2

1−φ2

]
(917)
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4.5 Estimation: MA(1)

MA(1) process

Yt = µ+ εt + θεt−1 (918)

Lyt(yt/εt−1
, θ) =

1√
2πσ2

y

exp

[
−1

2

(y1 − µ− θεt−1)
2

σ2
y

]
(919)

ε1 = y1 − µ (920)

Ly2/y1
(y2/y1, θ) =

1√
2πσ2

y

exp

[
−1

2

(y2 − c− φy1)
2

σ2
y

]
(921)

ε2 = y2 − µ− θε1 (922)

ε2 = y2 − µ− θε1 (923)

εt = yt − µ− θεt−1 (924)

L(yt/yt−1, yt−2, ....y1,θ) =
1√

2πσ2
y

exp

[
−1

2

ε2t
σ2
y

]
(925)

Conditional log-likelihood for MA(1)

=(θ) = −T
2

log (2π)− T

2
log σ2 −

T∑
t=2

[
1

2

ε2t
σ2

1−φ2

]
(926)

Estimation: MA(p, q)
Similarly for the MA(p,q)

Yt = c+ φ1Yt−1 + φ2Yt−2 + ....+ φpYt−p + θ1εt−1 + θ2εt−2 + ....+ θpεt−q (927)

=(θ) = −T
2

log (2π)− T

2
log σ2 −

T∑
t=2

[
1

2

ε2t
σ2

1−φ2

]
(928)
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4.5.1 Tutorial 2: Time Series, ARMA, ARIMA

Q1. Consider a monthly time series {yt}

(a) Show how the traditional moving average based methods could be applied to decompose
its trend, seasonal, cyclical and irregular components.

(b) Consider a random walk model yt = yt−1 + εt with initial conditions y1 = y0 for t
=1.What are the mean, variance and the time path of yt in terms of current and past
series of errors εt ? What is its conditional forecast for period j made at time t? What
is the error of forecast and its variance? How are the mean and variances affected if this
random walk includes a drift term a0 as in yt = yt−1 + a0 + εt.

(c) Consider signal extraction problem for series yt including permanent and transitory
shocks components as εt and ηt and yt = εt + ηt and ε∗t = a+ byt where E (εt) = 0 ;
E (ηt) = 0 ;E (εtηt) = 0; E

(
ε2
t

)
= σ2; E

(
η2
t

)
= σ2.

What is its minimum square error (MSE)? How is the partitioning parameters b optimally
estimated?

(d) What are the prominent reasons for a failure of forecast? Illustrate Ganger and Newbold
(1986) technique for combining optimal forecasts as in fct = (1− λ) f1t + λf2t .

Q2. What is the main principle of forecasting and what are the reasons for failure of model based
forecasts? Derive the forecast errors and variance of forecast for the following forecasting
models .

a. Random walk with a drift:
[
y1 = y0 + a0 + ε1, eT+1

∼ N (0, 1)
]
.

b. Period h ahead forecast of AR(1):
[
yT+h = δ + θ1yT+h−1

+ eT+h, eT+h
∼ N (0, 1)

]
.

c. One period ahead forecast in MA(1):
[
y
T+1

= µ+ e
T+1

+ α1eT , eT+1
∼ N (0, 1)

]
.

d. Two period ahead forecast in ARMA(1,1):
[
y
T+2

= δ + θ1yt+1 + e
T+2

+ α1eT+1
, e
T+2
∼ N (0, 1)

]
.

4.6 Wold Decomposition

Covariance stationary process can be decomposed into the linearly deterministic component κt and

purely linearly indeterministic component
∞∑
j=1

εt−j

Yt = κt +

∞∑
ψj

j=1

εt−j (929)

∞∑
ψj

j=1

Lj =
θ (L)

φ (L)
=

(
1 + θ1L+ θ2L

2 + ......+ θqL
q
)((

1− φ1L+ φ2L
2 + ......+ φpL

p
)) (930)
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Unit Root What is a stationary variable?
When its mean and variance are constant.

E (Yt) = µ (931)

var (Yt) = σ2 (932)

When mean and variances are not constant, that variable is non-stationary, for instance a
random walk

Yt = Yt−1 + ε
i

t = 1 ...T (933)

In an autoregressive model

Yt = ρYt−1 + ε
i

t = 1 ...T (934)

if the autocorrelation coeffi cient ρ = 1 then it becomes a random walk. This variable is non-
stationary.
A Non-Stationary variable can be made stationary by taking first difference as:

Yt =

∞∑
s=1

ρsεt−s (935)

Current realisations are accumulation of past errors.
Prove that variance of this is .

var (Yt) = t.σ2 (936)

Regression among non-stationary variables becomes spurious unless they are cointegrated.

∆Yt = Yt − Yt−1 (937)

If a variable becomes stationary by taking the first difference it is said to be integrated of order
one

I (1) (938)

Level, drift, trend and lag terms in unit root test
If it becomes stationary after differencing d time then it is called I (d) variable.
Dickey-Fuller and Phillip-Perron unit root tests are used to determine stationarity of a variable.

Yt = ρYt−1 + εi (939)

∆Yt = (ρ− 1)Yt−1 + εi ; ∆Yt = γYt−1 + εi ; (940)

Random walk with drift
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∆Yt = α0 + γYt−1 + εi (941)

Level, drift, trend and lag terms in unit root test
trend stationary

∆Yt = α0 + α1t+ γYt−1 + ε
i

(942)

Augmented Dickey-Fuller test

∆Yt = α0 + α1t+ γYt−1 +

m∑
i=1

ρs∆Yt−i + ε
i

(943)

Cointegration in a regression
Yt = β1 + β2Xt + ε

t
(944)

First do the regression and then estimate the error as

ε̂t = Yt − β̂1 − β̂2Xt (945)

Yt and Xt are cointegrated if the estimated error is stationary ε̂t ∼ I (0)

ε̂t = ρε̂t−1 + ε
t

(946)

if ρ < 1 the error ε̂t is stationary and Yt and Xt are cointegrated. They have a long run
relationship.
When variables are cointegrated there is an error correction mechanism.

Yt = ϕ2Xt + εt (947)

Yt = Xt + εt ; ϕ2 = 1 (948)

4.6.1 Cointegration: Engle-Granger Representation Theorem

εt = Yt −Xt (949)

For test of cointegration

∆εt = γεt−1 + ut (950)

∆ (Yt −Xt) = γ (Yt−1 −Xt−1) + ut (951)

∆Yt = ∆Xt + γ (Yt−1 −Xt−1) + ut (952)

This is an error correction model. Term γ (Yt−1 −Xt−1) gives the adjustment towards the long
run equilibrium and ∆Xt denotes the short run impact.H0 : No cointegration; t- statistics can be
used instead of DF test.
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4.6.2 Granger Causality Test

Estimate the following model where Mt is money Yt is GDP and test the causality as below:

Yt =

n∑
i=1

αiMt−i +

m∑
j=1

βjYt−j + u1,t (953)

Mt =

n∑
i=1

λiMt−i +

m∑
j=1

δjYt−j + u2,t (954)

• Unidirectional causality from Mt to Yt requires
n∑
i=1

αi 6= 0 and
m∑
j=1

δj = 0

• Unidirectional causality from Yt to Mt requires
m∑
j=1

δj 6= 0 and
n∑
i=1

αi = 0

• Bilateral causality between Yt to Mt requires
n∑
i=1

αi 6= 0 and
m∑
j=1

δj 6= 0

• Independence of Yt to Mt from each other
n∑
i=1

αi = 0 and
m∑
j=1

δj = 0

4.7 Introduction to ARCH

OLS estimates are based on the normality of errors, which are assumed to have constant mean
and variance. Engel (1983) argued that many economic time series go through a series of ups and
downs. Upward trend continues up to a significant length of time. and so does the downward trend.
As such the conditional mean and variance of these series are not constant. Modelling mean and

vaiance of series simultaneously is the essence of the autoregressive conditional heteroskedasticity
(ARCH) model.
The variance of error term is persistent and shown by autoregressive process of variances.
This technique has been widely used to measure the volatility of financial time series such as

the interest rate, inflation, stock prices, returns to assets, growth rates, trends in trades.
Bollersleve (1987) modified it to generalised autoregressive conditional heteroskedasticity (GARCH)

models.

ARCH test of heteroskedasticity How ARCH and GARCH models are used to test the het-
eroskedasticity are discussed first followed by illustrations on variants of them used to study the
clustering of heteroskedastic errors commonly used in the literature.
Engle (1983) autoregressive conditional heteroskedasticy (ARCH): more useful for time series

data
Model Yt = β0 + β1X1,t + β2X2,t + β3X3,t + ....+ βkXk,t + et
εt ∼ N

(
0,
(
α0 + α2e

2
t−1

))
σ2
t = α0 + α2e

2
t−1 (955)

Here σ2
t not observed. Simple way to estimate this is to run OLS of Yt and get ê

2
t . Then assume

an ARCH (1) of errors as
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ê2
t = α0 + α2ê

2
t−1 + vt or ARCH (p) ê2

t = α0 + α2ê
2
t−1 + α3ê

2
1−1 + α4ê

2
1−1 + ..+ αpê

2
1−p + vt

Compute the test statistics
n.R2 ∼ χ2

df

Again if the calculated χ2
df is greater than table value there is an evidence of ARCH effect and

heteroskedasticity.
Economies are characterised by turbulent high volatility periods followed by quite and peaceful

low volatility periods.
Decision makers require some estimates of expected values as well as volatility to reflect on the

uncertainties caused by such phenomenon.
Recently stock prices have risen continuously from 2002 to mid 2008 and then fell sharply in

2008 and 2009 and can be expected to rise in the next few years. Billions are lost and won because
of volatilities in these series.
Engle (1987) proposes modelling expected value and volatility simultaneously by ARCH using

iterative Maximum Likelihood procedure.as:

Yt = β0 + β1X1,t + et (956)

where et ∼ N
(
0, σ2

t

)
= N (0, ht) ; ht = σ2

t .

ht = α0 + α1e
2
t−1 (957)

A big shock in et in the last period have greater impact in the variance this period. The lagged
effect can extend for longer periods and these are captured by putting more lagged terms on the
variance equation For ARCH (2)

ht = α0 + α1e
2
t−1 + α2e

2
t−2 (958)

ARCH(3)

ht = α0 + α1e
2
t−1 + α2e

2
t−2 + α3e

2
t−3 (959)

ARCH(q)

ht = α0 + α1e
2
t−1 + α2e

2
t−2 + α3e

2
t−3 + ....+ αqe

2
t−q = α0 +

q∑
αje

2
t−j

j=1

(960)

4.7.1 MLE for ARCH Models

Log likelihood function for an ARCH
A likelihood function for a random error e

t
is given by

Lt =

(
1√

2πσ2

)
exp

(
−e2

t√
2σ2

)
(961)

Joint realisations of e1 , e2 , e
T
is given by

L =
T

Π
t=1

(
1√

2πσ2

)
exp

(
−e2

t√
2σ2

)
(962)

in log form
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lnL = −T
2

ln (2π)− T

2
ln
(
σ2
)
− 1

2σ2

T∑
t=1

(
e2
t

)
(963)

MLE for ARCH Models
where et = Yt − β0 − β1Xt.

lnL = −T
2

ln (2π)− T

2
ln
(
σ2
)
− 1

2σ2

T∑
t=1

(Yt − β0 − β1Xt)
2 (964)

First order conditions for maximisations are

lnL

∂σ2
= − T

2σ2
+

T

2σ4

T∑
t=1

(Yt − β0 − β1Xt)
2 (965)

lnL

∂β1

=
T

2σ2

T∑
t=1

(
YtXt − β0Xt − β1X

2
t

)
(966)

For a model without intercept gives

σ̂2 =

T∑
t=1

(
e2
t

)
T

(967)

β̂1 =

T∑
ytxt

t=1

T∑
t=1

x2
t

(968)

The maximum likelihood method applied to the ARCH errors generates

lnL = −nT
2

ln (2π)− 1

2

T∑
t=1

ln
(
α0 + α1e

2
t−1

)
− 1

2

T∑
t=1

e2
t

α0 + α1e2
t−1

(969)

MLE: ARCH

• Algorithm of ARCH process is non-linear iterative procedure. It is not possible to estimate
β0, β1 in Yt = β0 + β1X1,t + et without knowing et here errors are not normal. Mean of et
can still be zero but its variance is modelled in the variance equation.

• Thus the estimation is highly non-liner and maximum likelihood method is used to estimate
this.

• First start with the initial values of α̂0, α̂1, α̂2, ..... α̂q, and et .. et−S . Estimate ht = σ2
t .
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• Secondly, estimate β̂0, β̂1 based on σ̂2
t . Then estimate êt from this estimate the variance

σ̂2
t and new values of α̂0, α̂1, α̂2, ..... α̂q.

• Then continue the process until the values of β̂0, β̂1 and α̂0, α̂1, α̂2, ..... α̂q converge.

4.7.2 GARCH tests of heteroskedasticity

Bollerslev (1987) generalised autoregressive conditional heteroskedasticy (GARCH) process is more
general. For instance GARCH (1,1). Mean and variance equations take the following form:

Yt = β0 + β1X1,t + et (970)

σ2
t = α0 + α2ê

2
t−1 + βσ2

t−1 + vt (971)

GARCH (p,q) σ2
t = α0+α2ê

2
t−1+α3ê

2
t−2+α4ê

2
t−3+..+αpê

2
t−p+β1σ

2
t−1+β2σ

2
t−2+..βqσ

2
t−q+..+vt

Compute the test statistics n.R2 ∼ χ2
df

Sometimes written as
ht = α0 + α2ê

2
t−1 + α3ê

2
t−2 + α4ê

2
t−3 + ..+ αpê

2
t−p + β1ht−1 + β2ht−2 + ..βqht−q + ..+ vt

where ht = σ2
t

Variations of GARCH Various functional forms of ht
ht = α0 + α2ê

2
t−1 + β1

√
ht−1 + vi or ht = α0 + α2ê

2
t−1 +

√
β1ht−1 + β2ht−2 + vi

Equivalence of GARCH(1,1) to ARCH(p)

ht = α0 + α1e
2
t−1 + δht−1 (972)

ht = α0 + α1e
2
t−1 + δ

(
α0 + α1e

2
t−2 + δht−2

)
ht = α0 + δα0 + α1e

2
t−1 + δα1e

2
t−2 + δ2ht−2 (973)

ht = α0 + δα0 + α1e
2
t−1 + δα1e

2
t−2 + δ2

(
α0 + α1e

2
t−3 + δht−3

)
ht = α0 + δα0 + δ2α0 + α1e

2
t−1 + δα1e

2
t−2 + δ2α1e

2
t−3 + δ3ht−3 (974)

when the process continues ht = α0 + δα0 + δ2α0 + ...+ δjα0 + α1e
2
t−1 + δα1e

2
t−2 + δ2α1e

2
t−3 +

..+ δj−1ht−3

ht =
α0

1− δ + α1

q∑
δje2

t−j
j=1

(975)

GARCH -M Model premium of holding risky asset is added to the mean equation

Yt = β0 + β1X1,t + θht + et (976)

et/Ωt ∼ N (0, ht)

ht = α0 +

q∑
αje

2
t−j

j=1

+

p∑
δjhte

2
t−j

j=1

(977)
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Or when the mean term is in standard deviation format

Yt = β0 + β1X1,t + θ
√
ht + et (978)

Threshold GARCH (TGARCH) allows to capture asymmetry between positive and negative
shocks. It essentially involves introducing a dummy variable as proposed by Glosten, Jagannathan
and Runkle (1993).

ht = α0 + α1e
2
t−1 + θe2

t−2dt−1 + δht−1 (979)

Here dt−1 is a dummy variable to isolate negative from positive shocks dt−1 = 1 is the shock is
negative et < 1 and 0 otherwise. Good news and bad news have different impacts on realisation of
series. Impact of good news is α1 and of the bad news is α1 + θ

Extended TGARCH

ht = α0 +

q∑
αje

2
t−j

j=1

+

p∑
δjht

j=1

+ θe2
t−2dt−1 (980)

4.8 Maximum Likelihood Procedure for GARCH

Exponential GARCH (EGARCH) as proposed by Nelson (1991) models log of the variance

ln (ht) = α0 +

q∑
j=1

ψj

∣∣∣∣∣ et−j√
hj−t

∣∣∣∣∣+

p∑
ξj

j=1

et−j√
ht−j

+

p∑
δj

j=1

ht−j (981)

It is possible to add other explanatory variables in the variance equation

ht = α0 +

q∑
αje

2
t−j

j=1

+

p∑
δjht

j=1

+

m∑
µk

j=k

Xk (982)

All forms of GARCH models are estimated using iterative Maximum Likelihood procedure.

lnL (θ) =
1

T

T∑
t=1

lt = − 1

2T

T∑
t=1

ln (ht)−
1

2T

T∑
t=1

e2
t

ht
(983)

Maximum Likelihood Procedure for GARCH
Multivariate GARCH Models (based on Enders (2010))
Contemporaneous shocks to variables can be correlated with each other. Volatility spillover may

occur as volatility in one variable affects that in another variable. In such situation the maximum
likelihood for event t is modified as:

Lt =
1

2π
√
h11h12 (1− ρ2

12)
exp

[
− 1

2 (1− ρ2
12)

(
e2

1,t

h11
+
e2

1,t

h22
− 2ρ12e1te1t

(h11h12)
0.5

)]
(984)

likelihood
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Lt =
1

2π |H|−
1
2

exp

(
−1

2
e′tH

−1et

)
(985)

where H =

[
h11 h12

h21 h22

]
Joint density

L =
T

Π
t=1

1

2π |H|−
1
2

exp

(
−1

2
e′tH

−1et

)
(986)

lnL = −T
2

ln (2π)− T

2
ln |H| −1

2

T∑
t=1

e′tH
−1et (987)

The maximum likelihood selects the optimal variance and covariances h11, h12 , and h22 .
It is important to specify the functional forms of h11, h12 , and h22. Vech, BEK , Constant

Conditional Correlation (CCC) and Dynamic Conditional Correlation are popular specifications.

4.8.1 Vech Model

Ht =

[
h11t h12t

h21t h22t

]
(988)

Et =

[
e2

1,t e1,te2,t

e1,te2,t e2
2,t

]
(989)

vech( Ht) = C +Avech( et−1e
′
t−1) +Bvech( Ht−1) (990)

Diagonal vech uses only the diagonal elements and sets all αij = βij = 0

4.8.2 BEK model

Ht = C ′C +A′ et−1e
′
t−1A+B′ Ht−1B (991)

h11t =
(
c211 + c212

)
+
(
α2

11e
2
1t−1 + 2α11α21e1t−1α2t−1 + α2

21e
2
2t−1

)
+
(
β2

11h11,t−1 + 2β11β21h12t−1 + β2
21h22,t−1

)
(992)

h12t = c12

(
c211 + c212

)
+ α11α21e

2
1t−1 + (α11α22 + α12α21) e1t−1α2t−1 + α21α22e

2
2t−1

+β11β21h11t−1 + (β11β22 + β11β21)h12,t−1 + β21β22h22,t−1) (993)

h22t =
(
c222 + c212

)
+
(
α2

12e
2
1t−1 + 2α11α22e1t−1α2t−1 + α2

22e
2
2t−1

)
+
(
β2

12h11,t−1 + 2β11β22h12t−1 + β2
22h2,t−1

)
(994)
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4.8.3 CC CModel

Ht =

[
h11t ρ12 (h11h12)

0.5

ρ12 (h11h12)
0.5

h22t

]
(995)

Dynamic conditional correlation (DCC) model
This is a two step procedure.
Ht = DtRtDt

Rt =

(
h0.5

11t 0
0 h0.5

21t

)−1(
h11t h12t

h21t h22t

)(
h0.5

11t 0
0 h0.5

21t

)−1

=

(
1 h12t

(h11h12)0.5

h12t

(h11h12)0.5 1

)
Now modify the likelihood function Ht = DtRtDt

lnL = −T
2

ln (2π)− T

2
ln |DtRtDt| −

1

2

T∑
t=1

e′t (DtRtDt)
−1
et (996)

Essentially this is equivalent to maximising − 1
2

T∑
t=1

2 ln |Dt|+ e′tD
−1
t D−1

t et in the first stage and

− 1
2

T∑
t=1

ln |Rt|+ e′t (Rt)
−1
et − v′tvt in the second stage where vt are standardised residuals.

Volatility package in PcGive/ EVIEWS/RATS estimate ARCH-GARCH models.
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4.9 Interest Rate Determination Rule: Taylor Rule

Output gap and interest rate

(yt − y∗t ) = −d (it−1 − i∗) ; d > 0 (997)

Inflation and output (Supply or Phillips curve)

(πt − π∗t ) = c
(
yt−1 − y∗t−1

)
; c > 0 (998)

Interest rate determination rule

it = i∗ + a (yt − y∗t ) + b (πt − π∗t ) ; a > 0, b > 0 (999)

Solution of the Interest Rate Rule Model

it = i∗ + a (yt − y∗t ) + b (πt − π∗t )
= i∗ − ad (it−1 − i∗) + cb

(
yt−1 − y∗t−1

)
= i∗ − ad (it−1 − i∗)− cbd (it−2 − i∗) (1000)

Collecting terms

it + ad.it−1 + cbd.it−2 = i∗ + ad.i∗ + cbd.i∗ (1001)

Iterating forward by two periods

it+2 + ad.it+1 + cbd.it = i∗ + adi∗ + cbdi∗ (1002)

Long run natural rate of interest: steady state

it = it−1 = it−2 = î (1003)

(1 + ad+ cbd)̂i = i∗(1 + ad+ cbd) (1004)

î = i∗ (1005)

Fluctuations around this long run interest rate depends on homogenous part of the second order
difference equation

it+2 + ad.it+1 + cbd.it = 0 (1006)
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Transitional dynamics (replace it = Abt in homogenous equation).

Abt+2 + ad.Abt+1 + cbd.Abt = 0 (1007)

b2 + ad.b+ cbd = 0 (1008)

Three Cases in time path of the interest rate model
Cycle depends on roots of the quadratic equation

b1, b2 =
−ad±

√
(ad)

2 − 4cbd

2
(1009)

Distinct real root case (no cycle)

(ad)
2
> 4cbd (1010)

Repeated real root case (no cycle)

(ad)
2

= 4cbd (1011)

Complex root case (cycle)

(ad)
2
< 4cbd (1012)

Complete solution

it = A1b
t
1 +A2b

t
2 + î (1013)

Example of Complex Root Case: Example
Preliminaries it = A1R

t (cos θ · t+ i · sin θ · t) +A2R
t (cos θ · t− i · sin θ · t) + î

Exponential forms and polar coordinates

R =
√
h2 + v2 = bcd (1014)

sin θ =
v

R
=⇒ v = R.sinθ (1015)

cos θ =
h

R
=⇒ h = R.coθ (1016)

eiθ = cos θ + iSinθ e−iθ = cos θ − i Sinθ (1017)

h± vi = R.coθ ±R.i sin θ = R. (coθ ± i sin θ) = Re±iθ (1018)
∂ sin θ
∂θ = cos θ; ∂ cos θ

∂θ = − sin θ;
Multiplier Accelerator Model: Complex Root

(ad)
2
< 4cbd
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Need to consider the algebra for the imaginary number and some trigonometric functions in
this case. Using Pythagorean in an imaginary axis is used to derive the roots of the characteristic
equation.

b1, b2 = (h± v · i) = −ad
2
± i

√
4cbd− (ad)

2

2
(1019)

Yt = A1b
t
1 +A2b

t
2 = A1 (h+ v · i)t +A2 (h− v · i)t (1020)

Using DeMoivre’s theorem

(h± v · i) = Rht (cos θ · t± i sin θ · t) for Rht > 0. (1021)

Multiplier Accelerator Model: Complex Root
Imaginary axis (Pithagorus Theorem)

R =
√
h2 + v2 = αγ (1022)

it = A1R
ht (cos θ · t+ i sin θ · t) +A2R

ht (cos θ · t− i sin θ · t) (1023)

it = A1R
ht
(

cos
π

2
· t+ i sin

π

2
· t
)

+A2R
ht
(

cos
π

2
· t− i sin

π

2
· t
)

(1024)

Three possibilities:
i) Rht > 1; αγ > 1 ii) Rht = 1 αγ = 1 and ii) Rht < 1 αγ < 1 Only the αγ < 1 case is

convergent other two cases are divergent.

5 L4: Cointegration

Cointegration is the long run relationship among variables. Engle and Granger (1987) are attributed
with this idea but the concepts evolved over time with works of Dickey and Fuller (1979), Phillips
(1987), Johansen(1988), Harvey (1990), Kuthbertson, Hall andTaylor (1992), Banerjee , Dolado
and Galbraith and Hendry (1993), Hamilton (1994) Harris (1995), Patterson (2000) Harris and
Sollis (2003), Doornik and Hendry ((2003), Greene (2008). Enders(2010). Thus the evolution of
the literature in cointegration analysis could be stated as:

• Engle-Granger (1987), Johansen (1988), Phillips and Ouliaris (1990), Park (1992), Hansen
(1992), Hendry and Doornik (1994)

• Nelson and Plosser (1982), Campbell and Shiller (1987), Enders (1988), Hylleberg and Mizon
(1989), von Hagen (1989)

• Kim (1990), Davidson and Hall (1991), Hall, Anderson and Granger (1992), Solo (1995),
Balke and Fomby (1997)

• Enders and Siklos (2001), Villani (2005), Hualde (2006), Qu and Perron (2007), Westerlund
(2008), Bhattarai (2008)
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• Jawadi, Bruneau and Sghaier (2009), Turner (2009), Apergis, Dincer and Payne (2010), Tra-
pani and Urga (2010), Bansal and Kiku (2011)

• Texts: Harvey (1990), Kuthbertson, Hall and Taylor (1992), Banerjee, Dolado, Galbraith and
Hendry (1993), Hamilton (1994) Harris and Sollis (2003), Enders (2010).

Let us cosider a simple interest rate rule model that can be estimated following Johansen and
Juselius (1990) procedure for a cointegrated VAR model. The validity of this approach is based on
the rank of the cointegration matrix of the structural coeffi cients that is crucial for determining the
number of cointegration vectors in the model. Consider a VAR model for above three variables.

Yt = AYt−1 + et (1025)

where Yt is the vector of interest rate, output gap and inflation gap and et is the vector of
normally and identically distributed random error terms. By subtracting Yt−1 from both sides

∆Yt = (A− I)Yt−1 + et = ΠYt−1 + et (1026)

where Π = (A− I) .
Here Π is the matrix of parameters showing the total long run relationship among variables.

By using the cointegration procedure this matrix can further be decomposed into adjustment co-
effi cients (α) and cointegrating vectors (β) as Π = αβ. The β matrix denotes the long run steady
state relationship among variables and α is the dynamic process of adjustment towards that equi-
librium. The estimation on interest rate, output gap and inflation gap for the UK for 1972:2 to
1999:4 obtained in Bhattarai (2008) using the PcGive (Doornik and Hendry (2001)) yields following
results.

Π =

 −0.037 −0.120 0.186
0.029 −0.242 −0.085
−0.094 −0.072 −0.537


α =

 0.018 0.091 0.011
0.017 −0.003 −0.002
−0.007 −0.210 0.007


β =

 1.000 0.195 −6.646
−13.850 1.000 3.636
−4.368 2.790 1.000


The number of co-integrating vectors in the Johansen procedure is determined by λtrace(r) =

−T
n∑

i=r+1

ln
(

1− λ̂i
)
and λmax(r,r+1) = −T ln

(
1− λ̂r+1

)
statistics, where λ̂i denotes the eigenval-

ues of the characteristic matrix Π = (A− I) and r is an indicator for a reduced rank in (k-r) for
k number of explanatory variables. The calculated values of these statistics are compared with the
theoretical critical values from Johansen and Juselius (1990) to ascertain the number of cointegrat-
ing ranks as following.
These cointegration results are comparable to those found in other applied works such as Che-

ung and Westerman (2002), Yamada (2002), Brooks and Skinner (2000),Camarero, Ordonez and
Tamarit (2002) and Silvapulle and Hewarathna (2002), Valente (2003), Mills and Wood (2002).
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Table 18: Cointegration test results
Rank: H0 Trace test [ Prob] Max test [ Prob] Tracetest (T-nm) Max test (T-nm)
r = 0 56.86 [0.000]** 34.38 [0.000]** 55.43 [0.000]** 33.52 [0.000]**
r ≤ 1 22.48 [0.003]** 12.68 [0.087] 21.91 [0.004]** 12.36 [0.097]
r ≤ 2 9.80 [0.002]** 9.80 [0.002]** 9.55 [0.002]** 9.55 [0.002]**

The order of the rank of Π suggests the number of cointegrating vectors in β. Above λtrace(r)
and λmax(r,r+1) tests suggest that at least there are two cointegrating vectors in the above model.
The long run relation among these variables is shown by a very good fit of the predicted and actual
series of above three variables.
This section takes on technical issues involved in these ideas systematically.

5.0.1 Order of integration

• Variables may trend up and down but they may move together so that they have some linear
relationship or Cointegration .

• There are mainly two ways to study cointegration among variables. Two step procedure
adopted by Engle-Granger (1987) useful mainly for single equation models and Johansen
(1988) procedure for multiple equation models.

• Consider X a vector of variables. If each variable has the order of integration equal to d
then Xt ∼ I(d) ; it will be stationary after differencing d times. Then consider a linear
combinations Zt = βXt ∼ I(b) for any b > 0 . The linear combination X variables denoted
by β make it to integrate by the order of (d− b) then the β is a cointegrating vector.

Cointegration: Definition

• If a normal regression generates a stationary white noise et ∼ N(0, σ2) as below then β :
(β1, β2, ...., βn) are cointegrating vector.

β1x1,t + β2x2,t + ....+ βnxn,t = et (1027)

• One popular example illustrated in many texts is demand for money equation:

mt = β0 + β1pt + β2yt + β3rt + et (1028)

• Assume that each variable included in the equation mt pt, yt, rt is I(1) but their linear
combination is I(0) as expressed below.

et = mt − β0 − β1pt − β2yt − β3rt ∼ I(0) (1029)

• This implies the these variables have long run relationship and they are cointegrated. The
cointegration vector is given by
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β : [β0, β1, β2, β3] (1030)

Integration and Cointegration

• Thus cointegration in Engle Granger(1987) terminology is linear combination of nonstationary
variables indicating long-run equilibrium relationship that may reflect casual, behavioral or
simply reduced form relation.

• Consider three variables with different order of integration Xt ∼ I(d) , Yt ∼ I(e) for e > d
.and a resulting series which is the linear combinations of these two zt = αXt + βYt will
integrate by higher order of two.

∆dzt = α∆dXt + β∆dYt (1031)

• Here ∆dXt will be stationary but ∆dYt still non-stationary. Therefore ∆dzt is also non-
stationary; requires further differencing.

∆ezt = α∆eXt + β∆eYt (1032)

Now both the LHS and the RHS terms are stationary. Thus zt ∼ I(max(d, e)).

• Thus even if the series are trended they move closely so that the differences between them is
constant (stationary).

• Error terms between them have well defined first and second moments and the OLS is feasible
even among non-stationary variables if they are cointegrated.

• Such cointegration reflects long term equilibrium relationship. components of two or more
series exactly offset each other .

• To sum up components of vector Xt are said to be cointegrated Xt ∼ CI(d, b) if i) Xt ∼ I(d)
and ii) Zt ∼ α′Xt ∼ I(d− b) for b > 0

• In other words if a set of I(d) variables Xt yields a linear combination αXt that has a lower
order of integration (d− b) < d for b > 0 then vector α is a cointegrating vector.

Integration and Cointegration

• Series integrated of different order cannot be cointegrated: if Xt ∼ I(0) , Yt ∼ I(1) the
resulting series Yt − αXt will still have a drift and becomes infinitely large.

• Introducing new instruments could solve this problem.Yt ∼ I(1), Xt ∼ I(2) , Wt ∼ I(2) here
Xt ∼ I(2) and Wt ∼ I(2) cointegrate as

Vt = αXt + cWt ∼ I(I) (1033)

• Then it is possible to have Zt = eVt+fYt ∼ I(0) thenXt,Wt ∼ CI(2, 1), Vt, Yt ∼ CI(1, 1)
and Zt ∼ I(0).

168



5.0.2 Engle-Granger Representation Theorem (EGRT) and Error Correction Model

If a series of variables are cointegrated of order 1, CI(1, 1) then there exists a valid error correction
representation of the data.
Let Xt be N × 1 vector with I(1) then αXt ∼ I(0) then the error correction representation is

given by:

ΦL (1− L)Xt = −α′Xt−1 + ΘL (et) (1034)

Proof of EGRT

∆Xt = Π0 + Π1Xt−1 + Π1∆Xt−1 + Π2∆Xt−2 + ....+ Πp∆Xt−p + εt (1035)

Rewrite this as:

ΠXt−1 = ∆Xt −Π0 −Π1∆Xt−1 −Π2∆Xt−2 − ....−Πp∆Xt−p − εt (1036)

Xt are I(1), therefore ∆Xt−j are I(0) . In the above equation the right hand side (RHS)
variables are stationary.
Engle-Granger Representation Theorem (EGRT)and Error Correction
In order to maintain the time series properties, LHS should also be stationary. Xt are I(1)

therefore Π : [Π0,Π1,Π2, ...Πp] must be cointegrating vector. By a bit expansion this means

Π11X1,t−1 + Π12X2,t−1 + Π13Xt−3 + ....+ Π1,pXt−p ∼ I(0) (1037)

It is inappropriate to estimate the VAR of cointegrated variables only in the first differences, it
also needs level terms ΠXt−1 for error correction.

Error Correction Model Consider a stylized model of error correction:

Yt = ϕ2Xt + εt (1038)

Yt = Xt + εt ; ϕ2 = 1 (1039)

εt = Yt −Xt (1040)

For test of cointegration

∆εt = γεt−1 + ut (1041)

∆ (Yt −Xt) = γ (Yt−1 −Xt−1) + ut (1042)

∆Yt = ∆Xt + γ (Yt−1 −Xt−1) + ut (1043)

This is an error correction model.

• H0 : No cointegration; t- statistics can be used instead of DF test.

• Term γ (Yt−1 −Xt−1) gives the adjustment towards the long run equilibrium

• and ∆Xt denotes the short run impact.
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5.0.3 A simple example of demand for oil

OLS _ECM for long run elasticities wrt price and income

LnDi.t = αi + βiLnPi.t + γiLnYt + uit (1044)

Error correction mechanism and short run elasticities:

∆LnDi.t = δi + θi∆LnPi.t + λi∆LnYt + ρiECMi,t + eit (1045)

For forecasting differentiae (1044) wrt time

D̂i.t = βiP̂i.t + γiŶt =⇒ Di.t+1 = Di.t + D̂i.t = Di.t + βiP̂i.t + γiŶt (1046)

These are very standard in the literature.
Agrawal’s empirical results on demand elasticities for India

Table 19: Estimated price and income elasticities
1970-2011 1970-2006

D βi γi βi γi
Crude oil -0.41 1.00 -0.34 1.00
Diesel -0.56 1.02 -0.58 1.01
Petrol -0.85 1.39 -0.82 1.38

• Literature on energy

— India: Kumar and Jain (2010), Sajal Ghosh (2006, 2009, 2010), Goldar and Mukhopad-
hyay (1990), Ramanathan (1999), Rao and Parikh (1996), Parikh,Purohit, and Maitra
(2007).

—Adams and Shachmurove (2008) for China; Altinay (2007) for Turkey.

— cointegration: Johansen and Juselius (1990), Pesaran, Shin and Smith (2001)

• Further literature on energy

—Hamilton’s classic model on energy and growth; RICE and DICE models by Nordhaus;
IEEA studies

— IAEE sessions on Jan 4th (Sieminski, El-Gamal; Killian; Parsons)

5.0.4 LSE Tradition on Dynamic Modelling

LSE Tradition in Dynamic Modelling (as discussed in Cuthbertson, Hall and Taylor(1992))

Yt = α0 + α1Yt−1 + β0Xt + β1Xt−1 + ut (1047)

Restrictions and implications
1) α1 = 0; β1 = 0 static regression model
2) β1 = 0 partial adjustment model
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3) α1 = 0; β0 = 0 X is a leading indicator of Y
4) α1 = 0 finitely distributed lag model
5) α1 = 1 ; β0 + β1 = 0 first difference formulation
6) β0 = 0 Y as ARDL(1,1)
Taking lags

(1− α1L)Yt = α0 + β0

(
1 +

β1

β0

L

)
Xt + ut (1048)

with restriction α1 = −β1

β0
and when (L = 1)

Yt = α∗ + β0Xt + et (1049)

where α∗ = α0

(1−α1) ; et = (1− α1L)
−1
.

The Error correction representation of this model is obtained by subtracting Yt−1 both sides,
adding and subtracting β0Xt−1,α1Xt−1 in the RHS and rearranging the equation

∆Yt = α0 + β0∆Xt − (1− α1) (Yt−1 −Xt−1) + γXt−1 + ut (1050)

where γ = α1 + β0 + β1 − 1
Both (1047) and (1050) are different ways of expressing the same relation but the (1050) is more

in the format of the error correction model. For static solution there are no changes in the variables
∆Xt−j = ∆Yt−j = 0 Xt−j = X and Yt−j = Y

Y =
α0

(1− α1)
+
β0 + β1

(1− α1)
X (1051)

Further when γ = 0 ⇒ β0 + β1 = (1− α1)

Y =
α0

(1− α1)
+X (1052)

Then the dynamic equation is

∆Yt = β0∆Xt − (1− α1)
(
Yt−1 − Y ∗t−1

)
(1053)

where Y ∗t−1 = α0

(1−α1) +Xt−1 which is the long run equilibrium value.
If (1− α1) > 0 and Yt−1 > Y ∗t−1 then ∆Yt falls in the next period. It brings Yt closer to Y ∗t−1.

Estimated dynamic equation

∆Yt = α0 + β0∆Xt + β1 (Yt−1 −Xt−1) (1054)

whereβ1=− (1− α1)
Thus agents adjust their behavior according to singnals that they are out of equilibrium. For

instance if (Yt−1 −Xt−1) is the ratio of stock of money to the income, deviation of money income
ratio from the equilibrium will lead to future changes in money holding by agent in order to move
closer to the desired long run equilibrium.
Example 2

Yt = α0 + γ1Yt−1 + β0Xt + β1Xt−1 + εt (1055)
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Long-run

Y =
α0

(1− γ1)
+
β0 + β1

(1− γ1)
X +

εt
(1− γ1)

(1056)

Y = ϕ0 + ϕ1X + εt (1057)

ϕ0 = α0

(1−γ1) ; ϕ1 = β0+β1

(1−γ1) ; εt ∼ N(0, σ2)

To reparametise this in the error correction form first subtract Yt−1 from both sides and add
and subtract β0Xt−1 and γ1Xt−1from the right hand side

Yt − Yt−1 = α0 + γ1Yt−1 − Yt−1 + β0Xt + β0Xt−1 − β0Xt−1

+β1Xt−1 + γ1Xt−1 − γ1Xt−1 + εt (1058)

∆Yt = α0 − (1− γ1)Yt−1 + β0∆Xt + β0Xt−1 −Xt−1 + β1Xt−1 + γ1Xt−1 +Xt−1 − γ1Xt−1 + εt
∆Yt = α0 − (1− γ1)Yt−1 + β0∆Xt + β0Xt−1 −Xt−1 + β1Xt−1 + γ1Xt−1 + (1− γ1)Xt−1 + εt
∆Yt = α0 − (1− γ1) (Yt−1 −Xt−1) + β0∆Xt + θ0Xt−1 + εt
where θ0 = β0 + β1 + γ1.
Uses of Error Correction Mechanism
∆Yt = β0∆Xt − β1 (Yt−1 − 0.9Xt−1)
Long run Yt−1 = 0.9Xt−1

5.0.5 Three ways of error correction

Three ways of representing error correction mechanism
ADL(1,1)

Yt = α0 + γ
1
Yt−1 + β0Xt + β1Xt−1 + εt (1059)

ECM: non-linear in coeffi cients:

∆Yt = α0 −
(
1− γ

1

)
(Yt−1 −Xt−1) + β0∆Xt + θ0Xt−1 + εt (1060)

Bewley Transformation

Yt = γ
1

+ γ
2
Xt + β∗1∆Xt + γ∗1∆Yt−1 + ε∗t (1061)

Equilibrium Errors
Proof:
Yt − γ1

Yt−1 = α0 + β0Xt + β1Xt−1 + εt
β0Xt + β1Xt−1 = (β0 + β1)Xt − β1 (Xt −Xt−1) = (β0 + β1)Xt − β1∆Xt

Yt − γ1
Yt−1 =

(
1− γ

1

)
Yt − γ1 (Yt − Yt−1) =

(
1− γ

1

)
Yt − γ1

∆Yt
Substituting these in the parent function
Yt = α0

(1−γ
1
)

+ β0+β1

(1−γ
1
)
Xt − β1

(1−γ
1
)
∆Xt −

γ
1

(1−γ
1
)
∆Yt + εt

(1−γ
1
)

ϕ
1

= α0

(1−γ
1
)
; ϕ

2
= β0+β1

(1−γ
1
)
; β∗1 = − β1

(1−γ
1
)
; γ∗

1
= − γ

1

(1−γ
1
)
; ε∗t = εt

(1−γ
1
)
;

Yt = ϕ
1

+ ϕ
2
Xt−1 + β∗1∆Xt + γ∗

1
∆Yt + ε∗t (1062)
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Equilibrium errors is thus

ε∗t = Yt − (ϕ
1

+ ϕ
2
Xt−1 + β∗1∆Xt + γ∗

1
∆Yt) (1063)

5.0.6 Johansen cointegration analysis

Start with Xt . Let it be vector of N ×N dimension each integrated of order 1 I(1) . The VAR is
given by

Xt = Π1Xt−1 + Π2Xt−2 + ....+ Πk∆Xt−k + εt
Πi is N ×K matrix of coeffi cients This implies

X1,t

.

.
Xn,t

 =


Π111 Π112 . . . Π11N

Π121 . . . . Π12N

. . . . . .
Π1N1 ΠN21 . . . Π1NN




X1,t−1

.

.
Xn,t−1

+ ....

....+


Π11k Π12k . . . Π1Nk

Π21k . . . . Π21k

. . . . . .
ΠN1k ΠN2k . . . ΠNNk




X1,t−k
.
.
Xn,t−k


Johansen Cointegration Analysis
ECM representation of this VAR is given by

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + ΓkXt−k + εt (1064)

where Γ1 = −I + Π1 + Π2 + Π1 + ...+ Πi for i = 1..k
Γk gives the long run solution.

• Here the terms in LHS and the first k − 1 elements of difference of Xt are I(0). The last
element ΓkXt−k is the linear combination of I(1) variables it must be stationary to balance
the time series properties of right and left hand side.

• Johansen uses the canonical correlation method to produce all the distinct combinations of
level of X which produce high correlation with I(0) elements in above equations. These
correlates are cointegrating vectors.

• It is very instructive to develop intuition of cointegration method following examples provided
by Patterson (2000).

Cointegration Analysis: Example 1 A simple ECM without exogenous X variables with Y1,t

and Y2,t as I(1)

∆Y1,t = −1

2

(
Y1,t−1 −

1

8
Y2,t−1

)
+ ε1,t (1065)

∆Y2,t =
1

2

(
Y1,t−1 −

1

8
Y2,t−1

)
+ ε2,t (1066)

∆Y1,t = ∆Y2,t = 0 in the steady state; E (ε1,t) = 0; E (ε2,t) = 0. This implies the equilibrium
relations Y1,t−1 − 1

8Y2,t−1 = 0 and the equilibrium error is given by ξt = Y1,t−1 − 1
8Y2,t−1. if ξt 6= 0

there is a disequilibrium in the last period causing∆Y1,t ∆Y2,t to change to correct the equilibrium.
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The adjustment coeffi cient for ∆Y1,t is − 1
2 . That means if ξt > 0 ⇒ Y1,t−1 >

1
8Y2,t−1 so ∆Y1,t

should decrease to move towards equilibrium. Conversely if ξt < 0 ⇒ Y1,t−1 <
1
8Y2,t−1 so ∆Y1,t

should increase to move toward equilibrium.
The adjustment coeffi cient in ∆Y2,t is positive 1

2 . if ξt > 0 ⇒ ∆Y2,t−1 > 0. It moves closer
to the equilibrium.
With two variables only one equilibrium relation can be defined though it can be parameterised

in many ways.
1
2

(
Y1,t−1 − 1

8Y2,t−1

)
= − 1

16 (Y2,t−1 − 8Y1,t−1)
The second equation could have been written as

∆Y2,t = − 1

16
(Y2,t−1 − 8Y1,t−1) + ε2,t (1067)

In matrix notation(
∆Y1,t

∆Y2,t

)
=

(
− 1

2
1
16

1
2 − 1

16

)(
Y1,t−1

Y2,t−1

)
+

(
ε1,t
ε2,t

)
(1068)

or more compactly

∆Yt = ΠYt−1 + εt (1069)

where ∆Yt =

(
∆Y1,t

∆Y2,t

)
; Π =

(
− 1

2
1
16

1
2 − 1

16

)
and εt =

(
ε1,t
ε2,t

)
Separating out the adjustment coeffi cient and the equilibrium coeffcient as α′ =

(
− 1

2
1
2

)
β′ =

(
1 − 1

8

)
; equilibrium combination β′Yt = ξt and Π = αβ′

Putting all these elements the above equations can be written as

∆Yt = ΠYt−1 + εt or ∆Yt = αβ′Yt−1 + εt (1070)

Here the VAR system(
∆Y1,t

∆Y2,t

)
=

(
− 1

2
1
16

1
2 − 1

16

)(
Y1,t−1

Y2,t−1

)
+

(
ε1,t
ε2,t

)
(1071)

Can be written slightly differently in error correction form as(
∆Y1,t

∆Y2,t

)
=

(
− 1

2
1
2

1 − 1
8

)(
Y1,t−1

Y2,t−1

)
+

(
ε1,t
ε2,t

)
(1072)

LHS ~I(0) α β′ coin vector Level
~I(1) noise ~I(0)
The LHS is stationary, noise is stationary, Y1,t and Y2,t as I(1) ; therefore to balance the

time series properties of LHS and RHS β′ must be the cointegrating vector that give the linear
combination of I(1) variables Y1,t and Y2,t that is stationary.

β′Yt =
(

1 − 1
8

)( Y1,t−1

Y2,t−1

)
= Y1,t−1 −

1

8
Y2,t−1 (1073)

Now the write the ECM in VAR form:
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Y1,t =
1

2
Y1,t−1 +

1

16
Y2,t−1 + ε1,t (1074)

Y2,t =
1

2
Y1,t−1 +

15

16
Y2,t−1 + ε2,t (1075)

(
1 0
0 1

)(
Y1,t

Y2,t

)
=

(
1
2

1
16

1
2

15
16

)(
Y1,t−1

Y2,t−1

)
+

(
1 0
0 1

)(
ε1,t
ε2,t

)
(1076)

The relation between ECM and VAR coeffi cient is:

Π =

(
− 1

2
1
16

1
2 − 1

16

)
= Π1 − I =

(
1
2

1
16

1
2

15
16

)
−
(

1 0
0 1

)
(1077)

Number of non-zero eigen values is the rank.(
1 − 1

8

)
Y1,t−1 = Y1,t−1 − 1

8Y2,t−1

Iterate one period forward and substitute for VAR
ξt = Y1,t − 1

8Y2,t = 1
2Y1,t−1 + 1

16Y2,t−1 + ε1,t − 1
8

(
1
2Y1,t−1 + 15

16Y2,t−1 + ε2,t
)

= 1
2Y1,t−1 − 1

16Y1,t−1 + 1
16Y2,t−1 − 15

16×8Y2,t−1 + ε1,t − 1
8ε2,t

= 7
16Y1,t−1 − 7

16×8Y2,t−1 + ε1,t − 1
8ε2,t = 7

16

(
Y1,t−1 − 1

8Y2,t−1

)
+ ε1,t − 1

8ε2,t
ξt = 7

16ξt−1 + ε∗

where ε∗ = ε1,t− 1
8ε2,t. as

∣∣ 7
16

∣∣ < 1 ξt is a stationary process. Any other scaling does not make
any difference.
In Π = αβ′if β is scaled by k the α must be scaled by k−1 Π = αk−1β′k = αβ .
Error correction coeffi cient cannot be uniquely determined, a normalisation can be chosen to

help in the economic context.(
− 1

2
1
2

)(
1 − 1

8

)
=

(
− 1

2
1
2

)(
1

100

)
100

(
1 − 1

8

)
=

(
− 1

2
1
2

)(
1 − 1

8

)
Notice in Π =

(
− 1

2
1
16

1
2 − 1

16

)
the row2 equals (-1) times the first row and the second column

equals the (-1) the first column. Π does not have independent rows and columns, it is less than full
rank. It has rank 1 through matrix is 2× 2.Thus these vectors have linear combination resulting in
zero. |Π| = − 1

2

(
− 1

16

)
− 1

2

(
1
16

)
= 0. One of the eigen values is zero.

|Π− vI| =
∣∣∣∣ − 1

2
1
16

1
2 − 1

16

∣∣∣∣− ∣∣∣∣ v 0
0 v

∣∣∣∣ =

∣∣∣∣ − 1
2 − v

1
16

1
2 − 1

16 − v

∣∣∣∣∣∣∣∣ − 1
2 − v

1
16

1
2 − 1

16 − v

∣∣∣∣ =
(
− 1

2 − v
) (
− 1

16 − v
)
− 1

2

(
1
16

)
= 1

32 + 9
16v + v2 − 1

32 = 9
16v + v2 = 0

v
(

9
16 + v

)
= 0; Thus two roots of the system are v

1
= 0; v

2
= − 9

16
Problems in Engle-Granger Methodology

1. There are two major problems with the Engle-Granger methodology of testing cointegration.

2. First, ordering of variables may influence inference about the stationarity of the residuals in
the small sample though this may be eliminated in the large samples. Secondly, it relies on
two step procedure.

3. Step 1 involves getting the residual from the original regression.
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4. Step 2 is to test the stationarity of the residual. ∆et = a1et−1 +vt Here a1 is estimated using
the residual in the previous estimation.

5. Thus any problem occurring in that estimation also carry on to the next step.

Estimationof Multiple Cointegrating Vectors Example 2 Johansen procedure allows si-
multaneous estimation of multiple cointegration vectors and also allows to estimate the restricted
version of cointegration and speed of adjustment.

ECM Equilibrium
∆Y1,t = − 1

2ξ1,t−1 + 1
4ξ2,t−1 + ε1,t ξ1,t = Y1,t − 1

8Y2,t

∆Y2,t = 1
8ξ1,t−1 − 5

8ξ2,t−1 + ε1,t ξ2,t = Y1,t − 1
4Y2,t

∆Y3,t = 1
4ξ1,t−1 + 3

8ξ2,t−1 + ε3,t

Estimation of Multiple Cointegrating Vectors: Example 2
With three variables it is possible to define two equilibrium relations. ∆Y1,t

∆Y2,t

∆Y3,t

 =

 − 1
2

1
4

1
8 − 5

8
1
4

3
8

( ξ1,t−1

ξ2,t−1

)
+

 ε1,t
ε2,t
ε3,t

 (1078)

Inserting the long run matrix it becomes: ∆Y1,t

∆Y2,t

∆Y3,t

 =

 − 1
2

1
4

1
8 − 5

8
1
4

3
8

( 1 − 1
8 0

0 1 − 1
4

) Y1,t−1

Y2,t−1

Y3,t−1

+

 ε1,t
ε2,t
ε3,t

 (1079)

α =

 − 1
2

1
16

1
2 − 1

16
1
4

3
8

; β =

(
1 − 1

8 0
0 1 − 1

4

)
;

Π = αβ′ =

 − 1
2

1
16

1
2 − 1

16
1
4

3
8

( 1 − 1
8 0

0 1 − 1
4

)
=

 − 1
2

5
16 − 1

16
1
8 − 41

64
5
32

1
4 − 11

32 − 3
32

 (1080)

Eigen value of Π:
(
−0.18 −0.62 −0.42

)
There are thre cointegrating vectors.

Cointegration and Error Correction: Example 3 Example 3: More lags
ECM Form

∆Y1,t = −1

2

(
Y1,t−1 −

1

8
Y2,t−1

)
+

1

8
∆Y1,t−1 +

1

4
∆Y2,t−1 + ε1,t (1081)

∆Y2,t =
1

2

(
Y1,t−1 −

1

8
Y2,t−1

)
+

1

4
∆Y1,t−1 −

3

4
∆Y2,t−1 + ε2,t

In matrix notation
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∆Yt = ΠYt−1 + Γ1∆Yt−1 + εt (1082)

Π = αβ′ =

(
− 1

2
1
2

)(
1 − 1

8

)
=

(
− 1

2
1
16

1
2 − 1

16

)
; Γ1 =

(
1
8

1
4

1
4 − 3

4

)
(1083)

Y1,t and Y2,t must be cointegrated to maintain stationarity in LHS and RHS.
Write this in VAR form

Y1,t =
5

8
Y1,t−1 +

5

16
Y2,t−1 −

1

8
Y1,t−2 −

1

4
Y2,t−2 + ε1,t (1084)

Y2,t =
3

4
Y1,t−1 +

13

16
Y2,t−1 −

1

4
Y1,t−2 +

3

4
Y2,t−2 + ε2,t (1085)

Yt = Π1Yt−1 + Π2Yt−2 + εt (1086)

Π1 =

(
5
8

5
16

3
4 − 3

16

)
; Π2 =

(
− 1

8 − 1
4

− 1
4

3
4

)
. the coeffi cient of VAR and ECM are related as before

as:

Π = Π1 + Π2 − I ; Γ1 = −Π2;(
− 1

2
1
16

1
2 − 1

16

)
=

(
5
8

5
16

3
4

3
16

)
+

(
− 1

8 − 1
4

− 1
4

3
4

)
−
(

1 0
0 1

)
(1087)

eigne =[−0.5625, 0]
Generalisation of a VAR model

Yt = Π1Yt−1 + Π2Yt−2 + ....+ ΠpYt−p + εt (1088)

ECM form

∆Yt = ΠYt−1 + Γ1∆Yt−1 + +Γ2∆Yt−2 + ....+ +Γp∆Yt−p−1 + εt (1089)

Π = Π1 + Π2 + ...+ Πp − I ; Γi = − (Πi+1 + Πi+2 + .....+ Πp) for i = 1, ..., p− 1.

5.0.7 Determinants, characteristic roots and Trace

Let A be N ×N matrix. Then the determinants of |A| =
N

Π
i=1
λi for i =λ1, λ2, ....., λn

|A− λI| = 0 implies
(a11 − λ) (a22 − λ) (a33 − λ) ....... (ann − λ) = 0
λn + b1λ

n−1 + b2λ
n−2 + ....+ bn−1λ+ bn = 0

by factor rule of the polynomial
N

Π
i=1
λi =(−1)

n
bn = |A| = λ1λ2λ3.....λn−1λn

Rank of A equals the number of non-zero characteristic roots. If |A| 6= 0 then non of λi = 0. A
has full rank. If rank of A is zero then each element of A must be zero and λ1 = λ2 = λ3 = ..... =
λn−1 = λn = 0. In intermediate case rank of A is between 0 and N.
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Illustrations:

|A| =
∣∣∣∣ 0.5 −1
−0.2 0.4

∣∣∣∣ λ1 = 0.9 and λ2 = 0 rank of A is 1.

|A| =
∣∣∣∣ 0.5 −0.2
−0.2 0.5

∣∣∣∣ λ1 = 0.7 and λ2 = 0.3 rank of A is 2. Eigen vectors V1 =

(
−0.7071
−0.7071

)
;V2 =(

−0.7071
0.7071

)
Check eigen vectors are orthogonal, (V1)

′
(V2) =

(
−0.7071 −0.7071

)( −0.7071
0.7071

)
= 0

(V1V2)
′
(V1V2) =

(
−0.7071 −0.7071
−0.7071 0.7071

)′ (
−0.7071 −0.7071
−0.7071 0.7071

)
= (V1V2) (V1V2)

′
= I =

′(
1 0
0 1

)
Determinants, characteristic roots and Trace

|A| =

∣∣∣∣∣∣
0.5 0.2 0.2
0.2 0.5 0.2
0.2 0.2 0.5

∣∣∣∣∣∣ λ1 = 0.9 , λ2 = 0.3 , λ3 = 0.3 and rank of A is 3.

|A| =

∣∣∣∣∣∣
0.5 0.2 0.2
0.2 0.4 0.4
−0.25 −0.1 −0.1

∣∣∣∣∣∣ λ1 = 0.4 , λ2 = 0.4 , λ3 = 0 Rows are linearly dependent and

rank of A is 1.
Stability of VAR
Xt = A0 +A1Xt−1 + εt
for stability check the homegenous part of the solution
Xt = A1Xt−1

use the undetermined coeffi cient to solve this problem.
Xi,t = Ciλ

t

Insert these in the extended VAR
C1λ

t = a
11
C1λ

t−1 + a
12
C2λ

t−1 + a
13
C3λ

t−1 + ....+ a1,nCnλ
t−1

C2λ
t = a

21
C1λ

t−1 + a
22
C2λ

t−1 + a
23
C3λ

t−1 + ....+ a2,nCnλ
t−1

..
Cnλ

t = an1C1λ
t−1 + an,2C2λ

t−1 + an,3C3λ
t−1 + ....+ an,nCnλ

t−1

For homogenous case
C1 (a

11
− λ) + a

12
C2 + a

13
C3 + ....+ a1,nCn = 0

a
21
C1 + C2 (a

22
− λ) + a

23
C3 + ....+ a2,nCn = 0

..
an1C1 + an,2C2 + an,3C3 + ....+ Cn (ann − λ) = 0
Stability of VAR

(a11 − λ) a12 a13 a1n

a21 (a11 − λ) . a2,n

. . . .
an1 an,2 . (ann − λ)



C1

C2

.
Cn

 =


0
0
0
0


Non trivial solution requires
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∣∣∣∣∣∣∣∣
(a11 − λ) a12 a13 ann
a

21
(a

11
− λ) . a2,n

. . . .
an1 an,2 . (ann − λ)

∣∣∣∣∣∣∣∣ = 0

The determinant will be nth order polynomial and n values of λ1, λ2, ....., λn. Necessary and
suffi cient condition for stability is that all characteristic roots lie within the unit circle.

Stability of VAR and Johansen Procedure This now should help to understand the Johansen
Procedure in cointegration. As mentioned before.
Start with Xt be vector of N × 1 dimension each integrated of order 1 I(1) . The VAR is given

by
Xt = Π1Xt−1 + Π2Xt−2 + ....+ ΠkXt−k + εt
Πi is N ×N matrix of coeffi cients This implies

X1,t

.

