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Abstract

This thesis is concerned with the notions of complementarity and uncertainty en-

countered in quantum mechanics. Its starting point is an assessment of how these

concepts have been represented and illustrated by various writers dating back to

their inception. Following the survey a coherent account of the connections and

contrasts between complementarity and uncertainty is developed in the context of

Mach-Zehnder interferometry. The effect on the interference pattern contrast of path

detection via entanglement with a probe system, is explored and a joint unsharp

measurement scheme of the complementary pairs, path and interference, described.

The Mach-Zehnder set-up proves sufficiently versatile to show that quantum erasure

and quantitative quantum erasure constitute instances of joint unsharp measurement

of complementary observables. The analysis uses the representation of observables as

positive operator valued measures.

Path detection and interference observation require different experimental set-ups

but can be reconciled in the simultaneous unsharp measurement and preparation.

This reconciliation is expressed as an uncertainty relation however the mutually ex-

clusive feature of complementarity is not discarded. It is possible to recover strict

complementarity as a limit case of the appropriate uncertainty relation.

One motivation for this study is the effort some authors have made in trying to

express the founding features of quantum mechanics in the form of a hierarchy of

significance. Here it is shown that complementarity and uncertainty have separate

identities but are not completely independent of each other. Consequently, establish-

ing a hierarchy of these features within the present formalism of quantum mechanics
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Chapter 1

Complementarity and Uncertainty:
An Introduction

Referring to interference exhibited by electron ‘waves’, Richard Feynman wrote; “...

has in it the heart of quantum mechanics. In reality, it contains the only mystery.”

Lectures on Physics Volume III.

Complementarity, one of the fundamental features of quantum mechanics has been

and still often is discussed in terms of the Heisenberg uncertainty principle, another

of the fundamental features of quantum mechanics.

In this thesis, as many other studies the experimental context into which the

testing of complementarity is put is a two-path interferometer in which it is possible to

determine the path taken by the quantum object. This is accomplished by introducing

a probe system which interacts with the object passing through the interferometer.

The interaction between the probe and quantum object can be recorded. As soon as

enough information for the determination of the path taken has been acquired, the

interference pattern cannot be observed. The earlier explanation for this was that

the probe used for path determination has imparted random kicks to the object being

investigated. Examples of this are Einstein’s recoiling slit arrangement (see Bohr’s

1
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paper in [66]) and Feynman’s electron-light scattering scheme [29]. The mutually

exclusive set-ups of observing the path of the object and an interference pattern i.e.

the enforcing of the complementarity of path and interference, are presented as the

position-momentum uncertainty relation in action.

However, in recent times there have been different types of experiment proposed

and realized in which the back action on momentum is not the cause of the washing

out of the interference pattern on path determination.

The first such proposal was made by M.O. Scully, B.-G. Englert, H. Walther

(SEW) in Quantum Optical Tests of Complementarity published in Nature in 1991

[60]. The novel proposal of SEW initiated considerable immediate response starting

with, [61], [62], [63], [75], and attracted almost 300 citations by the end of 2006.

This body of literature forms more than a debate about the controversial claims

of SEW about the rôle of the uncertainty relation; authors are inspired to explore

the foundations of quantum mechanics in new ways and an experiment similar to the

ingenious experimental proposal by SEW was carried out by Dürr, Nonn and Rempe

(DNR), [22].

In this work the proposals and the debate enlivened by SEW are placed in his-

torical context. SEW provide a route finder to work done previously and a stimulus

for subsequently proposals on the relationship between complementarity and uncer-

tainty. It is found that this requires an exploration of the origin and propagation of

the relation between complementarity and the uncertainty relation.

The experiments of SEW and DNR question the relevance of classical momentum

kicks and the position-momentum uncertainty relation. They propose instead that

entanglement is the explanation of the disappearance of interference in which-path
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experiments. In Chapter 4, section 4.3 a two path Mach-Zehnder type interferometer

analogue of SEW’s proposal is used to present and analyze various experiments in

one common setting.

In this thesis, I will address the following questions, with the aim of clarifying long-

standing misconceptions and conflations concerning complementarity, uncertainty,

and entanglement.

What is the appropriate formulation and formalization of complemen-

tarity?

In Chapter 3 section 3.3.1 the introduction of the concept of complementarity

to Physics by Bohr in 1928 is outlined. Initially his intention was to capture, in a

broad sense, the necessity of using mutually exclusive classical descriptions in the

microscopic domain in order to obtain a complete account of quantum phenomena.

The notion was then developed into one that involves a relationship between certain

pairs of observables: in the quantum domain there are pairs of observables for which

preparation and measurement set-ups, as Bohr would say, “experimental set-ups” are

mutually exclusive.

However, the formulation of complementarity did not stop there. There is some

evidence that Bohr saw the necessity of quantifying the limitations of the simultaneous

application of classical concepts as expressed in Heisenberg’s uncertainty relation.

This can be interpreted as a softening of strict complementarity to a graded form of

complementarity.

Another recent formulation of complementarity is preparation complementarity

encountered in Chapter 3 as value complementarity. Here, value complementarity

is discussed in the context of accounting for the disappearance of interference when
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path marking is in action.

Value complementarity is a relationship between certain pairs of observables: two

observables are value complementary if whenever one has a definite value, the values

of the other are maximally uncertain. In the context of a two-path interferometer

experiment containing a probe system which interacts with the object passing through

the interferometer and a device which records the interaction, the question of how

the disappearance of the interference pattern is linked to the path marking sets the

following task: the representation of path observation and interference observation

in terms of quantum mechanical observables. These observables will be seen to be a

value complementary pair.

Complementarity as measurement complementarity has also been identified in

reference to a pair of observables for which a sharp measurement of one of them makes

any attempt at measuring the other one simultaneously or in immediate succession

completely obsolete. Measurement complementarity implies the impossibility of joint

measurements and is a special instance of von Neumann’s theorem, according to

which, two sharp observables are jointly measurable if, and only if, they commute.

One problem to be addressed is that of the relationship between complementarity

and uncertainty in the setting of value complementarity and its relation to path-

interference duality. In preparation I will review the evolution of the concept of

complementarity as it is generally used in the more recent literature, specifically in

its versions as preparation complementarity, i.e., the exclusivity of certain pairs of

preparations, and measurement complementarity, i.e., the exclusivity of certain pairs

of measurements.
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What is the uncertainty principle and does it need an explanation?

Heisenberg developed the concept of uncertainty in a consideration made on quan-

tum objects [32]. Initially, he considered what the tracks of separated water droplets

made by an electron in a cloud chamber could tell us about the position and velocity

of the electron.

This is developed into considering the outcome of an attempted joint measurement

of position and momentum in terms of standard deviations of position and momentum

observables in a Gaussian wave functions centered on the measured values. The

position and momentum uncertainties in this conditional final state are then taken

to represent the inaccuracies of the joint measurement. Here Heisenberg is regarding

measurements as producing (approximate) eigenstates of the measured observable

that would be expected to be associated with the measured value.

Heisenberg brings together two versions of uncertainty relation. First there is the

familiar uncertainty for state preparations:

∆(Q,ψ)∆(P, ψ) ≥ ~
2
. (1.0.1)

According to this separate measurements of position Q and momentum P in a state

ψ have distribution widths. In Heisenberg’s consideration these distribution widths

are standard deviations satisfying this uncertainty relation. The other,

δqδp ≥ ~
2
. (1.0.2)

is a trade-off relation for the inaccuracies in the joint measurements of these noncom-

muting observable.

A third manifestation of uncertainty can be identified in the earliest semi-classical

models, designed to illustrate quantum mechanics. This is the idea that uncertainty
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and the uncertainty relation are a consequence of “. . . unavoidable, non-negligible, and

uncontrollable mechanical disturbances” ([32] translated in [74]) has become part of

how quantum mechanics is taught.

There have been critical investigations of the ‘disturbance’ idea, but the tacit

identification of the position-momentum uncertainty relation with momentum kicks

is still a deeply rooted conflation.

The reason for the persistence of the linking of uncertainty with kicks must be

seen in the desire for causal explanation. As noted above, the recent debate has

brought out a novel idea, namely, that of a quantum-mechanical, non-local kind of

momentum transfer, which is worth exploring further.

A notion of a joint measurement scheme for noncommuting quantum mechanical

observables was not available to Heisenberg. Hence a proper formalization and proof

of the relation (1.0.2) was not possible and has been outstanding for several decades.

However, he did attempt to solve the joint measurement problem, with some success,

by considering sequences of measurements. The incident plane wave can be regarded

as having resulted from a sharp momentum measurement. The next measurement in

the sequence is an approximate or unsharp position measurement at the slit. This

measurement can be seen as degrading the initial sharp momentum measurement into

an unsharp momentum measurement.

A proper solution to the problem of the joint measurement of noncommuting

observables requires the idea that such measurements must not be too accurate and

had to wait for the introduction of unsharp observables represented as in terms of

positive operator valued measures (POVM).

In Chapter 2 the mathematical foundation of quantum mechanics is laid out with
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the aim of developing a framework for representing measurement in quantum me-

chanics. The latter parts of this chapter extend the orthodox formalism of quantum

mechanics to explore the realization of inaccurate measurements to make possible the

observations of two non-commuting or incompatible quantities of a quantum system

simultaneously i.e. using POVMs.

Equation 1.0.2 describes the limits of the precision available and can be found in

texts on quantum mechanics. But the idea of inaccurate measurements are rarely

treated in a rigorous way. A comprehensive explanation of the solution of this can be

seen in [15].

Schemes which propose using unsharp observables to yield unsharp path-inter-

ference duality in photon and neutron experiments are reviewed in Chapter 3. Here (in

section 3.4.2) experiments are reviewed that demonstrate that the path taken through

an interferometer can be determined with a confidence of 99% and yet interference

pattern with some contrast can also be observed. In Chapter 4 POVMs are used to

represent path and interference observations in a two path interferometer yielding a

pay-off relation between path and interference.

What is the nature of the relationship between complementarity and

uncertainty?

The claims of SEW and DNR that in their experiments the disappearance of

interference is not a consequence of the uncertainty relation for position and momen-

tum amounts to the statement that the complementarity and uncertainty principles

have different empirical content and consequences because they can be distinguished

experimentally.

This statement stands in sharp contrast to the view, held by many, that the



8

two principles are “more or less the same”, or two different manifestations of the

same notion. It was Bohr who first considered the uncertainty relation as a “simple

symbolic expression” of complementarity (as introduced by him) [5] (see Chapter

3 section 3.3.1) and he invoked the uncertainty relation to argue that interference

fringes in a two-slit experiment will disappear if the conditions of the experiment are

changed so as to enable path determination by measuring the recoil of the initial slit

[66].

It seems that the view taken on the relationship between complementarity and

uncertainty depends on the definition adopted for complementarity and possibly on

the version of the uncertainty principle used. Hence, a careful look at the different

formulations of the two principles will be required. Chapter 3 traces the origins of

these concepts and the confusions centered around them in the early stages of the

development of the interpretation of quantum mechanics.

From the formalism of quantum mechanics the existence of noncommuting pairs of

observables is intimately linked to complementarity. Two (discrete) observables have

a common orthonormal basis of eigenvectors if and only if they commute. Further, an

observable has a definite value in a state if the probability for some value is one, i.e.

if the state is an eigenstate of that observable. Therefore, noncommuting observables

do not have, in general, simultaneously definite values.

(A) Thus, noncommuting observables do not admit simultaneous preparations for

all of their eigenvalues nor do they admit simultaneous measurements.

If a spread of the distributions of values in each state is allowed then this can

be quantified by the uncertainty relation between the observables. In the limiting

case, having one observable sharp forces the other one to be maximally uncertain,
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value complementarity is in force as the most common contemporary formulation of

complementarity;

(B) If the noncommuting observables are allowed to be unsharp then it follows

that noncommutativity is no longer an obstacle to joint measurability and preparation

of unsharp values is now appropriately recognized.

Some recent research papers, reviewed in Chapter 3, incorporate both features (A)

and (B). This constitutes a break with the older traditions, also traced in Chapter

3, which gave preference either to the complementarity principle or the uncertainty

principle. It appears that with this shift of view point a more balanced assessment has

been achieved. Compared to the view that emphasized complementarity over uncer-

tainty, the positive rôle of the uncertainty relations as enabling joint determinations

and joint measurements now becomes a possibility.

The strict mutual exclusivity of (A) provides the reason for the quest for the

realization of (B). In Chapter 4 it will be shown that this consideration leads to some

uncertainty or trade-off relation, not necessarily involving position and momentum,

which entails complementarity.

In finding ways of incorporating statements (A) and (B) above, into the formalism

new and interesting questions are opened up: new versions of complementarity can

be proposed, such as graded or quantitative complementarity. These will be found

to arise in both quantum erasure and quantitative quantum erasure in the models of

joint measurements proposed in Chapter 4. Here, the independent and important rôle

of the measurement uncertainty relation as a necessary and sufficient condition for

approximate joint measurability of value complementary observables are highlighted.

In Chapter 5 conclusions are drawn. It will be proposed that complementarity and
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uncertainty are related in quantum mechanics although they have separate identities

and rôles.



Chapter 2

Quantum Measurement Theory:
Tools and Methods

2.1 Introduction

“Might we not be better off if we shed all pretext of making pictures of the quantum

phenomenon in terms of particles and waves and the like. Why not simply establish

suitable mathematical laws for the description of the observations, as Newton urged,

for a branch of physics reaching maturity.” E. Merzbacher, Introduction to Quantum

Mechanics[50]

The first rôle of measurement in physics is to obtain information about a system

in order to describe its present condition. The second is to enable predictions to

be made about its future [56], [53], [21]. Sometimes, the measurement may reveal

something of the history of the system.

A feature of classical mechanics provides a complete description in the following

sense: At a particular time the position and velocity of all of the particles making

up the system can be found and knowing the nature of the interactions between the

particles, then, in principle it is possible to predict the future of the system with

11
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certainty.

“We may regard the present state of the Universe as the effects of its past

and the cause of its future”. Pierre-Simon Laplace in the introduction

to Essai philosophique sur les probabilités (1814). Laplace was a strong

believer in causal determinism.

In the case of macroscopic or classical objects for which this assumption is valid, a

measurement can be made sufficiently sensitive so that the interaction of the measur-

ing device with the system being investigated is negligible or quantifiable.

However, microscopic systems do not allow this to happen. It is usually not

possible to make measurements that do not at the same time disturb the system in

some unpredictable way. This is central to the problem of measurement in quantum

mechanics.

The measurement problem and the key features of quantum mechanics and the

mathematics used to represent them are explored in text such as [37].

One of the themes central to this thesis is the notion of uncertainty in quan-

tum mechanics. Quantifying quantum uncertainty is reviewed in Section 2.3 using

the standard concepts of states and observables in quantum mechanics presented in

Section 2.2. Section 2.4 extends the orthodox treatment of quantum mechanics to

explore the possibility of allowing inaccurate measurements to lead to the possibility

of making observations of two noncommuting or incompatible quantities of a quan-

tum system simultaneously. This technique uses Positive Operator Value Measures

(POVM). Section 2.5 explores the interaction between the quantum object and the

measuring apparatus leading naturally to a set of operators identifiable as a POVM

and a description of the system’s state change due to measurement.



13

2.2 Mathematical tools.

Throughout, the usual Hilbert space formalism of quantum mechanics is employed:

States are represented as (unit) vectors or as density operators and observables, ini-

tially, are represented as hermitian operators.

2.2.1 States as density operators.

The notion of a density operator, just as that of a state vector, describes a preparation

procedure. The statistical properties of the ensemble of quantum systems correspond

to the given preparation procedure.

A density operator, ρ, is a positive, self adjoint linear operator, such that if the

set of vectors {φk : k ∈ K} is an orthonormal basis then Tr(ρ) :=
∑
k

〈φk|ρφk〉 = 1.

The operator ρ has the following properties,

1. ρ = ρ†

2. ρ is a positive semi-definite operator, i.e. 〈ψ|ρψ〉 ≥ 0 ∀ |ψ〉 ∈ H

3. Tr(ρ) = 1.

In the special case of a projection, ρ = |ψ〉〈ψ| is associated with any normalized

state vector |ψ〉. Then the expectation value for any observable in a vector state is

〈A〉ψ = 〈ψ|Aψ〉.

Now consider various pure states |ψk〉 ∈ H each with its respective probability Pk.

The vectors |ψk〉 ∈ H are normalized but not necessarily orthogonal to each other.

〈A〉ρ :=
∑
k

Pk〈ψk|Aψk〉 =
∑
k

PkTr[|ψk〉〈ψk|A] = Tr(ρA), (2.2.1)

where ρ =
∑
k

Pk|ψk〉〈ψk|.
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Example 1.

The experiments in Chapters 4 and 5 are described in the framework of a two

dimensional Hilbert space, C2. The identity matrix together with the sigma matri-

ces, given below, will be used as a basis, {I, σx, σy, σz}, for the vector space of 2x2

hermitian matrices. {(
1 0

0 1

)
,

(
0 1

1 0

)
,

(
0 −ı
ı 0

)
,

(
1 0

0 −1

)}
(2.2.2)

In this case ρ will have the form ρn = 1
2
(I + n · −→σ ), where n ∈ R3 and ‖n‖ ≤ 1.

2.2.2 Observables as self adjoint operators

Central to the formalism of quantum mechanics are self adjoint operators because,

1. they have a spectral measure,

2. their eigenvalues are real,

3. the eigenvectors corresponding to two different eigenvalues are orthogonal.

4. State vectors can be expanded as linear combinations of the eigenfunctions of a

self adjoint operator. (Strictly this is only true in this form if the operator has

pure point spectrum.)

Consequently, self adjoint operators can be used to represent observables so that

expectation values, as defined in 2.2.1 are real numbers and the spectral representation

of A, as reviewed below, enables a probability interpretation of expectation values.
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Remark 1.

Suppose that an eigenvalue of an operator A is λk. It is possible that there are

several eigenvectors that have this eigenvalue with A. In this case the eigenvalues are

described as being degenerate.

Let λk be a d(k)-fold degenerate eigenvalue of A with linearly independent eigen-

vectors {|λk1〉, |λk2〉, . . . , |λkd(x)〉}. This set of eigenvectors spans a linear subspace

of H with dimension d(k). For convenience the set of eigenvectors are chosen to be

orthonormal so that 〈λkm|λkn〉 = δm,n m,n ∈ {1, 2, . . . , d(k)} If this is done for each

eigenvalue, λk of A, then a set of eigenvectors, {|λkj〉, is obtained: k ∈ {1, 2, . . . , K :

K ≤ ∞}, j ∈ {1, 2, . . . , d(k)}}. From the proof that eigenvectors with different eigen-

vectors are orthogonal it follows that this entire set of eigenvectors are orthonormal,

〈λkm|λln〉 = δkmδln, m, n ∈ {1, 2, . . . , d(k)}, k, l ∈ {1, 2, . . . , K : K ≤ ∞}.

Definition 1.

Pk :=
d(k)∑
m

|ψkm〉〈ψkm| is the projection operator onto the subspace of eigenvectors

of A with eigenvalues λk. It is referred to as the spectral projector and can be written

PA=λk
if it is necessary to refer to the eigenvalues of the operator.

This projector is independent of pairwise orthogonal vectors chosen to span the

space of eigenvectors.

The projectors Pk and Pj are pairwise orthogonal, PkPj = δkjPk.

The basis expansion can now be written |ψ〉 =
K∑
k=1

Pk|ψ〉 = I|ψ〉 which is called

the (orthogonal) resolution of the identity.

The operator A can be written in a form called the spectral representation of A,

as A =
K∑
k=1

λkPk. The proof is as follows.
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Since the set of all eigenvectors of a self-adjoint operator A is an orthonormal basis

set for a Hilbert space H any |ψ〉 ∈ H can be expanded as |ψ〉 =
∑K

k=1

∑d(k)
m ckm|λkm〉

where the expansion coefficient ckm ∈ C are given by ckm = 〈λkm|λ〉.

When the operator A acts upon this expansion, A|ψ〉 =
K∑
k=1

λk
d(k)∑
m

ckm|ψkm〉 which

leads to,

A|ψ〉 =
K∑
k=1

λk

d(k)∑
m

〈ψkm|ψ〉|ψkm〉 =
K∑
k=1

λk

d(k)∑
m

|ψkm〉〈ψkm|ψ〉 =
K∑
k=1

λkPk|ψ〉.

2.3 Uncertainty Relations

In Chapter 1 ∆(Q,ψ) and ∆(P, ψ) were used to express the uncertainty or width of

the distribution of separate measurements of position Q and momentum P in a state

ψ. An uncertainty relation between the distribution widths of any two observables

can be derived from the existing formalism, it does not need an extra postulate to be

introduced.

2.3.1 The Variance of an Observable

If a measurement of an observable A =
∑
akPk in some state ψ can be predicated

to give results a1, a2, . . . , an with probabilities p1, p2, . . . , pn, the variance, (Var), of A

for a state |ψ〉 is

Var(A,ψ) :=
n∑
i=1

(ai − 〈A〉)2pi. (2.3.1)

This can be rearranged to read

Var(A,ψ) = 〈A2〉ψ − 〈A〉2ψ. (2.3.2)

The standard deviation of A,

∆(A,ψ) =
√

Var(A,ψ) = (〈ψ|A2ψ〉 − 〈ψ|Aψ〉)
1
2 , (2.3.3)
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is a measure of the spread of results about the expectation value of A.

Equations 2.3.2 and 2.3.3 can also be used to define the variances and standard

deviations for observables with a continuous spectrum, such as position and momen-

tum.

Example 2.

Consider a projection operator A ∈ C2 being represented by

A ≡ Pa = 1
2
(I + a · −→σ ) (2.3.4)

where ‖a‖ = 1 and a state by

ρn = 1
2
(I + n · −→σ ), (2.3.5)

where ‖n‖ ≤ 1.

The expectation value 〈A〉ρn is

〈A〉ρn = 1
2
(1 + n · a). (2.3.6)

The variance of A in the state ρn is

Var(A, ρn) = 1
4
(1− (n · a)2). (2.3.7)

2.3.2 The General Form of an Uncertainty Relation using
Variances

An uncertainty relation in the form of an inequality can be derived in the form of the

product of the variances of observables A and B. This is familiar as the Heisenberg-

Robertson uncertainty relation,

Var(A,ψ)Var(B,ψ) ≥ 1
4

∣∣〈ψ|[A,B]ψ〉
∣∣2. (2.3.8)



18

First, it is necessary to use the Cauchy-Schwarz inequality;

〈Aψ|Aψ〉〈Bψ|Bψ〉 ≥
∣∣〈Aψ|Bψ〉∣∣2 or (2.3.9)

〈ψ|A2ψ〉〈ψ|B2ψ〉 ≥
∣∣〈ψ|ABψ〉∣∣2 (2.3.10)

because A is self-adjoint.

The product of two self-adjoint operators AB can be written as the sum of two

terms,

AB = 1
2
(AB +BA) + 1

2
(AB −BA) (2.3.11)

AB = 1
2
[A,B]+ + 1

2
[A,B] (2.3.12)

where [A,B] is the commutator of the two operators and [A,B]+ is the anticommu-

tator.

Hence,

〈ψ|A2ψ〉〈ψ|B2ψ〉 ≥
∣∣〈ψ|(1

2
[A,B]+ + 1

2
[A,B])ψ〉

∣∣2. (2.3.13)

This is the inequality required but, referring to equation 2.3.3, only in the special

case where 〈ψ|Aψ〉 and 〈ψ|Bψ〉 vanish. In order to arrive at a more general case,

equation 2.3.13 should be used with the operators A1 = A−〈A〉I and B1 = B−〈B〉I

then

Var(A,ψ) = 〈(A− 〈A〉ψ)2〉ψ = 〈ψ|A2
1ψ〉 (2.3.14)

Similarly, Var(B,ψ) = 〈ψ|B2
1ψ〉 and [A,B] = [A1, B1] giving,

Var(A,ψ)Var(B,ψ) ≥
∣∣〈ψ|(1

2
[A1, B1]+ + 1

2
[A,B])ψ〉

∣∣2 (2.3.15)

Because A, B, A1 and B1 are self-adjoint, 〈ψ|(1
2
[A1, B1]+ψ〉 is real and 〈ψ|1

2
[A,B]ψ〉

is imaginary, hence,

Var(A,ψ)Var(B,ψ) ≥ 1
4

∣∣〈ψ|[A1, B1]+ψ〉
∣∣2 + 1

4

∣∣〈ψ|[A,B]ψ〉
∣∣2. (2.3.16)
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Equation 2.3.16 is often quoted as Var(A1)Var(B1) ≥ 1
4

∣∣〈ψ|[A,B])ψ〉
∣∣2 but ignoring

the 1
4

∣∣〈ψ|[A1, B1]+)ψ〉
∣∣2 weakens the relationship.

In a paper in 1930 [68], Schrödinger reported that he had, “arrived at a slightly

wider generalization than the Robertson’s [uncertainty relation], which is, in fact

stronger than the original Heisenberg inequality.” His findings are indeed the full

inequality 2.3.16, where it is noted that

1
2
〈[A1, B1]〉 = 1

2
〈AB +BA〉 − 〈A〉〈B〉 (2.3.17)

is the covariance between the observables A and B.

Example 3.

Here the explicit form of the uncertainty relation (equation 2.3.16) for observables

represented by the Pauli spin operators is given. Consider

σx =

(
0 1

1 0

)
, σy =

(
0 −ı
ı 0

)
, σz =

(
1 0

0 −1

)
(2.3.18)

and recall that,

[σz, σx] = 2ıσy, [σz, σx]+ = 0, (2.3.19)

and similarly for other pairs, then

Var(σx, ψ)Var(σz, ψ) ≥ 1
4
|〈ψ|[σx, σz]ψ〉|2 + 1

4
[〈ψ|(σxσz + σzσx)ψ〉 − 〈σx〉ψ〈σz〉ψ]2,

or Var(σx, ψ)Var(σz, ψ) ≥ 〈σy〉2ψ + 〈σz〉2ψ〈σx〉2ψ.

(2.3.20)

Using 2.3.7 it can be seen that,

Var(σx, ψ)Var(σz, ψ) = 1
16

(1− n2
x)(1− n2

z) (2.3.21)

If A is observable and ‖n‖ = 1 then A is a projection and

(1− n2
x)(1− n2

z) = n2
y + n2

zn
2
x (2.3.22)
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2.4 Observables as Positive Operator Valued Mea-

sures (POVM)

2.4.1 The General Idea of POVM

The formalism of quantum mechanics arose out of the need to describe mathematically

the results and observations of laboratory experiments. Over the past seven decades

experimental techniques have improved so that there is a continuing need for quantum

mechanics to use tools from a widening area to describe new experimental evidence

and to reinterpret older evidence.

