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Abstract

High level modelling (HLM) for operational amplifiers (op amps) has been previously
carried out successfully using models generated by published automated model
generation (AMG) approaches. Furthermore, high level fault modelling (HLFM) has
been shown to work reasonably well using manually designed fault models. However,
no evidence shows that published AMG approaches based on op amps have been used
inHLFM.

This thesis describes an investigation into the development of adaptive self-tuning
algorithms for automated analogue circuit modelling suitable for HLM and HLFM
applications. The algorithms and simulation packages were writtenin MATLAB and the
hardware description language - VHDL-AMS.

The properties of these self-tuning agorithms were investigated by modelling a two-
stage CMOS op amp and a comparator, and comparing simulations of the macromodel

against those of the original SPICE circuit utilizing transient analysis.

The proposed agorithms generate multiple models to cover a wide range of input
conditions by detecting nonlinearity through variations in output error, and can achieve

bumpless transfer between models and handle nonlinearity.

This thesis describes the design, implementation and validation of these algorithms,

their performance being evaluated for HLFM for both analogue and mix mode systems.

HLFM results show that the models can handle both linear and nonlinear situations with
good accuracy in alow-pass filter, and model digital outputsin aflash ADC correctly.
Comparing with a published fault model, better accuracy has been achieved in terms of

output signals using fault coverage measurement.
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Chapter 1: Introduction

It is well known that most electronics manufacturing processes are not perfect; most
products may contain defects. An electronic product may fail either due to
manufacturing defects or out of specification performance. The latter can be caused by
inadequate design. Manufacturing defects include excess material shorting
interconnection wiring on printed circuit boards (PCBs) or integrated circuits (ICs),
open circuits due to breaks in wires and use of out-of-specification components. In
industry, many types of defects can happen with varying probability, which can be
reduced by improving the quality of the manufacturing process. Moreover, if the design
is not sufficiently tolerant of in-specification component or process variations a circuit
may be faulty even though it is manufactured correctly. With fault-free components,
fault tolerance should be improved if achip is designed far beyond the specification, but
this design may be more expensive, so no profits are made. Other factors including
simulation time, test application time and commercial costs aso need to be taken into

account. Therefore, efficient test is required so that manufacturers will not lose profits.

There are two approaches to test: structural test and functional test. The former, also
known as defect oriented test (DOT), is used to detect manufacturing defects directly
rather than the functional error produced. The latter ignores the internal mechanism of a
system or component and focuses solely on the outputs generated in response to
selected inputs and execution conditions, i.e., test the specifications of the device under
test (DUT). Functional test has always been the dominant approach for analogue circuits,
and it is often the only possibility without the availability of tools to support structural
test such as analogue fault simulation and associated fault models. Therefore, the DUT
Is sometimes overtested. Moreover, complete functional test is economically impractical
for production stage test of most digital integrated circuits (ICs), for example, a 32 bit
adder may require about 6,000 years to test all operations a 100MHz. Therefore,
structural test is normally adopted for digital circuits. This is feasible because digital
fault simulation using stuck-at faults and gate-level models is straightforward and
effective. Fault smulation and modelling can also be used in structural test, so that

DOT may be more efficient and effective.
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In recent years, functional complexity, speed and performance of analogue and mixed
signals ICs have increased, which have resulted in even higher test costs because the
tester needs to be more accurate and faster than the circuit under test (CUT), otherwise
it can not test all the specifications. Buying and running high performance anal ogue test
equipment (ATE) isvery expensive. Thus structural test is required for analogue circuits
due to its potential efficiency and low cost [Olbrich96] [Fang0l] [Aktouf05].
Furthermore, structural test may provide additional information on quality and
reliability which is not available from functional test [Rich92] [Healy05].

Anaogue test is very time consuming and expensive, its costs dominate approximately
90% of the whole testing cost in modern analogue and mixed mode ICs [Abra95].
Analogue test suffers from a lack of automated test pattern generation (ATPG)
algorithms, long testing time and unknown test quality [Bartsch99] [Healy05]. These
can be resolved by establishing design for test (DFT) and built-in self-test (BIST)
techniques [Ohletz91] [Russell93] [Renovell96] [Healy05] to improve testability.
Moreover, the test pattern generation can be simplified, because the test vectors are
generated internally, and it allows field testing to be performed for many years after
manufacture [Zwo00]. For digital circuits DFT and BIST are well established and easily
applied to amost al circuits. Unfortunately, in analogue domain, these techniques can

only be employed for certain classes of circuits [ Spinkso8].

It is desirable to use defect oriented test (DOT) strategies at the layout level in order to
simplify test of analogue or mixed mode circuits [Bratt95] [Kalpanal4]. Application of
inductive fault analysis (IFA) techniques for DOT development has received a lot of
attention. IFA was a subject of research beginning in the middle 1980s, including
several significant projects at Carnegie Mellon University [Ferguson88]. It is a
systematic and automatic method for determining what faults are most likely to take
place in a large circuit from details of the manufacture process such as circuit’s
technology, realistic defect occurrences, fabrication defect statistics, and physical layout.
IFA can distribute defects over the physical layout of the circuit, and simulate to
determine what faults may result. However, a description of the manufacturing defect
statistics is required, which provides a list of possible electrical faults when mapped

onto the layout. At circuit level the fault list includes short, opens, breaks in lines and

1-2



parameter variations in both active and passive components such as resistors, capacitors

and transconductors. Therefore, DOT can be enhanced with IFA [Harvey95].

During the last few years, high level fault modelling (HLFM) and high level fault
simulation (HLFS) techniques have been proposed for modern complex analogue and
mixed mode system design due to its high speed [Wilson02] [KilicO4] [Joannon08§].
Fault simulation is an essential element in the development of structural test programs
for digital, analogue and mixed mode ICs, and can be carried out at transistor level and
high level. The aim of simulation is to define an efficient structural test program and to
simulate the behaviour of a circuit in the presence of a fault specification. Simulation
and modelling are dynamically related, especially when high level simulation is run,
hence a modelling technique is required.

High level models comprise both faulty and fault-free models. High level fault-free
modelling may simply indicate behaviour of a fault-free circuit, but normally it is not
able to cope with faulty conditions with strong nonlinearity. The only way to solve this
is to replace the fault-free model with afaulty one. Furthermore, in fault-free simulation,
the difference between transistor level and high level may not be obvious, but this may
be shown under fault smulation. HLFM techniques have shown the potential ability to
deal with at least some degree of nonlinearity in large systems.

Unlike for linear systems, no technique currently guarantees for completely general
nonlinear systems, even in principle, to produce a macromodel that conforms to any
reasonabl e fidelity metric. The difficulty stems from the fact that nonlinear systems can
be widely varied, with extremely complex dynamical behaviour possible, which is very
far from being exhaustively investigated or understood. Generally in view of the
diversity and complexity of nonlinear systems, it is difficult to conceive of a single
overarching theory or method that can be employed for effective modelling of an

arbitrary nonlinear block.

Models can be obtained either manually or automatically. Automated model generation
(AMG) methodologies are becoming an increasingly important component of
methodologies for effective system verification. Similar to manual creation, AMG can

generate lower order macromodels via an automated computational procedure by
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receiving the information from transistor level models [RoychowdhuryO3]
[Roychowdhury04].

There are several broad methodologies for AMG, a fundamental decision is the model
structure, which in general terms divides into linear time-invariant (LTI), linear time-
variant (LTV), nonlinear time-invariant and nonlinear time-variant types. An estimation
algorithm is then required in order to obtain parameters for these models. These
algorithms may use lookup tables [Yang04], radia basis functions (RBF) [Mutnury03],
artificial neural networks (ANN) [Daval09l] [Zhang00] and its derivations such as
fuzzy logic (FL) [Kaehler] and neura-fuzzy network (NF) [Uppal05], and regression
[Middleton90] [Ljung99]. Model generators can also be categorized into the black, grey
or white box approaches, depending on the level of existing knowledge of the system’s

structure and parameters.

These models are in the form of mathematical equations that reproduce the input-output
relationships of the original circuit, and can be easily converted into any format
convenient for use with system-level simulation tools, e.g., VHDL-AMS [Ashenden03],
MAST [Saber04], and even as SPICE subcircuits. piecewise polynomial (PWP) is
further used to capture different loading effects, simultaneous switching noise (SSN),
crosstalk noise and so on [Dong04] [Dong05], faster modelling speed is achieved, but

multiple training datais required to cover various operating regions.

However, AMG may produce high order models of excessive complexity (e.g.,
[Huang03] [Tan03] [Wel05]), in which case model order reduction (MOR) techniques
are required [Gielen05]. A survey paper [Roychowdhury04] discusses MOR techniques
with respect to various model types, and in avariety of contexts: LTI MOR [Pilliage90],
LTV MOR [Phillips98] [Roychowdhury99] and weakly nonlinear methods including
polynomial-based [LiO3] [LiO5], trajectory piecewise linear (TPWL) [RewienskiOl],
and piecewise polynomial (PWP) [Dong03].

Unfortunately, there are not any papers describing the use of AMG approaches for
HLFM at a system level. For straightforward system simulation relatively simple
models may be adequate, but they can prove inadequate during HLFM and HLFS. The

accuracy and speedup of existing models may be doubted when fault simulation is
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implemented because faulty behaviour may force (non-faulty) subsystems into highly
nonlinear regions of operation, which may not be covered by their models. Multiple

training datais required to cover the potentially wide range of operating conditions.

Although a fault model can behave accurately in a circuit, it may fail in alarge system
due to fault propagation [Zw097] [Bartsch99]. It is a magor problem in the industry
because if afault distributes along a fault propagation path in a system, several process
can be affected. It is therefore important to understand the mechanism of propagation
that identify the order of occurrence of events and specify the paths of fault propagation
in causal qualitative models [Batra04]. For HLFM techniquesin a system, it iscrucial to
know whether or not the high level fault-free operational amplifier (op amp) model is
able to correctly model propagation of the faulty behaviour, and how fault propagation
can be predicted so that the suitable model is chosen for the whole system. Therefore,
not only parameters of the model but aso the system need to be varied [Bartsch99].

The general am of this study is to prove that models generated using automated model
generation can be employed to implement high level fault modelling (HLFM). This
thesis begins with an introduction to model generation and model order reduction
approaches in chapter 2. In chapter 3 fault modelling techniques and other important
approaches for fault detection are introduced. High level fault modelling and simulation
using MAST is reviewed in chapter 4. The algorithm termed multiple model generation
system (MMGS) for the automated model generation (AMG) is developed for single-
input and single-output (SISO) systems in chapter 5 followed by the introduction of
MMGS for multiple-input single-output (MI1SO) systems in chapter 6. Chapter 7
introduces high level modelling using the models generated from last two chapters. The
multiple model generation system using the delta operator (MMGSD) is discussed in
chapter 8 followed by the high level fault modelling in chapter 9. In chapter 10 HLFM
of a 3bit flash ADC is investigated. In chapter 11 conclusion and future discussion are
supplied.
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Chapter 2: Literature Review of
Approaches for High Level
Modelling and Automated Model
Generation

The aim of the chapter is to review some model generation approaches for high level
fault-free models. These approaches can be realised either manually or automatically.
The genera structure of system modelling is reviewed in section 2.1. In section 2.2
various modelling techniques are introduced. Automated model generation approaches
for high level fault-free models are discussed in section 2.3. Section 2.4 reviews various

approaches to generate a mode in different computing languages.

2.1 Review of Possible Models of a System

Figure 2-1 shows the possible abstraction hierarchy of an electronic system [Pella97].
This is aso reckoned by [Ashenden03] [Joannon08]. Models, which can refer to both
“circuits’ and “devices” [Getreu93], are produced by combining lower-level building
blocks to create higher-level building blocks. Lower-level blocks can be either
elemental models or previously created hierarchical models, elemental intrinsic building
blocks are at the bottom of all hierarchical models [Fang01] [Joannon06].

Conservation

laws are not .
considered / Functional \
Conservation Behavioural Level of
laws are valid abstraction in

structural view

I
/ Circuit \

/ Component

Figure 2-1: Abstraction hierarchy [Pella97]
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On moving from bottom to top the structure, the circuit model becomes simpler and the
simulation speed can be increased significantly. At the component level transistors and
passive devices are available as basic elements; the circuit level consists of operational
amplifiers (op amps), comparators and so on; at the macro level the functionality of a
basic element is replaced by a more abstract representation including controlled voltage
and current sources. Models at the behavioura level comprise mathematical
relationships between input and output signals. The connection pins of these models
carry physical signals, which are subjected to conservation laws. These are Kirchhoff’s
current and voltage law in electrical systems; at the functional level, complex elements
such as data acquisition or even modem blocks are available, but the conservation laws
are not available at connection pins, that is, signals are not physical any more [Rosen98]
[NikitinO7]. Each level in the hierarchy may be represented by a model, so the whole
system can be simulated by high level modelling (HLM) to deal with nonlinear
behaviour. Moreover, structure of the system is less complex which may result in

reduction of ssimulation time [Kalpana04] [Joannon08g].

Another design flow methodology is from top to bottom methodology seen in Figure
2-1, which is the opposite way to bottom to top methodology. One of the advantages of
this methodology is that behavioural models have previously been built, so each
structural block description can be validated in the overall system using other block
behavioural models [ Joannon06].

Moreover, a method between top to bottom and bottom to top methodologies is the
“Meet in the middle” methodology [Joannon06]. It takes advantages of each method.
The first step is coming from top to bottom design method: system architecture is
described thanks to functional block models. Once again, system specifications are
budgeted into numerous block specifications. In this methodology, a trade-off between
system engineers and component designers alow them to determine redlistic
specifications for each block. Then these blocks are separately designed and assembled
together. Finally, the system is validated as in a bottom to top flow.
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2.2 Review of Various Modelling Techniques

The aim of the section is mainly to introduce three types of models because they will be
used in the thesis: macromodels, behavioural models and transfer function models.
Macromodels and behavioural model are commonly used in these days. These models

normally include three stages as shown in Figure 2-2.

|:$ Input Stage i Function Stage i Output Stage >

Figure 2-2: The proposed genera structure of a high-level model

The input stage acts as an interface between electrical signals outside the block and the
internal representation of the function by mathematical equations in the function stage.
The input stage models properties such as input resistance, input capacitance, input bias
current, input offset voltage, the bounds of input current and the limits of the input
voltage. The function stage is the centra part of the model, which makes use of
mathematical functions to represent any kind of analogue circuit such as op amps,
ADCs and DACs. The output stage maps the results provided by the function stage into
the electrical environment of the output block. Like the input stage, it can be
implemented with components such as transistors, resistors and mathematical functions
[Fang01] [NikitinQ7]. There may be some cases, in which more stages are required to
model extra information. [Bartsch99] developed a behavioura model that consists of
two middle stages in order to include extra poles and zeros. In following subsections the

strengths and weakness of these modelling techniques are addressed.

2.2.1 Macromodelling (structural approach)

In macromodelling two techniques can be utilised: the simplification and the built-up
technique [Joannon06]. The former replaces parts of an electronic circuit with ideal
components, while the built-up technique completely rebuilds a part of the circuit with
ideal elements to meet certain external circuit specification. The well-known Boyle op

amp macromodel [Boyle74] is an excellent example of macromodelling. The model
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employs ideal components such as ideal current sources and ideal transistors based on
SPICE primitives [Bartsch99]. Macromodels themselves can become building blocks
for other models. However, there is a significant restriction: the modeller must use the
pre-defined element, which can limit the ability to easily incorporate required effects
[Getreu93].

2.2.2 Behavioural modelling

Behavioural modelling uses mathematical equations and control statements such as
If...then...else. It is well-suited to provide models that match requirements of designers
at all stages of the design process. This type of model can describe the behaviour of a
block directly without consideration of how the block is built. A ssimple example is the
2-pole transfer function: k/(s+1)(s+2). Behavioural modelling through the use of a
hardware description language (HDL) is often preferred with respect to macromodelling
because of its high speed and simplicity [Joannon06] [NikitinO7]. Moreover, its
mathematical equations can be easily converted into the format of HDLs such as
VHDL-AMS and its high simulation speed [Getreu93] [Dong03]. Like macromodelling
there are aso two ways to realize behavioural models. analytical and statistical
[Getreu93]. The analytical description of a sub-circuit is usually created by a designer.
However, it may still be an expensive approach and behavioura modelling still needs
verification even though an analytical approach is adopted. A statistical behavioural
model can be built in the same way as a statistical macromodel [Yang98]. Unlike
macromodelling, behavioural modelling does not need look-up techniques. Once the
structure of a macromodel is known, a behavioural model can always be developed,

however, not aways vice versa.

2.2.3 Transfer function modelling

Transfer function models do not have the full capabilities of equation based descriptions.
They make use of the flexibility of the SPICE dependent sources (VCCS, CCCS, VCVS
and CCVS), where the output source has a transfer function or nonlinear dependency on
the input [Bartsch99]. The implementation of these sources can be “hidden” by being
coded directly into the simulator, but they can be recognised by the restrictions of using
afixed number of pins and being unidirectional [Getreu93].
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2.3 Review of Automated Model Generation (AMG)
Approaches

In this subsection work on automated model generation (AMG) methodologies is
reviewed. The model generated can be structured as either linear-time invariant (LTI),
linear-time varying (LTV), nonlinear-time invariant or nonlinear-time varying. LTI no
doubt form the most important class of dynamical systems. The basic structure of aLTI
block for mixed mode circuits is illustrated in Figure 2-3, where u(t) and y(t) represent
inputs, and output to the system in the time domain, respectively. U(s) and Y(s) are
formsin the Laplace domain. The definitive property of any LTI system is that the input
and output are related by convolution with an impulse response h(t) in the time-domain,
i.e., y(t) =x(t)-h(t), their transforms are related to multiplication with a system transfer
function H(s), i.e., Y(t) = X(t)-H(t). Their relationship can be expressed by partial
differential equations (PDEs) or ordinary differentia equations (ODES). Such
differential equations can be easily implemented using analogue hardware description
language (AHDL) descriptions. A typical model structure for LTI is AutoRegressive
with eXogenous (ARX) that is able to describe any single-input single-output (SISO)
linear discrete-time dynamic system [Ljung99].

Impulse response h(t)
u(t)/u(s) ODESPDEs y/Y (s)
Transfer function H(s)

Figure 2-3: Linear time invariant block

LTV are used in practice because most real-world systems are time-varying as a result
of system parameters changing as function of time. They also permit linearization of
nonlinear systems in the vicinity of a set of operating points of a trgjectory. Similar to
LTI systems, LTV can aso be completely characterized by impulse responses or
transfer functions. The main difference between them is that time-shift in the input of
LTV does not necessarily result in the same time-shift of the output. A basic structure of
LTV is depicted in Figure 2-4, where u(t) and y(t) represent inputs, and output to the

system in the time domain, respectively. U(s) and Y(s) are formsin the Laplace domain.
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Impulse response h(t,tau)
u(t)/U(s) T-V ODES/PDEs y(O)/Y (s)
Transfer function H(t,s)

Figure 2-4: Linear time varying block

LTV are better able to handle time variation in state-space forms [Ljung99].
Furthermore, nonlinear models such as the Wiener and Hammerstein model, and
Situation-Dependent AutoRegressive with eXogenous (SDARX) give much richer

possibilities to describe systems.

These models can be generated by using estimation algorithms, which comprise lookup
tables [Yang04], radia basis functions (RBF) [Mutnury03], artificial neural networks
(ANN) [Daval091] [Zhang00] and its derivations such as fuzzy logic (FL) [Kaehler] and
neural-fuzzy network (NF) [Uppal05], and regression [Simeu05]. Model generators can
also be categorized into the black, grey or white box approaches, depending on the level
of existing knowledge of the system’s structure and parameters. [Dong05] indicates that
white-box methods can produce more accurate macromodels than black-box methods.

However, thiswork was only applied to alimit number of digital circuits.

Regression is an approach that is of interest in this thesis. It is a form of statistical
modelling that attempts to evaluate the relationship between one variable (termed the
dependent variable) and one or more other variables (termed the independent variables)
[Regression]. It can be divided into linear regression and nonlinear regression [Ljung99]
for generating linear or nonlinear models. [McConaghy05] [McConaghyO5a] use the
regression approach [HongO03], via the predicted residual error sums of squares (PRESS)
statistic [Breiman96], to test predictive robustness of linear models that are generated by
an automatic symbolic model generator named CAFFEINE (Canonical Functional Form
Expression in Evolution). CAFFEINE takes SPICE simulation data as inputs to generate
open-loop symbolic models by using genetic programming (GP) via a grammar that is
specially designed to constrain the search to a canonical functional form without cutting
out good solutions. Results show that these models are interpretable, and handle
nonlinearity with better prediction quality than posynomials (coefficients of a

polynomial need not be positive, and, on the other hand, the exponents of a posynomial

2-6



can be rea numbers, while for polynomials they must be non-negative integers).
Unfortunately, McConaghy et a did not address whether the generated model can be
fitted into a large system and model nonlinearity well. Additionally, speed of model

generation was not mentioned.

Linear models can be obtained using recursive least square (RLS) estimation. It is a
mathematical procedure for finding the best-fitting curve to a given set of points by
minimizing the sum of the squares of the offsets of the points from the curve [Ljung99].
Its genera process is shown in Figure 2-5, where u(t) is the input stimulus, which is
used to connect both a system and the estimator; y(t) is the output response from a
system using the transistor level simulation (TLS); yg(t) is the output response using an
estimation approach such asthe RLS.

Origina

; Input u(t) Output y(t)
signals

/\/\/\—> A System > /\/\/\

(TLS)
Estimated

Output y(t)

Estimator
RLY AVAVA

A 4

Figure 2-5: The general process of the estimation

Both the system and estimator use the input stimulus to produce individua output
response, both response are then compared, if the difference is significant, the

parameters of the model will be changed in order to achieve smaller difference.

This thesis will make use of algorithms to derive models based on [Wilkinson91]
[Middleton90]. The following outlines the algorithms used. [Wilkinson91] employ RLS
estimation combined with the delta operator [Middleton90] to obtain the transfer
function of areal time controller for a servo motor system instead of using discrete-time
transfer function because that model coefficients in discrete-time models strongly
depend on the sampling rate, which result in aiasing and slow simulation time. By

using the delta operator the coefficients produced relate to physical quantities, as in the
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continuous-time domain model, but are less susceptible to the choice of sampling

interval [Wilkinson91]. Initially a discrete-time system is given in Eq. 2-1:

yit)=—ayt-)-a,yt-2)—-...a,y{t—na)+but-1+bu(t-2)+...b u(t—nb)

Eqg. 2-1
This equation is then written in alinear regression form, as shown in Eq. 2-2:
y(t) =o' (t)0 Eq. 2-2

where 0 is the parameter vector shown in Eq. 2-3, ¢(t) isthe regression vector displayed
Eq. 2-4.

0=[a1a; ... aabi by ... bu]" Eq. 2-3
o' () =[-y(t-1)...—y(t—na) u(t—1)...u(t—nb)] Eq. 2-4

The least square estimate (LSE) of the parameter vector can be found from
measurements of u(t) and y(t) using Eq. 2-5 [Ljung99]:

o(t) {%Zq)a)qf (t)} {%Zcpa)y(t)} Eq. 2-5

Its recursive form is expressed in EQ. 2-6, where &(t) is the prediction error, A(t)
represents forgetting factor (ff), P(t) indicates covariance matrix, L(t) isthe gain vector.

O(t) =0(t—1) + L(t)e(t)
£(t)=y(O) -9 (O -D
L) = Pt=De(®
() +¢" OP-Do()
P =L | p_1 - Pt=De®e’ (t)P(t—l)}
() A0 +¢" OPE-Do()

Eq. 2-6
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The linear regression is then restructured using the delta operator as shown Eq. 2-7
[Middleton90], where o represents delta, q is the forward shift operator and Ts is the
sampling interval. The relationship between ¢ and q is asimple linear function, so 6 can
offer the same flexibility in the modelling of discrete-time systems as g does.

5=9-1 Eq. 2-7

This operator behaves as aform of the forward-difference formula, as shown in Eq. 2-8
[Burden85]. Thisis used extensively in numerical analysis for computing the derivative

of afunction at a point.

f(x+h)— f(x)
h

f'(x)= Eq. 2-8

The delta operator makes use of the discrete incremental difference (or delta) operator
that whilst operating on discrete data samples, is similar to those of the continuous-time
Laplace operator. A better correspondence can be obtained between continuous and
discrete time if the shift operator is replaced by a difference operator that is more like a
derivative [Middleton90].

A similar procedure is used to achieve regression based on the delta operator. This starts

by considering a continuous time transfer function shown in Eq. 2-9.

b,s" +bs"" +...h,s°
s"+as™+...a,s°

G(s) = Eg. 2-9

When Ts is sufficiently short, the continuous time transfer function G(s) is equal to the
deltatransfer function G(o) [Middleton90] displayed in Eq. 2-10.

t) bo"+bs"t+...bs°
G(6):y(): Om b.l.m_l n 5
ut) o"+ad™ +...a,0

Eq. 2-10

After arranging this equation, Eq. 2-11 is obtained:
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yt)d" =—(as™ +...+a, ) y(t) +(b,d" +...+b )u(t) Eq. 2-11

This can be written as Eq. 2-12 [Middleton90], which is similar to Eq. 2-2:

S™Y(t) =" (1) Eq. 2-12

where
O0=[a1a... am boby ... by’ Eq. 2-13
o' (1) =[-6™ y(t)...—8%y(t) S u(t)...5°u(t)] Eq. 2-14

Using a similar approach to least square estimate (LSE) in the discrete-time transform,
the parameter vector is obtained using the delta operator in Eq. 2-15:

o(t) {%Zq)(mﬂ (t)} [%Zw)émy(t)} Eq. 2-15

RLSisalso obtained in EQ. 2-16:

0(t) = 0(t —1) + L()&(t)
&(t) =5"yt) - o' (1Ot -1
A(t) + o (P -Do()
A) A +o" OPE-Do(t)

Eq. 2-16

However, the approach in [Wilkinson9l] is only available to any single-input single-
output (SISO) systems.

Unfortunately, AMG may produce high order models of excessive complexity for both
continuous-time and discrete-time systems, so model order reduction (MOR) techniques
are required. The purpose of MOR is to use the properties of dynamical systems in

order to find approaches for reducing their complexity, while preserving (to the
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maximum possible extent) their input-output behaviour. It comprises a branch of
systems and control theory [RoychowdhuryO4]. Combining MOR with the model
structures produces new model structures dubbed LTI MOR [Pilliage90], LTV MOR
[Phillips98] [Roychowdhury99] and weakly nonlinear methods including polynomial-
based [Li03] [LiO5], trajectory piecewise linear (TPWL) [RewienskiOl], and piecewise
polynomia (PWP) [Dong03].

Mathematically, a LTI model with a MOR method is expressed as a set of differential
equations. In EQ. 2-17 u(t) represents the input waveforms to the block and y(t) are the
outputs. The number of inputs and outputs is relatively small compared to the size of

x(t), which is the state of the interna variables of the block. A, B, C, D and E are
constant matrices, E& Ae R™,Be R™",C e R”",u(t) e R".

Ex = Ax(t) + Bu(t)

y(t) = CTx(t) + Du(t) Bq. &A1
MOR methods for LTI systems fall into two major groups. Projection-based methods
and Non-projection based methods. The former consists of such methods as Krylov-
subspace (moment matching methods), Bal anced-truncation method, proper orthogonal
decomposition (POD) methods etc. Krylov-subspace based techniques such as Padé-
viaLanczos (PVL) techniques [Feldmann95], Krylov-subspace projection methods
were an important milestone in LTI MOR macromodelling [Grimme97]. Non-
projection based methods comprise methods such as Hankel optima model reduction,

singular perturbation method, various optimization-based methods etc. Via Krylov-

subspace operation, reduced models are obtained in Eq. 2-18, where E,AB,C are

reduced order matrices, E& Ac R‘M’,ﬁe R‘M’,ée RP9 W and V are matrices for

spanning the matrices.
E=W'EV,A=WTAV,B=W'B,C =CV Eq. 2-18

However, the reduced models using Krylov methods retained the possibility of violating
passivity, or even being unstable [RoychowdhuryO3]. In this thesis we model

operational amplifiers (op amps) instead of passive systems. A passive system is
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defined as one that can not generate energy under any circumstances. A system is stable
for any bounded inputs, its response remains bounded. In a LTI model passivity
guarantees stability if its response remains bounded for any bounded input. Passivity is
a natural characteristic of many LTI networks, especially interconnect networks. It is
essential that reduced models of these networks also be passive, since converse implies
that under some situation of connectivity, the reduced system will become unstable and
diverge unboundedly from the response of the original system [Roychowdhury04]. An
algorithm termed PRIMA (Passive Reduced-Order Interconnect Macromodeling
Algorithm) [Odabasioglu97] has been developed to preserve this possibility. It
generates provably passive reduced-order N-port models for RLC interconnect circuits.
The modified nodal anaysis (MNA) equation is formed using these ports along with
sources in time domain as seen in Eq. 2-19:

Cx, =-Gx, + Bu,
. . Eqg. 2-19
Iy =L X

n

where the vectors iy and uy indicate the port currents and voltages respectively, and C,
G are matrices representing the conductance and susceptance matrices.

The Arnoldi agorithm [Silveira96] is employed by PRIMA to generate vectors required
for applying congruence transformations to the MNA matrices, i.e, V=W. These
transformations are used to reduce the order of circuits [Kerns95]. Because of the
moment-matching properties of Krylov-subspaces, the order reduced model can comply
with the original model up to the first g derivatives, where q is the order of the reduced
model. Models from PRIMA are able to improve accuracy compared with Arnoldi.
Unfortunately, it has drawback in that model size is proportiona to the number of
moments (moment is matched by multiplying by the number of ports). Thus for large

port numbers the algorithm leads to impractically large models.

This can be improved by using the truncated balanced realization (TBR) approach
presented originaly in [Moore81]. TBR based techniques can be classed as positive-
real TBR (PR-TBR), bounded-real TBR (BR-TBR) and hybrid TBR [Phillips02].
Phillips et a present an algorithm based on the input-correlated TBR for parasitic
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models, which shares some of their advantages such as computable error bounds. They
claim that the size of parasitic models from projection-like procedures can be reduced
by exploiting input information such as nomina circuit function. This algorithm can
compute guaranteed passive, reduced-order models of controllable accuracy for state-
space systems with arbitrary internal structure. However, TBR methods are not
commonly used for reduction from three-dimensional simulation because the
computational cost grows cubicaly with origina system’s size. [Kamon00] combines
Krylov subspace techniques with TBR methods so that the size of TBR is reduced and
potentially the computational cost can be reduced.

LTI MOR may not be applicable for many functional blocks in mixed signal systems
that are usually nonlinear. It is unable to model behaviours such as distortion and
clipping in amplifiers. Therefore, LTV MOR is required. The detailed behaviour of the
system is described using time-varying differential equations as shown in Eq. 2-20:

E(t)x= A(t)x(t) + B(t)u(t
(t) (T)() (©u(t) Eq. 2.20
y(t) = C(t)" x(t) + D(t)u(t)
The dependence of A, B, C, D and E on t is able to capture time-variation in the system.
This time-variation is periodic in some practical case such as in mixers, the loca
oscillator input is often a square waveform or a sine waveform, switched or clocked

systems are driven by periodic clocks [Roychowdhury03].

It is known that LTV systems can not directly use LTI MOR methods due to the time-
variation of the impulse response and transfer function. However, [Roychowdhury99]
demonstrates that LTI model reduction techniques can be applied to LTV systems, by
reformulating Eq. 2-20 as a LTI system similar to Eqg. 2-17, but with extra artificial
inputs that capture the time-variation. The reformulation firstly separates the input and
system time variations explicitly using multiple time scales [RoychowdhuryQ1] in order
to obtain an operator expression for the transfer function H(t,s) in Figure 2-4. This
expression is then evaluated using periodic steady-state methods [Kundert90] to achieve
an LTI system with extra artificia inputs. Once this LTI system is reduced to a smaller
one using any LTI MOR technique, the reduced LTI is reformulated back into the LTV
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system form seen in Eq. 2-20. Moreover, [Phillips98] [Phillips00] claim that without the
use of multiple time scales the LTV-to-LTI reformulation may still be performed using

standard linear system theory concepts [Zadeh63].

Although LTV MOR may be used when modelling some weakly nonlinear systems, in
most of cases nonlinear system techniques are required for such systems. A standard
nonlinear system formation is based on a set of nonlinear differential-algebraic
equations (DAEs) shown in Eq. 2-21, where, xe R", nisthe order of matrices, x(t) and

y(t) indicate the vectors of circuit unknowns and outputs, u is the input, q(-) and f ()

are nonlinear vector functions, and b and ¢ are input and output matrices, respectively.