.
Xn,t

 =


Π111 Π112 . . . Π11N

Π121 . . . . Π121

. . . . . .
Π1N1 ΠN21 . . . Π1NN




X1,t−1

.

.
Xn,t−1

+...+


Π11k Π12k . . . Π1Nk

Π21k . . . . Π21k

. . . . . .
ΠN1k ΠN2k . . . ΠNNk




X1,t−k
.
.
Xn,t−k


ECM representation of this VAR is given by

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + ΓkXt−k + εt (1090)

where Γ1 = −I + Π1 + Π2 + Π1 + ...+ Πi for i = 1..k
Γk gives the long run solution.
Here the terms in LHS and the first k−1 elements of difference of Xt are I(0). The last element

ΓkXt−k = αβ′Xt−k is the linear combination of I(1) variables. it must be stationary to balance
the time series properties of right and left hand side. It has N − r ranks.

Johansen uses the canonical correlation method to produce all the distinct combinations of level
of X which produce high correlation with I(0) elements in above equations.
These correlates are cointegrating vectors. Johansen develops maximum likelihood method to

estimate distinct cointegrating vectors, devises how the maximum likelihood ratio test could be
applied to decide the significance of these cointegrating vectors.

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + αβ′Xt−k + εt (1091)

Likelihood function

L(α, β,∆,Γ1..ΓK) = (Ω)
−T2 exp

{
−1

2

T∑
t=1

(
etΩ
−1e′t

)}
(1092)

Where T is the number of observations and Ω the covariance matrix of et. The ECM can be
written as:

∆Xt + αβ′Xt−k = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + εt (1093)

Johansen first proposes correcting the effects of k lags of ∆Xt on ∆Xt and it level Xt−k .
This is done by first regressing ∆Xt on lagged differences of ∆Xt on the RHS and getting the
residuals R0t . Next regress Xt−k on on lagged differences of ∆Xt on the RHS and getting the
residuals Rkt .
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These two sets of residuals are related as et = R0t + αβ′Rkt
Now write the maximum likelihood in terms of these residuals

L(α, β,Ω) = (Ω)
−T2 exp

{
−1

2

T∑
t=1

[(
R0t + αβ′Rkt

)′
Ω−1

(
R0t + αβ′Rkt

)]}
(1094)

If β is known (from the long run equilibrium relations) estimate α and Ω by regressing R0t

on β′Rkt. Thus α̂ and Ω̂ can be expressed as

R0t = −αβ′Rkt + εt (1095)

Define the sum of the product of residuals as: Si,j = T−1
T∑
t=1

Ri,tR
′
i,t for i, j = o, k

Now the estimators of α̂ and Ω̂ are given by

α̂ (β) =
(
βR′k,tRktβ

′)−1
(βRktRot) = −Sok

(
β′Skkβ

′)−1
(1096)

Ω̂ (β) = Soo − Sokβ
(
β′Skkβ

)−1
β′Sko (1097)

These estimated parameters can now be substituted to evaluate the likelihood as:

L(β) = |Ω (β)|−
T
2 =

∣∣∣Soo − Sokβ (β′Skkβ)−1
β′Sko

∣∣∣−T2 (1098)

Finding the cointegration vector involves finding vector β that minimises this function.

F =
∣∣∣Soo − Sokβ (β′Skkβ)−1

β′Sko

∣∣∣−T2 (1099)

Johansen shows how this can be done by solving the eigenvalues and finding the eigen vectors
using canonical correlations. β̂ is a set of eigenvector estimated together with N − 1 eigenvalues λ̂
. Column of β̂ is significant only if the corresponding eigenvalue is significantly different from zero.
Let λ̂i be ordered by its value as λ̂1 > λ̂2 > λ̂3 > .... > λ̂N−1. Similarly let β̂ be ordered by the
corresponding eigen values
The maximum likelihood

Ω̂ (β) = |Soo|
N

Π
i=1

(
1− λ̂i

)
(1100)

Testing for r cointegrating vectors Ho: λi = 0, i = r+ 1, ...., N.is equivalent to testing that first
r eigenvalues are non-zero.
Then there is restricted estimation of ∆ given by

Ω̂ (β) = |Soo|
r

Π
i=1

(
1− λ̂i

)
(1101)

The likelihood ratio test is made from these unrestricted and restricted estimates as defined
below:

LR(N − r) = −2 lnQ = −T
T∑
t=1

ln
(

1− λ̂i
)

(1102)
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where

Q =
Restricted maximised likelihood
Unrestricted maximised likelihood

(1103)

LR(N − r) has degrees of freedom equal to the number of restrictions
for λ̂i = 0 i = r + 1, ...., N ;LR(N − r) = 0. Here LR(N − r) tend to get large as one or more

of λ̂i approach to unity. LR does not have χ2 distribution
Brownian motion theory is used to find its asymptotic distributions. Johansen has tabulated

these values for VAR without constant, VAR with restricted constant ( only the cointegrating
vectors) and VAR with unrestricted constants.

Theorem: The maximum likelihood estimates of the space spanned by β is the space spanned
by the r canonical variates corresponding to the r largest squared canonical correlations between
the residual of ∆Xt and it level Xt−k corrected for the effect of the lagged differences of the X
process.
The likelihood ratio test for that there are at most r cointegrating vectors LR(N−r) = −2 lnQ =

−T
T∑
t=1

ln
(

1− λ̂i
)
.The asymptotic distribution of the maximum likelihood ratio is the function of

(N − r) dimensional Brownian motion.
A set of critical values are tabulated which are correct for all models, space spanned by β and β̂

are the same. The maximum likelihood estimates of β is obtained as eigen vectors corresponding
to the largest eigen values by solving equation∣∣λSkk − SkoS−1

oo Sok
∣∣ = 0

This given n eigen values λ̂1, λ̂2, λ̂3, ...., λ̂N−1 and corresponding eigen vectors v̂1, v̂2, v̂3, ...., v̂N−1

and the β̂ = (v̂1, v̂2, v̂3, ...., v̂N−1)
the eigen values are the largest squared canonical correlations between level of residuals Rkt and

Rot.

5.0.8 Cannonical correlation: an example

Consider a 4×4 correlation matrix of the following form R =


1 0.4 0.5 0.6

0.4 1 0.3 0.4
0.5 0.3 1 0.2
0.6 0.4 0.2 1

 . This is a
symmetric matrix. Split the matrix in four equal parts.

(
R11 R12

R21 R22

)
where R11 =

(
1 0.4

0.4 1

)
R22 =

(
1 0.2

0.2 1

)
;R12 =

(
0.5 0.6
0.3 0.4

)
and R21 =

(
0.5 0.3
0.6 0.5

)
Set the determinant of the correlation matrix R to find the roots that correspond to highest

correlation among its components

|R| =
∣∣∣∣ R11 R12

R21 R22

∣∣∣∣ = R11R22 −R12R21 = 0 (1104)

This implies
I = R−1

22 R12R
−1
11 R21 (1105)
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RR = R−1
22 R12R

−1
11 R21 =(

1.041 −0.208
0.208 1.041

)(
0.5 0.6
0.3 0.4

)
(

1.190 −0.476
−0.476 1.190

)(
0.5 0.3
0.6 0.4

)
=

(
0.2063 0.2501
0.2778 0.3403

)
(1106)

Find the eigen values

|RR− vI| =
∣∣∣∣ 0.2063− v 0.2501

0.2778 0.3403− v

∣∣∣∣ = 0 (1107)

This implies
(0.2063− v) (0.3403− v)− (0.2778) (0.2501) = 0.0702− .2063v − .3403v + v2 − 0.0695

v2 − 0.547v + 0.007 = 0 (1108)

v1, v2 =
0.547±

√
(0.547)

2 − 4 (0.007)

2
= 0.534; 0.013 (1109)

It solves for v
1
= 0.534 and v

2
= 0.013

Canonical correlation is the square root of eigenvalues Rc1 =
√
v

1
= 0.534 = 0.731 and Rc1 =√

v
2

= 0.013 = 0.11
Johansen applied this idea on correlation matrices R0t and Rkt. The highest eigen value are

associated to the zero value of canonical product matrix as illustrated above. Johansen test is a
reduced rank test for non-stationarity part

λ̂i = 0 i = r + 1, ...., N ;
LR(N − r) = 0.
In other word testing r = 1 is testing for λ̂2 = λ̂3 = .... = λ̂N−1 = 0 whereas λ̂1 > 1
Summary on Steps
1. estimate the VAR in first differences get the errors for each equation

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + e1,t (1110)

2. Then regressed the lagged term in lagged differences and get the errors for each equation

Xt−1 = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + e2,t (1111)

3. Compute the canonical correlations between e1,t and e2,t∣∣∣λiS22 − S12S
−1
11 S

′

12

∣∣∣ = 0 (1112)
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Sii = T−1
T∑
t=1

eite
′

it , S12 = T−1
T∑
t=1

e2te
′

2t

4. MLE of cointegrating vectors are n columns that are non-trivial solutions for

λiS22πi = S12S
−1
11 S

′

12πi (1113)

See Enders(425).
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6 L5: Vector Autoregression

When it is not possible to isolate exogenous and endogenous variables, it is natural to assume that
path of yt affected by another variable zt and the path of zt affected by another variable yt . Their
path is determined simultaneously. Unrestricted VAR and restricted VAR have been widely used
analysing time series properties of a system of variables. An indicative literature on VAR modeling:

• Sims (1980), Lucas and Sargent (1981), Bernanke (1986), Judge, Hill, Griffi ths, Lutkepohl and
Lee (1988), Pagan and Wickens (1989), Wallis (1989), Hendry and Doornik (1994), Kocher-
lakota and Yi (1996), Kadiyala and Karlsson (1997), Sims and Zha (1999), Patterson (2000),
Mills (2000), Stock, and Watson (2001), Canova and Nicoló (2002),Garratt, Lee, Pesaran, and
Shin (2003), Harris and Sollis (2003), Davidson and MacKinnon (2004), Mountford (2005),
Kapetanios, George, Pagan, and Scott (2007), Athanasopoulos and Vahid (2008), Vargas-Silva
(2008), Benati and Surico (2009), Mertens and Ravn (2010), Fry and Pagan (2011), Bhattarai
and Mallick (2013)

• Hendry (1974), Hendry (2002), Stock and Watson (2005), Swensen (2006), Enders and Hurn
(2006), Dowd and Blake (2006), Dees, Mauro, Pesaran and Smith (2007), Fernández-Villaverde,
Rubio-Ramírez, Sargent, andWatson (2007), Fanelli (2007), Rafiq and Mallick (2008), Dungey
and Fry (2009), Mertens and Ravn (2010), Chahrour, Schmitt-Grohé, and Uribe (2012),
Favero, and Giavazzi (2012), Phillips and Magdalinos (2013)

VAR analysis is popular in the econometrics literature (see Sims (1980) Fair (1984) Bernanke
(1986), Wallis (1989), Blanchard and Quah (1989) Hamilton (1994) Hendrry(1995) Kocherlakota
and Yi (1996) Patterson (2000), Davidson and MacKinnon (2004) Enders (2010) ).
Bhattarai and Mallick (2013) apply a VAR opn time series data of the China and the US on

wages, interest rates, exchange rates, GDP, current account balance and the US trade decifit to
find empirical evidence on above analysis. A structural VAR model estimated in line of Sim (1980)
and Bernanke(1986) with restrictions appropriate to theoretical derivations (see Fry and Pagan
(2011) for up to date review on this). We limit our analysis to five variables that include relative
wage between China and the US (wcu), interest rate differential between China and the US (rcu),
Chinese real effective exchange rate (e), GDP of China relative to that of the US (rycu) and the
current account balance (CAu) determining the ordering of these variables in the SVAR following
logics explained in Rafiq and Mallick (2008). In a nutshell we try to show how the relative prices
of labour, capital and the currency affect the economic activities in China and trade balance in the
US. The raw time series of these data are presented in Figure 1. When the Chinese economy has
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been growing rapidly, the exchange rate being fixed leads us to use China’s real exchange rate (ec,t)
rather than the nominal exchange rate. By doing so, we are also capturing the relative price effects.
China’s unit labour cost (ULC) is measured as total wage bill over real output (nominal output
divided by CPI (1985=100)). Then relative wage (wcu,t) is calculated by dividing ULC-China over
ULC-US. Relative GDP (rycu,t) on the other hand has been defined as Chinese GDP in dollar
terms over US GDP. We calculate interest rate differential (rcu,t) as the difference between Chinese
average inter-bank rate and US 3-month Tbill rate. Current account balance (CAu,t) for the US
is used as the percentage of US nominal GDP. With these five variables, we formulate a first-order
structural VAR of the following form:


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55




wcu,t
rcu,t
ec,t
rycu,t
CAu,t

 =


b10

b20

b30

b40

b50

+


γ11 γ12 γ13 γ14 γ15

γ21 γ22 γ23 γ24 γ25

γ31 γ32 γ33 γ34 γ35

γ41 γ42 γ43 γ44 γ45

γ51 γ52 γ53 γ54 γ55




wcu,t−1

rcu,t−1

ec,t−1

rycu,t−1

CAu,t−1

+


εwt
εrt
εet
εryt
εcat


(1114)

where matrix notations can be employed for more compact representation.

Xt =


wcu,t
rcu,t
ec,t
rycu,t
CAu,t

 ; Xt−1 =


wcu,t−1

rcu,t−1

ec,t−1

rycu,t−1

CAu,t−1

 ; εt =


εwt
εrt
εet
εryt
εcat

 (1115)

Thus the path of Xit is affected by both contemporaneous and lagged effects of Xjt as measured
by Γ0 and Γ1 and its own past values.Consider

Xt = B−1Γ0 +B−1Γ1Xt−1 +B−1εt (1116)

B−1 =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55


−1

Γ0 =


b10

b20

b30

b40

b50

 ; Γ1 =


γ11 γ12 γ13 γ14 γ15

γ21 γ22 γ23 γ24 γ25

γ31 γ32 γ33 γ34 γ35

γ41 γ42 γ43 γ44 γ45

γ51 γ52 γ53 γ54 γ55


The reduced form of this VAR system is then given by:

Xt = A0 +A1Xt−1 + et (1117)

where A0 = B−1Γ0, A1 = B−1Γ1, et = B−1εt
Reduced form is estimated with the available data; then structural shocks are retrieved using

et = B−1εt.This requires estimation of the variance covariance matrix of the error term:
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∑
=


σ11 σ12 σ13 σ14 σ15

σ21 σ22 σ23 σ24 σ25

σ31 σ32 σ33 σ34 σ35

σ41 σ42 σ43 σ44 σ45

σ51 σ52 σ53 σ54 σ55

 (1118)

where σij = 1
T

T∑
t=1

eije
′

ij .

VAR is a-theoretic. In order to understand the long-run dynamics, we perform impulse response
shock analysis, as the results from impulse responses are more informative than the estimated VAR
regression coeffi cients (see Stock and Watson, 2001). It is customary to impose restrictions on
coeffi cients based on prior economic theory. These restrictions can be on parameters, variance
covariance matrices or symmetry.

a11 0 0 0 0
a21 a22 0 0 0
a31 a32 a33 0 0
a41 a42 a43 a44 0
a51 a52 a53 a54 a55




wcu,t
rcu,t
ec,t
rycu,t
CAu,t

 =


εwt
εrt
εet
εpmt
εcat

 (1119)

Quarterly observations from 1995-Q1 to 2009-Q1 are used to estimate the model with two
optimal lags. All the data have been gathered from Datastream and the variables are plotted in
Figure 1. Since there is evidence of a structural break around 1994Q1 in China (see for example
Baak (2008)), our sample in this paper starts from 1995Q1. Furthermore there is unavailability of
quarterly data for the variables involved in this paper prior to 1995Q1.

Figure 1: Plot of time series used in the VAR
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6.0.9 Impulse response Analysis

The VAR is formulated with the following ordering: relative wage, interest rate differential, Chinese
REER, relative GDP, and US current account balance. Shocks are extracted by applying a recursive
identification structure with the above ordering to a vector error correction model.

wc,t
rc,t
ec,t
ryu,t
CAu,t

 =


wc,t
rc,t
ec,t
ryu,t
CAu,t

+

∞∑
i=0


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55



e1t−i
e2t−i
e3t−i
e4t−i
e5t−i

 (1120)

Errors of the reduced form equations are related to the structural parameters as:
e1t

e2t

e3t

e4t

e5t

 =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55


−1 

εwt
εrt
εet
εpmt
εcat

 (1121)

Introducing more simplifying assumptions:
wc,t
rc,t
ec,t
pmu,t

CAu,t

 =


wc,t
rc,t
ec,t
pmu,t

CAu,t

+

∞∑
i=0


φ11 φ12 φ13 φ14 φ15

φ21 φ22 φ23 φ24 φ25

φ31 φ32 φ33 φ34 φ35

φ41 φ42 φ43 φ44 φ45

φ51 φ52 φ53 φ54 φ55




εwt
εrt
εet
εpmt
εcat

 (1122)

where φi =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55



b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55


−1

φi,j(n) are impulse response coeffi cients for equation n. More compactly this can be represented
as:

xt = µ+

∞∑
i=0

φi(i)εt−i (1123)

Given the higher US imports (more than three times the amount they export), incurring a
huge overall trade deficit, there is a growing pressure on China to raise the value of its currency,
particularly from the US. This concern can be assessed via a structural VEC exercise whether the
deficit is due to relative domestic demand or relative prices (real exchange rate). We therefore have
used relative GDP and REER as a relative price variable. The impulse responses of REER shocks
on relative GDP show that REER appreciation harms Chinese exports thereby helping US GDP
increase faster than Chinese GDP, thereby leading to a decline in relative GDP between the two
countries. This suggests that Chinese yuan real appreciation is required to ensure sustainability,
as relative GDP shocks only lead to short-run appreciation in REER (see Figure 4). Xu (2008)
reports a statistically significant long-run relationship between the RMB/dollar exchange rate and
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the US trade deficit with China, suggesting a need for China to adjust its exchange rate policy to
help reduce the ever mounting US trade deficit.

Table 1: Estimated Matrix of Long-run Impact
Shocks in −→ rw ird reer ry cab
rw 0.5387* -0.3595 -0.7420* 0.9380 -0.1203
ird 0.3064 1.2237* 0.3780 -0.6904 0.1899
reer -0.8826* 0.1650 0.5077 -0.4475 0.2744*
ry 0.0505 0.0432 -0.1436* 0.2028 0.0410
cab -0.0204 0.0637* -0.0447 0.0772 0.0466*

:
Table 2: Estimated Matrix of Short-run effects
Shocks in −→ rw ird reer ry cab
rw 0.8837* 0.0000 0.0000 0.0000 0.0000
ird 0.0547 0.6074* 0.0000 0.0000 0.0000
reer -0.4894* 0.0895 1.5268* 0.0000 0.0000
ry 0.0019 0.0104 -0.0133 0.0766* 0.0000
cab -0.0074 0.0225* 0.0031 -0.0304* 0.0669*

Table 3: Variance Decompositions (k = 20)
Shocks in ↓ rw ird reer ry cab

rw 0.19 0.05 0.55 0.02 0.04
ird 0.08 0.64 0.02 0.02 0.20
reer 0.24 0.06 0.21 0.29 0.16
ry 0.47 0.22 0.16 0.65 0.49
cab 0.02 0.02 0.06 0.02 0.12

To further validate this result, a 6-variable VAR has been formulated by adding US import price
as another variable in the VAR, following an over-identified SVAR strategy (Sims-Zha) and impose
the restrictions in the matrix below:

1 a12 0 0 a15 0
0 1 a23 0 a25 0
a31 a32 1 a34 a35 a36

a41 0 a43 1 0 a46

a51 a52 0 0 1 a56

0 0 a63 a64 0 a66



189



Figure 9: IRFs from over-identified SVAR
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The technique draws a set of posterior samples from the VAR coeffi cients and computes impulse
responses for each sample. These samples are then summarized to compute MC-based estimates
of the responses using the error band methods in Sims and Zha (1999). The confidence bands are
drawn by taking draws from the posterior distribution and identifying the shocks. The bands are
modelled as the 16 and 84 percentile quantities for the response, which if the distribution is normal,
these quantiles would correspond to a one standard deviation band as recommended by Sims and
Zha (1999)

6.1 VAR model: essentials

Technical issues involved in VAR analysis like this are illustrated taking examples from Enders
(2010) and Patterson (2000) in this section.
Consider first order structural VAR of the following primitive form:

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1124)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (1125)

where εyt ∼ N(0, σ2
y) and εzt ∼ N(0, σ2

z). Path of yt is affected by both contemporaneous and
lagged effects of zt as measured by b12 and γ12 and its own past values as measured by γ11. Similarly
the path of zt is affected by both contemporaneous and lagged effects of yt as measured by b21 and
γ21 and its own past values as measured by γ22.

This system can be written in reduced form as
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[
1 b12

b21 1

] [
yt
zt

]
=

[
b10

b20

]
+

[
γ11 γ12

γ21 γ22

] [
yt−1

zt−1

]
+

[
εyt
εzt

]
(1126)

BXt = Γ0 + Γ1Xt−1 + εt (1127)

where

B =

[
1 b12

b21 1

]
, Γ0 =

[
b10

b20

]
,Γ1 =

[
γ11 γ12

γ21 γ22

]
, Xt =

[
yt
zt

]
, εt =

[
εyt
εzt

]
This is transformed in VAR in standard form as:

Xt = A0 +A1Xt−1 + et (1128)

A0 = B−1Γ0;A1 = B−1Γ1; et = B−1εt
writing explicitly with new notation

yt = a10 + a12yt−1 + a12zt−1 + e1t (1129)

zt = a20 + a21yt−1 + a22zt−1 + e2t (1130)

Errors in the reduced form are composite of errors in the primitive form

et = B−1εt =

[
1 b12

b21 1

]−1

εt =

(
1 −b12

−b21 1

),
1− b21b12

εt (1131)

(
e1t

e2t

)
=

1

1− b21b12

(
1 −b12

−b21 1

),(
εyt
εzt

)
(1132)

(
e1t

e2t

)
=

1

1− b21b12

(
1 −b12

−b21 1

),(
εyt
εzt

)
=

1

1− b21b12

(
εyt − b12εzt
εzt − b21εyt

),
(1133)

e1t =

∣∣∣∣ εyt b12

εzt 1

∣∣∣∣∣∣∣∣ 1 b12

b21 1

∣∣∣∣ =
εyt − b12εzt

1− b12b21
; e2t =

∣∣∣∣ 1 εyt
b21 εzt

∣∣∣∣∣∣∣∣ 1 b12

b21 1

∣∣∣∣ =
εzt − b21εyt

1− b12b21
(1134)

Variance-Covariance of Errors in a VAR Mean and variance of composite errors:

E (e1t) = E

[
εyt − b12εzt

1− b12b21

]
=

[
E (εyt )− b12E (εzt)

1− b12b21

]
= 0 (1135)

E (e2t) =
E (εzt )− b21E (εyt)

1− b12b21
= 0 (1136)
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V ar (e1t) = E

[
εyt − b12εzt

1− b12b21

]2

=
σ2
y +b

2
12σ

2
z

(1− b12b21)
2 (1137)

var (e2t) = E

[
εzt − b21εyt

1− b12b21

]2

=
σ2
z + b221σ

2
y

(1− b12b21)
2 (1138)

Autocorrelation of Errors in a VAR Thus two shocks are correlated unless contemporaneous
effects b12 = 0; b21 = 0.
Autocovariance is time independent.

E (e1te1t−1) =
E [(εyt − b12εzt) (εzt − b21εyt)]

(1− b12b21)
2 = 0 (1139)

Variance covariance matrix of composite shocks are∑
=

[
var (e1t) cov (e1t, e2t)

cov (e1t, e2t) var (e2t)

]
=

[
σ2

1 σ12

σ21 σ2
2

]
(1140)

6.1.1 Stability of VAR

Stability Analysis

yt = a10 + a12yt−1 + a12zt−1 + e1t (1141)

zt = a20 + a21yt−1 + a22zt−1 + e2t (1142)

Using lag operators

yt = a10 + a12Lyt + a12Lzt + e1t (1143)

zt = a20 + a21Lyt + a22Lzt + e2t (1144)

Collecting terms:

(1− a12L) yt = a10 + a12Lzt + e1t (1145)

(1− a22L) zt = a20 + a21Lyt + e2t (1146)

solve the second equation for zt and substitute into yt equation

zt =
a20 + a21Lyt + e2t

(1− a22L)
(1147)

Putting zt into yt equation

(1− a12L) yt = a10 + a12L

[
a20 + a21Lyt + e2t

(1− a22L)

]
+ e1t (1148)
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Collecting terms:

(1− a12L) (1− a22L) yt = (a101− a22L)

+a12a20 +
[
a12a21L

2yt + a12Le2t

]
+ (1− a22L) e1t (1149)

(1− a12L) (1− a22L) yt − a12a21L
2yt = a10 (1− a22L)

+a12a20 + a12Le2t

+ (1− a22L) e1t (1150)

yt =
a10 (1− a22) + a12a20 + a12Le2t + (1− a22L) e1t

(1− a12L) (1− a22L)− a12a21L2
(1151)

zt =
a10 (1− a11) + a21a10 + a21Le2t−1 + (1− a11L) e2t

(1− a12L) (1− a22L)− a12a21L2
(1152)

Convergence requires the roots of the polynomial (inverse characteristic equation), (1− a12L) (1− a22L)−
a12a21L

2,lie outside the unit circle (or equivalently roots of the characteristic equation lie inside the
unit circle. Since both yt and zt equations have same polynomial (1− a12L) (1− a22L)− a12a21L

2

time series of both variable are similar. These depend on whether the roots are real, distinct or
complex.
Convergence requires the roots of the polynomial (inverse characteristic equation),
(1− a12L) (1− a22L)− a12a21L

2 = 0
1− a12L− a22L+ a12a22L

2 − a12a21L
2 = 0

Putting L = 1
λ

λ2 − (a12 + a22)λ+ (a12a22 − a12a21) = 0
Quadratic roots

λ1, λ2 =
(a12 + a22)±

√
(a12 + a22)

2 − 4 (a12a22 − a12a21)

2
(1153)

If roots λ1, λ2 lie within the unit circle each variable is stationary and it can not be cointegrated
for order 1, C(1,1). If both roots λ1, λ2 lie outside the unit circles and processes are explosive and
cannot be cointegrated of order 1,yt and zt are explosive, if and then then two variables evolve
without any long run relationship; yt and zt have cointegration of order 1, C(1,1) only if one of the
roots λ1, λ2 is unity and another is less than unity (see more on this topic in Elders Chapter 6.2)
VAR Experiments: generate 100 random values of e1t and e2t.
a) a

10
= a

20
= 0; a

11
= a

22
= 0.7; a

12
= a

21
= 0.2.

b) a10 = a20 = 0; a11 = a22 = 0.5; a12 = a21 = −0.2.
c) a10 = a20 = 0; a11 = a22 = 0.5; a12 = a21 = 0.5.
d) a

10
= 0.5; a

20
= 0; a

11
= a

22
= 0.7; a

12
= a

21
= 0.2.

A VAR(p) process on X variables is stationary when

• when all variables have constant mean E(x) = µ
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• when its variance is finite, V AR(Xt) <∞

• Covariance is time independent, cov(XtXt−1) = E [(Xt − µ)((Xt+2 − µ)′] = Γk for all t

VAR: Example 2
y1t = ν1 + θ12y1t−1 + θ12y2t−1 + e1t (1154)

y2t = ν2 + θ21y1t−1 + θ22y2t−1 + e2t (1155)[
y1t

y2t

]
=

[
ν1

ν2

]
+

[
θ11 θ12

θ21 θ22

] [
y1t−1

y2t−1

]
+

[
εyt
εzt

]
(1156)

Polynomial method:
det
[
I − θ1Z − θ2Z

2 − .......θpZp
]

= 0

det
{(

1 0
0 1

)
−
(
θ11 θ12

θ21 θ22

)
Z

}
= det

[
1− θ11z −θ12z
−θ21z 1− θ22z

]
⇒
∣∣∣∣ 1− θ11z −θ12z
−θ21z 1− θ22z

∣∣∣∣ =

0
(1− θ11z) (1− θ22z)− θ12θ21z

2 = 0
z1 and z1 lie outside of the unit circle.
z1 and z1 lie outside of the unit circle.

if θ =

[
θ11 θ12

θ21 θ22

]
=

[
0.008 0.461
0.232 0.297

]
Characteristic root method

A =

[
0.008 0.461
0.232 0.297

]
|A− λI| =

∣∣∣∣ 0.008− λ 0.461
0.232 0.297− λ

∣∣∣∣ = 0 from this λ1 = −0.2075 and

λ2 = 0.521
Identification of the order of the VAR

Xt = A0 +A1Xt−1 +A2Xt−2 + ......+A2Xt−p + et (1157)

whereA0 is N × 1,matrix A1 N ×N matrix, et ∼ N × 1, X ∼ N × 1 vector. There are n2p+n
number of parameters. Normally do not difference variables as it throws away information. VAR
in levels is considered better than VAR in the first differences. For instance, consider again

yt = a10 + a11yt−1 + a12zt−1 + e1t (1158)

zt = a20 + a21yt−1 + a22zt−1 + e2t (1159)

is this system identified? Can the structural parameters in its primitive form

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1160)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (1161)
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6.1.2 Identification of the order of the VAR

Can ten parameters b10, b20, b12, b21, γ11 , γ21,, γ12 , γ22 and var (εyt) and var (εzt) be re-
trieved from the nine reduced for parameters a10, a20, a12, a21, a11, a22, var (e1t) and var (e2t) and
covar (e1te1t)? Nine parameters cannot give unique values for ten parameters. It needs one more
equation. This can be made possible by imposing one restriction such as b21 = 0 meaning that
there is no contemporaneous effect from yt to zt .This restricted system can be written as

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1162)

zt = b20t + γ21yt−1 + γ22zt−1 + εzt (1163)

with this restriction B−1 =

[
1 −b12

0 1

]
[

1 −b12

0 1

] [
yt
zt

]
=

[
b10

b20

]
+

[
γ11 γ12

γ21 γ22

] [
yt−1

zt−1

]
+

[
εyt
εzt

]
(1164)

[
yt
zt

]
=

[
1 −b12

0 1

] [
b10

b20

]
+

[
1 −b12

0 1

] [
γ11 γ12

γ21 γ22

]
[
yt−1

zt−1

]
+

[
1 −b12

0 1

] [
εyt
εzt

]
(1165)

[
yt
zt

]
=

[
b10 − b10b12

b20

]
+

[
γ11 − b12γ21 γ12 − b12γ22

γ21 γ22

]
[
yt−1

zt−1

]
+

[
1 εyt − b12εzt
0 εzt

]
(1166)

Now the estimated coeffi cients of the reduced form equations can be identified to the coeffi cients
of the restricted structural equations as

a10 = b10 − b10b12; a11 = γ11 − b12γ21 (1167)

a12 = γ12 − b12γ22; a20 = b20; a21 = γ21; a22 = γ12 (1168)

var (e1) = σ2
y + b212σ

2
z ; var (e1) = σ2

z (1169)

covar (e1, e2) = −b212σ
2
z (1170)

• Now the structural residuals εyt and εzt can be estimated. While yt.is affected by both εyt
and εzt shocks zt is only affected by εzt .

• Given these parameters both εyt and εzt sequences can be retrieved from the structural para-
meters and sequences of e1t and e2t .

• Triangular restriction like this are called Cholesky decomposition.
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Over Identification Restrictions
If γ21 = 0 is combined with b22 = 0 then zt is free from any impacts from yt.Testing a21 = 0

is equivalent to testing γ21 = 0
Overidentified. restrictions:
Consider γ12 = γ21 = 0

yt = b10 + γ11yt−1 + b12zt + εyt (1171)

zt = b20 + b21yt + γ22zt−1 + εzt (1172)

By direct substitution of yt to zt

yt = b10 + γ11yt−1 + b12 (b10 + γ11yt−1 + b12zt + εyt) + εyt (1173)

zt = b20 + b21 (b20 + b21yt + γ22zt−1 + εzt) + γ22zt−1 + εzt (1174)

Over Identification Restrictions

yt = a10 + a11yt−1 + a12zt−1 + e1t (1175)

zt = a20 + a21yt−1 + a22zt−1 + e2t (1176)

There are nine parameters in the reduced form but only eight in the structural equations.
Therefore this VAR system is over identified. More than one value of structural parameter are
permissible from the reduced form estimates.

a10 =
b10 + b10b12

(1 − b12γ21)
; a11 =

γ11

(1 − b12γ21)
; a12 =

b12γ22

(1 − b12γ21)
; ( 1 1 7 7 )

a20 =
b20 − b20b21

(1 − b12γ21)
; a21 =

γ11γ21

(1 − b12γ21)
; a22 =

γ22

(1 − b12γ21)
( 1 1 7 8 )

var (e1) =
σ2
y + b212σ

2
z

(1 − b12γ21)2
; var (e1) =

σ2
y + b212σ

2
z

(1 − b12γ21)2
; ( 1 1 7 9 )

covar (e1, e2) =
b21σ

2
y − b12σ

2
z

(1 − b12γ21)2
( 1 1 8 0 )

6.1.3 Impulse Response Analysis

yt = a10 + a12Lyt + a12Lzt + e1t (1181)

zt = a20 + a21Lyt + a22Lzt + e2t (1182)

[
yt
zt

]
=

[
a10

a20

]
+

[
a11 a12

a21 a22

] [
yt−1

zt−1

]
+

[
e1t

e2t

]
(1183)

[
yt
zt

]
=

[
y
z

]
+

∞∑
i=0

[
a11 a12

a21 a22

] [
e1t−i
e2t−i

]
(1184)

Impulse Response Analysis
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Given [
e1t

e2t

]
=

[
1

1− b12b21

] [
1 −b12

−b21 1

] [
εyt
εzt

]
(1185)

[
yt
zt

]
=

[
y
z

]
+

∞∑
i=0

[
1

1− b12b21

] [
a11 a12

a21 a22

]i [
1 −b12

−b21 1

] [
εyt
εzt

]
(1186)

Introducing more simplifying assumptions:

φi =
[

Ai

1−b12b21

] [ 1 −b12

−b21 1

]
[
yt
zt

]
=

[
y
z

]
+

∞∑
i=0

[
φ11(i) φ12(i)
φ21(i) φ22(i)

] [
εyt−i
εzt−i

]
(1187)

φ11(i), φ12(i), φ12(i) and φ12(i) are impulse response functions.

6.1.4 Variance Decomposition

xt = µ+

∞∑
i=0

φi(i)εt−i (1188)

Xt = A0 +A1Xt−1 + et (1189)

from successive iteration this reduces to

EtXt+n =
(
I +A1 +A2

1 +A3
1 + ......+An−1

1

)
A0 +An1Xt + et (1190)

Forecast error is given by(
et+n +A1et+n−1 +A2

1et+n−2 + ......+An−1
1 et+1

)
A0 +An1Xt (1191)

Xt+n − EtXt+n =

n−1∑
i=0

φi(i)εt+n−i (1192)

Taking only one equation
yt+n − Etyt+n = φ11(0)εyt+n + φ11(1)εyt+n−1 + ...+ φ11(n− 1)εyt+1

+φ12(0)εzt+n + φ12(1)εzt+n−1 + ...+ φ12(n− 1)εzt+1

Variance of n-step ahead forecast error is

σ (n)
2
y = σ2

y [φ11(0) + φ11(1) + ...+ φ11(n− 1)]

+σ2
z [φ12(0) + φ12(1) + ...+ φ12(n− 1)] (1193)

Variance decomposition in terms of variances of shocks εyt and εzt.

1 =
σ2
y [φ11(0) + φ11(1) + ...+ φ11(n− 1)]

σ (n)
2
y

+
σ2
z [φ12(0) + φ12(1) + ...+ φ12(n− 1)]

σ (n)
2
y

(1194)

Thus the variance decomposition is finding the proportion of variance explained by variables’
its own shock(εyt) versus the variance explained by shock of the other variable (εyt).
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6.1.5 Lag Selection

How many lags are appropriate in a VAR model? This essentially depends on tests. Estimate
the model with the OLS if all variables have same number of lags or with seemingly unrelated
regression (SUR) method if lags differ for different variables. For instance if X contains monthly
data first estimate a model with 12 lags. If there are 5 variables this means estimating (np+ n) =
5 × (12 + 1) = 65 coeffi cient per equation or

(
n2p+ n

)
= 25 × 12 + 5 = 305 coeffi cients for the

system. Variance-Covariance of error
∑

is of dimension N × N . F test can be used to find
whether a different lag is significant. For this compute the F-ratio

∑
8 to

∑
12 for each equation.

Likelihood ratio test is suggested for the system wise estimation. First estimated the unrestricted
model get the

∑
12 . Then estimate the restricted model say with eight lags

∑
8 .Log-likelihood

ratio is defined as

L = T

{
log

∣∣∣∣∣∑
8

∣∣∣∣∣− log

∣∣∣∣∣∑
12

∣∣∣∣∣
}

(1195)

The degrees of freedom for this equal the number of restriction. This is 4n for each equa-
tion and 4n2 = 100 for the entire system. Sims(1986) modifies the likelihood function as L =
(T − c) {log |

∑
8| − log |

∑
12|} where c is the number of parameters estimated in the unrestricted

system, c = 12n+ 1 with 12 quarters and 5 variables.
For generic models


X1t

X2t

.
Xnt

 =


A10

A20

.
An0



+


A11(L) A12(L) . A1n(L)
A21(L) A22(L) . A2n(L)

. . . .
An1(L) An2(L) . Ann(L)



X1t−1

X2t−1

.
Xnt−1

 =


e1t

e2t

.
ent

 (1196)

Likelihood ratio test tor generic restricted and unrestricted systems :

L = (T − c)
{

log

∣∣∣∣∣∑
r

∣∣∣∣∣− log

∣∣∣∣∣∑
u

∣∣∣∣∣
}

(1197)

Minimum of the Akaike Information Criteria (AIC) and SBC criteria are also used to determine
the lag structure.

AIC = T log
∣∣∣∑∣∣∣+ 2N (1198)

SBC = T log
∣∣∣∑∣∣∣+ 2 log T (1199)

Estimate VAR with different lags and select the model with minimum AIC or SBC numbers.
Granger causality (block causality) test can be used to find the direction of causality from one to
another variable. This depends on the validity of aij(1), aij(2)..parameters in Aij(L) .
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6.1.6 Tutorial 3: VAR and cointegration analysis

Q1. Consider a structural VAR model between yt and zt as following:

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1200)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (1201)

where εyt ∼ N(0, σ2
y) and εzt ∼ N(0, σ2

z).

a. Derive the reduced form of this VAR model and suggest how the maximum likehoold estimator
(MLE) could be applied to estimate the parameters in it.

b. How would one determine stability of a VAR system like this? Provide analytical solutions
using the roots of the quadratic function.

c. How should one determine whether a VAR system like this is identified or not? What sort of
restrictions make it exactly or over identified?

d. Write impulse response functions for these two equations and indicate how can one perform
an impulse response analysis with them?

e. What is the meaning of variance decomposition in a VAR model like this?

f. Why is the Bayesian VAR becoming more popular than a classical VAR as given above in
recent years?

Q2. Consider a vector error correction model (VECM) of the form

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + ΓkXt−k + εt (1202)

where Γ1 = −I + Π1 + Π2 + Π3 + ... + Πi for i = 1..k Γk gives the long run solution and
εt ∼ N(0, σ2

y).

a. What is the meaning of cointegration and why should there exist at least one cointegrating
vector in this equation?

b. Discuss how likelihood ratio tests are employed to determine the optimal lag.

c. Explain how the canonical correlations provide eigenvalues and eigen vectors that are useful
in determining the rank of the cointegrating vector.

d. Discuss a procedure for trace and max-eigenvalue tests for cointegration.

199



6.1.7 Structural VAR

VAR is a-theoretic. VAR modelers put restriction on coeffi cients base on their hunch on economic
theory. These restrictions can be in parameters, variance covariance matrices or symmetry.
Example of restrictions on parameters:
Coeffi cient restriction (macro model estimated in Sims(1986) as reported by Enders(1995).
VAR of gdp(y), interest rate (r), money supply (m), price level (p), unemployment (u) and

investment (i).
1 −71.1 0 0 0 0

0.008 1 0.283 0.224 0 0
0.00135 0 1 0 0 −0.1324
0.001 0 −0.045 1 0 0.0086
0.116 0 20.1 8.89 1 1.48

0 0 0 0 0 1




r
m
y
p
u
i

 =


εrt
εmt
εyt
εpt
εut
εit

 (1203)

Take structural model in line with Sim (1986) and Bernanke(1986) system


1 b12 . b1n
b21 1 . b2n
. . . .
bn1 bn2 . bnn



X1t

X2t

.
Xnt

 =


b10

b20

.
bn0



+


γ11 γ12 . γ1n

γ21 γ22 . γ2n

. . . .
γn1 γn2 . γnn



X1t−1

X2t−1

.
Xnt−1

 =


ε1t

ε2t

.
εnt

 (1204)

or compactly with ( A0 = B−1Γ0, A1 = B−1Γ1, et = B−1εt)

Xt = B−1Γ0 +B−1Γ1Xt−1 +B−1εt (1205)

Xt = A0 +A1Xt−1 + et (1206)

Reduced form is estimated with the available data; then structural shocks are retrieved using
et = B−1εt This requires estimation of the variance covariance matrix of the error term

∑
=


σ11 σ12 . σ1n

σ21 σ22 . σ2n

. . . .
σn1 σn2 . σnn

 =


σ2

1 σ12 . σ1n

σ21 σ2
2 . σ2n

. . . .
σn1 σn2 . σ2

n

 (1207)

σij = 1
T

T∑
t=1

eije
′

ij

Consider the same structural model considered earlier:

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1208)
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zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (1209)

yt = a10 + a12yt−1 + a12zt−1 + e1t (1210)

zt = a20 + a21yt−1 + a22zt−1 + e2t (1211)

[
e1t

e2t

]
=

1

1− b12b21

[
1 −b12

−b21 1

] [
εyt
εzt

]
(1212)

Variance restrictions
et = B−1εt
e

1t
= ε

1t

e2t = c21e1t + ε2t
e3t = c31e1t + c32e2t + ε3t
Thus ε

1t
,ε

2t
and ε

3t
can be identified from estimates of e

1t
,e

2t
and e

3t
and their variance

covariance matrices such as (two variable case)
∑

= ete
′
t =

[
e2

1t e1te2t

e2te1t e2
2t

]
=

[
0.5 0.4
0.4 0.5

]
;∑

= 1
T

T∑
t=1

ete
′
t∑

ε =

[
var (ε1t) 0

0 var (ε2t)

]
;
∑
ε = 1

T

T∑
t=1

εtε
′
t

Structural VAR
From et = B−1εt it is possible to find the links between

∑
ε and

∑
.∑

ε = 1
T

T∑
t=1

εtε
′
t = 1

T

T∑
t=1

(Bet) (e′tB
′)∑

ε = B
∑
B′∑

ε =

[
var (ε1t) 0

0 var (ε2t)

]
=

[
1 b12

b21 1

] [
0.5 0.4
0.4 0.5

] [
1 b21

b12 1

]
By expanding these numbers[
var (ε1t) 0

0 var (ε2t)

]
=

[
0.5 + 0.4b12 + b12 (0.4 + 0.5b12) 0.5b21 + 0.4 + b12 (0.4b21 + 0.5)
b21 (0.5 + 0.4b12) + 0.4 + 0.5b12 b21(0.5b21 + 0.4) + (0.4b21 + 0.5)

]
Structural VAR
var (ε1t) = 0.5 + 0.4b12 + b12 (0.4 + 0.5b12) = 0.5 + 0.8b12 + 0.5b212

0 = 0.5b21 + 0.4 + b12 (0.4b21 + 0.5)
0 = b21 (0.5 + 0.4b12) + 0.4 + 0.5b12 = 0.5b21 + 0.4b12b21 + 0.4 + 0.5b12

var (ε2t) = b21(0.5b21 + 0.4) + (0.4b21 + 0.5) = 0.5b221 + 0.8b21 + 0.5
when restriction b12 = 0 valid, then var (ε1t) = 0.5; b21 = −0.8; and var (ε2t) = 0.18;
Now the structural shocks ε1t and ε2tcan be retrieved from above estimations.[

e1t

e2t

]
=

1

1− b12b21

[
1 b12

b21 1

] [
ε1t
ε2t

]
(1213)

ε1t = e1t andε2t = −0.8e1t + e2t (1214)
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[
1 b12

b21 1

]
is identified as

[
1 0
−0.8 1

]
when restriction b21 = 0 valid, then var (ε1t) = 0.18; b12 = −0.8; and var (ε2t) = 0.5;[

1 b12

b21 1

]
is identified as

[
1 −0.8
0 1

]
Thus the ordering of equations is important in VAR.
The structural errors can now be retrieved from the
Structural VAR: Restrictions
Symmetry Restrictions (Cholesky decomposition)
b

12
= b

13
= b

14
= ....... = b

1n
= 0

b
23

= b
24

= ....... = b
2n

= 0
b

24
= ....... = b

2n
= 0

......................................
bnn = 0

There are (n2+n)
2 distinct elements in the structural coeffi cient of N ×N VAR and it requires

n2 − (n2+n)
2 =

(n2−n)
2 restrictions.

Stability of the VAR system

Xt = A0 +A1Xt−1 + εt (1215)

for stability check the homegenous part of the solution

Xt = A1Xt−1 (1216)

use the undetermined coeffi cient to solve this problem.

Xi,t = Ciλ
t (1217)

Eigen Values and Stability of VAR System Insert these in the extended VAR

C1λ
t = a

11
C1λ

t−1 + a
12
C2λ

t−1 + a
13
C3λ

t−1 + ....+ a1,nCnλ
t−1 (1218)

C2λ
t = a21C1λ

t−1 + a22C2λ
t−1 + a23C3λ

t−1 + ....+ a2,nCnλ
t−1 (1219)

.. (1220)

Cnλ
t = an1C1λ

t−1 + an,2C2λ
t−1 + an,3C3λ

t−1 + ....+ an,nCnλ
t−1 (1221)

For homogenous case

C1 (a
11
− λ) + a

12
C2 + a

13
C3 + ....+ a1,nCn = 0 (1222)

C2λ
t = a

21
C1 + C2 (a

11
− λ) + a

23
C3 + ....+ a2,nCn = 0 (1223)

.. (1224)
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Cnλ
t = an1C1 + an,2C2 + an,3C3 + ....+ Cn (ann − λ) = 0 (1225)


(a

11
− λ) a

12
a

13
ann

a
21

(a
11
− λ) . a2,n

. . . .
an1 an,2 . (ann − λ)



C1

C2

.
Cn

 =


0
0
0
0

 (1226)

Non trivial solution requires∣∣∣∣∣∣∣∣
(a11 − λ) a12 a13 ann
a

21
(a

11
− λ) . a2,n

. . . .
an1 an,2 . (ann − λ)

∣∣∣∣∣∣∣∣ = 0 (1227)

The determinant will be n order polynomial and n values of λ1, λ2, ....., λn.Necessary and suf-
ficient condition for stability is that all eigen values (characteristic roots) lie within the unit circle.

A is N ×N matrix. Then the determinants of |A| =
N

Π
i=1
λi for i =λ1, λ2, ....., λn

|A− λI| = 0 implies
(a11 − λ) (a22 − λ) (a33 − λ) ....... (ann − λ) = 0
λn + b1λ

n−1 + b2λ
n−2 + ....+ bn−1λ+ bn = 0

by factor rule of the polynomial
N

Π
i=1
λi =(−1)

n
bn = |A| = λ1λ2λ3.....λn−1λn

Rank of A equals the number of non-zero characteristic roots. If |A| 6= 0 then non of λi = 0. A
has full rank. If rank of A is zero then each element of A must be zero and λ1 = λ2 = λ3 = ..... =
λn−1 = λn = 0. In intermediate case rank of A is between 0 and N.

6.1.8 Blanchard-Qua decomposition

Blanchard-Qua (1989) Decomposition of temporary and permanent Components of a I(1) Process
(Enders (12))
Let yt ∼ I(1) be output and zt ∼ I(0) be unemployment ; ε1,t is the demand shock ε2,t the

supply shock

∆yt =

∞∑
k=0

c11(k)ε1,t−k +

∞∑
k=1

c12(k)ε2,t−k (1228)

zt =

∞∑
k=0

c21(k)ε1,t−k +

∞∑
k=1

c22(k)ε2,t−k (1229)

[
∆yt
zt

]
=

[
c11(L) c12(L)
c21(L) c22(L)

] [
ε1t
ε2t

]
(1230)

c11(L) impulse of demand shock on log GDP yt If the demand shock does not have any long

run impact on output
∞∑
k=0

c11(k)ε1,t−k = 0∑
ε =

[
var (ε1t) cov (ε1t, ε2t)

cov (ε1t, ε2t) var (ε2t)

]
=
[

1 0
0 1

]
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[
∆yt
zt

]
=

[
A11(L) A12(L)
A21(L) A22(L)

] [
∆yt−1

zt−1

]
+

[
e1t

e2t

]
(1231)

Important point in the BQ decomposition is that ε1t and ε2t are not directly observable[
e1t

e2t

]
=

[
c11(0) c12(0)
c21(0) c22(0)

] [
ε1t
ε2t

]
(1232)

e1t = c11(0)ε1t + c12(0)ε2t (1233)

e2t = c21(0)ε1t + c22(0)ε2t (1234)

But they could be computed c11(0), c12(0), c21(0), c22(0) were known using the residuals esti-
mated from the reduced form:[

ε1t
ε2t

]
=

[
c11(0) c12(0)
c21(0) c22(0)

]−1 [
e1t

e2t

]
(1235)

Restriction 1
From assumption E (ε1,tε2,t) = 0 var (ε1,t) = 1; var (ε2,t) = 1

var (e1t) = c11(0)2 + c12(0)2 (1236)

Restriction 2
var (e2t) = c21(0)2 + c22(0)2 (1237)

Restriction 3
E (e1,te2,t) = E [{c11(0)ε1t + c12(0)ε2t} {c21(0)ε1t + c22(0)ε2t}]

E (e1,te2,t) = [c11(0)c21(0) + c12(0)c22(0)] (1238)

Workout for this assumption

Xt = A(L)LXt + et (1239)

(I −A(L)L)Xt = et (1240)

Xt = [I −A(L)L]
−1
et (1241)

[
∆yt
zt

]
=

1

D

[
1−A22(L)L A12(L)L
A21(L) 1−A11(L)L

] [
e1t

e2t

]
(1242)

[
∆yt
zt

]
=

1

D

[
1−

∑
a22(k)Lk+1

∑
a12(k)Lk+1∑

a21L
k+1 1−

∑
a11(k)Lk+1

] [
e1t

e2t

]
(1243)

∆yt =
1

D

{[
1−

∞∑
k=0

a22(k)Lk+1

]
e1t +

∞∑
k=0

a12(k)Lk+1e2t

}
(1244)
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[
1−

∞∑
k=0

a22(k)Lk+1

]
c11(0)ε1t +

∞∑
k=0

a12(k)Lk+1c21(0)ε2t = 0 (1245)

Restriction 4

It comes from
∞∑
k=0

c11(k)ε1,t−k = 0

[
1−

∞∑
k=0

a22(k)

]
c11(0) +

∞∑
k=0

a12(k)c21(0) = 0 (1246)

Thus there are four equations that can be used to identify four parameters c11(0), c21(0), c12(0)
and c22(0).

6.1.9 Long run and short run multipliers

Let consumption (Ct) function function of income (Xt) as:

Ct = β0 + β1Xt + β2Xt−1 + β3Xt−1 + ....+ βkXt−k + ut (1247)

Here short run multiplier: β1

Intermediate multiplier: β1 + β2 + β3

Long run multiplier : β =
∞∑
k=0

(β1 + β2 + β3 + ...+ βk)

By Koyck procedure β2 = λβ1;β3 = λ2β1;βk = λkβ1; where 0 < λ < 1

Ct = β0 + β1Xt + λβ1Xt−1 + λ2β1Xt−1 + ....+ λkβ1Xt−k + ut (1248)

λCt−1 = λβ0 + λβ1Xt−1 + λ2β1Xt−2 + λ3β1Xt−3 + ....+ λk+1β1Xt−k−1

+ut−1 (1249)

By taking these two differences

Ct − λCt−1 = β0 − λβ0 + β1Xt − λk+1β1Xt−k−1 + ut − ut−1 (1250)

Ct = β0 − λβ0 + β1Xt + λCt−1 + et (1251)

et = ut − ut−1

Use minimise AIC and SBC criteria while choosing the optimal lag.
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Example 2
Yt = δ + θYt−1 + φ0Xt + φ1Xt−1 + ut (1252)

short impact multiplier : ∂Yt
∂Xt

= φ0

Lag it further
Yt+1 = δ + θYt + φ0Xt+1 + φ1Xt + ut+1 (1253)

∂Yt+1

∂Xt
= θ∂Yt

∂Xt
= θφ0 + φ1

Continuing this process

Yt+2 = δ + θYt+1 + φ0Xt+2 + φ1Xt+1 + ut+2 (1254)
∂Yt+2

∂Xt
= θ∂Yt+1

∂Xt
= θ∂Yt

∂Xt
= θ (θφ0 + φ1)

If this process continues, the long run multiplier is given by φ0+(θφ0 + φ1)+θ (θφ0 + φ1)+...+ =
φ0 +

(
1 + θ + θ2 + ...

)
(θφ0 + φ1) Since θ < 1

Long run and short run multipliers

φ0 + (θφ0 + φ1) + θ (θφ0 + φ1) + ...+ =
φ0 + φ1

1− θ (1255)

The steady state solution also yields this: use Yt+1 = Yt = Y and Xt+1 = Xt = X then
Yt+1 = δ + θYt + φ0Xt+1 + φ1Xt + ut+1 becomes

Y = δ + θY + φ0X + φ1X ==>

Y =
δ

1− θ +
φ0 + φ1

1− θ X (1256)

This model also has error correction representation

∆Yt = δ − (1− θ) (Yt−1 −Xt−1) + φ0∆Xt + γXt−1 + ut (1257)

where γ = φ0 + φ1 − θ − 1
More generic ARDL(p,q) model:

θ (L)Yt = δ + φ (L)Xt + ut+2 (1258)

θ (L) = 1− θ1L− θ2L− .....− θpLp and φ (L) = 1 + φ1L+ φ2L+ .....+ φpL
q

Long run and short run multipliers
More generic ARDL(p,q) model:

θ (L)Yt = δ + φ (L)Xt + ut+2 (1259)

θ (L) = 1− θ1L− θ2L− .....− θpLp
φ (L) = 1 + φ1L+ φ2L+ .....+ φpL

q

Yt = θ−1 (1) δ + θ−1 (L)φ (L)Xt + θ−1 (L)ut+2 (1260)

θ−1 (L)φ (L) =
1 + φ1 + φ2 + .....+ φp
1− θ1 − θ2 − .....− θp

(1261)

θ−1 (L)φ (L) measures the impact of Xt on Yt , given that θ1 + θ2 + .....+ θp < 1, this series is
invertible.
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6.1.10 Vector Error Correction Model (VECM)

This now should help to understand the Johansen Procedure in cointegration. As mentioned before.
Start with Xt be vector of N × 1 dimension each integrated of order 1 I(1) . The VAR is given

by
Xt = Π1Xt−1 + Π2Xt−2 + ....+ ΠkXt−k + εt
Πi is N ×N matrix of coeffi cients This implies

X1,t
.
.
Xn,t

=


Π111 Π112 . Π11N
Π121 . . Π121
. . . .
Π1N1 ΠN21 . Π1NN




X1,t−1
.
.
Xn,t−1

+..+


Π11k Π12k . Π1Nk
Π21k . . Π21k
. . . .
ΠN1k ΠN2k . ΠNNk




X1,t−k
.
.
Xn,t−k



+


e1,t
.
.
en,t


ECM representation of this VAR, popularly called VECM is given by

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + ΓkXt−k + εt (1262)

where Γ1 = −I + Π1 + Π2 + Π1 + ...+ Πi for i = 1..k
Γk gives the long run solution.
ECM representation of this VAR, popularly called VECM is given by

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + ΓkXt−k + εt (1263)

where Γ1 = −I + Π1 + Π2 + Π1 + ...+ Πi for i = 1..k
Γk gives the long run solution.
Instructions for PCGive. Load data in *.csv format. Then use the Econometrics package/multiple

equation modelling/ select unrestricted system/ choose lags/determine the rank of cointegrating
vector/ examine the Johansen test to determine the cointegrating vector./them do the cointegrated
VAR/ analyse long run equilibrium relations and short run adjustment coeffi cients. Eviews has a
good routine to compute this too.

6.1.11 Exercise: Empirical Analysis in Trade and Exchange Rate Model with Struc-
tural VAR

• Structural VAR is popular for this type of study as it allows to put restrictions based on the
theoretical predictions in the above model.

• We limit our analysis to five variables that include relative wage between China and the
US (wcu), interest rate differential between China and the US (rcu), Chinese real effective
exchange rate (e), US relative GDP between China and the US (rycu) and the current account
balance (CAu) .

• The raw time series of these data are presented in Figure 1. When the Chinese economy has
been growing rapidly, the exchange rate being fixed leads us to use China’s real exchange rate
rather than the nominal exchange rate. By doing so, we are also capturing the relative price
effect.

• China’s unit labour cost (ULC) is measured as total wage bill over real output (nominal
output divided by CPI (1985=100)). Then relative wage is calculated by dividing ULC-China
over ULC-US.
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• Relative GDP on the other hand has been defined as Chinese GDP in dollar terms over US
GDP. We calculate interest rate differential as the difference between Chinese average inter-
bank rate and US 3-month Tbill rate. Current account balance for the US is used as the
percentage of US nominal GDP.

• With these five variables, we formulate a first -order structural VAR of the following form:

Empirical Analysis in Trade and Exchange Rate Model with Structural VAR


b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55




wcu,t
rcu,t
ec,t
rycu,t
CAu,t

 =


b10
b20
b30
b40
b50

 +


γ11 γ12 γ13 γ14 γ15
γ21 γ22 γ23 γ24 γ25
γ31 γ32 γ33 γ34 γ35
γ41 γ42 γ43 γ44 γ45
γ51 γ52 γ53 γ54 γ55




wcu,t−1
rcu,t−1
ec,t−1
rycu,t−1
CAu,t−1



+


εwt
εrt
εet
εryt
εcat

 ( 1 2 6 4 )

Empirical Analysis in Trade and Exchange Rate Model with Structural VAR
where matrix notations can be employed for more exact representation.

