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Abstract

The fundamental detection problem in fading channels involves the correct estimation of

transmitted symbols at the receiver in the presence of Additive White Gaussian Noise

(AWGN). Detection can be considered when the receiver is assumed not to know the chan-

nel (non-coherent detection), or alternatively, when the random channel is tracked at the

receiver (coherent detection). It can be shown that for a given error probability, coherent

detection schemes require a Signal to Noise Ratio (SNR) that is 3dB less than the SNR re-

quired for non-coherent detection schemes. It is also known that the performance of coherent

detection schemes can be further improved using space-frequency diversity techniques, for

example, when multiple-input multiple-output (MIMO) antenna technologies are employed

in conjunction with Orthogonal Frequency Division Multiplexing (OFDM).

However, the superior performance promised by the MIMO-OFDM technology relies on

the availability of accurate Channel State Information (CSI) at the receiver. In the literature,

the Mean Square Error (MSE) performance of MIMO-OFDM CSI estimators is known to

be limited by the SNR. This thesis adopts a different view to estimator performance, by

evaluating the accuracy of CSI estimates as limited by the maximum delay spread of the

multipath channel. These considerations are particularly warranted for high data rate multi-

user MIMO-OFDM systems which deploy large numbers of transmit antennas at either end

of the wireless link. In fact, overloaded multi-user CSI estimation can be effectively studied

by considering the grouping together of the user antennas for the uplink while conversely,

considering a small number of antennas due to size constraints for the downlink. Therefore,

most of the work developed in this thesis is concerned with improving existing single-user

MIMO-OFDM CSI estimators but the results can be extended to multi-user system.
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List of symbols

nt number of transmit antennas for a point to point

MIMO system.

nr number of receive antennas for a point to point

MIMO system.

Es(t) energy per symbol. The term symbol refers to

the modulated IQ carriers for a QAM system.

Ts Symbol period. The duration for which informa-

tion representing a binary sequence is modulated

onto the IQ carriers.

fc Carrier frequency. The carrier frequency is set at

2.4GHz.

sm(t) A QAM symbol which has one of m possible mes-

sages encoded onto the IQ carriers.

s rx
m (t) The received QAM symbol. Includes the carrier

and base band signals.

s tx
m (t) The transmitted QAM symbol. Includes the car-

rier and base band signals.

W k,n
N Complex exponential elements of the fourier

transformation matrix. W k,n
N = 1√

N
ej2πkn/N .
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Chapter 0 Chapter 2

sk OFDM subcarrier. OFDM transmits a vector of

symbol via K parallel subcarrier channels such

that the duration of a symbol is extended from

Ts to KTs.

X[k] Complex QAM symbol. The real part and imag-

inary parts correspond to the amplitude of the I

and Q carriers respectively.

x[n] Complex OFDM sample. These samples are

formed after the IFFT stage of an OFDM trans-

mitter.

R[k] Received QAM symbol. These are formed when

the received QAM symbols r[n] are premultiplied

by the FFT matrix.

HI(t), HQ(t) Complex gain of the channel. The real part and

imaginary parts correspond to the gain experi-

enced by I and Q carriers respectively.

nL The number of OFDM symbols that are trans-

mitted in the joint optimization scheme.

λ Wavelength of the carrier frequency. The wave-

length is related to the carrier frequency fc via

λ = c/fc.

c speed of an electromagnetic (EM) waves in free

space, c = 3× 108 meters per second.

k wave number, the number of radians per wave-

length for a given carrier frequency, k = 2π/λ.



Chapter 1

An Introduction to

MIMO-OFDM Systems

The multiple Input Multiple Output (MIMO) technology employs multiple

transmit and receive antennas at either end of the wireless link to increase

data rates or the reliability with which data is received. MIMO systems of-

fer an efficient way of improving the performance of a wireless link through

the exploitation of the spatial resource. MIMO equipped systems can also

implement the discrete multitone technique Orthogonal Frequency Division

Multiplexing (OFDM) which has the advantage of eliminating Inter-Symbol

Interference (ISI), an effect prevalent at high data rates due to multipath prop-

agation. The MIMO-OFDM technology is therefore poised to deliver the high

data throughput and quality of service projected for future wireless systems.

As a starting point, this chapter introduces the MIMO-OFDM system

model and discusses the process of communicating a sequence of bits (binary

digits) from an application such as a camera on a mobile device equipped

with MIMO-OFDM. The MIMO-OFDM system is described in terms of the

air interface (QAM and OFDM), MIMO transmit/receive function (Spatial

multiplexing and space-frequency coding) and the MIMO wireless link. The

concept of multi-user MIMO-OFDM systems is then introduced after which

the objectives of this thesis are formally stated.

3



Chapter 1 An Introduction to MIMO-OFDM Systems 4

1.1 Predicting the Emerging and Future Wire-

less Communications Technologies

In a little over two decades, the mobile phone has gone from being an expensive

piece of hardware to a pervasive low cost technology enabling users to commu-

nicate regardless of their location. Other technologies such as Wi-Fi, which al-

low users to deploy network connections without cabling, provide mobile access

to services such as internet and gaming applications, and have become ubiq-

uitous in modern personal communications devices. Future wireless systems

will aim to deliver high data rates and quality of service (QoS) for both indoor

and outdoor environments. In addition to extending the range of applications

available on personal communications devices, it is expected that standards

such as the fourth generation of mobile systems (4G) will integrate mobile

communications specified by International Mobile Telecommunications (IMT)

standards and Wireless Local Area Networks (WLAN) [1]. Such projections

have motivated extensive studies on the achievable capacity gains associated

with multi-user MIMO systems [2].

Each new generation of mobile systems has required a particular technology

in order to make the next evolutionary step forward. The step from the first

generation (1G - 1982) of mobile systems (e.g., Advanced Mobile Phone System

- AMPS) to the second generation (2G - 1992) of mobile systems (e.g., Global

System of Mobile Communications - GSM) required the digitization of both

speech and signaling [3]. The digitization of speech using full rate coders (such

as the GSM 06.10 codec, also called the Regular Pulse Excitation - Long Term

Prediction RPE-LTP codec [4]) allowed for high quality, low data rate voice

digitization, which helped to establish GSM as a global system used by 82

percent of the global market. Indeed, GSM is used by over 2 billion people in

212 countries and territories.



Chapter 1 An Introduction to MIMO-OFDM Systems 5

The data handling capabilities of 2G systems are limited and the third gen-

eration (3G - 2004) of mobile phone systems has been deployed to provide the

high bit rate services that enable high quality images and video to be trans-

mitted and received. The third generation of mobile systems are based on the

Code Division Multiple Access (CDMA) technologies, including CDMA2000

and WCDMA [5], which allow for greater bandwidth allocation per user (and

hence higher data rates) when compared to the Frequency and Time Division

Multiple Access (FDMA/TDMA) technologies implemented in 2G. Whereas

2G provides mobile data rates of up to 270kbps and 3G delivers rates of 2Mbps,

the mobile data rates for the fourth generation (4G - 2014–2018?) of mobile

systems are expected to reach 50-100Mbps [1], 10-20 times the rates available

currently for broadband!

One technology that is poised to deliver the enhanced capabilities of the

future systems is the Multiple Input Multiple Output1 (MIMO) system tech-

nology [7]. Such systems promise to deliver high data throughput, and reli-

able detection, without additional bandwidth or transmission power. This is

achieved through spatial multiplexing (when more data can be transmitted si-

multaneously from multiple antennas), diversity (sending coded bit sequences

that allow for correct detection), as well as beamforming. Alternatively, meth-

ods that combine the spatial multiplexing and diversity advantages of MIMO

transmission can be implemented, for example, the layered approach [8] and

joint optimization schemes [9]. However, in order to realize the MIMO ad-

vantage, the elements of the antennas arrays at the transmitter and receiver

must be adequately separated [10], where the minimum separation is typically

considered to be on the order of a single wavelength. This separation of the

antenna elements in the arrays ensures independent fading (Chapter 2) be-

tween transmit and receive antenna pairs. In practice, such independence of

1the notation (nt, nr) will be used to denote a MIMO system with nt transmit antennas
and nr receive antennas.
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the MIMO links is possible because of multipath propagation. The probability

of all the links being in deep fade is reduced; hence the spatial diversity gain, or

alternatively, the information transmitted via each link can be detected using

a well designed receiver in the spatial multiplexing schemes.

Multipath propagation, despite being essential for MIMO transmission,

results in Inter-Symbol Interference (ISI). Inter-symbol interference here refers

to the phenomena where symbols that have been transmitted previously arrive

via a longer, non-direct path at the same time as the symbols arriving currently

via the direct path. Orthogonal Frequency Division Multiplexing (OFDM) is

a digital modulation technique that solves the ISI problem [6]. The use of

multiple antennas with OFDM (MIMO-OFDM) therefore represents a robust

technology for high data rate communications systems. However, in order

to benefit from the opportunities presented by the new technology, industry

will have to accept higher complexity and accuracy in the implementation,

otherwise the accumulated implementation losses may significantly degrade

the system performance [1].

This thesis is concerned with achieving accurate channel estimates (referred

to as Complete Channel State Information C-CSI in the literature) for multi-

user MIMO-OFDM system. The following is a description of the main topics

and conclusion for each chapter.

1.2 Chapter Summary

Chapter 1 provides a background of the MIMO-OFDM technology considered

in the thesis by describing the motivation and limitations of this technology.

This introductory chapter is written as a starting point to the concepts of

MIMO-OFDM and assumes only a fundamental understanding of communica-

tions theory. Chapter 2 introduces the mathematical model for the frequency

selective channel which is used to develop various channel estimators in the
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thesis. The Wide-Sense-Stationary Uncorrelated Scattering (WSSUS) channel

model is introduced to indicate the limits of the conventional MIMO-OFDM

channel estimator.

Chapter 3 derives and evaluates various 1-D and 2-D channel estimators

for SISO-OFDM systems based on the convolution channel model. Channel

estimation performance is evaluated through extensive simulation for doubly

selective (time and frequency varying) channels and it is shown that 2-D es-

timators outperform 1-D estimators at the cost of increased computational

complexity at the receiver. In conclusion, it is noted that the filtering and

predictive functions of the 2-D estimators are separable and can be optimized

independently for MIMO-OFDM channel estimators. This conclusion provides

the motivation for the development of robust 1-D MIMO-OFDM channel es-

timators, which is the main body of work presented in this thesis.

In Chapter 4, Reduced Parameter Channel State Information estimators

(RP-CSI) based on OFDM symbol correlations and OFDM sub-symbol corre-

lations are developed. Novel bases are investigated for the representation of

CSI variations using a reduced parameter set. As it is explained, such consid-

erations are warranted for the operations of high data rate MIMO-OFDM sys-

tems which deploy large numbers of transmit antennas in multipath channels.

A generic estimator is derived which is capable of implementing an arbitrary

basis for 1-D CSI parameter estimation exploiting either time or frequency

correlations.

Chapter 5 evaluates the Mean Square Error (MSE) performance of MIMO-

OFDM channel estimators as a function of the maximum delay spread of the

multipath channel. RP-CSI estimators based on OFDM symbol correlations

are analyzed and shown to provide a lower bound on the MSE which is compa-

rable to similar results in several literatures on the subject. The implications of

the number of channel estimation parameters are then extended to the OFDM
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sub-symbol based estimators, where it is shown that interpolation plays a cru-

cial role in obtaining accurate CSI. Finally an iterative approach is introduced

to reduce the error in CSI estimates which occur due to variations of CSI

within a coherence bandwidth for OFDM sub-symbol based estimators.

Chapter 6 is the concluding chapter in which the estimation of channels

using the RP-CSI is extended to the time domain. Clarke’s model is introduced

as a means of predicting the variation of CSI for a receiver traveling at a

constant velocity away from the transmitter. The Slepian basis is implemented

within the RP-CSI framework. As an alternative, Kalman filters are introduced

to track the time variations of the channel with the aim of investigating the

effect of RP-CSI estimation error on tracking performance.

In summary, the contributions of the thesis are as follows:

• A generic MIMO-OFDM channel estimator, the Reduced Parameter

Channel State Information (RP-CSI) estimator, is developed and the

optimal frequency domain basis is determined. In this thesis, an optimal

basis is defined as a basis that spans typical channel variation using the

least number of coefficients.

• The RP-CSI estimator is adapted for channel estimation in the time

domain, by choosing a suitable basis (Slepian Basis) and by developing

a suitable filter (the Kalman filter). The RP-CSI estimator developed

can also be adapted for time-frequency channel estimation, a particu-

larly useful approach when combined with orthogonal training sequence

channel estimation (future work).

• An iterative approach exploiting the CSI correlations between adjacent

OFDM sub-carriers is developed and shown to improve the accuracy of

channel estimation when orthogonal training sequences are implemented.
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1.3 The MIMO-OFDM System Model

Figure 1.1 depicts a generic MIMO-OFDM system where a sequence of bits is

coded for space-frequency communication, transmitted via the wireless chan-

nel, and subsequently decoded at the receiver. It can be noted that the MIMO-

OFDM system derives data from a single application (e.g. a video frame) on

the mobile device, for which each sample (e.g. a pixel), is encoded as a bi-

nary number. The sample is digitally encoded to increase the security of a

transmission, minimize errors at the receiver, or maximize the rate at which

data is sent [12]. The binary data corresponding to several contiguous samples

forms a serial bit stream which constitutes the input bit sequence btx[n] in

Figure 1.1. The input bit sequence is converted into a sequence of complex

symbols (each with real and imaginary components) through the process of In

phase and Quadrature (IQ) constellation mapping. IQ constellation mapping

is an intermediate step in Quadrature Amplitude Modulation (QAM) which

is usually followed by quantization of the complex symbols (QAM symbols),

Digital to Analogue Conversion (DAC) and carrier modulation. However, for

a system implementing Orthogonal Frequency Division Multiplexing (OFDM)

modulation, an IFFT process is implemented after the IQ constellation map-

ping. In order to implemented the IFFT, N QAM symbols are arranged in

a column vector which is then pre-multiplying by the inverse of the Fourier

transformation matrix. For the remainder of the thesis, the column vector of

N symbols will be referred to as the OFDM symbol which is in the frequency

domain before the IFFT and in the time domain after the IFFT. In addition,

the elements of the OFDM symbol will be referred to as QAM symbols before

the IFFT, whilst the elements of the OFDM symbol will be referred to as

OFDM samples after the IFFT. The OFDM modulation process is repeated

nt times resulting in a stack of OFDM symbols as depicted at the transmitter

in Figure 1.1.
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The stack of OFDM symbols can then be mapped onto the nt antenna

elements at the transmitter array using spatial diversity, spatial multiplexing,

layered or joint optimization functions. The OFDM samples then go through

the process of quantization, pulse shaping for spectral efficiency, digital to

analogue conversion and carrier modulation. At the receiver, various schemes

can be implemented to detect the transmitted symbols as is described in the

Sections on space-frequency coding (1.5.1), spatial multiplexing (1.5.2) and

multi-user MIMO-OFDM (1.6). A full discussion on some of the components

of the MIMO-OFDM system such as the cyclic prefix (CP) and Channel esti-

mation are differed for later chapters.

The main functions within the MIMO-OFDM system are the MIMO-

OFDM air interface, MIMO-OFDM mapping/de-mapping and the

MIMO-OFDM channel. Perhaps the most significant function in the MIMO-

OFDM wireless system is the wireless channel/link, a snapshot of which is

depicted in Figure 1.1. The Channel Impulse Response (CIR) is a description

of the output of a wireless channel when the input is an impulse, or typi-

cally, a wideband signal representing the maximum communications system

bandwidth. An ideal channel will reproduce the input signal (in this case an

impulse) exactly at the output. Such ideal channels are called flat fading chan-

nels because the frequency response of the channel (the fourier transform of

the channel impulse response) is constant/flat across all frequencies [12, 13]. A

flat fading channel represents a wireless channel where there is effectively only

one propagation path between the transmitter and the receiver. A more real-

istic channel will however have several paths by which the transmitted impulse

signal can propagate to the receiver due to several mechanisms cf. Chapter 2

in the wireless environment. As a result, several impulses will be observed at

the receiver, and the paths corresponding to the furthest reflectors will show

significant delay and attenuation in the received power profile. The power de-

lay profile (PDP), is a plot of the received power against time when an impulse



Chapter 1 An Introduction to MIMO-OFDM Systems 12

is transmitted. Channels that are characterized by multipath have a frequency

response that varies depending on the frequency and are called frequency se-

lective channels [12, 13]. Chapter 2 and 6 will describe the wireless channel in

greater detail.

The MIMO-OFDM air interface can be defined as the protocol that allows

for the exchange of information between transmitter and receiver stations for

the MIMO-OFDM system. Alternatively, the air interface can be defined as

the radio-frequency portion of the system. The MIMO-OFDM air interface

consists of a combination of Quadrature Amplitude Modulation (QAM) con-

stellation mapping and Orthogonal Frequency Division Multiplexing (OFDM).

QAM constellation mapping is used to generate symbols with real and imag-

inary components for the FFT process used in OFDM modulation. On the

one hand, the implementation of M-QAM in MIMO is motivated by the real-

ization of greater spectral efficiency for the overall digital modulation scheme

[2, 11]. On the other hand, OFDM modulation effectively divides a wideband

frequency selective channel into numerous narrowband channels that are, as a

result, flat fading [6]. The combination of the two modulation schemes is used

to convey data by changing the phase of a carrier signal that is then trans-

mitted as an electromagnetic wave via an antenna. Both these modulation

schemes are discussed in more detail in subsequent sections of this chapter.

The MIMO-OFDM mapping/de-mapping function determines how the trans-

mit vector of nt symbols is formed and how the receive vector of nr symbols

can be manipulated in order to detect the transmitted vector. Depending on

the mapping/de-mapping function specified for the MIMO system, data com-

munications can be improved in terms of increased data throughput or data

detection reliability. Link reliability can be improved by sending correlated

data streams from the transmitter antenna array and exploiting these correla-

tions at the receiver to improve data detection [17, 18]. Data throughput may

be increase by transmitting nt uncorrelated data streams from the transmitter
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antenna array [19, 20, 21]. The receiver has then to be specially designed in

order to detect the transmitted data as each received symbol at a given an-

tenna is a weighted sum of the nt transmitted symbols. It can be shown that

at a particular Signal to Noise Ratio (SNR), the data detection error rates

can be reduced for particular transmission schemes using MIMO antenna [12].

Both the spatial multiplexing and diversity MIMO functions will be discussed

in subsequent sections of this chapter.

1.4 The MIMO-OFDM Air Interface

This section describes how digital information in the form of binary data is

transmitted over an analogue radio channel. As mentioned previously, MIMO-

OFDM combines the representation of binary data as Quadrature Amplitude

Modulation (QAM) symbols and the multitone modulation to simultaneously

transmit data using Inphase and Quadrature sinusoidal carrier waveforms. The

implementation of M-QAM allows for high data rate, efficient multiple access

strategies and resistance to channel imperfections, amongst other advantages

[2, 12]. This section focuses on the improved data rates and Inter-Symbol

Interference (ISI) cancelation in frequency selective channels.

1.4.1 IQ Constellation Mapping

For QAM digital modulation, the phase of sinusoidal carrier waves is modu-

lated, meaning changed or ’keyed’, to represent the binary data signal. 4-QAM

is discussed as a suitable example as it is simple yet the formulation can easily

be extended when considering the implementation of the general M-QAM. The

sinusoidal carrier waveform used to transmit the digital data is given by the

equation
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sm(t) =

√
2Es(t)

Ts

cos
(
2πfct− (2m− 1)

π

4

)
(1.1)

=

√
2Es(t)

Ts

cos (2πfct− φm) (1.2)

Es(t) is the energy per symbol which is a function of time t, Ts is the

symbol period, and fc is the carrier frequency. Typically, for 4-QAM, the bit

sequences {002, 012, 102, 112} are mapped onto the numbers {m = 1, 2, 3, 4}
which determine the phase φm of the carrier signal sm(t) . In fact, to aid with

Forward Error Correction (FEC), the bit sequences are assigned a particular

phase so that adjacent symbols on the constellation diagram differ by only

one bit (cf. Figure 1.2) which is the Gray Coding scheme. It is known that

noise and the channel induce arbitrary phase changes in the received signal

s rx
m (t) and that maximum likelihood detectors can be used to estimate the

transmitted signal phase s tx
m (t) (cf. Section 1.4.3). The idea is that if the

received bit sequence is wrongly decoded, the likelihood is that only one bit will

be in error. FEC techniques such as convolution coding and Hamming codes

can then be used to correct these errors. These techniques leads to improved

reliability of the communications link when the QAM modulation scheme is

implemented [12].

The expansion of the sinusoidal carrier cf. (1.1) into Inphase and Quadra-

ture components is a result that is used extensively in Chapter 2 and in par-

ticular when deriving the convolution model of the channel. This expansion

can be achieved using the trigonometric identity cos(A−B) = cos(A) cos(B)+

sin(A) sin(B) which results in the expression



Chapter 1 An Introduction to MIMO-OFDM Systems 15

Figure 1.2: Constellation diagram of 4-QAM with Gray Coding

cos(2πfct− φm) = cos(2πfct) cos(φm) + sin(2πfct) sin(φm) (1.3)

= ± 1√
2

cos(2πfct)± 1√
2

sin(2πfct) (1.4)

= ± 1√
2
sI(t)± 1√

2
sQ(t) (1.5)

The QAM symbol sm(t) is generated from two unit magnitude basis func-

tions, sI(t) = cos(2πfct) and sQ(t) = sin(2πfct), the inphase and quadrature

carriers respectively. The two unit magnitude basis functions are sinusoidal

carrier waves that are 90 degrees out of phase and are orthogonal or separable

at the receiver, cf. Section 1.4.3. Because the symbol sm(t) has an amplitude

given by
√

2Es(t)
Ts

, and the inphase and quadrature components can be sepa-

rated at the receiver, each bit sequence can be represented by the complex

number with real and imaginary components cos(φm)A(t) + j sin(φm)A(t) =

A(t)(Im + jQm) where A(t) =
√

2Es(t)
Ts

. The index m indicates that the I and

Q factors can take positive or negative signs depending phase generated by the

number m (cf. Figure 1.2).
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Figure 1.3: Constellation diagram of rectangular 16-QAM with Gray Coding

As was mentioned previously, errors in symbol detection occur due to ar-

bitrary phase changes which are induced by noise as well as channel fading.

The problem becomes significant when the keyed phase changes are too closely

spaced on the constellation diagram. For Rectangular QAM, the probability

of error per carrier [12] is given by

Psc = 2

(
1− 1√

M

)
Q

(√
3Es(t)

N0(M − 1)

)
(1.6)

M is the number of symbols used in the modulation constellation, Es(t)

is the energy per symbol, N0 is the noise power spectral density and Q(x) =

1
2
erfc

(
x√
2

)
is related to the complementary Gaussian error function erfc =

2√
π

∫∞
x

e−t2dt. The literature [2] and [12] have detailed discussion on the perfor-

mance of Digital Modulation schemes over wireless channels. For IQ constel-

lation mapping using QAM, M bits can be transmitted simultaneously over

the I and Q resulting in spectral efficiency but the bit error rate increases

proportionally to M .
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1.4.2 Digital multitone/multi-carrier modulation

In addition to sending M bits in parallel using QAM based IQ constellation

mapping, the MIMO-OFDM air interface is equipped to transmit N QAM

symbols in parallel using K orthogonal carriers where K = N (the indices K

and N are used interchangeably to indicate time/frequency domain vectors cf.

Figure 1.4). Some of the early work on OFDM modulation can be found in

the literature [14] and [15]. Amplitude modulation onto K orthogonal carriers

is efficiently implemented using the Fast Fourier Transform (FFT).

The collection of N OFDM samples to be transmitted x = [x[0], x[1], . . . , x[N − 1]]T ,

is generated from the QAM symbol source x̃ = [X[0], X[1], . . . , X[K − 1]]T

through the Inverse FFT (IFFT).

x =




W 0,0
N W 1,0

N . . . WK−1,0
N

W 0,1
N W 1,1

N . . . WK−1,1
N

...
...

. . .
...

W 0,N−1
N W 1,N−1

N . . . WK−1,N−1
N







X[0]

X[1]
...

X[K − 1]




(1.7)

The vector x is the IFFT of the vector x̃. The index k is the frequency

index, n is the time index and the FFT complex exponentials are denoted by

W k,n
N = 1√

N
ej2πkn/N . The Inverse FFT can be viewed as multiplying a QAM

symbol X[k] by a length N vector of complex exponential at a fixed frequency

index k to obtain a vector xk. The transmitted vector x is then obtained by

summing the vectors xk.

xk = X[k]sk (1.8)

x =
K−1∑

k=0

xk (1.9)

sk =
[
W k,0

N ,W k,1
N , . . . , W k,N−1

N

]T

is an OFDM carrier (these are commonly
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Figure 1.4: Block Diagram representation of OFDM modulation. Because
the sub-carrier channels are orthogonal and separable at the receiver, they
are depicted as parallel channels. The symbols and channel parameters are
complex numbers representing the separable I and Q components. The square
blocks represent complex variables.

referred to as orthogonal OFDM sub-carrier as they are separable at the re-

ceiver cf. Chapter 3). The sub-carriers form the columns of the IFFT matrix

cf. equation (1.7).

For OFDM modulation, each QAM symbol X[k] is used to modulate the

amplitude of a sub-carrier sk for the duration NTs cf. equation (1.8) and K

such symbols are transmitted simultaneously cf. equation (1.9). The symbol

period for each of the N QAM symbols (NTs/N = Ts) is equal to the QAM

symbol period but the symbol rate over each sub-carrier channel is reduced to
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NTs. Multitone modulation is also equivalent to transmitting the QAM sym-

bols X[k] over narrow bandwidth channels (BSC = 1/NTs) that are at precise

intervals over the system bandwidth (B = 1/2Ts) [16]. Typically the QAM

symbol rate (1/Ts) is determined by the spectral allocation for the radio fre-

quency channel. In other words, data can be clocked at rates determined by the

hardware within the mobile and receiver hardware devices but on transmission,

the rate Ts has to be observed. For example, GSM has a 200kHz bandwidth

assigned to a particular user frequency channel which, based on Gaussian pulse

shaping, constrains the data rate to 270kbps. The long OFDM vector period

NTs per sub-carrier sk results in narrow band channels which are effectively

flat fading. The received OFDM vector can the be written in the form

R[k] = H[k]X[k] (1.10)

r̃ = diag (H[k]) x̃ (1.11)

Note that x̃ is the OFDM vector before the IFFT and diag (H[k]) is a

diagonal matrix of the gain of the channel sk. For the remainder of the thesis we

shall refer to OFDM vectors as OFDM symbols. The flat fading channel gain

{H[k]} will be referred to as Channel State Information (CSI). We emphasize

here that OFDM amounts to sending K symbols in parallel through a single

link between a transmit and receive antenna, which is referred to as frequency

diversity in the literature [12]. A mathematically rigorous derivation of the

OFDM input-output relationship can be found in chapter 3 of this thesis.

1.4.3 Maximum Likelihood Detection

This section describes the Maximum Likelihood Detector (MLD) based on

equation (1.10) for the input-output OFDM symbol relationship. These are

discussed in order to highlight the importance of CSI estimation in single

antenna systems but the results are similarly applicable to multiple antennas.
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It will be shown that IQ modulation results in parallel channels and greater

spectral efficiency because the symbols in the I and Q channels can be detected

separately.

The source OFDM symbol x̃ ≡ [X[0], X[1], . . . , X[K − 1]]T consists of a

series of the QAM symbols X[k] = Im[k]+ jQm[k] with the real and imaginary

components that are modulated onto the quadrature carriers cf. Figure 1.4.

The index k denotes the frequency of the OFDM sub-carrier and m indicates

the phase of the QAM symbol. After Digital to Analogue Conversion (DAC),

the base band signal for the OFDM symbol would have the form

Im(t) =
K−1∑

k=0

Im[k]p(t− kTs) (1.12)

Qm(t) =
K−1∑

k=0

Qm[k]p(t− kTs) (1.13)

p(t) is a pulse which has a width Ts, Im(t) and Qm(t) are the real and

imaginary components of the OFDM symbol x̃ that form the baseband signals

to be modulated onto the quadrature carriers 2 .

p(t) =





1 if 0 ≤ t ≤ Ts

0 elsewhere
(1.14)

The transmitted OFDM signal is formed by mixing (multiplying) the base-

band signals Im(t) and Qm(t) with the inphase and quadrature carriers3 .

s tx
m (t) = Im(t) cos(2πfct) + Qm(t) sin(2πfct) (1.15)

The QAM symbol amplitude A(t) is suppressed to simplify the notation. At

the receiver the two modulated baseband signals can be demodulated using a

2the baseband signals Im(t) and Qm(t) are processed using a pulse shaping filter to limit
their bandwidth at the transmitter

3we consider the source OFDM symbol rather than the transmitted OFDM symbol be-
cause the received OFDM symbol is a function of the former in equation 1.10
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coherent demodulator. Coherent demodulators can detect the Im(t) and Qm(t)

signals separately by multiplying the received signal by cosine and sine signals

respectively.

If the received signal has an Inphase gain of HI(t) and a quadrature gain of

HQ(t), the demodulated Inphase component can be extracted from the received

QAM symbol as follows

s rx
m (t) = Im(t)HI(t) cos(2πfct) + Qm(t)HQ(t) sin(2πfct) (1.16)

I rx
m (t) = Γ (s rx(t) cos(2πfct)) (1.17)

In equation (1.17) the function Γ(.) is a low pass filter. Combining equa-

tions (1.16) and (1.17) yields the result

I rx
m (t) = Γ

(
Îm(t) cos(2πfct) cos(2πfct) + Q̂m(t) sin(2πfct) cos(2πfct)

)

(1.18)

Îm(t) = I(t)HI(t) and Q̂m(t) = Qm(t)HQ(t). Using trigonometric identities

cos(A) cos(B) = [cos(A + B) + cos(A − B)]/2 and sin(A) cos(B) = [sin(A +

B) + sin(A − B)]/2, the received symbol for the Inphase component can be

written as

I rx
m (t) = Γ

(
1

2
Îm(t) +

1

2

[
Îm(t) cos(4πfct) + Q̂m(t) sin(4πfct)

])
(1.19)

I rx
m (t) =

1

2
Î(t) (1.20)

Similarly we may multiply s rx(t) by a sine wave and then low-pass filter

to extract Q rx(t).
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Q rx
m (t) = Γ (s rx(t) sin(2πfct)) (1.21)

Q rx
m (t) = Γ

(
1

2
Q̂m(t) +

1

2

[
Îm(t) sin(4πfct)− Q̂m(t) cos(4πfct)

])
(1.22)

Q rx
m (t) =

1

2
Q̂m(t) (1.23)

After being passed through an Analogue to Digital Converter (ADC), the

demodulated baseband inphase (Îm[k] = Îm(t)δ(t − kTs)) and quadrature

(Q̂m[k] = Q̂m(t)δ(t − kTs)) signals are used to determine the transmitted

symbols Im[k] and Qm[k] by using Maximum Likelihood Detector (MLD) for

a particular sub-carrier k.

min
{Îm[k],Q̂m[k]}:∀m

ε ,
∣∣∣Îm[k]− Im[k]

∣∣∣
2

+
∣∣∣Q̂m[k]−Qm[k]

∣∣∣
2

(1.24)

The channel parameters (CSI) HI(t) and HQ(t) are used to quantify the

effects of the channel and will be discussed in Chapter (2). An arbitrary phase

change in the received QAM symbol is observed as a result of the gain factors

HI(t) and HQ(t) .

s rx
m (t) = Im(t)HI(t) cos(2πfct) + Qm(t)HQ(t) sin(2πfct) (1.25)

= Am(t) cos(2πfct− φ̂m) (1.26)

The received carrier signal s rx
m (t) has amplitude and phase terms given

by Am(t)2 = (Im(t)HI(t))
2 + (Qm(t)HQ(t))2 and φ̂m = arctan(

Qm(t)HQ(t)

Im(t)HI(t)
) (this

result can be confirmed by using the trigonometric expansion Am(t) cos(2πfct−
φ̂m) = Am(t) cos(2πfct) cos(φ̂m)+Am(t) sin(2πfct) sin(φ̂m) and comparing like

terms in equation 1.25). The channel parameters are random for a particular

channel and hence will cause random phase changes and amplitude fluctuations

(fading) in the received signal.
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Note also that the received QAM symbols R[k] = Im[k]HI [k]+jQm[k]HQ[k]

form the received OFDM symbol r̃. In order to reduce the error in data detec-

tion using the MLD, estimation of the channel parameters is vital and forms

the subject of this thesis (in Figure 1.1 the channel estimation function has

been highlighted in the block diagram). For a well designed channel estimator,

errors in data detection are mainly due to the noise in the system as discussed

in chapter 5 of the thesis.

1.5 The MIMO-OFDM Mapping/De-mapping

Function

As mentioned previously MIMO-OFDM mapping functions are used to form

combinations of nt QAM symbols that are transmitted on an antenna ar-

ray. Generally, the transmitted symbols will be correlated or uncorrelated

over space and frequency depending on the function of the MIMO-OFDM sys-

tem. MIMO-OFDM de-mapping functions operate on a vector of nr received

symbols to produce an estimate of the transmitted symbols based on channel

parameter estimates (cf. Figure 1.1).

One of the most reliable channel estimation methods uses the received

symbols as well as knowledge of some known transmitted symbols (generally

known as training symbols) to form estimates of the channel parameters. This

process is known as data based channel estimation. Once the training symbols

have been transmitted and the channel estimated, data can be transmitted

and detected based on the channel estimates (cf. Figure 1.1). This scheme

assumes that the channel remains unchanged when the data is transmitted

and is called coherent detection4 (cf. Chapter 3). Recall that in Section 1.4.3,

knowledge of the channel parameters reduced errors in Maximum Likelihood

4not to be confused with a coherent demodulator used in QAM receivers
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Detection and is an important function even within Single Input Single Output

(SISO) wireless systems.

The next sections describe space-frequency coding and spatial multiplexing

MIMO-OFDM mapping/de-mapping functions which rely on coherent detec-

tion. In particular, a description of how spectral efficiency and diversity are

achieved depending on the MIMO-OFDM mapping/de-mapping function is

given.

1.5.1 Space-Frequency Coding

The source QAM symbols to be transmitted can be correlated in space and

frequency using MIMO antennas. A space-frequency coding technique for a

(nt = 2, nr = 2) MIMO-OFDM system based on Alamouti codes [17] is de-

picted in Figure 1.5. The Alamouti scheme is generalized to orthogonal designs

in the literature [18].

The stacking of OFDM symbols in figure 1.1 would therefore consist of

a single OFDM symbol that has been arranged into two OFDM symbols as

depicted in Figure 1.5. The data throughput of a space frequency coding

MIMO-OFDM system is therefore the same as a SISO-OFDM system.

At the receiver, the unknown data in the transmit vector can be deduced

from two successive received symbols (a stack of nt MIMO receive vector r̃S is

formed for spatial-frequency coding - cf. Figure 1.1).

R1[k] = H1,1[k]X1[k] + H2,1[k]X2[k] + N1[k] (1.27)

R2[k] = H1,2[k]X1[k] + H2,2[k]X2[k] + N1[k] (1.28)

R1[k + 1] = H1,1[k + 1]X1[k + 1] + H2,1[k + 1]X2[k + 1] + N1[k + 1] (1.29)

R2[k + 1] = H1,2[k + 1]X1[k + 1] + H2,2[k + 1]X2[k + 1] + N1[k + 1] (1.30)

The Alamouti scheme assumes that the channel parameters in adjacent sub-

carriers are highly correlated so that the channel parameters for sub-carrier k
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Figure 1.5: Space-Frequency Alamouti Coding for a (2,2) MIMO-OFDM sys-
tem. The source OFDM symbol is mapped onto two OFDM stacks which have
space-frequency correlations.
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are equal to the channel parameters of sub-carrier k +1 for the MIMO-OFDM

system. The combiner at the receiver performs a weighted sum of the four

received QAM (1.27–1.30) symbols to form two QAM symbols and that are

sent to a maximum likelihood detector.

X̂1[k] = H∗
1,1[k]R1[k] + H2,1[k]R∗

1[k + 1] + H∗
1,2[k]R2[k] + H2,2[k]R∗

2[k + 1]

(1.31)

X̂2[k] = H∗
2,1[k]R1[k]−H1,1[k]R∗

1[k + 1] + H∗
2,2[k]R2[k]−H1,2[k]R∗

2[k + 1]

(1.32)

z∗ is the complex conjugate of a complex number z. Substituting the

appropriate equations for the received symbols with the correlation assumption

Hi,j[k] = Hi,j[k + 1] in place yields

X̂1[k] =

√
Es(t)

2

[
|H1,1[k]|2 + |H2,1[k]|2 + |H1,2[k]|2 + |H2,2[k]|2]

]
X1[k] + N̂1[k]

(1.33)

X̂2[k] =

√
Es(t)

2

[
|H1,1[k]|2 + |H2,1[k]|2 + |H1,2[k]|2 + |H2,2[k]|2]

]
X2[k] + N̂2[k]

(1.34)

|z| is the magnitude of a complex number z. Note that the symbols X̂1[k]

and X̂2[k] are approximations of X1[k] and X2[k]. Referring to Figure 1.5,

these two QAM symbols represent the two source QAM symbols X[k] and

X[k + 1]. N̂1[k] and N̂2[k] are linear combinations of the noise at the receiver

N̂1[k] = H∗
1,1[k]N1[k] + H2,1[k]N∗

1 [k + 1] + H∗
1,2[k]N2[k] + H2,2[k]N∗

2 [k + 1]

(1.35)

N̂2[k] = H∗
2,1[k]N1[k]−H1,1[k]N∗

1 [k + 1] + H∗
2,2[k]N2[k]−H1,2[k]N∗

2 [k + 1]

(1.36)
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For the (2, 2) diversity scheme, the SNR is proportional to the sum of the

squared magnitude of all four channels which is found to be better by about

20dB when compared to a single transmitter, single receiver SISO system. The

impact of antenna diversity on the capacity of wireless communication systems

is studied in the literature [21]. When compared to spatial multiplexing cf.

Section 1.5.2, however, the data rate is less by a factor of 1/nt. Importantly,

channel state information is required at the receiver for the Alamouti scheme cf.

(1.31) hence Space-Frequency Coding is a MIMO-OFDM coherent detection

scheme.

1.5.2 Spatial Multiplexing

In section 1.4.2 an input-output relationship was given for the QAM symbols

for an OFDM system cf. (1.10). This relationship applies to a SISO system

which has a single transmit and receive antenna. Here, we shall consider a

MIMO system with nt transmit antennas and nr receive antenna employing

spatial multiplexing [20].