J(x(t)) = f (x(t)) + bu(t

q(())T (x(t)) +bu(t) Eq. 221
y(t) =c x(t)

A polynomia approximation is simply extension of linearization, with f(x) and q(x)

replaced by the first few terms of a Taylor series at the bias point Xy as shown in Eq. 2-

22, where q(x) = x (assumed for simplicity), ® is the Kronecker tensor products

operator, A = Tl'aaTT

possible to leverage an existing body of knowledge on weakly polynomial differential

eR™ . The utility of this system in Eq. 2-22 isthat it becomes

X=Xo

equation systems.

%(x(t»= F(30) + A K= %) + A (X— %) ® (X— %) + A (X~ %) +bu(t)
y(t) = C'x(t)

Eq. 2-22

Volterra series theory [Schetzen80] and weakly nonlinear perturbation techniques
[Nayfeh95] can then be used to justify a relaxation-like approach for this kind of
systems. The former provides an elegant way to characterize weakly nonlinear systems
in terms of nonlinear transfer functions [Volterral. By using Volterra series, response x(t)

in Eq. 2-22 can be expressed as a sum of responses at different orders, i.e,

X(t) :an (t), X, is the nth-order response. The linearized first order through third

n=1
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order nonlinear responses in Eq. 2-22 need to be solved recursively using Volterra

series as shown in Eq. 2-23 to Eq. 2-25, where (X, ® X,) = % (X ®X,)+ (X, ®x)) .
d
s (x,(t)) = Ax, +bu Eq. 2-23

%(xz(t» = A%+ A (X ® xl)—%(xl ®x,) Eq. 2-24

9 @xox)-24ax) EQG 225

C060) = Ak + 24, @) + Ax B ©X) +

The nth-order response can be related to a Volterra kernel of order n, hy(z1,...,7n), Which
Is an extension to the impul se response function of the LTI system exhibited in Eg. 2-26,
to capture both nonlinearities and dynamics by convolution. Volterra kernels are the
backbone of any Volterra series. They contain knowledge of a system’s behaviour, and

predict the response of the system [Volterra].
X (t) = j j h.(ty....t Ut —7,)...u(t—7,)dr,..dz, Eq. 2-26

Alternatively, a variant that matches moments at multiple frequency points is shown in
Eqg. 2-27, where hy(z,...,zn) is transformed into the frequency domain via Laplace

transform.
Ho(So8) = [ [ (@7, )e 00 597de, L dr, Eq. 2-27

H,(s,...,s,) isreferred to as the nonlinear transfer function of order n. The nth-order

response, x,, can also berelated to theinput using H,(s;,...,S,) -

Unfortunately, the size of Volterra based nonlinear descriptions often increase
dramatically with problem size. [Li0O3] combines and extends Volterra and projection
approaches using a method termed NORM (Nonlinear model Order Reduction Method)
to reduce the model size. This method computes a projection matrix by explicitly

2-15



considering moment-matching of the nonlinear transfer function. For the system in Eq.

2-22, thefirst-order transfer function of the linearized system is seen in Eq. 2-28:
(s—A)H,(s)=bor H,(s)=(s-A)"'b Eq. 2-28

Without loss of generality, Eq. 2-28 is expanded at the origin (0,0) as shown in Eqg. 2-29,

where My xis a kth-order moment of the first-order transfer function, r, =-A"b.

H,(s) =) s“Ar =D sMy, Eq. 2-29
k=0 k=0

This approach can also be applied to achieve the moments of the second-order or third-
order transfer functions. Comparing with existing projection based reduction models
such as [Phillips98] [Phillips00], this method provides a significant reduction of model
size. A particularly attractive property of NORM is that the reduced order model

produced matches certain number of transfer function moments.

[Batra04] employ NORM to generate reduced-order models of circuits from transistor
level netlists. The difference from [LiO3] is that Batra et a exploit |east-mean-square
error (LM SE) fitting techniques to find the 3" order macromodel coefficients instead of
from the model equations. Results show that the macromodels generated achieve
significant decrease in model size with good accuracy to full transistor-level simulation.
Unfortunately, modelling speed is not comparing with transistor level simulation (TLS).
In addition the values of these results may be doubtable because this macromodel is not
converted into hardware description language (HDL) for high level modelling (HLM).

Outside arelatively small range of validity, but polynomials are known to be extremely
poor for globa approximation [Roychowdhury04], so other methods such as piecewise
approximation can be used to achieve better solutions. [RewienskiOl] developed an
approach termed tragjectory piecewise-linear (TPWL) using a piecewise-linear (PWL)
system. Initially Rewienski et al select a reasonable number of “centre points’ along a
simulation trajectory in the state space, which is generated by exciting the circuit with a
representative training input. Around each centre point, system nonlinearities are
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approximated by implicitly defined linearization. A model is generated if the current
state point x is ‘close enough’ to the last linearized point x;, i.e, |x—x| <&, which

means that x lies within a circle of radius of ¢ and centred at x,. Each of the linearized
models takes the form shown in EQ. 2-30, with expansions around states X ,..., Xs
1:.where Xg is the initial state of the system and A are the Jacobians of f(.) evaluated at
States x;.

S f(x)+ Ax-x%)+Bu Eq. 2-30

A Krylov subspace projection method is then used to reduce the complexity of the
linear model within each piecewise region. Rewienski et a then combined al s linear

models according to a weighting equation in Eq. 2-31, where W (x) are weights

depending on state x.

1

%?Ov’vi(x)f(xniv*vi(x)mx—xhBu Eq. 2:31
TPWL is more suitable for circuits with strong nonlinearities such as comparators, and
has more advantages than PWL because as the dimension of the state-space in PWL
grows one concern with these methods is a potential explosion in the number of regions
which may severely limit smplicity of a small macromodel. However, Rewienski et al
did not address the criterion of the training stimulus. Moreover, because PWL
approximations do not capture higher-order derivative information, the ability of TPWL
to reproduce small-signal distortion or intermodulation is limited. Therefore, Krylov-
TBR TPWL was developed using TBR projection to obtain further order reduction
[Vasilyev03].

The PWP technique [Dong03], which is a combination of polynomia model reduction
with the trajectory piecewise linear method, is able to improve TPWL by dividing the
nonlinear state-space into different regions, each of which is fitted with a polynomial
model around the centre expansion point. These points can be selected either from

“training ssimulation” or from DC sweeps. The resulting macromodel is refined
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incrementally by new piecewise regions until a desired accuracy is reached. Firstly they
expand a polynomial function into many points, each of them is then ssmplified by
approximating the nonlinear function in each piecewise region to obtain much smaller
size models. These models are then stitched together. Finally a scalar weight function is
used to ensure fast and smooth switching from one region to another. A key advantage
of PWP is that a macromodel generated can capture not only linear weakly nonlinear
(such as distortion and intermodulation) but also strongly nonlinear (such as clipping
and slewing) system dynamics. Moreover, fidelity in large-swing and large-signal
analysis can be retained. PWP is further implemented in [Dong04] for extracting
broadly applicable genera-purpose macromodels from SPICE netlists such that the
generated model is able to capture different loading effects, simultaneous switching
noise (SSN), crosstalk noise and so on. Furthermore, a speed up of eight times
simulation speed is achieved [Dong05]. However, multiple training datais used to cover

different operating regions.

2.4 Review of Approaches to Generating a Model in Different
Computing Languages

With the development of the HDLs and application software languages, each designer
and programmer is able to design individua systems and implement individua
programs and systems more efficiently and conveniently. These languages are divided
hierarchically into three levels. at the highest level application languages include C/C++,
or MATLAB that is a powerful scientific tool for numerical analysis [MATLABG.5];
the next level contains HDLs such as VHDL-AMS, MAST, which provide behavioural
modelling capability for both digital and analogue systems [Frey98]; the lowest level,
i.e.,, the transistor level, has Spice-like languages such as HSPICE [Watkins]. Each
language has individual advantages and disadvantages;, HDLs work especially well for
circuit structures, application languages such as C are efficient for genera purposes.
However, as systems become more complicated, particularly in very large scale
integration (VLSI), one language may not be sufficient to handle all applications.

Increasingly, the gap between the high-level behavioural descriptions of the required

circuit functionality in commonly used mathematical modelling tools, and HDLSs can be
highlighted by the requirement of seamlessly linking high-level behavioural
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descriptions of electronic hardware for purposes of modelling and simulation to the
final application hardware [Grout05]. [GroutOO] developed a prototype software to
analyze and process a Smulink block diagram model to produce a VHDL representation
of the model. The derived mode includes a combination of behavioural, register
transfer level (RTL) structural definitions that are mapped directly from the Smulink

model. This design flow is shown in Figure 2-6.

System Digital part for
conversion

<t | |
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Simulink model
(.mdl file)

Simulink model
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(| Synthesis

1]

q ASIC: silicon foundry Netlist/schematic:
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FPGA/PLD: Layout place & route
configuration data

Figure 2-6: Overview of conversion routine within a design process [ Grout05]

It is seen that it consists of three stages: the first one is to model the behaviour of the
overal system and then define a behavioural model of the controller core. There are two

model files (.mdl): one is used to store the resulting data for the system, another is to



create VHDL code (entities and architectures). The second stage includes data
conversion and synthesis with technology targeting. There are two model files (.vhd) in
this stage: the first one stores VHDL entities and architectures, and is used to perform
an optimization routine to map the functions to a predefined architecture. The
second .vhd file is used within a suitable design flow to compile the entities and
architectures into VHDL design units for logical ssmulation. Synthesis is employed in
the third stage to generate a netlist or schematic for further implementation on devices
such as FPGAs (field progranmable gate arrays) and ASICs (application specific
integrated circuits). This concept alows for discrete time algorithms to be modelled
[Grout01]. Unfortunately, this processis only available in the digital domain. Moreover,
the conversion is implemented at the system level, whereas our research mainly focuses
on model conversion at the lower level (e.g., operational amplifier) for analogue or even

mixed signal domain.

[Watking] states that in the mixed-signa domain standard VHDL and Verilog may be
employed to model analogue and mixed signals, this approach is referred as Vanilla
VHDL mixed signal modelling. It uses the standard arithmetic operators (primarily
multiplication and addition), and standard conversion functions, for example,
CONV_INTEGER, CONV_STD _LOGIC_VECTOR, and type casting. This process
has severa major advantages such as faster ssmulation, and complete portability to the
most widely-used simulation environments [ Smith96]. However, the Spice-like analysis
(DC operation point, small signal AC) can not be implemented by Vanilla HDL, and
filters are hard to be modelled accurately.

[Zorzi02] developed the software named SAMSA for the simulation of analogue and
digital systems written in VHDL-AMS in MATLAB. A schematic of the system is
shown in Figure 2-7. It consists of a Java compiler and a solver. The former is used to
exploit the capability of directly loading Java classes into its workspace. The design unit
is analyzed after the file parsing and symbols are loaded from included libraries. The
MATLAB default C compiler is employed to compile two C functions generated by the
parser. After compilation two dynamically linked functions are available for the VHDL -

AMS system. The solver is a function call of the form f(y,,y,,C,,F,l,), where y,

and y, aretheinitial condition vectors for the system of differential-algebraic equations
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(DAE) being solved, C, is an array of control options, F is the pointer to the run-

function and |, is used as a temporary array for sharing information. The user can set
control options such as the relative tolerance and the max step allowed during transient

anaysis.

MATLAB
SAMSA
r=-* Toolbox1
VHDL-AMS ——— Compiler “‘E""
’ s
! 1
Libraries |--- -~ Toolbox2
C d Solver
orlr;irgan > (Analogue/Digita) | |- ___ | Toolbox3
5 x
_____________ a1
A A
Workspace Output File
Variable

Figure 2-7: SAMSA genera architecture and dependences with other MATLAB

toolboxes[Zorzi02]

Simulation in SAMSA involves three steps: 1. A Spice-like command file, which
describes the simulation that should be performed, and variable that should be printed
and some other options. 2. The solver calls the setup-function, which initializes the
simulated system, for the specified design unit and creates a structure that describes the
system to be simulated in the MATLAB workspace. 3. The run-function is called,
which updates some workspace vectors and variables, and an output is produced as a
workspace variable, or a file in the work directory. Furthermore, the system may be
more flexible when output data is post-processed or used within a particular Toolbox.

[Zorzi03] also uses SAMSA, but mainly focus on the architecture of digital circuits, and

a C++ compiler is utilized instead of C compiler to compile C++ code that is converted

2-21



from VHDL-AMS. Unfortunately, simulation time is not compared with transistor level
simulation.

Unfortunately, all modelling approaches above are invoked under fault-free conditions,
accuracy and speedup of existing models may be doubted when fault simulation is
implemented because faulty behaviour may force (non-faulty) subsystems into highly

nonlinear regions of operation, which may not be covered by their models.

Therefore, work based on various fault modelling techniques and other important

approaches for fault detection are reviewed.
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Chapter 3: Literature Review of
High Level Fault Modelling and
Simulation

In this chapter we will introduce techniques for analogue fault modelling and simulation

based on existing publications.

In section 3.1 techniques for analogue and mixed signa test in the development of
modern mixed mode ICs are discussed. Fault analysis and structural test of ICs are aso
introduced in this section. An overview of existing fault modelling techniques for
analogue and mixed mode circuits is introduced in section 3.2 following by IFA
techniques in section 3.3. The quality and accuracy of testability measurement is
discussed, and improved anal ogue testing through the use of analogue fault modelling is
described in section 3.4. In section 3.5 test coverage and test quality are introduced.

3.1 Different Test Techniques for Analogue and Mixed Mode

Circuits
3.1.1 Description of I1C Failure Mechanism and Defect Analysis
A fault is defined as the electrical effect of a defect [Wilkins86]. At device level or
circuit level, many factors may cause failures in different processing stages. These
failures may result from any one of several different defects [Wilkins36]:

1. Manufacturing defects occur at the wafer stage in ICs, for example, short in metal
interconnect and defect in gate oxide.

2. Defect during packaging: imperfect bonding and poor encapsulation.

3. Production defects on PCBs. a) components placement b) soldering

4. Operational stress. components are destroyed or dirty.

At the abstract level, faults, mainly analogue faults, are classified in [Maly88] as shown
in Figure 3-1.
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Figure 3-1: Analogue fault category [Maly88]

This categorisation shows that analogue faults can be divided into two main types:
structural faults and parametric faults. Structural faults are random defects that cause
structural deformations like short and open circuits which change the circuit topology,
or cause large variations in design parameters (e.g., a change in the WIL ratio of a
transistor caused by a dust particle on a photolithographic mask) [Ka pana04] [Jiang06].
Parametric faults are caused by statistical fluctuations in the manufacturing environment.
Changes in process parameters (e.g., oxide thickness and substrate doping) can cause
the values of components to vary beyond their tolerance levels (malfunction).
Parametric faults are also caused by process gradients which produce device mismatch
[Nagi93].

Unfortunately, the definition of this category is less applicable and limited to the
modern technology such as 90nm, 65nm and beyond CMOS [Healy05]. However, it
still provides useful information, particularly for this research.

It is known that the short fault mechanism is the dominating analogue fault effect, and
that open fault is more difficult to model, especially when floating capacitors are
produced [Bartsch96]. Short faults can be modelled as one small value resistor (e.g., 1Q)
connected between two nodes [Bell96] [Kalpana04]. Open faults may be modelled by

using a large value resistor to connect two nodes serialy [Spinks98]. The catastrophic



faults in a MOS transistor include: drain/source opens (DOP, SOP), gate-drain, gate-
source, drain-source shorts (GDS, GSS, DSS); and gate-oxide short (GOS) are shown in
Figure 3-2, Figure 3-3, respectively [ Stopja04].
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Figure 3-2: Source (a)/ Drain (b) open fault models; Gate oxide short model ()
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Figure 3-3: MOS transistor short fault models: DSS (a), GDS (b) and FSS (c)

The gate open is more difficult to model without knowing gate's dc voltage. The
isolated capacitor can hold any voltage because the high impedance and leakage can
charge or discharge the node of the open gate. One way to approach the problem is to
set up voltage in the real device on this capacitor in order to implement simulation, for

example [ Caunegre95] sets gate voltage to OV.

The relationship between out-of-specification and malfunctions are not completely
isolated, for example, in a cascode circuit when two transistors are shorted, the circuit
may still work, but be out of specification. Moreover, if a resistor is only shorted
between two branches of its layout instead of the whole part, the circuit will still work,
but the resistance changes. These two situations are shown in Figure 3-4 a), b)

respectively.
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a) Cascode transistor is shorted b) Part of the resistor is shorted

Figure 3-4: Specification for catastrophic faults

3.1.2 Structural Test

As was mentioned in the introduction, functional test is to assess whether the DUT
meets its test specification and does not require detailed knowledge of circuit structure.
However, this approach may fail to test all parts of the IC evenly, may offer poor fault
coverage, and may be very time consuming. Therefore, structural test or defect-oriented
test (DOT) is required especialy in the analogue domain because it has aready
established in digital domain [V0097] [Xing98] [Fang0l] [Kalpanad4].

The analogue fault detection and classification can broadly be divided into the following
categories:

1. Estimation method: This can be further divided into the analytical (or deterministic)
method and the probabilistic method. In the former, the actual values of the parameters
of the device are determined analytically or based on the estimation criteria using least
square criterion approach, e.g., [Simeu05]. [Simeu05] introduces a parameter
optimization algorithm termed Situation-Dependent AutoRegressive with eXogenous
(SDARX). It combines the Levenberg-Marquardt method (LMM) for nonlinear
parameter optimization with least square method (LSM) for linear parameter estimation.
However, this algorithm is only available for single-input single-output (SISO) systems,
and the offset parameter is not included, which is the slowest parameter to converge
because there is no signal to stimulate it. In probabilistic methods the values are inferred
from the tolerance of the parameters, e.g., inverse probability method is a representative
of this class. [Elias79] employs statistical simulation techniques to select parameters to
be tested and then formulates the test limits on this basis.
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2. Topological method: Thisis also known as simulation-after-test (SAT) method. The
topology of the circuit is known and SAT method essentially reverse engineers a circuit
to determine the values of the circuit component parameters.

3. Taxonomical method: This is known as simulation-before-test (SBT) method
[Sachdev95]. This structure is shown graphically in Figure 3-5. It is seen that the fault
dictionary is akey part; it holds potential faulty and fault-free responses. Inductive fault
analysis (IFA) is used to determine redlistic faults classes. Analogue fault ssimulation is
implemented using Spice-like simulation over these fault classes. It generates a
catastrophic defect list. During the actua test the measured value is compared with the
stored response in the dictionary. If the measurements from the actua response are
different from the fault-free response by predetermined criteria the fault is regarded as
detectable. If the faulty response does not differ from the fault-free response by the
threshold, the result is considered as undetected by the stimulus, so another stimulus is
tried. The whole process is carried out for all the faults. With this approach most of the
faults can be detected, and the test cost and time are reduced compared to the functional
test. Some marginal failures can not be detected, which may be removed by using

improved process control or detected by limited functional test.
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Figure 3-5: Graphical representation of the realistic defect based testability
methodology for analogue circuit [ Sachdev95]



Due to the size of circuits and the number of faults, faults cannot be manualy
introduced and simulated. It is necessary to run fault simulation automatically without
modifying the core simulator [Caunegre95]. [Caunegred5] develop a comprehensive
system based on automated fault modelling and simulation. It comprises many parts:
fault list generator, components faults catalogue, simulation control file generator and
fault coverage analyzer. The fault list generator can generate a list of possible faults
from a given circuit schematic. This system provides a simulator format netlist. It
searches for appropriate models from the component fault catalogue for each
component referenced in the fault list. The component fault catalogue provides a
generic description of fault models for each library component. However, these models
have to be designed and updated by experts in this domain, so it is not convenient for
someone who is unfamiliar with circuit design and structure. The simulation control file
generator in [Caunegre95] can create two command files by processing a previously
built reduced fault list. One of files contains a command script to control the simulator,
another includes parameter modification commands for parametric faults. Fault
modelling and simulation can then be implemented after this process. The results are

recorded in aresult file.

3.2 High Level Fault Modelling and Simulation

A successful model should provide high simulation speed, high accuracy, robustness
and ease of use [Getreu93]. High level fault modelling (HLFM) is one of the best
solutions for reducing fault simulation time [Kalpana04] [Nikitin07] [Joannon08§].
Generally there are two approaches to fault simulation: 1. Injecting only the chosen fault
into the low level cell by using a tool such as ANTICS [Spinks97] and observing the
fault effects on the specifications of the modules at higher levels of design hierarchy
[Olbrich96] [Olbrich97] [Joannon06]. 2. High level fault models are obtained by
abstracting faults from transistor level into a behavioural description of their effects
[Pan96] [Zwo96] [Wilson02] [Simeu05] [Joannon06]. In both cases transistor level

simulation is an important and necessary step.
Generaly high level fault models can be either linear or nonlinear. Both of them can be

written in SPICE [Nagi92] or hardware description language (HDL) such as VHDL
[Zwo00], MAST [Wilson02] and VHDL-AMS [Nikitin07] [Joannon08]. Linear models
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are mainly built with linear sources and passive components [Pan96] [Yang98]. Using
linear models can achieve high speed, accuracy and be implemented easily. However,
the limitation is obvious. Nonlinear models can be built with nonlinear elements such as
diodes, transistors, non-linear controlled sources and have moderate modelling
efficiency and awide range of operation [Zwo096] [Bartsch99] . Sometimesit is the only

possibility due to a highly nonlinear behaviour.

In [Zwo96] a behavioural model for a two-stage CMOS op amp is described, as shown

in Figure 3-6.
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Figure 3-6: Macromodel of inverting and non-inverting amplifiers [Zwo96]

It includes input and output stages. The latter consists of two sections: the voltage
controlled current source (Gigq) and current controlled current source (Fipag). The former
can model the power supply current of the output transistors; the latter is capable of
modelling the power supply current variation due to the output load. Moreover, the
output stage can model output offset voltage with Vs, and fault propagation with the
voltage controlled voltage source (Egain). The input offset voltage can be modelled with
Vinotst 1N iNput stage. Furthermore, the input and output impedance can be modelled with
Rin and Ry, respectively. This model can be embedded within a large circuit such as a
mixer. By comparing the transistor level ssimulation, this behavioural model shows that
not only fault-free but also faulty behaviour (short faults) can be accurately modelled
for al faults, and faulty effects propagated correctly. Simulation speed is over 7 times
faster than for the transistor level simulation for a transient analysis. In addition fault
collapsing is also mentioned in this paper. However, only short faults are modelled and
the behavioura model is only implemented with HSPICE, it may be more efficient if a
HDL is adopted such as MAST. A similar model is described in [Bartsch99], this faulty



behavioural model is not only able to simulate al faulty behaviours of [Zwo096], but
also can model other behaviours such as bias current () and bias voltage (Vy), and extra
poles and zeros are adso added to improve the accuracy. Moreover, the model is
implemented in the hardware description language (HDL). The macromodel in [Pan96]
can model not only extra poles and zeros, but also phase shift, and DC power
dissipation. However, output impedance is modelled with a linear resistor, so it is
susceptible to nonlinearities in circuit behaviour and looses accuracy when applied to
non-linear behavioural macromodels of analogue subsystems.

Another modelling technique is presented in [Chang00]. This linear macromodel is
similar to [Zw096] and [Bartsch99]. Like [Bartsch99] voltage clipping is modelled with
two diodes connected between the output and the positive and negative power supplies,
respectively. However, it is not capable of modelling power supply current variation
and bias current. This behavioural fault model shown in Eq. 3-1 is based on the fact that
the offset voltage in most cases has a linear relationship with the input voltage for the

closed-loop op amp, and is composed of two parts, i.e.

Fos = MVip+ K Eqg. 3-1

where mis the gain attenuation part and k is the output offset part. The values of m and
k are independent of the input. With this behavioural model faulty behaviours such as
stuck-at faults and other nonlinear behaviour such as slew rate can be performed well.
This faulty model may be run in both DC and AC domains. Moreover, this model can
be inserted into alarge circuit such as a benchmark biquad filter. The behavioural model
is about 11 times faster than transistor level. However, this faulty mode is only
implemented with SPICE. [Wilson01] used the same model in the hardware description
language — MAST run on the Saber simulator [Saber04], [KilicO4] further developing it
with VHDL-AMS. A comparison between transistor and behavioural models at all
stages shows the latter simulation speed is faster.

A mapping technique is described in [Pan97]. The am is to map each performance
parameter set P to the corresponding macro parameter set B, B = F(P). A sengitivity
matrix S derived by perturbing the value of each component of the seed point By, along
with the faults Py, P,,..., Py is used to estimate the region of interest R, in the macro
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space, and the least square method used to reduce the model order. After R, is obtained,
a large number of random faults at the macro level are generated by randomly
perturbing the values of the macro parameter set By. The values of the corresponding
performance parameter set P can be generated by macro-level ssimulation. Then the
dimensionality can be reduced by using a cross-correlation based technique, finaly the
mapping function B = F(P) is derived by utilising a neural network. By running
transistor level simulation to obtain P, the fault macromodel can be obtained according
to the mapping function. The technique is a good step for automating the macromodel
synthesis procedure. Unfortunately only a linear op amp macromodel is used to test the
neural mapping. Problems occur with large performance variations such as stuck-at
faults, because the macromodel structure itself is not able to model such faulty
behaviours. Moreover, the parameter mapping can be applied by the system DRAFTS
using analytical design equations [Nagi93], but it is doubted whether the system can
still be suitable for modern analogue and mixed mode I1Cs because of their increasing

complexity.

[Bartsch99] devel oped an algorithm that employs both linear and nonlinear fault models
to implement high level fault smulation (HLFS). In this algorithm a transistor level
operating point analysisis performed on the whole circuit. These points are collected for
the model creation. In the case of alinear fault model the operating point information is
used to ensure that the linear model is in the region where the model is parameterized. If
this does not hold true a check is made to determine if the faulty behaviour can still be
simulated with alinear model. If so, new parameters are derived, otherwise a nonlinear
fault model has to be used. The operating point analysis can be further used as a
convergence aid for the nonlinear models. After these checks the high-level fault model
isinjected. Then a check is made to see if the fault-free op amp is either in one of the
saturation regions, or if it isin the linear region. If the op amp isin any of these regions,
alinear model isinserted, otherwise, a nonlinear one is inserted to handle nonlinearity.
After the injection the actual fault simulation is performed. During fault ssmulation it
has to be ensured that the operating region for which the linear model was designed is
never violated. A warning mechanism is implemented for this purpose with a smple if-
else statement. Instead of asserting a warning message, the linear model could aso be

exchanged with a non-linear model. Then the simulation continues with a nonlinear
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model. However, [Bartsch99] did not reach the point where these models can be

switched automatically.

3.3 Inductive Fault Analysis (IFA)

IFA was a mgjor departure from traditional high level fault modelling and simulation
because it accounted for an IC's technology, fabrication defect statistics, realistic defect
occurrences, and physical layout [Ferguson88] [Jiang99] [Jiang06]. It also provides a
connection between circuit level faults and technology level defects. The genera

structure of IFA is shown in Figure 3-7 [Ferguson88]:

Technology Primitive Fault
- Technology
Description Analysis Taxonomy
Circuit Layout Data
Layout Structures
Defect
. Defect
8 Defects
Statistics Generation

Primitive Fault
List

Primitive Fault
Extraction

Circuit Fault
Trandation

Figure 3-7: Structure of IFA [Ferguson88]

Ranked Circuit
Fault List

The structure includes three columns: the left column shows the three inputs which
contribute to the accuracy of the resulting fault list; five ovals represent the phases of
IFA; the right column represents the output of 5 phases. The primitive fault taxonomy
created by technology analysis, parameterised for the fabrication technology and
considered defect types, lists al possible local changes in conductance, which may
result from each defect type and the conditions which must exist for the local changes to
result in a fault. The layout parsing combines pre-processing of the physical layout
information with circuit extraction to facilitate the subsequent fault extraction and
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trandation phases. Defect generation uses information from defect statistics and layout
parsing. Data statistics, gathered from an actual fabrication line is used to generate the
correct mixture of defect types and sizes. These defects are transferred to the fourth
phase-primitive fault extraction, together with results from the primitive fault taxonomy
and layout data structures. The primitive fault extraction extracts the primitive faults by
checking the geometric relationships between the defects and the circuit layout using the
primitive fault taxonomy. Both the defect generation and primitive fault extraction are
required once for every defect. The last phase, circuit fault translation, receives the
generated fault list and exacted faults, and adds this information to the primitive faults.
The fina output, ranked circuit fault list, is used for many applications as shown in
Figure 3-8 [Olbrich97].

Yield
Prediction

Fault
Simulation

Test
Devel opment

IFA Testability
Anaysis

Layout
Optimisation

Quality
Estimaion

Figure 3-8: Various Applications for IFA [Olbrich97]

IFA techniques can be used for applications such as fault simulation, design for
testability and quality estimation. IFA based on modelling and simulation techniques is
used to extract weighted fault lists, and then fault simulation and testability analysis
take this information, together with the device netlist, to model the complete
manufacturing and test process. Limitations of inaccurate fault models have been
overcome by using redlistic, layout dependent defect modelling techniques. A
“weighting” factor may be assigned to each fault to describe how the probability of
occurrence is related to quality. Using Eq. 3-2, the relative probability of occurrence of

afault n (of N faults) as W, can be found.

3-11



N
Z I:an
FC =" x100% Eqg. 3-2
Sw,

n=1

FC is the weighted fault coverage, W, represents the total number of circuits in the
batch affected by fault n and N is the total number of fault across al circuits. F, is a
fault detection figure. F, = 1 if the fault is detectable, otherwise is O [Olbrich97]. This
weighted fault coverage figure may be used for analogue and mixed circuits.

IFA can be used for qualifying and optimizing design for test (DFT) schemes
[Olbrich96]. The method proposed in Olbrich et a requires a fault list. This can be
achieved in two ways. The first one, based on IFA, is performed using a tool such as
VLASIC (VLSI LAyout Simulation for Integrated Circuits), which uses either a Monte
Carlo algorithm or critical area analysis to obtain the fault lists. Yield information,
physical layout and process information are required to perform this. The second one is
based on a transistor level fault model (short faults). The model uses the following

formulafor defect resistance:

l I‘min Eq 3_3

Re :p.W-d ~ Diameter - Thickness

where p is resistivity of the materias, |,W are the length and width of the particle,

respectively, d is the layer thickness. | can be approximated by the minimum distance
rule, Lmn, between two lines of the same layer. Diameter and Thickness are chosen
depending on the types of fault, for an open fault, Lir=Diameter, and for pinhole faults,
Lnin=Thickness. By comparing these two methods for the testability analysis of a self-
test function in a high-performance switched-current design, it was shown that IFA
generates multiple faults for modelling, the faults are weighted to reflect actual
manufacturing statistics, and testability and quality prediction can be performed.
However, the IFA route does not supply statistically based information on in-field
failures. Moreover, it depends on an appropriate fault-model to describe the physical
defects in a form which is simulatable in a circuit level netlist, so it can not adjust

simulation inaccuracies resulting from inappropriate fault-models. Furthermore, the
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result of this comparison is likely to be inaccurate if high level fault model is used
instead of transistor level model.

An approach based on statistical process and device simulation is proposed in
[Jaworski97]. It is implemented with two special programs: a statistical circuit extractor
EXCESS II and a statistical process and device simulator SYPRUS. The former is used
to simulate layout disturbance and performs an extraction which generates a topol ogical
netlist. A separate device model for each critical component in each netlist is computed
by SYPRUS. These models are generated from the full process simulation and device
modelling. A set of netlists is produced. These netlists may include models of the
variation of parameters such as temperature and parasitic components. Moreover, they
are used as input to a standard circuit simulator performing appropriate simulations.
Results from these simulations are used to estimate the fault region for the given circuit.

Only transistor level fault ssimulation is implemented.

Recently IFA has been employed to investigate defects and corresponding behaviour
that are caused by particles contaminants introduced into the fabrication of a combdrive
surface-micromachined microresonator [Jiang06], which possesses al the primitive
elements used in many types of capacitive-based microelectromechanical systems
(MEMYS) [Jiang99]. Jiang et a used Monte Carlo (MC) anaysis to find complete
category of the defects. HSPICE simulation was run to evaluate misbeaviors associated
with the categories of defective structure. The next step is to incorporate abstracted
models of the contaminants into MEMS CAD environments. This will enable the
evaluation and optimization of MEMSS testability for arange variety of capacitive-based
MEMS.

3.4 Design for Testability with  Controllability and
Observability (Design and quality issue)

According to the international technology roadmap semiconductors reports that the
semiconductor industry has reached a point where testing a chip costs as much as
manufacturing it [Aktouf05]. With greater functionality being packed into each design,
both the time required to test each integrated circuit (IC) and the cost of the necessary
testing equipment keep increasing. Design for test (DFT), which essentially means
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constructing designs with easy testability in mind, is key to solving the problems of both
time and expense [Aktouf05]. In the digital domain testability is mainly an issue of
control and observation of deeply embedded internal nodes. The ability of setting an
input condition is named “controllability” and the ability to observe the output is called
“observability” [Wilkins86]. In analogue or mixed mode domain, DFT may be largely

unsuccessful due to itsimpact on the circuit performance.