Xt =


wcu,t
rcu,t
ec,t
rycu,t
CAu,t

 ; Xt−1 =


wcu,t−1

rcu,t−1

ec,t−1

rycu,t−1

CAu,t−1

 ; εt =


εwt
εrt
εet
εryt
εcat

 (1265)

or compactly the path of Xit is affected by both contemporaneous and lagged effects of Xjt as
measured by Γ0 and Γ1 and its own past values .

Empirical Analysis in Trade and Exchange Rate Model with Structural VAR
Consider

Xt = B−1Γ0 +B−1Γ1Xt−1 +B−1εt (1266)

B−1 =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55


−1

Γ0 =


b10

b20

b30

b40

b50

 ; Γ1 =


γ11 γ12 γ13 γ14 γ15

γ21 γ22 γ23 γ24 γ25

γ31 γ32 γ33 γ34 γ35

γ41 γ42 γ43 γ44 γ45

γ51 γ52 γ53 γ54 γ55


The reduced form of this VAR system is then given by:

Xt = A0 +A1Xt−1 + et (1267)

Empirical Analysis in Trade and Exchange Rate Model with Structural VAR
where A0 = B−1Γ0, A1 = B−1Γ1, et = B−1εt
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Reduced form is estimated with the available data; then structural shocks are retrieved using
et = B−1εt This requires estimation of the variance covariance matrix of the error term

∑
=


σ11 σ12 σ13 σ14 σ15

σ21 σ22 σ23 σ24 σ25

σ31 σ32 σ33 σ34 σ35

σ41 σ42 σ43 σ44 σ45

σ51 σ52 σ53 σ54 σ55

 (1268)

where σij = 1
T

T∑
t=1

eije
′

ij

Empirical Analysis in Trade and Exchange Rate Model with Structural VAR
VAR is a-theoretic. In order to understand the long-run dynamics, we perform impulse response

shock analysis, as the results from impulse responses are more informative than the estimated VAR
regression coeffi cients (see Stock and Watson, 2001). It is customary to impose restrictions on
coeffi cients based on prior economic theory. These restrictions can be on parameters, variance
covariance matrices or symmetry.

a11 0 0 0 0
a21 a22 0 0 0
a31 a32 a33 0 0
a41 a42 a43 a44 0
a51 a52 a53 a54 a55




wcu,t
rcu,t
ec,t
rycu,t
CAu,t

 =


εwt
εrt
εet
εpmt
εcat

 (1269)

Empirical Analysis in Trade and Exchange Rate Model with Structural VAR

• Quarterly observations from 1995-Q1 to 2009-Q1 are used to estimate the model with two
optimal lags.

• All the data have been gathered from Datastream and the variables are plotted in Figure 1.

• Since there is evidence of a structural break around 1994Q1 in China (see for example Baak
(2008)), our sample in this paper starts from 1995Q1.

• Furthermore there is unavailability of quarterly data for the variables involved in this paper
prior to 1995Q1.

Empirical Analysis in Trade and Exchange Rate Model with Structural VAR
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Figure 1: Plot of time series used in the VAR
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Impulse Response Analysis
The VAR is formulated with the following ordering: relative wage, interest rate differential,

Chinese REER, relative GDP, and US current account balance. Shocks are extracted by applying
a recursive identification structure with the above ordering. All the estimations have been carried
out using RATS econometric software.

wc,t
rc,t
ec,t
ryu,t
CAu,t

 =


wc,t
rc,t
ec,t
ryu,t
CAu,t

+

∞∑
i=0


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55



e1t−i
e2t−i
e3t−i
e4t−i
e5t−i

 (1270)

Impulse Response Analysis
Errors of the reduced form equations are related to the structural parameters as:

e1t

e2t

e3t

e4t

e5t

 =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55


−1 

εwt
εrt
εet
εpmt
εcat

 (1271)

Impulse Response Analysis
Introducing more simplifying assumptions:

wc,t
rc,t
ec,t
pmu,t

CAu,t

 =


wc,t
rc,t
ec,t
pmu,t

CAu,t

+

∞∑
i=0


φ11 φ12 φ13 φ14 φ15

φ21 φ22 φ23 φ24 φ25

φ31 φ32 φ33 φ34 φ35

φ41 φ42 φ43 φ44 φ45

φ51 φ52 φ53 φ54 φ55




εwt
εrt
εet
εpmt
εcat

 (1272)

Impulse Response Analysis
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where φi =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55



b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55


−1

φi,j(n) are impulse response coeffi cients for equation n. More compactly this can be represented
as:

xt = µ+

∞∑
i=0

φi(i)εt−i (1273)

Exercise estimate the VAR, compute impulse responses and illustrate variance decomposition.

6.1.12 Restrictions and Variance Decomposition

To further validate this result, a 6-variable VAR has been formulated by adding US import price
as another variable in the VAR, following an over-identified SVAR strategy (Sims-Zha) and impose
the restrictions in the matrix below:

1 a12 0 0 a15 0
0 1 a23 0 a25 0
a31 a32 1 a34 a35 a36

a41 0 a43 1 0 a46

a51 a52 0 0 1 a56

0 0 a63 a64 0 a66


Xt = A0 +A1Xt−1 + et (1274)

from successive iteration this reduces to

EtXt+n =
(
I +A1 +A2

1 +A3
1 + ......+An−1

1

)
A0 +An1Xt + et (1275)

Forecast error is given by(
et+n +A1et+n−1 +A2

1et+n−2 + ......+An−1
1 et+1

)
A0 +An1Xt (1276)

Xt+n − EtXt+n =

n−1∑
i=0

φi(i)εt+n−i (1277)

Taking only one equation
wt+n−Etwt+n = φ11(0)εwt+n+φ11(1)εwt+n−1+...+φ11(n−1)εwt+1+φ12(0)εrt+n+φ12(1)εrt+n−1+

...+ φ12(n− 1)εrt+1

+φ12(0)εet+n + φ12(1)εet+n−1 + ...+ φ12(n− 1)εet+1

+φ12(0)εpmt+n + φ12(1)εpmt+n−1 + ...+ φ12(n− 1)εpmt+1

+φ12(0)εcat+n + φ12(1)εcat+n−1 + ...+ φ12(n− 1)εcat+1
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Variance of n-step ahead forecast error is

σ (n)
2
w = σ2

w [φ11(0) + φ11(1) + ...+ φ11(n− 1)] +

σ2
r [φ12(0) + φ12(1) + ...+ φ12(n− 1)] +

σ2
e [φ12(0) + φ12(1) + ...+ φ12(n− 1)] +

σ2
pm [φ12(0) + φ12(1) + ...+ φ12(n− 1)] +

σ2
CA [φ12(0) + φ12(1) + ...+ φ12(n− 1)] (1278)

Variance decomposition in terms of variances of shocks εwt , εrt, εet, εpmt and εcat.

σ (n)
2
w =

σ2
w [φ11(0) + φ11(1) + ...+ φ11(n− 1)]

σ (n)
2
w

+

σ2
r [φ12(0) + φ12(1) + ...+ φ12(n− 1)]

σ (n)
2
w

+

σ2
e [φ12(0) + φ12(1) + ...+ φ12(n− 1)]

σ (n)
2
w

+

σ2
pm [φ12(0) + φ12(1) + ...+ φ12(n− 1)]

σ (n)
2
w

+

σ2
CA [φ12(0) + φ12(1) + ...+ φ12(n− 1)]

σ (n)
2
w

(1279)

Thus the variance decomposition is finding the proportion of variance explained by a variable’s
own shock(εwt) versus the variance explained by shock to the other variables εrt, εet, εpmtand
εcat. The variance decomposition for the empirical model is presented in Table 3. In the variance
decomposition analysis, nearly 75% of the variation in US current account balance is explained by
its own shocks, and relative GDP explains 29% of the variation in relative wage. As nearly 25% of
the variation in US current account balance is explained by interest rate differential (11%), REER
(5%), relative GDP (6%) and China’s wage cost (3%), this could suggest that China’s exchange rate
appreciation might not solve the enlarging US current account deficits. However from the long-run
and short-run parameter estimates, higher relative GDP of China does have a significant effect on
lowering current account balance, and from variance decomposition results, 12% of the variation in
relative GDP is on the back of China’s relatively lower wage cost. Figure 2 shows that following a
relative wage shock, relative GDP declines with either loss of income for the low-wage country or
the rise in income for the high-wage country.
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F ig u r e 7 : IR F s f r om ov e r - id e n t ifie d S VA R

Structural Coeffi cients


wcu,t
rcu,t
ec,t
rycu,t
CAu,t

 =


b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55


−1 

b10
b20
b30
b40
b50

 +


b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55


−1


γ11 γ12 γ13 γ14 γ15
γ21 γ22 γ23 γ24 γ25
γ31 γ32 γ33 γ34 γ35
γ41 γ42 γ43 γ44 γ45
γ51 γ52 γ53 γ54 γ55

 +


b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55


−1 

εwt
εrt
εet
εpmt
εcat

 ( 1 2 8 0 )

Structural Coeffi cients


a10
a20
a30
a40
a50

 =


b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55


−1 

b10
b20
b30
b40
b50

 ;


e1t
e2t
e3t
e4t
e5t

 ( 1 2 8 1 )

=


b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55


−1 

εwt
εrt
εet
εpmt
εcat

 ( 1 2 8 2 )

Structural Coeffi cients


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

 =


b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55


−1 

γ11 γ12 γ13 γ14 γ15
γ21 γ22 γ23 γ24 γ25
γ31 γ32 γ33 γ34 γ35
γ41 γ42 γ43 γ44 γ45
γ51 γ52 γ53 γ54 γ55

 ( 1 2 8 3 )

Structural Coeffi cients

213




wc,t
rc,t
ec,t
pmu,t
CAu,t

 =


wc,t
rc,t
ec,t
pmu,t
CAu,t

 +
∞∑
i=0


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55



b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55


−1

( 1 2 8 4 )


εwt
εrt
εet
εpmt
εcat

 ( 1 2 8 5 )

Eviews 8 allows to compute the Baysian VAR.
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7 L6: Cross Section Analyis

Cross section analysis is applied widely in economics and related fields. Labour economists use for
analysing earning and labour supply functions; participation rates, wage rates. They attempt to
measure not only the impact of economic factors on participation, but also to show how personal
beliefs and political alliance are related to willingness to work, personal perception of the world
and the local environment and set of educational and psychological profiles of an individual can
influence the decision on whether to enter or remain outside the labour force.

• And indicative literature in cross section analysis:

• Tobin (1958), Theil(1969),Hausman (1978), Heckman (1979), Ashenfelter (1986), Lancaster
and Chesher (1983), Maddala (1983),

• McFadden (1974), Staigler, Stock, (1997), Ruud (2000) Verbeek (2004), Greene (2008),Wooldridge
(2002), Güell and Hu (2006), Phillips and Sul (2007), Chesher and Rosen (2013)

• Blundell and Smith (1989), Chesher (1984),Smith (1997), Greene (2000), Verbeek (2012),Im-
bens and Lancaster (1994), Keifer (1988), Hey and Orme (1994) ,Staigler and Stock (1997)
,Blundell(2013)

• White (1980), Cowing and Holtmann (1983), Baltagi (1984), Stoker(1986), Nuamah(1992),
Moffi tt (1993), Coles and Smith (1996), Amacher and Hellerstein (1999), Perali and Chavas
(2000), Gomes, Kogan, and Zhang (2003), Alvarez and Arellano (2003), Higson, Holly, Kat-
tuman and Platis (2004), Andrews (2005), Madsen (2005), Güel and Hu (2006), Phillips and
Sul (2007), Pesaran, Ullah and Yamagata (2008), Kapetanios (2008), Chudik, Pesaran and
Tosetti (2011), Bai and Ng (2010),Chesher (2010) Chesher and Rosen (2013)

Cross section techniques are very effectively applied in modelling probabilities of occurence
or non-occurence of certain event depending upon a set of observed and unobserved determining
factors. Microecomists use cross section analysis to study behaviour of consumers and producers
in the market, to determine demand or supply, revenue, sales or profit; survival or hazard rates in
the business. Macroeconomists use cross section anlysis for compresensive and comparative study
on growth rates, employments or borrowing, lending or credit rationing problems. Probability
strokes or effectivness of certain experiments in health; treatment and control group in experimental
economics (Hey and Orme (1994)). These techniques are essential in public policy analysis (Blundell
, Pistaferri, and Preston (2008); Atkinson and Brandolini (2010)) or in sports economics (Dobson
and Goddard (2011). While cross section techniques most ofter are applied to very rich set of
cross section data, often millions of observations of census or survey or panel dataset, there are
specifice issues including the truncation, correstion for sample selection bias, instrumental variables
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to account for unobserved heterogeniety. This section will provide initial models of cross section
analysis, more sofisticated models can be found the Handbook of Econometrics Volumes 1 to 6B
(eds. Heckmand and Leamer, McFadden; Zvi Griliches, Robert F. Engle, Michael D. Intriligator)
or in the Handbook of Labour Economics.

7.0.13 Dummy Dependent Variable Regression Model

• Alternative names: dichotomous dependent variables, discrete dependent random variable,
binary variable, either or choice variables

Yi =

∫
Yi = β1 + β2Xi + εi if the event occurs
0 = otherwise

(1286)

Examples

• the labour force participation (1 if a person participates in the labour force, 0 otherwise)

• yes or no vote in particular issue ; to marry or not to marry; to study further or to start a
job

• to buy or not to buy a particular stock

• choice of transportation mode to work (1 if a person drives to work, 0 otherwise)

• Union membership (1 if one is a member of the union, 0 otherwise)

• Owning a house (1 if one owns 0 otherwise)

• Multinomial choices: work as a teacher, or as a clerk, or as a self employed or professional or
as a factory worker

• Multinomial ordered choices: strongly agree, agree, neutral, disagree

Best way to learn crosss section analysis and probability models is to follow series of lab-exercises
developed by Professor William Greene of the New York University (http://people.stern.nyu.edu/wgreene/).
While the stories and analytical derivations are in Greene’s text book Econometric Analysis (7th
edition), the details of workshop based course in Hull between July 1-2, 2013 can be found in his
web page http://people.stern.nyu.edu/wgreene/Hull2013.htm. These contains both derivations and
computations of microeconometric analysis of random utility models, multiple choice and nested
logit models, random parameter multinomial logit models and duration models.

7.0.14 Linear Probability Model

Yi = β1 + β2Xi + εi (1287)

where Yi = 1 if person owns a house, 0 otherwise; Xi is family income.
E [(Yi = 1) /Xi] probability that the event y will occur given x

E [(Yi = 1) /Xi] = 0× [1− Pi] + 1× Pi = Pi (1288)

0 6 E [(Yi = 1) /Xi] = Pi = β1 + β2Xi 6 1 (1289)
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• Problem: Errors are heteroskedastic.

εi = 1− β1 − β2Xi with (1− Pi) (1290)

εi = −β1 − β2Xi with Pi (1291)

Variance of error in a linear probability model

var (εi) = (1− β1 − β2Xi)
2

(1− Pi) + (−β1 − β2Xi )
2
Pi (1292)

σ2 = (1− β1 − β2Xi)
2

(−β1 − β2Xi) + (−β1 − β2Xi )
2

(1− β1 − β2Xi) (1293)

σ2 = (1− β1 − β2Xi) (β1 + β2Xi) = (1− Pi) Pi (1294)

Variance depends on X.
Limitations of a linear probability model
It is possible to transform this model to make it homeskedastic by dividing the original variables

by √
(1− β1 − β2Xi) (β1 + β2Xi) =

√
(1− Pi) Pi =

√
Wi (1295)

Yi√
Wi

=
β1√
Wi

+ β2

Xi√
Wi

+
εi√
Wi

(1296)

• It does not guarantee that the probability lies inside (0,1) bands

• Probability in non-linear phenomenon: at very low level of income a family does not own a
house; at very high level of income every one owns a house ; marginal effect of income is very
negligible. The linear probability model does not explain this fact well.

7.0.15 Probit Model

•

Pr (Yi = 1) = Pr (Z∗i ≤ Zi) = F (Zi) =
1√
2π

∫
Zi
−∞ e−

te

2 dt

=
1√
2π

∫
β1 + β2Xi + εi

−∞ e−
te

2 dt (1297)

• Here t is standardised normal variable, t ∼ N (0, 1)

probability depends upon unobserved utility index Zi which depends upon observable variables
such as income. There is a thresh-hold of this index when after which family starts owning a
house, Zi > Z∗i

• The Unknown parameters of this model α, β and σ are estimated by the maximum likelihood
estimator.
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Probit Model

• Likelihood functions for modelling probability

L = Pr (Y1)Pr (Y2) ...P r (YN ) (1298)

L =
n1

Π
i=1
Pi

N

Π
i=n1+1

(1− Pi) (1299)

L =
n1

Π
i=1
P yii

N

Π
i=n1+1

(1− Pi)(1−yi) (1300)

Log likelihood functions for modelling probability

logL =

n1∑
log

i=1

Pi

N∑
i=n1+1

log (1− Pi) (1301)

Probit Model

• First order conditions for ML estimates of and

logL

∂α
=

n1∑
i=1

∂Pi/∂α

Pi
−

N∑
i=n1+1

∂Pi/∂α

(1− Pi)
= 0 (1302)

logL

∂β
=

n1∑
i=1

∂Pi/∂β

Pi
−

N∑
i=n1+1

∂Pi/∂β

(1− Pi)
= 0 (1303)

ML takes the OLS estimates as starting value for computations of optimal α, β and σ.
R2 = 1− logLLR

logLUR
gives the indication of goodness of fit of ML estimates. This is the proportion

of correct predictions.
MLE Procedure

•

L (α, β, σ) = L (y1, y2, ...yN ) =
N

Π
i=1

1√
2πσ2

exp

[
−1

2

(yi − α− βXi)
2

σ2

]
(1304)

Take log of this function to get a log-liklihood function.

logL (α, β, σ) =

N∑
i=1

− 1

2
log
(
2πσ2

)
− 1

2

N∑
i=1

(yi − α− βXi)
2

σ2

= c− N

2
log
(
σ2
)
− Q

2σ2
(1305)

where c = N
2 log (2π) and Q =

N∑
i=1

(yi − α− βXi)
2

Maximising this likelihood w.r.t. α, β and σ. is equivalent to minimizing Q , which is the
negative term in the likelihood function. Therefore the estimators of α, β and σ under the ML
method are the same as in the OLS method.
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7.0.16 Logit Model

• variable Yi which takes value 1 (Yi = 1) if a student gets a first class mark, value 0 (Yi = 0)otherwise.

• Probability of getting a first class mark in an exam is a function of student effort index denoted
by .Zi ; where Pi = 1

1+e−Zi

Zi = β1 + β2Xi + εi An example of a logit model: what determines that a student gets the
first class degree?

Zi = β1 + β2Hi + β3Ei + β4Ai + β2)i + εi (1306)

H = hours of study, E= exercises, A = attendance in lectures and classes; P = papers written
for assignment.

• Ratio of odds: Pi
1−Pi = 1+eZi

1+e−Zi
= eZi ; taking log of the odds ln

(
Pi

1−Pi

)
= Zi

Features of a logit Model

• — probability goes from 0 to 1 as the index variable goes from -∞ to +∞. Probability lies
between 0 and 1.

— Log of the odds is linear in x, characteristic variables but probabilities themselves are
not linear but non linear function of the parameters. Probabilities are estimated using
the maximum likelihood method.

—Any explanatory variable that determines the value of Zi , measures how the log of odds
of an event (i.e. owning a house) changes as a result of change in explanatory variable
such as income.

—We can calculate Pi for given estimates of β1and β2or all other .βi

— Limiting case when Pi =1; ln
(

Pi
1−Pi

)
or when Pi =0 ; ln

(
0

1−0

)
OLS cannot be applied in

such case but the maximum likelihood method may be used to estimate the parameters.

Features of a logit Model

Pi =
1

1 + e−Zi
(1307)

Zi = β1 + β2Xi + εi (1308)

1− Pi = 1− 1

1 + e−Zi
=

1 + e−Zi − 1

1 + e−Zi
=

e−Zi

1 + e−Zi
=

1

1 + eZi
(1309)

e = exp = 2.718

Pi
1− Pi

=

1
1+e−Zi

1
1+eZi

=
1 + eZi

1 + e−Zi
=

eZi
(
1 + eZi

)
eZi (1 + e−Zi)

= eZi (1310)

Taking log of the odds
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ln

(
Pi

1− Pi

)
= Zi (1311)

Multinomial Choice Model

• choice of different brands of a particular goods such as cereals

• different subjects by students in the business school such as economics, marketing, finance,
business, accounting, management or

• in the university such as science, engineering, medicine, mathematics, philosophy, politics or
history, arts or like that.

• ordered probit or ordered logit for choice of bonds such as AAA BBB; orders are used to rank
the outcome.

• survey questions with ranking.

Summary of Probability Models
The effect of observed variables on probability

• —
∂Pi
∂xi,j

=


βj
βjPj (1− Pj)
βjφ (Zi)

(1312)

—where Zi =β0 +
k∑
i=1

βiXi,j and φ is the standard normal density function.

7.0.17 Multinomial Choice Models

Let Pi,j denote the probability of choosing alternative j by individual i,.
There are J alternatives and N individuals. According to McFadden (1974)

n1∑
i=1

yi,j =

n1∑
i=1

Pi,j = 1 (1313)

Log likelihood

L =
n1

Π
i=1
P
yi,1
i,1 .P

yi,2
i,2 .P

yi,3
i,3 ....P

yi,J
i,J (1314)

Individuals make a choice to maximise utility; such utilities are specific to individual and unob-
served factors .

ui,j = ui,j + ei,j = X ′i,j β + ei,j (1315)

Errors ei,j need to have Weibull distribution a multinomial logit.
Multinomial Logit with Random Utility Model
Probability that the choice 1 is made when J alternatives were available implies
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Pi,j = Pr [ui,1 > ui,2 and ui,1 > ui,3 ...and ui,1 > ui,J ] =

Pi,1 = Pr

[
ei,2 < ui,1 − ui,2 + ei,1 and ei,3 < ui,1 − ui,3 + ei,1 .

..and ei,J < ui,1 − ui,J + ei,1

]
Pi,1 = Pr

[
ei,2 − ei,1 < ui,1 − ui,2 and ei,3 − ei,1 < ui,1 − ui,3 ..

.and ei,J − ei,1 < ui,1 − ui,J

]
Weibull errors: Pr [ei,j < ε] = exp (− exp (−ε))

Pi,1 =
X ′i,j β

J∑
j=1

X ′i,j β

(1316)

Multinomial Logit and Independence of Irrelevant Alternatives
Choices are independent of irrelevant alternatives (IIA); only odds between two choices need to

be compared when one is confronted with choosing one or another.

Pi,1 =
exp

(
X ′i,j β

)
J∑
j=1

exp
(
X ′i,j β

) (1317)

Pi,1
Pi,2

=

exp(X′i,2 β)
J∑
j=1

exp(X′i,j β)

exp(X′i,1 β)
J∑
j=1

exp(X′i,j β)

=
exp

(
X ′i,2 β

)
exp

(
X ′i,1 β

) (1318)

Pi,k
Pi,2

=
exp

(
X ′i,k β

)
exp

(
X ′i,1 β

) = exp
(
X ′i,k β −X ′i,1 β

)
for k=2,....,J (1319)

Multinomial Logit and Independence of Irrelevant Alternatives

Pi,k
Pi,2

=
exp

(
X ′i,k β

)
exp

(
X ′i,1 β

) = exp
(
X ′i,k β −X ′i,1 β

)
for k=2,....,J (1320)

with normalisation β1 = 0;

Pi,1 =
exp

(
X ′i,j β

)
J∑
j=1

exp
(
X ′i,j β

) =
1

1 +
J∑
j=2

exp
(
X ′i,j β

) for j =2,.....,J (1321)

Parameters in a multinomial logit models are estimated by a maximum likelihood method (see
McFadden (1974). Judge , Griffi ths, Hill, Lutkepohl and. Lee(1990). Similarly one can define the
nested logit models.
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Nested Logit Models (see Greene: 23) If there are J alternatives and B branches a multiple
logit evaluation of probability of choosing j in k subgroup is given by:

prob [twig, branch] = Pijb =
exp

(
X ′i,j\b β + z′i,b γ

)
B∑
b=1

Jb∑
j=1

exp
(
X ′i,j\b β + z′i,b γ

) (1322)

Pijb = Pij\bPb =

 exp
(
X ′i,j\b β

)
Jb∑
j=1

exp
(
X ′i,j\b β

)

 exp

(
z′i,b γ

)
L∑
l=1

exp
(
z′i,b γ

)
 (1323)


Jb∑
j=1

exp
(
X ′i,j\b β

) L∑
l=1

exp
(
z′i,b γ

)
B∑
b=1

Jb∑
j=1

exp
(
X ′i,j\b β + z′i,b γ

)
 (1324)

Nested Logit Models (see Greene: 23)
This can be estimated using a two step Maximum likelihood procedure.

L =

N∑
j=1

ln [pr (twig/branch)i × prob (branch)] (1325)

Inclusive value of lth brach

IVib = ln

 Jb∑
j=1

exp
(
X ′i,j\b β

) (1326)

Pij\bPb =

 exp
(
X ′i,j\b β

)
Jb∑
j=1

exp
(
X ′i,j\b β

)
 ;Pb =

exp
(
τ b

(
z′i,b γ + IVib

))
B∑
b=1

exp
(
τ bz′i,b γ + IVib

) (1327)

Model can be estimated with limited information maximum likelihood (LIML)or full information
maximum likelihood (FIML). (see Greene: 23)
Nested Logit Models (see Greene: 23)

Pij\bPb =

 exp
(
X ′i,j\b β

)
Jb∑
j=1

exp
(
X ′i,j\b β

)
 ;Pb =

exp
(
τ b

(
z′i,b γ + IVib

))
B∑
b=1

exp
(
τ bz′i,b γ + IVib

) (1328)

This can be estimated using a two step Maximum likelihood procedure.
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It can be applied to model the choices of travel modes in which an individual chooses first
whether to fly or take a ground transport.
Once a ground transport is chosen then similar choice is made for train, bus or car transport.
Model can be estimated with limited information maximum likelihood (LIML)or full information

maximum likelihood (FIML). (see Greene: 23)

7.0.18 Count Data Models

Poisson random variable P (Y = y) = e−λλy

y!
where λ denotes the intensity of occurrence or the rate parameter and y = 1,2„3,....denote the

counts of events in a given time interval. Mean and variance are the same E(Y ) = λ and variance
var (Y ) = λ.

λi = exp (X ′i β)

ln (λi) = X ′i β (1329)

E (yi/xi) = var (yi/xi) = λi = eX
′
i β (1330)

Likelihood function

lnL = [−λi + y′iX
′
i β − ln yi!] (1331)

Parameters is estimated by k number of first order conditions as is asymptotically normal with
the sample covariance matrix
Gausss-Newton or Newton-Raphson or BHHH iterative algorithm is used to find unique para-

meters (see Green 25).

7.0.19 Ordered Probit Model

Ordered Probit Model (See Greene 831)

i

i

iYif
iYif
iYif
iYif
iYif

Y













≤<
≤<
≤<
≤<
≤

=

5*45
4*34
3*23
2*12

1*1

Ordered Probit Model
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prob (y = 0|x) = Φ (−x′β) (1332)

prob (y = 1|x) = Φ (µ1 − x′β)− Φ (−x′β) (1333)

prob (y = 2|x) = Φ (µ2 − x′β)− Φ (µ1 − x′β) (1334)

prob (y = 3|x) = Φ (µ3 − x′β)− Φ (µ2 − x′β) (1335)

prob (y = 4|x) = Φ (µ4 − x′β)− Φ (µ3 − x′β) (1336)

prob (y = 5|x) = Φ (µ5 − x′β)− Φ (µ4 − x′β) (1337)

0 < µ1 < µ2 < ... < µ5 (1338)

prob (y = J |x) = 1− Φ
(
µJ−1 − x′β

)
(1339)

Ordered Probit Model

Ordered Probit Model
Marginal effects

prob (y = 0|x)

∂x
= −Φ (−x′β)β (1340)
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prob (y = 1|x)

∂x
= [Φ (µ1 − x′β)− Φ (−x′β)]β (1341)

Ordered logit

Y ∗i,t = Xi,tβ + εi,t. εi,t.|Xi,t ~ N (0, 1) (1342)

Yi,t = j. if uj−1. < Y ∗i < uj j=0,1,...,J (1343)

7.0.20 Truncated Distributions

Censored Data
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Mean and Variance For Truncated Distributions
The mean of truncated variable is E (x/x > a) = µ+ σλ (α) and
its variance is , var (x/x > a) = µ+ σ2 (1− δ (α))
where .0 ≤ δ (α) = λ (α) [λ (α)− α] < 1
Variance is also called a hazard function of this distribution.
λ (α) is called inverse Mill’s ratio. Here for all .0 ≤ δ (α) < 1 for all α.(

λ (α) = φ(α)
1−Φ(α) if x >α

λ (α) = −φ(α)
1−Φ(α) if x <α

)
(1344)

Regression with Truncated Distribution
Yi = β1 + β2Xi + εi where εi ∼ N

(
0, σ2

)
E (Yi/Xi) = Xiβ E (Yi/Xi) ∼ N

(
Xiβ, σ

2
)

if truncated (Yi/yi > α) = Xiβ + σλ (αi)

(Yi/yi > α) = Xiβ + E (εi/εi > α) >

a−Xiβ = Xiβ + σ

 α−Xiβ
σ

1− Φ
(
α−Xiβ

σ

)
 = Xiβ + σλ (αi) (1345)

This is a non-linear function and the estimates of and by the OLS technique is neither effi cient
nor consistent. Because the OLS ignores the part;

λ (α) =
1

σ

(
α−Xiβ

σ

)
1− Φ

(
α−Xiβ

σ

) =
1

σ

1
σφ (α)

1− Φ (α)
(1346)

λ (α) obviously depends on .

Maximum Likelihood Estimator for Truncated Distribution The unknown parameters β
and σ can be estimated consistently by

the Maximum likelihood technique as:

logL (α, β, σ) = −N
2

log
(
2πσ2

)
− N

2
log
(
σ2
)
−

1

2σ2

N∑
i=1

(yi − βXi)
2

σ2
−

N∑
i=1

[
1− Φ

(
(α− βXi)

σ

)]
(1347)

First order conditions for estimation of this ML are:
logL

∂

 β
σ2

 =
N∑
i=1

[(
(yi−βXi)2

σ2 − λ(αi)
σ

)
Xi − 1

2σ2 + (yi−βXi)2

σ2 − λ(αi)
σ

]
=

N∑
i=1

gi = 0

Maximise this likelihood by choosing β and σ iteratively
taking the OLS estimates as the initial starting point.
Censored Regression Model
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Yi =

∫
Y ∗i if Y ∗i > 0 if the event occurs
0 if Y ∗i ≤ 0

(1348)

If Y ∗i ∼ N
(
Xiβ, σ

2
)
pr (Y ∗i = 0) = pr (Y ∗i ≤ 0) = Φ

(
−µσ
)

= 1− Φ
(
µ
σ

)
Thus the distribution of the transformed variable is

g (Y ∗i ) =

(
N
(
µ, σ2

)
if Y ∗i > 0

1− Φ
(
µ
σ

)
if Y ∗i ≤ 0

)
(1349)

Moments of the censored variable E (Yi) = Φα+ (1− Φ) (µ+ σλ)

and ; var (Yi) = σ2 (1− Φ)
[
(1− δ) + (α− λ)

2
]

Φ

δ = λ2 − λα λ = φ
1−Φ E (Y ∗i ≤ 0) = Φ (α) = Φ

7.0.21 Tobit Model

• — It is an extension of the probit model, named after Tobin. We observe variables if the
event occurs: ie if some one buys a house. We do not observe explanatory variables
for people who have not bought a house. The observed sample is censored, contains
observations for only those who buy the house.

Yi =

∫
Yi = β1 + β2Xi + εi if the event occurs
0 = otherwise

(1350)

— Yi is equal to β1 + β2Xi + εi is the event is observed equal to zero if the event is not
observed.

— It is unscientific to estimate probability only with observed sample without worrying
about the remaining observations in the truncated distribution. The Tobit model tries
to correct this bias.

— Inverse Mill’s ratio: Example first estimate probability of work then estimate the hourly
wage as a function of socio-economic background variables

Tobit Model

Yi =

∫
Y ∗i if Y ∗i > 0 if the event occurs
0 if Y ∗i ≤ 0

(1351)

The unknown parameters and can be estimated consistently by the Maximum likelihood tech-
nique as:

logL (α, β, σ) = −N2 log
(
2πσ2

)
+ log

(
σ2
)
− 1

2σ2
1

N∑
i=1

(Y1,i − βX1,i)
2

uncensored

+
∑

(1− Φi)
(

(X2iβ−X1iβ)
σ

)
censored

Uncensored part Censored part
Use the OLS estimates as the starting values.
The two step estimation procedure proceeds as following:

First construct the index variable Ii =
∫ Y ∗i if Y ∗i > 0
0 if Y ∗i ≤ 0

pr (Ii = 1) = 1− Φ (∆) = pi and pr (Ii = 0) = Φi = 1− pi
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Then the log likelihood

L = Π
Ii.=1

Pi
σ

Π
Ii.=0

(1− Pi) (1352)

Using Probit and MLE find estimates of parameters β and σ and λ λ =
φ
(
βXi
σ

)
Φ
(
βXi
σ

)
Secondly apply OLS to Yi = β1 + β2Xi + σλ+ wi

Two Limit Tobit Model Yi = β1 + β2Xi + εi

Yi =

 Y ∗i if L1 < Y ∗i < L2 if the event occurs
L1 if Y ∗i < L1

L2 if Y ∗i ≥ L1

 (1353)

Formulate a maximum likelihood function

L = ΠΦ

(
L1 − Xiβ

σ

)
Y ∗i <L1

ΠΦ

(
Yi − Xiβ

σ

)
Yi=Y ∗i

ΠΦ

(
L2 − Xiβ

σ

)
Y ∗i ≥L2

(1354)

For instance think of a minimum, partial or maximum coverage of insurance.
Two Limit Tobit Model
For instance think of a minimum, partial or maximum coverage of insurance.
Expected values

E (Yi/Xi, L1) < Y ∗i < L2 = Xiβ +
σ (Φ1,i − Φ2,i)

Φ2,i − Φ1,i
(1355)

E (Yi/Xi, L1) = Φ1,iL1,i +Xiβ (Φ1,i − Φ2,i) + σ
(
φ1,i − φ2,i

)
+ (1− Φ2,i)L2,i (1356)

Φ1,i = Φ

(
L1 − Xiβ

σ

)
; Φ2i = Φ

(
L2 − Xiβ

σ

)
(1357)

L = ΠΦ1,i
n1

Π(Φ2,i − Φ1,i)
n2

Π(1− Φ2i)
n3

(1358)

Estimation of Two Limit Tobit Model

L = ΠΦ1,i
n1

Π(Φ2,i − Φ1,i)
n2

Π(1− Φ2i)
n3

(1359)

logL = N2 log ρ+N log σ +

N∑
i=1

(Yi −Xiβ)
2 −

∑
log [ρ (1− ρ) Φi] (1360)

If ρ known estimate βML and σ.ML if not βML and σ.ML and test for ρ = 1

E (Yi/Xi; Ii = 1) = Xiβ + E (εi/Ii = 1) = Xiβ + σ
φi

1− Φi
(1361)
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E (Yi/Xi; Ii = 0) = Xiβ + E (εi/Ii = 0) = Xiβ + σ
φi

1− Φi
(1362)

E (Yi/Xi) = Xiβ =
σρ1Φi − ρ2Φi
ρ1Φi − ρ2Φi

(1363)

7.1 Heckman’s Selectivity Bias

Inference population when the sample is non-random and some observations are omitted causes a
sample selection bias.
Heckman’s procedure is to microeconometrics as is the unit root for time series data.
When the sample selection is not corrected inference drawn from the regression analysis is not

effi cient or robust.
Y1,i = X1iβ + ε1,i if the event occurs if Y1,i > Y2,i

Y2,i = X2,iβ + ε2,i

Both Y1,i and Y2,i are stochastic. For instance, if Y1,i is market wage and Y2,i is the reservation
wage; an individual works only when Y1,i > Y2,i.(

ε1,i

ε2,i

)
∼ IN

(
0
∑ ) ∑

=

(
σ2

1 σ1,2

σ2,1 σ2
2

)
At least one more variable in X2,i than in X1,i; if σ1,2 = 0 it is a regular Tobit.
But the sample selection problem arise when σ1,2 6= 0.
Y1,i > Y2,i implies ε1,i = Y1,i −X1iβ
ε1,i < Y2,i −X2iβ

Joint t density of
(
ε1,i ε2,i

)
∼ IN

(
0
∑ )

= f
(
ε1,i ε2,i

)
= g (ε1,i)h (ε2,i/ε1,i)

Likelihood Function and Correlated Errors in Heckman’s Model
For some individuals you do not observe Y1,i because Y1,i < Y2,i.
Y1,i < Y2,i.=ε1,i − ε2,i < X2iβ −X1iβ(
ε1,i ε2,i

)
∼ IN

(
0 σ2

)
; σ2 = σ2

1 + σ2
2 − 2σ1,2

logL (α, β, σ) = −N
2

log
(
σ2
)
− 1

2σ2
1

N∑
i=1

(Y1,i − βX1,i)
2

obs

+
∑

log Φi (w)
Inst

+

N∑
i=1

log

( (X2iβ −X1iβ)

σ

)
unobs

 (1364)

w =
(Y2,i −X2iβ2)

σ2,1
− σ1,2

σ2
1

((Y1,i −X1,iβ1)) (1365)

Likelihood Function and Correlated Errors in Heckman’s Model
For some individuals you do not observe Y1,i because Y1,i < Y2,i.

w =
(Y2,i −X2iβ2)

σ2,1
− σ1,2

σ2
1

((Y1,i −X1,iβ1)) (1366)

W = β0 +X1,iβ1 + ε1,i (1367)
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WR = γ0 + γ1H + γ2Z + ε2,i (1368)

X and Z are exogenous variables and H and W are endogenous. If .H = 0 WR > W

E (ε2,i/H > 0) = E (ε2,i/V > −RD) = Eε2,i/ (ε2,i − ε1,i) > γ0 + γ2Z − β0 −X1,iβ1(1369)

=
σ2

2 − 2σ1,2

σ

αφ (∆)

1− Φ (∆)
=

αφ (∆)

1− Φ (∆)
(1370)

Heckman’s Lamda

H =
β0 +X1,iβ1 − γ0 − γ2Z

γ1

+
ε2,i − ε1,i

γ1

(1371)

W =

(
β0 +X1iβ + ε1,i

Xδ + V

)
if H > 0 (1372)

W = H = 0 Otherwise (1373)

Pr (H = 0) = pr (V ≤ −RD) = pr

(
ε2,i − ε1,i

γ1

≤ γ0 + γ2Z − β0 −X1,iβ1

γ1

)
(1374)

pr (ε2,i − ε1,i ≤ (γ0 + γ2Z − β0 −X1,iβ1)) = Φ (∆)

∆ =
γ0+γ2Z−β0−X1,iβ1

σ ; σ2 = σ2
1 + σ2

2 − 2σ1,2

L = Π
H.>0

WH
σ

Π
H=0

(∆) (1375)

E (ε2,i/H > 0) = β0 +X1,iβ1 + E (ε1,i/H > 0) = β0 +X1,iβ1 + αφ(∆)
1−Φ(α) = β0 +X1,iβ1 + αλ

E (ε2,i/H > 0) = β0 +X1,iβ1 + αλ = β0 +X1,iβ1 + σ1,2

φ
(
γ0+γ2Z−β0−X1,iβ1

σ

)
1− Φ

(
γ0+γ2Z−β0−X1,iβ1

σ

) (1376)

Thus the sample selection bias is due to the Heckman’s Lambda term.
Estimation of Heckman’s Lamda
To estimate E (ε2,i/H > 0) = β0 +X1,iβ1 + αλ

Use probit to estimate λ̂ Ii =

(
1 if working
0 Otherwise

)
and replace it in Wi = β0 +X1,iβ1 + αλ̂
pr (Ii = 1) = pr (H > 0) = 1− Φ (∆)
pr (V > −RD) = pr ((ε2,i − ε1,i) > γ0 + γ2Z − β0 −X1,iβ1) ; pr (Ii = 0) = φ (∆)
Heckman’s Tobit then:

L = Π
H.>0

(1− Φ (∆))
σ

Π
H=0

Φ (∆) by MLE get and (1377)
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by MLE get ∆ and λ̂ = φ(∆)
1−Φ(α)

H =
β0+X1,iβ1−γ0−γ2Z

γ1
+

ε2,i−ε1,i
γ1

= ∆̂

Apply OLS to Wi = β0 +X1,iβ1 + αλ̂+ ηi

Estimation of Truncated , Censored and Heckmans’sample selection models Take a
cross section dataset as from the BHPS data such as qindresp.sav
There are more than 1400 variables in this data set.
Save data is stata readable format using save as *.dta
Then open the stata. Then set momory 500000 to increase memory.
Then go to statistics/linear models/censored or truncated regression
tobit qprearn qsex qqfachi,11
Go to sample selection
heckman qprearn qsex qqfachi, qage, select(qsex = qprfitb)
Do this practice with smaller dataset. (qfimnl, qfiyr, qfihhmn, qhhsize, qfimnb, qnchild)
LIMDEP is another very useful software for such analysis; see http://people.stern.nyu.edu/wgreene/Hull2013.htm
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7.1.1 Tutorial 4: Probability Models

Q1. Discuss the maximum likelihood functions and Newton-Ralphson or BHHH algorithms for
estimation of parameters and the testing procedure for the following cross section models:

a. Logit
[
Pi = 1

1+e−Zi
with Zi = β1 + β2Xi + εi

]
.

b. Count data
[
P (Y = y) = e−λλy

y!

]
.

c. Multinomial Choice model:

Pi,2Pi,1
=

exp(X′i,2 β)
J∑
j=1

exp(X′i,j β)

exp(X′i,1 β)
J∑
j=1

exp(X′i,j β)

=
exp(X′i,2 β)
exp(X′i,1 β)

 .
d. Ordered probit model:

[
prob (y = J |x) = 1− Φ

(
µJ−1 − x′β

)]
.

e. Heckman’s correction for selectivity bias in which

Y1,i = X1iβ + ε1,i and Y2,i = X2,iβ + ε2,i and if the event occurs Y1,i > Y2,i.

f. Two limit Tobit for a certain regression Yi = β1 + β2Xi + εi with

Yi =

 Y ∗i if L1 < Y ∗i < L2 if the event occurs
L1 if Y ∗i < L1

L2 if Y ∗i ≥ L2

 .
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8 L7: Panel Data Model

Many economic issues require cause-effect analyses of cross-sections of individuals, households or
countries over time. The major issue that economists like to know remains whether coeffi cients
vary across individual observations at a particular time or whether variables have any systematic
pattern over time. For instance macroeconomist are interested to know what makes growth rates
differ across countries at a particular year and of the same country over time. In other words
they want to find out whether there are any country specific and time specific effects on economic
growth. Panel studies of growth studies are carried out to know the determinants of growth of
an individual country or a group of countries over time. Similarly microeconomic studies aim to
investigate whether wages and earnings linked to characteristic of workers and other environmental
factors over time or whether profits vary systematically by firms and by production periods.
When confronted with these questions an appropriate econometric method requires using all

observations across individuals for each time period under investigation. The paned data regres-
sion models in econometrics takes account of all cross section and time series observations. The
major emphasis lies on decomposing total variation within a group and between the various groups.
Subscript i, t refer to individual and time period respectively.
Literature on the panel data model is developing very fast for instance, Wallace and Hussain

(1969), Balestra and Nerlove (1966), Hausman (1978), Chamberlain (1984), Arulampalam and
Booth(1998), Blundell and Smith (1989),Chesher (1984), Hansen (1982), Hausman (1978), Heckman
(1979), Im, Pesaran and Shin (2003), Imbens and Lancaster (1994), Keifer (1988), Kao (1999),
Kwaitkowski, Phillips, Schmidt and Shin (1992), Larsson, Lyhagen and Lothgren (2001) Levin,
Lin and Chu (2002), Pedroni (1999), Pesaran and Smith (1995) Phillips (1987), McCoskey and
Kao (1999), Johansen Soren (1988), Johansen Soren (1988) Staigler Stock (1997), Lancaster (1979)
Lancaster and Chesher (1983) Zellner A. (1985), Weidmeijer (2005). Similarly there are number of
excellent texts Baltagi (1995), Davidson R and MacKinnon J. G. (2004) ,Greene W. (2000), Hsiao
Cheng (1993), Lancaster (1990), Ruud (2000) Verbeek (2004), Wooldridge (2002). These studies
could be grouped as:

• Zellner (1962), Wallace and Hussain (1969), Balestra and Nerlove (1966), Hausman (1978),
Chamberlain (1984), Arulampalam and Booth(1998), Blundell and Smith (1989),Chesher
(1984), Hansen (1982), Hausman (1978), Heckman (1979), Im, Pesaran and Shin (2003),
Imbens and Lancaster (1994), Keifer (1988), Kao (1999), Kwaitkowski, Phillips, Schmidt and
Shin (1992), Larsson, Lyhagen and Lothgren (2001) Levin, Lin and Chu (2002), Pedroni
(1999), Pesaran and Smith (1995), Phillips (1987), McCoskey and Kao (1999), Staigler and
Stock (1997), Lancaster (1979), Lancaster and Chesher (1983), Zellner (1985), Weidmeijer
(2005).

• Nickell (1981), Arellano and Bond (1991), Arellano and Bover (1995), Kiviet (1995), Islam
(1995), Mankiew, Romer and Weil (1992), Caselli, Esquivel, Lefort (1996), Blundell and
Bond (1998), Judson and Owen (1999), Hahn and Kuersteiner (2002), Ho (2006), Windmeijer
(2005), Roodman (2009), Wooldridge (2010).

• Hansen(1999), Kleibergen and Paap (2006), Hayakawa(2009), Baltagi and Feng, Kao (2012),
Su and Lu (2013), Kapetanios, Mitchell and Shin (2014), Lee (2014)

• Cornwell and Rupert (1988), Robertson and Symons (1992), Hansen (1999), Bai and Ng
(2005). Wooldridge (2005), Kleibergen and Paap (2006), Sentana(2009), Carriero, Kapetanios
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and Marcellino (2009), Semykina and Wooldridge (2013), Koop (2013)

• Similarly there are number of excellent texts Johnston (1960), Baltagi (1995), Davidson and
MacKinnon (2004), Greene (2000), Hsiao (1993), Lancaster (1990), Ruud (2000), Verbeek
(2004), Wooldridge (2002).

8.0.2 Structure of Panel Data

for i = 1,. . . .N countries and t = 1,. . . .,T years

Table 20: Structure of Panel Data
Dependent Variable Explanatory Variable Random Error

y1,1 x1,1 e1,1

. . .
y1,T x1,T e1,T

y2,1 x2,1 e2,1

. . .
y2,T x2,T e2,T

. . .
yN,1 xN,1 e,1
. . .

y2,T x2,T e2,T

8.1 Advantages of Panel Data Model

• Large number of observations over individuals and time make estimates more effi cient and
asymptotically consistent

• Possible to check individual and time effects in a regression

• Very inclusive and comprehensive, state and space dimensions

• Can use vast amount of information from census, household surveys, firm or country wise
statistics

• Background for testing economic theories at micro as well as macro level

Recent literature on Panel Data Model

• Theory of Panel Data Estimation

• Pooling time sereis and cross section: SUR

• Between and Within Effects

• Fixed and Random Effect Models

• Dynamic Panel
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• Panel Unit Root and Panel Cointegration

• Panel Data Model for Limited Dependent Variables

Lessons from Static and Dynamic Panel data Models
Economic Growth of Countries around the World:
Unemployment-inflation Trade-offs in OECD Countries

8.2 Pooling Cross Section and Time Series: Seemming Unrelated Re-
gression (SUR) MODEL

A SURE model includes m endogenous variables and a system of m equations. It may have other
exogenous variables. For example, in spirit of the Phillips curve analysis one may think that
growth rate of output in period t may be influenced positively by the inflation in the last period,
t-1. The reason is obvious. At the given capacity to produce, higher prices may be indicative of
the higher level of final demand. Higher demand causes a rise in prices of goods in response to
higher factor prices necessary to induce overtime work by workers or extra shifts of machine hours
in the production process. One may argue therefore that producer supply more today only if prices
of goods were higher in the last period. Alternative hypothesis, might be that growth rate has
negative relation with inflation, as inflation creates uncertainty and harms investment. Rational
expectation school rules out any systematic impact of prices on output. Which one of these claims
are true? This is a question of empirical nature.

• SUR if formed by stacking models

Y1 = X1β + e1 (1378)

Y2 = X2β + e2 (1379)

... (1380)

Ym = Xmβ + em (1381)

There are m equations and T observations in the SURE system (in growth rate example we
have 151 countries and 31 observations). They can be stacked into one large equation system as
following. 

Y1

Y2

.

.
Ym

 =


X1 0 . . 0
0 X2 . . 0
. . X3 . 0
. . . . .
0 0 . . Xm


β1

β2

.

.
βm

+


e1

e2

.

.
em

 (1382)

• Each Ym and emhas a dimension of T by 1 and Xm has T by K dimension and each βm has
K by 1 dimension. The covariance matrix of errors has TM by TM dimension.

Seemming Unrelated Regression (SUR) MODEL: Assumptions
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• Mean of ei,t is zero for every value of , E (ei,t) = 0

• variance of ei,t is constant for every ith observation, var (e1t) = σ2
i

• cov (ei,t, ei,s) = 0 for al t=s; this also means there is no autocorrelation

• All of the above assumptions are standard to the OLS assumptions.

• The major difference lies on assumption of contemporaneous correlation across the disturbance
terms in above two models.

• cov (ei,t, ej,s) = σ2
i,j The systems are related due to errors.

Variance Covariance Structure in SUR MODEL

• Dimension of each of the σi,j , like that of the identity matrix I, is T by T, and reflects the
variance covariance matrix of the stacked regression.

• The Kronnecker product Σ⊗ Iis a short way of writing this covariance matrix.

• Σ is the variance covariance matrix

• ⊗ is the symbol for the Kronnecker product

• I is Identity Matrix with T×M by T×M dimension.

Pooling Cross Section and Time Series: Seemming Unrelated Regression (SUR) MODEL

•

ee′ =


e1

e2

.

.
em

 [ e1 e2 . . em
]

=


e2

1 e1e2 e1e3 e1e4 e1e5

e1e2 e2
2 e2e3 e2e4 e2e5

e1e3 e2e3 e2
3 e3e4 e4e5

e1e4 e4e2 e4e3 e2
4 e4e5

e1e5 e5e2 e5e3 e5e4 e2
5

 (1383)

E (ee′) =


var (e1) cov (e1e2) cov (e1e3) cov (e1e4) cov (e1e5)
cov (e1e2) var (e2) cov (e2e3) cov (e2e4) cov (e2e5)
cov (e1e3) cov (e2e3) var (e3) cov (e3e4) cov (e4e5)
cov (e1e4) cov (e4e2) cov (e4e3) var (e4) cov (e4e5)
cov (e1e5) cov (e5e2) cov (e5e3) cov (e5e4) var (e5)

 (1384)

Pooling Cross Section and Time Series: Seemming Unrelated Regression (SUR) MODEL

•

E (ee′) =


σ2

1 σ1,2 σ1,3 σ1,4 σ1,5

σ2,1 σ2
2 σ2,3 σ2,4 σ2,5

σ3,1 σ3,2 σ2
3 σ3,4 σ3,5

σ4,1 σ4,2 σ4,3 σ2
4 σ4,5

σ5,1 σ5,2 σ5,3 σ5,4 σ2
5

 = V = Σ⊗ I (1385)
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Application of the OLS technique individual equations generates inconsistent results. Sure
method aims to correct this problem by estimating all equations simultaneously.
The SURE method is essentially a generalised least square estimator. Note

V −1 = Σ−1 ⊗ I (1386)

Pooling Cross Section and Time Series: Seemming Unrelated Regression (SUR) MODEL
Aitken generalised least square

β̂ =
[
X ′V −1X

]−1
X ′V −1Y =

[
X ′
(
Σ−1 ⊗ I

)
X
]−1

X ′
(
Σ−1 ⊗ I

)
Y (1387)

β̂ =


σ1,1X

′

1X1 σ1,1X
′

1X2 σ1,1X
′

1X3 σ1,mX
′

1Xm

σ2,1X
′

2X1 σ2,2X
′

2X2 σ2,3X
′

2X3 σ2,mX
′

2Xm

σm,1X
′

mX1 σm,2X
′

mX2 σm,3X
′

mX3 σm,4X
′

mXm



∑
σ1,jX

′

1Yj

∑
σm,jX

′

mYj

 (1388)

Steps for SUR Estimation

• Estimate each equation separately using the least square technique.

• Use the least square residuals from step 1 to estimate the error term.

• Use the estimates from the second step to estimate two equations jointly within a generalised
least square framework. If m=2 the variance covariance matrix will be as given below.

Estimation of Seemming Unrelated Regression (SUR) by GLS

•
Ω =

(
σ2

1 σ1,2

σ2,1 σ2
2

)
(1389)

Using a theorem in matrix algebra W can be decomposed into two parts as

P ′P = Ω−1 (1390)

Use this partition of Ω to transform the original model as

Y = Xβ + ε (1391)

βOLS = (X ′X)
−1

(X ′Y ) (1392)

Estimation of Seemming Unrelated Regression (SUR) by GLS
Transform it to
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P ′Y = P ′Xβ + P ′ε (1393)

Y ∗ = X∗β + ε∗ (1394)

βGLS = (X ′P ′PX)
−1

(X ′P ′PY ) (1395)

In matrix notation

βGLS =
(
X∗′Ω−1X∗

)−1 (
X∗′Ω−1Y ∗

)
(1396)

Ω−1 is inverse of variance covariance matrix.
The GLS estimates are best, linear and unbiased estimators of the coeffi cients in the SURE

system.

8.3 Total, within and between group estimates

Total Effect (pooled model)

βOLS =

T∑
t

N∑
i

(
Xi,t −X

) (
Yi,t − Y

)
T∑
t

N∑
i

(
Xi,t −X

) (
Xi,t −X

) =
tx,y
tx,x

(1397)

Here tx,x =
T∑
t

N∑
i

(
Xi,t −X

) (
Xi,t −X

)
and tx,y =

T∑
t

N∑
i

(
Xi,t −X

) (
Yi,t − Y

)
= Wx,y + bx,y.

tx,y =

T∑
t

N∑
i

(
Xi,t −Xi +Xi −X

) (
Yi,t − Y i + Y i − Y

)
(1398)

tx,y =

T∑
t

N∑
i

(
Xi,t −Xi

) (
Yi,t − Y i

)
+ T

N∑
i

(
Xi −X

) (
Y i − Y

)
= Wx,y + bx,y (1399)

Within estimator or fixed effects estimator (variance around the group means)

βw =
Wx,y

Wx,x
=

N∑
i

T∑
t

(
Xi,t −Xi

) (
Yi,t − Y i

)
N∑
i

T∑
t

(
Xi,t −Xi

)2 (1400)

Between group effect (variation of group means around the overall means)

βb =
bx,y
bx,x

=

N∑
i

T
(
Xi −X

)(
Y i − Y

)
N∑
i

T
(
Xi −X

)2
(1401)
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βOLStx,x = tx,y = Wx,y + bx,y = βW
Wx,x

Wx,y + bx,y
+ βb

bx,x
Wx,y + bx,y

(1402)

Example
Consider the cross-regional variation of expenditure on food in the UK. For simplicity, it is

assumed that food expenditure depends only on wage and salary income in each region.

1. Formulate a model relating expenditure on food (F) and income (Y) that takes account of
region specific effects. Note that the equations for each region are independent but that there
is contemporaneous correlation among the error terms across the regions. State the major
assumptions of the model.

2. Represent the model in terms of a system of stacked regressions that takes account of both
individual and system specific effects. What is the structure of the covariance matrix of the
error terms in this system?

3. Show how the SURE or GLS estimator system can be applied to estimate the structural
parameters of this model. Write out their covariance structure in the matrix form.

4. This model has been estimated using a pooled time series and cross section data set (with
the sample size of T=14 and N=13) available from the web site of the Offi ce of the National
Statistics (hhttp://www.statistics.gov.uk). The estimated coeffi cients, by region, are given in
the following table. Analyse and interpret these results.

8.4 Panel Data: Fixed Effects

yi,t = αi + xi,tβ + ei,t ei,t ∼ IID
(
0, σ2

e

)
(1403)

where parameter αi picks up the fixed effects that differ among individuals but constant over
time,β is the vector of coeffi cients on explanatory variables. These parameters can be estimated by
OLS when N is small but not when that is large.
The model need to be transformed to the least square dummy variable method when N is too

large. For this take time average

yi = αi + xiβ + ei yi = T−1
∑
i

yi,t (1404)

Take the mean difference

yi,t − yi = (xi,t − xi)β + (ei,t − ei ) (1405)

fixed effect least square dummy variable estimator of β is

βFE =

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′
)−1 T∑

t

N∑
i

(xi,t − xi) (yi,t − yi)
′ (1406)

αi = yi − xiβFE (1407)

Panel Data Model: Fixed Effect
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fixed effect least square dummy variable estimator of β is

βFE =

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′
)−1 T∑

t

N∑
i

(xi,t − xi) (yi,t − yi)
′ (1408)

αi = yi − xiβFE (1409)

These estimators are unbiased, consistent and effi cient with corresponding covariance matrix
given by:

cov (βFE) = σ2
e

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′
)−1

(1410)

where

σ2
e =

1

N (T − 1)

T∑
t

N∑
i

(yi,t − αi − xi,tβFE) (1411)

Panel Data Model: Fixed Effect in Matrix Notation

yi = iαi +Xiβ + ei (1412)
Y1

Y1

.

.
YN

 =


I 0 . . 0
0 I . . 0
. . I . 0
. . . . .
0 0 . . I


Y1

Y1

.

.
YN

+


X1

X1

.

.
XN

β +


e1

e1

.

.
eN

 (1413)

Y =
[
d1 d2 . . dN X

] [ α
β

]
(1414)

Y = Dα+Xβ + e (1415)

Panel Data Model: Fixed Effect in Matrix Notation
This can be easily estimated by the OLS when the number of cross section units are small.