If we denote the antenna in the transmitter array using an index i and

the antennas in the receiver array using the index j, then the input-output

equation for QAM symbols for a MIMO-OFDM system becomes

Rj[k] =
nt∑
i=1

Hi,j[k]Xi[k] (1.37)

Therefore, each received QAM symbol at antenna j (Rj[k]) is a weighted

sum of the QAM symbols {Xi[k]} transmitted from the antenna array for

the index {i = 1, 2, ..nt}. Recall that there are K QAM symbols that are

transmitted through a channel (at frequency fc) in equation (1.16) but there

are nt × nr such channels (at the same frequency fc
5 ) in a MIMO-OFDM

system. Each channel has the parameters Hi,j[k] = H i,j
I [k] + jH i,j

Q [k] that

5hence the increase in data transmission for a MIMO-OFDM systems does not require
an increase in bandwidth!
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affect the QAM symbols that are transmitted between the transmit antenna i

and receive antenna j - the MIMO-OFDM channel.

If the received QAM symbols across the antenna array {j = 1, 2, ..nr} are

stacked into a vector r̃S = [R1[k], R2[k], . . . , Rnr [k]]T (the subscript S is used

to denote a collection of QAM symbols at the same sub-carrier index for all

the receive antennas), then we can write the matrix equation

r̃S =




H1,1[k] H2,1[k] . . . Hnt,1[k]

H1,2[k] H2,2[k] . . . Hnt,2[k]
...

...
. . .

...

H1,nr [k] H2,nr [k] . . . Hnt,nr [k]







X1[k]

X2[k]
...

Xnt [k]




(1.38)

r̃S = HSx̃S (1.39)

x̃S = [R1[k], R2[k], . . . , Rnr [k]]T is the transmit MIMO-OFDM vector (cf.

Figure 1.1). If the number of receive antennas is greater than or equal to the

number of transmit vectors (nr ≥ nt), and the channel matrix HS ∈ Cnr×nt

has been estimated, then the unknown data in the transmitted vector can be

determined using the equation

x̃S = H†
Sr̃S (1.40)

H†
S = (HH

S HS)
−1HH

S is the pseudo inverse of the channel matrix cf. Section

3.3.1. AH is the complex conjugate (Hermitian) of the matrix A. A receiver

implementing equation 1.40 is called a Zero-Forcing MIMO-OFDM receiver.

The spatial-multiplexing MIMO-OFDM system increases the data through-

put of a MIMO-OFDM by a factor of nt over a SISO-OFDM system. A per-

formance analysis for spatial multiplexing MIMO systems is provided in the

literature [20]. Figure 1.1 depicts how nt OFDM symbols are stacked prior

to transmission. Note that the MIMO receive vector r̃S is NOT stacked for

spatial multiplexing as only one QAM symbol is required per receiver antenna.
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1.6 Multi-user MIMO-OFDM

This section describes how MIMO-OFDM systems can be extended from the

single user or point-to-point applications that have been described previously,

to multi-user systems capable of communicating messages to P decentralized

users. The scheme presented here is the joint optimization scheme described

in the literature [22, 23]. The joint optimization scheme combines the spatial

multiplexing and diversity schemes discussed previously. All the sub-carriers

in the OFDM scheme are used by all the users.

Let us assume that the number of transmit antennas at the base station is

nt and the mobile device for user p is equipped with np
r antennas. The OFDM

source symbols6 are stacked as nL parallel OFDM symbols (in contrast, the

single user MIMO-OFDM system stacks nt OFDM symbols at the transmitter

in Figure 1.1). A MIMO-OFDM transmit vector x̃nL,S ∈ CnL×1 can then be

formed at the base station by selecting the QAM symbols x̃nL,S ≡ {Xl[k] :

l = 1, 2, . . . , nL} for a particular sub-carrier k. The first step in transmission

is to place a power constraint on the vector x̃nL,S through multiplication by a

matrix EnL,S = {diag(El[k]) : l = 1, 2, . . . , nL}. The next step is to process the

resulting length nL vector so that it can be transmitted on nt antennas. The

vector transmitted from the multi-user MIMO-OFDM system antennas array

x̃S ∈ Cnt×1 for downlink communications can be written as follows.

x̃S = UEnL,Sx̃nL,S (1.41)

The linear precoder U ∈ Cnt×L transforms a length L vector into a length

nt vector that can be transmitted using the MIMO antennas. The received

MIMO-OFDM vector can be determined using equation (1.39). Substituting

the equation for the transmitted MIMO-OFDM vector (1.41), the received

vector r̃p,S ∈ Cnp
r×1 for user p can be written as

6OFDM source symbols are the Fourier transform of OFDM symbols in section 1.4.2
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r̃p,S = Hp,Sx̃S = Hp,SUEnL,Sx̃nL,S (1.42)

The MIMO-OFDM channel Hp,S ∈ Cnp
r×nt matrix is different for each user

p due to their physical location in the space-frequency system. The multi-user

MIMO-OFDM system has nL symbols in total to communicate to P number

of users. Each user p has a unique linear decoder that allows them to decode

a message of nL,p symbols, where
∑P

p=1 nL,p = nL. At the receiver, user p’s

message x̃p,S ∈ CnL,p×1 can be decoded as follows.

x̃p,S = VH
p r̃p,S = VH

p Hp,SUEnL,Sx̃nL,S (1.43)

The linear decoder VH
p ∈ CnL,p×np

r is designed to extract the message sym-

bols (x̃p,S) from the vector received at the antennas array (r̃p,S). By implica-

tion, the linear precoder is also designed as an encoder for user p message and

we can write U = [U1,U2, . . . ,UP ] with Up ∈ Cnt×nL,p . Note that each users

message cf. (1.43) forms part of the vector transmitted at the base station

prior to linear precoding so that x̃nL,S =
[
x̃T

1,S, x̃
T
2,S, . . . , x̃

T
P,S

]T
. The power

constraint vector is designed to minimize the bit error rate.

The linear precoders and decoders described above can also be used for

uplink communications where the users communicate with the base station.

The equation for the vector received at the base station and the message

extracted from user p are given by

r̃S =
P∑

p=1

HH
p,SVpDnL,Sx̃p,S (1.44)

x̃p,S = UH
p,Sr̃S (1.45)

DnL,S = {diag(Dl[k]) : l = 1, 2 : . . . , nL} is the power constraint vector for

user p. In both the uplink and downlink equation, we assume that there is no

noise at the receiver.
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1.7 Research Objectives of the Thesis

The MIMO-OFDM system technology that will be considered in this thesis

has been introduced in this chapter. In addition, a multi-user MIMO-OFDM

system capable of downlink and uplink communications was described and

contrasted to a single user MIMO-OFDM system. In Section 1.4.2, it was

shown that a SISO-OFDM channel is described by K channel parameters. Be-

cause OFDM transmission converts the link between a transmitter and receiver

into K low symbol rate sub-carrier channels and the MIMO system employs

nt × nr such links, the total number of channel parameters to be estimated in

the MIMO-OFDM system is nt × nr ×K.

For downlink communications in multi-user systems, the number of trans-

mit base station antennas nt may be large when compared to the number re-

ceiving antennas for a particular user np
r (cf. section 1.6) due to size constraints

on the mobile device. For uplink communications, the transmitting antennas

from the P users may be very large
∑P

p=1 np
r = nr when compared to the

receiving antennas at the base station nt. Both these scenarios can be investi-

gated by considering a single user (nt, nr) MIMO-OFDM system where (nt, nr)

represents base station and user p’s antenna respectively for the downlink or

the grouping of the user antennas and the base station antennas respectively

for the uplink. The objective of the thesis is to investigate the performance of

MIMO-OFDM channel estimators when the number of transmitting antennas

is disproportionately large. It can be shown that in such cases, the MSE per-

formance of the MIMO-OFDM channel estimator is limited by the maximum

delay spread of the wireless channel.

Whereas several well established estimators have been developed with opti-

mal SNR performance, the optimal performance of MIMO-OFDM estimators

as limited by the maximum delay spread of the wireless channel is a question

that remains largely unanswered. The research objective as presented in this
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thesis is to; extend current MIMO-OFDM channel estimators with the aim of

improving their MSE performance as limited by the maximum delay spread of

the wireless channel. For GSM900, the total available bandwidth of 25MHz

is divided into 125 channels with a bandwidth of 200kHz. Assuming that a

frequency reuse factor of 7 is implemented to reduce co-channel interference,

approximately 18 channels are available in each cell. However, these channels

may be divided between 5 mobile phone operators, for example, so that ap-

proximately 4 channels are available in each cell, based purely on frequency

Division Multiple Access (FDMA). Due to the digitization of speech and signal-

ing, Time Division Multiple Access (TDMA) time slots can be implemented,

increasing the number of users to 29, for 8 TDMA time slots per frequency

channel. This example sets the precedent for multi-user MIMO-OFDM sys-

tems, which have to be able to support the user capacity described in this

example in order to be competitive with the current technology.



Chapter 2

The Wireless Channel

The effect of transmitting Quadrature Amplitude Modulation (QAM) sym-

bols through a wireless channel may be an arbitrary phase change, which

corrupts the information carried by the signal, as well as fluctuations in the

received symbol level (fast fading). Another effect of wireless transmission is

the addition of white noise which is typically wideband, so that the wider the

bandwidth of the system, the greater the effect of the noise. A mobile receiver

will experience decreasing signal power with increasing separation from the

transmitter (slow fading) and hence a degradation in the Signal to Noise Ra-

tio (SNR). Indeed, the two ray ground reflection model that is widely used in

cellular system design calculations, predicts that the received power falls off

with distance raised to the fourth power, or at a rate of 40 dB/decade [24].

This section describes the mathematical modeling of the wireless channel

for which there is effectively a single propagation path for the wireless link.

This channel model is derived from a multipath propagation model, where the

output QAM symbol vector is given by the convolution of the input QAM

symbol vector and the Channel Impulse Response (CIR) vector. For both

the single path and multipath propagation models, Non-Line of Sight (NLOS)

communications between the transmitter and receiver is assumed. Finally,

the Saleh-Valenzuela model is used to determine the multipath component

amplitude, phase and delay for a frequency selective channel.

33
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2.1 Multipath Propagation

The transmitted OFDM symbol for a MIMO-OFDM system consists of a vec-

tor of QAM symbols that are transmitted for a duration of KTs seconds, where

K is the number of QAM symbols in the OFDM symbol and Ts is the QAM

symbol period which is determined by the bandwidth of the radio frequency

channel. The effects of the channel on the transmitted OFDM symbol can be

divided into QAM symbol effects (fading and random phase changes), and the

OFDM symbol effects (Inter-Symbol Interference - ISI, which is the interfer-

ence of the transmitted QAM symbols at the receiver). The channel model

that is derived in this section is based on the response of the channel to a

transmitted impulse, or more precisely, a wideband signal representing the

bandwidth under consideration, and as such, the model encompasses all the

effects mentioned above. In this section, an intuitive discussion on the Channel

Impulse Response (CIR) is presented which will be followed by the detailed

mathematical modeling of the wireless channel in subsequent sections.

Iospan Wireless Inc., a leader in fixed wireless broadband multiple antenna

technology, is widely credited for combining the MIMO and OFDM technolo-

gies to transmit radio signals particularly for Non-Line-of-Sight (NLOS) func-

tionality. According to Iospan, speaking of outdoor propagation,

”In this environment, radio signals bounce off buildings, trees and other

objects as they travel between the two antennas. This bouncing effect produces

multiple ”echoes” or ”images” of the signal. As a result, the original signal and

the individual echoes each arrive at the receiver antenna at slightly different

times causing the echoes to interfere with one another thus degrading signal

quality.”

Figure 2.1 depicts a range of mechanisms leading to multipath propaga-

tion. Note that any one, a few, or all of these mechanisms may be present in

the wireless environment in different physical locations. Rings of mechanisms



Chapter 2 The Wireless Channel 36

around the receive antenna can be consider and it can be noted that broadly

speaking, the mechanisms that are furthest from the receiver result in longest

delays and lowest received signal strength when an impulse is transmitted. The

direct path (Line-of-Sight) may or may not be available due to obstructions,

but the straight line between the transmitter and receiver, represents the path

of the shortest length which is associated with the shortest achievable propaga-

tion delay, and highest achievable signal strength. The description given here

is the basis of the one ring model [25]. The mechanisms for Non-Line-of-Sight

communications can be defined as follows.

• Scattering. Scattering occurs when an electromagnetic wave strikes ob-

jects that are small compared to the wavelength of the carrier frequency.

Scattering can occur when radio waves impinge on rain drops in the

outdoors, or ornamental beads in an indoor environment.

• Refraction. Refraction occurs when an electromagnetic wave traveling

though one medium experiences a diversion in its path as it enters an-

other medium due to a difference in refractive index of the separate medi-

ums. An example of refraction is when radio waves traveling through the

air penetrate walls and emerge at an angle in the direction of the receiver

(Snell’s law).

• Reflection. Reflection occurs when an electromagnetic wave traveling

through one medium changes direction at the interface formed between

the propagation medium and a second medium. An example of reflection

is when signals are reflect off walls towards the receiver.

• Diffraction. Diffraction occurs when the electromagnetic wave impinges

on an edge or corner of a structure that is large compared to a wavelength.

The incident rays in diffraction follow Keller’s law of diffraction [13] for

example when radio waves impinge on a wall corner or furniture edges.
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For free space propagation, the received signal is exclusively a result of

direct path propagation and the signal strength calculations are deterministic

(Friis transmission equation). The two ray ground reflection model (also called

the flat earth model) is another example of a deterministic model that can be

used to predict the total received field in some outdoor wireless environments

based on the wireless systems physical characteristics such as antenna heights

and the ground reflection coefficient ([13] in Chapter 6). However, determin-

istic models cannot be used to predict the received signal characteristics in a

wireless channel in which there are multiple propagation paths. Such channels

are described using statistical models which are necessary because of the large

number of propagation paths that can be attributed to the different mecha-

nisms through which multipath propagation may occur (Figure 2.1).

Each of the numerous propagation paths constitutes a multipath ”channel”

through which the transmitted signal arrives at the receiver. Each channel

is characterized by the amplitude gain, phase change and propagation delay

affecting the transmitted signal. The number of paths, the propagation de-

lays and complex gain (amplitude and phase) attributed to each path can

be regarded as random variables across a range of wireless environments and

system geometries. In the following sections, the mathematical model of a

wireless environment used to develop various channel estimators in the thesis

is developed. The channel model encapsulates the effects of fading, random

phase change and ISI affecting the sequence of QAM symbol transmitted in

the MIMO-OFDM system.

2.2 Tapped-Delay-Line System Model

In this section a model for the input/output relationship for QAM symbol

transmission through a frequency selective channel is developed. This is achieved
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by modeling the received QAM symbol as a finite sum of QAM symbols arriv-

ing at the receiver as a result of the multipath propagation of the transmitted

QAM symbol. This mathematical model leads to a tapped-delay-line (TDL)

model of a frequency selective channel where the output QAM symbols have

independent Inphase and Quadrature gain.

Recall that the transmitted QAM symbol can be written as a product of

the base band (information carrying) and carrier frequency signals for IQ QAM

modulation (see Section 1.4.11 ).

s tx
m (t) = Im(t) cos(2πfct) + Qm(t) sin(2πfct) (2.1)

= Am(t) cos(2πfct− φm(t)) = <
(
s̄ tx

m (t)ej2πfct
)

(2.2)

<(z̄) denotes the real part of a complex number z̄. The phasor s̄ tx
m (t) =

Am(t)e−jφm(t) is the complex envelope at the input of the frequency selective

channel. The amplitude and phase terms of the phasor s̄ tx
m (t) are given by

Am(t)2 = Im(t)2+Qm(t)2 and φm(t) = arctan(Qm(t)
Im(t)

) (because Am(t) cos(2πfct−
φm(t)) = Am(t) cos(2πfct) cos(φm(t)) + Am(t) sin(2πfct) sin(φm(t)) and com-

paring like terms in (2.2)). For N discrete propagation paths, the received

QAM symbol (the baseband signal mixed with the IQ carriers) can be mod-

eled as the sum of the QAM symbols arising from the multipath propagation

of the transmitted QAM symbol [26].

s rx
m (t) =

N−1∑
n=0

γn(t)s tx
m (t− τn(t)) (2.3)

In this formulation, a QAM symbol is the time domain waveform which

carries the digital data as successive pulse waveforms or more suitable pulse

shapes cf. Section 2.2.2. Note that the nth path contributes a delayed and

attenuated replica of the transmitted QAM symbol to the received symbol.

1The QAM symbol amplitude A(t) is suppressed to simplify the notation.
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γn(t) is the amplitude attenuation when the symbol s tx
m (t) propagates via the

nth path. The time delay τn(t) is the difference in the time of arrival for

the QAM symbol propagating via the nth path and the time of arrival of

the first perceptible QAM symbol at the receiver. Substituting the complex

representation of the transmitted QAM symbol s tx
m (t) in (2.2) into the equation

for the received QAM symbol s rx
m (t) in (2.3),

s rx
m (t) = <

([N−1∑
n=0

γn(t)e−j2πfcτn(t)s̄ tx
m (t− τn(t))

]
ej2πfct

)
(2.4)

= <
(
s̄ rx

m (t)ej2πfct
)

(2.5)

The phasor s̄ rx
m (t) in (2.5) is the complex envelope at the output of the fre-

quency selective channel. Typically the carrier signal can be removed through

coherent demodulation cf. Section 1.4.3 and is not of interest when modeling

the frequency selective channel. Referring to equation (2.4–2.5)

s̄ rx
m (t) =

N−1∑
n=0

γn(t)e−j2πfcτn(t)s̄ tx
m (t− τn(t)) (2.6)

=
N−1∑
n=0

γ̄n(τn(t), t)s̄ tx
m (t− τn(t)) (2.7)

γ̄n(τn(t), t) = γn(t)e−j2πfcτn(t) in (2.7) is the time varying channel gain of

the nth path (the multipath gain). Note that equation (2.7) is a convolution

sum2 of two complex variables in the form ȳ[m] =
∑N−1

n=0 h̄[n]x̄[m− n] where

the vectors {x̄[n]} and {ȳ[n]} are the input and output variables respectively

and {h̄[m]} is the impulse response. The convolution model gives rise to ISI

which is overcome using OFDM modulation cf. Section 3.1.

The multipath component gain for each propagation path can be evaluated

further by noting that each term in the summation (2.4) can be interpreted as

a delayed received symbol s rx
m (t− τn(t)) which is given by

2the input-output relationship for a multipath channel is given by convolution as opposed
to multiplication for LOS channels as discussed in 1.4.3



Chapter 2 The Wireless Channel 40

s rx
m (t− τn(t)) = <

(
γn(t)e−j2πfcτn(t)s̄ tx

m (t− τn(t))ej2πfct
)

(2.8)

Recall that the transmitted QAM symbol phasor can be written as s̄ tx
m (t) =

Am(t)e−jφm(t) so that the received QAM symbol is given by

s rx
m (t− τn(t)) = <

([
γn(t)e−j2πfcτn(t)Am(t− τn(t))e−jφm(t−τn(t))

]
ej2πfct

)

(2.9)

= γ̄n(τn(t), t)
[
Im(t− τn(t)) cos (2πfc(t− τn(t))) + . . .

Qm(t− τn(t)) sin (2πfc(t− τn(t)))
]

(2.10)

= Im(t)HI(t) cos(2πfct) + Qm(t)HQ(t) sin(2πfct) (2.11)

The QAM symbol arriving via the nth path will therefore experience an

arbitrary phase change, depending on the Inphase and quadrature gain

HI(t) =
γ̄n(τn(t), t)Im(t− τn(t)) cos(2πfc (t− τn(t))

Im(t) cos(2πfct)
(2.12)

HQ(t) =
γ̄n(τn(t), t)Qm(t− τn(t)) sin(2πfc (t− τn(t))

Qm(t) sin(2πfct)
(2.13)

From the analysis in 2.9–2.13, the Inphase and Quadrature multipath com-

ponent gain HI(t) and HQ(t) are independent as they depend on the indepen-

dent baseband signals Im(t) and Qm(t).

The evolution in time of the multipath component gain γ̄n(τ(t), t) in (2.8)

can be modeled by considering M distinct multipath components arriving at

a delay τn(t) (Clarke’s Model cf. [13]). The M multipath components can be

thought of as propagation paths with the same path length, but different angle

of arrival at the receiver. The QAM symbol and complex envelope received

via path n are then
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s rx
m (t− τn(t)) = <

(M−1∑
n=0

γn(t)e−j2πfcτn(t)s̄ tx
m (t− τn(t))ej2πfct

)
(2.14)

s̄ rx
m (t− τn(t)) =

[M−1∑
n=0

γn(t)e−j2πfcτn(t)
]
s̄ tx

m (t− τn(t)) (2.15)

The M multipath components in the summation (2.15) arrive with the

same delay independent of the measurement time so that τn(t) = τn, and the

multipath component gain in (2.15)is given by the model

γ̄(t) =
M−1∑
n=0

γn(t)e−j2πfcτn (2.16)

τn can be assumed to be some time invariant constant. The multipath com-

ponent gain model in (2.16) can be extended to include the effects of Doppler

frequency shifts, cf. - Chapter 6 and it can be shown that the multipath com-

ponent gain has a rapidly changing envelope (fast fading). In the next section,

the multipath channel gain {γ̄n(τn(t), t)} is modeled.

2.2.1 Statistical Model of a Multipath Channel

Having described the input/output relationship for frequency selective chan-

nels as a convolution, this section describes the statistical characteristics of

a wireless channel. These statistical descriptions are used later to generate

random realizations of the channel impulse response for simulation purposes.

Having shown that the channel gain is a function of both delay and time, we

now discuss how the variation of the channel gain as a function of the delay

and time variables can be modeled mathematically. Recall that because there

are a large number of irresolvable multipath components, a statistical rather

than a deterministic approach is expedient.

From the description of the multipath channel given, it is expected that

a discrete number of multipath components will be observed at delays τn(t),
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Figure 2.2: Channel Impulse Response (CIR) at three measurement time in-
stances. The first ray to arrive at measurement time tn corresponds to the
shortest path or the direct/LOS path.

depending upon the measurement time t. Also, these multipath components

will have amplitudes that generally diminish with increasing delay (see Figure

2.2). This time-delay model of the multipath component gain is used to de-

velop 1-D and 2-D channel estimators in Chapter 3. The variation of channel

gain γ̄n(τn(t), t) with delay τn(t) (the channel impulse response (CIR)) can be

written as

h̄γ̄(t, τ) =
N−1∑
n=0

γ̄n(τn(t), t)δ(t− τn(t)) (2.17)

The Channel Impulse Response in (2.17) can be modeled as a wide sense

stationary (WSS) random process in t. This means that the expectation of

the multipath gain γ̄n(τn(t), t) is constant in time and the correlation function

depends only on the separation in time (delay) between two channel gain

samples and not on the measurement time t [27]. The correlation function

of the WSS channel gain process is written as
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Rγ̄(τn, τn+k) = E [γ̄∗(τn, t)γ̄(τn+k, t)] (2.18)

= Rγ̄(τn, τn+k, ∆t) = E [γ̄∗(τn, t)γ̄(τn+k, t + ∆t)] (2.19)

∆t is a small time step, E[.] is the expectation operator and the notation

τn(t) shortened to τn to ease the notation. In most multipath channels, the

channel gain associated with different paths can be assumed to be uncorrelated

[26]; this is the uncorrelated scattering (US) assumption, which leads to

Rγ̄(τn, τn+k, ∆t) = Rγ̄(τn, ∆t)δ(τn − τn+k) (2.20)

Equation 2.20 embodies the WSS and US assumptions and is called the

WSSUS model for fading. A discussion similar to the one presented here can

be found in the literature [13] and [26],. Because the WSSUS mathematical

model of the frequency selective channel assumes that the multipath gain is un-

correlated, knowledge of the multi-path gain at a particular delay τn cannot be

used to predict the multipath gain at another delay τn+k, and from this model

it appears that a compact representation of the CIR in (2.17) is not possi-

ble. However, because the frequency selective channels linking MIMO-OFDM

antennas are the Fourier transform of the CIR in (2.17), a compact represen-

tation of MIMO-OFDM CSI (Section 1.4.2) is possible. Also Clarke’s Model

(Section 6) of the multipath channel has a finite spectrum (Jakes’ Spectrum)

and the Discrete Prolate Spheroidal Sequences provide a compact representa-

tion of the CIR in (2.17). For the notional continuous random variable τ , the

autocorrelation function is denoted as Rγ̄(τ, ∆t),

Rγ̄(τ, ∆t) = E [γ̄∗(τ, t)γ̄(τ, t + ∆t)] (2.21)

The scattering function, S(τ, ν) is obtained by performing the Fourier trans-

form on the variable t of the autocorrelation function cf. Appendix B.
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S(τ, ν) = F∆t [Rγ̄(τ, ∆t)] =

∫ ∞

−∞
Rγ̂(τ, ∆t)ej2πν∆td∆t (2.22)

Note that we can perform the Fourier transform on either τ or t or both,

but from the engineer’s point of view, it is more useful to have a model that

simultaneously provides a description of the channel properties with respect

to the delay variable τ and a frequency domain variable ν called the Doppler

frequency. The scattering function provides a single measure of the average

power output of the channel as a function of the delay τ and Doppler frequency

ν. More commonly, the Power Delay Profile (PDP) [33] which represents the

average received power as a function of delay τ for a zero Doppler frequency,

is provided for the channel.

p(τ) = Rγ̄(τ, 0) = E
[|γ̄(τ, t)|2] (2.23)

=
N−1∑
n=0

Pnδ(t− τn) (2.24)

Pn = E [|γ̄(τ, t)|2] is the power of the nth multipath component. The scat-

ter function (2.22) and power delay profile (also called the multipath intensity

profile- 2.23) are related via

p(τ) =

∫ ∞

−∞
S(τ, ν)dν (2.25)

Another function that is useful in characterizing fading is the Doppler power

spectrum, which is derived from the scattering function through

S(ν) =

∫ ∞

−∞
S(τ, ν)dτ (2.26)

When developing the MU-MIMO-OFDM Channel Estimation Algorithm,

we shall assume that the mobile user is stationary and therefore describe the

channel in terms of the PDP. The Doppler Spectrum will be considered in

Chapter 6.
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2.2.2 Bandlimited transmission

Bandlimiting the transmitted QAM symbols is necessary to reduce the interfer-

ence of communication devices in Frequency Division Multiple Access (FDMA)

multi-user systems and more generally for communications devices operating

in different bands of the Electromagnetic spectrum. In FDMA multi-user sys-

tems, the QAM symbols are transmitted and received at a symbol rate which

is determined by the channel bandwidth B = 1/2Ts, where Ts is the QAM

symbol period [16]. It can be shown that when the transmitted QAM sym-

bols are bandlimited, the received QAM symbols are filtered by two successive

filters namely, the bandlimiting filter and the channel. Both of these filters

can be cascaded when simulating the effects of the channel on the transmitted

QAM symbol. In addition due to the process of bandlimiting, the total power

received from multipath components within the delay nTs ≤ τ ≤ (n + 1)Ts

where n is an integer, can be used to model the channel gain affecting a QAM

symbol. In this section, the simulation of the CIR for a bandlimited system is

described.

A simple example of the impulse response of a bandlimiting filter is the sinc

function which yields sinc shaped pulses corresponding to the QAM symbol

[16]. The sinc function is extremely spectrally efficient3 but results in the

interference of adjacent symbols at the source. The solution to this problem

is to use the damped sinc waveform (raised cosine) pulse shape which has a

narrower main lobe and finite duration [28]–[30]. This discussion will consider

sinc pulses as an example of pulse shaping. For a bandlimited system, the

transmit symbol s tx
m in equation (2.2) becomes

s̄ tx,BL
m (t) =

∞∑
n=−∞

s̄ tx
m (t− nTs) sinc (πB(nTs)) (2.27)

For the multipath channel, the bandlimited QAM symbol propagating via

3The Fourier transform of a time domain sinc function is a rectangular pulse.



Chapter 2 The Wireless Channel 46

the nth path has a delay τn(t) and is given by

s̄ tx,BL
m (t− τn(t)) =

∞∑
n=−∞

s̄ tx
m (t− τn(t)− nTs) sinc (πB(nTs)) (2.28)

=
∞∑

n=−∞
s̄ tx

m (t− nTs) δ (nTs − τn(t)) sinc (πB(nTs)) (2.29)

=
∞∑

n=−∞
s̄ tx

m (t− nTs) sinc (πB(nTs − τn(t))) (2.30)

Substituting the equation for the delayed QAM symbol (2.30) into the

convolution sum model of the received symbol (2.7)

s̄ rx
m (t) =

N−1∑
n=0

γ̄n(τn(t), t)

[ ∞∑
n=−∞

s̄ tx
m (t− nTs) sinc (πB(nTs − τn(t)))

]
(2.31)

By rearranging the terms in (2.31) and defining the CIR ḡγ̄(t, τn(t)) =
∑∞

n=−∞ γ̄n(τn(t), t)sinc (πB(nTs − τn(t))), the LHS of (2.31) simplifies to the

convolution

s̄ rx
m (t) =

N−1∑
n=0

s̄ tx
m (t− nTs) ḡγ̄(t, τn(t)) (2.32)

We can conclude from this analysis that the CIR ḡγ̄(t, τn(t)) for a ban-

dlimited communications system is the convolution of the CIR h̄γ̄(t, τn(t) cf.

equation (2.17) with the pulse shaping filter4 . The received QAM symbol

can be simulated using the tapped-delay-line model (Figure 2.3). However, in

order to simulate the frequency selective channel, random realizations of the

CIR have to be generated.

Assuming that mobile user is stationary at the measurement time, it is

expected that the complex channel gain γ̄n(τn(t), t) will vary rapidly whilst

the relative delays τn(t) vary slowly [87] at different user locations. However,

4when the system is not bandlimited, the pulse shaping function is a delta function
(equation 2.17). The delta function has infinite bandwidth.
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Figure 2.3: Tapped-delay-line model for the input/output relationship of a
frequency selective wireless system. The channel taps ḡγ(t, τn) are assumed to
be uncorrelated when there are a large number of multipath components. The
multipath components within a symbol period are summed up when modeling
the received symbol because the transmit symbol remains unchanged for this
duration.

because the channel is a WSSUS process, the PDP is expected to be constant

at different measurement locations. In the Section 2.2.3, it is shown that a

Gaussian complex channel gain process can be derived from the PDP of the

channel. The PDP can also be used to classify the channel by defining the

maximum delay τmax which is the delay beyond which the received power falls

below a predefined threshold (e.g 20dB) [13] and [26]. The maximum delay

τmax can be used to classify the wireless channel as follows.

• Channels are said to exhibit frequency selective fading if the maximum

delay is greater than the symbol period τmax > Ts.

• A channel is said to exhibit flat fading if the maximum delay is much

smaller than the symbol period τmax ¿ Ts.

The wireless channel can be classified further by specifying the root mean

square (rms) delay spread τrms of the PDP.

τrms =

[∑N−1
n=0 (τ 2

n − τn)p(τn)∑N−1
n=0 p(τn)

] 1
2

(2.33)

The rms delay spread τrms is the square root of the difference between the
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second and the first moment of the power delay profile. The first moment of

the power delay profile is called the mean excess delay and is defined as

E[τn] =

∑N−1
n=0 τnp(τn)∑N−1

n=0 p(τn)
(2.34)

p(τn) is the received power at the delay τn (2.23). In the calculation of the

mean delay E[τn] and the rms delay spread τrms, the power for the path delay τn

is divided by the sum of the received power
∑N−1

n=0 p(τn) so that weak multipath

components contribute less to the statistical distributions of the channel than

strong multipath components. In many applications the requirement for a

channel to be frequency-nonselective is τrms ≤ 0.1Ts.

2.2.3 Rayleigh Fading Channels

In this section, the multipath component gain γ̄(t) in equation (2.16) is shown

to be a Gaussian random variable with Rayleigh distributed amplitude and

uniformly distributed phase. Furthermore, because the relationship between

the mean square value (expected power of the Gaussian process) and the stan-

dard deviation (statistics of the Gaussian process) of the multipath component

gain is well known, a random realization of the multipath component gain can

be generated from the PDP.

Recall that the multipath component gain can be modeled as the total

gain of M separate paths which have the same path length (2.16). Since the

number of multipath components due to various mechanisms is considered to

be large, then by virtue of the central limit theorem5 the channel gain γ̄(t)

can be modeled as a complex Gaussian process (see Chapter 6 and [26]).

The complex Gaussian process γ̄(t) can be written in polar and Cartesian

form as follows

5the central limit theorem states that if the sum of independent identically distributed
random variables has a finite variance, then it will be approximately normally distributed
(i.e., following a Gaussian distribution, or bell-shaped curve)
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γ̄(t) = γ(t)ejψ(t) (2.35)

= γ(t) cos(ψ(t)) + jγ(t) sin(ψ(t)) (2.36)

The Cartesian form of the complex process can be written as γ̄(t) =

x(t) + jy(t), where γ(t) =
√

x(t)2 + y(t)2, tan(ψ(t)) = y(t)
x(t)

and the coordi-

nates (x(t), y(t)) are Gaussian distributed random variables with zero mean

and variance σ. The probability density functions p(x) and p(y) can be written

as

p(x) =

√
1

2πσ2
exp

(
−x2

2σ2

)
(2.37)

p(y) =

√
1

2πσ2
exp

(
−y2

2σ2

)
(2.38)

Assuming that x(t) and y(t) are independently random processes, the joint

probability density function p(x, y) is given by the multiplicative rule,

p(x, y) = p(x)p(y) =
1

2πσ2

(
exp

−(x2 + y2)

2σ2

)
(2.39)

The joint probability density function of the amplitude γ(t) and phase ψ(t)

of the multipath component gain (2.35) is calculated from p(x, y) by transform-

ing an area element6 in rectangular coordinates (x, y) to polar coordinates

(γ, ψ) using dxdy = γdγdψ.

p(γ, ψ) =
γ

2πσ2

(
exp

−(x2 + y2)

2σ2

)
(2.40)

Since p(γ, ψ) is independent of the phase ψ(t), then the variables γ(t) and

ψ(t) are independent.

6given the probability density function f(x), the probability of the interval [a,b] is given
by the area under a curve

∫ b

a
f(x)dx.
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p(γ, ψ) = p(γ)p(ψ) (2.41)

p(ψ) =

∫ ∞

0

p(γ, ψ)dγ =
1

2π
for 0 ≤ ψ ≤ 2π (2.42)

p(γ) =

∫ 2π

0

p(γ, ψ)dψ =
γ

2πσ2

(
exp

−γ2

2σ2

)
for γ(t) ≥ 0 (2.43)

This shows that the random variable γ(t) is Rayleigh distributed whilst the

random variable ψ(t) is uniform distributed. The mean square value of the

Rayleigh distributed variable γ(t) is related to the standard deviation of the

Gaussian distribution as follows [24]

E
[|γ(t)|2] = 2σ2 (2.44)

In Section (2.3), the PDP is modeled using the well known Saleh-Valenzuela

model. The PDP provides the expected power of each multipath component

(E [|γ(t)|2]) which is then used to generate a complex gain process γ̄(t) with

variance σ. Note that because of the WSSUS assumption, it is reasonable to

expect that the mean square value for a multipath component is not dependant

on measurement time, or for stationary users, the measurement location. For

this reason, the Saleh-Valenzuela model appears extendable (by changing some

basic parameters) to represent the channel within any building.

2.3 Saleh-Valenzuela channel Model

The Saleh-Valenzuela (SV) model [32] can be used to generate the PDP of

an indoor environment which is then used to simulate the CIR with Rayleigh

distributed amplitudes and uniform distributed phase. It is assumed that the

transmitter and receiver links in the MIMO-OFDM systems are uncorrelated

and the condition under which this assumption can be made are stated in the

discussion in section 2.4. The SV model is used to generate that uncorrelated
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channel taps for wireless channels in an indoor environment by generating

independent power delay profiles. In this section, the SV model is described

in detail and some simplifying assumptions used in the computer simulations

for this thesis are stated. In the following discussion, K is the source OFDM

symbol length as described in section 1.4.2.

The Channel Impulse Response of a wireless channel can be described by

a simplification of the model described in section 2.2.1

h(t, τn) =
N−1∑
n=0

γ̄(t)δ(t− τn) (2.45)

Note that the multipath component gain model in (2.16) is used in (2.45)

which implies multipath channel gain measurements at the time t or random

location. Each term in the summation corresponds to a particular reflected

path (the so-called multipath component) which we will refer to as a ray.

Observations of measured channel impulse responses indicate that the rays

generally arrive in clusters and that the cluster arrival times, defined as the

cluster arrival time of the first ray in the cluster, are a Poisson process with

some fixed rate Λ(s−1). Typically each cluster consists of many rays which also

arrive according to a Poisson process with another fixed rate λ(s−1), so that

1/λ ¿ 1/Λ (1/λ ≈ 5ns and 1/Λ ≈ 200ns from room measurements [32]). The

cluster and ray inter-arrival times are exponentially distributed. The Saleh-

Valenzuela model assumes that the complex gain γ̄n is independent of the

associated delay and is a zero-mean, complex Gaussian random variable, i.e.,

the real and imaginary components are independent samples from the same

Gaussian distribution cf. Section 2.2.3. The power of the multipath component

gain γ̄n decays exponentially with delay τn to reflect the decreasing power in

multi-path components that have traveled further. The magnitude and phase

of γ̄n will follow Rayleigh and Uniform distributions respectively.

The first step in simulating the wireless channel between a transmitting and
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receiving antenna pair is to generate the expected number of clusters within

the OFDM symbol duration KTs. The probability of N arrivals in the OFDM

block period is given by the Poisson distribution with mean ΛTs

PN(KTs) =
(ΛKTs)

N

N !
e−ΛKTs ; N = 0, 1, 2, . . . (2.46)

The times between consecutive arrivals of clusters T` − T`−1 are Negative-

Exponentially distributed with mean 1/Λ and by definition T0 = 0 and TN <

KTs. A random number of N + 1 inter-arrival times are generated such that

the probability density of the arrival time T` is given by the exponential dis-

tribution

PT`
(KTs) = Λe−ΛKTs . (2.47)

For a random channel realization, clusters for which the arrival time ex-

ceeded the OFDM block period are ignored because rays within such clusters

far exceed the maximum delay of 200ns for indoor channels. At this point

the number of rays and the inter-arrival times between the rays within each

cluster can be generated from the distributions (2.46) and (2.47) using the ray

arrival rate 1/λ within the cluster inter-arrival times T` − T`−1. If the arrival

time of the kth ray measured from the beginning of the `th cluster is denoted

by τk`, the arrival time of the kth ray in the `th cluster is such that τ0` = T`

and τk` = T` + τk. Ray arrival times τk` that exceed the OFDM block period

are ignored.

