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ABSTRACT 

 

Electromagnetic waves at microwave frequencies are strongly scattered by rain. Rain 

fade is the mechanism that limits the performance of terrestrial microwave 

telecommunication systems. To predict the Quality of Service (QoS) at a node in 

heterogeneous networks of line-of-sight, terrestrial, microwave links; requires 

knowledge of the spatial and temporal statistics of rain over scales of a few meters to 

tens or hundreds of kilometres, and over temporal periods as short as one-second. 

Current internationally recognised models are not able to predict QoS, even for an 

individual link. This project aims to produce a radio network simulator that will 

predict the correct first and second order joint, rain fade statistics on heterogeneous 

networks of arbitrary geometry.  

 

Meteorological radar databases provide rain rate maps over areas with a spatial 

resolution as fine as a few hundred meters and a sampling period of 2 to 15 minutes. 

Such two-dimensional, rain rate map time-series could be used to predict the QoS 

provided by arbitrary millimetre-wave radio networks, if the sampling period were 

considerably shorter i.e. of the order of 10 s or less. This work analyses the spatial 

and temporal rain rate variation by using data gathered as part of the Chilbolton Radar 

Interference Experiment (CRIE). Numerical algorithms have been developed to 

interpolate one, two and three dimensional (1D, 2D and 3D) rain rate fields to a finer 

sampling interval. A series of radar derived rain maps, with a 10 minute sample 

period, are interpolated to 10 seconds. Stochastic algorithms have been developed to 

preserve important statistics present in the CRIE data while introducing rain rates at 

new data points which preserve a priori statistics determined from other datasets. The 

resulting fine-scale spatial-temporal rain rate fields form the basis of a link simulation 

tool. The performance of several links is simulated and the simulation statistics are 

compared with international models and measured data.  
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CHAPTER 1 INTRODUCTION 

 

Terrestrial, line-of-sight, microwave telecommunication links experience attenuation 

due to rain. At frequencies above 10 GHz this is the dominant fade mechanism and 

(with mechanical failure) is almost exclusively the cause of outage. Outage has a 

complex definition stemming from ITU-T recommendations G.826 (1999) and G.828 

(2000) and the F recommendations that are derived from them (e.g. F.1491). Modern 

digital radio systems broadcast a bit stream divided into blocks e.g. a typical SDH 

STM-1 system might have 801 bits per block and transmit 192,000 blocks per second. 

If any bit within a block is transmitted incorrectly then the block is termed “errored”. 

A Severely Errored Second (SES) occurs in any second were 30% or more of the 

blocks were errored. An outage is defined as the period between the first of ten 

consecutive SES until the first of ten consecutive non-SES. Traditionally, links are 

specified to have an outage period caused by rain fading not exceeding some small 

percentage of an average year, usually 0.01% or 0.1% of time, and the rain fade 

margin is built into the link budget by estimating the rain attenuation exceeded for 

this time. Many models exist to calculate the fade margin e.g. COST210 (1991), 

COST235 (1996), Rec. ITU-R P.530-12 (2007) and Rec. ITU-R P.837-5 (2007). 

However, these models are based on available statistics of rain rate measured with a 

one-minute integration time. These models are adequate for fade-margin calculations 

for individual long links but probably under estimate the incidence of outage on links 

shorter than 1 km. They provide only limited guidance on the performance of 

networks e.g. Rec. ITU-R P.530-12 provides some guidance for more complex links 

such as multi-hop links and links utilising route diversity. Rec. ITU-R P.1410-2 (2003) 

also provides some guidance for point-to-multipoint cellular systems. 

 

The Quality of Service (QoS) experienced by a node in a heterogeneous network of 

microwave links, at a minimum defined by the average annual outage, is currently 

impossible to predict as it depends upon joint time series of rain fade with a 

one-second integration time. The joint distribution of rain fade experience by links in 
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an arbitrary network would be helpful in the estimation of QoS. However, currently 

no models exist to predict joint rain fade distribution. Rudimentary models of the 

duration of fades exist for individual links, but not for networks that are more 

complicated. The engineering of fade mitigation techniques such as route diversity or 

adaptive modulation, also require the knowledge of typical time-series of rain fade on 

heterogeneous networks of links.  

 

The joint rain fade distribution is determined by the rain fields experienced by the 

link network and a large number of parameters describing network geometry and the 

communications system e.g. frequencies, antenna gain patterns, path elevation etc. 

these network and system parameters make the empirical determination of joint rain 

fade an intractable problem. However, if realistic rain rate field time-series are 

available, then joint rain fade can easily be calculated for arbitrary link networks. 

Currently no measured data set exists which spans the wide range of spatial and 

temporal scales necessary for general network simulation. For this reason, numerical 

methods to generate realistic rain field time-series would be of great interest and use 

to system designers, especially one that could be customised to mimic the behaviour 

of their climate region.  

 

1.1 The General Network Rain Fade Simulator 

 

The proposed General Network Rain Fade Simulator is based on three major 

operations: 

    1. Rain field generation; 

    2. Network simulation; 

    3. Analysis. 

 

The rain field generation aims to produce a rain field time series that spans the 

network with sufficient resolution in both time and space to yield second by second 

rain fade time series on each of the network links. This is by far the most challenging 
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component of the system. With these rain fields it is relatively straightforward to 

generate rain fade time series for each link by pseudo-integration of the derived 

specific attenuation field along the link paths. The final analysis operation extracts the 

required summary statistics from the joint rain fade time series. The detail of this 

operation depends upon the question being investigated.  

 

As currently, no spatial-temporal rain rate dataset exists that spans the required range 

of scales, some synthetic enhancement of existing data is necessary. Meteorological 

radar data yields rain rate estimates over the large spatial scales necessary, and in 

some cases down to the fine scales necessary. However, to achieve fine spatial 

resolution, large radars are necessary and these, by their nature, are slow to physically 

scan and so yield relatively poor temporal sampling. One way to generate the rain 

fields necessary is to numerically augment rain fields measured by meteorological 

radar. If rain field data is available with the desired spatial sampling, then this 

amounts to numerically generating the rain fields that may have been measured 

between radar scans. This process requires a priori statistics to constrain the 

numerically generated rain fields. 

 

1.2 Aims and Objectives of the Work 

   

The aim of this project is to produce a radio network simulator that will predict the 

correct first and second order joint, rain fade statistics for heterogeneous networks of 

arbitrary geometry. An input to this simulator is a numerically generated, time-series 

of fine-scale rain fields. This time series will allow the simultaneous calculation of 

rain fade and rain scatter interference on links in an arbitrary radio network within the 

rain field. This fine-scale rain simulator should yield the correct statistics up to at 

least second order, and be valid over large ranges of spatial-temporal scales.  

 

The major objectives of this project are: 

1. To identify current challenges in microwave systems design and regulation 
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that cannot be addressed with existing rain fade models; 

2. To identify the characteristics required of a new model to fully address these 

challenges; 

3. To measure the statistical properties of spatial and temporal rain rate variation 

that impact on radio system engineering; 

4. To design, build and test a system that generates rain rate field time-series 

with the necessary statistical properties; 

5. To design, build and test a system to derived joint rain fade time-series from 

the rain field generator, for arbitrary networks of microwave links; 

6. To apply the general network rain fade simulator to a current problem in radio 

engineering.  

 

1.3 Report Outline 

 

This thesis represents a review of research undertaken during three years of study. 

The aims and objectives of this report are described in the previous section. Chapter 2 

expands on the background of the interaction between microwave links and rain. 

Chapter 3 looks at rain fade modeling including a critical analysis of existing ITU-R 

recommendations. This chapter continues looking at models of rain rate variation and 

considers their application to microwave system modeling.  

 

Chapter 4 considers measurements of rain rate. The characteristics of measurement 

made by rain gauges and weather radars are examined. In particular, the Chilbolton 

Advanced Meteorological Radar (CAMRa) is described in detail, as data used in this 

project is derived from a two-year observation period (1987-1989) using this 

instrument. 

 

Chapter 5 investigates the statistical properties of rain rate variation. The statistics 

important for predicting the performance of microwave systems are identified. In 

particular, the scaling properties of both spatial and temporal variation are defined 
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and derived from rain gauge and CAMRa measurements.  

 

In Chapters 6 to 8, methods are derived for the numerical interpolation of rain field 

time-series i.e. methods are developed to numerically generate the rain fields that may 

have been measured between those derived by meteorological radar measurements. 

The proposed methods are based on a disaggregation algorithm due to Deidda (2000) 

and a new interpolation algorithm loosely based on the Random Midpoint 

Displacement algorithm of Voss (1985) and the Local Average Subdivision algorithm 

of Fenton and Vanmarcke (1990). The interpolation method is described in Chapter 6 

and the disaggregation method is presented in Chapter 7. In Chapter 8, the 

disaggregation and interpolation method is applied to measured data from CAMRa 

measurements. 

 

In Chapter 9, the numerically generated fine-scale rain field time-series described in 

Chapter 6 and 8 has been used to simulate the time-series of rain fade on a range of 

38 GHz links. The average annual, first and second order summary statistics have 

been generated and compared to ITU-R model predictions and some real link 

measurements. 

 

Chapter 10 describes the General Network Rain Fade Simulator and uses the 

simulator to derive fade duration statistics for a range of links. These are compared to 

measured data and the ITU-R model. 

 

Finally, Chapter 11 summarises the project and makes conclusions. Future areas of 

research based on the results of this project are proposed.  
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CHAPTER 2 RAIN EFFECTS ON MICROWAVE LINKS 

 

Millimeter wave (30-300 GHz) links offer large bandwidth and hence high data-rates 

for integrated multimedia services. Such links are being developed as parts of new 

systems. They are quick to deploy, compared to cable and fiber connections. 

However, radio waves at high frequencies suffer high attenuation due to the rain. 

Raindrops are roughly the same size as the radio wavelengths at these frequencies and 

therefore have large scattering cross-sections; many raindrops have a diameter in the 

range 1 to 10 mm compared with a wavelength at 30 GHz of 10 mm. The effects of 

rain on radio wave propagation have been studied extensively for attenuation and 

depolarisation, both theoretically and experimentally. 

 

Telecommunications engineers use average annual rain rate statistics to determine the 

fade margin necessary for a particular link to achieve the desired availability. Rain 

rate distributions can be estimated for any point on Earth from Rec. ITU-R P.837-5 

(ITU-R, 2007). In particular, the one-minute averaged rain rate exceeded 0.01% of 

the time in an average year is an important parameter in rain fade models and the 

primary rain parameter used in the rain fade model e.g. Rec. ITU-R P.530-12 (ITU-R, 

2007). The accurate estimation of this parameter requires ten years or more of rain 

data due to the large, natural year-to-year variation in rainfall. The estimation of the 

one-second rain rate exceeded 0.01% of the time would require considerably more 

data. Furthermore, it is debatable if this parameter is stable enough for measurement 

i.e. it may drift over the period necessary to estimate the average. The primary goal of 

a rain attenuation prediction method is to achieve acceptable estimates of the periods 

of attenuation incurred by the signal due to rain. Rec. ITU-R P.530-12 is a first point 

of reference for engineers designing terrestrial fixed links. However, the ITU only 

provides vague guidance on the joint performance of several links and on the duration 

of rain fades on a single link. Currently, the understanding of the spatial-temporal 

properties of the rain process is inadequate for the prediction of the performance of 

microwave systems. 
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To design a radio network simulator that will predict the correct first and second order 

joint, rain fade statistics for heterogeneous networks of arbitrary geometry, the 

fundamental concepts of radio wave propagation through rain and the parameters of 

rain fields will be reviewed in this chapter. The micro-physical elements, such as drop 

size distribution, drop shape and canting angles, which determine the rainfall rate and 

specific attenuation are defined and described.  

 

2.1 Rain and Rain Attenuation Parameters 

 

The effects of precipitation on radio-communications systems are dependent both on 

system parameters e.g. frequency and polarisation; network parameters e.g. geometry 

of links, length, elevation, network topology; and the type of precipitation parameters 

e.g. rain rate, drop size distribution etc. Rain attenuation is the dominant fade 

mechanism leading to outage at frequencies above 10 GHz. An increase in the rain 

incidence or intensity reduces the communication signal availability. Attenuation 

occurs due to absorption and scattering in rain. Models of fading due to rain have 

been derived from numerical implementation of scattering models or from empirical 

evidence from link monitoring exercises. These methods typically yield significantly 

different relationships between rain intensity and attenuation due to the difficulties 

that numerical methods have incorporating the variation of drop sizes, shapes and 

orientations. For linear polarisation, variation in the drop size distribution is the most 

important source of uncertainty. To understand variation in attenuation for different 

polarisations drop shape variation is important as well as drop orientation variation 

effects. The distribution of rain drop size contains a lot of information on the links 

between various rain parameters of interest including rain rate, radar reflectivity and 

microwave specific attenuation.  
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2.1.1 Raindrop Size Distribution 

 

The rain drop size distribution (DSD), )(DN , describes the number density 

distribution function of raindrop sizes or reflects the volume distribution of the drop 

sizes i.e. dDDN )(  is the number of drops per unit volume in the diameter range 

D to dDD . The DSD is linked to the rain rate by the drop fall-speed distribution. 

Many raindrop size distributions have been reported. The earliest paper on the size of 

raindrops was by Laws and Parsons, where the distribution is tabulated (J. O. Laws 

and D. A. Parsons, 1943). This distribution was used by Oguchi, Olsen and other 

researchers (T. Oguchi, 1960, 1964) (R. L. Olsen, D. V. Rogers and D. B. Hodge, 

1978). Later, the exponential drop size distribution was empirically proposed by 

Marshall and Palmer (J. S. Marshall and W. McK. Palmer, 1948). The latter 

distribution is well accepted in the meteorological domain and in radar analysis. Later, 

a range of exponential forms linked to event type was proposed by Joss and 

Waldvogel (J. Joss, J. C. Thomas and A. Waldvogel, 1967). In this form, rain was 

divided into three types: drizzle (J-D), widespread (J-W), and thunderstorm (J-T). 

With the advent of instruments to measure DSD, concerns were raised as to the 

description of both the numbers of small drops and the large drop tail of the 

distribution. The gamma distribution was proposed as a raindrop size distribution by 

Ulbrich and Atlas (D. Atlas and C. W. Ulbrich, 1974). The exponential distribution is 

a special case of the gamma distribution. The third parameter allows the gamma 

distribution to describe cases with a large number or small number of small drops. 

The choice of the drop size distribution is crucial and affects the resultant specific 

attenuation. 

 

The moments of the DSD yield different parameters of interest. Define the nth 

moment of the DSD to be: 

dDDNDkM n

n )(
0




                                              (2.1.1) 
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Some moments of particular interest include:  

0n  the total number of drops 

3n  water volume per unit atmosphere volume 

6n  radar reflectivity and specific attenuation 

where k  is a constant whose value depends on the units of measurement of the 

parameters. 

 

The drop size and corresponding fall speeds, )(Dv  gives the intensity of rainfall at 

any instant. 

dDDvDNDkR )()(
0

3




                                           (2.1.2) 

 

Marshall-Palmer Distribution and Laws-Parsons Distribution 

 

In the case of Marshall-Palmer Distribution, the drop size distribution function 

)(DN  uses an exponential form (J. S. Marshall and W. McK. Palmer, 1945): 

)exp()( 0 DNDN                                             (2.1.3) 

where 0N  is a parameter found to be around 8000 31  mmm  at the notional drop 

size of 0D , and the value of  ( 1mm ) is given by: 

21.01.4  R ,                                                    (2.1.4) 

where R  is the rainfall rate in mm/hr.        

 

DSD varies rapidly in time and space. However, it is generally assumed that DSDs 

become exponential when the sample volume is sufficiently large. Due to the large 

sample volumes defined by the first Fresnel zone of microwave links, the 

Marshall-Palmer distribution is generally satisfactory for statistical prediction of 

attenuation in the range of 10 GHz to 30 GHz, and recently up to 300 GHz (L. 

Barclay, 2003). 
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The Laws-Parsons Distribution is similar to the Marshall-Palmer form except that it 

has slightly fewer small drops. It is an empirically measured form for )(DN  that is 

tabulated numerically rather than expressed mathematically (J. O. Laws and D. A. 

Parsons, 1943).  

 

Their study showed that 0N  could vary quite considerably even in one rain event 

and the shape of the distribution could also vary significantly. Thus a more suitable 

distribution function was required. 

 

Gamma-type Distribution 

 

A more general form of distribution is the gamma-type distribution, which can 

adequately describe many of the natural variations in the shape of the raindrop size 

distribution, in the following form (C.W. Ulbrich, 1983): 

0/
)67.3(

0)(
DD

mmeDNDN                                           (2.1.5) 

 

It can be seen from this equation that compared with the exponential distribution, 

obtained when 0m , the positive values of m  reduce the numbers of drops at both 

the large and small ends of the size spectrum while negative values of m  increase 

the numbers of drops at each end of the spectrum (L. Barclay, 2003). 

 

It is generally believed that there is no single model for drop-size distributions at 

present which is accepted as representing physical reality, even as a statistical mean 

over many rain events. However, for particular modelling purposes, it is not essential 

that the assumed distribution represents physical truth at all drop sizes (L. Barclay, 

2003). 

 

Observations of radar reflectivity and microwave specific attenuation are very 
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sensitive to the presence of large drops due to their dependence on the sixth moment 

of the DSD. Radar measurements suggest the presence of fewer very large drops than 

in an exponential distribution and measurements are well fitted using a gamma 

distribution with m  between 3 and 5. This model incidentally lowers the assumed 

density of small drops, smaller than 1mm in diameter (L. Barclay, 2003). Other 

measurements of attenuation at 30 GHz to 300 GHz are more sensitive to small drops 

and make no strong implication about the presumed cut-off point for large drops, 

although work in the UK has suggested that a lognormal form of distribution would 

be appropriate for millimetric attenuation prediction (B. N. Harden, J. R. Norbury and 

W. J. K. White, 1978). 

 

2.1.2 Rain Drop Shape and Canting Angles 

 

Surface tension tends to make small rain drops spherical. However, drag from the air 

passing around a falling drop tends to distort the shape away from spherical. Rain 

drops in free fall are not spheroids, but are approximately oblate spheroids with a 

flattened base. As the drop diameter increases above 4 mm, the base becomes 

concave. This vertical-horizontal asymmetry leads to differential attenuation and 

phase shift of polarised radio waves propagating through a rain filled atmosphere (L. 

Barclay, 2003).  

 

In scattering calculations, it is usual to model the rain shape as simple oblated 

spheroids, with the axis ratio ab / , where b  and a  are the semi-minor and the 

semi-major axis lengths respectively. A simple model for the axis ratio r  based on 

the linear fit to wind tunnel data is given as (H. R. Pruppacher and K. V. Beard, 

1970):  

Dr 062.003.1  ; 91  D mm                                 (2.1.6) 

 

The Pruppacher-and-Pitter model (P-P) is more realistic than oblated spheroids and 

well accepted by researchers for the calculation of microwave attenuation by rain. 
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The raindrop starts almost spherical, then becomes spheroidal and axisymmetric for 

midsize raindrops, and finally becomes distorted and non-axisymmetric (but still 

rotationally symmetric). This leads to the use of the P-P model in heavy rain climates 

due to the increased presence of larger raindrops. An equation was established by 

Pruppacher and Pitter to describe the shape of water drops falling at their terminal 

velocity in terms of the balance of the internal and external pressure at the surfaces of 

the drops (T. Oguchi, 1977 and 1981).  

 

Figure 2.1.1 shows the raindrop of spherical, spheroidal and the 

Pruppacher-and-Pitter. All of these three models have the same volume. 

 

Figure 2.1.1 Equal-volume raindrop models 

 

When the rain drop axis of symmetry is not vertical, the drop is said to be canting. 

When strong vertical wind shears are present, the population of drops will exhibit a 

similar canting angle. The effect on propagation is some transfer of energy between 

horizontally and vertically polarised waves. It is suggested from cross-polar 

measurements that a drop falls so that its symmetry axis is parallel to the velocity of 

air flow relative to the drop. Calculations show that terrestrial links within about 40 m 

of the ground could see canting angles up to about 5
0
 (G. Brussaard, 1976). 

 

At low frequencies, attenuation and phase shift will be greater for horizontal 

polarisation as drops are wider than they are tall. It is important to note that, although 

differential attenuation and phase below 18 GHz increases with frequency for a given 

rain event, they decrease for a given fade depth. This is partly because less deformed 

smaller drops make a greater relative contribution to the total attenuation as frequency 

is raised (L. Barclay, 2003). 
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2.2 Overview of Rain Field Parameters 

 

2.2.1 Rain Rate Distribution 

 

The starting point for estimating rain attenuation is the knowledge of the statistics of 

rainfall rate. The rainfall rate is one of key factors used to determine the amount of 

rain attenuation likely to be suffered in the propagation of wireless communications.  

 

Link rain attenuation distributions are generally derived from point rain rate statistics. 

Direct measurements of rain attenuation are performed to test these models but tend 

not to be used directly due to the large number of link parameters, for example, 

frequency, polarisation, length elevation etc. It is generally accepted that at least five 

years of link rain fade data is needed to accurately estimate the 0.01% exceeded level. 

Attenuations that occur with lower probabilities require much longer monitoring 

times. The preferred option, and that sanctioned by the ITU, is to use locally derived 

statistics of rainfall rate with an integration time of 1 minute. 

 

The fundamental distribution is the rain rate exceeded for a given percentage of an 

average year. The parameter 01.0R  is the notional point rain rate averaged over a 

period of 1 min and exceeded for 0.01 per cent of an average year in the region of the 

link. Rec. ITU-R P.837-5 provides annual statistics for the whole world, as a function 

of latitude and longitude, derived from numerical weather models. 

 

Figure 2.2.1 plots the rain exceedance distribution for Chilbolton from ITU-R Rec. 

837-5. According to the ITU-R world climate zones from the, now redundant, Rec. 

ITU-R P. 837-4, Climate F is the appropriate rain climate for Chilbolton. This yields a 

2801.0 R  mm/hr compared to measured values around 30 mm/hr. 
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Figure 2.2.1 Rainfall statistics from ITU-R Rec.837 

 

There are two methods to calculate the rainfall rate distribution experienced by a 

region. The empirical method is to use field measurements and recordings made over 

long time periods. Another way is to depend on models that have been developed, 

such as Rec. ITU-R 837 model and the Global Crane model (both derived from 

Numerical Weather Prediction simulations). 

 

Both methods have their detractors. In general it can be said that there are significant 

differences between the results of the field measurements and several well-known 

models. Uncertainty stems from variations from year-to-year and location-to-location 

(W. Myers, 1999), from systematic errors in numerical weather models, and from 

variation at scales below the model resolution. 

 

Research (Landsberg, 1981 and Jensen, 2000) suggests that the particular 

combination of effects such as sea breezes, topography and the urban heat islands has 

an influence on the initiation and development of rain storms. Urban surfaces are 

frequently made of glass, metal, asphalt, concrete, or stone. The reflection and 

absorption abilities of these surfaces exceed most natural surfaces resulting in higher 

day and night time temperatures than surrounding rural landscapes. In addition to 

horizontal surfaces, many cities have large vertical surfaces of different geometric 
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shapes. These vertical surfaces function like canyons affecting radiation and wind 

patterns. The high consumption of fossil fuels in cities for heating and cooling of 

buildings and running of automobiles results in more heat being released than being 

received (Jensen, 2000). Furthermore, the high concentration of air particulates such 

as dust, pollutants, gases, and aerosols over a city creates a greenhouse condition 

where a heavy blanket of particulates absorbs the long-wave radiation coming from 

the city and reradiates it back down on the city. These blankets are called "dust 

domes" and every major city has such a dome. More water vapour forms around the 

increased particulates within these domes leading to more cloud cover over a city and 

the potential for increased precipitation (Landsberg, 1981 and Jensen, 2000). 

 

2.2.2 Rain Attenuation 

 

Rain attenuation (in dB) is defined as the reduction of the received signal power due 

to the rain as compared to the received signal power under clear weather conditions.  

 

Rain attenuation is a function of many random time-varying parameters of the 

medium. These parameters include the number of rain drops in the path, the raindrop 

shapes, raindrop water temperature, the drop size distribution, the spatial variation of 

rain parameters, and indirect parameters such as wind velocity, the presence of up or 

down drafts, and other effects (S. Lin, 1973). 