Many panel data studies have much larger observations. It results in over parameterisation and
loss of degree of freedom. For this the model is transformed by a projection matrix

Md = I −D (D′D)D′ (1416)

MdY = IDα−MdXβ +Md · e (1417)

Md =


M0 0 . 0 . 0
. M0 . 0 . 0
. 0 M0 0 . 0
. . . M0 . .
. 0 . 0 . 0
. . . . . M0

 wehre M0 = IT −
1

T
ii′ (1418)
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M0 = IT −
1

T
ii′ (1419)

Panel Data Model: Fixed Effect in Matrix Notation
Multiplying any variable by M0 is equivalent taking deviation from the mean ie

M0Xi = Xi −Xi (1420)

Y = Dα+Xβ + e (1421)

α = (D′D)
−1
D (Y −Xb) (1422)

var (b) = s2 [X ′MdX]
−1 (1423)

and

s2 =

T∑
t

N∑
i

(yi,t − αi − xi,tb)

NT −N −K (1424)

8.4.1 Panel Data Model: Random Effect

Random effect models are more appropriate for analysing determinants of growth as

yi,t = µ+ xi,tβ + αi + ei,t (1425)

where αi ∼ IID
(
0, σ2

α

)
are individual specific random errors and ei,t ∼ IID

(
0, σ2

e

)
are

remaining random errors.

αiιT + ei where ι
T

= (1, 1, .....1) (1426)

var (αiιT + ei) = Ω = σ2
αιT ι

′
T

+ σ2
eIT (1427)

Errors are correlated therefore this requires estimation by the Generalised Least Square estima-
tor. Transform the model by pre-multiplying by Ω−1 where

Ω−1 = σ2
e

[
IT −

σ2
α

σ2
e + Tσ2

α

ι
T
ι′
T

]
(1428)

Panel Data Model: Random Effect

βGLS =

(
T∑
t

N∑
i

(xi,t − xi) (xi,t − xi)′ +
N

ψT
∑
i

(xi,t − xi) (xi,t − xi)′
)−1

(
T∑
t

N∑
i

(xi,t − xi) (yi,t − yi)
′
+ ψT

N∑
i

(xi,t − xi) (yi,t − yi)
′
)

(1429)
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Ω =


σ2
α + σ2

e σ2
α σ2

α . . σ2
α

σ2
α σ2

α + σ2
e . . . .

. . . . . .

. . . . . .

. . . . . .
σ2
α σ2

α σ2
α . . σ2

α + σ2
e

 (1430)

Ω−
1
2 =

1

σe

[
IT − 1− σe√

σ2
e + Tσ2

α

]
(1431)

βGLS =
∑
i

(
X ′Ω−1X

)−1∑
i

(
X ′Ω−1Y

)
(1432)

8.4.2 Dynamic Panel Data Model: GMM Estimator

generalised method of moments (GMM) as proposed by Hansen (1982).

yi,t = γyi,t−1 + xi,tβ + αi + ei,t γ < 1 (1433)

which generates the following estimator

γ
FE

=

T∑
t

N∑
i

(yi,t − yi)
(
yi,t − yi,t−1

)
T∑
t

N∑
i

(
yi,t − yi,t−1

)2 ; yi = T−1
∑
i

yi,t; and yi,−1 = T−1
∑
i

yi,t−1 (1434)

This is not asymptotically unbiased estimator:

γ
FE

= γ +

(
1
NT

) T∑
t

N∑
i

(ei,t − ei)
(
yi,t − yi,t−1

)
(

1
NT

) T∑
t

N∑
i

(
yi,t − yi,−1

)2 (1435)

p lim
N→∞

(
1

NT

) T∑
t

N∑
i

(ei,t − ei)
(
yi,t − yi,t−1

)
= − σ

2
e

T 2

(T − 1)− Tγ + γT

(1− γ)
2 6= 0 (1436)

Panel Data Model: Instrumental Variables for GMM
Instrumental variable methods have been suggested to solve this inconsistency

γ̂
IV

=

T∑
t

N∑
i

yi,t−2

(
yi,t−1 − yi,t−2

)
T∑
t

N∑
i

yi,t−2 (yi,t−1 − yi,t−2)
2

(1437)
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where yi,t−2 is used as instrument of (yi,t−1 − yi,t−2)
It is asymptotically

p lim
N→∞

(
1

NT

) T∑
t

N∑
i

(ei,t − ei) yi,t−2 = 0 (1438)

Moment conditions with vector of transformed error terms

∆ei =


ei,2 − ei,1
ei,3 − ei,2

.

.
ei,T − ei,T−1

 (1439)

Panel Data Model: Instrumental Variables for GMM 2

Zi =


[yi,0] 0 . . 0

0 [yi,0,yi,1,] 0 . .
0 0 . . 0
. . . . 0
0 0 . . [yi,0,yi,T−2]

 (1440)

E
{
Z
′

i∆ei

}
= 0 (1441)

Or for moment estimator write the transformed errors as

E
{
Z
′

i (∆yi,t − γ∆yi,t)
}

= 0 (1442)

min
γ

((
1

N

) N∑
i=1

Z
′

i (∆yi,t − γ∆yi,t)

)′
WN

N∑
i=1

Z
′

i (∆yi,t − γ∆yi,t)
′ (1443)

Panel Data Model: Instrumental Variables for GMM 2
GMM method includes the most effi cient instrument

γ
GMM

=

((
N∑
i=1

∆yi,tZi

)
WN

(
N∑
i=1

Z
′

i∆yi,t

))−1

×
((

N∑
i=1

∆yi,tZi

)
WN

(
N∑
i=1

Z
′

i∆yi,t

))
(1444)

Blundell and Smith (1989) and Verbeek (2004), Wooldridge (2002) among others have more
extensive exposure in GMM estimation. The essence of the GMM estimation remains in find-
ing a weighting matrix that can guarantee the most effi cient estimator. This should be inversely
proportional to transformed covariance matrix.

W opt
N =

((
1

N

) N∑
i=1

Z
′

i∆ei,t∆e
,
i,tZi

)−1

(1445)
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Panel Data Model: Instrumental Variables for GMM 2
Doornik and Hendry (2001, chap. 7-10) provide a procedure on how to estimate coeffi cients

using fixed effect, random effect and the GMM methods including a lagged terms of dependent
variable among explanatory variables for a dynamic panel data model:

yi,t =

p∑
i=1

akyi,t−s + βt (L)xi,t + λt + αi + ei,t or in short yi,t = Wiδ + ιiai + ei (1446)

The GMM estimator with instrument (levels, first differences, orthogonal deviations, deviations
from individual means, combination of first differences and levels) used in PcGive is :

δ̂ =

((
N∑
i=1

W ∗i Zi

)
AN

(
N∑
i=1

Z
′

iWi

))−1(( N∑
i=1

W ∗i Zi

)
AN

(
N∑
i=1

Z
′

iy
∗
i

))
(1447)

where AN =

(
N∑
i=1

Z
′

iHiZi

)−1

is the individual specific weighting matrix.

Hausman Test for Fixed over Random Effect Models

var
(
b− β̂

)
= var (b) + var

(
β̂
)
− cov

(
b, β̂
)
− cov

(
β̂, b
)

cov
[(
b, β̂
)
, β̂
]

= cov
[(
b, β̂
)]
− var

(
β̂
)

= 0

cov
[(
b, β̂
)]

= var
(
β̂
)

var
(
b, β̂
)

= var (b)− var
(
β̂
)

= Ψ (1448)

W = χ2 [K − 1] =
(
b− β̂

)′
Ψ−1

(
b− β̂

)
(1449)

8.4.3 Panel Estimation

Panel Cointegration

8.4.4 Estimation of Panel Data Model with BHPS in SATA

Take a cross section dataset as from the BHPS data such as qindresp.sav
determine panel id: See log file; panel.smcl
Command for

• random effect: xtreg qprearn qsex qqfachi age_years, re

• Fixed effect: xtreg qprearn qsex qqfachi age_years, re

• Between effect: xtreg qprearn qsex qqfachi age_years, be

• MLE:xtreg qprearn qsex qqfachi age_years, mle

These calculations can be done with do command in STATA. For this import analysis.csv datafile
and run "do" file file analysis.do.

248



         rho          0   (fraction of variance due to u_i)
     sigma_e  1.8103504
     sigma_u          0

       _cons   7.350651   .0552183  133.12   0.000    7.458877   7.242425
   age_years    .0731788   .0149741     4.89   0.000     .0438302    .1025274
     qqfachi   .2928379   .0054389   53.84   0.000    .3034979   .2821778
        qsex    .3702326   .0105693    35.03   0.000     .3495171    .3909481

     qprearn       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

corr(u_i, X)       = 0 (assumed)                Prob > chi2        = 0.0000
Random effects u_i ~ Gaussian Wald chi2(3)       =   2915.32

       overall = 0.1636 max =     14077
       between = 0.9944 avg =    4970.0
Rsq:  within  = 0.1641 Obs per group: min =        31

Group variable: qdoiy4 Number of groups   =         3
Randomeffects GLS regression                   Number of obs      =     14910

. xtreg qprearn qsex qqfachi age_years, re

F test that all u_i=0:     F(2, 14904) =     6.12 Prob > F = 0.0022

         rho  .01510966   (fraction of variance due to u_i)
     sigma_e  1.8103504
     sigma_u  .22423122

       _cons   7.327959   .0556048  131.79   0.000    7.436951   7.218966
   age_years    .0692979   .0150113     4.62   0.000     .0398739    .0987219
     qqfachi   .2933891   .0054393   53.94   0.000    .3040509   .2827274
        qsex    .3642664   .0107377    33.92   0.000     .3432192    .3853136

     qprearn       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

corr(u_i, Xb)  = 0.0392 Prob > F           = 0.0000
F(3,14904)         =    975.78

       overall = 0.1635 max =     14077
       between = 0.9782 avg =    4970.0
Rsq:  within  = 0.1642 Obs per group: min =        31

Group variable: qdoiy4 Number of groups   =         3
Fixedeffects (within) regression               Number of obs      =     14910

. xtreg qprearn qsex qqfachi age_years, fe
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Likelihoodratio test of sigma_u=0: chibar2(01)=    4.11 Prob>=chibar2 = 0.021

         rho    .0031411   .0039157                       .000202    .0269364
    /sigma_e    1.810166   .0104834                      1.789735     1.83083
    /sigma_u    .1016117    .063529                      .0298374    .3460402

       _cons   7.429477   .0960936   77.31   0.000    7.617817   7.241137
   age_years    .0701004   .0150188     4.67   0.000     .0406641    .0995367
     qqfachi   .2932528   .0054391   53.92   0.000    .3039133   .2825924
        qsex    .3651194   .0107613    33.93   0.000     .3440277    .3862111

     qprearn       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

Log likelihood  = 30006.825 Prob > chi2        =    0.0000
                                                LR chi2(3)         =   2669.19

                                                               max =     14077
                                                               avg =    4970.0
Random effects u_i ~ Gaussian                   Obs per group: min =        31

Group variable: qdoiy4 Number of groups   =         3
Randomeffects ML regression                    Number of obs      =     14910

Iteration 5:   log likelihood = 30006.825
Iteration 4:   log likelihood = 30006.825
Iteration 3:   log likelihood =  30006.83
Iteration 2:   log likelihood =   30006.9
Iteration 1:   log likelihood = 30007.658
Iteration 0:   log likelihood = 30008.463
Fitting full model:

Iteration 3:   log likelihood = 31341.422
Iteration 2:   log likelihood = 31341.428
Iteration 1:   log likelihood = 31345.516
Iteration 0:   log likelihood = 31468.209
Fitting constantonly model:

. xtreg qprearn qsex qqfachi age_years, mle

       _cons   8.326359          .        .       .            .           .
   age_years   (omitted)
     qqfachi    .2253665          .        .       .            .           .
        qsex   .2944859          .        .       .            .           .

     qprearn       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

sd(u_i + avg(e_i.))=         0 Prob > F           =      .
F(2,0)             =         .

       overall = 0.1621 max =     14077
       between = 1.0000 avg =    4970.0
Rsq:  within  = 0.1627 Obs per group: min =        31

Group variable: qdoiy4 Number of groups   =         3
Between regression (regression on group means)  Number of obs      =     14910

note: age_years omitted because of collinearity
. xtreg qprearn qsex qqfachi age_years, be
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Table 21: Determinants of growth rate of per capita income and Exchange Rate
G row th M o d e l E x ch a n g e R a t e M o d e l

D e t e rm in a n t s C o e ffi c i e n t t -p r o b C o e ffi c i e n t t - va lu e

In v e s tm e n t r a t io 0 .1 8 2 0 .0 0 0 6 0 - -

E x p o r t R a t io 0 .0 2 5 7 .3 8 3 0 - -

E x ch a n g e r a t e - 1 - - 0 .9 7 1 0 0 .0 0

R e a l In t e r e s t r a t e - - - 0 .0 2 9 0 0 .0 0

P o p u la t io n g r ow th r a t e - 0 .8 8 4 9 0 .1 5 4 0 0 .7 9 1 7 0 .0 0

C o n s t a n t 3 .0 1 1 6 0 .1 7 8 0 0 .3 4 0 0 0 .0 0

N e p a l - 3 .0 3 4 1 0 .0 0 0 0 0 .0 6 6 2 0 .0 0

In d ia - 2 .0 2 4 4 0 .0 0 0 0 0 .0 4 9 6 0 .0 0

S o u t h A f r i c a - 5 .1 0 7 0 0 .0 0 0 0 0 .0 7 0 9 0 .0 0

B r a z i l - 4 .5 5 2 9 0 .0 0 0 0 - 0 .0 3 2 4 0 .0 0

U K -4 .5 6 3 0 0 .0 0 2 0 0 .0 0 3 1 0 .0 0

J a p a n -5 .9 8 4 6 0 .0 0 0 0 - 0 .0 4 2 2 0 .0 0

U SA -3 .7 9 0 2 0 .0 0 0 0 0 .0 2 9 5 0 .0 0

G e rm a ny -5 .6 4 0 8 0 .0 0 0 0 - 0 .0 0 7 4 0 .0 0

N = 3 2 4 R2= 0.46 N = 3 1 2 R2= 0.9857

8.4.5 Panel Unit root test

Increasingly recent studies have looked into nonstationarity and heterogeneity issues in panel data
model. Levin and Lin (1992)

∆yi,t = αi + ρyi,t−1 +

n∑
k=1

φk∆yi,t−1 + δit+ θt + ui,t (1450)

H0 : ρ = 1 against H0 : ρ < 1
Levin, A., C. Lin and C. Chu (2002): “Unit Root Tests in Panel Data: Asymptotic and finite

sample properties”, Journal of Econometrics, 108, p.12-24.
IM, Pesharan and Shin (1997)
Im, K.S., M. Pesaran and Y. Shin (2003): “Testing for Unit Roots in Heterogeneous Panels”,

Journal of Econometrics, 115, p.53-74.

∆yi,t = αi + ρyi,t−1 +

n∑
k=1

φi∆yi,t−1 + δit+ θt + ui,t (1451)

Heterogeneity in unit roots: against no unit root

tIPS =

√
N

(
t− 1

N

n∑
k=1

E [tiT |ρi = 0]

)
√

1
N

n∑
k=1

var [tiT |ρi = 0]

=⇒ N (0, 1) (1452)

• Panel Unit root test
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Table 22: Cointegration Test of Growth and Exchange Rate Equations
Cointegration in Growth Model Cointegration in Exchange rate Model

ADF test (T=321; Constant; 5%=-2.87; 1% = -3.45)

Determinants ADF-Statistics Decision ADF-Statistics Decision

Investment ratio -4.449** Stationary - -

Export Ratio -1.9000 Non-Stationary - -

Exchange rate -1 - - -1.510 Non-Stationary

Real Interest rate - - -2.59 Non-Stationary

Population growth rate -6.171** Stationary -6.171** Stationary

Residual -10.62** Stationary -4.96** Stationary

Conclusion: Variables in both growth and exchange rates equations are cointegrated.

Maddala and Wu (1999) tests for unbalanced panel
Maddala, G.S. and S. Wu (1999): “A comparative study of unit root test with panel data and

a new simple test”, Oxford Bulletin of Economics and Statistics, 61, p.631-652.

Π = −2
n∑
k=1

lnπi with χ2 distribution

where πi is the probability limit of ADF test
KSSS test

KPSS =

T∑
t=1

S2
t

σ̂2 (1453)

where S2
t =

T∑
t=1

et is the partial sum of errors in a regression of Y on an intercept and time trend.

In contrast to the unit root test this test assumes that Y series are stationary and alternative
hypothesis is nonstationarity.
Kwaitkowski, D. P.C. Phillips, P. Schmidt and Y. Shin (1992): “Testing the null hypothesis of

Stationarity against the alternative of a unit root”, Journal of Econometrics, 54, p.159-178.

• Panel Unit root: Kao test

Kao, C. (1999): “Spurious Regression and residual-based Tests for Cointegration in Panel Data”,
Journal of Econometrics, 90, p.1-44.
Start with yi,t = αi + xi,tβ + ei,t ei,t ∼ IID

(
0, σ2

e

)
Residual based cointegration ei,t = ρei,t−1 + vi,t

Estimate ρ =

T∑
t=1

N∑
n=1

êi,têi,t−1

T∑
t=1

N∑
n=1

ê2i,t

and

related t statistics tp =
(ρ̂−1)

√
T∑
t=1

N∑
n=1

ê2i,t

1
NT

(
T∑
t=1

N∑
n=1

(ê2i,t−ρ̂ê2i,t)
)

Panel Unit Root Test in Eviews
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Panel unit root test: Summary
Series:  EDU_R
Date: 04/22/10   Time: 08:55
Sample: 1971 2006
Exogenous variables: Individual effects
Userspecified lags: 1
NeweyWest automatic bandwidth selection and Bartlett kernel
Balanced observations for each test

Cross
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* 2.57787 0.0050 14 476

Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin Wstat 0.17536 0.4304 14 476
ADF  Fisher Chisquare 23.2299 0.7215 14 476
PP  Fisher Chisquare 28.7105 0.4273 14 490

Panel Cointegration in Eviews
Save data in excel/csv; import in Eviews as foreign data file/ Select Basic structure as panel data

(have panel id and year id variables in the data file); Quick/ Group statistics/Johansen cointegration
test; then list variables; select pedroni (Engle-Granger based) — select other specifications then
estimate. You get results as following.
Study the trace and max —eigen value tests.

Unrestricted Cointegration Rank Test (Trace and Maximum Eigenvalue)

Hypothesized Fisher Stat.* Fisher Stat.*
No. of CE(s) (from trace test) Prob. (from maxeigen test) Prob.

None 72.00 0.0000 65.75 0.0001
At most 1 27.83 0.4735 22.71 0.7477
At most 2 20.99 0.8256 17.79 0.9314
At most 3 32.79 0.2435 32.79 0.2435

8.5 Panel Cointegration

Analytical results from a dynamic optimisation model for a global economy show how exchange
rates are determined by relative prices of trading countries.
Prices depend on preferences on domestic and foreign goods, marginal productivities of capital

and labour as well as the relative rates of taxes and tariffs across two countries.
Dynamic model is solved for numerical simulation and scenario analyses. Long run relationship

obtained in the dynamic general equilibrium are tested by the GMM estimation of dynamic panel
model.
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The determinants of growth of per capita output and the exchange rates across eleven countries
representing the global economy in fact validate the conclusion of general equilibrium results.
Estimates support the standard neoclassical theory of economic growth and uncovered interest

parity theory of exchange rate though country specific factors, including preferences and technology,
can also have significant influence in estimation of each of these models.

• Panel Cointegration: Larsson Test:

Based their test on Johanhes’maxmimum likelihood procedure.

∆Yi,t = ΠiYi,t−1 +
n∑
k=1

Γk∆yi,t−k + ui,t

H0 : rank (Πi)− ri < r for all i from 1 to N.
HA : rank (Πi) = p for all i from 1 to N.
The standard rank test statistics is defined in terms of average of the trace statistic for each

cross section unit and mean and variance of trace statistics.

LR =

√
N (LRNT − E (Zk))√

var (Zt)
(1454)

• Panel Cointegration: PedroniTest

• Within group tests: Panel v statistic

T 2N3ZvNT =
T 2N

3
2

T∑
t=1

N∑
n=1

L−2
1,1

(
ê2
i,t

) (1455)

Panel ρ statistic

T
√
NZρNT =

T
√
N

(
T∑
t=1

N∑
n=1

L−2
1,1

(
ê2
i,t

)
∆ê2

i,t − λ̂i
)

T∑
t=1

N∑
n=1

L−2
1,1

(
ê2
i,t

) (1456)

Panel t statistic

ZtNT =

√√√√σ2
NT

T∑
t=1

N∑
n=1

L−2
1,1

(
ê2
i,t−1

)( T∑
t=1

N∑
n=1

L−2
1,1

(
ê2
i,t

)
∆ê2

i,t − λ̂i

)
(1457)

Panel t statistic (parametric)

ZtNT =

√√√√σ2
NT

T∑
t=1

N∑
n=1

L−2
1,1

(
ê2
i,t−1

)( T∑
t=1

N∑
n=1

L−2
1,1

(
ê2
i,t

)
∆ê2

i,t − λ̂i

)
(1458)

• Between group tests
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Group statistic

T
√
NZρNT =

T
√
N

T∑
t=1

(
ê2
i,t∆ê

2
i,t − λ̂i

)
T∑
t=1

N∑
n=1

(
ê2
i,t

) (1459)

Group t statistic

√
NZtNT−1 =

√
N

N∑
n=1

√√√√σ2
i

T∑
t=1

ê2
i,t

T∑
t=1

(
ê2
i,t∆ê

2
i,t − λ̂i

)
(1460)

Group t statistic (parametric)

√
NZtNT−1 =

√
N

N∑
n=1

√√√√σ2
i

T∑
t=1

ê2
t

T∑
t=1

(
ê2
i,t∆ê

2
i,t − λ̂i

)
(1461)

8.5.1 Panel Model for Limited Dependent Variables

Panel models of limited dependent variables
y∗i,t = αi + xi,tβ + ei,t ei,t ∼ IID

(
0, σ2

e

)
yi,t = 1 if y∗i,t > 0 where y∗i,tis a latent variable; yi,t = 0 otherwise.

logL (β, α1, ..., αN ) =
∑
i,t

yi,t logF
(
αi + x′i,tβ

)
+
∑
i,t

(1− yi,t)
(
1− logF

(
αi + x′i,tβ

))
(1462)

f (yi,t, ....., yi,T /xi,t, ....., xi,T , β)

=

∫ ∞
−∞

f (yi,t, ....., yi,T /xi,t, ....., xi,T , β) f (αi) dαi

=

∫ ∞
−∞

[
Π
i
f (yi,t/xi,t, β)

]
f (αi) dαi (1463)

Random Effect Tobit Model
y∗i,t = αi + xi,tβ + ei,t ei,t ∼ IID

(
0, σ2

e

)
yi,t = 1 if y∗i,t > 0 where y∗i,tis a latent variable; yi,t = 0 otherwise.

f (yi,t, ....., yi,T /xi,t, ....., xi,T , β)

=

∫ ∞
−∞

f (yi,t, ....., yi,T /xi,t, ....., xi,T , β) f (αi) dαi

=

∫ ∞
−∞

[
Π
i
f (yi,t/xi,t, β)

]
f (αi) dαi (1464)
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f (yi,t/xi,t, β) = Φ

(
x′i,tβ + αi√

1− σ2
u

)
if yi,t = 1 (1465)

.......... = (1− Φ)

(
x′i,tβ + αi√

1− σ2
u

)
if yi,t = 0 (1466)

Dynamic Tobit Panel Model

y∗i,t = αi + γyi,t−1 + x′i,tβ + ei,t (1467)

f (yi,t, ....., yi,T /xi,t, ....., xi,T , β)

=

∫ ∞
−∞

f (yi,t, ....., yi,T /xi,t, ....., xi,T , β) f (αi) dαi

=

∫ ∞
−∞

[
Π
i
f (yi,t/yi,t−1,xi,t, αi, β)

]
f (yi,t/xi,t, β) f (αi) dαi (1468)

f (yi,t/yi,t−1,xi,t, β) = Φ

(
x′i,tβ + γyi,t−1 + αi√

1− σ2
u

)
if yi,t = 1

.......... = (1− Φ)

(
x′i,tβ + +γyi,t−1 + αi√

1− σ2
u

)
(1469)

if yi,t = 0

8.5.2 Error Component Method

The error component method decomposes these errors into a common intercept and the random
part.
Thus the model will take the following form:

yi,t = α0,i + α1,ixi,t + ei,t (1470)

α0,i = α1 + µi (1471)

where i =1.., N. Each cross section unit (country) had its own intercept parameter in the pooled
dummy variable model.

α1 represents the population mean intercept and µi are independent of each error ei,t. It has a
constant mean and constant variance. E (µi) = 0; var (µi) = σ2

µ

yi,t = (α1 + µi) + α1,ixi,t + ei,t (1472)

= α1 + α1,ixi,t + (ei,t + µi) = α1 + α1,ixi,t + vi,t (1473)
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vi,t = ei,t + µi (1474)

8.5.3 Error Component Method

The error component include overall error and individual specific error , : common and individual
specific errors.
the compound error term has mean zero, E (vi,t) = 0;
its variance var (vi,t) = σ2

µ + σ2
e is homoskedastic

covar (vi,t, vi,s) = σ2
µ error from the same country in different periods are correlated

covar (vi,t, vj,s) = σ2
µ for i=j errors from different countries are always uncorrelated.

Like in the SURE method the generalised least square estimator, with transformed method
produces the most effi cient estimators or error component model.
The error component include overall error and individual specific error , : common and individual

specific errors.
the compound error term has mean zero, E (vi,t) = 0;
its variance var (vi,t) = σ2

µ + σ2
e is homoskedastic

covar (vi,t, vi,s) = σ2
µ error from the same country in different periods are correlated

covar (vi,t, vj,s) = σ2
µ for i = j errors from different countries are always uncorrelated.

Like in the SURE method the generalised least square estimator, with transformed method
produces the most effi cient estimators or error component model.
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8.6 Panel Data Method for Analysing Link Between Trade and Aid

Literature on aid and trade could be updated

• —Bandyopadhyay, S. and Vermann, E. (2012), Cali, M., Razzaque, M. and te Velde, D.W. (2011),

—Deardorff, A. and Stern, R. (2009), Gounder, R. (1995), Gounder, R. (1994), Helble, M., Mann,
C., Wilson, J. (2012) , Lundsgaarde, E., Breunig, C. and Prakash, A. (2010) , Morrissey, O.
(1993) , Nitsch, V. (2000) Stiglitz, J. and Charlton, A. (2013) Stiglitz, J. and Charlton, A.
(2006) , Vijil, M. and Wagner, D. (2012), Wagner, D. (2003)

• new literature

—Alain de Janvry and Elisabeth Sadoulet (1988), Georgios Karras (2004) , Tanweer Akram (2003)

—Nils B. Weidmann , Doreen Kuse & Kristian Skrede Gleditsch (2010), Chun-Chieh Wang (2011)
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—Matthias Busse, Ruth Hoekstra and Jens Königer (2012), Takumi Naito (2012), Vijil M and
Laurent Wagner (2012) Rifat Baris Tekin (2012) , Juhasz Silva and Douglas Nelson (2012), Jean-
Jacques Hallaert (2013) , Jan Pettersson and Lars Johansson (2013), Gamberoni and Richard
Newfarmer (2014) , Olivier Cadot, Ana Fernandes, Julien Gourdon, Aaditya Mattoo and Jaime
de Melo (2014), Mariana Vijil (2014)

Wagner equation

ln(Tdr) = β1 ln

(
YdYr
YW

)
+ β2 ln

(
Yd
Pd

)
+ β3 ln

(
Yr
Pr

)
+ β4 ln(Ddr)

+β5 ln(REMd) + β6 ln(REMr) + β7 ln(LANdr) + εdr

ln(Adr) = β1 ln (Yd) + β1 ln (Yr) + β3 ln(Ddr) + β4 ln

(
Yd
Pd

)
+β5 ln

(
Yr
Pr

)
+ β6 ln(LANdr) + β7 ln(MILSRdr) + C + εdr

ln(Tdr) = ln Γdr + β8 ln(max {1, Adr}) + β9 ln(NADdr) + εdr

REMr = 1∑
d

(
Yd
YW

)
Ddr


http://www.distancefromto.net/countries.php; http://www.cepii.fr/CEPII/en/bdd_modele/models.asp
Matthias Busse, Ruth Hoekstra and Jens Königer(2012) Kristian Skrede Gleditsch (2002) and

Mayer, T. and Zignago, S. (2006) the great circle distance between capital cities.
Trade Impacts of Aid for the UK: Do file and panel settings

• import excel "C:\AIEFS\tdata\Aidpanel_UK_2014.xlsx", sheet("Sheet1") firstrow

• xtset ID tt, yearly

• generate aidd1 = Aid+1

• xtreg exp YYUKYA ypuk dist Aid, re
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        Standard: _cons
        GMMtype: LD.exp
Instruments for level equation
        Standard: D.YYUKYA D.ypuk D.yp D.aidd1
        GMMtype: L(2/.).exp
Instruments for differenced equation
         errors are recommended.
Warning: gmm twostep standard errors are biased; robust standard

       _cons           0  (omitted)
       aidd1    1.985273   .0379436    52.32   0.000     1.910905    2.059642
        dist           0  (omitted)
          yp           0  (omitted)
        ypuk    3.689713   .0573206    64.37   0.000     3.577367     3.80206
      YYUKYA   1.79e06   1.00e08  178.52   0.000    1.81e06   1.77e06

         L1.    1.005088   .0002277  4413.13   0.000     1.004642    1.005535
         exp

         exp       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

Twostep results
                                             Prob > chi2           = 0.0000
Number of instruments =    70               Wald chi2(3)          =  6.55e+08

                                                               max =        11
                                                               avg =  9.818182
                                             Obs per group:    min =         2
Time variable: tt
Group variable: ID                           Number of groups      =        22
System dynamic paneldata estimation         Number of obs         =       216

note: dist dropped from div() because of collinearity
. xtdpdsys exp YYUKYA ypuk yp dist aidd1, lags(1) twostep artests(2)

• xtreg exp YYUKYA ypuk dist Aid, fe

• xtdpdsys exp YYUKYA ypuk yp dist aidd1, lags(1) twostep artests(2)

• xtreg lexp lyyuka lyp lypuk ldist laidd1, re

• xtreg lexp lyyuka lyp lypuk ldist laidd1, fe

• xtabond lexp lyyuka lyp lypuk ldist laidd1, lags(1) twostep artests(2)

• Data sources: exp YYUKYA ypuk yp WBDI; distance from the Google map and Kristian
Skrede Gleditsch (2002); AID from OECD.

Trade Impacts of Aid for the UK: Random effect Panel Estimation
Trade Impacts of Aid for the UK: Fixed effect Panel Estimation
Trade Impacts of Aid for the UK: Dynamic Panel Model Two Stage Estimation

8.6.1 Estimations in log forms for elasticities

Trade Elasticity Impacts of Aid for the UK: Random effect Panel Estimation
Trade Elasticity Impacts of Aid for the UK: Fixed effect Panel Estimation
Hausemann test supports random effect model
Trade Elasticity Impacts of Aid for the UK: Dynamic Panel Model Two Stage Estimation
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9 L8: Duration Analysis

Many economic events such as unemployment or working life or price rises. Durnations models
have been applied to analyse such events by Lancaster (1979), Elbers and Ridder (1982), Heckman
and Singer (1984), Kennan (1985), Struthers and Kalbfleisch (1986), Keifer (1988), Greene (1998),
Güell and Hu (2006) Dixon and Le Bihan (2012), Chen, Diebold and Schorfheide (2013) and many
others.
Evolution of the literature in duration analysis:

• Cox (1972), Lancaster (1979), Elbers and Ridder (1982), Orme (1989), Nickell (1979), Keifer
and Neumann (1981), Kennan (1985), Staigler, Stock (1997)

• Lancaster (1990),Hey and Orme (1994) Greene (1998), Lancaster and Chesher (1983), Dobson
and Goddard (2010)
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• Chesher (1984), Greene (1998), Imbens and Lancaster (1994), Lancaster (1990), Struthers
and Kalbfleisch (1986)

• Fasiani (1934), Lockwood (1991), Blanchard and Diamond (1994), McCall (1994), Zhang,
Russell, Tsay (2001) Lalive, Van Ours and Zweimuller (2006), Dixon and Le Bihan (2012),
Chen, Diebold and Schorfheide(2013), Hausman and Woutersen (2014)

• Grammig and Maurer (2000), Bover, Arellano and Bentolila (2002), Feng , Jiang, and Song
(2004) Albrecht and Vroman (2005),Lalive, Van Ours and Zweimüller (2008), Brinch (2011),
Candelon, Colletaz, Hurlin, and Tokpavi (2011) Christensen and Rudebusch (2012), Brinch
(2011)

What is Duration Analysis?

• There are several economic questions in which the investigator is interested to know how long
certain thing will last given that it has survived/existed for so long time.

• Duration of these events is a random variable that depends on chances and duration analysis
aims to analyse what factors determine the length of duration of occurrence for period up to
T period (t 6 T ) or survival after period T (t > T )or what is probability of transition or the
hazard rate between T and T + ∆ period.

• Modelling duration has been used to determine the duration or probability of termination
strikes, unemployment, marriage, disaster spells, heart attacks or many other ill-spells, likeli-
hood of bankruptcy of a firm, technological breakthrough, probability of maintaining cham-
pionship titles in sports).

• Main questions of these is to study if the event existed so far how long will it last or what is
the rate of survival next period? For instance manager of a company would be interested to
know how long will a certain machine last given that it has been running so far?

• A life insurance company would be interested in probability of death of an individual with
certain medical record or physical characteristic in the next T +∆ years given that the person
has survived up to T years. A union leader or the management negotiator will be interested
about the probability of withdrawal of a strike given that the strike has continued up to T
periods.

Example of Duration Analysis

• Main questions of these is to study if the event existed so far how long will it last or what is
the rate of survival next period?

• For instance manager of a company would be interested to know how long will a certain
machine last given that it has been running so far?

• A life insurance company would be interested in probability of death of an individual with
certain medical record or physical characteristic in the next T +∆ years given that the person
has survived up to T years.

• A union leader or the management negotiator will be interested about the probability of
withdrawal of a strike given that the strike has continued up to T periods.
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Duration Density The starting point of duration analysis is cumulative density function for
duration which gives the distribution of duration variable starting from an initial state 0 up to
period t as following:

Pr (t 6 T ) = F (t) =

∫ t

0

f (t) ∂t (1475)

More interesting is the survival rate which is

S (t) = 1− F (t) = Pr (t > T ) (1476)

Probability of transition from one state to another (from unemployment of to employment, life
to death, working condition to break down) is given by a hazard rate or probability of termination
Hazard Rate
Hazard rate

λ (t) = lim
∆−→0

F (t+ ∆)− F (t)

∆S (t)
=
f (t)

s (t)
(1477)

f (t) = s (t) .λ (t) (1478)

Hazard function is linked to the survival function as

λ (t) =
∂ log [1− F (t)]

∂t
=
−F (t)

1− F (t)
=
f (t)

s (t)
(1479)

It is possible to derive the duration function by integrating the survival function

Duration and Survival Fuctions It is possible to derive the duration function by integrating
the survival function∫ t

0

f (t) ∂t = −∂ log [1− F (s)] + log [1− F (0)] = − log [1− F (s)] (1480)

F (s) = 1− exp

(∫ t

0

λ (t) ∂t

)
(1481)

Therefore modelling hazard function is the main element in duration models.

λ (t, xi) = λ0 (t) exp
(
x
′

i, β
)

(1482)

Main Points in Duration Analysis

• Important element is this is modelling the duration dependence, that give the likelihood of
how much hazard rate depends on the duration variable.

• There is positive duration dependence if the longer the time spent in a given state, the higher
the probability of leaving it soon.

• For instance, longer a light bulb works the higher the probability that it fails next period.
Negative duration dependence implies longer the time spent in a given state, the lower the
probability of leaving it soon.
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• For instance, the longer the job search lasts, the less chance an unemployed person has finding
a job.

• Absence of duration dependence is observed if the duration does not impact on the hazard
rate, but this case is less appealing than the positive or negative duration dependence.

• Duration dependence λ(t)
∂t > 0 indicates positive duration dependence and λ(t)

∂t < 0 indicates

negative duration dependence. Whereas λ(t)
∂t = 0 indicates no duration dependence.

• There are a number of ways of modelling the hazard functions;

1. exponential

2. Weibull

3. gamma

4. log-normal and logistic hazard

5. GAMMA

models are more popular in the literature (See Wooldridge (2002: chapter 20); Green (2008),
Chap 25).

9.0.2 Exponential hazard model

Here T has exponential distribution. 1 − F (t) = 1 − exp (−λ.t). This distribution does not have
memory λ (t) = λ, the hazard rate does not depend on duration, it is constant λ (t) = λ.

f (t) = λ exp (−λ.t) for (t > 0)

λ (t) =
∂ log [1− F (t)]

∂t
=
−∂ logS (t)

∂t
(1483)
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lnS (t) = k − λ (t) = k − λ.t (1484)

S (t) = K exp (−λt) (1485)

Estimation of λ is simple; expected duration E (t) = 1
λ is and the maximum likelihood estimation

of λ is . 1
t

Integrated hazard function is written as Λ (t) =
∫ t

0
λ (t) ∂t or S (t) = exp (−Λ (t)) or Λ (t) =

− lnS (t)

Exponential hazard: an example
Cummulative density function (CDF) duration:

F (t) = 1− e−λt (1486)

Duration density:
f(t) = F ′(t) = λe−λt (1487)

Survival function

S (t) = 1− F (t) = 1−
(
1− e−λt

)
= e−λt (1488)

Hazard function:

λ(t) =
f(t)

S(t)
=
λe−λt

e−λt
= λ (1489)

Thus the hazard rate λ is a constant in the exponential hazard model.
See examples in STATA and NLOGIT/LIMDEP: Spell, duration, aps, BHPS, recid_jw.
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9.0.3 Weibull Hazard Model

• The CDF of T is given by F (t) = 1−exp (−λ.tα)where λ and α are nonnegative parameters;
and the density is given by

f (t) = αλtα−1 exp (−λ.tα) (1490)

• and the hazard function is .λ (t) = f(t)
s(t) = αλtα−1 exp(−λ.tα)

exp(−λ.tα) = αλtα−1

• When α = 1, the Weibull distribution reduces to the exponential distribution with λ (t) = λ; if
α > 1, the hazard is monotonically increasing, λ (t) = αλtα−1 , which shows positive duration
dependence. If α < 1, the hazard , is continuously decreasing.λ (t) = αλtα−1

• Thus the Weibull distribution is better to capture the duration variable and transition between
states if the hazard is monotonically increasing or decreasing.

9.0.4 Log Normal

• Log normal distributions of durations give non-monotonic hazard functions; first the hazard
rate increases with duration and then decreases.

• This type of analysis is good in modelling bankruptcy rates. When follows a normal distri-
bution with mean m and variance it follows the normal distribution; its density is given by
following function

f (t) =
1

σ.t
φ

(
log T −m

σ

)
(1491)

and the survivor function is S (t) = 1 − Φ
(

log T−m
σ

)
with Φ denoting the CDF of a standard

normal. The hazard function using
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λ (t) = f(t)
s(t)

λ (t) =
f (t)

s (t)
=

1

T

1
σφ
(

log T−m
σ

)
1− Φ

(
log T−m

σ

) (1492)

9.0.5 Log logistic Hazard Model

Log logistic hazard function is

F (t) = 1− 1

(1 + γtα)
; S (t) =

1

(1 + γtα)

λ (t) =
f (t)

s (t)
=

αγtα−1

(1 + λtα)
2 ÷

1

(1 + γtα)
× =

γαtα−1

1 + γtα
(1493)

where the α and γ are positive parameters.∫ ∞
0

λ (st) ∂s =

∫ ∞
0

γαtα−1

1 + γtα
∂s = log (1 + γtα) = −

[
log (1 + γtα)

−1
]

(1494)

Using F (s) = 1− exp
(∫ t

0
λ (t) ∂t

)
condition derived above

F (t) = 1− 1

(1 + γtα)
= 1− (1 + γtα)

−1
for t > T (1495)

Differentiating with respect to t gives:

f (t) = αγtα−1 (1 + λtα)
−2 ; S (t) =

1

(1 + γtα)
(1496)
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GAMMA Hazard Model and Summary

f (t) =

[
avtv−1 exp (−at)

]
Γ (v)

where Γ (v) =

∫ ∞
0

exp (−t) tv−1∂s (1497)

Summary of popular distributions for duration model
Exponential functions for survival.
S (t) = exp (−Λ (t)) λ (t) = λ F (t) = 1− exp (−λ.t) f (t) = λ exp (−λ.t)
Logistic

S (t) = 1−Φ
(

log T−m
σ

)
λ (t) = 1

T

1
σφ( log T−m

σ )
1−Φ( log T−m

σ )
F (t) = 1−(1 + αtα)

−1
f (t) = αγtα−1 (1 + λtα)

−2

Weibull
;S (t) = exp (−λ.tα); ; λ (t) = αλtα−1 F (t) = 1− exp (−λ.tα) f (t) = αλtα−1 exp (−λ.tα)

9.1 Estimation of Hazard Models

Log linear models: Parameters of above models θ = (λ, γ) can be estimated using the maximum
likelihood function for uncensored and censored observations.

lnL =
∑

ln f (t/θ) +
∑

ln s (t/θ) (1498)

It is easily estimated by BHHH (Berdt-Hall-Hall-Hauseman (1974) estimator (See Greene (938-
951)).

lnL =
∑

lnλ (t/θ) +
∑

ln s (t/θ) (1499)

Proportional hazard models,

λ (t) = e−β(t,θ)λ0 (ti) (1500)

where the λ (t) is proportional to the baseline hazard function λ0 (ti).
Empirical implementation (Greene (2000); Chapter 20; Using Limdep)

9.1.1 Estimation of Duration in STATA

See the log file hazard and hazard1 from the Annual Population Survey
*apsp_jul07jun08_rw09_260310.dta
use "Z:\Econometrics\programs\STATA\apsp_jul07jun08_rw09_260310.dta", clear
stset durun
streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl

gross99 grsexp, dist(weibull)
streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl

gross99 grsexp, dist(exponential)
streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl

gross99 grsexp, dist(gompertz)
streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl

gross99 grsexp, dist(lognormal)
streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl

gross99 grsexp, dist(loglogistic)
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streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl
gross99 grsexp, dist(weibull)
failure _d: 1 (meaning all fail)
analysis time _t: durun
streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl

gross99
> grsexp, dist(exponential)
streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl

gross99
> grsexp, dist(gompertz)
streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl

gross99
> grsexp, dist(lognormal)

Estimation of Duration in STATA

– – – – – – – – – – – – – – – – – – – – – – – – – –
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
– – – – -+– – – – – – – – – – – – – – – – – – – – – -
tpben31 | .9708788 .0020447 -14.03 0.000 .9668796 .9748946
tpben32 | .9733548 .0020842 -12.61 0.000 .9692784 .9774483
tpben33 | 1.004645 .0029922 1.56 0.120 .9987971 1.010527
tpben34 | .9886277 .0086266 -1.31 0.190 .9718636 1.005681
tpben35 | .9717948 .0358969 -0.77 0.439 .9039247 1.044761
tpben36 | (omitted)
self1 | 1.020205 .0044089 4.63 0.000 1.0116 1.028883
self2 | .9845701 .0131169 -1.17 0.243 .9591941 1.010617
self3 | .9888829 .0183726 -0.60 0.547 .9535209 1.025556
self4 | 1.028848 .0244766 1.20 0.232 .9819762 1.077957
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sex | 1.531057 .0346324 18.83 0.000 1.464662 1.600462
ethas | .9877391 .0038554 -3.16 0.002 .9802115 .9953245
ethbl | .9862598 .0051397 -2.65 0.008 .9762374 .9963851
gross99 | (omitted)
grsexp | (omitted)
– – – – -+– – – – – – – – – – – – – – – – – – – – – -
/ln_p | .474606 .0080713 58.80 0.000 .4587865 .4904255
– – – – -+– – – – – – – – – – – – – – – – – – – – – -
p | 1.607381 .0129737 1.582153 1.633011
1/p | .6221301 .0050214 .6123658 .6320502
NLogit (LIMDEP) Commands: NLOGIOT by William Green is special software for Cross

Section and Duration Analysis
/*=================================================================
Example 20.17. Log-Linear Survival Models for Strike Duration
*/=================================================================
Read ; Nobs = 62 ; Nvar = 2 ; Names = T,Prod $
T Prod
7 0.01138
14 0.01138
52 0.01138
37 0.02299

? Four survival models for duration
?
Create ; logT = Log(T) $
Surv; Lhs=logT ; Rhs = One ; Model=Exponential ; Plot$
Surv; Lhs=logT ; Rhs = One ; Model=Weibull ; Plot$
Surv; Lhs=logT ; Rhs = One ; Model=Logistic ; Plot$
Surv; Lhs=logT ; Rhs = One ; Model=Normal ; Plot $
Original Research Article
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9.1.2 Tutorial 5: Duration Analysis

Q1. Derive duration density, hazard rate, survival function and duration dependence for the fol-
lowing duration or hazard functions and explain the general procedure for estimation of model
parameters.

a. Exponential distribution. [F (t) = 1− exp (−λ.t)] .

b. Weibull
[
f (t) = αλtα−1 exp (−λ.tα)

]
.

c. Log normal distribution
[
f (t) = 1

σ.tφ
(

log T−m
σ

)]
.

d. Log logistic
[
f (t) = αγtα−1 (1 + γtα)

−2
]
.

e. Gamma distribution
[
f (t) =

[avtv−1 exp(−at)]
Γ(v) where Γ (v) =

∫∞
0

exp (−t) tv−1∂s.

]

10 L9: Bayesian Analysis

True parameters of a model are unknown both in the classical and Bayesian models but there is one
major difference. True parameters have a given density function in the classical models but such
density keeps changing when new information arrives in the Bayesian model. Due to parameter
uncertainty the Bayesian model is becoming increasingly popular in recent years. Bayesian meth-
ods were developed in Lancaster(1979), Lancaster and Chesher (1983), Imbens and Lancaster
(1994), Bauwens, Lubrano and Richard (1999), Koop (2003), Anscombe (1961),Pratt (1965), Doan,
Litterman and Sims (1984), Berger (1990), Chib (1993), Rust (1996) Phillips and Ploberger (1996)
Bauwens, Lubrano and Richard (1999) Judge,Griffi ths, Hill, Lutkepohl and Lee (1990) Geweke and
Keane (2000), Chib, Nardarib and Shephard (2002), Heckelei and Mittelhammer (2003) Canova
and Ciccarelli (2004),George, Sun and Ni (2008), Levine, Pearlman, Perendia and Yang (2012).
Thusd the literature in Bayesian Econometrics:

• Bayes (1763), Lancaster(1979), Lancaster and Chesher (1983), Imbens and Lancaster (1994),
Bauwens, Lubrano and Richard (1999), Koop (2003), Pratt (1965), Doan, Litterman and
Sims (1984), Berger (1990), Chib (1993), Rust (1996) Phillips and Ploberger (1996) Bauwens,
Lubrano and Richard (1999) Judge,Griffi ths, Hill, Lutkepohl and Lee (1990) Geweke and
Keane (2000), Chib, Nardarib and Shephard (2002), Heckelei and Mittelhammer (2003)
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• Anscombe (1961), Chamberlain (2000), Chib (1993), Chib and Greenberg (1994)

• Chib, Nardarib and Shephardc (2002), Lancaster (2004), Chib , Greenberg, Winkelmann
(1998)

• Geweke and Keane (2000) Harrison and Stevens (1976), Heckman and Macurdy (1980)

• Kleibergen and Zivot (2003) Koop and Van Dijk (2000) Lancaster (1997)

• Rossi and Allenby (2003) Schotman and van Dijk (1991), Sims and Uhlig (1991),

• Zellner (1985), Koop (1992), Phillips and Ploberger (1996), Pesaran and Smith (1996), Sims
and Zha (1998), Rust (1996), Litterman (1986) Heckelei and Mittelhammer (2003), Canova
and Ciccarelli (2004)

• Levine, Pearlman, Perendia and Yang (2012)

• Chetty and Sankar (1969), Geweke(1996), Geweke (2001), Li , Zeng and Yu (2014), Conley,
Hansen, McCulloch and Rossi (2008), Musalem, Bradlow and Raju (2009), Bańbura, Gian-
none and Reichlin (2010) , Carriero, Kapetanios and Marcellino (2011), Norets and Tang
(2013), Sala (2014)

Bayesian analysis is parallel to the classical analysis as models with single or multiple equations,
simultaneous equations, VAR, Panel or time varying parameters each could be estimated in a
Bayesian way.

• Bayesian econometrics is an approach to estimate parameters and models involved in economic
analysis which is different from the classical approach.

• Classical econometric methods assume that there is true parameter underlying the data gen-
erating process such as θ and its true value is unknown. The objective of sample statistics θ̂
is to represent this unknown parameter as best as possible.

• The estimated parameter θ̂ is a random variable and has its own distribution where as the
true parameter θ is a fixed number but unknown.

• The estimator should be unbiased,
[
E
(
θ̂
)
− θ
]

= 0, and the effi ciency of an estimator is

judged by the minimum square error
[
E
(
θ̂
)
− θ
] [
E
(
θ̂
)
− θ
]′
and the data generating process

is given by

f (y; θ) = Π
1√

2πσ2
exp

[
− (y − µ)

2

2σ2

]
(1501)

Classical Econometrics
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10.1 What is Bayesian Analysis?

• Analysis in classical econometrics is based on an assumption that true population parame-
ters are constant but sample estimates of those parameters are random variables distributed
normally around those population parameters.

• Bayesian regard true parameter to be a random variable, prior are updated freqeuntly upon
arrival of new data.

In Bayesian analysis the value of true parameter θ unknown like in the classical approach but
it is not fixed.
Instead θ has a probability distribution and it is updated continuously based on sample infor-

mation —priors.
The prior density is given by f (θ) and this may represent all available information up to that

point.

f (θ1) =

∫ ∞
−∞

f (θ) dθ2dθ3...dθn (1502)

The sample density of variable y is treated as conditional on the random variable θ given by
f (y/θ).
The joint density of y and θ is result of the product of prior density and the sample likelihood

function.

Components of the Bayesian Model A Bayesian econometric model

f (θ/y) =
f (y/θ) f (θ)

f (y)
(1503)

has two components;
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f (y/θ) is called the likelihood function, it describes what you see for every particular values of
parameter set θ ∈ Θ as the in the consumption function with mean and variance θ1 = (10, 0.9)
The second component f (θ) is the distribution over the parameter space Θ; prior distribution

denoting the beliefs about particular parameter values θ ∈ Θ.
Parameter θ ∈ Θ is unknown both before and after the data has been observed but data are

unknown before the information has been gathered but known afterwards.
f (θ/y) is the posterior formed after taking account of prior and data.

Bayesian algorithm (Lancaster (2004))

1. Formulate an economic model with conditional probability distribution over parameter space
θ ∈ Θ ; such as f (θ/y) = f(y/θ)f(θ)

f(y)

2. Organise beliefs about θ into a prior probability distribution over Θ.

3. Collect data and insert into the model as given in step 1.

4. Criticise the model.

10.2 Bayesian Rule

Let p(A,B) be the joint probability of occuring events A and B together, p (B) be the marginal
probability of B without any respect to occurence of A then the probability of A conditional on the
occurance of B is

p (A|B) =
p(A,B)

p (B)
(1504)

Similarly the probability of B conditional on the occurance of A is
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p (B|A) =
p(A,B)

p (A)
(1505)

Substituting the value of p(A,B) from 1 the probability of B conditional on the occurance of A
is

p (B|A) =
p (A|B) p (B)

p (A)
(1506)

Bayesian econometrics is application of Bayesian Rule repeatedly for estimation on unknown
parameters.
For data y and parameter θ then by replacing A by y and B by θ

p (θ|y) =
p (y|θ) p (θ)

p (y)
(1507)

Since p (y) does not involve θ it can be ignored and this function written as

p (θ|y) ∝ p (y|θ) p (θ) (1508)

where p (θ|y) is the posterior density, p (y|θ) is the likelihood function and p (θ) is the prior
density. Posterior thus is proportional to likelihood times prior. Posterior combines both data and
non-data information.

10.3 Bayesian Likelihood

Consider a likelihood function in the classical analysis

L(β, σ2) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N∑
i

(Y − βX)
2

]
(1509)

L(β, σ2) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N∑
i

(
Y − β̂X − βX + β̂X

)2
]

(1510)

L(β, σ2) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N∑
i

(
Y − β̂X − βX + β̂X

)2
]

(1511)

L(β, σ2) =
1

(2πσ2)
N
2

exp− 1

2σ2

[
N∑
i

(Y − β̂X)2 −
(
β − β̂

)2 N∑
i

X2
i

]
(1512)

∑
(Y−β̂X)2

N−1 = s2 with v = N − 1

N∑
i

(Y − βX)
2

= vs2 +
(
β − β̂

)2 N∑
i

X2
i (1513)
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L(β, σ2) =
1

(2π)
N
2


1√
σ2

exp

−
1

2

(
β − β̂

)2

σ2

(
N∑
i

X2
i

)−1


1(√
σ2
)v exp

[
− vs

2

2σ2

]


(1514)

Priors and Posteriors

L(β, σ2) ∝ 1√
σ2

exp

−
1

2

(
β − β̂

)2

σ2

(
N∑
i

X2
i

)−1

 (1515)

Prior hyperparameters (prior elicitation)

β ∼ N
(
β, σ2V

)
(1516)

Posterior

p (β|y) ∝ p (y|β) p (β) (1517)

Priors and Posteriors

p (β|y) ∝ p (y|β) p (β)∝


1√
σ2

exp

−
1

2

(
β − β̂

)2

σ2

(
N∑
i

X2
i

)−1


1√
σ2V

exp

[
−1

2

(
β − β

)2√
σ2V

]
(1518)

∝ 1√
σ2

exp

−
1

2

(
β − β̂

)2

σ2

(
N∑
i

X2
i

)−1 −
1

2

(
β − β

)2√
σ2V

 (1519)

∝ exp

[
−1

2

(
β − β

)2
σ2V

]
(1520)
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Bayesian posterior

V =
1

V −1 +

N∑
i

X2
i

(1521)

β = V

(
V −1 + β

N∑
i

X2
i

)
(1522)

Bayesian posterior

β/y ∼ N
(
β, σ2V

)
(1523)

This has obvious parallel to the classical regression estimate. Extreme bound analysis, non-
informative priors, relatively non-informative priors are other concepts that deserve some attention.

10.4 Bayesian Regression: Vague Prior

Y = Xβ + ε (1524)

Vague prior

p (β, τ) ∝ 1

τ
; −∞ < β <∞; τ > 0 (1525)

Posterior implied by the vague prior

p (β, τ/y,X) ∝ τ
n

2−1 exp
{(
−τ

2

)
(Y −Xβ)

′
(Y −Xβ)

}
(1526)

joint posterior can be written as

p (β, τ/y,X) ∝ τ
n

2−1 exp
{(
−τ

2

)
(β − b)X ′X (β − b)

}
× exp

{
−τ

2
e′e
}

(1527)

Here b = (X ′X)
−1
X ′Y is the least square estimate and e = Y − bX the least square residual.

τ is precision parameter
Bayesian Regression: Marginal densities
marginal density of τ

p (τ/y,X) ∝ τ
n

2−1 exp

{
−τvs

2

2

}
; s2 =

(Y − bX)
′
(Y − bX)

N −K =
e′e

v
(1528)

marginal density of β in the linear model with vague prior

p (β/y,X) ∝
[{

(β − b)′X ′X (β − b)
}

+ vs2
] v+k

2 (1529)

∝
[
1 +

(β − b)′X ′X (β − b)
vs2

] v+k
2

(1530)

284



β ∼ t
(
b, s2 (X ′X)

−1
, v
)

; s2 =
(Y − bX)

′
(Y − bX)

N −K =
e′e

N −K (1531)

βj ∼ t
(
bj , s

2 (X ′X)
−1
i,j , v

)
; tv =

(
βj − bj

)
sdj

; sdj = s
√

(X ′X)
−1
i,j (1532)

Bayesian Regression: Posterior moments of errors
Posterior elements of ε
Prior mean of ε is zero, posterior mean is e - the least square residual, posterior covariance

matrix is s2X (X ′X)
−1
X ′

E (ε/y,X) = E (Y −Xβ/y,X) = y −XE (β/y,X) = y −Xb = e (1533)

V (ε/y,X) = V (Y −Xβ/y,X) = y −XV (β/y,X) = s2X (X ′X)
−1
X ′ (1534)

10.4.1 Bayesian Regression: An Example

A joint posterior distribution could be approximated by the multivariate normal distribution with
mean equal to ML estimate and precision eqaul to the negative hessain matrix at that estimate θ

∼ N
(
θ̂,−H

(
θ̂
))

log l (β, τ) =
1

2
[n log τ − τ (β − b)X ′X (β − b)− τe′e] (1535)

Here b = (X ′X)
−1
X ′Y is the least seuare estimate and e = Y − bX the least square residual.

τ is precision parameter
First order conditions for maximising the log-likelihood

∂ log l (β, τ)

∂β
= −τ (β − b)X ′X = 0 =⇒ β = b (1536)

∂ log l (β, τ)

∂τ
=

n

2τ
− 1

2

{
(β − b)′X ′X (β − b) + e′e

}
= 0 =⇒ τ =

n

e′e
(1537)

Bayesian Regression: Infomation Matrix (Hessian)
Taking the second difference

∂2 log l (β, τ)

∂2β
= −τX ′X;

∂2 log l (β, τ)

∂β∂τ
= − (β − b)X ′X (1538)

∂2 log l (β, τ)

∂2τ
= − n

2τ2
;

∂2 log l (β, τ)

∂τ∂β
= − (β − b)′X ′X (1539)

−H
(
θ̂
)

=

[
τX ′X (β − b)X ′X

(β − b)′X ′X − n
2τ2

]
(1540)

Evaluated at the solution of the first order conditions
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−H
(
θ̂
)

=

[
τX ′X 0

0 − n
2τ2

]
(1541)

Bayesian Regression: Distribution of Posterior[
β
τ

]
∼ N

([
b
n
e′e

]
,

[
n
e′eX

′X 0

0
(e′e)

2

2n

])
(1542)

Here β and τ are approximately normally distributed with mean equal to the least square
estimate b and the reciproval of the residual mean square. These parameters are independent and
the precision depends only on n, X ′X and sum square of errors (e′e)

In large samples situations frequentist least square estimates and their standard deviations will
be same as the Bayesian posterior means and standard deviations.
Bayesian approach can be applied to ARCH, GARCH, AR, MA or ARMA, Panel Data, VAR,

Simultaneous equation model, cross section, count and duration models; unit root and cointegration
and other time series models.
Next step is to check the posterior against beliefs or priors based on economic theory.