In this section Positive Operator Value Measures (POVM) are introduced as a

technique for describing imperfect or inaccurate measurements as well as for studying

the problem of making joint measurements (observations) i.e. attempting to measure

at least two properties of a quantum system simultaneously. This problem has been

considered by the founders of quantum mechanics, Bohr, Heisenberg, Einstein and

continues to this day.

The original interpretation of quantum mechanics, usually called the Copenhagen

view, came out of thought (gedanken) experiments e.g. Young’s double slit interfer-

ence experiment with path detection. Path and interference observables are incom-

patible and it was deemed impossible to jointly detect a path and an interference

pattern. One element of the Copenhagen interpretation is the claim that there is

a mutual disturbance of the measurement outcomes because this would explain the

mutual exclusivity of interference observation and path detection. The uncertainty

relation derived above is often (wrongly) cited as the mathematical expression of this

mutual disturbance.

So, the uncertainty relationship above has little to do with joint measurements
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of incompatible observables since the standard quantum mechanical formalism only

allows a mathematical description of joint measurements of compatible observables.

How can the standard formalism cope with experiments that are no longer imagined

but are carried out in laboratories? It is now possible to carry out ‘which-way’

experiments to demonstrate the mutual disturbance caused by the joint measurement

of incompatible observables.

The Copenhagen issue of complementarity, which in one common reading refers

to the impossibility of joint measurement of incompatible observables makes little

distinction between preparation and measurement. Both the preparation – obtaining

information about the pre-measurement state, and the measurement – putting the

system into a final post-measurement state, will disturb the observables.

The standard formalism uses projector valued measures corresponding to the spec-

tral representation of self-adjoint operators. Probabilities, pm, are represented by the

expectation values of mutually commuting projection operators; pm = 〈Pm〉.

In generalizing the formalism to include POVMs the concept of an observable

is extended to include a measurement procedure that can be interpreted as a joint

measurement of incompatible observables. In this generalization probabilities are rep-

resented by expectation values of positive operators. In the discrete case the POVM

can be described as a set of operators {Ek}.The elements of this set of operators (or

effects) are not necessarily projection operators and are not necessarily commuting;

hence, E2
m 6= Em = E†

m and possibly EmEn 6= 0.

The operators Em, with the properties 0 ≤ Em ≤ I,
∑
m

Em = I called effects

generate the positive operator valued measure, POVM. If the effects are mutually

orthogonal EmEn = 0 m 6= n then Em(I − Em) = Em
∑

n( 6=m)

En =
∑

n( 6=m)

EmEn = 0
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so En = E2
n ∀n. So, the POVM becomes a projection valued measure, PVM, the

spectral measure of the standard formalism.

Having generalized the concept of a quantum mechanical observable it is possible

to define a relationship between the observables describing the measurement repre-

sented by one POVM being interpreted as a non-ideal measurement of another. In

doing this the notion of reality has been relaxed.

The positive operator in the range of the POVM, called an effect, represents the

occurrence of a particular outcome of a measurement. The expectation value for

this effect is interpreted as the probability for it occurring. However, instead of a

probability of 0 or 1, which would determine the absence or presence of an effect, the

probability should be in the interval [0.5, 1] to determine its approximate reality or

[0, 0.5) its absence.

This leads to a generalized notion of properties comprising both the projection

operators, which give rise to sharp measurements and the effects, called unsharp

properties if they are not projections, giving generalized observables as POVMs.

Unsharp observations arise naturally in the analysis of experimental procedure,

an experimenter may describe the measurement procedure as coarse grained. What

type of property they represent can be determined by making reference to a known

sharp observable via a relation of coarse graining or smearing as is shown below.

2.4.2 Mathematical development of POVM

Definition 2.

A Positive Operator Valued Measure, POVM, is a triple (Ω,A, E) where Ω is a

non-empty set of measurement outcomes; A is a σ-algebra of subsets of Ω.

E is an operator valued set function on A such that E : A 7→ L(H) where L(H)
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is space of bounded operators on H. E has these properties;

1. E is positive i.e. E(M) ≥ 0 for each M in A;

2. E(∅) = 0;

3. E(
⋃
k

Mk) =
∑
k

E(Mk) where {Mk} is a finite or countable subset of Ω with

Mn ∩Mm = ∅, m 6= n (σ−additivity).

4. Normalization is usually required i.e. E(Ω) = I.

Example 4.

A discrete projection valued measure and its smearing:

From 2.2.2 the spectral measure of operator is A =
∑

k λkPk, giving a family of

projections over all k, P = {Pk : k ∈ {1 . . . N ≤ ∞}}

Using the idea that an unsharp observable can, in some cases, be obtained from a

sharp one by a suitable smearing operation, [12], let us define Ej :=
∑

k wjkPk, where

wjk is a stochastic matrix in which each element is positive wjk ≥ 0 and the rows

sum to unity,
∑

j wjk = 1. Then the family of effects, E = {Ej : j ∈ {1 . . . K ≤ ∞}}

constitutes a POVM.

Example 5.

A smeared version of the spectral measure of σz =

(
1 0

0 −1

)
.

The spectral representation has the form, σz =
∑

k=1,2 λkP
σz
k i.e.

σz =

(
1 0

0 0

)
+

(
0 0

0 −1

)
=

1

2
(I + σz)−

1

2
(I − σz). (2.4.1)

P1 = P+ = 1
2
(I + σz) and P2 = P− = 1

2
(I − σz).

If now a smearing matrix is defined, (gjk) :=

(
g11 g12

g21 g22

)
= 1

2

(
1 + g 1− g
1− g 1 + g

)
, the
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smeared version of the spectral measure of σz is, Eσz
j :=

∑
k=1,2 gjkPk.

So, Eσz
1 = Eσz

+ = 1
2
(1 + g)1

2
(I + σz) + 1

2
(1− g)1

2
(I − σz) = 1

2
(I + gσz)

and Eσz
2 = Eσz

− = 1
2
(I − gσz).

2.5 Measurement schemes: An instance of com-

posite systems

2.5.1 Composite systems and tensor product Hilbert space

In order to observe any physical system it is made to interact with a measuring

apparatus. Even if the system and the apparatus can be described by quantum

mechanics, when the measurement process is over the result of the observation is

recorded in a classical form; seen by the experimenters and written down or told to

someone else; printed out or stored by some other part of the measuring apparatus.

In other words, the apparatus remains in the domain of classical physics.

After Bohr, Copenhagenists would say that for the description of the measurement

outcomes a return to the language of classical physics must be made.

When two or more quantum systems interact the final state of one of the systems

may well depend upon the final states of the others. This is referred to as entan-

glement or non-separability: the state of the total system is not of product form.

Examples where entanglement typically arises are the electron and proton in a hy-

drogen atom, the spatial and spin degrees of freedom of an atom passing through the

non-homogeneous magnetic field of a Stern-Gerlach apparatus.

If there are state vectors representing the states of a composite system, which can-

not be separated into vector states of subspaces belonging to the individual systems.

How are they to be represented?
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Using the Hilbert space model; if |ψ〉 ∈ H1 and |φ〉 ∈ H2, it is natural to describe

the system resulting from bringing the two subsystems together by a Hilbert space

H formed from the tensor product,

H = H1 ⊗H2. (2.5.1)

H comprises all of the linear combinations of elements |ψ〉⊗ |φ〉 and if ψ and φ are in

turn linear combinations, then it is possible to bilinearly express |ψ〉 ⊗ |φ〉 in terms

of the tensor product of the components.

An orthonormal basis is formed by the tensor product of elements of the basis of

H1 and H2. For finite dimensional spaces, the dimension of H is the product of the

dimension of its components.

Consider, for example, two spin-half particles being allowed to form a composite

system. Concentrating on just the spin features of the systems; the state space of the

spin-half is C2 and has the basis
{(

1
0

)
,
(

0
1

)}
or {|1〉, |0〉} in Dirac notation.

The following is then an orthonormal basis of the compound system,

|1〉|1〉 = (1, 0, 0, 0)T ,

|0〉|1〉 = (0, 1, 0, 0)T ,

|1〉|0〉 = (0, 0, 1, 0)T ,

|0〉|0〉 = (0, 0, 0, 1)T .

(2.5.2)

Since there is a list of four possible mutually orthogonal eigenvectors in this com-

posite system every state vector can be expressed as a linear combination, a super-

position, of some or all of the eigenvectors. The state space of this composite system

is thus isomorphic to C4.

It is now possible to form the tensor product of operators, for example, σz,1⊗σx,2,

defined by linearity and the rule (σz,1 ⊗ σx,2)(|ψ〉|φ〉) = (σz,1|ψ〉)(σx,2|φ〉).
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For example, σz|1〉 = |1〉 and σx|1〉 = |0〉, so (σz|1〉)(σx|1〉) = |1〉|0〉 = (0, 0, 1, 0)T

and the same result is obtained by,

(σz ⊗ σx)(|1〉|1〉) =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0




1

0

0

0

 =


0

0

1

0

 . (2.5.3)

In general, the mathematical entity which describes a composite of |ψ〉 ∈ H1 and

|φ〉 ∈ H2 is a new vector |ψ〉 ⊗ |φ〉 ∈ H1 ⊗H2.

2.5.2 Measurement scheme and induced POVM

Considering the interaction of a quantum system with a measuring instrument, it will

now be shown how the POVM arises in the description of a measurement. A brief

outline of the description of state changes due to measurements will also be given.

Consider some instrument observable such as a discrete position of a pointer on

a scale. Quantum mechanical formalism would say that each of the pointer positions

rm is an eigenvalue of some self adjoint operator, P , with associated eigenvectors.

The interpretation of this reading is that when the pointer indicates rm the system

has an eigenvalue of λm. More generally, the relative frequency of (a finite number

of) readings of rm is (approximately) the probability of eigenvalue λm of the system’s

observable in the state before the measurement. If this condition is satisfied then the

measuring scheme is a good one.

Let the system S be initially in some unknown state described by |ψ0〉 and let the

instrument pointer (belonging to apparatus A) be in some pure state described by

|φ0〉. It is reasonable to expect that the initial reading of the pointer is zero hence

the label 0. Their time evolutions up to the action of measurement are described by
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the state of the combined system just prior to measurement, |Ψ0〉 = |ψ0〉 ⊗ |φ0〉.

The measurement consists of unitary evolution followed by a projection onto a

state of the pointer with eigenvalues that are the readings to be recorded. During

the measurement interaction the combined system will evolve under the action of a

unitary operator, U , to give |Ψev〉 = U |Ψ0〉 = U |ψ0〉 ⊗ |φ0〉.

The expectation value of the pointer reading is 〈P 〉Ψev = 〈Ψev|I ⊗ PΨev〉, but

the expectation value of the pointer reading does not give any information about the

probability of the system being in a particular state so the spectral representation of

operators is needed, P =
∑

m rmQm. Where Qm is the spectral projection operator

onto the subspace of eigenvectors of P with eigenvalues rm.

However, the pointer operator should be represented on the composite space of

the system (object) and the pointer i.e. the tensor product of the object space and

pointer space. The spectral representation of the pointer operator on the composite

space is P̂ = Is⊗P =
∑

m rmIs⊗Qm where Is is the identity operator on the system

space.

As the entangled system evolves, the expectation value of Is ⊗Qm is

〈Is ⊗Qm〉|Ψev〉 = 〈UΨ0|Is ⊗Qm|UΨ0〉.

This is required to be, by virtue of the probability postulate, the probability that the

pointer operator, P , gives the value rm.

Let {|ϕi〉} be an orthonormal basis of the system space and {|ζj〉} be an or-

thonormal basis of the pointer space, then {|ϕi〉⊗ |ζj〉} is an orthonormal basis in the
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composite space so |Ψ0〉 =
∣∣|φ0〉 ⊗ |φ0〉

〉
=
∑
i,j

ci,j
∣∣|ϕi〉 ⊗ |ζj〉〉 giving,

〈Is ⊗Qm〉|Ψev〉 =
∑
ijkl

〈
〈φ0| ⊗ 〈φ0|

∣∣|ϕi〉 ⊗ |ζj〉〉〈〈ϕi| ⊗ 〈ζj|∣∣U †Is

⊗QmU |ϕk〉 ⊗ |ζl〉
〉〈
〈ϕk| ⊗ 〈ζl|

∣∣|φ0〉 ⊗ |φ0〉
〉
.

Let Lmijkl =
〈
〈ϕi| ⊗ 〈ζj|

∣∣U †Is ⊗QmU |ϕk〉 ⊗ |ζl〉
〉

since this is a number.

〈Is ⊗Qm〉|Ψev〉 =
∑
ijkl

〈
〈φ0| ⊗ 〈φ0|

∣∣|ϕi〉 ⊗ |ζj〉〉Lmijkl〈〈ϕk| ⊗ 〈ζl|∣∣|φ0〉 ⊗ |φ0〉
〉

=
∑
ijkl

〈φ0|ϕi〉〈φ0|ζj〉Lmijkl〈ζl|φ0〉〈ϕk|φ0〉.

Now, let the number (expectation value), Mm
ijkl = 〈φ0|ζj〉Lmijkl〈ζl|φ0〉

〈Is ⊗Qm〉|Ψev〉 =
∑
ijkl

〈φ0|ϕi〉Mm
ijkl〈ϕk|φ0〉.

Applying separate summations.

〈Is ⊗Qm〉|Ψev〉 =
∑
i,k

〈φ0|ϕi〉
∑
j,l

Mm
ijkl〈ϕk|φ0〉〈Is ⊗Qm〉|Ψev〉

=
∑
i,k

〈φ0|ϕi〉Nm
ik 〈ϕk|φ0〉

= 〈φ0|
∑
i,k

Nm
ik |ϕi〉〈ϕk|φ0〉.

It is now possible to make the definition Em :=
∑
i,k

Nm
ik |ϕi〉〈ϕk| which is a linear

operator.

The operator Em is positive since the left side is positive for all φ0.

To investigate the properties of this operator further, let us return to the spectral

projection operator, Qm which are used to define Em.∑
mQm = 1, therefore,

∑
m Is ⊗ Qm = 1 × 1 = 1. From this it follows that∑

〈θ|Emθ〉 = 1 for all |φ0〉 under the condition that |φ0〉 is normalized. From this,∑
〈φ0|Emφ0〉 = 1 = 〈φ0|

∑
Emφ0〉 = 1 and therefore

∑
mEm = 1 is obtained.
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The set of operators {Em} is thus the positive operator value measure or POVM

encountered in Section 2.4. Each of the positive operators in the set is associated

with a measurement outcome rm and gives the probability of its occurrence for each

initial object state.

A brief outline of how state changes due to measurement are described is as

follows: for each outcome m and state ρ, there is a positive operator ρ′(m; ρ) of trace

tr[ρ′(m; ρ)] =tr[ρ · Em] by virtue of the formula:

tr[ρ′(m; ρ) ·B] := tr[Uρ⊗ |φ0〉〈φo|U †B ⊗Qm], (2.5.4)

which holds for any self adjoint bounded operator B [12].

2.5.3 Joint measurability

In a joint measurement of two observables F and G, one sets out to infer the values

of these observables from the output readings. Thus for every pair of values of F

and G there has to be a pointer value and the statistics these pointer values should

reproduce the probabilities for the values of F and G in the object’s input state.

Thus, there should be a POVM, E, whose probabilities should be joint probabilities

for the outcomes of F and G. This means that the probability distributions of F and

G should be obtained as marginal distributions of the probability distribution of E.

Such a POVM, E, is called a joint observable of F and G and F and G are the

marginals of E.

According to a theorem of von Neumann [72] two sharp observables have a sharp

joint observable exactly when they commute. Thus two non-commuting observables

cannot be sharply measured together. However, it has been found that smeared

versions of two noncommuting sharp observables may have a joint observable. The
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pair F = {1
2
(I ± fσx)}, G = {1

2
(I ± gσz)} are known [13] (see Chapter 4) to have a

joint observable exactly when,

f 2 + g2 ≤ 1 (2.5.5)

Thus for two POVMs to be jointly measurable their degrees of unsharpness |f |, |g|

must be limited by this trade-off inequality. In this case it is straightforward to to

give an example of a joint observable E, assuming for simplicity 0 ≤ f, g ≤ 1,

E11 = 1
4
(I + fσx + gσz), E21 = 1

4
(I − fσx + gσz),

E12 = 1
4
(I + fσx − gσz), E22 = 1

4
(I − fσx − gσz).

(2.5.6)

Each operator Ek,` is positive because the eigenvalues are, 1
4
(1 ± |(f, g)|) = 1

4
(1 ±√

f 2 + g2) ≥ 0 due to (2.5.5). Moreover,

E11 + E12 = F1, E21 + E22 = F2,

E11 + E21 = G1, E12 + E22 = G2.
(2.5.7)

In Sections 4.3.2 to 4.3.4 measurement implementations of similar joint observables

will be given.

2.5.4 Measurement implementation of a joint observable

A particular type of measurement scheme for a joint observable is implemented by

coupling the system to a probe. A measurement is carried out on the probe and

another measurement on the system. This is a special case of Section 2.5.2 and is the

form in which the calculations are carried out in Chapters 3 and 4.

In the models encountered in Chapter 4, Sections 4.3.2 to 4.3.4: a photon in a

prepared path state is coupled to a probe system that is in a prepared pointer state.

A unitary evolution takes place in an interferometer after which a joint measurement

is made of a probe observable and a detector observable. The purpose of this joint
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measurement is to obtain information about the photon state immediately prior to

the interaction with the probe and subsequent passage through the interferometer.

Such information is available in the form of the output probabilities if these can be

expressed in terms of the photon’s input state.

Given that the initial state of the probe and the interferometer settings are fixed

in each run it follows that the output probabilities are indeed the expectation values

of a POVM for the photon input state.

Let |ψi〉 denote the input state of the photon, |p0〉 the initial probe state and U

the unitary evolution operator representing the passage through the interferometer.

Then the final state of the combined system is |Ψf〉 = U |ψi〉|p0〉. On this the sharp

output observable with projections Mk` = |k〉〈k| ⊗ |r`〉〈r`| is measured. Here |k〉,

k = 1, 2, are the photon path eigenstates and |r`〉, ` = 1, 2, are the eigenstates of a

probe pointer observable. If ψi = α|1〉+ β|2〉, the output probabilities are then,

〈Ψf |Mk`|Ψf〉 = 〈ψi|〈p0|U †Mk`U |p0〉|ψi〉

= (α∗〈1|+ β∗〈2|)〈p0|U †Mk`U |p0〉(α|1〉+ β|2〉)

= α∗α〈1|〈p0|U †Mk`U |p0〉|1〉

+ α∗β〈1|〈p0|U †Mk`U |p0〉|2〉

+ β∗α〈2|〈p0|U †Mk`U |p0〉|1〉

+ β∗β〈2|〈p0|U †Mk`U |p0〉|2〉.

(2.5.8)

These can be written as

〈Ψf |Mk`|Ψf〉 = α∗αE11
k` + α∗βE12

k` + β∗αE21
k` + β∗βE22

k` . (2.5.9)

Given the positivity of Mk`, these numbers are non-negative and hence the the ex-

pression (2.5.9) is a quadratic form for the variables α and β. This is to say that for
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each k, ` the matrix (Eij
k`)ij=1,2 is positive semi-definite and thus represents a positive

operator Ek` defined in the Hilbert space of the photon.

〈Ψf |Mk`|Ψf〉 = 〈ψi|Ek`|ψi〉 (2.5.10)

for all ψi. Normalization of the output probability entails
∑
k`

Ek` = 1.



Chapter 3

Complementarity and Uncertainty:
A critical assessment.

“If a house be divided against itself, that house cannot stand” St. Mark’s Gospel.

Chapter 3, verse 25

The aim of this chapter is to explore the controversy surrounding the terms com-

plementarity and uncertainty in quantum mechanics. Since the introduction of quan-

tum mechanics there has been discussion and debate about the relationship between

these features and their relative importance. Interpretations of the writings of the

founding fathers have been made by researchers and teachers and their views have

propagated, keeping the debates alive. Often quiet, the debate was enlivened by a

1991 paper of Scully, Englert and Walther (SEW).

3.1 Introduction

This chapter will start with a review of the influential paper published in Nature in

1991 by Scully, Englert and Walther, [60]. They proposed an atom interferometry

experiment in which entanglement is used to store information about the path of an

atom. The term path marking will be used to refer to such processes of storing path

33
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information in a probe system by way of establishing a correlation between it and the

atom. It is found that the path marking results in the destruction of the interference

pattern.

The fact that the interference pattern was wiped out not by classical momentum

kicks, which can be associated with an uncertainty in momentum but by entangle-

ment, led SEW to the suggestion that the principle of uncertainty is of inferior signif-

icance to that of complementarity. Hence, the latter would be of deeper significance

as a fundamental feature of quantum mechanics.

In 1998 Dürr, Nonn and Rempe [22] realized an experiment similar to that pro-

posed by SEW but in a different set-up. This, in turn, caused a grossly misleading

article in a popular science journal, announcing “An end to uncertainty - Wave good-

bye to the Uncertainty Principle, you don’t need it anymore.” [8]), as well as a rush of

research papers aimed at ‘rescuing uncertainty’ e.g. [42]. Several authors have shown

subsequently that versions of uncertainty relations between pairs of observables other

than position and momentum exist which are in fact related to the complementarity

of path marking and interference patterns [4], [23].

A theory of joint, albeit unsharp, measurements of non-commuting quantities has

been established for some time but is not well known. However, it has been applied in

the above context by Busch et al [11], [12] Bjork et al, [4] and de Muynck, [18]. Such

a theory has the effect of ‘softening’ Bohr’s strict complementarity. The construction

of such joint measurements leads naturally to ‘trade-off’ relations for measurement

imprecisions, which can be taken as one reading of Heisenberg’s uncertainty principle.

These connections will be explored further in Chapter 4.

Following the survey of the debates of the 1990s resulting from the Scully et al
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paper [60] and the Dürr et al experiment [22] will be an investigation of the historic

roots of the issues that were the subject of these debates. Further, I will relate the

recent discussions of complementarity and uncertainty to the findings in the works of

the 1980s.

Foundational work dating back to the origins up until the early 1970s has been

carefully surveyed and analyzed in the books of Max Jammer published in 1966 and

1974 [40, 41] and will be drawn upon when required.

3.2 Complementarity versus Uncertainty: The de-

bates of the 1990s

3.2.1 Scully, Englert and Walther.

In their 1991 paper SEW offer the principle of complementarity as, “For each degree

of freedom the dynamical variables are a pair of complementary observables” and less

formally as “No matter how the system is prepared, there is always a measurement

whose outcome is utterly unpredictable.”

I will argue in Chapter 4 Section 4.3.5 that this latter statement may actually

be regarded as a broad view of the uncertainty principle. The inclusion of the term

‘utterly unpredictable’ indicates that SEW are referring to the limit form of minimum

versus maximum uncertainty. It is readily identified with one of their earlier state-

ments, “. . . two observables are complementary if precise knowledge of one of them

implies that all possible outcomes of measuring the other one are equally probable.”

This is their version of value complementarity which will be encountered in Section

3.5.1.
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In spite of their noting that for historical reasons complementarity is “often su-

perficially identified with the wave-particle duality of matter”, they themselves revert

back to wave-particle duality. In support of their claim that their method of path

marking is novel, we are reminded of three historical gedanken experiments that have

been used to illustrate wave-particle duality; Feynman’s electron interferometer, Ein-

stein’s recoiling slit and Heisenberg’s gamma ray microscope. They remark that,

“In the first two of these examples Heisenberg’s position momentum uncertainty

relation makes it impossible to determine which hole the electron or photon passes

through without at the same time disturbing the electrons (photons) enough to de-

stroy the interference pattern”.

They do not ask whether Heisenberg’s position-momentum inequality is the proper

one to use in interference experiments. As will be seen, in Sections 3.4 of this Chapter,

this question had been raised and studied previously. Nor do they specifically, in this

paper claim that complementarity must be accepted as an independent component

of quantum mechanics superior to the position-momentum uncertainty principle. Al-

though, they do describe the uncertainty relation as an obstacle to be overcome. In

Chapters 4 and 5 it will be shown that complementarity is closely related to other

types of uncertainty relations.

The experiment proposed by SEW is an atom interferometer with path mark-

ing which is achieved by exciting internal degrees of freedom of the atoms. The

interference fringes disappear because of “the information contained in a functioning

measuring apparatus” ([60], p. 111). Scully et al conclude that this disappearance

originates in the entanglement between the measuring apparatus and the system being

established.
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Throughout their article SEW not seek to demonstrate, illustrate or refute any

modern definition of complementarity. Their aim seems to be to illustrate the inade-

quacy of invoking the Heisenberg position-momentum uncertainty relation to support

Bohr’s complementarity principle. They write, “The principle of complementarity is

manifest although the position-momentum uncertainty relation plays no rôle” ([60],

p. 111).

In work published between 1983 and 1985 Hilgevoord and Uffink [34], [35], [36]

(Section 3.4.3 did consider measures of uncertainty other than variance; Var(p)Var(q)

≥ (1
2
~)2, has been regarded as the formal expression of the uncertainty principle in

quantum mechanics. Hilgevoord and Uffink show that variance is not an adequate

estimation of uncertainty in the case of an experiment involving path marking and

interference. As can be seen in Section 3.4.3 of this chapter, Hilgevoord and Uffink

develop a new form of trade-off relation related to the fine structure and overall width

of a general wave function and its Fourier transform.

Scully et al make no reference to the work of Hilgevoord and Uffink nor to the

trade-off relation developed by Mittelstaedt et al ([51], 1987 (Section 3.4.2)) in their

work on unsharp wave-particle duality nor indeed to Greenberger and Yasin 1988

paper on neutron interferometry with which-way detection [30] (Section 3.4.2).

In 1989 Sanders and Milburn [58] proposed a subtle arrangement in the form

a Mach-Zehnder interferometer employing path marking. Their claim is that their

method causes minimal disturbance, avoiding any significant exchanges of momentum

and energy in the observed system. They conclude with a trade-off relation between

fringe visibility (wave-like behaviour) and a measure of the presence of a photon in

one arm of the interferometer (particle-like behaviour). The inference of the presence
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of photon is by a measurement of the signal to noise ratio in the phase shift produced

in the electric field in the medium of a Kerr cell. SEW make no reference to this

paper which anticipates some of their findings.

The exploration of complementarity made in 1979 by Wootters and Zurek [77]

(Section 3.4.1 is cited by SEW but receives only a scant review.