 

Although rain attenuation can be ignored at frequencies below about 5 GHz, it must 

be included in design calculations at higher frequencies, where its importance 

increases rapidly with frequency up to 100 GHz. 

 

The total attenuation A  along a very short path of length L  experiencing rain may 

be calculated as the sum of the contributions of each individual drop and can be 

computed from: 



 16 

dDDNCLA ext )(34.4
0




                                            (2.2.1) 

where extC  is the total extinction cross section of the particle and is given by: 

)]0(Re[/2 SCext                                               (2.2.2) 

where )(S  is a dimensionless function of the scattering angles   and )0(S  is the 

forward scatter cross-section (Hulst, 1981). The attenuation in dB per unit length of 

propagation path is known as the specific attenuation:  

LA
L

)log(10lim
0

  dB/km.                                        (2.2.3) 

 

The total attenuation experienced by a propagation path is the path integral of the 

specific attenuation:  

 
L

dA
0

  dB                                                 (2.2.4)  

However, it is very unusual for the specific attenuation to be known along the length 

of the path. Usually, the historical point rain rate distribution for the region is known 

and this may be transformed into the point specific attenuation distribution. However, 

the transformation of the point specific attenuation distribution to path integrated 

distribution is not trivial. ITU-R models allow for the spatial variation of rain 

intensity by introducing a factor to reduce the effective path length. This scaling 

factor r , depends on path length and rain rate (or time percentage), and is known as 

path reduction factor. According to ITU-R Rec. P.530-12, 

)/1/(1 0ddr  ,                                                 (2.2.5) 

where 01.0015.0

0 35
R

ed


 , 01.0R  is the rainfall rate with an integration time of 1 min 

that occurs for 0.01% time and d  is the path length. Due to the relationship between 

the attenuation and the rain rate, the effective path length is simpler to estimate with 

the precipitation rate as a parameter. The path reduction factor is usually estimated 

using data bases of meteorological radar data. However, it is a simplistic fix that is 

only valid for average annual statistics (of rain fade and specific attenuation derived 
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from point rain rates) made with specific integration volumes. 

 

2.2.3 The Specific Attenuation of Rain 

 

The Beer-Lambert-Bouguer law is a description of the exponential decline in 

intensity of a wave as it passes through a scattering medium. The exponential 

constant linking the rate of decline to the amount of scattering caused by the medium 

is known, at radio frequencies, as the specific attenuation. For an atmosphere 

containing rain, it is related to the number, sizes, shapes and refractive index (linked 

to temperature) of rain drops. In radio systems engineering it is usual to assume a 

power law linking rain rate to specific attenuation.  

 

The internationally recognised model is provided by Rec. ITU-R P838-2 (ITU-R, 

2003). Specific attenuation R  (dB/km) is obtained from the rain rate R (mm/hr) 

using the power-law relationship: 
 kRR  ; where k  and   are frequency and 

polarisation dependent coefficients. They may be determined by the following 

equations. jia / , jib / , jic / , kc /  and km /  are coefficients and are given by ITU-R 

P838-2. 
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A plot for the specific attenuation produced by 30 mm/hr rain for frequencies across 

the millimetric range is illustrated in figure 2.2.2. 
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Figure 2.2.2 The specific attenuation produced by 30 mm/hr rain for frequencies 

across the millimetric range, for horizontally and vertically polarised radiation, as 

predicted by Rec. ITU-R P838-2 

 

2.2.4 The Number and Duration of Rain Fades 

 

Duration distributions describe the number (or proportion) of events in an average 

year where rain rate or rain fade exceed some threshold, in mm/hr or dB respectively, 

for some duration   or longer i.e. ),( RN  would be the number of times in an 

average year when the point rain rate exceeded R  for a period of at least  . The 

link between the rain and rain fade duration distributions is complicated and depends 

upon the specific attenuation – rain rate relationship and the spatial-temporal statistics 

of rain fields. If )(AT  is the total time for which an attenuation of A  dB is 

exceeded and )(ADm  is the mean duration of the fades contributing to this total time 

then: )(/)()( ANATADm  , where )(AN  is the number of fade. A large number 

of different forms have been suggested as good fits to empirically measured rain rate 

and rain fade duration curves. These include power-laws (Rec. ITU-R 838-2, 2003), 

log-Normal (S. H. Lin, 1973; B. J. Easterbrook and D. Turner, 1967; D. J. W. Turner 

and D. Turner, 1970; Gibbins and Paulson, 2000) and Weibull (Paulson, 2000). 
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The Rutherford Appleton Laboratory (RAL) database of rainfall rate measurements 

has been used to develop a model to describe the number of events of given durations 

with rainfall rates of specified thresholds. The database comprises rain rate 

measurements made over a three-year period using three rapid-response rain gauges 

of the drop-counting type, spaced 200 m apart. The measurements were made at 

Chilbolton, in Hampshire (ITU-R rain zone F), and the rain rates were sampled at 10 

second intervals. The durations of events with rain rates exceeding levels between 5 

mm/hr and 50 mm/hr were determined, with a minimum duration of 30 seconds, i.e. 

three consecutive samples with rain rates greater than the given threshold. For the 

data considered, a lognormal model curve was fitted to the CDF of durations: 
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                           (2.2.8) 

 

The RAL rain duration distribution was then used to develop a rain fade distribution 

model. This involves two transformations. The threshold rain-fade was transformed 

into an equivalent rain rate. This has been achieved using the Rec. ITU-R 530 

attenuation-rain rate relationship i.e.    RLrRA  , see Section 2.2.2; where both the 

specific attenuation and path reduction factor depend upon the rain rate R . This 

expression cannot be explicitly inverted for R  and so needs to be solved 

numerically. Secondly, the duration of rain at a point needs to be transformed into an 

equivalent duration of a fade on a link. Typically, a rain event will cause a longer fade 

on a spatially extended link than the equivalent rain rate will be exceeded at a point. 

Therefore a dilated duration is needed and an empirical result was derived. After these 

transformations the fade duration model of equation 2.2.9 was derived. Here, AN  is 

the number of fades exceeding a depth of A  dB and a duration of dt  seconds in an 

average year.  
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2.3 Summary 

 

The rain attenuation experienced by a microwave link is determined by all the rain 

drops in the beam, often interpreted as the first Fresnel zone. Many assumptions are 

required to reduce the problem of predicting rain fade statistics to a tractable form. 

One of the most important parameters is the drop size distribution (DSD). Many of 

the important properties of rain can be derived from, or related, by the DSD e.g. rain 

rate, radar reflectivity and microwave specific attenuation. Typically DSDs vary 

within rain events and between rain events. This leads to some uncertainty in 

relationships between rain rate and scattering or attenuation parameters. Other rain 

parameters play a smaller but still significant role e.g. drop canting leads to 

cross-polar interference. Drop shape, temperature and amount of oscillation all have a 

small effect on the scattering characteristics of drops. To some extent, link attenuation 

averages out the spatial variation of all these rain parameters and in many cases it is 

justified to use mean values.   
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CHAPTER 3 RAIN MODELS FOR FADE PREDICTION 

 

3.1 Rain Fade Models 

 

Models of rain fade experienced by microwave links vary as to the ambitions of their 

outputs. The simplest aim is to produce distributions of rain fades, typically over a 

notional average year. A refinement of these yields monthly distributions or estimates 

of the worst-month performance. These models are primarily aimed at spectrum 

regulation and fade margin calculations. Databases of meteorological radar images 

may be transformed into specific attenuation fields and used to produce joint rain fade 

snap-shots for any terrestrial link network. From these, joint rain fade distributions 

can be calculated. Other models, generally based around simulations, yield time series 

of rain fade for one or more links. These models have much wider application but 

currently yield unrealistic join statistics due to the use of simplistic rain fields (L. 

Feral, J. Lemorton, L. Castanet and H. Sauvageot, 2003). 

 

In general, rain attenuation models fall into two categories. The first category derives 

rain fade from measured or modelled rain fields while the second is empirically 

derived from fade measurements on many links at many locations. Empirical 

procedures have been most common but both methods are severely limited by lack of 

data.  

 

There are two empirical rain fade models widely used in microwave system design. 

One is the Rec. ITU-R P.530-12, which is considered the standard in predicting the 

path attenuation, based on the Rec. ITU-R P.837-5 01.0R climate maps (or local 

measurements if available) and the Rec. ITU-R P.838-2 parameters for the specific 

attenuation. The second is the Crane attenuation prediction model (particularly of 

interest in North-America), based on the Crane climate model. This section briefly 

addresses some of the most important rain attenuation models presented by Crane and 

the ITU-R. 
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The ITU has recommended a calculation method for terrestrial systems, Rec. ITU-R 

P.530-12, and for space to earth links, Rec. ITU-R P.618-7. These models take into 

account a path-length reduction factor to account for the spatial variation of rain. 

 

The attenuation exceeded for 0.01% of an average year is estimated from the specific 

attenuation exceeded for the same time percentage: 01.0 . This is estimated from the 

0.01% exceeded rain rate 01.0R  using the ITU-R P.838-2 (ITU-R, 2001) power law. 

The specific attenuation is scaled by the path length, L , to yield the attenuation that 

would result from uniform rain of this intensity along the path. However, for the high 

rain rates exceeded for small percentages of time, it is far more common for only a 

portion of the path to be spanned by the heavy rain event and so the attenuation 

01.0L  overestimates the 0.01% exceeded attenuation. This overestimation is larger 

for longer links and for smaller time percentages. The over-estimation is rectified by a 

path-length reduction factor, r , yielding an expression for the 0.01% exceeded rain 

attenuation: 01.001.0 LrA  . Many forms for the path reduction factor have been 

proposed and used. 

 

For the prediction of rain fade attenuation using the Rec. ITU P.530 standard, rain 

rate at the 0.01% exceeded level for the location of interest is required, frequency, 

path length and attenuation factors from Rec. ITU-R P.838-2 (ITU-R, 2001). Other 

percentages are calculated by using the 0.01% value. 

 

The Crane models have been used for both space-earth and terrestrial links. There are 

three versions of Crane models. They are Global Crane model (developed in 1980), 

Two-Component model (developed in 1982) and Revised Two-Component model 

(developed in 1989). It can be said that in most cases the Crane models predict higher 

rain attenuation than the ITU model (W. Myers, 1999). 
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3.1.1 Rec. ITU-R P.530 Model 

 

Rec. ITU-R P.530-12 presents a method for predicting the long-term statistics of rain 

attenuation. Prediction method is constructed with the rain rate as the primary 

parameter. There are several steps involved it (ITU-R, 2001).  

 

Figure 3.1.1 shows overview rain attenuation prediction procedures based on method 

provided by Rec. ITU-R P.530-12.  

 

 

Figure 3.1.1 Overview of rain attenuation prediction procedures (ITU-R) 

 

In the first place, if rain rate 01.0R  could not be obtained from long-term 

measurements carried out in the location of the link, an estimate can be obtained from 

rain rate maps given in Rec. ITU-R P.837-5. 

 

Secondly, the effective path length is required to be calculated. The effective length is 

less than the actual path radio waves propagate in the link and reduces with increasing 

of value of rain rate 01.0R . The non-uniformity of the rain rate, particularly for rain rate 

above 20 mm/hr, along the radio path is taken into consideration in this step. 

 

Thirdly, for a given rain rate 01.0R , an estimate of the path attenuation exceeded for 

0.01 per cent of the time is calculated by multiplying the effective path length by the 

rain-specific attenuation. According to Rec. ITU-R P.838-2, the rain-attenuation in 

dB/km is a function of frequency, polarisation and rain rate. 
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In addition, two formulae are given for deriving the path attenuation exceeded for 

percentage times in the range 1 to 0.001 per cent from the 0.01 per cent value. One 

applies to links between 30
0
 north and 30

0
 south and the other applies to links outside 

this region. 

 

Finally, rain attenuation statistics for an average worst month, which is often required 

in system planning, can be calculated from the average annual statistics using 

methods given in Rec. ITU-R P.841-1. 

 

At frequencies where both rain attenuation and multi-path fading must be taken into 

account, the exceedance percentages for a given fade depth corresponding to each of 

these mechanisms can be added. 

 

3.1.2 Crane’s Rain Attenuation Model 

 

Crane‟s rain attenuation model takes into account the variation of rain rates along a 

horizontal path. A path-averaged rain rate is calculated based on the point rain rate. 

The average rain rate is related to the point rain rate by (R. K. Crane, 1996): 
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1
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RdfR


                                                  (3.1.1) 

where d  is the path length, and )(1 df  and )(2 df  are empirically derived 

functions.  

 

A theoretical prediction model was proposed by Crane. This model is summarised in 

the following equations. 
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)ln(6.08.30 RD  [km]                                           (3.1.4) 

17.03.2  RB                                                     (3.1.5) 

)ln(03.0026.0 Rc                                               (3.1.6) 

0/]ln[ 0 DBeu
cD

                                             (3.1.7) 

 

and A  is the rain attenuation in dB, R  is point rain rate in mm/hr, and d  is path 

distance in km. Multipliers a  and b  are rain attenuation coefficients, which are 

functions of frequency and polarisation. All the parameters are well tabulated for 

different global rain climate zones. The global geographic regions are divided into 

rain climate zones based on the rain rate statistics collected over several years. Point 

rain rate vs. time distribution has been tabulated for each rain climate region (R. K. 

Crane, 1996). 

 

3.2 Second Order Statistics of Rain Fade 

 

Currently, the ITU-R provides Rec. ITU-R P.837-5 for calculating the average annual, 

one-minute averaged, rain rate distribution for any point on earth. This may be used 

to calculate the average annual rain-fade distribution experienced by a terrestrial link. 

However, telecommunications operators are increasingly interested in the second 

order statistics of rain-fade i.e. statistics that depend upon pairs of attenuations 

experienced at different times or/and on different links. Such statistics include the 

temporal power spectrum, rain-fade duration statistics, rain-fade slope statistics and 

rain-fade covariance for pairs of links, or the same link at different times. These 

statistics are important for the design of fading countermeasures, such as time/path 

diversity, and for interference coordination. The second order statistics of rain-fade 

depend directly upon the second order statistics of rain rate variation. 
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3.2.1 Spectral Model of Rain Fields 

 

The tradition of the mathematical modeling of spatial-temporal rainfall fields is quite 

long among the hydrologists but for radio propagation applications this is an 

emerging area of study (R. Deidda, 2000). Rain models for radio simulation need to 

be spatial-temporal as radio links have spatial extent and temporal statistics of 

attenuation are desired. 

 

Rain fade time-series generators or channel models can be used to simulate the 

channel conditions in scenarios where adaptive fade countermeasures are employed 

and can be used to optimise and predict the benefits of fade countermeasures. 

Countermeasures can be tested in a wide range of conditions and for a range of link 

parameters, much faster and more economically than testing using real links. 

 

The development of time series was initiated in the nineties by many teams working 

on propagation channels for satellite mobile systems at L and S bands. Channel 

models for fixed satellite systems at Ka band and above, are a more recent interest 

and are linked to the development of Fade Mitigation Techniques (COST 280, 2002). 

 

The stochastic dynamic variations of rain fields can be modeled using pulse models, 

Markov chains or power spectral density models. These models are able to reproduce 

the first and second order statistics for a site and are useful as inputs to evaluate 

channel models and fade mitigation design for radio links. 

 

Although there is a large number of pulse models describing rain rate variation, 

including the model by Capsoni et al (1987) designed for propagation studies, these 

models do not contain information on the high resolution stochastic variation of rain 

rate in time and space. The Synthetic Storm model of Matricciani (1996) does provide 

high resolution, temporal, rain fade variation but relies on transformation of rain rate 

time series measured by gauge using a Frozen Storm model, see Section 3.4 and 5.4. 



 27 

It is not clear if the method is applicable to links orientated at an angle to the rain 

advection and so derived average annual results are suspect. Veneziano et al (1996) 

have postulated that log rain rate, while raining, may be modeled as a stationary, 

Gaussian stochastic process. Furthermore, theoretical models of rain as a passive 

tracer in a turbulent, two-dimensional flow, Kraichnan and Montgomery (1980) and 

Lovejoy and Schertzer (1995), predict that the temporal and spatial spectral density of 

log rain rate follows a segmented power-law form. These fluid dynamical models 

often lead to spectral density power-laws with exponents expressed as ratios of small 

integers (Paulson, 2002). Over ranges of scales where the spectral density follows a 

simple power-law, there is no special scale and the random variable exhibits 

self-similarity. Models of rain rate variation that assume power-law spectra are often 

termed “fractal models”. Crane and Horng-Chung Shieh (1989) identify 

one-dimensional (1D) spatial log rain rate spectra with two power-law segments. 

Below the scale of energy injection, typically the size of a front, the power spectrum 

has the form 
3

f , where f is spatial or temporal frequency, reflecting a direct entropy 

cascade towards larger wave numbers. Above the scale of energy injection an inverse 

energy cascade towards smaller wave numbers leads to spectra of the form 3
5

f . 

Based on the observation of eight storms, Veneziano et al suggest that spatial or 

temporal 1D log rain rate has a spectral density function with four power-law 

segments. The corner frequencies are associated with the scale of convective cells and 

cell clusters. A log-log plot of such a spectral density is segmented-linear with the 

gradient of each segment equal to the power-law exponent (Paulson, 2002). 

 

Two-dimensional Fourier analysis of rain rate or log rain rate fields is quite common 

in the literature. Studies published include those by Olsson et al (1993), Tessier et al 

(1993), Marsan et al (1996), Harris et al (1996) and Purdy et al (2001). The actual 

values for the power spectral density varied from study to study (Callaghan, 2005). To 

some extent this variation is to be expected. The low frequency components are 

determined by the shape of the rain field and so events with strong linear structure, 

such as frontal rain and squall-lines, have highly asymmetric spectra. The analysis of 
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log rain rate is further complicated by areas with no rain where the log is 

undetermined. Different investigators have set these areas to arbitrarily low rain rates 

or have tried to choose areas where every point is experiencing rain. Both these 

choices limit the validity of the spectra and make averaging across events more 

difficult. 

 

Paulson (2002) has proposed a spectral model of spatial-temporal rain rate variation 

when raining. It is based on the assumption that log rain rate is an isotropic, 

homogeneous, Gaussian random field with a spectral density function following a 

specific power law. The log rain rate spectral density model when raining is given by: 
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where   is a vector of the n dimensional coordinates, 01.00   km
-1

 and K  is 

a normalising constant to ensure that  dSx 




 )(2 . )(tX  is the log rain rate 

random field, where t  is a vector that denotes a combination of time and space units 

),,( tyx . Since X  is a homogeneous Gaussian random variable, its mean and 

variance can be given by: 

 

xtXEtm  )]([)(                                               (3.2.2) 

22 ]))()([()]([ XtmtXEtXVar                                   (3.2.3) 

where [*]E  is the expected value. The auto-covariance function of )(tX  describes 

the relationship between values of the random field at two coordinates 1t and 2t : 

               21212121 ,Cov, tttttttt mmXXEXXBX               (3.2.4) 

 

Since )(tX  is assumed to be homogeneous, the auto-covariance depends only on 

the lag 21 tt  . The spectral density is related to the auto-covariance by the 
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Smith-Kinchine relations, 
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where the integral denotes integration over n-dimensions. 

 

This is equivalent to assuming that log rain rate, where raining, is a fractional 

Brownian field with a Hurst coefficient of 1/3 (Paulson, 2002). The Hurst exponent 

H  is related to the spectral density exponent of the measured rain fields, and is also 

related to the fractal dimension of the contour lines enclosing areas of equal rain rate. 

The spectral density function for a 2D isotropic random field is given by:  

22)(  HS                                                    (3.2.7) 

 

Theoretical analysis and observation of rain rates from radars and rain gauges show 

that the slope of this power law is 
3

5
  for one-dimensional fields (R. K. Crane, 

1990; Veneziano and Bras, 1996; Paulson 2001). The two-dimensional spatial 

variation of log rain rate, measured using meteorological radar, has been shown to 

have spectral density function with a 
3

8
  exponent (Paulson, 2002). A log rain rate, 

power-law spectral density with exponent )3/2(  n , where n  is the dimension of 

the random field, has been shown to be a good model of spatial and temporal rain rate 

variation in widespread, stratiform events.  

 

Using such a model, temporal and spatial rain rate fields can be simulated at all scales 

of interest while such models of log rain rate are only valid in areas of non-zero rain 

rate (Paulson, 2003). The model is expected to be a good representation of variation 

over scales that are smaller than event size and larger than the raindrop-turbulence 

decoupling scale, estimated by Lovejoy (2007) to be 40 cm. 
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3.2.2 Rain Cell Models 

 

Many studies have attempted to parameterise the shape of rain events. Rain events 

have been defined as regions where the rain rate exceeds some threshold. Recently 

Callaghan has shown that these regions have boundaries that are fractal and consistent 

with the spectral model of Paulson. However, historically rain cells have often been 

modeled as circular or elliptical. Attenuation models derived from rain cell statistics 

have either assumed rain rate variation within rain cells to be constant, a Gaussian 

profile or to decline exponentially from the centre. Several parameters are needed to 

specify a rain-cell profile i.e. radius of the rain cell, the maximal rain intensity maxR  

at the center of the rain-cell and one or more parameters to specify the rain cell profile 

(A. Paraboni, C. Capsoni and C. Riva, 2002). 

 

The constant rain-cell profile is frequently used in hydrological modeling where rain 

accumulation is the parameter of interest. However, these models do not reproduce 

the second order statistics of rain fade. For example, the covariance of rain fade on 

two links is determined by whether the rain event spans the two links or not. 

Allowing smoother variation of rain rate within the cells is expected to yield better 

second order statistics. The exponential and Gaussian models have continuously 

variable rain intensity within the cell with the highest rain intensity values at the 

centre. The point rain intensity value R  for different rain cell models can be derived 

from the rain-cell specification and the distance d  from the center of the rain cell 

using the following relations: 

 

In the case of the cylindrical rain cell model: 

R constant, Radiusd                                       (3.2.8a) 

 

In the case of the exponential rain-cell profile, 

Radius
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max  , Radiusd                                       (3.2.8b) 
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In the case of the Gaussian rain cell profile, 
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Then the calculation of rain attenuation across a rain-cell can be computed by using 

following equation: 

dxxRkA
l

a

incell  
0

)(  [dB],                                       (3.2.9) 

where the values of k and a  are the known frequency and polarisation dependent 

parameters, for example, Rec. ITU-R P. 838-2, )(xR  is the rain rate at position x  

along the path. 

 

As part of a rain cell model, the choice of the physical model has to be carefully 

justified, for it has to account for the rain cell shape and for the rain rate horizontal 

distribution within the cell. A physical approach, HYCELL, has been proposed to 

model rain cells, relying on a hybrid distribution of the rain rate profile: a Gaussian 

distribution for the convective core and an exponential distribution for the stratiform 

part of the cell (L. Feral, F. Mesnard, H. Sauvageot, L. Castanet, J. Lemorton, 2000). 

This model produces annual fade distributions and is well suited for describing the 

spatial variability of rain rate at small scales up to some tens of kilometers. It cannot 

reproduce time-series, thus it is of little use for developing FMTs (Fade Mitigation 

Techniques). 

 

For categorisation of spatial variation of rain rate within the cells, the rain cell 

population is usually divided into two groups: the stratiform cells, characterised by a 

slow decay of the rain rate from its maximum (which is usually chosen less than 10 

mm/hr), and the convective cells, generating an area of heavy rain with intensities 

higher than 10 mm/hr. Often, convective cells are surrounded by a stratiform area 

where the rain rate is weaker.  
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3.3 Voss Algorithm 

 

Voss (1985) devised several algorithms for the simulation of fractional fields to 

produce representations of clouds and landscape in computer graphics. Random 

Midpoint Displacement (RMD) is a recursive generating technique that is designed to 

generate fractional Brownian fields. RMD proceeds by iteratively interpolating to a 

finer scale and the addition of random Gaussian noise. At stage n with scaling ratio r , 

the random Gaussian noise will have a variance of nH

n r 22
 , 2/1r  (R.F. Voss, 

1985). Thus:  

2

2

2

1
2

1
i

H

i  









,                                                (3.3.1) 

where H  is the Hurst exponent. 