10.4.2 Bayesian Regression: Model Choice

Model choice based on Bayes’factor

B12 =
p (y/1)

p (y/2)
(1543)

BIC =

 l
(
θ̂1; y

)
l
(
θ̂2; y

)
n

k2−k1
2 =

(
e′2e2

e′1e1

)n
2

n
k2−k1

2 =

(
1−R2

2

1−R2
1

)n
2

n
k2−k1

2 (1544)

If two models give the idential residual square (e′2e2) and if the model 2 has more parameters
(k2 > k1) then choose the first model on the parsimonous ground
If two models have the same number of parameters then choose the model with small residual

sum square.

Bayesian VAR: Theil’s Mixed Estimation Method for Bayesian VAR Data generating
process

Yj
T×1

= Xj
T×K

βj
K×1

+ uj
T×1

where uj ~ N
(
0, σ2

i,jIT
)

(1545)

Prior distributions are

rj
T×1

= Rj
T×K

βj
K×1

+ vj
T×1

(1546)

Mixed estimator is obtained by combining above two[
Yj
rj

]
=

[
Xj

Rj

] [
βj
]

+

[
uj
vj

]
(1547)

Bayesian VAR: Theil’s Mixed Estimation Method for Bayesian VAR
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E

[(
uj vj

) uj
vj

]
=

(
σ2
i,jIT 0
0 IT

)
(1548)

Point estimation.

βj =

[(
Xj Rj

)( σ2
i,jIT 0
0 IT

)−1(
Xj

Rj

)]−1 [(
Xj Rj

)( σ2
i,jIT 0
0 IT

)−1(
Yj
rj

)]

10.4.3 Bayesian Panel Data Model

Bayesian panel equations look very similar to those in frequentist panel model

yi,t = xi,tβ + αi + ei,t (1549)

with priors ei,t/xi,t, β, αi, τ ∼ N (0, τ)
Panel models allow to isolate individual specific effects αi from other errors ei,t. Here ei,t are

independently distributed with mean zero and precision τ . In matrix notation

yi
NT×1

= xi
NT×(N+K)

β
(N+K)×1

+ αijT + ei
NT×1

where ei,j ∼ N
(
0, σ2

i,jIT
)

(1550)

y =


y1

y2

.

.
yN

 =


x1 jT . . 0 0
x2 0 jT . 0 0
. . 0 jT 0 0
. . . . jT 0
xN 0 . . 0 jT


β
α1

α2

.
αN

+


e1

e2

.

.
eN

 (1551)

Y =

[(
X R

)( β
α

)]
+ e for R = [IN ⊗ jT ] (1552)

Y = zδ + e ; e/z, δ ~ N (0, τINT ) (1553)

Marginal distribution of error vector is normal, homoscedastic and non-autocorrelated.

log l (β, α, τ ; y, Z) ∝ τ
NT
2 exp {−τ (δ − d)Z ′Z (δ − d) /2} × exp

{
−τ

2
e′e
}

(1554)

where d = (Z ′Z)
−1
Z ′Y is the least seuare estimate and e = Y − Zd

Univorm prior on δ = (β, α)

p (β, α, τ) ∝ p (δ, τ) ∝ 1

τ
; −∞ < β <∞; τ > 0 (1555)

{αi} is IID [
X ′X X ′R
R′X R′R

] [
b
a

]
=

[
X ′Y
R′Y

]
(1556)

R′R = TIN ; RR′ = [IN ⊗ JT ] ; JT = jT j
′
T is T × T matrix of ones.

Bayesian Panel Data Model

b = (X ′HX)
−1
X ′HY (1557)
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a = Y − bX (1558)

Matrix H of dimension NT ×NT is operator for agent specific means as:

HT = INT −
(

1

T

)
RR′ = INT −

(
1

T

)
([IN ⊗ JT ]) (1559)

H =


HT . . 0 0
0 HT . 0 0
. 0 . 0 0
. . . HT 0
0 . . 0 HT

 ;HT = IT −
(

1

T

)
JT ;HT y =


y1 − y
y2 − y
.
.

yN − y

 (1560)

Bayesian Panel Data Model: Differenced Data

HT = D′T (D′TDT )
−1
DT (1561)

DT y =


1 −1 . . 0 0
0 1 −1 . 0 0
. 0 . 0 0
. . . −1 0
0 . . 1 −1




yT
yT−1

.

.
y1

 =


yT − yT−1

yT−1−yT−2

.

.
y2 − y1

 (1562)

b =
(
X ′D′T (D′TDT )

−1
DTX

)−1

X ′D′T (D′TDT )
−1
DTY (1563)

Regression in first differences:

DT yi
NT×1

= DTxi
NT×(N+K)

β
(N+K)×1

+ αiDT jT + DT ei
NT×1

(1564)

Bayesian Regression: GAMMA Distribution Gamma family has kernel p (y) = yα−1e−βy

y > 0; α, β > 0

p (y) =
yα−1e−βy

Γ (α)β−α
; Γ (α) =

∫ ∞
0

xα−1e−xdx α > 0 (1565)

when α = 1 p (y) = βe−βy and when β = 1 then mean and variance equal 1

E (Y ) =
α

β
; V (Y ) =

α

β2 (1566)

One parameter subfamily of gamma distribution

p (y) =
y

v
2−1 e−

y
2

Γ
(
v
2

)
2
v
2

; y > 0; v > 0;α =
v

2
;β =

1

2
; v > 0 (1567)
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Bayesian Regression: BETA Distributions Beta distribution depends on two parameters

p (x/y, β) =
Γ (α+ β)

Γ (α) Γ (β)
xα−1 (1− x)

β−1
; α, β > 0; 0 ≤ x ≤ 1

Γ (α) = (α− 1)! Γ (1) = (1− 1)! = 0! = 1 (1568)∫ ∞
0

xα−1 (1− x)
β−1

dx =
Γ (α) Γ (β)

Γ (α+ β)
(1569)

The mean and variances of densities

E (X) =
α

α+ β
; V (Y ) =

αβ

(α+ β)
2

(α+ β + 1)
(1570)

Distribution symmetrical around X = 1
2 if α = β and uniform if α = β = 1.

Bayesian Regression: DIRICHIET Distribution Beta distribution depends on two parame-
ters

fp (p) =
Γ (α)

Γ (α0) Γ (α1) ...Γ (αL)
pα0−1

0 × ..× pαL−1
L ; α, β > 0; 0 ≤ x ≤ 1

{pi} ≥ 0;

L∑
i=1

pi = 1;′ {αi} ≥ 0;

L∑
i=1

αi = α; (1571)

The mean,variance and covariance of Dirichiet distribution

E (Pj) =
αj
α

; V (Pj) =
αj (α− αj)
α2 (α+ 1)

;C (PiPj) =
αiαj

α2 (α+ 1)
(1572)

Dirichet is natural conjugate prior family fo rmultinomial distribution of the form

yp (y/p) =
n!

y0!y1!.....yL!
py0

0 p
y1

1 × ..× p
yL
L (1573)
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10.4.4 Tutorial 6: Bayesian Modelling

Q1. Write short notes on any five of the following issues relating to the Bayesian modelling and
analysis.

a. Difference between classical and Bayesian assumptions on parameters and errors in a linear
regression.

b. Bayesian rule where p(A,B) denotes the joint probability of occurring events A and B to-
gether, p (B) is the marginal probability of B without any respect to occurrence of A. Similarly
p (A) is the marginal probability of A without any respect to occurrence of B.
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c. Bayesian prior and posterior density functions on unknown parameters β and τ for the like-
lihood function such as: log l (β, τ) = 1

2 [n log τ − τ (β − b)X ′X (β − b)− τe′e]

d. Estimates of the mean and variance of β and τ in the above Bayesian linear regression model.

e. Bayesian panel data model of the form yi,t = xi,tβ + αi + ei,t with priors ei,t/xi,t, β, αi, τ ∼
N (0, τ) .

f. Estimation procedure in a Bayesian VAR model of the form: Yj
T×1

= Xj
T×K

βj
K×1

+ uj
T×1

where

uj ∼ N
(
0, σ2

i,jIT
)
.

g. Specification and estimation procedure of the Bayesian stochastic volatility models (Bayesian
ARCH/GARCH).

h. MCMC algorithm. Koop’s MATLAB routines.

11 L10: Generalised Method of Moments (GMM)

Generalised Method of Moments (GMM) is the most general estimation technique to estimate the
unknown parameters in an econometric model. Originally developed by Hansen (1982), though
tts antecedents include methods of moments by Pearson (1893, 1894 and 1895) and instrumental
variables (Wright (1925), Sargan (1958). It has become very popular in recent years Tauchen
(1986) Newey (1988) Hamilton(1994)Andersen and Sorensen (1996), Hansen, Heaton and Yaron
(1996) Gallant and Tauchen (1996) Smith(1997), Arrelano-Bond (1991), Blundell-Bond (1998),
Andrews DWK (1999), Eviews (Chapter 20), STATA (pages 571-531), Stock -Wright-Yogo (2002),
Wiendmeijer (2000) Hall (2003) Newey and Smith (2004), Greene (2008), Tripathi (2011).
Literature on GMM

• Sargan(1958), Hansen (1982), Hansen and Singleton(1982), Tauchen (1986), Newey (1988),
Arellano and Bond (1991), Hansen and Scheinkman, (1995), Andersen and Sorensen (1996),
Hansen, Heaton and Yaron (1996), Gallant and Tauchen (1996), Smith (1997), Kitamura and
Phillips (1997), Kitamura and Stutzer(1997), Blundell and Bond (1998), Imbens, Spady and
Johnson (1998), Hall (2003), Newey and Smith (2004), Windmeijer (2005), Bera and Bilias
(2002), Wright (2003)

• Smith (1997), Smith and Ramalho (2013) , Smith (2011), Smith and Parente (2011), Richard
, Taylor and Castro (2009), Smith (2005), Smith and Guggenberger (2005), Smith and Newey,
(2004), Imbens (1997), Antoine and Renault (2009), Heckman and Todd (2009), Li and Muller
(2009), Beaulieu, Browning, Ejrnaes and Alvarez (2010), Bun and Windmeijer (2010), Wright
(2010), Gørgens and Würtz(2012), Creel and Kristensen (2012), Dufour and Khalaf (2013),
Doraszelski and Jaumandreu (2013), Leslie and Sorensen (2014)

• Quintos (1998), Koenker and Machado (1999), Ronchetti and Trojani (2001), Bera and Bilias
(2002), Gagliardini, Trojani and Urga (2005), Kleibergen (2007), Jondeau and Bihan (2008),
Tripathi (2011), Kuersteiner (2012).

• First introduced by Hansen (1982). Encompasses many estimators in econometrics.
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• Convenient method of estimating non-linear dynamic models withouth complete knowledge
of the probability distributions of the data.

• Applications in time series, cross section and panel data and wide range of fields in economics.

• Its antecedents include methods of moments by Pearson (1893, 1894 and 1895) and instru-
mental variables (Wright (1925), Sargan (1958).

• Consider a density of variable v with θ parameters as f(v, θ) where v is q × 1 vector and
θ p × 1 vector of parameters. Traditions econometrics is application for q = p case but the
GMM can apply even if q > p.

• In Qn (θ) = gn (θ)
′
Wngn (θ) for a given weight matrix Wn the GMM estimator is defined as

θn = arg minθ∈ΘQn (θ) where Θ denotes the parameter space.

Introduction

• Consider a problem of estimating population mean µ of variable yi on the basis of i =
1, 2, ....., N sample obsrvations. Its moment condition is expressed as

E {yi − µ} = 0 (1574)

Its sample equivalent form is

1

N

N∑
i=1

(yi − µ) = 0 (1575)

Therefore

µ̂ =
1

N

N∑
i=1

yi (1576)

• This is just the sample average estimated using the moment condition.

11.1 GMM for a Linear Regression

For a linear regression yi = x
′

iβ + εi with instrument zi the moment condition is expressed as

E {εizi} = E
{(
yi − x

′

iβ
)
zi

}
= 0 (1577)

Main problem of GMM estimation is to find an optimal weighting (covariance) matrix Wn

β̃ =
(
X
′
ZWnZ

′X
)−1

XZWnZ
′y (1578)

when εi is i.i.d. the optimal weight is

W opt =

[
E
{
ε2
i ziz

′

i

}−1
]

=

[
1

N

{
N∑
i=1

ε̂2
i ziz

′

i

}]−1

=

[
1

N

N∑
i=1

ziz
′

i

]−1

(1579)
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Covariance matrix

V =
(
DW optD′

)−1
=

∂E
{(
yi − x

′

iβ
)
zi

}
∂β

−1 [
1

N

N∑
i=1

ziz
′

i

]

∂E

{(
yi − x

′

iβ
)
zi

}
∂β


′
−1

(1580)

V
(
β̃
)

=
(
DW optD′

)−1
=

[
N∑
i=1

xiz
′

i

]−1 N∑
i=1

ε̂2
i ziz

′

i

[
N∑
i=1

xiz
′

i

]−1

(1581)

Orthogonality conditions

E {h (θ0, wt)}
r×1

= 0 (1582)

where wt are strictly stationary variables observed at date t and θ0 are true value of a×1 vector
of unknown parameters and h (.) is differentiable r-dimentional vector valued functions with r. > a.
GMM estimate θ0 is the value of θ that minimise

g (θ, Yt)
1×r

′
Ŝ−1
T
r×r

g (θ, Yt)
r×1

= 0 (1583)

g (θ, Yt)
1×r

=
1

T

T∑
t

h (θ, wt)
r×1

(1584)

Orthogonality conditions
where ST is the estimate of

S = lim
t−→∞

(
1

T

) T∑
t

∞∑
v=−∞

E [h (θ0, wt)] [h (θ0, wt−v)]
1×r

(1585)

GMM encompases many estimators including the OLS, MLE, instrumental variable, two stage
least square, non-linear simultaneous equation, dynamic rational expectation and non-staionary
data models.
Ruud (2000) and Hamilton (1994) have good chapters in GMM.
Orthogonality conditions: An Example
Consider a standard regression model Y = βX + e where X is K × 1 explanatory variables

E (Xtu) = 0 (1586)

E (Xt (Y −X ′β)) = 0 (1587)

This is equivalent to K orthogonality conditions of the GMM with wt = {Yt, Xt} and θ = β

h (θ0, wt) = Xt (Y −X ′β) (1588)

number of orthogonality conditions equal the number of parameters r = a = k.
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11.1.1 OLS is a special case of GMM

Thus the standard regression model is just a special case of GMM specification

0 = g (θ, Yt) =
1

T

T∑
t

(Xt (Yt −X ′tβ)) (1589)

Rearranging this

T∑
t

XtYt =

{
T∑
t

XtX
′
t

}
β̂T (1590)

β̂T =

{
T∑
t

XtX
′
t

}−1 T∑
t

XtYt (1591)

Hence the OLS is the special case of the GMM estimation.

11.1.2 MLE is a special case of GMM

Similarly the maximul likelihood function implies

L (θ) =

T∑
t

log f (Yt/Yt−1; θ) (1592)

First order conditions

T∑
t

∂ log f (Yt/Yt−1; θ)

∂θ
= 0 (1593)

0 =
1

T

T∑
t

h (θ, yt) (1594)

Thus the orthogonality condition to estimate θ are same in both GMM and MLE.
Instrumental Variable Estimation:An Example

y = Xβ0 + u (1595)

Qn (β) =
[
n−1u (β)

′
Z
]
Wn

[
n−1Z ′u (β)

]
(1596)

Qn (β) =
[
n−1 (y −Xβ)

′
Z
]
Wn

[
n−1Z ′ (y −Xβ)

]
(1597)

First order conditions for optimisation imply:

−2X
′
ZWnZ

′y + 2XZWnZ
′Xβ̃ = 0 (1598)

X
′
ZWnZ

′y = XZWnZ
′Xβ̃ (1599)
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β̃ = (Z ′X)
−1
Z ′y (1600)

Moment estimates

β̃ =
(
X
′
ZWnZ

′X
)−1

XZWnZ
′y (1601)

n
1
2 (β − β0) =

(
n−1X

′
ZWnn

−1Z ′X
)−1

n−1X
′
ZWnn

− 1
2Z ′u (1602)

11.2 Basics of GMM

population moments

E [f (xt, β0)] = 0 (1603)

Sample moments

gn (β) = n−1
n∑
t=1

f (xt, β0) (1604)

objective quadratic function

Qn (β) = gn (β)
′
Wngn (β) (1605)

first order conditions

Gn

(
β̃
)′
Wngn

(
β̃
)

= 0 (1606)

Gn [β]ij = ∂gni(β)
∂βj

and Wn is positive definite weigth matrix that converges to W.
Asymptotics

n−1
(
β̃ − β0

)
d−→ N (0, VG) (1607)

where VG =
[
G
′

0WG0

]−1

G
′

0WSwWG0

[
G
′

0WG0

]−1

and G0 = E
[
∂f(xt,β0)

∂β

]
= 0

11.2.1 GMM and Euler Equation Model:A CAPM Example

Hansen and Singleton (1982) example is widely cited in the GMM literature.
It is consumer optimisation problem stated as:

max E0

[ ∞∑
t=0

δtU (Ct)

]
(1608)

subject to

Ct + PtQt ≤ RtQt−1 +Wt (1609)

Lagrangian
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Lt = E0

[ ∞∑
t=0

δtU (Ct)

]
+

∞∑
t=0

λt [Ct + PtQt −RtQt−1 −Wt] (1610)

The first order condition for optimisation implies

PtU
′ (Ct) = βEt [Rt+1U

′ (Ct+1)] (1611)

Et

[
δ
Rt+1

Pt

U ′ (Ct+1)

U ′ (Ct)
− 1

]
= 0 (1612)

Specify the utility function as with γ < 1

U (Ct) =
Cγt
γ

(1613)

Et

[
δ
Rt+1

Pt

[
Ct+1

Ct

]α
− 1

]
= 0 (1614)

α = γ − 1
How to estimate α and δ in this model? Maximum likelihood is computationally burdensome

and generates biased results. In contrast, the GMM can be applied using the moment conditions
as:

E

[
δ
Rt+1

Pt

[
Ct+1

Ct

]α
− 1

]
= E

{
Et

[
δ
Rt+1

Pt

[
Ct+1

Ct

]α
− 1

]}
= 0 (1615)

With information set Ψ use instruments zt ∈ Ψ and yt+1 /∈ Ψ . With Et [yt+1] = 0

Et [yt+1zt] = {Et [yt+1]} zt = 0 (1616)

Et [ut+1 (α, δ) zt] = 0 (1617)

where ut+1 (α, δ) =
[
δRt+1

Pt

[
Ct+1

Ct

]α
− 1
]
and zt is r × 1 vector of instruments. Instruments zt

may include past values of variables such as Ct−i, Pt−i, Rt−i for i ≥ 0.
Notice that it is not necessary to explicitly specify the data generating process like in OLS or

LME here as ut+1 (α, δ) is just conditional expectation of data with conditional expectation zero.
GMM is computationally more convenient and avoids bias due to misspecification compared to

the MLE. (see Smith (1997) for effi ciency comparison between GMM and MLE).
Arrelano-Bond estimator
First consider a dynamic panel data model that takes the form:

yit = αi + ρyit−1 + xi,tβ + ui,t (1618)

difference of this equation is

∆yit = αi + ρ∆yit−1 + ∆xi,tβ + ∆ui,t (1619)
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More compactly write it as:

∆y = ∆Rπ + ∆u (1620)

with orthogonality condition

E (∆yit−1ui,t) = 0 (1621)

πGMM =
(
∆R′Z(Z ′ΩZ)−1)Z ′∆R

)−1
∆R′Z(Z ′ΩZ)−1)Z ′∆y (1622)

where Z is instrument for ∆R. Use yit−2 or the higher lags of yit as the instrument set.
Blundell and Bond (1998) derived conditions to use additional sets of moment conditions to

improve the small sample perfomance of Arrelano-Bond estimator

E (∆yit−1 (αi + ui,t)) = 0 (1623)

E
(
ZTsysPi

)
= 0 (1624)

ZTsys =


zit−1 0 0 0 0

0 ∆yi2 0 0 0
0 0 ∆yi3 0 0
0 0 0 . 0
0 0 0 0 .

 and Pi =


∆ui
ui,3
ui,4
ui,5
.


with these instruments they estimate the system GMM

πSysGMM =
(
∆R′Z(Z ′ΩZ)−1)Z ′∆R

)−1
∆R′Z(Z ′ΩZ)−1)Z ′∆y (1625)

GMM Estimation
In Eviews open macro08_uk.csv and WK1 file. Object/New object/equation/ specify depen-

dent, independent variables and instruments.

Dependent Variable: CONS_HH
Method: Generalized Method of Moments
Date: 05/10/10   Time: 20:54
Sample (adjusted): 1966Q1 2006Q1
Included observations: 161 after adjustments
Linear estimation with 2 weight updates
Estimation weighting matrix: HAC (Bartlett kernel, NeweyWest fixed

bandwidth = 5.0000)
Standard errors & covariance computed using estimation weighting matrix
Instrument specification: EXPORTS FINCONS TBILLS
Constant added to instrument list

Variable Coefficient Std. Error tStatistic Prob.

M4 0.023318 0.002617 8.909216 0.0000
GDP_MP 0.494808 0.044538 11.10982 0.0000

PUB_CONS 0.615099 0.427344 1.439352 0.1520

Rsquared 0.993050 Mean dependent var 93764.26
Adjusted Rsquared 0.992962 S.D. dependent var 30303.00
S.E. of regression 2542.113 Sum squared resid 1.02E+09
DurbinWatson stat 1.391309 Jstatistic 7.204895
Instrument rank 4 Prob(Jstatistic) 0.007271
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Orthogonality Test

Instrument Orthogonality Ctest Test
Equation: CONSUM
Specification: CONS_HH M4 GDP_MP PUB_CONS
Instrument specification: EXPORTS FINCONS TBILLS
Test instruments: EXPORTS

Value df Probability
Difference in Jstats 7.204895 1 0.0073

Jstatistic summary:
Value

Restricted Jstatistic 7.204895
Unrestricted Jstatistic 0.000000

Unrestricted Test Equation:
Dependent Variable: CONS_HH
Method: Generalized Method of Moments
Date: 05/10/10   Time: 21:02
Sample (adjusted): 1966Q1 2006Q1
Included observations: 161 after adjustments
Fixed weighting matrix for test evaluation
Standard errors & covariance computed using estimation weighting matrix
Instrument specification: C FINCONS TBILLS

Variable Coefficient Std. Error tStatistic Prob.

M4 0.022023 0.002637 8.351059 0.0000
GDP_MP 0.488217 0.044189 11.04832 0.0000

PUB_CONS 0.709165 0.424792 1.669439 0.0970

Rsquared 0.993296 Mean dependent var 93764.26
Adjusted Rsquared 0.993211 S.D. dependent var 30303.00
S.E. of regression 2496.764 Sum squared resid 9.85E+08
DurbinWatson stat 1.487252 Jstatistic 0.000000
Instrument rank 3

11.2.2 Prediction and Residual

Hansen’s GMM estimation (see Hansen.prg)
Arellano-Bond estimator;The instruments need to be constructed (see ARELLANO.PRG)
Nonlinear instrumental variable method (GIV.prg)
Instrumental variable model of logwage rate by Wooldridge (INSTRUMENT.PRG
. global xb "{b1}*gear_ratio +{b2}*length +{b3}*headroom + {b0}"
. global phi "normalden($xb)"
. global phi "normal($xb)"
. estimate store ml
estimates store ml
. estimates store gmm
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. estimates table ml gmm, b se

                            legend: b/se

  2364.5154   2364.5154
       _cons   11175.774   11175.774

  471.23331   471.23331
    headroom  659.46302  659.46302

   104.3013    104.3013
       trunk   126.60486   126.60486

  63.486415   63.486415
         mpg  224.35974  224.35974

    Variable      ml          gmm

GMM in STATA
Statistics/Endogenous covariates

Instruments:   mpg headroom weight length turn
Instrumented:  rep78

       _cons   3024.737    4459.78    0.68   0.498    11765.75    5716.271
      weight    2.677978   .6782855     3.95   0.000     1.348563    4.007393
    headroom   781.6608   380.0685    2.06   0.040    1526.581   36.74023
         mpg   83.29217   87.50904    0.95   0.341    254.8067     88.2224
       rep78    1517.804   867.8677     1.75   0.080    183.1851    3218.794

       price       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                       Root MSE      =  2314.9
                                                       Rsquared     =  0.3589
                                                       Prob > chi2   =  0.0000
                                                       Wald chi2(4)  =   38.66
Instrumental variables (2SLS) regression               Number of obs =      69

. ivregress 2sls price mpg headroom weight (rep78 = length turn)

Exogenous variables:   mpg trunk headroom
Endogenous variables:  price

       _cons    11175.77   2364.515     4.73   0.000     6541.409    15810.14
    headroom    659.463   471.2333    1.40   0.162    1583.063    264.1373
       trunk    126.6049   104.3013     1.21   0.225    77.82194    331.0317
         mpg   224.3597   63.48641    3.53   0.000    348.7908   99.92865
price

       price       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

price              74      3     2550.05    0.2423      23.66   0.0000

Equation          Obs  Parms        RMSE    "Rsq"       chi2        P

Threestage leastsquares regression

. reg3 (price = mpg trunk headroom)
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Instruments:   mpg headroom weight length turn
Instrumented:  rep78

       _cons   8565.727   8142.278    1.05   0.293     24524.3    7392.845
      weight    3.191665   1.036573     3.08   0.002     1.160018    5.223311
    headroom   900.8467   516.4899    1.74   0.081    1913.148     111.455
         mpg   148.5115   133.1996    1.11   0.265    409.5779    112.5549
       rep78    3200.096   2055.613     1.56   0.120     828.832    7229.025

       price       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                       Root MSE      =  3058.5
                                                       Rsquared     =       .
                                                       Prob > chi2   =  0.0001
                                                       Wald chi2(4)  =   22.82
Instrumental variables (LIML) regression               Number of obs =      69

. ivregress liml price mpg headroom weight (rep78 = length turn)

Instruments:   mpg headroom weight length turn
Instrumented:  rep78

       _cons   1132.796   3582.763    0.32   0.752    8154.882     5889.29
      weight    1.842779   .6897574     2.67   0.008     .4908799    3.194679
    headroom   639.6306   330.3725    1.94   0.053    1287.149     7.88748
         mpg   146.6322   79.13221    1.85   0.064    301.7285    8.464096
       rep78     1879.44   710.0672     2.65   0.008     487.7336    3271.146

       price       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
   Observed   Bootstrap                         Normalbased

GMM weight matrix: Robust                              Root MSE      =  2488.6
                                                       Rsquared     =  0.2591
                                                       Prob > chi2   =  0.0002
                                                       Wald chi2(4)  =   22.58
Instrumental variables (GMM) regression                Number of obs =      69

..................................................    50
 1  2  3  4  5

Bootstrap replications (50)

(running ivregress on estimation sample)
. ivregress gmm price mpg headroom weight (rep78 = length turn), igmm vce(bootstrap)

Instruments:   mpg headroom weight length turn
Instrumented:  rep78

       _cons   1132.796   4049.643    0.28   0.781    9213.734    6948.141
      weight    1.842779   .8101387     2.27   0.026     .2261729    3.459386
    headroom   639.6306   333.6885    1.92   0.059    1305.496    26.23439
         mpg   146.6322   87.25377    1.68   0.097    320.7444    27.47999
       rep78     1879.44   627.5589     2.99   0.004     627.1654    3131.714

       price       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
              Jackknife

                                                       Root MSE      =  2488.6
GMM weight matrix: Robust                              Rsquared     =  0.2591
                                                       Prob > F      =  0.0018
                                                       F(  4,    68) =    4.80
                                                       Replications  =      69
Instrumental variables (GMM) regression                Number of obs =      69

...................

..................................................    50
 1  2  3  4  5

Jackknife replications (69)

(running ivregress on estimation sample)
. ivregress gmm price mpg headroom weight (rep78 = length turn), igmm vce(jackknife)
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12 Multivariate Analysis: Short Notes

12.1 Objective:

Generating knowledge by processing quantitative and qualitative data using standard statistical
techniques; finding patterns in vast amount of information contained in surveys, statistical reports.
Dependent Analysis:
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• Multiple regression - Metric Variables

• Time series analysis

• Conjoint analysis - categorical dependent variables

• Discriminant analysis - categorical dependent variables

• Multivariate analysis of variance (MANOVA)

• Canonical correlations

• Structural equation modelling

Interdependent Analysis

• Factor analysis

• Cluster analysis

• Multidimensional scaling

• Correspondence analysis.

Standard approach to Multivariate Modelling

1. defining the research problem - aims and objectives and expected outcomes

2. develop an analytical plan - methods of analysis

3. evaluate the assumption underlying the analysis

4. estimate the multivariate model and assess its overall fit

5. interpret variates

6. validate the multivariate model

7. decision flow chart

12.2 Data Structure:

• Univariate representation - histograms, frequency- stem and leaf

• Bivariate - box plots

• Multivariate: graphical representation

• Data transformation (logs, differences, multiplications, exponentiation)
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12.3 Underlying assumption

• Normality - mean, skewness and Kurtosis tests

• Homoscedasticity

• Linearty

• No autocorrelation in errors

Problems of missing observations or outliers

• Extent and randomness of missing data

• Missing at random

• Missing completely at random
Imputation methods

• Problems of outliers

• Univariate detection

• Bivariate detection

• Multivariate detection.

12.4 Dependent Analysis:

One or multiples of dependent variable explained by a set of independent variables.

• Multiple regression - Metric Variables

• Correlation analysis

• Regression X-variables cause Y

Y = f (X1, X2, ..., Xn)

magnitude of this relation given by regression coeffi cients and their statistical significance (T, F,
R-square tests)

• Best, Linear and Unbiased estimators of coeffi cients

• Assumption: No multicollinearity, Homoscedaticity, no autocorrelation
Consequences of violation of these assumptions

• Detection of collinearity, hetroscedasticity and autocorrelation and remedial measures to solve
problems.
Type I and II errors
Examples
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12.5 Discriminant analysis - categorical dependent variables

Statistical technique to compare the means of a set of independent variables for two or more groups.
Males differ from female, North- South, skilled vs unskilled.

• Categorical dependent variable

• Logistic regression

• Frequency distributions for two/multiple of groups.

• Steps for modelling discriminant analysis

• Sort observations by groups and check the differences in group means

• Determine independent variables and sample size

• Assumptions - normality, linearity, no multicollinearity, equal dispersions

• Estimation of the characteristic function - simultaneous or stepwise

• Check the significance of the discriminant function

• Assess prediction accuracy

• Interpret results - discriminant weights, loadings, partial fractions, split samples and cross
validation
Examples

12.6 Conjoint analysis - categorical dependent variables

Evaluating how customers develop preferences for any type of object
Utility based on

• Attributes of the product (colour, taste, content)

• Overall utility by factors, level and treatment elements (solid, liquid; Brand )

• Conjoint task

Determining the total worth of the product
Total worth of the product i ,j ni,j

= Part worth of level of factor 1+ Part worth of level of level j factor2 + Part worth of level of
level j factor m
Utility, factors, level, stimuli

• Goodness of fit measures: Pearson, Kendal’s tau for estimation and validation samples; Part
worth of estimates, rescaling and reversals, validation of results
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12.7 Multivariate analysis of variance (MANOVA)

• Assessing group differences

• t-test on differences of mean for two variables

• ANOVA
Total variance
Within group variances
Between group variance

• F test; level of significance and critical values

• Multivariate analyses of variance (MANOVA)
Hotellings T2 test

T 2 =
p (N1 +N2 − 2)

N1 +N2 − p− 1
× Fcrit

Multivariate analysis of covariance

In a multivariate analysis

Y = Xβ + ε

leads to multivariate hypotheses of the form

CβA = 0

where β is a matrix of parameters, C specifies constraints on the design matrix X for a particular
hypothesis, and A provides a transformation of Y. A is often the identity matrix. An estimate of
is provided by

B = (X ′X)−1X ′Y

W = Wilks’lambda L = Lawley-Hotelling trace ; P = Pillai’s trace R = Roy’s largest root.
The inclusion of weights, if specified, enters the formulas in a manner similar to that shown

Methods and formulas in STATA Manual.
All four tests are admissible, unbiased and invariant. Asymptotically, Wilks’s lambda, Pillai’s

trace, and the Lawley—Hotelling trace are the
same, but their behavior under various violations of the null hypothesis and with small samples

is different. Roy’s largest root is different from the other three, even asymptotically.
None of the four multivariate criteria appears to be most powerful against all alternative hy-

potheses. For instance, Roy’s largest root is most powerful when the null hypothesis of equal mean
vectors is violated in such a way that the mean vectors tend to lie in one line within p-dimensional
space. For most other situations, Roy’s largest root performs worse than the other three statistics.
Pillai’s trace tends to be more robust to nonnormality and heteroskedasticity than the other three
statistics.
The error sum of squares and cross products (SSCP) matrix is
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E = A(Y ′Y −B′X ′XB)A′

and the SSCP matrix for the hypothesis is

H = A(CB)′ {C(X ′X)C ′} (CB)A′

Let λ1 > λ2 > λ3 > s represent the nonzero eigenvalues of E−1H.

s = min(p; vh)

, where p is the number of columns ofY A′ (that is, the number of y variables or number of resultant
transformed left-hand-side variables), and h is the hypothesis degrees of freedom.
Wilks’s (1932) lambda statistic is

Λ =
s

Π
i

1

1 + λi
=

|E|
|E +H|

F =

(
1− Λ

1
t

)
df2

Λ
1
t df1

and is a likelihood-ratio test. This statistic is distributed as the Wilks’s distribution if E has
the
Wishart distribution, H has the Wishart distribution under the null hypothesis, and E and H

are
independent. The null hypothesis is rejected for small values of .
Pillai’s (1955) trace is

V =
s

Π
i

λi
1 + λi

= trace
{

(E +H)
−1
E
}

F =
(2n+ s+ 1)V

(2m+ s+ 1) (s− V )

and the Lawley—Hotelling trace (Lawley 1938; Hotelling 1951) is

U =
s∑
i

λi = trace
{

(E)
−1
H
}

F =
2 (sn+ 1)U

s2 (2m+ s+ 1)

and is also known as Hotelling’s generalized T 2 statistic.
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12.8 Canonical correlations

• Theory developed by Hotelling (1936, 1936)

• Correlating several metric dependent variables and metric independent variables simultane-
ously;

• Indentifying a subset of variables with the largest correlation from the set of many variables;

• Finding a linear combination among those variables that maximises correlation between them

• Do measurement of skulls and intelligence score elate to each other?

• Investment and profit?

Application in VAR model - cointegration analysis
Business example

• Survey with 50 questions for a world class company and a particular company,

• Do correlations exists between the particular company and the world class company.

12.9 Structural equation modelling

• Explaining relationships among multiple variables; finding interrelationships

• Foundation on factor analysis and multiple regression analysis

• Constructs (exogenous variables) and latent factors

• Analysis of the covariance structure

• Model to define the entire set of relations

• Path diagrams

• Avoid spurious relations

• Simultaneous maximum likelihood estimation
Example

x1 x2 y1

x1 1
x2 0.5 1
y1 0.6 0.7 1


Price, service and Atmosphere are exogenous variables that lead to customer satisfaction. Cus-

tomer satisfaction leads to the customer commitment.
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X1

X2

X3

A

B

C

D

E

F

G

Y1
Y2

0.2

0.2

0.2

0.5

0.071

0.196

0.446

7

( ) 2.0,cov 21 == AXX

( ) 2.0,cov 32 == BXX

( ) 2.0,cov 31 == CXX
( ) 2.0,cov 11 =++= AFAEDYX

( ) 3.0,cov 12 =++= BFADEYX
( ) 5.0,cov 13 =++= CDBEFYX

Direct and indirect relation presented in above nodes
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8

( ) 2.02.02.0,cov 11 =++= FEDYX

( ) 3.02.02.0,cov 12 =++= FEDYX

( ) 5.02.02.0,cov 13 =++= FEDYX

Equations for SEM Model

9
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071428571.0

5.0
3.0
2.0

071429.117857.017857.0
17857.0071429.117857.0
17857.017857.0071429.1

F
E
D

Solving for Endogenous Paths in SEM Model
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10

Customer satisfaction

( ) ( ) ( )AtmosphereServiceiceY 4464.01964.0Pr0714.01 ++=
Customer commitment

( ) ( ) ( )[ ] [ ]12 5.04464.01964.0Pr0714.05.0 YAtmosphereServiceiceY =++=

• Take a relationship between service and customer
share; it consists of 1) direct and 2) indirect relations.

• Direct: serviceè customer share = 0.196
• Indirect: serviceèPriceè customer share  = 0.2*0.071

=0.0142
• Indirect: serviceèAtmosphereè customer share  =

0.15*0.446 =0.0669

Total effect  = 0.196+ 0.0142 + 0.0669 = 0.2771 here 0.0229 is due to errors.

Interpretation of SEM Model

12.10 Steps in SEM modelling

• Defining individual construct

• Developing measurement models

• Empirical results

• Measurement model validity

• Specifying the structural models

• Assess SEM validity

• X1 attitude, X2 = environment x3 = job satisfaction ;0.5 = corr(x1x2) =A; corr(x1y1) =0.6=
A+AC = 0.5+0.5C; corr(x1y1) =0.7= C+AB= C+0.5B;
Solution: B = 0.33; C = 0.53

12.11 Factor analysis

• Condensing the underlying structure of the data

• Finding interrelation among the large number of variables in terms of a few integrated or
latent factors.

• Total Variation

• By Individual specific factors

• By Errors
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Variation due to common factors

(X1, X2, ..., Xn) = af + U + ε

• Correlation matrix

• R-factor analysis/Q-factor analysis

• Sample size 10:1 to factors

Assumptions

• Underlying structure exists; Multicollinearity among variables

• Bartlett test of sphericity; Measure of sampling adequacy

• Factor extraction : latent root criterion, scree test criteria, percentage of variation criteria

• Factor matrix : correlation; factor loading

• Factor rotation: orthogonal - quatrimax or varimax

• oblique : equimax

• Reliability: Cronbach’s alpha;

• cross loading

12.12 Cluster analysis

• Grouping similar things together and finding the latent structure from more complex structure
of multiple variables

• Initial cluster solution

• Minimum Euclidean distance and hierarchical procedure for cluster formation

• Measurement of distance:

• Euclidean distance

d =

√
(X2 −X1)

2
+ (Y2 − Y1)

2

• Squared Euclidian distance

• City block

• Chebychev distance
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0
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30 20 10 0 10 20 30
Dimension 1

Classical MDS

MDS configuration

• Mahalanobis distance

• Proximity mactrix and similarity index

• Graphical approach : Dandograms, single linkage, complete linkage, centroid method

• Non-heirarchical method: cluster seeds, sequential threshold, parallel threshold, optimisation

• Combination of both hierarchical and non-heirarchical methods.

• Stopping rule - agglomeration coeffi cient.

12.13 Multidimensional scaling

Indentifying the dimension underlying the respondents evaluations
Price, quality;

Perceptual map and similarity scale; Stress measures

12.14 Correspondence analysis (CA)

• Expected vs expected values

• Difference between and within rows and columns

• Similarity analysis - measure of similarity
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27

Stress
Measure

Number of Dimensions

Scree Test of Similarity

( )
( )2,,

2

,,
ˆ

jiji

jiji
i

dd

dd
Stress

−

−
=

Kruskell Measure of dissimilarity

jid , jid ,̂ jid ,
Actual distance conceptual distance Average distance

• Optimal scaling or scoring

• Reciprocal averaging

• Homegeneity analysis

12.15 Analysis of Variance

One way ANOVA

Machines
I II II Mean
25.4 23.4 20 22.93333
26.31 21.8 22.2 23.43667
24.1 23.5 19.75 22.45
23.74 22.75 20.6 22.36333
25.1 21.6 20.4 22.36667

Total 124.65 113.05 102.95
Column mean 24.93 22.61 20.59

¯̄X =

c∑
j=1

r∑
i=1

Xij

n

22.71 Grand mean
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20

Actual Sales
A B C Total

Young 20 20 20 60
Adult 40 10 40 90
Old 20 10 40 70
Total 80 40 100 220

Expected Sales
A B C Total

Young 21.81818 10.90909 27.27273 60
Adult 32.72727 16.36364 40.90909 90
Old 25.45455 12.72727 31.81818 70
Total 80 40 100 220

Correspondence analysis (CA): Numerical Example

21

A B C Total
Young 1.818182 9.090909 7.272727 0
Adult 7.272727 6.363636 0.909091 3.55E15
Old 5.454545 2.727273 8.181818 0
Total 0 0 0 3.55E15

Square of differences
A B C Total

Young 3.305785 82.64463 52.89256 138.843
Adult 52.89256 40.49587 0.826446 94.21488
Old 29.75207 7.438017 66.94215 104.1322
Total 85.95041 130.5785 120.6612 337.1901

ChiSquare (squared differences/expected freq)
A B C Total

Young 0.151515 7.575758 1.939394 9.666667
Adult 1.616162 2.474747 0.020202 4.111111
Old 1.168831 0.584416 2.103896 3.857143
Total 2.936508 10.63492 4.063492 17.63492

Differences between actual and expected sales
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ChiSquare Test for correspondence Analysis

valueExpected
diffirence

ni

2
2

1, =−χ

Compare the computed values with the table values
to determine the significance of correspondence.

SST =

c∑
j=1

r∑
i=1

(
Xij − ¯̄X

)2

7.2361 0.4761 7.3441
12.96 0.8281 0.2601
1.9321 0.6241 8.7616
1.0609 0.0016 4.4521
5.7121 1.2321 5.3361

58.2172 Total variation
47.164 Between Variation

MSB 23.582
df c-1

SSB =

r∑
i=1

nj

(
Xij − ¯̄X

)2

0.2209 0.6241 0.3481
1.9044 0.6561 2.5921
0.6889 0.7921 0.7056
1.4161 0.0196 1E-04
0.0289 1.0201 0.0361

11.0532 Within variation
MSW 0.9211

SSW =

c∑
j=1

r∑
i=1

(
Xij − X̄j

)2
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F-Test (MSB/MSW)
25.602
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Two Way ANOVA

SST=SSFA+SSFB+SSAB+SSE

SST =

r∑
r=1

c∑
j=1

n∑
k=1

(
Xijk − ¯̄X

)2

=

r∑
r=1

c∑
j=1

n∑
k=1

X2
ijk −

(
GT 2

)
rcn

SSFA = cn

r∑
r=1

(
X̄i.. − ¯̄X

)2

=

r∑
r=1

X2
i..

cn
−
(
GT 2

)
rcn

SSFB = rn

c∑
c=1

(
X̄.j. − ¯̄X

)2

=

c∑
c=1

X2
..j.

rn
−
(
GT 2

)
rcn

SSAB = n

r∑
r=1

c∑
c=1

(
Xij. − X̄i.. − X̄.j. − ¯̄X

)2

=

c∑
c=1

X2
..j.

rn
−
(
GT 2

)
rcn

=

r∑
r=1

c∑
c=1

X2
i.j.

n
−

c∑
c=1

X2
..i.

cn
−

c∑
c=1

X2
..j.

rn
+

(
GT 2

)
rcn

SSE =

r∑
r=1

c∑
j=1

n∑
k=1

(
Xijk − X̄i,j

)2
=

r∑
r=1

c∑
j=1

n∑
k=1

X2
ijk −

r∑
r=1

c∑
c=1

X2
i.j.

n

MSFB =
SSAB

(r − 1) (c− 1)

MSFB =
SSFB

c− 1

MSFA =
SSFA

r − 1

MSFB =
SSE

rc (n− 1)

12.16 Multivariate Analysis of Variance (MANOVA)

MANOVA is similar to ANOVA and analysis of covariance (ANCOVA) except that arrays of char-
acteristics are compared against various groups. Total variance is split between, within, interaction
and error variances.

SSTotal = SSbg + SSWG

SSbg = SSD + SST + SSDT

Consider a study on impacts of disability on scores of students within treatment and control groups.

SSTotal = SSD + SST + SSDT + SSS(DT )
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SST =

r∑
i

c∑
k

n∑
m

(
Xijk − ¯̄X

)2

= nk
∑
k

(
Dk − ¯̄X

)2

+ nm
∑
k

(
Tm − ¯̄X

)2

[
nkm

∑
k

∑
m

(
Dk − ¯̄X

)2

− nk
∑
k

(
Dk − ¯̄X

)2

− nm
∑
k

(
Tm − ¯̄X

)2
]

+

r∑
i

c∑
k

n∑
m

(Xijk −DTkm)
2

First part in the right hand side is total variance due to disability, second element total variance
due to treatment, third element is for the interaction
In matrix notation

SST =

r∑
i

c∑
k

n∑
m

(
Xijk − ¯̄X

)(
Xijk − ¯̄X

)′
= nk

∑
k

(
Dk − ¯̄X

)(
Dk − ¯̄X

)′
+ nm

∑
k

(
Tm − ¯̄X

)(
Tm − ¯̄X

)′
[
nkm

∑
k

∑
m

(
DTkm − ¯̄X

)(
DTkm − ¯̄X

)′
− nk

∑
k

(
Dk − ¯̄X

)(
Dk − ¯̄X

)′
− nm

∑
k

(
Tm − ¯̄X

)(
Tm − ¯̄X

)′]

+

r∑
i

c∑
k

n∑
m

(Xijk −DTkm) (Xijk −DTkm)
′

Example
Consider impacts of disability on scores in Math and English and IQ of students. Some of them are
given special treatment (extra coaching) while others were not. Does treatment make difference in
performance? How does the variance differ by groups and severity of disability?

Mild Moderate Severe
MATH ENGLISH IQ MATH ENGLISH IQ MATH ENGLISH IQ

115 108 110 100 105 115 89 78 99
Treatment 98 105 102 105 95 98 100 85 102

107 98 100 95 98 100 90 95 100
90 92 108 70 80 100 65 62 101

Control 85 95 115 85 68 99 80 70 95
80 81 95 78 82 105 72 73 102

Yi11 =

[
115
108

] [
98
105

] [
107
98

]
• Test Wilk’s lamda is ratio determinants:

Λ =
|SSerror|

|SSeffects + SSerror|
See MANOVA.xls
Minitab Results from ANOVA: MS, ES, IQ versus DASB, Treat
Factor Type Levels Values

DASB fixed 3 Mild, Mod, Severe

• Treat fixed 2 T1, T2
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Analysis of Variance for MS
Source DF SS MS F P

DASB 2 520.78 260.39 6.68 0.009
Treat 1 2090.89 2090.89 53.60 0.000
Error 14 546.11 39.01
Total 17 3157.78
S = 6.24563 R-Sq = 82.71% R-Sq(adj) = 79.00%

• Analysis of Variance for ES

Source DF SS MS F P
DASB 2 1126.78 563.39 13.32 0.001
Treat 1 1494.22 1494.22 35.33 0.000
Error 14 592.11 42.29
Total 17 3213.11
S = 6.50336 R-Sq = 81.57% R-Sq(adj) = 77.62%

• Analysis of Variance for IQ

Source DF SS MS F P
DASB 2 80.78 40.39 1.11 0.356
Treat 1 2.00 2.00 0.06 0.818
Error 14 507.67 36.26
Total 17 590.44
S = 6.02179 R-Sq = 14.02% R-Sq(adj) = 0.00%

• Means

Treat placeN MS ES IQ
T1 9 99.889 96.333 102.89
T2 9 78.333 78.111 102.22
DASB placeN MS ES IQ

Mild 6 95.833 96.500 105.00
Mod 6 88.833 88.000 102.83
Severe 6 82.667 77.167 99.83
MANOVA for DASB

s = 2 m = 0.0 n = 5.0
Test DF

Criterion Statistic F Num Denom P
Wilks’0.22870 4.364 6 24 0.004
Lawley-Hotelling 3.34721 6.137 6 22 0.001
Pillai’s 0.77711 2.754 6 26 0.033
placeCityRoy’s 3.33961
SSCP Matrix for DASB
MS ES IQ

MS 520.8 761.7 203.39
ES 761.7 1126.8 301.61
IQ 203.4 301.6 80.78
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SSCP Matrix for Error
MS ES IQ

MS 546.11 36.28 88.83
ES 36.28 592.11 354.50
IQ 88.83 354.50 507.67

• Partial Correlations for the Error SSCP Matrix

MS ES IQ
MS 1.00000 0.06380 0.16871
ES 0.06380 1.00000 0.64658
IQ 0.16871 0.64658 1.00000
EIGEN Analysis for DASB
Eigenvalue 3.3396 0.00760 0.00000

Proportion 0.9977 0.00227 0.00000
Cumulative 0.9977 1.00000 1.00000
Eigenvector 1 2 3

MS -0.02405 0.03595 -0.00458
ES -0.04512 -0.02405 0.01727
IQ 0.02605 -0.00128 -0.05294
MANOVA for Treat

s = 1 m = 0.5 n = 5.0
Test DF

Criterion Statistic F Num Denom P
Wilks’0.10489 34.135 3 12 0.000
Lawley-Hotelling 8.53365 34.135 3 12 0.000
Pillai’s 0.89511 34.135 3 12 0.000
placeCityRoy’s 8.53365
SSCP Matrix for Treat
MS ES IQ

MS 2090.89 1767.56 64.667
ES 1767.56 1494.22 54.667
IQ 64.67 54.67 2.000
EIGEN Analysis for Treat
Eigenvalue 8.534 0.00000 0.00000

Proportion 1.000 0.00000 0.00000
Cumulative 1.000 1.00000 1.00000
Eigenvector 1 2 3

MS -0.03127 0.02873 -0.00938
ES -0.03976 -0.03414 0.01290
IQ 0.03228 0.00410 -0.04923

324



12.17 Principal components and factor analysis

• PCA analyses variance but the FA analyses covariance.

• Goal of PCA is to extract the maximum variance from the data set with a few orthogonal
components

• FA aims to reproduce the correlation matrix with a few orthogonal factors.

• Take a correlation matrix R among numbers of variables.

• Find the Eigen values as

• L = V ′RV L is Eigen values, V is eigen vector and V’its transpose.

• Check R = V LV ′ V V ′ = I
R = V

√
L
√
LV ′

• Factor Loading matrix A = V
√
L Orthogonal Rotation :

Λ =

[
cosx − sinx
sinx cosx

]
Arotated = AunrotatedΛ

see: principalcomponent.xls
Data

cost Lift depth powder
S1 32 64 65 67
S2 61 37 62 65
S3 59 40 45 43
S4 36 62 34 35
S5 62 46 43 40
R-Matrix

2.01636 1.9415 0.0044
Eigen vectors V

0.352574 0.614235 0.662723 0.243321
-0.25131 -0.66369 0.676081 0.198157
-0.62731 0.322403 0.274838 -0.65345
-0.64731 0.279788 -0.16786 0.68886

Can use matrix routine in Minitab to compute
Transpose of Eigen Vectors

V’
0.352574 -0.25131 -0.62731 -0.64731
0.614235 -0.66369 0.322403 0.279788
0.662723 0.676081 0.274838 -0.16786
0.243321 0.198157 -0.65345 0.68886
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L = V’RV
2.02 0.00
0.00 1.94
It works so far.
Check on Check R = VLV’

Check V’V = I VL R - Approximately
1.00 0.00 0.00 0.00 0.710885 1.192538 0.98 -0.97 -0.06 -0.13
0.00 1.00 0.00 0.00 -0.50671 -1.28857 -0.97 0.98 -0.10 -0.03
0.00 0.00 1.00 0.00 -1.26486 0.625962 -0.06 -0.10 1.00 0.99
0.00 0.00 0.00 1.00 -1.30519 0.543225 -0.13 -0.03 0.99 1.00
First two eigen vectors Root of L Factor A = V*rootL
0.352574 0.614235 0.495943 0 cost 0.174857 0.304626
-0.25131 -0.66369 0 0.495943 Lift -0.12464 -0.32915
-0.62731 0.322403 depth -0.31111 0.159894
-0.64731 0.279788 powder -0.32103 0.138759

Orthogonal Rotation
Factor Scores B = inv (R ) A

Lamda rotation (transformation) matrix
19

0.988705 -0.14988 cosx -sinx
0.149877 0.549772 sinx cosx
A_unrottated * transformation mtrix

Factor 1 Factor 2
cost 0.218538 0.141268
Lift -0.17256 -0.16228

depth -0.28363 0.134534
powder -0.29661 0.124401

Inv (R ) Factor Scores B = inv (R ) A
25.48465 22.68874 -31.6546 35.47896 0.086583 0.156836
22.68874 21.38611 -24.8315 28.3122 -0.06195 -0.16958
-31.6546 -24.8315 99.9166 -103.95 -0.15415 0.082618
35.47896 28.3122 -103.95 109.5671 -0.15938 0.071194
Factor Extraction

Zcost = a11F1+a12F2
Z_lift = a21F1+a1=22F2

Z_powder = a41F1+a42F2

12.18 Difference between Principal component analysis (PCA) and fac-
tor analysis (FA)

PCA analyses variance but the FA analyses covariance. Goal of PCA is to extract the maximum
variance from the data set with a few orthogonal components while FA aims to reproduce the
correlation matrix with a few orthogonal factors.
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12.19 Canonical correlations

Hotelling (1936, 1935): the maximum correlations between linear functions of the two vector vari-
ables. Consider z1 vector of variables with p1 elements and z2 with p2 elements. Then square
correlation matrix R of p1+p2 is
Take a correlation matrix:

R =

[
R11 R12

R21 R22

]

R =

∣∣∣∣ R11 R12

R21 R22

∣∣∣∣ = R11R22 −R12R21 = 0

R22 = R12R
−1
11 R21

I = R−2
22 R21R

−1
11 R12

For instance, let p1= 2 and p2=2;n then

R =


1 0.4 0.5 0.6

0.4 1 0.3 0.4
0.5 0.3 1 0.2
0.6 0.4 0.2 1


N=100.

R11 =

(
1 0.4

0.4 1

)
;

R22 =

(
1 0.2

0.2 1

)

R12 = R21 =

(
05 0.3
0.6 04

)

I = R−2
22 R21R

−1
11 R12 =

(
1.041 −0.208
0.208 1.041

)(
05 0.3
0.6 04

)(
1.190 −0.476
−0.476 1.190

)(
05 0.6
0.3 04

)

0.250992
0.277777778 0.340278

D =

∣∣∣∣ 0.206− λ 0.251
0.277 0.341− λ

∣∣∣∣ = 0;

λ2 − 0.547λ+ 0.003 = 0
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λ1 = 0.546; λ2 = 0.001; Notice that sum of the roots equals trace of the matrix.
Two canonical correlations

RC1 =
√
λ1 = 0.546 = 0.74

and

RC2 =
√
λ2 = 0.001 = 0.03

placeCityBartlett’s test and Wilks’Lamda

Λ = (1− λ1) (1− λ2) = (1− 0.546) (1− 0.001) = 0.454

χ2 = − [n− 0.5 (p1 + p2 + 1)] lnλ1 = − [99− 0.5 (2 + 2 + 1)] ln 0.454 = 77

df =4, reject that z1 and z2 are unrelated as

p
(
χ2 = 77

)
> 0.999

.
After removing the first root the next largest root is

Λ′ = (1− λ2) = (1− 0.001) = 0.999

χ2 = −0.965. Only the first root is significant.
Find the eigenvector corresponding to the first root

M − λI =

[
0.206− λ 0.251

0.277 0.341− λ

] [
d1

d2

]
=

[
0
0

]
;

M−λI =

[
0.206− 0546 0.251

0.277 0.341− 0.546

] [
d1

d2

]
=

[
0
0

]
or

[
−0.340 0.251
0.277 −0.205

] [
d1

d2

]
=

[
0
0

]
cofactor of the first row is the canonical coeffi cient

v =
(

0.205 −0.278
)

.
The variance of this factor is

vR22v
′ =

(
−0.205 −0.278

)( 1 0.2
0.2 1

)(
−0.205
−0.278

)
= θ

Corresponding Eigen vector

d = vθ−
1
2 =

(
0.545
0.737

)
Now
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C =
R−1

11 R12dj√
λi

=

(
1.190 −0.476
−0.476 1.190

)(
05 0.6
0.3 04

)(
0.546
0.737

)
1√

0.546
=

(
0.856
0.278

)
Thus the extracted variables with unit variance and correlation of 0.74 are

0.856z11,i + 0.278z12,i = xi

0.545z21,i + 0.737z22,i = yi

What is the correlation of new canonical variates with the original variables?

s1 = R11c =

(
1 0.4

0.4 1

)(
0.856
0.278

)
=

(
0.967
0.620

)

s2 = R22d =

(
1 0.2

0.2 1

)(
0.545
0.737

)
=

(
0.692
0.846

)
Proportion of the left side battery extracted by the first canonical covariate

s′1s1

p1
=
(

0.967 0.620
)( 0.967

0.620

)
1

2
= 0.660

s′2s2

p2
=
(

0.692 0.846
)( 0.692

0.846

)
1

2
= (1.19458)

1

2
= 0.597

References

[1] Cooley WW and Lohnes PR (1971) Multivariate Data Analysis, John Wiley and Sons.

Reading a matrix and getting Eigen values in Minitab
See canonical.xls
Take a data
7 4 3
4 1 8
6 3 5
8 6 1
8 5 7
7 2 9
5 3 3
9 5 8
7 4 5
8 2 2
Correlation matrix is
1.000.67-0.10
0.67 1.00 -0.29
-0.10 -0.29 1.00
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12.20 Discriminant Analysis

Statistical technique to compare the means of a set of independent variables for two or more groups.
Males differ from female, North- South, skilled vs unskilled.

• Categorical dependent variable

• Logistic regression

• Frequency distributions for two/multiple of groups.