The next step is to determine the average power gain of the kth ray in the

`th cluster β2
k`. The average multipath gain G is related to the average power

gain of the first ray of the first cluster β2
00 by the equation

β2
00 = (γλ)−1G = (γλ)−1GtGr

λ2
0

16π2
(2.48)

where Gt and Gr are the gains of the transmitting and receiving antennas
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(3dB - International Telecommunications Union ITU1238 statistical descrip-

tion of a typical homes operating conditions), λ0 is the RF wavelength (0.125m

at 2.4GHz) and γ is the power-delay time constant for the rays (20ns - from

room measurements [32]). Using (2.48), the average power gain β2
00 is deter-

mined and then used to calculate the monotonically decreasing mean square

values β2
k` according to the relationship

β2
k` = β2

00e
−T`/Γe−τk`/γ. (2.49)

Γ is the power-delay time constant for the clusters (60ns - from room mea-

surements [32]). The multi-path component gain amplitudes {γk`} are gen-

erated from a Rayleigh distribution with the Rayleigh distribution parameter

2σ2 = β2
k`. σ is therefore the standard deviation associated with the Gaussian

distribution of the real and imaginary part of the complex gain γ̄n = γk`e
jθk`

of the path. The phase of the ray channel gain 0 ≤ θk` ≤ 2π is uniformly

distributed.

Note that the arrival time of the kth ray in the `th cluster τk` is simply τn

and that the (k, `) notation makes it easier to index the rays associated with

particular clusters. Also E[|γ̄k`|2] is equivalent to β2
k`, but the later notation as

used in this section has been adopted from the literature [32]. Generally the

clusters will overlap but typically the expected power of the rays in the cluster

decays faster than the expected power of the first ray of the next cluster.

From room measurements in [32] and [33], rays and clusters outside a 200ns

window, although they existed, were generally too small to be detected. The

simulation results with the parameters specified in this section exhibit the

same characteristics with τmax ¿ KTs. We will assume that the delays in the

impulse response model (2.45) are multiples of the symbol period Ts. This

approach assumes that the amplitude and phase terms of the transmitted

symbol s̄ tx
m (t) remain constant over the symbol period Ts, and the summation

in equation 2.7 can be simplified by factoring out the transmitted symbol and
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Figure 2.4: a) The power delay profile and b) channel impulse response of a
wireless channel. Note that the rays in the PDP arrive in clusters as described
by the Saleh-Valenzuela model. The CIR is realized by summing the average
received multipath power (β2

k`) within the period Ts and generating a complex

Gaussian random variable with σ =

√
β2

k`/2
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adding the multipath component gain. The power gain of multiple paths with

delays that vary by less than Ts superimpose to yield a single ray gain, β2
k`

(Figure 2.4). Having discretised in time, the impulse response h ∈ CK×1

may be written as a sparse vector having non-zero elements γ̄n at indices

η(n) : η(n)Ts = τn, e.g.,

h = [γ̄1, 0, · · · , γ̄2, 0, · · · , γ̄n, 0, · · · , 0]T . (2.50)

A single PDP generated by the Saleh-Valenzuela model can be used to sim-

ulate numerous random realizations of a CIR. However, because we wish to

evaluate the performance of the channel estimation algorithm for varying max-

imum delay spread τmax, we generate random PDPs using the Saleh-Valenzuela

model for each CIR realization. Because the user is stationary, we can assume

that the CIR in our simulation corresponds to channel measurements that are

performed in different locations within the indoor environment.

2.4 Correlation of the channel gain parame-

ters of MIMO antennas

This section describes the correlation of the channel gain parameters (gain and

phase) for the separate antenna elements in an array at the receiver of a MIMO

system. The path analysis presented in this section can also be extended to

the transmit antenna array. Uncorrelated channel gain parameters at each

antenna element are desirable for MIMO functionality, that is, the so-called

spatial multiplexing, diversity, beamforming and joint optimization schemes.

Figure 2.5 shows a far field wavefront impinging on two antennas at the re-

ceiver of a MIMO system. The two antenna elements in the array are separated

by a distance L which is typically of the order of a wavelength λ. The wave-

front arriving at an azimuth angle of φn at transmit antenna 1, has to travel a
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Figure 2.5: A far field wavefront impinging on two antenna elements at the
receiver of a MIMO system. The path difference ∆pn causes an additional
phase change and delay for the multipath components at the second antenna
elements, ultimately leading to uncorrelated channel gain parameters at ei-
ther antenna. Each multipath component will have a unique path difference
depending on its azimuth angle of arrival.
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distance ∆pn = L sin(φn) before reaching the second antenna in the antenna

array. This path difference results in an additional phase change of k∆pn ra-

dians and delay δτn = ∆pn/c seconds for each received multipath component,

where k is the wave number, λ is the carrier wavelength and c = 3 × 108

is the speed of an electromagnetic (EM) waves in free space . Note that the

delay δτn is typically very small and its effects can be considered negligible,

particularly when compared to the effects of path differences.

If the antennas are adequately spaced (the separation is in the order of a

wavelength), and there is a large number of multipath components, then the

channel for each receiver antenna can be considered to be independent. Typ-

ically, when the symbol period is much longer than the maximum delay (flat

fading), then the summation of a large number of multipath components result

in uncorrelated channel gain parameters at the different antenna elements in

the array. Similarly, when the symbol period is a fraction of the maximum

delay, the multipath component gain can be summed up over the symbol pe-

riod, again resulting in uncorrelated channel gain parameters for each antenna

element. An analysis of the correlation of MIMO channels is presented in the

literature [34].

In this thesis, it is assumed that the MIMO channels are uncorrelated for

each transmit receive antenna pair.

2.5 Chapter Summary

This chapter is concerned with the effects of the wireless channel on the trans-

mitted QAM symbol vectors used in MIMO-OFDM systems. Mathematical

models are used to predict the effects of Inter-symbol interference (ISI), ar-

bitrary phase change and fading that are typically experienced in Non-Line-

of-Sight (NLOS) multi-path channels. The convolution model of the channel

is later used in the thesis to develop the theoretical framework for data aided
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channel estimators based on the time and frequency correlations of the MIMO-

OFDM channel.

The convolution model (which leads to ISI) is derived by formulating the

received QAM symbol as the sum of the delayed and attenuated transmitted

QAM symbol propagating via a finite number of paths (the so called multi-path

components). In this formulation, a QAM symbol is the time domain waveform

which carries the digital data as successive pulse waveforms, or alternatively,

more suitable pulse shapes. Different models of the channel can be formulated

depending on the pulse shaping function and the sampled, discrete, Channel

Impulse Response (CIR) can be used in the tapped-delay-line (TDL) model

to simulate the received symbol. Bandlimited transmission therefore has two

implications for communications systems modeling:

• The Channel Impulse Response is a convolution of the multi-path CIR

and the pulse shaping filter impulse response. This extended CIR model

predicts that the multi-path component gain at a particular delay may

be ’blurred’ due to pulse shaping.

• Simulation of the tapped-delay-line (TDL) model can be simplified by

using impulses at the symbol period Ts to represent multi-path compo-

nent gain. This channel model assumes a maximum likelihood based

timing recovery scheme is implemented at the receiver.

The symbol period Ts together with the maximum delay of the channel

τmax determine whether the channel can be classified as a frequency selective

channel or a flat fading channel. This thesis is concerned with high data

rate systems operating in sever multipath conditions, and hence a frequency

selective channel model is adopted.

From the QAM symbol formulation of the received signal, it can be noted

that each multipath component has a complex gain (representing the IQ com-

ponents gain) whose real and imaginary components are independent random
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variables. This observation is made by considering the signal received from

each multi-path component and comparing the form of this received symbol to

the transmitted symbol. If each multi-path component is itself a sum of finite

components arriving at the same time from different directions, the central

limit theorem can be used to model the IQ components of the gain as indepen-

dent Gaussian random variables. The resulting complex process has Rayleigh

distributed amplitude and uniformly distributed phase.

In order to simulate the multipath component gain, the relationship be-

tween the Power Delay Profile (PDP) and the variance of the Rayleigh dis-

tributed channel amplitude is exploited. Because the multipath component

gain is assumed to be a wide sense stationary (WSS) process, average power

measurements are sufficient for describing the channel in any location with

a room when the user is stationary. The Saleh-Valenzuela model is used to

simulate the PDP using the exponential decay of the multi-path component

power with increasing delay, and the Poisson process to predict the number of

multipath components and their inter-arrival times.
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Chapter 3

Coherent Detection for

MIMO-OFDM Systems

A simple and accurate method of estimating the channel gain parameters (am-

plitude and phase) of a wireless system is to send a sequence of QAM symbols

known to the receiver and use the received QAM symbols as well as the un-

derlying convolution model of the frequency selective channel to form channel

estimates. For MIMO-OFDM systems, channel gain estimation can be per-

formed in the time domain followed by a transformation into the frequency do-

main using a Fourier transform. This approach has the advantage of reducing

the number of channel gain parameters to be estimated for the MIMO-OFDM

system.

In this chapter, a data aided channel estimation algorithm for the MIMO-

OFDM systems is described. As a starting point, the mathematical descrip-

tion of the equalization of frequency selective channels using OFDM is given.

OFDM equalization results in flat fading channel gain parameters for each

sub-carrier in the MIMO-OFDM system. In order to develop a MIMO-OFDM

estimator, SISO-OFDM channel estimators are considered after which a MISO-

OFDM channel estimator that calculates the channel at a single receive an-

tenna is developed. The MISO-OFDM channel estimator can then be gener-

alized to a MIMO-OFDM system.

61
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3.1 OFDM Equalization

In Section 2.2, the QAM symbols at the output of a frequency selective channel

are shown to be a convolution of the QAM symbols at the channel input and

the Channel Impulse Response vector (the CIR vector is derived in Section

2.3). One undesirable effect of the convolution is Inter-Symbol Interference

(ISI) by which it is meant that the current output QAM symbol is a weighted

sum of the current and past input QAM symbols. Frequency selective channels

are said to exhibit a memory of previously transmitted symbols. The single

multipath component or a single sub-carrier in OFDM will be referred to as a

channel depending on the context, and the amplitude and phase of the channel

as the channel parameters or Channel State Information (CSI).

Recall that for OFDM transmission, a length K source OFDM symbol

{X[k]} is processed using the FFT at the transmitter resulting in a length

N transmit OFDM symbol {x[n]} (Figure 3.1). K is the number of OFDM

sub-carriers sk cf. (1.8) which are amplitude modulated by the QAM sym-

bols {X[k]} for the duration NTs. For the transmission of OFDM symbol in

multipath channels, redundancy must be added to the vector {x[n]} in order

to maintain orthogonality of the sub-carriers [35]. This is done by adding a

repetition of the some of the transmit QAM samples to the beginning of each

burst resulting in a length (N + L− 1) OFDM symbol {xCP [n]} (Figure 3.1).

L is the maximum number of non-zero elements in the CIR vector which is

found by dividing the maximum delay spread τmax by the symbol period Ts.

The convolution model is then used to determine the received OFDM symbol

{rCP [n]}.

rCP [m] =
L−1∑
n=0

h[m− n]xCP [n] (3.1)

The convolution sum in equation (3.1) is derived from (2.7). For a length

(N +L−1) OFDM symbol {xCP [n]} and length L Channel Impulse Response
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vector {h[n]}, the channel output {rCP [n]} has a length N + 2(L− 1)1 . The

output QAM symbol vector can be written as a product of a channel gain

matrix and the input QAM symbol vector.




r[0]

r[1]

r[2]

..

.

r[L− 1]

..

.

r[N + 2(L− 1)− 2

r[N + 2(L− 1)− 1]




=




h[0] 0 0 . . . 0 0

h[1] h[0] 0 . . . 0 0

h[2] h[1] h[0] . . . 0 0

..

.
..
.

..

.
. . .

..

.
..
.

h[L− 1] h[L− 2] h[L− 3] . . . 0 0

..

.
..
.

..

.
. . .

..

.
..
.

0 0 0 . . . h[L− 1] h[L− 2]

0 0 0 . . . 0 h[L− 1]







x[N − L + 1]

x[N − L + 2]

x[N − L + 3]

..

.

x[0]

..

.

x[N − 2]

x[N − 1]




(3.2)

At the receiver, the first and last L − 1 symbols of the vector {rCP [n]} in

equation (3.2) are removed leaving a length N vector {r[n]}. Note that the

added redundancy due to a cyclic prefix can be 5% to 20% of the transmitted

data vector [3]. After removal of the cyclic prefix, the output QAM symbol

vector r ≡ {r[n]} equation (3.2) can be written as the product of a circulant

matrix HC and the input QAM symbol vector x ≡ {x[n]}.

r = HCx (3.3)

The circulant matrix HC is an special kind of Toeplitz matrix where each

column is obtained by doing a wrap-around downshift of the column vector

h ≡ [h[0], h[1], . . . , h[N − 1]]T cf. Section 2.3.

HC =




h[0] h[N − 1] h[N − 2] . . . h[1]

h[1] h[0] h[N − 1] . . . h[2]

h[2] h[1] h[0] . . . h[3]
...

...
...

. . .
...

h[N − 1] h[N − 2] h[N − 3] . . . h[0]




∈ CN×N (3.4)

1this result is a well known result for the convolution sum
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The downshift operator can be written as a matrix R = [e2, e3, . . . , eN , e1],

where ek is the kth column of the identity matrix from which it can be noted

that HC =
[

h Rh . . . RN−1h
]
. The special property of the circulant ma-

trix2 is that it is diagonalized by the Fourier transformation matrix. Denoting

the FFT complex exponentials by W k,n
N = 1√

N
ej2πkn/N , Fourier transformation

matrix can be written as

F =




W 0,0
N W 0,1

N . . . W 0,N−1
N

W 1,0
N W 1,1

N . . . W 1,N−1
N

...
...

. . .
...

WK−1,0
N WK−1,1

N . . . WK−1,N−1
N




(3.5)

In the next section, the proof [36] of the diagonalization of the circulant

channel matrix using the FFT is provided. This result implies that OFDM

transmission with a redundant cyclic prefix leads to channel equalization. An-

other important result arising from OFDM modulation is that the flat fading

channel gain for each sub-carrier and the CIR vector are related via h̃ = Fh.

Because the vector h is sparse, this result is used to reduce the number of

channel estimation parameters h̃. The following theorem and related proofs

are used extensively throughout the thesis. The presentation of the formal

proof also highlights some of the simulation assumptions stated later.

Theorem 3.1 If HC is a circulant matrix, then it is diagonalized by F. More

precisely

HC = FHdiag ({H[k]})F (3.6)

where diag ({H[k]}) = diag (Fh) is a diagonal matrix.

When a vector x is multiplied by F the result is the discrete Fourier trans-

form of x. Thus, the theorem claims that the eigenvalues of HC are the discrete

2this property motivates the addition of the redundant cyclic prefix
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Fourier transform of the first column in HC. To prove this theorem we need

two lemmas. First we verify that a circulant matrix is a polynomial in the

downshift operator R.

Lemma 3.2 The circulant channel matrix is a polynomial in the downshift

operator.

HC = h[0]I + h[1]R + · · ·+ h[N − 1]RN−1 (3.7)

Recall that {h[n]} are the elements of the Channel Impulse Response col-

umn vector h. The vector h ≡ {h[n]} is also the first column of the matrix

HC.

Proof : Expanding the jth columns of equation (3.7) and using the result

Rkej = e(j+k) mod (N+1) yields

(
h[0]I + h[1]R + · · ·+ h[N − 1]RN−1

)
ej = h[0]ej + h[1]ej+1 + . . .

+ h[N − j]eN + h[N − j + 1]e1 + . . .

+ h[N − 1]ej−1 (3.8)

= Rj−1h (3.9)

= HCej (3.10)

Hence, the jth column in the matrix polynomial equals the jth column in

HC. Since this holds for all j the lemma is established.

Note that R is also a circulant matrix, so Theorem (3.1) should hold for

this special matrix. We first show that the Fourier matrix diagonalizes R

and, using Lemma (3.2) we can then show that F diagonalizes more general

circulant matrices.

Lemma 3.3

FR = DF (3.11)
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where D = diag
(
W 0,1

N ,W 1,1
N ,W 2,1

N , . . . ,WK−1,1
K

)

Proof : We prove this lemma by comparing the (k, j)th element of FR

with the (kj, )th element of DF.

[FR]k,j =
[
W

(k−1),1
N ,W

(k−1),2
N ,W

(k−1),3
N , . . . , W

(k−1),N
N

]
ej = W

(k−1),j
N (3.12)

[DF]k,j = W
(k−1),1
N eT

k




W
0,(j−1)
N

W
1,(j−1)
N

W
2,(j−1)
N

...

W
N−1,(j−1))
N




= W
(k−1),1
N W

(k−1),(j−1)
N (3.13)

= W
(k−1),j
N (3.14)

Since k and j are arbitrary the statement FR = DF holds. We now have

the results needed to prove Theorem (3.1) above.

Proof [Theorem (3.1) ]: We start by showing that FHCF
H is diagonal.

Replacing HC with the matrix polynomial (3.7) and using FRFH = D from

Lemma (3.3) gives

FHCF
H = F

(
N−1∑

k=0

h[k]Rk

)
FH =

N−1∑

k=0

h[k]FRkFH (3.15)

=
N−1∑

k=0

h[k]
(
FRFH

)k
=

N−1∑

k=0

h[k]Dk = P (D) (3.16)

where P (z) = h[0] + h[1]z + · · ·+ h[N − 1]zN−1. Since D is diagonal Dk is

also diagonal,

Dk = diag
(
W 0,k

N ,W 1,k
N ,W 2,k

N , . . . , WN−1,k
N

)
(3.17)

Thus P (D) is a diagonal matrix. It remains to show that P (D) = diag (Fh).

Using 3.17 the (k, k)th element in P (D) can be found,
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[P (D)]k,k =
[
h[0]I + h[1]D + · · ·+ h[N − 1]DN−1

]
k,k

(3.18)

= h[0]W k−1,0
N + h[1]W k−1,1

N + · · ·+ h[N − 1]W k−1,N−1
N = Fh[k]

(3.19)

This proves the theorem.

3.2 SISO-OFDM Channel Estimation

In order to achieve low error rates for data detection, OFDM systems employ

coherent detection which relies on the knowledge of the amplitude and phase

variations that are present on each flat fading sub-carrier channel. The most

common channel parameter estimation technique involves the use of a training

sequence, where the transmitter sends a known sequence of QAM symbols

which are used to derive knowledge of the channel parameters at the receiver.

The correlation of the channel parameters for successive sub-carrier channels,

the so called frequency correlations, can be exploited to reduce the number

of channel estimation parameters. Alternatively, correlations of the channel

parameters for successive OFDM symbols, time correlations, can be exploited

for the same purpose. The time-frequency model cf. (2.17) of a SISO-OFDM

system is introduced, which makes it possible to estimate the channel along

one or both of these dimensions.

For a single user, Single Input Single Output OFDM (SU-SISO-MIMO)

communications system, the system model is expressed as a Hadamard (i.e

element wise) product of the columns of the data matrix X̃ and the channel

matrix H̃.

R̃ = X̃ • H̃ + Ñ (3.20)

Each column of the the matrix X̃ ≡ [x̃1, x̃2, . . . , x̃M ] represents an OFDM
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symbol whilst each column of H̃ ≡
[
h̃1, h̃2, . . . , h̃M

]
is the FFT of the CIR

cf. Section 3.1. Ñ ≡ [ñ1, ñ2, . . . , ñM ] is an Additive White Gaussian Noise

(AWGN) matrix with columns ñm corresponding to the AWGN affecting the

mth OFDM symbol. x̃m ≡ [X[0,m], X[1,m], . . . , X[K − 1,m]]T is the OFDM

symbol where {k : k = 0, 1, . . . , K − 1} is the sub-carrier/frequency index cf.

Section 1.4.2 and {m : m = 1, 2, . . . ,M} is the symbol index. The vector x̃m

is formed at the receiver after removal of the cyclic prefix and FFT transform

(Figure 3.1). At time m, hm ≡ [h[0,m], h[1,m], . . . , h[L− 1,m], 0, . . . 0] ∈
CN×1 where L ¿ N , is a sparse vector that is formed from padding a length

L vector with zeros. When the vector hm is multiplied by the FFT matrix F

the result, is the column vector h̃m ≡ [H[0,m], H[1,m], . . . , H[K − 1,m]]T of

the channel matrix in (3.20) where K = N .

The structure of the OFDM signaling in equation (3.20) allows a chan-

nel estimator to use time and frequency correlations. Frequency correlations

are observed in the columns h̃m which are a sum of L low frequency com-

plex exponentials as a result of the Fourier transform of hm with L ¿ K.

Time correlations for OFDM signalling can be understood by considering the

Clarke’s channel model introduced in Chapter 6. In general, time variance of

the channel is caused by movement of the receiver at a given velocity or the

various multipath mechanisms moving at random speeds [37]. When the chan-

nel is time variant, the relative path delays and attenuation of the individual

multi-path components vary slowly but the phase shifts experience a Doppler

effect and may vary rapidly.

In this thesis, it is assumed that the QAM symbol transmission rate is high

compared to the time variance of the channel and thus the channel impulse

response is constant for the duration of an OFDM symbol. If this is not the

case, then each received QAM symbol will be the product of previously trans-

mitted QAM symbols with different channel gain parameters. The simplifying
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assumption stated above is however supported by the strong time correla-

tions observed when modeling channel gain parameters using Clarke’s model.

In the next section, the fundamental principles of one dimensional (time or

frequency) and two dimensional (time and frequency) channel estimation in

SU-SISO-OFDM systems are investigated.

3.2.1 One Dimensional Channel Estimation

Receiver complexity is reduced when one-dimensional channel parameter esti-

mation is implemented in SISO-OFDM systems because time and frequency

correlations may be exploited separately. The SNR performance of 1D channel

estimators is however inferior to that of 2D channel estimators [37, 39] and the

literature indicates that fewer pilots are required for 2D estimation leading to

spectral efficiency [40]. In this section, the frequency correlation of the channel

parameters are used to develop a low complexity 1D estimators for the SISO-

OFDM wireless system. Temporal correlations may also be used based on the

observation that the channel parameters in the time domain are a bandlimited

stochastic process (Jakes Model [25]). The simplest channel estimator based

on the frequency correlations 3 can be implemented by simply dividing the

received QAM symbol by the transmitted QAM symbol. For a single OFDM

symbol the flat fading channel for each sub-carrier can be estimated as fol-

lows (the index m is omitted because the description here refers to the single

training OFDM symbol)

h̃ = r̃/x̃ (3.21)

The division sign represents element wise division. The vectors in equation

(3.21) apply to a single column in the system description given in equation

(3.20). This estimator is referred to as the Least Squares Estimator in the

3these are the so called block-oriented estimators, and block refers to the QAM symbols
that together form an OFDM symbol
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literature [37] and [42] and has the major disadvantage of having an oversim-

plified channel model4 i.e., the absence of AWGN and perfect equalization are

assumed [37].

The frequency correlations of the channel gain for the OFDM symbol are

linked to the finite maximum delay spread of the channel. For a well designed

OFDM system, the duration of the OFDM symbol NTs is much longer the

maximum channel delay LTs, where Ts is the QAM symbol period. Channel

estimation can be performed in the time domain (solving for hm rather that

h̃m in section 3.2) where there are fewer parameters. This leads to a low

complexity solution with improved SNR performance. Considering without

loss of generality that x̃ = [1, 1, . . . , 1]T ∈ RN×1, the received OFDM symbol

can be written as

r̃ = F


 h

0


 + ñ (3.22)

0 is an (N − L) × 1 null vector, and N = K is the length of the column

vector r̃. F is a N×N matrix that can be separated into the ”signal subspace”

and the ”noise subspace”, and the received OFDM symbol can be re-written

with the partitioning of the F matrix.

r̃ =
[

Fh Fn

]

 h

0


 + ñ = Fhh + ñ (3.23)

Relying on this model, the reduced space estimates of the channel can be

calculated as follows

ĥ = F†hr̃ = h + F†hñ (3.24)

F†h is the pseudoinverse of the signal subspace FFT matrix (Section 3.3.1).

The so-called Maximum Likelihood Estimator [37] is then given by

4Practical systems may not be perfectly synchronized resulting in errors in burst detection
and AWGN in the received symbol
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Figure 3.2: 1-D and 2-D SISO-OFDM channel estimation. The shaded sub-
carriers contain training symbols. In 1-D channel estimation, the frequency
correlation of the training sub-carriers is used to estimate the channel. In
2-D channel estimation, the time and frequency correlation of the training
sub-carriers are used to estimate the channel.

ˆ̃h = Fĥ (3.25)

This estimator amounts to forcing the time channel estimator, which is

constrained to a length L, back into the frequency domain. The placement

of pilots for frequency domain channel estimation is depicted in Figure 3.2.

Several data OFDM symbols are transmitted after the training OFDM symbol,

and coherent detection is used to reduce the error in data detection. Note that

due to the motion of the receiver or multipath mechanisms, training symbols

are repeated within the coherence time, which is the time during which the

channel parameters are valid.
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3.2.2 Two Dimensional Channel estimation

For the SU-SISO-OFDM system, not all the sub-carriers are required for chan-

nel estimation because of the strong frequency correlations and the pilot QAM

symbols can be spaced at interval in frequency to estimate the channels. The

performance of the channel estimator can also benefit from the rather strong

time correlations when pilot QAM symbols are spaced at interval in time (Fig-

ure 3.2). Exploiting both time and frequency correlations can significantly

reduce the spectral inefficiency due pilot symbol placement whilst providing

the functions of filtering, smoothing and prediction [37]–[43]. In order to ex-

plain the aforementioned functions, it is necessary to understand the process

of 2D channel estimation. At the pilot sub-carrier time-frequency locations,

an a posteriori least squares estimate of the channel parameters corrupted by

additive white gaussian noise (AWGN) is given by

Ĥ[ḱ, ḿ] =
R̂[ḱ, ḿ]

X[ḱ, ḿ]
=

R[ḱ, ḿ] + N [ḱ, ḿ]

X[ḱ, ḿ]
(3.26)

= H[ḱ, ḿ] +
N [ḱ, ḿ]

X[ḱ, ḿ]
(3.27)

Note that for the flat fading OFDM sub-carrier channel, the received QAM

symbol is given by the product R[k, m] = H[k, m]X[k, m], where H[k, m] is

the sub-carrier channel gain and X[k, m] is a transmitted QAM symbol (data

or pilot). An estimate of the sub-carrier channel gain at any given time-

frequency location Ĥ[k, m] is given by a linear combination of the estimates

Ĥ[ḱ, ḿ] (3.27) at the pilot locations.

Ĥ[k, m] =
∑

[ḱ,ḿ]

ω[ḱ, ḿ]Ĥ[ḱ, ḿ] = ωH ˆ̃h (3.28)

The total number of pilots in the OFDM frame can be denoted by Nframe,

where an OFDM frame refers to M received OFDM symbols each containing
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K QAM symbols. The OFDM frame is used for both channel estimation and

data detection in the 2-D estimator (Figure 3.2). ˆ̃h ∈ CNframe×1 is a vector

formed from some arrangement of the least square channel parameter estimates

{Ĥ[ḱ, ḿ]} (3.27) for the OFDM frame. This arrangement can be for example

a collection of the estimates {Ĥ[ḱ, ḿ]} for increasing frequency index from the

first to the last OFDM symbol in the OFDM frame. The optimal weights

ω ∈ CNframe×1, in the sense of minimizing the MSE (E[|Ĥ[k, m]−H[k, m]|2])
across all the time-frequency sub-carrier locations (the so-called 2-D Wiener

filter coefficients), are given by

ωH = θHΦ−1 (3.29)

θ ∈ CNframe×1 is a cross-correlation vector for the correlation between

the estimated parameter and the least squares channel parameter estimates,

E
[
H[k, m]ˆ̃h

]
. ΦNframe×Nframe is a covariance matrix for the least squares chan-

nel parameter estimates E[ˆ̃hˆ̃hH ]. However since these channel statistics are

not known at the receiver, the elements of the cross-correlation vector θ can

be approximated as follows [43]

E
[
H[k]Ĥ∗[ḱ]

]
=

sin
(
πτmax(k − ḱ)Fs

)

πτmax(k − ḱ)Fs

(3.30)

E
[
H[m]Ĥ∗[ḿ]

]
=

sin (2πfD(m− ḿ)(K + L)Ts)

2πfD(m− ḿ)(K + L)Ts

(3.31)

E
[
H[k, m]Ĥ∗[ḱ, ḿ]

]
= (H[k]Ĥ∗[ḱ])(H[m]Ĥ∗[ḿ]) (3.32)

In the above formulation, τmax is the maximum delay spread of the multi-

path channel, Fs is the bandwidth of each sub-carrier, fD = vfc

c
is the Doppler

frequency for a receiver traveling at a velocity v, for a carrier frequency fc

and c = 3 × 108 m/s is the velocity of Electromagnetic waves in free space.

K is the number of QAM symbols in the OFDM symbol, L is the maximum

number of non-zero elements in the CIR vector and Ts is the QAM symbol



Chapter 3 Coherent Detection for MIMO-OFDM Systems 75

period. The correlation of CSI in the frequency domain can be related to the

power delay profile (PDP) as in Appendix C. Assuming that the correlations

can be approximated by sinc functions is equivalent to assuming a rectangular

power delay profile, and despite the fact the PDP has been modeled as ex-

ponentially decaying, the results obtained in this thesis and in the literature

[43] are compelling. Similarly, the elements of the covariance matrix Φ can be

approximated by the formulation

E
[
Ĥ[k]Ĥ∗[ḱ]

]
=

sin
(
πτmax(k − ḱ)Fs

)

πτmax(k − ḱ)Fs

(3.33)

E
[
Ĥ[m]Ĥ∗[ḿ]

]
=

sin (2πfD(m− ḿ)(K + L)Ts)

2πfD(m− ḿ)(K + L)Ts

(3.34)

E
[
Ĥ[ḱ, ḿ]Ĥ∗[ḱ, ḿ]

]
= (Ĥ[k]Ĥ∗[ḱ])(Ĥ[m]Ĥ∗[ḿ]) +

σ2
n

E[X[ḱ, ḿ]]
δḱ,ḿ (3.35)

δḱ,ḿ is the kronecker delta function and σ2
n is the noise variance at pilot

sub-carrier locations. The assumption of sinc correlations for the OFDM CSI

is equivalent to assuming a rectangular power spectral density. The power

spectral density for the OFDM CSI at a single sub-carrier can be shown to be

Jake’s spectrum [25], but again, this simplifying assumption does not impair

the wiener filter [43]. Channel estimation is performed for the data and pilot

locations using the Wiener filter (3.28). In terms of 2-D channel estimation,

filtering refers to the channel parameter estimates at the data carrying fre-

quency indices which are in a sense an interpolated estimate due to Wiener

filtering. Prediction refers to the channel parameters estimates at data car-

rying time indices which are procured through a process of time projection

using the Wiener filter. Smoothing refers to a refinement of the initial ’noisy’

least squares channel parameter estimates (3.27) at the pilot locations. 2-D

Wiener Filter estimators, also called Minimum Mean Square Error (MMSE)

estimators, have greatly increased computational complexity for the improved
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Parameter Simulation Settings

Carrier Frequency fc = 1.8× 109Hz
OFDM Symbol length K = 16
OFDM Frame length M = 32
QAM Symbol Period Ts = 10× 10−6(sec)
Maximum Delay spread τmax = 4× Ts(sec)
RMS Delay spread τrms = 3.5× 10−6(sec)
2-D pilots frequency spacing Nf = 4
2-D pilots time spacing Nt = 8
Number of 2-D pilots Nframe = 16
Number of 1-D pilots Nframe = 16
RF Channel Bandwidth Fs = 200× 103Hz

Table 3.1: Simulation Parameters for the comparison of 1-D and 2-D SISO-
OFDM Channel Estimators.

SNR performance. For the implementation of the Wiener filter, see the Mat-

lab code in appendix E. In order to model the time varying channel, Clarke’s

Model [13] was implemented. Simulation results indicate that the 2-D channel

estimator has better SNR performance using the same number of pilots as the

1-D estimators (Least squares (LS) and Maximum Likelihood (MLE)). The

results confirm that spacing the pilots at interval in frequency and time and

implementing the Wiener filter achieves smoothing, filtering and prediction.

It is noted in the literature [39]–[43] that filtering in two dimensions will

outperform filtering in just one dimension with respect to the number of pilots

required and mean square error performance. However, two cascaded orthogo-

nal 1-D filters are simpler to implement and are shown to be virtually as good

as true 2-D filters. This observation motivates the separated 1-D approach

pursued in this thesis, where optimization in the frequency and time domain

are procured independently.
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Figure 3.3: Random realization
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parameters for v = 70mph.
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Figure 3.5: Simulation results for

the Mean Square Error (MSE) in

the channel parameter estimates

vs. Signal to Noise Ratio (dB) for

SISO-OFDM estimators for v =

70mph.
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Figure 3.6: Simulation results for

the Mean Square Error (MSE) in
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3.3 MIMO-OFDM Channel Estimation

Current research into SU-MIMO-OFDM channel estimation has mainly fo-

cused on least square (LS) channel estimation [45]. The main problem with
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this approach is the design of optimal training sequences, a problem that has

been investigated in various literature [46, 47]. Recently, a common framework

has been proposed for evaluating various (LS) channel estimation methods in

[48]. The channel estimator described in this section uses the underlying con-

volution model of the communications channel in conjunction with available

training data at the receiver to estimate the channel parameters in the time

domain. This channel estimator is a modified version of the estimator in the

literature [49] originally proposed for application to the Time Domain Multiple

Access (TDMA) GSM frame. It can also be noted that the modified channel

estimator is the generic MIMO-OFDM estimator presented in the literature

[48].

3.3.1 Least Squares Solution

The forward problem r = Xh can easily be formulated for the MISO-OFDM

system using the convolution channel model. The forward solution predicts the

outcome r as a function of known system inputs matrix X and channel vector

h. The channel vector h has a minimum length L (Section 3.2) and the MISO

system employs (nt, 1) antennas with K sub-carriers for each transmit/receive

antenna link. MISO-OFDM estimators can be generalized to MIMO-OFDM

estimators by repeating the estimation process at each receive antenna at a

time.

In the inverse problem, N measured values of the system output r are used

to estimate ntL unknown channel parameters [50]. Both the system output r

and the system inputs matrix X are known at the receiver. In general X in

non-invertible and a pseudoinverse must be used to solve the inverse problem.

ĥ = X†r (3.36)

The pseudoinverse X† is not the ”normal” inverse of the matrix X, and
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the products D = X†X is not necessarily equal to the identity matrix. The

matrix D ∈ CN×N is the data resolution matrix which is determined by the

choice of the system input X. The residuals are defined as e = r −Xĥ and

L2 norm of the vector of residuals Γ = eT · e is zero when D = I and increases

as D deviates from the identity matrix I. The Least Squares (LS) solution

corresponds to the minimum point of the error surface [50] and it is found by

setting the derivative of the objective function Γ with respect to h equal to zero

∂Γ
∂h

= 0. The Moore-Penrose inverse X† =
(
XHX

)−1
XH yields the LS solution

when ntL ≤ N . This LS solution is used for MIMO-OFDM estimators and

has previously been used for SISO-OFDM Maximum Likelihood Estimators

(Section 3.2.1). Note that the Least Square MIMO estimators are however

different from SISO Least Squares estimators as presented in this thesis and

in the literature [37] and [42].

3.3.2 Time Domain LS Channel Estimation

MIMO-OFDM channel gain estimation can be performed in the time domain

by evaluating the CIR for the wireless links between the nt transmit antennas

and a single receiver. The channel gain for the OFDM sub-carriers can be

collected into a vector h̃i,j ≡ [Hi,j[0], Hi,j[1], . . . , Hi,j[K − 1]]T where h̃i,j =

Fhi,j and (i, j) is the link between transmit antenna i and receive antenna j.

Note that the column vector of the CIR h in equation (2.50) for a MIMO link

is a sparse vector. For a length N CIR vector h, only L non-zero elements

need to be estimated. This reduces the number of channel gain parameters to

be estimated per MIMO-OFDM link from N to L, and the number of channel

gain parameters per receive antenna from ntN to ntL where L ¿ N . Each

received OFDM symbol of length N (in the time domain) is used to estimate

ntL channel gain parameters where5 ntL ≤ N . After channel gain estimation

5Recall that L is found by dividing the maximum delay spread τrms by the QAM symbol
period Ts so that the OFDM symbol length has to be long compared to the expected
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in the time domain, the relationship h̃ = Fh is used to obtain frequency

domain estimates.

The length L CIR vectors of nt Multiple Input Single Output (MISO) links

for the jth receiver can be written as a vector

hMISO ≡
[
hT

1,j,h
T
2,j, . . . ,h

T
nt,j

]T
(3.37)

hi,j is the SISO CIR vector h in equation 2.50 for the (i, j)th MISO link

that has been truncated to a length L. The transmitter sends unique train-

ing sequences from the ith antenna xi = [xi[0], xi[1], · · · , xi[N + L− 2]]T ∈
C(N+L−1)×1 which are length N vectors with a cyclic prefix cf. section 3.2 of

length L − 1 QAM symbols. A circulant matrix of the training symbols may

be observed at the receiver due to the convolution channel model based on the

transmitted training sequence for antenna i.

Xi =




xi[L− 1] · · · xi[1] xi[0]

xi[L] · · · xi[2] xi[1]
...

. . .
...

...

xi[N + L− 2] · · · xi[N ] xi[N − 1]



∈ CN×L (3.38)

The first and last L − 1 received QAM symbol of each burst are ignored

in the formulation of the circulant matrix above. The circulant training se-

quence matrices in (3.38) are concatenated to form a larger matrix X =[
X1 X2 . . . Xnt

]
∈ CN×ntL which can be used together with equation

(3.37) to describe a received symbol vector

r = XhMISO + n (3.39)

n is Additive White Gaussian Noise (AWGN) vector. When referring to

equation (3.39), the subscript MISO will be omitted to simplify the notation.

maximum delay of the channel
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Parameter Simulation Settings

Carrier Frequency fc = 2.4× 109Hz
OFDM Symbol length K = 128
QAM Symbol Period Ts = 11× 10−9(sec)
Cluster arrival rate Λ = 1/200× 10−9(sec−1)
Ray arrival rate λ = 1/5× 10−9(sec−1)
Tx antenna gain Gt = 3(dB)
Rx antenna gain Gr = 3(dB)
Cluster power Delay Time Constant γ = 60× 10−9

Ray power Delay Time Constant Γ = 20× 10−9

Table 3.2: Simulation Parameters for the analysis of the LS MISO-OFDM
Channel Estimators. Refer to the Saleh-Valenzuela model Section 2.3

The vector r ∈ CN×1 is the received symbol vector for the OFDM system,

before the FFT operator, and is therefore considered a time domain vector.

The Least Squares channel estimate can be found for equation (3.39) by pre-

multiplying both sides of the equation by the Moore-Penrose inverse. Because

the OFDM frame is designed such that N ≥ ntL, the LS solution is given by

ĥ = X†r ≈ h (3.40)

For a MU-MIMO-OFDM system with a large number of transmit antennas

(Section 1.6), it becomes increasingly difficult to estimate the channel as the

constraint ntL ≤ N may not be met. An improvement to the estimator can

be achieved by representing the channel gain for the SISO-OFDM sub-carriers

in the form h̃ = Bw where B is an arbitrary basis and w has a length that is

shorter than h. This approach, which we shall refer to as Reduced Parameter

Channel State Information (RP-CSI) Estimation, is investigated in chapter 4.