 

RMD used for generating fractional Brownian fields (2D) in the algorithm proceeds 

in two stages. First the midpoints of each of the squares is calculated by smooth 

interpolation from its corners and shifted by a random element . This determines a 

new square lattice at 45 degrees to the original and with lattice size 2/1 . In the 

second stage, the midpoints of the new lattice receive a random contribution smaller 

by 
H)2/(1  from the first stage. This produces the new square lattice with a scale 

2/1  the original. Thus, in each stage, the random Gaussian noise will have a 

variance of 
2
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
 . To generate N  points requires only order N  

operations (Voss, 1985). 

 

However, RMD method is unable to generate true long-term dependence, since, at 

each level of recursion in the algorithm; the midpoint calculations are all independent 

of each other. Also in fractional Brownian motion, all time spans of length t  have 

the same variance, whereas in RMD simulations, this criterion can fail (Voss, 1985).  
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3.4 Time to Space Transformations of Rain Rate Statistics 

 

The rain rate time series measured at a point is effected both by the advection of the 

rain field and its evolution. Over short periods, advection is the dominant effect. If the 

rain field is assumed to be a frozen pattern of rain rate, advecting with the ambient 

wind, the point rain rate time series is the same as rain rate measured instantaneously 

along a line through the rain field. This assumption is frequently used in the 

time-to-space transformation of rain statistics, and is known as the Frozen Storm or 

Synthetic Storm model (Usman, 2005).  

 

A weaker assumption is that the evolution of the rain field is negligible compared to 

the point rain rate variation due to advection. This leads to Taylor‟s Hypothesis 

(Taylor 1938), which can be stated as the statistics of a point rain rate time series are 

the same as the statistics of the rain field restricted to lines parallel to the direction of 

advection. If ),( txR  is the rain rate at point x at time t , then Taylor‟s Hypothesis 

can be written as: 

)0,(),( 00 VtxRtxR                                            (3.4.1) 

where V is the advection vector and   means “has the same statistics”. Taylor‟s 

Hypothesis has been tested many times and has been shown to be valid for periods up 

to 40 minutes (Zawadzki 1973). The advection vector has been found to vary with 

rain type being larger for convective compared to stratiform rain (Matricciani and 

Pawlina 2000). The advection vector has been shown to be highly correlated with 700 

mBar wind vector (Usman, 2005). 

 

3.5 Summary 

 

For the calculation of average annual fade distributions, the rain rates exceeded 

between 0.001%-1% of time are often used for the design of radio systems. Using the 

synthetic storm technique and methods such as Taylor‟s Hypothesis, rain rate spatial 

statistics such as correlation of rain rates and rain cell size diameters can be obtained 
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from time series data. Recommendations on the average annual rain attenuation 

model in radio propagation applications, for locations around the world, have been 

provided by the ITU-R. Other prediction models in the literature for the estimation of 

cumulative yearly statistics have also been highlighted. Besides the average annual 

rain-fade distribution experienced by a terrestrial link, telecommunications operators 

are increasingly interested in the second order statistics of rain-fade, particularly for 

the development of fade mitigation techniques. For these applications, models are 

required that produce joint rain attenuation time series for networks of links. Some 

empirical methods can do this using time-series of rain radar images or by advecting 

rain fields derived from rain cell models. However, these methods lack the ability to 

produce time-series sampled sufficiently finely to develop FMTs. The Spectral Model 

describes fine-scale variation but is not valid at scales approaching event size and so 

will not reproduce joint statistics where more than one rain event is important. 
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CHAPTER 4 RAINFALL MEASUREMENTS 

 

Generally, rain fade distributions have been estimated from point rain rate 

distributions. The transformation from point rain statistics to rain fade statistics 

depends upon the spatial variation of rain rate. Rain gauge networks have been used 

to give an indication of the spatial variation of the rain, though any fine structure of 

the rain field smaller than the distance between the gauges will be lost (Callaghan, 

2004). Meteorological radars infer rain rate from near instantaneous measurements 

over arrays of voxels with diameters from hundreds of metres to tens of kilometers. 

Radar data has traditionally been used to calculate the transformation parameters 

from point to path integrated rain rates. However, radars infer rain rate from radar 

reflectivity. Both the measurement of radar reflectivity and the subsequent 

transformation to a rain rate can suffer from systematic and random errors. 

 

In this chapter, rain rate measurement by gauge and radar is discussed. Specific 

datasets of rain rate measurements analysed later in the thesis are introduced. These 

include point rain rate time-series measured by RAL Rapid Response Drop Counting 

rain gauge (RRDCRG) and rain field time-series derived from the Chilbolton 

Advanced Meteorological Radar (CAMRa). 

 

4.1 Rain Event Categorisation 

 

Meteorologists classify rain events into convective, stratiform and frontal (K. C. Patra, 

2001). Each class of rain events has important characteristics such as rain rate 

distribution, spatial statistics, the existence of vertical stratification etc. 

 

Stratiform rain is usually widespread, with low rain intensity, and covers a large 

geographic area (Callaghan, 2004). It is also categorised by the existence of a 

“melting layer” due to ice crystals melting into rain drops as they fall through the 

zero-degree isotherm. The melting layer or “bright band” is easily observed in radar 
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scans in a vertical plane (RHI: range-height indicator). 

 

Convective rain is of the showery type usually encountered during the summer and 

autumn months. It is characterised by intense rain for relatively short periods of time. 

The radar echoes show that there is a great deal of turbulence inside the body of the 

convective cell, and the lack of a bright band (Callaghan, 2004). 

 

Frontal rain occurs when a band of stratiform rain, often containing convective cells, 

is pushed across the area of interest by a strong wind (Callaghan, 2004). Fronts are 

linear events, often with large spatial extent (K. C. Patra, 2001). 

 

Convective events are more spatially intermittent, with more turbulent boundaries and 

higher reflectivity, whereas stratiform rain tends to have smoother variation, lower 

reflectivity and can cover the area under investigation almost completely. Frontal rain 

combines aspects of the other two (K. C. Patra, 2001). 

 

4.2 Rain Gauges 

 

Rain gauges measure the amount of water falling through a small catchment area over 

a period of time. The catchment is usually determined by a funnel designed to catch 

falling raindrops and channel the water into a collection and measurement unit. 

Typical catchment areas are small fractions of a square metre and so rain gauge data 

are often treated as point measurements. In order to collect sufficient water to 

measure accurately, it is necessary to collect rain for some period of time. Historically, 

where the principal application has been hydrology, this period has often been 

one-day and, more recently, one-hour. For radio engineering applications much 

shorter integration periods are required. Specialist gauges for this application can 

have integration periods as short as ten seconds. 

 

Rain gauges yield rain rate estimates with large systematic and random errors. 

Gauges disrupt the rain fields they are introduced to measure by changing the wind 
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flow. A proportion of the rain that falls in the funnel either splashes out or evaporates 

before being measured. Similarly some water splashes into the funnel. The water 

takes some time to flow from the funnel to the measurement device. The 

measurement system and integration period may be optimised for light or heavy rain 

and yield systematic errors for other intensities. They are very difficult to site and 

expensive to operate and maintain. Sites must be sufficiently far from tall objects, e.g. 

buildings and trees, for the wind field not to be influenced. Ideally the gauge should 

be set in the ground with the funnel at surface level. Gauges also need to be secure 

from human and animal damage. These restrictions make gauges almost impossible to 

site in urban areas. 

 

There are many kinds of rain gauges available in the market, such as the tipping 

bucket type, weighing bucket type or syphon (float) type gauge (K. C. Patra, 2001). 

Other gauges measure water volume capacitively or by producing and counting 

equi-sized drops. Acoustic gauges infer rain rate indirectly from the sound of drops 

impacting on solid or liquid surfaces. 

 

The tipping bucket rain gauge has been the standard for the Environment Agency and 

water companies for decades. This type of gauge collects rain water into small 

containers that tip at a given collection volume. The time of tips is recorded, generally 

to the nearest second. The gauge can be installed in remote areas and the data 

transmitted to a central data store or recorded locally for periodic collection. These 

gauges can have very fine rain-height resolution but the one-second temporal 

discretisation leads to uncertainty in low rain rates. The physical tipping mechanism 

leads to systematic errors in the measurement in intense rain. 

 

A weighing gauge measures water content by the change in water accumulation 

weight. This has the advantage that solid and liquid hydrometeors are treated 

identically, once in the weighing container. The weighing container requires periodic 

emptying and this must occur outside raining periods or a break in data record will 
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occur. 

 

For a tilting-siphon rain gauge, the rainwater in a collector displaces a float so that a 

marking pen attached to the float makes a continuous trace on the paper. The 

tilting-syphon gauge yields accumulated rain heights as a function of time and so rain 

rate is a derivative parameter. This is the reverse of tipping bucket gauges. The 

mechanical action of the float and pen leads to systematic errors in rain records. 

 

A single rain gauge provides a record of the rainfall rate at a point, with some, 

possibly small, integration time. This is useful for studying the temporal statistics of 

rain, while the length of the observation time has to be taken into account. The data 

sets with very long observation times, in the region of decades, often have very low 

temporal resolution, such as daily and hourly rainfall accumulations (K. C. Patra, 

2001). 

 

In order to obtain an indication of the spatial distribution of rain, networks of rain 

gauges can be used, such as the one in Barcelona e.g. Vilar (1986). However, the 

spacing between the gauges is crucial; any fine scale structure that appears on lengths 

smaller than the distance between the gauges is lost (Callaghan, 2004). 

 

A single radar can yield rain rate time-series over areas that would require tens of 

thousands of rain gauges. Radars typically derive rain rate estimates from radar 

reflectivity averaged over three-dimensional spatial volumes of diameters ranging 

from tens of metres to hundreds of kilometres. Often measurements can be treated as 

instantaneous. The different spatial-temporal integration volumes, measurement 

locations, systematic and random errors make radar and gauge data very difficult to 

compare. 

 

4.3 RAL Rapid Response Drop-Counting Gauges 

 

In this project, three complete years of data from three Rutherford Appleton 
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laboratory (RAL) Rapid Response Drop-Counting Gauges 

(www.chilbolton.rl.ac.uk/raingauge.htm) are used to estimate rain rates over 10 s 

intervals. Two gauges are located at Chilbolton Observatory (51.1445
o
N, 358.563

o
E), 

one is situated on the flat roof of a one-story building while another is sited on the 

ground a short distance away. The third gauge is situated on the flat roof of a 

two-story building, 9 km away at Sparsholt (51.0847
o
N, 358.607

o
E). Where averages 

over 9 gauge-years are discussed the average is over data from three gauges over 

three years. Rainwater collected in the 150 cm
2
 gauge funnel passes through a sump 

to a device that produces equally sized drops. These drops are detected optically as 

they fall to a drain. The gauges record the number of drops in each 10 s interval, 

where each drop corresponds to a rain rate of 1.43 mm/hr. A rain gauge measurement 

can be thought of as rain rate averaged over the funnel collection area and an interval 

of time. Alternatively it can be treated as a spatial average over a cylinder of height 

TDV )( , where )(DV  is the fall speed of drops of diameter D and T  is the gauge 

integration time (Kevin, 2002). 

 

4.4 Weather Radar 

 

Measurement of rainfall by weather radar is based on the principle that both the 

amount of power reflected from a volume of atmosphere containing rain and the rain 

rate are determined by the drop size distribution (DSD). The radar equation is given 

by: 
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 ,                                                  (4.4.1) 

where tP  is the transmitted power, rP  is the average received power,   is the 

backscattering cross section of the target, G  is the antenna gain, r  is the range to 

target,   is the wave length.  

 

For meteorological radars, the radar pulse volume contains not one target but an 

ensemble of targets such as rain drops. The total power received from such a pulse 
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volume consists of the vector contributions of the individual reflected powers from 

the falling hydrometeors. It randomly varies from one reflected pulse to the next due 

to movement of the precipitation within the volume, but over a period of the order of 

10 ms, it is independent (Marshall and Hitschfield, 1953). Hence a requirement of 

radar is that a number of independent samples must be averaged to achieve a reliable 

echo estimate from each volume. For a given radar, all the terms of the radar equation 

are constant which can be combined together to give a coefficient C . It shows that the 

received power from a volume of precipitation has a 2/1 r dependence (Patra, 2001). 

The radar equation reduces to the following form: 

2r

ZC
Pr


                                                      (4.4.2) 

 

rP  is the averaged power for precipitation illuminated by an antenna. Z  is the 

radar reflectivity. An empirical formula relating  6D  and rain rate R  is given by 

(Marshall and Palmer, 1973, Patra, 2001): 
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                                     (4.4.3) 

where V represents the volume illuminated at any instant and is given 

approximately by: 

)
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V                                                 (4.4.4) 

where   and   are the horizontal and vertical antenna beam widths respectively, 

h  is the pulse length. 

 

The symbol D  represents diameter of the rain drop and Z is proportional to 6D . 

The unit of 6D  is mm
6
 and the unit of R  is mm/hr. Z  is in standard units 

mm
6
m

-3
 but usually expressed in term of dBZ, dBZ )log(10 Z . 

 

It is seen from the above radar equation that the relationship between Z  and rain 

rate is crucial when this radar equation is used. Note also that the rain drops in a 
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sample volume yield the same reflectivity whether or not they are falling. The 

assumed drop fall speed is intrinsic to the transformation of reflectivity to rain rate 

and is likely to lead to significant errors in the presence of vertical air movements. 

Also, a range of DSDs, each with an associated rain rate, will yield the same radar 

reflectivity.  

 

Meteorological radar data gives near continuous coverage over a region of interest at 

some resolution. The time required to physically move a large radar antenna leads to 

delays between measures across a scan. 

 

Access to accurate, distributed precipitation data is the most significant factor that 

affects the ability to optimise radio network design. Thus, it is important to find the 

right way to combine data from weather radar, rain gauges and disdrometers, while 

covering large areas at high spatial and temporal resolution (K. C. Patra, 2001).  

 

4.5 Estimation of Rain Rate From Radar Data 

 

A large proportion of meteorological radars are designed to estimate rain rate. The 

result of this estimation is usually compared with other sources, such as local rain 

gauge measurements, to obtain verification and also to detect any deviations in 

calibration of the radar measurements. Measurements of drop size distribution (DSD) 

from distrometers may also be used in verifications. 

 

Earlier conventional radars are only able to obtain one measurement from the 

precipitation field. This is reflectivity factor. In general, radar reflectivity is converted 

to rain rate using a power-law RZ   relationship: 

baRZ                                                          (4.5.1) 

 

Many RZ   relationships exist for different rain types and radars. It has been shown 

that the use of a simple baRZ   relationship will lead to estimation errors up to 
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100% (Usman, 2005, Uijlenhoet, 2007).  

 

The use of dual polarisation can provide a two-parameter estimate of the DSD and 

hence reduce errors in rain rate estimate by a factor of two (Usman, 2005). Dual 

polarisation agility radar has the ability to change the transmitted polarisation state 

between two orthogonal components, e.g. linear horizontal and vertical polarisation 

on a pulse-to-pulse basis. Dual polarisation diversity radar has the ability to receive 

alternate orthogonal polarisation. Such a system transmits only a single elliptical or 

circular polarisation and then can receive co-polar (e.g. horizontal transmit and 

horizontal receive) and cross-polar (e.g. horizontal transmit and vertical receive) 

components with dual receivers (Usman, 2005). 

 

A dual polarisation radar takes advantages of the fact that rain drops have a degree of 

oblateness that is directly proportional to their sizes. The field of drops will have a 

larger cross-section of water in the horizontal compared to the vertical. A horizontally 

polarised radar pulse will therefore be backscattered more in this field of drops than a 

vertically polarised pulse resulting in more radar return for the horizontal pulse than 

the vertical pulse (Usman, 2005). This leads to the measurement of differential 

reflectivity defined in decibels as, 

)log(10
V

H
DR

Z

Z
Z                                                  (4.5.2) 

DRZ  values for meteorological echoes typically range between -2 to +5dB. Values of 

DRZ  well above zero indicate the hydrometeors in the volume are horizontally 

oriented, with the larger values of DRZ indicating more heavy rain. Values of DRZ  

well below zero indicate the hydrometeors in the volume are vertically oriented. 

Values of DRZ  near zero indicate the hydrometeors in the volume have a nearly 

spherical shape, and mostly occur in light rain or drizzle (Usman, 2005). 

 

One of the popular DRH ZZ  relations is given by (C. W. Ulbrich, 1986): 
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DRz

HCZR
 10                                                    (4.5.3) 

where HZ  is in standard units (mm
6
m

-3
  or dBZ) and DRZ  is in dB. DRH ZZ   

derived rain rate estimates can still suffer from errors due to non-liquid hydrometeors, 

air movement and inadequate radar calibration.  

 

4.6 The Chilbolton Advanced Weather Radar 

 

The Chilbolton Advanced Meteorological Radar (CAMRa) is a dual-polarisation, 

Doppler radar, sited at Chilbolton in Hampshire, and operated by Rutherford 

Appleton Laboratory. It is the largest, fully steerable, meteorological radar in the 

world and yields the finest-scale, spatial, rain rate fields available.  

 

The CAMRa operates at 3 GHz (propagation effects are generally small and so can be 

neglected) and produces images of rain, snow and hail that are used to develop and 

test propagation models for terrestrial and satellite communications. CAMRa is able 

to distinguish between rains which cause significant losses to telecommunication 

signals, and ice, whose effects can be negligible (Chilbolton Radar website, 2005).  

 

CAMRa is able to characterise the structure of precipitation both horizontally and 

vertically. It can measure differential reflectivity as well as conventional radar 

reflectivity because CAMRa can achieve fast polarisation switching between 

horizontally and vertically polarised signals.  

 

The linear depolarisation ratio can also be measured by CAMRa. It responds to 

canting of the particles in the radar pulse volume and is useful for identifying the 

asymmetrical melting of snow and ice because linear depolarisation ratio is sensitive 

to particle shape, dielectric constant and orientation with respect to the plane of radar 

polarisation (Chilbolton Radar website, 2005). 

 

The basic features of CAMRa are listed in Table 4.6.1.  
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Frequency 3.0765 GHz 

Power  560 kW 

Pulse width 0.5 microseconds 

Repetition rate 610 Hz 

System noise figure 1.3 dB 

Antenna diameter 25 m 

Maximum scanning rate 1 degree/second 

Beam width at 3 GHz 0.25 degrees 

Maximum range resolution 75 metres 

Cross-polar isolation limit -34 dB 

Maximum digitised range 160 km 

Noise at 1 km -36.7 dBZ 

Reflectivity quantisation 0.25 dB 

Differential reflectivity quantisation 0.125 dB 

Cross polar quantisation 1 dB 

Doppler unambiguous velocity ±15 m/s 

Table 4.6.1 Basic Features of CAMRa (from www.chilbolton.rl.ac.uk) 

 

In this project, the initial, coarse-scale rain field data is from the Chilbolton Radar 

Interference Experiment (CRIE), described in detail in the next section. These data 

provide a detailed, large and unbiased sample of the rain events experienced in the 

Southern UK from 1987 to 1989 (two years). The data was acquired in an 9 days on 

and 18 days off duty cycle, during which CAMRa scanned both horizontally (PPI) 

and vertically (RHI) every 10 minutes over a 50 degree sector with up to a 160 km 

range. 

 

4.7 The CRIE Database Description 

 

The Chilbolton Radar Interference Experiment (CRIE) was a two year rain 

measurement campaign between 1987 to 1989, designed primarily for development 
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and testing of rain scatter interference models as part of the COST 210 project 

(COST210, 1991). During this period the CAMRa was operated in a predetermined 

mode in order to measure an unbiased sample of the rain experienced in the region.  

 

The campaign provides a database of dual-polar radar reflectivity data measured at 10 

minute time intervals, and with a spatial resolution of at least 300 m. Set horizontal 

PPI (Plan Position Indicator) and vertical RHI (Range Height Indicator) scan patterns 

were recorded in a ten-minute cycle for 9 out of 28 days. Each day was defined to 

start at 1200 GMT, lasting through to 1200 GMT the next day. The first 5 days of a 

period began at 1200 GMT on Monday, and continued through to 1200 GMT on the 

following Saturday. The final four days started at 1200 GMT on the next Monday and 

ended at 1200 GMT on the following Friday. If more than 24 hours were lost, then 

extra time was allocated at the end of the period. In this way, all weather conditions 

during the campaign period should have been sampled with equal probability (Usman, 

2005).  

 

For the PPI scans, each scan, at an elevation of 1.5
o
, covered an area approximately 

50
o
 in azimuth due southwest of the radar. It takes approximately 1 minute to 

complete a scan (the radar has a maximum angular velocity of 1 degree per second). 

Therefore, the scan duration is well within the 20 to 30 minutes duration for the 

lifetime of rain event (Zawadzki, 1973) and each scan represents a good snapshot of 

the rain field before any significant structural change has taken place.  

 

The radar operated the duty cycle for two-years. The aim was to produce a 

statistically unbiased sample of the rain fields experienced in an average year. The 

resulting database contains 3199 scan sets, and 30590 records of no-rain. It has been 

used for radio system engineering studies; see Goddard and Thurai (1996&1997) and 

Tan and Pedersen (2000). Assuming the total collection period is an adequate 

representation of a whole year, the statistics can be presented as average annual 

statistics. Thus the rain sampling strategy involved in the radar measurements was not 



 46 

biased and data can be used statistically (Chilbolton Radar website, 2005). 

 

The resulting raw measurements from the CRIE campaign are contained within a total 

of 117 files. Gated records of HZ  and DRZ  along a ray, for multiple azimuths are 

stored within a raster of block size 4092 bytes. Radar calibration of HZ  and DRZ  

was done at specified periods during the campaign and the values are contained 

within the file format.  

 

The calibrated and corrected, dual polar, reflectivity data were transformed into rain 

rates by Usman (2005). Rain rates were estimated by comparing measured and FIM 

(Fredholm Integral Method) derived HZ  and DRZ  values within a lookup table 

using a functional relationship in which HZ  scales with R  for a constant DRZ , 

)( DR
H Zf

R

Z
 (Illingworth, 1989; 2003). The function of )( DRZf  is well 

approximated by a third order polynomial. Anomalous reflections, not consistent with 

rain, were identified and removed. 

 

The statistical properties of rain rate fields have been investigated on the 3199 PPI 

radar scans containing rain, acquired by CRIE dataset over a two-year period. Data 

were collected between the ranges of 4.8 km and 158 km from the radar and averaged 

over 300 m intervals. For this project, only the data between 10 km and 70 km are 

used. This is to avoid sample volumes being within the freezing level and to limit 

differences in volume averaging due to beam spreading. This yields 181 reflectivity 

measurements along each ray. The beam width is 0.25
o
 yielding 210 rays in each scan. 

At 9.9 km the azimuth volume width is 41.5 m, while at 72 km the azimuth volume 

width is 302 m. The short range limit is defined by the near-field of the radar while 

the long range limit has been chosen to limit the occurrence of melting layers in 

measured rain fields (I. S. Usman, 2005).  
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Each PPI scan has been range corrected, calibrated, and correction made for 

absorption by atmospheric gasses. Reflectivities below the noise floor of 10 dBZ 

were assigned a small value equivalent to a rain rate of 0.05 mm/hr. Negative values 

of differential reflectivity are assumed to be due to nonliquid hydrometeors or 

anomalous propagation and are eliminated from the dataset. The rain-hail algorithm 

of Leitao and Watson (M. J. Leitao and P. A. Watson, 1984) has been used to 

eliminate other data points where non-liquid hydrometeors may have influenced 

reflectivities. Finally, dual polarisation reflectivity data was transformed into rain rate 

fields (I. S. Usman, 2005). 

 

The estimated radar rain rate statistics are compared with rain gauge statistics at the 

same site, and also statistics from ITU Recommendation P. 837-1 for the UK and P. 

837-2 for Chilbolton in particular (I. S. Usman, 2005). The result shows the radar 

statistics are well representative of rain statistics within the region (J. W. F. Goddard 

and M Thurai, 1996). 

 

4.8 Summary 

 

In terms of instrumentation, rain gauges and radars are the most frequently used tools 

for the estimation of rain. In particular rain gauges are considered as “ground truth” 

instruments when comparing other measurements. Radars provide a distinct 

advantage in the observation of precipitation over wide areas. In addition their 

products have wide application within the areas of weather forecasting, radio 

propagation and communications. 