• Steps for modelling discriminant analysis

• Sort observations by groups and check the differences in group means

• Determine independent variables and sample size

• Assumptions - normality, linearity, no multicollinearity, equal dispersions

• Estimation of the characteristic function - simultaneous or stepwise

• Check the significance of the discriminant function

• Assess prediction accuracy

• Interpret results - discriminant weights, loadings, partial fractions, split samples and cross
validation
Examples

Fundamental equation:

Stotal = Sbg + Swg

Similar to manova.
Linear discriminant function:

Di = di1z1 + di2z2 + ....+ dipzp

Classification function:

Cj = Cj0 + cj1X1 + cj2X2 + ....+ cjpXp

Cj = W−1Mj ;

cj0 =

(
−1

2

)
C
′

jMj

See discriminant.xls.
Example
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IQ Info Verbal Age Group
87 5 31 6.4 G1
97 7 36 8.3 G1
112 9 42 7.2 G1
102 16 45 7 G2
85 10 38 7.6 G2
76 9 32 6.2 G2
120 12 30 8.4 G3
85 8 28 6.3 G3
99 9 27 8.2 G3

• Between group variation

SSCP Matrix (adjusted) for Group
IQ Info Verbal Age

IQ 314.9 -71.56 -180.0 14.49
Info -71.6 32.89 8.0 -2.22
Verbal -180.0 8.00 168.0 -10.40
Age 14.5 -2.22 -10.4 0.74

• Within group variation

SSCP Matrix (adjusted) for Error
IQ Info Verbal Age

IQ 1286.00 220.000 348.333 50.000
Info 220.00 45.333 73.667 6.367
Verbal 348.33 73.667 150.000 9.733
Age 50.00 6.367 9.733 5.493

• Tests

MANOVA for Group
s = 2 m = 0.5 n = 0.5

• Test DF
Criterion Statistic F Num Denom P
Wilks’0.01048 6.577 8 6 0.017
Lawley-Hotelling 19.07513 4.769 8 4 0.074
Pillai’s 1.77920 8.058 8 8 0.004
Roy’s 13.48590

• Pooled Group Variance-Covariance Matrix (W)

Pooled Covariance Matrix
IQ Info Verbal Age

IQ 214.333
Info 36.667 7.556
Verbal 58.056 12.278 25.000
Age 8.333 1.061 1.622 0.916
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Inverse of W
Inverse of the pooled matrix

IQ Info Verbal Age
IQ 0.043595 -0.20182 0.009539 -0.17972
Info -0.20182 1.628831 -0.37056 0.605476

Verbal 0.009539 -0.37056 0.200678 -0.0129
Age -0.17972 0.605476 -0.0129 2.048136

Group Means
Pooled means for group

Variable Mean G1 G2 G3
IQ 95.889 98.667 87.667 101.333
Info 9.4444 7 11.6667 9.6667

Verbal 34.333 36.333 38.333 28.333
Age 7.2889 7.3 6.9333 7.6333

Classification coeffi cients

G1: Mem G2: perc G3: Comm
IQ 1.923305 0.586914 1.365133
Info -17.5547 -8.69661 -10.5828

Verbal 5.544256 4.116101 2.971779
Age 0.988946 5.014559 2.910278
Standardised score equals

Classification scores
C1 119.9839
C2 95.99969
C3 105.3801
This student will be assigned to group 1 because of highest score in it.

12.21 Cluster Analysis

• Grouping similar things together and finding the latent structure from more complex structure
of multiple variables

• Initial cluster solution

• Minimum Euclidean distance and hierarchical procedure for cluster formation

• Measurement of distance:

• Euclidean distance or Squared Euclidian distance

• City block

• Chebychev distance

• Mahalanobis distance

• Proximity mactrix and similarity index
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• Graphical approach : Dandograms, single linkage, complete linkage, centroid method

• Non-heirarchical method: cluster seeds, sequential threshold, parallel threshold, optimisation

• Combination of both hierarchical and non-heirarchical methods.

• Stopping rule - agglomeration coeffi cient.

• 1.Correlation

• 2.similarity index based on Euclidian Distance Measure

• 3.Partition the variables by proximity see the proximity matrix

• 4.Dendogram, Centroid methods

• Similarity measure

−1 ≤ si,j ≤ 1

• Clustering criteria T = W + B

T = total distance, W = within group distance, B = between group distance.

T =
1

n

g∑
i=1

n∑
j=1

(xi,j − x̄) (xi,j − x̄)
′

W =
1

n− g

g∑
i=1

n∑
j=1

(xi,j − x̄j) (xi,j − x̄i)′

T =
1

n

g∑
i=1

(x̄j − x̄) (x̄j − x̄)

• Choose the cluster that minimises the sum of within distance and raises between distance.

Minimising the trace of Euclidian distance:

E =

n∑
i=1

d2
i,c(i)

Minimisation of determinant of W
Maximisation of the trace of BW−1 or

det(T )

det(W )

which can be expressed in terms of eigenvalues, λi: Here

trace
(
BW−1

)
=

p∑
i=1

λi
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Observations

Si
m

ila
rit

y

7654321

59.02

72.68

86.34

100.00

Dendrogram with Single Linkage and Euclidean Distance

and

det(T )

det(W )
=

p

Π
i=1

(1 + λi)
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13 L11: Forecasting

Business economists have to make decisions in circumstances where the future values of many
economic variables are unknown. These include income and consumption, saving and investment,
government revenue and spending, imports and exports, sales revenue and profit, prices and supplies
of goods and services and factors of production, interest rate and exchange rates, rates of growth of
output, employment and the capital stocks, rates of inflation and unemployment, values of stocks
and bonds and many other financial and real assets. These uncertainties may partly arise due to
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changes in equilibrium in various markets due to changes in preferences of consumers, technology
of producers and policies of the government or corporate sectors and strategies taken by them.
Unpredictable natural factors such as climates, earthquakes or floods, outbreak of epidemics or the
international factor such as wars, changes in the rules and regulations of trade and payment as
well as in the mobility of factors of production may alter the probability distributions, the data
generating processes, of these economic variables. Economic agents -households, firms, government
and traders- nevertheless have to take decisions on the basis of forecasts or predication or simulations
of those variables based upon available information though it is almost impossible to forecast their
values exactly beforehand.
Economists use models to consolidate their reasoning and to justify their arguments or predict

or forecast about future economic activities. These models that are taken scientific tools to analyse
economic issues objectively can be small or big, static or dynamic, deterministic or stochastic,
strategic or optimising or analytic, mathematical or econometric. They may analyse aggregate
behaviour at macro level or more details in the micro level. They may aim to explain local,
regional, national or global markets or economic policies aimed for stability, effi ciency, growth and
redistribution.
These models can be grouped into two major categories. First type of model mainly relies

on mathematical structure for describing the economy. These relations are expressed generally in
terms of algebra and involve solving simultaneous equations with various optimising conditions that
are used to study maximising or minimising behaviour of consumer or producers in the economy.
General equilibrium models or strategic models fit into this category. Solutions of these models are
defined by a set of parameters. Then there are econometric models that aim to fit the model as
accurately as possible to the observed data set of random variables, these models aim to minimise
the errors of prediction. These models apply stochastic probability theories to theoretical economic
models and aim to study empirical facts relating to an economic issue. Both of these economic
models can serve as laboratory for analysis of various instruments of economic policy before they
are applied to real world situation.
Literature in forecasting is evolving very rapidly:

• Bradford and Kelejian (1977), Min and Zellner (1993), Hamilton and Lin (1996), Hendry
(1997), Ericsson and Marquez (1998), Clements and Krolzig(1998),

• Harvey, Leybourne and Newbold (2001), Artis and Marcellino (2001),Stock andWatson (2002)
Ng and Vogelsang (2002), Clements and Hendry(2002), Gabriel and Martins (2004),

• Hendry, and Clements (2004), Koop and Potter(2004, 2007),

• Elliott, Timmermann and and Komunjer (2005), Pesaran , Pettenuzzo, and Timmermann
(2006), Koop and Simon Potter (2007) Bai and Ng (2008),Rossi and Sekhposyan (2011),
Engle and Sokalska (2012a,b), Fawcett, Kapetanios, Mitchell and Price (2013), Smith and
Velázquez (2013)

• Texts: Granger and Newbold (1986), Judge, Hill, Griffi ths, Lutkepohl and Lee (1988) Harvey
(1989) Harvey (1990 ) Griffi ths , Hill and Judge (1993), Hamilton (1994), Hendry (1995)
Campbell , Lo and MacKindlay (1997),Davidson (2000), Holly and Weale ed. (2000), Clement
and Hendry ed. (2002), Harris and Sollis (2003), Mills (2000, 2003), Davidson and MacKinnon
(2004), Blundell, Newey and Persson (2006), Singleton (2006), Koop (2008), Enders (2010)
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13.1 What is forecasting?

• What is a forecast?

• It is a statement about the future.

• How are forecasts made?

• There are many ways: guess, coin tossing, qualitative judgement, sophisticated economic
models.

• What is the best forecast? Which is close to the truth.

• Why do most forecasts fail?

• Future is uncertain.

Econometric Models for Forecasting

• Single equation models

• Cross section predictions (behavioural analysis; surveys)

• Linear and nonlinear time series models: AR, ARMA, ARCH-GARCH, CHARMA. TAR,
STAR (smooth transition AR); forecasting volatility, artificial neural network, statespace,
Kalman Filter and markov switching models

• Simultaneous equation models/structural equation models

• Prediction and forecasts; forecast intervals; survey forecasts

• Rational expectations; leading indicators; Delphi method

• Multivariate timeseries VAR Models

• Ramsey models: Preferences, technology, prices, process of economy over years

• Neoclassical growth model

• Stochastic general equilibrium models

• New classical innovations on technology shocks

• Applied dynamic general equilibrium models

• Large scale models for regional, national and global economy

• Strategic Models —predictions from games - Nash Bargaining, repeated games, signalling,
screening, cooperative and non-cooperative games of political economy; corporate strategies,
trade negotiations
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13.1.1 Principles of Forecasting:

Minimum Sum Square (MSE, MAE, RMSE)

MSE = E
(
Yt+1 − Y ∗t+1/t

)2

(1626)

Smallest MSE is obtained in prediction of Yt+1 is conditional on all of its past values.

Y ∗t+1/t = E (Yt+1/Xt) (1627)

Here Xt : Yt, Yt−1, ....., Yt−m+1

Linear projection

Y ∗t+1/t = α′Xt (1628)

E [(Yt+1 − α′Xt)X
′
t] = 0 (1629)

α′ = E [Yt+1X
′
t] [E (XtX

′
t)]
−1 (1630)

13.1.2 Simple extrapolation:

Crude Morving Average Projections
Weekly updates

zW =
1

4
(z1 + z2 + z3 + z4) (1631)

Quarterly

zQ =
1

4
(z1 + z2 + z3 + z4) (1632)

Monthly

zM =
1

12
(z1 + z2 + z3 + z4 + ...+ z12) (1633)

µ̂ =

n∑
i=−n

aiyt−i; i = 0,±1,±2, ....,±n (1634)

13.1.3 Components of time sereis

Components of a series (trend, season, cycle and random)

yt = µt + γt + ψt + νt + εt εt ∼ NID
(
0, σ2

εt

)
(1635)

Stochastic trend

µt = µt−1 + βt−1 + ηt ηt ∼ NID
(

0, σ2
ηt

)
(1636)
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βt = βt−1 + ζt ζt ∼ NID
(

0, σ2
ζt

)
(1637)

Seasonal dummies

γt = −γt−1 − ...− γt−s+1 + ωt ωt ∼ NID
(
0, σ2

ωt

)
(1638)

Refer to STAMP mannual (p.140)
Seasonal factor in dummy or trigonometric form
or trigonometric seasonal representation

γt =

s/2∑
j=−n

γj,t (1639)

(
γj,t
γ∗j,t

)
=

(
cosλj cosλj
− sinλj cosλj

)(
γj,t−1

γ∗j,t−1

)
+

(
ωj,t
ω∗j,t

)
j = 1, ..s/2
t = 1, ...T

(1640)

λj = 2πj
s is frequency in radians.

Cyclical and random components
λj = 2πj‘.
Cycle ψt

(
ψj,t
ψ∗j,t

)
= ρψ

(
cosλj cosλj
− sinλj cosλj

)(
ψj,t−1

ψ∗j,t−1

)
+

(
κj,t
κ∗j,t

)
j = 1, ..s/2
t = 1, ...T

(1641)

0 < ρψ ≤ 1 is called damping factor κj,t and κ∗j,t are NID disturbance terms.NID
(
0, σ2

κt

)
Randome error evolves according to

νt = ρψνt−1 + ξt....ξt ∼ NID
(

0, σ2
ξt

)
(1642)

13.2 Forecasting from Random Walk

Random Walk

yt = yt−1 + εt (1643)

Starting from initial condition: y1 = y0 for t = 1.

y1 = y0 + ε1 (1644)

y2 = y1 + ε2 = y0 + ε1 + ε2 (1645)

y5 = y4 + ε5 = y0 + ε1 + ε2 + ε3 + ε4 + ε5 (1646)
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yt = y0 +

t∑
t=0

εi (1647)

Random Walk

E (yt) = y0 +

t∑
t=0

E (εi) = y0 (1648)

var (yt) = tσ2 (1649)

var (yt−s) = (t− s)σ2 (1650)

Random Walk process is non-stationary.
Forecast function

Etyt+1 = yt (1651)

Random walk with a drift

y1 = y0 + a0 + ε1 (1652)

Random Walk

y2 = y1 + a0 + ε2 = y0 + a0 + ε1 + ε2 (1653)

y5 = y4 + ε5 = y0 + 4a0 + ε1 + ε2 + ε3 + ε4 + ε5 (1654)

yt = y0 + ta0 +

t∑
t=0

εi (1655)

Forecast function

yt+s = y0 + (t+ s) a0 +

t+s∑
i=1

εi (1656)

Random Walk

yt+s = yt + sa0 +

s∑
i=1

εt+i (1657)

Forecast now contains deterministic trend term sa0 in addition to the pure random walk

Etyt+s = yt + sa0 (1658)
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13.2.1 AR(1) forecast

yt = δ + θ1yt−1 + et (1659)

h =1 ahead Forecast

y
T+1

= δ + θ1yT + e
T+1

e
T+1

∼ N (0, 1) (1660)

Mean forecast:

ŷ
T+1

= E
(
y
T+1

)
= δ + θ1yT (1661)

Estimate of Forecast error

ê
T+1

= y
T+1
− ŷ

T+1
= δ + θ1yT + e

T+1
− δ − θ1ŷT (1662)

Variance of h =1 Forecast error

var
(
ê
T+1

)
= σ2

e (1663)

h =2 ahead Forecast

yT+2 = δ + θ1yT+1
+ e

T+1
e
T+2

∼ N (0, 1) (1664)

Mean forecast:

ŷ
T+2

= E
(
y
T+2

)
= δ + θ1yT+1

(1665)

Estimate of Forecast error

ê
T+2

= y
T+2
− ŷ

T+2
= δ + θ1yT+1

+ e
T+2
− δ − θ1ŷT+1

= e
T+2

+ θ1

(
y
T+1
− ŷ

T+1

)
= e

T+2
+ θ1eT+1

(1666)

Variance of Forecast error

var
(
ê
T+2

)
= σ2

e

(
1 + θ2

1

)
(1667)

h period ahead Forecast

yT+h = δ + θ1yT+h−1
+ eT+h e

T+h
∼ N (0, 1) (1668)

Mean forecast:

ŷ
T+h

= E
(
y
T+h

)
= δ + θ1ŷT+h−1

(1669)

Estimate of Forecast error

ê
T+h

= y
T+h
− ŷ

T+2
= δ + θ1yT+h−1

+ e
T+h
− δ − θ1ŷT+h−1

= e
T+h

+ θ1

(
y
T+h−1

− ŷT+h−1

)
= e

T+h
+ θ1eT+h−1

(1670)

Variance of Forecast error

var
(
ê
T+h

)
= σ2

e

(
1 + θ2

1 + θ2
1 + ...+ θ

2(h−1)
1

)
(1671)
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13.2.2 MA(1) forecast

Forecast with MA(1)

yt = µ+ et + α1et−1 (1672)

h=1 period ahead forecast

y
T+1

= µ+ e
T+1

+ α1eT (1673)

Mean forecast

E
(
y
T+1

)
= ŷ

T+1
= µ+ α1eT (1674)

Forecast error

y
T+1
− ŷ

T+1
= µ+ e

T+1
+ α1eT − µ− α1eT+1

= e
T+1

(1675)

Variance of forecast:

var
(
y
T+1
− ŷ

T+1

)
= var

(
e
T+1

)
= σ2

e (1676)

h=2 period ahead Forecast

y
T+2

= µ+ e
T+2

+ α1eT+1 (1677)

Mean forecast

E (yT+2) = ŷ
T+2

= µ (1678)

Forecast error

y
T+2
− ŷ

T+2
= µ+ e

T+2
+ α1eT+1 − µ = e

T+2
+ α1eT+1 (1679)

var
(
y
T+2
− ŷ

T+2

)
= var (eT+2) = var

(
e
T+2

+ α1eT+1

)
= σ2

e

(
1 + α2

1

)
(1680)

Similarly mean and variance of h period ahead forecast:

y
T+h

= µ+ e
T+h

+ α1eT+h−1 (1681)

E (yT+h) = ŷ
T+h

= µ (1682)

Forecast error

y
T+h
− ŷ

T+h
= µ+ e

T+h
+ α1eT+h−1 − µ = e

T+h
+ α1eT+h−1 (1683)

var
(
y
T+2
− ŷ

T+2

)
= var (eT+h) = var

(
e
T+h

+ α1eT+h−1

)
= σ2

e

(
1 + α2

1

)
(1684)
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13.2.3 ARMA(1,1) forecast

Forecasts using ARMA(1,1) process:

yt = δ + θ1yt−1 + et + α1et−1 (1685)

h=1 period ahead Forecast

y
T+1

= δ + θ1yt−1 + e
T+1

+ α1eT (1686)

Mean forecast

E
(
y
T+1

)
= ŷ

T+1
= δ + θ1yt−1 + α1eT (1687)

Forecast error

ê
T+1

=
(
y
T+h
− ŷ

T+h

)
=

δ + θ1yt−1 + e
T+1

+ e
T+1

+ α1eT − δ − θ1yt−1 − α1eT = e
T+1

(1688)

Forecast error

ê
T+1

=
(
y
T+h
− ŷ

T+h

)
= δ + θ1yt−1 + e

T+1
+ e

T+1

+α1eT − δ − θ1yt−1 − α1eT = e
T+1

(1689)

Variance of Forecast error

var
(
ê
T+1

)
= var

(
y
T+h
− ŷ

T+h

)
= var

(
e
T+1

)
= σ2

e (1690)

yt = δ + θ1yt−1 + et + α1et−1 (1691)

h=2 period ahead Forecast

y
T+2

= δ + θ1yt+1 + e
T+2

+ α1eT+1
(1692)

Mean forecast and Forecast error

E (yT+2) = ŷ
T+2

= δ + θ1yt+1 (1693)

ê
T+2

=
(
y
T+2
− ŷ

T+2

)
= δ + θ1yt+1 + e

T+2
+ α1eT+1

− δ − θ1ŷT+1

= θ1

(
y
t+1
− ŷT+1

)
+ e

T+2
+ α1eT+1

= (θ1 + α1) e
T+1

+ e
T+2

(1694)

Variance of Forecast error

var
(
ê
T+1

)
= var

[
(θ1 + α1) e

T+1
+ e

T+2

]
= var

(
e
T+1

)
= σ2

e

[
(θ1 + α1)

2
+ 1
]

(1695)
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h=3 period ahead Forecast

y
T+2

= δ + θ1yt+2 + e
T+3

+ α1eT+2
(1696)

Mean forecast

E (yT+3) = ŷ
T+3

= δ + θ1ŷt+2 (1697)

Forecast error and Variance of Forecast error

ê
T+3

=
(
y
T+3
− ŷ

T+3

)
= δ + θ1yt+2 + e

T+3
+ α1eT+2

− δ − θ1ŷT+2

= θ1

(
y
t+2
− ŷT+2

)
+ e

T+3
+ α1eT+2

= e
T+3

+ α1eT+2
+ (θ1 + α1) e

T+2
+ e

T+2
(1698)

var (êT+3) = var
[
e
T+3

+ α1eT+2
+ (θ1 + α1) e

T+2
+ e

T+2

]
= σ2

e

[
1 + (1 + α1)

2
+ (θ1 + α1)

2
]

(1699)

13.2.4 Statespace form and Kalman Filter

Kalmon filter (KF) is a set of vector and matrix recursions.
It minimises errors in time series model in state space form (SSF) and the OLS in ordinary

regression.
It consists of one step ahead prediction of observations and state vectors and corresponding

mean square error
Computes the likelihood function using the onestep ahead prediction error decomposition.
It smooths series using Kalman gain.
Measurement equation

yt = Ztαt +Xtb+Gtut (1700)

Transition equation

αt+1 = Ttαt +Wtb+Htut (1701)

initial condition

α1 = Ttαt +W0bt +H0u0 (1702)

Gt and Ht are error system matrices; ut ∼ NID
(
0, σ2

ut

)
b = c+Bδ δ ∼ N

(
µ, σ2Λ

)
Runn kalman_run. with kalmanf.m in MATLAB for understanding how a Kalman filter algo-

rithm works in the real world (thanks Santosh Bhattarai for showing me this).
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13.2.5 Brownian Motion

Consider a random walk

yt = yt−1 + εt εt ~ iid N (0, 1) (1703)

yt = ε1 + ε2 + ε3 + ε4 + ε5 + ....+ εt (1704)

change in value of yt between periods t and s

yt − ys = εt+1 + εt+2 + εt+3 + εt+4 + εt+5 + ....+ εs

~ N (0, (s− t)) (1705)

Divide the error yt − yt−1 = εt

εt = e1t + e2t (1706)

Now divite the time interval in infinitely small sections

εt = e1t + e2t + ........+ eNt ~N
(

0,
1

N

)
(1707)

when N −→ ∞ it is called a Brownian motion, W (t). This is continous stochastic function
and has folliwng properties

• W (0). = 0

• For any dates 0 ≤ t1 ≤ t2 ≤ ... ≤ tk ≤ 1 the changes

• [W (t2)−W (t1)] , [W (t3)−W (t2)] , ..., [W (tk)−W (tk−1)] are independent multivariate Gaussian
with [W (s)−W (t)] ~N (0, (s− t))

• Any realisation of W (t) is continous in t with probability 1.

Other continous time process can be generated from standard Browning motions, as:

Z (t) = σW (t) ∼ N
(
0, σ2t

)
(1708)

Brownian Motion: Application
stochastic volatility of stock prices with diffusion

√
vt

d lnSt = (µst + ηstvt) dt+
√
vtdWt (1709)

volatility

dνt = kv (ν − vt) dt+ σv
√
vtdWt (1710)

d ln νt = (ν − κ ln vt) + σvdWt (1711)
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Brownian Motion: Markov Chain Monte Carlo stochastic volatility of stock prices with
diffusion

√
vt

d lnSt =
√
vtdWt (1712)

d ln νt = (ν − κ ln vt) + σvdWt (1713)

MCMC uses Bayesian inference to combine a prior distribution over unknown distribution over
the unknown parameter vector p (Θ, X/Y ) with the conditional density of the state vector p (X/Y )
to obtain joint posterior distribution of parameters p (Θ/X, Y ) , p (X/Θ, Y ) p (X,Θ/Y ). (See
Singleton)
let p log of stock price follow a standard Brownian motion

dp (t) = µdt+ σdB (t) (1714)

Moments of Brownian motion
E(dB) = 0; var(dB) = dt; E((dB) (dB)) = dt; E((dB) (dB)) = o (dt) ; E((dB) (dt)) = 0;

var((dB) (dt)) = o (dt) ;

(dp)
2

= (µdt+ σdB)
2

= µ2dt+ σ2 (dB)
2

+ 2µσ (dB) (dt)

= σ2dt since µ = 0 (1715)

dp (t) is a random variable but not (dp)
2
.

df (p, t) =
∂f

∂p
dp+

∂f

∂t
dt+

1

2

∂2f

∂p2
(dp)

2 (1716)

See Campbell et.al (1997).
Ito’s lemma for Geometric Brownian Motion
let P stock price follow a geometric Brownian motion

P (t) = ep(t) (1717)

dP =
∂P

∂p
dp+

1

2

∂2P

∂p2
(dp)

2 (1718)

= ep(t)dp+
1

2
ep(t) (dp)

2

= P (µdt+ σdB (t)) +
1

2
P
(
σ2dt

)
dP =

(
µ+

1

2
σ2

)
Pdt + σdPB (t)

dP

P
=

(
µ+

1

2
σ2

)
dt + σdB (t) (1719)

Instantaneous price change dP
P behaves like a Brownian motion.

346



13.2.6 Local Linear Trend Model

It includes stochastic trend µt plus the noise ηt .

yt = µt + ηt (1720)

µt = µt−1 + at + εt (1721)

at = at−1 + δt (1722)

here ηt εt and δt are white noises. Change in the random walk ∆µt = µt − µt−1 is the itself a
random walk plus noise process.

at = a0 +

t∑
t=0

δi (1723)

µt = µt−1 + a0 +

t∑
t=0

δi + εt (1724)

µt = µ0 +

t∑
t=0

εi + t (a0 + δ1) + δ2 (t− 1) + δ3 (t− 2) + ..+ δt (1725)

General solution of the model:

yt = y0 + (ηt − η0) +

t∑
t=0

εi + t (a0 + δ1) + δ2 (t− 1) + δ3 (t− 2) + ..+ δt (1726)

µt = µt−1 + a0 +

t∑
t=0

δi + εt (1727)

µt = µ0 +

t∑
t=0

εi + t (a0 + δ1) + δ2 (t− 1) + δ3 (t− 2) + ..+ δt (1728)

General solution of the model:

yt = y0 + (ηt − η0) +

t∑
t=0

εi + t (a0 + δ1) + δ2 (t− 1) + δ3 (t− 2) + ..+ δt (1729)
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13.2.7 Optimal Forecast Model

How can one make optimal mix of two forecasts to reduced MSFE?
(See the compilation of forecasts for the UK made by more than 400 forecasters or the BOEs

inflation report).
Ganger and Newbold (1986) had illustrated this with h period ahead forecast f i for (i = 1, 2)

for forecast of yt.
Forecast error

eit = yt − fit (1730)

eit ∼ N(0, σ2
i ) ρ = cov(e1te2t)√

var(e1t)
√
var(e2t)

Composite forecast for 0 < λ < 1

fct = (1− λ) f1t + λf2t (1731)

Composite error

ect = yt − fct = (1− λ) e1t + λe2t (1732)

The mean of the composite error

E (ect) = E (yt − fct) = (1− λ)E (e1t) + λE (e2t) = 0 (1733)

V ar (ect) = E [(yt − fct)]2 = [(1− λ)E (e1t) + λE (e2t)]
2

= (1− λ)
2
σ2

1 + λ2σ2
2 + 2 (1− λ)λρσ1σ2 (1734)

The optimal λ the weight to be attached to a certain forecast is chosen by minimising this
variance:

∂V ar (ect)

∂λ
= −2 (1− λ)σ2

1 + 2λσ2
2 + 2ρσ1σ2 − 4ρλσ1σ2 = 0 (1735)

λopt =
σ2

1 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
(1736)

Unknown values of σ2
1,σ

2
2, 2ρ are estimated from sample information using the residuals as:

λ̂opt =

T∑
t=1

e2
1t −

T∑
t=1

e1te2t

T∑
t=1

e2
1t +

T∑
t=1

e2
2t − 2

T∑
t=1

e1te2t

(1737)
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13.3 Minimising the Square Errors (MSE): Signal extraction

Minimising the Square Errors (MSE): Signal extraction
Let the estimated function be

y∗ = a+ b (x− µx) (1738)

E (y − y∗)2
= E [y − a− b (x− µx)]

2 (1739)

E (y − y∗)2
= E

[
y2 + a2 + b2 (x− µx)

2

−2ya+ 2ab (x− µx)− 2yb (x− µx)

]
(1740)

E (x− µx) = 0; E (y) = 0; E (x− µx)
2

= σ2
x; E (yx)− µxµy = cov (x, y) = σxy

E (y − y∗)2
= MSE = Ey2 + a2 + b2σ2

x − 2aµy − 2bσxy (1741)

minimise MSE wrt to a and b
2a− 2µy = 0 ==> µy = a and ∂MSE

∂b = 2bσ2
x − 2σxy = 0; b =

σxy
σ2
x

Minimising the Square Errors (MSE): Signal extraction
Optimal prediction is

y∗ = a+ b (x− µx) = µy +
σxy
σ2
x

x− σxy
σ2
x

µx (1742)

Forecast is unbiased

Ey∗ = µy +
σxy
σ2
x

µx −
σxy
σ2
x

µx = µy (1743)

Signal extraction (series {yt} includes two components {εt} and {ηt} permanent and transitory
shocks; where E {εt} = 0;E {ηt} = 0;E (εtηt) = 0;E

{
ε2
t

}
= σ2;

{
η2
t

}
= σ2

η

yt = εt + ηt (1744)

ε∗t = a+ byt (1745)

Minimising the Square Errors (MSE): Signal extraction

E (εt − ε∗t )
2

= E (εt − byt)2
= E (εt − b (εt + ηt))

2 (1746)

MSE = E (εt − ε∗t )
2

= E (εt − byt)2
= E [(1− b) εt − bηt]

2

= (1− b)2
σ2 + b2σ2

η (1747)

∂MSE

∂b
= −2 (1− b)σ2 + 2bσ2

η = 0⇒ b =
σ2

σ2 + σ2
η

(1748)
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Partitioning parameter b is determined by the respective variances. Remaining signal is ex-
tracted as a residual.
Minimising the Square Errors (MSE): Signal extraction

η∗t = yt − ε∗t (1749)

Hodrik-Prescot decomposition of trend and stationary components:

HP =
1

T

T∑
t=1

(yt − µt)
2

+
λ

T

T∑
t=1

(
µt+1 − µt

) (
µt − µt−1

)
(1750)

Problem is to choose sequence of µt to minimiseHP ; if λ = 0 then yt = µt implying that yt
is trend in itself. Larger λ closer HP is to the linear trend ∆µt+1 and ∆µt become smaller and
smaller. with λ →∞ the HP approaches linear trend.

13.3.1 Nelson-Beberidge decomposition

Forecast function in Nelson-Beberidge decomposition

yt+s = a0s+ yt +

s∑
i=0

εt+i + β1

s∑
i=1

εt+i−1 + β2

s∑
i=1

εt+i−2 (1751)

This is derived as following:
Random walk with a drift

yt = yt−1 + a0 + εt + β1εt−1 + β2εt−2 (1752)

Define et = εt + β1εt−1 + β2εt−2

y2 = y1 + a0 + et (1753)

yt = y0 + ta0 +

t∑
t=0

ei (1754)

Forecast function

yt+s = y0 + (t+ s) a0 +

t+s∑
i=1

ei (1755)

Nelson-Beberidge decomposition

yt+s = yt + sa0 +

s∑
i=1

et+i (1756)

t∑
t=0

ei =

t∑
t=0

εt + β1

t∑
t=0

εt−1 + β2

t∑
t=0

εt−2 (1757)
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13.3.2 Box-Jenkins Approach to Forecasting

Main use of ARMA(p,q) model is in forecasting values of {yt} on the basis of assumed DGP and
the white noises, (εt) . For instance consider AR(1) process

yt = a0 + a
1
yt−1 + εt (1758)

By iterating forward one period ahead forecast would be

yt+1 = a0 + a
1
yt + εt+1 (1759)

yt+2 = a0 + a
1
yt+1 + εt+2 (1760)

here a0, a1
are known and εt ∼ N(0, σ2

ε) and information set Ωt {yt+j/yt−1, yt−2, .....yt−n, εt, εt−1, ....εt−j}
The conditional forecast to yt+1 made at time t is expressed as a forecast function:

Etyt+1 = a0 + a
1
yt (1761)

Similarly conditional forecast to yt+2 made at time t is

Etyt+2 = a0 + a
1
Etyt+1 = a0 + a

1
(a0 + a

1
yt) = a0 + a0a1

+ a2
1
yt (1762)

Similarly the three period ahead forecast is

Etyt+3 = a0 + a
1
Etyt+2 = a0 + a

1

(
a0 + a0a1

+ a2
1
yt
)

= a0 + a0a1
+ a0a

2
1

+ a3
1
yt (1763)

In general the j period ahead forecast

Etyt+j = a0 + a
1
Etyt+j−1 = a0 + a0a1

+ a0a
2
1

+ .......+ a0a
j−1
1

+ aj
1
yt (1764)

Forecast converges to a0

1−a
1
if |a1 | < 1.

Etyt+j
j→∞

=
a0

1− a
1

(1765)

Forecast error (unforecastable part of future yt)
One period ahead forecast error

Etyt+1 = a0 + a
1
yt (1766)

fet (1) = yt+1 − Etyt+1 = εt+1 (1767)

E [fet (1)] = 0;V ar [fet (1)] = σ2 (1768)

two period ahead forecast error

yt+2 = a0 + a1yt+1 + εt+2 = a0 + a1 (a0 + a1yt + εt+1) + εt+2

= a0 + a0a1 + a2
1
yt + a1εt+1 + εt+2 (1769)
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fet (2) = yt+2 − Etyt+2 = εt+2 + a1εt+1 (1770)

E [fet (2)] = E (εt+2) + a1E (εt+1) = 0 (1771)

var [fet (2)] = σ2 + a2
1
σ2 = σ2

(
1 + a2

1

)
(1772)

j period ahead forecast error

fet (j) = yt+j − Etyt+j = εt+j + a1εt+j−1 + a2
1
εt+j−2 + ....+ aj−1

1
εt−1 (1773)

E [fet (j)] = 0

var [fet (j)] = σ2
(

1 + a2
1

+ a4
1

+ a6
1

+ ......+ a2(j−1)
1

)
(1774)

It is obvious from above examples that the variance of forecast rises as the horizon of forecast
rises. There is more confidence in the short run forecast than in the long run forecast. With |a1 | < 1

the forecast variance converges to σ2

1−a2
1

.

Confidence interval of forecast (assuming normality of the errors,εt ∼ N(0, σ2
ε))

For one period ahead forecast:

95% confidence interval for Etyt+1 = a0 + a1yt ± 1.96σ (1775)

For two period ahead forecast:

95% confidence interval for Etyt+1 = a0 + a1yt + a2
1
yt ± 1.96σ2

(
1 + a2

1

)
(1776)

VAR Based Forecasting
Xt = A0 +A1Xt−1 + et (1777)

from successive iteration this reduces to

EtXt+n =
(
I +A1 +A2

1 +A3
1 + ......+An−1

1

)
A0 +An1Xt + et (1778)

Forecast error is given by(
et+n +A1et+n−1 +A2

1et+n−2 + ......+An−1
1 et+1

)
(1779)

EtXt+n = µ+

n−1∑
i=0

φi(i)εt+n−i (1780)

Xt+n − EtXt+n =

n−1∑
i=0

φi(i)εt+n−i (1781)

Taking only one equation
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yt+n − Etyt+n = φ11(0)εyt+n + φ11(1)εyt+n−1 + ...+ φ11(n− 1)εyt+1

+φ12(0)εzt+n + φ12(1)εzt+n−1 + ...+ φ12(n− 1)εzt+1 (1782)

Variance of n-step ahead forecast error is

σ (n)
2
y = σ2

y [φ11(0) + φ11(1) + ...+ φ11(n− 1)]

+σ2
z [φ12(0) + φ12(1) + ...+ φ12(n− 1)] (1783)

Variance decomposition in terms of variances of shocks εyt and εzt.

1 =
σ2
y [φ11(0) + φ11(1) + ...+ φ11(n− 1)]

σ (n)
2
y

+
σ2
z [φ12(0) + φ12(1) + ...+ φ12(n− 1)]

σ (n)
2
y

(1784)

Thus the variance decomposition is finding the proportion of variance explained by variables its
own shock(εyt) versus the variance explained by shock of the over variable (εyt).

13.4 Clement and Hendry (2000) Explanation of Forecast Failures

Clement and Hendry (2000) Explanation of Forecast Failures
They have the following example to illustrate this.

yt = φ+ Πyt−1 + εt (1785)

where εt ∼ N(0, σ2
y)

yt = (I −Π)
−1
φ = ϕ (1786)

Deviation from the forecast

yt − ϕ = Π (yt−1 − ϕ) + εt (1787)

h−step ahead forecast

ŷT+h − ϕ̂ = Π̂ (ŷT+h−1 − ϕ̂) = Π̂h (ŷT+h−1 − ϕ̂) (1788)

where ϕ = (I −Π)
−1
φ

After forecast at time t is made φ : Π are allowed change to φ∗ : Π∗

y
T+1

= φ∗ + Π∗yT+h−1 + εT+1 (1789)

φ∗ = (In −Π∗)
−1
ϕ∗

yT+h − ϕ∗ = Π∗ (yT+h−1 − ϕ∗) + εT+h = (Π∗)
h

(yT+h−1 − ϕ∗)

+

h−1∑
(Π∗)

h

i=0

εT+h−i (1790)
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ε̂T+h/T = yT+h − ŷT+h = ϕ∗ − ϕ̂+ (Π∗)
h

(yT+h − ϕ∗)− Π̂ (ŷT+h − ϕ̂)

+

h−1∑
(Π∗)

h

i=0

εT+h−i (1791)

These errors are decomposed in (i) slope change (ii) equilibrium mean change (iii) slope mispeci-
fication (iv) equilibrium mean mispecification (v) slope estimation (vi) equilibrium mean estimation
(viii) initial condition uncertainty and (viiii) error accumulation.
Do you remember difference and differential equations ? These models give time path of vari-

ables.

yt =

(
y0 −

b

a

)
e−at +

b

a
(1792)

yt =

[
y0 −

B

A

]
e−At +

B

A
=

y0 −
α
(
a+ nM

M + I +G
)

α
(
1− b+ nk

h

)


e−α(1−b+nk
h )t +

α
(
a+ nM

M + I +G
)

α
(
1− b+ nk

h

) (1793)

yt =

(
y0 −

α + γ

β + δ

)
e−k(β+δ)t +

α + γ

β + δ
(1794)

Pt = Pc + Pp = e−
m
2n t [A5 cos (vt) +A6 Sin (vt)] +

α + γ

β + δ
(1795)

Pt = A1e
r
1
t +A2e

r
2
t + 4 = e6t + e−2t + 4 (1796)

13.4.1 Predition

Y0 = β1 + β2Xi + ε0 (1797)

ε0 ∼ N
(
0, σ2

)
(1798)

Mean prediction:

Ŷ0 = β̂1 + β̂2Xi (1799)

Prediction error

f = Y0 − Ŷ0 = β1 + β2Xi + ε0 − β̂1 − β̂2Xi (1800)

Mean of prediction error

E (f) = E
(
β1 + β2Xi + ε0 − β̂1 − β̂2Xi

)
= 0 (1801)
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Predictor is ubiased.
Variance of Prediction error:

var
(
β̂1

)
=

[
1 +

1

N
+

(x0 − x)
2∑

(x0 − x)
2
i

]
σ̂2 (1802)

Proof

Y0 = Ŷ0 + ε̂0 (1803)

var (Y0) = var
(
Ŷ0

)
+ var (ε̂0) (1804)

var
(
Ŷ0

)
= var

(
β̂1 + β̂2X0

)
= var

(
β̂1

)
+X2

0var
(
β̂2

)
+ 2X0covar

(
β̂1β̂2

)
(1805)

Variance of Prediction

var
(
Ŷ0

)
=

∑(
Xi −X

)2
N
∑(

Xi −X
)2 σ̂2 +X2

0

∑(
Xi −X

)∑(
Xi −X

)2 σ̂2

+2X0

(
−X 1∑(

Xi −X
)2
)
σ̂2 (1806)

add and subtract
N
∑

(Xi−X)
2

N
∑

(Xi−X)
2 σ̂

2

var
(
Ŷ0

)
=

∑(
Xi −X

)2
N
∑(

Xi −X
)2 σ̂2 −

N
∑(

Xi −X
)2

N
∑(

Xi −X
)2 σ̂2 +X2

0

∑(
Xi −X

)∑(
Xi −X

)2 σ̂2

+2X0

(
−X 1∑(

Xi −X
)2
)
σ̂2 +

N
∑(

Xi −X
)2

N
∑(

Xi −X
)2 σ̂2 (1807)

Variance of forecast: taking common elements out

var
(
Ŷ0

)
= σ̂2


∑

(Xi−X)
2−N

∑
(Xi−X)

2

N
∑

(Xi−X)
2

+
X2

0−2X0X+
∑

(Xi−X)
2∑

(Xi−X)
2

 (1808)

var
(
Ŷ0

)
= σ̂2

[ ∑(
Xi −X

)2
N
∑(

Xi −X
)2 +

(
X0 −X

)2∑(
Xi −X

)2
]

(1809)

var
(
Ŷ0

)
= σ̂2

[
1

N
+

(
X0 −X

)2∑(
Xi −X

)2
]

(1810)
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var (f) = var
(
Ŷ0

)
+ var (ε̂0) (1811)

var (f) = σ̂2

[
1

N
+

(
X0 −X

)2∑(
Xi −X

)2
]

+ σ̂2 (1812)

var (f) = σ̂2

[
1 +

1

N
+

(
X0 −X

)2∑(
Xi −X

)2
]

(1813)

t-test for variance of forecast

tf =
Y0 − Ŷ0

SE (f)
∼ tN−2 (1814)

Standard error of forecast

SE (f) =
√
var (f) (1815)

Confidence interval of forecast

Pr

[
−tc ≤

Y0 − Ŷ0

SE (f)
≤ tc

]
= (1− α) (1816)

Pr
[
Ŷ0 − tcSE (f) ≤ Y0 ≤ Ŷ0 + tcSE (f)

]
= (1− α) (1817)

13.5 Non parametric estimation

• Hardle, W. and Linton, O. (1994) Applied nonparametric methods, in (D. F. McFadden and
R. F. Engle III, eds.) The Handbooko f EconometricsVol. IV, Amsterdam: North-Holland.

• Campbell J. Y., A. W. Lo and A C MacKindlay (1997) The Econometrics of Financial Mar-
kets, Princeton.

These are smoothing estimators and main types include:

• Kernel regression

• Orthogonal series expansion

• Projection pursuit

• Nearest-neighour estimator

• Average deviation estimators

• Splines

• Artificial neural networks.
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13.5.1 Kernel regression

Yt = m (xt) + εt; t = 1, .., ., T (1818)

Here m (xt) is arbitrarily fixed but given by a underlying non-linear function. For a particular
data point Xt=0 = x0 there are repeated independent observations of Yt=0 = {y1, y2, .....yn} .
Then by the law of large numbers

m̂ (x0) =
1

n

n∑
i=1

yi =
1

n

n∑
i=1

yi
[
m (x0) + εit

]
= m (x0) +

1

n

n∑
i=1

εit = m (x0) (1819)

More generally

m̂ (x0) =
1

T

T∑
i=1

ωt,T (x)yt (1820)

with ωt,T (x) weights assigned according to the distance.
In the Kernel regression optimal weights ωt,T (x) are constructed from a kernel probability density

function:
∫
k(u)du = 1

Nadaraya-Watson kernel estimator with bandwidth parameter h

m̂ (x0) =
1

T

T∑
i=1

ωt,T (x)yt =

T∑
i=1

Kh (x−Xt)Yt

T∑
i=1

Kh (x−Xt)

(1821)

An example of kernel regression:

Yt = sin (Xt) + 0.7εt (1822)

Average derivative estimator can be of the form of the direct, indirect and slope estimators;
with knumber of X variables

Yt = m (Xtβ) + εt; E (εT |Xt) = 0 (1823)

Indirect slope estimation (ISE) is estimated using an instrument H

βISE = (H ′X)
−1
H ′Y (1824)

13.5.2 Artificial Neural Network

It is a learning network consisting of multilayer perceptons (MLP), radial basis function (RBF),
hidden layers between the input layer and the output layers. A standard representation is :

Y = q

 J∑
j=1

βjXj − µ

 (1825)

where βj is the connection strength.
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g(u) =

∫ 1 if u > 0

0..... if u 6 0

(1826)

If the sum

(
J∑
j=1

βjXj

)
exceeds the threshold (µ) then the artificial neuron is switched on or

activated. Similarly the projection pursuit regression (PPR) aims at analysing high dimensional
dataset by looking at low dimensional projections

m (x0) = α0 +

K∑
k=1

αkmk

(
β′tXt

)
(1827)

and the radial basis function (RBF) aims to minimise the objective functional of the form

v (m) =

T∑
i=1

(∥∥∥Ŷt −m (xt)
∥∥∥2

+ λ ‖Dm (xt)‖2
)

(1828)

where
[
Ŷt −m (xt)

]
measures the distance between the m (xt) and the observation Yt and

Dm (xt) is penalty function decreasing with the smoothness of m (xt) and the λ controls the trade-
off between smoothness and fit.

13.5.3 State price densities

Economic application of non-parametric techniques is in deriving state price densities of the Arrow-
Debreau (1064) securities where the equilibrium price pt at time t of a security of single liquidating
payoff Y (CT ) at data T is given by:

Pt = Et [Y (CT )Mt,T ] ; Mt,T =
δT−1U ′(CT )

U ′(Ct)
(1829)

Pt = e−rt,T (T−1)

∫
Y (CT ) f∗ (CT , t, T ) dcT ; f∗ =

Mt,T ft(CT )∫
Mt,T ft(Ct)dct

(1830)

As explained in Campbell Lo and MacKinlay (1997, page 509) the second derivative of the call
pricing function Gt with respect to strike price Xt must equal the state price density (SPD)

∂2Gt
∂X2

= e−rt,T (T−1) f∗ (1831)

Parametric formula of call pricing of Black and Scholes (1973) in Brownian motion are good
when assumptions are true but the non-parametric estimation of call option pricing is more robust
and based on fewer assumptions (Alt Sahalia an Lo (1996))
Using a multivariate kernel

Kh (P,X, τ , rt) = khp (P ) khx (X) khτ (τ) kht (rτ ) (1832)
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Ĝ (P,X, τ , rt) =

T∑
i=1

khp (P − Pi) khx (X −Xi) khτ (τ − τ i) khr (rτ − rτ i)Ci
T∑
i=1

khp (P − Pi) khx (X −Xi) khτ (τ − τ i) khr (rτ − rτ i)
(1833)

Option’s delta and state price densities (SPD) are:

∆̂ (P,X, τ , rt) =
∂ (P,X, τ , rt)

∂P
(1834)

f∗ (PT |P, , τ , rt) = ertτ
[
∂2 (P,X, τ , rt)

∂X2

]
X=PT

(1835)

These delta and SPD are consistent and asymptotically normal as shown by Alt Sahalia an Lo
(1996).
These non-linear estimation techniques suffer from "overfitting" or data-snooping problems.

Overfitting occurs because of too many parameters relative to the number of data points and data-
snooping occurs because the fit is spurious and result of an extensive search procedure. A priori
theoretical considerations and good mathematical models of economic behavior can overcome this
problem.

14 LASSO and Ridge Regression (Machine Learning)

Least Absolute Selection and Shrinkage Operator (LASSO)
Theories of LASSO and Ridge Regression (Knight and Fu (2000) : a special case of penalized

regression or Bridge estimator

Min
∑(

Yi −XTφ
)2

+ λn |φ|γ (1836)

γ = 2 =⇒ ridge regression and γ = 1 =⇒ Lasso regression. LS with restriction.
Authors follow Hierarchical LASSO objectives by Bein et al. (2013)

Y = β0

p

+
∑
j

βjXj +
1

2

p∑
j 6=k

θjkXjXk + U (1837)

Least Absolute Selection and Shrinkage Operator (LASSO)

Min
∑Y − β0

p

−
∑
j

βjXj −
1

2

p∑
j 6=k

θjkXjXk + U

2

+ λ

p∑
j=1

∥∥βg∥∥+ λ

p∑
j=k

‖θ‖ (1838)

Group LASSO objectives by Yuan and Lin (2016)

Min
∑(

Y − β0 −
G∑
g=1

βgXj

)2

+

G∑
g=1

∥∥βg∥∥ (1839)
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https://www.youtube.com/results?search_query=lasso+regression
Justification of the research technique

• It is important provide intuition behind the LASSO

• How does it shrink parameters between treating and testing samples.

• How is sample divided between Treating and Testing Samples

• Small bias accepted in treating sample in order to reduce the variance in the overall regression

• Compare with the Ridge regression : while Ridge regression squares slope parameters in
restriction and LASSO has absolute deviations

• Rigorous theory of consistency of LASSO is discussed on Chatterjee, A., and S. N. Lahiri
(2008)

Strengths and assymptotic properties of LASSO Estimators

• Two main benefits of the Lasso are:

(i) the nature of regularization used in the Lasso leads to sparse solutions,
which automatically leads to parsimonious model selection (see Zhao and
Yu (2006), Wainwright (2006), Zou (2006)) and (ii) it is computationally
feasible (see Efron et. al (2004), Osborne et al. (2000), Fu (1998)), even in
high dimensional settings.

• The asymptotic properties of the Lasso was first studied by Knight and

Fu (2000) for the finite dimensional regressions∥∥∥β̂n − β∥∥∥ = 0
(
n−

(α−1)
α

)
with prob =1 as∥∥∥β̂OLS − β∥∥∥ = 0

(
n−

(α−1)
α

)
with prob =1

• Further literature: particularly on theory of LASSO and Ridge Regression

Belloni, A., Chernozhukov, V., Fernández-Val, I. and Hansen, C., 2017 (with programs and data
supplements in Econometrica)
Chatterjee, A., and S. N. Lahiri (2008)
Knight, Keith, and Wenjiang Fu (2000)
Hans, C., 2009; Hans, C., 2010 ;
Hansen, Bruce E. (2016)
Liangjun su, zhentao shi, and peter c. B. Phillips (2016)
Wang, Hansheng, Guodong Li, and Guohua Jiang (2007)
Varian, Hal R. 2014.
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14.1 SVM (Support Vector Machine)

Support vector machines (SVMs) are a set of supervised learning methods used for classifica-
tion,regression and outliers detection. It is one of the important tools in data science.
The advantages of support vector machines are:
• Effective in high dimensional spaces.
• Still effective in cases where number of dimensions is greater than the number of samples.
• Uses a subset of training points in the decision function (called support vectors), so it is

also memory effi cient.
• Versatile: different Kernel functions can be specified for the decision function. Common

kernels are provided, but it is also possible to specify custom kernels.
The disadvantages of support vector machines include:
• If the number of features is much greater than the number of samples, avoid over-fitting

in choosing Kernel functions and regularization term is crucial.
• SVMs do not directly provide probability estimates, these are calculated using an expensive

five-fold cross-validation (see Scores and probabilities, below).
Instructions for Python programmes see:
https://scikit-learn.org/stable/modules/svm.html

References

[1] Plakandaras, V., Gupta, R., Gogas, P. and Papadimitriou, T., 2015. Forecasting the US real
house price index. Economic Modelling, 45, pp.259-267.

[2] Gogas, P., Papadimitriou, T. and Takli, E., 2013. Comparison of simple sum and Divisia mon-
etary aggregates in GDP forecasting: a support vector machines approach. Economics Bulletin,
33(2), pp.1101-1115.

[3] Plakandaras, V., Papadimitriou, T. and Gogas, P., 2015. Forecasting daily and monthly ex-
change rates with machine learning techniques. Journal of Forecasting, 34(7), pp.560-573.

[4] Gogas, P., Papadimitriou, T. and Chrysanthidou, E., 2015. Yield curve point triplets in recession
forecasting. International Finance, 18(2), pp.207-226.

14.1.1 Extreme-Bound Analysis

Under the traditional econometric approach an investigator relies on correct sign of coeffi cients,
significance of t-values, and high R-square in order to determine the accuracy of the model specifi-
cation with no role for prior beliefs as an initial point for such specification. Only selective results
that fulfil above criteria are reported in practice. EBA explicitly incorporates prior information and
has systematic approach to test fragility of coeffi cients being reported (Leamer (1983) and Leamer
and Leonard (1983) and Granger and Uhlig (1990)) as noted in the EBA algorithm in the box
below.
In brief, Algorithm for the extreme bound is as proposed by Granger and Uhlig (1990) is
Let y = X + and focus coeffi cient 0 = ’ with linear constraints C = c and M(C -c) = 0.

Start with a GLS estimator of the full model of as b=(X’ −1X)−1(X’ −1 X) then estimate of 0,
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b0= ’b with the covariance matrix of b as D= ^2 (X’ −1X)−1 and its decomposition A = CDC’
with A−

1
2=A 1 for given M define W=A

1
2M’. Define two important vectors u = A−

1
2CD and v

=A−
1
2 (Cb-c) and with Euclidian norm u = u’u)

1
2 for [0,(2/ )] and cos2 = cos(u,v)

((u’u))/( u v ). cos2 = cos(u,v) = 0 if u = 0 or v = 0. The GLSE of ̂ of 0 under restriction
M(C - c) = 0 is 0 = b0 - u’W(W’W) 1W’v . The extreme values of 0 over all choices of M (full
row rank) are b0-cos2 u v < <b0+sin2 u v or b0- L u v < <b0+ U u v
While the regression analysis provides points or interval estimations of coeffi cients for each

of these explanatory variables, the EBA provides minimum and maximum effects of a variable on
stock returns by lower and upper-bounds of alternations coeffi cients of the free variables (in this case
corruption) due to inclusion or exclusion of each of the doubtful variables in the model. Ususally
EBA is prorgramed in STATA or R.

• Granger, C.W. & Uhlig, H.F., 1990. Reasonable extreme-bounds analysis. Journal of Econo-
metrics, 44(1-2), pp.159-170.

• Leamer, Edward E, (1983). Let’s Take the Con Out of Econometrics, American Economic
Review, American Economic Association, vol. 73(1), 31-43

• Leamer, E. and Leonard, H., 1983. Reporting the fragility of regression estimates. The
Review of Economics and Statistics, pp.306-317.

15 Tutorials

Econometric Analysis
Tutorial 1: Basics

Optimisation and Matrix

Q1. Consider y as a function of x1, x2 and x3 as given in the following equation:

y = −5x2
1 + 10x1 + x1x2 − 2x2

2 + 4x2 + 2x2x3 − 4x2
3 (1840)

a. Find the optimal values of , and using the first order conditions for unconstrained maximi-
sation. Use matrix approach in your solution.
b. Determine whether the above solutions correspond to the minimum or the maximum point

using positive or negative definite concepts of the Hessian determinants.

Q2. Consider coeffi cients of a market model given by a matrix A =

[
5 −1
−1 3

]
a) What are the eigen values of this maxtrix?

b) What are associated eigen vectors?

c) Prove that eigen vectors are orthogonal, (V1)
′
(V2) = 0

d) Prove (V1V2)
′
(V1V2) = (V1V2) (V1V2)

′
= I

Q3. Explain each of the following concepts.

a. Order of integration and unit root test.
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b. Engle-Granger Representation theorem.

c. Johansen test for cointegrating vector.

d. Simultanety bias.

e. Autocorrelation.
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Tutorial 2
Basic Regression Techniques

Q1. Consider a standard regression model Y = βX + e where Y is T × 1 vector of dependent
variable, X is T × K matrix of explanatory variables, e is T × 1 vector of independently
and identically distributed normal random variable with mean equal to zero and a constant
variance, that is e ∼ N(0, σ2I). Here β is a K × 1 vector of unknown coeffi cients.

a. Show how best, linear and unbiased parameters θ =
(
β, σ2

)
can be estimated using the OLS

method.

b. Show briefly how the generalised least square method can be used to avoid heteroskedasticity
or autocorrelation problems.

c. Prove that the ML estimators of β, σ2 are equivalent to the OLS estimators, where:

ML: lnL(θ/Y ) = ln

{
T

Π
i=1

1√
2πσ2

exp

[
−1

2

(Y − βX)
2

σ2

]}
(1841)

d. Show that the GMM estimators of β, σ2 are equivalent to both the OLS and ML estimators.

e. Why are GMM and ML estimators more popular in advanced studies than the OLS estima-
tors? Comment with some examples.

Q2. Consider the maximum likelihood function given below:

ML: lnL(θ/Y ) = ln

{
T

Π
i=1

1√
2πσ2

exp

[
−1

2

(Y − βX)
2

σ2

]}
(1842)

a. How are parameters α, β, σ2 estimated in this model?
b. For a linear function , prove that ML estimators of α, β, σ2 are equivalent to the OLS

estimators.
c. Discuss differences between the likelihood ratio test, Lagrange multiplier test and the

Wald test. Use diagrams and equations to illustrate your answer.
d. Illustrate how the maximum likelihood method can be applied in estimating parameters in a

ARMA(1,1) or ARCH(p,q) or GARCH(p,q) model.

Tutorial 2. 1
Simultaneous Equation

Q1. Consider a market model for a particular product.
Demand: Qdt = α0 + α1Pt + α2It + u1,t (1)
Supply: Qst = β0 + β1Pt + β2Pt−1 + u2,t (2)
Here Qdt is quantity demanded and Q

s
t is quantity supplied, Pt is the price of commodity,Pt−1

is price lagged by one period, It is income of an individual, u1,t and u2,t are independently and
identically distributed (iid) error terms with a zero mean and a constant variance.Qt and Pt are en-
dogenous variables and Pt−1and It are exogenous variables α0,α1,α2,and β0,β1,β2are six parameters
defining the system.
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1. How can simultaneity bias occur if one tries to apply OLS to each of the above equations.

Use rank and order conditions to judge whether each of these two equations are over-, under-
or exactly identified.

2. Write down the reduced form for this system.

3. How would you estimate the coeffi cients of the reduced form equations? Write down the
estimator.

4. If equations are identified explain how you may retrieve the structural parameters α0,α1,α2,and
β0,β1,β2, and from the coeffi cients of the reduced form equations.

Q2.Consider Keynes-Hicks Macroeconomic Model: Goods Market
Consumption function

Ct = β0 + β1 (Yt − Tt) + β2Xt + ε1,t (1843)

Taxes:

Tt = t0 + t1Yt + t2Mt + t3Gt + ε2,t (1844)

Imports:

M t = m0 +m1Yt +m2Mt +m3Gt + ε3,t (1845)

Investment

It = µ0 − µ1Rt + φ∆Yt−1 + ε4,t (1846)

Keynes-Hicks Macroeconomic Model: Money Market(
MM

P

)
t

= b0 + b1Yt − b2Rt + ε5,t (1847)

Macro balance

Yt = Ct + It +Gt +Xt −Mt = Ct + Tt + St (1848)

Money Market Equilibrium

Rt =
b0
b2
− 1

b2

(
MM

P

)
t

+
b1
b2
Yt (1849)

Here Yt, Rt, Ct, It, Tt, Mt are endogenous variables (income, interest rate, consumption, in-
vestment, tax revenue and imports);
government spending, exports, real money balances-liquidity are exogenous policy variables, Gt,

Xt,
(
MM
P

)
t
; behavioral parameters are β0, β1 T0, µ0,m0, t1,m1, b0, b1, b2.

a. Construct a table of structural coeffi cients in the tabular form.
b. Check whether each of the equation is identified or not using rank and order conditions.
c. Write the reduced form of the model.
d. Estimation the model using data in macro08.csv.
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e. Do historical simulations using this model.
f. Project the values of exogenous variables for next 10 quarters.
g. Forecast the economy for next ten quarters using estimated models and projected values of

exogenous variables.
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Tutorial 3
VAR and cointegration analysis

Q1. Consider a structural VAR model between yt and zt as following:

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1850)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (1851)

where εyt ∼ N(0, σ2
y) and εzt ∼ N(0, σ2

z).

a. Derive the reduced form of this VAR model and suggest ways to estimate the parameters in
it.

b. How would one determine stability of a VAR system like this? Provide analytical solutions
using the roots of the quadratic function.

c. How should one determine whether a VAR system like this is identified or not? What sort of
restrictions make it exactly or over identified?

d. Write impulse response functions for these two equations and indicate how can one perform
an impulse response analysis with them?

e. What is the meaning of variance decomposition in a VAR model like this?