Note that channel fades independently for the channel between the receiver

and transmit antennas 1 and 2 in figure 3.7–3.8. There is a small error in the

estimated channel because the Saleh-Valenzuela model maximum delay of the

Channel Impulse Response (CIR) is 200ns but the estimation considers a CIR
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estimated channels using the LS MISO-OFDM estimator, channel 1.
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with a maximum duration of L× Ts ≈ 160ns, where L = 16 and Ts = 11ns.

3.3.3 Performance of the Channel Estimator

The performance of the data aided channel estimator in equation 3.40 is de-

graded by the presence of Additive White Gaussian Noise (AWGN) in the

received OFDM symbols. In this section, the effects of channel noise on the

performance of the MIMO-OFDM estimator are quantified.

Using the noisy received symbols, the vector of the Least Squares channel

gain parameters for the MISO-OFDM system are given by

ĥ =
(
XHX

)−1
XH (Xh + n) (3.41)

=
(
XHX

)−1 (
XHX

)
h +

(
XHX

)−1
XHn (3.42)

= h +
(
XHX

)−1
XHn (3.43)

The error in channel estimation is the difference between the actual channel

gain vector and the estimated channel gain vector.

ĥ− h =
(
XHX

)−1
XHn (3.44)

The error covariance matrix [52] is defined as follows

PD = E

[(
ĥ− h

)(
ĥ− h

)H
]

(3.45)

= E

[((
XHX

)−1
XHn

)((
XHX

)−1
XHn

)H
]

(3.46)

(3.47)

The expression for the covariance matrix can be simplified further as follows
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PD = E
[
(XHX)−1(XHn)(XHn)H

(
(XHX)−1

)H
]

(3.48)

= (XHX)−1XHE
[
nnH

]
X

(
(XHX)−1

)H
(3.49)

= (XHX)−1XHσ2
nIX

(
(XHX)−1

)H
(3.50)

= σ2
n(XHX)−1(XHX)

(
(XHX)−1

)H
(3.51)

= σ2
n

(
(XHX)−1

)H
(3.52)

The MSE of the channel estimator is related to the trace of the error

covariance matrix trace(PD) as follows

MSE =
trace(PD)

ntL
(3.53)

nt is the number of transmit antennas in the MISO-OFDM system and

L is the length of the CIR vector h. Further analysis of the matrix (XHX)

shows that this matrix is a Toeplitz matrix which has dimensions ntL × ntL

and contains delayed versions of the training sequence auto-correlations [44]

for the nt transmitting antennas. The role of the training sequence on the

performance of the MIMO-OFDM channel estimator is investigated for a RP-

CSI MIMO-OFDM in Chapter 5. The RP-CSI estimator that is developed

in Chapter 4 is more general that the estimator presented in this section and

hence a similar MSE analysis to the one presented here is more informative.

Simulation results comparing the analytical MSE to measured MSE for the

LS MISO-OFDM estimator shows that the estimator is optimal for reducing

MSE in channel estimates. The training sequence used for the simulation was

the well known Hadamard codes also called the Walsh codes implemented in

Chapter 11 of the literature [51].
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Figure 3.9: A comparison between the analytical and estimated MSE for the
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3.4 Chapter Summary

In this chapter, several channel estimators for 1-D and 2-D SU-SISO-OFDM

systems, as well as the generic SU-MIMO-OFDM estimator are discussed and

their performance evaluated through extensive simulations. The OFDM chan-

nels are shown to vary in frequency as well as in time, as determined by well

known channel models. Frequency domain channel parameter variation refers

to the changes in the sub-carrier channel gain with increasing frequency index,

k. A mathematically rigorous proof is presented to show that the sub-carrier

channel gain is given by the product of the Fourier transformation matrix and

the CIR vector, where the latter is a sparse matrix with a maximum of L non-

zero elements. The degree of variation of the channel parameters is related

to the parameter L such that the larger the value of L the more rapid the

variation of the channel parameters with k and vice-versa. The parameter L

can be determined by dividing the maximum delay of the channel τmax by the

QAM symbol period, Ts. Time domain channel parameter variation refers to

the changes in the sub-carrier channel gain at a particular frequency index k
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with increasing time index, m. The variation of the CIR vector elements with

time can be modeled using Clarke’s model which predicts that the multipath

amplitudes and relative delay are slowly varying, whilst the phase variations

are rapid due to the effects of Doppler frequency related variation.

One dimensional channel estimators which exploit the frequency correla-

tions of the OFDM channel improve the MSE performance of the SISO-OFDM

system. Simulation results comparing the performance of Least Squares (LS)

and the Maximum Likelihood Estimator (MLE) show that MLE estimators

achieve a lower Mean Square Error at a particular SNR when compared to

LS estimators. However, the 1-D MLE estimator is inferior to the 2-D chan-

nel estimator using the Wiener filter for Nframe number of pilots that are

spaced irregularly in time and frequency within the OFDM frame. In order to

implement the Wiener filter, the CSI correlations in time and frequency are

approximated using the sinc functions, with the first null being determined by

the Doppler frequency and the maximum delay respectively. Simulation results

show that the Wiener filter has improved SNR performance over the MLE 1-D

estimator mainly due to the predictive function of the filter. However, 2-D es-

timators have a greatly increased computational complexity for the improved

performance as numerous computations (Nframe multiplications at each sub-

carrier) are required to evaluate each channel parameter in the OFDM frame.

Because of this drawback, robust 1-D estimators are the focus of this thesis

with optimized tracking of the time varying channel gain procured separately

using the Kalman filter.

As a starting point to developing robust (optimal MSE performance for

varying SNR) 1-D channel estimators for SU-MIMO-OFDM systems, the generic

LS MIMO-OFDM channel estimator is derived and evaluated. This estima-

tor represents a simple and accurate method of estimating the channel gain

parameters based on pilot (training) sequences as well as the underlying con-

volution model of the frequency selective channel. The latter approach, also
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referred to as frequency-multiplex pilots (FMP) in the literature, may be ar-

gued to be bandwidth inefficient, since some sub-carriers must be assigned for

pilots. However, alternative such as the Superimposed pilot (SIP) aided chan-

nel estimation (where data is linearly added to the pilots at a fraction of the

total transmitted power) have performance limitation because the embedded

data effectively acts as additive noise during channel estimation [54]–[59]. The

spectral efficiency of the FMP approach adopted in this thesis can be improved

by implementing channel tracking methods.



Chapter 4

Reduced Parameter Channel

Estimation

Get the facts right, you can distort them later - Mark Twain

The frequency correlations of the channel parameters for the SISO-OFDM

symbol can be used to develop low complexity receivers with robust Mean

Square Error (MSE) performance. These frequency correlations are linked

to the finite maximum delay of the channel between transmit and receive

antenna in a multipath environment. The longer the maximum delay, the

less the frequency correlations of the sub-carrier channel parameters and the

more the number of parameters to be estimated. For multi-user MIMO-OFDM

systems where the number of antennas to be trained is large, current methods

of channel parameter estimation perform poorly.

This chapter introduces a generic MIMO-OFDM estimator that will be

referred to as the Reduced Parameter Channel State Information (RP-CSI)

estimator. The aim is to generate the MIMO-OFDM channel parameters (CSI)

by using various methods that exploit the frequency correlations of the channel

parameters. A basis that yields high SNR for low computation effort is one

with few parameters that spans typical channel variation but is orthogonal to

noise. Frequency correlations over OFDM sub-symbols are also examined.

89
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4.1 CSI Frequency Correlations

It was noted in Section 3.1 that the channel parameters of a single MIMO-

OFDM link (effectively SISO-OFDM) are the Fourier transform of the time

domain CIR vector h̃ = Fh. The Maximum Likelihood Estimator (Section

3.2.1) can be implemented for a single MIMO-OFDM link to exploit the fre-

quency correlations of the channel. In this case, the FFT matrix F is separated

into the ”signal subspace” and the ”noise subspace”, and the vector of CSI for

the single MIMO-OFDM link h̃ can be re-written with the partitioning of the

F matrix.

h̃ =
[

Fh Fn

]

 h

0


 (4.1)

0 is an (N − L)× 1 null vector, and N = K are the lengths of the column

vector h and h̃ respectively. L is the maximum number of non-zero elements

in the CIR vector which is found by dividing the maximum delay spread1 τmax

by the symbol period Ts. The single MIMO-OFDM link (3.7–3.8) is therefore

a smooth function of L complex exponentials in the matrix Fh ∈ CL×N . This

result can be evoked when solving for the CSI vector h̃ using the basis F and

reduced parameter set h. The approach has been the focus of Least Squares

MIMO-OFDM channel estimators and is presented in the literature [45],[46]

and [69]. In this chapter, RP-CSI is generalized for the implementation of an

arbitrary basis matrix B and reduced parameter set w.

Before introducing the RP-CSI method, the measure of the ”smoothness” of

the single MIMO-OFDM wireless link in a multipath environment is discussed.

1the maximum delay spread is for the channel between MIMO antennas not the sub-
carrier channels which are assumed to be flat fading
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4.1.1 OFDM Frequency Correlations

Because the channel parameters of a single MIMO-OFDM link are the Fourier

transform of the time domain CIR vector h̃ = Fh, the vector of CSI h̃ can be

considered to be the channel frequency response. The strength of a relation-

ship between channel parameter observations as a function of the frequency

separation between them can be measured using the autocorrelation function.

The autocorrelation function of the channel frequency response is given by

R(∆f) =

∫ ∞

−∞
H(f)H∗(f + ∆f)df (4.2)

For channels with an exponential Power Delay Profile (PDP - Section 2.2.1)

the autocorrelation can be computed as a statistical expectation. For a received

signal with unity local mean power [37]

R(∆f) = E [H(f)H∗(f + ∆f)] (4.3)

The coherence bandwidth Bcoh gives a measure for the statistical average

bandwidth over which the channel parameters are correlated. Bcoh is defined

as the value of ∆f for which the autocorrelation function R(∆f) of the channel

frequency response has decreased by 3dB, which is half of peak power when

the frequency deviation is zero.

R(∆f)

R(0)

∣∣∣∣
∆f=Bcoh

=
1

2
(4.4)

The coherence bandwidth Bcoh for the MIMO-OFDM antenna links can

be related to the maximum delay spread of the channel. It was noted in

Section 3.2.2 that the correlations of the OFDM channel gain parameters can

be described approximately by a sinc function with a first null that is related

to the maximum delay spread τmax of the channel. In the next section, the

maximum delay spread is shown to be inversely proportional to the coherence

bandwidth. This implies that the greater the maximum delay spread τmax,
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the less the coherence bandwidth Bcoh, and the more rapid are the channel

parameter variations in frequency.

4.1.2 Effects of Multipath on Frequency correlations

This section is concerned with the relationship between the Power Delay Profile

(PDP) cf. (4.5) and the correlation of the channel gain at particular sub-

carrier frequencies cf. (4.3). The PDP was defined in Section 2.2.1 as the

average received power as a function of delay τ . This definition assumed that

the channel has zero Doppler spread or equivalently that the transmitter and

receivers are stationary [26]. In this thesis, it is assumed that the data rate is

high and the channel remains constant during the transmission of an OFDM

symbol. Zero Doppler spread of the channel can also be assumed in this

instance.

p(τ) = Rγ̄(τ, 0) = E
[|γ̄∗(τ, t)|2] (4.5)

The WSSUS assumption means that the vector CIR h has uncorrelated

elements so that Rγ̄(τn, τn+k, 0) = Rγ̄(τn, 0)δ(τn − τn+k). However, the CSI

vector h̃ = Fh has elements H[k] that are correlated within a bandwidth

Bcoh ≈ 1

τmax

(4.6)

Such correlations can be modeled using the sinc function [67] which is a

function of the maximum delay spread τmax and the RF bandwidth of each

sub-carrier Fs cf. Section (3.2.2). From this definition we can re-classify the

frequency selective and frequency flat channels described in Section 2.2.2 as

follows

• Channels are said to exhibit frequency selective fading if the bandwidth

per symbol B = 1/2Ts is greater than the coherence bandwidth Bcoh,

B > Bcoh.
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• A channel is said to exhibit flat fading if the bandwidth per symbol B is

much smaller than the coherence bandwidth, B ¿ Bcoh.

The narrow band sub-carrier channels of a well designed MIMO-OFDM

system are thus considered flat fading. The result (4.6) show how the Power

Delay Profile, which indicates the extent of the multipath propagation for

a wireless channel, can be related to the correlation of the channel gain at

different sub-carrier frequencies. Section 4.3.2 shows how such correlations

can be exploited to form channel estimates.

4.2 RP-CSI Basis Functions

The correlations of the CSI parameters in the vector h̃ are determined by the

maximum delay spread of the multipath channel τmax. When the elements of

the CSI vector are highly correlated, an arbitrary Basis matrix B can be used

to generate each MIMO-OFDM channel vector h̃ through the transformation

h̃ = Bw. w is a column vector of the transform coefficients. Just as with the

Fourier basis, the matrix B can be separated into the ”signal subspace” and

the ”noise subspace”. The CSI vector h̃ can be re-written with the partitioning

of the B matrix as follows

h̃ =
[

Bw Bn

]

 w

0


 = Bww (4.7)

For a well designed basis, 0 ∈ C(K−nw)×1 is a null vector whose length nw

is such that nw ¿ K where K is the length of the column vector h̃ for a sin-

gle MIMO-OFDM channel. Such a basis provides improved orthogonality to

AWGN resulting in improved MSE for the channel estimator. In addition, the

efficient representation of the MIMO-OFDM channel vector h̃ has performance

implications for MU-MIMO-OFDM systems when the number of antennas to

be trained is large. The basis is orthogonal to noise when the CSI estimator
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rejects arbitrarily strong unwanted signals. It should be noted that orthogo-

nality is never absolute as signal subspace is a within the noise subspace and

the MSE of the estimator is a function of the noise variance [69], [70].

4.2.1 Wavelet Basis

This section describes how the wavelets transform can be used to reduce the

number of channel estimation parameters, and hence lead to RP-CSI parameter

estimation. As a starting point, the implementation of the discrete wavelet

transform based on finite impulse response (FIR) filters is introduced, but the

final RP-CSI implementation is achieved through vectorization of the wavelet

synthesis and analysis equations.

The decomposition (analysis) coefficients in a wavelet orthogonal basis are

computed with a fast algorithm that cascades discrete convolutions with the

filters {h[n]} and {g[n]} and sub-samples the output2 [60] (cf. Figure 4.1).

The wavelet decomposition of a discrete CSI vector {Hi[k]} ∈ CK×1 at each

cascade level j ∈ {0, 1, . . . , jmax} can be written as the inner product.

aj[l] =
2−jK−1∑

n=0

Hi[2l + n]h[n] = (Hi ∗ h)[2l] (4.8)

= 〈Hi[2l + n], h[n]〉 (4.9)

dj[l] =
2−jK−1∑

n=0

Hi[2l + n]g[n] = (Hi ∗ g)[2l] (4.10)

= 〈Hi[2l + n], g[n]〉 (4.11)

There are K
2

decomposition coefficients {aj[l] : l = 0, 1, . . . , K
2
− 1} and K

2

decomposition coefficients {dj[l] : l = 0, 1, . . . , K
2
− 1} calculated at the first

cascade level j = 0. Higher level wavelet decompositions are performed on the

{aj} samples only (cf. Figure 4.1), hence the summation in equation 4.8 is

2these are the so called ”wavelet filter” banks of the discrete wavelet transform.
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Figure 4.1: a) Wavelet filter banks for the decomposition and b) reconstruction
of the CSI vector {Hi[k]}. The coefficients dj[n] are vanishingly small at the
higher levels j compared to aj[n].

performed over half as many samples (aj[n] replaces Hi[n] in the equations 4.8

and 4.10) as at the previous level.

Note that (x ∗ y)[n] =
∑2−jK−1

k=0 x[n + k]y[k] represents the nth element of

the convolution of a signal vector {x[n]} and general coefficient vector {y[n]},
where the elements of the later are in reverse order. In this thesis, {h[k]}
and {g[k]} are the Daubechies filter coefficients [62] which are related via

g[k] = (−1)k−1h[N − k + 1]. For example, the Daubechies filter coefficients

D4 (The Daubechies filter coefficients DN have N non-zero elements) are

h[k] ≡
[

1−√3
4
√

2
, 3−√3

4
√

2
, 3+

√
3

4
√

2
, 1+

√
3

4
√

2

]
and g[k] ≡

[
−1−√3

4
√

2
, 3+

√
3

4
√

2
, −3+

√
3

4
√

2
, 1−√3

4
√

2

]
respec-

tively. The maximum number of cascade levels that can be computed using

the Daubechies filter coefficients DN is given by jmax = log2

(
N
K

)
, where N is

the number of coefficients and K is the number of OFDM subcarriers. The

limit on the maximum number of cascade levels is incumbent on the matrix

formulations presented in the following section.
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The convolution operation in equations 4.8 and 4.10 can also be written

as a dot product of the signal vector and coefficient vector (cf. 4.9 and 4.11).

The dot product form of wavelet decomposition (which leads to matrix ma-

nipulations) will be used for CSI estimation in Section 4. Based on equations

4.8–4.11, consider the wavelet decomposition of a CSI vector resulting from the

implementation of an 4 subcarrier OFDM modulation scheme in a single an-

tenna system. The maximum number of cascade levels that can be computed

using the Daubechies filter coefficients D4 is jmax = log2(1) = 0 i.e. a single

level at j = 0. At each cascade level, the length of the vectors {h[k]} and {g[k]}
are augmented by zero padding to obtain length 2−jK vectors. However, ac-

cording to equations 4.8 and 4.10, the calculation of the wavelet decomposition

coefficients a0[1] and d0[1] presents a problem as it requires multiplication with

CSI vector elements that do not exist (cf. 4.12).




a0[0]

a0[1]

d0[0]

d0[1]




=




h[0] h[1] h[2] h[3]

0 0 h[0] h[1] h[2] h[3]

g[0] g[1] g[2] g[3]

0 0 g[0] g[1] g[2] g[3]







H[0]

H[1]

H[2]

H[3]




(4.12)

In this thesis, this edge problem is overcome by assuming that the CSI

vector is periodic, in other words the beginning of the CSI vector repeats after

the last element. Several other alternative approaches are considered in the

literature [63] but the one adopted here, despite being simple to implement,

does not lead to any significant errors in CSI vector reconstruction (synthesis).

This matrix formulation for the algorithm chosen to overcome the wrap around

problem (cf. 4.122) indicates why a limit has been imposed on the maximum

number of cascade level - no further wrapping around is possible.
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a0[0]

a0[1]

d0[0]

d0[1]




=




h[0] h[1] h[2] h[3]

h[2] h[3] h[0] h[1]

g[0] g[1] g[2] g[3]

g[2] g[3] g[0] g[1]







H[0]

H[1]

H[2]

H[3]




(4.13)

w = BTh (4.14)

The CSI vector {Hi[k]} is reconstructed from the wavelet coefficients through

up-sampling and convolution of the level j = 0 wavelet coefficients (c.f Figure

4.1). Upsampling [64] can be defined as follows: given a general vector of

coefficients y[p], where the index p is such that p ∈ {0, 1, . . . , K/2 − 1}, the

up-sampled coefficients y̌[n] with index n such that n ∈ {0, 1, . . . , K − 1} can

be written as follows

y̌[n] =





y[p] if n = 2p

0 if n = 2p + 1
(4.15)

In order to upsample the coefficients vector, each value of the index p is

applied to two different functions and the results compared to a single value

of the index n [64]. The value assigned to the upsampled vector y̌[n] depends

on conditions set on the equity of the two functions and the value of n. The

process is repeated for the next value of p, until 2p = K−2 and 2p+1 = K−1.

Note that the reconstructed CSI vector {Hi[k]} is the sum of the output of the

wavelet synthesis filters.

Hi[n] =

K
2
−1∑

l=0

ǎ0[n− l]h[l] +

K
2
−1∑

l=0

ď0[n− l]g[l] (4.16)

= (ǎ0 ∗ h)[l] + (ď0 ∗ g)[l] = 〈ǎ0[n− l], h[l]〉+ 〈ď0[n− l], g[l]〉 (4.17)

The convolution in the synthesis equation 4.16 differs from the convolution

in the analysis equations 4.8–4.11, because the latter requires a lag (negative)
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delay rather than a lead (positive) delay. The reason why this formulation is

adopted in this thesis is that it results in an inverse transformation matrix that

is the transpose of the forward transformation matrix BT (cf. 4.14). Assuming

that the analysis coefficients are periodic after up-sampling, the system of

synthesis equations is simply h = Bw. The reconstruction process in equation

4.16 recovers the K elements of the vector {Hi[k]} from K
2

coefficients {aj[l]}
and {dj[l]}.

For multilevel synthesis, the wavelet synthesis samples (aj and dj) are de-

termined from lower level synthesis samples samples (aj+1 and dj+1, where the

level j = 0 is the highest level). The filters/coefficients {h[n]} and {g[n]} are

chosen such that the energy of the signal from the decomposition using the

coefficients dj[n] is vanishingly small compared to the energy of the signal from

the decomposition using the coefficients aj[n] [61]. Note that because {dj} are

small compared to {aj} the synthesis equations can be written as

h̃ ≈
[

Bw Bn

]

 w

0


 = Bww (4.18)

where w ≡ {aj} and 0 u {dj} is true for wavelet basis at a given level.

Using the proposed scheme, the number of CSI parameters is halved at each

level so that if j = 3, 16 coefficients can be used to generate the full set of 128

CSI unknowns for each channel cf. Figure 4.2. However, the error incurred in

reconstructing the CSI vector {Hi[k]} from the reduced parameter set depends

ultimately on the design of the wavelet coefficients.

4.2.2 Principal Component Analysis Basis

The Principal Component Analysis (PCA) basis developed in this section ex-

ploits time and frequency correlations of a single MISO-OFDM channel vector.

In the literature [65], the autocorrelation of the channel, i.e., its second-order

statistic, is assumed to be known, and a Karhunen–Love transform (PCA) is
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Figure 4.2: The multi-resolution analysis of a vector of CSI using the D8
wavelet.

applied. In this thesis, no assumption are made on the autocorrelation of the

channel, and the PCA basis is derived from measurements. It can be shown

that the eigen functions of the Saleh-Valenzuela channel covariance matrix are

the Fourier transform exponentials cf. Appendix A.

The PCA basis can be generated from a matrix of MISO-OFDM vectors

for a single transmit antenna where each column corresponds to the CSI for

the K sub-carriers of the MISO-OFDM channel and each row corresponds to

the CSI for the kth sub-carrier for the mth channel parameter estimates.

X̃T =




Hi[0, 0] Hi[0, 1] . . . Hi[0,M ]

Hi[1, 0] Hi[1, 1] . . . Hi[1,M ]
...

...
. . .

...

Hi[K − 1, 0] Hi[K − 1, 1] . . . Hi[K − 1,M ]




(4.19)

The columns {Hi[k, m]} are assumed to be in mean-deviation form (see

Theorem 4.1) and are determined from M channel measurements. The PCA

basis is a matrix that transforms the CSI measurements in the matrix X̃T to
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another matrix W such that

W = BX̃T (4.20)

Note that matrices W ≡ [w1,w2, · · · ,wM ] and X̃T ≡
[
h̃1, h̃2, · · · , h̃M

]

contain the transformation and CSI vectors respectively. The PCA basis B

is chosen to diagonalize the covariance matrix CW = 1
(M−1)

WWT . It can be

shown that the basis B can be generated from the measurement matrix X̃T,

such that CW is diagonal. We can begin by writing CW in terms of B.

CW =
1

(M − 1)
WWT (4.21)

=
1

(M − 1)
(BX̃T)(BX̃T)T (4.22)

=
1

(M − 1)
B(X̃X̃T)TBT (4.23)

=
1

(M − 1)
BCX̃T

BT (4.24)

(4.25)

If we select B such that each row is an eigenvector of (X̃TX̃
T
T), which

implies B = ET and CX̃T
= BTDB such that D ≡ diag(λ0, λ1, . . . , λK−1),

then we can write

CW =
1

(M − 1)
B(BTDB)BT (4.26)

=
1

(M − 1)
(BBT )D(BBT ) (4.27)

=
1

(M − 1)
D (4.28)

Theorem 4.1 For a given MISO-OFDM CSI vector h̃i ≡ [Hi[0], Hi[1], . . . , Hi[K − 1]]T ,

with h̃i ∼ (µ,E), the PCA vector wi = ET (h̃i − µ) has the properties (the

vector (h̃i − µ) is in mean-deviation form [68])
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var(wi[k]) = λk (4.29)

cov(wi[k]) = 0 (4.30)

var(wi[1]) ≥ var(wi[2]) ≥ · · · ≥ var(wi[K − 1]) ≥ 0 (4.31)

Proof : The equations (4.29–4.31) are all proven in the result (4.28).

For M MISO-OFDM CSI estimates for a given transmit antenna, the eigen-

values of the basis vector decay rapidly (Figure 4.3) due to the exponential

power delay profile cf. Appendix A. The coefficients derived from the trans-

formation wi[m] = (Bh̃i)[k] therefore have a maximum variance of λm and

there are at most M ≤ K non-zero coefficients. The results are true for any

vector h̃i that results in the covariance matrix CW.
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Figure 4.3: Eigenvalues for the

PCA basis based on 32 sets of

channel parameter estimates.
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Figure 4.4: Eigenvectors for the

PCA basis based on 32 sets of

channel parameter estimates.

To obtain the results in Figures (4.3–4.4), it is assumed that the relative

delays of the multipath components remain relatively constant over multiple

OFDM symbols, whilst the amplitudes and phase of multipath components

vary rapidly as indicated in the literature [87].
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4.3 The Proposed Method

This section introduces two effective Reduced Parameter Channel State In-

formation (RP-CSI) estimators. The OFDM symbol based estimators exploit

the correlations of CSI elements across all the sub-carriers, and can achieve a

significant reduction in the channel parameter estimates. However, there is a

limit beyond which a reduction in the number of channel parameter estimates

results in an irreducible error in the Mean Square Error (MSE). For exam-

ple, the number of parameters below which an irreducible error in the MSE

occurs for the Fourier basis is L, the maximum number of non-zero elements

in the Channel Impulse Response (CIR) vector. Using the Saleh-Valenzuela

model which predicts a maximum delay spread τmax = 200ns, and for a sym-

bol period of Ts = 10ns, the expected maximum length of the CIR vector

L = τmax/Ts = 20. An alternative to the OFDM symbol based estimators is

the OFDM sub-symbol based estimators which exploit the strong correlations

of CSI over a few sub-carriers to form channel estimates. It is shown that the

performance of such estimators is limited by the knowledge of CSI correlations

over the coherence bandwidth.

4.3.1 OFDM Symbol based correlations

In this section we develop a RP-CSI estimator that exploit the channel corre-

lation in frequency so as to reduce the number of unknowns for each MISO-

OFDM channel h̃i. We will refer to the vectors of CSI for channels from a given

transmit antenna: h̃i ≡ [Hi[0] Hi[1] · · · Hi[K − 1]]T ∈ CK×1 where the super-

script T denotes transposition, and the vectors of CSI for a given sub-carrier:

h̃[k] ≡ [H1[k] H2[k] · · · Hnt [k]]T ∈ Cnt×1. These vectors are re-arrangements

of the same parameters {Hi[k]}. Collecting the CSI for all transmit antennas

and all sub-carrier yields two vectors:
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Figure 4.5: The MIMO-OFDM system.

h̃S ≡
[
h̃T [1], h̃T [2], . . . , h̃T [K]

]T

∈ CntK×1 (4.32)

h̃F ≡
[
h̃T

1 , h̃T
2 , . . . , h̃T

nt

]T

∈ CntK×1 (4.33)

The subscript F indicates the parameters occur in sub-carrier order and S

indicates the parameters occur in transmit antenna order. The vectors h̃F and

h̃S contain the same information and are related by the orthonormal, square,

permutation matrix P : h̃S = Ph̃F.

Consider the CSI estimation problem for the MISO system as illustrated in

Figure 4.5. During a single OFDM symbol period of duration KTs a training

sequence is transmitted consisting of QAM symbol Ti[k] from transmit antenna

i on sub-carrier k. Our objective is to estimate the vector of CSI hF, cf. (4.33),

based on the vector of received OFDM symbol r̃ ≡ {R[k]}k=0,1,...,K−1. When

no noise is present, these vectors are related by the linear expression
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X̃h̃S = r̃ (4.34)

where

X̃T ≡




t̃S,1 0 · · · 0

0 t̃S,2 · · · 0
...

...
. . .

...

0 0 · · · t̃S,K



∈ CntK×K (4.35)

and 0 ∈ Rnt×1 and t̃S,k are the vectors of training symbols transmitted

from the antennas over sub-carrier k, i.e.,

t̃S,k ≡ [T1[k] T2[k] · · · Tnt [k]]T ∈ Cnt×1. (4.36)

For a system with nt = 1, (4.35) is square and has full rank, and hence

(4.34) has a unique solution. For nt > 1, it is underdetermined and has an

infinite number of solutions.

It is however possible to put constraints on the solution of the linear system

(4.34) so that it can be solved in the LS sense using the Moore-Penrose inverse

yielding a unique solution. Consider the introduction of the reduced basis

approximation, i.e., h̃F,i
∼= ∑nw

j=1 wjbj, which we can also write as

h̃F,i = Biwi (4.37)

where Bi ≡ [b1 b2 · · ·bnw ] ∈ CK×nw and wi ≡ {wi} ∈ Cnw×1 is a vector of

basis weights describing CSI variation for the channels from transmit antenna

i. Collecting the basis weight vectors for each antenna into a single vector

yields

h̃F = Bw (4.38)
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where B ≡ diag(B1,B2, . . . ,Bnt) ∈ CntK×ntnw is a block-diagonal matrix

and w ≡ [
wT

1 ,wT
2 , . . . ,wT

nt

]T ∈ Cntnw×1. Substituting this into (4.34) gives

X̃PBw = r̃. (4.39)

Equation 6.13 is an overdetermined system, with a reduced number of

parameters w to be determined that generate the vector h̃F given a basis

matrix B. A minimum norm solution can be found using the Moore-Penrose

inverse for an overdetermined system, i.e., if Ax = b, then the Moore-Penrose

solution is
(
AHA

)−1
AHb. Applying this method to (6.13), we have

w =
(
(XPB)H XPB

)−1

(XPB)H r̃. (4.40)

Due to the choice of the training sequence X̃ and if B is the Fourier Basis,

the matrix product to be inverted is the identity matrix (see section ??). In

other words if Q = (X̃PB)H then QQH = I, so that a solution for w may be

calculated without matrix inversion, i.e.,

w = Qr̃. (4.41)

Moreover, the matrix Q = (XPB)H may be calculated once and if qi is

the ith row of Q, then (4.41) may be written as

w =
K∑

i=1

R[i]qi. (4.42)

The construction above is valid for any set of basis functions B. For the

PCA basis, there is an important alteration to be made to the RP-CSI frame-

work above. The empirical mean is subtracted from the CSI for a antenna so

that

h̃F,i = ˆ̃hF,i + µi (4.43)
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Figure 4.6: |H1[k]| for a (2,1) MISO-OFDM system based on the Fourier, PCA
and Daubechies basis estimators. SNR=100dB, nw = 8.

The vector µi ∈ CK×1 is derived from a small set of measured CSI for each

antenna. Also QQH 6= I for the PCA basis and the wavelet basis. A basis

that yields high SNR for low computation effort is one with few vectors that

spans typical channel variation but is orthogonal to noise. In general noise

and natural variation will not be totally separable and so a compromise is

necessary.

Note that channel fades independently for the channel between the receiver

and transmit antennas 1 and 2 in figure 3.7–3.8. The PCA basis outperforms

the Fourier and the Daubechies because it provides the most compact rep-

resentation of the CSI variations. Based on just nw = 8 channel estimation

parameters, the PCA basis is able to track the variation in CSI for each sub-

carrier. The results above assume that the pth user is equipped with np
t = 2
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Figure 4.7: |H2[k]| for a (2,1) MISO-OFDM system based on the Fourier, PCA
and Daubechies basis estimators SNR=100dB, nw = 8.
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number of transmit antennas and that K = 128.

4.3.2 OFDM sub-symbol based correlations

This section describes an effective MIMO-OFDM channel estimator that has

been implemented in a Gigabit MIMO-OFDM prototype in the literature [51].

The estimator is based on the use of an orthogonal training sequence such

as the Hadamard sequence and the correlations of MIMO-OFDM channels

over OFDM sub-symbols (Kcoh sub-carriers) within a length K OFDM sym-

bol, where (Kcoh ¿ K). It was noted in Chapter 3 that the correlation of

the OFDM CSI in frequency can be approximated by a sinc function, where

the first null is related to the maximum delay spread (τrms) of the channel.

This result was used to develop the Wiener filter cf. (3.28) which was found

to improve the MSE performance of a SISO-OFDM estimator at the cost of

increased computational complexity at the receiver.

The concept of coherence bandwidth is particularly useful when describing

the wireless channel for a multi-carrier system such as OFDM. To reiterate,

the main advantage of OFDM is to eliminate Inter-Symbol Interference (ISI),

which results when the duration of the transmitted symbol is shorter than

the maximum delay of the wireless channel. ISI is eliminated by sending

several symbols in parallel using evenly spaced carriers (referred to as sub-

carriers), so that each symbol is transmitted for a longer duration. However,

the channel is frequency selective, meaning that the Fourier transform of the

Channel Impulse Response (CIR) is not flat. This in turn implies that the

gain experienced by different sub-carriers varies as has been observed in the

Chapter 3 for 1-D and 2-D channel estimation. The relationship between the

maximum delay of the channel and correlation of the channel gain at different

frequencies can be intuitively understood as follows: if the maximum delay is

zero, the FFT of the CIR is unity for all frequencies from Fourier transform
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theory [11]. On the other hand, if the maximum delay is finite and non-zero,

then the FFT of the CIR varies with frequency. The FFT of the CIR is the

frequency response of the channel, that is, a description of how the channel

gain varies with frequency, and the channel gain correlations can be derived

from the resulting channel frequency response cf. Appendix C.

A rectangular CIR can be shown to result in a sinc correlation function as

in Appendix C. If the power delay profile is the rectangular function

p(τ) =





1
τmax

if |τ | < 1
τmax

0 otherwise
(4.44)

then the autocorrelation function is the sinc function.

R(∆f) = R
(
(k − ḱ)Fs

)
=

sin
(
πτmax(k − ḱ)Fs

)

πτmax(k − ḱ)Fs

(4.45)

are well known Fourier transform duals [11],[67]. This observation moti-

vates the OFDM sub-symbol based MIMO-OFDM channel estimators. The

idea is that if the CSI is invariant for Kcoh sub-carriers, then a reduction in

the number of CSI unknowns is possible leading to an accurate estimate of the

CSI over Kcoh sub-carriers.

If the MIMO-OFDM system is equipped with nt transmit antennas and

the channel estimation is performed at single receive antenna, the CSI Hi[k]

corresponding to the ith transmit antenna at the sub-carrier k = k0 can be

approximated by

Ĥi[k0] =

Kcoh∑
i=1

R[k0 + i− 1]T ∗
i [k0 + i− 1] ∀ k0 = 0, Kcoh, . . . , K − 1 (4.46)

z∗ is the complex conjugate of a complex number z. For the MISO-OFDM

system, the received QAM symbol is given by R[k] =
∑nt

i=1 Hi[k]Ti[k]. The

Hadarmard training sequence is an orthogonal training sequence such that
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k0+Kcoh−1∑

k=k0

Ti[k]T ∗
j [k] =





1 if i = j

0 otherwise
(4.47)

If the difference between the CSI for the kth sub-carrier and the k0 sub-

carrier is denoted by ∆Hk,k0

i = Hi[k] − Hi[k0], the estimated CSI cf. (4.46)

becomes

Ĥi[k0] = Hi[k0] +
nt−1∑
m=0

Kcoh−1∑
n=0

∆Hk0+n,k0

m+1 Ti+m[k0 + n]T ∗
i [k0 + n] (4.48)

The error in the estimated CSI δHi[k0] is the difference between the actual

and estimated CSI. A simple rearrangement of equation 4.48 shows that the

error in the estimated CSI is a function of the gradients ∆Hk,k0

i = Hi[k]−Hi[k0].

δHi[k0] = Ĥi[k0]−Hi[k0] =
nt−1∑
m=0

Kcoh−1∑
n=0

∆Hk0+n,k0

m+1 Ti+m[k0 +n]T ∗
i [k0 +n] (4.49)

Noise free transmission is assumed in equation (4.48). If coherence is as-

sumed over the coherence bandwidth so that ∆Hk,k0

i → 0, then the error in

the CSI estimate δHi[k0] tends towards zero. The advantage of the OFDM

sub-symbol based channel estimator is that the strong correlations of the CSI

over a few sub-carriers are used to form channel estimates. As such, the per-

formance of the estimator for a large number of transmitting antennas is only

limited by the knowledge of the change in CSI over Kcoh = nt sub-carriers.

The OFDM sub-symbol estimators can be used to train a large number of an-

tennas by differentiating each antenna using a unique Hardarmard sequences

cf. Section 5.3.2. However, the more the number of antennas in the MIMO-

OFDM system, the fewer the number of estimated CSI as indicated in equation

(4.46). The performance of the estimator is then limited by the interpolation

requirements cf. Section 5.3.2.
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Figure 4.8: Absolute value of the sub-carrier channel gain for the actual and
estimated channels using Orthogonal training sequence training for transmit
antenna 1.
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Figure 4.9: Absolute value of the sub-carrier channel gain for the actual and
estimated channels using Orthogonal training sequence training for transmit
antenna 2.
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4.4 Chapter Summary

In this section, generic Reduce Parameter Channel State Information (RP-CSI)

estimators for MIMO-OFDM systems are introduced. Unlike the traditional

MIMO-OFDM channel estimators cf. Section 3.3.2, the generic RP-CSI esti-

mators are not based on the convolution model of the RF channel and rely

instead on the flat fading channel model due to Orthogonal Frequency Di-

vision Multiplexing (OFDM) modulation. The flat fading channel model, as

well as the correlations of parameters within the CSI vector, can be used to

develop MIMO-OFDM channel estimators with improved Mean Square Error

(MSE) performance. The correlations of CSI elements can be modeled as a

sinc function where the first null is related to the maximum delay spread τrms

cf. Section 4.3.2. Due to this observation, various bases can be developed to

represent the variations within the CSI vector with a few parameters. The

matrices of the bases are a set of column vectors (basis vectors) whose linear

combination can represent every vector in the CSI vector space. For an orthog-

onal basis, none of the basis vector can be represented as a linear combination

of the other basis vectors.