DFT consists of methods such as built-in self-test (BIST) and automatic test pattern
generation (ATPG) based methodologies. [Healy05] indicated that pseudorandom BIST
is displacing the latter at 90nm and beyond. This is because as the technology shrunk,
the need for more and more test patterns and the need for at speed testing drove ATPG
devel opers to various forms of data compaction and double capture timing in an attempt
to identify the un-modeled failure mechanisms present in these complex devices. At
90nm and beyond these ATPG models are inaccurate and incomplete in covering all of
the ways that parts actually misbehave. This has resulted in high defects per million
(DPM) at manufacturing, due to the lower quality of test. “Continued attempts to extend
the life of ATPG, by compressing patterns or developing faster than life timing schemes,
is akin to rearranging the deck chairs on the Titanic as the un-modeled faults iceberg

looms ever larger” [Healy05].

[Bratt95] proposed a DFT structure based on a configurable op amp that allows access
to embedded analogue blocks such as phase locked loop (PLL). This implementation of
DFT allows injection of control voltages by using this op amp. Both detection and
diagnostic capabilities associated with a number of hard and soft faults are improved.
[Hsu04] improved the controllability and observability by developing a current-mode
control and observation structure (CMCQOS) for analogue circuits with current test data.
With this approach, al test points can be controlled simultaneously, also no expensive
testing equipments are required for measurement. However, simulation speed is not

mentioned.
3.5 Test Coverage and Test Quality

Test coverage and quality can be investigated with fault simulation and fault modelling
techniques. A fault coverage analyzer can be used to determine if the test detects each
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fault by comparing the simulation measurements with the values from a fault-free
simulation [Caunegre95]. A tolerance margin is defined by the designer to verify these
detected and undetected faults. Decisions includes: a) if the measurement interval is
outside of the alowed interval, the fault is easily detected. b) if the measurement falls
inside the allowed interval, the test is passed and a fault will never be detected. ) if the
measurement is half outside and half inside the allowed interval, the fault is considered
as undetected. With the well chosen tolerance range, high test coverage can be obtained,
and test quality can be improved.

. .. n . .
Fault coverage ratio is —&, where nq is the number of detected faults and ns is the
n

number of simulated faults. Unfortunately, there is no further discussion on c) in the
paper, even though some of faults can be detected if the range of interval is adjusted. A
further investigation based on section ¢) has been performed by [Spinks97] [Spinks98].
They developed a fault simulator named ANTICS, which is able to inject faults into a
transistor level model of the fault-free netlist. The range of alowed interval may be
adjusted by using Monte Carlo (MC) sensitivity analysis to obtain the better fault
stimuli. Therefore, the accuracy may be improved. However, Monte Carlo simulation
has disadvantages: it is hard to accurately model complex circuits by using a simple
system and is computationally expensive, even though fast modern computers are used
[Johnson03].

[Sebekeds] defines a similar tool to [Spinks97] [KhouasO0] and [Grout04] shown in
Figure 3-9. It comprises an automatic analogue fault ssmulator called AnaFAULT and
an automatic fault extraction tool, LIFT. The latter can extract sets of faults from a
given analogue or mixed mode circuit layout and generate alist of realistic and relevant
faults using IFA. This list represents the interface to AnaFAULT, which converts faults
into fault models and fault ssmulation models. By this link, the tool allows a more
comprehensive fault ssimulation, and results that are more redlistic and relevant.
Moreover, the overal time for the fault smulation decreases significantly compared

with the assumption of the complete set of possible faults.
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Figure 3-9: Analogue fault modelling from concept and schematic to layout. The
arrows width represents the size of the fault lists [ Sebeke95]

[Spinks98] presents ANAFINS as the fault generator for generation a list of possible
faults from a given circuit schematic. The difference between [ Spinks98] and [ Sebeked5]
is: ANTICS uses HSPICE as the modelling kernel, whereas AnaFAULT adopts ELDO.
However, both are implemented at the transistor level smulation, so it is very CPU
intensive and not suitable for complete modern complex analogue and mixed mode ICs.

The next chapter will re-implement work based on [Bartsch99] in the Hull University as

V

FCP

the starting point of author’s research and also for comparison.
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Chapter 4: High Level Fault
Modelling and Simulation based
on Other’s Fault Models

4.1 Introduction

In this chapter we will reproduce some work based on Bartsch’s work [Bartsch99] as
the starting point of author’'s research. Moreover, one of the fault models will be
employed in chapter 9 and 10 for comparison in terms of accuracy and speed during
analogue fault modelling. The difference from Bartsch’s work is that the models
reproduced in this chapter are rewritten in the hardware description language (HDL)
termed MAST [Saber04] instead of SpectreHDL. Simulation speed is not akey issuein
this chapter because it has been discussed in [Bartsch99].

The structure of this chapter is as follows: section 4.2 introduces a two-stage CMOS
operational amplifier (op amp) used for our investigation. HLFM techniques are
summarised in section 4.3. Section 4.4 demonstrates these approaches with different

netlist followed by the conclusion in section 4.5.

4.2 Two-stage CMOS Op amp

In this section the two-stage CMOS op amp from [Bartsch99] is used. Its design is
based on [Allen87]. A schematic of this op amp is shown in Figure 4-1. It consists of an
input stage and an output stage. The former is realised asa CMOS differential amplifier
using p-channel MOSFETSs. The differential amplifier is biased with the current mirror
M13&M14. Three NMOS diodes (M4, M5 and M6) are used to keep the gate to source
voltage of the current mirror small (Ves =-1.175V). The output stage (M7 and M10) is
a simple CMOS push-pull inverter. Characteristic measurement of the op amp can be
found in Appendix A.
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Figure 4-1: Schematic of the two-stage CMOS op amp

Fault injection is required in order to perform TLFS. This is done using the fault
injector named ANAFINS, which is the part of the transistor level fault simulator
ANTICS [ Spinks98] [Spinks04]. Only shorts are of interest throughout the whole thesis,
other faults such as open faults will be investigated in the future work.

There are 11 transistors in this op amp, the maximum number of short faults on one
transistor is 3 and therefore the number of short faults in this op amp is 33. However,
only 19 of them need to be investigated because ANTICS is able to collapse redundant
faults such as gate to source short on M4 (m4_gss') and drain to source short on M4
(m4_dss?). It also recognises that m4 _gds® has already been presented in the normal
design and thusiit is not a fault. Unfortunately ANTICS does not detect the equivalence
of faults m4_gss, m5_gss and m6_gss due to the identical design of M4, M5 and M6.
Therefore, only 17 faults are simulated, as summarised in Table 4-1. This shows that
about 53% of the faults are stuck-at faults and only 17.6% of the injected shorts result in
out-of-specification faults. Others catastrophic faults include failure to inverted gain, so

the output signal follows the input one.

! short between gate and source on transistor 4
2 short between drain and source on transistor 4
% short between gate and drain on transistor 4



total stuck-at stuck-at stuck-at parametric other
faults 2.5V -2.5V other faults catastrophic
voltages faults®
17 8 2 0 3 4

Table 4-1: Characterisation of MOS transistor short faults

4.3 High Level Fault Models

In this section we start by introducing and producing linear and nonlinear HLFMs
[Bartsch99] written in MAST in subsection 4.3.1 and 4.3.2, respectively.

431 Linear HLFMs

They consist of three groups: dc; dc/ac; dc and dc/ac. They are developed written in
MAST [Saber04]. More details about the syntax and construction of this language are
givenin Appendix B.

4.3.1.1 DC op amp model
The DC model shown in Figure 4-2 is a modified version of the ones published by
[Boyle74] with the exception of input impedance.

= gnd

| |bn

Vn Vin

ﬂ c—— | vin
Vp of f
V offin

lbp

= gnd
Input Stage Output Stage

Figure 4-2: dc macromodel (see Appendix C: C.1.1)

* They include faults such as the output is not inverted to input signal because gain Av is not
negative.
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It is seen that this macromodel consists of two stages, the input stage is a standard input
stage for modelling non-ideal op amp behaviour such as the input offset voltage Vogin,
input bias current Iy, by and dc/ac input impedance with r and c. The combination of r

and c creates one polein the left half plane as seen in Eq. 4-1.

=
c e
o

Eq. 4-1

pole —

If the input impedance behaves like a capacitor, r has to be near infinity, e.g., r = 1E2°Q,
and then c can be determined by Eq. 4-2, where Z, is the magnitude of the input

impedance at a certain frequency f in Hertz.

cC=0 Eq. 4-2

The output stage is able to model the output impedance R,, output offset voltage Voout,

gain, and output voltage clipping using diodes D4, D2, Vg and V.

4.3.1.2 DC/AC op amp model

In this section a dc/ac op amp model is designed as shown in Figure 4-3. It is seen that
this model includes three stages. the input stage, a transfer function and an output stage.
The input stage is the same as the one in the dc op amp model; the output stage is able
to model the dominant pole of the input-output transfer function [Boyle74].
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additional pole/zero stages

0 transferfunction =0,
| Vin} | polefzero stages | §'*
O -0

Ga Vaffout

=gnd
input stage output stage

Figure 4-3: AC macromodel op amp (see Appendix C: C.1.2)

For the model in Figure 4-2, the number of poles and zeros are restricted to the input
impedance function and for the output impedance function. With the additional stage an
arbitrary number of poles and zeros can be modelled for the input-output transfer
function. For certain op amps the dominant pole may not be enough, or not be modelled
accurately by Boyle's output stage alone, so an input-output transfer function (as
described in Appendix C) is added to obtain additional poles and zeros shown in Eq. 4-3,
assuming the output voltage clipping with Dy, D2, Vg and Ve is not included and Rgyck
is set to infinity (= 1E% Q).

.. Ry (5C.-G)
\/in ) G[)'(1+S.CC.R}2)+S.CC_GD+é.(1+S.CC.R)2)

Eq. 4-3

It is seen that with the Boyle's output stage one zero in the right half plane and one pole
in the left half plane can be realised. From Eq. 4-4 the pole frequency f, A, the zero
frequency f,as and the dc gain As can be derived:

! ~ 1 Eq. 4-4
z.ﬁ.cc.Ra.(lJrE:JrRoz_ij 2.7-C.-R,-(1+R,-G,)

fp,Af -




f ——Gb
A W

C

A(f=0=G,-R,-G,-R; Eq. 4-6

Eqg. 4-5

A straight forward circuit analysis of the output stage gives the further following

equation for the output impedance in the complex frequency s-domain seenin Eq. 4-7:

s _Vou _RutRy+5C[R(RitR, Ry Ry G)+RuRa]  Eq 47

OUI ioul 1+S’Cc'[Ra'(1+Gb'Roz)+Roz]

With this equation the pole frequency f; .ou, the zero frequency f,.u and the dc output
impedance can be derived as shown in EQ. 4-8, Eq. 4-9, Eq. 4-10, respectively to realise
one pole and one zero in the left half plane:

oo = ! - ! Eq. 4-8
‘ 2'”'Cc'[Ra'(1+Gb'Roz)+Roz] 2:-1-C.-R,-(1+G,-R))
fZ zout = le + ROZ Eq- 4'9
0 2.1-C[R-(Ry+R, + Ry R, -Gy )+ Ry - Ry, ]
Z (=0 =R;+ R, Eq. 4-10

Usually Gp-Rp2>>1 and Gp-Ra>>1, s0 fp ou = fpar. This is because the pole frequency of
Zoyt and A are amost the same without additional zero/pole stages. The modd is
capable of modelling ac behaviour of the output impedance. Ry, represents the output
impedance at low frequencies and R, represents the output impedance at high

frequencies. The above equations can be transformed in the following equation system:

I 2, (f =0) =Ry + R,

”: f t: R01+R02
w2 2.1C[R-(Ry+ R, + Ry "Ry, -Gy )+ Ry Ry, ]
1 1
In; f = ~
P27 C[R (146G Re) ¥ Ro] 2:7mC R, (14 Gy R)
IV: f, G,
2-7-C



For ‘active region’ considerations, the selection of R, is not important. However, this
means that the voltage response at node v, is linear with R,. If Ry istoo large a value of
Vp is developed during a transient excursion through the active region of the op amp, a
considerable discharge or recovery time can be encountered after the active region
excursion. Therefore, a small value of R, is required to prevent these discharge delays.
Empiricaly, Boyle suggested R, is set to 100kQ) [Boyle74] and then the equation
system can be solved for Ry, Ry, C; and Gp,. The advantage of this equation system is
that one zero for the gain transfer function can be arbitrary chosen, whilst the pole and
zero of the output impedance are exactly modelled [Bartsch99]. As the pole frequency
of the gain is nearly the same as the pole frequency of the output impedance and it can
not be arbitrarily chosen. However, if it can not be modelled well by the output stage
alone additional pole/zero stages may be utilised to adjust the location of the first pole.
Furthermore, a different equation system is used when the solution results in the

negative resistance or capacitance.

TR R+ R,
v 2. Co[R-(Ry+R,+ Ry R, -Gy )+ Ry Ry, ]
f _ 1 - 1
" 27Co[R (146, Rp)+R,] 2:7-C R, (14 Gy R)

Rol is set to Ryac, Where Ry ac = ac output impedance for frequencies well above f;, o
and Ry, = R, - Ry1, where R, = dc output impedance. The equation system is then solved
for C. and G,. However, the zero with the solution of the above equation system is
always located at very high frequencies with the investigated faults. When a zero is still
required for the input-output transfer function, an additiona zero stage has to be added.
Parameters for Ry1, Ry, Gy and C. are obtained according to one of methods above. The
value of G, can be determined with Eq. 4-11:

f=0
G, = A=0 Eq. 4-11
Gb ’ R02 ) Ra
To model stuck-at faults Vuck, Rauck @d losrse @re introduced. The value of | Can be
derived by knowing the output stuck-at voltage Vuck out @Nd Roz (Ro1 is set to 0.001 Q):



V.

- _ stuck,out Eq 4_12
R

l offset

With Rguck and Vauk the output can be shorted to any arbitrary potential. The potential is
determined with Vgu. The output impedance is determined by Ry, Ro2 and Rgyck.
Conveniently Ry1, Roz should be much greater than Ry, thus the output impedance is
approximately Rguck- Moreover, in order to model additiona transfer function
characteristics, the pole and zero stages seen in Figure 4-4 are used.

Zero stage Pole stage
0 0
o- . A [Rh L
-7 P
Vin_z L Voutﬁz Vin_p Vout L p
Gz Vinﬁz z GP Vi"LP
0 0
S . gnd S = gnd

Figure 4-4: Additiona pole/zero stages

The following transfer functions are created with those stages shown in Eq. 4-13 and Eq.
4-14, respectively:

: Vou_p _ Gp R )
Pole stage: = Eq. 4-13
Vi p 1+sR,-C,
Y/
Zero stage: vt =G,-R -(1+ s- :;—j Eq. 4-14

Any arbitrary real pole/zero sequence in the left half plane can be achieved with these
stages. For convenience G, - Ry=1and G, - R, = 1.

4.3.1.3 DC and dc/ac Macromodel with Complex | nput | mpedance Function

In order to realise any arbitrary sequence of real poles and zeros for the input impedance
function with the suggested pole/zero stages, elementsr and c in Figure 4-2 are replaced
by a voltage controlled current source (VCCS (Qin - Van)), Which is controlled by
additional input impedance pole/zero stages. The dc input impedance is set by either



Gp- Ry or G;- R, The additional input impedance pole/zero stages are fed with the
differential input voltage of the op amp. Figure 4-5 illustrates the concept. It is seen that
the output stage comprises either block 3 or block 4 and 5 depending on whether only
dc parameters are modelled or both dc and ac parameters are included. Except for block
1 and 2 the macromodel has the same architecture as the dc macromodel. All of the

equationsin section 4.3.1.1 and section 4.3.1.2 apply to this model.

dc macromodel

transferfunction —i)vd .
le/zero st -
polefzero stages| ¥
@ ac macromode!
v i)— transferfunction —Cfv G
in |e/zero stages af_out 'a Vafol
g Poiezerosages | 5

additional pole/zero stages

Input stage Output stage

Figure 4-5: Linear HLFM with arbitrary number of poles and zeros of the input

impedance function opdc_zin and opac_zin (see Appendix C: C.1.1 and C.1.2)

All of macromodels shown in this work have a highly modular structure as many
pole/zero stages may be applied as necessary without affecting other models. Moreover,
the presented models can be exchanged with more accurate ones. For example the input

stage can be modified in order to model the common mode gain.



4.3.2 Nonlinear HLFMs
4.3.2.1 Model Architecture

This nonlinear model consists of two parts as seen in Figure 4-6, both are implemented
USing funCtionS ( Cin = f(vin) ' Zout = f(Vln) ' VL = f(Vm) ' iin = f(Vln) and
i =fV,,.V,,)). Theinput stage comprises either block 1 or block 2. The former isused

when the input impedance is modelled with a nonlinear controlled capacitor, otherwise
block 2 is selected. In block 2 the input impedance is modelled with a nonlinear voltage
controlled current source (VCCS) (i,, = f(V,,)). The output stage including either

block 3 or block 4 determines accuracy and modelling capabilities. In block 3 the output
impedance is a one-dimensional function dependent on the input voltage. The nonlinear

voltage controlled voltage source (VCVS) (V. = f(V,,) ) models the input-output
transfer function ( Vo, = f (V) [ 1os )- A two-dimensional function can be

implemented with block 4 (i = f (V,,,V,,)) when the output impedance is dependent on

not only the input voltage, but also the output voltage.

Input Stage Output Stage
Zouw=f(Vin)
i LI O
Vp Veffin lop out
Vin 1 Cin=Ff(Vin) viL=f(Vin)
Vn )
lbn 1
or and or
i:f(Vout,Vin)
| —
Veo — out
Vin 1 %) iin=F(Vin) [ Vi =F(Vir) ]
\"'Xe!

Figure 4-6: Nonlinear macromodels (see Appendix C: C.2 (for block 1&4))
4.3.2.2 Implementation in MAST

Block 1 and block 4 are used in this section to build the nonlinear macromodel. A cubic
spline interpolation is applied to pre-simulated data obtained from the transistor level

4-10



simulation. Interpolation techniques are commonly used when no mathematical
relationship can be derived, or if such arelationship is very difficult to find. For a good
spline interpolation the number of sample points and the sample point distance is very
important [Bartsch99]. Nonlinear parts need to be simulated with more data to achieve
accurate signals, but more samples require a large table size that causes low speed.
Whereas fewer sample points tends to cause oscillation in regions of high curvature.

Therefore, it is necessary to find a compromise between table size and model accuracy.

The op amp in Figure 4-1 is configured as an open loop amplifier as shown in Figure
4-7. Thiscircuit ismodelled at transistor level (HSPICE).

Vinput @ + Vout

dc ffset:VOff'sim

Figure 4-7: Linear model parameterization

A set of dc analysis run is necessary with the strategy shown in Figure 4-8:

- A dc voltage source is connected to both the negative input and to the output
of the op amp to measure the output current.
- The simulation is performed in the following way:
FOR dc voltage source at the input node = -2.5v to 2.5v
FOR dc voltage source at the output node = -2.5t0 2.5v
Perform DC analysis of the op amp block
END;
END;

Figure 4-8: Algorithm of obtaining the output current function

Firstly dc analysisis run over the whole input voltage region with a step size of 500mV .
It is observed that the linear range is between 0 to 10mV, so the second simulation is
only implemented around this linear region with a smaller step size of 10uV, a high

accuracy near the linear region is achieved. These two dc analyses gives 1,500 sample
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points, which are then stored in a text file. The table look-up (tlu) functionality in
MAST is then utilized with data interpolations to create the model that goes exactly
through all their data points without involving any optimization algorithm [Saber04].
During development of block 4 it was realised that the Cosmos simulator does not have
the function to generate the 2-D graph. Although Saber Sketch in Saber can implement it,
it does not have an export function to save signals. Therefore, MATLAB is employed to
achieve the nonlinear two-dimensional output current function using the command
griddata [MATLABG.5] depicted in Figure 4-9.

Graph of the non-linear function

vy

R : : D

e N B NS oy .
: : : St O R g

¥

.”f’f//;

Wl

Vo

Figure 4-9: Nonlinear two dimensional output current function i = f (V,,V;,)

The x and y axis are spanned with the differential input voltage V; and the output voltage
Vo, respectively, the output current i forms the z axis. The nonlinear VCVSV, = f(V,,)
is not required since this function is already included in the highly nonlinear function
i =fV,,.V,). Such a nonlinear function can be very powerful because it is able to

model the nonlinear input-output transfer function as well as the nonlinear output
impedance. Such a non-linear function is very powerful. It models the non-linear input-

output transfer function as well as the non-linear output impedance.
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4.4 Conclusion
In this chapter various types of high level fault models are introduced. They are divided

into two categories: linear and nonlinear. The former can only be used for certain types
of faults. However, the linear and nonlinear models can be used together. Those models
are written in MAST and run on the Cosmos simulator. The netlist used is the open-loop
amplifier, inverting amplifier and state-variable band-pass filter, respectively. Results
have shown that HLFM can model faulty behaviour correctly compared with TLFS.
Simulation speed is not focused in the chapter because it has been discussed and shown
significantly in [Bartsch99].

In the next chapter a novel automated model generation (AMG) approach will be
introduced.
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Chapter 5: The Multiple Model
Generation System (MMGS) for
Automated Model Generation

5.1 Introduction

Automatic generation of circuit models for handling strong nonlinearity has received
great interest over the last few years. It is essential for realistic exploration of the design
space in current and future mixed-signal SoCs (system-on-chips) and SiPs (system-in-
packages). Generally such techniques take a detailed description of a block such as
SPICE level netlist and then generate a much smaller macromodel via an automated
computational procedure. The advantage of this approach is its generality. As long as
the equations of the original system are available numericaly, knowledge of circuit

structure, operating principles and so on are not very important [ RoychowdhuryQ3].

In this chapter a novel automated model generation (AMG) approach named multiple
model gradation system (MMGS) is developed for single-input single-output (SISO)
macromodels capable of coping with a larger range of conditions than more
conventional macromodels. The process is shown in Figure 5-1. The MMGS generates
macromodels by observing the variation in output voltage error against input range. The
advantage is that the estimated signal can be adjusted recursively in time to handle
nonlinearity. It consists of two parts. the automated model estimator (AME) and
automated model predictor (AMP). The AME implements the model generation
algorithm, and the AMP uses these models to predict signas in the simulation with
different types of stimuli. The system is based on a set of models n. The location of each
model is decided by the thresholds seen in u(t).



|
%”g%:;asl l l Input Other types

or VB
Input u(t) output y(t) u(t) of stimuli

\4 \4
7 model Predicted

AME AMP

Figure 5-1: Schematics for the procedure of MMGS

Individual models in the n-model set are based on the RARMAX (Recursive
AutoRegressive Moving Average eXogenous variables model) system [Ljung99] in the
system identification toolbox in MATLAB [MATLAB®G.5]. It is a single-input single-
output (SISO) system and used to compute recursively for an ARMAX (AutoRegressive
Moving Average eXogenous variables model) [Ljung99]. ARMAX is a robustified
guadratic prediction error criterion that is minimized using an iterative Gauss-Newton
algorithm that is a modification of Newton's method that does not use second
derivatives. The algorithm is due to Carl Friedrich Gauss [Broyden65].

The structure can be expressed in Eg. 5-1 [Ljung99], where u(t) and y(t) represent input
and output signals, respectively; e(t) is known as the noise parameter or prediction error;

a, b and c are coefficients.
yt)+ayt-1+..+a, yt—na =but-1)+...+b ut—nb +et) +cet-J)... Eq. 5-1
The method used to obtain the coefficients (a, b, c...) is the recursive maximum

likelihood (RML) method, which is an improved version of the extended least squares

(ELS) technique [Ljung99] to distinguish measurement errors from modelling errors by



properly weighting and balancing the two error sources [Yeredor0O]. The RML
algorithm is summarised in Appendix L. Ljung was the first person to prove
mathematically that RML is able to converge more reliably than ELS [Ljung75]. The
key difference from ELS is that the RML does not include the prefilter, which can filter
noise properties in a ¢ polynomial that controls whether or not the estimator converges
properly. The recursive method processes all samples one at a time and iterates the
algorithm to obtain the estimation result during one sampling interval. Compared with
non-recursive models it alows use of relatively small arrays, and is able to find the
neighbourhood of a reasonably acceptable working model even when a unique solution
is not available, whereas for a non-recursive model all results are processed

simultaneously, which produces large matrices of stored information.

The estimation process is described in Figure 5-2, where u(t) is the input stimulus,
which is used to connect both the SPICE op amp model and the estimator; y(t) is the
output response from the transistor level simulation (TLS); ye(t) is the output response
using RML.

Original Input u(t) Output y(t)

signals

(TLS)
Estimated

Output ye(t)

Estimator
(RMIL) SVAVAVAN

A 4

Figure 5-2: The general process of the estimation

The RML estimates the data obtained from TLS to produce coefficients for the
RARMAX model and the estimated output signal. We then compare the estimated
output signal with the one from the original SPICE mode, if it is not good enough the

condition of the estimator will be changed in order to achieve better results.



These generated models comprise bilinear equations [Ashenden03] that reproduce the
input-output relationships of the origina circuit, and can be easily converted into
formats used by system-level smulation tools, e.g., VHDL-AMS (used in this work),
MAST, and even SPICE subcircuits. Model order reduction (MOR) techniques may be

used to reduce the order of model and improve the simulation speed.

In this thesis the SPICE model used as an example to evaluate the MMGS is the same
two-stage CMOS operational amplifier (op amp) as shown in Figure 4-1, shown again

in Figure 5-3. The op amp is used in open-loop configuration.

Vdd

M11 Mle }O—Q In+
}—0—1 > Out
9

Vss

Figure 5-3: Schematic of the two-stage CMOS operational amplifier

The following chapter is outlined: the quality measurement based on an mathematical
equation is introduced in section 5.2; section 5.3 introduces the training data for
estimation; the MMGS is presented in section 5.4; section 5.5 overviews the some key
factors to improve the quality of estimation; illustrative results are given in section 5.6

followed by the conclusion in section 5.7.

5.2 Algorithm Evaluation based on an Mathematical Equation

We need to investigate the quality of estimation by comparing the output signals. The
determination of ‘closeness between two signals is based on the normalized evaluation
range seen in Eq. 5-2. Where Average dif is the percentage of average difference, y(i),

yp(i) indicate the difference between the original signal and predicted signal at ith point.
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N represents the number of samples. y_peak-to-peak is the peak- to-peak amplitude of
the original signa y.

IORAQ

Average dif = N x100 Eqg. 5-2
y_ peak—to— peak

Furthermore, the ssimulation speed measurement was also investigated but will be

introduced in chapter 9.

5.3 Training Data for Estimation using PseudoRandom Binary
Sequence Generator (PRBSG)

It is necessary to use arobust training data for estimation so that the model(s) generated
can handle a wide input spectrum and nonlinearity. In this work a triangle waveform
with pseudorandom binary sequence (PRBS) superimposed on it is used as the training
data for estimation. The training data is generated by a pseudorandom binary sequence
generator (PRBSG). The PRBSG is written in C++ and run in the visua C++
environment. A command srand is used to make sure that signals generated by PRBSG
start from the different initial conditions, otherwise their sequences will be correlated.
Another way to achieve PRBS isto build alinear feedback shift register (LFSR).

An example of the signal is shown in Figure 5-4, where x axis indicates the number of
samples, y axis represents the amplitude in voltage (V). It is a 155Hz, 5.1mV triangle
waveform with a51uV PRBS superimposed on it. The PRBS has atime interval of 10us.
20,000 samples are used but only the last 1,000 samples are displayed. Connecting the
signa to the negative input (In-) of the open-loop op amp, the positive input (In+) is
grounded. The output signal is obtained in Figure 5-4. It is seen that the output signal is
inverted compared with the input signal, and it does not cover full output range (-2.5V
to 2.5V) because of the input offset voltage (5.94mV). It has only saturated at 2.5V but
not cover the negative range. The full coverage data as the training data will be used in

chapter 6.
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Figure 5-4: Thetraining datafrom PRBSG and output response using the open-loop
amplifier

5.4 Multiple Modd Generation System (MMGYS)

In this section the multiple model generation system (MMGS) is introduced. It includes
two sections:. in subsection 5.4.1 we illustrate how multiple linear models are used to
represent a nonlinear characteristic, and criteria used to select the family of models; in
subsection 5.4.2 the automatic approach for the MMGS isintroduced.

5.4.1 Manual mplementation
This section describes two issues: one is the selection of models to be used, and the

other isthe investigation of the quality of estimation.

Imagine a typical input and output circuit transfer characteristic and a modelling
estimate using a linear model, and corresponding error against input with one iteration.
The following illustrates the theory of the issues shown in Figure 5-5. Where y is the
original signal, y isthe estimated signal using the estimator based on alinear model mi1,
error ¢ isthe difference betweeny and y, that is, ¢ = y— ¥ . Idedlly ¢ should be zero for

all values of input.
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Figure 5-5: Input and output circuit transfer characteristic (one linear model)

Comparing the two outputs y and y indicates that the linear model struggles to model

the nonlinear characteristics, this can be determined by observing variation of the output

error.

Imagine the same circuit transfer characteristic and the modelling estimate based on five
linear models m1, m2, m3, m4 and m5 instead of one (top figure), and corresponding
error for one cycle (bottom figure) shown in Figure 5-6. Where y is the original signal,

y is the estimated one by the estimator, error ¢ is the difference betweeny and ¥, that
IS, e=y-Y.
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Figure 5-6: Input and output circuit transfer characteristic (m1-m5 and input threshold
selected linear models)

It is shown that § is constructed from five linear functions to form a piecewise
nonlinear model. Each model is only valid for certain ranges of input indicated by the
vertical lines on Figure 5-6, i.e., input thresholds. The linear parts of the signal y can be
approximated reasonably well, that is, ¢ = 0. The modelling error tends to be larger at
the change over input thresholds between models. These have been circled in Figure 5-6
and are highlighted in the plot of error ¢ figure. It can be seen that the amplitude of the

error ¢ ismuch smaller than Figure 5-5.

Therefore, in theory estimation accuracy can be improved by using multiple models,

and the output error ¢ vsinput can be used to assess performance.



Based on the theory, the rest of the subsection 5.4.1 shows the actual simulation using
the op amp in Figure 5-3. The input and output signals from TLS are shown in Figure
5-4. This process starts by observing the error using a linear model to fit the whole
range of operation. In RML there are two error parameters. the innovation error epsi and
residua error epsilon, both are the difference between the origina signal and the
estimated one. However, epsi is not only related to the value at current time but also the
one at the previous time, which is difficult to observe. Therefore, epsilon is the criterion
adopted for threshold creation. In this stage the number of samples does not affect the
shape of the error.

We plot epsilon against the input voltage as shown in Figure 5-7, only last 1,000
samples are displayed. It is seen that the error varies significantly during estimation.
The vertical line indicates where the largest error is and how it corresponds to the input

signal.

Input Voltage ()
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100 200 300 400 500 500 7oo 200 [=Inln] 1000
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Figure 5-7: Theinput voltage and the output error voltage

The estimated output voltage and the original signal are plotted in Figure 5-8, only the
last 1,000 samples are displayed. It is seen that the estimated signal does not match the
original signal well. This indicates that the linear model is unable to model the

saturation and nonlinear parts. Thus, more models are required to handle nonlinearity.
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Figure 5-8: Comparison of output signals based on one model during estimation

process

We decide to split the region up into two regions at the vertical line shown in Figure 5-7
because this is where the maximum error voltage appears. Now each new region will
contain one model. Both models are then estimated, and then we observe if the error is
too large to tolerate, if thisis the case we split the regions again and then run the whole
estimation. It is important to know that the models generated for new regions may be
different from ones that have been obtained over the same range previously. This is
because they are only generated using the training data in individual regions as it
gradually learns over the operating time.

To observe the whole history of error behaviour over the whole input range of the
system, we plot them shown in Figure 5-9. This method will be used in the rest of thesis.
It is seen that the error does not appear as a uniform bar instead it is varying with the
input at the time. It has the negative bias in the negative area of the input, increasing to a
peak at approximate an input voltage of 1mV, and becoming more negative as the input

voltage reaches its maximum (5mV).

This proves that the system can not be represented by a linear model. Therefore, we

search where the largest error (maximum amplitude) is, which is displayed by the
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second vertical line for inputs voltage at 4.7mV (the first and last vertical lines indicate
the boundary of the input). The line divides the input range into two parts, each of them

contains amodel.