Details of the experiment SEW propose follow: An atomic beam is incident upon

a double slit of an interferometer. After passing through the double slit each atom

can be described by the state vector,

Ψ0(r) = 1√
2
[ψ1(r) + ψ2(r)]|i〉 (3.2.1)

where r is the centre-of-mass coordinate and |i〉 is the internal state of the atom. The

probability density of the atoms on a screen at point r is given by

P0(r) = |Ψ(r)|2 = 1
2
[|ψ1(r)|2 + |ψ2(r)|2 + (ψ∗

1(r)ψ2(r) + ψ1(r)ψ
∗
2(r))]〈i|i〉 (3.2.2)

the cross terms, (ψ∗
1ψ2 + ψ1ψ

∗
2) describe the maxima and minima of the interference.

Next, they consider the situation in which the atoms in the beam are excited into

a long lived Rydberg state |a〉 by a laser pulse before passing into micro-maser cavities

preceding each of the slits. Once in the cavity it is possible to realize in practice that

an atom will make a transition |a〉 → |b〉 by the spontaneous emission of a microwave

photon with a probability close to unity. The state of the atom is now entangled with

the maser cavity and the total state is described by

Ψ(r) = 1√
2
[ψ1(r)|1102〉+ ψ2(r)|0112〉]|b〉 (3.2.3)

where |1102〉(|0112〉) represents the field state in which there is one photon in cavity

1 and none in cavity 2 (no photon in cavity 1 and one in cavity 2). The probability
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density at the screen is now

P (r) = 1
2
[|ψ1(r)|2 + |ψ2(r)|2 + ψ∗

1(r)ψ2(r)〈1102|0112〉+ ψ1(r)ψ
∗
2(r)〈0112|1102〉]〈b|b〉,

(3.2.4)

but 〈1102|0112〉 = 〈0112|1102〉 = 0, so there are no interference terms in the following

P (r) = 1
2
[|ψ1(r)|2 + |ψ2(r)|2]. (3.2.5)

Thus the micro-maser cavities act as which-way detectors only if a photon left in the

cavity changes the electromagnetic field in a detectable way.

In previous examples of an interferometer with path marking such as those pro-

posed by Einstein and Feynman it is possible to explain the washing out of the

interference pattern as being due to momentum kicks; if the kicks lead to a random

phase factor so that each member of ensemble has the form, ψδ = 1√
2
(ψ1 + eıδψ2),

where δ is uniform over [0, 2π], then the interference pattern is washed out. In fact,

taking the uniform average of the position amplitude squares of the above states over

all δ,

〈|ψδ(r)|2〉 = 1
2π

∫ 2π

0
1
2
|ψδ(r)|2dδ

= 1
2
|ψ1(r)|2 + 1

2
|ψ2(r)|2 + 1

4π

∫ 2π

0
(ψ1(r)e

−ıδψ∗
2(r) + ψ∗

1e
ıδ(r)ψ2(r))dδ

= 1
2
|ψ1(r)|2 + 1

2
|ψ2(r)|2.

(3.2.6)

The final line describes a distribution with no maxima nor minima in it and is similar

in form and interpretation to equation (3.2.5). However, in the latter case there

will be a change in the momentum distribution caused by interaction between the

quantum system and the probe or path marker.

The Scully et al paper prompted a debate in which Storey, Tan, Collett, Wiseman

and Walls [61] analyzing double slit interferometers in general and Scully et al’s in
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particular conclude that the loss of interference from a double slit in the presence

of a which-way detector is physically caused by momentum kicks, the magnitude of

which are determined by the uncertainty principle. They maintain, therefore, that the

principle of complementarity is a consequence of the Heisenberg uncertainty relation

and the source of the momentum kicks in the Scully et al experiment is the repeated

emission and re-absorption of microwave probe photons by the atom whilst it is in

the probe detector i.e. micromaser cavity.

A rebuttal came from Englert et al in Nature (1995) [62]in which they unequivo-

cally claim that the principle of complementarity is much deeper than the uncertainty

relation although they acknowledge that complementarity is frequently enforced by

δxδp ≥ ~/2.

Some clarification of the possible mechanism causing momentum transfer was

offered by Wiseman and Harrison [75], [76], who pointed out that there are two

different ways of considering random momentum kicks. One, distinctly quantum

mechanical, is the convolution of the momentum wave-function of the system with a

momentum amplitude transfer function of the probe. The other corresponds to the

classical notion of a convolution of the system’s momentum probability distribution

with the momentum probability distribution of the probe.

So, SEW are correct in pointing out that Bohr’s semi-classical picture of random

kicks and Heisenberg’s uncertainty relation being used to support the enforcing of

complementarity does not work in general. Their claim on the first page (p. 111) that

“. . . the actual mechanisms that enforce complementarity vary from one experimental

situation to another”, is justified.

Following this quotation is a brief reference to the 1979 paper of Wootters and
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Zurek [77] who do offer a quantum mechanical treatment of path marking, which

yields a trade-off relation, is referred to only briefly in the sentence following the one

quoted. In section 3.4 of this chapter Wootters and Zurek’s exploration of comple-

mentarity is reviewed. And, as will be seen in section 3.2.2, the work of Englert and

Jaeger et al confirms that there are uncertainty or trade-off relations that do describe

a price for relaxing the strict either-or of complementarity.

In 1998 Dürr, Nonn and Rempe [22], inspired by Scully et al’s gedanken experi-

ment, realized a which-way experiment in an atom interferometer. In this experiment

the classical momentum transferred to the atom is too small to explain the disappear-

ance of the interference pattern and the two ways through the interferometer are not

transversely separated by much more than the initial beam collimation. So, there is

no storage of positional information (p. 36 [22]).

Anticipating questions about the existence of a back action on the transverse mo-

mentum of the atom caused by the finite size of the apparatus, Dürr et al identify one

source being the localization of the atom to within one wavelength of the microwave

field. The corresponding back action implied by the position-momentum uncertainty

relation is four orders smaller than the fringe separation (p. 36 [22])

Further they note that the atom is only localized with a precision of the order

of the beam width throughout its passage through the region in which it interacts

with the microwave field. The position-momentum uncertainty relation could only be

invoked if the atom could be localized (p. 36 [22]). Instead it is entanglement between

the which-way probe (one of the internal degrees of freedom of the atom) and the

path degree of freedom of the atom that destroys the interference fringes.

DNR compare their findings with those of Wiseman et al in a paper on ‘Non-local
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momentum transfer in welcher-weg experiments’, [76], in which there is an explanation

for the disappearance of the interference fringes in a double slit. DNR point out that

their results are not in conflict with those of Wiseman et al because no double slit

is used and no position measurement made: “Wiseman et al’s results simply do not

apply which leaves an open question whether the concept of quantum mechanical

momentum transfer can be generalized to schemes without a mechanical double slit.”

The debate with SEW and the responses made directly to SEW highlight these

views: Complementarity becomes apparent when which-way information is available

in a interferometer. The loss of fringes is either due to, (1) random classical phase

kicks, or (2) quantum entanglement.

Each of these views represent extreme positions and it has been argued that both

can be shown to be correct in [27]. In the demonstrations proposed by Einstein and

Feynman mechanism (1) gives an account of the loss of interference, whereas mecha-

nism (2) provides an explanation for a similar loss of interference in the experiments

of SEW and Dürr et al.

The more general question of whether the uncertainty relation is relevant to com-

plementarity is also raised. If the position-momentum uncertainty relation only is

considered then the answer is ‘not always’ but it cannot be said that the principle

of complementarity is more fundamental than the principle of uncertainty. In the

experiments of SEW and Dürr et al they appear as independent features of quantum

phenomena.

In Chapter 4 it will be shown that, in a limit, value complementarity results from

some form of uncertainty relation for quantities other than momentum and position.
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3.2.2 Duality relationships

These investigations have been made in the context of an analogous Mach-Zehnder

interferometer experiment.

So far in this discussion the question of achieving some which-way path informa-

tion at the expense of limited fringe visibility in a two way interferometer has not been

considered. This regime is intermediate to those considered in 3.2.1 and it requires

strict complementarity to be relaxed i.e. to become graded complementarity. This

situation was investigated by Horne, Jaeger and Shimony in 1993 [38] and by Jaeger,

Shimony and Vaidman in 1995 [39]. The quantitative duality relation they arrived at

anticipates the one obtained in 1996 by Englert [25].

In an effort to move away from the pictures of waves and particles and their

association with classical physics but to still preserve the spirit of Bohr’s comple-

mentarity, Englert coins the phrase ‘interferometric duality’ or “simply ‘duality’”.

His notion of ‘duality’ is the mutual exclusivity of observing an interference pattern

and obtaining which-way information. Jaeger et al refer to their work as formulating

“. . . interferometric complementarities”, a term which finds use in Chapter 4.

To develop this relationship a quantitative measure of which-way information is

needed. Englert identifies two different methods of obtaining which-way information.

In the first method, here discussed in the context of an analogous Mach-Zehnder

interferometer experiment, Englert considers a two way interferometer in which the

two ways through the interferometer are labeled |+〉 and |−〉, as in Fig. 3.1.

The system entering the interferometer is prepared in an initial state,

ρoi = 1
2
(I + si · −→σ ) = 1

2
(I + sx,iσx + sy,iσy + sz,iσz), (3.2.7)

where si = Tro(−→σ ρoi ).



44

�
�

�

�
�

�

-

�
�
�

D
D
DInput

BS

BM

M2

M1

PS, φ

D�
�

�

�
�

�x
x

(+)probe
in (+)path

(-)probe in (-)path

ψf

Figure 3.1: A two-way interferometer. The beam splitter BS distributes the input to
the two possible paths. After the action of the phase shift at PS, the beam merger
recombines the path contents and produces an output. Measurements on the output
may be used either to reveal a φ dependent interference pattern or the path that has
been taken. In a separate experiment which-way detectors (probe) are introduced
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The action of the beam splitter(BS) and beam merger (BM) can be represented

by,

ρo → exp(−ıπ
4
σy)ρ

o exp(ıπ
4
σy), (3.2.8)

and the phase shifter between BS and BM by

ρo → exp(−ıφ
2
σz)ρ

o exp(ıφ
2
σz). (3.2.9)

It is worth noting here there is a freedom of choice about choosing path and interfer-

ence observables. Englert chooses σy as a path observable and σz as an interference

observable. In Chapters 4 and 5 the reverse choice is made.

As a result of these evolutions, the initial state, ρo, becomes the final state,

ρof = 1
2
(I + sf · −→σ ), (3.2.10)

where sf = (−sx,i, sx,i cosφ+ sz,i sinφ, sy,i sinφ− sz,i cosφ)

At the detector D the interference observable, σz is measured and the relative

frequency with which, say, the value -1 is found reveals an interference pattern,

Prob(σz = −1, φ) = Tro[1
2
(1− σz)ρ

o
f ] = 1

2
(1− sy,i sinφ+ sz,i cosφ), (3.2.11)

giving an a priori fringe visibility of V0 = [(sy,i)
2 + (sz,i)

2]
1
2

The probabilities for the object taking either of the two ways are

Prob(σz = ±1) = Tro[1
2
(1± σz) exp(−ıπ

4
σy)ρ

o
i exp(ıπ

4
σy)] = 1

2
(1∓ sx,i). (3.2.12)

The magnitude of the difference between these probabilities gives a measure of the

a priori which-way knowledge or predictability, P = |sx,i|, of the ways through the

interferometer.
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Since |si| ≤ 1 the following relationship between fringe visibility and path pre-

dictability can be written,

P + V0 ≤ 1 (3.2.13)

Greenberger et al and Jaeger et al [30, 39] derive equivalent relationships and these

are in good agreement with results obtained from a neutron interferometer experiment

noted by Summhammer et al [69].

If the two paths through the interferometer are not distinguished by their differing

flux of particles, i.e. P = 0 and V0 = 1, the paths could be marked by allowing

information about the path to transferred to a probe. This information can be read

by a suitable measurement of the probe.

Now, consider the joint probability, p(mi, 1) (or p(mi, 2)) that for object i the

marker observable M is found with eigenvalue mi and that it took path 1 (or path

2). If p(mi, 1) ≥ p(mi, 2) then it is reasonable to guess that the particle took the 1

path if the outcome was mi. This leads Englert to a term “likelihood of guessing the

correct way, LM” where

LM =
∑
i

max{p(mi, 1), p(mi, 2)}. (3.2.14)

Clearly, LM can vary between 1
2

and 1 and depends upon the choice of observable M .

A more convenient measure which varies between 0 and 1 can easily be constructed

as KM = 2LM − 1. KM is termed ‘which-way knowledge’. At this point the path has

remained indefinite so the ‘knowledge’ is only ‘potential’ for this path.

If the maximum value of this ‘which-way knowledge’ is measured for the best choice

of M , then it is possible to quantify how much which-way information is stored for
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that choice of M . Here, thus is a measure of ‘distinguishability’,

D = maxM(KM). (3.2.15)

D is limited by the duality relation

D2 + V 2 ≤ 1, (3.2.16)

where V is the fringe visibility measured on the final state after path marking is

applied.

Equations 3.2.13 and 3.2.16 look similar but refer to different experimental set ups.

The predictability P and the distinguishability D represent which-way information

of different types. Further, equation 3.2.13 is a consequence of the initial input

state of the object, phase shifter and the transparencies of the beam splitter; the

beam splitter act as which-way detectors. Whereas, equation 3.2.16 results from the

quantum properties of the path marking and recording in a separate (probe) system

and is a stronger indication of graded complementarity in action.

3.2.3 Bjork et al on Duality and Uncertainty

In a paper of 1999 Björk et al [4] investigated complementarity and the uncertainty

relations, using a version of complementarity as, “. . . any system has at least two

properties that cannot be simultaneously known” (p. 1874 [4]). The complementary

pairs being considered are are path and interference observables.

Björk et al cite an extensive list of papers in which expression of wave-particle

duality are developed. Crediting their approach to that of Englert [25], the Englert

duality relation is applied to a two state system and it is demonstrated that every

two state system obeys a complementarity relation even before any attempt has been



48

made to measure an observable and one complementary to it (p. 1875 [4]). In the

terminology of this thesis this is an instance of preparation complementarity. This

will be taken up and developed in Chapter 4.

To achieve some understanding of what operator corresponds to interference pat-

tern visibility or contrast and path or which-way predictability, if these do in some

way correspond to a measurement of an observable, Björk et al construct from the

eigenstates, |A+〉 and |A−〉, with real eigenvalues a+, a−, of one operator, A, two

orthonormal states

|B+〉 ≡ (|A+〉+ eıδ|A−〉)/
√

2 (3.2.17)

and |B−〉 ≡ (|A+〉 − eıδ|A−〉)/
√

2 (3.2.18)

and from these a complementary Hermitian operator,

B = b+|B+〉〈B+|+ b−|B−〉〈B−|, b+, b− ∈ R. (3.2.19)

The two observables are complementary in the sense that the eigenstates of one are

constructed to be equally weighted superpositions of the eigenstates of the other; this

is an instance of what is referred to as value complementarity in chapter 4. Hence,

Björk et al show how complementarity is a natural consequence of the superposition

principle for a two-state system.

They then show that there is a direct link between the duality relation, equation

3.2.13, and the product of the variance of the complementary operators they have

identified as corresponding to interference contrast and path predictability i.e. a

minimum normalized uncertainty product.

〈(∆A)2〉〈(∆B)2〉
(a+ + a−)(b+ + b−)

≥ (1− P 2)(1− V 2
0 )

16
. (3.2.20)
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Here, P and V0 are the a priori path predictability and fringe visibility as used by

Englert in equation 3.2.13

They conclude that,

“We have shown how complementarity is a natural consequence of the

superposition principle . . . for any two-state system one can always formu-

late a generalized complementarity relation and that this relation typically

cannot be interpreted in terms of position and momentum operators.”

The duality relation 3.2.20 implies an uncertainty relation for a complementary

pair. In Chapter 4 the reverse will be shown, namely, that duality relations are

implied by suitable uncertainty relations.

3.2.4 Dürr and Rempe on duality and uncertainty

Also taking as their starting point the Englert/Jaeger et al duality relation, Dürr and

Rempe [23] noted that, “none of the derivations [of the complementarity or duality

relation] involves any form of uncertainty relation. It therefore seems that [here they

are quoting Englert, p. 2157 [25]] the duality relation is logically independent of the

[position-momentum] uncertainty relation”.

In order to identify two observables in a two beam interferometer without which-

way marking that can be used in a Heisenberg-Robertson uncertainty relation, Dürr

and Rempe investigate this two dimensional set-up using the Pauli spin matrices,

σx, σy, σz. For the object, which-way knowledge or path information is indicated by

〈σz〉. Incomplete which-way knowledge without a marker could be found by measuring

the particle fluxes along the two arms of the interferometer. Interference contrast is

related to 〈σx〉 and 〈σy〉. (See Chapter 4.)
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For a relative phase of zero between the two paths, the following relationships are

identified, ∆σx =
√

1− V 2, ∆σy = 1, ∆σz =
√

1− P 2.

Using the commutator relationship [σj, σk] = 2ı
∑

l εjklσl, the uncertainty rela-

tionship for all possible pairs of the standard deviations give,

√
1− V 2 = ∆σx∆σy ≥ |〈σz〉| = P, (3.2.21)

√
1− P 2 = ∆σy∆σz ≥ |〈σx〉| = V, (3.2.22)

∆σz∆σx ≥ |〈σy〉| = 0. (3.2.23)

Dürr and Rempe point out that the uncertainty relation they use is not, in fact,

the position-momentum uncertainty relation. Further, they note that the first two

equations (3.2.21, 3.2.22) are equivalent to the duality relation, equation 3.2.13, of

Englert Jaeger et al.

Equation (3.2.23) is trivial. (3.2.21) and (3.2.22) contain an irrelevant observable

σy. The approach in Chapter 4 is to give equivalent uncertainty relations which

involve the measured observables only.

To clarify what Dürr and Rempe have achieved, consider a projection operator

being represented by Pa = 1
2
(I + a · −→σ ), where ‖a‖ = 1 and the state by ρn =

1
2
(I + n · −→σ ), where n ∈ R3 and ‖n‖ ≤ 1.

The expectation value is 〈Pa〉ρn = 1
2
(1 + n · a) and the variance of Pa in the state

ρn is Var(Pa, ρn) = 1
4
(1− (n · a)2).

Now, using Dürr and Rempe’s results: V 2 = 1 − ∆σ2
x = 1 − (1 − n2

x) = n2
x and

P 2 = 1−∆σ2
z = n2

z.

So, it can be seen that because n2
x + n2

y ≤ 1, P 2 + V 2 ≤ 1.

Dürr and Rempe then consider an interferometer with which-way marking. In

this an interaction creates an entanglement between a probe or which-way marker
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and the object.

In order to read out the which-way information a probe observable W will be mea-

sured. W has eigenvalues w1, w2, . . . and a basis of eigenstates {|w1〉, |w2〉,

. . .}. By letting Prob(|±〉, wi) denote the joint probability that eigenvalue wi is found

and that the particle has the path |±〉 and following Englert’s argument that leads to

equations (3.2.14) and (3.2.15) in Section 3.2.2 they show that the distinguishability,

D, is the maximum value of the which way knowledge
∑

i |Prob(+, wi)−Prob(−, wi)|.

Since the latter is dependent upon the choice of W , the D relies on making the best

choice of W .

Their task is now to show that duality relation, equation (3.2.16), can be derived

from a Heisenberg-Robertson uncertainty relation for some suitably chosen observ-

able. To this end let,

ε =

+1 if Prob(+, wi) ≥ Prob(−, wi)

−1 otherwise
(3.2.24)

denote which way to bet on if the eigenstate |wi〉 if found.

Using Prob(+, wi) = 〈wi,+|ρo,p|wi,+〉, where ρo,p denotes the composite object

plus which-way probe system, the distinguishability can now be found from the max-

imum value of

∑
i

ε(〈wi,+|ρo,p|wi,+〉−〈wi,−|ρo,p|wi,−〉) =
∑
i

εTro,p{ρo,p(|wi〉〈wi|⊗σz)}. (3.2.25)

It is now possible to propose an observable Wε =
∑

i ε|wi〉〈wi|, in which case the

which way knowledge becomes 〈σz⊗Wε〉 and the distinguishability then becomes D =

〈σz ⊗Wmax,ε〉; the observable Wmax,ε being chosen such that ‘which-way knowledge’

is maximized. Using the same techniques that are used to create equations (3.2.21,
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3.2.22, 3.2.23), the following uncertainty relations are developed,

√
1−D2 ≥ 4(σy ⊗Wmax,ε)4(σz ⊗Wmax,ε) ≥ |〈σx〉| = V, (3.2.26)

√
1− V 2 ≥ 4σx4(σy ⊗Wmax,ε) = D. (3.2.27)

Note that the irrelevant observable σy is still present.

The interpretation of equation 3.2.26 is that in a which-way scheme with a path

marker entangled with the object, the duality relation can be obtained from a form

of Heisenberg-Robertson uncertainty relation.

Between the Börk et al and Dürr et al papers there is a marked contrast. They

both start from similar positions and employing a similar rederivation of the duality

relation for a two state quantum system with no marker present e.g. an object in

a two way interferometer. Also, both show that there is a link between this duality

relation and an uncertainty relation comprising the product of variances. Neither

consider measures of uncertainty other than variances.

Björk et al consider an operator A with two eigenvalues and note “that [pre-

dictability] P in some way corresponds to measurement of A”. The second operator

B that is to be used in the uncertainty relation has eigenstates that are equally

weighted superpositions of eigenstates of A. From this stand point they are able

to show a link that exists between the duality or complementarity relation and an

uncertainty relation comprising variances.

In contrast, in their final discussion Dürr et al make the point that explanations

found in textbooks for Einstein’s recoiling slit [77], [66] and Feynman’s light micro-

scope [29] based on the position momentum uncertainty relation, the explanation

offered by SEW [60] for the loss of interference in their atom interferometer and the

derivation of the duality relation of Englert/Jaeger et al are based on entanglement
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or correlations. The calculations of Dürr and Rempe [23] and Wiseman et al [76]

make use of both entanglement and some uncertainty relation.

Dürr and Rempe’s categorization reveals a crucial point: The explanations for

the loss of interference fringes involving only the uncertainty relation are (so far)

limited to a few special schemes. In other words, the loss of interference cannot, in

general, be explained in terms of ‘classical momentum transfer’. On the other hand,

explanations involving only entanglement apply to all which-way schemes known so

far. This leads them to the conclusion that wave particle duality is more closely

connected to entanglement than to an uncertainty relation (p. 1024).

The findings of Busch and Shilladay in [14] disagree with this conclusion. In

this it is shown that entanglement can be understood as a instance of uncertainty in

the context of descriptions of compound systems rather than as a separate feature.

Moreover, it is to be expected that whenever an explanation of the loss of interference

can be given in terms of entanglement, this can be accompanied with an explanation

in terms of a form of uncertainty relation.

3.2.5 Kim and Mahler

In response to any continuing perceived attack on Heisenberg’s position momentum

uncertainty relation Kim and Mahler wrote a paper entitled ‘Uncertainty Rescued:

Bohr’s complementarity for composite systems’ [42]. They wrote of Heisenberg’s

position momentum uncertainty relation that it “is often interpreted to imply that

one cannot detect for a given quantum state two conjugate observables with unlimited

precision.” And of Bohr’s complementarity principle, that it “may be understood to

mean that a state with a minimum dispersion of one observable (i.e. preparation

of a respective eigenstate) implies maximum dispersion of the other (i.e. any of its
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eigenstates will be found with equal probability), e.g. q and p.”

Kim and Mahler extend their consideration of uncertainty relations to composite

systems. The uncertainty relation they use is of the general form developed in Chapter

2, Section 2.3 equation 2.3.15.

They propose that path detection is achieved by correlating (or anti-correlating)

paths and marker states in this way: An initial state |0〉o|0〉p, where o and p refer to

object and probe, is allowed to evolve into a final state,

|Ψf〉 = 1√
2
(|0〉o|0〉p + |1〉o|1〉p) (3.2.28)

by the action of a beam splitter followed by a controlled-NOT gate (which has the

effect, |10〉 → |11〉, |00〉 → |00〉), in a similar manner to the model of Zhu et al [78]

analyzed in Section 4.2 (see also [13]).

Next, the total system observables are described in terms of tensor products of the

individual single system Pauli operators, σoj ⊗ σpk where j, k = x, y, z; in particular,

the covariance of σoj and σpk is

Cσo
j ,σ

p
k

= 〈σoj ⊗ σpk〉 − 〈σ
o
j 〉〈σ

p
k〉. (3.2.29)

Since the individual system operators acting upon different systems commute, the

inter-subsystem uncertainty relations are given by,

V ar(σoj )V ar(σ
p
k) ≥ |Cσo

j ,σ
p
k
|2. (3.2.30)

The values taken by the covariance term are 0 ≤ |Cσo
j ,σ

p
k
| ≤ 1; Cσo

j ,σ
p
k

= 0 for product

states. |Cσo
j ,σ

p
k
| = 1 implies perfect correlation or anti-correlation implying maximum

ignorance of σoj and σpk, ∆σoj = ∆σpk = 1.

The preparation of an entangled state implies that each subsystem is in a non-

pure state. This fact is used by [29], [61], [63], [75] to justify interpreting the resulting
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mixture states resulting from random kicks. However, Kim and Mahler are able to

show that it is possible to remove the ‘alleged’ effects of these random kicks by

quantum erasure.

In the erasure experiment one makes use of the fact that the state has an equivalent

form,

|Ψf〉 = 1√
2
[|+ x〉o|+〉p + | − x〉o|−〉p] (3.2.31)

where |±x〉o = 1√
2
[|0〉o±|1〉o], |±〉p = 1√

2
[|0〉p±|1〉p]: a similar procedure is proposed

in 4.3.4.

If now measurements on the sub-ensembles associated with |+〉p and |−〉p, respec-

tively, are recorded separately, the respective interference patterns can be recovered,

as proposed by SEW [60].

Kim and Mahler conclude that complementarity and uncertainty relations can be

strictly related and the random classical kicks induced by a measurement process

are not sufficient to explain either uncertainty or complementarity. They claim that

the often-discarded mutual correlation term in the generalized uncertainty relation

implies the equivalence between the set of uncertainty relations and the principle of

complementarity holds in a wider sense than the historical gedanken experiments.

What Kim and Mahler do is consistent with what is done in Chapters 4 and 5:

The connection between complementarity and uncertainty can be made explicit either

in terms of a POVM in the Hilbert Space of the object, as in Chapters 4 and 5, or

by emphasizing the correlation between object and probe.
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3.2.6 Comments

In the works studied so far it is possible to identify certain, sometimes contrasting,

conflations:

1. The identification of the position-momentum uncertainty relation with classical

momentum kicks; this can be seen to be the case in the debate around the

proposal of SEW but is avoided by Dürr et al.