In the first instance, the Fourier basis is a natural basis for CSI vector space.

Using the Fourier transform matrix, L Channel Impulse Response (CIR) com-

ponents/parameters can be used to generate the CSI vector, a direct result

of OFDM modulation cf. Section C. The accuracy of this approach is deter-

mined by the maximum delay of the channel τmax and the number of antennas

to be trained, nt. The Least Squares (LS) solution implemented in RP-CSI

estimators requires that the number of CSI unknowns ntL is less than or equal

to the number of observation K, where K is the number of QAM symbols in

the OFDM symbol. As a consequence, when a large number of antennas is

deployed, the number of CSI parameters that are calculated is reduced from
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L to nw such that nw < L. However, solving for a number of parameter un-

knowns below L using the Fourier basis leads to an irreducible error in the

CSI estimates which negatively impacts the performance of a MIMO-OFDM

system employing coherent detection.

This observation motivates the search for an arbitrary basis where nw pa-

rameters are sufficient to generate the CSI vector. Wavelets analysis of the CSI

vector is investigated due to the properties of wavelets multi-resolution analy-

sis. At each level of the multi-resolution analysis, the CSI vector is decomposed

into two separate halves; one with large amplitude components which are the

”coarse signal” representation, and another with negligibly small components

representing the ”details signal” required to reconstruct the original CSI vec-

tor, cf. Section 4.2.1. Further analysis of the ”coarse signal” vector produces

two quarter length signal which are again a ”coarse signal” vector and ”details

signal” vector. In this way the length of the original signal vector can reduced

in length by one half at every level of the multi-resolution analysis. Despite

providing a reduced parameter representation of the CSI vector as required,

the wavelet basis is inferior to the Fourier basis for the purposes of channel

estimation.

Another alternative to reducing the number of CSI parameters is the use of

the Principal Component Analysis (PCA) basis. PCA analysis is a well known

mathematical technique used to reduce multidimensional data sets to lower

dimensions for analysis. In terms of the CSI variations, the aim of Principal

Component Analysis is to represent the variations within the CSI vectors using

basis vectors that are orthogonal. Furthermore, it is desirable that the PCA

parameters corresponding to the basis vectors should decay rapidly from the

first to the last basis vector. The PCA basis can be determined using the

covariance method where M measurements of the CSI vector are stacked into

a measurement matrix. The PCA basis is then found by determining the

eigenvectors of the covariance matrix, calculated from the measurement matrix
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cf. Section 4.2.2. PCA analysis is found to provide a reduced parameter

representation of the CSI vector which outperforms the Fourier Basis.

MIMO-OFDM estimators can also be developed based on the coherence of

the CSI over a few sub-carriers. If the flat fading channel is assumed to be

constant over a few sub-carriers, an orthogonal training sequence can be used

to estimate the channel at a given sub-carrier. However, there are variations in

the channel parameters within the coherence bandwidth which lead to errors

in the estimated channel. The key to accurate CSI estimation for the OFDM

sub-symbol based estimator is to have the knowledge of the variations in CSI.

This knowledge of the variations in CSI can be deduced from the Fourier or

PCA based estimation as described in the next chapter.



Chapter 5

Reduced Parameter Channel

State Information Analysis

Traditionally, in the literature, the effect of the Signal to Noise Ratio (SNR)

on the Mean Square Error (MSE) performance of MIMO-OFDM estimators is

the primary consideration when designing an estimator. This chapter begins

by showing that the OFDM symbol based estimators introduced in Section

4.3.1 achieve the Minimum MSE determined in the literature. The thesis

then goes further by examining the effects of parameter reduction on the MSE

performance of the MIMO-OFDM system when various bases are implemented

in the RP-CSI estimator. Such considerations are warranted for high data

rate systems deploying a large number of antennas in multipath channels.

It becomes essential to have a basis that can accurately represent the CSI

variations with fewer parameters in order to accurately train large number of

antennas.

After investigating the potential for parameter reduction in RP-CSI esti-

mators using the Fourier, Wavelet and PCA basis, suggestions are made on

improving OFDM sub-symbol based estimators cf. Section 4.3.2. The advan-

tage of such estimators is that their performance is linked to the variation of

the CSI over a few sub-carriers, which is generally small enough to be ignored.

However, knowledge gained about the CSI variation from bases interpolation

116



Chapter 5 Reduced Parameter Channel State Information Analysis 117

may be used to enhance the performance of OFDM sub-symbol based estima-

tors in a bid to procure Complete CSI (C-CSI) at the receiver.

5.1 The Lower Bound for MSE in Channel Es-

timate

In this section the lower bound for the MSE in channel estimate based on

the RP-CSI framework and Fourier basis B = F will be derived. Before

investigating the effect of parameter reduction on the MSE performance of

the MIMO-OFDM estimator, it is necessary to establish that the lower bound

of the MSE achieved by the RP-CSI estimator based on Fourier basis is the

Minimum MSE achievable. For the analysis, the length of the parameters

vector is given by nw = L, where L is the maximum number of non-zero

elements in the Channel Impulse Response (CIR) vector. It is well documented

result in the literature, [44], [45] and [69], that evaluating L CIR parameters

followed by the FFT produces the Minimum achievable MSE for a given OFDM

channel estimator.

The MSE for the proposed method is evaluated by considering the effects

of Additive White Gaussian Noise (AWGN) on the received OFDM symbol in

equation (6.13), so that

r̃ = QHw + n. (5.1)

where n ∈ CK×1 is a vector of the i.i.d noise at the receiver. The Least

Squares solution for the proposed the framework is then

ŵ = w + Qn. (5.2)

Equation (4.41) for the coefficients of the MISO-OFDM CSI vector has been

used. The error in channel estimate can be found by rearranging equation (5.2)
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and multiplying both sides by the basis matrix.

B (ŵ −w) = BQn. (5.3)

so that (
ˆ̃hF − h̃F

)
= BQn. (5.4)

The MSE in the channel estimate is then calculated using the error co-

variance matrix [52]which allows us to determine the relationship between the

MSE and the maximum expected length of the CIR vector.

MSE =
1

ntK
E

[
‖ˆ̃hF − h̃F‖2

]
(5.5)

=
1

ntK
E

[
Tr

{(
ˆ̃hF − h̃F

)(
ˆ̃hF − h̃F

)H}]
(5.6)

=
1

ntK
E

[
Tr

{(
BQn

)(
BQn

)H}]
(5.7)

=
1

ntK
Tr

{
BQE[nnH ]QHBH

}
(5.8)

Note that in equation (5.8), the E[nnH ] = σ2
nI ∈ RK×K , and we can write1

MSE =
σ2

n

ntK
Tr

{
BQQHBH

}
(5.9)

In the above equation, the MSE is depends on the training sequence and

basis through the matrix Q. We can define Z = BQ so that Y = ZZH

in equation (5.9). We also define a diagonal matrix for the training symbols

TS,i = diag(Ti[k]) and note the result XP = [TS,1 TS,2 . . . TS,nt ]. A diagonal

matrix is a square matrix in which the entries outside the main diagonal are

all zero. In this thesis, diag(a1, . . . , an) represents a diagonal matrix whose

diagonal entries starting in the upper left corner are a1, . . . , an. We can then

write for Z = BQ = BBH(XP)H

1from the definition of noise spectral density
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Z =
[
B1B

H
1 TH

S,1 B2B
H
2 TH

S,2 . . . BntB
H
nt

TH
S,nt

]T
(5.10)

and using a similar argument for ZH = (BQ)H = (XP)BBH , we deduce

ZH =
[
TS,1B1B

H
1 TS,2B2B

H
2 . . . TS,ntBntBnt

]
. (5.11)

The matrix Y = ZZH is then given by Y = (Ym,n)nt×nt where Ym,n =

BiB
H
i TH

S,mTS,nBiB
H
i . Analysis of the matrix the elements of the matrix Y

shows that the diagonal elements are given by,

yl,l =
L

K
(5.12)

Therefore, when the training symbols are orthogonal, and a reduced Fourier

basis is implemented, the MSE can be calculated as follows

MSE =
σ2

n

ntK

ntK∑

l=1

yl,l (5.13)

=
σ2

n

ntK

ntK∑

l=1

L

K
(5.14)

Using Cauchy’s Mean theorem which states that the arithmetic mean is

always greater than or equal to the geometric mean, we can expand the sum-

mation in the equation above so that

MSE ≥ σ2
n

ntK
ntK

ntK

√√√√
ntK∏

l=1

L

K
(5.15)

Equality is observed in equation (5.15) only when y1,1 = y2,2 = · · · =

yntK,ntK , which is a property that is determined by the basis for each transmit

antennas CSI. However, the Fourier basis is used exclusively in the analysis

of the MIMO-OFDM channel estimator, and it can be noted that
∏ntK

l=1
L
K

=

( L
K

)ntK so that
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MSE ≥ σ2
nL

K
(5.16)

This result agrees with the related analysis in [69] and the analysis in

[70]. Equation (5.16) gives the minimum mean square error for the RP-CSI

estimator, when the Fourier basis evaluates L time domain channel parameters

of the CIR vector (cf. Sections C–4.2). Because L is the maximum number

of non-zero elements in the CIR vector, the MSE increases if the number of

parameters evaluated is less than L.
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5.2 RP-CSI Simulation Results

In this section, the effect of reducing the number of channel estimation parame-

ters for OFDM symbol based RP-CSI channel estimation is evaluated. The CSI

estimation algorithm described in Section 4.3 will be used with the different

basis functions described in Section 4.2. The channels linking each transmitter-

receiver antenna pair are assumed to experience uncorrelated Rayleigh fre-

quency selective fading as described by the model in Section 2.3. The systems

and algorithms will be compared for a range of Signal-to-Noise Ratio (SNR)

for various random realizations of the Saleh-Valenzuela channel model which

has a root mean square (rms) delay spread of approximately τrms = 50ns and

a maximum delay spread of τmax = 200ns.

Results were obtained for a symbol period of Ts = 10ns, for which an RF

channel bandwidth of B = 2/Ts = 200MHz is assumed. At this symbol rate

and considering that multi-path components with delays in excess of 200ns

were too small to be measured [32], a cyclic prefix of 16 symbols was chosen for

128 sub-carrier OFDM2 . The RF channel bandwidth occupied by the OFDM

transmission, the 200MHz (sub-carrier separation of 200(MHz)
128

= 1.5625MHz),

is up-converted to 2.4GHz for transmission. 3

5.2.1 Simulation Results for L = 4

The results for the computation of 4 coefficients for the RP-CSI estimator

show that at high SNR, there are errors in the channel estimation because the

basis is insufficient to span the variations in a given MIMO-OFDM CSI vector.

At low SNR, the MSE is limited by the noise whilst at high SNRs the MSE

plateaus for the reason above. These results can be used to indicate the MSE

2assuming L=16 considered multipath components within a maximum of 160ns. The
estimator performs at the analytical limit despite an expected maximum delay of 200ns.

3This symbol rate for 4-QAM requires a bandwidth of 100MHz which compares
with the gigabit MIMO-OFDM testbed http://iaf-bs.de/projects/gigabit-mimo-ofdm-
testbed.en.html
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Parameter Simulation Settings

Carrier Frequency fc = 2.4× 109Hz
OFDM Symbol length K = 128
OFDM Cyclic Prefix L = 16
QAM Symbol Period Ts = 10× 10−9(sec)
Maximum Delay spread τmax = 200× 10−9(sec)
RMS Delay spread τrms = 50× 10−6(sec)
RF Channel Bandwidth Fs = 200× 106Hz

Table 5.1: Simulation Parameters for the comparison of 1-D MISO-OFDM
Channel Estimation based on 4-QAM. Different bases are implemented within
the RP-CSI framework and the effect of reducing the number of channel esti-
mation parameters on the MSE evaluated.
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Figure 5.1: MSE vs. SNR for the Fourier Basis, L=4.
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Figure 5.2: MSE vs. SNR for the Daubechies Basis, L=4.
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Figure 5.3: MSE vs. SNR for the Fourier Basis, L=8.

performance of a MU-MIMO-OFDM system where each user is equipped with

nt = 2 antennas, in which case the training of a total of 16 users can be per-

formed simultaneously for a length K = 128 OFDM symbol. The Daubechies

basis D4 is implemented and the number of measured CSI vectors for the PCA

basis is M = 64.

5.2.2 Simulation Results for L = 8

When 8 coefficients are estimated for each user with RP-CSI, the MSE perfor-

mance at high SNR is better than the performance using only 4 coefficients.

However, for a MU-MIMO-OFDM system where each user is equipped with

nt = 2 antennas, the training of a total of 8 users can be performed simul-

taneously for a length K = 128 OFDM symbol. The Daubechies basis D8 is

implemented and again the number of measured CSI vectors for the PCA basis
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Figure 5.4: MSE vs. SNR for the Daubechies Basis, L=8.



Chapter 5 Reduced Parameter Channel State Information Analysis 126

5 10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

MSE performance for PCA and Fourier Basis basis

SNR

M
S

E

Analytical MSE
Fourier Basis MSE
PCA Basis MSE

Figure 5.5: MSE vs. SNR for the Fourier Basis, L=16.

is M = 64.

5.2.3 Simulation Results for L = 16

The Daubechies basis D16 is implemented and the number of measured CSI

vectors for the PCA basis is M = 64. It is clear that calculating more coef-

ficients for RP-CSI produces the best results as expected. 16 coefficients are

sufficient to produce the analytical MSE results for the Fourier and PCA basis,

and near analytical MSE results for the Daubechies Basis. The comparatively

poor performance of the Daubechies Basis indicates that the vanishingly small

transformation coefficients play an important role in the accurate reconstruc-

tion of the CSI vector and are therefore not entirely negligible as postulated in

cf. Section 4.2.1. It can be concluded that because the maximum delay spread

of the channel is 200ns, computing 16 coefficients is sufficient to determine the
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Figure 5.6: MSE vs. SNR for the Daubechies Basis, L=16.
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significant multipath components in the time domain. The time domain vector

can be processed using the Fourier transform in order to calculate the MIMO-

OFDM CSI vector. However, only 4 users with nt = 2 mobile devices can be

trained simultaneously in the MU-MIMO-OFDM system. The PCA basis is

superior to the Fourier basis as it achieves a lower MSE when the number of

channel estimation parameters is less than L, where L is the maximum number

of non-zero elements in the CIR vector found by dividing the maximum delay

spread of the multipath channel τmax by the symbol period Ts.

5.3 OFDM Sub-symbol based MIMO-OFDM

channel Estimation

In this section, an iterative algorithm to improve the accuracy of CSI estima-

tion for OFDM sub-symbol based channel estimation is presented. As noted

in Section 4.3.2, it can be assumed that the sub-carrier channel gain remains

constant within the coherence bandwidth, which is typically a fraction of the

total available RF channel bandwidth. It can therefore be inferred that the

CSI remains constant over a few sub-carriers, leading to reduction in the pa-

rameters and accurate CSI estimates for high data rate MIMO-OFDM system

[1], [51].

Another important aspect of OFDM sub-symbol based estimation is that

the CSI for one in every Kcoh sub-carriers is estimated whilst the remain-

ing CSI are interpolated. In the literature [51], a method of interpolation is

described for an OFDM sub-symbol based estimator that improves the esti-

mators MSE performance in the presence of AWGN. The method is based on

the relationship

h̃ =
[

Bw Bn

]

 w

0


 = Bww (5.17)
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Because the length of the vector w is such that nw ¿ K where K is

the length of the vector h̃, the equation (5.17) is overdetermined. For K
Kcoh

estimated CSI, the overdetermined equation cf. (5.17) can be used to solve for

the CSI vector by replacing the rows corresponding to the missing CSI with

rows of zeros. The advantage of such reduced rank interpolation is greatly

improved MSE performance in the presence of AWGN. In this case, if the zero

filled basis and CSI vectors are denoted as Bw,z and h̃z, then the CSI vector

after interpolation is given by

h̃intp = Bw

(
B†

w,zh̃z

)
(5.18)

When a suitable basis is used in equation (5.18), interpolation can be per-

formed for a smaller subset of estimated CSI vector h̃. This motivates an in-

vestigation into the interpolation performance of the various basis introduced

in this thesis. For a sufficient nw at high SNR, the accuracy of the interpolated

CSI is limited by the accuracy of the estimated CSI, which in turn is related

to the variation of the CSI within the coherence bandwidth. An iterative algo-

rithm for improved channel estimation for overloaded MIMO-OFDM systems

is presented that allows the receiver to procure Complete CSI (C-CSI) from

the estimated Partial CSI (P-CSI). The approach is based on separating the

a posteriori CSI estimates based on orthogonal training sequence estimation

from the variation in CSI derived from interpolation based on a given CSI basis

matrix.

5.3.1 Orthogonal Training Sequences for channel esti-

mation

Using OFDM sub-symbol based estimators, the CSI over Kcoh sub-carriers is

assumed to be invariant. This assumption is based on the sinc function model

for the correlations between the CSI with increasing frequency index, where
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the first null is inversely proportional to the maximum delay spread τrms of

the channel.

R(∆f) = R
(
(k − ḱ)Fs

)
=

sin
(
πτmax(k − ḱ)Fs

)

πτmax(k − ḱ)Fs

(5.19)

As was noted in Section 4.3.2, the spaced-frequency correlation function can

be determined by Fourier transform of the correlation function cf. Appendix

B. The function P (∆f) represents the correlation between the channels re-

sponse to two narrowband sub-carriers with the frequencies f1 and f2 as a

function of the difference ∆f [26]. Because the Fourier transform of the cor-

relation function cf. (5.19) is the rectangular function [11] with a bandwidth

Bcoh = 1/τmax, the channel gain is assumed to be constant for the coherence

bandwidth.

For a maximum delay spread of τmax = 200ns and an RF channel band-

width of 200MHz, the coherence bandwidth is Bcoh = 1/τmax = 5MHz and

approximately 128× 5MHz/200MHz ≈ 3 OFDM sub-carriers have the same

gain for K = 128. In order to accurately train nt transmit antennas, the

coherence assumption must hold for Kcoh ≥ nt sub-carriers and therefore a

maximum of nt = 3 antennas can be trained in the example given. In this

thesis, it is argued that the CSI varies within the coherence bandwidth caus-

ing a significant error in CSI estimates. It is also shown that if such variation

of CSI within the coherence bandwidth are taken into account, C-CSI can be

achieved even when the coherence is assumed over Kcoh < nt sub-carriers at

high SNR.

The estimator in Section 4.3.2 is now reformulated to indicate how the

number of transmit antennas nt affects the error in CSI estimation Figure 5.7.

Given that the received QAM symbol at a given receiver of a MIMO-OFDM

system is given by R[k] =
∑nt

i=1 Hi[k]Ti[k], the initial estimate of the CSI at a

sub-carrier k = k0 is given by
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Figure 5.7: Training symbol placement for a QAM symbol based channel es-
timator for a (4,1) MISO-OFDM system. Each transmit antenna transmits
a row of Walsh code (Hadamard) matrix which is used to uniquely identify
the antenna at the receiver. W4(m,n) is the element in the mth row and nth
column of the Walsh matrix.
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Ĥi[k0] =
nt∑
i=1

R[k0 + i− 1]T ∗
i [k0 + i− 1] ∀ k0 = 0, nt, . . . , K − 1 (5.20)

In the traditional sense, it is usual to assume that the coherence in CSI is

observed over at least Kcoh = nt number of sub-carriers. In this case, orthogo-

nal Hadamard training sequences cf. (4.47) of length nt can be arranged within

the OFDM symbol so as to determine the CSI after every nt sub-carriers cf.

Figure 5.7. However it is known that the CSI will vary within the coherence

bandwidth so that if the difference between the CSI for the kth sub-carrier

and the k0 sub-carrier is denoted by ∆Hk,k0

i = Hi[k]−Hi[k0], then an error is

incurred in estimating the CSI, which is given by

Ĥi[k0] = Hi[k0] +
nt−1∑
m=0

nt−1∑
n=0

∆Hk0+n,k0

m+1 Ti+m[k0 + n]T ∗
i [k0 + n] (5.21)

δHi[k0] = Ĥi[k0]−Hi[k0] =
nt−1∑
m=0

nt−1∑
n=0

∆Hk0+n,k0

m+1 Ti+m[k0 + n]T ∗
i [k0 + n] (5.22)

In the next section, an iterative algorithm for reducing the error δHi[k0] is

described. The algorithm is based on the notion that the gradients ∆Hk,k0

i =

Hi[k]−Hi[k0] can be accurately predicted through interpolation. The informa-

tion on the gradients can be used to improve the a posteriori estimates Ĥi[k0]

and the gradients recalculated. The estimated and interpolated channels are

depicted in Figure 5.8. If this process is repeated iteratively, it is expected

that the estimated CSI will approach the actual CSI, providing C-CSI.

5.3.2 OFDM sub-symbol based MU-MIMO-OFDM chan-

nel estimation

In this section, an iterative algorithm is devised to improve CSI estimates when

a large number of antennas is to be trained. It is assumed that the mobile sta-

tion is equipped with nt = 2 antennas and that RP-CSI is performed at a
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Figure 5.8: An example of the partitioning of 128 CSI estimates for the OFDM
symbol into sub-symbols for a (2,1) MIMO-OFDM system.

single receive antenna at a time. The main idea is to exploit the channel cor-

relation in frequency so that we could in a sense convert the underdetermined

system into a determined system. To illustrate this, without loss of generality

(WLOG), we consider only the first four sub-carriers, i.e., k = 0, 1, 2, 3, and

assume there is no noise.

Firstly, given that {ti[k]}’s are orthogonal pilot training sequences spanning

two sub-carriers so that

|t1[0]|2 + |t1[1]|2 = |t2[0]|2 + |t2[1]|2 = 1,

t1[0]t∗2[0] + t1[1]t∗2[1] = 0,
(5.23)

we can have a coarse estimate for H̃1[0], H̃1[1], H̃2[0], H̃2[1] by linear com-

bining the received signals

Hest
1 [0] , t∗1[0]r[0] + t∗1[1]r[1]

= H1[0] + |t1[1]|2∆H(1)
1,0 + t∗1[1]t2[1]∆H(2)

1,0

≈ H1[0] ≈ H1[1]

(5.24)

where
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∆H1,0
1 , H1[1]−H1[0],

∆H1,0
2 , H2[1]−H2[0].

(5.25)

Similarly, we also have

Hest
2 [0] = t∗2[0]r[0] + t∗2[1]r[1] ≈ H2[0] ≈ H2[1]. (5.26)

Noting that perfect recovery of {Hi[k]} is not possible even without noise

because of the underdetermined structure, this conventional method incurs

an irreducible error in the estimate for the channel pairs (H1[0], H1[1]) and

(H2[0], H2[1]), which is inversely proportional to the degree of correlation for

the channel pairs. That is to say, if the difference in the channel pairs, ∆H1,0
1

and ∆H1,0
2 , is small, then the error in the estimate will be small. In an environ-

ment where there is a great degree of multi-path (i.e., large τrms), the channels

are less correlated, and ∆H1,0
1 and ∆H1,0

2 are significant.

To describe our method, we find it useful to define

δH1[0] , Hest
1 [0]−H1[0]

= |t1[1]|2∆H1,0
1 + t∗1[1]t2[1]∆H1,0

2 ,
(5.27)

δH2[0] , Hest
2 [0]−H2[0]

= t1[1]t∗2[1]∆H1,0
1 + |t2[1]|2∆H1,0

2 ,
(5.28)

δH1[2] , Hest
1 [2]−H1[2]

= |t1[1]|2∆H3,2
1 + t∗1[1]t2[1]∆H3,2

2 ,
(5.29)

δH2[2] , Hest
2 [2]−H2[2]

= t1[1]t∗2[1]∆H3,2
1 + |t2[1]|2∆H3,2

2 .
(5.30)

{δHi[k]}’s can be viewed as the channel estimation errors between the

estimated and actual channels. Therefore, (5.27)–(5.30) can be used to refine

the channel estimates {Hest
i [k]} if {∆H(i)

k,`} are known.
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The proposed technique uses the estimates obtained from the conventional

method (i.e., {Hest
i [k]}) and exploits additional information (i.e., {%(i)

k,`} intro-

duced later) from estimation in subsequent frequency sub-carriers for channel

pairs, (H1[2], H1[3]) and (H2[2], H2[3]), to further refine the estimates for the

channel pairs, (H1[0], H1[1]) and (H2[0], H2[1]). An iterative algorithm will be

developed to achieve a refined estimate.

In order to iterate for better estimates of the channel pairs, (H1[0], H1[1])

and (H2[0], H2[1]), the first step is to rewrite H1[0] and H2[0] as the subjects

of (D.1) so that


 H1[0]

H2[0]


 =


 t∗1[0] t∗1[1]

t∗2[0] t∗2[1]





 r[0]

r[1]




−

 |t1[1]|2 t∗1[1]t2[1]

t1[1]t∗2[1] |t2[1]|2





 ∆H1,0

1

∆H1,0
2


 .

(5.31)

(5.31) can be utilized to estimate the channels H1[0] and H2[0] if there is

an estimate for the difference in the channel pairs, ∆H1,0
1 and ∆H1,0

2 . Similarly

for (H1[2], H2[2]) from (∆H3,2
1 , ∆H3,2

1 ).

Now, we intend to relate the channel estimates for adjacent sub-carriers by

defining the following ratios

%
(1)
1,2 , H1[1]−H1[0]

H1[2]−H1[0]
=

∆H1,0
1

H1[2]−H1[0]
, (5.32)

%
(2)
1,2 , H2[1]−H2[0]

H2[2]−H2[0]
=

∆H1,0
2

H2[2]−H2[0]
, (5.33)

%
(1)
3,2 , H1[3]−H1[2]

H1[2]−H1[0]
=

∆H3,2
1

H1[2]−H1[0]
, (5.34)

%
(2)
3,2 , H2[3]−H2[2]

H2[2]−H2[0]
=

∆H3,2
2

H2[2]−H2[0]
. (5.35)

In practice, they can be approximated using the estimated even sub-carrier

channels and the interpolated odd sub-carrier channels. For instance,

%
(1)
1,2 ≈

H int
1 [1]−Hest

1 [0]

Hest
1 [2]−Hest

1 [0]
(5.36)
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where H int
1 [1] is the channel estimate obtained from interpolating the esti-

mates Hest
1 [0] and Hest

1 [2]. We observe that the approximated ratios are found

to be about 95% accurate for Kcoh ≤ 4.

With these ratios, we have the following relations

∆H1,0
1

∣∣
est

= %
(1)
1,2 (Hest

1 [2]−Hest
1 [0]) (5.37)

∆H1,0
2

∣∣
est

= %
(2)
1,2 (Hest

2 [2]−Hest
2 [0]) (5.38)

∆H3,2
1

∣∣
est

= %
(1)
3,2 (Hest

1 [2]−Hest
1 [0]) (5.39)

∆H3,2
2

∣∣
est

= %
(2)
3,2 (Hest

2 [2]−Hest
2 [0]) (5.40)

which can be employed to estimate {∆Hk,`
i } that can then be used in (5.27)–

(5.30) to get the estimation errors {δHi[k]}. From these, we can update the

estimates for the even sub-carriers by





Hest
1 [0] := Hest

1 [0]− δH1[0],

Hest
2 [0] := Hest

2 [0]− δH2[0],

Hest
1 [2] := Hest

1 [2]− δH1[2],

Hest
2 [2] := Hest

2 [2]− δH2[2].

(5.41)

After {Hest
i [k]} are updated, they can be fed back into (5.37)–(5.40) to

refine {∆H(i)
k,`}. As a consequence, we can iterate the estimation between

{Hest
i [k]} and {∆H(i)

k,`} to obtain a fine estimate for ∆H1,0
1 , ∆H1,0

2 , ∆H3,2
1 , ∆H3,2

2 .

Finally, the channel estimates for the even sub-carriers can be readily obtained

using (5.31). In addition, the odd sub-carrier channels can be easily found from

Hest
1 [1] = Hest

1 [0] + ∆H1,0
1

∣∣
est

,

Hest
1 [3] = Hest

1 [2] + ∆H3,2
1

∣∣
est

.
(5.42)

The above iterative algorithm is summarized as follows:

S1) Estimate the even sub-carrier channels

Hest
1 [0], Hest

1 [2], . . . , and Hest
2 [0], Hest

2 [2], . . . (5.43)
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based on the orthogonality of the training sequences [see (5.24) and

(5.26)].

S2) Use the interpolation formulation to get the estimates for the odd sub-

carrier channels from the estimated even sub-carrier channels:

H int
1 [1], H int

1 [3], . . . , and H int
2 [1], H int

2 [3], . . . (5.44)

S3) Obtain the estimates for {%(i)
k,`} using (5.36).

S4) Update {∆Hk,`
i } using (5.37)–(5.40).

S5) Find {δHi[k]} using (5.27)–(5.30), and then update the estimates for

the even sub-carrier channels using (5.41). Go back to Step 4 until

convergence.

S6) From the estimates {∆Hk,`
i }, use (5.31) to get the estimates for the even

sub-carrier channels, and then use (5.42) for the odd sub-carrier channels.

In the Appendix D, an algorithm that iteratively reduces the channel esti-

mation error for an arbitrary number of antennas deployed in a high data rate

systems is presented.

The proposed method attempts to procure C-CSI by devising ratios that

relate the a posteriori CSI estimates to the interpolated CSI estimates. When

orthogonal training sequences are used for CSI estimation, an error occurs due

to the assumption of CSI equity within the OFDM sub-symbol. In actual fact,

the CSI will vary within the OFDM sub-symbol, and this variation can be

related to the resultant error in CSI estimation (5.27)–(5.30). If the variation

in the CSI within the OFDM sub-symbol is known through interpolation, the

estimated CSI can be improved. The information on the variations in CSI

within the OFDM sub-symbol can then be updated based on the improvements

in the estimated CSI only. Hence, the ratios relating the a posteriori CSI

estimates to the interpolated CSI estimates can be used to iteratively improve
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Figure 5.9: MSE vs. number of interpolation parameters for the Orthogo-
nal Training Sequence (OTS), and the Iterated Orthogonal Training Sequence
(ITER. OTS) estimators. The results show that the accuracy of interpolation
affects the performance of the proposed ITER. OTS method - SNR = 100dB.

the a posteriori CSI estimates. The question, however, is the effect that errors

in interpolation of CSI have on the iterative method. In order to train many

MIMO transmitters (for example each user p may be equipped with np
t = 2

antennas), equity has to be assumed for OFDM sub-symbols whose length is

equal to the total number of antennas,
∑P

p=1 np
t = nt. This reduces the number

of interpolation parameters (nI a posteriori CSI estimates) in equation 5.18

and affects the accuracy of interpolation.

In figure 5.9, the MSE in channel estimates for increasing numbers of

channel estimation parameters is evaluated for the orthogonal training se-

quence (OTS) method and the iterated (ITER) OTS method when np
t = 2

and K = 128. TDMA channel estimation is assumed, where non-overlapping
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rectangular functions are used to multiplex the users. In other words, each of

the user’s antennas transmits training sub-symbols of length Kcoh = 2, then re-

mains silent whilst another user is trained. This scheme is similar to the ”time

slots” used in GSM and the number of users being trained in the system is thus

P = K/(np
t × nI). Results in figure 5.9, relate to the Fourier transformation

matrix basis where L = 16 and L is the number of non-zero of parameters in

the Channel Impulse Response (CIR) vector. As can be noted in figure 5.9,

when nI < L, the iterative method provides only marginal improvements.

In addition, the proposed algorithm is found to be unduly sensitive to

AWGN in the received symbol, resulting in worse MSE performance at low

SNR. This is thought to be because the least squares interpolation cf. (5.18)

at low SNR provides unreliable information on CSI variation which further

exacerbates the noisy posteriori CSI measurements when the iterative scheme

is implemented.

5.4 Chapter Summary

A detailed analysis of the MSE performance of the RP-CSI estimator shows

that for an orthogonal training sequence and Fourier basis, the lower bound of

the MSE agrees with previously published results. Based on this analysis, the

RP-CSI framework is used to evaluate the performance of various CSI bases

that reduce the number of channel estimation parameters. These consideration

are motivated by the training requirements for high data rate MIMO-OFDM

systems deploying large number of transmit antennas, such as multi-user sys-

tems.

For uplink communications, the transmitting antennas from the P users

may be very large
∑P

p=1 np
r = nr when compared to the receiving antennas

at the base station nt. It becomes necessary for the base station to train

the nr antennas simultaneously in order to enable coherent MIMO-OFDM
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communication based either on spatial multiplexing or space-frequency coding,

cf. Section 1.5. Such overloaded communications systems can effectively be

studied by considering a single user MISO-OFDM system for which the number

of channel estimation parameters is reduced to reflect the number of users’

communication simultaneously with the base station. This approach takes

into account all the important variables, which are as follows:

• A maximum of K OFDM sub-carriers are available for communications

between the base station and the mobile station. RP-CSI estimators are

based on correlations over this number of OFDM sub-carriers, therefore

the OFDM symbol length is a limiting factor for any overloaded MIMO-

OFDM system.

• Given a fixed resource K for channel estimation, the LS solution im-

plemented in OFDM symbol based RP-CSI estimators requires that the

number of parameter unknowns is less than or equal to number of ob-

servations K. Each transmit antenna is associated with nw parameters

which describe the multi-path channel so that the maximum number of

antennas that can be simultaneously trained is given by nt = K/nw.

• Alternatively, the number of antennas that can be trained is determined

by the availability of orthogonal training sequences. For a fixed resource

K, a maximum of nt = K antennas can be trained simultaneously if

a suitable training sequence is devised. However this provides a single

CSI estimate over the whole OFDM symbol, which is undesirable as

it is expected that the CSI will vary significantly with increasing sub-

carrier index. A compromise is therefore necessary where the number of

antennas that are trained is nt ¿ K leading to K/nt CSI estimates per

antenna. The remaining CSI are deduced through interpolation.

The above mentioned variables are carefully studied within this chapter

in the context of the overloaded MIMO-OFDM system. This leads to an
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alternative performance criterion for MIMO-OFDM channel estimators, where

performance is limited primarily by the maximum delay spread of the multi-

path channels. The Saleh-Valenzuela channel model which has a root mean

square (rms) delay spread of approximately τrms = 50ns and a maximum delay

of τmax = 200ns is used in the evaluation of RP-CSI estimators. This sets

the limit for the minimum number of channel estimation parameters using the

Fourier basis as L = τmax/Ts, where Ts is the QAM symbol period. This in turn

means that the maximum number of antennas that can be trained is nt = K/L

in order to implement the LS solution. Similar limitations are observed when

OFDM sub-symbol estimators are implemented due to the interpolation LS

solution cf. Section 5.3.

The performance of the Fourier Basis, the novel Wavelet Basis and the

novel Principal Component Analysis (PCA) Basis are all investigated for re-

duced parameter channel estimation MSE performance. In the first instance,

this performance is measured against the signal to noise ratio, which shows

that the PCA basis has superior performance. The Fourier basis is then used

for interpolation purposes in a new iterative scheme described in Section 5.3.2

and the MSE performance is again evaluated as a function of number of the

number of channel estimation parameters. It is found that the posteriori CSI

measurements based on orthogonal training sequence estimators can be im-

proved by devising ratios which relate the measured CSI to interpolated CSI.

These ratios are used to iteratively reduce the error in channel estimation

due to CSI variations within the coherence bandwidth. Even so, AWGN ad-

versely affects the performance of the proposed scheme and additional work

on smoothing CSI measurements and obtaining reliable information on CSI

variation at low SNR is necessary.



Chapter 6

Time Varying Channels

For Non-Line-of-Sight (NLOS) communications, the amplitude of the multi-

path gain is expected to vary according to Rayleigh distribution whilst the

phase of the multipath gain is expected to be uniformly distributed due to the

numerous propagation paths available. However, if the receiver were to move

at a constant velocity, the carrier frequency for each multipath component will

experience a different Doppler frequency shift because of the differing Angle of

Arrival (AoA) relative to the moving vehicle for the various propagation paths.

The phase of the multipath gain thus varies rapidly with receiver motion be-

cause it is a function of the Doppler frequency shift. The relative delay of the

multipath components is however expected to vary slowly in such scenarios.

In this chapter, the Kalman filter approach for the tracking of time varying

multipath channel gain is investigated. This discussion is motivated by the

fact that training symbol based RP-CSI uses an entire OFDM symbol for 1-

D, frequency domain channel estimation, and relies on the coherence of the

channel in time for data detection in subsequent OFDM symbols. Clearly,

when the receiver is mobile, a strategy is required to track the fast changes

in the multipath gain during data transmission in order to ensure low error

rates in data detection. Kalman tracking does not require the knowledge of the

transmitted pilot sequence as Reduced Parameter CSI Estimation can utilize

the detected data within the OFDM symbol. Data can be reliably detected

142
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in the OFDM symbols that are close to, or adjacent to the training symbol,

and provided that the QAM symbol signaling is orthogonal, the detected data

can be then be reprised as pilots for RP-CSI. In addition, Kalman filtering

has the effect of reducing noise corrupted CSI through adherence to a model

of the temporal variations of CSI. The main disadvantage of Kalman filtering

is that orthogonal QAM symbol signaling is required, and as a consequence,

the data rate of the MIMO-OFDM system decreases, particularly when the

number of transmitting antennas is large. Clarke’s Model is introduced to

determine temporal channel variations and results from Kalman tracking are

compared to time domain Discrete Prolate Spheroidal Sequence RP-CSI which

are identified as optimal in the literature.

6.1 Clarke’s Model

This section describes Clarke’s model which is used to model the variations of

the multipath channel gain with measurement time.

h̄γ̄(t, τ) =
N−1∑
n=0

γ̄n(τn(t), t)δ(t− τn(t)) (6.1)

The frequency selective channel model c.f (6.1) considered thus far for RP-

CSI channel estimation is extended to include the effects of doppler frequency

change and the performance of the estimator evaluated for the Discrete Prolate

Spheroidal Sequence (DPSS) basis and the Kalman filter. The doubly selec-

tive channel model implemented, which is commonly referred to as Clarke’s

Model, is described in the literature [13] and [67]. In this model, the phase

associated with the nth path is considered independent from the phase due to

the Doppler frequency change. As it can be noted from the discussion below,

the phase change due to path length is much greater than the phase change

due to the Doppler frequency change which necessitates a distinction of the

two quantities.
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Clarke’s Model can be derived from the equation for the received complex

envelope for a signal transmitted at a carrier frequency fc cf. (2.6).

s̄ rx
m (t) =

N−1∑
n=0

γn(t)e−j2πfcτn(t)s̄ tx
m (t− τn(t)) (6.2)

When the receiver is stationary, the complex channel gain γ̄n(τn(t), t) =

γn(t)e−j2πfcτn(t) can be modeled as an i.i.d complex process cf. Section 2.2.3.