0.2

epsilon ()

-0.25 -

0.3

input &) w107

Figure 5-9: The variation in epsilon vs input range based on one model

Instead of two models, five models (within six vertical lines) are employed. The value
of epsilon against input range is plotted in Figure 5-10, the ranges over which these
models apply are indicated by the vertical divisions. It is seen that the first model
between the first vertical line (-5.1mV) and second vertical line models nonlinear
behaviour with good accuracy due to the straight and narrow error band. The second
error voltage amplitude between the second and third vertical lines is larger than the
first one. The error amplitude is similar in the third and fourth models. The error
between the fifth and the last vertical lines (5.1mV) has the largest amplitude, because
here we find the stronger nonlinearity and there are fewer samples in this region, but
this is the best that can be achieved by the last model. However, the amplitude of error
has been significantly reduced compared with Figure 5-9. The quality of the predicted
signa is therefore greatly improved shown in Figure 5-11 compared with Figure 5-8.
According to Eq. 5-2 the average difference between them is 0.0013%.
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Figure 5-10: The variation in epsilon vs input range based on five models
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Figure 5-11: Comparison of output signals based on five models
In this section we have demonstrated that using multiple linear models improves

estimation quality. The operating ranges where the models are needed are obtained by

observing the output voltage error variation against input voltage.

5-12



There is a potential problem when one model is moved to another, there may be

discontinuity. More details about it will be discussed in Chapter 7.

The automatic approach of the MMGS is developed in the following section.

542 TheMMGS

In this section we are going to introduce the automatic model generation algorithm of
the MMGS. It includes the automated model estimator (AME) and automated model
predictor (AMP). The former automatically generates models by observing output error
voltage variation through input voltage range. The AMP uses the models to predict

circuit response.

5.4.2.1 The Automated Model Estimator (AME)

The AME comprises three stages. the pre-analysis, estimator and post-analysis. Pre-
analysis is mainly to set up conditions such as input range and the number of intervals
for model creation and is only performed once; the estimator is used to determine the
quality of output data; post-analysis is the critical step because procedures for creating
models are implemented here. This process terminates when no new model is created.
The genera structure is shown in Figure 5-12. Its MATLAB codes can be found in
Appendix H.1.1.
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Figure 5-12: The flowchart for the AME

54.2.1.1 ThePreanalysis

The pre-measurement is used to determine the input range and set the maximum number
of sub-models. Initidly, maximum and minimum values of the input signa are
measured. It is then divided into a number of intervals. The number has to be even so
that the middle interval is centred in the full range of input voltage. There may be a

model within one of the intervals, but it is not necessary because the final decision to
adding amodel is made in the post-analysis.

5-14



5.4.2.1.2 TheEstimator
The RML estimator provides output responses and the residual error epsilon [Ljung99].
Its mathematical process can be found in appendix L.

The process is implemented in MATLAB [MATLABSG.5]. It starts by running through
all samples using afor loop. The indices for creating the threshold are found with afind
statement. A statement min is used to guarantee that only the smallest index is selected,
and then the new model pointed by this index is generated. Parameters (th) and the
covariance matrix (p) in each model need to be created and updated. The innovation
error (epsi) and residual error (epsilon) are all calculated. Moreover, the prefilter needs
also to be updated. The estimation is not over until all samples finish [Ljung99].

5.4.2.1.3 Post-analysis
Post-analysis is a critical step because the model generation process is implemented

here. The workflow is described in Figure 5-13.

The decision to add a new model to an interval of input voltage is based on Eq. 5-3,
where mediumRange is half of the difference between the maximum amplitude of the
error (highinterval) and the minimum amplitude of the error (lowlinterval) for the
interval. criticalRange is the equivalent summation. criteria calculated for the interva
results from the comparison of these measures and that of the centra interval of the
simulation (mediumRange(central)).

mediumRange = (highinterval —lowlInterval)/ 2
criticalRange = (highinterval + lowlnterval) /2 Eq. 5-3
criteria = [ mediumRange — mediumRange(central )] —criticalRange

If the difference between two mediumRange is greater than the criticalRange, one
model is added within the j" interval (if there are j intervals), otherwise no action is
taken. If j is greater than a central point, the threshold will be set at the lower range,
otherwise it is set at the higher range in order to obtain the position close to the central
point. In order to increase simulation speed a shift mechanism is used to delete
equivalent models. Finally the new threshold array is sorted into monotonic order. Only
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one model is created per iteration, because the error profile is recalculated whenever a
model is added.

M easure the minimum and
maximum values of epsilon
within each interval

Make adecision to add a
model based on some
mathematical equations

Is anew model
required?

A new threshold is needed
for the new model and
stored in an array

Sorting the threshold
array in an ascend order

Detect the same
thresholds in the array
and delete them

Compare the size of the
new threshold with the size
of the previous threshold in

order to end the iteration

Figure 5-13: The algorithm for post-anaysis
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5.4.2.2 The Automated Model Predictor (AMP)

The AMP is used to verify the AME system. It loads models generated by the AME to
predict output responses. Its process is similar to the estimator in section 5.4.2.1.2.
Unlike the estimator, the prefilter is not required. The MATLAB codes can be found in
Appendix H.1.2.

5.5 Key Factorsto I mprovement of Estimation Quality
In this section some key factors that can improve the quality of estimation are discussed.

They include the offset parameter, the number of samples and the training data.

The op amp aready shown in Figure 5-3 is configured as an open-loop amplifier in
these experiments. The estimator and predictor each comprise three programs written in
MATLAB (see Appendix E).

5.5.1 The Offset Parameter Related to M odel Oper ating Points

Within the multiple model generation process, each individual model is allocated in a
unigue range of operating input values given by the thresholds. It is known that the
model created for each of the ranges has a linear relationship between the input and
output seen in EQ. 5-1. Asaresult it must have an additional parameter termed offset to
place its operation in the middle of its allocated input operating range. The transfer
function in Eqg. 5-1 is modified seen in Eqg. 5-4, where Vg iS the offset vector and d is
the coefficient for the offset.

yt)+ayt-D+..+a, yt—nad =bult -1 +...+ b ut —nb+et) +cet—1)..+d- Ve,
Eq. 5-4

The following will show how important this parameter is in the system to improve the
accuracy of estimation. Two results are compared: one is with the offset, another
without it. Full source code can be found in Appendix E.1 and Appendix E.2,
respectively. The input signal is a sine waveform with an amplitude of 0.2V at 100Hz. It
Is connected to the inverting input (In-), the non-inverting input (In+) is grounded.

1,000 samples are used. Initially simulation results without the offset parameter show
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that the predicted signal yPredict has failed to model saturation compared with the
original signal y in Figure 5-14.

Cormparison between the original signal (y) and predicted signal (yPredict)
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Figure 5-14: The predicted signal without the offset parameter

The determination of ‘closeness’ between two signals is based on the normalized

evauation range seen in Eg. 5-2. In this case Average dif is 4.88%.

After that simulation using the offset parameter was run. During simulation the
predicted signal is obtained in Figure 5-15, the quality of the predicted signal yPredict
has been improved compared with the one without the offset parameter. According to
Eq. 5-2 the average difference is 3.283%, which is less than 4.88%.

There is some noise on the nonlinear parts because the estimator can not obtain enough
information on that region; it has to generate information itself. This can be improved
by using a saturation detector to delete the saturated samples, thus the estimator will
focus on avallable information. However, it has been proved that with the offset
parameter the quality of predicted signal can be improved.
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Comparison between the original signal (¥) and predicted signal (yFredict)
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Figure 5-15: The predicted signal with the offset parameter

5.5.2 Quality Improvement based on the Number of Samples

In this subsection a longer simulation is performed using 10,000 samples instead of
1,000 in order to investigate if better quality estimation can be achieved. The same sine
waveform signal as above is used with the open-loop amplifier. The predicted output
signals yPredict is shown in Figure 5-16. lllustrative results show that with 10,000
samples spikes have been reduced. According to Eq. 5-2 the average difference is
1.8946%, which is less than 3.283%. It has proved that sometimes quality of predicted
signal can be improved with more samples.

Comparison between the ariginal signal (y) and predicted signal (yPredict)
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Figure 5-16: Signals from the predictor with 10,000 samples
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However, this is not aways true, for example models on saturation regions, because
samples in the models may not be informative. Illustrative results can be found in

Appendix F.

Moreover, many methodologies for improving quality of the MMGS have been
developed and described in Appendix G.

5.6 Experimental Results

5.6.1 Simulation for Nonlinearity

In this subsection the transistor-level open-loop amplifier shown in Figure 5-3 is
modelled with inclusion of strong nonlinearity. Five models are generated, the stimulus
for both the AME and AMP is the same PRBS in Figure 5-4 (20,000 samples). The
estimated signal yEstimate and the original signal y are plotted in Figure 5-17 (last
2,000 samples). The x axisis the number of samples, and the y axisis the output voltage
(V). It is seen that yEstimate matches y. The average difference measurement is
0.3746%. This proves that this algorithm for automatic model estimation has worked

successfully.
——vy —-—-yEstimate
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Figure 5-17: The estimated signal from the AME system
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The AMP system then uses these models to predict the nonlinear system with the same

input stimulusin Figure 5-4, signals are shown in Figure 5-18 (last 2,000 samples).
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Figure 5-18: The signal from the AMP system

It is shown that both the predicted signal yPredictor and the origina signal y are very
close. The average difference measurement is 0.572%.

Although there is some difference on the saturation part in the predicted signal, because
the process of prediction is “dead reckoning”, that is, in the predictor we derive the
output response from the input directly without any information on output to work on,
so we accumulate errors, whereas in the estimator we use genuine data from the real
process.

5.6.2 Validation Test for MMGS Generated Models via Time-domain (transient)
Simulations

In this subsection another stimulus is used in order to validate the models from section

5.6.1 (five models). The circuit used is the open-loop amplifier. A square waveform

stimulus was used based on the pulse source function in HSPICE: PULSE (v1 v2 td tr tf

pw per), where vl isthe initial value of the voltage or current before the pul se onset, v2

Is the plateau value, td, tr and tf represent the delay time, rising time and falling time,

respectively, pw is the pulse width, per is the pulse repletion period in seconds. In this
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case these parameters are chosen as follows. PULSE (-0.2mV 0.2mV 100us 100us
100us 700us 1000us). All conditions in the system remain the same as above, the

predicted signal is seen in Figure 5-19.
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Figure 5-19: Predicted square waveform based on models from the MMGS

It is seen that the shape of the predicted signal (bottom) is close to the original one (top).
The average difference between them is 0.524%.

5.7 Conclusion

In this chapter an AMG based approach termed multiple model generation system
(MMGS) has been developed for SISO models. It consists of the automated model
estimator (AME) and automated model predictor (AMP). A PRBS-signal generator is
used to generate robust training data for the AME. Results show that these generated
models are able to model nonlinear behaviours, and model circuits subjected to various

stimuli such as the pulse waveform with good accuracy.
In the next chapter the multiple model generation system (MMGS) for multiple-input

single-output (MISO) models based on recursive maximum likelihood (RML) is

implemented.
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Chapter 6: The Multiple Model
Generation System (MMGS) for
Multiple-Input Single-Output (MISO)
Systems

6.1 Introduction

In this chapter the multiple model generation system (MMGS) for multiple-input single-
output (MISO) models based on recursive maximum likelihood (RML) is implemented
in MATLAB [MATLABG.5]. The reason for developing a MISO model is that the
system of interest is atwo-input operational amplifier (op amp). Existing approaches for
MISO models such as the recursive prediction error (rpem) method or the recursive
pseudo-linear regression (rplr) method [MATLABG.5] can aso be used. The difference
between them is that different gradient approximations are utilized [Ljung99].

Currently, the model generation process is dependent on threshold measurement of one
input, the other input is not responsible for model generation and selection, because this
reduces the complexity of the process for our investigation. The generation method
based on both inputs will be investigated in the future work. The input for the model
generation has the most nonlinear relationship, so the input and output transfer
characteristic is the one with the worst nonlinearity, which is the one used to generate

models, the other input is more linear in the relationship with the output.

This chapter is outlined as following: section 6.2 overviews the MMGS for MISO
models. Experimental results are given in section 6.3 to verify the system works. In

section 6.4 the conclusion is given.

6.2 Algorithm on the MMGS for M1 SO Models

The MMGS comprises two parts: the AME and AMP. The former generates models
based on the model generation algorithm, the latter uses these models to predict signals.
It uses the same approach as the SISO models to generate multiple models, that is, by

observing the variation in output error against input range. Moreover, the criteriain Eq.
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5-4 are employed to decide when a new model is added. The difference is that the
structure of RARMAX system is modified seen in Eq. 6-1, i.e., a second input vector v
Is added compared with Eqg. 5-3.

yt)+ayt-D+..+a yt—-na=but-1+...+ b ult—nb)+

fut-2)+..+ f vt—nf)+et)+cet - +...+d -V, Eg. 6-1

where u(t), v(t) represent first and second inputs, respectively; y(t) is the output signal;
e(t) is the noise parameter or prediction error; Vst IS the offset vector; a, b, ¢, d and f

are their coefficients.

The same two-stage CM OS operational amplifier (op amp) as Figure 4-1 is employed

also shown in Figure 6-1 as an open-loop amplifier in these experiments.

vdd

M11 Mlzj }O—Q In+
}—0—4 > Out
9

Vss

Figure 6-1: Schematic of the two-stage CMOS operational amplifier

In addition, the pseudorandom binary sequence generator (PRBSG) developed in
chapter 5 is used to generate two PRBS signals for the MMGS as shown in Figure 6-2,
in which 30,000 samples, only last 1,000 are displayed.
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Figure 6-2: Two inputs and one output signals from TLS

It is seen that two input signals have different shapes with approximately the same
amplitude but different frequencies. The first input signal for the estimator is a 125Hz,
11mV triangle waveform with a 0.5mV pseudorandom binary sequence (PRBS)
superimposed on it. The second input signal for the estimator is a 25Hz, 10mV triangle
waveform with a ImV pseudorandom binary sequence (PRBS) superimposed on it. The
PRBS has atime interval of 10us. The first signal (higher frequency) is connected to the
inverting input (In-), another PRBS (lower frequency) is connected to the non-inverting
input (In+). The output signal saturatesat + 2.5V.

6.3 Experimental Results

6.3.1 Analysisof MMGS

The aim of the section is to investigate if the MISO MMGS system is able to model a
linear system. A linear circuit as shown in Figure 6-3 is used. This circuit is able to
simultaneously achieve small steady-state error, large phase margin, and large gain
crossover frequency [Chirlian82]. This circuit is based on a differential amplifier, which
is atype of an electronic amplifier that multiplies the difference between two inputs by

the differential gain. It consists of two low-pass filters with the frequencies of 100Hz and



10Hz, respectively. The transfer function is given in Eq. 6-2, where Ry = 1kQ, R =
10kQ, C; = 0.15915uF, R; = 10kQ and C, = 1.5915uF.

Figure 6-3: A linear circuit with two low-pass filters

R, R,-C, s+R,
V°=_R1~Cf ‘R, -R,-C,-8*+(R,-C,-R, +R,-R,-C,)-s+ Rl.vm Eq. 6-2
R -C; R s+R +R;
"RC, R, -R,-C, S+(R-C, R, +RR,-C,)-5+R,

Its transfer function under discrete-time is shown in Figure 6-4 produced in the system
identification toolbox in MATLAB.

>> Discrete-tine |1 DPOLY nodel :y(t)=[B(q)/F(q)Ju(t)+ e(t)
B1(q) = -0.8421 g"-1 + 0.8347 g~-2

B2(q) = 0.0125 g*-1 - 0.004393 g*-2
F1(gq) = 1 - 1.907 g*-1 + 0.9078 g”-2
F2(g) =1 - 1.907 g*-1 + 0.9078 g*-2

Thi s nodel was not estinated from data.
Sampling interval: 0.00014

Figur e 6-4: The coefficients from the system identification tool box

The investigation uses two steps:



1) The analytical simulation is used for analyzing the circuit, both input and output
data arethen stored in a text file.
2) The MMGS generates a model based on these data.

The circuits analysed can be found Appendix 1-1 and Appendix I-2, respectively.

The same training data shown in Figure 6-2 is used again, in which the higher frequency

signal is connected to the inverting input vi,, and the other one is applied to the non-

inverting input vip. All (i.e., two inputs and output) signals are then passed to the MM GS

to generate a model. Its transfer function is shown in Figure 6-5. Comparing this model

with the one from the circuit in Figure 6-4, their coefficients are seen to match.

~(0.8421 g *-0.8%7 q*),,  (0.0125 q '-0.0044 q*)

° 1-1.907 q '+0.9078 g2 ™ 1-1.907 q *+0.9078 q 2 "

Figure 6-5: The model under discrete-time from MMGS

The MMGS was then used to predict the behaviour of the same circuit. Results are

shown in Figure 6-6, only the last 4,000 samples are plotted, where the x axis is the

number of samples, and the y axis shows the amplitude voltage (V).
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Figure 6-6: The predicted signal from the analytical system



The difference between the predicted signal yp and the original oney is measured using
the average difference measurement, which can be found in EQ. 5-2. In this case
Average dif is0.000143%.

Further analysis of various low-pass filters with different cut-off frequency showed that
reasonabl e results are achieved using the procedure detailed above. Unfortunately, this
form of MMGS is unable to model high-pass filters accurately due to aliasing. An anti-
aliasing filter can be employed to make sure there are no signas beyond the Nyquist
sampling frequency. However, this may cause too much phase shift or other

discrepancies.

6.3.2 Simulation for Nonlinearity

The aim of the section is to investigate whether the MMGS is able to model strong
nonlinear behaviour. In this subsection the training data is obtained from the transistor-
level open-loop op amp SPICE modd from Figure 6-1 is ssmulated with inclusion of
strong nonlinearity. Three stable models are used by the MMGS, and the stimuli are the
same as in Figure 6-2, for both the AME and AMP. The signals are shown in Figure
6-7, only last 5,000 samples are displayed, where the x axis is the number of samples, y
axisisthe amplitude (V).
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Figure 6-7: The predicted signal from MMGS
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It is seen that the predicted signal yPredictor is able to match the origina signal y. The
percentage of average difference between the two signals is 0.1593%. There is some
noise in the saturation regions because the estimator struggles to obtain enough
information where there is no relationship between input and output, that is, the output is
not dependant on input. Here it has to generate excitation itself to make the best guess.
This can be improved by using a saturation detector to delete the samples in the
saturation region, so the estimator will focus on available information. These results
indicate that the MM GS is able to handle nonlinearity with good accuracy.

6.3.3 Validation for Test for MMGS Generated Models via Time-domain
(Transient) Simulations

Various stimuli including sine and square waveforms were used in order to validate the
models in subsection 6.3.2. However, only sine waveform is shown in this section. The
two inputs are 0.6mV at 500Hz, and 0.3mV at 100Hz. Signals are plotted in Figure 6-8.
It is seen that the predicted signa yPredictor is close to the original y in term of the
amplitude, but the offset is not as expected. The result may be improved by adding an
offset parameter, which will be discussed in next chapter.

y yPredictor
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Figure 6-8: The predicted signal with multiple models generated from MMGS

6.4 Conclusion
In this chapter the multiple model generation system (MMGS) is developed for MISO
models from transistor level SPICE simulations. It has been shown that these generated



models are able to model nonlinear behaviours, handle low-pass filters accurately, and
predict various circuit responses reasonably, except for their offset. Offset can be
handled by adding a parameter to the model, and problems concerning automation of
determining offset will be improved by implementing high level modelling (HLM) in
chapter 7.



Chapter 7: High Level Modelling
based on Models from the MMGS

7.1 Introduction
As was discussed in chapter 2 high level modelling (HLM) is an important part of

modern design flows.

In this chapter HLM based on models generated from the multiple model generation
system (MMGYS) is implemented using both manual and automatic approaches. The
following sections are outlined: section 7.2 introduces how to implement this
conversion manually. The automatic algorithm is discussed in section 7.3 followed by

the result in section 7.4. Section 7.5 supplies the conclusion.

7.2 Manual Conversion

The aim of this section is to introduce the structure of the behavioural model and prove

that there is no discontinuity caused during model switching.

7.2.1 Structure of the Behavioural M odel

The structure of the behavioural model used in this work is shown in Figure 7-1, which
is similar to the linear model in chapter 3. However, this behavioural model takes
nonlinearity into account, that is, multiple models from the MMGS are included in the
voltage controlled voltage source (VCVS) (implementing V, = f(V,,) ) to handle
nonlinearity. In this case the same models from the multiple model generation system

(MMGS) are used in chapter 5, and the input voltage rangeis + 0.01V.
Two linear resistors r, and r, provide the input impedance and output impedance,

respectively, and Vosin and Vosrout are parameters for modelling the input offset and output
offset, respectively.
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Figure 7-1: Structure of the behavioural op amp model

Each model in the MMGS can be expressed as a multiple-input single-output (M1SO)
system. The high level model is similar to this, but without the noise vector as shown in
Eqg. 7-1, where u(t), v(t) represent the first and second inputs, respectively; y(t) is the

output signal; Vot 1S the offset vector; a, b, d and f are their coefficients.

yt)+ayt-1)+..+a, yt—na)=but-1)+...+ b ult—nb)+

fVt-D+..+f vt—nf)+d-v ., Eq. 7-1

The equation above is then modified using the z transform as shown in Eq. 7-2 in order

to facilitate implementation in the VHDL-AMS language.

Vo =V, - (B2 40,22 4. 4B, 7 ™) +v - (FZ2h + 22+ 4 £, 27™) - Eq 7.2
Q. /-
V.- @z'+az%+..+a,z"™)+d-z*

where Vi, Vi, and Vo represent inputs and output signals, respectively; z*, z°... are the

first and second delay operations, and so on; b,..b, and f,...f  are coefficients of the

INputs, 8o, & ... & are coefficients for the outputs, and d is the offset coefficient.

Each behavioural model written in VHDL-AMS is at the form shown in Eq. 7-3.
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vin_zml=v, 'delayed (T);
vin_zm2 =vin_ zml'delayed (T);

vip_zml=v,"delayed (T);
vip_zm2 =vip _zml'delayed (T); Eq. 7-3

vout _ zml = vout'delayed (T);
vout _zm2 = vout _ zml'delayed (T);

vout =D, -vin_zml+Db, -vin_zm2+---+ f, -vip_zml+ f,-vip_zm2+---
+d, —avout _ zml—-a,vout _zm2—---;

where the attribute ‘delayed is employed to perform a z domain delay by the sampling
interval T; voltage sources vy, V, and Vo are regarded as quantities at discrete-time in
VHDL-AMS using the zero-order hold attribute (‘zoh) that acts as a sample-hold
function to alow for the periodic sampling of the quantity, in which the value is held

between samples.

In VHDL-AMS there are three types of quantity: free, branch and source quantities. A
free quantity is an analogue-valued object that can be used in signal-flow modelling; a
branch quantity is similar, but is specifically used to model conservative energy systems;
and a source quantity is used for frequency and noise modelling [ Ashenden03].

Free quantities vin_zml, vin_am2, vip_zmi,..., vout_zm2 represent first and second
delays of the sampling interval Ts. Ts is derived from the sampling frequency, i.e.,

fo= Ti , Which has to be at least two times higher than the input signal frequency (using

Nyquist’s law) in order to extract al of the information from the bandwidth [Bissell94].
Failure to do so can cause aiasing, which produces unwanted frequencies within the
range expected [Bissell94]. These unwanted frequency components occur at the
difference between the input and sampling frequencies, and produce erroneous sampled
waveforms. To overcome aliasing, anti-aliasing filters can be employed by sampling

systems.

As previous discussed the model selection process during the MM GS is based on input

ranges shown in Figure 7-2.
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If the input signal iswithin the range for the first model use
The first model is selected

Elseif the input signal iswithin the range for the second model use
The second model is selected

Else the input signal is not included in these ranges
Either the first or the last model is selected

Figure 7-2: Model selection algorithm based on input range

However, during high level modelling (HLM) we decided to focus on the model
selection process based on the output values instead of inputs in order to achieve
bumpless transfer, but input information is fed to all the models al the time. During
model switching, two models either side of aboundary (interface) giving the same input
will approach each other, because they have been trained by the estimator to be
consistent at the interface point.

This process is shown in Figure 7-3 using an if-else statement. Initially we displayed all
transfer functions of modelsin HLM, we then run all the models in parallel, meanwhile
input information are fed to all the models al the time. We only switch from one output

to another when they reach the particular area of the input signal.

Display the transfer function for the first model
Display the transfer function for the second model

Display the transfer functi.on for the last model

If the input signal iswithin the range for the first model use
The output voltage of the first model is selected

Elseif the input signal iswithin the range for the second model use
The output voltage of the second model is selected

Else the input signal is not included {n these ranges
Either the output voltage of the first or the last moddl is selected

Figure 7-3: The model selection process for the predictor



By doing this way we can achieve reasonable bumpless transfer. Although it is not
guaranteed that complete bumpless transfer is achieved, discontinuities will be small
because the two models are estimated to have the same value for the input because they
have both been subjected to the same boundary zone in the training data. However,
higher simulation speed may not be achieved. This can be improved by feeding only the
neighbouring models instead of all models.

This behavioural model is used to implement various systems such as a differentia
amplifier and alow-passfilter in order to verify that it works well. Simulations were run
using two simulators: SMASH from Dolphin [Dolphin] and SystemVision from Mentor
Graphics [Mentor], respectively. The difference between them has been discussed in
Appendix K.

7.2.2 Investigation to Bumpless Transfer using SMASH Simulator

The aim of the subsection is to prove that bumpless transfer between models can be

achieved using an example. Thisisrealised in four steps:

1. TLSin HSPICE is performed. The circuit used is an open-loop amplifier based on
the op amp in Figure 4-1. The stimulus containing 20,000 samples is connected to
the inverting input port (In-). It isa82.5Hz, 0.5mV triangle waveform with a0.1mV,
100kHz pseudorandom binary sequence (PRBS) superimposed on it. The MMGS
generates three models by estimating these data from TLS. These models
correspond to input voltage thresholds [-0.6mV -0.4909mV -0.3818mV 0.6mV],
respectively.

2. The AMP inthe MMGS uses the first model in step 1 to predict the output signal. A
sine waveform with the amplitude of 0.6mV a 1MHz is used as the stimulus
connected to the inverting-port of the open-loop amplifier.

3. The same process in step 2 is implemented for the VHDL-AMS model using the
SMASH smulator [SMASHRO05] [SMASHUO05].

4. Resultsfrom step 2 and step 3 are compared.

In step 1 a data loading process is run to load data from the pseudorandom binary

sequence generator (PRBSG) as a stimulus for estimation. This is implemented by a
subprogram function written in VHDL-AMS shown in Figure 7-4.
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The file is open in read mode, and then data is read line by line with a procedure
readline, which creates a string object in the host computer’s memory and returns a
pointer to the string. The read procedure is then used to read this string into an array. A
warning message is given if the size of the returned data is different from the datain the

file.

- define a function for data |oading
impure function read_array(file_nane:string;array_|length:natural)
return real _vector is
--type real _fileis file of real;
file vsoce:text;

variable result:real vector(0 to array_|l ength-1);
variable iline : Line;
vari abl e i ndex: natural ;
begin
--load all the data fromthe file
i ndex: =0; --initialization

--open the file for reading
file_open(vsoce, file_name, READ_MODE);

whil e not endfile(vsoce) and index <= array_length | oop
readl i ne(vsoce, iline);
read(iline, result(index));

i ndex: =i ndex+1;
if array_length>result'length then
report"the store is not |arge enough!" severity warning;
end if;
end | oop;
return result;
end function read_array;

Figure 7-4: Datawriting based on the sampling interval

A real vector is then used to store these data. After that the data are assigned to a
guantity as theinput signal. Thisistrandated into VHDL-AMS in Figure 7-5:

real _convertor: process is
begi n
for i in solutions'range |oop
sigval ue <= sol utions(i);
wait for 1.0us;
end | oop;
end process real _convertor;

si g_break: process (sigvalue) is
begi n

br eak;
end process sig_break;

vi nsour ce==si gval ue' ranp;

Figure 7-5: Assigning data as stimuli
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where ‘range is an attribute used to determine the range of the real_vector; a wait for
statement is necessary to allow time to elapse between applying new signals, otherwise
the new signal may overwrite the previous one, the analogue solver will restart every
1.0us and wait for the new data load. Use of the ‘ramp attribute without any parameters
allows the quantity to follow the signal exactly [Ashenden03]. Furthermore, a break
statement can be used immediately after the signal assignment process to restart the
analogue solver effectively.

As has been discussed, models from the MMGS are developed under discrete-time, so
in step 3 the sine waveform has to be sampled using the sampling interval (0.01us)
before it can be used for prediction. The discrete-time data is obtained by using some
functions written in VHDL-AMS and shown in Figure 7-6.

vi n_sanpl ed==v;,' zoh(Tsnp);
- Process to generate sanple clock
sanpl e_tick: process (tick) is
begin
tick <= not tick after Tsnp * 0.02 Sec;
end process sanple_tick;

- Process to sanple vin and wite to the log file
sanpl e_vin: process (tick) is
variabl e iline:Line;
vari abl e open_status : file_open_status;
variabl e index : natural := 1;
begin
if not file_is_open then
file_open(open_status, vsoce, filename, WRI TE_MODE);
file_is_open <= true;
end if;
if open_status /= open_ok then
report file_open_status'imge(open_status) & " while opening file "
severity warning;
file_is_open <= fal se;
end if;
--report "sanpled vin data point is " & real'image(vin_sanpled) severity note;
i f index <= index_max then
wite (iline,vin_sanpled);
witeline(vsoce, iline);

index := index + 1,

if index > index_max then
report "index can not be over the maxinum size!"
severity error;
file_close(vsoce); --close the file

end if;

end if;
end process sanmpl e_vin;

Figure 7-6: Data writing based on the sampling interval
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The zero-order hold attribute (‘zoh) samples the continuous quantity vi, at discrete
points in time Tsmp (0.01us). The first process statement with the signal tick monitors
when Tsmp changes. The second process statement is to implement data writing. In this
statement initially a file open check is employed to determine if the file can be opened,
the parameter status is used to return information about the success or failure of the
operation. This parameter is predefined in the package standard as file_open_status,
others include open ok, status error and so on [Ashenden03]. If the file is open
successfully, the value open_ok is returned, and further processes can be run. After the
file is opened the procedures write and writeline are used for data writing. A file_close
operation is provided paired with the file open operation, so that we do not

inadvertently write the wrong data to the wrong file.

The results from step 2 and 3 are compared using all model in [-0.6mV 0.6mV] to prove
model switches without bumps, signals from the AMP and VHDL-AMS model are
illustrated in Figure 7-7 and Figure 7-8, respectively. It has been mentioned previously
that the voltage thresholds are set at [-0.6mV -0.4909mV -0.3818mV 0.6mV]. It is seen
that the output signals (bottom) from both figures can be matched. Therefore, the model

conversion for the model is successful.

§iv)
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2.51

2.805 -1

ypredict (V)

2495 1 1 1 1 1 1
a 2000 4000 B000 S000 10000 12000 14000

Mao. of Samples

Figure 7-7: Predicted signal from the AMP based on all model
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Figure 7-8: High level modelling based on all model

It is seen that amplitudes and shapes of output signals (bottom) can be matched in terms
of shape and amplitude. There is not any discontinuity on the outputs when the system
is operating. Therefore, bumpless transfer can be achieved during model switching by

using the procedure mentioned in Figure 7-3.

7.3 The Multiple Model Conversion System (MMCYS)

In this section an automatic multiple model conversion system (MMCS) is developed to
convert models from the MMGS into VHDL-AMS models once these models have
been validated. The MMCS is written in MATLAB and located after the MMGS. The
structure of the VHDL-AMS model is based on Figure 7-1.

This system is defined as afunctionin MATLAB shown in Eq. 7-4:
function MMCS(thm t hreshol d, nn, fil enane) Eq. 7-4
where MMCS is the function name, thm, threshold and nn are parameters that are

obtained from the AME, filename is used to create a HDL file with .vhd extension for
VHDL-AMS models, the directory is required so that the user is able to decide where
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the file can be created. This function does not return anything because only the file

saved in the directory of filenameis required.

Initialy the size of thm, threshold and nn are defined in order to obtain the number of
models, the ranges for these models and the orders of each vector of the model seen Eq.
7-2, respectively. thm contains a two-dimension array. Its rows and columns contain the
models and the parameters, respectively. The system dynamically loads coefficients in
thm for each model seen Eq. 7-2 and its corresponding threshold.

The general structure of a VHDL-AMS moded consists of three parts: entity,
architecture and testbench [Ashenden03], which are obtained by employing multiple
fprintf statement in MATLAB. Other statements such as fopen are also used to open a
file and then write the key words in thefile. It is noted that the file directory needs to be
set up before the creation is implemented because fopen does not create a directory, but
accesses it and generates new files. At the end of the system a fclose statement is used to
closethefile.

7.4 Experimental Results

In this section the transistor level simulation (TLS) and high level modelling (HLM)
based on the models from the MM GS and MMCS are compared. The aim is to observe
whether our models are able to achieve higher speed and reasonable accuracy. The
models used in this case have been generated in section 6.3.2. Both TFS and HLM are
run in SystemVision [SystemVision], facilitating comparison.