2. In many writings (discussed by Jammer [40]), complementarity is seen as a

synonym for uncertainty. This is in contrast to what SEW, DNR and others

are saying, namely, that complementarity is more fundamental than uncertainty.

3. There is insufficient distinction between versions of complementarity, in the

sense of strict exclusivity and in the sense of graded exclusivity with a trade-off

relation. In the mid-1990 there was a shift of focus from the original, strict

mutual exclusivity position, e.g. SEW (1991) still understood complementarity

as value complementarity but Englert [25] clearly discusses quantitative com-

plementarity.

4. There is also insufficient distinction between the roles of complementarity and

uncertainty for preparations and for measurements, respectively. In section

3.5 of this chapter preparation and measurement forms of complementarity are

discussed as well as the different forms of uncertainty which can be identified

(see Sec. 3.5.3).

5. Path marking and its erasure are in a mutually exclusive (complementary) rela-

tionship; however if the path marking could be made imperfect or unsharp then
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this holds the possibility of measuring jointly an unsharp path and an unsharp

interference observable. In this, quantitative quantum erasure, case the experi-

ment provides unsharp information about both mutually exclusive observables

simultaneously.

Both erasure and quantitative erasure appear naturally out of the Mach-Zehnder

analogue of SEW’s experiment in Chapter 4.

The next task is to attempt to trace the origins of these conflations.

3.3 The Origins; the influence of the pioneers’ think-

ing

3.3.1 The origin of complementarity and its meaning accord-
ing to Bohr

In the world of classical physics there appears to be different sets of phenomena which

are described as either wave behaviour or particle behaviour. However, it is possible

to apply these pictures to the same phenomenon. The two models are distinct from

each other but not mutually exclusive.

Consider water waves and sound waves. These ‘undulatory motions of a medium’

are the collective behaviour of particles. There is no conflict, classical physicists used

the terms waves and particles together, each picture capturing different aspects of the

phenomenon.

When considering the nature of light, the debate between the advocates of the

wave model of light proposed by Robert Hooke and Christian Huygens and the cor-

puscular model proposed by Isaac Newton raged from the middle of the seventeenth

century to the beginning of the nineteenth when the methods of measurement became
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sufficiently refined to allow experimentum crucis. It was Thomas Young who achieved

a resolution when he used wave theory to explain coloured fringes produced by thin

films and later performed the first double-slit interference experiment. Young had

discovered the principle of interference.

Working independently, a few years later, Augustin Fresnel also discovered the

principle of interference. Temporarily, light was regarded as fundamentally a wave

phenomenon. However, in a different sense to how particles appear in the theory of

water waves, the electromagnetic or optical wave theory allowed for a limit, called

the geometric optic limit, described by rays which could be viewed as particle trajec-

tories. In this sense, Newton’s model was justified as an independent, approximate

description.

The language used by physicists to model the problems raised by experimental

observations pictures the facts to give an intuitive understanding. For example, the

picture we have of light as a propagating wave uses the language of waves to predict

and explain a vast range of phenomena involving light. The laws of light propagation

are enshrined in classical physics as the theories of optics and electromagnetism.

However, some of the phenomena produced by light, such as the photoelectric effect,

seem to call for corpuscular theory.

December 14, 1900 is often regarded as the “. . . birthday of quantum theory”.

“. . . At the meeting of the German Physical Society, December 14 1900, Planck read

his historic paper ‘On the theory of the energy distribution law of the normal spec-

trum’”, in which he presented a model requiring the microscopic constituents of a

black-body to have a discrete energy spectrum. This discreteness was to be charac-

terized by the ‘universal constant h’. “His findings were destined to change the course
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of theoretical physics”([41], pp. 21-22).

In 1905, to model the interaction of light with matter in the photoelectric effect,

Einstein was compelled to proposed light quanta. This was counterintuitive because

a model of how they produce an interference pattern could not be constructed. The

model for light of Hooke, Huygens and Maxwell had become distorted to include

something as extensible as a wave and as localized as a particle and as such gives no

intuition as to the thing itself.

And, in 1912 William Bragg wrote of the paradoxical results from on the one hand

x-rays exhibiting wave like behaviour in diffraction experiments and on the other hand

particles like behaviour when ionizing a gas, “The problem becomes . . . not to decide

between two theories of x-rays, but to find . . . one theory which possesses the capacity

of both” [40].

In parallel developments during the years 1905-1927 the concept of matter waves

was used and developed in several studies: Bohr, starting in 1912, found it convenient

to describe electrons in orbit about a nucleus forming standing waves.

De Broglie is credited with the term ’matter waves’ in his hypothesis of wave-like

behaviour being associating with matter. His recollection are recorded in [17].

‘After long reflection in solitude and meditation, I suddenly had the idea,

during the year 1923, that the discovery made by Einstein in 1905 should

be extended to all material particles and notably to electrons.’

De Broglie concept of matter waves was essential for Schrödinger’s formulation

of quantum mechanics which appeared in a series of papers deriving the hydrogen

spectrum [67].

In 1927 Davisson and Germer demonstrated electron diffraction by a crystal [16].
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Over a period which can be traced to be between 1925 and 1927 ([41], p. 345),

Bohr came to accept that where there are two mutually exclusive descriptions both

needed to give a complete picture of the same object such as light or an electron, then

they must stand in a certain relationship to one another to avoid any inconsistencies.

Bohr coined the term complementarity to capture this relationship and introduced it

to the scientific world on September 16, 1927 at a conference in Como [5].

It is worthwhile to consider the presentations of complementarity that Bohr comes

up with in his 1928 and 1935 papers. These several versions are referred to by Jammer

([40], p. 87) as Pauli’s version of the Copenhagen complementarity interpretation.

The quantum postulate-the origins of quantum mechanics:

This states that individuality of quantum interactions, bringing about uncontrollable

change in observations. Planck’s quantum of action, ~, decides the scale of the actions

at which those changes become non-negligible.

([5], p. 580) . . . quantum postulate, which attributes to any process an essential

discontinuity, or rather individuality, completely foreign to the classical theories and

symbolized by the Planck’s quantum of action.

([5], p. 580) . . .This postulate implies a renunciation as regards the causal space-

time co-ordination of atomic processes.

([6], p. 697). . . the finite interaction between object and measuring agencies condi-

tioned by the very existence of the quantum of action entails - because of the impossi-

bility of controlling the reaction of the object on the measuring instrument if these are

to serve their purpose - the necessity of a final renunciation of the classical ideal of

causality and a radical revision of our attitude towards the problem of physical reality.
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The mutual exclusion of definition and observation:

([5], p. 580). . .The very nature of quantum theory thus forces us to regard the space-

time co-ordination and the claim of the causality, the union of which characterizes

the classical theories as complementary but exclusive features of the description, sym-

bolizing the idealization of the observation and definition.

This is the first occurrence of term complementarity.

([5], p. 580). . . in the description of atomic phenomena, the quantum postulate

presents us with the task of developing a ‘complementarity’ theory the consistency of

which can be judged only by weighing the possibilities of definition and observation.

([5], p. 587) According to the quantum postulate any observation regarding the

behaviour of the electron in the atom will be accompanied by a change in the state of

the atom.. . .The complementary nature of the description [of the ‘orbit’ of the electron

in the atom], however, appears particularly in that the use of observations concerning

the behaviour of particles in the atom rests on the possibility of neglecting, during the

process of observation, the interaction between the particles, thus regarding them as

free.

([5], p. 589) . . . it might be said that the concepts of stationary states and individual

transition processes within their proper field of application possess just as much or as

little reality as the very idea of individual particles. In both cases we are concerned with

a demand of causality complementary to the space-time description. The adequate

description of which is limited only by the restricted possibilities of definition and of

observation.
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The necessity for complementary modes of description:

The union of space-time coordination (provided by observation) and causal descrip-

tion (associated with conservation laws for energy-momentum in isolated systems),

characterizes classical physics but is rendered impossible in quantum physics.

([5], p. 580) . . . the definition of the state of a physical system, as ordinarily under-

stood, claims the elimination of all external disturbances. But in that case, according

to the quantum postulate, any observation will be impossible and above all the con-

cepts of space and time lose their immediate sense. On the other hand if in order

to make observation possible we permit certain interactions with suitable agencies of

measurement, not belonging to the system, an unambiguous definition of the state of

the system is naturally no longer possible and there can be no question of causality in

the ordinary sense of the word.

([5], p. 581). . . the possibility of identifying the velocity of the particle with the group

velocity indicates the field of application of space-time picture of the quantum theory.

Here the complementary character of the description appears since the use of wave-

groups is necessarily accompanied by a lack of sharpness in the definition of period

and wavelength and hence also in the definition of period and of the corresponding

energy and momentum . . .

The exclusive nature of experimental set-ups:

([5], p. 581) . . .The two views of the nature of the constituents of light are . . . to be

considered as different attempts at an interpretation of experimental evidence in which

the limitation of the classical concepts is expressed in complementary ways.

([6], p. 699) Bohr proposes an analogue of the EPR experiment comprising a rigid
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diaphragm with two parallel slits. Through each slit one particle with a given initial

momentum passes independently of the other. If the momentum of the diaphragm

is determined before and after the passage of the particles then the sum of the com-

ponent of the momenta of the particles perpendicular to the slits can be found. The

difference of their initial positions in the same direction can also be found. In this

arrangement a subsequent single measurement, either of the momentum or of the po-

sition of one of the particles will automatically determine the position and momentum

of the second without interfering with the second particle.

Like the above simple case of the choice between the experimental procedure suited

for the prediction of the position or the momentum of a single particle which has

passed through a slit in a diaphragm, we are, in the “freedom of choice” offered by

the last arrangement [i.e. whether we want to determine position or momentum by a

process which does not directly interfere with the particle concerned], just concerned

with a discrimination between different experimental procedures which allow the un-

ambiguous use of complementary classical concepts.

([6], p. 700). . . it is only the mutual exclusion of any two experimental procedures,

permitting the unambiguous definition of complementary physical quantities, which

provides room for new physical laws, the coexistence of which might at first sight appear

irreconcilable with the basis principles of science. It is this entirely new situation as

regards the description of physical phenomena, that the notion of complementarity

aims at characterizing.

Complementary pairs of physical quantities:

Examples are path and interference or position and momentum, which are both nec-

essary as part of the description.
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([5], p. 580). . .As regards light, its propagation in space and time is adequately

expressed by electromagnetic theory. Especially the interference phenomena in vacuo

and the optical properties of material are completely governed by the wave theory su-

perposition principle. Nevertheless, the conservation of energy and momentum during

interaction between radiation and matter . . .This situation would seem clearly to in-

dicate the impossibility of a causal space-time description of the light phenomena.

([6], p. 697). . . the mutually exclusive character of any unambiguous use in quan-

tum theory of the concepts of position and momentum,. . .

No independent reality for object or measurement device alone:

Any phenomenon is determined through the whole of object (atomic system) and

measuring device.

([5], p. 580). . . the quantum postulate implies that any observation of atomic phe-

nomena will involve an interaction with the agency of observation not to be neglected.

Accordingly, an independent reality in the ordinary physical sense can neither be as-

cribed to the phenomena nor to the agencies of observation.

([6], p. 699). . . the renunciation in each experimental arrangement of the one or

the other of two aspects of the description of physical phenomena - the combination

of which characterizes the method of classical physics, and which therefore in this

sense may be considered as complementary to one another, - depends essentially on

the possibility, in the field of quantum theory, of accurately controlling the reaction of

the object on the measuring instruments, i.e. the transfer of momentum in the case of

position measurement and the displacement in the case of momentum measurements.
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Uncertainty relation demonstrating consistency of complementarity inter-
pretation with quantum formalism:

They quantify the limitations for the simultaneous application of two complementary

classical descriptions.

([5], p. 581). . . [Heisenberg] has stressed the peculiar reciprocal uncertainty which

affects all measurements of atomic quantities . . . the complementary nature of descrip-

tion appearing in this uncertainty is unavoidable.

([5], p. 582). . .The limitation in the classical concepts expressed through [the

Heisenberg uncertainty] relation is . . . closely connected with the limited validity of

classical mechanics, which in the wave theory of matter corresponds to geometrical

optics in which the propagation of waves is depicted through ‘rays’. Only in this

limit can energy and momentum be unambiguously defined on the basis of space-time

pictures.

([5], p. 582). . . In the language of relativity theory, the content of [the Heisenberg

uncertainty] relation may be summarized in the statement that according to quantum

theory a general reciprocal relation exists between the maximum sharpness of definition

of the space-time and energy-momentum vectors associated with individuals. This

circumstance may be regarded as a simple symbolic expression for the complementary

nature of the space-time description and the claims of causality. At the same time,

however, the general character of this relation makes it possible to a certain extent to

reconcile the conservation laws with the space-time co-ordination of observation, the

idea of a coincidence of well defined events in a space-time point being replaced by

that of unsharply defined individuals within finite space-time regions.

Here Bohr acknowledges that Heisenberg’s uncertainty relation does more than
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express complementarity. It seems that he is allowing a softening of complementarity

into what is referred to in this study as graded complementarity.

([5], p. 584). . . it follows from the above consideration [of illustrations of Heisen-

berg’s uncertainty relation - gamma ray microscope] that the measurement of the po-

sitional co-ordinates of a particle is accompanied not only by a finite change in the

dynamical variables but also the fixation of its position means a complete rupture in

the causal description of its dynamical behaviour, while the determination of its mo-

mentum always implies a gap in the knowledge of its spatial propagation. Just this

situation brings out most strikingly the complementary character of the description of

atomic phenomena which appears as an inevitable consequence of the contrast between

the quantum postulate and the distinction between object and agency of measurement,

inherent in our very idea of observation.

This is a clear formulation of the notion that complementarity resolves the contra-

diction between the quantum postulate (non-separability) and the idea of observation.

People have found it difficult if not impossible to fit all of Bohr’s statements on

complementarity into a coherent account because they cover such a wide scope. In try-

ing to provide a way of analyzing quantum phenomena in terms of classical concepts

he left ways open for misinterpretations. For example, Einstein [66] never overcame

his misgivings about “...Bohr’s principle of complementarity, the sharp formulation

of which, moreover, I have been unable to achieve despite much effort which I have

expended on it.”

3.3.2 The Origin and Meaning of the uncertainty principle

The notion of uncertainty was introduced in Heisenberg’s seminal paper of 1927 [32].

In this he did not write of an uncertainty principle, his intention was to make clear
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that the uncertainty relation he had developed was fundamental in an understanding

of quantum mechanics. He saw it as a way of expressing the physical manifestation of

the canonical commutation relation for conjugate pairs of quantities, QP−PQ = ı~I:

he wrote,

“It is shown that canonically conjugate quantities can be determined with

a characteristic inaccuracy”.

He considered that these algebraic expressions should form the basis of the for-

malism of quantum mechanics. In this he was following Einstein’s dictum that it was

the mathematical theory that determined what could be observed.

In the 1927 paper [32] and the 1930 Chicago lecture notes [33] of Heisenberg, it

is possible to identify three conceptually distinct types of uncertainty relation. Each

one can be interpreted as a manifestation of the principle of uncertainty as outlined

in Chapter 1 page 5.

His investigation, initially, highlights three features of quantum phenomena: the

discrete nature of quantum objects, the discontinuity of quantum processes and the

disturbance through measurement. Heisenberg (and Bohr, section 3.3.1) realized

that the measurement process in quantum mechanics raised the question of how the

act of observation affects the system being observed. He writes, [32],“. . . a definite

experiment can never give exact information on all quantum theoretical quantities.

Rather, it divides physical quantities into ‘known’ and ‘unknown’ (or more or less

accurately known) quantities in a way characteristic of the experiment in question.”

In the illustration of the ‘disturbance through measurement’ Heisenberg uses the

language of his training in classical physics and developments in the interaction be-

tween waves and matter such as, the photoelectric equation and the Compton effect
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and the matter waves of de Broglie, to propose the gamma ray microscope thought

experiment. In this experiment a gamma ray, classical microscope is used to locate

the position of an electron, “At the instant when the position [of the electron] is

determined - therefore, at the moment when the photon is scattered by the electron

- the electron undergoes a discontinuous change in momentum. This change is the

greater the smaller the wavelength of the light employed - that is, the more exact the

determination of the position.”

Here is a particle, the object system, the electron, suffering an exchange of momen-

tum with a quantum system, the probe, the photon and receiving from it uncertainty

in its subsequent properties.

In the final part of his paper Heisenberg wrote this: “Because all experiments are

subject to the laws of quantum mechanics, [and therefore to the position-momentum

uncertainty relation], it follows that quantum mechanics establishes the final fail-

ure of causality.” Nevertheless, Heisenberg and others after him tried to identify a

mechanical cause for the validity of the uncertainty relation. The attempt to link

the uncertainty relation to momentum kicks was immediately criticized by Bohr who

pointed out that the argument of kicks did not explain the momentum uncertainty

and considered the quantum nature of the measurement probe as a relevant factor en-

forcing the uncertainty relation in measurements. Heisenberg expressed his agreement

with this in the ’Addition in Proof’ in [32].

3.3.3 Conflations around Complementarity And Uncertainty

Recalling the comments in Section 3.2.6: The notions of complementarity and un-

certainty can be shown to be linked in certain formulations of quantum mechanics.
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However, a selective interpretation of the quotations in section 3.3.1 and of the mod-

els used by Bohr and Heisenberg have lead to the conflation of complementarity and

uncertainty. Random momentum kicks are the mechanism often pointed out as en-

forcing complementarity.

Bohr and Heisenberg

Heisenberg was led to accept, after discussions with Bohr, that complementarity

is a fundamental feature of quantum mechanics that highlights a phenomenon of

the microscopic, physical world. Complementarity is manifested in wave-particle

duality and wave-particle duality must be accepted as an essential component of the

interpretation of the theory. In a ‘Addition to proof’ to [32] he wrote,

“. . . the uncertainty in our observation does not arise exclusively from the

occurrence of discontinuities but is tied directly to the demand that we

ascribe equal validity to the quite different experiments which show up in

the corpuscular theory on one hand and in the wave theory on the other.”

Bohr also pointed out the classical nature of the microscope in Heisenberg’s gamma-

ray microscope thought experiment. Again, in the ‘Addition to Proof’ of [32] Heisen-

berg writes,

“. . . [Bohr has brought to my attention] . . . In the use of an idealized

gamma-ray microscope for example, the necessary divergence of the bun-

dle of rays must be taken into account. This has as one consequence

that in the observation of the position of the electron, the direction of the

Compton recoil is only known with a spread which leads to [the uncer-

tainty relation].”
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This awareness was included in his 1929 Chicago lectures (published as [33] in 1930)

where he pointed out that, “It is characteristic of the foregoing discussion that simul-

taneous use is made of the deductions from the corpuscular and wave theories of light,

for, on the one hand, we speak of resolving power, and, on the other hand of photons

and recoils resulting from their collision with the particle under consideration.”

While Heisenberg thus acknowledged complementarity, Bohr, in turn, also ascribes

an independent rôle to the uncertainty relation. In his 1927 Lake Como lecture

Bohr indicated that it was possible to conceive of a ‘softening’ of the strict mutual

exclusivity in the simultaneous use of complementary terms but that there is a price

to pay. This being expressed in Heisenberg’s uncertainty relation ([5], p. 582) (see

Section 3.3.1).

So, in two of the seminal papers on the interpretation of quantum mechanics, we

see Heisenberg introducing uncertainty and endorsing complementarity manifested in

wave-particle duality and Bohr introducing complementarity and describing Heisen-

berg’s uncertainty relation as the condition for weakening strict mutual exclusivity.

In spite of this endorsement of each others ideas there was a major conceptual

difference between Bohr and Heisenberg. There was no disagreement between them

about what had been observed in experiments nor about the mathematical formalism.

They also agreed that any interpretation of quantum phenomena must be based on

the use of classical language. Heisenberg summarized Section 1 of his 1927 paper thus

(p. 68, [32]), “All concepts which can be used in classical theory for the description of

mechanical processes can also be defined exactly for atomic processes in analogy to the

classical concepts.” And, Bohr wrote near the start of his 1928 paper, (p. 580, [5]),

“. . . our interpretation of the experimental material rests essentially upon classical
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concepts.”

Heisenberg’s theme in the main part of his paper is concerned with how the

theory determines what can be observed, i.e. position, time, momentum, energy, and

describing how these “observations are correlated” ([32], final paragraph). Where

the language of particles gives the clearest description, this is what he uses, similarly

for the language of waves. Both modes of description are used independently of the

other. In his Chicago lectures of 1929 [33] he points out clearly the equivalence of the

particle picture and the wave picture.

Bohr insists that both modes of description must be used. It is the discontinuity

in changing from one mode of description to a complementary one which gives rise

to uncertainty in what is being observed. Heisenberg (reluctantly) accepts that it is

the dual aspect of the photons that enforces the validity of the uncertainty relation;

whereas Bohr speaks of change of mode of description, Heisenberg’s measurement

examples demonstrate how the results of one measurements (eg showing fairly sharp

momentum) are invalidated or changed by a subsequent measurement of position. So,

there is not just a change of description but the choice of or transition to a new wave

function or state vector to reflect the change of knowledge about the system.

In an article published posthumously in a collection of papers commemorating the

fiftieth anniversary of the formulation of the uncertainty principle (opening article in

[57], 1977) Heisenberg recalls the conceptual departure points with Bohr however he

points to an area of agreement thus,

“Still we were not able to get complete clarity; but we understood that

the well defined experimental situation somehow played an important rôle

. . . ”
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Bohr and Einstein

Einstein’s first challenge to Bohr’s interpretation was presented at a conference in

Solvay (1927). Einstein proposed that one should be able to obtain information on

which slit a particle passed through while retaining an interference pattern.

Using the Heisenberg position-momentum uncertainty relation Bohr showed that

if the plate carrying the double slit was regarded as a quantum mechanical object,

the uncertainty in measuring its momentum is exactly equal to the reciprocal of the

number of fringes per unit length on the screen in the far field. Any momentum

determination sufficiently accurate to decide the position of the particle at the double

slits involves a position uncertainty of those double slits which is the same order of

magnitude as the fringe spacings of the interference pattern thus washing out the

interference pattern and any momentum information it contains. (Bohr wrote of this

in [66] in a report on his discussions with Einstein.)

In 1935 Einstein, Podolsky and Rosen asked, “Can Quantum-Mechanical Descrip-

tion of Physical Reality be Considered Complete?” [24]. They presented a thought

experiment suggesting that position and momentum should, simultaneously, be ele-

ments of reality. Since quantum mechanics cannot account for position and momen-

tum simultaneously, as embodied in the position-momentum uncertainty relation,

they argued that quantum mechanics was incomplete.

Again Bohr’s reply [6] applied wave-particle duality and the position-momentum

uncertainty principle to this, “simple case of a particle passing through a slit in a

diaphragm”. The reasoning leading from the quantum formalism to the disappearance

of the interference fringes proceeds as follows: “The width of the slit ... may be taken

as the uncertainty in the position of the particle relative to the diaphragm” then “...
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it is simple to see from the de Broglie relation between momentum and wavelength

that the uncertainty in momentum is correlated to [the width of the slit] by means

of Heisenberg’s general principle ∆p∆q ∼ h which in the quantum formalism is a

direct consequence of the commutation relation for any pair of conjugate variables.”

([6] p. 697)

Returning to the paper by Scully et al [60] published in 1991 (see Section 3.2): in

it the ‘disturbance doctrine’ (a phrase used by Brown and Redhead [7]) is described

as a model dating back to the origins of quantum mechanics which can be shown

to be inadequate in the light of their scheme. SEW’s proposal is that the principle

of complementarity may be manifest although the position-momentum uncertainty

relationship driven by classical or semi-classical momentum kicks plays no rôle. They

are led to write, “. . . we have conceived a welcher Weg detector which does not fall

prey to the position-momentum uncertainty relation.” They even speak of the un-

certainty relation being an obstacle reminiscent of the view taken by EPR [24], who

presented the uncertainty relation as a limitation of the quantum mechanical descrip-

tion of physical reality. EPR hoped to circumvent this limitation in their thought

experiment.

Thus was revived a polemic about the question of a hierarchy of quantum princi-

ples: Is complementary more fundamental than uncertainty?

Using the Heisenberg’s uncertainty relation Bohr showed that if the plate carrying

the double slit was regarded as a quantum mechanical object one might conclude that

the uncertainty relation provided the foundation for complementarity. This seems to

be a widely accepted view. However, Bohr’s considerations, like those of Heisenberg,

were based on a very informal use of quantum structures and outlines of semi-classical
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thought experiments, without providing a rigorous quantum mechanical treatment.

In addition, it should be borne in mind that any number of examples of experiments,

thought or realized, can only serve as illustration of a fact but not as a conclusive

demonstration of its general validity. There is thus scope for doubt over the validity or

generality of the claim that the uncertainty relation constitutes the sole mechanism

for enforcing complementarity. This is the purpose of Chapters 4 and 5, to put

the discussion on a more rigorous basis and to clarify the question of their being a

hierarchy of quantum principles.

Textbook survey

If some features of quantum mechanics have continued to be a source of misconcep-

tions and the cause of confused debate, how are the particular modes of thinking

perpetuated? Science has the reputation of dealing with objective reality however

as their training progresses scientists become part of a community which is bounded

by common views or approaches. A brief and by no means exhaustive nor compre-

hensive survey of text books spanning some seven decades identifies the support, the

authorities and the early influence for some commonly held ideas.

It is possible to identify three distinct approaches towards presenting complemen-

tarity and uncertainty in the teaching of quantum mechanics:

(1) The first group regards complementarity as the most important feature

of quantum mechanics

In the quantum mechanics text of Julian Schwinger (edited by one of the authors

of SEW), the existence of mutually exclusive properties is described as the essence

of quantum mechanics; by contrast, the importance of the uncertainty principle is

played down: “. . . we will prefer to speak of Heisenberg’s uncertainty relation.” ([59],
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p.110).

In a similar way, Asher Peres ([56], p.149) introduces Bohr’s complementarity

principle in the version of 1935, formulated in Bohr’s reply to the Einstein-Podolsky-

Rosen paper; Peres paraphrases it as follows: “Its meaning is that some types of

predictions are possible while others are not, because they are related to mutually

incompatible tests.” The index of Peres’s book has only this one page reference to

the term complementarity principle. Likewise, there is only one page reference for the

term uncertainty principle: in the index, on page 445, the reader is referred to page

445 (!) for this term. In this way Peres removes from quantum uncertainty the status

of a principle while there are numerous occurrences and applications of uncertainty

relations in his book.

(2) The second group avoids using the term complementarity at all, em-

phasizing uncertainty instead.

Ballentine [1] emphasizes the statistical nature of quantum mechanics and the non-

reproducibility of quantum events being due to an indeterminacy in the preparation

and measurement but gives no reference to complementarity or credit to Bohr for this

concept.