In order to separate the effect path length to those associated with the motion

of the receiver, we shall start by expressing the phase of the multipath gain in

the frequency selective model c.f. (6.1) as a function of path length. The phase

of the multipath gain (φn = 2πfcτn(t) in 6.2) can be expressed as a function

of path length `n by writing φn = 2π
λc

`n, where λc is the wavelength of the RF

carrier frequency. When the receiver is in motion at a constant velocity v, the

phase of the multipath gain will change because of changes in the path lengths

`n. In addition, the frequency of the signal arriving via the nth path will

experience a Doppler frequency shift which we denote as a variable fn. The

Doppler frequency shift fn for each multipath component is modified according

to the azimuth Angle of Arrival (AoA) which we shall denote as θn.

fn = fd cos(θn) =
fcv

c
cos(θn) (6.3)

fd = fcv
c

is the maximum Doppler frequency shift (Doppler bandwidth),

which is attributed to the LOS multipath components. The phase of the

multipath gain can be modeled as the summation of the path length induced

and Doppler frequency induced phases when the receiver is moving.

s̄ rx
m (t) =

N−1∑
n=0

γn(t)ej(2πfnτn(t)−2π `n
λc

)s̄ tx
m (t− τn(t)) (6.4)

We now introduce an alternative view to the signal received in a multipath

environment in order to determine the measurement time variations in the

complex channel gain γ̄n(τn(t), t). Consider that at some measurement time
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instant t, N multipath components arrive with the same delay τn(t) = t. The

channel gain affecting the signal s̄ rx
m (t) in (6.4) at this measurement time is

given by

γ̄(t) =
N−1∑
n=0

γn(t)ej(2πfnt−2π `n
λc

+αn) (6.5)

αn is a random phase associated with the nth path. The phase φn =

(2π`n/λc − αn) is independent of the measurement time and can be modeled

using uniform distribution. This assumption generalizes the geometry of the

communications system in terms of location of the transmitter, receiver and

multipath mechanisms. The azimuth AoA (θn) determines the Doppler fre-

quency shift of the nth path as fcv
c

cos(θn) and can also be modeled using

uniform distribution. The amplitudes γn(t) can be modeled using Gaussian

distribution by virtue of the central limit theorem cf. Section 2.2.3. It is as-

sumed that as the measurement time t elapses, the amplitude of the multipath

gain remains constant (γn(t) = γn). This model is Clarke’s flat fading model

[75]. Note that, in Clarke’s model, path length induced phase for the different

multipath components will be the same whilst the AoA-dependent Doppler

induced phase will differ depending on the path. This is due to the fact that

the N multipath components arriving at the measurement time t have the

same delay τn(t) = t and hence the same path lengths `n but may have dif-

ferent AoAs. Clark’s model evaluates the gain of the channel γ̄n(τn(t), t) when

τn(t) = t so that we are effectively considering a single multipath delay τn(t)

as time elapses.

The transformation of the complex channel gain γ̄n(t) due to Doppler fre-

quency induced phase changes results in the power spectral density

S(ν) =
1

πfd

(
1− ν

fd

) |ν| ≤ fd (6.6)

ν is the frequency variable and fd is the maximum Doppler frequency. This
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Figure 6.1: Channel |γ̄n(t)| gain variations for a receiver travelling at a velocity
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spectrum was derived by Jakes in the literature [25].

6.2 Slepian Basis Expansion

In Chapter 4, RP-CSI based on the 1-D correlations of the CSI in the frequency

domain was introduced. Clarke’s model can be used to show that the variations

of CSI in the time domain show a high degree of correlation that can also

be exploited for the purposes of channel estimation. This section introduces

an optimal basis for time domain RP-CSI and it is assumed that training

sequences are orthogonal in time rather than in frequency.

Slepian [88] showed that a time limited snapshot of a bandlimited sequence

spans a low dimensional subspace, and this subspace is also spanned by Dis-

crete Prolate Spheroidal Sequences (DPSS). The term sequence, as used here,

refers to the vectors constructed for the gain of the multipath components as

a function of measurement time. These vectors depict the variation of the

gain of the multipath component as an ordered list (as a function of increasing

measurement time). In the literature [89], one dimensional DPSS sequences

are used for channel estimation in a multi-user Multi-Carrier Code Division

Multiple Access (MC-CDMA) downlink in a time variant frequency selective

channel. It is reported that the Slepian basis expansion per sub-carrier is three

magnitudes smaller than the Fourier basis expansion and as such, represents

an alternative basis within a RP-CSI framework. Here, the necessary back-

ground to facilitate similar comparisons is provided for the case where 1-D

time domain basis are evaluated in RP-CSI estimators.

In order to derive the RP-CSI estimators for time domain based channel

analysis, Clarke’s model cf. Section 6.1 is used to describe multipath com-

ponent gain variations as a function of measurement time. Clarke’s model

assumes that the multipath gain can be written as a sum of N multipath

components arriving simultaneously at a given measurement time t cf. (6.5).
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h̄(t) =
N−1∑
n=0

γ̄n(t)ej2πfnt (6.7)

In the equation (6.7) each multipath component is characterized by its

complex weight γ̄n(t) = γn(t)e−jφn cf. 6.5 which embodies the amplitude and

phase shift, and additionally, the Doppler frequency shift induced phase ej2πfnt.

Denoting the QAM symbol period of the communications system by Ts, the

sampled multipath component gain can be written as

h̄(mTs) =
N−1∑
n=0

γ̄n(mTs)e
j(2πνnm) (6.8)

where νn = fnTs is the normalized Doppler frequency shift for the nth

multipath component. In order to establish the measurement intervals, we

recall that in Section 2.2, the convolution model of the wireless channel was

derived and it was determined that the received OFDM symbol of length K

is given by the convolution of the transmitted OFDM symbol and the CIR

vector of length L. Note that the CIR vector for the convolution cf. (2.6) is a

sequence of the multipath component gain as a function of the relative delays

rather the measurement time required here. For the transmission of OFDM

symbol in multipath channels, redundancy must be added to the transmitted

OFDM symbol in order to maintain orthogonality of the sub-carriers [35] cf.

Section 3.1. This is done by adding a repetition of some of the transmit QAM

symbol to the beginning of each OFDM symbol burst resulting in a length

(K +L−1) transmit symbol. Taking these system considerations into account

the 1-D representation of the multipath channel gain parameters cf. (6.8) as

a function of measurement time can be arranges in a vector

h =
[

h(0) h ((K + L− 1)Ts) . . . h ((M − 1)(K + L− 1)Ts)
]T

(6.9)

The time-variant fading process {h(mTs)} given by the model in (6.9) is

band-limited to the region W = [−νd νd], where νd is the maximum normalized
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Doppler frequency shift. Note that the vector h is also time limited to the

indices I = [0, 1, . . . , M ] on which we calculate {h(mTs)}.

Definition 6.1 The one-dimensional Discrete Prolate Spheroid Sequences (DPSS)

vk(m) with band-limit W = [−νd νd] and concentration region I = [0, 1, . . . ,M ]

are defined as the real solutions of

M−1∑
n=0

sin(2πνd(m− n))

π(m− n)
vk(n) = λkvk(m) (6.10)

The LHS of the equation above is the dot product of two vectors of length

M . The DPSS vectors vk = [vk(0), vk(1), . . . , vk(M − 1)]T are the eigenvectors

of the M × M matrix S with elements S(m,n) = sin(2πνd(m − n))/π(m −
n). The eigen decomposition of the square matrix S can thus be written as

SB = BΛ, where B ≡ [v1,v2, . . . ,vk] and Λ ≡ diag(λ1, λ2, . . . , λk). When

considering RP-CSI, the concentration region I = [0, 1, . . . , M ] is the time

domain window c.f 6.9 that is used for channel estimation. The power density

spectrum of these CSI samples is Jakes spectrum [25] which is non zero within

the closed interval W = [−νd νd].
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The eigenvalues of the matrix S decay exponentially and thus render numer-

ical calculation difficult [90]. However, the inverse iteration method presented

in the literature [91] enables fast and numerically stable calculation of DPSS.

In this thesis, MATLAB functions are used to generate the DPSS.

Theorem 6.2 The DPSS are orthogonal on the set I and on Z, the set of inte-

gers. In addition, every band-limited sequence h can be decomposed uniquely

as h = Bw, where B ≡ [v1,v2, . . . ,vkmax ] and vk are DPSS.

For the proof of theorem 6.2 see the literature [88]. Parameter reduction

is obtained through the DPSS property that the energy in the index-set I is

contained in the first kmax = d2νdMe+1 DPSS vectors [90]. The CIR sequence

cf. (6.9) is not readily available in the MIMO-OFDM system because the time

domain received symbols are a convolution product cf. (3.1). In addition,

because Clarke’s model is used to depict the time varying changes in a flat

fading channel, an alternative representation of the sub-carrier channel gain

may be derived [89].

H[k, m] =
L−1∑
n=0

h[n, m]e−j 2πkn
L ej2πfnmT (6.11)

H[k, m] =
L−1∑
n=0

h́[n, m]ej2πνnm (6.12)

The equation (6.11) is evaluated at the measurement time intervals T =

(K + L− 1)Ts where Ts is the QAM symbol period. In the CSI representation

cf. (6.11), each multipath component at the delay nTs is associated with a

doppler frequency shift and L is the maximum number of non-zero elements

in the CIR vector cf. Section 3.1. The representation cf. (6.12) compares

to the representation cf. (6.8. The discrete time duration m(K + L − 1)

includes the duration of the OFDM symbol and the guard period due to the

cyclic prefix. This representation makes it possible to use the DPSS basis for
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Parameter Simulation Settings

Carrier Frequency fc = 2.4× 109Hz
OFDM Symbol length K = 128
OFDM Cyclic Prefix L = 16
QAM Symbol Period Ts = 10× 10−9(sec)
Maximum Delay spread τmax = 200× 10−9(sec)
RMS Delay spread τrms = 50× 10−6(sec)
Receiver velocity v = 27.8(meters/sec)
SNR ∞
Coherence Time 20× (K + L)Ts(sec)

Table 6.1: Simulation Parameters for the comparison of 1-D MISO-OFDM
Channel Estimation based on 4-QAM.

reduced parameter channel estimation. When the CSI are stacked in a vector

h̃i ≡ [Hi[k, 0], Hi[k, 1], . . . , Hi[k, M − 1]]T , the RP-CSI framework cf. Section

can be introduced to reduce the number of parameters in the time domain

channel estimation problem as follows

r̃ = X̃PBw (6.13)

Note that B is the matrix containing the DPSS. X̃ is the training sequence

matrix and P is permutation matrix cf. Section 4.3.1. The vector w has a

length ntkmax ≤ M where M is the number of OFDM symbols that form a

channel estimation frame.

Note that for the simulations, the SNR is infinity so as to reject the ef-

fects of the orthogonality of the basis to noise. Channel measurements are

assumed to be performed after a coherence period has elapsed cf. Table 6.1.

This was done because it was noted through several simulation trials that the

channel parameters remained constant for a number of OFDM symbols at the

given data rate. It was therefore decided to assume a coherence time in order

to clearly demonstrate the variations of the CSI with time. An implemen-

tation of the RP-CSI framework for time domain CSI estimation shows that
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Figure 6.4: |H1[1,m]| for a (2,1) MISO-OFDM system based on the DPSS,
and Fourier basis estimators. nw = 5.

the DPSS basis outperforms the Fourier basis. Note that this result is true

for 1-D CSI estimation in the time domain (increasing OFDM symbol index)

but is generally not the case for 1-D CSI estimation in the frequency domain

(increasing QAM symbol index).

In figure 6.6, the MSE in channel estimate is evaluated for an increasing

number of channel estimation parameters nw. The results in this figure are

obtained for a user p equipped with a MIMO transmitter with np
t = 2 antennas

and M = 128. The total number of users that can be trained is given by

P = K/(np
t × nw). This number of users can be trained simultaneously using

the RP-CSI estimator which does not require time slots as described for similar

results in section 5.3.2. Note that for nw = kmax = 5, where kmax = d2νdMe+1

and νdM = 2, the MSE is 10−10. Despite the fact that the SNR is assumed
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to be infinite, and unexpected result is that nw = 64 results in a slight MSE

degradation when compared to nw = 16. At the time of writing this thesis,

this result is still unexplained.

6.3 Kalman filter Tracking

The Kalman filter [76] is an efficient, recursive method of estimating the state

of a discrete time varying process. The Kalman filter has previously been

used to track the MIMO-OFDM channel gain as a time varying process in

the literature [92]–[94]. The details of this application of the Kalman filter

are provided here in order to highlight possible future developments for the

RP-CSI time domain channel tracking.

Before describing the Kalman filter tracking algorithm, Clarke’s channel

model cf. (6.5) is related to the tapped-delay-line (TDL) model and to the

channel model cf. (2.17) presented in Chapter 2. It has been shown that the

received QAM symbol is a convolution of the transmitted QAM symbol with

a L length Channel Impulse Response of a communications channel which is

characterized by multipath propagation cf. Section 2.2.2.

h̄γ̄(t, τ) =
L−1∑
n=0

γ̄n(τn(t), t)δ(t− τn(t)) (6.14)

The convolution of the QAM symbols with the CIR in (6.14) led to the

tapped-delay-line (TDL) model of the system output (see Figure 2.3 in Section

2.2.2). This chapter considers the tracking of the TDL filter taps γ̄n(τn(t), t)

by using Clarke’s model to describe each TDL filter tap so that the notation

γ̄(t) may be used for the multipath channel gain. The approach to deriving

the discrete Kalman filter can be summarized as follows:

• Determine the mathematical description of the process whose state is to

be estimated. In this case, the channel gain (TDL filter tap) which is
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based on Clarke’s model is being tracked. This channel gain process is

known to have a Doppler spectrum [25]. Hence, the Doppler spectrum

for each TDL filter tap can be used to generate the time varying channel

gain process from randomly generated i.i.d noise. This is approach forms

the basis for the mathematical description of the process.

• Implement equations that describe how the process will vary with mea-

surement time. As described above, a TDL filter tap can be generated by

passing i.i.d noise though a bandpass filter whose frequency response is

related to Jake’s Spectrum. An autoregressive model is implemented in

order to determine the relationship between previous states and current

state of the TDL filter tap process.

• Determine the measurement equations. The TDL channel model relates

the QAM symbol output of the channel to the QAM symbol input and

the channel impulse response based on an underlying convolution model.

This model was used to develop CSI estimators relating a known train-

ing sequence and received symbols to the unknown channel parameters.

The RP-CSI estimators developed for MIMO-OFDM systems are used

to develop measurement model relating measurements of the process to

the current state of the process.

Using the first two steps described above, it can be determined that the

time evolution of the channel gain process is governed by the process model

and that the process model dictates the current state for the process based on

a previous state. Let the xk ∈ CN×1 denote the channel gain process vector

and suppose we formulate the following process model:

xk = Fk−1xk−1 + wk−1 (6.15)

wk−1 ∈ CN×1 denotes the process noise vector which is assumed to be

normally distributed with zero mean and covariance matrix Q, so that we can
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write p(w) ∼ N(0,Q). Fk−1 ∈ CN×N is a matrix that relates the state of the

channel gain process at a previous time step k − 1 to the state at the current

time step k. We will assume that Fk−1 and the process noise covariance matrix

Q are constant with each time step.

For the third step of deriving the Kalman filter, the flat fading model

MIMO-OFDM model for the data based RP-CSI estimator is used to develop

the observation model. The observation model relates measurements on the

time varying process (in this case the noisy CIR estimates) to the actual state

of the channel gain process. Suppose that the measurement model has been

formulated as follows

zk = Hkxk + vk (6.16)

Hk ∈ CM×N is a matrix that relates the state of the channel gain process zk

and the measured channel gain process xk at the current time step k. vk−1 ∈
CM×1 denotes the measurement noise vector which is assumed to be normally

distributed with zero mean and covariance matrix R, so that p(v) ∼ N(0,R).

We will assume that Hk and the measurement noise covariance matrix R are

constant with each time step.

If we define x̂−k as our a priori estimate of the channel gain based on the

process model (6.15) we can formulate an equation for the a posteriori state

estimate x̂k based on the measurement model as follows

x̂k = x̂−k + Kk(zk −Hkx̂
−
k ) (6.17)

K ∈ CM×N is the Kalman gain/blending factor which is designed to mini-

mize the a posteriori error covariance Pk = E[(xk − x̂k)(xk − x̂k)
T ]. One form

of the Kalman gain that achieves this minimization [77] can be accomplished

by
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Kk =
P−

k Hk

HkP
−
k HT

k + R
(6.18)

P−
k is the a priori estimate covariance P−

k = E[(xk − x̂−k )(xk − x̂−k )T ]. The

Kalman filter estimates the channel gain process by using a form of feedback

control: the filter estimates the process state at some time using the pro-

cess model and then obtains feedback in the form of the (noisy) measurement

model.

Discrete Kalman filter process update equations

x̂−k = Fx̂k−1

P−
k = FPk−1F

T + Q

Table 6.2: Table of the process update equations.

The time update equations (6.2) project the state and covariance estimates

forward from time step k−1 to step k. Initial conditions for the filter are given

in the MATLAB code in Appendix E.

Discrete Kalman filter measurement update equations

K =
P−k Hk

HkP−k HT +R

x̂k = x̂−k + K(zk −Hx̂−k )
Pk = (I−KH)P−

k

Table 6.3: Table of the measurement update equations.

The process and measurement update equations for P−
k and Pk are derived

in the literature [78]. Note that the time step index k is omitted form the

matrices K, F and H because we assume that they are time invariant.

6.3.1 Deriving the Kalman Filter Process Model

In order to simulate the wireless multipath channel when the receiver is mobile,

we can generate the channel gain for a TDL filter tap by first of all generating a

vector of a white, discrete time, Gaussian process to represent random changes
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of the TDL filter tap with time. After generating the noise vector, the power

spectral density1 of the noise process is ”shaped” so that it assume the form of

the Doppler spectrum (6.6) at each tap location. The shaping filter (impulse

response) is real and has a pure amplitude transfer function H(ν) =
√

S(ν)

cf. (6.6).

Figure 6.7: Tapped-delay-line model for diffuse multipath channels with tap
generation.

Since H(ν) is a real and symmetric function, the impulse response of the

spectrum shaping filter h(t) can be derived from the cosine transform, which

can be found in the literature [79].

h(t) = F−1 [H(ν)] = A
1
2 2

1
4 π

1
2 fdt

− 1
4 Γ

(
3

4

)
J 1

4
(2πfd|t|) (6.19)

J 1
4
(·) is the fractional Bessel function, Γ(·) is is the Gamma function, and

A
1
2 is chosen such that h(t) has the normalized power of 1 [26]. In order

to derive the Kalman filter process model, the Finite Impulse Response (FIR)

form of the channel gain process is converted into its equivalent Autoregressive

model [80]. If the input of the FIR filter is Gaussian white noise then the output

of the shaping filter is simply the convolution sum

1the power spectrum density of a Gaussian process is flat and wideband
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x[n] =
M−1∑
m=0

w[n−m]h[m] (6.20)

h[n] is the sampled impulse response of the spectrum shaping filter h(t) cf.

(6.19), w[n] is the vector of a white (discrete time) Gaussian process with zero

mean and unit variance, and x[n] is the channel gain with the Doppler power

spectral density. Using the delay operator z−1, the FIR model can be written

as

x[n] =

(
M−1∑
m=0

h[m](z−1)m

)
w[n] (6.21)

The summation in brackets can be regarded as a polynomial P (z−1) =
∑M−1

m=0 h[m](z−1)m in the delay operator, so that we can write

x[n] = P (z−1)w[n] (6.22)

1

P (z−1)
x[n] = w[n] (6.23)

This rational function 1
P (z−1)

can be expanded using partial functions and

using the geometric series expansion, 1
1−pz−1 =

∑∞
i=0(pz

−1)i.

1

P (z−1)
=

1

h0 + h1z−1 + . . . , +hM−1(z−1)M−1
(6.24)

=
r1

1− pz−1
+

r2

1− pz−1
+ · · ·+ rM−1

1− pz−1
(6.25)

= r1

∞∑
i=0

(pz−1)i + r2

∞∑
i=0

(pz−1)i + · · ·+ rM−1

∞∑
i=0

(pz−1)i (6.26)

=
M−1∑
i=0

ri + z−1

M−1∑
i=0

piri + z−2

M−1∑
i=0

p2
i ri + . . . (6.27)

The infinite sum in (6.27) is formed by expanding the geometric series

formulae in (6.26) and grouping together the like terms. In order to make the

infinite sum tractable, it can be estimated as a summation of N + 1 terms.
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1

P (z−1)
=

M−1∑
i=0

ri + z−1

M−1∑
i=0

piri + z−2

M−1∑
i=0

p2
i ri + · · ·+ z−N

M−1∑
i=0

pN
i ri (6.28)

= Π0 + z−1Π1 + z−2Π2 + · · ·+ z−NΠN (6.29)

In 6.29, the substitution Πn =
∑M−1

i=0 pn
i ri has been used for clarity. The

result (6.29) can now be inserted into (6.23) in order to obtain an autoregressive

model.

(Π0 + z−1Π1 + z−2Π2 + · · ·+ z−NΠN)x[n] = w[n] (6.30)

Π0x[n] = −Π1x[n− 1]− Π2x[n− 2]− · · · − ΠNx[n−N ] + w[n] (6.31)

x[n] =
−Π1

Π0

x[n− 1] +
−Π2

Π0

x[n− 2] + · · ·+ −Π2

Π0

x[n−N ] + w[n] (6.32)

x[n] =
N∑

i=1

φix[n− i] + w[n] (6.33)

In (6.31) we use the result z−vx[n] = x[n − v] for multiplication with

the delay operator z−1. The autoregressive model cf. (6.23) can be used to

develop a process model for a single TDL filter tap x[n − 1] by writing the

matrix equation




x[n]

x[n− 1]

x[n− 2]
...

x[n−N + 1]




=




φ1 φ2 . . . φN−1 φN

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0







x[n− 1]

x[n− 2]

x[n− 3]
...

x[n−N ]




+




w[n]

0

0
...

0




(6.34)

xn = Fxn−1 + wn (6.35)

The equation (6.35) is in the form of the form (6.15). However, the equation

(6.35) allows for the tracking of only a single TDL filter tap, and there are L
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such taps that require tracking. We can expand the equation (6.35) to track

several TDL filter tap by augmenting L column vectors xl
n and xl

n−1, where l

is the index of the filter tap. The same state transition matrix F is used for

all the TDL filter taps [44].

6.3.2 Deriving the Kalman Filter Measurement Model

In Chapter 4, The RP-CSI estimator is introduced which can be used to reduce

the number of parameters estimated for MIMO-OFDM channel estimation. It

can be inferred that the RP-CSI estimator using the Fourier basis yields the

truncated (to a length L rather than N) time domain vector h in equation

(2.50). In Section 6.3.1, a process model is developed for a single element of the

truncated time domain vector h in equation (2.50). This section concludes the

derivation of the Kalman filter by deriving the matrix H used in measurement

equations.

Note that the RP-CSI estimator uses a received OFDM symbol r̃ in order

to calculate the CSI vector h using the Fourier basis. Because the received

symbol is a function of L TDL filter taps, some simplifiying assumptions are

in order to track the L channel parameters separately. It can be shown that

the measurement matrix H is simply the identity matrix I ∈ RL×L.

Recall the equation for the channel estimates based on the basis B such

that Q = (X̃PB)H , where P is an orthonormal, square, permutation matrix,

X̃ is a matrix of training symbols, and B is the Fourier basis matrix.

ĥ = Qr̃ = h + Qn (6.36)

n is an AWGN vector. Equation (6.36) can be used to derive the measure-

ment model for the Kalman Filter. Each estimated TDL filter tap ĥ[l] = zl[n]

at the time index n can be written as
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Figure 6.8: Simulation results showing the tracking of the channel gain at
a single antenna for a single sub-carrier. Note that reducing the number of
estimated parameters nw causes a marked change in the tracking output of the
Kalman filter.

z[n] = x[n] + v[n] (6.37)

{v[n]} are the elements of the vector Qn[l] = vl[n] and {x[n]} are the TDL

filter taps for a length L CIR h[l] = xl[n]. In order to be consistent with the

matrix form of the process model (6.35) we can write each element ĥ[l] = zl[n]

as a process in the time index n
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z[n]

z[n− 1]

z[n− 2]
...

z[n−N + 1]




=




1 0 . . . 0 0

0 1 . . . 0 0

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1







x[n]

x[n− 1]

x[n− 2]
...

x[n−N + 1]




+




v[n]

v[n− 1]

v[n− 2]
...

v[n−N + 1]




(6.38)

zn = Hxn + vn (6.39)

In equation (6.39) it can be noted that the measurement matrix H is the

identity matrix I ∈ RL×L. The Kalman filter can then be implemented as in

described in section 6.3. As with the process model, the L TDL filter taps can

be tracked by augmenting the measurement vectors zn and the process vectors

xn which are related by the same measurement matrix H [44].

A future challenge for the work presented in this section is to determine

how measurements may be derived using the RP-CSI estimator based on some

random data sequence in the matrix X̃ cf. (6.36). In Figure 6.8, results are

presented for Kalman tracking but importantly, it is assumed that the unknown

data has the properties of an orthogonal Hadamard sequence cf. (4.47). Such

requirements would reduce the throughput of the MIMO-OFDM system. If the

unknown data does not have the orthogonal property, a solution may not be

available based on the LS solution implemented in the RP-CSI estimator due

to an insufficient number of independent observations in the received symbol

vector. The results in Figure 6.8 show that there are differences in the tracking

output when RP-CSI estimators for varying numbers of estimation parameters

are implemented. Note also that for an adequate number of channel estimation

parameters nw = 16, the Kalman filter does not track the channel as well as

the DPSS basis cf. Figure (6.4 and 6.5). A single iteration of the Kalman filter

was considered in this comparison between the DPSS basis and the Kalman
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filter RP-CSI estimators.

Additional work may be done on the simulation and analysis of the tracking

performance when estimated parameters and the CIR vector are related via

Bw = Fh, so that h = F−1Bw.

6.4 Conclusions & Future Work

When QAM symbols are transmitted over a wireless channel, the detection

error probability decays exponentially in SNR for the AWGN channel while

it decays only inversely with the SNR for the fading channel [12]. The main

reason why detection in the fading channel has poor performance is not be-

cause of the lack of knowledge of the channel at the receiver. It is due to

the fact that the channel gain is random and there is a significant probability

that the channel is in a ”deep fade” [12]. Various authors have compared the

performance of techniques such as adaptive coding which introducing toler-

ance to slow Rayleigh fading channels for radio access schemes [98]–[100]. In

addition, the impact of channel uncertainty on the performance has been stud-

ied by various authors, including Medard and Gallager [95], Telatar and Tse

[96] and Subramanian and Hajek [97]. The MIMO-OFDM technology exploits

spatial and frequency diversity in order to increase the reliability of QAM

symbol transmission through fading channels. Spatial diversity is achieved

through the deployment of multiple antennas (MIMO) at both sides of the

wireless link and it can be shown that the MSE is inversely proportional to the

SNR raised to some power, and that the exponent of the SNR is the diversity

gain [12]. Frequency diversity is achieved through a multi-carrier modulation

scheme (OFDM) where transmit precoding is performed to convert the ISI

channel into a set of non-interfering, orthogonal sub-carriers, each experienc-

ing narrowband flat fading.

In the literature [1] the effects of imperfect CSI on a space time coding
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MIMO system are evaluated through simulation. Space time coding systems

are effectively the flat fading channel MIMO equivalent of the space frequency

coding systems described in detail in Section 1.5.1. The difference is that Space

frequency coding MIMO systems implement OFDM modulation that results

in flat fading channels, but the coding is equivalent in frequency and time.

In the literature [1], it is assumed that CSI is obtained through Orthogonal

Training Sequence channel estimation and that errors in the CSI estimation

are as a result of additive White Gaussian Noise (AWGN) in the received

symbols. In the literature, [18], [101] and [102], the main result on the subject

is that error below 15% are tolerable, such that the diversity advantage of the

scheme is maintained. However, it was noted in Section 5.3.2 that errors in

CSI estimates occur due to the assumptions on the correlation of CSI within

the coherence bandwidth. A future aim of the work presented in this thesis

is to extend the results cited here to include errors due to variations of CSI

within the coherence bandwidth.

In the literature [103], a time-domain analysis of imperfect channel estima-

tion in spatial multiplexing (cf. Section 1.5.2) OFDM-based multiple-antenna

transmission systems is studied. It is noted, as in this thesis, that the chan-

nel estimator encountered with imperfect windowing results in an additional

estimation error. This literature also considers the performance of orthogonal

training sequences for channel estimation in spatial multiplexing systems. In

all cases, Space time coding and spatial multiplexing, the diversity gain is of

interest when evaluating the effects of imperfect CSI at the receiver. The ana-

lytical error probabilities for MIMO-OFDM systems in Rayleigh fading channel

may be derived as in the literature [12] and the performance of the system with

imperfect CSI at the receiver evaluated through simulation [1]. Future work

to be undertaken includes establishing error performance bounds for spatial

multiplexing and space frequency coding systems, where the diversity gain is

degraded. This may be done by evaluating the analytical probability of error
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for various antenna configurations and evaluating the performance of a given

MIMO-OFDM system with CSI errors. This analysis should be extended to

the time domain tracking of channels with both directions of study (time and

frequency domain channel estimation) taking into account various basis with

reduced parameter properties.

In the literature [12], the sum capacity of the uplink and downlink flat

fading channels for a multi-user system is related to the multi-user diversity

gain. Compared to a system with a single transmitting user, the multi-user

gain comes from two effects: optimal power allocation and the availability

of numerous channels on which the power allocation is optimized. It is noted

that the increase in the full CSI sum capacity comes from a multi-user diversity

effect: when there are many users that fade independently, at any one time

there is a high probability that one of the users will have a strong channel.

The larger the number of users, the stronger tends to be the strongest channel,

and the more the multi-user diversity gain [12]. An analysis of the effects

of imperfect CSI on multi-user systems can be based on the results in the

literature [74]. This literature provides a study on the lower and upper bounds

of mutual information under channel estimation error, and it is shown that the

two bounds are tight for Gaussian inputs. The effects of the number of users

on the CSI estimation error in a multi-user system has been studied in this

thesis. These results can be used to investigate the effects of CSI estimation

error on multi-user diversity using the error bounds provided in the literature

[74] and further efforts made on the design of an optimal CSI estimation basis.
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Appendix A

Eigen Decomposition of the

Channel Covariance Matrix

Consider a multipath channel where the reflected arrivals are a Poisson process

with mean rate λ. For a specific realization, the delays relative to the Line-

of-Sight (LoS) path are: {ti : i = 1, 2, 3, . . . }. The complex amplitude of each

tap A(t), is a circular, zero mean, Normal random variable with an expected

power that decays exponentially with delay:

E[A(t)A∗(t)] = ae−µt (A.1)

where a and µ are constants. A specific realization of the channel impulse

response h(t) and its frequency response H(ω) may be written:

h(t) =
∞∑
i=1

A(ti)δ(t− ti) (A.2)

H(ω) =
∞∑
i=1

A(ti)e
−jωti (A.3)

We wish to calculate the Eigen basis of the covariance of the transfer func-

tion H(ω). Note that H(ω) is zero-mean for all ω as A(t) is zero-mean for all

t. Therefore the covariance can be written as:
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B(ω1, ω2) = E[H(ω1)H
∗(ω2)] (A.4)

=
∞∑
i=1

∞∑
j=1

E[A(ti)A
∗(tj)e−jω1tiejω2tj ] (A.5)

Because the tap amplitudes are independent and zero mean, the cross terms

in the expression cf. (A.5) do not contribute to the sum, i.e.,

B(ω1, ω2) =
∞∑
i=1

E[A(ti)A
∗(ti)e−j(ω1−ω2)ti ] (A.6)

For a Poisson process, the probability of a delay in the range (t, t + dt) is

λdt and the expression for the sum of expectations may be written:

B(ω1, ω2) =

∫ −∞

0

ae−µte−j(ω1−ω2)tiλdt (A.7)

=
λa

µ + j(ω1 − ω2)
(A.8)

Note that the covariance is only a function of frequency difference i.e.

B(ω1, ω2) = B(ω1 − ω2). This result may be used to show that Fourier basis

functions are Eigen functions of the covariance of the transfer function H(ω).

The Eigen functions U(ω) are the solutions of the integral equation:

∫ ∞

−∞
B(ω1, ω2)U(ω1) = σ2U(ω2) (A.9)

The result in equation (A.8) may be used to simplify the expression for

the Eigen functions cf. (A.9). Using the substitution u = ω1 − ω2 in equation

(A.9) and assuming that U(ω1) = ejω1t in the expression cf. (A.9) yields

∫ ∞

−∞
B(ω1 − ω2)e

jω1tdω1 =

∫ ∞

−∞
B(u)ej(u+ω2)tdu (A.10)

= ejω2t

∫ ∞

−∞
B(u)ejutdu (A.11)
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The result cf. (A.11) shows that the function U(ω1) = ejω1t are the Eigen

functions of the covariance of the transfer function H(ω). The Eigen values

are σ2 =
∫∞
−∞ B(u)ejutdu.



Appendix B

Power Spectral Density

In this Appendix we provide proof for the relationship between the Power

Spectral Density and the correlation functions in the time domain. This re-

lationship has been used to determine the Power Delay Profile (PDP) from

the Scattering function in Chapter 2 and also to determine the Coherence

time when given the Doppler spectrum in Chapter (6). The proof is originally

presented [11]

We shall start by defining the Power Spectral Density as a function of the

signal f(t). Let us define the Power Spectral Density function in the units

(watts per Hz) whose integral yields the power in the time domain function

f(t). The time average power of a signal f(t) that has been observed in the

interval (−T/2, T/2) is given by

P = lim
T→∞

1

T

∫ T/2

−T/2

|f(t)|2dt (B.1)

f(t) can be interpreted as the voltage v(t) or current i(t) applied to a 1ohm

resistor. Parseval’s theorem for the truncated function can be used to derive

the Power Spectral Density function as follows

∫ T/2

−T/2

|f(t)|2dt =
1

2π

∫ ∞

−∞
|FT (ω)|2dω (B.2)

Hence the average power P across a 1 Ω resistor is given by
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P = lim
T→∞

1

T

∫ T/2

−T/2

|f(t)|2dt = lim
T→∞

1

2π

∫ ∞

−∞
|FT (ω)|2dω (B.3)

Combining the equation for Parseval’s theorem (B.2–B.3), with our defini-

tion of the Power Spectral Density function Sf (ω) we have

1

2π

∫ ∞

−∞
Sf (ω)dω = lim

T→∞
1

2π

∫ ∞

−∞
|FT (ω)|2dω (B.4)

In addition, we insist that this relation should hold over each frequency

increment so that equation (B.4) becomes

Gf (ω) =
1

2π

∫ ω

−∞
Sf (u)du = lim

T→∞
1

2π

∫ ω

−∞
|FT (u)|2du (B.5)

where Gf (ω) represents the cumulative amount of power for all frequency

components below a given frequency ω. For this reason Gf (ω) is called the

cumulative power spectrum, or equivalently the integrated power spectrum of

f(t). If we interchange the order of the limiting operation and the integration

is valid, equation (B.5) becomes

2πGf (ω) =

∫ ω

−∞
Sf (u)du =

∫ ω

−∞
lim

T→∞
1

2π

∣∣∣∣
FT (u)

T

∣∣∣∣
2

du (B.6)

Note that the average or mean power contained in any frequency interval

(ω1, ω2) is [Gf (ω2)−Gf (ω1)]. In many cases, Gf (ω) is differntiable and we

have

2π
dGf (ω)

dω
= Sf (u) (B.7)

Under these conditions, equation B.6 gives

Sf (ω) = lim
T→∞

∣∣∣∣
FT (u)

T

∣∣∣∣
2

(B.8)

Equation (B.8) is our desired result for the power spectral density of f(t).

We now show that the time domain autocorrelation is the operation which is
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equivalent to finding the power spectral density in frequency. If we assume that

our relationship for the power spectral density is satisfied, the corresponding

time domain operation is found by taking the inverse Fourier transform of

(B.8)

F−1{Sf (ω)} =
1

2π

∫ ∞

−∞
lim

T→∞
1

T
|FT (ω)|2ejωτdω (B.9)

We have purposefully chosen a new time variable, τ , in equation (B.9)

because the time variable t is already in use in the definition of FT (ω). Inter-

changing the order of operations yeilds

F−1{Sf (ω)} = lim
T→∞

1

2πT

∫ ∞

−∞
FT (ω)∗FT (ω)ejωτdω (B.10)

= lim
T→∞

1

2πT

∫ ∞

−∞

∫ T/2

−T/2

f ∗(t)ejωtdt

∫ T/2

−T/2

f(t1)e
jω−t1dt1e

jωτdω

(B.11)

= lim
T→∞

∫ T/2

−T/2

f ∗(t)
∫ T/2

−T/2

f(t1)

[
1

2π

∫ ∞

−∞
ejω(t−t1+τ)dω

]
dt1dt

(B.12)

The integral over ω within the brackets in (B.12) is now recognized as

δ(t− t1 + τ), so that

F−1{Sf (ω)} = lim
T→∞

∫ T/2

−T/2

f ∗(t)
∫ T/2

−T/2

f(t1)δ(t− t1 + τ)dt1dt (B.13)

= lim
T→∞

∫ T/2

−T/2

f ∗(t)f(t + τ)dt (B.14)

Equation (B.14) describes the operations in the time domain that corre-

spond to the determination of Sf (ω) in frequency. The inverse Fourier trans-

form of the power spectral density is the autocorrelation of f(t) which we

denote as Rf (τ).

F−1{Sf (ω)} = Rf (τ) = lim
T→∞

∫ T/2

−T/2

f ∗(t)f(t + τ)dt (B.15)



Appendix C

Channel gain frequency

correlations

In this Appendix, the mathematical expression for the correlations of the chan-

nel gain at different frequencies is formulated. As mentioned in the thesis,

multi-carrier schemes such as OFDM can be used to overcome ISI due to mul-

tipath propagation. ISI is eliminated by simultaneously transmitting several

symbols at a lower symbol rate using orthogonal (separable at the receiver)

carriers. The channel gain will however vary from one sub-carrier to the next

due to the frequency selectivity of the channel. Frequency selectivity results

when the Channel Impulse Response (CIR) is an impulse train and the FFT

of the CIR varies at different frequencies. In this case, because convolution in

the time domain is equivalent to multiplication in the frequency domain, the

symbol spectrum will experience different gain at different frequencies.

