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Abstract

High precision demands in a large number of emerging robotic applications strengthened the

role of the modern control laws in the position control of the Permanent Magnet Synchronous

Motor (PMSM) servo system. This paper proposes a learning-based adaptive control approach

to improve the PMSM position tracking in the presence of the friction uncertainty. In contrast to

most of the reported works considering the servos operating at high speeds, this paper focuses

on low speeds in which the friction stemmed deteriorations become more obvious. In this

paper firstly, a servo model involving the Stribeck friction dynamics is formulated, and the

unknown friction parameters are identified by a genetic algorithm from the offline data. Then, a

feedforward controller is designed to inject the friction information into the loop and eliminate it

before causing performance degradations. Since the friction is a kind of disturbance and leads

to uncertainties having time-varying characters, an Adaptive Proportional Derivative (APD)

type Iterative Learning Controller (ILC) named as the APD-ILC is designed to mitigate the fric-

tion effects. Finally, the proposed control approach is simulated in MATLAB/Simulink environ-

ment and it is compared with the conventional Proportional Integral Derivative (PID) controller,

Proportional ILC (P-ILC), and Proportional Derivative ILC (PD-ILC) algorithms. The results con-

firm that the proposed APD-ILC significantly lessens the effects of the friction and thus notice-

ably improves the control performance in the low speeds of the PMSM.

1. Introduction

Recent emerging advancements in the automation technology have redefined the role of the

robotics and mechatronics systems in modern-day industrial world. To perform various tasks

like the welding, machine tending, grinding, packaging, assembling and material transporting,

a variety of robots such as the industrial robot manipulators [1], wheeled mobile robots [2]

and track-driven mobile robots [3] have been widely considered. Owing to stringent require-

ments of the precision and accuracy in a highly nonlinear and dynamic environments, there is

an increasing demand to develop novel actuation and control technologies for these industrial

robots [4, 5].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0279253 January 18, 2023 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Riaz S, Qi R, Tutsoy O, Iqbal J (2023) A

novel adaptive PD-type iterative learning control of

the PMSM servo system with the friction

uncertainty in low speeds. PLoS ONE 18(1):

e0279253. https://doi.org/10.1371/journal.

pone.0279253

Editor: Qichun Zhang, University of Bradford,

UNITED KINGDOM

Received: December 28, 2021

Accepted: December 3, 2022

Published: January 18, 2023

Copyright: © 2023 Riaz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-7818-2578
https://orcid.org/0000-0002-0795-0282
https://doi.org/10.1371/journal.pone.0279253
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279253&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279253&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279253&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279253&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279253&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279253&domain=pdf&date_stamp=2023-01-18
https://doi.org/10.1371/journal.pone.0279253
https://doi.org/10.1371/journal.pone.0279253
http://creativecommons.org/licenses/by/4.0/


The PMSM has been broadly used in industrial robots, high-precision CNC machines, and

other applications employing servo control due to its small size, simple structure, low moment

of inertia, and high-power density. It is reported that the servo control systems performing

repetitive tasks can theoretically achieve satisfactory tracking results using the ILC [6]. How-

ever, various disturbances, modeling errors [7], and time-varying system parameters [8]

adversely affect the convergence of the ILC. Therefore, the control community is actively

working on the ILC-based control of the PMSM servo systems working under the dynamic

uncertainties [9]. Recently, researchers have combined the adaptive control and ILC to form

Adaptive Iterative Learning Control (AILC) [10, 11], which exploits the ILC to solve the repeti-

tive tracking problems [12, 13] and adaptive control to handle the system uncertainty problem.

Thus, AILC improves the tracking accuracy of the PMSM servo system and also accelerates

the controller speed of convergence in the presence of the uncertainties [14, 15].

Compared with the ‘traditional rotating motor and ball screw’ drive mode, a Permanent

Magnet Linear Synchronous Motor (PMLSM) adopts a direct-drive mode, without any con-

version links in the middle and offers larger thrust, low loss, and fast response. Owing to these

advantages, the PMLSM has been widely preferred in a large number of industrial applications

[16–18]. However, the parametric changes, friction, measurement disturbances, and cogging

force affect the motor motion which cause formidable control challenges. This necessitates a

robust controller design with an ability to accurately track the reference trajectory by eliminat-

ing the detrimental effects of the uncertainties [19, 20].