Q2. Consider a vector error correction model (VECM) of the form

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + ΓkXt−k + εt (1852)

where Γ1 = −I + Π1 + Π2 + Π3 + ... + Πi for i = 1..k Γk gives the long run solution and
εt ∼ N(0, σ2

y).

a. What is the meaning of cointegration and why should there exist at least one cointegrating
vector in this equation?

b. Discuss how likelihood ratio tests are employed to determine the optimal lag.

c. Explain how the canonical correlations provide eigenvalues and eigen vectors that are useful
in determining the rank of the cointegrating vector.

d. Discuss a procedure for trace and max-eigenvalue tests for cointegration.
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Tutorial 4
Dynamic Analysis and the Maximum Likelihood

Q1. Consider the Full Information Maximum Likelihood (FIML) method to estimate a standard
macroeconomic model of the form

C = a0 + a1(Y − T ) + a2Yt−1 + u
1

(1853)

I = b0 + b1Y + b2Kt−1 + b3r + b4E + u2 (1854)

M = c
0

+ c
1
Y + c

2
Pt−1 + u

3
(1855)

Y = C + I +G+ E −M (1856)

where endogenous variables Y,C, I,M are income, consumption, investment and imports re-
spectively; exogenous variables G,E, T,Kt−1, Pt−1 and r denote government spending, exports, tax
revenue, lagged capital, lagged price level and interest rate respectively; u1, u2and u3 are error terms
in consumption, investment and imports respectively. Parameters a0, a1, a2, b0, b1, b2, b3, b4, c0, c1
and c2 provide behavioral relations in the model.
a. Derive the reduced form coeffi cients of this system and write the reduced form equations

in terms redefined endogenous variables y1 = C; y2 = I; y3 = M and exogenous variables z1 =
G; z

2
= E; z

3
= Kt−1; z

4
= T ; z

5
= Yt−1; z

6
= r; z

7
= Pt−1.

b. Write expressions for the joint distribution of errors, u
11
u

12
u

13
......u

1n
;u

21
u

22
u

23
......u

2n
;u

31
u

32
u

33
......u

3n
,

in this system
c. Derive the Jacobian matrix of the first order conditions to estimate the parameters of the

reduced system

u
1

= y
1
− α0 − α1

(y
2
) + α

1
(y3)− α

1
(z

1
)− α

1
(z

2
) + α

1
(z

4
)− α

2
z

5
(1857)

u
2

= y
2
− β0 − β1(y

1
) + β1(y3)− β1 (z

1
)− β2z3

− β3z6
− β4z2

(1858)

u3 = y3 − γ0
− γ

1

(
y1)− γ

1
(y2)− γ

1
(z1)− γ

1
(z2

)
− γ

2
z7 (1859)

d. Derive the log likelihood functions for y variables using the transformation functions as:

P (y
1i
.y

2i
.y

3i
) = P (u

1i
.u

2i
.u

3i
) .

∣∣∣∣∂ (u1i .u2i .u3i)

∂ (y
1i
.y

2i
.y

3i
)

∣∣∣∣ (1860)

e. Show first order conditions for maximisation of the log likelihood function in terms of the
reduced form parameters α0, α1, α2, β0, β1, β2, β3, β4, γ0, γ1 and γ2 .

f. Explain procedure on how all FIML parameters α
1,α2,β1, β2, β3, β4, γ1

, γ
2
and σ2

u1
, σ2
u2
and

σ2
u3
could be estimated and how the log FIML could be evaluated.
g. Why is FIML the most effi cient estimation technique for a system like this?
Q2. Consider a dynamic model of Yt on Yt−1, Xt and Xt−1 in the LSE tradition as given

below.

Yt = α0 + α1Yt−1 + β0Xt + β1Xt−1 + ut (1861)
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a. What is the error correction form of this model?

b. Briefly analyse the implications of following restrictions in the comparative static or dynamic
properties of the model.

1) α1 = 0; β1 = 0
2) β1 = 0
3) α1 = 0; β0 = 0
4) α1 = 0
5) α1 = 1 ; β0 + β1 = 0
6) β0 = 0

c. An urn contains N balls and N1 of them are red. The likelihood function of being red in N1

draws is given by the discrete Bernauli probability distribution function as

p(N) = pN1(1− p)N−N1 (1862)

Using the maximum likelihood estimatore i) prove that p = N1

N and ii) it maximises the
likelihood function (second order conition).
Q3. Consider a Lagrange function for a restricted least square model.

L = e′e+ 2λ
(
r′ − β′R′

)
= (Y − βX)

′
(Y − βX) + 2λ

(
r′ − β′R′

)
= Y ′Y − 2βX ′Y + (βX)

′
(βX) + 2λ

(
r′ − β′R′

)
(1863)

a. Using the first order conditions derive the estimator of parameter veror (b) given by the
restricted least square. What is the value of λ?

b. Prove that the variance of the restricted least square is smaller than the variance of the
unrestricted least square.
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Tutorial 5
Time Series, ARMA, ARIMA

Q1. Consider a monthly time series {yt}

a. Show how the traditional moving average based methods could be applied to decompose its
trend, seasonal, cyclical and irregular components.
b. Consider a random walk model yt = yt−1 + εt with initial conditions y1 = y0 for t =1.What

are the mean, variance and the time path of yt in terms of current and past series of errors εt ?
What is its conditional forecast for period j made at time t? What is the error of forecast and its
variance? How are the mean and variances affected if this random walk includes a drift term a0 as
in yt = yt−1 + a0 + εt.

c. Consider signal extraction problem for series yt including permanent and transitory shocks
components as εt and ηt

yt = εt + ηt and ε∗t = a+ byt
where E (εt) = 0 ; E (ηt) = 0 ;E (εtηt) = 0; E

(
ε2
t

)
= σ2; E

(
η2
t

)
= σ2.

What is its minimum square error (MSE)? How is the partitioning parameters b optimally
estimated?
d. What are the prominent reasons for a failure of forecast? Illustrate Ganger and Newbold

(1986) technique for combining optimal forecasts as in fct = (1− λ) f1t + λf2t .

Q2. What is the main principle of forecasting and what are the reasons for failure of model based
forecasts? Derive the forecast errors and variance of forecast for the following forecasting
models .

a. Random walk with a drift:
[
y1 = y0 + a0 + ε1, eT+1

∼ N (0, 1)
]
.

b. Period h ahead forecast of AR(1):
[
yT+h = δ + θ1yT+h−1

+ eT+h, eT+h
∼ N (0, 1)

]
.

c. One period ahead forecast in MA(1):
[
y
T+1

= µ+ e
T+1

+ α1eT , eT+1
∼ N (0, 1)

]
.

d. Two period ahead forecast in ARMA(1,1):
[
y
T+2

= δ + θ1yt+1 + e
T+2

+ α1eT+1
, e
T+2
∼ N (0, 1)

]
.
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Tutorial 6
Cross section analysis: Probability Models

Q1. Discuss the maximum likelihood functions and Newton-Ralphson or BHHH algorithms for
estimation of parameters and the testing procedure for the following cross section models:

a. Logit
[
Pi = 1

1+e−Zi
with Zi = β1 + β2Xi + εi

]
.

b. Count data
[
P (Y = y) = e−λλy

y!

]
.

c. Multinomial Choice model:

Pi,2Pi,1
=

exp(X′i,2 β)
J∑
j=1

exp(X′i,j β)

exp(X′i,1 β)
J∑
j=1

exp(X′i,j β)

=
exp(X′i,2 β)
exp(X′i,1 β)

 .
d. Ordered probit model:

[
prob (y = J |x) = 1− Φ

(
µJ−1 − x′β

)]
.

e. Heckman’s correction for selectivity bias in which

Y1,i = X1iβ + ε1,i and Y2,i = X2,iβ + ε2,i and if the event occurs Y1,i > Y2,i.

f. Two limit Tobit for a certain regression Yi = β1 + β2Xi + εi with

Yi =

 Y ∗i if L1 < Y ∗i < L2 if the event occurs
L1 if Y ∗i < L1

L2 if Y ∗i ≥ L2

 .
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Tutorial 7
Panel Data Models

Q1. Consider a panel data set with time t = 1, .., .., .T and individuals i = 1, . . . .N . Discuss the
specification, estimation and testing procedure for the following versions of panel data models

a. Pooling cross section and time series in SUR model.

b. Fixed effect model for
[
yi,t = αi + xi,tβ + εi,t εi,t ∼ N

(
0, σ2

i,t

)]
.

c. Random effect model for
[
yi,t = αi + xi,tβ + γi + εi,t εi,t ∼ N

(
0, σ2

i,t

)]
.

d. Dynamic panel data model
[
yi,t = αi + θiyi,t−1 + xi,tβ + γi + εi,t εi,t ∼ N

(
0, σ2

i,t

)]
.

e. Im-Pesaran-Shin and KPSS panel unit root tests.

f. Pedroni’s panel cointegration test.

Tutorial 8
Duration Analysis

Q1. Derive duration density, hazard rate, survival function and duration dependence for the fol-
lowing duration or hazard functions and explain the general procedure for estimation of model
parameters.

a. Exponential distribution. [F (t) = 1− exp (−λ.t)] .

b. Weibull
[
f (t) = αλtα−1 exp (−λ.tα)

]
.

c. Log normal distribution
[
f (t) = 1

σ.tφ
(

log T−m
σ

)]
.

d. Log logistic
[
f (t) = αγtα−1 (1 + γtα)

−2
]
.

e. Gamma distribution
[
f (t) =

[avtv−1 exp(−at)]
Γ(v) where Γ (v) =

∫∞
0

exp (−t) tv−1∂s.

]
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Tutorial 9
Bayesian Modelling

Q1. Write short notes on any five of the following issues relating to the Bayesian modelling and
analysis.

a. Difference between classical and Bayesian assumptions on parameters and errors in a linear
regression.

b. Bayesian rule where p(A,B) denotes the joint probability of occurring events A and B to-
gether, p (B) is the marginal probability of B without any respect to occurrence of A. Similarly
p (A) is the marginal probability of A without any respect to occurrence of B.

c. Bayesian prior and posterior density functions on unknown parameters β and τ for the like-
lihood function such as: log l (β, τ) = 1

2 [n log τ − τ (β − b)X ′X (β − b)− τe′e]

d. Estimates of the mean and variance of β and τ in the above Bayesian linear regression model.

e. Bayesian panel data model of the form yi,t = xi,tβ + αi + ei,t with priors ei,t/xi,t, β, αi, τ ∼
N (0, τ) .

f. Estimation procedure in a Bayesian VAR model of the form: Yj
T×1

= Xj
T×K

βj
K×1

+ uj
T×1

where

uj ∼ N
(
0, σ2

i,jIT
)
.

g. Specification and estimation procedure of the Bayesian stochastic volatility models (Bayesian
ARCH/GARCH).

h. MCMC algorithm.

Tutorial 10
GMM

Q1. Consider consumer optimisation problem in a capital asset pricing model popularised by
Hansen and Singleton (1982) stated as:

max E0

[ ∞∑
t=0

δtU (Ct)

]
(1864)

subject to

Ct + PtQt ≤ RtQt−1 +Wt (1865)

a. Formulate the generic Lagrangian function for constrained optimisation to solve this problem.
Then modify the utility function as U (Ct) =

Cγt
γ with γ < 1; α = γ − 1.

b. Derive the Euler equations based on the first order conditions that maximise the objective
function of the model.

c. Discuss how the GMM could be applied to estimate the parameters δ and α . Why the
application of the maximum likelihood is computationally cumbersome here and generates
biased results?
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d. Discuss properties of Arellano-Blundel-Bond GMM estimators for a dynamic panel data model
to estimate such CAPM model across countries.

e. For applied studies discuss the GMM estimation procedure in Eviews/RATS/STATA/PcGive.
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16 Assignment

Write an essay in 2000 words in any one of the following issues; this essay accounts for 20 percent
of the module marks. For each topic first present the theoretical model and derivations. Then
state major hypotheses and economic logic behind it. Select variables from the dataset; examine
summary statistics of those variables. Do estimations and interpret their significance and test their
validities and suggest limitations and alternative structures of the model. Compare effi ciency of
OLS, maximum likelihood, the GMM or non-parametric estimators for the issue at hand. Explain
contribution of analysis in coming decision and relate to more advanced methods developed in
recent years such as non-linear, non-parametric or dynamic factor models.

1. Do cross section analysis using the data in the annual population survey or the longitudinal
dataset contained in the Understanding Society (the BHPS or the PIDS or German Social
and Economic Survey or Luxumberg poverty study or similar cross section dataset of your
choice).

2. Develop a Bayesian macro model for policy coordination and estimate model parameters using
the MCMC and Kalman Filter algorithms. Use MATLAB/dynare.

3. Develop classical and Bayesian VAR/cointegration model for a country of your choice and
apply it for policy analysis such as for assessing the macroeconomic impacts Brexit process
in the UK or the EU economies.

4. Analyse how volatility of stock prices are linked to the economic performance of comporations
and macroeconomic indicators using ARCH/GARCH or multivariate ARCH/GARCH models
on quarterly time series data.

5. Apply static, dynamic or threshold panel data models to assess impacts of economic growth
on poverty and inequality. Do open countries grow faster and achieve more equality in income
distribution?

6. Is there an optimal size of public debt? Analyse this issue using a fiscal and monetary
policy simulation and forecasting model for a country of your choice. Analyse impacts and
implications of quantitative easing.

7. Assess impacts of tax or trade policies using a dynamic general equilibrium model of an econ-
omy. Use GAMS/MPSGE for computing such model and excel based routines in processing
and presenting results in a paper.

8. Apply duration model to assess conditional hazard rates of some important economic phenom-
ena such as end of unemployment spells, failure of a company, change in price of products, or
probability of occurrence of certain medical problem such as stroke among a given population.

9. Has the price of energy been a constraint in economic growth? Use non-parametric techniques
for analysis such as Support Vector Machine (SVM), LASSO or ridge regressions or Exteme
Bound Analysis (EBA).

10. Quantify the impact of effi ciency in the financial or logistic sectors in the economic growth
rate and consumer welfare in an economy.

11. Use cross section surveys in order to study consumer or employee satisfaction in a given
market or in institutions.
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16.0.2 Instructions for the essay

1. Essay should contain motivation, brief review of relevant literature, analytical section, estimation or
computation and conclusions, recommendations and references. You must report of validity of results
using test statistics or sensitivity analysis.

2. Write in your own words referring to economic theories and evidences and literature. Both quan-
titative and qualitative methods can be applied according to your interest. Be critical, analytical
and very precise. Submit the electronic copy of the essay through Turnitin and a hard copy to the
research offi ce by the deadline.

3. CConsult essays on economic theory and other reading materials. Construct additional reading list
that might be helpful in preparation for the above assignment. Ask and sear for related articles.
They can be found from JSTOR and Econlit..

4. Some examples of data and relevant software information is given in the Ebridge site. More detailed
derivations could be kept in the appendix.

5. Provide the topic by the second week, specification of the model by the fourth week, estimation
and analysis by the sixt week and draft of the essay by the 8th week and then submit the essay to
the research offi ce on the day mentioned in the module handbook. Materials from the lectures and
tutorial should be applied and referenced as usual with other articles, tests or reports to substantiate
the findings.

Assessment criteria: This is expected to be a professional piece of work and must contain a
model and analysis. Be original, critical, systematic, concise, consistent, organised in presentation
of your arguments. Essay should follow a style of journal article. The elements of marks will
broadly be based on the originality of the question (20%) analytical structure (30%); estimation
and computation (20%), explanation of results (20%), overall presentation (10%). Students are
allowed to ask any question on the chosen topic in any teaching sessions.
The essay should be typed in the double space, checked for spelling, grammar and pagination.

Put word counts in the top right corner of the front page. You must read the Business School
policies regarding academic honesty and consequences of plagiarism as mentioned in the Business
School Skills Handbook and declare academic honesty by filling in cover sheet of submission.
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16.1 Econometric and Statistical Software

• Excel

• OX-GiveWin/PcGive/STAMP

• Eviews

• Shazam

• microfit

• JMulti

• RATS

• NLOGIT/ LIMDEP

• GAUSS

• STATA/SPSS

• R http://www.ats.ucla.edu/stat/r/ ;

• http://www.feweb.vu.nl/econometriclinks/; https://www.aeaweb.org/rfe/

1. Excel Spreadsheets are very user friendly and could be used for algebraic calculations and
statistical analyses for many kinds of economic models. First prepare an analytical solution by hand
then use Excel formula to compute. Excel has constrained optimiser routine at tool/goal seek and
solver commend. It also contains matrix routines to get determinants of matrices and to multiply
and invert them using multiple cell options (see Koop (2007)).
2. OX-GiveWin/PcGive/STAMP (www.oxmetrics.net) is a very good econometric software for

analysing time series and cross section data. This software is available in all labs in the network
of the university by sequence of clicks Start/applications/economics/givewin. Following steps are
required to access this software.
a. save the data in a standard excel file. Better to save in *.csv format .
b. start give win at start/applications/economics/givewin and pcgive (click them separately)
c. open the data file using file/open datafile command.
d. choose PcGive module for econometric analysis.
e. select the package such as descriptive statistics, econometric modelling or panel data models.
d. choose dependent and independent variables as asked by the menu. Choose options for

output.
e. do the estimation and analyse the results, generate graphs of actual and predicted series.
A Batch file can be written in OX for more complicated calculations using a text editor such as

pfe32.exe. Such file contains instructions for computer to compute several tasks in a given sequence.
Doornik J A and D.F. Hendry ((2003) PC-Give Volume I-III, GiveWin Timberlake Consultants

Limited, London
R : https://www.coursera.org/course/rprog
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16.1.1 Mathematical software

4. GAMS is good particularly in solving linear and non-linear problems. It has widely been used to
solve general equilibrium models with many linear or non-linear equations on continuous or discrete
variables. It comes with a number of solvers that are useful for numerical analysis. For economic
modelling it can solve very large scale models using detailed structure of consumption, production
and trade arrangements on unilateral, bilateral or multilateral basis in the global economy where the
optimal choices of consumers and producers are constrained by resources and production technology
or arrangements for trade.
It is a user friendly software. Any GAMS programme involves

• declaration of set, parameters, variables, equations,

• initialisation of variables

• setting their lower or upper bounds

• solving the model using Newton or other methods for linear or non-linear optimisation

• and reporting the results in tables or graphs (e.g. ISLM.gms ).

Full version of GAMS/MPSGE program is good for large scale standard general equilibrium
models. GAMS programme can be downloaded from demo version of GAMS free from www.gams.com/download).
The check whether the results are consistent with the economic theory underlying the model such

as ISLM-ASAD analysis for evaluating the impacts of expansionary fiscal and monetary policies.
Use knowledge of growth theory to explain results of the Solow growth model from Solow.gms.
Consult GAMS and GAMS/MPSGE User Manuals, GAMS Development Corporation, 1217

Potomac Street, Washington D.C or www.gams.com or www.mpsge.org for GAMS/MPSGE.
For other relevant software visit: http://www.feweb.vu.nl/econometriclinks/ or

https://www.aeaweb.org/rfe/;

16.1.2 MATLAB

MATLAB is widely used for solving models. It has script and function files used in computations.
Both have *.m extensions. Its syntax are case sensivite. Solving a system of linear equations

and handling matrices
Example 1
Write a programme file matrix.m like the following and try run.
% now solve a linear equation
% 5x1 + 2x2 =20
% 3x2 + 4x2 =15
k =[5 2;3 4];
n = [20 15];
kk = inv(k)
x = kk*n’
One more example of system of equation and factorisation of matrices
A=[1 2 3; 3 3 4; 2 3 3]
b=[1; 2; 3]
%solve AX=b
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X = inv(A)*b
%eigen value and eigenvectors of A
[V,D]=eig(A)
%LU decomposition of A
[L,U]=lu(A)
%orthogonal matrix of A
[Q,R]=qr(A)
%Cholesky decomposition (matrix must be positive definite)
%R = chol(A)
%Singular value decomposition
[U,D,V]=svd(A)
Contents.m for list of files in MATLAB demo. MATLAB demo available in http://www.youtube.com/.
Run "kalman_run.m" in MATLAB with function "kalmanf.m" from the eBridge.
Relevant web pages
http://www.khanacademy.org/ ; http://www.feweb.vu.nl/econometriclinks/
http://www.econometricsociety.org/; http://www.aeaweb.org/aer/index.php; http://www.res.org.uk/economic/ejbrowse.asp
http://www.imf.org/external/pubs/ft/weo/2010/01/weodata/index.aspx;
http://www.ifs.org.uk/publications/789
http://www.esds.ac.uk/international/; http://www.bankofengland.co.uk/;
http://www.hm-treasury.gov.uk/
http://www.eea-esem.com/EEA/2010/Prog/ - look at fiscal policy sessions.
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17.5 Class test 2011

Answer any two questions; one from each section. Each question is worth 100 marks. Each sub-
question has equal value in any question.

Section A

Q1. Consider y as a function of x1, x2 and x3 as given in the following equation:

y = −5x2
1 + 10x1 + x1x2 − 2x2

2 + 4x2 + 2x2x3 − 4x2
3 (1866)

a. Find the optimal values of , and using the first order conditions for unconstrained maximi-
sation. Use matrix approach in your solution.
b. Determine whether the above solutions correspond to the minimum or the maximum point

using positive or negative definite concepts of the Hessian determinants.

Q2. Consider coeffi cients of a market model given by a matrix A =

[
5 −1
−1 3

]
a) What are the eigen values of this maxtrix?

b) What are associated eigen vectors?

c) Prove that eigen vectors are orthogonal, (V1)
′
(V2) = 0

d) Prove (V1V2)
′
(V1V2) = (V1V2) (V1V2)

′
= I

Section B

Q3. Consider the maximum likelihood function given below:

ML: lnL(θ/Y ) = ln

{
T

Π
i=1

1√
2πσ2

exp

[
−1

2

(Y − βX)
2

σ2

]}
(1867)
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a. How are parameters α, β, σ2 estimated in this model?
b. For a linear function , prove that ML estimators of α, β, σ2 are equivalent to the OLS

estimators.
c. Discuss differences between the likelihood ratio test, Lagrange multiplier test and the

Wald test. Use diagrams and equations to illustrate your answer.
d. Illustrate how the maximum likelihood method can be applied in estimating parameters in a

ARMA(1,1) or ARCH(p,q) or GARCH(p,q) model.

Q4. Consider a structural VAR model between yt and zt as following:

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1868)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (1869)

where εyt ∼ N(0, σ2
y) and εzt ∼ N(0, σ2

z).

(a) Derive the reduced form of this VAR model and suggest ways to estimate the parameters in
it.

(b) How would one determine stability of a VAR system like this? Provide analytical solutions
using the roots of the quadratic function.

(c) How should one determine whether a VAR system like this is identified or not? What sort of
restrictions make it exactly or over identified?

(d) Write impulse response functions for these two equations and indicate how can one perform
an impulse response analysis with them?

(e) What is the meaning of variance decomposition in a VAR model like this?

Q5. Consider a monthly time series {yt}
a. Show how the traditional moving average based methods could be applied to decompose its

trend, seasonal, cyclical and irregular components.
b. Consider a random walk model yt = yt−1 + εt with initial conditions y1 = y0 for t =1.What

are the mean, variance and the time path of yt in terms of current and past series of errors εt ?
What is its conditional forecast for period j made at time t? What is the error of forecast and its
variance? How are the mean and variances affected if this random walk includes a drift term a0 as
in yt = yt−1 + a0 + εt.

c. Consider signal extraction problem for series yt including permanent and transitory shocks
components as εt and ηt

yt = εt + ηt and ε∗t = a+ byt
where E (εt) = 0 ; E (ηt) = 0 ;E (εtηt) = 0; E

(
ε2
t

)
= σ2; E

(
η2
t

)
= σ2.

What is its minimum square error (MSE)? How is the partitioning parameters b optimally
estimated?
d. What are the prominent reasons for a failure of forecast? Illustrate Ganger and Newbold

(1986) technique for combining optimal forecasts as in fct = (1− λ) f1t + λf2t .
Q6. Write short notes in any three of the following.
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a. Order of integration and unit root test.
b. Engle-Granger Representation theorem.
c. Johansen test for cointegrating vector.
d. Simultaneity bias.
e. Autocorrelation.

Q7. Consider a market model for a particular product.
Demand: Qdt = α0 + α1Pt + α2It + u1,t (1)
Supply: Qst = β0 + β1Pt + β2Pt−1 + u2,t (2)
Here Qdt is quantity demanded and Q

s
t is quantity supplied, Pt is the price of commodity,Pt−1

is price lagged by one period, It is income of an individual, u1,t and u2,t are independently and
identically distributed (iid) error terms with a zero mean and a constant variance.Qt and Pt are en-
dogenous variables and Pt−1and It are exogenous variables α0,α1,α2,and β0,β1,β2are six parameters
defining the system.

1. How can simultaneity bias occur if one tries to apply OLS to each of the above equations.

2. Use rank and order conditions to judge whether each of these two equations are over-, under-
or exactly identified.

3. Write down the reduced form for this system.

4. How would you estimate the coeffi cients of the reduced form equations? Write down the
estimator.

5. If equations are identified explain how you may retrieve the structural parameters α0,α1,α2,and
β0,β1,β2, and from the coeffi cients of the reduced form equations.

17.6 Class test 2012

Answer one question from each section
Section A

Q1. Consider a market model for a particular product.

Demand:

Qdt = α0 + α1Pt + α2It + u1,t (1870)

Supply:

Qst = β0 + β1Pt + β2Pt−1 + u2,t (1871)

Here Qdt is quantity demanded and Q
s
t is quantity supplied, Pt is the price of commodity,Pt−1

is price lagged by one period, It is income of an individual, u1,t and u2,t are independently and
identically distributed (iid) error terms with a zero mean and a constant variance.Qt and Pt are en-
dogenous variables and Pt−1and It are exogenous variables α0,α1,α2,and β0,β1,β2are six parameters
defining the system.

a. How can a simultaneity bias occur if one tries to apply the OLS method to each of the above
equations?
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b. Use rank and order conditions to judge whether each of these two equations are over, under
or exactly identified.

c. Write the reduced form for this system and define each of the reduced form coeffi cients in
terms of structural parameters.

d. How would you estimate the coeffi cients of the reduced form equations? Write the estimator
(s).

e. If equations are identified, explain how can one retrieve the structural parameters α0,α1,α2,and
β0,β1,β2from the coeffi cients of the reduced form equations.

Q2. Consider a dynamic model of Yt on Yt−1, Xt and Xt−1 in the LSE tradition as given below.

Yt = α0 + α1Yt−1 + β0Xt + β1Xt−1 + ut (1872)

a. What is the error correction form (ECM) of this model?

b. Analyse implications of following restrictions in the comparative static or dynamic properties
of this model.

1) α1 = 0; β1 = 0
2) β1 = 0
3) α1 = 0; β0 = 0
4) α1 = 0
5) α1 = 1 ; β0 + β1 = 0
6) β0 = 0

c. Assume the data generating process of Xt variable for each t follows a discrete Bernoulli
probability likelihood function as

X(N) = pN1(1− p)N−N1 (1873)

X equals 1 if a draw happens to be a red ball and 0 otherwise. Let N1 denote the number red
balls out of total of N balls. Using the maximum likelihood estimator i) prove that the probability
of X being red (X = 1) is p = N1

N and ii) it maximises the likelihood function (second order
condition).
Section B

Q3. What is the main principle of forecasting and what are the reasons for failure of model based
forecasts? Derive period 1 ahead forecast errors and variance of the forecast for each of the
forecasting models given below.

a. A two period ahead (h = 2) forecast for a random walk with a drift: [y1 = y0 + a0 + ε1] ;
e
T+1
∼ N (0, 1)

b. Period one ahead forecast (h = 1) of AR(1):
[
yT+h = δ + θ1yT+h−1

+ eT+h, eT+h
∼ N (0, 1)

]
.

c. Two period ahead (h = 2) forecast in MA(1):
[
y
T+1

= µ+ e
T+1

+ α1eT , eT+1
∼ N (0, 1)

]
.
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d. Two period ahead forecast (h = 2) in ARMA(1,1):
[
y
T+2

= δ + θ1yt+1 + e
T+2

+ α1eT+1

]
;

e
T+2
∼ N (0, 1) .

Q4. Consider a structural VAR model between yt and zt as following:

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1874)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (1875)

where εyt ∼ N(0, σ2
y) and εzt ∼ N(0, σ2

z).

(a) Derive the reduced form of this VAR model and suggest ways to estimate those reduced form
parameters in it.

(b) How would one determine the stability of a VAR system like this? Provide analytical solutions
using the roots of the relevant quadratic function.

(c) How should one determine whether a VAR system like this is identified or not? What sort of
restrictions make it exactly or over identified?

(d) Write impulse response functions for these two equations and indicate how one could perform
an impulse response to an unit shock in either of these two variables?

Q5. Write short notes in any three of the following.

(a) Engle-Granger Representation theorem.

(b) Johansen test for cointegrating vector.

(c) Nonparametric estimation

(d) Autocorrelation.

(e) Order of integration and unit root test.

17.7 Class test 2014

17.7.1 Section A

Q1. Consider a market model for a particular product where quantity demanded
(
Qdt
)
and supplied

(Qst ) are expressed as functions of the current and lagged prices, Pt and Pt−1 of this commodity
and the income of individuals (It) as:

Demand:

Qdt = α0 + α1Pt + α2It + u1,t (1876)

Supply:

Qst = β0 + β1Pt + β2Pt−1 + u2,t (1877)

here u1,t and u2,t are error terms representing missing elements of demand and supply functions.
These are independently and identically distributed (iid) with zero means, constant variances and
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zero covariane: u1,t ∼ N
(
0, σ2

1

)
; u2,t ∼ N

(
0, σ2

2

)
and E (u1,tu2,t) = 0. The quantity and price,

Qt and Pt, are endogenous variables and Pt−1and It are exogenous variables in this model. Then
α0,α1,α2, β0, β1 and β2 are six unknown parameters of the system to be estimated from available
data.

a. How can the simultaneity bias occur if the OLS is applied to each of the above equations?

b. Determine whether each of these two equations is over, under or exactly identified using the
order and rank conditions.

c. Write the reduced form equations for this system and define each of the reduced form coeffi -
cients in terms of the structural parameters.

d. How would you estimate the coeffi cients in the reduced form equations? Characterise estima-
tors that you suggest.

e. Dicsuss the procedure to retrieve the structural parameters α̂0,α̂1,α̂2, β̂0,β̂1and β̂2 from the
coeffi cients of the reduced form equations.

Q2. Consider a dynamic model of Yt on Yt−1, Xt and Xt−1 in the LSE tradition as given below.

Yt = α0 + α1Yt−1 + β0Xt + β1Xt−1 + ut (1878)

a. Express the error correction mechanism (ECM) for endogenous variable Yt towards its long
run equilibrium.

b. Analyse the implications of the following restrictions in the static or dynamic properties of
this model.

(a) α1 = 0; β1 = 0

(b) β1 = 0

(c) α1 = 0; β0 = 0

(d) α1 = 0

(e) α1 = 1; β0 + β1 = 0

(f) β0 = 0

c. Discuss any three methods that can be applied to estimate unknown parameters α0, α1, β0

and β1 of this model. Which one of these methods is the best for ensuring the unbiasedness,
effi ciency and consistency properties of estimated parameters.

Q3. Consider a data generating process for a monthly macroeconomic or financial time series yt,
such as the unemployment rate, inflation, stock price or the exchange rate.

a. Show how the traditional moving average based methods can be applied to find the trend,
seasonal, cyclical and irregular components of series yt.
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b. Assume that yt follows a random walk, yt = yt−1 + εt with initial conditions y1 = y0 when
t = 1. What are the mean, variance and the time path of yt in terms of current and past
series of errors εt−s for s = 1, ., S? How do the mean and variance of yt change if this random
walk process also includes a drift term a0 as in it: yt = yt−1 + a0 + εt?

c. What is the main principle of forecasting and what are the reasons for the failure of model
based forecasts?

d. Express the forecast errors for a

(a) two period ahead (h = 2) forecast for a random walk with a drift: [y1 = y0 + a0 + ε1] ,
e
T+1
∼ N (0, 1) .

(b) one period ahead forecast (h = 1) for AR(1) :
[
yT+h = δ + θ1yT+h−1

+ eT+h, eT+h
∼ N (0, 1)

]
.

(c) two period ahead (h = 2) forecast for MA(1) :
[
y
T+1

= µ+ e
T+1

+ α1eT , eT+1
∼ N (0, 1)

]
.

(d) two period ahead forecast (h = 2) in ARMA(1,1) :
[
y
T+2

= δ + θ1yt+1 + e
T+2

+ α1eT+1

]
;

e
T+2
∼ N (0, 1) .

17.7.2 Section B

Q4. Consider a structural VAR model between yt and zt:

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1879)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (1880)

where εyt ∼ N(0, σ2
y) and εzt ∼ N(0, σ2

z).

a. Derive the reduced form equations of the VAR model above and suggest ways to estimate the
reduced form parameters.

b. How would one determine the stability of a VAR system such as this? Base your answer on
relevant quadratic roots emerging from your derivation.

c. How should one determine whether a VAR system as above is identified or not? What type
of restrictions make it exactly or over identified?

d. Write the impulse response functions for yt and zt equations above and indicate how one could
perform an impulse response to a unit shocks εyt or εzt?

e. Discuss the implications of the Engle-Granger Representation theorem and the Johansen’s
cointegrating test for for a VAR model as above.

Q5. Consider a panel data set with time t = 1, ., ., .T and individuals i = 1, ., ., .N .

a. Discuss estimation procedures for the following types of panel data models:

(a) Pooling cross section and time series in the SUR model.

(b) Fixed effects model: yi,t = αi + xi,tβ + εi,t εi,t ∼ N
(
0, σ2

i,t

)
.
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(c) Random effects model: yi,t = αi + xi,tβ + γi + εi,t εi,t ∼ N
(
0, σ2

i,t

)
.

(d) Dynamic panel data model: yi,t = αi + θiyi,t−1 + xi,tβ + γi + εi,t εi,t ∼ N
(
0, σ2

i,t

)
.

b. Explain the significance of following tests for a panel data model

(a) Im-Pesaran-Shin and KPSS panel unit root tests.

(b) Pedroni’s panel cointegration test.

Q6. Explain the maximum likelihood estimation process for the cross section models given below.

(a) Logit Pi = 1
1+e−Zi

with Zi = β1 + β2Xi + εi

(b) Count data model P (Y = y) = e−λλy

y!

(c) Multinomial choice model: Pi,2
Pi,1

=

 exp(X′i,2 β)
J∑
j=1

exp(X′i,j β)

 /

 exp(X′i,1 β)
J∑
j=1

exp(X′i,j β)

 =
exp(X′i,2 β)
exp(X′i,1 β)

.

(d) Explain Heckman’s procedure to correct the selectivity bias in the cross section models
as above.

17.8 Final exam 2011

Answer any four questions. Each question is of equal value. Each sub-question has equal value in
any question.
Q1. Consider the Engle-Granger representation theorem.

a. Prove that there exists a valid error correction representation (ECM) of the data if two time
series are cointegrated of order 1, CI(1, 1) with the following model.

Yt = ϕ2Xt + εt (1881)

Yt = Xt + εt ; ϕ2 = 1 (1882)

εt = Yt −Xt (1883)

b. Now generalise it to a vector error correction model (VECM) of the form

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + ΓkXt−k + εt (1884)

where Γ1 = −I + Π1 + Π2 + Π3 + ... + Πi for i = 1..k Γk gives the long run solution and
εt ∼ N(0, σ2

y).
Prove that there exists at least one cointegrating vector in this system. Explain the Johansen

procedure to determine the rank of the cointegrating vectors based on significant eigenvalues of the
canonical correlations among the residuals of the system.
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c. Consider the following model with I(1) variables with Y1,t and Y2,t (but without exogenous
X )

∆Y1,t = −1

2

(
Y1,t−1 −

1

8
Y2,t−1

)
+ ε1,t (1885)

∆Y2,t =
1

2

(
Y1,t−1 −

1

8
Y2,t−1

)
+ ε2,t (1886)

∆Y1,t = ∆Y2,t = 0 in the steady state; E (ε1,t) = 0; E (ε2,t) = 0. This implies the equilibrium
relations Y1,t−1 − 1

8Y2,t−1 = 0 .
Illustrate how such an ECM model could be convrted in a VAR form.
Q2. Consider the Full Information Maximum Likelihood (FIML) method to estimate a standard

macroeconomic model of the form

C = a0 + a1(Y − T ) + a2Yt−1 + u
1

(1887)

I = b0 + b1Y + b2Kt−1 + b3r + b4E + u
2

(1888)

M = c
0

+ c
1
Y + c

2
Pt−1 + u

3
(1889)

Y = C + I +G+ E −M (1890)

where the endogenous variables Y,C, I,M are the levels of income, consumption, investment
and imports respectively; exogenous variables G,E, T,Kt−1, Pt−1 and r denote the government
spending, exports, tax revenue, lagged capital, lagged price level and the interest rate respectively;
terms u1, u2and u3 denote errors in consumption, investment and import functions respectively.
Parameters a0, a1, a2, b0, b1, b2, b3, b4, c0, c1 and c2 provide the behavioral relations in the system.

a. Derive the reduced form coeffi cients of this system in terms of structural parameters a0,
a1, a2, b0, b1, b2, b3, b4, c0, c1 and c2.Write the reduced form equations in terms of redefined endoge-
nous variables y1 = C; y2 = I; y3 = M and the redefined exogenous variables z1 = G; z

2
=

E; z
3

= Kt−1; z
4

= T ; z
5

= Yt−1; z
6

= r; z
7

= Pt−1 and the redefined reduced form parameters α0,
α1, α2, β0, β1, β2, β3, β4, γ0, γ1 and γ2.
b. Write expressions for the joint distribution of errors, u11u12u13 ......u1n ;u21u22u23 ......u2n ;u31u32u33 ......u3n ,

in this system.
c. Derive the Jacobian matrix of the first order conditions to estimate the parameters of the

reduced system:

u1 = y1 − α0 − α1(y2) + α1 (y3)− α1 (z1)− α1 (z2) + α1(z4)− α2z5 (1891)

u2 = y2 − β0 − β1(y1) + β1(y3)− β1 (z1)− β2z3 − β3z6 − β4z2 (1892)

u3 = y3 − γ0
− γ

1

(
y1)− γ

1
(y2)− γ

1
(z1)− γ

1
(z2

)
− γ

2
z7 (1893)

d. Derive the log likelihood functions for y variables using the transformation functions as:
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P (y1i .y2i .y3i) = P (u1i .u2i .u3i) .

∣∣∣∣∂ (u
1i
.u

2i
.u

3i
)

∂ (y1i .y2i .y3i)

∣∣∣∣ (1894)

e. Show the first order conditions for maximisation of the log likelihood function in terms of the
reduced form parameters α0, α1, α2, β0, β1, β2, β3, β4, γ0, γ1 and γ2.

f. Explain the procedure by which all FIML parameters α
1,α2,β1, β2, β3, β4, γ1

, γ
2
and σ2

u1
, σ2
u2
and

σ2
u3
could be estimated to evaluate the log of FIML.
g. Why the FIML is the most effi cient estimation technique for a system like this?
Q3. Consider a consumer optimisation problem in a capital asset pricing model popularised by

Hansen and Singleton (1982) stated as:

max E0

[ ∞∑
t=0

δtU (Ct)

]
(1895)

subject to

Ct + PtQt ≤ RtQt−1 +Wt (1896)

where Ct denotes consumption at time t, Pt the price level, Qt assets, Rt return on assets and
Wt wage income, U denotes utility, δ discount factor and E0 is the expectation operator.

a. Formulate the generic Lagrangian function for constrained optimisation to solve this problem.
Then specify the utility function as U (Ct) =

Cγt
γ with γ < 1; α = γ − 1.

b. Derive the Euler equations based on the first order conditions that maximise the objective
function of the model.

c. Discuss how the GMM could be applied to estimate the parameters δ and α. Why is
the application of the maximum likelihood computationally challenging here? Why does it
generate biased results?

d. Discuss properties of Arellano-Blundell-Bond GMM estimators for a dynamic panel data
model to estimate such a CAPM model across countries.

e. Discuss the GMM estimation procedure in popular softwares such as Eviews/RATS/STATA/PcGive
for applied studies.

Q4. Consider a data set with time t = 1, .., .., .T and individuals i = 1, . . . .N .

a. Discuss the specification, estimation and testing procedure for pooling cross section and time
series in a SUR model.

b. Show how the αi and β parameters can be estimated using the least square dummy variable
panel data model in yi,t = αi +xi,tβ+ εi,t εi,t ∼ N

(
0, σ2

i,t

)
. Why is it called a fixed effect

model?

c. What is the estimation and testing procedure for a random effect panel data model of the
form yi,t = αi + xi,tβ + γi + εi,t εi,t ∼ N

(
0, σ2

i,t

)
?
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d. Illustrate how the GMM is the most effi cient estimation method for a dynamic panel data
model of the form: yi,t = αi + θiyi,t−1 + xi,tβ + γi + εi,t εi,t ∼ N

(
0, σ2

i,t

)
?

e. Explain the need for Im-Pesaran-Shin and KPSS panel unit root tests in panel data models.

f. What are the procedures for Pedroni’s panel cointegration test?

Q5. Consider a standard regression model Y = βX + e where Y is T × 1 is the vector of
dependent variable, X is T × K is the matrix of explanatory variables, e is T × 1 the vector of
independently and identically distributed normal random variables with the mean equal to zero and
a constant variance, that is e ∼ N(0, σ2I). Here β is a K × 1 vector of the unknown coeffi cients.

a. Show how best, linear and unbiased parameters θ =
(
β, σ2

)
can be estimated using the OLS

method.

b. What is exact multicollinearity? Show its consequences on estimation of vector of parameters,
β. How could one estimate the variance inflation factor in case of inexact multicollinearity?

c. Show briefly how the generalised least square method can be used to avoid the heteroskedas-
ticity or autocorrelation problems.

d. Discuss a procedure and the test statistics to test restrictions on the OLS estimator of para-
meter vector β.

e. Prove that the ML estimators of β, σ2 are equivalent to the OLS estimators [ML: lnL(θ/Y ) =

ln

{
T

Π
i=1

1√
2πσ2

exp
[
− 1

2
(Y−βX)2

σ2

]}
].

f. Show that the GMM estimators of β and σ2 are equivalent to both the OLS and ML estimators.

Q6. Consider a structural VAR model between yt and zt with errors εyt ∼ N(0, σ2
y) and

εzt ∼ N(0, σ2
z) as following:

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1897)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (1898)

a. Derive the reduced form of this VAR model and suggest ways to estimate the parameters in
it.

b. How would one determine stability of a VAR system like this? Provide analytical solutions
using the roots of the quadratic functions.

c. Write the impulse response functions for these two equations. Indicate how the impulse
response analysis could be performed with them.

d. How should one determine whether a VAR system like this is identified or not? What sort
of restrictions make it exactly or over identified? How could one retrieve the structural
parameters?

e. What is the meaning of variance decomposition in a VAR model like this?
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f. Generalise this VAR to the form Xt = A0 +A1Xt−1 + εt. Use undetermined coeffi cient model
in order to ascertain the stability in it.

Q7. Consider modelling the probability (pi) of occurrence of a particular economic event.

a. Contrast the probit, logit and linear probability models. Show how a change in an independent
variable impacts on the probability of occurrence of such event. How are the probit and logit
models superior to a linear probability model?

b. Illustrate how the parameters of the probit and logit models could be estimated using the
maximum likelihood method. Explain the underlying Newton-Ralphson or BHHH algorithms.

c. Specify a multinomial logit model. How can the independence of irrelevant alternatives (IIA)
assumption be used in making a choice between two alternatives among a set of j alternatives?

d. How do truncation and censoring affect the mean and variance of a random variable? Illustrate
using diagrams and equations.

e. Specify a regression model for a truncated dependent variable. Show the Tobit two stage
procedure for estimating a regression model with a truncated variable.

f. What is the meaning of selection bias in a non-random sample? How does Heckman’s lambda
correct for the selectivity bias? What is the procedure to estimate a wage determination
model with selectivity bias?

g. “Correction of selectivity bias is as important in micro-econometrics as the unit root test is
for time series modelling.”Comment.

[Hints: Logit:
[
Pi = 1

1+e−Zi
with Zi = β1 + β2Xi + εi

]
;Count data:

[
P (Y = y) = e−λλy

y!

]
;Ordered

probit model:
[
prob (y = J |x) = 1− Φ

(
µJ−1 − x′β

)]
;Multinomial Choice model:Pi,2Pi,1

=

exp(X′i,2 β)
J∑
j=1

exp(X′i,j β)

exp(X′i,1 β)
J∑
j=1

exp(X′i,j β)

=
exp(X′i,2 β)
exp(X′i,1 β)

 .
Heckman’s correction for selectivity bias in which Y1,i = X1iβ+ ε1,i and Y2,i = X2,iβ+ ε2,i and

if the event occurs Y1,i > Y2,i.
Two limit Tobit for a certain regression Yi = β1 + β2Xi + εi with

Yi =

 Y ∗i if L1 < Y ∗i < L2 if the event occurs
L1 if Y ∗i < L1

L2 if Y ∗i ≥ L2

 ].

Q8. Consider each of the following duration or hazard function models:

• Exponential distribution. [F (t) = 1− exp (−λ.t)].

• Weibull
[
f (t) = αλtα−1 exp (−λ.tα)

]
.

• Log normal distribution
[
f (t) = 1

σ.tφ
(

log T−m
σ

)]
.
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• Log logistic
[
f (t) = αγtα−1 (1 + γtα)

−2
]
.

• Gamma distribution
[
f (t) =

[avtv−1 exp(−at)]
Γ(v) where Γ (v) =

∫∞
0

exp (−t) tv−1∂s.

]
a. Derive the duration density, the hazard rate, the survival function and the duration depen-
dence in each of these models.

b. Explain the general procedure for estimation of model parameters.

c. Discuss briefly issues for which models could be applied.

Q9. Provide answers to any five of the following questions with basic relevant derivations
appropriate to the Bayesian modelling and analysis.

a. Difference between classical and Bayesian assumptions on parameters and errors in a linear
regression.

b. Bayesian rule where p(A,B) denotes the joint probability of occurring events A and B to-
gether, p (B) is the marginal probability of B without any respect to occurrence of A. Similarly
p (A) is the marginal probability of A without any respect to occurrence of B.

c. Bayesian prior and posterior density functions on unknown parameters β and τ for the like-
lihood function such as: log l (β, τ) = 1

2 [n log τ − τ (β − b)X ′X (β − b)− τe′e]

d. Estimates of the mean and variance of β and τ in the above Bayesian linear regression model.

e. Bayesian panel data model of the form yi,t = xi,tβ + αi + ei,t with priors ei,t/xi,t, β, αi, τ ∼
N (0, τ) .

f. Estimation procedure in a Bayesian VAR model of the form: Yj
T×1

= Xj
T×K

βj
K×1

+ uj
T×1

where

uj ∼ N
(
0, σ2

i,jIT
)
.

g. Specification and estimation procedure of the Bayesian stochastic volatility models (Bayesian
ARCH/GARCH).

h. MCMC algorithm.

i. Ito calculus

j. Brownian motion
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17.9 Final exam 2014

Q1. Consider a version of the Hicksain formulation of Keynesian macroeconometric model in spirit
of Klein (1947) with following six eqautions with income ( Yt), interest rate (Rt), consumption
(Ct), investment (It), tax revenue (Tt) and imports (Mt) as endogenous variables. It includes

government spending (Gt), exports (Xt), real money balances-liquidity
(
MMt

Pt

)
as exogenous

and policy variables

Consumption function:

Ct = β0 + β1 (Yt − Tt) + β2Xt + ε1,t (1899)

Taxes:

T t = t0 + t1Yt + t2Mt + t3Gt + ε2,t (1900)

Imports:

M t = m0 +m1Yt +m2Mt +m3Gt + ε3,t (1901)

Investment:

It = µ0 − µ1Rt + φ∆Yt−1 + ε4,t (1902)

Money Market: (
MM t

Pt

)
t

= b0 + b1Yt − b2Rt + ε5,t (1903)

Macro balance

Yt = Ct + It +Gt +Xt −Mt = Ct + Tt + St (1904)

Money Market Equilibrium

Rt =
b0
b2
− 1

b2

(
MM t

Pt

)
+
b1
b2
Yt (1905)

Here ε1,t, ε2,t, ...., ε5,t are ideiosyncratic errors terms normally distributed with zero mean and constant
variances; εi,t ∼ N

(
0, σ2

)
for i = 1, ..5. Behavioral parameters are β0, β1 T0, µ0,m0, t1,m1, b0, b1, b2

are unknown and need to be estimated using quarterly time series data on those variables.

1. Construct a table of structural coeffi cients in the tabular form.

2. Check whether each of the equation is identified or not using rank and order conditions.

3. Write the reduced form of the model.

4. Discuss any four methods that can be applied to estimate this model using quarterly time series data.

5. Show procedure for the historical simulations using this model and procedure to project the values
of exogenous variables

(
Gt, Xt,

MMt

Pt

)
for the next 10 quarters.
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6. How can one judge the accuracy of forecast in this economy?

[56268] [Continued...]
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Q2. Consider a structural VAR model between yt and zt with errors εyt ∼ N(0, σ2
y) and εzt ∼

N(0, σ2
z) as follows:

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1906)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (1907)

a. Derive the reduced form of this VAR model and suggest how the maximum likehoold estimator
(MLE) could be applied to estimate the parameters in it.

b. How would one determine stability of a VAR system like this? Provide analytical solutions
using the roots of the quadratic functions.

c. Write the impulse response functions for these two equations. Indicate how the impulse
response analysis could be performed with them.

d. How should one determine whether a VAR system like this is identified or not? What sort
of restrictions make it exactly or over identified? How could one retrieve the structural
parameters?

e. What is the meaning of variance decomposition in a VAR model like this?

f. Generalise this VAR to the form Xt = A0 +A1Xt−1 + εt. Use undetermined coeffi cient model
in order to ascertain the stability in it.

g. What additional insights are obtained by transforming this model into a vector error correction
model (VECM)?

h. Why is the Bayesian VAR becoming more popular than a classical VAR as given above in
recent years?

[56268] [Continued...]
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Q3. Consider a standard OLS regression model Y = βX+e where Y is T ×1 vector of dependent
variable, X is T × K matrix of explanatory variables, e is T × 1 vector of independently
and identically distributed normal random variable with mean equal to zero and a constant
variance, that is e ˜ N(0, σ2I). Here β is a K × 1 vector of unknown coeffi cients.

a. What is the estimator of the parameter vector
(
β̂
)
in the unrestricted least squares method?

Prove that the OLS provides the best, linear and unbiased estimators of the parameters
θ =

(
β, σ2

)
in this model.

b. Show briefly how the generalised least square method can be used to avoid heteroskedasticity
or autocorrelation problems.

c. Consider a Lagrange function to minimise sum of errors (e′e) for a restricted least squares
model of Y on X with restrictions

(
r′ − β′R′

)
= 0.

L = e′e+ 2λ
(
r′ − β′R′

)
= (Y − βX)

′
(Y − βX) + 2λ

(
r′ − β′R′

)
= Y ′Y − 2βX ′Y + (βX)

′
(βX) + 2λ

(
r′ − β′R′

)
(1908)

Using the first order conditions derive the estimator of parameter vector
(
b̂
)
given by the

restricted least squares method. What is the value of λ?

d. Prove that the variance of the parameter vector
(
b̂
)
in the restricted least squares model is

smaller than the variance of the parameter vector
(
β̂
)
in the unrestricted least squares model.

e. Prove that the maximul likelihood (ML) estimators of β, σ2 are equivalent to the OLS esti-
mators, where:

ML : lnL(θ/Y ) = ln

{
T

Π
i=1

1√
2πσ2

exp

[
−1

2

(Y − βX)
2

σ2

]}
(1909)

f. Show that the GMM estimators of β, σ2 are equivalent to both the OLS and ML estimators.

g. Why are GMM and ML estimators more are popular in advanced studies than the OLS
estimators? Comment with some examples.

[56268] [Continued...]
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Q4. Consider the Engle-Granger representation theorem.

a. Prove that there exists a valid error correction representation (ECM) of the data if two time
series are cointegrated of order 1, CI(1, 1) with the following model.

Yt = ϕ2Xt + εt (1910)

Yt = Xt + εt ; ϕ2 = 1 (1911)

εt = Yt −Xt (1912)

b. Now generalise it to a vector error correction model (VECM) of the form

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ....+ Γk−1∆Xt−k+1 + ΓkXt−k + εt (1913)

where Γ1 = −I + Π1 + Π2 + Π3 + ... + Πi for i = 1..k Γk gives the long run solution and
εt ∼ N(0, σ2

y).
Prove that there exists at least one cointegrating vector in this system. Explain the Johansen

procedure to determine the rank of the cointegrating vectors based on significant eigenvalues of the
canonical correlations among the residuals of the system.

c. Consider the following model with I(1) variables Y1,t and Y2,t (but without any exogenous
variable X )

∆Y1,t = −1

2

(
Y1,t−1 −

1

8
Y2,t−1

)
+ ε1,t (1914)

∆Y2,t =
1

2

(
Y1,t−1 −

1

8
Y2,t−1

)
+ ε2,t (1915)

∆Y1,t = ∆Y2,t = 0 in the steady state; E (ε1,t) = 0; E (ε2,t) = 0. This implies the equilibrium
relations Y1,t−1 − 1

8Y2,t−1 = 0 .
Illustrate how such an ECM model could be convrted in a VAR form.

d. Discuss generic to specific modeling philosophy in VAR and ECM developed in Hendry (1995)
.

[56268] [Continued...]
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Q5. Consider the Full Information Maximum Likelihood (FIML) method to estimate a standard
macroeconomic model of the form

C = a0 + a1(Y − T ) + a2Yt−1 + u1 (1916)

I = b0 + b1Y + b2Kt−1 + b3r + b4E + u2 (1917)

M = c0 + c1Y + c2Pt−1 + u3 (1918)

Y = C + I +G+ E −M (1919)

where the endogenous variables Y,C, I,M are the levels of income, consumption, investment
and imports respectively; exogenous variables G,E, T,Kt−1, Pt−1 and r denote the government
spending, exports, tax revenue, lagged capital, lagged price level and the interest rate respectively;
terms u1, u2and u3 denote errors in consumption, investment and import functions respectively.
Parameters a0, a1, a2, b0, b1, b2, b3, b4, c0, c1 and c2 provide the behavioral relations in the system.

a. Derive the reduced form coeffi cients of this system in terms of structural parameters a0,
a1, a2, b0, b1, b2, b3, b4, c0, c1 and c2.Write the reduced form equations in terms of redefined endoge-
nous variables y1 = C; y2 = I; y3 = M and the redefined exogenous variables z1 = G; z

2
=

E; z3 = Kt−1; z4 = T ; z5 = Yt−1; z6 = r; z7 = Pt−1 and the redefined reduced form parameters α0,
α1, α2, β0, β1, β2, β3, β4, γ0, γ1 and γ2.
b. Write expressions for the joint distribution of errors, u

11
u

12
u

13
......u

1n
;u

21
u

22
u

23
......u

2n
;u

31
u

32
u

33
......u

3n
,

in this system.
c. Derive the Jacobian matrix of the first order conditions to estimate the parameters of the

reduced system:

u
1

= y
1
− α0 − α1

(y
2
) + α

1
(y3)− α

1
(z

1
)− α

1
(z

2
) + α

1
(z

4
)− α

2
z

5
(1920)

u
2

= y
2
− β0 − β1(y

1
) + β1(y3)− β1 (z

1
)− β2z3

− β3z6
− β4z2

(1921)

u
3

= y
3
− γ

0
− γ

1

(
y

1
)− γ

1
(y

2
)− γ

1
(z

1
)− γ

1
(z

2

)
− γ

2
z

7
(1922)

d. Derive the log likelihood functions for y variables using the transformation functions as:

P (y
1i
.y

2i
.y

3i
) = P (u

1i
.u

2i
.u

3i
) .

∣∣∣∣∂ (u
1i
.u

2i
.u

3i
)

∂ (y1i .y2i .y3i)

∣∣∣∣ (1923)

e. Show the first order conditions for maximisation of the log likelihood function in terms of the
reduced form parameters α0, α1, α2, β0, β1, β2, β3, β4, γ0, γ1 and γ2.

f. Explain the procedure by which all FIML parameters α
1,α2,β1, β2, β3, β4, γ1

, γ
2
and σ2

u1
, σ2
u2
and

σ2
u3
could be estimated to evaluate the log of the FIML.
g. Why the FIML is the most effi cient estimation technique for a system like this?
[56268] [Continued...]
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Q6. Consider a consumer optimisation problem in a capital asset pricing model popularised by
Hansen and Singleton (1982) stated as:

max E0

[ ∞∑
t=0

δtU (Ct)

]
(1924)

subject to

Ct + PtQt ≤ RtQt−1 +Wt (1925)

where Ct denotes consumption at time t, Pt the price level, Qt assets, Rt return on assets and
Wt wage income, U denotes utility, δ discount factor and E0 is the expectation operator.

a. Formulate the generic Lagrangian function for constrained optimisation to solve this problem.
Then specify the utility function as U (Ct) =

Cγt
γ with γ < 1; α = γ − 1.

b. Derive the Euler equations based on the first order conditions that maximise the objective
function of the model.

c. Discuss how the GMM could be applied to estimate the parameters δ and α. Why is
the application of the maximum likelihood computationally challenging here? Why does it
generate biased results?

d. Discuss properties of Arellano-Blundell-Bond GMM estimators for a dynamic panel data
model to estimate such a CAPM model across countries.

e. Discuss the GMM estimation procedure in popular softwares such as Eviews/RATS/STATA/PcGive
for applied studies.