Consider the simple model of the discrete-time multipath channel. The

CIR is an impulses train, where each impulse has a complex gain as described

in Chapter 2.

h̄γ̄(t, τ) =
N−1∑
n=0

γ̄n(τn(t), t)δ(t− τn(t)) (C.1)

γ̄n(τn(t), t) = γn(t)e−j2πfcτn(t) in (2.7) is the time varying channel gain of

the nth path (the multipath gain). τ is the delay in arrival at the receiver
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of the nth multipath component relative to the first perceptible multipath

component. t is the measurement time instant which reflects changes in the

CIR at separate time instances due to movement of the transmitter, receiver

or the multipath mechanisms. Using the definition of the (continuous time)

Fourier Transform, the frequency transfer function for this particular channel

is

H(f) =

∫ ∞

−∞

N−1∑
n=0

γ̄n(τn(t), t)δ(t− τn(t))e−j2πftdt =
N−1∑
n=0

γ̄n(τn(t), t)e−j2πfτn(t)

(C.2)

The correlation between the transfer function at frequencies f1 and f2 is

then

E [H(f1)H
∗(f2)] = E

[
N−1∑
n=0

γ̄n(τn(t), t)e−j2πf1τn(t)

M−1∑
m=0

γ̄∗m(τm(t), t)ej2πf2τm(t)

]

(C.3)

To solve these sums analytically, we substitute q = m − n, and note that

in the summing over q, only the term with q = 0 is non zero, so that

E [H(f1)H
∗(f2)] =

N−1∑
n=0

M−1−n∑
q=−n

E
[
γ̄n(τn(t), t)γ̄∗n+q(τn+q(t), t)

]
e−j2πf1τn(t)ej2πf2τn+q(t)

(C.4)

=
N−1∑
n=0

E [γ̄n(τn(t), t)γ̄∗n(τn(t), t)] e−j2π(f1−f2)τn(t) (C.5)

It can be noted that equation C.5 is the discrete-time fast Fourier transform

of the Power Delay Profile c.f (2.23). This result shows that if the PDP is

assumed to be a square function, then the correlation is a sinc function, a

result that is used extensively in Chapter 3.
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WICOM-06 Conference Paper

Accurate channel state information (CSI) can be directly linked to the capacity

and symbol-error-rate (SER) performance of a wireless system employing syn-

chronized detection. Obtaining accurate CSI is particularly challenging when

MIMO1 antennas are implemented in conjunction with orthogonal frequency-

division multiplexing (OFDM) modulation, for systems where the base station

(BS) has more antenna than the mobile station (MS). The difficulty is that

the received symbol vector at the mobile station is a sum of products of the

transmitted symbols (data plus pilot) and several CSI unknowns, but that

the later have to be resolved uniquely from the single, received symbol vector

observation. Theoretically, perfect recovery of CSI is impossible even in the

absence of noise as the number of unknowns is more than the number of obser-

vations, leading to an underdetermined system of linear equations. However,

given that the CSI unknowns are correlated in frequency, this paper presents

reduced rank algorithm to estimate the CSI at all sub-carriers from all of the

antennas. Our proposed technique is inspired by the observation that a simple

linear function can well approximate the channel variation in frequency and

that permits us to have more CSI estimates than observations at the receiver.

This paper can be thought of as a generalization of the approach previously

proposed in [1] for any number of transmit antennas.

1The notation (nt, nr) is used to denote a MIMO system with nt transmit antennas and
nr receive antennas.
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I. Introduction

The principle of synchronous detection for which a channel estimate is formed

and subsequently used for detection is applied in virtually all of today’s digital

wireless communications systems. The application of this principle to systems

employing multiple-input multiple-output (MIMO) antennas and space time

coding techniques is known to provide high quality, high data rate wireless

communications. Systems that can achieve high channel capacity and low

symbol error rates (SER) have been reported (e.g., [2]–[5]) and some are used

in the third-generation wireless systems. Nonetheless, the capacity and SER

performance of MIMO technologies, and synchronous detection systems in gen-

eral, is directly linked to the availability of accurate channel state information

(CSI) at the receiver. Without CSI, the channel capacity is simply not achiev-

able although differential type of coding schemes can be used to obtain some

advantages for improved performance [6]. Perfect CSI can be obtained for sys-

tems where symbols occupy a select few sub-carriers [7] but such systems are

not spectrally efficient when compared to systems where the pilots are linearly

added to the data and the resultant symbols occupy all available sub-carriers.

The channel estimation problem is challenging when MIMO antennas are

used in conjunction with orthogonal frequency-division multiplexing (OFDM)

modulation, and if the channels are to be estimated in one OFDM symbol

[8]. OFDM modulation can be used to convert frequency selective channels

to flat fading channels where the resultant received symbol is a product of

a transmitted symbol and a single CSI variable. The problem is one where

the observed received symbol is a sum of products of the transmitted symbols

and the CSI unknowns, and practically there are more than one CSI variables

to be estimated for each sub-carrier at each receive antenna. This gives rise

to an underdetermined system for CSI estimation as obviously, multiple CSI

estimates are required from one observation.
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Conventional methods deal with this problem by presuming CSI congruence

for at least nt sub-carriers, where nt is the number of transmit antennas. In

effect, the number of CSI unknowns will be equal to the number of observations

and the estimation problem reduces to the design of optimal training sequences.

However, in practice, the CSIs in adjacent sub-carriers are not equal even

though they might be highly correlated. This would impose an irreducible

mean-square-error (MSE) floor in channel estimation even in the absence of

noise. Though it is possible to estimate the time-sampled channels to generate

different sub-carrier channel estimates, the underdetermined problem structure

still exists and the optimal CSI estimates are not necessarily the true CSI

even without noise [9, 10]. Most recently, Mung’au et al. proposed to apply

the interpolation structure into refining the channel estimation for overloaded

systems with only two transmit antennas [1]. Despite the promising result,

it is not clear how the proposed scheme can be extended for more number of

transmit antennas.

In this paper, we address the CSI estimation problem for a MIMO-OFDM

system using orthogonal training sequences, where the data plus pilot symbol

is assumed to be known through a maximum likelihood process. The main

novelty is that we, in principle, regard the channels in frequency to be different,

but correlated. Our method is thus able to produce multiple CSI estimates

corresponding to different transmit antennas, at each sub-carrier. The work

presented in this paper can be thought of as a generalization of the approach

in [1] for any number of transmit antennas.

The paper is structured as follows. In Section II, we shall introduce the

system model for an MIMO-OFDM system and formalize the channel estima-

tion problem. Section III describes the proposed iterative channel estimation

algorithm. Simulation results will be given in Section V. Finally, we have some

concluding remarks in Section VI.
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II. MIMO-OFDM System Model and The Chan-

nel Estimation Problem

D.0.1 OFDM Systems

For an OFDM system with multiple transmit antennas, at time n, information

is transmitted in space and frequency by signals {ti[n, k] : k = 0, 1, . . . , K −
1 & i = 1, 2, . . . , nt} in which K is the number of sub-carriers and nT denotes

the number of transmit antennas. Furthermore, ti[n, k] may be data, pilot

or superimposed pilot with data or space-frequency encoded version of any of

these [85].

At the jth receive antenna, the signal can be expressed as

rj[n, k] =
nt∑
i=1

Hi,j[n, k]ti[n, k] + wj[n, k] (D.1)

where Hi,j[n, k] denotes the channel response at the kth sub-carrier of the nth

OFDM block, from the ith transmit antenna to the jth receive antenna, and

wj[n, k] is the corresponding white noise perturbation with Gaussian distribu-

tion of zero-mean and σ2-variance.

D.0.2 The Fading Channel

The channel impulse response of the wireless channel can be described by a

multi-ray model

h(t, τ) =
∑

`

γ`(t)δ(τ − τ`) (D.2)

where γ`(t) denotes the complex channel response of the `th path which we

model it as a zero-mean complex Gaussian random variable following an ex-

ponential power profile, and τ` is the delay of the `th path. The number of

paths can be modelled by the Poisson distribution so that the inter-arrival

time between paths is exponential distributed.
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The frequency response of the channel (D.2) is hence given by

H(t, f) = F {h(t, τ)} =
∑

`

γ`(t)e
−j2πfτ` . (D.3)

With proper cyclic extension and guard timing, the channel response, H[n, k],

can be written as [70]

H[n, k] , H(nTf , k4f) (D.4)

where Tf denotes the block length which includes the symbol duration and

a guard interval, and 4f represents the sub-carrier spacing. Usually, Tf is

long, at least when compared to the root-mean-square (rms) delay spread of

the channel (τrms). Therefore, it is very likely that the channels will vary quite

significantly from time n to n + 1. In this paper, we shall assume that H[n, k]

and H[ñ, k] are independent if n 6= ñ.

D.0.3 The Overloaded Channel Estimation Problem

At sub-carrier k, the channel estimation aims to minimize the following MSE

cost function:

min
{H̃i[k]}:∀i,k

MSE ,
nt∑
i=1

K−1∑

k=0

∣∣∣H̃i[k]−Hi[k]
∣∣∣
2

(D.5)

where the indices for time and receive antenna are omitted for simplicity. How-

ever, as this MSE metric contains no known information, channel estimation

is therefore usually done by minimizing [8]–[10]

min
{Hi[k]}:∀i,k

ε ,
K−1∑

k=0

∣∣∣∣∣r[k]−
nt∑
i=1

Hi[k]ti[k]

∣∣∣∣∣

2

. (D.6)

Without multiple transmit antennas, the metric, ε, can achieve (D.5) perfectly

in the absence of noise if {ti[k]}’s are known pilot symbols. Unfortunately,

problem arises when multiple transmit antennas are equipped because (D.6)

becomes a well known underdetermined estimation problem. In this case, (D.6)

is less meaningful as it has K sum-of-squares with nt×K variables. There are
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infinitely many solutions of {Hi[k]} that could make ε = 0, and among them,

there is only one set of solution which can minimize the MSE in (D.5). As a

result, solving (D.6) does not help much in finding the best possible channel

estimates for (D.5). In this paper, we look into finding a channel estimation

method to achieve (D.5) instead of (D.6) due to the underdetermined system

structure.

III. The Proposed Method for nt > 1

Our main idea is to exploit the channel correlation in frequency so that we could

in a sense convert the underdetermined system into a determined system. As a

starting point, the expression for the error in channel (CSI) estimate (assuming

congruence over nt sub-carriers) will be derived for the case where there is no

noise at the receiver.

Given that {ti[k]}’s are orthogonal pilot training sequences spanning nt

sub-carriers such that

nT∑

k=1

t∗j [k]ti[k] =





1 i = j,

0 i 6= j,
(D.7)

where {t∗i [k]} is the complex conjugate of {ti[k]}, with the indices i, j =

1, 2, ..., nt. We can have a coarse estimate for {Hi[k]} by forming a linear

combination of the received symbols, i.e.,
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Hest
i [k] , t∗i [k]r[k] + · · ·+ t∗i [k + nt − 1]r[k + nt − 1]

= Hi[k] + t∗i [k + 1]t1[k + 1]∆H(1)
k+1,k + · · ·

+ t∗i [k + nt − 1]t1[k + nt − 1]∆H(1)
k+nt−1,k

+ t∗i [k + 1]t2[k + 1]∆H(2)
k+1,k + · · ·

+ t∗i [k + nt − 1]t2[k + nt − 1]∆H(2)
k+nt−1,k + · · ·

+ t∗i [k + 1]tnt [k + 1]∆H(nt)
k+1,k + · · ·

+ t∗i [k + nt − 1]tnt [k + nt − 1]∆H(nt)
k+nt−1,k

= Hi[k] + δHi[k]

(D.8)

where {δHi[k]}’s can be viewed as the channel estimation errors between the

estimated and actual channels with

∆H(i)
`,k , Hi[`]−Hi[k]. (D.9)

For a given antenna i, in (D.8), there are K
nt

channel estimates formed for

the OFDM block and the variable k assumes the values k = 1, nt + 1, 2nt +

1, ..., K − nt + 1 over the length K of the OFDM block. Note that for the ith

antenna, a single estimate is formed over nt sub-carriers for which congruence

is assumed. The assumption of congruence imposes an error in the channel

estimate δHi[k] that increases as the number of transmit antennas increases.

In addition, the error in the channel estimate is inversely proportional to the

degree of correlation for the channel pairs [1]. That is to say, if the difference

in the channel pairs, ∆H(i)
`,k for ` = (k + 1), (k + 2), ..., (k + nt − 1), is small,

then the error in the estimate will be small. In an environment where there is

a great degree of multi-path (i.e., large τrms), the channels are less correlated,

and ∆H(i)
`,k is significant.

Standard interpolation of the estimated channel values over the length of

the OFDM block can be used to determine the variations in the channels for

which congruence is assumed. Our method proposes the use of the variations
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in the channels obtained from interpolation as well as two adjacent estimated

channels to reduce the error in channel estimate defined in (D.8). For this

purpose, the refinement in channel estimate will be carried out for sub-blocks

of length 2nt over the whole OFDM block in which there are two adjacent

estimated channels and 2nt − 2 interpolated channels. [See figure D.2].

The error in the channel estimate of the two adjacent estimated channels

can be evaluated using (D.8)

δHi[k] , Hest
i [k]−Hi[k]

= t∗i [k + 1]t1[k + 1]∆H(1)
k+1,k + · · ·

+ t∗i [k + nt − 1]t1[k + nt − 1]∆H(1)
k+nt−1,k

+ t∗i [k + 1]t2[k + 1]∆H(2)
k+1,k + · · ·

+ t∗i [k + nt − 1]t2[k + nt − 1]∆H(2)
k+nt−1,k + · · ·

+ t∗i [k + 1]tnt [k + 1]∆H(nt)
k+1,k + · · ·

+ t∗i [k + nt − 1]tnt [k + nt − 1]∆H(nt)
k+nt−1,k,

(D.10)

δHi[k + nt] , Hest
i [k + nt]−Hi[k + nt]

= t∗i [k + nt + 1]t1[k + nt + 1]∆H(1)
k+nt+1,k + · · ·

+ t∗i [k + 2nt − 1]t1[k + 2nt − 1]∆H(1)
k+2nt−1,k

+ t∗i [k + nt + 1]t2[k + nt + 1]∆H(2)
k+nt+1,k + · · ·

+ t∗i [k + 2nt − 1]t2[k + 2nt − 1]∆H(2)
k+2nt−1,k + · · ·

+ t∗i [k + nt + 1]tnt [k + nt + 1]∆H(nt)
k+nt+1,k = · · ·

+ t∗i [k + 2nt − 1]tnt [k + 2nt − 1]∆H(nt)
k+2nt−1,k.

(D.11)

For the equation pairs, (D.10) and (D.11), the variable k assumes the range

k = 1, 2nt + 1, 4nt + 1, . . . , K − 2nt + 1. Standard interpolation can be used to

estimate the variations in the channel {∆H(i)
`,k}. Therefore, (D.10)–(D.11) can

be used to refine the channel estimates {Hest
i [k]} and having thus corrected

for the errors in the channel estimate, re-interpolation provides more accurate
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estimates for the channels that are assumed to be congruent. In particular,

the above observation is further qualified by rewriting the actual channels as

a function of the received symbols r[k] and the variation in the channels, so

that



H1[k]
...

Hnt [k]


 =




t1[k] · · · tnt [k]
...

. . .
...

t1[k + nt − 1] · · · tnt [k + nt − 1]




−1

×







r[k]
...

r[k + nt − 1]




−




0 · · · 0

∆H(1)
k+1,k · · · ∆H(nt)

k+1,k

...
. . .

...

∆H(1)
k+nt−1,k · · · ∆H(nt)

k+nt−1,k




×




t1[k] · · · t1[k + nt − 1]
...

. . .
...

tnt [k] · · · tnt [k + nt − 1]





 .

(D.12)

(D.12) can be utilized to estimate the channels {Hi[k]} if there is an estimate

for the variations in channel {∆H(i)
`,k}. A similar expression can be written for

{Hi[k + nt]}, the next estimated channels in the sub-block, by substituting

the variable k with k + nt in (D.12) above.

Note that if the initial estimate for the variations in the channel {∆H(i)
`,k}

in (D.10)–(D.11) are incorrect, it is not possible to correct for the error in the

channel estimate as proposed here. Because of this assertion, we intend to

relate the estimated channels and the interpolated channels by defining the

following ratios, again considering the defined sub-block

%
(i)
`,k , Hi[`]−Hi[k]

Hi[k + nt]−Hi[k]
=

∆H(i)
`,k

∆H(i)
k+nt,k

(D.13)
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%
(i)
`,k+nt

, Hi[`]−Hi[k + nt]

Hi[k + nt]−Hi[k]
=

∆H(i)
`,k+nt

∆H(i)
k+nt,k

(D.14)

In (D.13) ` = (k + 1), (k + 2), ..., (k + nt − 1) whereas in (D.14) ` = (k + nt +

1), (k + nt + 2), ..., (k + 2nt− 1). In practice, these ratios can be approximated

using the estimated channel and the interpolated channels. For instance, for

a (2, 1) system,

%
(1)
2,1 ≈

H int
1 [2]−Hest

1 [1]

Hest
1 [3]−Hest

1 [1]
(D.15)

where H int
1 [2] is the channel estimate obtained from interpolating the estimates

Hest
1 [1] and Hest

1 [3]. We observe from numerical results that the approximated

ratios are found to be about 95% accurate in most cases.

With these ratios, we have the following relations

∆H(i)
`,k

∣∣∣
est

= %
(i)
`,k (Hest

i [k + nt]−Hest
1 [k]) ,

∆H(i)
`,k+nt

∣∣∣
est

= %
(i)
`,k+nt

(Hest
i [k + nt]−Hest

i [k]) .
(D.16)

Observing that the estimated channel in (D.8) is related to the actual channel

as Hest
i [k] = Hi[k] + δHi[k], (D.16) can be re-written as a function of the error

in the channel estimate δHi[k], allowing for an update of the variations in the

channel ∆H(i)
`,k.

∆H(i)
`,k

∣∣∣
est

= ∆H(i)
`,k + %

(i)
`,k (δHest

i [k + nt]− δHest
1 [k]) (D.17)

∆H(i)
`,k+nt

∣∣∣
est

= ∆H(i)
`,k+nt

+ %
(i)
`,k+nt

(δHest
i [k + nt]− δHest

i [k])

(D.18)

{∆H(i)
`,k

∣∣∣
est
} are updated, from the results in (D.10)–(D.11), using (D.17)–

(D.18), and making the actual channel the subject of the formula. As a conse-

quence, we can iterate the estimation between {δHi[k]} and {∆H(i)
`,k} to obtain

a fine estimate for the later quantities. Finally, the estimated channels can be

readily obtained using (D.12). In addition, the iterated channels can be easily

found from

Hest
i [`] = Hest

i [k] + ∆H(i)
`,k

∣∣∣
est

(D.19)
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The above iterative algorithm is summarized as follows:

S1) Estimate the channels Hest
i [k] and Hest

i [k + nt] for k = 1, 2nt + 1, 4nt +

1, . . . , K − 2nt + 1 based on the orthogonality of the training sequences

[see (D.8)] for i = 1, 2, . . . , nt.

S2) Use standard interpolation function to get the estimates the channels:

H int
i [k +1], . . . , H int

i [k +nt− 1] and H int
i [k +nt +1], . . . , H int

i [k +2nt− 1].

S3) Obtain the estimates for {%(i)
`,k} and {%(i)

`,k+nt
} using (D.13) and (D.14),

and the results of step 1 and 2 above.

S4) Find {δHi[k]} and {δHi[k + nt]} using (D.10)–(D.11), and then update

the estimates for the variations in the channels using (D.17) and (D.18).

Repeat Step 4 until convergence.

S5) Use the updated {∆H(i)
`,k} and {∆H(i)

`,k+nt
} and (D.12) to recalculate the

estimated channels.

S6) Use the updated {∆H(i)
`,k} and {∆H(i)

`,k+nt
} and the results from step 5 in

(D.19) to recalculate the interpolated channels.

IV. Simulation Results

Results were obtained for Rayleigh frequency selective fading channels under

no noise conditions. In order to simulate the channel, Poisson distribution was

used to simulate the number of significant multi-path elements with mean of 3

and also the exponential arrival times between the significant paths. A typical

rms delay spread in an office building is τrms = 270 ns [12]. In figure D.3 where

the rms delay spread is varied, results for the MSE in the channel estimate

were provided for the range 0.5τrms to 1.5τrms, for a (2, 1) system. Figure

D.4 shows similar results for a (3, 1) system. Significant multi-path elements
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can be expected within 5τrms, the so-called maximum delay. OFDM with 128

sub-carriers, symbol rate of 3.125 MHz was considered for the (2, 1) system.

OFDM with 126 sub-carriers and the same symbol rate was considered for the

(3, 1) system. The number of sub-carriers used has to be a multiple of 2nt

in order that refinement using the algorithm is possible for the whole OFDM

block. Results for the conventional method that first estimates K
nt

channels

using orthogonal training sequences and then uses a standard interpolation

function to obtain the remaining K − K
nt

channels is provided for comparison.

The results for the method that aims to minimize ε in (D.6) is also provided

[9].

As can be seen in figure D.3, the proposed algorithm can achieve nearly

perfect channel estimates with MSE in the order of 10−7 as compared to the

conventional method with MSE in the order of 10−3 for a (2, 1) system. Similar

results are obtained for the (3, 1) system with MSE in the order of 10−5 as

compared to the conventional method with MSE in the order of 10−2.

The performance of the proposed algorithm is superior to the conventional

methods and the scheme in [9] for both systems considered. In particular, the

proposed method can achieve several order of magnitude reduction in MSE for

a wide range of rms delay spread.

V. Conclusion

This paper has proposed an iterative algorithm for improved channel esti-

mation for a MIMO-OFDM system. Our proposed method differs from the

previous approaches in that we realize the underdetermined problem structure

and introduce an approximate channel difference ratio to link the estimated

and interpolated channels in frequency. The outcome is that we can signifi-

cantly reduce the MSE in channel estimation by several orders of magnitude

when compared to the known conventional methods. There is a limit to the
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improvement in the MSE and it can be noted that where there is significant

multipath (i.e. for long τrms) and for the (3,1) system, the channel difference

ratio is not accurate and the MSE is higher when compared to the MSE for

shorter τrms and fewer antennas. The improvement achieved however should

translate to significantly increased capacity and SER performance for MIMO-

OFDM systems.



Appendix D WICOM-06 Conference Paper 199

Figure D.1: The MIMO-OFDM system.

Figure D.2: Example of the partitioning of 128 channel estimates for the
OFDM block into sub-blocks for a (2,1) MIMO-OFDM system.
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Figure D.3: Results comparing the MSE vs RMS delay spread for the estimated
(conventional method), the method described in reference [7], and the iterated
(proposed method) channels across 128 OFDM sub-carriers for a (2,1) system.
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Figure D.4: Results comparing the MSE vs RMS delay spread for the estimated
(conventional method), the method described in reference [7], and the iterated
(proposed method) channels across 126 OFDM sub-carriers for a (3,1) system.
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Appendix E

MATLAB CODE

This section contains sample MATLAB code that was developed for simula-

tions in the thesis. An attempt has been made to comment the cade as far

as possible, but in order to understand the code, please refer to the relevant

chapters.

E.1 Saleh-Valenzuela Channel Model

f unc t i on pdp=gen SVstatpdp ( show )

% a func t i on to generate the sa leh−ve l enzue l a model

% channel

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% [ 1 ] − A s t a t i s t i c a l model f o r indoor mult ipath

% propagat ion .

% IEEE Jorna l on s e l e c t e d areas o f communications VOL.

% SAC 5 . No 2 . February 1997 .

% here we try to s imulate the 802 .11n s c ena r i o

% For an OFDM system with a data ra t e o f 540Mbps

% us ing 64−QAM (6 b i t s per symbol ) , the symbol rate

% = b i t r a t e / b i t s pe r symbo l = 90MSps . The symbol

% peiod = 1/ symbol rate .

203
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i f narg in==0

show=0;

end

K=128; % number o f s u b c a r r i e r s

T sym=11e−9; % approximate symbol per iod

% at t h i s symbol per iod , the maximum frequency o f the

% sub c a r r i e r s i s bw=0.5∗1/T sym = 45Mhz . Sub−
% c a r r i e r f requency s epa ra t i on i s bw/K = 0.3125MHz.

% s im i l a r to 802 .11 a .

% symbol per iod imp l i e s that a c y c l i c p r e f i x o f

% length 20 symbols i s r equ i r ed so that 20∗T sym >

% tao max o f the multipath , with tau max=200ns .

LAMBDA=1/(200e−9); % c l u s t e r ra t e

lambda=1/(5e−9); % ray ra t e

T block=K∗T sym ; % durat ion o f the OFDM block

avg c l u s t=T block ∗LAMBDA; % average number o f c l u s t e r s

% the c l u s t e r s have po i s son a r r i v a l s

n c l u s t = po i s s rnd ( avg c l u s t )+1; % avoid nc l u s t =0;

c l u s t d e l a y s = exprnd ((1/LAMBDA) , [ 1 nc l u s t ] ) ;

% monotonica l ly i n t r e a s i n g de lays . . .

monc lustde lays=so r t ( c l u s t d e l a y s ) ;

% the c l u s t e r de lays should be l e s s than the OFDM block l ength and non

% zero , i f so they form TAO

TAO= [ 0 , . . .

monc lustde lays ( f i nd ( monclustdelays >0 & monclustdelays<T block ) ) ] ;
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% update the number o f c l u s t e r s . . .

n c l u s t=length (TAO) ;

% because the de lay o f the f i r s t c l u s t e r i s ze ro and the de lay o f the l a s t

% c l u s t e r i s l e s s than T block f o r the OFDM block

% length (TAO)=length (DELTA TAO) , but these w i l l be used in context .

DELTA TAO=ze ro s (1 , l ength (TAO) ) ;

% c a l u l a t e the number o f rays in each c l u s t e r . F i r s t work out

% the de lay between s u c c e s s i v e c l u s t e r s . t h i s i s used to c a l c u l a t e t

% the expected number o f rays in the c l u s t e r which i s po i s son with

% rat e lambda=1/(5e−9)

f o r i i =1: n c l u s t

i f i i < nc lu s t

DELTA TAO( i i )=TAO( i i +1)−TAO( i i ) ;

e l s e

DELTA TAO( i i )=T block−TAO( i i ) ;

end

end

% f o r each c l u s t e r , make some rays . . .

% de c l a r e a va r i a b l e to hold the number o f rays in each c l u s t e r

nrays=ze ro s (1 , l ength (DELTA TAO) ) ;

f o r i i =1: l ength (DELTA TAO)

avgnum rays=lambda∗DELTA TAO( i i ) ;

nrays ( i i ) = po i s s rnd ( avgnum rays )+1; % avoid nrays==0

end

% us ing the I n t e r n a t i o n a l Telecommunications Union ’ s ITU1238

% model f o r the s t a t i s t i c a l d e s c r i p t i o n o f a t yp i c a l home ’ s

% operat ing cond i t i ons , antenna ga ins G t=G r=3dB .

% the mult ipath power gain at one meter can be approx . by

% G = G tG r [ lambda 0/4 p i ] ˆ2

lambda0=3e8 /2 .4 e9 ; % wavelength o f the 2 .4GHz
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% multipath power gain

G=10ˆ0.3∗10ˆ0.3∗( lambda0 ˆ2/(4∗ pi ) ) ;

% power de lay time constant

gamma=20e−9;

% average power o f the f i r s t ray o f the f i r s t c l u s t e r

beta rms00=G/(gamma∗ lambda ) ;

% the power de lay p r o f i l e i s sampled at the symbol per iod

pdp=ze ro s (1 ,K) ;

de lay =0:T sym : T block ; % dec l a r e the de lays f o r the pdp

%generate the PDP

f o r i i =1: n c l u s t

%generate some ray de lays

rayde lays = exprnd ((1/ lambda ) , [ 1 nrays ( i i ) ] ) ;

%monotonica l ly i n c r e a s i n g de lays

monraydelays=so r t ( rayde lays ) ;

%we do not want zero ray de lays

nzrayde lays =[monraydelays ( f i nd ( monraydelays ˜=0) ) ] ;

%add the c l u s t e r s t a r t time

nzrayde lays=TAO( i i )+nzrayde lays ;

%ray de lays should be l e s s than the OFDM block

tao=[TAO( i i ) , nzrayde lays ( f i nd ( nzraydelays<T block ) ) ] ;

%f i nd the number o f rays in the c l u s t e r

n ray spc lu s t=length ( tao ) ;

%generate the PDP

f o r j j =1: n ray spc lu s t

beta rms=beta rms00 ∗exp(−TAO( i i )/60 e − 9 ) . . .

∗exp(−tao ( j j )/20 e−9);

f o r kk=1:K

i f ( tao ( j j )>=delay ( kk ))&( tao ( j j )<=delay ( kk+1))

pdp( kk)=pdp( kk)+beta rms ;
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end

end

end

end

% generate de lay in seconds f o r the power p r o f i l e

taode lay =0:T sym : ( T block−T sym ) ;

i f show==1

f i gu r e , stem ( taodelay , abs (pdp ) )

x l ab e l ( ’ Multi−path component de lay : max = (N−1)T s ( s ec ) ’ )

y l ab e l ( ’ $E [ | \ bar {\gamma} n | ˆ 2 ] $ ’ , ’ I n t e rp r e t e r ’ , ’ l a tex ’ )

t i t l e ( ’PDP at QAM symbol per iod mu l t i p l e s : T s=11eˆ−ˆ9, N = 128 ’ )

g r id minor ;

end

func t i on chan=gen SVstatchan (pdp , show )

% generate the channel impulse re sponse

i f narg in==1

show=0;

end

K=128; % number o f s u b c a r r i e r s

T sym=11e−9; % approximate symbol per iod

T block=K∗T sym ; % durat ion o f the OFDM block

% generate de lay in seconds f o r the CIR

taode lay =0:T sym : ( T block−T sym ) ;

f o r i i =1: l ength (pdp)

% the standard dev i a t i on o f the gauss ian IQ channel ga in

% i s c a l c u l a t ed from the pdp

std dev=sq r t (pdp ( i i ) / 2 ) ;
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% generate gauss ian d i s t r i b u t e d x , mu = 0 and sigma = std dev

x = normrnd (0 , s td dev ) ;

% generate gauss ian d i s t r i b u t e d x , mu = 0 and sigma = std dev

y = normrnd (0 , s td dev ) ;

% generate

chan ( i i ) = x+j ∗y ;

end

i f show==1

f i gu r e , stem ( taodelay , abs ( chan ) )

x l ab e l ( ’ Multi−path component de lay : max = (N−1)T s ( s ec ) ’ )

y l ab e l ( ’ $ | \ bar {\gamma} n | $ ’ , ’ I n t e rp r e t e r ’ , ’ l a tex ’ )

t i t l e ( ’ Multi−path component gain ampl itudes : T s=11eˆ−ˆ9, N = 128 ’ )

f i gu r e , stem ( taodelay , ang le ( chan ) )

x l ab e l ( ’ Multi−path component de lay : max = (N−1)T s ( s ec ) ’ )

y l ab e l ( ’ $eˆ{− j 2 \ pi f c \ tau n }$ ’ , ’ I n t e rp r e t e r ’ , ’ l a tex ’ )

t i t l e ( ’ Multi−path component gain phases : T s=11eˆ−ˆ9, N = 128 ’ )

end

E.2 Wiener Filter Implementation

f unc t i on errMat=WienerChanEst ( tau max , v rec ,SNR)

% tau max = maximum delay o f the channel

% v r e c = v e l o c i t y o f the r e c e i v e r

K=16; % OFDM symbol l ength

L=4; % length o f CP

M=32; % OFDM frame length

T s=10e−6; % symbol per iod

T rms=3.5e−6; % rms delay spread
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F s=200e3/K; % sub c a r r i e r spac ing

i f narg in==0

tau max=4∗T s ;

v r e c =30;

SNR=40; % SNR dB

snr = 10ˆ(SNR/10 ) ; % snr l i n e a r

end

f c =1.8 e9 ;

c=3e8 ;

f Doppl=v re c ∗ f c /3 e8 ; % doppler f requency

N f=4; % spac ing o f p i l o t s in f requency

kp=0:N f :K−1;

N t=8; % spac ing o f p i l o t s in time

mp=0:N t :M−1;

F=gen f f tma t r i x (K) ; % the FFT matrix

nfp=length (kp ) ; % number o f p i l o t s in the f requency domain

ntp=length (mp) ; % number o f p i l o t s in the time domain

np=nfp∗ntp ; % number o f p i l o t s

% stack the p i l o t i nd i c e s , down the frquency index f i r s t then ac c r o s s tme

% index , . . .

pindx=ze ro s (np , 2 ) ;

pcnt=1;

f o r i i =1:ntp

f o r j j =1: nfp

pindx ( pcnt ,1)=kp ( j j ) ;

pindx ( pcnt ,2)=mp( i i ) ;

i f pcnt<np
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pcnt=pcnt+1;

end

end

end

p l t=rand (np ,1)+ i ∗ rand (np , 1 ) ; % some random data which w i l l generate p i l o t s

% generate some random QPSK p i l o t s

f o r i i =1:np

i f r e a l ( p l t ( i i ,1)) >=0.5

xx=1/ sq r t ( 2 ) ;

e l s e

xx=−1/sq r t ( 2 ) ;

end

i f imag ( p l t ( i i ,1)) >=0.5

yy=1/ sq r t ( 2 ) ;

e l s e

yy=−1/sq r t ( 2 ) ;

end

p l t ( i i ,1)=xx+i ∗yy ;

end

% use c la rke ’ s model to generate a 2D channel

% generate the 2D OFDM channel , assume length 8 c y c l i c p r e f i x

Nmp=10; % number o f doppler mult ipath components

Nsigmp=3; % number o f s i g n i f i c a n t mult ipath

tau = [ 1 , 2 , 4 ] ; % these are the OFDM ind i c e s with s i g mp

c i r=ze ro s (K, 1 ) ; % the channel impulse re sponse

hvec=ze ro s (K, 1 ) ; % the OFDM channel vec to r

OFDMchan=ze ro s (K,M) ;

f o r i i =1:M

i f ( i i ==1)

a=0.025∗ randn (Nmp, Nsigmp ) ; % Gaussian amplitude c o e f f i c i e n t s /mp

% component (/mpc)
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th=rand (Nmp, Nsigmp)∗2∗ pi ; % uniform azimuthal phase ang l e s /mpc

ph=rand (Nmp, Nsigmp)∗2∗ pi ; % uniform channel phase ang l e s /mpc

end

f o r j j =1:Nsigmp

mpgain=0;

f o r kk=1:Nmp

mpgain=mpgain+(a (kk , j j )∗ exp ( j ∗ph(kk , j j ) ) ∗ . . .

exp ( j ∗2∗ pi ∗ f Doppl ∗ cos ( th (kk , j j ) )∗T s ∗(K+L)∗ ( i i −1)) ) ;

end

c i r ( tau ( j j ) ,1)= abs (mpgain )∗ exp(−tau ( j j )∗T s /(2∗T rms ) )∗ exp ( j ∗ ang le (mpgain ) ) ;

end

%sum( abs ( c i r ) )

%time =(0:K−1);

%f i gu r e , p l o t ( time , ang le ( c i r ) , ’∗ ’ )

%i f i i==1

% c i r ( 1 : 4 , 1 )

%end

hvec=F∗ c i r ;

OFDMchan( : , i i )=hvec ( : , 1 ) ;

%f r e q =(0:K−1);

%f i gu r e , p l o t ( f req , abs ( hvec ) , ’∗ − ’ )

end

% sum( abs ( c i r ) . ˆ 2 ) % g i v e s an i nd i c a t i o n o f the t o t a l mult ipath power , . . .

% accord ing to the SV model t h i s should be about max 0 .01

%x=1:K;

%y=abs (OFDMchan( : , 1 0 ) ) ;

%f i gu r e , p l o t (x , y )

%OFDMchan

% s imulate data r e c ep t i on f o r the p i l o t symbols

rpSym=ze ro s (np , 1 ) ;

f o r i i =1:np

rpSym( i i ,1)=OFDMchan( pindx ( i i ,1)+1 , pindx ( i i ,2)+1)∗ p l t ( i i , 1 ) ;
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end

% add no i s e to the r e c e i v ed symbols

rpSymn=awgn(rpSym ,SNR) ;

nvect=rpSymn−rpSym ; % no i s e vec to r

s i g s q r=var ( nvect ) ;

% make the c o r r e l a t i o n matrix

p s i = ze ro s (np , np ) ;

f o r i i =1:np

f o r j j =1:np

t h e t a f=s i n c ( p i ∗ tau max ∗( pindx ( i i ,1)−pindx ( j j , 1 ) ) ∗ F s ) ;

t h e t a t=s i n c (2∗ pi ∗ f Doppl ∗( pindx ( i i ,2)−pindx ( j j , 2 ) ) ∗ (K+L)∗T s ) ;

i f ( pindx ( i i ,1)−pindx ( j j , 1 ) ) == ( pindx ( i i ,2)−pindx ( j j , 2 ) )

p s i ( i i , j j )= t h e t a f ∗ t h e t a t+s i g s q r ;

e l s e

p s i ( i i , j j )= t h e t a f ∗ t h e t a t ;

end

end

end

% make a matrix o f data p lus p i l o t

n f r=K∗M; % t o t a l number o f QAM symbols in the OFDM frame

f indx=ze ro s ( nfr , 2 ) ;

f c n t =1;

f o r i i =0:M−1

f o r j j =0:K−1

f indx ( fcnt ,1)= j j ;

f i ndx ( fcnt ,2)= i i ;

i f f cnt<n f r

f cn t=f cn t +1;

end

end

end
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%fo r i i =1: n f r

% x( i i )= f indx ( i i , 1 ) ;

% y( i i )= f indx ( i i , 2 ) ;

% z ( i i )=abs (OFDMchan( f indx ( i i ,1)+1 , f indx ( i i , 2 )+1 ) ) ;

%end

%f i gu r e , p lo t3 (x , y , z , ’ ∗ ’ )

%x l ab e l ( ’ Sub−c a r r i e r index , k ’ )

%y l ab e l ( ’OFDM symbol index , m’ )

%z l a b e l ( ’ $ |H[ k ,m] | $ ’ , ’ I n t e rp r e t e r ’ , ’ l a tex ’ )

%gr id on ;

% i n i t i a l channel e s t imate s at the p i l o t symbols

Hest=rpSymn ./ p l t ; % s i z e ( Hest )

f o r i i =1: n f r

% make the au t o c o r r e l a t i o n matrix

theta=ze ro s (np , 1 ) ;

f o r j j =1:np

t h e t a f=s i n c ( p i ∗ tau max ∗( f indx ( i i ,1)−pindx ( j j , 1 ) ) ∗ F s ) ;

t h e t a t=s i n c (2∗ pi ∗ f Doppl ∗( f indx ( i i ,2)−pindx ( j j , 2 ) ) ∗ (K+L)∗T s ) ;

theta ( j j ,1)= t h e t a f ∗ t h e t a t ;

end

% ca l c u l a t e the wiener f i l t e r

w f i l t=ps i . ’\ theta ;

% c a l c u l a t e the MMSE channel e s t imate at the data l o c a t i o n

OFDMchanestWF( f indx ( i i ,1)+1 , f indx ( i i ,2)+1)= w f i l t . ’∗ Hest ;

%chanact=OFDMchan( f indx ( i i ,1)+1 , f indx ( i i , 2 )+1) ;

end

%chanact=OFDMchan(2 , 1 )

%chanest=OFDMchanest (2 , 1 )

%e r r=abs (OFDMchan(2 ,1)−OFDMchanest ( 2 , 1 ) )
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%OFDMchan

% ca l c u l a t e MSE

sqerrWF=0;

f o r i i =1: n f r

e r r=OFDMchan( f indx ( i i ,1)+1 , f indx ( i i , 2 )+1) − . . .