7.4.1 Thelnverting Amplifier

An inverting amplifier with a gain of -4 is used for smulation. The stimulus is a sine
waveform with the amplitude of 1mV and the frequency of 100Hz. The transient
analysis is performed using t(start) = 2ms, t(end) = 50ms with a step of 0.001ms. The
output signals from the transistor level V(out) TLM and high level modelling
V(out) HLM are shown in Figure 7-9.
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Figure 7-9: Signals between the transistor level and the high level modelling

It is seen that both signal's can be matched in terms of shape and amplitude.

Comparing the simulation time under the same condition, the TLS takes 8.53s of CPU
time, the HL'S needs about 45.135s, which is about 5 times slower than the TLS. Thisis
because the simulator has not been optimised to use this kind of approach, and so the

computational overhead is high.

To investigate ssimulation speed, two types of experiments are implemented using the
same inverting amplifier: 1) during HLM we replace multiple models by a single model
to observe simulation time. 2) we consider the SPICE level of the transistor model and

prove that the level of transistor model can affect the simulation results.

Firstly we run HLS using a single model instead of multiple models under the same
circumstance, the simulation time is 40.234s, which is faster than HLS using multiple
models (45.135s). This is because the simulator has not been optimised to use this kind

of approach, and so the computational overhead is high.

Secondly we use different level transistor models in the same netlist of the op amp in
Figure 4-1. It is known that the transistor that has been used through the thesisis at level

2. In this experiment we use a new transistor, which is a 1.2 micron CMOS model
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(Level 3instead of level 2) [Spiegel95]. Each type of simulation has been run 10 times,
the average value is then chosen in order to reduce affects of interaction in computer.

The comparison is shown in Figure 7-10.
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Simulation Time (s)

Figure 7-10: Simulation Speed Comparison between level 2 transistors and level 3

transistors

It is seen that during TLS simulation speed based on the level 3 transistor (8.6953s)
becomes slower than the one using the level 2 transistor (8.5619s). This is because the
former is more complex than the level 2 transistor, it takes more time to complete

simulation.

Although the difference between TLS time is not very significant, it has indicated that
asthe transistor is getting more complex (the parameter level in the transistor is higher),
TLS becomes slower, whereas simulation time from HLS almost does not change.
Therefore, ssimulation speed-up during HLS may be observed.

In the future work, we will use more complex CMOS transistors (e.g., IBM 0.13 micron

level 49 [Mosig]) to investigate the improvement of simulation speed.

7.4.2 The Differential Amplifier
Initially we consider a differential amplifier. The differentia amplifier is useful for
handling signals referred not to the circuit common, but to other signals, known as

floating signal sources. Its capability of rejecting common signals makes it particularly
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valuable for amplifying small voltage differences contaminated with the same amount
of noise. Its typical circuit is shown in Figure
7-11. R = 2kQ, R, =10kQ, R '=1kQ, R, '=5kQ . The stimuli are two sine waveforms:
one has the amplitude of 0.6mV at 500Hz for vi,, another has the amplitude of 0.3mV at

100Hz for vip. Transient analysis is performed using t(start) = 20ms, t(end) = 60ms, and
the time step is 0.001ms.

Figure 7-11: The differential amplifier

The output signals from the transistor level and high level are plotted in Figure 7-12.
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Figure 7-12: Signals between the transistor level and the high level modelling
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Compared with the transistor level smulation (TLS), the shapes and amplitudes of the

signals from the model are very close.

Under the same conditions TLS takes 14.72s of CPU time, and the behavioural model
takes about 80.093s. To investigate why HLS is slower than TLS the behaviour model
using multiple models is replaced by a single model. Under the same circumstance with
only one model, HLS needs 70.234s, which is faster than HLM using multiple models.
This is because the ssmulator has not been optimised to use this kind of approach, and
so the computational overhead is high.

Moreover, the offset issue in section 5.5.1 has been improved by adding an offset
parameter in the model.

7.5 Conclusion

In this chapter HLM is implemented using a behavioural model. The model is produced
using the MMCS, which converts models generated by the MMGS into VHDL-AMS
models. This MMCS can dynamically load parameters and thresholds for each model.
The model switching process has been validated using a manua experiment in the
SMASH simulator.

Results show that the behavioura model can model various systems including an
inverting amplifier and a differential amplifier. Speed-up is not achieved because the
simulator is not optimised to deal with alot of computational overhead present when the
high level model structure is used. Moreover, speed-up can be improved by feeding the
neighbouring models instead of all models during model selection process.

In the next chapter a similar system to the MMGS that generates continuous-time

models will be implemented in order to address the speed-up issue.
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Chapter 8: Multiple Model
Generation System using Delta
Operator

8.1 Introduction

The objective of the chapter is to obtain a novel behavioural model in order to perform
high level fault modelling (HLFM) and high level fault-free modelling. The ideal model
should have higher ssmulation speed with reasonable accuracy compared with transistor
level simulation (TLS). We develop a system named multiple model generation system
using delta operator (MMGSD) for generating either single-input single-output (SISO)
or multiple-input single-output (M1SO) macromodels, so that the simulation speed may
be improved compared with the MMGS in chapter 5. The MMGSD employs a similar
approach to the MMGS, i.e, this model generation process still detects nonlinearity
through variations in output error. The difference is that the delta transform is employed
instead of the discrete-time transform. By using the delta operator the coefficients
produced relate to physical quantities as in the continuous-time domain model and are
less susceptible to the choice of sampling interval, provided it is chosen appropriately
[Wilkinson91].

This chapter is outlined as follows. section 8.2 overviews the MMGSD; illustrative
results for verifying the system are given in section 8.3; section 8.4 supplies the

conclusion.

8.2 Overview of MMGSD

Similar to the MM GS the MM GSD includes an automated model estimator (AME) and
an automated model predictor (AMP). The former implements the model generation
algorithm. The AMP is use to implement these generated models. The AME includes
three stages as illustrated in Figure 8-1: pre-analysis, estimator and post-analysis. Pre-
analysis is mainly to set up conditions such as input range measurement and the number
of intervals for model location. In the whole algorithm, this stage is only run once. Post-
analysisisthe critical step because procedures for creating models are run here.



start

| Pre-analysis |

Add a model

Estimator

Post-analysis

Is anew model
needed?

Figure 8-1: The agorithm for the AME system

The estimator is based on modified recursively maximum likelihood (RML) estimation
[Middleton90], more details can be found in Appendix L.2. The model structure is
related to the Laplace transfer function of a process as follows. Initially a continuous
time transfer function is considered, as shown in Eqg. 8-1.

b,s" +b,;s" "+ .. b

G(s) = —
S

- Eq. 81

+a,s" "t +.. a

As it has been mentioned in the introduction when the sampling interval is sufficiently
short, the continuous time transfer function G(s) is equal to the delta transfer function
G(0) [Middleton90] shown in Eq. 8-2.

G(5) = y(®) _ " +b5™ +.. b6°
ut) o"+asm+...a,6°

Eq. 8-2
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After rearranging this equation, Eq. 8-3 is obtained:

STY() = —(a 8™ +...+a, ) () + (08" +...+ b, )u(t) Eq. 83

It isknown that error is related to the quality of estimation, i.e., asmaller error indicates
that a better estimated signal has been achieved. Thus the variation in output error
against the input amplitude is analyzed in the MMGSD to decide if a new model needs
to be generated. As with the MMGS, residual error is used for observing model errors.
The difference is that deltarised error depsilon is observed instead of epsilon. depsilon
has been discussed in relation to Eq. 2-16.

Initially the number of intervals to be used on the input voltageis set up. The decision to
add anew model on one of the intervalsis based on three equations shown in Eq. 8-4:

mediumRange = (highinterval —lowlinterval)/ 2
criticalRange = (highlnterval + lowinterval)/2 Eq. 8-4
criteria = [ mediumRange — mediumRange(smallestindex)] — criticalRange

where the medium range mediumRange is the half of difference between the maximum
amplitude of error maxinterval and the minimum amplitude of error mininterval in the
same interval; criticalRange is equivalent to the half of summation to maxinterval and
mininterval; the variable criteria is the difference between the mediumRange and
criticalRange at the same interval and then subtracts mediumRange; smallestindex is the

index appointing to the interval where minimum range of epsiloniis.

The difference from Eq. 5-4 in the MMGS is the reference index. In the MMGS the
central index, based on the shape of the error (full value of errors), is used because it has
the minimum magnitude of error. However, for the delta transform the central index
may not be the index of the smallest error, and so the one relating to the smallest error
valueis selected.

A new model is required in an interval when criteria is greater or equal to zero,

otherwise no action is taken. Only one model is created per iteration (Figure 8-1), which



is necessary because the shape of the error changes when amodel is added. This process

is complete when the number of models does not increase any more.

The same two-stage CMOS operationa amplifier (op amp) shown in Figure 4-1 is used
to illustrate our methodology. The training data used for the estimator is a 93.34Hz,
0.25V triangle waveform with a 0.04V, 10us PRBS superimposed on it. A similar signa
but with lower amplitude and frequency is applied to the non-inverting input, because as
it has been explained before the model generation processis only based on one input.

The model structure is for the MMGSD still based on the RARMAX system [Ljung99]
but with modification because it is based on the discrete-time transform, whereas the
MMGSD is based on ddta transform. Therefore, during simulation (estimation) some
quantities in the system need to be either deltarised or undeltarised, for example, epsilon
in the AME and AMP is dready deltarised, but during the vector update the
undeltarised value is required. Therefore, we create two functions in the MMGSD: the
Deltarise function and Undeltarise function. The former is to generate derivative
vectors based on original vectors. The undeltarise function requires original data during

the estimation. These two functions are used in different placesin the MM GSD.

8.2.1 The Deltarise Function

The deltarise function is used to find the deltarised value using the delta operator given
in Eg. 8-5, where delta () is related to both the present and future values, T is the
sampling rate, q is the forward shift operator used to describe discrete models, which is
shown in Eq. 8-6.

s = a-1

= Eq. 8-5
T q

I

d
dt

S

OXy = Xyiq Eqg. 8-6

The equivalent form of Eq. 8-6 is obtained in Eq. 8-7, the relationship between ¢ and g
is a simple linear function, so ¢ can offer the same flexibility in the modelling of

discrete-time systems as q does.
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X1 = X _ X(kTs +Ts) — X(kTs) ~ d_X
T T oot

S

5%, = Eq. 87

S

The use of delta operator and its relationship isillustrated in the following example. It is
a discrete-time model, but only output vectors are displayed in Eq. 8-8. Initially each
vector is subtracted from the one next to it, as seen in EQ. 8-9, and is then divided by T,
so deltarised value is obtained, as seen in Eq. 8-10. However, the last one highlighted by

the rectangle is not involved in the calculation.

yt)  ovt1)  y(t-2) i_y_(_tf)__i Eq. 8-8
y(t-1)  y(t-2)  y(t-3) Eq. 8-9
Sy(t-1) 5y(t-2)§5y(t-3)§ Eq. 8-10
oy(t-2) oy(t-3) Eq. 8-11

To achieve §%(t-3), Eq. 8-10 is subtracted from Eq. 8-11, and then divided by Ts. The
same procedure is used to obtain 8°y(t-3).

________

oy(t-2) 6%y(t-3) Eq. 8-12
A3 T Eq. 8-13
5y(t-3) Eq. 8-14

Thus, the deltarised version of Eq. 8-8 is obtained shown in Eq. 8-15.
Sy(t-3) 0%y(t-3) Sy(t-3) Oy(t-3) Eq. 8-15

The same procedure is also used for other vectors such as the inputs vectors u, e and the
noise vector c. Delay is not included here. However, there is some difference such that
in the input vector the current deltarised values (u(t), v(t)) are not required. More details
about the modification will be discussed in section 8.2.1.3.

8.2.2 The Undeltarise Function
This function is based on Eq. 7-5 but with the modification, q = 6Tst+1, in order to

model at the current time. An example is also used to demonstrate how this reverse
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algorithm works. It is a model in delta transform, but only the output vectors y are
shown in Eqg. 8-16. Firstly each vector, except for the last one, highlighted by the
rectangle because it is already undeltarised, is multiplied by Tsin Eq. 8-17. We then add
the output vectors as shown in Eq. 8-17 and Eq. 8-18, so undeltarised vectors are
obtained in Eq. 8-19, i.e., y(t-2) is obtained.

————————

OY(t-3) 5%y(t-3) 5'y(t-3) 10 y(t-3); Eq. 8-16

THY(t-3) ToY(t-3) T y(t-3) Eq. 8-17
+ + +

Sy(t-3)  oy(t-3)  Oy(t-3) Eq. 8-18
I I I

A2  y(t-2) ;"§/(t'-'25'§ Eqg. 8-19

To achieve y(t-1), Eqg. 8-19 ismultiplied by Ts, and then we add the vectors shown in Eq.
8-21

TIA(t2) THY(t-2) Eq. 8-20
+ +
Sy(t-2)  8%y(t-2) Eq. 8-21
I A
Y1) | y(t-D) | Eq. 8-22

Finally y(t) is obtained using the same procedure as above.

To'y(t-1) Eq. 8-23
+

y(t-1) Eq. 8-24
I

LY@ Eq. 8-25

Therefore, the undeltarised version of Eq. 8-16 is achieved shown in Eq. 8-26.

yt)  y(t-1) yt-2) yt-3) Eq. 8-26



The number of iterations depends on a variable numb, the reason to use the variable is
that during undeltarising, a vector such as output vector needs to be undeltarised once to
obtain the value at next time, but during the prefilter update, it needs to be fully
undeltarsied. If afull undeltarisation isrequired, numb is set to O, otherwise an integer is
selected. If the number is greater than the size of the vector array an error message is

produced.

8.2.3 Two Functions Utility in MM GSD

It is known that the delta operator is a very high gain system because of the sampling
interval Ts (10us in this case), so it is important not to put a vector or a variable in the
wrong place during the manipulation, otherwise, the whole process may numerically

explode very quickly.

In this subsection some key modifications in the MMGSD based on the functions
defined above are described in section 8.2.3.1 and section 8.2.3.2, respectively.

8.2.3.1TheAME

In order to obtain the deltarised output data dy at current time and the deltarised vector
array dphi, the vector array phi (¢) and the original output datay at current time are
needed. The deltarise function is employed in Eq. 8-27.

dphidy = deltarise([y phi(iiia)], Ts) Eq. 8-27

where iiia indexes the array for the output vector in phi. Ts is the sampling interval,
dphidy is the deltarised vector array for output, in which the first element is dy, and all

other elements are assigned to dphi(iiia).

Similarly input vectors u and e, and the noise vector ¢ are deltarised values for dphi.

However, their deltarised values at the current time are not required.

Secondly the prefilter ztil in RML is modified as seen in appendix L.2. It is already
known that the relationship between psi () and phi (¢) in z transform is expressed as:
phi(t) = c(2*psi(t), or phi(t) = psi(t)+cpsi(t-1)+ ... +Ccpsi(t-nc), where ¢ is the

polynomial coefficients [1, ci, ..., Cy] for noises to improve the property of psi so that
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the estimator converges more reliable. It is seen that phi(t) is related to psi at both
current and previous time. The relationship between psi and phi in delta (o) transform is
expressed as in Eq. 8-28, where the ¢ polynomia is a deltarised version of the
coefficients,

phi(t) = c(5) - psi(t) Eg. 8-28

or itsfull expression in Eq. 8-29.

5" phi(t-nc) = 6™ psi (t-nc)+c16" ?psi (t-NC)+. ..+ Crapsi (t-nC) Eq. 8-29

To achieve deltarised psi at current time, this equation is manipulated as shown in Eq.
8-30. It is atwo-dimensional array, the number of rowsis equal to the size of vectorsin

phi and the number of columnsis equal to the number of termsin the c polynomial.
8"psi(t-nc) = 6" phi(t-nc) - ¢10™?psi(t-NC) -...- CnepsSi(t-NC) Eq. 8-30

When using the z transform, [Ljung99] makes use of the fact that past values of psi and
phi are readily available in the estimator, so that psi(t) can be obtained easily from
available data vectors in the estimator. This is because the nature of the data does not
change with storage position in the data vector. However, when using the delta
transform 0" *psi(t-nc) can not be obtained using the same procedure, because samples
in the data vector are different orders of . All these data vectors have to be refilled at
each sampling interval.

The vectorsin 6™*
nnis[34214].

psi(t-nc) are shown in Eq. 8-31 if, for example, the coefficients array

—5y(t-3.. 5yt —-3,5°ut—4).. S°ut—4),0'et—2 5°%(t—-2)16Mt—-4)..5Mt—4)

Eq. 8-31

—5%y(t-3)...—-5°y(t—3) are obtained by detarising —y(t-1)...—y(t-3) using

deltarise function given in 8.2.1. The undeltarise function in 8.2.2 is aso required to



firstly fully undeltarise each row of dpsi at previous time to achieve the current time
psi(t), eg., -yt-D...-y(t-3) is achieved by fully undeltarising
—5%y(t-3)...-8°y(t—3). The undetarise function is employed again but only for a
single iteration (numb = 1) to obtain dpsi the next time, so this matrix is shifted forward

once. The last term (6°psi) in the array is then thrown away, so §*psi becomes ¢%psi and
so on in order to add the new array in front and keep the al gorithm consistent.

Finally the vector array phi is updated with the new estimation including the noise
vector that is updated by residual error epsilon. We must keep in mind that depsilon is
the deltarised version of epsilon, in this case we only have depsilon at current time, thus

the undeltarise function is needed for epsilon, as shown in Eq. 8-32.
epsilon = undeltarise([depsilon dphi(iiic)], Ts, 0) Eqg. 8-32
where dphi(iiic) includes noise vectors at previous time, iiic is the index array for noise

vectors in dphi, Ts is the sampling rate, O indicates the full undeltarisation as has been
discussed above.

The complete MATLAB codes for the AME system can be found in Appendix H.2.1.
8.23.2TheAMP

Similar to the AME both the deltarise and undeltarise functions are required through the
system. Unlike the AME, the predicted valuey is used for updating the vector array phi,

whereas in the AME inputs u, e and output y are obtained from the training data.

To obtain the output data y, dy is fully undeltarised by employing the undeltarise
function shown in Eq. 8-33:

y = unddltarise([dy -dphi(iiia)], Ts, 0) Eq. 8-33

where dphi(iiia) includes the previous deltarised output vector, iiia is the array for the

outputs in dphi, Tsis the sampling rate, O indicates the full undeltarisation is utilized.



The full MATLAB codes for the AMP system can be found in Appendix H.2.2.

8.3 Experimental Results
In this subsection the system is investigated in order to prove that it is able to hunt for

known models and converges well.

8.3.1 A Single Model Detection

The process follows two steps:

1. The AMP systemis applied to a known linear model. Both input data and output data
arestored in a text file.
2. The AME generates the model based on these data

The reason to work in the opposite way is that the AMP is less complicated than the
AME and it is easier to find out whether or not the delta operator works well in the

MMGSD. The system used in this exampleis alinear model givenin Eq. 8-34.

Voo (20s+500)V,, + (10s+ 250)V,; + 250V

Eqg. 8-34
° s? + 20s + 500 g

Two types of training data are generated from the PRBSG for the MISO AMP: oneisa
0.6V, 50Hz square waveform with a 0.12V, 100kHz PRBS superimposed on it for the
inverting input, asimilar signal but with lower amplitude and frequency is applied to the
non-inverting input as shown in Figure 8-2 with 14,000 samples. Another training
waveform is a 0.2V, 100Hz triangle waveform with a 0.05V, 100kHz PRBS
superimposed on it for the inverting input, the second input is a similar signal but with
lower amplitude and frequency for the non-inverting input displayed in Figure 8-3 with
14,000 samples.
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Figure 8-3: Thetriangle PRBS signal

The output signal from the AMP using the square PRBS is plotted in Figure 8-4.
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Figure 8-4: The predicted signd

The AME is employed to generate the model seen in Eq. 8-35 with Ts of 0.1ms. It is

seen that two models can be matched referring to their coefficients.

y _ = (205+500)V,, + (105 + 250)V;, +250.02V;ye

, 5 Eqg. 8-35
s + 20s + 500

The output signa is depicted in Figure 8-5 (last 5,000 samples). It is seen that the
original signal is closely be matched to the estimated signal. Using Eq. 5-2 the average
difference between the original signal y and estimated signal yEstimator is 8.1567e-8%.
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Figure 8-5: The estimated signal

The triangle PRBS is then used following the same process. The predicted signal is
shown in Figure 8-6.

yPredictar

L 1 L 1 L 1
u] 2000 4000 B000 8000 10000 12000 14000
Size

Figure 8-6: The predicted signal

After that the estimator is employed to generate the model. The same coefficients are
achieved from the two models. The output signal from AME is shown in Figure 8-7
(last 1,000 samples). The average difference between the original signal y and estimated
signa yEstimator is 7.24e-12%.
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Figure 8-7: The estimated signal

The similar experiment as above is also implemented using the SystemVision simulator
in order to prove the whole process works well in both MATLAB and VHDL-AMS.
More details on the implementation can be found in Appendix J. It has proved that the
MMGSD can produce a single model accurately.

8.3.2 Comparison of convergence speed between MM GS and MM GSD

In this section using the same procedure in section 8.3.1we compare two systems
(MMGS and MMGSD) based on the linear model seen in Eq. 8-34. The same triangle
PRBS in Figure 8-3 is employed.

The AME system in the MMGSD is used to generate a model using the data from the
AMP system. The model is shown in EqQ. 8-36, only 250 samples were used.

y _ (200151 499V, +(105+2495)V, +249 Ve

Eqg. 8-36
0 s? +20.01s + 4995 .

It is seen that coefficients in both models are matched reasonably well, and the
difference does not affect accuracy of the output signal.

We then investigate the MMGS. This continuous-time model is first converted into its
corresponding discrete-time model using the system identification toolbox in MATLAB,
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as seen in Figure 8-8, with a sampling rate of 0.1ms. In Figure 8-8 B1, B2 and B3 are
coefficients for the first input, second input and offset, respectively; F1, F2 and F3 are
the coefficients for the outpult:

Discrete-time IDPOLY model: y(t) = [B(q)/F(g)]u(t) + (1)
B1(g) = -0.002401 g"-1 + 0.002394 g"-2

B2(qg) = 0.0012 g*-1 - 0.001197 q*-2
B3(q) = 1.799e-006 g*-1 + 1.797e-006 q*-2
F1(g) =1 - 1.998 g*-1 + 0.9976 -2
F2(q) = 1 - 1.998 g*-1 + 0.9976 -2

F3(g) =1 - 1.998 -1 + 0.9976 -2
Figure 8-8: Coefficients under discrete-time from the AMP in the MMGS

The MMGS loads these data from a text file to generate the model show in Eqg. 8-37,
only 500 samples are required.

—(0.002401q* — 0.002393q 2)V,, + (0.0012q* — 0.001197q %)V, + 0.000002q 2V
V. = n ip offset
° 1-1.9975q* + 0.99752q >

Eq. 8-37

Comparing the coefficients in Figure 8-8 with Eq. 8-37 we see that the two groups of

discrete-time coefficients are reasonably close.

It is thus proved that the MMGSD is able to generate a model that has been set up.
Moreover, it can converge about two times faster than the MM GS using alinear model.

8.3.3 System Test Using a L ead-lag Circuit

We demonstrate that the MMGSD is able to generate a single more complex linear
model than section 8.3.1. A linear lead-lag circuit is employed using a high-pass filter
and low-pass filter with frequencies of 1kHz and 10Hz, as shown in Figure 8-9, where
Ry = 1kQ, R = 10kQ, C; = 0.15915uF, Ry = 10kQ and Ci, = 15.915nF.
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Figure 8-9: A linear system with a high pass and low pass filter

The transfer function is shown in Eg. 8-38:

B R, (R-Ri-C;-s+R +R;)(C,-R,-9)
" RR-C,s+R "| (R-R,-C,-s+R)-(C, R, -s+1) |

Eq. 8-38

The system was analysed using the system identification toolbox in MATLAB to
generate the polynomial based model seen in Figure 8-10 using the same PRBS training
signals as above. The sampling interval is 0.1ms. B1 and B2 are coefficients for inputs,

F1 and F2 represent the output.

Conti nuous-ti ne | :
y(t) = [B(s)/F(s)lu(t) + e(t)

B1(s) = -62.83 s - 3.948e004
B2(s) = "2 + 69.12 s

F1(s) = "2 + 634.6 s + 3948
F2(s) = "2 + 634.6 s + 3948

Figure 8-10: The coefficients from the high-pass filter

Both input and output data are then stored in a text file. The MMGSD was used to
generate a model based on this data, as seen in Eqg. 8-39. The output coefficients are
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reasonably close to F1 and F2, and the two input coefficients are very close to B1 and

B2 in Figure 8-10. The output signals are shown in Figure 8-11 with last 400 samples:

v T (62.812s+ 38252)V,, + (s* + 67.165)V,
° s? +615.35 + 3825.2

Eq. 8-39

—y  —-—--yEstimator

. Nl WV T

i
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o
—
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-0.15

-0.2

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401
No. of Samples

Figure 8-11: The estimated signa

It is seen that the MMGSD can generate the model that has been set. The average

difference between two signalsis 2.992e-13%.

Comparing with the MMGS, the MM GSD is able to handle both the low-pass and high-

pass filters.

8.3.4 Verification on the Multiple Model Generation Approach

The aim of this section is to verify that the MMGSD is able to generate multiples
models that have been set up. The same triangle PRBS stimulus in Figure 8-3 is
employed. Three stable models used are shown in Eq. 8-40. Each of them has two input
parameters and one offset parameter. The intervals used to divide the range of this
stimulus for these models are: [-0.25V 0.0V 0.095V 0.25V], the sampling rate Ts is
0.1ms. The number of samplesin each model (Vo1, Vo2 and Vy3) is obtained: count = 6942,
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3300, 3758, the first model contains more samples than others, which indicates that it

may require more time to tune the system.

+ 250V

offsetl

—(20s+500)V,, + (10s+ 250)V,

o s? + 20s + 500
_ —(20s+500)V,,, + (10s + 250)V,,,, + 250V ey, Eqg. 8-40

0z s? + 20s+1000
_ —(208+500)V,y5 + (10S+ 250V, + 250V s

s s? + 20s + 1500

ipl

It is seen that the steady-states of the models are not identical at the transfer points,
which may result in discontinuities. However, it is known that during estimation
different models should have the same steady-state values in their interfaces because of
the way the models have been trained. It has been mentioned with reference to Figure 7-
5 that the way that we are dealing with models selection is not expected to achieve
completely bumpless transfer but should suffer from minimum discontinuities, because
we have all models are running in parallel and just switch their outputs at the right time,
when two neighbouring models are not near the switching interface, the outputs are
different. However, when they are approaching to the same switching interface, their
outputs will line up, there should not be a discontinuity.

Initially the AMP is used to run the models with the triangle PRBS. After simulation
both input and output data are stored in a text file. The AME then loads the data to
produce the models shown in Eq. 8-41. These coefficients generated are reasonably
close to those in Eq. 8-40, athough the third model is not as accurate as the others
because as the pole value is gets higher, instability is more likely. This can be improved
by manually selecting a smaller value such as 1200 instead of 1500.

— (205 + 500)V, , + (10s+ 250)V
o s? + 20s+ 499.5

+ 249V .,

ipl

— (205 + 500V, , + (105 + 250)V,, + 250.01V 4, Eq. 8-41
2 s? + 20s+1000
— (205 + 483.5)V, 5 + (105 + 239V, , + 248.3V 5

\Y,

03

s2 +18.43s + 1390

Furthermore, the same procedure was also implemented but using four models with
different poles. The models are shown in Eqg. 8-42. The intervals used to divide the
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range of this stimulus for these models are: [-0.25 0.01 0.11 0.18 0.25], the sampling
rate Tsis 0.1ms.

_ —(205+500)V,,, + (105 -+ 250)V,y; + 250V 10y

- s? + 20s+ 500
~ —(20s+500)V,,, + (10s+ 250)V,,,, + 250V,

— ip2 offset 2
02 % + 205+ 1000 Eq. 8-42
_ —(20s+500)V,5 + (105 + 250)V, ;5 + 250V g5

s s? + 20s+1500
_ —(20s+500)V,,, + (10s+250)V,, + 250V 14

o4 s? + 20s + 500

ol

The number of samples on each model (Vo1, Vo2, Vo3 @nd Vo) iS: count = 7255, 3515,
1941, 1289. Thisindicates that the first model uses more samples to tune the system.

After simulation both input and output data are stored in atext file. The AME then loads
this data to produce the models shown in EQ. 8-43. It is seen that the coefficients

generated are close to the original ones.

_ —(20s+511.84)V,; + (10s+ 252)V,;, + 249.5V ey

Vol = 2
s° +20.14s+500.73
- (20s+442.8)V,,, + (10s+ 230.5)V,,, + 245V s » Eq. 843
o s? +18.95s+1086.1 q
v, = (20.5+ 471)vin23 +(10S+ 245.4)\V, ; + 245.V gy, 5
s° +20.4s+1498.57
v o= (20s+497.4)V,,, + (10s+ 249.1)V, , + 249.5V ey

o4 —

s? +19.94< + 499.23

Thisindicates that the MMGSD is able to generate various suitable models.

8.3.5 Nonlinearity Modelling

In this section the open-loop op amp SPICE netlist from Figure 4-1 is modelled using
training data which creates strong nonlinearity (into saturation). A new stimulus is used:
a 2.5V, 83.33Hz triangle waveform with a 0.5V, 100kHz PRBS superimposed on it. A
similar signa but with same amplitude and lower frequency is applied to the non-
inverting input. Five models are generated. The input voltage range is + 2.5V. The

thresholds and the number of samples for each model are shown in Figure 8-12:
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threshold=[-25 -15 -05 05 15 2.5]
count = 2263 2010 2267 2452 3048

Figure 8-12: Threshold and samples for each model

The estimated signal yEstimate isillustrated in Figure 8-13 with 2,000 samples:

—y —-—--yEstimator

] ] il
Wlfedbh g f 3 g i i

| i L4 RO T
1”3?& - g “ R ‘

n T
okt ol

1 201 401 601 801 1001 1201 1401 1601 1801 20C
No. of Samples

Figure 8-13: The estimated signal with nonlinearity

It is seen that yEstimate is able to match the original output y, the difference between
two signals is 9.5768% using an average difference measurement. Although there is
some noise due to high sampling rate of 10kHz for the delta operator. Moreover, the
estimator struggles to obtain enough information to make the best guess because there is
no relationship between input and output in the saturation regions, that is, the output is
not dependant on input. It has to generate excitation itself. This can be improved by
using a saturation detector to delete the samples in the saturation region, so the estimator

will focus on available information.

8.4 Conclusion

In this chapter the multiple model generation system using delta operator (MMGSD) is
developed for either SISO or MISO models from transistor level SPICE simulations to
perform high level fault modelling (HLFM). The MMGSD is able to converge twice as
fast as discrete-time models using a linear model. We have shown that acceptably small
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discontinuities can be achieved between models generated by using the algorithm
developed. Moreover, it can handle both low-pass and high-pass filters accurately, and

model nonlinear behaviours.
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Chapter 9: High Level Fault
Modelling and Simulation based on
Models from the MMGSD

9.1 Introduction

The aim of the chapter is to evaluate that during high level fault modelling (HLFM) the
models generated by the MMGSD can achieve better results in terms of simulation
speed and accuracy than transistor level fault simulation (TLFS) and results from
[Bartsch99]. The multiple model conversion system using delta transform (MMCSD)
was devel oped to convert the models from the MMGSD into a suitable format, i.e., from
MATLAB to VHDL-AMS. The model selection process is implemented by selecting

the output of the model within its corresponding input range.

HLFM is run using the SystemVision simulator from Mentor Graphics [SystemVision],
the faulty transistor level op amp in HSPICE will be replaced by the model from the
MMCSD in VHDL-AMS and the rest of them remain at the transistor level. With this
procedure we can observe if our model is able to model the fault and propagate it
correctly. Only short faults are investigated, other faults will be covered in future work.
The short faults are modelled at transistor level using a 1Q resistor connected between
the shorted nodes. This can be realised by using the fault injector ANAFINS, which is
the part of the transistor level fault smulator ANTICS [Spinks98]. More details about
how it works can be found in [ Spinks04].

Simulation results in terms of accuracy and simulation speed are compared under the
same conditions using the average confidence measure (ACM) [Spinks98]. The ACM
basically measures the distance between two waveforms taking variability into account.
To facilitate comparison the fault coverage has to be appropriate. On one hand, if the
error band for the waveform is very large all faults may be undetectable; on the other
hand, if the error band is narrow enough all faults can be detectable. We need to avoid
the extreme situations above, so that we are able to investigate the quality of ssmulation

for different models.

9-1



The following sections are outlined: section 9.2 introduces how to implement the
multiple model conversion system using delta operator (MMCSD) based on a
behavioural model; quality measurement methods based on mathematical equations are
introduced in section 9.3; some experimental results from high level modelling (HLM)
and high level fault modelling (HLFM) are given in section 9.4 using a biquadratic low-

pass filter; section 9.5 supplies the conclusion.