 

We have discussed the CRIE measurement campaign dual-polar radar data collected 

over an area in the Southern UK over a sample days of two years. These data provide 

an unbiased sample of the rain events that occur in this region. Usman (2005) used a 

range of sophisticated algorithms to transform the dual-polar radar data into rain rate 

estimates, while identifying and correcting anomalous data. The resultant rain maps 

are the finest spatial scale rain rate data available with this spatial and temporal 
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coverage. The 9 years of rain gauge data are also described and will be used to justify 

the introduction of finer-scale variation to the rain fields.  
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CHAPTER 5 SPATIAL AND TEMPORAL RAIN RATE 

VARIATION 

 

5.1 Introduction 

 

The statistics of variation of rain rate in time and space are often described by 

empirical scaling relationships. In this Chapter, the typical scaling relationships 

observed i.e. multiscaling and the special case of simple scaling are defined. The 

scaling of rain rate statistics at the finest scales available are calculated. These data 

are the CRIE database for spatial variation and rapid response rain gauge data for 

temporal variation. 

 

5.1.1 Scales of Interest 

 

The variation of rain rate over distances as short as one metre is of interest in a 

number of industrial and environmental applications. One application of significant 

economic importance is the design and regulation of microwave telecommunications 

systems using frequencies above 10 GHz, for both terrestrial and earth-space 

communications. The volume sampled by a terrestrial radio link at these frequencies 

in approximately the first Fresnel zone has a diameter of a few metres and a length 

between 100 m and 30 km. The Quality of Service (QoS) of such a link is determined 

by the sequences of “severely errored seconds” the system experiences, principally 

due to attenuation caused by rain. To estimate the QoS a node in an arbitrary network 

will experience knowledge of rain variation down to these scales is required. 

Similarly, the understanding of erosion processes, such as rill formation and water 

infiltration on inclined surfaces, requires knowledge of rain variation over scales as 

small as landscape features e.g. plough furrows, Wainwright and Parsons (2002) and 

Parsons and Stone (2006). Urban hydrology usually focuses on “city block” 

catchment areas of a few square kilometres. However, the drainage systems of small 

areas of hard landscape or complex roof systems, and the design of 
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micro-hydroelectric schemes are of increasing interest and require knowledge of rain 

variation over these scales.   

 

5.1.2 Why Does Rain Rate Vary 

 

The variation of rain rate within rain events, particularly at the finest scales, is 

generally linked to variations in the vertical component of the wind field. The major 

updraughts and downdrafts on the scale of a few km or so, feed the energy at large 

scales which then cascade down the scale-spectrum to smaller eddies, following the 

Kolomogorov spectrum (Kolmogorov, 1941; 1991), until the energy is viscously 

dissipated as heat. Lovejoy and Schertzer (1992) describe rain as a “passive tracer 

injected at a certain scale in a turbulent flow”. At the large and small scales rain is not 

a passive tracer, but interacts with the atmosphere through condensation, coalescence 

and heat transport e.g. small drops (<10  m) are formed by condensation in the 

updrafts, Atlas and Williams (2003). Droplet inertia leads to large concentration 

variation and differential drop velocities greatly increasing collision rates, Bec et al 

(2005). The variation of water vapour due to cloud turbulence also needs to be 

accounted for, Celani et al (2005), and these processes lead to multiscaling (for a 

definition of multiscaling see Section 5.2) distributions of water and ice in clouds. 

Radar and gauge studies have also reported multiscaling ranges in wide-spread rain 

rate variation and this has been qualitatively linked to turbulent energy cascades, 

Lovejoy and Schertzer (1992) and Veneziano et al (1996). Non-inertial models also 

predict multiscaling behaviour with a scale break at the energy injection scale, 

Falkovich (2005). At the smallest scales the inertia of drops is important while at 

increasing scales the stratification of the atmosphere becomes increasingly important 

and turbulent motions change from being three dimensional to two dimensional, 

Lovejoy and Schertzer (1992). Recently, Veneziano et al (2006) has suggested that 

rain rate fields are only approximately multiscaling, due to these mechanisms, and 

that rain models need to allow for this deviation. 
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5.1.3 Measurement of Horizontal Variation 

 

Two dimensional rain fields have been measured either with meteorological radars or 

using arrays of rain gauges. Both these measurement methods have problems. Rain 

gauge networks are usually irregular and the gauge placement displays some fractal 

clustering statistics of their own. It has been shown that the measured scaling 

statistics of the rain rate field is affected by the placement of gauges in the array (H. 

G. E. Hentschel and I. Procaccia, 1983). Rain fields derived from meteorological 

radars are sampled on a regular polar grid i.e. evenly sampled in azimuth angle and 

range. However, the effect of this is the rain rate samples at different ranges are 

derived from averages over spatial volumes of different shape (aspect ratio) and 

volume. Many authors have calculated the scaling statistics of rain fields, uniformly 

sampled on a Cartesian grid, and produced by interpolating polar grid data. This 

method has two significant flaws, which lead to significant concerns on the reliability 

of these results. The scaling behaviour being investigated would be present in the 

original data and so the statistics of the measured rain field will vary with range. To 

some unknown extent, this variation will still be present in the derived Cartesian data. 

Secondly, it is unknown what effect interpolation will have on the scaling statistics. 

Without pre-knowledge of the scaling behaviour it is impossible to design an 

interpolation scheme that will conserve them. 

 

5.1.4 Conclusions 

 

Predictions of rain variation derived from models of raindrops interacting with a 

turbulent atmosphere suggest that statistics should exhibit scaling properties over 

ranges of scales. Concerns exist over the published spatial scaling statistics. These 

concerns will be addressed in the rest of this Chapter. 

 

The scaling behaviour of rain rate fields derived from CAMRa with 300 m resolution 

is investigated using the moment scaling structure function (MSSF). The data 
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investigated is sampled on a finer scale than any previous reported, with the exception 

of a recent PhD thesis by Callaghan (2004). The analysis has been designed to avoid 

the two flaws present in previously published work. No interpolation of the data is 

performed and rain rate samples are accumulated to yield voxels (three dimensional 

volume elements) of the same shape and size.  

 

In addition to the radar data, nine gauge-years of rapid response rain gauge data at 

Chilbolton Observatory with a 10 s integration time have also been investigated. 

These gauges yield rain rate measurements with a temporal resolution of 10 s and a 

rain height resolution of 0.004 mm. The MSSF of rain rate was calculated and two 

scaling ranges were identified. The existence of positive moments of the underlying 

rain rate distribution will be determined by examination of the quantile scaling 

statistics of both rain gauge and radar data.    

 

The spatial moment scaling statistics are calculated using a method that avoids the 

problems associated with the interpolation of polar data onto Cartesian grids and the 

variation of integration region with range. The statistical properties of rain rate fields 

have been derived from the 3199 PPI radar scans containing rain, acquired by CRIE 

experiment over a two-year period. A subset of the most reliable data including ranges 

from 9.9 km to 72 km, have been used. Each radar scan is treated as a snapshot of the 

rain field, measured at a regular 10-minute sample period. Each scan yields rain rate 

measurements centered on a regular polar grid of 208 rays208 range-gates. The rays 

are approximately evenly spaced at 0.25 degree intervals while the range gates are of 

constant 300 m lengths. 

  

5.2 Fractal and Rain Field Multi-fractal Analysis 

 

The word „fractal‟ was coined by Mandelbrot in his fundamental essay from the Latin 

fractus, meaning broken, to describe objects that were too irregular to fit into a 

traditional geometrical setting. Many fractals have some degree of self-similarity; 
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they are made up of parts that resemble the whole in some way. The similarity may be 

deterministic or statistical (K. Falconer, 1990).  

 

A self-similar object is composed of N  copies of itself each of which is scaled 

down by the ratio r  in all E  coordinates from the whole. The property of 

self-similarity or scaling is one of the central concepts of fractal geometry. It is 

closely connected with dimension. A D-dimensional self-similar object can be divided 

into N  smaller copies of itself each of which is scaled down by a factor r  where 

DNr /1/1 . Thus, given a self-similar object of N  parts scaled by a ratio r  from 

the whole, its fractal or similarity dimension is given by:  

)/1log(/)log( rND                                               (5.1.1) 

 

Exact self-similarity is rare in nature while objects do often possess a related property 

statistical self-similarity. These objects can look statistically similar while at the same 

time different in detail at different length scales.  

 

In rain fields, contour lines can be used to draw level-sets enclosing areas where the 

rain rate exceeds a given threshold. These contours exhibit statistically self-similar 

behaviour, which is consistent with fractal geometry (Callaghan, 2005). 

 

Radar measured rain fields can be considered a fractal surface of a dense object in 

three dimensions, two spatial (x and y) and one showing the log rain rate (z). This 

assumption is useful for dealing with radar measurements because the rain rate value 

in the given radar range gate is a function of all the individual drops in that gate. In 

the case of a log rain rate field, it can be seen that the field is self-similar along the x 

and y directions. 

 

The most useful mathematical model for the random fractals found in nature has been 

the fractional Brownian motion (fBm) of Mandelbrot and Wallis (1968, 1977 and 

1982), which is a generalisation of Brownian walks. 
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A random variable described by fBm statistics, )(tVH , is a single valued function of 

one variable, t  (usually time). Its increments )()( 12 tVtV HH   have a Gaussian 

distribution with variance 
H

HH tttVtV
2

12

2

12 )()(  , where the brackets   

denote averages over many samples of )(tVH  and the parameter H , known as the 

Hurst coefficient has a value 10  H . Such a function is both stationary and 

isotropic. Its mean square increments depend only on the time difference 12 tt   and 

all t ‟s are statistically equivalent. The special case of 21H  corresponds to a 

Brownian walk where the increments are uncorrelated. Other values of H  

correspond to systems with memory where increments are correlated or 

anti-correlated. 

 

Fractional Brownian fields (FBf) have power-law spectral density 

functions,   ω=ωS , with the power exponent being Hn= 2 . A FBf  xL  has 

Gaussian updates which satisfy the scaling equation: 

     2,0 N
LL

H






x

xxx
                    (5.2.1) 

 

Rain rate and rain field statistics depend upon the size and shape of the integration 

volumes used to derive the individual rain rate measurements. Descriptions of how 

rain rate statistics vary with the size of the integration volume are known as scaling 

statistics. Many authors have postulated that the scaling statistics of rain rate follow 

special forms known as simple scaling or multi-scaling. 

 

The word multi-fractal is used to describe a model that is characterised by its 

multi-scaling features. A field is multi-scaling only if the variation of certain statistics 

of the field vary with the scale at which it is observed, and can be described using a 

simple function, e.g. the structure function. Extensive data analysis suggests that 



 55 

rainfall fields in time or space display such features over a range of scales (Lovejoy 

and Mandelbrot, 1985; Gupta and Waymire, 1993).  

 

For example, if raindrops were Poisson distributed in a homogeneous rain field, then 

the number of drops )(LN  in a cube of atmosphere with diameter L  of the order of 

metres would be proportional to the diameter cubed: 3)( LLN  . The total water 

volume would scale as 6L  and the scaling of all moments of drop number could be 

calculated from the one scaling exponent. As L  became large, i.e. the order of the 

height of the rain event, then the scaling exponent of drop number would change from 

3 to 2 i.e. the enclosed number of drops would depend upon the area of the cube 

rather than its volume. A scale break would exist where L  equaled the rain height. 

The higher moments of drop number could still be calculated from the one scaling 

exponent. However, for real rain fields where drop concentration changes in all 

directions and over all scales, this is not true and the scaling of each moment needs to 

be empirically determined. In this case the field is called multiscaling. 

 

Rain is believed to be multi-fractal and scaling in both intensity and time. Early 

fractal models of rain relied on a mono-fractal approach, where rain was simulated by 

the scaling sum of a large number of random increments or pulses of different sizes 

(Lovejoy and Mandelbrot, 1985). In this model, commonly known as „simple scaling‟, 

a single scaling exponent describes the behavior of the statistical moments at different 

scales. The linear structure of such additive processes comes into conflict with the 

actual non-linear dynamics that produce rain. Instead, multiplicative models, 

stemming from the phenomenological cascade models studied in turbulence, were 

proposed. These require multiple exponents and are therefore more general.  

 

Multi-fractal analysis of rain fields has been extensively published. The method used 

varied from study to study. Most fractal analysis of rain has moved from the simpler 

monofractal analysis and description to the more complex multi-fractal analysis and 

synthesis (Lovejoy and Schertzer, 1985, 1995; Deidda, 1999; Marsan et al, 1996). 
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There is a pronounced tendency in the published multi-fractal studies of rain fields to 

rely more on the mathematics and modeling of the theory than on the actual physical 

measurements and results provided from the rain gauge or radar data (Callaghan, 

2004). 

 

In the following section, the multi-fractal analysis is used to identify spatial and 

temporal scaling ranges. The scaling behaviour of rain rate fields derived from 

CAMRa with 300 m resolution is investigated using the moment scaling structure 

function. 

 

5.3 Quantile Scaling and Existence of Moments 

 

Before the moment scaling statistics for both spatial and temporal rain rate variation 

are calculated for a range of moment orders, the existence of moments is determined 

by examination of the quantile scaling statistics of both rain gauge and radar data.  

 

The following introduction summarises parts of the much more detailed description in 

Pavlopoulos and Gupta (2003). Consider the point rain rate process  tR  measured 

with an integration interval of length 0TT  where  a subset of  1,0  and 0T  

is the longest integration time considered. The cumulative probability distribution of 

rain rate is defined as: 

   uRPuF R   .                                               (5.3.1) 

This distribution is continuous and strictly increasing over the range  ,0 . As a 

consequence, the quantile functions: 

    puFupQ RR   |inf                                   (5.3.2) 

are also continuous and strictly increasing for  1,0p , and so are the inverse 

functions of the corresponding distribution. The moments of qth order are defined: 

   uFduqM RqR

 



0

                  (5.3.3) 
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and exist only when this integral converges. The moments can be calculated from the 

quantile function: 

     pdpQqM
qRR


1

0
                                            (5.3.4) 

 

Many authors have speculated on the shape of the extreme rainfall tail of the rain rate 

cumulative density function  uF R

  and the associated probability density function 

(pdf)  uf R

 , e.g. Cho et al (2004), Kedem et al (1994). Where the pdf tail 

approaches a negative exponential i.e.   0: 0
0 



ueuf
u

u

R

 , all positive moments 

exist. However, where the tail is rational i.e.   


 uuf R
; 1 , then only positive 

moments 1q  are finite. In practice, arbitrarily high rain rates do not occur. In 

the fine-scale limit, rain becomes quantised into raindrops. The largest dynamically 

stable raindrops, with a diameter of approximately 1 cm, fall with a terminal velocity 

of approximately 10 m/s. Rain rate averaged over spatial-temporal volumes entirely 

within the largest drops is approximately 10 m/s. Any spatial temporal volume that 

includes smaller drops, or regions between raindrops, will yield a lower averaged rain 

rate. In general, larger volumes will include more regions outside these extreme rain 

drops and so will yield a lower maximum rain rate. As rain rate is bounded above by 

the maximum possible value of 10 m/s, all moments exist. 

           

5.3.1 Existence of Temporal Moments 

 

Figure 5.3.1 illustrates the quantile functions for 9 gauge-years of rain rate 

measurements, for integration times from 10 seconds to 7 minutes. For 10 s 

integration and probabilities approaching 1 i.e. 01  p , the quantile function 

approaches linearity in  p1ln . The quantiles for probability: 
71051  p  are 

defined by less than 20 samples and so are not reliable. For longer integration periods 
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the quantiles are bounded above by linear functions of  p1ln . If the quantile 

function is bounded above by a linear function of  p1ln  for all probabilities 

above some   cc

R

c RpQp  :0 , then from      pdpQqM
qRR


1

0
 , 

       

   pdpBARp

pdpQpdpQqM

c

c

c

p

qq

cc

p

qR
p qRR









1

1

0

1ln



             (5.3.5) 

 

By substitution, the second integral can be shown to be equal to udeue
B cR

B

u

qB

A










1
 

which exists and is bounded for all finite A , 0B  and q. Therefore, all positive 

moments of point rain rate exist for all integration periods down to 10 s. These results 

are consistent with rain rate pdfs that are exponential in extreme rain rate before 

becoming equal to zero above a maximum rain rate that is determined by the size of 

the spatial-temporal integration volume. 

 

The question remains as to whether the same is true in the short integration time limit, 

0T . The slope of B , the linear part of quantile    pZpQ RR

 1  as a 

function of  p1ln , may be calculated as a function of integration period. If B  

tends to a finite limit as the integration period reduces to zero, this implies that a 

model for rain rate distributions should always be bounded. The slope B  is 

approximately linear for integration periods between 50 s and 400 s. At shorter 

integration times the coefficient diverges rapidly from linear. As the current data only 

support four integration periods below this period, it is impossible to extrapolate to 

the zero integration time limit. There is also considerable uncertainty in the 

measurement of the extreme rains at these short integration times. 
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Figure 5.3.1 Rain rate exceeded with probability p1 for integration periods, from 

top to bottom, of 10 seconds, 1, 2, 3, 4, 5, 6 and 7 minutes. 

 

5.3.2 Calculation of Spatial Moments 

 

The moments of spatially averaged rain rate have been calculated from radar images 

on many occasions. Terrestrial radars measure rain scattering parameters on a regular 

polar grid, centred on the radar. Typically, the radar scans near horizontally at a fixed 

rate of rotation. A measurement voxel is defined by the angles and ranges over which 

measurements are averaged. The height of a voxel is determined by the width of the 

primary lobe of the antenna pattern and for CAMRa this is 0.25
o
. Therefore, rain 

radar data is averaged over voxels with tangential and vertical scales that grow 

linearly with range.   

 

The usual process used to estimate the moment scaling statistics begins by 

interpolating the rain field derived from polar radar data onto a Cartesian grid e.g. 

Lovejoy (1982), Rhys and Waldvogel (1986), Deidda (1999) and Feral and 

Sauvageout (2002). The rain rate samples are then accumulated to yield integration 

volumes, with square footprints, with a range of sizes. This process is significantly 

easier on a Cartesian grid than a polar grid. However, there are several problems with 

this procedure. The statistics of the radar derived rain field are not homogeneous, due 

to the changes in the shape and size of the integration volume, but are a function of 
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range. The design of an interpolation scheme that preserves the original statistics, 

before they are measured, is a significant problem. Even if this problem were 

addressed, the inhomogeneity in the polar data will be present in the Cartesian data 

and so it is not correct to accumulate samples with equal weights, for widely 

separated ranges. Finally, the increasing height of the radar voxels with range has not 

been addressed. Although radar voxels can be accumulated into voxels with the same 

footprint, those at greater range will have greater volume. It is likely that the vertical 

variation of rain rate will be much smaller than the horizontal variation, but this needs 

to be tested. 

 

Figure 5.3.2 Accumulation of radar voxels to yield analysis voxels of similar size and 

shape 

 

This work uses an accumulation process without interpolation. Analysis voxels are 

defined with square footprints and sides of lengths that are multiples of 300 m. Radar 

voxels are accumulated to yield volumes as close to the size and shape of analysis 

volumes as possible. Figure 5.3.2 illustrates radar data on a polar grid centred on a 

radar. Also indicated are two squares, target volumes and the best approximation 

formed by accumulating voxels on the polar grid. The rain rate sample is calculated 

as a weighted sum of radar rain rates with weights proportional to the radar voxel 

footprint area. Each rain rate sample calculated by accumulation is stored along with 

information on the mean range and a measure of the difference between the analysis 

and actual sample voxel shape and size. 
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Estimates of quantile functions can be calculated from the accumulated rain rate 

database. The CRIE database contains over 120 million rain samples from the regular 

polar grid, with each sample being an average over a voxel 300 m x 0.25
o
 x 0.25

o
 

range x azimuth x elevation; in the ranges used for analysis. After accumulation this 

yields approximately 2000 million overlapping samples with footprints 300 m square, 

decreasing to 100 million samples 10 km square. Moments and quantiles can be 

calculated using subsets of the accumulated rain rate database to check for sensitivity 

to range or accumulation voxel size and shape.  

  

5.3.3 Existence of Spatial Moments 

 

Figure 5.3.3 shows the quantile functions for the whole of the CRIE database, for a 

range of spatial integration volumes of linear size 300 m, 600 m, 900 m, 2.1 km, 3.9 

km, 6 km, 8.1 km and 9.9 km. Once again the quantile functions approach, or are 

bounded above by, linearity in  p1ln . Therefore moments of all orders exist by the 

same argument used to analyse the temporal quantiles. The sensitivity of these results 

to the increasing height of voxels was checked by dividing the dataset in two subsets 

of analysis voxels with ranges less and greater than 40 km. The resulting quantile 

functions exhibit the same    pBApQ R  1ln1   interval but plateaus at 

different extreme rain rate values due to the different extreme events experienced by 

the two regions. The accumulated rain rate data set was also divided into two subsets 

depending on how well the square, target voxel was approximated by the 

accumulation of radar voxels. The quantile functions for the two sets had the same 

features but leveled-off at different rain rates for the same reason. This suggests that 

the voxel accumulation method is sufficiently good for all the data to be treated as 

accumulations over equivalent areas. It does not imply that the accumulation shape is 

not important, as all accumulation areas were close to square. 
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Figure 5.3.3 Rain rate exceeded with probability p1 for spatial integration volumes 

 

5.3.4 Simple and Multi-Scaling 

 

The rain rate process  tR  is stochastically scaling if and only if there is a scalar 

process  
C , such that   111 CP  and   10 CP  for all  , and 

1RCR
D

  . Here 
D

  denotes equality of probability distribution functions so that 

   rRCPrRP  1 . Special cases of scaling exist, depending on the form of the 

process C . For simple scaling, also known as stochastic self-similarity, 

  1 
 CP . In this case the finite moments scale as power-laws, and the scaling 

exponents n  are linear in moment order: 

   qMqM RqR

1


                                              (5.3.6) 

 

Although the rain rate process cannot be simple-scaling due to intermittence, Kedem 

and Chiu (1987), it has been proposed that log rain rate, where raining, is well 

approximated as simple-scaling, Paulson (2001). The rain rate process is more 

commonly modeled as multi-scaling, Gupta and Waymire (1990) where: 

  



  1ln

exp ZC                                                 (5.3.7) 
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The process  



  0;Z is such that   100 ZP  and has stationary increments: 

2121  ZZZ
D

 . Assuming independence of TR  and C , the finite moments still 

scale as power laws, but the scaling exponents are now an arbitrary convex function 

of moment order i.e. 

     qMqM RqR

1


                                              (5.3.8) 

 

Having identified a process as having the properties of a multi-scaling process, a 

range of cascade processes can be used to simulate or downscale a given realisation 

(Lovejoy and Schertzer.1995; Ossiander and Waymire, 2000). 

 

5.4 Multi-fractal Analysis 

 

In the previous section, the existence has been verified of moments of all orders of 

spatial and temporal averages of rain rate. In this section a selection of positive 

moments are calculated for a range of spatial and temporal integration volumes and 

these data are used to identify scaling ranges 

 

5.4.1 Spatial-Temporal Multi-fractal Analysis 

 

A literature review revealed that two main types of scaling have been suggested for 

rainfall, simple scaling and multiscaling. Analysis results in the literature indicated 

that temporal and spatial rainfall intensities generally are characterised by 

multiscaling, whereas the fluctuations, i.e. intensity changes are typically simple 

scaling (C. Svensson, J. Olsson, and R. Berndtsson, 1996). 

 

The multi-fractal analysis is used to identify spatial and temporal scaling ranges. The 

identification of scaling ranges allows modeling with strong control on the statistical 

moments. Spatial and temporal analysis and modeling are often treated separately. 
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Temporal variation is inherently one-dimensional. Temporal modeling aims to 

produce synthetic rain rate time series, or to downscale existing time series, in a way 

that is consistent with a priori known statistics, often multi-fractal scaling statistics. 

Spatial rain fields can be one, two or three-dimensional. Similar to temporal modeling, 

spatial modeling can aim to produce synthetic rain fields, or downscaling existing 

fields. The simultaneous downscaling of spatial and temporal dimensions is an open 

problem. It has been observed that sequential downscaling of spatial and temporal 

dimensions does not preserve the desired statistics (R. Deidda, 2000). Ultimately, 

algorithms are required to simultaneously downscale a mixture of spatial and 

temporal dimensions while preserving all a priori statistics.  