Due to the uncertainties in the PMSM servo system, its high precision tracking control with

the conventional PID controller is challenging [21–23]. In addition, owing to the nature of

underlying mathematical structure, it is not easy to fully compensate the nonlinearities of the

motor with the linear control approaches having constant gains [24, 25]. Work reported in

[26] expressed that a disturbance predictor-based control can improve the tracking accuracy

of the controller since it gains the disturbance rejection capability. Another work [27]

employed an iterative learning approach to reduce the controller position gain in order to

enhance the position tracking of a linear motor working in specific state intervals. However,

increase in the number of iterations reduced the controller convergence speed [28]. Similarly,

an open-loop P-type ILC for the compensation of the measurement noise has been presented

in [29]. The non-repetitive disturbance considerably fluctuated the motor position since the

controller was unable to handle the instant random changes in the disturbance [30, 31].

Other types of control approaches without the friction disturbances are the intelligent

control [32], adaptive fuzzy control [33] and Active Disturbance Rejection Control (ADRC)

[34]. The Disturbance Observer (DOB) compensation methods are reviewed in [35]. The

neural network control algorithm in [32] and the fuzzy control algorithm in [33, 36, 37]

have approximated the friction characteristics by a genetic algorithm. A controller was then

designed to compensate the friction. However, due to the hardware constraints, the intelli-

gent control algorithm requires a large amount of online computations. The primary DOB

disturbance compensation method in [38] and its counterpart ADRC in [34, 39] both sup-

pressed the friction, but their dynamic performances and stability analyses were not carried

out [40, 41].

In scientific literature, the PMSM vector control system has been established on the dq-axis

transformed model with id = 0 in which the transformed d-axis current (id) of the PMSM is

kept at zero to ease the control problem. Generally, the influence of the uncertain factors such

as the friction torque, cogging torque, modelling errors, and the time-varying parameters on

the control system have been analyzed. The well-known state equations of the system have

been established. Recently, a parametric AILC law has been formulated to lessens the deterio-

rations in the PMSM servo system’s tracking accuracy and error divergence caused by the
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model uncertainty. The primary method is to add adaptive iterative feature to the PD-based

feedback control law. Through the parameter learning, the unknown parameters of the control

law are identified. Then, based on the previous learning law, an enhanced version of the adap-

tive iterative learning law is presented. This corresponds to adding a time-domain estimate of

the unknown parameters to the former learning law while taking full advantage of the infor-

mation in both the continuous and discrete times.

Given the nonlinear approximation ability of the neural networks, a number of researchers

have used them to identify the frictional torque and compensate it with the controller [42–45].

The neural network can be either used as the central controller or is combined with other con-

trol algorithms to gain adaptive control properties [46]. The robustness of the controller

against the friction and other disturbances has been demonstrated in [47, 48] which present

suitable entropy-based ILC compensation and in [49, 50] where various ILC approaches are

introduced. Fuzzy control with adaptive internal model control can also be used as a distur-

bance suppression approach. For example, in [51, 52] an improved internal model control is

utilized for the speed control and two disturbance observers estimate the moment of inertia

and the PMSM load. In [51], the motor disturbances have observed by the combination of an

uncertainty predictor and a state predictor. Its feedforward compensation has been applied to

the control system by using the uncertainty predictor estimates which leads to a superior con-

trol performance. A further research reported in [53] presented a hybrid control scheme based

on sliding mode control and disturbance rejection of a second order PMSM system whose effi-

ciency has been demonstrated through experimental validation.

In recent years, a number of researchers have adopted robust adaptive control, especially

the adaptive backstepping law, to achieve high accuracy in servo control [54–57]. Majority of

the reported works considered the motor’s high speed and thus an improvement in perfor-

mance at relatively low speeds is still an open research area. This paper focuses on the control

of the PMSM running at low speeds where the friction Stribeck compensation problem occurs.

To handle the identified friction uncertainty, the APD-ILC position control algorithm, which

is an iterative and adaptive control approach, is developed. Simulations are performed to quali-

tatively analyze the results and verify the position tracking and the friction compensation abili-

ties of the APD-ILC algorithm.