9.2 The Approach for Multiple Model Conversion System using Delta

Operator (MMCSD)
In this section the algorithm for automatically generating a VHDL-AMS mode is
introduced. This is based on the structure of a behavioural model shown in Figure 9-1,

which issimilar to Figure 7-1.

out

- O o

Vi

MMGSD (Vo=f(Vin))
Vin li
VP
+0 /|_.\ Voffout
Voffin
— gnd

Figure 9-1: The structure of the behavioural op amp model

Multiple models from the MMGSD are included in the VCVS (implementing

V, = f(V,,)) to handle nonlinearity. In this case the same models from MMGSD are
used in chapter 8, and the input voltage range is + 2.5V. Two linear resistors r; and ro

represent the input impedance and output impedance, respectively, Vosin and Voffour are

parameters for modelling the input offset and output offset, respectively.

The MMCSD converts models from the MMGSD into this behavioural model. Each of
the models behaves as a continuous domain low-pass filter as shown in Eg. 9-1, where

Vi, Vp and Vorrser represent the three inputs; vo is the output; a,...a,, are coefficients of
the output; by,b..b, , €,¢€..e, are coefficients of the first and second inputs,

respectively; and d represents coefficients for the offset.
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Eq. 9-1

The equation above can be easily implemented in VHDL-AMS with the help of either
‘dot or ‘Itf attributes; both produce the same results. The latter is used in this case
because it is far easier to derive and implement a higher order transfer function as a
simple ratio of s-domain polynomials than it is to derive the equivalent differentia
equations for the functions [Ashenden03]. The model in VHDL-AMS is shown in Eq.
9-2.

Vo ==V, 'Itf (num_1 den) + v, 'Itf (num_2,den) + v, 'Itf (num_3,den)  Eq. 9-2

where ‘Itf is the attribute for forming the transfer function; num and den are the
coefficients for the numerator and denominator, respectively; Vi, V, and Vorser represent

the input voltages; Vo IS the output voltage.

The MMCSD extracts these coefficients one by one dynamicaly from each model
library to form the equation in Eq. 9-1. The model selection algorithm has been
discussed in Figure 7-3, now showing in Figure 9-2.

Display the transfer function for the first model
Display the transfer function for the second model

Display the transfer function for the last model

If the input signal is within the range for the first model use
The output voltage of the first model is selected

Elseif the input signal is within the range for the second model use
The output voltage of the second model is selected

Else the input signal is not included in these ranges
Either the output voltage of the first or the last model is selected

Figure 9-2: The agorithm for the model selection

It has been discussed that by doing this way we can achieve reasonable bumpless
transfer. However, higher ssmulation speed may not be achieved. This can be improved
by feeding only the neighbouring models instead of al models.



9.3 Introduction to Quality Measurement
In the section quality measurement methods for simulation accuracy and speed are

introduced in subsection 9.3.1 and subsection 9.3.2, respectively.

9.3.1 Average Confidence M easur ement

The object of the section is to calculate the average of a number of values (output
voltage in this case). The method used is the average confidence measure or ACM
[Spinks98]. The aim of the section is to verify that our model performs better than
other’s macromodel and that our model can model faulty behaviour with good accuracy
compared with TLFS.

Unlike previous work using ANACOV [Spinks98] this measurement was implemented
in MATLAB to provide better integration with the other tools developed here. The
whole process consists of multiple steps illustrated in Figure 9-3. A script is used to
create aMATLAB editor file that accesses each of the files which require processing to
calculate ACM for each file.

Open atext file

Start

Data Sorting

Script

A

Detactability Measurement

A

ACM I

A4

Running Average M easurement

A 4

Data Comparison

Figure 9-3: A flowchart for fault coverage measurement

A 4

File close

\ | Saving Data after Measuring

_________________________________
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The ACM skips header text and reads data from the analogue SystemVision simulation
results file. For fault analysis and detectability measurement, a fixed envelope is
applied not only around the fault-free response to define the region of acceptability, but
also around each faulty circuit response. The points at which the two envelopes do not
overlap are classed as detectable. This can be expressed mathematically as follows:

G [i] = G[i] - 6G,
G,[i] = G[i] - G,
F [i]=F[i]-6F,
Fy [i]=F[i] - 5FH

Eq. 9-3

where G[i], F[i] represent the fault-free (good) and faulty signals at ith point,
respectively; G[i], Gy[i] indicate the low and high value of the envelope of the good
signals at the ith point, respectively; F.[i], Fy[i] represent the low and high value of the
envelop of the faulty signal at the ith point, respectively; 0G., Gy indicate the lower
and upper bounds of the good signal, respectively; oF., oFy represent the lower and
upper bounds, respectively, which are defined by the user.

Different types of circuit and test techniques will use various fault detection criteria
which require different envelope regions. In al cases however a description for aregion
of acceptability (Gi[i]<yy<Gu[i]) and a faulty response range (F.[i]<yi<Fuy[i]) is
required. Fault detectability is based on the separation of the two regions. A sample
point is defined as detectable if the two regions are non-overlapping at that point.
Moreover, for each sample point, a confidence measure x[i] can be defined based on the
distance between the faulty and fault-free envelopes since a larger distance implies that
at a given sample point the circuit under a particular fault condition is more easily
detectable. Thisis described by Figure 9-4.

Guil-Fuli]  for Gu[i]>Fuli]
[i] = | Fui]-Guli]  for FL[i]>Gu[i]

0 otherwise

Figure 9-4: The conditions for detecting the distance of two signals
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The number of detectable points NP out of atotal d can be defined as shown in Eq. 9-4,

where U(X) = 1 when x > 0, otherwiseit is 0.
d-1
NP = > U (xi]) Eqg. 9-4
i=0

A fault is classed as detectable if NP>c, where c is a user defined cutoff value, normally
itis 1, but this can beincreased if ahigher confidence in the resultsis required. For each
fault, the mean separation distance between the good and faulty thresholds for al
detectable sample points can aso be used as an additional confidence measurement. The
average confidence measurement (ACM) based on these detectable data is given in Eq.
9-5.

d-1 .
> Ai]
ACM =10 Eq. 9-5
NP

The number of times that the ACM is employed is equal to the number of detectable
faults.

9.3.2 Mathematical Equations for Measuring Simulation Speed

This section is to investigate the ssimulation speed using two mathematical equations:
total average speed and simulation speed-up. Both of them will be used to evaluate our
behavioural model during HLM and HLFM.

9.3.2.1 AverageTime

The total average time of simulation is calculated using Eq. 9-6. The total simulation
time is divided by the number of faults to give the average speed Ave time for an
individual fault ssimulation; NS is the number of simulations; CPU[i] is the simulation

cpu time of the ith fault.

Nfcpu [i]

Ave_time= @T Eq. 9-6
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9.3.2.2 Simulation Speed-up
The speed-up is calculated using Eq. 9-7, where tr gsis transistor level simulation time,
thirm is high level modelling time, top is operating point analysis time at transistor level,

itis 100msin the case.

speed _up= _fnes Eq. 9-7

Heem T top

9.4 High Level Modelling and High Level Fault Modelling
In this section, both HLM and HLFM based on the models from the MMGSD are
implemented in order to investigate if they are able to model faulty behaviour and

handle nonlinearity in a system. The whole process requires the following steps:

1. The MMGSD generates models.

2. The MMCSD is used to convert these models into a VHDL-AMS behavioural
model.

3. Transistor level fault-free and fault simulation are run based on short fault (one
simulation run per fault).

4. The behavioural model from the MMCSD is used to replace the faulty transistor
level op amp, therest of circuits remaining the same.

5. The average coverage measurement (ACM) is used to measure quality of our model
compared with TLFS. The average speed is also calculated and compared.

6. The same process for HLFM based on other published models is repeated from step
4.

7. Resultsfrom the two HLFM are compared.

The two-stage CMOS op amp in chapter 3 is employed, the training stimulusisa 2.5V,
83.33Hz triangle waveform with a 0.5V, 100kHz PRBS superimposed on it. A similar
signal but with lower amplitude and frequency is applied to the non-inverting input,
both inputs and output are shown in Figure 9-5. Only the last 2,000 samples are
displayed. The x axis indicates the number of samples and the y axis show amplitudes of
input voltage (V). The reason to use a higher amplitude of input signals is to force the

generated models to cover saturation voltage ranges (+ 2.5V). By running the MM GSD
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five models are generated. The MMCSD is then employed to convert these models into
a VHDL-AMS behavioural model. Therefore, HLM and HLFM can be implemented
under transient analysis in SystemVision [ SystemVision].

input? ()

200 400 B00 ao0 1000 1200 1400 1600 1800 2000

input2 ()

1 1 1 1 1 1 1 1 1
200 400 B0O0 ao0 1000 1200 1400 1600 1800 2000

Outpus 1)

L 1 L 1 L 1 L 1
400 BO0 s00 1000 1200 1400 1600 1500 2000
Size

Figure 9-5: Theinput signals with the saturation part

9.4.1 High Level Modelling and Simulation

The same biquadratic low-pass filter used in chapter 8 was simulated using transient
analysis seen in Figure 9-6. Two types of ssmulation are run: one is purely based on the
transistor level circuit; another uses the MM GSD model to replace the first op amp opl.
The input signal is a sine waveform with an amplitude of 2.5V at 80Hz. The simulation

starts from 40ms to 100ms with step of 0.1ms.
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Figure 9-6: The biquadratic low-pass filter

The output signals from TLS vout_sp and HLS vout_mix are plotted in Figure 9-7. It is
seen that both signals can be matched with good accuracy. The total cpu time for HLM
1S2.03s, and 1.062s for TLS.

Vaolfage (V)
[

T T
0.0m 45.0m S0.0m S5.0m G0.0m G5.0m 7_DDm
Time (s)

T
F5.0m s0.0m a5.0m a0.0m as5.0m 100.0

Figure 9-7: The output signals from the low-pass filter

It is seen that HLM is slower than TLS. This is because the SystemVision simulator has
not been optimised to this kind of model structure, and so the computational overhead is
high. Moreover, the model selection process requires time, this can be improved by
feeding the neighbouring models instead of al models. Therefore, HLM using a single

model instead of multiple models requires less time (1.07s) than 2.03s under the same
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circumstance. However, accuracy becomes worse because the single model is not good

enough to model nonlinearity.

Another transient analysis was conducted using this low-pass filter, the stimulus is a
sine waveform with the amplitude of 2.5V at 40Hz. The simulation starts from 40ms to

100ms with step of 0.1ms. Output voltage signals are plotted in Figure 9-8.

Voltage (V)

T L B S
20.0m a5.0m

100

s

—— —
70.0m 25.0m
Time [s)

L L L B S B B S B T
S0.0m S5.0m S0.0m G55.0m F5.0m 20.0m

Figure 9-8: The output signals from the low-pass filter

mix

The results show the output signal at HLM vout_mix can be matched reasonably well to

theoneat TLS vout_sp, so the nonlinearity is modelled correctly.

The total cpu time for HLM is 1.625s, it is 1.0s for TLS. The same process is then
implemented but using one model instead of multiple models for HLM in order to
investigate ssimulation time. It requires 0.953s of CPU time, which is faster than HLM
using multiple models (1.625s), but accuracy is reduced significantly because the single

model is not good enough to model nonlinearity.

Furthermore, accuracy is preserved when the behavioural model replaces other op amps
in this filter. Unfortunately, significant speed-up using multiple models is not achieved

compared with TLS due to significant computational overhead.
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9.4.2 High Level Fault Modelling (HLFM) and High Level Fault Simulation
(HLFS)

The am of the section is to verify that our model performs better than other

macromodels and that our model can model faulty behaviour with good accuracy

compared with TLFS by using ACM seen in section 9.3.

By running fault modelling and simulation, three groups of results are obtained: two
from HLFM, one from TLFS. Two models are employed from the same behavioural
model from the MMGSD and the macromodel [Bartsch99] seen in Figure 3-2,
respectively. All fault modelling and simulation are implemented under the same
simulator setting and test circuit conditions. This circuit employed is the low-pass filter
introduced in Figure 9-6. Only short faults are used. The stimulus is a sine waveform
with the magnitude of 2.0V at 20Hz. Transient analysis is implemented from 10ms to
150ms with a step of 0.1ms. The signal from the transistor level fault-free simulation is
plotted in Figure 9-9.

Tl
25— vout_FF

20—

valtage (V)
i

B e e B
10.0m 20.0m 20.0m 40.0m S0.0m 60.0m 70.0m 20.0m 20.0m 100.0m 110.0m 120.0m 120.0m 140.0m  150.0
Time (5)

Figure 9-9: The output signal from the transistor level fault-free smulation

The same behavioural model from the MMGSD as above then replaces the faulty op
amp for HLFM, and the rest of fault-free op amps remain unchanged, so that we can

observe if it models faulty behaviour correctly. It is known that there are possible 99
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short faults in this filter, so 99 simulations are performed for both TLFS and HLFM,
with data for each saved in an individua file. The quality of output signas is
determined using the ACM, in which the cutoff value c is set to 1, and the tolerance
range for both good (6G) and faulty signals (6F) is set to 50uV after using different

ranges in order to avoid extreme conditions mentioned above in this case.

Testability measurement results using ACM from TLFS show that some faults (M8 and
M13) are undetectabl e because they do not affect circuit behaviour. However, according
to HLFM the same faults appear to be detectable because of difficulty in setting
parameters such as offset voltage. These faults include m4 gds 1%, m4 gds 2,
m5_gds 1, m5 gds 2, m6_gds 1, m6_gds 2, m8 dss 2%, m8 dss 3, m13 gds 1 and
m13_gds 2. Therefore, 89 out of 99 detectable faults are investigated under transient

anaysis.

The results demonstrate that HLFM based on linear macromodel can not model certain
faults including M7 _gds 2, M10 gds 2, M10 gss 3 and M11 dss 3 due to high
nonlinearity. These can be modelled by the MMGSD model. Moreover, the MMGSD
model can achieve more accurate fault simulation than the linear fault macromodel, for
example, M11 dss 1, as illustrated in Figure 9-10, where vout_TLFS is the output
voltage signa from TLFS, and vout HLFS H and vout HLFS L represent the output
voltage signals from the behavioural model by the MMGSD and the macromodel,
respectively. It is seen that vout HLFS H is closer to vout_TLFS than the macromodel
vout HLFS L.

! short between gate and drain on transistor 4 at op1
2 short between drain and source on transistor 8 at op2
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wout_TLF&
wout HLFS H

‘oltage (V)

E \_,/I \_,/I \_,/I

1 T~ T "~ T "~ T T T "~ 1 ~ T "~ T "~ T T "~ T "~ T 1
10.0m Z20.0m 30.0m 40.0m S0.0m Go.0m FTO.Oom 20.0m 20.0m A00.0m  110.0m 120.0m 120.0m  140.0m 150,
Tirne (5)

Figure 9-10: HLFM for M11 _dss 1

However, the linear macromodel may achieve better quality than our behavioural model
when M10 gss 2 is modelled, output signals are plotted in Figure 9-11. Where
vout HLFS L represents the output signal from HLFS based on the model from
[Bartsch99], vout TLFSis the output signal from TLFS and vout HLFS H is the output
signal from HLFS using our model.

Tl
2327 out HLESCL
1 vout_TLFS
zazm— y l wout_HLFS_H
1] 1"[ [|' 1 [.' T A et
2.325 _.f \ i ) i )

2322 —
23221 —

23220 —

Yoltage (V)

2.319;
2.318—_
2.317—_
2.315—_
2.315—_

2319 —

2212 —

2312

— T T T T T T — T T T
10.0m Z00m Z0.0m q0.0m S0.0m G0.0m Foom S0.0m a00m  1000m  110.0m 1200m  130.0m 140.0m 15001
Time (5]

Figure 9-11: HLFM for M10_gss 2
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It is seen that vout TLFS contains extreme nonlinearity, vout HLFS L gives the
saturation part because op3 is still the nonlinear transistor level model. The MMGSD
model can not follow this nonlinear part accurately, especially the flat part.

To find out the reason we observe the input and the output signals of our model seen in
Figure 9-12 because they are ones that are used to generate right models and thresholds.
v(inn) isthe input stimulus, vout_h and vout_t are output voltages from TLFS and HLFS,
respectively. Severa vertical lines are displayed to show where the thresholds and the

extreme nonlinearities are and corresponding inputs.

wi{inm)

Yoltage (V)

Yoltage ()

1

T T T T T T T T T T T il | A p o . | T T T
100m  200m  30.0m  400m  500m  60.0m 7|:u.0n'C1'T2'244gq,Tﬂhm 100.0m

T T T T T T
100m  1200m  130.0m  140.0m 1500

L___Tunais L _
:032 B8.16327m (dv=-4.081 EEm)‘EZ 103.26531m {dx= 31.02041 m)lm):

Figure 9-12: Investigation which model is applied in relation to input and output
It is seen that the sharp corner (nonlinearity) at the output of TLFS vout_t corresponds
to the input at 0.67867V and 0.79781V. Whereas the output from HLFS vout_h shows

that the nonlinearity is at theinput of 1.514V and 1.53114V.

If we check the thresholds for the models seen in Figure 9-13, we find that one of them
isat 1.5V. It indicates that the model thresholds are in the wrong place.
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threshold=[-25 -15 -05 05 15 2.5]
count = 2263 2010 2267 2452 3048

Figure 9-13: Threshold and samples for each model

To prove this we manually change the position of the thresholds to where nonlinearities
are (0.67867V), and also the neighbouring ones in order to supply enough samples to

these models. They are shown in Figure 9-14.

threshold=[-25 -1.5 -0.9 0.7 1.7 25]
count= 2263 1189 3607 2451 2530

Figure 9-14: New thresholds and samples for each model

The output voltages from TLFS and HLFS are shown in Figure 9-15 based on the new
thresholds. It is seen that the output signal from our model vout HLFM_L is reasonably
close to the TLFS vout_t, and the quality of our model has been improved compared
with Figure 9-11.

wour_t
wout HLFM L

2321 —
2.320 —

2.219 —

valfage (V)

23218 —
2317 —_
2.316 —_
2.315 —

2214 —

2313 —

2212 _|

T — T T T ] T T T T T
10.0m 20.0m 30.0m 40.0m a0.0m g0.0m F0.0m 20.0m 200m  1000m  110.0m  1200m  130.0m 1490.0m  150.0r
Time ()

Figure 9-15: HLFM for M10_gss 2 based on new threshold set

9-15



It indicates that the MMGSD is not intelligent enough to pick thresholds where the
extreme nonlinearities are. In the future work a more intelligent threshold generator will
be devel oped.

Using ACM in Eg. 9-5, average quality of HLFM and TLFS are measured in Figure
9-16. The am is to verify that our model performs better than other macromodels and
that our model can model faulty behaviour with good accuracy compared with TLFS. It
IS seen that TLFS achieves the best fault coverage (1.2053V), our models has the fault
coverage of 1.2676V, which has shown better quality than the linear macromodel
(1.2899V).

Average confidence measurement for TLFS, HLFM

and Linear HLFM ( Lower value is better)
1.3

1.28

1.26

1.24

1.92 1.2899
1.2676

1.2

Average Measurement (V)

118 1.2053

1.16

TLFS HLFM Linear HLFM
Types of Fault modeling and Simulation

Figure 9-16: ACM for TLFS, HLFM and Linear HLFM
Furthermore, the ssmulation time for TLFS and HLFS is required. It is noticed that the
highest speed-up is achieved using the linear fault model; for example for M4 _gss 1

HLFM needs 1.218s, whereas TLFS requires 1.341s.

The total average time for each simulation is shown in Figure 9-17. It is seen that TLFS
has the highest average time of 1.412s, HLFM based on the MMGSD is about 0.3s
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dower than TLFS, and HLFM based on the linear fault model has an average time of
1.467s.

Average speed for TLFS, HLFM and Linear HLFM

(Lower value is better)
1.8

15

1.2

0.9 1.7247
1.412 1.467

0.6

Average Speed (s)

0.3

TLFS HLFM Linear HLFM
Types of Fault Modeling and Simulation

Figure 9-17: Average speed measurement for TLFS, HLFM and Linear HLFM

In some cases our model needs less simulation time than HLFM based on the linear
macromodel, for example, M10_dss 3, the models from MMGSD takes 1.68s to
complete simulation, whereas the linear model requires 1.89s.

According to Eq. 9-7 simulation speed-up is obtained shown in Eq. 9-8:

1412

"2 Lo Eq. 9-8
1.7247+01

speed_up=

To investigate simulation speed, this time we focus on the SPICE level of the transistor
model and prove that the level of transistor model can affect the smulation results. It is
known that the transistor that has been used through the thesis is at level 2. In this
experiment we use a new transistor, which is a 1.2 micron CMOS model (Level 3
instead of level 2) [Spiegel95]. The same op amp netlist in Figure 4-1 is still employed,
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and the fault used ism7_dss 1, and the circuit used for simulation is the low-pass filter

in Figure 9-6. Theinput stimulusisa 2V sine waveform at 20Hz.

Two types of comparisons are implemented: 1) simulation using the level 3 transistor is
run, so we compare results from the TLFS, HLFM and HLFM based on the linear
model in terms of simulation speed and accuracy. 2) we compare results based on the

two levels of transistors.

Initially HLFM and TLFS based on the level 3 transistor are run. The simulation
measurement is based on the section 9.3.2. Accuracy is preserved. Each type of
simulation has been run 10 times, the average value is then chosen in order to reduce
affects of interaction in computer shown in Figure 9-18. The fastest simulation is from
HLFS using the linear model (0.9704s). Simulation speed from HLFS based on the
MMGSD model (1.3681s) is slower than TLFS (1.061s). This is because the simulator
SystemVision is not optimised to the structure of our models, but optimised to the
structure of linear behavioural model and proves that the behavioural model is able to
run faster than TLFS. It indicates that changing the level of transistors in the op amp
does not improve speed of HLFM based on the MM GSD mode!.

We then compare simulation speed between the level 3 transistor and the level 2

transistor. Illustrative results are shown in Figure 9-18.

1.366 1.3681
14

1.2

1.061
1.032 0.969 0.9704

1

0.8 OLevel 2

0.6 Elevel 3

Simultion Time (s)

04

0.2

0
TLFS HLFM HLFM_ERN

Figure 9-18: Simulation Speed Comparison between level 2 transistors and level 3

transistors
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It is seen that during TLFS simulation speed based on the level 3 transistor (1.061s) is
slower than the one using the level 2 transistor (1.032s). This is because the former is

more complex than the latter.

Although the difference between TLFS time is not very significant, it has indicated that
as the transistor is getting more complex (parameter level in the transistor is higher),
TLFS becomes slower, whereas simulation time from HLFM amost does not change.
Therefore, simulation speed-up during HLFM may be shown.

In the future work, more complex CMOS transistors (e.g., IBM 0.13 micron level 49

[Mosis]) will be employed to investigate the improvement of simulation speed.

9.5 Conclusion

In this chapter both VHDL-AMS HLM and HLFM are implemented using a
behavioural model generated by the MMCSD. The ACM and average time
measurement are developed to evaluate HLFM. We have demonstrated that our
behavioural model is not only able to model linear but also nonlinear behaviour with
good accuracy for HLM. Using the ACM we have proved that our model provides
better quality than a fault macromodel [Bartsch99]. During simulation it is found that
our system can not inteligently find the right thresholds to handle the extreme
nonlinearity, which will be investigated in the future. Speed-up is not achieved
compared with TLFS. Thisis because the simulator has not been optimised to deal with
this kind of approach, and so the computational overhead is high. Moreover, speed-up
can be improved by feeding the neighbouring models instead of al models during

model selection process.

In the next chapter the process used in this chapter will be repeated but with in a more

complex system in order to investigate simulation speed.
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Chapter 10: High Level Fault
Simulation of a 3bit Flash
Analogue to Digital Converter

10.1 Introduction

In this chapter a more complex circuit is subjected to HLFM in order to investigate if
our behavioural model based on the MMGSD is able to achieve better quality (accuracy
and speed-up) compared with a TLFS. This is demonstrated by a 3bit flash analogue to
digital converter (ADC) realised in CMOS technology under the simulator
SystemVision [SystemVision]. Section 10.2 introduces the architecture and the design
of the 3bit flash ADC. Models based on the MMGSD are generated in section 10.3. In
section 10.4 the TLFS and HLFM are compared based on this ADC. The conclusion is

drawn in section 10.5.

10.2 Introduction to the 3bit Flash ADC

The flash analogue to digital conversion concept is mainly used in telecommunication,
high speed signal processing (e.g. video) and radar. A flash ADC converts the analogue
input signal into digital code bitsin one step. All other types of ADC such as successive
approximation, semi-flash, sigma-delta need more than one step and therefore the main
advantage of aflash ADC isits speed. There are 2"-1 reference voltages and comparator
stages for a n-bit flash ADC. The reference voltages are usualy generated with a
voltage divider (reference ladder) and consequently 2" resistors are required. As a result
flash ADCs with high resolution require a huge chip area. Therefore flash ADCs are
generaly used for analogue to digital conversion with low resolution (2-8 bits). The
high power dissipation is aso a drawback for flash ADCs. Both chip area and power
dissipation increase linearly with the number of comparators and d-flip-flops (sample &
hold stage) and thus exponentially with the number of bits. Similarly the input

capacitance of the ADC increases exponentially with the number of bits.
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The block diagram of the 3bit flash ADC is shown in Figure 10-1 [Bartsch99]. It
converts an analogue input voltage from -2.5V to 2.5V to the corresponding binary code
with aresolution of 3 hits. It consists of five functional blocks: the reference ladder, the
bias generator, the comparator stages, the digital sample and hold stages and the 3bit
decoder.

3bit flash ADC

A 4

bias generator

Vbias1 Vbias2
ststst

25V 36V 4V
l A A ¢ ¢

reference comparator digital sample .
ladder stages "| &hold stages 3bit decoder

analogue

input
[-2.5V, +25V]

digital output <2:0>

Figure 10-1: Block diagram of the 3bit flash ADC [Bartsch99]

The schematic of this 3bit flash ADC is shown in Figure 10-2. The reference ladder
comprises 8 resistors and can generate 7 reference voltages. These resistors al have the
same values except for the first and the last resistors, which are exactly half of others. In
this case these two are set to 50002 for the rest of them have the value of 1kQ. Thisisa
good compromise between chip area and power dissipation. The ADC is based on the
one used in [Bartsch99].
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Figure 10-2: Schematic of the 3bit flash ADC

The comparator is designed in CMOS technology, see in Figure 10-3. It has an input
voltage range of +2.5V and an output voltage swing of 5V (OV to +5V). Each
comparator comprises an input stage and an output stage. The input stage is realised as a
CMOS differential amplifier using n-channel MOSFETSs. The differential amplifier is
biased with a current mirror M3&M4. M5 is a current source. The output stage (M6 and
M7) behaves as a voltage shifter to ensure the output voltage is aways positive, M7 is

also a current source.
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Figure 10-3: The CMOS comparator

The comparator stages compare the analogue input voltage with the 7 reference
voltages. The output voltages of the comparator stages form a so called thermometer

code (Table 10-1).

comparator output voltages (thermometer code)®
c/ cb6 c5 c4 c3 c2 cl

digital output of the ADC (binary code)
03 02 ol

decimal

o

POOOOOOoOO
PR OOOOOO
PR R, OOOOO
PR RPRRPROOOO
PR RPRRPRRPROOO
PR RPRRPRRPRREPROO
PR RPRRPRRRRO

PR PR, BRPROOOO
PR OOR LR OO
RPORORrRORO

No ok~ WNERO

Table 10-1: Truth table for the 3bit flash ADC

This thermometer code is then digitally sampled with 7 D-flip-flops. The digital sample

and hold stage is necessary to avoid temporary wrong binary code words. Usualy the

result of the analogue to digital conversion is stored in a memory and so there is always

a certain probability that a temporary wrong code is stored. The D-flip-flops can
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guarantee that this situation can be avoided when the input signals of the decoder stays
constant over the whole conversion period. Moreover, with digital sample and hold
stage a very fast analogue to digital conversion can be realised, whereas only
frequencies of a few megahertz can be reached with enormous effort with analogue
sample and hold stages [ Tietze93].

10.3 Multiple Model Generation by the Simulator and MM GSD
10.3.1 Sample & Hold and Decoder Model

In SystemVision there is a built-in VHDL-AMS library, the digital part of this flash
ADC (the 3bit decoder and D-flip-flop) is implemented and mixed with the analogue

part on a schematic platform to perform simulation.

10.3.2 Comparator Model

The behavioural model shown in Figure 9-1 (repeated in Figure 10-4) is used to model
the comparator, in which the generated models from the MMGSD are used to handle
nonlinearity. This behavioural model is created by the multiple model conversion

system in deltatransform (MMCSD) discussed in the previous chapter.

out

- O r
Vi
Vin r|
Vp
+ Voffout

Voifin
— gnd

Figure 10-4: Architecture of the comparator model

The CMOS comparator in open-loop is analysed by the MMGSD to generate multiple
models using same PRBS training data in Figure 9-5. One such signal is applied at the
inverting terminal and another is connected to the non-inverting terminal. Five models
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are generated. Thresholds and the number of samples for each model are shown in
Figure 10-5.

threshold=[-25 -15 -05 05 15 25
count = 3412 2499 2583 2705 3801

Figure 10-5: Threshold and samples for each model

The estimated signal is seen in Figure 10-6, only the last 500 samples are displayed.

‘ —y —— yEstimator ‘

| Ui jﬁ

53

N
w
—

w
w

Amplitude (V)
! N
w

o [
w w
\
y—
—
—
—

LI LN
L' 51 101 151 201 251 301 351 401 451 501

o
\'

No. of Samples

Figure 10-6: The estimated signal

Average difference between the estimated signa yEstimator from the MMGSD and
original output signal y is 9.2672%, which is measured by the same equation used
before and seen in Eq. 10-1. These models are then inserted in the behavioural model in
Figure 10-4.

N

2y = ye ()

i=1

Average _dif = N x 100 Eqg. 10-1
y _ peak —to — peak

The nominal operation of the 3bit flash ADC is plotted in Figure 10-7. A ramp input
stimulus covering from OV to 2.5V is used and the clock frequency is set to 500kHz.
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Figure 10-7: Nominal operation of the 3bit flash ADC

10.4 High Level Fault Modelling of the 3bit Flash ADC

During HLFM and HLFS the comparison procedure using quality and speed as
described in previous chapter is employed. Quality measurement focuses on accuracy of
digital outputs. Only short faults are smulated at transistor level with a 1Q resistor
connected between the shorted nodes, which is injected by ANAFINS [Spinks98]. It is
known that there are 7 transistors in the comparator, the number of short faults on one
transistor is 3 and therefore the number of short faults in this comparator is 21. Since
there are 7 comparators in this 3bit flash ADC, atotal of 147 short faults are simulated
for each model. This MMGSD model and the same fault macromodel in Figure 4-2 will
replace every faulty comparator each time, separately, and the rest of system remains
the same. The same ramping signal as above is supplied to the non-inverting terminal. A

transient analysisisrun from 0 to 0.1s with a step of 2ms.

The simulation results indicate that HLFM based on the MMGSD model is able to
model all faults correctly compared with TLFS, but HLFM based on the fault

macromodel can not accurately model some faults including M1_dss 1%, M2_gss 2,

! Short between drain and source on transistor 1 at 1% comparator
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M5 gss 1, M5 gss 7%, M6 _gss 1, M6 _gss 2, M7 dss 1, M7 gss 1 because this
macromodel is unable to handle high nonlinearity. One example of modelling failure,
for M6_gss 1, is plotted in Figure 10-8, where 01, 02 and 03 are the output bits from
TLFS, and 01_lh, 02_Ih and 03 _|h are for HLFM. It is seen that there is bit mismatched
at between 50ms and 52ms.

ol

ol_1h

=<4

oz_1h

o3

#f [ | #[]+ |+

o3_1h

i i i i i i
i i i i i i
IIIIIIIIIIIIIllllllllllllllll-———-_lllllIIIII ..... IS s e e e
o.om apom Zo.0m | 30.0m | a0om so.odSl: 51.49259m | Fo.om =200/ S00m | 100.0m

Tirma ¢

Figure 10-8: Failure of modellingin M6_gss 1

Simulation speed is aso measured. In 146 out of 147 times TLFS takes less time than
HLFM, but M4_dss 7 our behavioural model has same simulation time as TLFS (0.5s).

In 15 out of 147 times the linear macromodel can achieve fastest ssimulation time.

The average time for each simulation is calculated using Eq. 10-2, which has been
previoudy defined in Eg. 9-9, where Ave time is the average time for individual fault
simulation; NS indicates the number of simulation; CPU[i] represents the cpu time at

thei™ fault during simulation.

NS-1

Y cPUli]

Ave_time= Ion Eq. 10-2

2 Short between gate and source on transistor 5 at 7" comparator

10-8



Speed for each simulation is obtained and depicted in Figure 10-9.