 

In order to simulate the statistical properties observed in real-world precipitation 

events in both space and time, a spatial-temporal approach to modeling precipitation 

fields is required. Space-time rainfall can be considered to a good approximation to 

be a self-similar multi-fractal process (R. Deidda, 2000). The spatial and temporal 

statistics of rain rate variation are linked by Taylor‟s hypothesis (Taylor, 1938). Rain 

events evolve over time and advect with the ambient wind field. Taylor hypothesis 

states that the temporal statistics of rain at a fixed location are equivalent to the 

spatial statistics measured along a line parallel with advection. This is equivalent to 

assuming that rain variation is predominantly due to advection and that evolutionary 

effects are negligible. For this reason it is sometimes known as the frozen storm 

model. Taylor‟s frozen storm hypothesis (Taylor, 1938) presupposes that the 

spatial-temporal rain field may be approximated as a fixed spatial field moving with a 

constant velocity. 

 

Taylor‟s hypothesis has been verified for periods up to 40 minutes on several 

occasions (Zawadski, 1973; H. S. Wheater, 1997). Using Taylor‟s hypothesis, 

temporal analysis and spatial analysis in one-dimension parallel with advection, are 

interchangeable. Transformation between spatial and temporal statistics requires a 

scaling factor linking the equivalent spatial and temporal units, which is often 
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interpreted as an advection speed. At scales smaller than event sizes, rain fields are 

often assumed to be isotropic and so fine-scale temporal statistics can be transformed 

to spatial statistics in directions perpendicular to advection or to multi-dimensional 

spatial statistics.  

 

5.4.2 Temporal Modeling 

 

The following structure function will be used to characterise the spatial properties of 

rain rate in time over fixed areas of size  . The statistics investigated is the qthe 

moment of point rain rate averaged over different intervals of time: 

q

constq tyxPS   )],,([)( ,,                                        (5.4.1) 

where *  is both an ensemble average or an average of samples with different 

starting times t  and eventually different locations yx, . P  is an integral measure 

of rainfall over an area yx    with an accumulative time  . It can be defined as: 

  
  


x y

yx

x

x

y

y

t

tyx

RdddtyxP

  

 


),,(
1

),,(,, ,                    (5.4.2) 

where ),,( tyxR  is the notional instantaneous rainfall intensity continuous in space 

and time (F. Fabry, 1996). Section 5.4.4 investigates the spatial moment structure 

function i.e. moments of instantaneous rain rate averaged over squares of a range of 

diameters. 

 

The analysis in time can be performed by investigating how the moments of 

time-averaged rain rate vary with the averaging time  , keeping   constant. In 

particular, in order to identify one or more ranges of timescales   where the 

following scaling law holds: 

)(
~)(

q

qS                                                      (5.4.3) 

 

Multi-fractal exponents )(q  are functions of the moments q  and do not depend 
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on the timescale  (Deidda, 2000). The multi-fractal exponent function )(q  can be 

viewed as a characteristic function of multi-fractal behavior. It is used to characterise 

the multi-fractal nature of the measured radar data. For simple scaling fields, also 

known as mono-fractal, )(q  is a linear function. When )(q  is non-linear and 

convex, the underlying field is multi-scaling or multi-fractal (Deidda, 2000). Random 

fields can exhibit more than one, disjoint, ranges of scales, which are either simple or 

multi-scaling. Various experiments have demonstrated multifractal scaling of rain 

fields in one or more space-time dimensions e.g. Tessier et al. (1993) over scales 200 

m to 2000 km, Schertzer and Lovejoy (1995) over scales 6 minutes to 30 days, 

Deidda (2000) over scales 15 minutes to 16 hours and 4 km to 256 km. A recent paper 

by Peters et al (2002) has used vertical pointing Doppler radar data to demonstrate 

several rain scaling results for integration intervals as short as 1 minute.   

 

5.4.3 Temporal Analysis 

 

Radar derived rain rate time series were calculated by tracking the rain rate at any one 

polar grid point (i.e. fixed area) in the observed radar scans. Where no-rain has been 

recorded at a scan time, rain rates of zero are put in the time series. Periods outside 

the 9 out of 27 duty cycle have been excluded from the analysis.  

 

Figure 5.4.1 Moment scaling structure function for CRIE data and averaged 9 
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gauge-years rain gauge data (temporal modeling)  

 

The validity of )(
~)(

q

qS   may be evaluated by plotting the average moments 

q

consttyxP  )],,([ ,,
 as a function of   in a log-log (base 10 is used) diagram. 

Figure 5.4.1 shows a plot of the average moments q

consttyxP  )],,([ ,,
 (i.e. 

structure function )(qS ) against   for values of q  between 0.5 and 4 with a step 

0.5 both for radar data and 9 years rain gauge data. The rain gauge data were 

collected within 10 km of the CAMRa radar with a 10 s integration time. 

 

The radar and gauge moment scaling curves in figure 5.4.1 are of similar shape with 

slightly different values. This is due to the different sample periods, locations and 

sample volumes for the two datasets. The q=1 lines occur at a very similar level 

indicating that the mean rain rate is similar in both data sets. The q=2 are slightly 

different indicating a slightly different variance.  

 

As all positive moments exist, the moments considered are those of most interest in 

applications. Moments of high order are increasingly determined by the extreme rain 

rates in the dataset, with longer return times, and so are estimated to lower accuracy. 

The observed moments do not follow power-laws across the range of scales 

investigated. However, they are well approximated by three scaling intervals: 

approximately 10 s to 200 s, 200 s to 10000 s and above 10000 s. These three regions 

correspond to scaling intervals where different physical processes dominate.  

 

Figure 5.4.2 shows the scaling exponents over the two scaling ranges 10 s to 200 s 

(dotted) and 200 s to 10000 s. For the moments of order 1q  the scaling exponents 

are concave and well approximated by quadratics. 

 



 68 

 

Figure 5.4.2 Moment scaling exponent as a function of moment order (Temporal 

Modeling) 

 

5.4.4 Spatial Modeling 

 

If a spatial field of rain rates averaged over a fixed duration   can be considered as 

homogeneous and isotropic, the following moment scaling structure functions can be 

defined to characterise the spatial multi-fractal behavior: 

q

constq tyxPS   )],,([)( ,, ,                                       (5.4.4)                

where *  is an expected value, estimated using an ensemble average or an average 

of samples with different starting points x  and y . 

 

The multi-fractal analysis in space consists of the search for one or more ranges of 

spatial scales   where the moments follow a scaling relationship: 

)(
~)(

q

qS                                                     (5.4.5) 

where )(qS is the ensemble average q th moment of the rain rate field averaged 

over areas of diameter  (when normalized by the largest voxel diameter this is 

known as the scale ratio).  
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5.4.5 Spatial Analysis 

 

In this section the moment scaling structure function of spatial rain rate variation is 

calculated. The purpose is to identify scaling ranges as these can be simulated using a 

number of known algorithms. This analysis has been performed several times in the 

past but the results reported must be treated with some caution. As mentioned in 

section 5.1.3, calculating scaling statistics of rain fields on a Cartesian grid, which is 

interpolated from polar grid data, will lead to unreliable results. Thus in this work, no 

interpolation of the data is performed and rain rate samples are accumulated to yield 

the same shape and size.  

 

PPI rain field data is analysed by calculation of the mean moments of rain rate, 

derived by averaging over voxels of the same size and shape. These analysis voxels 

are calculated by combining radar measurement voxels. The analysis voxels were 

parallelopids with horizontal side lengths that were multiples of 300 m. The analysis 

rain rate was a weighted sum of the measured rain rates in the measurement voxels 

that were combined to approximate the target analysis voxel. The weights were the 

volumes of the measurement voxels divided by the total volume of the accumulated 

measurement voxels. The rain rate moments, averaged over analysis volumes, were 

averaged over all such volumes in each scan and across all 3199 scans.   

 

The validity of 
)(

~)(
q

qS   may be evaluated by plotting the average moments 

q

consttyxP  )],,([ ,,  as a function of   (spatial scales) in a log-log (base 10 is 

used) plot. Figure 5.4.3 shows a plot of the average moments q

consttyxP  )],,([ ,,  

(i.e. structure function )(qS ) against   for values of q  between 0.5 and 4 with a 

step 0.5.   has values of 0.3 km, 0.6 km, 0.9 km up to 9.9 km. 

 

As with the temporal moments, the observed moments do not follow power-laws 

across the range of scales investigated. However, they are well approximated by two 
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scaling intervals: approximately 300 m to 1 km and above 3 km. The scale break 

apparent in the temporal data at 200 s is less clear in the spatial data. This may be due 

to anisotropy in the statistics along lines parallel and perpendicular to advection e.g. 

squall lines or fronts. Dotted lines in figure 5.4.3 indicate the linear fits used to derive 

scaling exponents. 

 

Figure 5.4.3 Moment scaling structure function for CRIE data (spatial modeling) 

 

Figure 5.4.4 Moment scaling structure function for CRIE data (spatial modeling, near 

radar area) 

 

Figure 5.4.4 and figure 5.4.5 shows the near radar area (similar ancillary information) 

and far radar area (similar ancillary information) moment scaling structure function 

for CRIE data. As the statistics are expected to be the same across the radar scan 
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region, this analysis can highlight effects due to the methods used to calculate 

moment averages and voxel heights. Some variation is expected due to the sensitivity 

of high-order moments to extremes in the data. The same pattern occurs in all three 

analyses, figures 5.4.3, 5.4.4 and 5.4.5.  

 

Figure 5.4.5 Moment scaling structure function for CRIE data (spatial modeling, far 

radar area) 

 

Figure 5.4.6 The calculated moment scaling statistics of rain fields after interpolation 

onto a Cartesian grid (spatial modeling) 

 

Similar analysis of radar data has been reported several times in the past. In all the 

published analysis the radar data, acquired on a polar grid, has been interpolated onto 
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a Cartesian grid before moment scaling statistics have been calculated. This process 

has never been justified. It is not clear how the interpolation process will affect the 

moment scaling statistics. Figure 5.4.6 shows the moment scaling statistic calculated 

using the interpolation method. Comparing them to the statistics calculated earlier, the 

moment scaling curves show the same general features but with significantly different 

scaling exponents.  

 

For comparison, the scaling moments were calculated on rain data bi-linearly 

interpolated onto a regular Cartesian grid with samples separated by 300 m, before 

accumulation into larger sample volumes. The interpolation process reduced the 

extremes of measured rain rates and so reduced the values of higher order moments. 

The log-log moment scaling curves became much closer to linear across the scale 

range, obscuring the possible scale-break around 3 km. The moment scaling 

exponents were greatly reduced over the larger scale range identified in Figure 5.4.7. 

Using interpolated measurements could have lead to the conclusion that the data were 

approximately multi-scaling across the scale range considered, with scaling exponents 

much closer to zero.   

 

Figure 5.4.7 Moment scaling exponent as a function of moment order (calculated 

from the polar and Cartesian rain data) (spatial modeling) 

 

Figure 5.4.7 compares the scaling exponent calculated from the polar and Cartesian 
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rain data; it shows the scaling exponents )(q in the range 45.0  q , for the two 

scaling ranges 300 m to 1 km and 3 km to 10 km. The scaling exponent variation is 

concave, approximately quadratic, and so multi-scaling. It is clear that there are 

significantly different scaling exponents between the values calculated from the polar 

and Cartesian rain data.  

 

There is a decrease in moment scaling function )(q  when q  increases. This is 

because when the rain is averaged across whole scans, the resulting ensemble average 

is very small. When these average values are raised to exponents greater than 1, their 

value decreases.  

 

5.5 Summary 

 

Rain rate is a physical parameter that is only defined over some spatial or 

spatial-temporal integration volume. The moments of rain rate fields calculated from 

measurements derived from integration volumes of the same shape and a range of 

sizes, are commonly used as a summarising statistic of the rain rate process. Ranges 

of scales have been shown to be stochastically scaled, either simple or multi-scaling, 

when the moments are a power-law of integration volume size.  

 

Radar data from the Chilbolton CAMRa radar in the UK has been analysed and the 

existence of positive moments of all orders demonstrated. An algorithm has been 

implemented for the calculation of moments from spatially averaged rain data on a 

regular polar grid. Three real and potential problems with the reported statistics are 

identified i.e. the existence of moments is not verified, the effects of interpolation 

have not been considered and the inhomogeneity introduced by variation in radar 

sample volume with range has been ignored.  

 

The scaling behaviour of rain rate fields was investigated using the moment scaling 

structure function. The multi-fractal behaviour of rain fields observed by radar (from 
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CRIE database) was investigated by studying the variation of statistical moment 

)(qS  with scale   and )(qS  with scale . The moment scaling function )(q  

was studied. 

 

The result shows that rain field is well characterised by a scaling behavior in terms of 

average statistics moment. The resulting moments are well approximated by two 

multi-scaling ranges with a scale break around 3 km or 200 s. Moment scaling 

function )(q  is convex, which implies the field has as multi-fractal structure. The 

moment scaling statistic calculated using the polar grid and Cartesian grid have been 

compared. The moment scaling curves show the same general features but with 

significantly different scaling exponents. 
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CHAPTER 6 INTERPOLATION OF RAIN RATE FIELDS 

 

The following two chapters explore the downscaling (disaggregation and 

interpolation) of rain data. Each rain rate measurement is an average over a 

spatial-temporal integration volume limited by the measurement technique. 

Disaggregation replaces a measurement with several measurements over smaller 

volumes e.g. if a rain gauge records hourly rain rates then disaggregation could 

transform each hourly rain rate measurement into two 30-minute rain rate averages. 

In general, disaggregation does not conserve the original rain rate distribution as rain 

rates derived from smaller integration volumes tend to be more extreme. Interpolation 

introduces rain rate measurements where there were none e.g. if one-minute rain rates 

were recorded every ten minutes then interpolation could generate new one-minute 

rain rates between existing ones. In general, interpolation conserves statistics, as the 

original rain rate samples are an unbiased sample. 

 

The proposed network simulator requires spatial-temporal rain fields with integration 

volumes with diameters of tens of meters and sampling intervals of ten seconds or 

less. It is proposed to disaggregate and interpolate CRIE data to produce these data. 

The downscaling algorithms developed in the following chapters need to operate on 

data with the sampling and error characteristics of these data. 

 

This chapter develops interpolation algorithms for rain fields. Interpolation methods 

are based on a range of algorithms such as the Random Midpoint Displacement 

algorithm of Voss (1985) and the Local Average Subdivision algorithm of Fenton and 

Vanmarcke (1990). Algorithms are tested on one, two and three-dimensional subsets 

of the CRIE data. 

 

6.1 Rain Rate Statistics  

 

A fundamental assumption driving the development of disaggregation and 
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interpolation algorithms is: how should the rain rate statistics be changed by the 

process. In the simplest case, some statistics should be conserved. When rain rate data 

is interpolated, the coarse-scale data can be assumed to be an unbiased sample of the 

population of rain rates for that event. Interpolation algorithms should conserve these. 

However, the interpolated fine-scale data has samples with smaller sample intervals. 

The covariance of these samples cannot be directly estimated from the coarse–scale 

data and so a covariance model needs to be assumed. 

 

The fractional Brownian model of log rain rate variation directly provides the 

covariance of log rain rate where raining. However, the rain rate moments as a 

function of scale are strongly affected by the non-raining areas and so these cannot be 

estimated from the Brownian model. 

 

6.2 One-Dimensional Interpolation Scheme 

 

A stochastic, numerical method to interpolate point rain rate time-series to shorter 

sampling periods, while conserving the expected first and second order statistics, was 

developed by Paulson (2004). The algorithm is based on the Random Midpoint 

Displacement (RMD) algorithm (Voss, 1985) designed to construct fractional 

Brownian fields; see Section 3.3. Paulson‟s algorithm applied Voss‟s algorithm to 

event time series of gauge-measured rain rate while raining. Smooth interpolation was 

achieved using a filter and additive Gaussian noise with a variance that decreased 

following the Voss power-law. The filter was calculated at each iteration so as to 

conserve event statistics. The full details of the analysis and development of the 

procedure can be seen in appendix A. 

 

This algorithm was tested on rain rate time series extracted from the CRIE database. 

Each time series has a ten-minute sampling interval and is derived from the rain rate 

measured at single voxel in the region scanned by the radar, over the two-year 

experiment.  
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Each time-series has been interpolated using Paulson‟s algorithm and summary 

statistics calculated. Figure 6.2.1 compares the rain rate exceedance distribution in the 

original and interpolated radar-derived rain rate time series. Also plotted is the 

exceedance distribution for 9 gauge-years of rapid-response, drop-counting rain 

gauge data, acquired over a three-year period that does not overlap the CRIE 

collection period. The interpolated data has the same distribution as the original data 

and compares well with the rain gauge data down to 0.01% of the time. This is 

consistent with data collected over different years. 

 

Figure 6.2.1 Comparison of the percentage of time that abscissa rain rates are 

exceeded from the measured radar rain rate data and with 1D interpolated rain rate 

time-series and 9 gauge-years of rain rate data 

 

Figure 6.2.2 Average spectral density of log rain rate from interpolated radar rain rate 

compared with fractional Brownian 3/1H  model (a power-law of –5/3) 
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Figure 6.2.2 shows the spectral density function of the interpolated rain rate time 

series and compares this with the power-law predicted by the fractional Brownian 

model. Only frequencies up to 0.00083 Hz were present in the original data. 

Interpolation has introduced the higher frequencies and these follow the expected 

power-law. 

 

The 1D algorithm conserves the distribution of rain rates and introduces fine scale 

variation consistent with the fractional Brownian model. 

 

The interpolated rain rate measurements are treated as 9.375 s averages and 

accumulated to yields rain rate measurements with longer integration times. The 

temporal moment scaling analysis has been performed on the derived time series with 

increasing integration times as shown in figure 6.2.3. It can be seen that the radar and 

gauge moment scaling curves are of similar shape with slightly different values. 

There is a scale break around 200 s. 

 

Figure 6.2.3 Moment scaling structure function for interpolated CRIE data and 

averaged 9 gauge-years rain gauge data (temporal modeling)  

 

6.3 Two-Dimensional Rain Rate Interpolation 

 

Rain rate near the ground can be interpreted as a collection of random variables 

forming a random field parameterised by three co-ordinates: two spatial co-ordinates 
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and one temporal. In the following section, the interpolation of 2D spatial-temporal 

data is considered. 

 

6.3.1 Two-Dimensional Spatial-Temporal Interpolation 

 

The problem addressed in this section is the temporal interpolation of rain rates 

acquired along a line radial to the radar, corresponding to a scan line. The original 

data is rain rate averaged over 300 m range gates along the radial line and sampled at 

a 10 minutes interval. The aim is to interpolate these data to a temporal sampling 

period of approximately 10 seconds. This can be thought of as numerically generating 

the rain measurements that the radar could have made at these times, if the radar was 

stationary rather than scanning. The underlying assumption that log rain rate is an 

isotropic fractional Brownian field with Hurst coefficient equal to 1/3 is used. Two 

problems need to be solved to interpolate these data. Firstly, some method of equating 

temporal and spatial variation is required. Secondly, the spatial and temporal 

sampling will initially not be equivalent and so a variant of Voss‟s RMD algorithm 

needs to be developed. 

 

The simplest transformation between spatial and temporal statistics requires a scaling 

factor linking the equivalent spatial and temporal units, which is often interpreted as 

an advection speed. A very simple formula distance = time multiplied by the velocity 

is used in Synthetic Storm models (Matricciani and Pawlina Bonati, 1994; 1996; 

1997). The scaling factor used in this section is 10 minutes in time corresponds to 10 

km in space, suggested by Paulson (2002). This can be estimated by equating the 

autocorrelation of temporal series and spatial series of rain rate with different lags. An 

alternative method uses the temporal-spatial spectral density function. When 

equivalent spatial and temporal units are used the spectrum is rotationally symmetric. 

This was the method used by Paulson (2002). 

 

A temporal sampling interval of ten minutes corresponds to a spatial sampling of ten 
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kilometers. As the actual spatial sampling interval is 300 m, the data is sampled 

approximately 33 times more finely in space than in time. An equivalent temporal 

sampling interval would be 18 seconds. An algorithm is needed to introduce 32 rain 

rate lines between each pair of scan lines measured ten minutes apart. 

 

6.3.2 2D Interpolation Algorithm 

 

If the two-dimensional spatial-temporal data were spatially sampled with a 10 km 

interval, the standard RMD algorithm could be used to interpolate simultaneously in 

the space and time dimensions. However, as more finely sampled data is available, 

the algorithm needs to be modified to be consistent with these. A possible adaptation 

is to use the RMD algorithm using measured data at the appropriate spatial separation 

at each iteration of the algorithm i.e. the first iteration would use points separated by 

10 km in each of two consecutive scan lines. Subsequent iterations would use 

samples spatially separated by 5 km, 2.5 km, etc. This is only an approximate method 

because it has no mechanism to introduce the correct covariance between introduced 

points and measured data at intermediate points. 

 

Furthermore, the asymmetric RMD algorithm described above needs to be refined in 

a similar way to the 1D algorithm to conserve the rain rate distribution. This has been 

achieved by expressing the smooth interpolation as a sum of two 2D filters. The 

algorithm is described in detail in the following paragraphs. 

 

Consider a two-dimensional array of log rain rate samples   tkxjXXX i  ,  

sampled at spatial intervals of x  along the ray (initially mx 300 ) and with a 

temporal sampling period of t , initially 10t  minute. The single index i  

mapping onto the multi-index,  kj,  in 2D, is a notational convenience that makes 

algorithm developments independent of the number of dimensions. The new 

interpolates form a set  iYY   via the Voss process  )(XSY . Here S  
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represents smooth interpolation and   is the random noise process yielding 

Gaussian i.i.d. samples ),0( 2

nN   . We choose the smoothing operator to be a 

linear FIR filter i.e. i

n

i

i XaXS 



1

)( , where 0ia  only in neighborhood of iY . 

Furthermore we assume that, in the neighborhood of iY  log rain rate variance can be 

described by random variation about a mean value i.e.  XX i : ),0( 2

sN   . 

This assumption allows the neighborhood mean and variance to be measured i.e. the 

mean is X  and the variance is 
2

s . 

 

The interpolation problem then requires the filter coefficients  iaF   to be 

determined such that   XXEYE  )(  and   2222 )( sXXEYE  . Other 

assumptions, such as isotropy in the fine-scale rain rate statistics, impose further 

constraints on the filter coefficients. The conservation of the mean implies that 

1
1




n

i

ia . The variance constraint yields a similar relation between the sum of 

squares of filter coefficients, and the noise and rain rate variances 
2

n and
2

s . Many 

filters satisfy these constraints. We choose the filter F  to be a linear combination of 

two filters: 2)1(1* FFF   . We have chosen the 1F coefficients to 

approximate a truncated Sinc filter while 2F  has constant coefficients. Both filters 

are chosen so that the sum of filter elements is one. The conservation of the mean is 

therefore automatically enforced. The constant alpha is chosen to conserve the 

observed local variance. Additive Gaussian noise follows the Voss power-law. The 

details of the analysis and development of the procedure can be seen in appendix B. 

  

6.3.3 Test of the 2D Algorithm on Brownian Data 

 

An adaptation of the asymmetric 2D RMD algorithm using synthetic data with known 

statistics is tested. A square array of fractional Brownian field data, with 3/1H , 
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was generated using the standard Voss‟s RMD algorithm. Most of the data in the array 

will be deleted leaving only the data along the first and last columns. Then the refined 

and adapted algorithm will be used to regenerate the deleted data and the statistics of 

the interpolated array will be compared with the original. The objective is not to 

regenerate the original array as interpolation is a stochastic process. The algorithm 

aims to generate a fractional Brownian field equal to the original in the first and last 

columns, with the same marginal distribution and with the model spectral density. 

     

            Fig 6.3.1A                           Fig 6.3.1B 

Figure 6.3.1A An example of a 65 by 65 discrete fractional Brownian field with 

3/1H . Figure 6.3.1B is the result of interpolation between the first and last 

columns. 

      

            Fig 6.3.2A                           Fig 6.3.2B 

Figure 6.3.2A&B 2D spectral density of data illustrated in Fig 6.3.1 A&B. 