The control algorithm incorporates the friction model in the form of the feedforward con-

trol to generate a friction-free APD-ILC algorithm. The typical ILC relies on powerful mathe-

matical calculations instead of precise models. On the other hand, the degree of function

compensation is primarily determined by the filter’s bandwidth, which is restricted by vari-

ables such as the mechanical resonance in the system. Consequently, there is a limited capacity

to adjust for friction nonlinearity at zero speed. Basically, the proposed technique updates the

learning gain of the controller according to the magnitude of the error to improve the tracking

accuracy of the system. At the same time, the exponential learning gain is introduced into the

differential coefficient of the controller to speed up the convergence. Finally, the efficiency of

the proposed control technique is demonstrated in simulation.

This article is divided into five sections. Section 2 derives the model of a PMSM, Section 3

provides the convergence analysis, theory of adaptive ILC, nonlinear gain function, and the

sufficient conditions for the error convergence Section 4 presents simulation results to validate

the proposed control approach and finally, Section 5 concludes the paper.

2. Permanent Magnet Synchronous Motor System (PMSM) model

This research considers a surface-mounted PMSM model transformed in the dq-axis. The typi-

cal PMSM mathematical model is given in Eq (1), which uses the notations presented in
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Table 1.

did
dt
¼ �

Rs

Ld
id þ

Lq
Ld
npoiq þ

1

Ld
ud

diq
dt
¼ �

Rs

Lq
iq �

Ld
Lq
npoid �

cf

Lq
npoþ

1

Lq
uq

do
dt
¼ �

Bm

J
oþ

np
J
cf iq þ ðLd � LqÞidiq
h i

ð1Þ

8
>>>>>>>><

>>>>>>>>:

where ud, uq are the stator voltages and id, iq are the armature currents and the Ld, Lq are the

stator inductances on the dq-axis of the motor, np is the number of the pole pairs of the

PMSM, Rs is the stator resistance, ω is the mechanical angular velocity of the motor rotor, ψf is

the rotor flux corresponding to the permanent magnet, J is the rotational inertia, Bm is the vis-

cous damping. In the actual system, to decouple the speed and current, the vector control

mode of i�d � 0 is often used. The equation of the electromagnetic torque can be written as:

Te ¼ J
do
dt
þ Bmoþ TL ¼ Ktiq ð2Þ

where TL is the load torque, and Kt is the torque constant.

Table 1. Nomenclature.

Notation Description

Te Electromagnetic torque

Km Equivalent gain of the PMSM driver

u(t) Control input

θ Motor angular position

ω Motor angular speed

Jm Total inertia

Bm Damping coefficient

TL Loading torque

η(t) Random measurement noise

x(t) System states

A,B,C,E,D System vectors and matrices

F System friction torque

h Sampling time

I Identity matrix with appropriate dimension

yd = θd(t) Desired position trajectory

k Current iteration index

ek Tracking error

yk System actual output

KP Proportional gain

KD Derivative gain

uk Output of the APD-ILC controller

K1 ILC proportional learning gain

K2 ILC derivative learning gain

Δek Sample differenced tracking error

τP, τD Positive constant gains

k1 Upper bound of nonlinear function f(.)

k0 Lower bound of nonlinear function f(.)
α, bd, bη Positive scaling numbers

https://doi.org/10.1371/journal.pone.0279253.t001
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Let F be the system friction torque, θ be the rotational angle of the motor rotor, J be the

sum of the motor and load moment of inertia, then Eq (2) can be re-formulated as:

J
do
dt
¼ Te � Bmo � TL � F

do
dt
¼

1

J
Ktiq � Bmo � TL � F
h i

dy
dt
¼ o

ð3Þ

8
>>>>>>><

>>>>>>>:

A friction model in [58] is used here to fully describe the friction encountered by the

PMSM servo system. The model is represented by the expression;

F ¼ ðFc þ ðFs � FcÞe
� ð _y= _ysÞÞsgnð _yÞ þ Bm

_y ð4Þ

where Fc is the Coulomb friction torque, _y is the rotational angular velocity, Fc is the static fric-

tion torque, _ys is the Stribeck characteristic velocity.