Volume 3 of the Feynman Lectures on Physics ([29], Section 1.1) gives great promi-

nence to the phenomenon of interference of electron waves, or more generally, the

wave-particle duality. Feynman says about this phenomenon that it, “... has in it the

heart of quantum mechanics. In reality, it contains the only mystery.” However, he

does not mention complementarity.

In this volume readers are introduced to the position-momentum uncertainty prin-

ciple being enforced by disturbance, “. . . when we look for certain phenomenon we
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cannot help but disturb in a certain minimum way and the disturbance is necessary

for the consistency of the viewpoint”, to explain the disappearance of interference on

path detection in a two slit experiment.

Here it is worth noting that ’disturbance’ can be understood in different sense, as

momentum kicks, as entanglement, or as collapse, or, in the most general sense, as

any form of state change enforced by a measurement.

Similarly, Sudbery ([71], p.25) describes briefly the wave-particle duality and the

mutual exclusion of arrangements for wavelike phenomena and particle-like phenom-

ena, and proceeds to quote the uncertainty principle as “a quantitative statement of

these ideas.”

Three founding fathers who had difficulty in accepting complementarity were

Schrödinger, Dirac and von Neumann. W. Moore in Schrödinger: Life and Thought

([52], p.228) writes of Schrödinger, “[After long conversations with Bohr about atomic

processes] Schrödinger recognizes the necessity of admitting both waves and particles

but he never devised a comprehensive interpretation of quantum phenomena to rival

the Copenhagen orthodoxy. He was content to remain unbeliever.”

And Dirac ([20], p.1) writes, “Heisenberg’s principle of uncertainty shows clearly

the limitations in the possibility of simultaneous assigning numerical values, for any

particular state, to two non-commuting observables, when these observables are a

canonical coordinate and momentum, and provides a plain illustration of how obser-

vations in quantum mechanics may be incompatible.”

He does not mention complementarity nor wave-particle duality however in illus-

trating uncertainty he writes “. . . in the limit when either the canonical coordinate or
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momentum is completely determined, the other is completely undetermined”. A sim-

ilar presentation of complementarity is made in chapter 4 as value complementarity.

J. von Neumann. [72] gives a detailed analysis of a Heisenberg type microscope

experiment but does not mention complementarity nor wave particle duality.

(3) The third group embraces both terms, presenting complementarity

and uncertainty as being co-existent features of quantum mechanics.

It will be no surprise that Heisenberg [33] gives an account which includes the

rôle of disturbance: “. . . There are no infinitesimals by the aid of which an obser-

vation might be made without appreciable perturbation. . . ”; complementarity is de-

scribed as: “. . . the incompatibility of space-time description and laws of causality of

atomic processes. . . ”; wave-particle duality as follows:“. . . wave and corpuscular pic-

tures possess equal approximate validity. . . ” and uncertainty; “. . . indeterminateness

of the picture of the process is a direct result of the indeterminateness of the concept

of ‘observation’ - what objects are part of the observed system and what are part of

the observer’s apparatus.”

W. Pauli, General Principles of Quantum Mechanics ([55], pp. 1-7) also follows

this line: “. . . Due to the indeterminacy in the property of the system prepared in a

specific manner (i.e. in a definite state of the system), every experiment for measuring

the property concerned destroys (at least partly) the influence of a prior knowledge

of the system on the (possibly statistical) statements about the result of a future

measurement.”

A. Messiah, Quantum Mechanics Vol 1 ([49], Ch. 1), introduces a mutually ex-

clusive form of complementarity, “evidences obtained under different experimental

conditions cannot be comprehended within a single picture . . . they must be regarded
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as complementary in the sense that only the totality of the observational results ex-

hausts the possible types of information about the objects of microscopic physics.”

But he does not leave students with a mutually exclusive picture, a graded form

of complementarity with a trade-off is described, “. . . The description of the phys-

ical properties of microscopic objects in classical language requires complementary

variables; the accuracy in one member of the pair cannot be improved without a

corresponding loss in the accuracy of the other member.”

L.I. Schiff, Quantum Mechanics ([70], p.8) tries to illustrate a link between uncer-

tainty and complementarity, “In order to understand the implications of the uncer-

tainty principle in more physical terms, Bohr introduced the complementary principle

. . . elements that complement each other to make up a complete classical description

are actually mutually exclusive . . . the physical apparatus available has such proper-

ties that more precise measurements than those indicated by the uncertainty principle

cannot be made.”

Comments.

This brief survey reflects a certain unwillingness among many authors to assign

equal weight or importance to the principles of complementarity and uncertainty. The

ones who show reluctance to use complementarity may feel that it is ill defined and

so steer their readers in more well defined areas of quantum mechanics. It is one of

the aims of this study to show that there are clear formulations of complementarity.

The authors who show a preference for complementarity over uncertainty perceive

that the uncertainty principle is a consequence of the formalism and nothing more. On

the other hand complementarity describes the mutually exclusivity found in atomic

physics. The rôle of the uncertainty relation is to quantify this as a trade-off and can
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therefore, according to this point of view, be regarded as secondary.

I hope to make clear it that complementarity can be regarded as a limiting case of

uncertainty however, uncertainty can offer somewhat more. If joint measurements are

considered instead of the strict no-go of complementarity, uncertainty can be shown

to play an independent rôle.

Finally, in my trawl through textbooks I found this plea from E. Merzbacher,

Introduction to Quantum Mechanics“ ([50, ?]: “Might we not be better off if we shed

all pretext of making pictures of the quantum phenomenon in terms of particles and

waves and the like. Why not simply establish suitable mathematical laws for the

description of the observations, as Newton urged for a branch of physics reaching

maturity.”

3.4 Explorations of measures of uncertainty, un-

certainty relations and complementarity in the

1980s

The myth that the concept of complementarity has been scrutinized and formalized

only recently is neatly captured by Luis [48];

“. . . this remarkable effort has been mainly developed in the past decade”.

In many papers in the 1990s, schemes were proposed, some of which were imple-

mented, to test the principle of complementarity or more specifically to investigate

decoherence, in the sense of the disappearance of interference in interferometers with

which-way detectors. In some cases there was a specific agenda to link decoher-

ence and hence complementarity with position-momentum uncertainty and random

momentum transfer or complementarity with entanglement or complementarity with



80

superposition. At the same time much of the relevant work on the foundations of

quantum mechanics done in the 1960s-1980s was ignored.

Lack of awareness of this work perpetuated the belief that within the principal

features of quantum mechanics there exists a hierarchy of dependency or of impor-

tance. Many authors, unaware of the possible generalized formalizations of quantum

mechanics, seemed to pay attention only to the position-momentum uncertainty and

mutually exclusive wave-particle duality.

Following is a review of a selection of papers from the 1980s. If these papers had

been appreciated and developed, articles claiming ‘the death of uncertainty’ might

have been avoided.

3.4.1 Wootters and Zurek: demonstration of the coexistence
of path and interference.

Wootters and Zurek ([77] 1979) made a full quantum mechanical model analysis of the

thought experiment of Einstein which comprised a Young’s double slit interference

demonstration in which the plate carrying the double slit is suspended on a weak

spring. They show that there is the possibility of the coexistence of path information

and an interference pattern and that the position-momentum uncertainty relation is

not sufficient to substantiate Bohr’s claim that determination of path will completely

wash out the interference pattern. This was also confirmed in a different approach

by Hilgevoord and Uffink, these will then be discussed in later subsections (3.4.3).

Wootters and Zurek use Heisenberg’s uncertainty principle to study the question,

“To what extent is the interference pattern smeared out if we insist on determining

the path of each photon with a given accuracy?”

They analyzed a situation in which the plate containing the first single slit is
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represented both in the position x and wave-vector k by a Gaussian function. When

the plate receives a kick from the photon it can either be stopped and its position

measured or its momentum be measured, as Einstein proposed. Each of these schemes

gives a way of subdividing the original ensemble of photons either according to the

measured position of the plate or according to its measured momentum. In the first

case each sub-ensemble produces a perfect but differently shifted interference pattern

and no path information. In the second case each sub-ensemble produces a smeared

out interference pattern but also gives some information about the photons’ paths.

Sub-ensembles of photons are considered, specifically those which on leaving the

single-slit plate can be associated with a definite measured momentum of the plate, k.

For a plate momentum eigenstate, |k〉 each photon in the associated sub-ensemble is

correlated to a biased superposition of path states, in the sense that one path is very

much more likely than the other, e.g. |k〉⊗ (
√

(p1(k))|slit1〉+
√

(p2(k))|slit2〉) where

pj(k) is the probability of the photon passing through slit j = 1, 2 and p1(k)+p2(k)) =

1. By considering increasing values of k, making the ratio of p1(k)) : p2(k)) sufficiently

large, it would be possible to make one path more likely than the other. However,

the superposition of paths still exists and gives rise to an interference pattern.

Wootters and Zurek found that, “In Einstein’s version of the double slit experiment

a surprisingly strong interference pattern can be retained by not insisting on a 100%

reliable determination of the slit through which each photon passes.” (p. 473) If the

ratio of the probabilities of a photon going through either slit is 99:1 the interference

pattern is not destroyed. Under this conditioning they found that the maximum

to minimum ratio of the intensities of the interference pattern is approximately 3
2
.

Despite the fact that one can predict with 99% certainty the paths of the photons, they
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still exhibit strong wave-like properties. These values are compatible with the duality

relation (3.2.13) of section 3.2.2 as P = .99− .01 = .98, V = (1.5− 1)/(1.5 + 1) = .2,

and so P 2 + V 2 = 1.

It is tempting to make statements such as 99 particles out of a 100 go through one

slit but this is misleading because the paths are indeterminate. Any determination of

which 99 particles go through a slit will result in the obliteration of the interference

pattern.

Of complementarity Wootters and Zurek write,

“The complementarity principle does not prevent photons from behaving

once as waves and once as particles. It only states that the same photon

should not reveal this ‘split personality’ in the same experiment.” (p. 476)

Their results appear to show that it is possible to replace the mutual exclusivity

of strict complementarity with a graded version, governed by appropriate trade-off

relation. However, the limiting cases illustrate that there is no violation of strict

complementarity. If there is no determination of the path of the photon, then p1(k) =

p2(k) and the result is a perfect interference pattern. In the other limiting case where

the path of the photon is determined completely i.e. pj(k) = 1 for one of j = 1, 2,

the superposition of paths does not exist and no interference pattern is observed.

As illustrated on page 66, Bohr anticipated the findings of Wootters and Zurek

with his “unsharpely defined individuals in finite space-time regions”. It seems re-

markable that despite Bohr’s anticipation and Heisenberg’s joint measurement schemes,

unsharp wave-particle duality, as discovered by Wootters and Zurek and further in-

vestigated by Mittelstaedt et al [51] and by Greenberger and Yasin [30] and others

since the 1980s, was perceived as surprising and intriguing.
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The contribution of this paper was recognized by Englert, [25], 3.2.2, Jaeger et

al, [39], and by Greenberger and Yasin [30]. Englert credits Wootters and Zurek

specifically with the approach that turns which-way knowledge into a number; Jaeger

et al make an important general point about the development and understanding of

quantum mechanics when they write, “Wootters and Zurek . . . initiated the study

of arrangements intermediate between the two extremes considered by Bohr”. Fur-

thermore, Wootters and Zurek’s method, which makes crucial use of entanglement,

anticipated a new set of ideas introduced later under the heading of ‘quantitative

quantum erasure’ [65], [60], [26]. This can be seen if what was done by Wootters and

Zurek is summarized: choosing a sub-ensemble of photons entangled with a particular

momentum state of the first, single slit screen, in effect marks, unsharply, the path

taken by just those objects in the sub-ensemble. The interference pattern contrast

is degraded by requiring more precision in the path information i.e. by selecting a

sub-ensemble of photons entangled with a higher momentum state of the screen.

Wootters and Zurek did more than analyze Einstein’s thought experiment; they

proposed an interference-path detector that could be implemented while recognizing

the practical difficulties of detecting the momentum transfer between a photon and

the single slit plate.

They proposed replacing the detector screen with a stack of thin, non-transparent,

double-sided photon detectors to be placed parallel to the optical axis of the system.

The thin edge of each of the detector plates is placed at the maxima and minima of

the interference pattern. Photons from the upper (lower) slit will be detected on the

upper (lower) surfaces of the detector stack.

Inspired by the analysis of Wootters and Zurek, but choosing to modify an optical
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discrimination method of path detection proposed by Wheeler [73], Bartell [3] pro-

posed two more methods of observing path and interference. One observes a Fresnel

interference pattern with path detection at either side of the pattern. The other has

orthogonal polarizers over each slit; path detection and interference are recorded by a

rotatable polarization analyzer and detector. Both are designed to show the limiting

cases of either path or clear interference and the continuity of situations in which

there is partial path detection and a recognizable interference pattern.

3.4.2 Mittelstaedt, Prieur and Schieder, and Greenberger
and Yasin

Mittelstaedt, Prieur and Schieder ([51], 1987) proposed and realized a two path ex-

periment in which simultaneously the path of a photon and interference pattern can

be measured in an approximate sense, in the sense of unsharp observables.

Their set up is a Mach-Zehnder interferometer in which the transparency of the

final beam splitter mirror, together with the contrast of the interference pattern

gives some information about the photon’s path. When beam splitters are set to

give an effective transparency of nearly 0.5 the photons were prepared so as to give

an interference pattern with almost maximum contrast. However, from the small

departure of the effective transparency from 0.5 it is possible to calculate a small

amount of path information.

With an effective beam splitter transparency of nearly 1 the photons have a high

value of particle property and yet a very low contrast interference pattern can be

observed.

Mittelstaedt et al explore the trade-off between path knowledge and interference

contrast using entropy or information theoretic considerations much in the manner



85

of Wootters and Zurek [77] and Deutsch [19].

However, Mittelstaedt et al show no awareness of the trade-off relation P 2+V 2 ≤ 1

where P is path predictability and V is interference pattern contrast. Nevertheless

their findings can be interpreted as a demonstration of the relationship (3.4.3) dis-

covered by Greenberger and Yasin [30]. ([30] was published some months after [51].)

In 1988 Greenberger and Yasin [30] showed the possibility of simultaneous wave

and particle behaviour in neutron interferometry. In its design their experiment is

analogous to a double slit experiment in which one slit is wider than the other making

one path more likely than the other. This is achieved by placing an absorber in one

of the Bragg scattered beams.

Their model predicts that if 99% of the neutrons in one path are absorbed, the

contrast of the interference pattern would be about 20% indicating that a superpo-

sition of paths was still present. These values are the same as those discussed by

Wootters and Zurek.

In the first development, Greenberger and Yasin assume that the two beams are

coherent. If after passing through the interferometer one beam has an amplitude

a and the other has an amplitude b the recombined beams can be written as ψ =

(a exp(ıkxx)+ b exp(ıφ) exp(−ıkxx)) exp(ıkzz) where kx and kz are determined by the

scattering conditions and φ is the phase difference between the beams. The intensity

of the interference pattern is given by |ψ|2 = a2 + b2 + 2ab cos(2kxx + φ) and the

contrast in the pattern is V = 2ab/(a2 + b2). Now letting a = R cos β and b = R sin β

allows the contrast to be written,

V = sin 2β. (3.4.1)

The strategy adopted for measuring the path information is to guess or predict that all
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the particles will be in the most intense beam. Then the success of this prediction is

compared to that obtained if the observer has no knowledge of the beams’ populations

(probability of being in beam 1 or 2 is 0.5).

Suppose that |a|2 > |b|2 then guessing that that all of the particles will be in

the ‘a’ beam will be correct a fraction, |a|2/(|a|2 + |b|2), of the guesses. Comparing

this fraction with the ’no knowledge probability’ gives a (normalized) measure of the

particle nature, P , of the beam.

P =
|a|2/(|a|2 + |b|2)− 0.5

0.5
= cos 2β (3.4.2)

Jaeger et al, [39], section 3.2.2 describe this concept of path distinguishability as

“. . . the same as ours but in a restricted range of preparations . . . ”.

Greenberger and Yasin thus obtained the relationship between path knowledge

and interference in the form,

P 2 + V 2 = 1. (3.4.3)

The relation is controlled by a single parameter, β for a pure state. Thus interference

pattern versus path predictability is not governed by an mutual exclusivity but by a

trade-off relationship that varies continuously from full wave behavior to full particle

behaviour.

3.4.3 Hilgevoord and Uffink

During the 1980s Hilgevoord and Uffink [34], [35], [36],investigated uncertainty re-

lations in quantum mechanics. They examined the rôle and limitations of standard

deviations in quantum mechanical uncertainty relations and in conjunction with the

principle of complementarity.
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“Standard deviations as commonly used in the Heisenberg uncertainty relation

are not always a reasonable estimate of the overall width of a wave function. They

tend to give an overestimate of this width so that the lower bound in the Heisenberg

uncertainty relation does not imply a lower bound on the widths of the position and

momentum wave functions.”

Their aim is to find measures other than variance which are perhaps better suited

to describe the width of a wavefunction, in particular those wave functions which

can be used to describe a double slit experiment. In this set-up (Fig. 3.4.3) a wave

function, ψ(q), with a characteristic overall width, Wψ, is required to describe the

passage of a particle through the slit. The fine structure of the waveform ψ(q) is

referred to as the mean peak width, wψ.

ψ(q) has a Fourier transform, φ(p). This, represented as an interference pattern

in the far field, also has a well recognized overall width, Wφ (a single slit diffraction

envelope) and the fine detail of the maxima and minima having a mean peak width

wφ.

The overall width, W , which is an exterior measure of the overall extension of the

wave packet, is the smallest finite interval width on q for which∫ q0+W/2

q0−W/2
|ψ(q)|2dq = N for some q0 ∈ R (3.4.4)

If N is chosen to be close to one, W is the width of the smallest interval inside of

which is the main part of the total probability.

For a wave function ψ(q) the mean peak width or an interior measure of the fine

structure of a wave packet, w, can be understood in this way: considering∣∣∣∣∫ ψ∗(q)ψ(q − w) dq

∣∣∣∣ = M, (3.4.5)
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w is the minimum width for which a chosen value of M can be achieved, M is chosen

to be close to but smaller than one.

If the system is prepared in a state ψ(q) and a measurement of its position is

made. The probability that this yields a value q0 is the same as the probability of

yielding a value of (q0 − w) if the system is prepared in a state ψ(q − w) i.e. all

values of the outcome of a position measurement are (almost) equally probable in the

interval w. No peaks or fine detail will be observed in this interval.

Having to choose suitable values of N,M ∈ (0, 1) seems to introduce an arbi-

trariness in quantifying the spread and fine structure of a wave-function however

Hilgevoord and Uffink found a trade-off relationship, valid for all Fourier pairs, be-

tween the overall width, Wψ of ψ(q) and the mean peak width, wφ, of its Fourier

transform φ(p). (In the three papers of Hilgevoord and Uffink they let ~ = 1. The

same convention will be adopted in this review of their work.)

Wψwφ ≥ 2[2(2N −M + 1)/N ]
1
2 ifM ≤ 2N − 1. (3.4.6)

One must have N > 1
2

in order to satisfy the constraint 1 ≤ 2N −M under which

trade-off relation 3.4.6 is valid.

If it is accepted that complementarity as the existence of pairs of observables

such that if one is certain the other is completely uncertain and vice-versa i.e. value

complementarity then relation (3.4.6) looks like a graded complementarity trade-off

relation rather than an uncertainty relation claimed for it by Hilgevoord and Uffink.

Uncertainty is present in an observable when the given state is not an eigenstate or

a mixture of eigenstates of the observable.

Turning to the double slit experiment in which the two slits have a width 2a and
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Figure 3.2: The probability density of position and momentum at the screen for a
double-slit experiment.
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are separated by 2A, A� a. The appropriate wave-functions are,

ψ(q) =

(4a)−
1
2 for A− a < |q| < A+ a

0 elsewhere
(3.4.7)

and its Fourier transform

φ(p) =

(
2a

π

) 1
2

cos(Ap)
sin(ap)

ap
. (3.4.8)

The probability density of momentum, |φ(p)|2, has the same shape as the interference

pattern intensity.

In these two functions, two different widths can be identified; the overall width of

the double slits, ψ(q) is Wψ ≈ A and it is this which determines the mean peak width

or fringe separation of ψ(p), wφ ≈ 1
A
. If the slit width increases the fringe separation

decreases.

The fine structure measure or mean peak width of the slits is of the order of a,

wψ ≈ a and there is an inverse relationship between this and the overall width of the

diffraction pattern, Wφ ≈ 1
a
.

Thus a trade-off relationship exists between the overall width of the slits and

the fringe separation and also between the slit width and the overall width of the

interference pattern.

If the position-momentum uncertainty relation, ∆p∆q ≥ ~
2

is considered for this

double slit arrangement the following is found; from equation 3.4.7 ∆q ≈ A but from

equation (3.4.8) ∆p → ∞. Thus standard deviation is not an adequate measure of

width for a general expression of uncertainty in this double slit experiment. So, an

attempt at answering whether it is possible to distinguish through which slit a object

passes cannot be based on the position-momentum uncertainty relation for standard

deviations.
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Hilgevoord and Uffink turn there attention to Einstein’s question as to whether it

possible to determine through which slit each of the particles passed and also preserve

some interference pattern (see sections 3.3.3 and 3.4.1). Which way the particle went

is decided by the recoil of some part of the apparatus. Wootters and Zurek chose to

measure the recoil of the first single slit whereas Einstein suggested measuring the

recoil of the double slit. Hilgevoord and Uffink choose to measure the recoil of the

detector screen in the far field assigning to it a momentum wave-function, χ(p) and

its Fourier transform the position wave-function, χ̃(q).

The difference in momentum of the screen caused by the impact of a particle from

one slit or the other is of the order Ap0/l where 2A is the slit separation, l is the

distance from the screen to the double slits and p0 is the momentum of the particles

arriving at the double slits.

This recoil could be measured if the initial momentum of the screen is known

with an uncertainty δp . Ap0/l. If standard deviation is taken as the measure of

uncertainty then the standard deviation of χ(p) is ∆p . Ap0/l. It follows from

the position-momentum uncertainty relation that the standard deviation of χ̃(q) is

∆q & l/Ap0.

Does this imply that the interference pattern is washed out? If the wave-function

χ̃(q) is considered, from the definition of standard deviation, (∆q)2 =
∫
q2|χ̃(q)|2dq−(∫

q|χ̃(q)|2dq
)2

, even if the wave-function is concentrated at q = q0, if it has ‘long

tails’ these will dominate the standard deviation even though they contain only a small

fraction of the total probability. If this causes the standard deviation to be very large

then it cannot be inferred from this that the interference pattern disappears.

Hilgevoord and Uffink return to their relationship (3.4.6) to show that Bohr, in
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his consideration of the overall width of the momentum and position distribution,

was correct but for the wrong reason. They require that the overall width of χ(p)

is Wχ . Ap0/l for N . 1 (M . 1). For these choices of N and M , the trade-off

relation, (3.4.6) entail that wχ̃(q) & l/Ap0. From the definition of the mean peak-

width all values of q in the interval l/Ap0 are approximately equally probable and

there can be no peaks or fine detail in the interval, hence the interference pattern

disappears.

Hilgevoord and Uffink have shown that the usual uncertainty relation for standard

deviations for momentum and position is not sufficient to entail complementarity in

the sense of decoherence being forced by obtaining path knowledge. They have given

another subtle form of uncertainty relation which does entail complementarity.

3.5 Modern formulations of complementarity and

uncertainty

It is possible to trace the development of the formalization of complementarity back

several years. Value complementarity was discussed by Schwinger in the 1960s [59]

and by Kraus in 1987 [43]. The term value complementarity was coined by Lahti and

Busch (page 105 [12]). Probabilistic complementarity and measurement complemen-

tarity were discussed by Lahti in the 1980s as reviewed in [12] pp. 104-108.

Nevertheless, in some papers and texts reviewed here, the meaning of complemen-

tarity, in the sense of both of a pair of complementary observables being necessary

for complete description, has become overshadowed by the restriction provided by

the mutually exclusivity in complementarity. Emphasis has fallen on the inability to
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assign sharp values to both observables simultaneously. This view extends to experi-

mental setups such as the detection of path and interference in the same experiment.

The positive, mutual completion, aspect, which can be found in Bohr’s writing

(page 61) indicates that, initially, the positive aspect was the primary meaning of

complementarity. This meaning has now been subsumed into the notion of uncer-

tainty.

However, within the restriction of mutually exclusive setups it is possible to iden-

tify three distinct forms of complementarity: one has implications for the possibility

of state preparation, another refers to the possibility of joint measurement and the

third to the possibility of sequential measurements. These distinctions allow the in-

vestigator to choose where to put the Heisenberg cut between preparation (the object

system) and the measurement system (the probe).

Complementarity can be understood to be a relationship that identifies certain

pairs of observables including but not restricted to, canonically conjugate pairs ob-

servables. There is obviously considerable freedom in formalizing, and thereby spec-

ifying, the broad idea of complementarity. A variety of more specific formalizations

are reviewed in [12].

Here a summary is given of forms complementarity and uncertainty which are

instrumental for subsequent considerations.

3.5.1 Preparation complementarity

The most widely accepted form of preparation complementarity (e.g., [59, 43, 60, 47])

is the following one that will be referred to as value complementarity (following [12]):

two observables are value complementary if whenever one has a definite value, the

values of the other are maximally uncertain. A value of observable A is definite if
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it occurs with probability equal to one in a measurement of A, and the values of

observable B are maximally uncertain if they occur with equal probabilities in a

measurement of B.

Formally, the value complementarity of two observables A,B with discrete non-

degenerate spectra and associated eigenbasis systems {ψk : k = 1, . . . , n}, {φ` : ` =

1, . . . , n} amounts to the statement that any two eigenstates have constant overlap,

that is, the numbers |〈ψk|φ`〉| are independent of k, `. Pairs of orthonormal basis

systems with this property are called mutually unbiased. Examples of which are, the

basis systems of the eigenvectors of σx and σz, {|+, x〉, |−, x〉} and {|+, z〉, |−, z〉}

3.5.2 Measurement complementarity

Measurement complementarity can be specified to refer to a pair of observables A, B

for which a sharp measurement of one of them makes any attempt at measuring the

other one simultaneously or in immediate succession completely obsolete. The first

form of measurement complementarity, the impossibility of joint measurements, is a

special instance of von Neumann’s theorem [72], according to which two observables

are jointly measurable if, and only if, they commute. In a more specific, stronger

form, the measurement complementarity of two observables A, B can be expressed

as an exclusion relation for the quantum operations describing the state changes due

to measurements of A and B (see [12], section IV 2.3).