 

Figure 6.3.1A shows an example of an array of 65 rows by 65 columns of simulated 

log rain rate data generated using the standard Voss algorithm. Columns 2 through to 
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63 are subsequently deleted. Figure 6.3.1B shows the 65 by 65 array log rain field 

calculated by interpolation between columns 1 and 65 of the data illustrated in Figure 

6.3.1A. Figures 6.3.2 A&B illustrate the spectral density of the random fields in 

Figures 6.3.1, treating them as spatial-temporal log rain rate fields with sampling 

intervals the same as the CRIE data. The contour levels are the same in these figures. 

Figure 6.3.2A has a slightly higher DC peak due to chance. Although different, the 

interpolated field has the correct distribution, spectral density and agrees with the 

original data in the first and last columns.  

 

6.3.4 Test of the 2D Algorithm on Radar Data 

 

The radar rain rate data (one ray data with 3199 scans) is interpolated to a time series 

with 9.375 s time resolution and 150 m space resolution using the method described 

above. The non-zero rain rates in the time-series were converted to log rain rate. In 

the original processing, radar reflectivities at the noise-floor of the radar were 

interpreted as 0.05 mm/hr rain rates. The initial interpolation scales are 10 minutes in 

time and 10 km in space.   

 

Figure 6.3.3 Comparison of the percentage of time that abscissa rain rates are 

exceeded from the measured and interpolated radar rain rate data. 

 

Figure 6.3.3 compares the exceedance distribution of rain rates along a single scan 

line with those generated by the interpolation algorithm. The algorithm can be seen to 
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be consistent with the original data at all exceedance probabilities present in the 

original data. The distribution has been smoothly extrapolated by the introduced 

samples. 

 

The spatial-temporal spectral density function can be calculated by 2-D Fourier 

transform. Fixing the angular coordinate yields 193 (rays) two-dimensional data sets 

with coordinates (range gate, time). Each interpolated ray time-series is grouped into 

193 consecutive scan lines of rain rates. This yields a large (3199*64/193) number of 

square, 2D spatial-temporal log rain rate datasets. Figure 6.3.4A illustrates the 

spectral density of spatial-temporal log rain rate variation, averaged over these data 

sets. The near circular contours are consistent with rotational symmetry, and hence 

the isotropy of the finer scales of variation. Figure 6.3.4B illustrates the rotationally 

averaged, radial, spatial-temporal, spectral density compared with the theoretical 

power law model with an exponent of -8/3. 

    

           Fig 6.3.4A                           Fig 6.3.4B 

Figure 6.3.4A Averaged spectral density of spatial-temporal log rain rate and Figure 

6.3.4B the spectral density as a function of spatial-temporal range assuming rotational 

symmetry compared to a power-law with exponent of -8/3. 

 

6.4 Three-Dimensional Interpolation of Radar Data 

 

In this section we consider the interpolation of full radar scans i.e. we aim to 

numerically simulate the 2D spatial radar scans that might have been measured at 
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times between two actual radar PPI scans.  

 

Experience with the 2D spatial-temporal interpolation highlighted a number of 

deficiencies. It was noted that when a compact event was observed in consecutive 

scans, it was often of greater spatial extent in the interpolated scans. It was 

determined that this was due to advection being present in the dataset. Rather than 

advecting an event, interpolation tended to dissipate it in the original location while 

growing a new event in the subsequent location. To address this issue it was decided 

that the 3D algorithm would remove advection before interpolation and then 

reintroduce it afterwards.   

 

Figure 6.4.1 Relative positions of data points used for interpolation. Black dots are 

existing data while the red point indicates the interpolation position. 

 

A second issue was the lack of covariance constraints on the introduced rain rate 

samples. Interpolates temporally near the measured scans needed to be conditioned 

upon measured data at scales finer than the interpolation scale. Figure 6.4.1 illustrates 

the situation. Given an interpolation scale of dx  in space corresponding to dt in time, 

2D interpolation used the four points at the corners of the square to smoothly 

interpolate the central red point Y . However, finely sampled spatial data is known at 

intermediate points at times corresponding to scans. These data are more highly 
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correlated with the interpolate than the corner points and should be used to condition 

the smooth interpolation stage. A method more general than that used for 2D 

interpolation is needed. 

 

Finally, interpolation often generated light rain events in regions where no rain was 

measured in consecutive scans. Although statistically this is possible, a mechanism 

leading to the generation of spurious rain events was identified. Regions of no rain 

and low rain rates corresponding to reflected power below the noise floor of the radar 

are treated identically in the data i.e. they are both set to the minimum measurable 

rain rate of 0.05 mm/hr. Interpolation across rain event boundaries will then mix real 

rain rate measurements with arbitrary values determined by the radar noise floor. 

Also, in areas of no rain where rain rates have been arbitrarily set to 0.05 mm/hr, the 

addition of random noise during interpolation leads to periodic generation of new rain 

events. A method of dealing with this anomaly was necessary. 

 

6.4.1 3D Interpolation Algorithm 

 

Each pair of log rain rate fields,   11 ,ln tRL Ayx  and   ttRL  12 ,ln x , is 

assumed to be from a Gaussian fractional Brownian process, see Section 5.2 for 

justification for this assumption and for a description of the properties of FBfs. The 

marginal mean L and variance 
2

L are estimated using a Maximum Likelihood 

algorithm for censored data: minLL  , where minL is the smallest measurable log 

rain rate. Let   yxAA i ,  be the set of spatial sampling points and 

 ti tTtT  11  be the equi-spaced interpolation times. The discrete 

interpolation volume is   TtAtV  ,:, xx . Interpolated log rain rate values are 

calculated using a hierarchical algorithm that introduces new samples separated by 

distances that decrease exponentially with iteration. The Random Midpoint 

Displacement algorithm (RMD) of Voss (1985) has been used to refine isotropic FBfs 

and was adapted in the previous section to interpolate 2D rain fields. It is used as a 
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starting point as existing samples are conserved at each iteration. The paragraphs 

below develop an algorithm for asymmetrically sampled FBfs. The method is loosely 

based on the Local Average Subdivision algorithm of Fenton and Vanmarcke (1990). 

 

The RMD takes a FBf evenly sampled at scale   in each dimension and introduces 

new samples to yield a FBf sampled at scale 2 . Let    NiL=L i ,1;  be the 

log rain rate samples in a region of scale   around the interpolate YL at position Y. 

The interpolated value is chosen to be: 

  YY LS=L                                                    (6.4.1) 

where  LS and 2

 are estimates of the mean and variance of the YL distribution, 

while Y  is an i.i.d. standard Normal sample. For the asymmetric algorithm a linear 

estimator will be used i.e.   




 
N

i

iiL LaaLS
1

0 where the coefficients ia  depend 

upon the shape and distribution of samples in the scale region and are chosen to 

satisfy:  

  LY =LE  ,                          (6.4.2i) 

  )(B=LLE yjFBfjy   and                   (6.4.2ii) 

)(B=)E(L FBfY 02 .                      (6.4.2iii) 

where )(BFBf  is the expected value of the product of two log rain rates separated by 

distance , given the FBf assumption. It may be calculated from the marginal 

distribution and (5.2.1) i.e. 2222  H

FBf )E(L)(B  . Substituting (6.4.1) into the 

expected values in (6.4.2), and using the independence of iL and Y , yields: 

    





N

i

Li

N

i

iiLY a=LEaa=LE
01

0  ,              (6.4.3i) 

  )(Baa=LLE ijFBf

N

i

iLjy  





1

2

0  and                   (6.4.3ii) 
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   2

1 11

2

0

22

0

2 2 

 

 
 

 ijFBf

N

i

N

j

ji

N

i

iLLY Baaaaa=)E(L .         (6.4.3iii) 

 

Equations (6.4.2i) and (6.4.3i) imply that 1
0






N

i

ia . Furthermore, (6.4.2ii) and 

(6.4.3ii) yield a further N  equations linear in ia . The coefficients  ia  are found 

by solving these 1N  linear equations. Once the coefficients  ia  have been 

found, (6.4.2iii) and (6.4.3iii) yield an expression for 2

 .   

 

For interpolation at the midpoint of regularly spaced samples and L taken to be the 

nN 2 nearest neighbours, Voss‟s RMD algorithm generated FBfs using 00a , 

1

 Nai  and noise variance exponentially decreasing with scale. In this case, the 

overhead in calculating interpolation coefficients is negligible. However, the CRIE 

rain data is more finely sampled in space than in time, where units are decorrelation 

intervals. Define the second order moment of measured data as: 

        tLtLEBL ,,, yxxy                      (6.4.4) 

 

An initial, interpolation scale of mN 2  sample units is 

determined:     ttxL BNB  ,00,1 e , where e  is a unit vector. To yield samples 

symmetrically distributed in space and time, 1N , new, equi-spaced, log rain fields 

need to be interpolated. This can be achieved in m iterations of an asymmetric RMD 

(ARMD) using equations (6.4.1), (6.4.2) and (6.4.3). Interpolation regions of 

diameter N20   in sample units are used in the first iteration and the diameter is 

halved at each subsequent iteration. The interpolation coefficients  ia  for the 

known iL  within the interpolation volume, and 
2

 , need to be determined for each 

scale. Interpolation regions on the boundary of L , require coefficients consistent 
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with the asymmetry of L , i.e. the existence of finely scaled measured data on 

1L and 2L or the lack of samples outside L . However, all regions away from the 

boundary use the same coefficients. 

 

Further interpolation to any temporal sampling period is possible using the method 

above. At finer temporal sampling, the log rain rate samples become more strongly 

correlated in time than in space and, in the limit, each spatial point yields a time series 

that can be refined using 1D RMD. 

 

6.4.2 Test 3D ARMD on Numerical Data 

 

In this Section the 3D ARMD algorithm is tested on numerically generated FBfs. A 

FBf with 3/1H  and suitable marginal distribution can be thought of as a synthetic 

log rain rate field. 

 

Figure 6.4.2A shows the middle (level 32) level (65 by 65) from a 65 by 65 by 65 

discrete FBf with 3/1H  generated using the standard Voss‟s RMD algorithm. The 

top and bottom levels are retained while all other data points are discarded. The 

ARMD interpolation algorithm described above is used to regenerate the discarded 

data. Figure 6.4.2B shows level 32 (65 by 65) of the interpolated 65 by 65 by 65 array. 

The spectrum density functions of both 65 by 65 arrays averaged over all 65 levels 

are shown in figure 6.4.3A and 6.4.3B. The cross in the centre of the graph is due to 

the edge effects of the 2D FFT. Assuming rotational symmetry, the rotationally 

averaged, radial, spatial-spatial-temporal, spectral density functions (calculated by 

using 3D FFT) compared with the theoretical power law model with an exponent of 

-11/3, are illustrated in figure 6.4.4B. Also, the mean and variance of rain field before 

and after interpolation are calculated and the results agree to within 2%. These figures 

illustrate that the ARMD algorithm conserves the marginal distribution and introduces 

new points with the desired covariance structure. 
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             Fig 6.4.2A                            Fig 6.4.2B 

Figure 6.4.2A An example of one scan in a 65 by 65 by 65 array of synthetic log rain 

rate samples generated using the standard Voss‟s RMD algorithm. Figure 6.4.2B 

illustrates an example scan of an array formed by interpolation of the data on the top 

and bottom surface. 

      

             Fig 6.4.3A                         Fig 6.4.3B 

Figure 6.4.3A&B Averaged spatial-temporal 2D spectral density of data illustrated in 

Fig 6.4.2 A&B. 

    

          Fig 6.4.4A                            Fig 6.4.4B 

Figure 6.4.4A Averaged 2D spectral density of spatial-temporal log rain rate. Figure 
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6.4.4B Averaged radial spectral density of 3D log rain rate, averaged over several 

scans assuming rotational symmetry, compared with the fractional Brownian 

3/1H  model (a power-law of –11/3) 

 

6.5 Summary 

 

Algorithms have been developed for the temporal interpolation of one, two and 

three-dimensional fractional Brownian fields. The 1D algorithm has been applied to 

point rain rate time series in previous studies and has been shown to be able to 

interpolate ten second rain rates sampled every ten minutes to a ten second sampling 

interval, while matching the first and second order statistics of the original data. This 

algorithm has been extended to higher dimensions and tested using discrete fractional 

Brownian fields. In Chapter 8 these algorithms are applied to rain fields derived from 

radar measurements. 
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CHAPTER 7 DISAGGREGATION RAIN RATE FIELDS 

 

Disaggregation transforms rain rate measurements made with a particular 

spatial-temporal integration volume into a larger number of samples made with 

smaller integration volumes. In general, rain rate measurements made with smaller 

integration volumes exhibit greater variation i.e. very high rain rates are more likely 

to be measured with smaller integration volumes. When a rain rate is disaggregated to 

rain rates over smaller areas then the mean rain rate should be conserved as the total 

volume of rainwater collected over the larger area is equal to the sum of the volumes 

collected over the smaller areas. Other statistics are not conserved; for example the 

rain rate variance is expected to increase as the averaging volume decreases. The 

variance of the fine-scale rain rates cannot be directly estimated from the coarse-scale 

data and so a model of variance as a function of scale needs to be assumed. 

 

For microwave network simulation it will often be desirable to have rain rate 

measurements made over spatial volumes smaller than the 300 m diameter yielded by 

CAMRa. Therefore a downscaling method is required that is applicable to these data 

and which can be integrated into a disaggregation and interpolation process. In 

Chapter 8 the integration is discussed in more detail. There it is shown that it is 

possible to disaggregate the radar scans independently before interpolation. Therefore, 

a 2D disaggregation algorithm is required. 

 

In this chapter, the disaggregation algorithms are reviewed and Deidda‟s (1999, 2000) 

multiplicative cascade disaggregation method is presented. 

  

7.1 Overview 

 

A typical disaggregation procedure is based on the implementation of a stochastic 

disaggregation algorithm that is capable of generating a small scale fluctuating field 

from a smoother rainfall distribution on larger scale. In principle, this method 
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provides random precipitation fields that should simultaneously satisfy the large scale 

constraints obtained by meteorological radar and are consistent with the known 

statistical properties of the small scale rainfall distribution. 

 

A rainfall field produced by a disaggregation procedure is not a prediction of the 

fine-scale rain field that would have been measured if the appropriate instruments 

were available. The disaggregated field is a sample from the ensemble of fields that 

match the coarse-scale measurements and other conditioning statistics. Repeated 

application of the disaggregation procedure naturally leads to an ensemble of possible 

realisations of the fine-scale rainfall field and to the concept of ensemble rainfall 

prediction (Ferraris et al., 2002).  

 

In past years, several stochastic models for rainfall disaggregation have been 

proposed. They can be grouped into three main categories. The following paragraphs 

describe each category. All these models have been proven to score fairly well in 

reproducing the observed statistical properties of precipitation (Ferraris et al., 2003). 

 

Firstly, the spatial structure of intense rainfall is often conceptualised as a 

superposition of rain cells over different scales e.g. strong convective cells within 

small mesoscale area. This has lead to point and area process models based on the 

random positioning of a given number of rainfall cells (Waymire et al., 1984; 

Rodriguez-Iturbe et al., 1986; Eagleson et al., 1987; Northrop, 1998; Wheater et al., 

2000; Willems, 2001). In these models, the rain process is modeled by simulating the 

band structure and the cell patterns, and the arrival times of the cells. Rainfall cells 

are usually circular or elliptical and have a constant or Gaussian rain rate profile. 

They are spatially distributed following a Neyman-Scott or Bartlett-Lewis process 

(Cowpertwait et al., 2002). These models have wide acceptance in hydrological 

modeling. 
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Secondly, autoregressive processes subjected to a static nonlinear transformation, also 

known as "Meta Gaussian" models (Mejia and Rodriguez-Iturbe, 1974; Bell 1987; 

Guillot and Lebel, 1999). In this model, the higher-order spatial correlation and the 

Fourier phase correlations are entirely generated by the posteriori nonlinear 

transformation, as they are absent in the original additive process before taking the 

transformation. It has been used to describe convective precipitation in tropical areas 

(e.g., Guillot and Lebel 1999). Kolmogorov (1962) has shown that a lognormal 

process can account for some of the observed scaling properties of three-dimensional, 

homogeneous turbulence. 

 

Finally, multi-fractal cascades (Lovejoy and Mandelbrot, 1985; Schertzer and 

Lovejoy, 1987; Gupta and Waymire, 1993; Over and Gupta, 1996; Perica and 

Foufoula-Georgiou, 1996; Menabde et al., 1997a, 1997b, 1999; Deidda, 1999, 2000). 

Rain rate multifractality has been postulated to span scales from 40 cm to global 

variation (Lovejoy, in press). In recent years attempts have begun to incorporate 

cascade models in hydrological pulse models to increase the span of applicable scales 

(Onof, 2007). 

 

All these models are characterised by an extremely fast numerical implementation 

and by a small number of free parameters. In each model, a lower amplitude threshold 

is also introduced. The threshold fixes the value below which the field produced by 

the model is set to zero. The threshold is necessary as most disaggregation models 

generate field values that are always different from zero, while rainfall fields are 

characterised by large areas of null values. An exception is the Multiplicative Beta 

Cascade method of Paulson and Baxter (2007) which includes a finite probability of 

introducing zero rain rates. 
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7.2 Disaggregation Using Multiplicative Cascade 

 

In this thesis, Deidda‟s (2000) multi-fractal cascade method is employed. 

Multi-fractal cascade processes were introduced in the seventies and have been 

widely used to reproduce the variability of precipitation fields. Standard cascade 

processes are known to fail to reproduce observed spatial-temporal structure functions 

(Davis et al., 1004; Menabde et al., 1997b). For the network simulator, a 2D, spatial, 

multi-fractal disaggregation method is required that preserves spatial statistical 

properties observed in real rainfall. In the following paragraphs details of Deidda‟s 

(2000) algorithm based on multiplicative cascades are provided and applied to CRIE 

data. 

 

The random cascade is constructed using a multiplicative process (Monin and 

Yaglom, 1971, 1975; Yaglom, 1966). Each son rain rate i

jR  at the jth level is 

obtained by multiplying the corresponding father at level (j-1) by an independent and 

identical distributed random variable iw . Thus 
1 ji

i

j RwR , where the scale at the 

level j is half of the scale at the level (j-1). Ensemble average of q moments of 

random variables R  can be related to the statistics of the generator w as following: 

jqqq

j wRR 0                                                      (7.2.1) 

 

Given knowledge of the distribution of rain rates at the coarsest scale, the moment 

scaling structure function can be established. Deidda (1999 and 2000) has proven that 

this structure function obeys the scaling law with expected multi-fractal exponent 

)(q  depending only on the ensemble averages of the moments of the generator w . 

qwwqq 22 log)log2()(                                        (7.2.2) 

 

Using the Cauchy-Schwarz inequality, it can be proved that )(q  is a convex and 

nonlinear function of the moments q , so the model is suitable for generation of 
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multi-fractal fields. The choice of probability distribution for the random generator 

w  characterises the multi-fractal behaviour and the scale covariance of synthetic 

signals. In this work, the log-Poisson distribution is used. 
ya

i ew  , where y is an 

i.i.d. sample from a Poisson distribution of mean c . 

 

The q-order moment of the log-Poisson distribution is )]1(exp[  qq cqaw  , 

when 1q , then   1ca . And the expected scaling of synthetic fields can 

finally be evaluated: 

2ln

)1()1(
2)(




qq
cqq


  ,                                   (7.2.3) 

where the multi-fractal exponents )(q  depend only on the parameters c and  . In 

order to reproduce a scaling regime in synthetic fields, parameters c and   must be 

scale-independent. 

 

Estimates of the model parameters c and   can be obtained by solving the 

following minimisation problem: 






q

s

c q

qq 2

,
]

1

)()(
[min




,                                           (7.2.4) 

where )(qs  are the sample multi-fractal exponents, )(q  is the theoretical 

expectation as above, and 1q  is a weight that accounts for the estimation error, 

that is, the standard deviation of )(q .  

 

Examples of the method applied to CRIE data are presented in Chapter 8. 

 

7.3 Summary 

 

I have presented an algorithm due to Deidda (2000) that can disaggregate 2D fields 

and which yields a particular variation of the multifractal scaling exponents. For 
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CRIE data, these scaling exponents can be estimated from the moment scaling 

function over scales from 300 m to 10 km, see figure 5.4.3 and 5.4.7. Assuming that 

these exponents can be extrapolated to finer scales allows finer scale rain fields to be 

numerically generated from CRIE derived fields. Ultimately these need to be verified 

by fine scale rain rate measurements or, alternatively, from measurements that depend 

upon fine-scale variation such as microwave link attenuation. 
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CHAPTER 8 DISAGGREGATION AND INTERPOLATION ON CRIE DATA 

 

Chapters 6 and 7 have presented algorithms to interpolate FBfs and to disaggregate 

rain rate fields. Rain fields measured by radar are typically near instantaneous 

measurements of volume averaged rain rate. The rain rates are spatially disaggregated 

but temporally sampled. To produce fine-scale fields for radio network simulation it is 

necessary to produce rain fields with much shorter temporal sampling interval and 

smaller averaging volumes. Therefore, a combination of interpolation and 

disaggregation is required. 

 

In this chapter, these algorithms are applied to CRIE derived rain rate fields. These 

rain fields have properties that need special consideration. These are: 

1. Intermittency i.e. large areas of no rain, 

2. Advection i.e. rain fields both move and evolve, 

3. Censorship of data due to radar noise. 

Each of the properties will be discussed in the following sections. 

 

8.1 3D Intermittency and Censorship 

 

Numerically generated FBfs and measured log rain rate fields have significant 

differences in the marginal distribution due to intermittency of real rain i.e. rain 

events are finite in extent and separated by long intervals without rain, and 

measurement uncertainty. These lead to two significant problems for the multi-scale 

interpolation method. The marginal distribution of the measured rain fields is not 

log-Normal as all samples from voxels with no rain or very low rain rate are 

interpreted as having the threshold rain rate of 0.05 mm/hr. Secondly, the multi-scale 

interpolation uses spatially distributed samples to estimate the mean of interpolates. 

Some or all of these points could be in areas of no or very low rain rate. Therefore, 

choice of the threshold rain rate distorts the shape of rain events, as it relies on 

gathering log rain rate data from points where it is undefined. Replacing no-rain with 
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a very small rain rate introduces problems in defining the mean and variance of log 

rain rate i.e. the choice of threshold rain rate dominates these summarising statistics. 

 

8.1.1 Maximum Likelihood Estimation of the Marginal Distribution 

 

The interpolation algorithm requires the mean and variance of log rain rate where 

raining, for each scan, to condition the interpolation. These parameters cannot be 

estimated directly using averages due to the uncertainty of the location of the edges of 

rain fields. Instead a Maximum Likelihood (ML) algorithm is used. The distribution 

of rain rates is assumed to be zero with some probability 0p  defined to be the 

probability of no rain, and log-Normally distributed otherwise. The probability 

density function )(Rf can be written: 

 )log;,()1()()( 2

00 RNprpRf                                (8.1.1) 

where   and 2  are the mean and variance of log rain rate while raining. The 

probability of making a measurement at the threshold rain rate is therefore: 

 )log;,()1()Pr( 2

00 tt RFppRR                              (8.1.2) 

where );,( 2 LF   is the Normal cumulative probability function. Using (8.1.1) and 

(8.1.2) allows the log likelihood of a measured scan to be calculated. The ML method 

estimates the parameters 0p ,   and 2  by minimising the log likelihood 

functional. The ARMD algorithm also required the second moment function 

    exx   LLEB )(  to be estimated. The 1D ML yields the marginal 

distribution for  xL . A 2D ML algorithm can be used to estimate 
2

  the 

cross-covariance of  xL  and  ex L , assuming the marginal parameters given by 

the 1D algorithm. From   and the cross-covariance 
22)(  B  is estimated. 