2.1 Detailed modelling of the Stribeck friction

Stribeck curve in Fig 1 is a well-known tool for modelling of the friction. It essentially indicates

the relationship between the friction force and angular velocity for different values of the

Fig 1. The Stribeck friction curve.

https://doi.org/10.1371/journal.pone.0279253.g001
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friction. The Stribeck friction model can be expressed as in Eqs (5) and (6). When the static

friction is j _yðtÞj < a, with α threshold, the dynamic friction Ff(t) can be given by (5).

Ff ðtÞ ¼

Fm FðtÞ > Fm
FðtÞ � Fm < F < Fm
� Fm FðtÞ < � Fm

8
>><

>>:

ð5Þ

On the other hand, when the static friction is j _yðtÞj > a, Ff(t) can be given as;

Ff ðtÞ ¼ ðFc þ ðFm � FcÞe
� a1

_yðtÞÞsgnð _yðtÞÞ þ Bm
_y ð6Þ

where Fm denotes the driving force, Fc represents the maximum static friction force, α1 is a

small scaling factor.

2.2 Identification of the friction parameters

The genetic algorithm is a probabilistic search optimization approach that imitates the organ-

isms’ genetic and evolutionary processes in their natural environment. It can solve complex

and poorly known nonlinear optimization problems without requiring the model of the sys-

tem. The optimization search can be carried out throughout the range of a pre-determined

unknown parameter space and the best parameter solutions are selected among them [59].

The genetic algorithm can also avoid local minima with rich and diverse exploration signals,

so it gains a wide range of adaptability and strong robustness. Fig 2 shows the overall APD-ILC

architecture.

In Fig 2, the desired angular position y
�

d is compared with the measured angular position θ�

to generate the angular position tracking error. This error is processed by the APD-ILC and

the corresponding feedforward control signal is subtracted from the position tracking error

weighted with the C1. This yields a further tracking error which is transformed by the C2

Fig 2. Overall control architecture.

https://doi.org/10.1371/journal.pone.0279253.g002
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weighting value and compared with the iq current on the q-axis together with the friction

model output to produce the i�q desired current. This comparison error is evaluated by the tra-

ditional PI controller which feeds the model transformed from dq-axis to αβ-axis. Similarly, in

case of the desired current i�d ¼ 0, a further PI controller assesses the id current on the d-axis

and provides the control signal for the dq-axis to αβ-axis transformer. The outputs of this

transformer are modulated by the Space Vector Modulation (SVM) component and the Volt-

age Source Inverters (VSI) provides the required 3-phase voltage for the PMSM. When the sys-

tem is in steady-state, the angular velocity becomes _o ¼ 0 and without the load TL = 0, Eq (1)

becomes F = Te = Bmω.

In terms of the PMSM speed control, consider a set of constant speed npψf as the command

signal. According to Eq (6), construct the identifier F̂ðx; _y iÞ and set the parameter to be identi-

fied as

x ¼ ½Fc; Fs; _y;Bm�
T

ð7Þ

Defining the identification error eð _y i; xÞ as;

eð _y i; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Fð _y iÞ � F̂ðx; _y iÞ

q

�
2

ð8Þ

where

Fð _y iÞ ¼ ðFc þ ðFs � FcÞe
� ð _y i= _y iÞÞsgnð _y iÞ þ Bm

_y i ð9Þ

A quadratic objective function is formulated as:

l ¼
1

2

Xn

i¼1

eð _y i; xÞ
2

ð10Þ

Typically, the traditional optimization methods begin randomly and then iteratively decide

on the best result from the solution space. Due to the limited amount of information offered

by a single set of training data, the search performance can be poor, and also the search may

get locked in the local optimum solution thus entering in stall mode due to insufficient explo-

ration. Properly excited search may help to steadily acquire the global optimal solution by pre-

venting the optimization for superfluous spots and avoiding slipping into the local optimum

solution.

Genetic algorithms include selection, crossover and mutation processes and offers a larger

likelihood of the global convergence to the optimum solution and a greater capacity to solve

the uncertain optimization problems. However, factors such as the crossover probability and

mutation probability have an effect on the algorithm’s search results and efficiency thus

highlighting critical role of the genetic algorithm parameters for a particular application is

important.