Q7. Consider a data set with time t = 1, .., .., .T and individuals i = 1, . . . .N .

a. Discuss the specification, estimation and testing procedure for pooling cross section and time
series in a SUR model.

b. Show how the αi and β parameters can be estimated using the least square dummy variable
panel data model in yi,t = αi +xi,tβ+ εi,t εi,t ∼ N

(
0, σ2

i,t

)
. Why is it called a fixed effect

model?

c. What is the estimation and testing procedure for a random effect panel data model of the
form yi,t = αi + xi,tβ + γi + εi,t εi,t ∼ N

(
0, σ2

i,t

)
?

d. Illustrate how the GMM is the most effi cient estimation method for a dynamic panel data
model of the form: yi,t = αi + θiyi,t−1 + xi,tβ + γi + εi,t εi,t ∼ N

(
0, σ2

i,t

)
?

e. Explain the need for Im-Pesaran-Shin and KPSS panel unit root tests in panel data models.

f. What are the procedures for Pedroni’s panel cointegration test?
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18 Foundations

18.1 First order difference equation

Supply

Qd,t = α− βPt ; (α, β > 0) (1926)

Demand

QS,t = −γ + δPt−1; (γ, δ > 0) (1927)

Qd,t = QS,t =⇒ βPt + δPt−1 = α+ γ (1928)

Steady state or intertemporal solution

P =
α+ γ

β + δ
(1929)

Complete solution Pt = PC + PP
Complementary solution

βPt + δPt−1 = 0 =⇒ Pt+1 +
δ

β
Pt = 0 (1930)

Let Pt = Abt and Pt+1 = Abt+1

Abt+1 +
δ

β
Abt = 0 (1931)

Steady state or intertemporal solution

b = − δ
β

(1932)

Pt = PC + PP = Abt + PP = A

(
− δ
β

)t
+
α+ γ

β + δ
(1933)

Determiner A from the initial condition P0

P0 = Ab0 + PP = A
(
− δ
β

)0

+ α+γ
β+δ =⇒

A = P0 −
α+ γ

β + δ
(1934)

Complete and definite solution

Pt = A

(
− δ
β

)t
+
α+ γ

β + δ
=

(
P0 −

α+ γ

β + δ

)(
− δ
β

)t
+
α+ γ

β + δ
(1935)

Application of First Order Difference Equation: Inventory and Price Adjustment Model
Consider a demand supply model with inventory and price adjustments.
Demand depends on current price:
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Xd
t = α− βPt (1936)

Supply depends on current price:

XS
t = −γ + δPt (1937)

Price adjustment process:

Pt+1 = Pt + σ
(
Xd
t −XS

t

)
(1938)

Equilibrium conditions without inventory would beXd
t = XS

t but here prices do not clear market
instantly. Therefore prices adjust according to:

Pt+1 = Pt + σ (α− βPt + γ − δPt) (1939)

This is a first order difference equation in prices.
Application of First Order Difference Equation: Inventory and Price Adjustment Model

Pt+1 − (1− σ (β + δ))Pt = σ (α+ γ) (1940)

Intertemporal solution

P =
(α+ γ)

(β + δ)
(1941)

Whether prices converge to this stationary solution depends on solutions to the complementary
part

Pt+1 − (1− σ (β + δ))Pt = 0

Abt+1 − (1− σ (β + δ))Abt = 0 (1942)

b = (1− σ (β + δ));
Application of First Order Difference Equation: Inventory and Price Adjustment Model
The general solution for price is:

Pt = PC + PP = A ((1− σ (β + δ)))
t

+
(α+ γ)

(β + δ)
(1943)

Value of A can be obtained by assuming initial price at time t = 0 , P0

implies A = P0 − α+γ
β+δ

Pt =

(
P0 −

α+ γ

β + δ

)
(1− σ (β + δ))

t
+

(α+ γ)

(β + δ)
(1944)

Inventory and Price Adjustment Model: Dynamic Properties

Pt =

(
P0 −

α+ γ

β + δ

)
(1− σ (β + δ))

t
+

(α+ γ)

(β + δ)
(1945)

b = (1− σ (β + δ))
1. 0 < b < 1 convergent and non-oscillatory, σ < 1

(β+δ) .
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2.b = 0 solution is convergent to the steady state, σ = 1
(β+δ)

3.−1 < b < 0 gives oscillating but convergent path, 1
(β+δ) < σ < 2

(β+δ)

4. b = −1 case of regular oscillation, σ = 2
(β+δ)

5. b < −1 divergent oscillations, σ > 2
(β+δ)

Inventory and Price Adjustment Model: Dynamic Properties

18.2 First order differential equation

Difference equations are used to denote the time path of a variable when variables change continu-
ously not discretely.
First order differential equation only involved differential term of order one.

·
y + ay = b or

∂y

∂t
+ ay = b (1946)

Solution of a differential equation includes complementary and particular (steady state) parts

yt = yc + yp (1947)

For the steady state equilibrium
·
y = 0. This implies yp = b

a
Solve the homogeneous system for the complementary solution:

·
y + ay = 0 (1948a)

·
y

y
= −a (1949)
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Solution of Differential Equation
Integrate both sides with respect to t∫ ·

y

y
∂t =

∫
− a∂t (1950)

ln (yt) + c1 = −at+ c2 (1951)

Taking anti-log both sides
yc = e−atec2−c1 (1952)

yc = Ce−at (1953)

where C = ec2−c1

Complete solution

yt = yc + yp = Ce−at +
b

a
(1954)

The time path of yt converges if a > 0 .
First Economic Example of the first order difference equation (IS-LM Model):
Consumption function :

C = a+BY − nR (1955)

Let investment and government spending be as given at I = Iand G = G
Goods markets does not balance automatically, it take time for adjustment as given by the

following equation (α < 1):

∂y

∂t
= α (a+ by − nR+ I +G− y) (1956)

Money market is assumed to balance instantaneously

L = ky − hR (1957)

L = M (1958)

Money market equilibrium implies

R =
k

h
y − 1

h
M (1959)

Putting the money market equilibrium in the goods market gives the economywide equilibrium
process as:

∂y

∂t
= α

(
a+ by −

(
nk

h
y − nM

h

)
+ I +G− y

)
(1960)

By rearrangement
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∂y

∂t
+ α

(
1− b+

nk

h

)
y = α

(
a+

nM

h
+ I +G

)
(1961)

∂y

∂t
+Ay = B (1962)

where A = α
(
1− b+ nk

h

)
and B = α

(
a+ nM

h + I +G
)
The steady state equilibrium is given

by yp = B
A =

α
(
a+nM

h +I+G
)

α(1−b+nk
h )

and the complementary path is given by

yc = Ce−At = Ce−α(1−b+nk
h )t (1963)

Complete income path from solving the difference equation is given by combinations of these
two:

yt = Ce−At +
B

A
(1964)

Definite solution requires getting value of C using the initial conditions yt=0 = y0 as C = y0− B
A

yt =

[
y0 −

B

A

]
e−At +

B

A

=

y0 −
α
(
a+ nM

M + I +G
)

α
(
1− b+ nk

h

)
 e−α(1−b+nk

h )t +
α
(
a+ nM

h + I +G
)

α
(
1− b+ nk

h

) (1965)

Convergence to the steady state requires that A > 0. This implies 1− b+ nk
h > 0 or kh > −

1−b
n

.The slope of the LM curve
(
k
h

)
should be greater than the slope of the IS curve

(
− 1−b

n

)
.

Consider a market price adjustment model where it takes time for demand and supply to adjust
towards equilibrium. Starting from an initial point, does market prices converge to the long run
equilibrium or not depends on the roots of the equations. These provide stability conditions for the
system:

demand QD = α− βP with α, β > 0 (1966)

Supply QS = −γ + δP with γ, δ > 0 (1967)

price adjustment process

∂P

∂t
= k (α− βP + γ − δP ) (1968)

by rearranging ∂P
∂t + k (β + δ)P = k (α + γ)

The steady state equilibrium is P = α +γ
β+δ

Homogeneous equation for complementary solution is given by:

∂P

∂t
+ k (β + δ)P = 0 (1969)
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∫ ∂P
∂t

P
dt = −

∫
k (β + δ) dt (1970)

ln (Pt) + c1 = −k (β + δ) t+ c2 (1971)

Taking anti-log both sides
Pt = e−k(β+δ)tec2−c1 (1972)

Pt = Ce−k(β+δ)t (1973)

Complete solution

Pt = Pc + Pp = Ce−k(β+δ)t +
α + γ

β + δ
(1974)

18.3 Second order differential equation: market example

In addition to the structure of market above let the speculations in the demand side market
determined by the first and second order conditions as following

demand QD = α− βP +mP ′ + nP ′′ (1975)

Supply QS = −γ + δP + uP ′ + wP ′′ (1976)

for a while assume that u = 0 and w = 0
Let market find its equilibrium in each period QD = QS . This implies

α− βP +mP ′ + nP ′′ = −γ + δP (1977)

nP ′′ +mP ′ − (β + δ)P = − (γ + α) (1978)

The steady state equilibrium like before is : Pp = γ+α
β+δ

For complementary solution derive the homogenous equation

P ′′ +
m

n
P ′ −

(
β + δ

n

)
P = 0 (1979)

Let P = Aert sot that P ′ = rAert and P ′′ = r2Aert. and r2Aert + m
n rAe

rt −
(
β+δ
n

)
Aert = 0.

The corresponding characteristic equations is:

r2 +
m

n
r −

(
β + δ

n

)
= 0 (1980)

Roots of this equations are given by:

r
1
, r

2
=

−mn ±
√(

m
n

)2
+ 4

(
β+δ
n

)
2

=
1

2

[
−m
n
±

√(m
n

)2

+ 4

(
β + δ

n

)]
(1981)
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General solutions in the distinct real roots case when
[(
m
n

)2
> 4

(
β+δ
n

)]
:

Pt = Pc + Pp = A1e
r
1
t +A2e

r
2
t +

α + γ

β + δ
(1982)

It requires two initial conditions for definite solution

Pt = A1e
1
2

[
−mn −

√
(mn )

2−4( β+δ
n )

]
t

+A2e
1
2

[
−mn +

√
(mn )

2
+4( β+δ

n )
]
t

+
α + γ

β + δ
(1983)

In case of repeated root
(
m
n

)2
= −4

(
β+δ
n

)
there is only one root r1 , r2 = −m

2n

Pt = Pc + Pp = A3e
r
1
t +A4te

r
2
t +

α + γ

β + δ
(1984)

for complex root case
[(
m
n

)2
< −4

(
β+δ
n

)]
the roots are divided between the real and imaginary

parts as:

r1 , r2 = h± vi (1985)

where the real part in this case is h = −m
2n and the v =

[
−4
(
β+δ
n

)
−
(
m
n

)2]
and i =

√
−1.

Substituting real and imaginary parts and using the Euler equation and DeMoivre theorems:

Pt = Pc + Pp = e−
m
2n t [A5 cos (vt) +A6 Sin (vt)] +

α + γ

β + δ
(1986)

Second order differential equation only involved differential term of order two. The procedure
is similar to the second order difference equation. As before yt = yc + yp and yp = b

a2
. For

complementary solution y = Aert sot that
·
y = rAert and

··
y = r2Aert.

··
y + a1

·
y + a2y = b (1987)

r2Aert + a1rAe
rt + a2Ae

rt = 0 (1988)

r2 + a
1
r + a

2
= 0 (1989)

r
1
, r

2
=

(−a
1
)±

√
a2

1
− 4a

2

2
(1990)

There can be three cases in the solution of this equation depending on the value of the term
under the square root
I. Distinct real root if a2

1
> 4a

2

II. Repeated real root if a2
1

= 4a
2

III. Complex real root a2
1
< 4a2 This requires use of the imaginary number, De Moivre theorem

and trigonometry.
These cases is illustrated below by two examples:
Consider a market price adjustment model where it takes time for demand and supply to adjust

towards equilibrium. Starting from an initial point, does market prices converge to the long run
equilibrium or not depends on the roots of the equations. These provide stability conditions for the
system:
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Example of Complex Root Case: Example Preliminaries
Exponential forms and polar coordinates

R =
√
h2 + v2 (1991)

sinnθ =
v

R
=⇒ v = Rsinθ (1992)

cos θ =
h

R
=⇒ h = Rcoθ (1993)

eiθ = cos θ + iSinθ e−iθ = cos θ − i Sinθ (1994)

h± vi = Rcoθ ±Ri sin θ = R (coθ ± i sin θ) = Re±iθ (1995)
∂ sin θ
∂θ = cos θ; ∂ cos θ

∂θ = − sin θ;
Thus the Cartesian coordinates of the complex numbers have been transformed to polar coor-

dinates R and θ and also expressed as exponential form Re±iθ .
Give the Cartesian form of the complex number 5e3i

π
2 . Here R = 5, θ = 3π2

R (coθ ± i sin θ) = 5
(
cos 3π2 ± i sin 3π2

)
= 5 (cos 0± i (−1)) = −5i = h± vi

By De Moivre’s theorem
(h+ vi)

n
= Rneinθ and (h− vi)n = Rne−inθ

(h± vi)n = Rn (cosnθ ± i sinnθ) (1996)

Solving a differential equation with complex roots

Table 23: Values of Trigonometric Ratios
00 300 450 600 900 1200 1800 2700 3600

θ 0 π
6

π
4

π
3

π
2

3
4π π 3

2π 2π

sinθ 0 1
2

1√
2

√
3

2 1 1√
2

0 −1 0

cosθ 1
√

3
2

1√
2

1
2 0 - 1√

2
-1 0 1

Example of Complex Root Case: Example
An Example

··
y + 2

·
y + 17y = 34 (1997a)

Steady state

yp =
b

a2
=

34

17
= 2 (1998)

This is a complex root case because (a1 = 2; a2 = 17; b = 34)
a2

1
− 4a

2
= 22 − 4× 17 = 4− 68 = −64 < 0

Use the formula explained above
h± vi = Rcoθ ±Ri sin θ = R (coθ ± i sin θ) = Re±iθ
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h = − 1
2a1 = −1 v = 1

2

√
4a2 − a2

1
= 1

2

√
4 (17)− 22 = 1

2

√
64 = 1

2 (8) = 4
In case of the complex root

yc = eht
(
A1e

vit +A2e
−vit) (1999)

= eht [A1 (cos vt+ i sin vt) +A2 (cos vt− i sin vt)] (2000)

For this problem complementary solution

yc = eht
(
A1e

4it +A2e
−4it

)
(2001)

= e−t [A1 (cos 4t+ i sin 4t) +A2 (cos 4t− i sin 4t)] (2002)

yt = yc + yp = e−t [A1 (cos 4t+ i sin 4t) +A2 (cos 4t− i sin 4t)] + 2 (2003)

yt = e−t [(A1 +A2) cos 4t+ (A1 −A2) i sin 4t] + 2 (2004)

yt = e−t [A5 cos 4t+A6 sin 4t] + 2 (2005)

where A5 = (A1 +A2) A6 = (A1 −A2) i
Use two initial conditions to definitize the values of A5 and A6.
y0 = 3 and

·
y = 11.

When t = 0

y0 = 3 = e−t [A5 cos 4t+A6 sin 4t] + 2 = [A5 cos 0 +A6 sin 0] + 2 = A5 + 2 (2006)

Thus A5 = 1
take the first derivative of with respect to time

·
y =

∂y

∂t

{
e−t [A5 cos 4t+A6 sin 4t] + 2

}
(2007)

·
y = −e−t [A5 cos 4t+A6 sin 4t] + e−t [−4A5 sin 4t+ 4A6 cos 4t] (2008)

Evaluated when t = 0
·
y = −e−t [A5 cos 0 +A6 sin 0] + e−t [−4A5 sin 0 + 4A6 cos 0]

11 = − (A5 + 0) + [0 + 4A6] (2009)

A6 = 3
Thus the complete solution of this equation is:

yt = e−t [cos 4t+ 3 sin 4t] + 2 (2010)

The first trigonometric function gives the cycle and second part is the steady state.
Numerical example 1 for SODE
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demand QD = 42− 4P + 4P ′ + P ′′ (2011)

Supply QS = −6 + 8P (2012)

Initial conditions P0 = 6 and P ′(t = 0) = 4.
Let market find its equilibrium in each period QD = QS . This implies

42− 4P + 4P ′ + P ′′ = −6 + 8P (2013)

The steady state equilibrium like before is : Pp = 46
12 = 4

For homogenous solution rearrange P ′′ − 4P ′ − 4P + 42 = −6 + 8P to

P ′′ − 4P ′ − 8P = 0 (2014)

Numerical example 1 for SODE Corresponding quadratic equation is given by

r
1
, r

2
=
−(−4)±

√
(−4)

2 − 4.1.(−12)

2
=

4±
√

16 + 46

2
= 6,−2 (2015)

Pt = Pc + Pp = A1e
r1 t +A2e

r2 t + 4 = A1e
6t +A2e

−2t + 4 (2016)

Use two initial conditions for the complete solution

P0 = 6 = A1e
6.0 +A2e

−2.0 + 4 = A1 +A2 + 4 (2017)

P ′ = 4 = 6A1e
6.0 − 2A2e

−2.0 = 6A1 − 2A2 (2018)

Solving these equations A1 = 1 and A2 = 1.

Pt = A1e
r
1
t +A2e

r
2
t + 4 = e6t + e−2t + 4 (2019)

This path is dynamically unstable because of r
1

= 6. This gives divergent Oscillations.

Numerical example 2 for SODE

demand QD = 40− 2P − 2P ′ − P ′′ (2020)

Supply QS = −5 + 3P (2021)

Initial conditions P0 = 12 and P ′(t = 0) = 1.
Let market find its equilibrium in each period QD = QS . This implies

40− 2P − 2P ′ − P ′′ = −5 + 3P (2022)

The steady state equilibrium like before is : Pp = 45
5 = 9

For homogenous solution rearrange 40− 2P − 2P ′ − P ′′ = −5 + 3P toP ′′ + 2P ′ + 5P = 45
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r
1
, r

2
=
−2±

√
22 − 4.1.5

2
=
−2±

√
4− 20

2
=

1

2
(−2± 4i) = −1± 2i (2023)

This is complex root case with h+ vi = −1± 2i where h = −1 and v = 2
The general solution of this model is

Pt = Pc + Pp = e−t [A5 cos (2t) +A6 Sin (2t)] + 9 (2024)

Using the initial conditions

P0 = 12 = e−0 [A5 cos (0) +A6 Sin (0)] + 9 = A5(1) +A6.0 + 9 = A5 + 9 (2025)

P ′t = −e−t [A5 cos (2t) +A6 Sin (2t)] + e−t [−2A5 sin (2t) + 2A6Cos (2t)] (2026)

P ′t=0 = 1

= −e−0 [A5 cos (2.0) +A6 Sin (2.0)]

+e−0 [−2A5 sin (2.0) + 2A6Cos (2.0)]

= A5 + 0 + 0 + 2A6 (2027)

Solving A5 + 9 = 12 and A5 + 2A6 = 1 we get A5 = 3 and A6 = 2. Thus the definite solution
path of the system is

Pt = e−t [3 cos (2t) + 2 Sin (2t)] + 9 (2028)

Pt fluctuates in each period of 2π
v = π = 3.1452. when t increases 3.1452 the Pt completes one

cycle.
This cycle is damped because of the multiplicative term e−t.
That means this path Pt starts at 12 and gradually converges to 9 in a cyclical fashion.

18.3.1 Generic Differential Equations: Routh Theorem

In a higher order differential equation Routh theorem is applied to find whether time path converges
to long run equilibrium:
Take a polynomial of the form
a

0
rn + a

1
rn−1 + a

2
rn−2 + ...+ a

n−1
r + a

n
= 0

the real parts of all the roots of nth degree polynomial are negative when first n sequence of
determinants are positive. Therefore above equation is convergent.
Generic Differential Equations
Routh Matrix is formed by letting odd coeffi cients head a row and successively reducing the

subscripts and writing zero for negative coeffi cients (Samuelson (1947) Foundations of Economic
Analysis).

|a
1
| ;
∣∣∣∣ a1 a3

a0 a
2

∣∣∣∣ ;
∣∣∣∣∣∣
a

1
a

3
a

5

a0 a
2

a
4

0 a
1

a3

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
a1 a3 a5 a7

a0 a2 a4 a6

0 a
1

a3 a
5

0 a
0

a
2

a
4

∣∣∣∣∣∣∣∣
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Generic Differential Equations
Numerical example y4(t) + 6y

′′′
(t) + 14y

′′
(t) + 16y

′
(t) + 8y = 24

a0 = 1; a
1

= 6; a
2

= 14; a3 = 16; a4 = 8; a
5

= 0; a
6

= 0;

∆0 = |a1 | = |6| > 0; ∆1 =

∣∣∣∣ a1
a

3

a0 a
2

∣∣∣∣ =

∣∣∣∣ 6 16
1 14

∣∣∣∣ = 84−16 = 68 > 0;

∣∣∣∣∣∣
6 16 0
1 14 8
0 6 16

∣∣∣∣∣∣ = 800 > 0;∣∣∣∣∣∣∣∣
6 16 0 0
1 14 8 0
0 6 16 0
0 1 14 8

∣∣∣∣∣∣∣∣ = 6400 > 0

The first n sequence of determinants are positive, the real parts of all the roots of nth degree
polynomial are negative . Therefore the time path of y(t) in above equation is convergent.

Application of Difference Equation ARCH(q) Process:

yt = µ+ ut (2029)

ut = h
1
2
t εt εt ∼ N

(
0, σ2

)
(2030)

ht = α0 +

q∑
j=1

αju
2
t−j (2031)

Log likelihood of ARCH function for observation t is

lnL(µ, α
1
, α

2
....α

n
) = c− 1

2
lnht −

1

2

(yt − µ)
2

ht
(2032)

lnL(µ, α
1
, α

2
....α

n
) = c− T

2

T∑
t=1

lnht −
T

2

T∑
t=1

(yt − µ)
2

ht
(2033)

this leads to the estimation ofc = −T2 ln (2π) , µ, α
1
, α

2
....α and ût,ût−1, ût−1 helps to estimate

σ̂2.
GARCH(p,q)

yt = x,tξ + ut (2034)

ut = h
1
2
t εt εt ∼ N

(
0, σ2

)
(2035)

ht = α0 +

q∑
j=1

αju
2
t−j +

p∑
j=1

βjht−1 (2036)

Using the lag operator

ht =
α0

1− β (L)
+

α (L)

1− β (L) j
u2
t (2037)
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ARCH(q) is equivalent to GARCH(0,q)
PcGive Volatility package computes ARCH and GARCH
Heteroscedasticy adjusted mean square error

HMSE =
1

T

∑(
û2
t

ĥt
− 1

)2

(2038)

Mean of the conditional variance

ht =
1

T

T∑
t=1

ĥt ; var (ht) =
1

T

T∑
t=1

(
ĥt − ht

)
(2039)

AIC criteria

AIC × T = −2l̂ + 2s; AIC = −2l̂

T
+

2s

T
(2040)

Exponential and integrated GARCH are varieties of other GARCH models.
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18.3.2 Tutorial 1: Optimisation and Matrix

Q1. Consider y as a function of x1, x2 and x3 as given in the following equation:

y = −5x2
1 + 10x1 + x1x2 − 2x2

2 + 4x2 + 2x2x3 − 4x2
3 (2041)

a. Find the optimal values of , and using the first order conditions for unconstrained maximi-
sation. Use matrix approach in your solution.
b. Determine whether the above solutions correspond to the minimum or the maximum point

using positive or negative definite concepts of the Hessian determinants.

Q2. Consider coeffi cients of a market model given by a matrix A =

[
5 −1
−1 3

]
a) What are the eigen values of this maxtrix?

b) What are associated eigen vectors?

c) Prove that eigen vectors are orthogonal, (V1)
′
(V2) = 0

d) Prove (V1V2)
′
(V1V2) = (V1V2) (V1V2)

′
= I
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Q3. Write short notes in any three of the following.

a. Order of integration and unit root test.

b. Engle-Granger Representation theorem.

c. Johansen test for cointegrating vector.

d. Simultanety bias.

e. Autocorrelation.

18.3.3 Higher Order Difference Equations: Schurr Theorem

Checking convergence of a difference equation (Schur determinants approach)

Yt+2 +
1

6
Yt−1 −

1

6
Yt = 2 (2042)

This is a second order difference equation
a0 = 1; a1 = 1

6 ; a2 = − 1
6

; ∆1 =

∣∣∣∣ a0 a2

a2 a0

∣∣∣∣ > 0; ∆1 =

∣∣∣∣ 1 − 1
6

− 1
6 1

∣∣∣∣ = 35
36 > 0

∆2 =

∣∣∣∣∣∣∣∣
a0 0 a2 a1

a1 a0 0 a2

a2 0 a0 a1

a1 a2 0 a0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 − 1

6 1 − 1
6

− 1
6 1 − 1

6 1
1 − 1

6 1 − 1
6

− 1
6 1 − 1

6 1

∣∣∣∣∣∣∣∣ = 0907407 > 0

Divide the matrix in four parts:

A B
C D

Start with a0 in diagonal at the upper left matrix (A), put zeros above the diagonal and suc-
cessively higher subscripts down the column (A)
Matrix at the southeast corner (D) is the transpose of the northwest corner (A’);
Put an in the diagonal of the south west corner (C) and zeros above the diagonal and successively

smaller subscripts down the column of (C)
The matrix at northeast corner (B) is transpose of matrix at the southwest corner (C)
Roots of the polynomial are less than unity when Schur determinants are positive. Therefore

above difference equation gives a convergent path.
Routh theorem used for differential equations as explained above.

18.3.4 Samuelsonian Multiplier Accelerator Model (Second Order Difference Equa-
tion)

Macro balance

Yt = Ct + It +G0 (2043)

Consumption function
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Ct = γYt−1; 0 < γ < 1 (2044)

Investment

It = α (Ct − Ct−1) ; α > 1 (2045)

Equilibrium (putting Ct and It in Yt ): second order difference equation

Yt = γ (1 + α)Yt−1 − γαYt−2 +G0 (2046)

Samuelsonian Multiplier Accelerator Model (Second Order Difference Equation)
Steady state output

Y =
G0

1− γ (1 + α) + γα
=

G0

1− γ (2047)

Homogenous second order difference equation

Yt − γ (1 + α)Yt−1 + γαYt−2 = 0 (2048)

Consumption function

Ct = γYt−1; 0 < γ < 1 (2049)

Investment

It = α (Ct − Ct−1) ; α > 1 (2050)

Equilibrium (putting Ct and It in Yt )

Yt = γ (1 + α)Yt−1 − γαYt−2 +G0 (2051)

Solution of the Samuelsonian Multiplier Accelerator Model
Steady state output

Y =
G0

1− γ (1 + α) + γα
=

G0

1− γ (2052)

Transitional dynamics (replace Yt = Abt in homogenous equation).

Yt − γ (1 + α)Yt−1 + γαYt−2 = 0 (2053)

Abt − γ (1 + α)Abt−1 + γαAbt−2 = 0 (2054)

b2 − γ (1 + α) b+ γα = 0 (2055)

Cycle depends on roots of the quadratic equation
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b1, b2 =
γ (1 + α)±

√
γ2 (1 + α)

2 − 4γα

2
(2056)

Three Cases in Samuelsonian Multiplier Accelerator Model
Distinct real root case (no cycle)

γ2 (1 + α)
2
> 4γα (2057)

Repeated real root case (no cycle)

γ2 (1 + α)
2

= 4γα (2058)

Complex root case (cycle)

γ2 (1 + α)
2
< 4γα (2059)

Complete solution

Yt = A1b
t
1 +A2b

t
2 + Y (2060)

Yt = A1R
t (cos θ · t+ i · sin θ · t) +A2R

t (cos θ · t− i · sin θ · t) + Y
Multiplier Accelerator Model
Two roots of a characteristic equation are related as:

b1 + b2 = γ (1 + α) (2061)

b1b2 = γα (2062)

Using these consider how the values of characteristic root compare to the values of α and γ.

(1− b1) (1− b2) = 1− (b1 + b2) + b1b2 (2063)

(1− b1) (1− b2) = 1− γ (1 + α) + γα=1− γ (2064)

Condition 0 < (1− b1) (1− b2) < 1 is necessary to remain consistent with the potential value of
the marginal propensity to consume, 0 < γ < 1.
Two roots of a characteristic equation are related as:

b1 + b2 = γ (1 + α) (2065)

b1b2 = γα (2066)

Using these consider how the values of characteristic root compare to the values of α and γ.

(1− b1) (1− b2) = 1− (b1 + b2) + b1b2 (2067)

(1− b1) (1− b2) = 1− γ (1 + α) + γα=1− γ (2068)
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Condition 0 < (1− b1) (1− b2) < 1 is necessary to remain consistent with the potential value of
the marginal propensity to consume, 0 < γ < 1.
There are five possible configurations of and their implications on multiplier and acceleration

terms and are as following:
1. 0 < b2 < b1 < 1 =⇒ 0 < γ < 1 and γα< 1 Convergent
2.0 < b2 < b1 = 1 =⇒ γ = 1 MPC should be less than 1
3. 0 < b2 < 1 < b1 =⇒ γ > 1 MPC should be less than 1
4. 0 < b2 = 1 < b1 =⇒ γ > 1 MPC should be less than 1
5.1 = b2 < b1 =⇒ 0 < γ < 1 and γα> 1 Divergent
Multiplier Accelerator Model: Real Distinct Roots
The convergence of the system depends on term γα. System is convergent γα< 1, has steady if

γα= 1or divergent γα> 1.
The degree of fluctuation depends on 4α

(1+α)2 relative to γ. The system is explosive with no

oscillation if γ > 4α
(1+α)2 ;

it is recurrent if γ = 4α
(1+α)2 and has damped oscillations if γ < 4α

(1+α)2 .
This last case requires solving the model using a complex root.
Multiplier Accelerator Model: Repeated Roots
γ2 (1 + α)

2
= 4γα

When there is only one solution for both b1and b2 .
There can be three cases in this situation.

b1, b2 =
γ (1 + α)±

√
γ2 (1 + α)

2 − 4γα

2
=
γ (1 + α)

2
(2069)

1 = b2 < b1 =⇒ 0 < γ < 1 and γα> 1
1. 0 < b1 < 1 =⇒ < γ < 1 and γα< 1 convergence no oscillation.0 < (1− b1) (1− b2) < 1
2. 0 < b1 = 1 =⇒ γ = 1 violates condition 0 < (1− b1) (1− b2) < 1
3. 0 < b1 = 1 =⇒< γ < 1 γα> 1 divergent no oscillation
Multiplier Accelerator Model: Complex Root
γ2 (1 + α)

2
< 4γα

Need to consider the algebra for the imaginary number and some trigonometric functions in
this case. Using Pythagorean in an imaginary axis is used to derive the roots of the characteristic
equation.

b1, b2 = (h± v · i) =
γ (1 + α)

2
± i

√
4γα−γ2 (1 + α)

2

2
(2070)

Yt = A1b
t
1 +A2b

t
2 = A1 (h+ v · i)t +A2 (h− v · i)t (2071)

Using DeMoivre’s theorem

(h± v · i) = Rt (cos θ · t± i sin θ · t) for Rt > 0. (2072)
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Multiplier Accelerator Model: Complex Root Imaginary axis (Pithagorus Theorem)

R =
√
h2 + v2 = αγ (2073)

Coeffi cient of Yt-2

Yt = A1R
t (cos θ · t+ i sin θ · t) +A2R

t (cos θ · t− i sin θ · t) (2074)

Yt = A1R
t
(

cos
π

2
· t+ i sin

π

2
· t
)

+A2R
t
(

cos
π

2
· t− i sin

π

2
· t
)

(2075)

Three possibilities:
i) Rt > 1; αγ > 1 ii) Rt = 1 αγ = 1 and ii) Rt < 1 αγ < 1 Only the αγ < 1 case is convergent

other two cases are divergent.
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18.4 Review of matrix algebra

A =

[
a11 a12

a21 a22

]
; B =

[
b11 b12

b21 b22

]
; C =

[
c11 c12

c21 c22

]
;

Addition:

A+B =

[
a11 a12

a21 a22

]
+

[
b11 b12

b21 b22

]
=

[
a11 + b11 a12 + b12

a21 + b21 a22 + b22

]
(2076)

Subtraction:

A−B =

[
a11 a12

a21 a22

]
−
[
b11 b12

b21 b22

]
=

[
a11 − b11 a12 − b12

a21 − b21 a22 − b22

]
(2077)

Multiplication:

AB =

[
a11 a12

a21 a22

]
×
[
b11 b12

b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
(2078)

18.4.1 Determinant and Transpose of Matrices

Determinant of A

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = (a11a22 − a21a12) ; (2079)

Determinant of B |B| =
∣∣∣∣ b11 b12

b21 b22

∣∣∣∣ = (b11b22 − b21b12)

Determinant of C |C| =
∣∣∣∣ c11 c12

c21 c22

∣∣∣∣ = (c11c22 − c21c12)

Transposes of A, B and C

A′ =

[
a11 a21

a12 a22

]
; B′ =

[
b11 b21

b12 b22

]
; C ′ =

[
c11 c21

c12 c22

]
(2080)

Singular matrix |D| = 0. non-singular matrix |D| 6= 0.

18.4.2 Inverse of A

A−1 =

[
a11 a12

a21 a22

]−1

=
1

|A|adj (A) (2081)

adj (A) = C ′ (2082)

For C cofactor matrix. For this cross the row and column corresponding to an element and
multiply by (−1)i+j

C =

[
|a22| − |a21|
− |a12| |a11|

]
=

[
a22 −a21

−a12 a11

]
(2083)

C ′ =

[
a22 −a21

−a12 a11

]′
=

[
a22 −a12

−a21 a11

]
(2084)
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Inverse of A

A−1 =
1

(a11a22 − a21a12)

[
a22 −a12

−a21 a11

]
=

[
a22

(a11a22−a21a12) − a12

(a11a22−a21a12)

− a21

(a11a22−a21a12)
a11

(a11a22−a21a12)

]
(2085)

1) Find B−1.
2) Some examples (a) addition and subtraction

18.4.3 Exercise on matrix manipulations

An electronic store has branches both in Hull and York and sells computers and TV before and
after the Christmas. Quantities and prices are as given below.

Table 24: Hypothetical Data on Quantities and Prices
Hull York

Computer TV Computer TV
Before After Before After Before After Before After

Quantities (Yi) 300 500 600 400 300 500 600 800
Prices (Xi) 500 400 100 60 525 400 120 80

Represent quantities and prices in the matrix form.

1. (a) Total quantities and prices sold in both markets before and after, i.e. (QB) and (QA)
and (PB) and (PA) .

(b) Difference in sales in these two places (QB −QA) .

(c) Total sales revenue in both places before and after the Christmas (RB = QBPB , RA = QAPA).

(d) If total revenue (RB , RA) and quantities (QB , QA) are known, show formula to find prices
(PB , PA).

3) Portfolio of A, B, C, and D companies is P =
[

200 300 −1100 600
]
and their prices in

good and bad economic states

S′ =

[
G 1.3 1.2 1.0 1.5
B 1.5 0.83 0.95 1.2

]
are respectively. Find the expected values of above portfolio

in good and bad states (PS).

18.4.4 Application: Problems with multiple markets

Market 1:

Xd
1 = 10− 2p1 + p2 (2086)

XS
1 = −2 + 3p1 (2087)
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• Market 2:
Xd

2 = 15 + p1 − p2 (2088)

XS
2 = −1 + 2p2 (2089)

Xd
1 = XS

1 implies 10− 2p1 + p2 = −2 + 3p1

Xd
1 = XS

1 implies 15 + p1 − p2 = −1 + 2p2[
5 −1
−1 3

] [
p1

p2

]
=

[
12
16

]
(2090)

18.4.5 Application of Matrix in Solving Equations[
p1

p2

]
=

[
5 −1
−1 3

]−1 [
12
16

]
(2091)

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ =

∣∣∣∣ 5 −1
−1 3

∣∣∣∣ = (5× 3− (−1) (−1)) = 15− 1 = 14;

C ′ =

[
a22 −a21

−a12 a11

]′
=

[
a22 −a12

−a21 a11

]
=

[
3 1
1 5

]
[
p1

p2

]
=

1

14

[
3 1
1 5

] [
12
16

]
=

1

14

(
(3× 12) + (1× 16)
(1× 12) + (5× 16)

)
=

(
52
14
92
14

)
=

(
26
7
46
7

)
(2092)

18.5 Application of Matrix in Solving Equations

18.5.1 Cramer’s Rule

p1 =

∣∣∣∣ 12 −1
16 3

∣∣∣∣∣∣∣∣ 5 −1
−1 3

∣∣∣∣ =
36 + 16

15− 1
=

26

7
; p2 =

∣∣∣∣ 5 12
−1 16

∣∣∣∣∣∣∣∣ 5 −1
−1 3

∣∣∣∣ =
80 + 12

15− 1
=

46

7
(2093)

Market 1:

LHS = 10− 2p1 + p2 = 10− 2

(
26

7

)
+

(
46

7

)
=

64

7
= −2 + 3p1 =

64

7
= RHS (2094)

Market 2:

LHS = 15 + p1 − p2 = 15 +
26

7
− 46

7
=

85

7
= −1 + 2p2 =

85

7
= RHS (2095)

QED.
Extension to N-markets is obvious; a confidence for solving large models.
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18.5.2 Spectral Decomposition of a Matrix

|A− λI| =
∣∣∣∣ 5 −1
−1 3

∣∣∣∣− ∣∣∣∣ λ 0
0 λ

∣∣∣∣ =

∣∣∣∣ 5− λ −1
−1 3− λ

∣∣∣∣ = 0 (2096)

λ is Eigen value

(5− λ) (3− λ)− 1 = 0 (2097)

15− 5λ− 3λ+ λ2 − 1 = 0 or

λ2 − 8λ+ 14 = 0 (2098)

Eigen values

λ1, λ2 =
8±
√

82 − 4× 14

2
=

8±
√

8

2
=

8± 2.83

2
== 5.4, 2.6 (2099)

[
5− λ −1
−1 3− λ

] [
x1

x2

]
=

(
0
0

)
(2100)

for λ1 = 5.4 [
5− 5.4 −1
−1 3− 5.4

] [
x1

x2

]
=

(
0
0

)
(2101)

[
−0.4 −1
−1 −2.4

] [
x1

x2

]
=

(
0
0

)
(2102)

x
2

= −0.4x1

Normalisation

x2
1 + x2

2 = 1 ; x2
1 + (−0.4x1)

2
= 1 (2103)

1.16x2
1 = 1;x2

1 =
1

1.16
;x1 =

√
0.862 = 0.928 (2104)

x
2

= −0.4x1 = −0.4 (0.928) = −0.371 (2105)

18.5.3 Eigenvector 1

V1 =

[
x1

x2

]
=

(
0.928
−0.371

)
(2106)

λ2 = 2.6 [
5− 2.6 −1
−1 3− 2.6

] [
x1

x2

]
=

(
0
0

)
(2107)

[
2.4 −1
−1 0.4

] [
x1

x2

]
=

(
0
0

)
(2108)
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x2 = 2.4x1

x2
1 + x2

2 = 1; x2
1 + (2.4x1)

2
= 1 (2109)

6.76x2
1 = 1;x2

1 =
1

6.76
;x1 =

√
0.129 = 0.373 (2110)

x
2

= 2.4 x1 = 2.4 (0.373) = 0.895 (2111)

Eigenvector 2

V2 =

[
x1

x2

]
=

(
0.373
0.895

)
(2112)

Orthogonality (Required for GLS)

(V1)
′
(V2) = 0 (2113)

V1 =

[
x1

x2

]
=

(
0.928
−0.371

)
(2114)

V2 =

[
x1

x2

]
=

(
0.373
0.895

)
(2115)

[
0.928 −0.371

] [ 0.373
0.895

]
= 0.346− 0.332 ≈ 0 (2116)

18.5.4 Orthogonality (Required for GLS)

(V1)
′
(V2) = 0 (2117)

[
0.928 −0.371

] [ 0.373
0.895

]
= 0.346− 0.332 ≈ 0 (2118)

(V1V2)
′
(V1V2) = (V1V2) (V1V2)

′
= I (2119)

[
0.928
−0.371

0.373
0.895

] [
0.928
−0.371

0.373
0.895

]T
=

[
1 0
0 1

]
(2120)
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18.5.5 Diagonalisation, Trace of Matrix

Inverse of an orthogonal matrix equals its transpose Q =
(
V
′

1V2

)
Q−1 = Q′ (2121)

Q′AQ = Λ (2122)

Λ =


λ1 0 .. 0
0 λ2 .. 0
: : : :
0 0 .. λn

 (2123)

n∑
i=1

λi =

n∑
i=1

aii (2124)

|A| = λ1λ2....λn (2125)

18.5.6 Quadratic forms, Positive and Negative Definite Matrices

quadratic form

q (x) = (x1x2)

[
a11 a12

a21 a22

] [
x1

x2

]
(2126)

Positive definite matrix (matrix with all positive eigen values)

q (x) = x
′
Ax > 0 (2127)

Positive semi-definite matrix

q (x) = x
′
Ax > 0 (2128)

Negative definite matrix (matrix with all negative eigen values)

q (x) = x
′
Ax < 0 (2129)

Negative semi-definite matrix

q (x) = x
′
Ax ≤ 0 (2130)
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18.5.7 Generalised Least Square

Take a regression

Y = Xβ + e (2131)

Assumption of homoskedasticity and no autocorrelation are violated

var (εi) 6= σ2 for ∀ i (2132)

covar (εiεj) 6= 0 (2133)

The variance covariance of error is given by

Ω = E (ee′) =


σ2

1 σ12 .. σ1n

σ21 σ2
2 .. σ2n

: : : :
σn1 σn2 .. σ2

n

 (2134)

Q′ΩQ = Λ (2135)

Ω = QΛQ′ = QΛ
1
2 Λ

1
2Q′ (2136)

P = QΛ
1
2 (2137)

P ′ΩP = I ; P ′P = Ω−1 (2138)

Transform the model

PY = βPX + Pe (2139)

Y ∗ = βX∗ + e∗ (2140)

Y ∗ = PY X∗ = PX and e∗ = Pe βGLS = (X ′P ′PX)
−1

(X ′P ′PY )

βGLS =
(
X ′Ω−1X

)−1 (
X ′Ω−1Y

)
(2141)

18.6 Estimation and Inference

Regress demand for a product (Yi) on its own prices (Xi) as following

Yi = β1 + β2Xi + ei i = 1 ...N

where ei is a randomly distributed error term for observation i.
List the OLS assumptions on error terms ei . [5]
OLS assumptions

E (εi) = 0 (2142)

440



E (εixi) = 0 (2143)

var (εi) = σ2 for ∀ i (2144)

covar (εiεj) = 0 (2145)

covar (εiXi) = 0 (2146)

Derive the normal equations and the OLS estimators of β̂1 and β̂2. [10]

Min S
β̂1β̂2

=
∑

ε2
i =

∑(
Yi − β̂1 − β̂2X1,i

)2

(2147)

First order conditions
∂S

∂β̂1

= 0;
∂S

∂β̂2

= 0; (2148)

∑(
Yi − β̂1 − β̂2Xi

)
(−1) = 0 (2149)∑(

Yi − β̂1 − β̂2Xi

)
(−Xi) = 0 (2150)∑

Yi = β̂1N + β̂2

∑
Xi (2151)∑

YiXi = β̂1

∑
Xi + β̂2

∑
X2
i (2152)[

β̂1

β̂2

]
=

[
N

∑
Xi∑

Xi

∑
X2
i

]−1 [ ∑
Yi∑
YiXi

]
(2153)

A shopkeeper observed the data on quantities and prices as given in Table 1 below. What are
the OLS estimates of β̂1 and β̂2 implied by these data? Is this a normal good? [15]

Table 25: Data on Quantities ane Prices
Quantities (Yi) 5 10 15 20 25 30
Prices (Xi) 10 8 6 4 2 1

Hints:
[∑

Xi = 31
∑
X2
i = 221

∑
Y 2
i = 2275;

∑
Yi = 105

∑
YiXi = 380

]
;

(X ′X)
−1

=

[
0.605 −0.085
−0.085 0.0164

]
OLS Estimators [

β̂1

β̂2

]
=

[
N

∑
Xi∑

Xi

∑
X2
i

]−1 [ ∑
Yi∑
YiXi

]
(2154)

[
β̂1

β̂2

]
=

[
6 31
31 221

]−1 [
105
380

]
;|X ′X| =

∣∣∣∣ 6 31
31 221

∣∣∣∣ = (6× 221)− (31× 31) = 365

β̂1 =
1

365

∣∣∣∣ 105 31
380 221

∣∣∣∣ =
23205− 11780

365
=

11425

365
= 31.301 (2155)
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β̂2 =
1

365

∣∣∣∣ 6 105
31 380

∣∣∣∣ =
2280− 3255

365
=
−975

365
= −2.671 (2156)

Ŷi = β̂1 + β̂2Xi = 31.301− 2.671Xi

Demand decreases as price rises. ∂Y
∂X = −2.671. Certainly this seems a normal good.∑

x2
i =

∑(
Xi −X

)2
=
∑
X2
i −NX

2
= 221− 6(5.2)2 = 58.76∑

y2
i =

∑(
Yi − Y

)2
=
∑
Y 2
i −NY

2
= 2275− 6(17.5)2 = 437.5

What are the total variances of ei and Yi? [10]

êi = Yi − 31.301− (−2.671)Xi (2157)

ê1 = 5− 31.301− (−2.671) 10 = 0.409 (2158)

ê2 = 10− 31.301− (−2.671) 8 = 0.067 (2159)

ê3 = 15− 31.301− (−2.671) 6 = −0.275 (2160)

ê4 = 20− 31.301− (−2.671) 4 = −0.617 (2161)

ê5 = 25− 31.301− (−2.671) 2 = −0.959 (2162)

ê6 = 30− 31.301− (−2.671) 1 = 1.37 (2163)∑
ê2
i = (0.409)

2
+ (0.067)

2
+ (−0.275)

2
+ (−0.617)

2
+ (−0.959)

2
+ (1.37)

2
= 3.421

var(εi) = σ̂2 =
∑
ε̂2i

N−K = 3.421
6−2 = 0.855

total variance of Yi is given by
∑
y2
i =

∑(
Yi − Y

)2
=
∑
Y 2
i −NY

2
= 2275− 6(17.5)2 = 437.5

You can do shortcut deviation method (beware that it may not guarantee that TSS
is more than ESS): For instance for the same look at the following

β̂2 =

∑
yixi∑
x2
i

; β̂1 = Y − β̂2X (2164)

∑
yixi =

∑
YiXi − Y NX = 380− (5.2) (6) (17.5) = −166

β̂2 =
∑
yixi∑
x2
i

= −166
58.76 = −2.825

β̂1 = Y − β̂2X = 17.5− (−2.825) (5.2) = 32.19

What are R2 and R
2
? [10]

R2 =
∑
ŷ2
i∑
y2
i
; R

2
= 1−

(
1−R2

)
N−1
N−K∑

ŷ2
i =

∑
y2
i −

∑
ê2
i = 437.5− 3.421 = 434.079

R2 =
∑
ŷ2
i∑
y2
i

= 434.079
437.5 = 0.9922

R
2

= 1−
(
1−R2

)
N−1
N−K = 1− (1− 0.9922) 5

4 = 0.9902
Again the shortcut does not give quite the same answer
ŷi = β̂2xi∑
ŷ2
i =

∑
(β̂2xi)

2 = β̂
2

2

∑
xi

2 = (2.671)
2

(58.76) = 419.21∑
ê2
i =

∑
y2
i −

∑
ŷ2
i = 437.5− 419.21 = 18.29

Determine the overall significance of this model by F -test at 5 percent level of significance.
[Critical value of F for df(1,4) =7.71]

F =
RSS/(K − 1)

ESS/(N − k)
=

434.079
1

3.421
4

=
434.079

0.85525
= 507.55 (2165)
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What are the variances and standard errors of β̂1 and β̂2? [10]
Evaluate (X ′X)

−1

(X ′X)
−1

=

[
6 31
31 221

]−1

= 1∣∣∣∣∣∣ 6 31
31 221

∣∣∣∣∣∣

(
221 −31
−31 6

)′
= 1

365

(
221 −31
−31 6

)
=

(
221
365

−31
365−31

365
6

365

)

(X ′X)
−1

=

(
221
365

−31
365−31

365
6

365

)
=

(
0.605 −0.085
−0.085 0.0164

)
cov

(
β̂
)

= (X ′X)
−1
σ̂2 =

(
0.605 −0.085
−0.085 0.0164

)
(0.855)

(X ′X)
−1

=

(
221
365

−31
365−31

365
6

365

)
=

(
0.605 −0.085
−0.085 0.0164

)
cov

(
β̂
)

= (X ′X)
−1
σ̂2 =

(
0.605 −0.085
−0.085 0.0164

)
(0.855)

var
(
β̂1

)
= (0.605) (0.855) = 0.5153

var
(
β̂2

)
= (0.0164) (0.855) = 0.0140

SE
(
β̂1

)
=

√
var

(
β̂1

)
=
√

0.5153 = 0.7178

SE
(
β̂2

)
=

√
var

(
β̂2

)
=
√

0.0140 = 0.1183

Compute t-statistics and determine whether parameters β̂1 and β̂2 are statistically significant
at 5 percent level of significance.
[Critical value of t for five percent significance for 4 degrees of freedom is 2.776(i.e tcrit,0.05,4 = 2.777)

] [10]
Here the null hypothesis is that H0 : β1 = 0; and β2 = 0 against alternative hypothesis

HA : β1 6= 0; and β2 6= 0

t
(
β̂1

)
= β̂1−0

SE(β̂1)
= 31.301

0.7178 = 43.607

t
(
β̂2

)
= β̂2−0

SE(β̂2)
= −2.671

0.1183 = −22.5281

Both of these values are greater than the critical value of t. Statistical evidence suggest to H0

and we conclude that β̂1 and β̂2 are statistically significant at 5 percent level of significance.
What is the prediction of Y when X is 0.5? [5]
Ŷi = β̂1 + β̂2Xi = 31.301− 2.671 (0.5) = 29.97
What is the elasticity of demand evaluated at the mean values of Yi and Xi? [5]
∂Yi
∂Xi

= β2 e = ∂Yi
∂Xi

X
Y

= β2
X
Y

= −2.671× 5.2
17.5 = −0.794

Reformulate the model to include price of a substitute product in the model. What will happen
to this estimation if these two prices are exactly correlated? [5]
let us redefine X1,i be the product price and X2,i be the price of the substitute product. Then

the regression can be written as:
Yi = β0 + β1X1,i + β2X2,i + ei
If there is exact collinearity like X1,i = λX2,i the OLS procedure will breakdown. In matrix
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approach  ∑
Yi∑

X1,iYi∑
X2,iYi

 =

 N
∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i


 β̂0

β̂1

β̂2

 (2166)

|X ′X| =

∣∣∣∣∣∣
N

∑
X1,i

∑
X2,i∑

X1,i

∑
X2

1,i

∑
X1,iX2,i∑

X2,i

∑
X1,iX2,i

∑
X2

2,i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N λ

∑
X2,i

∑
X2,i

λ
∑
X2,i λ2∑X2

2,i λ
∑
X2

2,i∑
X2,i λ

∑
X2

2,i

∑
X2

2,i

∣∣∣∣∣∣ = 0

It is not possible to apply the OLS procedure.
How would you decide whether demand for this product varies by gender? [5]
A new Di dummy variable can be introduced defining it as

Di =
∫ 1 if Male

0 Female
Yi = β0 + β1X1,i + β2X2,i + δDi + ei
Here δ measures the difference in consumption by male against female. This is a male effect in

consumption.

type I and type II errors
Elaborate on the following with relevant diagrams

True False
Accept Correct Type II error
Reject Type I error Correct

18.7 Distributions: Normal, t, F and chi_square

Normal Distribution

f(x) =
1

σ
√

2π
exp

(
−1

2

(x− µ)
2

σ2

)
(2167)

Lognormal

f(x) =
1

σ
√

2π
exp

(
−1

2

(lnx− µ)
2

σ2

)
(2168)

Standard normal:

e ∼ N (0, 1) (2169)

Any distribution can be converted to the standard normal distribution by normalization.
Chi-square: Sum of the Square of a normal distribution

Z =

k∑
i=1

Z2
i (2170)

with k degrees of freedom.
t Distribution: ratio of normal to chi-square

t =
Z1√
Z1/k

(2171)
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F - distribution: ratios of two chi-square distribution with df k1 and k2

F =

√
Z1/k1√
Z1/k2

(2172)

18.8 Large Sample Theory

Probability limit
p lim (β) = β (2173)

• —Central limit theorem
— t Distribution: ratio of normal to chi-square

Y − β
σ/
√
T

= N (0, 1) (2174)

—Convergence in limit

lim
t−→∞

p
∣∣∣θ̂ − θ∣∣∣ 6 ε = 1 =⇒ p lim

(
θ̂
)

= θ (2175)

t-distribution more accurate for finite samples but the normal distribution asymptotically ap-
proximates any other distribution according to the central limit theorem.
Probability limit of sum of two numbers is sum of probability limits
Probability limit of product of two numbers is product of probability limits
Probability limit of a function is the function of the probability limit (Slutskey theorem)

18.9 Unconstrained Optimisation

1. Consider y as a function of x1,x2 and x3 as given in the following equation:

y = −5x2
1 + 10x1 + x1x3 − 2x2

2 + 4x2 + 2x2x3 − 4x2
3 (2176)

(a) Find the optimal values of x1,x2 and x3 using the first order conditions for unconstrained
maximisation. Use matrix approach in your solution.

(b) Determine whether the above solutions correspond to the minimum or the maximum
point using positive or negative definite concepts of the Hessian determinants.
Solution.
First find the Jacobian matrix for the above equation.

∂y

∂x1
= −10x1 + 10 + x3 = 0 (2177)

∂y

∂x2
= −4x2 + 4 + 2x3 = 0 (2178)

∂y

∂x3
= x1 + 2x2 − 8x3 = 0 (2179)

Put this in the matrix format
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 −10x1 0x2 x3

0x1 −4x2 2x3

x1 2x2 −8x3

 =

 −10
−4
0

 (2180)

By rearrangement:

 −10 0 1
0 −4 2
1 2 −8

 x1

x2

x3

 =

 −10
−4
0

 (2181)

 x1

x2

x3

 =

 −10 0 1
0 −4 2
1 2 −8

−1 −10
−4
0

 (2182)

Define matrix notations:

X =

 x1

x2

x3

 ;A =

 −10 0 1
0 −4 2
1 2 −8

 ; b =

 −10
−4
0


In matrix representation off above system

X = A−1b (2183)

A−1 =
1

|A|Adj (A) =
1

|A|C
′ (2184)

Determinant of A matrix

|A| =

∣∣∣∣∣∣
−10 0 1

0 −4 2
1 2 −8

∣∣∣∣∣∣ = −276 (2185)

|A| = −320 + 0 + 0 + 4 + 40 + 0 = −276
Minors

MA =



∣∣∣∣ −4 2
2 −8

∣∣∣∣ ∣∣∣∣ 0 2
1 −8

∣∣∣∣ ∣∣∣∣ 0 −4
1 2

∣∣∣∣∣∣∣∣ 0 1
2 −8

∣∣∣∣ ∣∣∣∣ −10 1
1 −8

∣∣∣∣ ∣∣∣∣ −10 0
1 2

∣∣∣∣∣∣∣∣ 0 1
−4 2

∣∣∣∣ ∣∣∣∣ −10 1
0 2

∣∣∣∣ ∣∣∣∣ −10 0
0 −4

∣∣∣∣

 (2186)
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Cofactor

C =



∣∣∣∣ −4 2
2 −6

∣∣∣∣ −
∣∣∣∣ 0 2

1 −6

∣∣∣∣ ∣∣∣∣ 0 −4
1 2

∣∣∣∣
−
∣∣∣∣ 0 1

2 −6

∣∣∣∣ ∣∣∣∣ −10 1
1 −6

∣∣∣∣ − ∣∣∣∣ −10 0
1 2

∣∣∣∣∣∣∣∣ 0 1
−4 2

∣∣∣∣ −
∣∣∣∣ −10 1

0 2

∣∣∣∣ ∣∣∣∣ −10 0
0 −4

∣∣∣∣

 (2187)

C =



∣∣∣∣ −4 2
2 −8

∣∣∣∣ −
∣∣∣∣ 0 2

1 −8

∣∣∣∣ ∣∣∣∣ 0 −4
1 2

∣∣∣∣
−
∣∣∣∣ 0 1

2 −8

∣∣∣∣ ∣∣∣∣ −10 1
1 −8

∣∣∣∣ − ∣∣∣∣ −10 0
1 2

∣∣∣∣∣∣∣∣ 0 1
−4 2

∣∣∣∣ −
∣∣∣∣ −10 1

0 2

∣∣∣∣ ∣∣∣∣ −10 0
0 −4

∣∣∣∣

 =

 28 2 4
−2 79 20
4 20 40

 (2188)

C ′ =

 28 −2 4
2 79 20
4 20 40

 (2189)

A−1 =
1

|A|C
′ =

1

−276

 28 −2 4
2 79 20
4 20 40

 =

 −0.1014 0.0072 −0.0144
−0.0072 0.2862 −0.07246
−0.0144 −0.07246 0.14493

 (2190)

 x1

x2

x3

 =

 −0.1014 0.0072 −0.0144
−0.0072 0.2862 −0.07246
−0.0144 −0.07246 0.14493

 −10
−4
0

 =

 1.0435
1.2174
0.4347

 (2191)

Alternatively this system could be solved using the Cramer’s rule

x1 =
1

−276

∣∣∣∣∣∣
−10 0 1
−4 −4 2
0 2 −8

∣∣∣∣∣∣ =
−288

−276
= 1.0435 (2192)

x2 =
1

−276

∣∣∣∣∣∣
−10 −10 1

0 −4 2
1 0 −8

∣∣∣∣∣∣ =
−336

−276
= 1.2174 (2193)

x2 =
1

−276

∣∣∣∣∣∣
−10 0 −10

0 −4 −4
1 2 0

∣∣∣∣∣∣ =
−120

−276
= 0.4347 (2194)

Properties of the Hessian Determinants y11 y12 y13

y21 y22 y23

y31 y32 y33

 =

 −10 0 1
0 −4 2
1 2 −8

 (2195)
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H1 = y11 = −10 < 0 (2196)

H2 =

∣∣∣∣ y11 y12

y21 y22

∣∣∣∣ =

∣∣∣∣ −10 0
0 −4

∣∣∣∣ = 40 > 0 (2197)

H3 =

∣∣∣∣∣∣
−10 0 1

0 −4 2
1 2 −8

∣∣∣∣∣∣ = −320 + 0 + 0 + 4 + 40 + 0 = −276 = 40 > 0 (2198)
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