OFDMchanestWF( f indx ( i i ,1)+1 , f indx ( i i , 2 )+1) ;

sqerrWF=sqerrWF+abs ( e r r ) ˆ 2 ;

end

rmserrWF=sqerrWF/ n f r ;

%Nf idea l =1/(2∗ tau max∗F s )

%Nt idea l =1/(4∗ f Doppl ∗(K+L)∗T s )

% spac ing o f data in f requency

dind=1;

f o r i i =1: nfp

f o r j j =1:N f−1

kd (1 , dind)=kp ( i i )+ j j ;

dind=dind+1;

end

end

%kd

%length (kd )

% i d e n t i f y the data i n d i c e s

nfd=length (kd ) ;

nd=nfr−np ;

pind=1;

dind=1;

dindx=ze ro s (nd , 2 ) ;

f o r i i =0:M−1

% use s p e c i a l data spac ing at the p i l o t OFDM symbols
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i f i i ==(mp(1 , pind ) )

f o r j j =0:nfd−1

dindx ( dind ,1)=kd ( j j +1);

dindx ( dind ,2)= i i ;

i f dind<nd

dind=dind+1;

end

end

i f pind<ntp

pind=pind+1;

end

e l s e

f o r j j =0:K−1

dindx ( dind ,1)= j j ;

dindx ( dind ,2)= i i ;

i f dind<nd

dind=dind+1;

end

end

end

end

%dindx ( 1 : 1 5 , 1 )

dat=rand (nd ,1)+ i ∗ rand (nd , 1 ) ; % some random data which to be transmit ted

f o r i i =1:nd

i f r e a l ( dat ( i i ,1)) >=0.5

xx=1/ sq r t ( 2 ) ;

e l s e

xx=−1/sq r t ( 2 ) ;

end

i f imag ( dat ( i i ,1)) >=0.5

yy=1/ sq r t ( 2 ) ;

e l s e
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yy=−1/sq r t ( 2 ) ;

end

dat ( i i ,1)=xx+i ∗yy ;

end

% s imulate symbol r e c ep t i on f o r the data symbols

rdSym=ze ro s (nd , 1 ) ;

f o r i i =1:nd

rdSym( i i ,1)=OFDMchan( dindx ( i i ,1)+1 , dindx ( i i ,2)+1)∗ dat ( i i , 1 ) ;

end

% add no i s e to the r e c e i v ed symbols

rdSymn=awgn(rdSym ,SNR) ;

OFDMchanestMLE=ze ro s (K,M) ;

OFDMchanestLS=ze ro s (K,M) ;

% make the 1D OFDM symbol

OFDMsym=ze ro s (K, 1 ) ;

OFDMsym(kp+1,1)=rpSymn ( 1 :K/N f , 1 ) ;

OFDMsym(kd+1,1)=rdSymn ( 1 : (K−K/N f ) , 1 ) ;

%OFDMsym

% make the 1D data vec to r

X=ze ro s (K, 1 ) ;

X(kp+1,1)= p l t ( 1 :K/N f , 1 ) ;

X(kd+1,1)=dat ( 1 : (K−K/N f ) , 1 ) ;

%s i z e (XX)

% make a data matrix f o r the hadamard product

XX = ze ro s (K,L ) ;

f o r i i =1:L

XX( : , i i )=X( : , 1 ) ;

end
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% s i g n a l subspace Four i e r matrix

Fs ig=F ( : , 1 : L ) ;

% make the matrix o f data t imes Four i e r

QQ =XX.∗ Fsig ;

% est imate the channel in the time domain

he s tvec t=pinv (QQ)∗OFDMsym;

h e s t l v e c t =[ he s tvec t ; z e r o s (K−L , 1 ) ] ; % est imated zero padded channel

% est imate the channel in the f o u r i e r domain

hest1DMLE=F∗ h e s t l v e c t ;

% the 1−D LS est imator

hest1DLS=OFDMsym./X;

% est imated the f i r s t 32 OFDM symbol channe l s

f o r i i =1:M

OFDMchanestMLE( : , i i )=hest1DMLE ( : , 1 ) ;

OFDMchanestLS ( : , i i )=hest1DLS ( : , 1 ) ;

end

% ca l c u l a t e MSE

sqerrMLE=0;

f o r i i =1: n f r

e r r=OFDMchan( f indx ( i i ,1)+1 , f indx ( i i , 2 )+1) − . . .

OFDMchanestMLE( f indx ( i i ,1)+1 , f indx ( i i , 2 )+1) ;

sqerrMLE=sqerrMLE+abs ( e r r ) ˆ 2 ;

end

rmserrMLE=sqerrMLE/ n f r ;

% c a l c u l a t e MSE

sqerrLS =0;

f o r i i =1: n f r

e r r=OFDMchan( f indx ( i i ,1)+1 , f indx ( i i , 2 )+1) − . . .

OFDMchanestLS( f indx ( i i ,1)+1 , f indx ( i i , 2 )+1) ;

sqerrLS=sqerrLS+abs ( e r r ) ˆ 2 ;
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end

rmserrLS=sqerrLS / n f r ;

% l e t s do some data e r r o r r a t e s

serrWF=0;

serrMLE=0;

serrLS =0;

SERWF=serrWF/nd ;

SERMLE=serrMLE/nd ;

SERLS=serrLS /nd ;

errMat=ze ro s ( 3 , 2 ) ;

errMat (1 ,1)=rmserrWF ; errMat (1 ,2)=SERWF;

errMat (2 ,1)=rmserrMLE ; errMat (2 ,2)=SERMLE;

errMat (3 ,1)= rmserrLS ; errMat (3 ,2)=SERLS ;

E.3 RP-CSI Estimator

f unc t i on errMat=MISOOFDMchanEst3(SNR, n w , show )

% a func t i on to s imulate the performance o f a multi−t r an smi t t e r

% system .

% SNR − s i g n a l to no i s e r a t i o

% n w − number o f c o e f f i c i e n t s in RP−CSI

% show − do you want to see r e s u l t d i s p l a y s

% f o r s imu la t i on we s h a l l c a l l L 0=n w to c a l c u l a t e the

% ana l y t i c a l MSE

L 0=n w ;

i f narg in == 1

L 0=16;

show = 0 ;

end
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n t =2; % number o f t ransmit antennas

% de f i n e the number o f s u b c a r r i e r s .

Ndata = 128 ;

hNdata = Ndata /2 ;

% dec l a r e the l ength o f the c i r

vv = 16 ;

% de f i n e a u s e f u l parameter due to convo lut ion

convlen = Ndata + vv − 1 ;

% sub−c a r r i e r s t ep s f o r t r a i n i n g sequence placement

d e l t a f = 2 ;

% f i nd l i n e a r snr

snr = 10ˆ(SNR/10 ) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% transmi s s i on and r e c ep t i on OFDM matr i ce s %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
F=gen f f tma t r i x (Ndata ) ;

Finv=F ’ ;

% generate a power de lay p r o f i l e

pdlyp=gen SVstatpdp ;

% generate the channel impulse re sponse

c i r 1=gen SVstatchan ( pdlyp ) ;

c i r 2=gen SVstatchan ( pdlyp ) ;

% generate r ay l e i g h channel matrix

hmatrix1=gen SVstatchanmat ( c i r1 , Ndata , vv ) ;

hmatrix2=gen SVstatchanmat ( c i r2 , Ndata , vv ) ;

% make c i r c u l a hmatrix

chmatrix1=gen SVstatc ircchanmat ( c i r1 , Ndata ) ;

chmatrix2=gen SVstatc ircchanmat ( c i r2 , Ndata ) ;

% c a l c u l a t e the d iagona l hmatrix

diag hmatr ix1 = F∗ chmatrix1∗Finv ;

d iag hmatr ix2 = F∗ chmatrix2∗Finv ;
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%[BPCA,muv]=MIMOOFDMoptbasis( L 0 , 0 ) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% generate t r a i n i n g OFDM symbols−Walsh code %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

a=0.7071;

% orthogona l t r a i n i n g sequence

X 1 = ( a+i ∗a ) ; X 2 = ( a+i ∗a ) ;

Y 1 = ( a+i ∗a ) ; Y 2 =−(a+i ∗a ) ;

% generate the OrthoNormal t r a i n i n g sequences

f o r i i = 1 : d e l t a f : Ndata

TX1Block ( i i , 1 ) = X 1 ; TX2Block ( i i , 1 ) = Y 1 ;

TX1Block ( i i +1 ,1) = X 2 ; TX2Block ( i i +1 ,1) = Y 2 ;

end

% f ind the i f f t o f the OrthoNormal complex s i g n a l

OFDMTBlock1 = Finv∗TX1Block ;

OFDMTBlock2 = Finv∗TX2Block ;

% add c y c l i c p r e f i x to the OrthoNormal t r a i n i n g block

cycOFDMTBlock1 = addCyc l i cPre f i x (OFDMTBlock1 , Ndata , vv ) ;

cycOFDMTBlock2 = addCyc l i cPre f i x (OFDMTBlock2 , Ndata , vv ) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% simulate MISO−OFDM tx and rx %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

% model the r e c e i v ed t r a i n i n g s i gna l , r = hs + n

recCycOFDMTBlock = ( hmatrix1∗cycOFDMTBlock1) + . . .

( hmatrix2∗cycOFDMTBlock2 ) ;
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% add complex no i s e at the r e c e i v e r

recCycOFDMTBlockwn=awgn(recCycOFDMTBlock ,SNR) ;

nvar=var (recCycOFDMTBlockwn−recCycOFDMTBlock ) ;

% remove t r a i n i n g c y c l i c p r e f i x

recOFDMTBlockwn = recCycOFDMTBlockwn( vv : convlen , 1 ) ;

% c a l c u l a t e r e c e i v ed symbol v ia FFT

symBlockwn = F∗recOFDMTBlockwn ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% ca l c u l a t e a n a l y t i c a l MSE and capac i ty %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

L max=16; % th i s i s the expected maximum delay o f the channel

f o r i i =1:Ndata

H 1 ( i i ,1)= diag hmatr ix1 ( i i , i i ) ;

H 2 ( i i ,1)= diag hmatr ix2 ( i i , i i ) ;

end

subRT=symBlockwn ( [ 1 : 2 : Ndata ] ) / ( a+i ∗a ) ;

aMSE=nvar∗L 0/Ndata ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% use the Four i e r ba s i s RP−CSI %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
fhMatrixEst1=ze ro s (Ndata , Ndata ) ;

fhMatrixEst2=ze ro s (Ndata , Ndata ) ;

% make an R matrix

f o r i i =1:Ndata

R( i i ,1)=symBlockwn ( i i ) ;
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end

T=(a+j ∗a ) ; % t r a i n i n g symbol

TBlock=[T T ; . . .

T −T ] ;

X=gen tSeqMatrix (Ndata , n t , TBlock ) ;

P=gen Permatrix (Ndata , n t ) ’ ;

B=gen invFB (Ndata , n t , L 0 ) ;

Q=(X∗P∗B) ’ ;

w=Q∗R;

h F=B∗w;

f o r i i =1:Ndata

fhMatrixEst1 ( i i , i i )=h F ( i i +0∗Ndata ) ;

fhMatrixEst2 ( i i , i i )=h F ( i i +1∗Ndata ) ;

end

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% use the wavelet ba s i s RP−CSI %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
dhMatrixEst1=ze ro s (Ndata , Ndata ) ;

dhMatrixEst2=ze ro s (Ndata , Ndata ) ;

NL=log2 (Ndata/L 0 ) ;

Nwavlet=8;

B=analyseDaubechies (Ndata ,NL, n t , Nwavlet ) ;

Q=(X∗P∗B) ;

% th i s matrix i s not the i d e n t i t y

invQ=pinv (Q) ;

w=invQ∗R;

h F=B∗w;
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f o r i i =1:Ndata

dhMatrixEst1 ( i i , i i )=h F ( i i +0∗Ndata ) ;

dhMatrixEst2 ( i i , i i )=h F ( i i +1∗Ndata ) ;

end

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% use the PCA ba s i s RP−CSI %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
phMatrixEst1=ze ro s (Ndata , Ndata ) ;

phMatrixEst2=ze ro s (Ndata , Ndata ) ;

L M=64;

f o r nn=1:L M

% generate the channel impulse re sponse

c i r=gen SVstatchan ( pdlyp ) ;

% make c i r c u l a hmatrix

chmat=gen SVstatc ircchanmat ( c i r , Ndata ) ;

% c a l c u l a t e the d iagona l hmatrix

Tdiag hmat = F∗chmat∗Finv ;

XX( : , nn)=diag ( Tdiag hmat ) ;

end

uu=mean(XX, 2 ) ;

hh=ones (1 ,L M) ;

BB=XX−uu∗hh ;

CC=(1/L M)∗BB∗BB’ ;

[VV,DD] = e i g (CC) ;

B=[VV( : , 1 : L 0 ) z e r o s ( s i z e (VV( : , 1 : L 0 ) ) ) ; . . .
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z e ro s ( s i z e (VV( : , 1 : L 0 ) ) ) VV( : , 1 : L 0 ) ] ;

mu=[uu ; uu ] ;

R pca=R−(X∗P∗mu) ;

Q=(X∗P∗B) ’ ;

w=inv (Q∗Q’ ) ∗Q∗R pca ;

h F=B∗w+mu;

f o r i i =1:Ndata

phMatrixEst1 ( i i , i i )=h F ( i i +0∗Ndata ) ;

phMatrixEst2 ( i i , i i )=h F ( i i +1∗Ndata ) ;

end

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% ca l c u l a t e C, C LB and MSE %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

fMSE=0; % c a l c u l a t e Four i e r MSE

pMSE=0;

dMSE=0;

f o r i i = 1 : Ndata

fMSE=fMSE+ . . .

( abs ( fhMatrixEst1 ( i i , i i )−diag hmatr ix1 ( i i , i i ) ) ˆ 2 )+ . . .

( abs ( fhMatrixEst2 ( i i , i i )−diag hmatr ix2 ( i i , i i ) ) ˆ 2 ) ;

pMSE=pMSE+ . . .

( abs ( phMatrixEst1 ( i i , i i )−diag hmatr ix1 ( i i , i i ) ) ˆ 2 )+ . . .

( abs ( phMatrixEst2 ( i i , i i )−diag hmatr ix2 ( i i , i i ) ) ˆ 2 ) ;

dMSE=dMSE+ . . .

( abs ( dhMatrixEst1 ( i i , i i )−diag hmatr ix1 ( i i , i i ) ) ˆ 2 )+ . . .

( abs ( dhMatrixEst2 ( i i , i i )−diag hmatr ix2 ( i i , i i ) ) ˆ 2 ) ;

end



Appendix E MATLAB CODE 225

fMSE=fMSE/( n t ∗Ndata ) ;

pMSE=pMSE/( n t ∗Ndata ) ;

dMSE=dMSE/( n t ∗Ndata ) ;

errMat=[aMSE; fMSE ; pMSE; dMSE ] ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% di sp l ay r e s u l t s %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

i f show == 1

f o r i i = 1 : Ndata

yy1 (1 , i i )=abs ( d iag hmatr ix1 ( i i , i i ) ) ;

zz1 (1 , i i )=abs ( d iag hmatr ix2 ( i i , i i ) ) ;

yy2 (1 , i i )=abs ( fhMatrixEst1 ( i i , i i ) ) ;

zz2 (1 , i i )=abs ( fhMatrixEst2 ( i i , i i ) ) ;

yy3 (1 , i i )=abs ( phMatrixEst1 ( i i , i i ) ) ;

zz3 (1 , i i )=abs ( phMatrixEst2 ( i i , i i ) ) ;

end

xx=1:Ndata ;

NN=L 0 ;

f i gu r e , p l o t ( xx , yy1 , ’∗ − ’ , xx , yy2 , ’ˆ− ’ , xx , yy3 , ’ d− ’)

g r i d minor ;

l egend ( ’ t rue channel ’ , ’ Four i e r Basis ’ , ’PCA bas i s ’ , 1 )

f i gu r e , p l o t ( xx , zz1 , ’∗ − ’ , xx , zz2 , ’ˆ− ’ , xx , zz3 , ’ d− ’)

g r i d minor ;

l egend ( ’ t rue channel ’ , ’ Four i e r Basis ’ , ’PCA bas i s ’ , 1 )
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vect1=abs ( diag (DD) ) . ’ ;

nnv=1:NN;

f i gu r e , p l o t (nnv , vect1 ( 1 :NN) , ’∗ − ’ )

t i t l e ( ’ Eigen va lue s f o r channel 1 ’ )

x l ab e l ( ’ E igenvector index , m’ )

y l ab e l ( ’ $ | \ lambda m | $ ’ , ’ I n t e rp r e t e r ’ , ’ l a tex ’ )

pb11=VV( : , 1 ) ; pb15=VV( : , 5 ) ;

pb12=VV( : , 2 ) ; pb16=VV( : , 6 ) ;

pb13=VV( : , 3 ) ; pb17=VV( : , 7 ) ;

pb14=VV( : , 4 ) ; pb18=VV( : , 8 ) ;

f i gu r e , subplot ( 2 , 1 , 1 ) , p l o t ( xx , abs ( pb11 ) , ’+− ’ , xx , abs ( pb12 ) , ’∗ − ’ , . . .

xx , abs ( pb13 ) , ’ˆ− ’ , xx , abs ( pb14 ) , ’ d− ’)

t i t l e ( ’ F i r s t f our PCA Bas i s v e c t o r s ( E igenvector s ) f o r channel 1 ’ )

x l ab e l ( ’ Sub−c a r r i e r index , k ’ )

y l ab e l ( ’ $ |W[ k ,m] | $ ’ , ’ I n t e rp r e t e r ’ , ’ l a tex ’ )

subp lot ( 2 , 1 , 2 ) , p l o t ( xx , abs ( pb15 ) , ’+− ’ , xx , abs ( pb16 ) , ’∗ − ’ , . . .

xx , abs ( pb17 ) , ’ˆ− ’ , xx , abs ( pb18 ) , ’ d− ’ ) ;

t i t l e ( ’ Next four PCA Bas i s v e c t o r s ( E igenvector s ) f o r channel 1 ’ )

x l ab e l ( ’ Sub−c a r r i e r index , k ’ )

y l ab e l ( ’ $ |W[ k ,m] | $ ’ , ’ I n t e rp r e t e r ’ , ’ l a tex ’ )

fMSE

pMSE

end

E.4 Wavelet Basis

f unc t i on ID=analyseDaubechies ( nData , res , nAnt ,DN)

% a func t i on to ana lyse the daubechies wavelet
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% transform o f a s i n e wave

i f narg in==1

r e s =1;

nAnt=1;

DN=8;

e l s e i f narg in==3

DN=8;

end

N=DN;

%N=4;

maxresdim=nData /(2ˆ( r e s ) ) ;

i f maxresdim<N

disp ( ’ERROR: The r e s o l u t i o n depth i s not ach i evab l e with DN! ’ ) ;

ID=0;

re turn ;

end

DB=eye (nData , nData ) ;

f o r i i =1: r e s

TM=eye (nData , nData ) ;

resdim=nData /(2ˆ( i i −1)) ;

D=gen DaubMatrix ( resdim , N) ;

TM(1 : resdim , 1 : resdim)=D( : , : ) ;

DB=TM∗DB;

end

IDB=DB’ ;
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trunc IDB=IDB ( : , 1 : maxresdim ) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% te s t r ou t i n e s %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
%K=128;

%v=8;

%trunc IDB ’∗ trunc IDB

%kk=1:K;

%f kk=s i n ( (2∗ pi ∗( kk−1)∗v )/K) ’ ;

%wt=DB∗ f kk ;

%f i gu r e , p l o t ( kk , wt , ’∗ − ’ )

%trunc wt=wt ( 1 : maxresdim , 1 ) ;

%r f kk=trunc IDB∗ trunc wt ;

%f i gu r e , p l o t ( kk , f kk , ’∗ − ’ , kk , r f kk , ’+− ’)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% end t e s t r ou t in e %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

nCoef f s=maxresdim ;

f o r antNum=0:nAnt−1

f o r kk=1:nData

f o r vv=1: nCoe f f s

kkmod=(nData∗antNum)+kk ;

vvmod=(nCoef f s ∗antNum)+vv ;
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ID(kkmod , vvmod)=trunc IDB (kk , vv ) ;

end

end

end

E.5 Slepian/ Discrete Prolate Spheroidal Se-

quences

f unc t i on w = dpssw (M,Wc, kchan ) ;

%func t i on [w,A,V] = dpssw (M,Wc) ;

% DPSSW − Compute D i g i t a l Pro la te Sphero ida l Sequence window o f

% length M, having cut−o f f f requency Wc in (0 , p i ) .

k = ( 1 :M−1);

s = s i n (Wc∗k ) . / k ;

c0 = [Wc, s ] ;

A = t o e p l i t z ( c0 ) ;

[V, eva l s ] = e i g (A) ; % Only need the p r i n c i p a l e i g enve c t o r

[ emax , imax ] = max( abs ( diag ( eva l s ) ) ) ;

w=ze ro s (M, kchan ) ;

f o r i i =1:kchan

w( : , i i ) = V( : ,M− i i +1);

i f i i==1

w( : , i i ) = w( : , i i ) / max( abs (w( : , i i ) ) ) ;

e l s e

w( : , i i ) = −w( : , i i ) / max( abs (w( : , i i ) ) ) ;

end

end

lamda n=ze ro s (1 , kchan ) ;
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f o r i i =1:kchan

lamda n (1 , i i )= eva l s (M− i i +1,M− i i +1)/ eva l s (M,M) ;

end

%s i z e (w)

%t = 1 :M;

%f i gu r e , p l o t ( t ,w( : , 1 ) , t ,w( : , 2 ) , t ,w( : , 3 ) )

%legend ( ’ v 1 ’ , ’ v 2 ’ , ’ v 3 ’ , 1 )

%x l ab e l ( ’m’ )

%t i t l e ( ’ F i r s t three 1−D DPSS’ )

%gr id minor ;

%n=1:kchan ;

%f i gu r e , semi logy (n , lamda n , ’ o− ’)

%x l ab e l ( ’ n ’ )

%y l ab e l ( ’ Eigenvalue ’ )

%t i t l e ( ’ F i r s t e i gh t e i g enva lu e s o f the 1−D DPSS’ )

%gr id minor ;

E.6 Orthogonal Training Sequence Training

f unc t i on MISOOFDMchanEst6(SNR, show )

% a func t i on to s imulate the performance o f a multi−t r an smi t t e r

% system .

% SNR − s i g n a l to no i s e r a t i o

% show − do you want to see r e s u l t d i s p l a y s

i f narg in == 0

SNR=100;

show = 1 ;

end

n t =2; % number o f t ransmit antennas
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% de f i n e the number o f s u b c a r r i e r s .

Ndata = 128 ;

hNdata = Ndata /2 ;

% dec l a r e the l ength o f the c i r

vv = 16 ;

% de f i n e a u s e f u l parameter due to convo lut ion

convlen = Ndata + vv − 1 ;

% sub−c a r r i e r s t ep s f o r t r a i n i n g sequence placement

d e l t a f = 2 ;

% f i nd l i n e a r snr

snr = 10ˆ(SNR/10 ) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% transmi s s i on and r e c ep t i on OFDM matr i ce s %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
F=gen f f tma t r i x (Ndata ) ;

Finv=F ’ ;

% generate a power de lay p r o f i l e

pdlyp=gen SVstatpdp ;

% generate the channel impulse re sponse

c i r 1=gen SVstatchan ( pdlyp ) . ’ ;

c i r 2=gen SVstatchan ( pdlyp ) . ’ ;

% f l a t f ad ing OFDM channe l s

chan1=F∗ c i r 1 ;

chan2=F∗ c i r 2 ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% generate t r a i n i n g OFDM symbols−Walsh code %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

a=0.5;

% orthogona l t r a i n i n g sequence

X 1 = ( a+i ∗a ) ; X 2 = ( a+i ∗a ) ;
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Y 1 = (a+i ∗a ) ; Y 2 =−(a+i ∗a ) ;

abs (X 1 ) ˆ2 ;

% generate the OrthoNormal t r a i n i n g sequences

f o r i i = 1 : 2 : Ndata

TX1Block ( i i , 1 ) = X 1 ; TX2Block ( i i , 1 ) = Y 1 ;

TX1Block ( i i +1 ,1) = X 2 ; TX2Block ( i i +1 ,1) = Y 2 ;

end

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% simulate MISO−OFDM tx and rx %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
recSym=(TX1Block .∗ chan1)+(TX2Block .∗ chan2 ) ;

% add complex no i s e at the r e c e i v e r

recSymn=awgn( recSym ,SNR) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% use the orthogona l t r a i n i n g seuqences %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
estchan1=ze ro s (Ndata , 1 ) ;

estchan2=ze ro s (Ndata , 1 ) ;

f o r i i =1: d e l t a f : Ndata

estchan1 ( i i ,1)= recSymn ( i i , 1 )∗ conj (TX1Block ( i i , 1 ) ) + . . .

recSymn ( i i +1 ,1)∗ conj (TX1Block ( i i +1 ,1)) ;

%estchan1 ( i i +1,1)= estchan1 ( i i , 1 ) ;

estchan2 ( i i ,1)= recSymn ( i i , 1 )∗ conj (TX2Block ( i i , 1 ) ) + . . .

recSymn ( i i +1 ,1)∗ conj (TX2Block ( i i +1 ,1)) ;

%estchan2 ( i i +1,1)= estchan2 ( i i , 1 ) ;

end

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
%Do some i n t e r p o l a t i o n s %
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%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
L=32; % number o f f o u r e i r c o e f f s f o r i n t r e p o l a t i o n

Fint=F ( : , 1 : L ) ;

Fsub=F( : , 1 : L ) ;

f o r i i =1: d e l t a f : Ndata

Fint ( i i +1 ,:)= ze ro s (1 ,L ) ;

end

estchan1=Fsub ∗( pinv ( Fint )∗ estchan1 ) ;

estchan2=Fsub ∗( pinv ( Fint )∗ estchan2 ) ;

i f show==1

mm=(1:Ndata ) . ’ ;

f i gu r e , p l o t (mm, abs ( chan1 ) , ’− . r ’ ,mm, abs ( estchan1 ) , ’− .b ’ )

x l ab e l ( ’ Sub−c a r r i e r Index , k ’)% ,mm, abs ( i e s t chan1 ) , ’− . k ’ )

y l ab e l ( ’ $ |H 1 [ k ] | $ ’ , ’ I n t e rp r e t e r ’ , ’ l a tex ’ )

t i t l e ( ’ Absolute va lue o f the sub−c a r r i e r channel : antenna 1 , SNR = 100 ’ )

legend ( ’ Actual Channel ’ , ’ Estimated Channel ’ , 1 )

mm=(1:Ndata ) . ’ ;

f i gu r e , p l o t (mm, abs ( chan2 ) , ’− . r ’ ,mm, abs ( estchan2 ) , ’− .b ’ )

x l ab e l ( ’ Sub−c a r r i e r Index , k ’)% ,mm, abs ( i e s t chan2 ) , ’− . k ’ )

y l ab e l ( ’ $ |H 2 [ k ] | $ ’ , ’ I n t e rp r e t e r ’ , ’ l a tex ’ )

t i t l e ( ’ Absolute va lue o f the sub−c a r r i e r channel : antenna 2 , SNR = 100 ’ )

legend ( ’ Actual Channel ’ , ’ Estimated Channel ’ , 1 )

end

E.7 Kalman Filter

f unc t i on errMat=MISOOFDMchanEst5(SNR, L 0 , show )

% a func t i on to s imulate the performance o f a multi−t r an smi t t e r

% system .
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% SNR − s i g n a l to no i s e r a t i o

% show − do you want to see r e s u l t d i s p l a y s

i f narg in==0

SNR=100;

snr = 10ˆ(SNR/10 ) ;

L 0=16;

show=1;

end

i f narg in == 0

SNR=100;

show = 1 ;

end

n t =2; % number o f t ransmit antennas

% de f i n e the number o f s u b c a r r i e r s .

Ndata = 128 ;

K=Ndata ;

M=128;

hNdata = Ndata /2 ;

% dec l a r e the l ength o f the c i r

vv = 16 ;

L=vv ;

% de f i n e a u s e f u l parameter due to convo lut ion

convlen = Ndata + vv − 1 ;

% sub−c a r r i e r s t ep s f o r t r a i n i n g sequence placement

d e l t a f = 2 ;

% f i nd l i n e a r snr

snr = 10ˆ(SNR/10 ) ;

v r e c =70;

f c =2.4 e9 ;

c=3e8 ;
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f Doppl=v re c ∗ f c /3 e8 ; % doppler f requency

T s=10e−9; % QAM symbol per iod

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% Kalman f i l t e r des ign %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

F Sampl=16∗560; % sample f requency

T Sampl=1/F Sampl ;

l e n f i l t =8; % th i s i s the l ength o f the CIR

t t = ( 1 : l e n f i l t ) ; % time during which we can c l u l a t e CIR f o r j ake s p roce s s

A=1/pi ;

h jakes=ze ro s (1 , l e n f i l t ) ;

f o r i i =1: l e n f i l t

xx=2∗pi ∗ f Doppl ∗ t t ( i i )∗T Sampl ;

%hjakes ( i i )=2ˆ(1/4)∗ f Doppl ∗xxˆ(−1/4)∗gamma(3/4)∗ b e s s e l j (1/4 , xx ) ;

h jakes ( i i )=Aˆ(1/2)∗2ˆ(1/4)∗ pi ˆ(1/2)∗ f Doppl ∗xxˆ(−1/4)∗gamma( 3 / 4 ) ∗ . . .

b e s s e l j (1/4 , xx ) ;

end

% nemerator

b=1;

% denominator

a=hjakes ;

% f i nd the p a r t i a l f r a c t i o n r ep r e s en t a t i on

[ r , p , k ] = r e s i du e z (b , a ) ;

% read the t h e s i s chapter 6 f o r the r e s t o f the code
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Nclac=length ( r ) ;

PIvect=ze ro s (1 , Nclac ) ;

f o r i i =1:Nclac

sum=0;

f o r j j =1:Nclac

sum=sum+r ( j j )∗p( j j ) ˆ ( i i −1);

end

PIvect ( i i )=sum ;

end

p s i=ze ro s (1 , Nclac −1);

f o r i i =1:Nclac−1

p s i v e c t ( i i )=−PIvect ( i i +1)/PIvect ( 1 ) ;

end

a r l en=length ( p s i v e c t ) ; % length o f the au t o r e g r e s s i v e model

s i g s q rn =9.7809e−014; % constant r ep r e s en t i ng no i s e var iance , we have no , . . .

% no i s e

deltMat=ze ro s ( ar len , a r l en ) ;

deltMat (1 ,1)=1;

%deltaMat

P = eye ( ar len , a r l en ) ; % p o s t e r i o r i e r r o r covar iance

H = eye ( ar len , a r l en ) ; % measurement model matrix

% make the proce s s model matrix

A = ze ro s ( ar len , a r l en ) ;

A( 1 , : ) = p s i v e c t ( 1 , 1 : a r l en ) ;

d e l t a k ron=ze ro s (1 , a r l en ) ;
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de l t a k ron (1 ,1)=1;

f o r i i =2: a r l en

A( i i , : )= c i r c s h i f t ( de l ta kron , [ 0 ( i i −2 ) ] ) ;

end

Q = 2∗ s i g s q rn ∗deltMat ; % proce s s no i s e covar iance matrix

R = s i g s q rn ∗ eye ( ar len , a r l en ) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% transmi s s i on and r e c ep t i on OFDM matr i ce s %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
F=gen f f tma t r i x (Ndata ) ;

Finv=F ’ ;

% generate a power de lay p r o f i l e

pdlyp=gen SVstatpdp ;

% generate the channel impulse re sponse

c i r 1=gen SVstatchan ( pdlyp ) . ’ ;

c i r 2=gen SVstatchan ( pdlyp ) . ’ ;

% gerenare the time var i ant channel

th=rand (K,1 )∗2∗ pi ; % uniform azimuthal phase ang l e s /mpc

fn=f Doppl .∗ cos ( th ) ; % doppler f r e q s h i f t s

% c a l c u l a t e channel with phase , we do T s ∗20 to exaggerate the changes in

% channel parameters f o r t h i s data ra t e

c i r 1dopp l=ze ro s (K,M) ;

c i r 1dopp l=ze ro s (K,M) ;

f o r i i =1:M

c i r1dopp l ( : , i i )= c i r 1 .∗ exp ( j ∗2∗ pi ∗ fn ∗( i i −1)∗(K+L−1)∗20∗T s ) ;

c i r 2dopp l ( : , i i )= c i r 2 .∗ exp ( j ∗2∗ pi ∗ fn ∗( i i −1)∗(K+L−1)∗20∗T s ) ;

end

% generate the OFDM f l a t f ad ing channel
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f l t chan1=ze ro s (K,M) ;

f l t chan1=ze ro s (K,M) ;

f o r i i =1:M

f l t chan1 ( : , i i )=F∗ c i r 1dopp l ( : , i i ) ;

f l t chan2 ( : , i i )=F∗ c i r 2dopp l ( : , i i ) ;

end

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% I n i t i a l c ond i t i on s f o r the proce s s v e c t o r s %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

s1=ze ro s ( ar len , 1 ) ; % i n i t i a l p r ed i c t i on i s ze ro

s2=ze ro s ( ar len , 1 ) ; % i n i t i a l p r ed i c t i on i s ze ro

% i n i t i a l data e s t imate s

x1=ze ro s ( ar len , 1 ) ;

x2=ze ro s ( ar len , 1 ) ;

f o r i i =1: a r l en

x1 ( i i ,1)= f l t chan1 (1 , ( ar len− i i +1)) ;

x2 ( i i ,1)= f l t chan1 (1 , ( ar len− i i +1)) ;

end

% i n i t i a l i x e a t ra ck ing channel vec to r

hchantrack1=ze ro s (M, 1 ) ;

hchantrack1 ( 1 : ar l en ,1)= f l t chan1 ( 1 , 1 : ar l en , 1 ) ;

hchantrack1=ze ro s (M, 1 ) ;

hchantrack1 ( 1 : ar l en ,1)= f l t chan1 ( 1 , 1 : ar l en , 1 ) ;

hchantrack2=ze ro s (M, 1 ) ;

hchantrack2 ( 1 : ar l en ,1)= f l t chan1 ( 1 , 1 : ar l en , 1 ) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% generate t r a i n i n g OFDM symbols−Walsh code %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

a=0.7071;
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% orthogona l t r a i n i n g sequence

X 1 = ( a+i ∗a ) ; X 2 = ( a+i ∗a ) ;

Y 1 = ( a+i ∗a ) ; Y 2 =−(a+i ∗a ) ;

% generate the OrthoNormal t r a i n i n g sequences

f o r i i = 1 : 2 :M

TX1Block ( i i , 1 ) = X 1 ; TX2Block ( i i , 1 ) = Y 1 ;

TX1Block ( i i +1 ,1) = X 2 ; TX2Block ( i i +1 ,1) = Y 2 ;

end

% make some RP−CSI vectors , . . .

Tvec=(a+j ∗a ) ; % t r a i n i n g symbol

TBlock=[Tvec Tvec ; . . .

Tvec −Tvec ] ;

Xmat=gen tSeqMatrix (M, n t , TBlock ) ;

Pmat=gen Permatr ix (M, n t ) . ’ ;

Bmat1=gen invFB (M, n t , L 0 ) ;

Bmat2=gen invFB (M, n t , ( L 0 / 4 ) ) ;

Qmat1=(Xmat∗Pmat∗Bmat1 ) ;

Qmat2=(Xmat∗Pmat∗Bmat2 ) ;

mpinvQ1=pinv (Qmat1 ) ;

mpinvQ2=pinv (Qmat2 ) ;

f o r i i=a r l en +1:M

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
% simulate MISO−OFDM tx and rx %

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%

% Pred i c t i on f o r s t a t e vec to r and covar iance :

s1 = A∗ s1 ;

s2 = A∗ s2 ;

P = A∗P∗A’ + Q;

% Compute Kalman gain f a c t o r :
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KK = P∗H’∗ inv (H∗P∗H’+R) ;

% Correc t ion based on obse rvat i on :

s1 = s1 + KK∗( x1−H∗ s1 ) ;

s2 = s2 + KK∗( x2−H∗ s2 ) ;

P = P − KK∗H∗P;

%end

% s t o r e away the tracked channel

hchantrack1 ( i i ,1)= s1 ( 1 , 1 ) ;

hchantrack2 ( i i ,1)= s2 ( 1 , 1 ) ;

% update the measurements , use RP−CSI , . . .

x1 = c i r c s h i f t ( x1 , [ 1 0 ] ) ;

x2 = c i r c s h i f t ( x2 , [ 1 0 ] ) ;

% here we implement RP−CSI f o r the t h i s OFDM symbol because we know

% the data , . . . chan p r ed i c t in s −> data e s t now become p i l o t s −>,

% . . . chan e s t thr RP−CSI

chan1=f l t chan1 ( : , i i ) ;

chan2=f l t chan2 ( : , i i ) ;

% make the rx symbol , . .

Rvec=(TX1Block .∗ chan1 )+(TX2Block .∗ chan2 ) ;

% i f we have the rx , and our detec ted data are now our p i l o t s , we can

% use RP−CSI to get the l a t e s t ’ measured channel ’ , . . .

wvec1=mpinvQ1∗Rvec ;

wvec2=mpinvQ2∗Rvec ;

h F1=Bmat1∗wvec1 ;

h F2=Bmat2∗wvec2 ;

% now we update the measured channel matrix

x1 (1 , 1 ) = h F1 ( 1 , 1 ) ;

x2 (1 , 1 ) = h F2 ( 1 , 1 ) ;

%pdates t=x (1 , 1 )
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end % end the time track ing , . . .

%

%hchantrack ( a r l en +1 ,1)

%f l t chan1 ( a r l en +1 ,1)

i f show==1

mm=1:M;

f i gu r e , p l o t (mm, abs ( f l t chan1 ( 1 , : ) ) , ’ − . r ’ ,mm, abs ( hchantrack1 ) , ’− . b ’ , . . .

mm, abs ( hchantrack2 ) , ’− . k ’ )

l egend ( ’ Actual channel ’ , ’ Tracked channel , n w=16 ’ , ’ Tracked channel , n w=8 ’ ,1)

x l ab e l ( ’OFDM Symbol Index , m’ )

y l ab e l ( ’ $ |H 1 [ 1 ,m] | $ ’ , ’ I n t e rp r e t e r ’ , ’ l a tex ’ )

t i t l e ( ’ Absolute va lue o f the sub−c a r r i e r channel : antenna 1 ’ )

end