2.3. Bit string mutation

The mutation of bit strings ensues through bit flips at random positions. For instance:

1 0 1 0 0 1 0

#

1 0 1 0 1 1 0

https://doi.org/10.1371/journal.pone.0279253.t002
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Definition 1: The order of the pattern is the number of 0’s and 1’s in the pattern and is

denoted as O(H) (e.g. O(11�00��) = 4.

Definition 2: The moment of the pattern, i.e. the length of the pattern, is the distance from

the left to right between the first non-� bit and the last non-� bit of the pattern. The moment of

the pattern is denoted by δ(H). e.g.

dð01 � �1Þ ¼ 3; dð� � 0 � 1Þ ¼ 2; dð� � �1 � �Þ ¼ 1

A random number of initial groups encoded with a certain length (which is proportional to

the unknown parameter spaces) is created. Each individual is evaluated using the fitness func-

tion, and those with a better fitness rating are chosen to engage in the genetic operation, while

those with a poor fitness score are removed from the solutions. A group of genetically modified

individuals (through replication, crossover, or mutation) generates a new generation popula-

tion until the stop requirement is fulfilled. The most fully developed person among the descen-

dants is considered to be the outcome of the genetic algorithm. With the mutation, the

sequence before the mutation x = x1x2. . .xi might become to x = x2x1. . ..xi−2 for i number of

the initial population. The range of each population has a constrained value for each sample k
between ½ukmin; u

k
max�. The boundaries are implemented on the xk parameter population as:

xk ¼
ukmin if randomð0; 1Þ ¼ 0

ukmax if randomð0; 1Þ ¼ 1

(

where random(0,1) is generates 0 or 1 values randomly.

The problem of friction parameter identification is to find the parameter vector xin Eq (7)

that minimizes the objective function in Eq (10). The decimal floating-point coding format is

used for encoding the parameter vector to identify the individual solutions. The selection oper-

ation involves a random sampling method that saves the optimal individuals. The overall iden-

tified values are compared in Table 2 below. The crossover operation adopts the uniform

crossover operator, and the mutation assumes the basic bit. The maximum evolutionary num-

ber is 200 with a population size i of 50. The crossover probability is 0.9 and the mutation

probability is 0.05. Parameter range Fs is [0,1], Fc is [0,1], Bm is [0,0.05]. Finally, the Stribeck

characteristic velocity is _ys ¼ ½0; 0:05�:

3. Adaptive ILC-based feedforward controller

According to the Fig 1, the feedforward compensation is achieved in terms of manipulating

the motor currents. Eq (2) can be re-written with the friction torque as:

J
do
dt
¼ � Bmoþ Kt iq � iF

� �
� TL ð11Þ

The friction torque F is given by

iF ¼
F
Kt

ð12Þ

Table 2. Friction identifier parameters.

Fc Fs _θ_

s
Bm

Initial parameters 0.28 0.34 0.01 0.02

Identification results 0.2796 0.3885 0.0108 0.0206

https://doi.org/10.1371/journal.pone.0279253.t003
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The friction model identified in the section 2.2 is used to perform friction compensation of

the PMSM servo system. The proposed feedforward controller is shown in Fig 2. The total con-

trol output of the system is sum of the outputs of the PI feedback controllers and the friction

feedforward controller given by

i�q ¼ iC þ iF̂ ð13Þ

where iF̂ ¼ F̂
Kt

is the estimated friction torque and iC is produced by the adaptive ILC. The gen-

eral control structure is shown in Fig 3.

The PMSM given in Eq (1) with the added Stribeck friction is linearized around the operat-

ing points and put in the state space form as:

_y

_o

2

4

3

5

|fflffl{zfflffl}
_xðtÞ

¼

0 1

0
Bm

J

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
A

y

o

2

4

3

5

|fflffl{zfflffl}
xðtÞ

þ

0

Kt

J

2

6
4

3

7
5

|fflffl{zfflffl}
B

iq
|{z}
uðtÞ

þ

0

�
TL þ F

J

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dðTL ;Tf Þ

yðtÞ ¼ ½ 1 0 �
|fflffl{zfflffl}

C

y

o

2

4

3

5

|fflffl{zfflffl}
xðtÞ

þZðtÞ

ð14Þ

where A,B,C are the linear system matrices and vectors, d(TL,TF) is the disturbances stemmed

from the load and the Stribeck friction, x(t) system state vector, u(t) is the controlled iq current,

η(t) is the measurement noise type uncertainty. Eq (15) presents the briefed version of the

state space representation in Eq (14).