For Gaussian  xL  and  ex L  this is unbiased. 
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8.1.2 Extrapolation into Low Rain Rate Regions 

 

The ARMD algorithm has been validated for FBfs. However, measured log rain rate 

fields have been censored at the threshold level  tt RL log . Interpolation at scales 

that cross rain event boundaries requires log rain rate values at points below the 

threshold. Using the threshold values inflates rain rates near the edges of events and 

leads to new events being numerically generated in no-rain regions. To address both 

these issues, conditioned log rain rate fields are generated by fitting minimum 

bending energy surfaces to the measured log rain rate fields. Log rain rates above the 

threshold are considered to be known to a small relative error. Measurements at the 

threshold are treated as a maximal constraint i.e. it is only known that the actual log 

rain rate is below the threshold value. The minimum bending energy surface 

consistent with all these constraints is used for interpolation. The effect of this is two 

fold. The smooth extrapolation beyond the threshold isohyet yields plausible decay of 

rain rates at the edges of events. Regions near rain events have a chance of yielding 

measurable rain rates in the interpolated field but regions far from rain events, or near 

rain events with sharp transitions (e.g. convective storms), have a much smaller 

chance. 

 

8.2 Advection 

 

The horizontal movement of rain fields by the ambient wind field, known as 

advection, is not described by the FBf model. Before interpolation, advection between 

consecutive scans needs to be removed. If it is not then interpolation does not yield a 

smoothly advecting and evolving rain event. Instead a rain event at the earlier 

location dissipates and disappears and a new rain event appears in the later location. 

This artifact looks artificial in rain field animations and would lead to errors when 

calculating rain fade time series on links. 

 

Advection is assumed to be a linear translation between radar scans. This assumption 
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would not be valid for large areas or long inter-scan times but is reasonable for the 

CRIE data. The rain field advection vector varies between events and over time. Thus 

advection needs to be estimated between each consecutive pair of scans. In both 2D 

and 3D interpolation, the speed with which the rain fields were being advected is 

calculated by finding the linear displacement that maximises the correlation between 

successive rays and scans respectively.  

 

Consider two rain fields measured 10 minutes apart. The advection between the 

measurement of the rain fields  x1R  and  x2R  is estimated by identifying the 

two-dimensional lag y  that maximises the cross-correlation i.e. 

    xyxy
y 21
axm R+RE=A                                      (8.2.1) 

 

Figure8.2.1. Demonstration of 3D interpolation with advection removal 

 

Before interpolation, rain field 1 is space shifted to remove advection i.e. 

   yxx  11 RR . Spatial cross-correlation is now maximised with zero lag and rain 

events are seen to evolve without movement when radar scans are animated. 

Interpolation then reproduces the statistical fluctuations expected due to rain event 

evolution. After interpolation, advection is reintroduced i.e.    yxx  11 RR . The 

scans at intermediate times, introduced by interpolation, are space-shifted by a 

multiple of y  that decreases linearly to zero as the time of the second scan is 
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approached. Figure 8.2.1 illustrates how interpolation is performed on a parallopid 

defined by regions of interest in consecutive scans that are maximally correlated by a 

zero length lag. 

 

8.3 Disaggregation the CRIE Data 

 

For network simulation we require the sampling volume of the numerically enhanced 

rain rates to be comparable to the diameter of a radio link. As a first approximation 

this diameter is equal to the width of the first Fresnel zone. Depending on the length 

and frequency of the link, this width can vary between a fraction of a metre to tens of 

metres. In Chapter 7, Deidda‟s multiplicative cascade disaggregation algorithm was 

introduced. The algorithm can be used to disaggregate rain fields to arbitrarily small 

integration volumes. The limit is constrained by the availability of data for calculation 

of the scaling exponents and for verification. For this thesis, scaling exponents have 

been extrapolated from the minimum measured scale i.e. diameters of 300 m. This is 

partially justified by comparison with the scaling moments of point rain rate 

measured by rain gauge, see Chapter 5. These show a scaling interval from 200 s 

down to 10 s. Using Taylor‟s approximation, this corresponds to a scaling region from 

3 km down to 150 metres. The lower limit is not an identified scale break but the limit 

of measurement resolution. This implies that the disaggregation algorithm is justified 

down to regions of this diameter and probably much smaller. 

 

A choice needs to be made as to what order disaggregation and interpolation are to be 

applied. Numerically these operations can occur in either order or interleaved. 

However, 3D spatial-temporal disaggregation has been identified as a difficult 

problem by Deidda and others. Furthermore, most literature considers the 

disaggregation of temporal averages rather than the instantaneous samples used in 

this thesis. In general, the disaggregation of an instantaneous spatial average cannot 

be performed in isolation from the disaggregation of other samples made close in 

time. For example, two radar derived rain rates made over the same sample volume 
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only a few seconds apart could not be disaggregated independently, as a fine-scale 

high rain rate produced in the disaggregation at the first time would be correlated to a 

high rain rate at the second time. For the independent disaggregation of two rain rate 

fields to be valid, they need to be sufficiently separated in time. For the CRIE data, 

we assume the independence of variation at scales below the radar spatial sampling 

scale, 300 x , on consecutive scans measured 10 t minutes apart. This will be 

true as long as ttxx DD  , where xD and tD are the spatial and temporal 

decorrelation distances. This allows each measured radar scan to be disaggregated 

independently.   

 

Figure 8.3.1 Comparison of measured spatial moment scaling exponents and best fit 

Deidda function 

 

The multi-fractal exponent )(q  is estimated by linear regression of the structure 

function )(qS   versus scale   (from kmm 1~300 ) in the log-log plot figure 

5.4.3 and 5.4.7, also Paulson and Zhang (2007). They are presented in table 8.3.1. 

Sample multi-fractal exponents are used to estimate the two log-Poisson parameters c , 

  and hence to derive a . The cascade scaling exponents are within the error ranges 

of the measured exponents for combinations of parameters spanning 5 orders of 

magnitude, and so comparisons with other published parameters are unhelpful. Figure 
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8.3.1 is a plot of measured spatial moment scaling exponents and the best fit Deidda 

function. 

 

5.1q  2q  5.2q  3q  5.3q  4q  c    a  

4.40 5.78 7.12 8.42 9.71 10.99 10 1.115 -1.15 

Table 8.3.1 Results of the multi-fractal analysis on measured radar data set. 

 

The CRIE radar scans have been disaggregated by a factor of eight using three 

iterations of the Deidda method i.e. each 300 m by 300 m voxel has been replaced by 

an 8 by 8 array of voxels, each with a diameter of 37.5 m. Figure 8.3.2 compares the 

exceedance distribution of rain rates on measured scans with those generated by the 

disaggregation. This illustrates that disaggregation has increased the variance of rain 

rate by introducing higher values in a controlled way. Figure 8.3.3 is a comparison of 

spatial moment scaling structure function between measured radar data and 

disaggregated radar data. The algorithm can be seen to conserve the mean ( 1q ) 

while the variance ( 2q ) has increased in a way consistent with the measured data. 

Higher moments have also increased in a plausible way. 

 

Figure 8.3.2 Comparison of the percentage of time that abscissa rain rates are 

exceeded from the measured and disaggregated radar rain rate data 
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Figure 8.3.3 Spatial moment scaling structure function of measured radar data and 

disaggregated radar data 

 

8.4 Disaggregation and Interpolation of Radar Data 

 

The ARMD algorithm has been successfully tested on numerically generated FBfs 

and synthetic rain rate fields generated using the Callaghan model. However, the 

interpolation and disaggregation of real measurements are a more challenging test due 

to the issues highlighted in section 8.1 i.e. inhomogeneity, advection, rain 

intermittence and systematic measurement error.   

 

To generate fields for network simulation, a combination of disaggregation and 

interpolation has been used. Rain fields have been disaggregated in three iterations of 

cascade by a factor of 8 to a spatial averaging over squares of diameter m 5.37 x . 

Six iterations of the ARMD algorithm has then reduced the radar sampling time to 

s 375.9 t . The algorithm can be summarised in the following six steps: 

1. Disaggregate measured rain rate fields using Deidda‟s algorithm. 

2. Estimate and remove the advection between the two measured rain rate fields. 

3. Calculate log rain rate over the analysis regions. 
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4. Calculate the relative spatial and temporal scales. 

5. Interpolate scans using AMRD algorithm 

6. Re-introduce advection. 

 

Before the process above can begin the radar derived rain rates are interpolated onto a 

regular Cartesian grid. There are excellent reasons not to do this, as discussed in 

Section 5.3 i.e. the interpolation of spatially varying averages of an inhomogeneous 

stochastic process without effecting the statistics is a problem worthy of a thesis in its 

own right. However, all the subsequent processes are made vastly easier if samples 

are regularly spaced. To reduce the variation of statistics with range, only a subset of 

the radar data was used between ranges of 20 and 60 km. 

 

Figure 8.4.1 Comparison of the percentage of time that abscissa rain rates are 

exceeded from the measured radar rain rates (dot), the disaggregated rain rates (thick), 

the downscaled rain rates (solid) and 9 gauge years of gauge data (dash) 

 

Figure 8.4.1 compares the marginal rain rate exceedance distribution at several stages 

in the algorithm. The disaggregation has increased in incidence of heavy rain as 

described in Section 8.1. This leads to higher exceedance probabilities for more 

intense rain. Interpolation has largely conserved the disaggregated distribution, as it is 

designed to do. The distribution differences are due to multimodal distribution in 
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some scans. Some scans contain more than one rain event and so the distribution of 

rain rates is multi-modal. This leads to over-estimation of the variance of log rain rate 

and hence more extreme values being introduced by interpolation. The downscaled 

rain rates are largely consistent with those measured by rain gauge. Some variation is 

to be expected, particularly at very low exceedance probabilities, due to the different 

years spanned by the radar and gauge data. Although the CRIE contains 3199 radar 

scans, these cover only ~800 events.  

 

8.5 Quantile function and Moment Scaling 

 

8.5.1 Temporal Moment Scaling 

 

Figure 8.5.1 illustrates the quantile functions for radar rain rate data after 3D 

interpolation compared with 9 gauge-years of rain rate measurements, for integration 

times from 10 seconds to 5 minutes. For 10 s integration and probabilities 

approaching 1 i.e. 01  p , the quantile function approaches linearity in  p1ln . 

The quantiles for lower probability are defined by few samples, thus are not reliable. 

Interpolation appears to conserve the original quantile functions over a range of 

integration periods. 

 

Figure 8.5.1 Simulated rain rates exceeded with probability p1  for different 
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integration periods 

 

Figure 8.5.2 Moment scaling structure function for interpolated CRIE data and 

averaged 9 gauge-years rain gauge data (temporal modeling)  

 

Moment scaling analysis is performed on the derived time series with increasing 

integration times. Each spatial point yields a time series from which the temporal 

moment scaling function can be calculated. Figure 8.5.2 shows a plot of the average 

moments q

consttyxP  )],,([ ,,  (i.e. structure function )(qS ) against   for values 

of q  between 0.5 and 4 with a step 0.5 both for radar data and 9 years rain gauge 

data. Despite the radar and rain gauge data being acquired over different years, there 

is remarkable agreement between the two results. 

 

8.5.2 Spatial Moment Scaling 

 

Figure 8.5.3 illustrates the quantile functions for radar rain rate data after 3D 

interpolation compared with measured CRIE data, for integration diameter from 300 

m to 4.8 km. The quantiles for lower probability are defined by few samples, thus are 

not reliable. It can be seen that after interpolation, the initial properties are conserved. 
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Figure 8.5.3 Simulated rain rates exceeded with probability p1 for different spatial 

integration volumes 

 

Figure 8.5.4 Moment scaling structure function for measured (dotted), disaggregated 

(dashed) and downscaled CRIE data (solid) 

 

Moment scaling analysis is performed on the derived rain rate series in each scan with 

increasing integration diameter. Figure 8.5.4 illustrates a plot of the average moments 

q

consttyxP  )],,([ ,,  (i.e. structure function )(qS ) against voxel diameter , for 

values of moment order q  between 0.5 and 4. Curves are plotted for the original 
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CRIE data, disaggregated rain rates and downscaled rain rates. The voxel diameter   

has values ranging from 37.5 m to 10 km. Disaggregation has conserved the original 

moments from the measured scale m 300 up. At shorter scale the moments have 

been extrapolated in a plausible way. Interpolation has largely conserved the moments. 

The interpolation is designed to conserve the 1q  and 2q  moments. The 

higher order moments are largely determined by these. 

 

8.6 Summary 

 

A method has been developed to disaggregate and interpolate time-series of rain 

fields measured by rain radar with inter-scan periods as long as 10 minutes to yield 

time-series with sample periods as short as 10 seconds. The spatial resolution has also 

been disaggregated from 300 m to 37.5 m. The method has been applied to a database 

of radar derived rain fields from CAMRa, at Chilbolton in the UK. Interpolation has 

been shown to preserve the rain rate distribution and moment scaling of spatially 

averaged rain rate data. Furthermore, the interpolated and disaggregated data have 

reproduced the moment scaling of temporally averaged rain rate data measured from 

rain gauge. 
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CHAPTER 9 FADE MODELING 

 

Once spatial-temporal rain data has been numerically generated from the coarse-scale 

measured data, they can be used for microwave network simulation. Heterogeneous 

networks of any geometry and of any radio parameters can be over-laid onto the 

fine-scale rain fields. Rain rates may be converted to specific attenuations at the 

relevant frequencies using the power-laws of Rec. ITU-R P.838-2. Instantaneous joint 

rain fade may be calculated by pseudo integration of the specific attenuation along the 

path of each link. Joint rain fade time series may be calculated by repeating this for 

each rain field. 

 

For individual links, or collinear networks, the process described above requires rain 

rates restricted to a line. This can be achieved using a single scan line of radar data. 

This yields a large saving in computational effort with a few disadvantages. The 

major disadvantage is the inability to test different orientations to the prevailing wind. 

This parameter is largely ignored in ITU-R recommendations as the data has not been 

available to measure variation. However, using the full 3D downscaled 

(disaggregated and interpolated) dataset, the strength of orientation effects can be 

tested. 

 

9.1 Fade Modeling Based on 2D Interpolation 

 

The radar rain rate data (one ray data with 3199 scans) is interpolated to a time series 

with 9.375 s time resolution and 150 m space resolution by using 2D method 

presented in Chapter 6. In this section, these simulated data will be used to generate 

fade time-series on individual links. Summarising statistics will be compared to 

measurements and accepted models. 
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9.1.1 Attenuation Statistics 

 

In this section, the average annual attenuation statistics for simulated links of 2 km 

and 10 km lengths are estimated using the radar data. These are compared with the 

Rec. ITU-R P. 530-12 model. Further validation is supplied by a comparison with 

two-years of measured link attenuation data at 38 GHz with a path length 3 km and a 

time resolution 1 minute measured close to Chilbolton. Higher order statistics are also 

compared. In addition, six-months of measured link attenuation data at 38 GHz with a 

path length 5.5 km and a time resolution 1 second is also compared. 

 

9.1.2 Marginal Rain Rate Distribution 

 

One ray of radar data is downscaled to have a time resolution of 10 s and a space 

resolution still 150 m. This time series is integrated to 1 minute sampling. The figure 

9.1.1 shows the downscaled rain rate exceedance distribution and compares it to the 

Rec. ITU-R P.837-5 prediction based on a 0.01% exceeded rain rate of 

mm/hr 3001.0 R . 

 

Figure 9.1.1 The one-minute radar rain rate exceedance distribution compared with 

the Rec. ITU-R P.837-5 prediction using mm/hr 3001.0 R  

 

9.1.3 Marginal Rain Fade Distribution 
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Figure 9.1.2 shows a schematic description of how terrestrial links of a specified 

length „d‟ are superimposed onto the PPI data. The terminals are positioned either 

along the radar rays or along a line tangential to the scan centre. In each case, all 

radar data cells traversed by the simulated link are identified and for each of these 

cells, the specific attenuation, R , for the required frequency is obtained from the rain 

rate by using the relation:  kRR    (dBkm
-1

), where parameters of k  and   

are identified in ITU-R Rec. 838. 

 

Figure 9.1.2 Examples of two terrestrial links superimposed on the PPI data 

 

 

Figure 9.1.3 38 GHz attenuation statistics for 2 km and 10 km path lengths from radar 

simulation (solid) and ITU-R Rec. 530, using mm/hr 3001.0 R . Model confidence 

intervals are also plotted (dotted, dashed) 
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Having obtained R  for each of the radar data cells along the simulated link, the 

total attenuation was determined by multiplying R  by the length of the link 

segment contained within the data cell and summing this quantity over the link length 

(J.W. F. Goddard and M. Thurai, 1996). 

 

Using the methods described above for a single scan line, attenuation statistics are 

generated for path length 2 km and 10 km at 38 GHz. The results are compared with 

ITU-R Rec. 530-12, using mm/hr 3001.0 R , and are shown in figure 9.1.3. The 

dotted and dash-dot lines indicate confidence intervals, based on estimates of 

year-to-year variation. These are rain attenuation exceedance curves associated with 

0.01% exceeded rain rates one standard deviation either side of the mean. The 

population standard deviation of hrmm /9.1 was calculated from 482 complete 

station-years of data from 42 meteorological stations spanning ITU-R Rec. P.837-5 

Rain Zone F and the Adjustment Factor (AF) postulated by Prof. Peter Watson for the 

conversion between the hourly to one-minute rain rates exceeded 0.01% of the time, 

of AF = 2.7. 

 

9.1.4 Comparisons with Measured Real Link 

 

For further validation, link rain fade statistics derived from the 2D interpolated rain 

rates are compared with statistics of fade measured on real links. Although these 

comparisons are necessary as rain fade predictions are the ultimate deliverable of the 

proposed simulation method, it is very difficult to specify when differences between 

simulated and measured statistics are significant. There are many reasons for these 

differences. Real links experience attenuation due to many processes other than rain 

fade e.g. multi-path, ducting, atmospheric attenuation, variable obstruction, other 

hydrometeor effects e.g. sleet, fog and antenna wetting; interference by animals 

(spiders, birds, insects) or/and plants to the equipment as well as human interference 

during maintenance and equipment failure. The proposed simulation method does not 
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aim to mimic any of these processes. Even if rain fade could be isolated from all other 

mechanisms in real link attenuation time-series, differences in statistics would still be 

present due to random differences in the simulated and actual rain. Given arbitrarily 

long periods of both simulation and measurement it is hoped that the statistics would 

converge but this is impossible to guarantee given limited knowledge of actual rain 

statistics. In the comparisons below both the simulation data and measured data are 

very limited. The CRIE data base contains rain information for only 2/3 of a year 

(acquired over two years). The link data is from a few years at most. Currently there 

is no accepted method to tell when the first order statistics of rain are significantly 

different between two periods of such short duration. Certainly no methods exist for 

higher order statistics or statistics of rain fade. 

 

Two-years of attenuation data from a 3 km, 38 GHz link, with a time resolution 1 

minute, measured close to Chilbolton is used to compare with radar. The data has had 

a daily reference level estimated and removed. This compensates for many of the 

slowly varying fade processes. Figure 9.1.4 illustrates attenuation statistics generated 

for the link. The shift between real link and radar attenuation statistics is probably due 

to residual errors in the reference level estimates. Attenuation is derived from 

monitoring the automatic gain control (AGC) at the receive end of the link. For this 

system the AGC reached a maximum gain at an attenuation of 40 dB and so the 

measured attenuation distribution flattens off at this level.  

 

Figure 9.1.4 Measured, one-minute attenuation statistics for a 3 km, 38 GHz link 
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compared with predictions derived from 2D radar simulation and ITU-R Rec. 

P.530-12, using mm/hr 3001.0 R  

 

In order to verify the second order temporal statistics yielded, it is required to 

compare the temporal autocovariance function of real and predicted rain fade time 

series. Real data include many effects other than rain fade. For real data, as it rains 

only 5% of the time, there is a chance that the smaller fluctuations that occur 95% of 

the time may have a large effect on autocovariance. A threshold of 3.5dB is set i.e. all 

values smaller than 3.5dB is converted to zero. For comparison, the same threshold is 

set for the simulated data. Figure 9.1.5 illustrates the autocovariance of attenuation 

from radar and real link.  

 

Figure 9.1.5 Temporal autocovariance function for 1-minute accumulations of the 

measured real link attenuation (38 GHz, 3 km) compared to the result predicted by 

simulation 

 

It can be seen from figure 9.1.4 that the real link attenuation is always several dB 

larger than radar attenuation. This leads to the different variance (when lag is zero) 

between the real link and simulation results in figure 9.1.5. The difference has several 

possible explanations. Firstly, during the rain, although the rain effects dominate, the 

path clearance effects may still be present. Secondly, there is likely to be poor 

sampling of convective events in the single ray considered. Convective events are 
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typically only a few kilometres across and so a single ray will sample only a fraction 

of those in the data base. This is likely to lead to large variation between results from 

different scan lines.  

 

A second 38 GHz link with a 5.5 km path was monitored for six months and 

attenuation recorded with a one-second integration period. The measured one-second 

link attenuation data has been accumulated to generate 10 seconds attenuation time 

series. Figure 9.1.6 illustrates the 10 s attenuation statistics compared with the 

one-minute statistics predicted by Rec. ITU-R P.530. The measured attenuation 

plateaus due to the AGC limit. Figure 9.1.7 illustrates the autocovariance of 

attenuation with a time resolution 10 seconds from radar and real link.  

 

The simulated autocovariance is similar to the measured curve but has an implausible 

wobble. This is almost certainly due to poor sampling statistics in the 2D 

interpolation of a single scan line. 

 

 

Figure 9.1.6 Ten-second attenuation statistics for a 5.5 km, 38 GHz link compared 

with ITU-R Rec. P. 530-12 predicted one-minute statistics based on a 0.01% 

exceeded rain rate of 30 mm/hr, and the prediction of the network simulator using a 

single scan line 
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Figure 9.1.7 Temporal autocovariance function for 10-second accumulations of the 

measured real link attenuation and 2D network simulation at the 5.5 km scales 

 

9.1.5 Summary 

 

The 2D interpolation of radar data derived from a single ray appears to be able to 

predict the first and second order statistics of individual links (or collinear link 

networks) to promising accuracy. However, the 2D algorithm produced anomalous 

results. These anomalies were addressed in the 3D algorithm. The results from 3D 

disaggregation and interpolation are described in next section. 

 

9.2 Fade Modeling Based on 3D Interpolation 

 

The temporal rain rate data derived from the radar, with a sampling interval of 10 

minutes and spatial time resolution of 300 m, has been downscaled to a sampling 

interval of 9.375 s and spatial resolution of 37.5 m. In this section, these fine-scale 

rain rate maps will be used to predict the average annual statistics for a range of 38 

GHz microwave links. These will be compared to statistics derived from 

measurements on real links and with ITU-R model predictions. 
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9.2.1 Attenuation Compared with Measured Real Link 

 

Figure 9.2.1 illustrates the average annual fade statistics for 38 GHz links of length of 

1 km, 5 km and 10 km. Simulation results are plotted using the original radar derived 

rain rate fields, the downscaled rain fields and Rec. ITU-R P.530-12 for a 0.01% 

exceeded rain rate of 30 mm/hr. This shows excellent agreement between simulation 

results and the ITU-R model down to exceedance probabilities of 0.05%. The 

simulation results are for 10 s statistics while the ITU-R model yields 1 minute 

averages. This should lead to bias in the comparison where the simulation results 

would yield more intense fades. However, below 0.05% of time the statistics for the 

longer links deviate from the ITU-R model. This may be due to the event sampling 

statistics i.e. the CRIE data may lack a representative selection of intense events with 

large spatial extent. 

 

Figure 9.2.1 Simulated attenuation statistics for 38 GHz links of length 1 km, 5 km 

and 10 km using CRIE data (dotted) and downscaled data (solid), compared with Rec. 

ITU-R P.530-12 using mm/hr 3001.0 R  (dashed) 

 

For further validation, a 38 GHz link with a 5.5 km path was monitored for six 

months and attenuation recorded with a one-second integration period. The real link 

attenuation data with a time resolution 1 second is accumulated to generate 10 
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seconds attenuation time series. The attenuation distribution calculated from 

interpolated radar data, real link and ITU-R Rec. 530 model is shown in figure 9.2.2. 

The flat curve around 50dB for real link attenuation distribution is due to the AGC 

limit. The measured link data contains large uncertainties due to the restricted period 

of data collection. The results could be quite different if a different 6 month period 

was used due to seasonality and general sampling statistics. The simulated results 

appear to underestimate the intensity of events at the 0.005% exceedance level, 

compared to both the measured link data and the ITU-R model. 