0.545

0.535

0.525 ~

0.515

0.505 ~

0.495

0.485

0.475 ~
TLFS HLFM

B Average_speed 0.503 0.5345

Figure 10-9: Average time for each simulation

It is seen that TLFS has the fastest average time of 0.503s, HLFM based on the
MMGSD (0.5345s) is slower than TLFS due to the low complexity of this comparator,
that is, the CMOS comparator consists of only 7 MOSFETs. HLFM based on the linear
fault model HLFM_L contains average time of 0.543s, which is slower than our HLFM.

The speed-up is then calculated according to Eqg. 10-3, where tr ks is transistor level
simulation time, ty ev is high level modelling time, to, is operating point analysis time at
transistor level (100ms). Substituting the data into this equation, the speed-up of
simulation is obtained in Eq. 10-4.

speed_up:tTL¢ Eqg. 10-3
HLFM +top
0.503
eed up=———~0.793 Eq. 10-4
spesd_th 0.5345+0.1 g

10-9



Comparing this with the result in Eq. 9-11 using a low-pass filter: 0.793 > 0.774, i.e.,
speed has been decreased as the circuit used for HLFS and HLFM gets larger. It may

indicate speed-up can be achieved when a more complex system is used.

Moreover, during simulation it is observed that some faults have given rise to the same
digital outputs, e.g., M1 dss 1 and M1 gds 1, M5 gss 1 and M5_gss 2. These faults
may be grouped and collapsed, for each fault group only one high-level simulation run
of the whole ADC has to be performed. The more complex the design gets the larger the
likelihood of fault groups and the number of faults within one group. So simulation time
can be saved. However, for such asimple CMOS comparator not many fault groups can

be found and relatively fewer faults can be grouped in one fault group.

10.5 Conclusion

In this chapter the comparison between TLFS and HLFM is continued using a more
complex circuit (3bit flash ADC). The MMGSD generates multiple models for aCMOS
comparator. These models are inserted in a behavioural model to handle nonlinearity.
During HLFM this behavioural model and a fault macromodel replace the faulty
comparator in the ADC, separately. Results have shown that the behavioural model can
model al faults correctly according to the digital outputs, whereas the linear

macromodel fails to model some faults.

A simulation time comparison of the whole ADC shows that no speed up can be gained
from HLFM, although in some cases HLFM based on the linear macromodel can
achieve fastest ssmulation time. This is because the event driven simulation in the digital
domain is much faster than the Newton Raphson based iteration solving of the circuit
equations in the analogue domain. The high level modelling just compensates this.
However, according to speed-up equation HLFM of the flash ADC requires less
simulation time than alow-pass filter. It indicates that speed-up may be achieved as the

circuit used gets more complex.
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Chapter 11: Conclusions and Future
Work

11.1 Introduction

In recent years there has been a large increase in mixed-signal 1Cs with higher levels of
integration. Although research in the digital test domain has provided well established
fault models, DFT methodologies and test automation, the same is not true for the
analogue test domain. Many of the problems in testing analogue and anal ogue portions
of mixed-signal ICs are described in the literature review.

High level fault modelling (HLFM) has become one of the most important approaches
for analogue test due to its high speed. The models can be created either manually or
automatically. Automated model generation (AMG) approaches have showed their
ability to handle soft or strong nonlinearity. Speed-up can be achieved using model
order reduction (MOR) approaches. However, most published AMG approaches have
been developed and evaluated in its context of high level fault-free modelling rather
than HLFM. This thesis has investigated HLFM using the AMG approach.

11.2 Automated Model Generation Approaches

In this work two novel automated model generation (AMG) approaches based on the
recursive maximum likelihood (RML) were devel oped for SISO and MI1SO systems:. the
multiple model generation system (MMGS) in z transform and multiple model
generation system using delta operator (MMGSD). Both were evaluated using a two-
stage CMOS open-loop operational amplifier (op amp), the input stimulus was a PRBS
to achieve a wide spectrum. The MMGS can handle low-pass filters, and model
nonlinear behaviour with good accuracy. The work has been published at DTIS in 2008
[Xia08a] and ISCAS in 2008 [Xia08b]. The MMGSD can converge twice as fast as the
MMGS, handle both low-pass and high-pass filters, and model nonlinear behaviour
correctly. Thiswork has been published at WCE in 2008 [ Xia08c].

Some key issues need to be considered: during estimation the estimator may not
accurately estimate the offset coefficients because it is difficult for the estimator to
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obtain enough information since it is a constant value. This has been improved by
adding an offset parameter during HLM and HLFM. Furthermore, the MMGSD is not
intelligent enough to always pick thresholds exactly where the extreme nonlinearities
are because of fixed positions used for the thresholds, so it sometimes may not model
nonlinearity accurately. This can be improved by manually adding a threshold on the

nonlinear area.

11.3 High Level Fault Modelling

A VHDL-AMS behavioural model is developed to implement HLM and HLFM for
transient analysis. The models from the MMGSD are used to form VCVSs in this
model. Short faults were investigated, which are obtained from the fault injector
ANAFINS [SpinksO4]. The netlists used are a low-pass filter and a 3bit flash ADC.
Results show that the model can handle both linear and nonlinear situations with good
accuracy in the filter, and model digital outputsin the ADC correctly. Comparing with a
published fault model [Bartsch99], better quality has been achieved in terms of output

signals using fault coverage measurement [ Spinkso8].

Although speed-up is not achieved during simulation because the op amp only contains
a small number of transistors (11 transistors), it has been proved that as the system is

getting larger speed-up can be achieved more easily.

11.4 Future Work

Based on the findings and conclusions of this work, future work is justified in several

aress.

1. A more complex system such as an IV amplifier will be employed for HLFM to
investigate simulation speed. The same procedure will be used as the one for the low-
pass filter.

2. A flexible threshold creation method for nonlinearity will be investigated.

3. The work here uses a model partitioning system based on a single input, further work

will focus on model generation process by observing multiple inputs.
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4. The ssimulator used (SystemVision) in the thesis is not optimised to the structure of
the MMGSD model, which results in slow simulation. In the future work another
simulator using different iteration method instead of the Newton-Raphson in
SystemVision method will take place in order to deal with nonlinear part with less
number of iterations.

5. The same technique of the transistor with different levels will be used for simulation

speed investigation. Moreover, more update transistors will be used for simulation.
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Appendix A: Characterises of the
Two-stage Op Amp in HSPICE

The objective of this section is to provide the knowledge on how to simulate and test a
CMOS operationa amplifier (op amp). Thus, users who do not have the datasheet can
still know about its range of performance when it isintegrated in a system. It also gives
users more confidence, even though the datasheet is supplied. The methods are suitable
not only for SPICE, but also for other types of computer-simulation programs because
the simulation and measurement of the CMOS op amp are almost identical and

presented simultaneoudly. In this case the op amp used is the same one in Figure 4-1.

The characteristics of the op amp include: open-loop gain, open-loop frequency
response (including the phase margin), input-offset voltage, common-mode gain
(CMG), power-supply rejection ratio (PSRR), common-mode input- and output-voltage
ranges, open-loop output resistance, and the transient response including slew rate (SR).

Its design specification is shown in Table A-1.

Specification Design
Openloop gain >20000 = 86dB
GB (MHz) >1
Input CMR (V) 12
Slew Rate(V/us) >2
Paiss (UW) <400
Vout range (V) >4
PSRR" (dB) -
PSRR (dB) -
Settling Time (us) -
Output Resistance (Kilohms) 524.2

Table A-1: Results between design and simulation
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A.1 Open-loop Mode with the Offset Compensation
Offset voltage is tested with the circuit shown in Figure A-1. R. = 10kQ, C. = 10pF, Vg4

and Vs are 2.5V and -2.5V, respectively. The input signa is swept between -0.05V and
0.05V with 100uV steps.

V1

\T\ ) ) out
v2 Vl/ l
T

Vos
R

Figure A-1: Open-loop circuit with the offset compensation

The signal is seen in Figure A-2.It is seen that this circuit has the reasonable offset

voltage: Vos = 5.94mV because it should be in the range of millivolts.

offset compensation
o) Voltage X(Wolt)
wiout)

04

[ol=a

0.0 4

T T T T T T 1
-0.075 -0.05 -0.025 [oXe] 0.025 0.05 0.075
Voltage X ({Volt)

Figure A-2: The signal for the offset voltage

A.2 Open-loop Gain Measurement
The open-loop gain is the gain obtained when no feedback is used in the circuit. Ideally

it is infinite, but normaly it is around10®. The method for measuring the open-loop
gain isimplemented shown in Figure A-3.
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Figure A-3: A method of measuring open-loop characteristics with dc bias stability

In this circuit it is necessary to select the reciprocal RC time constant a factor of Av(0)
times less than the anticipated dominant pole of the op amp, so the op amp has total dc
feedback which stabilizes the bias. The dc value of output will be exact the dc value of
input. Moreover, the true open-loop frequency characteristics will not be observed until
the frequency is approximately Av(0) times 1/RC. Above this frequency, the ratio of Vo
to Vi, is essentialy the open-loop gain of the op amp. The anticipated loading at the
output is required to obtain meaningful results [Allen87].

The dominant poleis calculated as follows. From the SPICE output file, g = 0.03, 112 =
0.024, 410 = 0.012, 17 = 0.015, ky' = 17p. Also, g = 2.2uA, |g = 73pA, C. = 1.6pF.

Om1o= 1/2K'|d1(%) = 93.20A/V Eq. A-1

Referring to [Allen87], the first poleis found:

Pl=_ (9uso + G12) (esto + Jas) _

Omio 'Cc

e Vet 2 1o N+ V) _ 4 aouty Eq. A-2
Cc : gmlO

P =1.142kHz

Assuming R is large enough, otherwise, it will take current from op amp, R =
300MegQ, C = 30uF, R. = 10MegQ, C, = 10pF. The signal is shown in Figure A-4.
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Open Loop Gain
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Figure A-4. The open-loop gain measurement

It is seen that the open-loop gain is about 85.539dB, i.e., 1.892Meg, and the critical
frequency is about 96.277Hz. The gain bandwidth (GB) is the product of the open-loop
gain and the critical frequency, which is 1.82MHz, and the phase margin is 47.682.
Moreover, power dissipation is 383.1uW (found in the output file).

A.3 Input Offset Voltage

It is known that the input offset voltage is not only due to the bias mismatches, but also
due to device and component mismatches. Moreover, it can be affected by time and
temperature due to its small value. Therefore, it is difficult to smulate. In this case it is

performed by using the circuit of Figure A-5.

V1

—o

V2 4+ Vout =V

L Ve

Figure A-5: Configuration for measuring the input offset voltage

A-4



A.4 Common-mode gain

The common-mode gain is the ratio of the output voltage to the common-mode input
signal. Ideally it is zero, but this is not the case for area op amp due to the noise. The
common-mode gain is most easily simulated or measured using the circuit in Figure A-
6-a).

Comrmon-rode gain
(Params) : f{Hz)
VOS 10.0

m V1 ' ' f f f paridbgain)

qooff TR EREL L e

200 - - - . e e

¥ ool b
VRN TRV SUPU RS SR S .

(Params)

pariphgain)

170.0
— 0 160.0

150.0
140.0
130.0
120.0
10.0
1000
800

<>V|n 500 (Params) : f(Hz)
180.0 ez
e ! : e

(Farams)

T T T T
1.0 100 100.0 1.0k 100k 1000k imeg
f(Hz)

a) b)
Figure A-6: a) Configuration for simulation the common-mode gain, b) Signal for

common-mode gain

The input voltage Vi, is set to 0.05V, the offset compensation voltage Vs is -5.9365mV,
from ssimulation the signal shown in Figure A-6-b) is obtained. The output voltage gain
isabout 2.5 dB, i.e., =~ 1.334.

A.5 Common-mode Regect Ratio (CMRR)

The common-mode gain is the ratio of the common-mode voltage at the input of a
circuit, to the corresponding voltage at the output. The lower the CMRR, the larger the
effect on the output signal [Allen87]. The circuit used for the measurement is shown in
Figure A-7.



Figure A-7: Configuration for direct measurement of CMRR

Initially we measure the common mode gain and then use Eq. A-3 to obtain CMRR,

where A, is the open-loop gain.

Vout - |A; |: 1 Eq A'3
V A, CMRR

cm

From simulation the output response shown in Figure A-8 is obtained.

CMRR
dBE({W) - f{Hz)

-30.04 : - : viout

-40.0

-50.0

dB (V)

-60.0
-70.04

-80.0

-80.04
0.0
-25.0 4
-50.0
-75.04
-100.04
-125.0 4
-150.04
-175.04
-200.04

Fhaseideq) : f(Hz)

wiout)

Phase(deg)

fiHz)

Figure A-8: CMRR frequency response of magnitude and phase

It is seen that the magnitude of common mode gain is-83.491dB, according to Eqg. A-3,
the CMRR = 2.048dB. The phase is shifted about 180 degree.
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A.6 Power Supply Reect Ratio (PSRR)
The power supply regjection ratio (PSRR) is a measure of how well the device regjects
noise on the power supply line. Normally it is separated into reection ratios for the
positive power supply PSRR™ and negative power supply PSRR*. Eg. A-4 shows the
relationship between PSRR and supply voltage.

ss

Vout - 1 or Vout - 1 Eq A_ 4
V, | PSRR* Vv PSRR™

A circuit from [Allen87] is used to measure PSRR shown in Figure A-9. A sinusoidal
with amplitude 0.1mV and frequency 1kHz is used. It isinserted in series with Vpp and

Vssto measure PSRR* and PSRR™, respectively.

Ve —

Figure A-9: Configuration for direct measurement of PSRR

The signalsfor PSRR"and PSRR™ from the ssmulation are shown in Figure A-10. It is
seen that they are amost the same: about 80dB.
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Figure A-10: Signalsfor PSRR" and PSRR™

A.7 Configuration of Unit Gain for | nput and Output CMR

Typicaly, the output common-mode voltage range (CMR) is about half the power-
supply range in open-loop [Allen87]. However, op amps are normally used in close-
loop, so it makes more sense that both input and output CMR should be measured and

simulated. Unit gain configuration shown in Figure A-11-a) is efficient for this

measurement.
input CMA
(V) : Voltag e X(Volf)
Vdd * . ‘ ‘ : ‘ vou
. 204w e g - s
Vl n |p g147,2.0074)!
o———F S
L I I e P S
— Vout £
N T A
C. N U TP A S S S
1.2154, -1 Eoeas)
Vss = . ‘ :
20 T T T T T
6.0 40 2.0 0.0 20 40 5.0
Voltage X (Volty
a) b)

DC analysisis performed from -5V to 5V with steps of 0.1V, the output signal is shown
in Figure A-11-b). The linear part, where the slope is unity, corresponds to the input
common-mode voltage range. It quickly increases at about 2V because the value of the
compensation capacitor C. is small, the voltage V. essentially follows the voltage at in.
During the rising edge of the signal, the charging current to C. can be much bigger than

Figure A-11: a) Unit-gain for input CMR and b) the signa



the current around output stage, which results in a bigger charge current to C..
Therefore a rapid rise of the output voltage is caused. It is seen that the range of input
CMRis-1.2V to +2V with dc supply voltagesof +2.5V.

The range of the output voltage can be measured with an inverting amplifier seen in
Figure A-12-a), the feedback resistance is ten times bigger than the input resistance, i.e.,

K, =-10. The signal is shown in Figure A-12-b). The output voltage range is between

-2.429V and 2.49V. Moreover, the linear part of transfer curve corresponds to the

output-voltage swing.

output vo'tage swing

1OR . ‘(l\:‘)m:/umexwmt)
{ | e
20 ,,,,(%02575:3&{901),,3”,,,3 ,,,,, . ,,,,, ,,,,, vow
Vdd N
. 10 e N
Vin R |; N
ip e
o| H—— R TR e et A
. O Vout T VU
In " N
+ N
Vss S DR @\
a0 . . . ) . | (028056, 2.248)
- 04 03 02 01 0.0 01 02 03 04
Voltage X (Volty
a) b)

Figure A-12: Signal for the input CMR a) and the signal b)
A.8 The Output Resistance

In this section, the output resistance is calculated with the circuitry shown in Figure A-
13-a). The dc voltage sourcesare + 0.05V, R, =100kQ.

() : Voltage X(volt)

30 wioutwithrly
o . . : vioutwithoutr)
2 ol oo e I
Vdd ! : :
ip n
o—
=
Vi . Vout
in
o—— R
S S A
Vss =
G0 T T T
-0.0561 -0.056 -0.0559 -0.0558 -0.0557
Voltage X{Volty
a)

b)

Figure A-13: @) Measurement of the output resistance, b) output signal
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The output voltage drop caused by load resistance R, is obtained from Figure A-13-b.
The relationship between the input voltages and output resistance is given in Eg. A-5,
where ViitoutrL 1S the voltage without measuring the load resistor R, and Vyire IS the
voltage when R_ isincluded.

Rout = R ((V““‘“—““j -1) Eq. A-5

VwithRL
Therefore, the output resistance is Ryt = 520.054kQ.

A.9 The Slew Rate and Settling Time

The slew rate (SR) is the maximum rate of change of signa at the amplifier output. In
general, the settling time is defined as the time that it takes the system to settle within a
certain value (tolerance say 1%) when it is stimulated. In the amplifier it includes avery
brief propagation delay, plus the time required for the output to slew to the vicinity of
the final value, recover from the overload condition associated with slewing, and finally

settle to within the specified error.

In this case, the same circuitry as Figure A-11-a) is used, as shown in Figure A-14 to
measure the slew rate and settling time. The load capacitance C, is set to 10pF.

o Vout

1.
/IVSS T

Figure A-14: Measurement of the slew rate and settling time

The results of settling time measurement is shown in Figure A-15-a), which is obtained
by using the small signal transient response with a 0.2V pulse to the circuit above. The

relatively large value of compensation capacitor C. prevents the 10pF load from causing
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significant ringing in the transient response. It is seen that the settling time to within
+ 5% is about 28.547-28 = 0.547us.

Settling time Slew Rate

, 1) a0 RG]
2 o ‘ ‘ . ‘ )
" n vioul) viou)
1 ! o : - ! : : ! T
01 L \\, ,,,,,,,,,,,,,,, | “,“"—7—‘ ,,,,,,,,,,, 10 oo G g T
| | | = \ R ;o
| 1 | settesBsn || \ / 1 / 4
| 1 | \ ! I / \
| | \ / 1 / \
| ! I \ / 1 / \
s ool [ I | P L] A / cde | AP
! | J | \ / v i i
| | | | \\ / slew: 1 EBEM% glew: - AQ(}#neg \
I | | | \ / \ ' \
| N i N vl Lol )
ol ‘14 ***** o .\j, ****** 10 \ =4 ....... @——I ......... v
Sy . l‘ . .
ol Y .
02 T T T T 1 20 ;
241 261 28u 301 32 18u 20u 22u 2ay 26u 28u
t(s) t(s)
a) Settling time b) Slew rate

Figure A-15: Signals from @) settling time and b) slew rate

The dew rate is then calculated. A pulse input signal with the amplitude of 2V is
utilized, the input step has to be sufficiently large, so the op amp is able to slew by
virtue of not having enough current to charge or discharge the compensating and/or |oad
capacitances. The simulated output signal is shown in Figure A-15-b). The dlew rate is
determined by the slope of the output waveform during the rise or fall of the output.
Both positive and negative slew rates are approximate 1.65V/us, which are less than the
specification. One way to improve it is to reduce the compensating capacitance c; to
1.8pF. The signal is shown in Figure A-16. It is seen that the Slew rate isincreased: SR+
=2.2V/us, SR- =-2.43V/us.

Slew Rate
V) s
2.0 ‘ - (iR}
' : viout)
LT | A oo T oo B
ol 2 . /
;o . /
/o K e
;o N /
;oo N s
— - N /
= o004 ------- 4—;-«/ ,,,,,,,, e e e e
L . Yoo /
' / slew: 2.0826meg N slew: -2.2813meg //
/ N ’
14 Mo /
ey e k‘.ﬂ: _
=20 T T T T T
23u 24u 25u 26u 27u 28u 20u
1(s)

Figure A-16: Improved slew rate by reducing the compensating capacitance
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A.10 Comparison of the Simulation with Specification

In this section designed values are compared with these results from the ssmulation in

HSPICE illustrated in Table A-2:

(Kilohms)

Specification Design Simulation in SPICE
Openloop gain >20000 = 86dB 85.539dB
GB (MHz) >1 1.82
Input CMR (V) +2 +2,-1.2
Slew Rate(V/us) >2 +2.2,-2.43
Paiss (UW) <400 383.1

Vou range (V) >4 +2.49, -2.43
PSRR" (dB) - 80
PSRR (dB) - 80

Settling Time (us) - 0.547
Output Resistance 524.2 520.054

Table A-2: Results between design and simulation

It is seen that characters of the op amp between the design and simulation have been

well matched, although the open loop gain and the input CMR from the simulation are a

little less than expected. Therefore, this op amp is designed successfully.
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Appendix B: User Guide for MAST

Language and Cosmos Simulator in
Saber

B.1 Introduction to Saber Simulator

In 1987 the Saber simulator was developed, which is able to support both a hardware
description language (HDL) and single kernel mixed-signal simulation solution
[DataSheet93]. It has various optional model libraries that contain thousands of models
for designing integrated circuits (ICs) to complete high-power embedded control
systems. Saber controls simulation through an intuitive, graphical user interface, for
example, the interface between MATLAB and Saber, and supports all the standard
analog simulation analysis — DC operating point such as transfer analyses, transient,
AC, noise, distortion and Fourier spectral analysis. Furthermore, the Saber and inSpecs
family of design analysis products provide the ability to perform Monte Carlo, stress,

sensitivity, and parametric analysis.

The Cosmos simulator in Saber is used to specialy support the hardware description
language (HDL) — MAST. Unfortunately full information on how to operate Cosmos is
not provided in Saberbook [Saber03], which is one of few documents to introduce this
language. In addition although each function in MAST is explained with an example,
they are not based on a complete model. Thus it is difficult and tedious for users
especially for beginners to understand and learn quickly about the HDL. This appendix
introduces the user guide on MAST language and Cosmos to bridge the gap between
fundamental knowledge and more complex work.

This user guide is divided into four sections. section B.2 introduces structures of the

MAST language with a complete example. Section B.3 demonstrates how to manipulate
the Cosmos simulator to display results. The conclusion is supplied in section B.4.
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B.2 Introduction to the MAST

B.2.1 Construction of the MAST Language
The general form of the MAST language is shown in Figure B-1:

Unit definitions
Connection point definitions
Tenpl at e header
Header decl arations
{
Local decl arations
Par anmet ers section
Netli st section
When statenents
Val ues section
Control section

Equati ons section

Figure B-1: The structure of the MAST language

Some of these sections may be optional depending on the requirement of the circuits

and users. The MAST language is recognized by the simulator with .sin extension. More

details can be found in Saberbook.

B.2.2 Thecomplete program in MAST language

In this section a full program in MAST for an op amp is supplied as shown in Figure

B-2 [Wilson0l]. Each line is numbered, so readers are able to follow explanations

easily.

1) #... A closed | oop op amp

2) tenplate test vout vinl vin2 = a,mk
3) electrical vout, vinl, vin2

4)

5) #...Qperational Anmplifier Paraneters
6) nunber a=1

B-2



7) #...Fault offset Voltage Paraneters
8) nunber m=0
9) nunber k=0

10) {

11) #... local Declarations

12) var i ic

13) val v vou,vi,fo, voutcalc

14) #...Procedural Expressions

15) val ues{

16) #...Term nal Vol tages

17) vou=v(vout)-v(Vvin2)

18) vi =v(vinl)-v(vin2)

19) #...Fault offset voltage
20) fo=ntvi +k

21) vout cal c=a* (vi +f 0)

22) #...Supply Voltage Limt
23) if (voutcalc> 2.5) voutcalc=2.5
24) if (voutcalc< -2.5) voutcalc=-2.5
25) }

26) equati ons{

27) #. .. Fundanental Equations
28) i (vout->vin2) +=ic

29) vou=vout cal c

30) }

31) }

Figure B-2: The program in MAST language

B.2.3 Explanation

These explanations are separated into following sections. B.2.3.1 Comment section;
B.2.3.2 Template section; B.2.3.3 Declaration section; B.2.3.4 Values section and
Equations section in B.2.3.5.

B.2.3.1 Comment Section
1) #...A closed | oop op anp
5) #...Qperational Anplifier Paranmeters



7) #...Fault offset Voltage Paraneters

11) #...local Declarations

Comment line is recognized by a hash sign (#) as running to the end of the line. Thisis
same as (//) in the C program, or (--) in VHDL. It starts anywhere within aline and is
useful to temporarily remove a line or part of the program during debugging. In this
program line 1), 5), 7), 11), 14), 16), 19), 22) and 27) are comments.

B.2.3.2 Template Section
template is arequired keyword that identifies the line as atemplate header, seeline 2).

2) tenplate test vout vinl vin2 = a,mk

It is seen that the name of the templateist est , then connections. vout vi nl vi n2,
and arguments a, m k. Note: it is important to insert the comma between each of the

arguments. It is necessary to include the (=) sign to isolate connections from arguments.

There are two types of templates: the standard t enpl at e, which does not have a
specified type; the el ement t enpl at e that uses the keyword el enent for the
type. Templates can be in a program and have relationship such as hierarchy, so if one
template (template A) contains a reference to another (template B), this indicates, in the
model, the system represented by template B is a subsystem of that represented by
template A. Designers can create a template that defines a subsystem, and then refer to
it in the system template wherever the subsystem is used. It is similar to the function

cl ass in C++, whose public member of the base class can be inherited by its subclass.

B.2.3.3 Declaration Section
B.2.3.3.1 Header Declaration

3) electrical vout, vinl, vin2

4)

5) #...Operational Anplifier Paraneters
6) nunber a=1

7) #...Fault offset Voltage Paraneters
8) nunber m=0
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9) nunber k=0

There are two types of documents: header declaration and local declaration. Similar to
application languages such as C, C++, all names (identifiers) must be defined before
they are used. The aim of header declarations is to define the system names used in the
header. It specifies connection points and argument names, as seen from line 3) to line
9). Connection nodes and argument names are defined after keywords el ectri cal

and nunber, respectively. el ectri cal isusedin the analogue part; keywords such
asstate | ogi c_4 areemployedinthedigital part. Connection names can not have
a number as the first character unless all remaining characters are numbers, non-
alphanumeric characters (such as + or -) are not allowed. Furthermore, between names

of arguments, commas are necessary. For example:

Correct: V10, 2, Vcc94b, 124
Incorrect: 10V, +15V, 15V1 18negV

nunber is akeyword for parameters. It indicates both integers and floats. It needs to
follow the rule: ssimple, composite, or arrays of simple/composite. More details can be

found in [Saber03].

B.2.3.3.2 Local declaration

11) #... local Declarations
12) var i ic

13) val v vou,vi, fo, voutcal c
14) #...Procedural Expressions

Lines 11) to 14) are the local declaration, which have to be inside t enpl at e. It
comprises declarations for al identifiers used inside thetemplate such asvar s, ref,

val s, states. The genera syntax is. keyword unit nameO Paraneter.
keywor d (names are arequired part of MAST statements) is predefined by MAST and
requires no further declaration. In this case keywords var and val are used for
variables and values, respectively. i isused to declare avariable of type of current. The

second i ¢ is a variable. If many parameters need to be defined such as line 13),
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commas are used to separate each of the parameters, alternatively they can be defined

one by one. For example,

val v vou

val v vi

val v fo

val v voutcalc

B.2.3.4 Values Section

15) val ues{

16) #...Term nal Vol tages

17) vou = v(vout)-v(vin2)

18) vi = v(vinl)-v(vin2)

19) #...Fault offset voltage

20) fo = nrvi +k

21) voutcalc = -a*(vi +f0)

22) #...Supply Vol tage Limt

23) if (voutcalc > 2.5) voutcalc = 2.5
24) if (voutcalc < -2.5) voutcalc = -2.5
25) }

In MAST the values section is either operational or declarative. It is set up for handling
foreign functions that are required in the equations section, and promotes clarity in the
equations. The foreign section is not discussed in this user guide, and the equations
section will be introduced later. The values section starts with the keyword val ues
followed by aleft-hand brace ({ ), and the right-hand brace (} ) must be used at the end
when al statements are compl ete as seen in Figure B-3. Note: the left-hand brace should
not start from a new line, which is regarded as an error during simulation. This is the

same as other statementssuch asequati ons ori f .

val ues {

statenents

Figure B-3: The syntax for the values statement
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On line 18) vi is defined in the local declaration section, vi n1 and vi n2 are the
connection nodes defined in the header declaration section. This equation shows that the
voltage between two nodes (v(vinl), v(vin2)) is vi. These variables are

described using Figure B-4.

v(vinl) _ v(vin2)
Vi

+ 0—/\/\/\/—0 -
vinl vin2

Figure B-4: Theresistor

Lines 20) and 21) display the relationship between the input and output voltage.
Parameters (a, m k) and vaues (vo, vi, fo, voutcal c) have been defined
in the header declaration and local declaration, respectively. Thei f statement on lines
23) and 24) are used to execute two expressions. It can be used in par anet ers,
val ues, control, and equati ons sections of the template, and aso in when
statements. If there is more than one expression, el se i f and el se statements are
required. Note: el se if statement may appear more than once. The syntax is

shown in Figure B-5:

i f(expression){
statenents

}

el se if(expression){

statenents

}

el se {
statenents

}

Figure B-5: The syntax for i f statement
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B.2.3.5 The Equations Section
The equations section describes the analogue characteristics at the terminals of the

element being model ed.

26) equations{

27) #. .. Fundanent al Equati ons
28) i (vout->vin2) +=

29) vou = voutcalc

30) }

The syntax of the equations section is shown in Figure B-6.

equati ons{

statenents

Figure B-6: The syntax for equations section

Statements in the equat i ons section either define the dependent through var s or
refs in the system, they are expressed as the across variables or the equations
necessary for each var declared in the template. It is important to know that a

compound statement in a template can not have an empty body, e.g.,

equat i ons{

# statenment -- that is illegal

On line 28) where all values have been defined in the local declaration, the symbol - >
indicates a flow of the through variable from the first node (vout) to the second
(Vi n2). Operators (+=, - =) indicate whether to add to or subtract from the node. Line
29) shows that two specified voltages are equal. More details such as other types of
statement which can be used in this section can be found in [Saber03]. Line 30) shows
the end of the equati ons section. Lines 10) and 31) inform the Saber simulator

when thet enpl at e starts and finishes, respectively.
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B.2.3.6 Netlist Section
In order to check if the op amp behaves as expected a netlist is required. The general
syntax of anetlist is shown in Figure B-7:

t enpl at enane. ref des connection_pt _[|i st

[ =ar gunent _assi gnnent s]

Figure B-7: The syntax for the netlist

where t enpl at enane indicates the name of template in the model. r ef des is the
reference designator, connection_pt |ist shows the connections for the

template, and ar gunent _assi gnnment s supplies values of parameters for the
model.

In this case an inverting amplifier is configured as shown in Figure B-8.

1) #... Top level of design

2) v.vinpy 0 = tran=(sin=(vo=0.1, va=0.5, f=100))

3) #...v.vinpy 0 =dc =0.5

4) r.R y vin = 10k # define input resistance
5) #...define the op anp's nodes

6) test.inv vovin0=2, 0, O

Figure B-8: The netlist for the operational amplifier

Line 1), line 3) and line 5) are comments. Line 2) declares a sinusoid voltage source,
V. Vi np, v is predefined as voltage (i will be used if a current source is required),
Vi np is the name of the sinusoid voltage source. y and O are two connections, 0
indicates ground. t r an expresses transient analysis, si n stands for the sinusoid signal,
the parameter vo is the offset voltage, va, f are the amplitude and the frequency,
respectively. These parameters have to be defined in coupled square brackets. Line 3)
defines a dc voltage source with a value of 0.5V. Line 4) declares the input resistor. r
is predefined for resistors Rl and Rl . Line 6) instantiates the op amp defined above.

t est isthe name of template for the op amp. vo vi n 0 are the connections of the
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opamp, 2, 0, O arevauesof parameters. Note: these connections and values must

match the orders and numbers of the op amp model.

B.3 Implementation in the Cosmos Simulator
In this section, different types of analysis are described in section B.3.1 and B.3.2,
respectively.

B.3.1 Simulation Run

The aim of the section is to demonstrate how to use the Cosmos simulator. Follows
steps:. file -> open -> design, select a file with a .sin extension, the Cosmos transcript
starts to compile, the report dialog appears with information such as copyright, license,
and date. If there are errors, double click highlighted error parts in the dialogue, it will
take the user to where the error isin the program. Note: when the program is changed, it
has to be saved again, or the simulator will not recognize the update. After that the user
may go back to thefile, and then choose reload design to check if there are other errors.

The analysisisimplanted if there are not errors any more.