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ dðTL;Tf Þ

yðtÞ ¼ CxðtÞ þ Zt

(

ð15Þ

The next sub-section introduces the P-ILC design.

3.1. P-ILC design

A simple control law based on P-ILC is expressed as:

�u
kþ1
ðtÞ ¼ �u

k
ðtÞ þ KPêkðtÞ ð16Þ

where �u
kþ1
ðtÞ represents the updated control signal and êkðtÞ is the tracking error.

The well-known condition for the error convergence of the P-ILC algorithm can be

described by:

kI � KpCBk < 1 ð17Þ

The next sub-section provides the APD-ILC algorithm.

3.2. APD-ILC algorithm

Fig 3 presents the configuration of the APD-ILC algorithm applied to the PMSM with the fric-

tion uncertainty. In Fig 3, yd denotes the desired position, yk represents the output position of

the system at (k+1)th iteration, zk+1 is the measurement signal at the (k+1)th iteration, ek+1 is

the position error of (k+1)th iteration, ηk+1 denotes the disturbance signal.
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Before analyzing the system, two definitions need to be made. The reference tracking error

is defined as:

ekðtÞ ¼ ydðtÞ � zkðtÞ ð18Þ

The measurement error �k(t) is defined as:

�kðtÞ ¼ ydðtÞ � ykðtÞ ð19Þ

One can conclude from Fig 1 that ykðtÞ ¼ zkðtÞ � ZkðtÞ and combining Eqs (18) and (19)

yields

ekðtÞ ¼ �kðtÞ � ZkðtÞ ð20Þ

_ekðtÞ ¼ _�kðtÞ � _ZkðtÞ ð21Þ

The traditional PD-ILC law is formulated as:

u0

kþ1
ðtÞ ¼ u0

kðtÞ þ K1ekþ1ðtÞ þ K2 _ekþ1ðiÞ ð22Þ

where K1 and K2 are the constant learning gains of the controller. The APD-ILC law with

adaptive learning gains is designed as:

ukþ1ðtÞ ¼ ukðtÞ þ f ðekþ1ðtÞÞ½K3ekþ1ðtÞ þ K4e
btekþ1ðtÞ� ð23Þ

where eβt is an exponential variable gain with 0<β�1, f(.) is a nonlinear function related to the

Fig 3. General block diagram illustrating the adaptive ILC-based feedforward controller.

https://doi.org/10.1371/journal.pone.0279253.g003
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error boundary α and changes with the size of the error as:

f ðekÞ ¼
1 �

a

jekj
ðjekj > aÞ

0 ðjekj � aÞ
ð24Þ

8
<

:

The resulting curve of the nonlinear error function in Eq (24) is shown in Fig 4.

Remark 1: For the PD-ILC with adaptive learning gains in Eq (22), it is clear that, for 8k2
{0,1,2,� � �},

K1;k 2 ½tPk0; tPk1�

K2;k 2 ½0; tDk1�

(

ð25Þ

where τp and τd are the proportional and derivative time constants, k0 and k1 are the lower and

upper limit scaling factors of the controller gains.

Remark 2: The selection principle of parameter α is as follows: A larger α leads to f(.) with a

larger opening concavity, so that a small amplitude of error ek can lead to a small value of f(.).
Therefore, one should determine the value of α according to the amplitude of the random

measurement noise, i.e. an error with a small amplitude needs a large α to suppress [60].

The effect of different parameters on the shape of the nonlinear function f(.) and the rela-

tionship between f(.) and the error ek can be seen in Fig 4. As α increases from 0.1 to 0. 5, the f
(ek) function reaches its maximum determined by the upper limit k1. It shows that the learning

gain can be adaptively adjusted for the small errors as well as the large errors. The three curves

Fig 4. Adaptive gain function.

https://doi.org/10.1371/journal.pone.0279253.g004
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in Fig 4 an show that the error is intuitively adjusted and compensated with the exponential

gain function.