 

 

Figure 9.2.2  Measured 10-second, attenuation statistics for a 5.5 km, 38 GHz link 

(grey) compared with predictions derived from radar simulation (black) and ITU-R 

Rec. P.530-12, mm/hr 3001.0 R  

 

Two-years of attenuation data from a 3 km, 38 GHz link, with a time resolution 1 

minute, measured close to Chilbolton is used to compare with radar. The data has had 

a daily reference level estimated and removed. This compensates for many of the 

slowly varying fade processes. The radar attenuation data with a time resolution 10 

second is accumulated to generate 1 minute attenuation time series. Figure 9.2.3 

illustrates the measured and simulated attenuation exceedance statistics. In order to 

verify the second order temporal statistics, the measured and simulated temporal 
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autocovariance function is compared in Figure 9.2.4.  

 

Figure 9.2.3 shows excellent agreement between simulation results and measured link 

below exceedance probabilities of 0.01%. The autocovariance illustrated in Figure 

9.2.4 also shows excellent agreement. 

 

Figure 9.2.3 Measured one-minute attenuation statistics for a 3 km, 38 GHz link (grey 

solid) compared with predictions derived from radar simulation (black solid) and 

ITU-R Rec. P.530-12 

 

Figure 9.2.4 Temporal autocovariance function for 1-minute accumulations of the 

measured real, 38 GHz, 3 km link attenuation (dotted, dashed) and simulated radar 

attenuation (solid) 
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9.2.2 Summary 

 

The numerically generated fine-scale rain field time-series described in Chapter 8 has 

been used to simulate the time-series of rain fade on a range of 38 GHz links. The 

average annual, first and second order summary statistics have been generated and 

compared to ITU-R model predictions and some real link measurements. Very 

encouraging results have shown that the method can be used to predict rain fade 

exceedance and autocovariance for individual links. Furthermore, fade duration 

statistics can be predicted. Differences at low probabilities are probably due to the 

sampling inherent in the CRIE database i.e. they are probably within the variation 

produced if the experiment had operated longer or for a different two year period. 

This chapter has focused on validation of the predicted fade time-series for individual 

links. Further work will apply the simulation techniques to networks of more than one 

link. 
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CHAPTER 10 FADE DURATION STATISTICS 

 

The planning of radio communications systems requires an estimate of the average 

annual outage due to fading, which, at millimetric wavelengths, is generally 

dominated by the effects of rain attenuation. Links engineered for 99.99% availability 

experience outage for 50 minutes of an average year. However, the effects on systems 

are very different if this outage period occurs as a single 50 minute period or 50 

periods of one minute. The Fade Mitigation Techniques (FMT) employed to counter 

the effects of these outages would be very different. For example, an outage of 50 

minutes may be completely unacceptable and backup systems would be required 

where outages of a minute or so could be handled by introducing latency or buffering 

the data. Many systems take a significant period of time to restart communications 

after an outage, generally as the system has “lost lock” and receivers need to 

re-establish phase-lock and determine what data has not been successfully transmitted. 

For this reason, the number of very short outages is important. The design and 

implementation of FMTs require not only the knowledge of the annual long term 

attenuation statistics, but also of the dynamic characteristics of attenuation, such as 

rain fade duration, interfade intervals and fade slope. One of the criteria defining the 

quality of service is the probability of system being unavailable for a given time 

duration. Recommendation ITU-TG.821 (ITU, 1996) defines unavailable time as that 

where a link outage occurs for more than 10 consecutive seconds. 

 

The average annual fade duration distribution, of which extensive measurements have 

been made for a wide range of fade thresholds, is of interest in the planning of 

communication systems. Fade duration distributions are frequently presented as 

conditional probabilities of fades exceeding certain durations, given that the fade has 

exceeded a chosen threshold. This distribution can also be presented as the number of 

fades exceeding certain durations, once the threshold is exceeded. This representation 

provides information on the number of outages and system availability due to 

propagation on links, given a fade margin and an availability specification. 
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In this chapter, the rain fade time-series of a 38 GHz, 9 km link are simulated. Then 

the derived fade duration model and the Rutherford Appleton Laboratory (RAL) 

model are compared.  

 

10.1 Average Fade Duration 

 

In Chapter 2, I introduced the RAL rain duration model for the number of events in an 

average year N , where the point rain rate exceeds R  for a period greater than dt : 
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This model had been adapted to provide an estimate of the number of rain fade events 

experienced by a link in an average year. This was accomplished by devising two 

transformations. The first related rain fade to a point rain rate with the same 

exceedance probability. The second associated a rain fade duration to the duration of 

that rain intensity at a point. These relationships were optimised to yield an 

expression which matched the measured fade duration statistics on a 38 GHz 

experimental link 9 km path near Chilbolton. The model is based on the rainfall rate R 

(mm/hr) which gives rise to a given path attenuation, A , from the 

expression  RrdkRA   (dB); where k and   are constants obtained from ITU-R 

Recommendation P.838 and d  is the path length in km. The path length reduction 

factor, r , was derived from the RAL model. For a given fade depth A , in dB, the 

appropriate point rainfall rate, AR , can then be determined. Using this procedure, the 

model for rain rate durations was fitted to the 38 GHz fade data to yield the following 

expression for the number of fades AN exceeding a depth of A  dB and a duration of 

dt  seconds (Paulson and Gibbins, 2000 and Rec. ITU-R P.530-12): 
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The objective of the research has been to generate rain field time-series as an input 

into a general microwave link rain fade simulation tool. To test the ability of the 

system to predict temporal variation, we have simulated rain fade time-series of 38 

GHz links of length 9, 5 and1 km, and compared the derived fade duration model to 

the RAL model, Paulson and Gibbins (2000) and Rec. ITU-R P.530-12, see Figure 

10.1.1, 10.1.2 and 10.1.3. The RAL/ITU model uses a standard log-normal pdf to 

model exceedance distribution. A consequence is that the model becomes 

non-physical at short durations (around 10 s). However, the curves were originally 

only fitted to the number of durations longer than 30 s. For duration greater than 30 s 

with statistically significant numbers of events, the agreement is satisfactory. The 

RAL.ITU model appears to over-estimate the number of long duration events for the 

shorter links. The simulator predicts a large number of short events of 10 and 20 

second duration. These are outside the range of the RAL model but are very important 

for FMT design. These results are consistent with measured fade duration 

distributions reported to Ofcom task groups. It is currently unknown how much 

variation is introduced by year-to-year variations. It is possible that the shape of the 

curves will remain but the total numbers will vary. The high attenuation curves are 

expected to vary more due to the lower probability of the extremes they describe. 

 

 

Figure 10.1.1 The RAL fade duration model predictions for a 38 GHz, 9 km link 
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(solid) compared to the fade durations of a simulated link using downscaled 

(disaggregated and interpolated) radar data (dashed). The curves indicate number of 

events in an average year for attenuations of 8, 12, 16, 20, 24 and 28 dB, from top to 

bottom 

 

Figure 10.1.2 The RAL fade duration model predictions for a 38 GHz, 5 km link 

(solid) compared to the fade durations of a simulated link using downscaled radar 

data (dashed). The curves indicate number of events in an average year for 

attenuations of 8, 12, 16, 20, 24 and 28 dB, from top to bottom 

 

Figure 10.1.3 The RAL fade duration model predictions for a 38 GHz, 1 km link 

(solid) compared to the fade durations of a simulated link using downscaled radar 

data (dashed). The curves indicate number of events in an average year for 
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attenuations of 8, 12, 16, 20, 24 and 28 dB, from top to bottom 

 

 10.2 Summary 

 

One of the criteria defining the quality of communication system is the probability of 

the system being unavailable for a given time period. It is therefore useful to 

determine not only the annual statistics of signal attenuation due to rain, but also the 

statistics of the rain fade durations. The downscaling method described in the Chapter 

8 has been applied to simulate time-series of rain fade on a 38 GHz link and it has 

reproduced measured fade duration statistics. Simulated fade durations are consistent 

with the RAL fade duration model. They indicate the possibility that the RAL model 

over-estimates the number of long fade events on short links. The simulator results 

yield fade duration statistics for durations of 10 s compared to a shortest duration of 

30 s provided by the RAL model. These results provide some validation of the 

usefulness of the simulator. It is likely that the simulator could provide fade durations 

experienced by complex networks i.e. route diverse or multi-hop links. 
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CHAPTER 11 CONCLUSIONS AND FUTURE OUTLOOK 

 

The main objective of the work described in this thesis was the development of a 

simulation tool to predict joint rain fade time-series on arbitrary networks of 

terrestrial microwave links. This has been achieved. A major hurdle in the 

development of the simulator was the generation of time-series of fine-scale rain rate 

fields. A significant amount of effort has been exerted in the characterisation of 

fine-scale rain rate fields and the development and validation of numerical algorithms 

for the downscaling (disaggregation and interpolation) of these fields. In the process, 

analyses have been performed on rain fields that have never before been reported and 

some fundamental properties of rain rate fields have been observed. The resulting 

simulation tool represents a major step forward in rain fade modeling. Current 

internationally recognised fade models provide average annual distributions of 

one-minute rain fade averages on individual links. The simulator developed in this 

project yields joint rain fade time series of ten second averages for arbitrary networks 

of links. From these time-series, joint distributions can be calculated. In addition 

more complex statistics can be derived such as fade durations on arbitrary link 

networks. 

 

The following sections summarise some of the important conclusions reached in 

earlier chapters. The final section described further work in this area 

 

11.1 Summary of Conclusions 

 

11.1.1 Rain Field Analysis 

  

Multifractal statistics were identified as the most powerful and appropriate analysis 

tools for the characterisation of the stochastic properties of rain rate fields. The 

moment scaling and quantile scaling statistics had been calculated on rain rate 

time-series and rain fields before but never down to the fine scales reported in this 

thesis. In addition, three systematic errors were observed in the methods reported to 
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have been used to calculate moment scaling statistics from rain fields derived from 

radar data. A method to calculate moment scaling statistics from rain rates averaged 

over a regular polar grid have been devised and tested. The improved method has 

been shown to yield significantly different moment scaling exponents. 

 

The improved method was applied to radar data from the Chilbolton CAMRa radar in 

the UK and these were compared to statistics derived from 9 gauge-years of co-sited, 

rapid response rain gauge data. The resulting moments show smooth variation across 

the scales considered, 300 m to 10 km and 10 s to 6 hours. They are well 

approximated by two multi-scaling ranges with a scale break around 3 km or 200 s. 

The moment scaling function )(q  is convex, which implies the field has a 

multi-fractal structure. The gauge data allowed analysis over a wider range of scales 

and another scale break was observed around 10000 s. The scale break at 3 km or 200 

s becomes better defined at higher moment orders implying that it is present in 

intense rain. Intense rain occurs in small convective cells, typically with diameters in 

the range 4 to 8 km Harden et al (1974) and spacing 3 to 7 km, Veneziano et al (1996). 

The break at 2 km implies a finer structure within intense rain cells. Sinclair (1974) 

reports a scale break in the vertical wind velocity at 0.5 km, derived from penetrating 

flights through thunder storms. This should be observable in rain variation at 

integration times of 30 s and at the fine-scale limit of spatial scaling. However, this 

effect was not observed. 

 

11.1.2 Downscaling of Rain Field 

 

Once the stochastic variation of rain rate fields had been quantified, it was necessary 

to find numerical methods to downscale the fields to the fine scales necessary for 

radio link simulation. Rain field time-series derived from radar data is disaggregated 

in space but sampled in time and so different algorithms are required to increase the 

resolution in these dimensions. As an additional complication, radar derived rain rate 

fields include a systematic error due to the minimum measurable rain rate. The 
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stochastic downscaling algorithms needed to be robust in the presence of this error. 

 

The existing disaggregation algorithm due to Deidda has been used to refine the 

spatial resolution. This disaggregation has been constrained by extrapolating the 

moment scaling statistics measured on radar data, with the extrapolation justified by 

the smooth variation observed in rain gauge derived statistics over the comparable 

scale range. 

 

Interpolation has required the development of a new algorithm. The Asymmetric 

Random Midpoint Displacement algorithm has been developed. It is an extension of 

Voss‟s Random Midpoint Displacement algorithm and is loosely modelled on the 

Local Area Subdivision algorithm of Fenton and Vanmarcke. The algorithm allows 

the interpolation of log rain rate at any point in space time, given arbitrarily placed 

existing samples in a surrounding interpolation volume. The method has been tested 

on numerically generated fractional Brownian fields. 

 

Three characteristics of rain fields measured by radar needed to be addressed before 

these algorithms could be applied to them. Measured rain fields advected, were 

intermittent and were distorted by systematic errors in measurement. Methods were 

developed and tested to deal with all three of these effects. Combining these methods, 

Deidda‟s disaggregation algorithm and Asymmetric Random Midpoint Displacement 

allows the downscaling of rain field time-series to fine scales. The smallest scale 

possible is not limited by these algorithms but by the existence of rain measurements 

for verification. It is postulated that link rain fade data may be the best way to verify 

the downscaled rain fields. 

 

The downscaling methods have been applied to rain field time-series derived from the 

CRIE database. The refined rain fields have a spatial integration diameter of 37.5 m 

and a temporal sampling interval of 10 s. The interpolated rain map time series is 

used to predict the rain fade distribution and fade duration statistics of a range of 



 131 

microwave links and these are compared to published ITU-R models. Results have 

shown that the method can be used to predict rain fade exceedance and 

autocovariance for individual links. Furthermore, fade duration statistics can be 

predicted. 

 

11.2 Recommendation for Further Work 

 

This section contains a few of topics identified in the course of this research project 

which the author feels are worth investigating in the future. These possible future 

projects either develop the simulation method further or apply the link simulation tool 

to current problems in microwave telecommunications engineering. Development 

project include reduction of the finest temporal scale down to one second, application 

of the methods to a different radar database and adaptation of the CRIE results to 

different climates. Current engineering problems include the evaluation of FMTs 

including Automatic Transmit Power Control (ATPC) and Dynamic Modulation 

(DM). Furthermore, a general rain Rain Fade Duration model could be developed. 

 

11.2.1 Development of the Simulator 

 

The current simulator uses rain fields downscaled to spatial averages of 37.5 m 

diameter and temporal sampling of 10 s. For QoS prediction it is desirable to reduce 

the sampling interval to one second. The algorithms can achieve this but the rain 

fields cannot currently be verified. Rain rate measurements with a one second 

integration time are required. These could be produced by vertically pointing Doppler 

radar measurements. A special instrument would be required which could measure at 

altitudes occupied by terrestrial links i.e. below 50 m. Instruments such as acoustic 

disdrometers currently under development could provide these data in the future. 

 

This project used coarse scale rain field data derived form the CRIE database of radar 

measurements. This restricts the size of network that can be simulated to those with 

diameters less than 30 km. Other radar databases could be used and yield larger 
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simulation areas. The Nimrod rain radar network, run the UK Meteorological Office, 

produces rain fields spanning the entire UK with a range of voxel diameters from 1 to 

5 km and with a sampling time to 15 minutes. The application of the downscaling 

methods to these data are likely to require further developments but would yield a 

simulator that could be applied to national networks. At a minimum, a more 

sophisticated method to describe advections between rain fields would be required as 

the linear translation is unlikely to be adequate for fronts of this size. 

 

A weakness of the current simulator is its reliance upon rain rate as the fundamental 

parameter. Rain rate was chosen as it can be converted to specific attenuation at any 

frequency using Rec. ITU-R P.838-2. Also, many studies had been performed, and 

models existed describing, rain rate variation in time and space. The Rec. 838 

transformation from rain rate to specific attenuation is deterministic where the actual 

transformation is stochastic due to the variability in the drop size distribution. This is 

one of the major uncertainties in the simulation model. The CRIE database contains 

dual polarization radar data and these have been converted to rain rate using a 

two-parameter (M-P) drop size distribution. An alternative approach would have been 

to model the spatial-temporal variation of the DSD parameters rather than rain rate. 

This would have been entirely novel and would lack the foundations of known rain 

rate variation statistics. However, it would be an interesting future study. 

 

As the current simulator is based on CRIE data, the results are only applicable to link 

networks in the southern UK, or places with a similar climate. Starting with different 

data bases of radar data would yield simulators applicable to the climates where the 

data was acquired. However, numerical methods could probably be developed to 

adjust the simulator to other climates. The HYCELL pulse model scales the intensity 

and mean arrival rate of rain cells of different classifications to match a range of 

climates. It is likely that similar methods could be applied to the current simulator. 

Similar methods could be used to introduce year-to-year variation into the current 

simulator. Although considerably more speculative, the simulator could be used to 
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predict and quantify the effects of climate change on the telecommunications 

network. 

 

11.2.2 Automatic Transmit Power Control 

 

Most wireless local loop and fixed wireless access systems in the market already 

employ adaptive power control techniques. With power control Fade Mitigation 

Techniques, the transmitter power is adjusted in order to increase the radiated power 

during fading conditions. Given a reliable power control system, it could be possible 

to reduce the fixed margin during clear sky conditions, thereby improving the rate of 

frequency reuse. Adaptive power control has the ability to compensate for fades 

whilst reducing the potential for interference outside the network. The level of 

transmit power is adjusted dynamically, based on information such as the distribution 

of fades experienced by users within the network. Information on the distribution of 

fades can be obtained by employing monitoring stations at the periphery of the 

network, or by user terminals sending information back on their received power 

levels. 

 

Two recent Spectrum Efficiency Scheme projects (SES 2004-7 and SES 2006-1, 

reports on Ofcom web site) have examined the potential of ATPC on fixed links to 

reduce frequency reuse distances and assess the problems posed by introducing ATPC 

links into existing non-ATPC bands. Both projects concluded that ATPC was 

beneficial and the increase in outage due to interference was minimal. The advantage 

depends upon the incidence of wanted paths experiencing rain fade while unwanted 

paths do not, and so depends upon the spatial and temporal incidence of rain. The rain 

model used for these projects was extremely simplistic i.e. snap-shot FBfs not 

constrained to any real measurements and without advection i.e. time-series were not 

generated. The model assumed it rains everywhere. The repeat of this analysis by 

using developed simulator can be done. The expect is that, using this method 

illustrate by this work, link orientation will be shown to lead to different outage 

durations where it was not possible to assess this in the previous studies. Differences 
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between the two results will yield information on the sophistication of rain models 

necessary for spectrum regulation. 

 

11.2.3 Dynamic Modulation 

 

The RF links are run using fixed margins with the size of the margin dependent upon 

the maximum rain attenuation predicted for the service area. One way to increase the 

system data throughput is to manage each user terminal separately and have each one 

use as high a level modulation in combination with as a code rate as the instantaneous 

link conditions allow. As link conditions fade for each individual terminal, the 

modulation level and code rate is changed to maintain BER (Bit Error Rate) 

requirements. Dynamic modulation switching responds to fading by switching 

between various M-PSK modulation schemes, each at a different data throughput 

rate. 

 

Fixed links typically operate with a pre-set modulation scheme e.g. 16-QAM or 

64-QAM. Higher order modulation schemes yield higher capacities but require higher 

signal to noise plus interference ratio. As a channel degrades, due to attenuation of the 

wanted signal or increases in interference, high order modulation schemes rapidly 

loose capacity as the BER increases, where lower order modulation would yield 

higher capacity. A dynamic system would use high order modulation when the 

channel was clear and automatically reduce the modulation order as the channel 

degraded e.g. in rain, to optimise capacity. There is engineering overhead in building 

this capability into links so it is important that the benefits are quantified. This can 

only be achieved by second-by-second simulation of a variety of small networks i.e. 

combinations of path geometries, frequencies etc. Trails in India have suggested 

significant improvements for PMP systems, Hughs (2003). 

 

11.2.4 Fade Durations 

 

In Chapter 10 the RAL/ITU rain fade duration model was introduced and compared 
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simulation results for a range of links. The rain fade duration statistics could be 

calculated for a range of link frequencies and lengths, possibly with a one second 

integration time. Fitting parameterised distributions to these results, e.g. a Weibull 

distribution, would yield a general fade duration model for terrestrial links. A similar 

process could be used to generate a fade slope model for terrestrial links. 
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APPENDIX A 

ONE DIMENSIONAL INTERPOLATION SCHEME 

 

A stochastic, numerical method to interpolate point rain rate time-series to shorter 

sampling periods, while conserving the expected first and second order statistics is 

described in this section.  

 

Consider the sequence {X-2, X-1, X1, X2} which is interpolated to {X-2, Z-3, Y-1, Z-2, 

X-1, Z-1, Y1, Z1, X1, Z2, Y2, Z3, X2}. Then,  

021121   AXBXBXAXY  

121111   AYBXBYAXZ  

where  2,0 ii N   , the additive random variable being sampled from a Gaussian 

distribution. Thus: 

 

][)22(][ XEBAYE   

][)(][)(][ YEBAXEBAZE   

In order to conserve mean, i.e.      XEYEZE  , then: 

2
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 BA                                                       (A1) 
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1    AXBXBXAXAXBXBXAXEYE  

  ])[( 2

2112 AXBXBXAXE  

][)]2(4)1(4)1(2)3(222[ 22222 XEABABBABA    

where      ii XXEXE ][ 2
 

0)](2[ 21120   AXBXBXAXE   

2

0

2

0 ][  E  
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Thus: 
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For interpolation we choose    22 XEYE   to conserve variance and so: 
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2

1                                                     (A3) 

If variance is to be conserved then      222 XEYEZE   
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 by using radar 

data to calculate out  ii XXEXE ],[ 2
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9923.0)1(    
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9861.0)3(    

9835.0)4(    

Then:   

079.0A    421.0B     4211.00   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 140 

APPENDIX B 

TWO DIMENSIONAL INTERPOLATION SCHEMES 

 

A stochastic, numerical method to interpolate point rain rate time-series to shorter 

sampling periods based on 2D interpolation (ray) and 3D interpolation (square area), 

while conserving the expected first and second order statistics is described in this 

section. 

 

Consider a two-dimensional array of log rain rate samples   tkxjXXX i  ,  

sampled at spatial intervals of x along the ray (initially mx 300 ) and with a 

temporal sampling period of t , initially 10t  minutes. The single index i 

mapping onto the multi-index  kj, in 2D, is a notational convenience that makes 

algorithm development independent of the number of dimensions. The new 

interpolates for a set  iYY  via the Voss process  )(XSY . Here S represents 

smooth interpolation and   is the random noise process yielding Gaussian samples 

),0( 2

nN   .    

 

Figure B.1 2D interpolation by using 16 points in the neighborhood of iY . 

 

The following three conditions are required. 

First, )()( XEYE  . 

Second, )()( 22 XEYE  . 

Third,
 )(S , 

3/2 D , D stands for dimension. 
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If i

n

i

i XaXS 



1

)( , where 0ia  only in neighborhood of Y. 

Assume in the neighborhood,  XX i , ),0( 2

sN   . 

  ii aXXaEYE ])([)(   

To satisfy first condition )()( XEYE  ,  

1 ia .                                                         (B1) 
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 .                                                    (B2) 

According Voss algorithm, 
H

nn

22

1

2 2

  , where H is the Hurst coefficient, 

3/1H .                                                         (B3) 

During interpolation, a function is build as following before adding noise. 

 

2)1(1* FFF   , 1F  coefficients come from 2D or 3D sinc filter, 2F  has 

constant coefficients. 

 

In the case of 2D interpolation, 16 points are in use. During the first iteration, 
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, where 
0

iX  is the value of the average of 16 points. Thus, 
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0
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1
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i

XY . In order to conserve variance, i.e. 22

XY   , 
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0
16

15
X  . 

 

Figure B.2 2D interpolation by using 16 points in the neighborhood of iY (with 

coefficients A, B and C) 

 

A, B and C are coefficients ia  of F1 function illustrated in figure 2.2. 

F1=[B C C B; C A A C; C A A C; B C C B], where A=9/16, B=1/16, C=-3/16. 

F2=16/1[1 1 1 1; 1 1 1 1; 1 1 1 1; 1 1 1 1]. 

 

The filter coefficients for 2D interpolation are listed in Table B.1.  

Filter Coefficients AX BX CX 

F1 9/16 1/16 -3/16 

F2 1/16 1/16 1/16 

Table B.1 Filter coefficients for 2D interpolation. 

 

It is necessary to find the linear weighting factor a that satisfies the variance 

constraint. The target filter coefficient sum-of-squares can be estimated from the data 

and a then calculated using: 

24

116 2 


ia
   
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