Measurement complementarity in the latter case of sequential measurements will

be taken to mean that due to the effect of a repeat measurement of A, the B mea-

surement will not recover any additional information about the object (input) state

immediately prior to the A measurement. If A and B are value complementary

observables with mutually unbiased eigenbases the observable B′ measured after a
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repeatable measurement of A is actually trivial in that its statistics carries no infor-

mation about the system state prior to the A measurement. This is illustrated in the

case of a repeatable measurement of σz followed by any measurement of σx. Using

the notations of Chapter 2 section 2.5, the final state of the object and apparatus

after a repeatable measurement coupling is,

|Ψf〉 = U |ϕ〉 ⊗ |ψ0〉

= 〈+, z|ϕ〉|+, z〉 ⊗ |ψ+〉+ 〈−, z|ϕ〉|−, z〉 ⊗ |ψ−〉
(3.5.1)

Where U is the unitary coupling operator, ϕ and ψ0 are the initial states of object and

apparatus, ψ+ and ψ− are the pointer states, and |+, z〉 and |−, z〉 are the eigenstates

of σz associated with the eigenvalues +1 and -1, respectively.

Let | ± x〉 denote the corresponding eigenstates of σx, then the probability of the

outcomes of a subsequent measurement of σx are,

prob(σx = ±, |Ψf〉) = 〈Ψf |(|±, x〉〈±, x| ⊗ I)Ψf〉 = 0.5 (3.5.2)

This can be written as 〈ϕ|B±ϕ〉 = 0.5 for all states ϕ, form which it follows that

B± = 1
2
I

Measurement complementarity is thus seen to reflect the fact that in quantum

mechanics, every non-trivial measurement must alter the system’s state, at least in

the case of some of the input states. There can be no information gain without

‘disturbance’ in quantum mechanics. As will be discussed in the subsection 3.5.3,

the related issue of a measurement of one variable disturbing the distributions of the

other, noncommuting variable has been highlighted by Heisenberg by means of his

famous thought experiments illustrating the uncertainty relation.

Value complementarity and the two versions of measurement complementarity

(for joint or sequential measurements) will be seen at work in the discussion of the
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MZ interferometry experiments; if the path observable is represented by σz, any of

its associated interference observables, represented by cos ξ σx + sin ξ σy, is a comple-

mentary partner.

3.5.3 Three varieties of uncertainty

It is evident that Heisenberg considered measurements to produce (approximate)

eigenstates of the measured observable corresponding to the measured value, and a

careful reading of Heisenberg’s 1927 [32] paper and his 1930 Chicago lecture notes

[33] shows that he has in fact distinguished three variants of uncertainty relations.

Heisenberg brings together two versions of uncertainty relations: the uncertainty

relation ∆(Q,ψ)∆(P, ψ) ≥ ~
2

for state preparations, according to which separate

measurements of position and momentum have distributions with widths (standard

deviations) satisfying this uncertainty relation; and a trade-off relation δqδp ≥ ~
2

for

the inaccuracies of joint measurements of these noncommuting observables.

Heisenberg did not have at his disposal a precise quantum mechanical notion

of joint measurement of noncommuting observables, as POVMs were not available

until several decades later to describe unsharp or approximate measurements. He

does grapple with the notion of joint unsharp measurement and comes close to a

solution by considering sequences of measurements. For example, he considers the

diffraction of a matter wave at a slit and shows that if the particle’s momentum was

initially sharp, this precision of definition of momentum becomes degraded during

the passage through the slit which effects an approximate localization of the particle.

Considered as a sequence of a sharp momentum measurement followed immediately

by an approximate position measurement, the outcome of the sharp momentum de-

termination is thus seen to be modified into an unsharp momentum determination,
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due to the “disturbing” influence of the approximate position determination. The re-

sulting inaccuracies in the definitions of position and momentum are shown to satisfy

an uncertainty relation.

This version of uncertainty relation can be interpreted as a disturbance-accuracy

trade-off relation for sequences of measurements. It has been carefully discussed in

the context of interference experiments by Pauli in his 1933 review [55]. In the form

described here, the disturbance of the distribution of an observable B through a mea-

surement of A can be measured in terms of the variance of B in the state immediately

after the (nonselective) A measurement operation, which is to be compared to the

(near) zero variance of B in an initial (near) eigenstate. More generally, the distur-

bance of the distribution of B during a measurement of A should be described by

some measure of the difference between the distributions of B before and after the

A measurement. Interestingly, rigorous and general formulations of such disturbance

uncertainty relations have been investigated only rather late (e.g., [43, 54]).

3.6 Discussion and Summary

This chapter has explored the controversy highlighted by SEW in their proposition

that in the foundations of quantum mechanics there is a hierarchy, with complemen-

tarity and entanglement being more important than uncertainty.

The context in which SEW choose to test their proposition is an interference ex-

periment with path detection. Subsequently, authors who support their conclusions

such as DNR and their detractors such as Kim and Mahler also use the same experi-

mental context. It is the quantum interference setting that the relationship between

complementarity, entanglement and uncertainty are investigated in Chapter 4.
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Some years after the first impact of SEW’s work it was the interference with

path detection setting as a testing ground for quantum mechanics which led Englert,

Jaeger et al, Dürr et al and Bjork et al to find trade-off relationships between path

information and interference clarity. The same experimental setting was used by

Wootters and Zurek, Mittelstaedt et al and Greenberger et al some years before

SEW.

The view, which SEW tried to establish, that there is a hierarchy in founding

features of quantum mechanics cannot be valid. An examination of Bohr’s writings

showed that he meant the concept of complementarity to be broader than it has come

to be used and taught in subsequent times. Similarly, Heisenberg realized that the

concept of uncertainty contained more than the often quoted position-momentum

uncertainty relation.

It is proposed in this work that the term uncertainty principle refers to the broad

statement that there are pairs of observables for which there is a trade-off relation-

ship in the degrees of sharpness of the preparation or measurement of their values,

such that a simultaneous or sequential determination of the values requires a nonzero

amount of unsharpness (latitude, inaccuracy, disturbance). There are a variety of

measures of uncertainty, inaccuracy, and disturbance with which such trade-off rela-

tions can be formulated, usually in the form of inequalities.

In the framework of quantum mechanics, the uncertainty principle is satisfied due

to the existence of noncommuting pairs of observables, and the respective trade-off

relations reflect the extent of the noncommutativity.

The complementarity principle is the statement that there are pairs of observables

which stand in the relationship of complementarity. As can be seen above, this is
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satisfied in quantum mechanics for observables whose basis systems of eigenvectors are

mutually unbiased. Thus it may be concluded that the ‘principle’ of complementarity,

as formalized here, is a consequence of the quantum mechanical formalism. There

seems to be no need to speak of a complementarity principle, unless one sets out to use

such a principle in a more general framework to deduce quantum mechanics. Here

the complementarity principle will be regarded as a description of one remarkable

non-classical feature of quantum mechanics. Similarly the uncertainty principle will

be regarded as a description of another such feature of quantum mechanics.

The concepts of complementarity and uncertainty highlight the following aspects

of quantum mechanics: (1) the impossibility of assigning simultaneously sharp values

to certain pairs of noncommuting observables, be it by preparation or measurement;

however, (2) there is the possibility of simultaneously assigning unsharp values to

such observables.

The formalizations of the features (1) and (2) reviewed in the preceding subsec-

tions, which are those most commonly used in the recent research literature, have

clearly identified (1) as an expression of the idea of complementarity and (2) as the

essence of the uncertainty. With a terminological shift, a more balanced view could be

achieved compared to the view that emphasized complementarity over uncertainty.

The positive rôle of the uncertainty relations as enabling joint determinations and

joint measurements would be highlighted more prominently and even if it turned out

that the uncertainty statement, (2) entails the complementarity statement, (1), in

limited conditions, this would not deny the significance of the strict mutual exclu-

sivity of sharp value assignments. It is this strict mutual exclusivity which is the

motivation for the search for simultaneous but unsharp value assignments.
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Irrespective of the particular terminological preference, formalizing the respective

statements (1) and (2) has opened up new and interesting questions: (1) and (2) have

become claims that can or cannot be proven as consequences of the theory, and it

becomes possible to study the logical relationships between these statements.

If we contrast a statement of value complementarity viz. (3) two observable are

value complementary if whenever one of them has a sharp value, the value of the

other is completely indeterminate, with statement of uncertainty (2) above then (3)

can be seen as a limiting case of (2). A specific example of this is in the duality

relations (found in Section 3.2.2). These describe a trade-off between path detection

and interference contrast. The limiting case of these relationships is (4) wave-particle

duality as described by Bohr (section 3.3.1)

A resolution of the controversy created by promotion of a hierarchy of foundational

features of quantum mechanics may be resolved (‘the joining of the house divided’)

if the whole of Bohr’s views, laid down in the quote given earlier, repeated here, is

taken fully into account;

. . . according to quantum theory a general reciprocal relation exists be-

tween the maximum sharpness of definition of the space-time and energy-

momentum vectors associated with individuals. This circumstance may

be regarded as a simple symbolic expression for the complementary nature

of the space-time description and the claims of causality. At the same

time, however, the general character of this relation makes it possible to

a certain extent to reconcile the conservation laws with the space-time co-

ordination of observation, the idea of a coincidence of well defined events
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in a space-time point being replaced by that of unsharply defined individu-

als within finite space-time regions. (My underlining.)

In other words, graded or quantitative complementarity is taken into account as a

distinct possibility. Indeed it is necessary for the joint, unsharp measurement of ob-

servables which under strict complementarity are mutually exclusive. Path detection

and interference contrast are two such quantities but if a degree of unsharpness is

allowed in their measurement, then these measurements are related by a trade-off or

duality relation (detailed in Section 3.2.2). One of the tasks attempted in Chapter 4 is

to relate this duality relation to an uncertainty relation which uses familiar measures

of uncertainty, i.e. variances.
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Chapter 4

Complementarity and Uncertainty
in Two-Path Interferometry

4.1 Introduction

“Quantum phenomena do not occur in Hilbert spaces. They occur in laboratories.”

Asher Peres. (1993), Quantum Theory: Concepts and Methods, [56] p.373.

The main aim of this chapter is to study the rôles and relative significance of

uncertainty and entanglement in the explanation of complementary quantum phe-

nomena such as the mutual exclusivity of path marking and interference detection in

a two path interferometer.

The independent significance of the uncertainty principle lies partially in the rôle

played by its measurement version. This will be brought out clearly in the following

studies of joint measurement schemes for path and interference observables or similar

pairs of complementary quantities. Some of these new schemes arose as a result of the

analysis of quantum erasure (section 4.3.3) and quantitative quantum erasure (section

4.3.4.

The entanglement between a quantum object and a path-marking and recording

103
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probe system plays a crucial rôle in quantum erasure, a process conceived by Scully

and Drühl in 1982 [65]. In an experiment in which the whole ensemble of objects

does not reveal interference as a result of the path marking and recording process,

entanglement can be used to select a ‘quantum-erasure’ sub-ensemble that does show

interference. If the path marking and recording process is incomplete then it has

been shown to be possible to select sub-ensembles with unsharp path information but

which retain, albeit with lowered contrast, interference; such a process is referred to

as quantitative quantum erasure [26].

It will be shown that quantitative erasure is an instance of joint measurement.

This is natural if erasure and quantitative erasure are considered as conditional or

selective observations; conditional probabilities presuppose joint probabilities.

Section 4.2 is derived from [13] which was written in response to a paper of Zhu

et al [78], in which they demonstrated an analogue of path-interference duality in a

nuclear spin experiment. Here a modification of their scheme is proposed yielding

a joint measurement scheme for unsharp path and interference observables. A new

trade-off relation is deduced between the degrees of unsharpness (or contrasts) of the

unsharp path and interference observables measured together; this is an instance of

a joint-measurement uncertainty relation, but at the same time it expresses measure-

ment complementarity as the mutual exclusion of sharp joint measurements of these

observables. Furthermore, a model-independent connection is demonstrated between

the joint measurability of two complementary path and interference (or spin 1/2)

observables and a trade-off relation between their respective contrasts.

Section 4.3 comprises an edited version of an analysis of a Mach-Zehnder inter-

ferometer (MZI) analogue of the SEW experiment presented in [14]. The MZI setup
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provides in one common framework the following experiments:

(1) use of the interferometer for path detection;

(2) an interference detection setup;

(3) introduction of path marking via entanglement with a probe system;

(4) quantum erasure;

(5) quantitative quantum erasure.

In contrast to the treatment of Zhu et al’s experiment (Section 4.2) the MZI setup

provides a more direct analogue of the various experiments, as proposed by SEW and

those following them. In these an entangled state is achieved before the first beam

splitter.

Further, the setups in (3), (4) and (5) give rise to new instances of joint mea-

surement schemes for path and interference observables. In each case measurement

complementarity can be recovered as a limit if the sharpness of one observable is

made perfect.

All of the experiments introduced and analyzed in Chapter 4 form the basis for a

systematic account of the interconnection between complementarity and uncertainty

in Chapter 5.

4.2 Complementarity between path and interfer-

ence observables in joint measurements

4.2.1 Nuclear spin analog of path-interference duality via en-
tanglement

In two-path interferometer experiments interference is exhibited by measuring a pop-

ulation of the final state of the object dependent on some phase factor. The path
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taken by the object is determined in a (simultaneous) measurement of another marker

or probe state [58]. Zhu et al investigate the possibility of a ‘path-interference’ duality

utilizing the internal states of a quantum object or a bulk ensemble, specifically an

ensemble of nuclear spins.

The joint measurement scheme proposed here can be realized as an extension of

the experiment of Zhu et al [78]. In their experiment Zhu et al use nuclear magnet

resonance (NMR) to entangle the spin states of the 13C nucleus with those of the

1H nucleus in a chloroform molecule, 13CHCl3. The 13C nucleus is taken to be the

object system (o), while the 1H nucleus serves as the ‘path’ detection. The unitary

operations used to transform the initial state |Ψi〉 into the final state |Ψf〉 are realized

in this experiment by application of electromagnetic pulse sequences with appropriate

frequencies or field gradients.

The analog of a ‘path’ observable is now the spin component s
(o)
3 of the 13C nucleus.

The interference pattern is revealed as the relative frequency of a particular outcome

of a suitable measurement that is sensitive to the relative phase between the ‘path’

eigenstates in the prepared input state.

An ensemble of the 13CHCl3 molecules is prepared with the two spin-1/2 nuclei in

the initial state |0〉o|0〉p, where o and p refer to the object and probe. The states |0〉, |1〉

denote the eigenstates of the object’s and probe’s spin component σz, respectively.

An operation, Ro
1(ϑ) =

(
α(ϑ) −β(ϑ)

β(ϑ) α(ϑ)

)
on the 13C nucleus (the object) trans-

forms |0〉o|0〉p into an intermediate state

Ro
1(ϑ)|0〉o|0〉p → |Ψi〉 = [α(ϑ)|0〉o + β(ϑ)|1〉o]|0〉p =: ψi ⊗ |0〉p (4.2.1)

where |α(ϑ)|2 + |β(ϑ)|2 = 1. The final state is achieved after a unitary operation
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U o(φ) =

(
1 exp(ıφ)

− exp(−ıφ) 1

)
,

U o(φ) : |Ψi〉 → |Ψ〉 = 1√
2
[(α(ϑ) + β(ϑ)eıφ)|0〉o + (β(ϑ)− α(ϑ)e−ıφ)|1〉o]|0〉p. (4.2.2)

Since the the state of the 1H nucleus (the probe) remains unchanged, |0〉p, throughout,

the two ‘paths’ along which the 13C nucleus evolves into the final state |0〉o or |1〉o

through the intermediate state are indistinguishable. In terms used earlier in this

thesis: the state is a superposition of the two ‘path’ eigenstates.

The probability of finding the 13C nucleus in the final state |0〉o is

1
2
[1 + 2α(ϑ)β(ϑ) cosφ], (4.2.3)

and for |1〉o it is

1
2
[1− 2α(ϑ)β(ϑ) cosφ]. (4.2.4)

Repeating the experiment for different values of φ will show that the probabilities

depend on φ i.e. an interference pattern is is obtained.

In a further experiment Zhu et al produce another intermediate state

|Ψie〉 = α(ϑ)|00〉+ β(ϑ)|11〉 (4.2.5)

from the initial state by following the operation Ro
1(ϑ) by a controlled-NOT gate

CN op which has the effect of flipping 1H into the same state as 13C if they are in

different states e.g.

|10〉 → |11〉 (4.2.6)

otherwise

|00〉 → |00〉. (4.2.7)
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The unitary evolution, U o(φ)|0〉o = 1√
2
(|0〉 + eıφ), and U o(φ)|1〉o = 1√

2
(eıφ + |0〉),

produces the final state,

|Ψf〉 = 1√
2
[α(ϑ)|0〉o|0〉p + β(ϑ)eıφ|0〉o|1〉p

−α(ϑ)e−ıφ|1〉o|0〉p + β(ϑ)|1〉o|1〉p. (4.2.8)

It is now clear that ‘path’ marking has been achieved because the part of the super-

position containing |11〉 or |01〉 must have evolved from |11〉. Similarly the part of

the superposition containing |10〉 or |00〉 must have evolved from |00〉.

The probability of finding the 13C nucleus in the final state |0〉o is

1
2
|α(ϑ)|2 + 1

2
|β(ϑ)|2 = 1

2
. (4.2.9)

This being a constant independent of φ means that the interference fringes are washed

out which is to be expected since this experiment displays sharp path information.

However, Zhu et al claim that measuring the ‘coherence’, α(ϑ)β(ϑ) sinφ, between

the final states |00〉 and |01〉 will reveal interference fringes because of the dependence

of the ’coherence’ on φ thus allowing the observation of sharp path information and

good contrast interference fringes in a single experiment.

4.2.2 Applying the most general measurement model.

The original formulation of quantum mechanics does not allow the description of

joint measurements of incompatible observables such as interference and path. How-

ever, this has become possible in the general formalism of positive operator valued

measure discussed in Chapter 2 sections 2.5.3 and 2.5.4. Here the aim is to write

the outcome probabilities in terms of the input state |ψi〉. This will give a POVM
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{F++,F+−,F−+,F−−}. The form will be found, for example, of F++ which when ap-

plied to the input state will produce the same outcome probabilities as the projection

Po+ ⊗ Pp+ acting on the final state, Ψf , i.e. 〈ψi|F++ψi〉 = 〈Ψf |Po+ ⊗ Pp+Ψf〉.

Using these projection operators, Po±⊗Pp± on the final state, Ψf (equation 4.2.8),

gives, 〈
Ψf |Po± ⊗ Pp±Ψf〉 =(

1√
2
α∗〈00| − 1√

2
α∗eiφ〈10|+ 1√

2
β∗e−iφ〈01|+ 1√

2
β∗〈11|

)
. . .

. . . (Po± ⊗ Pp±) . . .

. . .

(
1√
2
α|00〉 − 1√

2
αe−iφ|10〉+ 1√

2
βeiφ|01〉+ 1√

2
β|11〉

)
.

(4.2.10)

Here it is appropriate to be reminded that any projection operator in C2 can be

expanded in terms of the Pauli spin matrices σ= (σx, σy, σz) and the identity operator,

Po± =1
2
(I ± o · σ), where o = (sin θo cosφo, sin θo sinφo, cos θo) is the unit vector of

the Poincaré sphere defining a point on the surface with polar angle θo and azimuth

angle φo.

From this point the action of Pp+ and Po+ will be explored; the actions of Pp−

and Po− will be explored later.

Po+ = 1
2

(
1 + cos θo sin θoe−ıφ

o

sin θoeıφ
o

1− cos θo

)
=:

(
R00 R01

R10 R11

)
. (4.2.11)

Similarly for, p, the path marker system,

Pp+ = 1
2

(
1 + cos θp sin θpe−ıφ

p

sin θpeıφ
p

1− cos θp

)
=:

(
Q00 Q01

Q10 Q11

)
. (4.2.12)

〈Ψf |Po+ ⊗ Pp+Ψf〉 generates the following terms with Q00 in common,

1
2
α∗α(R00 +R11 − e−ıφR01 − eıφR10)Q00. (4.2.13)
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Substituting Rjk and Q00 and α = 〈ψi|0〉 gives,

1
4
α∗α(1− sin θo cos(φ+ φo))(1 + cos θp) =: 1

4
〈ψi|0〉〈0|ψi〉(1 + A)(1 + B). (4.2.14)

where ψi is the input state of o and A = − sin θo cos(φo + φ) and B = cos θp.

Collecting together terms with Q01 in common;

1
2
α∗β(eıφR01 +R11−e2ıφR10 − e−ıφR11)Q01

=1
4
α∗βeı(φ−φ

p) sin θp(cos θo − ı sin θo sin(φ+ φo)

=:1
4
〈ψi|1〉〈0|ψi〉(W + ıX)(Y − ıZ).

(4.2.15)

where W = cos(φ − φp), X = sin(φ − φp), Y = cos θo sin θp and Z = sin θo sin(φo +

φ) sin θp.

The following terms have Q10 in common;

1
2
β∗α(e−ıφR00 + e−ıφR11−e−2ıφR01 −R10)Q10

=1
4
β∗αe−ı(φ−φ

p)(cos θo + ı sin θo sin(φ+ φo)) sin θp

=:1
4
〈ψi|1〉〈0|ψi〉(W − ıX)(Y + ıZ).

(4.2.16)

And the following terms have Q11 in common,

1
2
β∗β(R00 +R11 + e−ıφR01+e

ıφR10)Q11

=1
4
β∗β(1 + sin θo cos(φ+ φo))(1− cos θp)

=:1
4
〈ψi|1〉〈1|ψi〉(1− A)(1− B).

(4.2.17)

So, this effect, F++, associated with outcomes for the +o and +p directions, is

F++ =
1

4

(
(1 + A)(1 + B) (W + ıX)(Y − ıZ)

(W − ıX)(Y + ıZ) (1− A)(1− B).

)
. (4.2.18)

In terms of the Pauli matrices this becomes

F++ = 1
4
((1 + AB)I + (WY + XZ)σx + (−XY + WZ)σy + (A + B)σz), (4.2.19)
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or

F++ = 1
4
((1 + AB)I + N1σx + N2σy + (A + B)σz). (4.2.20)

Here a summary of the abbreviations may be useful;

A = − sin θo cos(φo + φ),

B = cos θp,

W = cos(φ− φp),

X = sin(φ− φp),

Y = cos θo sin θp,

Z = sin θo sin(φo + φ) sin θp

Nx = (WY + XZ)

= (cos(φ− φp) cos θo sin θp + sin(φ− φp) sin θo sin(φo + φ) sin θp)

Ny = (−XY + WZ)

= (− sin(φ− φp) cos θo sin θp + cos(φ− φp) sin θo sin(φo + φ) sin θp).

So far F++ has been considered. F++ is associated with outcomes corresponding to

+o and +p. If the effect F+− is to be found, which is associated with outcomes

corresponding to the +o and −p directions, then θp → π − θp and φp → π + φp.

Applying these gives,

F+− =1
4
((1− AB)I − (WY + XZ)σx − (−XY + WZ)σy + (A− B)σz), or

F+− =1
4
((1− AB)I −Nxσx −Nyσy + (A− B)σz).

(4.2.21)

Similarly, the effect, F−+, will be found, corresponding to the −o and p directions,

θo → π − θo and φo → π + φo giving,

F−+ =1
4
((1− AB)I − (WY + XZ)σx − (−XY + WZ)σy − (A− B)σz), or

F−+ =1
4
((1− AB)I − N1σx − N2σy − (A− B)σz).

(4.2.22)
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Finally, the effect, F−−, will be found, associated with the −o and −p directions,

θo → π − θo, φo → π + φo, θp → π − θp and φp → π + φp giving,

F−− =1
4
((1 + AB)I + (WY + XZ)σx + (−XY + WZ)σy − (A + B)σz), or

F−− =1
4
((1 + AB)I + N1σx + N2σy − (A + B)σz).

(4.2.23)

These four effects can be grouped into two pairs in three different ways, and summing

the two elements of each pair gives a new pair of effects adding up to I. In this way

one obtains three marginal POVMs:

F
(1)
+ = F++ + F+− = 1

2
(I + Aσz), A = − sin θo cos(φo + φ);

F
(1)
− = F−+ + F−− = 1

2
(I − Aσz);

F
(2)
+ = F++ + F−+ = 1

2
(I + Bσz), B = cos θp;

F
(2)
− = F+− + F−− = 1

2
(I − Bσz);

F
(3)
+ = F++ + F−− = 1

2
((1 + AB)I + Nxσx + Nyσy) ;

F
(3)
− = F+− + F−+ = 1

2
((1− AB)I − Nxσx − Nyσy) .

(4.2.24)

The first two marginal POVMs are smeared versions of the sharp observable σ
(o)
z since

their effects are combinations of the spectral projections of σ
(o)
z . The third POVM is

a smeared version of an observable complementary to σ
(o)
z ; its spectral decomposition

is in terms of the spectral measure of σ
(o)
n , with n = N/|N|, N = (Nx,Ny, 0), and n

perpendicular to the vector (0, 0, 1) associated with σ
(o)
z .

The joint measurement scheme developed here will now be discussed.

4.2.3 Discussion of the joint measurement scheme

Using this measurement scheme as illustrated in Figure 4.1 it is possible to compare

the marginal probabilities with the probabilities obtained in a sharp measurement.
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Figure 4.1: N pairs of object o and probe p systems are entangled into the state ψi
(Equation 4.2.8). Measurements of spin are made separately on the object, o and the
probe, p and pairs of outcomes counted. In an ideal experiment the frequencies N++,
N+−, N−+, N−− will add up to N.

For example,

〈ψi|F(1)
+ ψi〉 = 1

2

(
1 + A〈ψi|σ(o)

z ψi〉
)

= 1
2
(1 + A〈ψi|Pσz

+ ψi〉 − A〈ψi|Pσz
− ψi〉)

= A〈ψi|Pσz
+ ψi〉+ 1

2
(1− A) (4.2.25)

where Pσz
+ , Pσz

− = I − Pσz
+ are the spectral projections of σ

(o)
z . The number

〈ψi|F(1)
+ ψi〉 = 〈ψi|F++ψi〉+ 〈ψi|F+−ψi〉 ≈ (N++ + N+−)/N (4.2.26)

is the probability of a + outcome in an unsharp measurement of σ
(o)
z , represented

here by the marginal POVM {F(1)
+ ,F

(1)
− }. Eq. 4.2.25 can be solved for the probability

〈ψi|Pσz
+ ψi〉 of a + outcome in a sharp measurement of σ

(o)
z . In this way the frequen-

cies N++ and N+− obtained in this scheme can be used to reconstruct this sharp

measurement probability.