The typical nonlinear function g(ek, Δek) versus its sample differenced error Δek are shown

in Fig 5.

In Fig 5, the sample difference error Δek has consistent error signs during the learning pro-

cess of the APD-ILC parameters. This shows that the learning process is smooth due to contin-

uous nature of the control problem and occurs in a stable state region without chattering

around the controller operating points.

Changing the damping of the controller or differential learning gain (K1) improves the

adjustment speed and bandwidth of the system. It is stated that when the system error and its

differential gains are different, the gains tend to reduce the tracking error. However, when the

error and its rate of change are of the same sign, the value of the differential gain is increased

which can improve the speed of error convergence and also leads to more stable system.

Therefore, to remove the disturbance signal while retaining the useful signal, α should be

selected to be smaller than the measurement disturbance amplitude and smaller than the error

value of the amplitude.

4. Simulation results and discussions

Three control algorithms are simulated in MATLAB/Simulink environment to validate the

effect of friction compensation proposed in this paper. These algorithms are the conventional

PID control without feedforward compensation, P-ILC and APD-ILC algorithms. The param-

eters of the PMSM considered in this paper are given in Table 3.

The controller and filter parameters are given in Table 4.

Fig 5. Adaptive nonlinear gain function g(.) versus the sample differenced error Δek.

https://doi.org/10.1371/journal.pone.0279253.g005

PLOS ONE Adaptive control of servo systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0279253 January 18, 2023 12 / 22

https://doi.org/10.1371/journal.pone.0279253.g005
https://doi.org/10.1371/journal.pone.0279253


Table 4. Controller and filter parameters.

Element Description

Limit: -15A

Current loop PI Controller

Proportional gain = 50

Integral gain = 2500

PI Controller

Speed loop Proportional gain = 1

Integral gain = 10

Position loop P Controller

Proportional gain = 200

ILC filter Time constant t = 0.001 sec

Reference position signal yd(t) = sin(t) rad

https://doi.org/10.1371/journal.pone.0279253.t005

Table 3. Parameters of the PMSM.

Parameter Symbol Value Unit

Viscous friction coefficient Bm 0.003 N.m.s

Electromagnetic torque Te 10 N.m

Angular velocity ω(t) 3000 rad/s

Motor rotor inertia J 1.7810−4 Kg=m2

Armature winding inductance Ld = Lq 4 mH

Armature winding resistance Rs 1.74 O

Number of pole pairs np 4 -

Permanent magnet flux linkage ψf 0.402 Wb

https://doi.org/10.1371/journal.pone.0279253.t004

Fig 6. Reference position tracking with the conventional PID controller.

https://doi.org/10.1371/journal.pone.0279253.g006
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Fig 6 illustrates the position trajectory generated with the conventional PID controller and

Fig 7 demonstrates the corresponding reference tracking error. It is clear that there is a bias

between the reference trajectory and trajectory produced by the conventional PID controller.

Therefore, the controller is unable to track the desired trajectories.

As can be seen from Fig 8, when the speed approaches zero, there is a static friction domi-

nance whose change is multi-valued and discontinuous. This results in a noisy speed trajectory

effected by the ‘Stribeck’ friction. The noise base fluctuations harm the PMSM and henceforth,

they need to be compensated by the controller. However, the conventional PID controller is

unable to handle such disturbances and therefore, this problem should be addressed by the

adaptive control approaches.

We can compare the results of the P-ILC, PID and the proposed APD-ILC algorithms as in

Fig 9. It is clear from the results that the conventional PID cannot accurately track the desired

position. Even though the conventional P-ILC algorithm attempts to track the desired posi-

tion, it eventually yields a noticeable tracking error. Thus, the error cannot be eliminated

Fig 7. Corresponding position tracking error.

https://doi.org/10.1371/journal.pone.0279253.g007
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completely with the P-ILC as well. On the contrary, APD-ILC algorithm closely tracks the

desired position and eliminates the friction effect to a large extent. Fig 10 shows the tracking

errors where the error convergence with APD-ILC is superior since the it ultimately converges

to zero, while the errors in other controllers (PID, P-ILC) remain non-zero.

Fig 11 shows the position tracking results with the APD-ILC for different iterations. It is

clear that the tracking for 30th iteration y30 is more accurate than the 0th iteration y0, 10th

Fig 8. Speed trajectory with the conventional PID controller, left side shows whole speed trajectory, and right side shows partial speed trajectory with

the Stribeck stemmed disturbance.

https://doi.org/10.1371/journal.pone.0279253.g008

Fig 9. Performance comparison of the position tracking controllers.

https://doi.org/10.1371/journal.pone.0279253.g009
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iteration y10 and 20th iteration y20. Therefore, it can be stated that the tracking accuracy

improves as the number of the iterations increase. It can be also noticed that the proposed

APD-ILC offers proper friction compensation in the position tracking. The position tracking

error curve is illustrated in Fig 12 also confirms the position tracking efficiency.

Fig 13 presents the speed tracking results for two different iterations; ω0 is 0th iteration, ω20

is 20th iteration with respect to the reference speed ωref. It can be concluded from the figure

Fig 10. Corresponding error trajectories.

https://doi.org/10.1371/journal.pone.0279253.g010

Fig 11. APD-ILC position tracking.

https://doi.org/10.1371/journal.pone.0279253.g011
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that the friction compensation strategy dramatically improves the speed trajectory in the pres-

ence of the Stribeck friction.

Table 5 shows the position tracking errors for the P-ILC, PD-ILC and APD-ILC algorithms.

It can be noticed that the proposed APD-ILC yields tracking error almost the half of the other

control algorithms. After 20th iterations, the errors of P-ILC and PD-ILC algorithms produce

0.175381 and 0.024335 errors, respectively. It is clear that all the tracking errors reduce consec-

utively with the number of iterations increases. This occurs because all these control algo-

rithms learn the unknown control parameters iteratively. The tracking error of the proposed

APD-ILC algorithm is the smallest as compared to the other two control algorithms. There-

fore, it can be easily observed from the Table 5 that the convergence speed of the proposed

APD-ILC algorithm in this paper has significantly higher accuracy compared to other tradi-

tional control algorithms.

The position tracking error trajectories for the P-ILC, PD-ILC and APD-ILC algorithms

are shown in Fig 14 with respect to the number of iterations. Due to the adaptive property of

the APD-ILC algorithm, its RMS tracking error reduces quicker through the 30 iterations.

Eventually, the tracking error converges to zero with increasing number of iterations which

indicates that the proposed controller is efficient in dealing with motor nonlinearities and the

Stribeck friction, particularly in servo control applications.

Fig 12. APD-ILC position tracking error.

https://doi.org/10.1371/journal.pone.0279253.g012
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5. Conclusion

This paper proposed the APD-ILC algorithm to handle the Stribeck friction problem in the

PMSM servo system. The genetic algorithm has been used to identify the nonlinear Stribeck

friction unknown parameters with the offline training data and the constructed friction model

was then used for the feedforward compensation. Finally, the APD-ILC algorithm has been

designed to compensate the predicted Stribeck friction and also to track the desired position

trajectory. An extensive comparison analyses has been performed to show the effectiveness

and reliability of the proposed adaptive method. It was revealed that the conventional PID,

P-ILC, PD-ILC algorithms were unable to overcome the friction disturbance properly, whereas

the proposed APD-ILC was able consider the Stribeck friction and also eliminate it as desired.

Thus, the proposed APD-ILC algorithm is robust and efficient to deal with the nonlinearities

compared to the conventional control approaches. Other nonlinearities such as the parameter

uncertainties in the servo system, gears backlash, and combined friction nonlinearity with

external load disturbances can be considered in future research.

Fig 13. APD-ILC speed trajectories for different iterations.

https://doi.org/10.1371/journal.pone.0279253.g013

Table 5. Comparative values of tracking errors corresponding to ILC laws.

Iteration(k) P-ILC PD-ILC APD-ILC

1st 7.21731636 7.11731545 3.28217325

5th 3.049819 2.598041 1.232084

10th 0.953581 0.584192 0. 29215

15th 0.375380 0.243351 0.003683

20th 0.175381 0.024335 0.001543

https://doi.org/10.1371/journal.pone.0279253.t006
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