Similarly:

〈ψi|F(3)
+ ψi〉 = 1

2
(1 + AB) + 1

2
〈ψi|N · σ ψi〉

= 1
2
(1 + AB− |N|) + |N|〈ψi|Pn

+ψi〉. (4.2.27)
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Here, the fact that the spectral projections of σ
(o)
n satisfy Pn

+ + Pn
− = I, has been

used.

Again it is seen that estimation of the third marginal probability (by way of

collecting the counts N++ + N−−) allows one to reconstruct the probability for a +

outcome of a sharp measurement of σ
(o)
n , where this observable is complementary

to σ
(o)
z . Thus, obtained is a simultaneous determination of the probabilities for two

complementary observables from the statistics of a single experiment.

4.2.4 Looking for a complementarity relationship

One can see Bohr’s principle of complementarity at work in the present joint measure-

ment scheme. Consider the case in which F
(3)
± becomes a projection, hence a sharp

observable complementary to σ
(o)
z ; that is: Nx

2 + Ny
2=1. In this case,

Nx
2 + Ny

2 = sin2 θp[cos2 θo + sin2 θo sin2(φo + φ)] = 1,

hence sin2 θp=1 and sin2(φo + φ)=1 or sin2 θp=1 and cos2 θo=1. Either case implies

that A2 = sin2 θo cos2(φo + φ)=0 and B2 = cos2 θp=0 i.e. AB=0. So, demanding that

F
(3)
± is a sharp observable, means that there is no information about σ

(o)
z , as the first

two marginal POVMs become trivial : F
(1)
± = F

(2)
± =1

2
I.

Conversely, requiring that F
(2)
± is a sharp observable, then |B|=| cos θp| = 1 and

Nx=Ny = 0, giving F
(3)
± = 1

2
(1 ± |A|)I. Similarly, if F

(1)
± is a sharp observable, then

F
(3)
± = 1

2
(1 ± |B|)I. Hence, for this joint measurement scheme, marginal observables

are demonstrating measurement complementarity, in the sense that, in the limit where

one marginal becomes sharp the other becomes a trivial observable.

It is possible to go further and give a quantitative relationship expressing a form

of measurement complementarity (see Chapter 3, Section 3.5.2).
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A natural measure for the quality, or contrast C, of the smeared marginal ob-

servables given above is the difference between the largest and smallest eigenvalues

of each of the effects F
(j)
± . This quantity can be determined as the greatest possible

probability for the associated outcome, minus the smallest possible probability. In

the case of a projection, that number is 1-0=1. Thus, the closer the contrast of one

of the above marginal POVMs is to 1, the closer its effects are to projections.

The eigenvalues of both effects of the first marginal POVM, F
(1)
± are 1

2
(1±A) and

those of the second marginal, F
(2)
± , are 1

2
(1±B). The effect F

(3)
+ of the third marginal

has the eigenvalues 1
2
(1 + AB± (Nx

2 + Ny
2)

1
2 ). Those of the other effect, F

(3)
− , of the

third marginal are = 1
2
(1− AB± (Nx

2 + Ny
2)

1
2 ).

Thus, for the contrasts of each of the marginals F(1), F(2), and F(3) the values

C1 = |A|, C2 = |B|, and C3 = (Nx
2 + Ny

2)
1
2 , are obtained, respectively. After some

manipulation it can be seen that,

(Nx
2 + Ny

2) = (W2Y2 + X2Z2 + 2WYXZ) + (X2Y2 + W2Z2 − 2WYXZ)

= W2Y2 + X2Z2 + X2Y2 + W2Z2

= (W2 + X2)(Y2 + Z2) = (Y2 + Z2)

= cos2 θo sin2 θp + sin2 θo sin2(φo + φ) sin2 θp

= (cos2 θo + sin2 θo(1− cos2(φo + φ)) sin2 θp

=
(
1− sin2 θo cos2(φo + φ)

) (
1− cos2 θp

)
= (1− A2)(1− B2),

(4.2.28)

that is,

C2
3 =

(
1− C2

1

) (
1− C2

2

)
. (4.2.29)

Here, equation (4.2.29) is a state independent relationship between two unsharp

σ
(o)
z path observables and the third marginal observable, F(3) an unsharp interference
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observable. It says that there is a trade-off: the better the contrast of the latter

observable, the worse the contrast of the two σ
(o)
z marginals must be; and vice versa.

One can take (1 − C2
i ) as a measure of the intrinsic unsharpness, or fuzziness of

the POVM. This becomes evident if one calculates the variance of, say, the POVM

F(1), considered as a smeared version of the observable σz which has values ±1.

The variance is defined as Varρ(F) =
∫

(t − t)2 d〈Ft〉ρ. For discrete measures t =

〈F(1)
+ 〉ρ − 〈F(1)

− 〉ρ = Arz, and the values to be distributed are ±1 so,

Varρ(F
(1)) = (1− t)2〈F(1)

+ 〉ρ + (−1− t)2〈F(1)
− 〉ρ; (4.2.30)

and recalling that for some general state ρr = 1
2
(I + r · −→σ ), 〈F(1)

± 〉ρ = 1
2
(1±Arz) and

Varρ(σz) = 1− r2
z , gives

Varρ(F
(1)) = 1− A2r2

z = Varρ(σz) + (1− A2)(1− Varρ(σz)). (4.2.31)

The minimum of the variance in equation (4.2.30) over all ρ is obtained at eigenstates

of σz, where one obtains the value (1 − A2) (as rz = ±1). This minimal spread of

outcomes reflects the intrinsic fuzziness of the measurement, that is, the uncertainty

about the actual value prior to measurement.

Equation (4.2.29) implies the following trade-off relations for the complementary

pairs of marginals:(
Nx

2 + Ny
2
)

+ A2 ≤ 1,
(
Nx

2 + Ny
2
)

+ B2 ≤ 1. (4.2.32)

Which in terms of the contrasts are,

C2
3 ≤ 1− C2

1, C2
3 ≤ 1− C2

2, (4.2.33)

or, introducing the unsharpness Ui = 1− C2
i ,

U1 + U3 ≥ 1, U2 + U3 ≥ 1. (4.2.34)
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It appears as if these relations are consequences of the fact that the observables F(1),

F(2) and F(3) are jointly measurable. Similar results were obtained in different joint

measurement models, and with other measures of unsharpness, in [9, 18, 47]. In the

present case, it is possible to go one step further and show that conditions of the

form of eqs. (4.2.33) and (4.2.34) are in fact necessary and sufficient conditions for

the joint unsharp measurability of complementary (qubit/spin-1
2
) observables.

In [10], P. Busch formulated necessary and sufficient conditions for unsharp spin-1
2

observables to be jointly measurable (i.e. their effects occur in the range of a common

POVM). A pair of two valued POVMs, {F(1)
± = 1

2
(I±a·σ)} and

{
F

(3)
± = (I ± b · σ)

/
2}

is jointly measurable exactly when |a+b|+ |a−b| ≤ 2. If a and b are perpendicular,

the two POVMs represent unsharp versions of complementary observables. In this

case the coexistence condition assumes the form,

|a|2 + |b|2 ≤ 1. (4.2.35)

This is indeed equivalent to the trade-off relationships of eq. (4.2.32) deduced from

the model where a = (0, 0,−A) or a = (0, 0,B), and b = (Nx,Ny, 0).

If B = 0 is put into the model, the trade-off relation reduces to (Nx
2+Ny

2)+A2 = 1.

Hence this relation, taken as an expression of complementarity and deduced from the

model, is equivalent to the joint measurability condition in the special case where

B = 0 (or similarly where A = 0).

4.2.5 Conclusion

Zhu et al claim, without proof, to have obtained perfect population and coherence

data from the statistics of a single run of an experiment, and thereby they seem to

suggest that complementarity is not unconditionally valid but only subject to some
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qualifications. Analysis shows that the joint unsharp measurement of complementary

observables is well consistent with complementarity.

It has been shown here that the statistics obtained allow one to reconstruct the

probabilities for sharp measurements of two spin components of o, namely, σz and σn.

This means that the present experimental scheme constitutes an effective state deter-

mination procedure in that two out of three parameters characterizing any quantum

state can be measured. In particular, this confirms that the population and coher-

ence data (as defined in [78]) can indeed be recovered from such a joint measurement

scheme. It is worth noting that there is a price for this feat: the joint measurement

can neither be repeatable (it does not produce eigenstates of the outcomes), nor is it

predictable: even when an eigenstate is put in, the outcomes will scatter; this is the

necessary inaccuracy of the unsharp joint measurement.

The inequality V 2
0 + P 2 ≤ 1, equation 3.2.13 (Chapter 3, Section 3.2.2) bears re-

semblance in form to equation(4.2.33) but their significance is fundamentally different:

the quantities V0, P refer to the object state and to mutually exclusive measurement

of sharp path and interference observables; a generalization to arbitrary pairs of un-

sharp path and interference observables is straightforward [4]. By contrast, equation

4.2.33 describes a state-independent relation between specific pairs of unsharp path

and interference observables, namely those which are jointly measurable. The former

relation is an expression of complementarity for preparations while the latter reflects

measurement complementarity and at the same time enables joint measurability.

To conclude: it has been shown that for complementary pairs of ‘qubit’ observ-

ables, the very possibility of making joint unsharp measurements is logically con-

nected with the measurement version of Heisenberg’s uncertainty principle, which is
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discussed in Chapter 3, section 3.5.3.

This connection is illustrated in a new realizable joint measurement scheme, the

analysis of which gives rise to a novel trade-off relation for the contrasts of the mea-

sured unsharp observables. The contrast measures introduced above enable an op-

erational interpretation of a joint measurability condition found earlier by P. Busch

[10].

Finally, the measurement scheme discussed here provides an illustration of the

way in which the use of entanglement (between the object and a probe) can lead to

more powerful state determination procedures.

4.3 Complementarity and Uncertainty in Mach-

Zehnder Interferometry

4.3.1 Path marking and quantum erasure in an atom inter-
ferometer

The first part of this section is a brief revisit to the SEW treatment of two path

interference covered in Chapter 3 section 3.2.1. This will serve as an introduction to

the second theme of their paper namely quantum erasure.

SEW consider the situation in which atoms, prepared in an excited state |a〉 and

propagating in a superposition of states corresponding to two collimated beam paths,

arrive singly at micro-maser cavities preceding each of the double slits([60], Fig. 3).

Once in the cavity, the atoms will make a transition |a〉 → |b〉, spontaneously emitting

a microwave photon. The state of the atom plus field changes from

Ψ0(r) = 1√
2
[ψ1(r) + ψ2(r)]|0102〉|a〉 (4.3.1)
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to the entangled state

Ψ(r) = 1√
2
[ψ1(r)|1102〉+ ψ2(r)|0112〉]|b〉 (4.3.2)

where |1102〉(|0112〉) represents the field state in which there is one photon in cavity

1 and none in cavity 2 (no photon in cavity 1 and one in cavity 2). Thus, the micro-

maser cavities act as which-way detectors only if a photon left in the cavity changes

the electromagnetic field in a detectable way.

SEW next considered the possibility of recovering coherence and thus the inter-

ference pattern while removing or erasing the path information left in the microwave

cavity detectors.

To model this they propose a modified arrangement whereby the two cavities

are separated by a shutter-detector combination ([60], Fig. 5a). This allows for the

radiation either to be confined to the upper or lower cavity when the shutters are

closed or for the radiation to be absorbed by a detector behind each shutter when it

is opened. In the latter case the path marking information can be said to have been

erased.

In the quantum erasure experiment one makes use of the fact that the state (4.3.2)

has an equivalent form,

Ψ(r) = 1√
2
[ψ+(r)|+〉+ ψ−(r)|−〉]|b〉 (4.3.3)

where |±〉 = 1√
2
[|1102〉 ± |0112〉], ψ± = 1√

2
[ψ1(r)± ψ2(r)].

To display the effects of the quantum erasure the experimental procedure is as

follows: after an atom arrives on the screen, the shutter is opened and the state of

the erasure detector behind the shutters, which has changed from |d〉 to |e〉 is recorded.

In half the observations it will be left in an excited state indicating that there has
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been a photon in one of the cavities which has been absorbed. In the remaining cases

there is no detection. Thus,

1√
2
[ψ+|+〉+ ψ−|−〉]|b〉|d〉 −→ 1√

2
[ψ+|0102〉|b〉|e〉+ ψ−|−〉|b〉|d〉]. (4.3.4)

As seen in equation (4.3.3) the symmetric atom state, |ψ+〉, is coupled with the

symmetric cavity field state, i.e. the atom will be left in the translational state

|ψ+〉 if the field is registered to be in the state |+〉. The probability density of

those atoms will show the maxima and minima (fringes) of an interference pattern,

P+(r) = |ψ+(r)|2 = P0(r) (Chapter 3 equation 3.2.2).

Atoms arriving at the screen for which there is no corresponding signal from the

quantum erasure detector, i.e. the field state is detected to be |−〉 so that the atom

is left in the translational state |ψ−〉, will display anti-fringes, P−(r) = |ψ−(r)|2.

If all the events are counted, irrespective of the quantum erasure detector state,

the distribution is,

1
2
P+(r) + 1

2
P−(r) = 1

2
[|ψ1|2 + |ψ2|2] = P (r). (4.3.5)

The maxima of one pattern overlap the minima of the other one, washing out the

fringes.

This consideration shows that in the entangled state, Ψ(r) (equation (4.3.2)),

the information about path as well as interference is fully available. Choosing to

measure the path marking basis states, |1102〉, |0112〉, of the probe field yields which

way information. Measuring instead the field states |+〉, |−〉 allows the recovery

of interference fringes or anti-fringes, respectively. The two options are mutually

exclusive (an instance of measurement complementarity); in the first case it is the

interference information which is lost whereas in the second case it is path information
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which is lost.

It should be noted that this situation is analogous to the Einstein, Podolsky, Rosen

(EPR) experiment (in Bohm’s version for spin 1
2

pairs) which also makes use of an

entangled state with more than one Schmidt decomposition as in Eqs. (4.3.2) and

(4.3.3).

4.3.2 A Mach-Zehnder interferometer analogue of SEW’s ex-
periment

Consider a special case of the MZI in Fig. 4.2, first with no path marking and no

phase shifter activated (δ = 0). The two possible input states from I1, I2 will be

represented by orthogonal unit vectors |1〉, |2〉, of a two dimensional Hilbert space,

H = C2, which will be interpreted as path eigenstates. When a photon entering via

I1 (represented by a “path” state |1〉) arrives at the beam splitter BS1 it is changed

to an equally weighted superposition and similarly for an input state |2〉.

|1〉 →= 1√
2
[|1〉+ ı|2〉], |2〉 →= 1√

2
[ı|1〉+ |2〉] (4.3.6)

Arriving at detector D1 will be a component of the path I1BS1M1 reflected by BS2

carrying a total phase shift of π
2

from M1 plus π
2

from BS2 and a component of the

path I1BS1M2 transmitted by BS2 also carrying a total phase shift of π
2

from BS1 plus

π
2

from M2. Hence, detector D1 will register an output as these two are in phase.

Arriving at detector D2 will be a component of the path I1BS1M1 transmitted by

BS2 carrying a total phase shift of π
2

from M1 and a component of the path I1BS1M2

reflected by BS2 carrying a total phase shift of π
2

from BS1 plus π
2

from M2 plus π
2

from BS2. Hence, detector D2 will register no output as these two are π out of phase.

So, if I1BS1M1BS2D1 is the path represented by |1〉, any measurement of the output
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Figure 4.2: A Mach-Zehnder interferometer with path marking and phase shifter.

of D1 has associated with it projector |1〉〈1|. This will be identified with the spectral

projection of the Pauli operator σz associated with the eigenvalue 1, |1〉〈1| = 1
2
(I+σz).

Similarly, I2BS1M2BS2D2 corresponds to |2〉 and any measurement of the output

of D2 has associated with it projector |2〉〈2| = 1
2
(I − σz).

Next, a MZI with path marking before the beam splitter BS1 will be considered.

This will be implemented by introducing a probe system which interacts with the

photons. The probe is represented by a two dimensional Hilbert space, H = C2,

with path marking pointer states |p1〉 and |p2〉 where |p1〉 marks |1〉 and |p2〉 marks

|2〉. A phase shifter, δ in one path after BS1 completes the analogy with the SEW

experiment.

The inputs from I1, I2 without marking (the probe is in a neutral state |p0〉) can
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be represented by

ψi → ψi ⊗ |p0〉 = (α|1〉+ β|2〉)⊗ |p0〉. (4.3.7)

When the path marking is turned on the state arriving at BS1 is

ψi ⊗ |p0〉 → α|1〉 ⊗ |p1〉+ β|2〉 ⊗ |p2〉. (4.3.8)

The final state, after beam splitter BS2 is:

Ψδ
f = 1

2
α[(−eıδ − 1)|1〉+ ı(eıδ − 1)|2〉]⊗ |p1〉

+ 1
2
β[ı(−eıδ + 1)|1〉 − (1 + eıδ)|2〉]⊗ |p2〉.

(4.3.9)

A variety of possible experiments will now be discussed.

Path detection in outputs D1, D2

The simplest case of this MZI is with no path marking, |p1〉 = |p2〉 = |p0〉 and no

phase shift, δ = 0, analogous to a double slit interferometer (SEW) with no path

marking and the far field detector placed centrally; as explained above the output

state is,

Ψo
f = −(α|1〉+ β|2〉)⊗ |p0〉 = −ψi ⊗ |p0〉. (4.3.10)

Observing the output of detectors D1, D2 with no path marking is represented by the

PVM, M1 = |1〉〈1| ⊗ I, M2 = |2〉〈2| ⊗ I.

The probabilities for an output at D1 and D2 are,

〈Ψo
f |M1|Ψo

f〉 = 〈ψi|1〉〈1|ψi〉 = |α|2

〈Ψo
f |M2|Ψo

f〉 = 〈ψi|2〉〈2|ψi〉 = |β|2.
(4.3.11)

The input observable measured by this experiment has a POVM {E0
1 , E

0
2} defined

by,

〈Ψo
f |Mk|Ψo

f〉 = 〈ψi|Eo
k|ψi〉 (4.3.12)
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for all ψi and k = 1, 2 It follows that E0
1 , E

0
2 are the projection

E0
1 = |1〉〈1| = 1

2
(I + σz), E0

2 = |2〉〈2| = 1
2
(I − σz). (4.3.13)

This reproduces the discussion of path detection connected with Figure 4.2: If |ψi〉 =

|1〉 then the probabilities of detection at D1 and D2 are 〈1|E0
1 |1〉 = 〈1|1

2
(I+σz)|1〉 = 1

and 〈1|E0
2 |1〉 = 〈1|1

2
(I − σz)|1〉 = 0, i.e. the photon will be registered in D1 with

certainty, the path is completely determined. No photon is registered on detector D2.

A similar consideration can be applied to |ψi〉 = |2〉.

The probabilities for the detection events at D1, D2 are thus expectation values

of E0
1 , E

0
2 in the input state ψi. E

0
1 and E0

2 form a PVM representing a sharp path

observable which can be identified with σz.

Interference detection at D1, D2

An interference measurement will now be considered. In a double slit interferometer

both slits would be open and a detector placed at the first minimum. If δ = π
2

is

chosen, the output state is,

Ψ
π
2
f = (1+ı)√

2

[
−α 1√

2
(|1〉+ |2〉) + β 1√

2
(|1〉 − |2〉)

]
⊗ |p0〉. (4.3.14)

If a measurement of Mk = |1〉〈1| ⊗ I, k = 1, 2 is now applied by observing the output

of Dk the expectation is,

〈Ψ
π
2
f |M1|Ψ

π
2
f 〉 = 1

2
(|α|2 − β∗α− α∗β + |β|2) = 〈ψi|E

π
2
1 |ψi〉,

〈Ψ
π
2
f |M2|Ψ

π
2
f 〉 = 1

2
(|α|2 + β∗α+ α∗β + |β|2) = 〈ψi|E

π
2
2 |ψi〉,

(4.3.15)

where E
π
2
1 and E

π
2
1 are

E
π
2
1 = 1

2
(I − σx), E

π
2
2 = 1

2
(I + σx). (4.3.16)
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Following customary practice, an observable with the form cos δ σx+sin δ σy, 0 ≤ δ <

π, will be considered as an interference observable, given that the path is represented

by σz. Interference observables are singled out by the condition that the interfer-

ence contrast can assume its maximum possible value. In this case their eigenstates

give equal probabilities of 1
2

to the path projections |1〉〈1|, |2〉〈2|, thus fulfilling the

condition of value complementarity.

In the present experiment, the measured input observable is defined by the pro-

jections of eq. (4.3.16); these are the spectral projections of the operator σx (or −σx),

which is indeed an interference observable.

The path marking set up

Now consider the case where |p1〉 and |p2〉 are mutually orthogonal , 〈p1|p2〉 = 0.

This is a MZI analogy of SEW’s path marking experiment. The influence of the

path marking on the outputs of the detectors can be found using each of the four

measurement projections of path |k〉 jointly with marker |p`〉, M ′
k` = |k〉〈k| ⊗ |p`〉〈p`|,

k, ` = 1, 2 e.g.

〈Ψδ
f |M ′

11|Ψδ
f〉 = |1

2
α(eıδ + 1)|2 = 1

4
|α|2(1 + cos δ). (4.3.17)

The incoming state being given by equation 4.3.8.

Then using 〈Ψδ
f |M ′

k`|Ψδ
f〉 = 〈ψi|E ′

k`|ψi〉 the POVM associated with the input states

can be found, (in short, input observable.

E ′
11 = 1

2
(I + σz) cos2 δ

2
, E ′

21 = 1
2
(I + σz) sin2 δ

2
,

E ′
12 = 1

2
(I − σz) sin2 δ

2
, E ′

22 = 1
2
(I − σz) cos2 δ

2
.

(4.3.18)

These effects are all fractions of path projections.
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The marginal input POVM associated with the detectors D1, D2 is

F ′
1 = E ′

11 + E ′
12 = 1

2
(I + cos δσz),

F ′
2 = E ′

22 + E ′
21 = 1

2
(I − cos δσz).

(4.3.19)

This POVM represents a path observable smeared by cos δ. The unsharpness inherent

in the detector marginal is reflected in the non-zero probability of detector D2 firing

even if the input state is a path eigenstate |1〉. Here the effect of the perfect path

marking interaction is seen: irrespective of the phase parameter value, the MZI does

not detect any interference effects. When δ = 0, the POVM {F ′
1, F

′
2} becomes a

sharp path observable and when the MZI is set to observe interference, δ = π
2
, this

POVM is reduced to being trivial, F ′
1 = 1

2
I = F ′

2, giving no path nor interference

information. This is in line with the prediction of SEW: path marking results in the

interference pattern being washed out. In addition it is found that after the path

marking interaction, all the detectors are able to “see” is a “shadow” of the path

information provided by the path marker.

The path marker marginals are,

G′
1 = E ′

11 + E ′
21 = 1

2
(I + σz),

G′
2 = E ′

22 + E ′
12 = 1

2
(I − σz).

(4.3.20)

These are sharp path observables under all δ.

It is possible to define a third marginal,

H ′
1 = E ′

11 + E ′
22 = cos2 δ

2
I,

H ′
2 = E ′

12 + E ′
21 = sin2 δ

2
I,

(4.3.21)

which in the present experiment turns out to be trivial.
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4.3.3 Quantum erasure

In the previous experiment, each path was correlated with one of two orthogonal

marker states. A new set of pointer states, which are superpositions of the two

orthogonal path marker states, can now be considered,

|q1〉 = 1√
2
(|p1〉+ eıγ|p2〉), |q2〉 = 1√

2
(|p1〉 − eıγ|p2〉). (4.3.22)

Observing these symmetric states involves outputs for which both |p1〉 and |p2〉 are

equally likely, so no information about the path is recorded.

The final state (4.3.9) in terms of the new pointer states is

Ψδ,γ
f = 1

2
√

2

[(
−α(1 + eıδ) + ıe−ıγβ(1− eıδ)

)
|1〉

+
(
−ıα(1− eıδ)− e−ıγβ(1 + eıδ)

)
|2〉
]
⊗ |q1〉

+ 1
2
√

2

[(
−α(1 + eıδ)− ıe−ıγβ(1− eıδ)

)
|1〉 (4.3.23)

+
(
−ıα(1− eıδ) + e−ıγβ(1 + eıδ)

)
|2〉
]
⊗ |q2〉.

As before, the four joint probabilities for the marker and detector outputs, are

defined as the expectations of the projections, M ′′
k` = |k〉〈k| ⊗ |q`〉〈q`|, k, ` = 1, 2.

The associated input POVM is determined via the relation 〈Ψδ,γ
f |M ′′

k`|Ψ
δ,γ
f 〉 =

〈ψi|E ′′
k`|ψi〉 (here also the input state is the one reached after path marking, equation

4.3.8):

E ′′
11 = 1

4
(I − sin δ cos γσx − sin δ sin γσy + cos δσz) = 1

4
(I − n′′ · σ),

E ′′
21 = 1

4
(I + sin δ cos γσx + sin δ sin γσy − cos δσz) = 1

4
(I + n′′ · σ),

E ′′
12 = 1

4
(I + sin δ cos γσx + sin δ sin γσy + cos δσz) = 1

4
(I + m′′ · σ),

E ′′
22 = 1

4
(I − sin δ cos γσx − sin δ sin γσy − cos δσz) = 1

4
(I −m′′ · σ).

(4.3.24)
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Here the unit vectors are introduced,

n′′ = (sin δ cos γ, sin δ sin γ,− cos δ) m′′ = (sin δ cos γ, sin δ sin γ, cos δ). (4.3.25)

The marginal POVM associated with the detector outputs is obtained by summing

over both probe outputs:

F ′′
1 = E ′′

11 + E ′′
12 = 1

2
(I + cos δσz),

F ′′
2 = E ′′

21 + E ′′
22 = 1

2
(I − cos δσz).

(4.3.26)

This is a smeared path observable. The marginal POVM associated with the

probe outputs is obtained by summing over both detection outputs:

G′′
1 = E ′′

11 + E ′′
21 = 1

2
I,

G′′
2 = E ′′

12 + E ′′
22 = 1

2
I.

(4.3.27)

This is a trivial observable, it provides no information about the input state ψi.

The fact that the detector POVM is a smeared path observable and the probe

POVM is trivial can be understood as follows. The entanglement between probe

and photon is devised to establish a strict correlation between the path states |1〉,

|2〉 and the pointer states |p1〉, |p2〉, for any photon input state ψi. This correlation

information is not accessible by measuring a probe observable with the eigenstates

|q1〉, |q2〉 because these are equal weight superpositions of the path marker states.

Further, the reduced state of the photon after the coupling has been established is a

mixture of the path states, so that any phase relation between these states has been

erased. Accordingly, the detector outputs cannot detect any interference indicative

of coherence between the path input states, and the only information left about the

input is path information.
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A third marginal input POVM is defined as follows:

H ′′
1 = E ′′

11 + E ′′
22 = 1

2
(I − sin δ cos γσx − sin δ sin γσy),

H ′′
2 = E ′′

12 + E ′′
21 = 1

2
(I + sin δ cos γσx + sin δ sin γσy).

(4.3.28)

This is a smeared interference observable, the unsharpness being determined by

the term sin δ and the direction, of the associated Poincaré sphere vectors being given

by ±(cos γ, sin γ, 0). By varying γ from 0 to 2π, all possible interference observables

can be realized.

The quantum erasure scheme presented here constitutes a joint unsharp measure-

ment of path and interference observables as represented by the marginal POVMs

{F ′′
1 , F

′′
2 } and {H ′′

1 , H
′′
2}.

Also for δ = π
2
, all four effects Ek` are fractions of spectral projections of a sharp

interference observable; the marginal {H ′′
1 , H

′′
2} becomes a sharp interference observ-

able and the marginal {F ′′
1 , F

′′
2 } becomes a trivial observable. Here the observation of

SEW have been recovered i.e. the detector statistics conditional on the probe output

readings display perfect interference with perfect visibility. In fact, somewhat more

has been found: independently of the photon input state, the conditional probabilities

for detections at D1, D2 given a probe recording of |q1〉 (say) are

Prob(D1|q1) = 〈ψi|E ′′
11ψi〉/〈ψi|G′′

1ψi〉

= 〈ψi|12(I − cos γσx − sin γσy)ψi〉,

P rob(D2|q1) = 〈ψi|E ′′
21ψi〉/〈ψi|G′′

1ψi〉

= 〈ψi|12(I + cos γσx + sin γσy)ψi〉.

(4.3.29)

For γ = 0 and the input state ψi = 1√
2
(|1〉 + |2〉), this gives Prob(D1|q1) = 0 and

Prob(D2|q1) = 1. This corresponds to the case of perfect interference antifringes.

Similarly, the detector probabilities conditional on |q2〉 and the above input eigenstate
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of σx are 1, and 0 for D1 and D2, respectively. These are characteristic of interference

fringes.

This situation is a consequence of the fact that for the above input and δ = π
2
,

γ = 0, the total output state is an EPR state, analogous to the state described in the

SEW quantum erasure setup of Section 2:

Ψ
π
2
f = − 1√

2
(|1〉 ⊗ |p1〉+ |2〉 ⊗ |p2〉)

= − 1√
2
(1 + ı) 1√

2
[|−, x〉 ⊗ |q1〉+ |+, x〉 ⊗ |q2〉].

(4.3.30)

where |±, x〉 = 1√
2
(|1〉 ± |2〉).

4.3.4 Quantitative quantum erasure

The two possible experimental options discussed in the preceding subsections, of path

marking and quantum erasure are mutually exclusive in that they require settings

and operations that cannot be performed at the same time: for path determination,

the probe eigenstates |p1〉, |p2〉 must be read out, while for the recovery of interfer-

ence it is necessary to record the detector outputs conditional on the probe output

states |q1〉, |q2〉. Erasure was achieved by choosing δ = π
2
, which led to the POVM

{E ′′
k`} being constituted of (fractions of) spectral projections of an interference observ-

able. Accordingly, the only non-trivial marginal is the sharp interference observable

{H ′′
1 , H

′′
2}.

If, however, the interferometric parameter δ is varied between 0 and π
2
, then the

POVM {E ′′
k`} is a joint observable for an unsharp path and an unsharp interference

observable. In this case the experiment provides simultaneous information about

these noncommuting quantities. In the limit of δ = 0, the interference marginal

{H ′′
1 , H

′′
2} becomes trivial and the path marginal {F ′′

1 , F
′′
2 } becomes sharp.
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The possibility of obtaining some joint information about both observables, path

and interference, can also be achieved by modifying the path marking coupling in

such a way that the correlation between the paths and the probe indicator observable

is not perfect. This has been described as quantitative quantum erasure [e.g., [26]].

Here it is shown that quantitative quantum erasure is an instance of a joint unsharp

measurement.

Consider the path marking interaction to be of the same form as before, eq. (4.3.9),

but specifying the marker states |p1〉, |p2〉 to be nonorthogonal. Their associated

Poincaré sphere vectors will be chosen to be tilted by an angle θ away from the ±z

axis towards the positive x axis, respectively. Choose as pointer states |q1〉, |q2〉 equal

to the up and down eigenstates of σz and define,

|p1〉 = cos θ
2
|q1〉+ sin θ

2
|q2〉,

|p2〉 = sin θ
2
|q1〉+ cos θ

2
|q2〉.

(4.3.31)

The final state after the path marking interaction is

Ψδ,θ
f =

[(
−α

2
cos θ

2
(1 + eiδ) + iβ

2
sin θ

2
(1− eiδ)

)
|1〉

+
(
−iα

2
cos θ

2
(1− eiδ)− β

2
sin θ

2
(1 + eiδ)

)
|2〉
]
⊗ |q1〉

+
[(
−α

2
sin θ

2
(1 + eiδ) + iβ

2
cos θ

2
(1− eiδ)

)
|1〉

+
(
−iα

2
sin θ

2
(1− eiδ)− β

2
cos θ

2
(1 + eiδ)

)
|2〉
]
⊗ |q2〉.

(4.3.32)

Now it is possible to determine the input effects E ′′′
k` associated with the out-

put projections M ′′′
k` = |k〉〈k| ⊗ |q`〉〈q`| via 〈Ψδ,θ

f |M ′′′
k`|Ψ

δ,θ
f 〉 = 〈ψi|E ′′′

k`|ψi〉 (again, the
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incoming state is the one reached after path marking, equation 4.3.8),

E ′′′
11 = 1

4
[I(1 + cos θ cos δ)− sin δ sin θσx + (cos δ + cos θ)σz]

= 1
4
[I(1 + cos θ cos δ) + m′′′ · σ]

= 1
2
(1 + cos θ cos δ)[1

2
(I + m̂′′′ · σ)]

E ′′′
21 = 1

4
[I(1− cos θ cos δ) + sin δ sin θσx − (cos δ − cos θ)σz]

= 1
4
[I(1− cos θ cos δ)− n′′′ · σ]

= 1
2
(1− cos θ cos δ)[1

2
(I − n̂′′′ · σ)]

E ′′′
12 = 1

4
[I(1− cos θ cos δ)− sin δ sin θσx + (cos δ − cos θ)σz]

= 1
4
[I(1− cos θ cos δ) + n′′′ · σ]

= 1
2
(1− cos θ cos δ)[1

2
(I + n̂′′′ · σ)]

E ′′′
22 = 1

4
[I(1 + cos θ cos δ) + sin δ sin θσx − (cos δ + cos θ)σz]

= 1
4
[I(1 + cos θ cos δ)−m′′′ · σ]

= 1
2
(1 + cos θ cos δ)[1

2
(I − m̂′′′ · σ)]

(4.3.33)

where

m′′′ = (− sin δ sin θ, 0, (cos δ + cos θ)),

n′′′ = (− sin δ sin θ, 0, (cos δ − cos θ))
(4.3.34)

and m̂′′′, n̂′′′ are unit the vectors

m̂′′′ = m′′′/(1 + cos θ cos δ)

n̂′′′ = n′′′/(1− cos θ cos δ)
(4.3.35)

Note that the four effects are multiples of projections.
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The three marginal POVMs are determined as before:

F ′′′
1 = E ′′′

11 + E ′′′
12 = 1

2
(I − sin δ sin θσx + cos δσz)

F ′′′
2 = E ′′′

22 + E ′′′
21 = 1

2
(I + sin δ sin θσx − cos δσz)

G′′′
1 = E ′′′

11 + E ′′′
21 = 1

2
(I + cos θσz)

G′′′
2 = E ′′′

22 + E ′′′
12 = 1

2
(I − cos θσz)

H ′′′
1 = E ′′′

11 + E ′′′
22 = 1

2
I(1 + cos θ cos δ)

H ′′′
2 = E ′′′

12 + E ′′′
21 = 1

2
I(1− cos θ cos δ)

(4.3.36)

For δ = π
2
, the first marginal POVM (corresponding to the detector statistics) be-

comes an unsharp interference observable, while the second marginal POVM (corre-

sponding to the probe output statistics) is an unsharp path observable. In both cases

the unsharpness is determined by the parameter θ.

4.3.5 Manifestations of complementarity in MZI.

The sequence of experiments in section 4.3.2 is a demonstration of complementarity

in different guises. In the first two experiments path detection (page 124) and inter-

ference detection (page 125) are mutually exclusive because this requires settings of

the parameter δ which cannot be realized in the same experiment, namely, δ = 0 for

path (σz) measurement and δ = π
2

for interference (σx) measurement, respectively.

Here is an instance of the complementarity of measurement setups or measurement

complementarity: these two noncommuting sharp observables do not admit any joint

measurement.

These experiments are also found to confirm preparation complementarity, defined

in Chapter 3, Section 3.5.1: Recalling that sending a path eigenstate |1〉 or |2〉 into the

MZI setup to observe interference leads to the probability 〈1|E
π
2
1 |1〉 = 〈1|E

π
2
2 |1〉 = 1

2
,
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the value of the interference observable is maximally uncertain. And, an interference

eigenstate, | ± x〉, is fed into the MZI setup to measure path (δ = 0), the path

observable is uncertain 〈±x|E0
1 | ± x〉 = 〈±x|E0

2 | ± x〉 = 1
2
.

Value complementarity, defined in Chapter 3, Section 3.5.1, is quoted by SEW

but they do not explain why it can be used to explain duality. Nevertheless, value

complementarity can be used to explain the disappearance of interference fringes in

the MZI resulting from path marking. Once perfect correlation between the path

states and the marker states is established in the entangled state (4.3.9), the reduced

state of the photon is a mixture of the path eigenstates |1〉 and |2〉. In each of

these, the path is definite, and therefore, in accordance with value complementarity,

the outcomes of a subsequent interference measurement are equally probable: no

interference fringes show up. Indeed, this remains true for any mixture of path

eigenstates.

This account in terms of preparation complementarity views the path marking

interaction as part of a preparation process. An alternative explanation is possible in

terms of measurement complementarity.

In the experiment of section 4.3.2, where sharp path marking is followed by the

interference set up with δ = π
2
, it was found that the path measurement interaction

leads to a complete loss of interference information detectable in D1, D2. All that the

detectors can “see” is path information, irrespective of the value of δ (Eq. (4.3.19)).

If the sharp path marking is relaxed into unsharp path marking, section 4.3.4,

setting the interferometer with δ = π
2

defines an unsharp interference observable,

which is jointly measured with the path that can be recorded at the path marker.

It is found that the less accurate the path marking is set by making cos θ in
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G′′′
1,2 = 1

2
(I ± cos θ σz) smaller, the sharper will be the interference measurement as

sin θ in F ′′′
1,2 = 1

2
(I ∓ sin θ σx) becomes larger.

Here it can be seen that measurement complementarity defined in Chapter 3,

Section 3.5.2 follows in the limits of making the path marginal or the interference

marginal perfectly sharp, rendering the other trivial.

A similar analysis applies to the quantum erasure setup (Section 4.3.3): if 0 <

δ < π
2
, this setup realizes a joint measurement of the POVMs {F ′′

1,, F
′′
2 } and {H ′′

1,, H
′′
2}

which are unsharp path and interference observables.

Consider the case of δ = π
2
, where F ′′

1,2 = 1
2
I and H ′′

1,2 = 1
2
(I ∓ cos γσx ∓ sin γσy).

Here is a sharp interference measurement and no path measurement. With δ = 0,

F ′′
1,2 = 1

2
(I ± σz) and H ′′

1 = 1
2
I, so that there is a sharp path measurement and no

interference. These two limit cases of a joint measurement scheme illustrate once

more measurement complementarity as a relation of strict mutual exclusivity.

4.4 Discussion

At the end of Chapter 3 several different formulations were given of complementarity

and uncertainty relations referring to the limitations and possibilities of preparing

and measuring simultaneously, sharp and unsharp observables. These formulations

have all been applied here to n.m.r. and MZI analogue versions of an interferometer

with a path marking option. An important feature of the MZI analogue of the two-slit

experiment is that the path marking is done without random momentum kicks. In

fact, the coupling for the path marking process was arranged so as to constitute a

non-demolition measurement in that if the input is a path eigenstate, say |1〉 then

the total state after being correlated with a path marker is |1〉|p1〉. Thus, the system
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has remained undisturbed, it is still in the original path eigenstate.
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Chapter 5

Complementarity and Uncertainty:
A Coherent Account

5.1 Introduction

“I wonder to myself a lot:

Now is it true or is it not,

That what is which and which is what?”

A.A. Milne Winnie-the-Pooh Chapter 7 (1926)

In Section 4.3.5 a study is made of how different versions of complementarity are

made manifest in MZI. Preparation complementarity can be demonstrated because

path detection and interference detection require that the MZI be setup in different,

mutually exclusive ways. Or in the context of measurement complementarity; in a

joint measurement scheme it is possible to show that going to the limit of perfect

sharpness of one marginal renders the other marginal trivial; thus, the sharp mea-

surement of one observable and any nontrivial measurement of the other observable

are mutually exclusive.
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Value complementarity can also be used to explain the disappearance of inter-

ference fringes in the MZI resulting from path marking. If the path is definite then

the outcomes of a subsequent interference measurement are equally probable i.e. the

interference fringes are washed out.

5.2 Value complementarity from preparation un-

certainty relations

Recalling, from Chapter 3, Section 3.5.1, that a pair of value complementary observ-

ables A,B is characterized by the condition that in each of the eigenstates of A, all

eigenvalues of B are equally likely to occur as outcomes of a B measurement; and

vice versa. It is now shown that for qubit observables such as those occurring in the

interferometry measurements discussed in previous sections, the value complementar-

ity property can always be obtained as a consequence of some suitable uncertainty

relation for the observables in question.

In what follows general states are represented as density operators ρ = 1
2
(I+r ·σ),

|r| ≤ 1. Consider two observables represented by σx and σz. For these observables we

recall from Chapter 2 2.3, the usual uncertainty relation in terms of variances reads,

Var(σx)Var(σz) ≥ 1
4
|〈[σx, σz]〉|2 + 1

4
[〈σxσz + σzσx〉 − 2〈σx〉〈σz〉]2. (5.2.1)

Recalling Example 3 on page 19 and Equation 2.3.22; (1−n2
x)(1−n2

z) = n2
y+n2

zn
2
x

Using solely this inequality one cannot recover value complementarity without

further information on the terms of the left hand side. But using the algebraic and

spectral properties of the Pauli operators, one finds the right hand side of Eq. (5.2.1)

to be equal to 〈σy〉2+〈σx〉2〈σz〉2. Then one can argue as follows: if the path is definite,

that is, if ρ = |ψ〉〈ψ| with ψ an eigenstate of σz, the left hand side of the uncertainty
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relation (5.2.1) is zero, and therefore the terms on the right hand side must vanish,

too.

Example 3, recalled above, can be used to illustrate this conclusion: Since n2
x +

n2
y +n2

z = 1 if n2
z = 1 then n2

x = n2
y = 0. The terms on the righthand side of Equation

5.2.1 must vanish.

Thus as 〈σz〉 = 1, then 〈σx〉 = 〈σy〉 = 0. Since the eigenvalues of these quantities

are ±1, it follows that these observables have a uniform distribution. By symmetry,

σz is uniformly distributed if σx has a definite value.

5.3 Quantitative duality relations are uncertainty

relations

In the debates of the 1990s over complementarity in the context of interferometry

and which-path experiments (Chapter 3, Section 3.2), the meaning of the term wave

particle duality has gradually shifted away from a relation of strict exclusion of path

determination and interference observation (in the same setup) to the broader idea

of a continuous trade-off between approximate path determination and approximate

interference determination. These discussions were eventually linked with earlier the-

oretical and experimental work of the 1980s on simultaneous but imperfect path

determination and interference observation, as reviewed in chapter 3 section 3.2.4

and [23].

In Chapter 3 sections 3.2.2, 3.2.3 and 3.2.4, trade-off relations of the form P 2 +

V 2 ≤ 1 were presented as characterizations of the duality between path predictability

and interference visibility. It has been debated whether the associated quantities are

connected with uncertainties, and it has been shown that the associated trade-off
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relations are related in various ways to some forms of uncertainty relations; in the

MZI context, reference is made, in particular, to the work of Björk et al [4], Dürr and

Rempe [23], and Luis [47].

Using familiar measures of uncertainty, a stronger result will now be obtained. A

simple demonstration is given, that in the context of MZ interferometry experiments,

quantitative duality relations are indeed equivalent to the uncertainty relation for an

appropriate pair of associated observables.

Any state ρ can be represented by a matrix of the following form in the basis of

eigenvectors of σz:

ρ =

(
w+ re−iθ

reiθ w−

)
,

w± ≥ 0, w+ + w− = 1,

0 ≤ r ≤ √
w+w−, 0 ≤ θ < 2π.

(5.3.1)

The path contrast of ρ will be defined as

CP = CP (ρ) := |prob(σz = +1, ρ)− prob(σz = −1, ρ)| = |w+ − w−|. (5.3.2)

This is identical to the predictability P entering the duality relation P 2 + V 2 ≤ 1.

Similarly defining the interference contrast of ρ as

CI = CI(ρ) = |prob(σx = +1, ρ)− prob(σx = −1, ρ)| = 2r cos θ. (5.3.3)

With the specification θ = 0, or with an alternative choice of interference observable,

this reduces to the visibility V = (Imax − Imin)/(Imax + Imin). Using r2 ≤ w+w−, the

following duality relation is easily obtained, much in the same way as in section 3.2.2.

C2
P + C2

I = w2
+ + w2

− − 2w+w− + 4r2 cos2 θ ≤ 1. (5.3.4)



143

Observing that

C2
P = 〈σz〉2 = 1− Var(σz),

C2
I = 〈σx〉2 = 1− Var(σx),

(5.3.5)

then the above duality inequality can be equivalently expressed as,

Var(σz) + Var(σx) = 2− (C2
P + C2

I ) ≥ 1. (5.3.6)

Again, Example 3 (page 19) can be used to support this:

Var(σx) + Var(σz) = (1− n2
x) + (1− n2

z) = 2− (n2
x + n2

z) = 1 + n2
y ≥ 1 (5.3.7)

Thus, the present duality relation is equivalent to a form of uncertainty trade-off

relation. As before, value complementarity is again entailed as a limit case.

It will now be shown that this last inequality is actually a direct consequence of

the uncertainty relation (5.2.1). As noted there that relation can be rewritten as

follows:

(1− 〈σz〉2)(1− 〈σx〉2) ≥ 〈σy〉2 + 〈σz〉2〈σx〉2. (5.3.8)

This, in turn, is equivalent to

1− 〈σz〉2 − 〈σx〉2 ≥ 〈σy〉2, that is, to (5.3.9)

〈σx〉2 + 〈σy〉2 + 〈σz〉2 ≤ 1. (5.3.10)

Using again Var(σz) = 1 − 〈σz〉2, etc, it is seen that the uncertainty relation (5.2.1)

is actually equivalent to the following inequality:

Var(σx) + Var(σy) + Var(σz) ≥ 2. (5.3.11)

Using Var(σy) ≤ 1 equation 5.3.6 follows.
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For the pure state in Example 3 (page 19), Var(σx) + Var(σy) + Var(σz) = (1 −

n2
x) + (1− n2

y) + (1− n2
z) = 3− (n2

x + n2
y + n2

z) = 2.

It is worth noting that besides σx, the operator σy also constitutes an interfer-

ence observable with respect to the path σz. Thus, substituting V ar(σz) = 1 − C2
P ,

Var(σx) = 1−C2
I ≡ 1−C2

I,x, and a similar term Var(σy) = 1−C2
I,y, gives a generalized

and sharpened duality, or rather, “tripality”, relation:

C2
P + C2

I,x + C2
I,y ≤ 1. (5.3.12)

Thus the full uncertainty relation for σx, σz, including the commutator and covari-

ance terms, is equivalent to the additive triple trade-off relation for the variances of

σx, σy, σz as well as this new “tripality” relation for three mutually complementary

observables.

5.4 Measurement complementarity from measure-

ment inaccuracy relations

The measurement schemes of subsections 4.3.3 and 4.3.4 were found to constitute

joint measurements of unsharp path and interference observables of the form F =

{F1,2 = 1
2
(I± fσx)} and G = {G1,2 = 1

2
(I± gσz)}. For instance, in equation (4.3.36),

setting δ = −π
2
, gives f = sin θ and g = cos θ, so that f 2 +g2 = 1. This is an instance

of the following general result: POVMs F,G of the above form are jointly measurable

if and only if the following trade-off inequality holds (see Chapter 2, Section 2.5.3):

f 2 + g2 ≤ 1. (5.4.1)
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For a general state ρ = 1
2
(I + r · σ), |r| ≤ 1, the contrasts of the distributions of F

and G are defined thus,

CF (ρ) = |Tr[ρF1]− Tr[ρF2]| = |frx|, (5.4.2)

CG(ρ) = |Tr[ρG1]− Tr[ρG2]| = |gry|. (5.4.3)

The contrasts of the POVMs F,G are the respective maximal contrasts over all states

ρ:

CF = |f |, CG = |g|. (5.4.4)

These quantities measure the degree of unsharpness,

UF := 1− C2
F = 1− f 2, UG := 1− C2

G = 1− g2, (5.4.5)

in the POVMs F,G. The unsharpness of F can also be defined as the minimum

variance of the distribution of F for all states ρ. Using the development used for

equations 4.2.30 and 4.2.31

V arρ(σx) = 1− r2
x

and V arρ(F ) = 1− f 2r2
x

= UF + f 2 − f 2rx = UF + f 2V arρ(σx) ≥ UF .

(5.4.6)

Taking the minimum over all ρ gives

V armin(F ) = UF . (5.4.7)

The above joint measurability criterion can be written in terms of the degrees of

unsharpness:

UF + UG = 2− f 2 − g2 ≥ 1. (5.4.8)
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This inequality is an uncertainty trade-off relation which must be satisfied if the

two noncommuting unsharp path and interference observables F and G are to be

jointly measurable. Here is an instance of Heisenberg’s uncertainty principle for the

inaccuracies which are necessarily present in joint measurements. As far as I am

aware, this is one [13] of two cases in which an inaccuracy relation has been proven as

a necessary condition for joint measurability. The other example is the case of position

and momentum, and the corresponding uncertainty relation for joint measurements

is reviewed in [15].

Finally, it is worth noting that the variances of the marginals F,G in a joint

measurement satisfy the uncertainty relation

V arρ(F ) + V arρ(G) = (1− f 2r2
x) + (1− g2r2

x) = 2− (f 2 + g2)r2
x

≥ 2− (f 2
1 + g2) ≥ 1

and UF + UG = 2− (f 2 + g2)

hence V arρ(F ) + V arρ(G) ≥ UF + UG ≥ 1

(5.4.9)

Measurement complementarity is obtained as a limiting case for a pair F,G which

are jointly measurable: if it is stipulated that one marginal, say F , becomes sharp,

UF = 0, or |f | = 1, then the other marginal, G, becomes a trivial POVM, g = 0,

G1,2 = 1
2
I. Thus, if the path F is measured sharply, any attempt at obtaining

information on interference will fail as the only unsharp interference observable G

that can be measured jointly with F is trivial.
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5.5 Discussion

Complementarity in quantum mechanics describes the limitations of the joint defini-

tion and measurement of certain pairs of noncommuting observables.

The first view of complementarity given by Bohr exposed the problems of using

classical descriptions to obtain a complete account of quantum phenomena. Bohr

proposed that it was necessary to use familiar classical descriptions but in a limited

sense because for quantum phenomena, certain pairs of classical descriptions apply

to mutually exclusive domains.

This mutual exclusivity was for many years after the appearance of complemen-

tarity, the interpretation of this feature of quantum mechanics. Support for this in

the formalism was seen in the impossibility of preparing or measuring the values of

two non-commuting observables simultaneously. However, it can be seen in Bohr’s

earliest writing on complementarity that the notion of mutual exclusivity needed to be

broadened to include the simultaneous application of mutually exclusive descriptions.

This step opens up the notion of graded complementarity to allow trade-off relations

between complementary (mutually exclusive) observables. In the models explored in

Chapter 4 noncommutativity is not an obstacle to joint measurability provided that

unsharp observables are allowed.

In illustrating complementarity Bohr referred to the importance of experimental

set-ups. A complete experiment will have two phases; an initial preparation phase in

which an ensemble of quantum objects interacts with a system which prepares them

to be in a particular state or set of states. Following this there will be a measurement

scheme designed to reveal the (eigen)value of some observable. It is necessary to

apply the concept of complementarity to both phases of the experiment.
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In this thesis the following understanding of complementarity has been developed

in a precise form. If one observable has a sharp value the other is completely unsharp;

strict preparation complementarity is in force. Furthermore, measurement comple-

mentarity is a way of accounting for the results of joint measurement schemes. The

joint measurement schemes in Chapter 4 have within them strict complementarity.

Indeed, in the limit of their application, when one of the observables becomes sharp,

no information is obtained about the other one, strict measurement complementarity

is recovered: non-commuting observables remain mutually exclusive. Thus the strict

form remains one aspect of a proper formulation of complementarity.

Next, several claims and views about complementarity and uncertainty have been

investigated in this thesis. Of particular concern have been the findings of Scully,

Englert and Walther and Zhu et al and the question of the loss of interference in path

marking experiments and the relationship between complementarity and uncertainty

in this type of experiment.

The interference experiments with path marking proposed by SEW and of Zhu et

al are conveniently modeled by a two-arm interferometer. In Chapter 5 it has been

shown that preparation complementarity, in the form of value complementarity, and

measurement complementarity for path and interference observables can be associ-

ated with appropriate uncertainty relations for preparations and joint measurements,

respectively.

In an any scheme involving joint observables a graded form of complementarity

is manifest. The limitation imposed by this form of complementarity are described

by a duality relation comprising the two observables. It has been shown that in the

context of the experiments considered here, these duality relations can be described
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in the form of an uncertainty relation.

Complementarity remains one of the fundamental features of quantum mechanics

as does uncertainty. As confirmed by this thesis, the two concepts are connected but

one cannot be used to define the other nor are they in a hierarchical relationship.

It is worth noting that the connections between complementarity and uncertainty

exhibited and made precise in this work have so far been shown to apply in the

specific context of which-path experiments, which are described in the framework of

a two-dimensional Hilbert space. It will be interesting to extend the results obtained

here to more general situations.
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