B.3.2 Analysis
The aim of the section is to observe if the model behaves as expected. Three types of

analyses are introduced: the transient, dc and ac analysis.

B.3.2.1 The Transient Analysis

Transient analysis is typically used to investigate the response of the system to atime-
dependent excitation. Uses. analyses -> time -> domain -> transient, after that a
dialog appears to prompt users to input both end time and time step. Note: users must
not input a unit for these values, otherwise an error is displayed. Then choose yes to
Run DC Analysis First, after that press ok. Finally the signa is plotted from plotfiles:
file -> open -> plotfiles, then find the directory where the file is saved, and choose the
name with .tr.ai_pl extension, two dialog boxes appear: signal management and
filename.tr.ai_pl extension. Therefore, users can display any signals. In this case signals

vi andvo areselected shown in Figure B-9.
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Figure B-9: Signals from the transient analyses

If the user prefers to compare these signals in the same graph, they initially have to

select both signals, and then right click the mouse to choose select signals -> stack

region -> analogue 1. Thus two signals are combined into a same box shown in Figure

B-10.
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Figure B-10: Combination between input and output signals
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B.3.2.2 DC Analysis

The dc analysis follows a similar procedure to transient analysis: analyses -> oper ating
point -> dc, a dialog box appears to prompt the user to choose independent sour ce,
then sweep type, note: there are many types, in this case, step by is chosen. The range
is defined by the user, for example, from -0.5 to 0.5 by 100, which means the voltage
ranges between -0.5V to 0.5V with 100 steps. Values in Sample Point Density and
Monitor Progress are set to their default values of 1 and O respectively, or defined by
the designer. It is noted the former needs to be large, or an error appears. In this case it
is set to 200. After that, DC Analysis Run First is selected. Finally, dc anaysis is
invoked. Plotfile is required to display signals: file -> open -> plotfiles, then a dialog
box appears so that the file with .dt.ai_pl extension is selected. Unfortunately, this
extension does not appear automatically in the Plotfiles dialog box, thus the user needs
to choose All in the files of type, then selects .dt.ai_pl file. After that choose open, two
dialog boxes appear: signal management and filename.dt.a_pl. The result is shown in
Figure B-11.

(V] Avinp(d
4.0 - )
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i
S
s
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T
.~
s
-2.0 4 e
T ]
4.0 |
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Mrawingi-)

Figure B-11: Results from the DC transfer analysis

B.3.2.3 AC analysis

A simple RC circuit is used to demonstrate ac analysis as shown in Figure B-12:
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in Rin out
1)

#
2) v.vinin 0 =ac = (1,0)
vin Cn__— | VO 3) #. ..define value of RL and Cl
4) r.Rin in out = 1k
L 5 c.Cnout 0= 1u

...AC vol tage source

Figure B-12: The RC filter for the ac analysis

Most of lines have been explained except for line 2) that presents the ac source. The
values in parentheses (1, 0) stand for the magnitude and phase, respectively. The
same procedure as for transient analysis is used except that Analyses -> Frequency ->

Small signal is selected to display signals. They are shown in Figure B-13.
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Figure B-13: Signalsfrom AC analysis

Above al three frequently used analyses are introduced, others such as the Monte Carlo

(MC) simulation can be found in [Saber03].

B.4 Conclusion

A user guide based on [Saber03] has been developed. It consists of two parts: the first
one introduces the structure of the MAST language using an operational amplifier (op
amp) model that includes commonly used statement and syntax with detailed
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explanations for each line; the second part demonstrates how to subject the model to
frequently used analyses. For each analysis, explanations are given. Comparing with
Saberbook this user guide is structured more simply, especialy for beginners to
understand languages and the process of manipulating the ssmulator.
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Appendix C: Behavioral Models
Written in MAST

C.IMAST Code of Linear HLFMs
C.1.1 MAST Code of opdc

#... behavioural nodel of an op anp for general nodeling

tenplate Qpanp out inn inp vdd vss gnd = gain, r, ¢, ro, voffin,
vof fout, ibn, ibp, vbl, vb2

electrical out, inn, inp, vdd, vss, gnd

#... paraneters val ues
nunber gain = -1
nunber r = 1k

nunber ¢ = 1u

number ro = 1k

nunmber voffin = -0.5u
nunber voffout = 0.1u
nunber ibn = 0.1n
nunber i bp 0. 1n
number vbl = 0.7
number vb2 = 0.7

{

electrical off, nl, n2

val v vin, vip, vi, voff, vout, vd, vs
val i iRl, iRo

var i iCl, ioff, il, i2

d. di odel out nl

d. di ode2 n2 out

#... thermal noise fromthe input resistor
noi seR. nr inn off=r

noi seR nro out gnd= ro

val ues{

#... define all connections
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vin = v(inn)-v(gnd)
vip = v(inp)-v(gnd)
vout = v(out)-v(gnd)
vd = v(vdd)-v(gnd)
vs = v(vss)-v(gnd)

#... equation between input and output
#... define the input offset voltage

voff = vip + voffin

vi = vin - voff

#... define the current for the resistor
iRL = vil/lr

#... output current

iRo = (vout + voffout - gain*vi)/ro

equat i ons{
#... define current around the capacitor
i Cl:iCl = d_by_dt(vi*c)

#... current in input stage
i (inn->off)+=iRl+i C1

#... bias current
i (of f->gnd)+=i bp

i (i nn->gnd)+=i bn

#... current of the input inpedance
i (inp->off)+=ibp-(iRl+i Cl)

#... define current and voltage in the point
i (inp->off)+=ioff

ioff :v(inp)-v(off) = voff

#... current in output stage
i (out->gnd)+= i Ro

#... define the bias voltage
i (vdd->nl) +=i1l
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il: v(vdd)-v(nl) = vbl
i (n2->vss) +=1i2
i2: v(n2)-v(vss) = vb2
}
}
C.1.2 MAST Code of opac
#... behavioural nodel of an op anp ac with extra pole and zero.

tenpl ate Opanmp out inn inp vdd vss gnd =r, ¢, rol, voffin, ibn, ibp
vbl, vb2, ro2, cc, ra, rstuck, vstuck, ioffset, Gb, cpL, LzL, Ga

electrical out, inn, inp, vdd, vss, gnd

#... paraneters val ues
#nunber gain = -1
number r = 1k

nunber ¢ = 1u

nunber rol = 1k
nunber voffin = -0.5u
#nunber voffout = 0.1u
nunmber ibn = 0.1n
nunber ibp = 0.1n
nunber vbl = 0.7
nunber vb2 = 0.7
#nunber rdp = 1k
number ro2 = 1k
nunber cc = 10p
nunber ra = 1k

nunber rstuck = 1neg
number vstuck =0
number ioffset = 0
nunber Gb = 2.9e-3
nunber cpL = 10p
nunber LzL = 1m
number Ga= 10e-6

{

electrical off, nl, n2, no, nol, pL, zL
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val v vin, vip, vi, voff, vout, vd, vs
val i iRl
var i iClL, ioff, il, i2, iC2, izL

d. di odel out nil
d. di ode2 n2 out

val ues{
#... define all connections
vin = v(inn)-v(gnd)
vip = v(inp)-v(gnd)
vout = v(out)-v(gnd)
vd = v(vdd)-v(gnd)

vs = v(vss)-v(gnd)

#... equation between input and output
#... define the input offset voltage

voff = vip + voffin

vi = voff-vin
#... define the current for the resistor
iRL = vilr
}
equat i ons{
#... define current around the capacitor cin

i Cl:iCl = d_by_dt (vi*c)

#... current in input stage
i (inn->off)+=iRl+i C1

#... bias current
i (of f->gnd)+=i bp

i (i nn->gnd)+=i bn

#... current of the input inpedance
i (inp->off)+=ibp+(i RL+i Cl)

#... define current and voltage in the point

i (inp->off)+=ioff
ioff :v(inp)-v(off) = voff

C-4



#... define the bias voltage
i (vdd->nl1l) += i1

il: v(vdd)-v(nl) = vbl

i (n2->vss) +=1i2

i2: v(n2)-v(vss) = vb2

#... define the current between supply voltage
#i (vdd->vss) += idp

#... current in output stage between rol

i (nol->out)+= (v(nol)-v(out))/rol

#... define current around the capacitor cc
i (no->nol)+=iC2
iC2:iC2 = d by dt((v(no)-v(nol))*cc)

#... define current around Ra

i (no->gnd)+= (v(no)-v(gnd))/ra

#... define stuck current
#i (out - >gnd) +=i st uck

#... define the voltage for vnol
i (nol->gnd)+=(v(nol)-v(gnd))/ro2

#... additional poles and zeros

i (pL->gnd) += vi *1e-3

i (pL->gnd)+=(v(pL)-v(gnd))*1le-3+ d_by_dt((v(pL)-
v(gnd)) *CplL)

i (zL->gnd) +=i zL
i zL:v(zL)-v(gnd)=(v(pL)-v(gnd))+ d_by dt(((v(pL)-

v(gnd))*1le-3)*LzL)

#... define the voltage around no
i (no->gnd) +=Ga*(v(zL)-v(gnd))

#... define offset current for output stage
i (nol->gnd) +=i of f set
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#... define current between Gb
i (nol->gnd)+= v(no)*Cb

C.2 MAST Code of Nonlinear HLFMs

# this op anp is devel oped for surface response nodel

el ement tenpl ate whol edata inp inn out gnd = nodel, c,voffin,r
electrical inp, inn, out, gnd

nunber c¢=10p

nunber vof fi n=0. 5m

nunber r=1k

struc {
string
file="E \LiKun\Interpol ati on1\ HSPI CE4dat a\ Fi nal Dat a\ Fi nal Dat a500

mtxt"
nunber i nterp=1,
extrap[4]=[1,1,1,1],
fill[2]=[2,0],
densi ty[ 2] =[ 200, 200]
} nodel =()
{

foreign tlu

nunber di m=2, datap[ *], spl[*], sp2[ *]
#nunber rdat[*]

nunber vx1,vx2, vy

el ectrical off
val v v1,v2, vout
val i io, ir

var i iCioffin

paraneters {
dat ap=tl u(0, 2, nodel ->file,datap,1,[1,1,1,1],[2,0])
#message("can the file % be | oaded?,the Iength is %, nodel -

>fil e, dat ap)
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spl=tlu(1, addr(datap), 1, 1)
#rdat =t u(7, addr (dat ap), 0, 0)
#message("the rdat is %, rdat)
sp2=tlu(1, addr (dat ap), 2, 1)
#message("sp2 is %, sp2)

vx1=0

vx2=0

vy = tlu(2, addr(datap), vx1l, vx2)

message("value at (%% is %, vxl, vx2,vy)

}
control section {

#...decl are dependant source iout depends on two i ndependant
sources vl and v2

pl _set(io,(vl,v2))

#...two arrays spl and sp2 hol ds sanple points for two vari abl es
vl and v2

sanpl e_poi nts(vl, spl)

#message("the value is % ,vl)

sanpl e_poi nts(v2, sp2)

}
val ues {

v1=v(inn)-v(gnd)

v2=v(inp)-v(gnd)

vout =v(out)-v(gnd)

ir=v(inn,off)/r

i o=t u(2, addr (datap), vl, v2)

#i out =t l u( 2, addr (dat ap),io, (v1l-v2), vout)

}

equations {
i (inp->off)+=ioffin
ioffin:v(inp)-v(off)=voffin
iCiC=d_by dt(v(off,inn)*c)
i (inn->off)+=-i1C
i (inn->off)+=-ir
i (inn->inp)+=-(iC+ir)
i (out->gnd)+=io

}
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Appendix D: Analysis of Boyle’s
Output Stage in the Complex
Frequency Domain

The notation shown in Figure D-1 is used in the whole of Appendix D.

Figure D-1: Boyl€ s output stage

D.1 Input Output Transfer Function
According to the current law, the following system of equations is obtained:
NodeVa icc+ ira+Ga' \/m:O Eq D'l

Itisknown: i = Xi yandicc = (Va- Wp)-SCe, substitueit into Eq. D-1:

(Va- W) - SCc + Xi +Ga- Vin=0 Eq. D-2

NodeVb. icc = Gb N Va + il’02 + iro]_ Eq. D'3

The above equation is then transformed into the following system of equations (i;o1 = 0,
no load):

. v,

lee=Gp - Vat+—- Eq. D-4

2

With Eq. D-4and icc = (Va- Wp)-SC. One can derive:
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V,
(Va_vb)'S'Cc :Gb 'Va+_b
2

<V, s:C.—Vv,-s:C. =G, v, +V, - —
2

1 Eqg. D-5
<:>Va(s'c:c_Gb):\/b(_—+_s'c(:)
R
vy _ 8:C-G,
Va i-l—S'CC
2
With Eq. D-1 and Eq. D-2 Eq. D-6 can be derived:
1 1
G, V,+V,-—+V,-—+G,-V,_ =0 Eq. D-6

2
2

v, -(Gb +iJ = —(Ga Vi, +V, ij Eqg. D-7
R, R,

By combining Eq. D-7 with Eqg. D-4 the final equation for the input output transfer

function can be derived:

Gb+i
oy R 5CoG,
G, -V, +V,- — s-C.+_——
Rz Rz
1 1 1
&V (G + 5) (5 Cot =) + 5= (5:C. =G, =G, +(s:C, = G,)V,,

2 2

&V, |G, -s-C + G 5C, 1 +(S'CC_Gb)}:—Ga-(s-Cc—Gb)-\/in

R R, R R, R
Vb-le-(1+S-CC-R)Z)-i-S-CC—Gb+é-(1+S-CC-R)2)J_ G -V
Rz:(s:C.~G,) T

Sinceirer = 0 (no load!) vy, = Vour. Therefore, vy, is replaced by vourt:

o= G Roz'(S'CC_Gb)
Vv ® G,-(1+5'C,-R,)+s5:C. -G, +&-(1+5:C,-R,)
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@Vom:_Ga.Ra. S'Cc'Raz_Raz'Gb Eq. D-8
" 1+s-CC-Ra-(1+§:+R02-GbJ

D.2 Output I mpedance

The current on the output node can be expressed as:

o = Vou =V Eq. D-9
Rs
Therefore, v, =V, —i Ry, Eq. D-10
VY 1
Furthermore, —i,, = ——+G, -V, +V, - - Eq. D-11
R02 Ra + sC,
A — R =V, Eq. D-12

With the help oof Eq. D-5, Eg. D-11 and Eqg. D-12 the following relation are obtained

for the output impedance:

o Vo, s'R,-C, s-C,
lowt— Lo le GD ( out ~lout R)l) Rd ( out ~lout R)l) T s~
R, 1+s-R,-C, 1+s-R,-C,
. 1 . Rﬂ sR-CG sR-C s-C,
S lout +\/out'__|out out Gn out'R)l'Gn' +Vour*
R, &2 1+s-R,-C, 1+s-R,-C, 1+s-R,-C,
: s-C,
~lou- R)l 1 -~
1+s-R- C
oV, 1 +Vout'Gb'%+ out.s'—cc:
2 1+s-R,-C, 1+s-R,-C,
. s-R,-C, . s-C,
. +1 +1

i . 01_|_i . . - a ~c ‘R, . —— —¢
out R out R01 b’ 1+S R C out 0l 1+S-R 'CC

02

<:>Vout'[ 1 +G. - S Ra cC 4 S c leout'[1+RM+Rol'Gb'SRac+Rol'Scj

R, © 1+s-R-C, 1+s-R -C,
1+sR-C.  sR-GGWR, SCR, |_
R.-(1+s'R-C) R,-(1+sR-C) R,-(1+sR-C))

,(&2-(1+s-&-cc)+&1-(1+s-&-cc>+s-&l-en-&z-Fg-cc+ SRy Ry C. J

=V

out

R (1+s'R-C) R, (1+sR-C) R, (1+sR-C) R,(1+sR-C)
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=V

out

R, (1+s'R,-C,)
P R02+S'Roz'Ra'Cc+Ro1+S'Ro1'Ra'Cc+S'R31'R32'Ra'Gb'Cc+S'Ro1'Raz'Cc
R.-(1+s'R,-C,)

'(1+S-RA-CC+S- R,-R-G,-C,+s- R)Z'Cc]:

o Vou _ Ry +R2+5Co(R, ‘R +Ry 'R +R1'R; R -Gy + Ry Ry
iout 1+S'Cc'(F{ol+F{ol'Gb'R02+R02)

o Var _ Rut Ry +5Co-[R-(Ry +Ryp +Ry Ry Gy)+ Ry Ry Eq. D-13
o 1+s-C.+[R,-(1+ G, R, )+ R, ]

Thus, the output impedance is obtai ned.
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Appendix E: Manual Implementation
for the MMGS

E.1 Process With the Offset Parameter

E.1.1 The Estimator

function [thmyhat, p, phi,psi] = Estinmator(z, nn,adm adg, t hO, pO, phi, psi)
% RARMAX Conputes estimates recursively for an ARVAX nodel

disp('imin the estimator');

% default values for the output signals

thme[]; %initialise the estimtes

yhat =[]; %initialize the estimted result
p=[1;

phi =[];

psi=[];

if nargin < 4
di sp(' Usage: MODEL_PARS = RARMAX( DATA, ORDERS, ADM ADG) ')

di sp(" [ MODEL_PARS, YHAT, COV, PHI, PSI] =

RARMAX( DATA, ORDERS, ADM ADG, THO, COVO, PHI, PSI) ")
di sp(' ADMis one of ""ff'*, ""kf'*, ""ng'', ""ug''.")
return

end

admel ower (adm(1: 2));
if ~(adm=='ff'|adnm=="kf'|adm="ng'|adnm=="ug')
error (' The argunent ADM should be one of "'ff'', ""kf'', '"'ng'"', or
ugttl)
end

[nz, ns]=size(z);[ordnr,ordnc]=size(nn);
if ns>2,error('This routine is for single input only. Use RPEM
instead!'), end
if ns==1,
if ordnc~=2;error('For a tine series nn should be [na nc]!'), end
el se
if ordnc~=4, error('the argunent nn should be [na nb nc nk]!"), end,

end
if ns==1,
na=nn(1); nb=0; nc=nn(2); nk=1;
el se
na=nn(1); nb=nn(2); nc=nn(3); nk=nn(4); nu=1;
end

if nk<l,error('Sorry, this routine requires nk>0; Shift input sequence
if necessary!'),end

d=na+nb+nc+1; % define a paranmeter for the offset
if ns>2,error('Sorry, this routine is for single input only!'), end

i f ns==1, nb=0; end

i f nb==0, nk=1; end

nanm=max( [ na, nc] ) ; nbmemax ([ nb+nk-1, nc]);

ti c=na+nb+1: natnb+nc;

i a=1: na;iac=1: nc;

i b=namtnk: namtnb+nk- 1; i bc=namt+1: namtnc;

i c=namtnbmt1: namtnbmtnc;



i d=namtnbmt+nc+1;

iia=1l:nam1;iib=namtl: namtrnbm 1;ii c=namtnbm+1: namtnbmtnc- 1
i i d=namtnbmtnc- 1+1;

dnmrnamtnbmtnc+1;

if nb==0,iib=[];end

ii=[iiaiibiiciid]l;i=s[iaibic id];

i f nargin<8, psi=zeros(dm1);end

i f nargin<7, phi=zeros(dm1);end

i f nargin<6, p0=10000*eye(d);end

i f nargin<5, thO=eps*ones(d, 1);end

if isenpty(psi), psi=zeros(dm1);end

if isenpty(phi), phi=zeros(dm 1);end

if isenpty(p0), p0=10000*eye(d);end

if isenpty(thO0),thO=eps*ones(d, 1);end

if length(thQO)~=d, error(' The length of thO nust equal the nunber of
estimated paraneters!'), end

[thOnr, thOnc] =size(th0);if thOnr<thOnc, thO=th0';end

p=p0; t h=t hO; %initialise the p matrix
pl=p0; t h1=t hO;

p2=p0; t h2=t hO;

f=1

if adm(1)=="f', Rl=zeros(d,d); | anmradg; end
if adm(1)=="k', [sRl, SRl]=size(adg);
if sRl~=d | SR1~=d,
error(' The RL matrix should be a square matrix with di nensi on
equal to number of paraneters!'),

end

Rl=adg; | anF1;
end
if adm(2)=="g",

grad=1;
el se

gr ad=0;
end
thnmO(nz,:)=th"; % seperate different estinmated paraneters
t hml=t hnO;
t hn2=t hno;
aa=max(z(:,2)); % find out the maxi mum val ue of input
bb=mi n(z(:,2)); % find out the mnimum val ue of input
yhat =[ ]; % set up the default condition for the out put
for kcou=1:nz % start the | oop

i f((bb<=z(kcou, 2)) &(z(kcou, 2)<0.01))

phi (id)=1; psi (id)=1;

yh=phi (i)' *th;

epsi =z(kcou, 1) -yh;

if ~grad,
K=p*psi (i)/(lam+ psi (i)' *p*psi(i));
p=(p-K*psi (i)' *p)/Il am-R1;

el se

K=adg*psi (i);

end

if adm(1l)=="n"', K=K/ (eps+psi (i)' *psi(i));end

t h=t h+K* epsi ;

if nc>0,
c=fstab([1;th(tic)])";



el se

c=1,
end
th(tic)=c(2:nc+l1);
epsi |l on=z(kcou, 1) - phi (i)' *th;
i f nb>0,

zb=[ z(kcou, 2), -psi (ibc)'];
el se

zb=[1];
end
ztil=[[z(kcou, 1), psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi (ii+1)=phi(ii);psi(ii+1l)=psi(ii);phi(iid)=1;psi(iid)=1
i f na>0, phi (1)=-z(kcou, 1);psi(1)=-ztil (1);end

i f nb>0,
phi (namtl) =z(kcou, 2) ; psi (namtl) =ztil (2);
end
i f nb==0,
zc=ztil (2);
el se
zc=ztil (3);
end

i f nc>0, phi (namtnbmt1) =epsi | on; psi (namrnbmt+1) =zc; end

thnO(kcou, : )=t h'; yhat (kcou) =yh;
end

i f((0.01<=z(kcou, 2)) & z(kcou, 2)<0.1))
phi (id)=1; psi (id)=1;
yh=phi (i)' *thi,;
epsi =z(kcou, 1) -yh;
if ~grad,
K=pl*psi (i)/(lam+ psi (i)' *pl*psi(i));
pl=(pl-K*psi (i)' *pl)/| am-R1;
el se
K=adg*psi (i);
end
if adm(1l)=="n"', K=K/ (eps+psi (i)' *psi(i));end
t hl=t h1+K*epsi ;
if nc>0,
c=fstab([1;th1l(tic)])";
el se
c=1;
end
thi(tic)=c(2: nc+l);
epsi |l on=z(kcou, 1) -phi (i)' *thl
i f nb>0,
zb=[ z(kcou, 2), -psi (ibc)'];
el se
zb=[];
end
ztil=[[z(kcou, 1), psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi (ii+1)=phi (ii);psi(ii+l)=psi(ii);
phi (iid)=1,
psi (iid)=1,
i f na>0, phi (1)=-z(kcou, 1);psi(1)=-ztil(1);end
i f nb>0,
phi (namtl) =z(kcou, 2) ; psi (namtl) =ztil (2);
end
i f nb==0,
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zc=ztil (2);
el se
zc=ztil (3);
end
i f nc>0, phi (namtnbmt+1) =epsi | on; psi (namrnbmt+1) =zc; end

thml(kcou, :)=thl'; yhat (kcou) =yh;
end

i f((0.1<=z(kcou, 2))&(z(kcou, 2)<=aa))
phi (id)=1; psi (id)=1;
yh=phi (i)' *th2;
epsi =z(kcou, 1) -yh;
if ~grad,
K=p2*psi (i )/ (lam+ psi (i)' *p2*psi(i));
p2=(p2-K*psi (i)' *p2) /| am-R1;
el se
K=adg*psi (i);
end
if adm(1l)=="n', K=K/ (eps+psi (i)' *psi(i));end
t h2=t h2+K* epsi
if nc>0,
c=fstab([1;th2(tic)])";
el se
c=1,
end
th2(tic)=c(2: nc+l);
epsi |l on=z(kcou, 1) - phi (i)' *t h2;
i f nb>0,
zb=[ z(kcou, 2), -psi (ibc)'];
el se
zb=[];
end
ztil=[[z(kcou, 1), psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi (ii+1)=phi(ii);psi(ii+1l)=psi(ii);phi(iid)=1;psi(iid)=1
i f na>0, phi (1)=-z(kcou, 1);psi(1)=-ztil(1);end

i f nb>0,
phi (namtl) =z(kcou, 2) ; psi (namtl) =ztil (2);
end
i f nb==0,
zc=ztil (2);
el se
zc=ztil (3);
end

i f nc>0, phi (namtnbmt+1) =epsi | on; psi (namrnbmt+1) =zc; end
thnm2(kcou, : )=t h2'; yhat (kcou) =yh;
end
end
yhat = yhat"';

% conbi ne these three groups of paraneters
thne[t hnO, t hnil, t hnR] ;

E.1.2 The Predictor
function yhat= Predictor(u, nn,thm

% define the size of input u, and the size of matrix nn
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[ nz, ns] =si ze(u)
[ordnr, ordnc] =si ze(nn);
na=nn(1); nb=nn(2); nc=nn(3); nk=nn(4); nu=1;

if nk<l,error('Sorry, this routine requires nk>0; Shift input sequence
if necessary!'), end
d=na+nb+nc+1; % def i ne nunber of parameters from nn

% f ns==1, nb=0; end
i f nb==0, nk=1; end

nanm=max( [ na, nc] ) ; nbmemax ([ nb+nk-1, nc]);

ti c=na+nb+1: na+nb+nc;

i a=1: na;i ac=1: nc;

i b=namtnk: namtnb+nk- 1;

i bc=nam+1: nam+nc

i c=namtnbm+1: nam+rnbmtnc;

i d=namtnbmtnc+1; % i ncrease the dinmention of th

iia=l:nam 1;iib=namtl: namrnbm 1;ii c=namtnbm+1l: nam+rnbmtnc-
1;iid=namtnbmtnc- 1+1
dnmrnamtnbm+nc+1;

if nb==0,iib=[];end
ii=[iiaiibiiciid];i=[iaibic id];

psi =zeros(dm 1) ;
phi =zeros(dm 1) ;

aaa=phi (i)
t hO=eps*ones(d, 1);

[thOnr, thOnc] =size(th0);if thOnr<thOnc, thO=th0';end
[tmtn]=size(thm; % define the size of resulting estinmating
p=round(tn/d); % find out how many groups, and the cl osest integer

% find the the indices of thmthat point to nonzero el ements.
% I1f none is found, find returns an enpty matri x.

i ndO=fi nd(abs(thn(:, 1)) >eps);

% ndO

g0=si ze(i nd0)

i nd1=find(abs(thm(:, 1+d)) >eps);
% nd1
gl=si ze(indl)

i nd2=find(abs(thn(:, 1+2*d)) >eps);
% nd2
g2=si ze(i nd2)

% find the best nmodel from each group by searching the three nmaxinmm
index (froml to d, fromd+1l to 2d, from 2d+1 to 3d)

t h=t hm( max(i nd0), 1:d)"

t hl=t hm(max(indl1), (1+d): 2*d)"

t h2=t hm( max(i nd2), (1+2*d): 3*d)"’

aa=max(u); % find out the maxi num val ue of input
bb=mi n(u); % find out the m ninumval ue of input



yhat =[]; % set up the default condition for the output
for kcou=1:nz % start the | oop
i f((bb<=u(kcou)) &(u(kcou)<0.01))
phi (id)=1; psi (id)=1;
%=1
yh=phi (i)' *th;
Y%aa=phi (i)
i f nb>0
zb=[ u(kcou), -psi (ibc)'];
el se
zb=[];
end

phi (ii+1)=phi (ii);psi(ii+1l)=psi(ii);phi(iid)=1;psi(iid)=1
i f na>0, phi (1) =-yh; end
i f nb>0,
phi (namt1) =u( kcou) ;
end

i f nc>0, phi (namtnbmt+1) =0; psi (nam+tnbm+1) =0; end

yhat (kcou) =yh;
%h

end

i f((0.01l<=u(kcou)) & u(kcou)<0.1))
phi (id)=1; psi (id)=1;
%l=2
yh1l=phi (i)' *t h1;
i f nb>0,
zb=[ u(kcou), -psi (ibc)'];
el se
zb=[1];
end

phi (ii+1)=phi (ii);psi(ii+1)=psi(ii);phi(iid)=1;psi(iid)=1;

if na>0
phi (1) =-yh1;
end
if nb>0
phi (namt1) =u( kcou) ;
end

i f nc>0, phi (namtnbmt+1) =0; psi (nam+tnbm+1) =0; end

yhat (kcou) =yh1,;
%hl

end

i f((0.1<=u(kcou)) & u(kcou)<=aa))
phi (id)=1; psi (id)=1;
%l=3
yh2=phi (i)' *t h2;

zb=[ u(kcou), -psi (ibc)'];
el se

zb=[];
end



%ohi (1)
phi (ii+1)=phi (ii);psi(ii+l)=psi(ii);phi(iid)=1;psi(iid)=1
if na>0,
phi (1) =-yh2;
end
if nb>0
phi (namt1) =u( kcou) ;
end

i f nc>0, phi (namtnbmt+1) =0; psi (nam+tnbm+1) =0; end
yhat (kcou) =yh2
end

end
yhat = yhat"';

E.2 Processwithout the offset parameter

E.2.1 The Estimator

function [thm yhat, p, phi,psi] =
AME_noof f set (z, nn, adm adg, t h0O, pO, phi, psi)
% RARMAX Computes estimates recursively for an ARMAX nodel

% default values for the output signals

thme[]; %initialise the estimtes

yhat =[]; %initialize the predicted result
p=[1;

phi =[];

psi=[];

if nargin < 4
di sp(' Usage: MODEL_PARS = RARMAX( DATA, ORDERS, ADM ADG) ')

di sp(" [ MODEL_PARS, YHAT, COV, PHI, PSI] =

RARMAX( DATA, ORDERS, ADM ADG, THO, COVO, PHI, PSI) ")
di sp(' ADMis one of ""ff'*, ""kf'*, ""ng'', "'ug''.")
return

end

admel ower (adm(1: 2));
if ~(adm=='ff'|adnm=="kf'|adm="ng'|adnm=="ug')
error (' The argunent ADM should be one of "'ff'*, ""kf'', ""ng'', or
ugttl)
end

[nz, ns]=size(z);[ordnr,ordnc]=size(nn);
if ns>2,error('This routine is for single input only. Use RPEM
instead!'), end
if ns==1,
if ordnc~=2;error('For a tine series nn should be [na nc]!'), end
el se
if ordnc~=4, error('the argunent nn should be [na nb nc nk]!'), end,

end
if ns==1,
na=nn(1); nb=0; nc=nn(2); nk=1;
el se
na=nn(1); nb=nn(2); nc=nn(3); nk=nn(4); nu=1;
end

if nk<l,error('Sorry, this routine requires nk>0; Shift input sequence
if necessary!'),end
d=na+nb+nc;



if ns>2,error('Sorry, this routine is for single input only!"'), end
i f ns==1, nb=0; end

i f nb==0, nk=1; end

nan=max( [ na, nc] ) ; nbmemax ([ nb+nk-1, nc]);

ti c=na+nb+1: na+nb+nc;

i a=1:na;i ac=1: nc;

i b=namtnk: namrnb+nk- 1; i bc=nam+1: namtnc;

i cznamtnbmt+1: namtnbmtnc;

iia=l:nam1;iib=namtl: namrnbm 1;ii c=namtnbmt+1l: namtnbmtnc- 1
dnmrnamtnbmnc;

if nb==0,iib=[];end

ii=s[iiaiibiic]l;i=s[iaibic];

i f nargin<8, psi=zeros(dm1l);end

i f nargin<7, phi=zeros(dm1);end

i f nargin<6, p0=10000*eye(d);end

i f nargin<5, thO=eps*ones(d,1);end

if isenpty(psi), psi=zeros(dm1);end

if isenpty(phi), phi=zeros(dm1);end

if isenpty(p0), p0=10000*eye(d);end

if isenpty(thO0),thO=eps*ones(d,1);end

if length(thO)~=d, error(' The length of thO nust equal the nunber of
estimated paraneters!'), end

[thOnr, thOnc] =size(th0);if thOnr<thOnc, thO=th0';end

p=p0; t h=t hO; %initialise the p matrix

pl=p0; t h1=t hO;

p2=p0; t h2=t hO;

f=1

thnO(nz,:)=th"; % seperate different estinated paraneters
t hml=t hnO;

t hn2=t hno;

if adm(1)=="f', Rl=zeros(d,d); | amradg; end
if adm(1)=="k', [sR1l, SRl]=size(adg);
if sRl~=d | SRl1~=d,
error(' The RL matri x should be a square matrix with di mensi on
equal to number of paraneters!'),

end

Rl=adg; | anr1;
end
if adm(2)=="¢'

grad=1;
el se

gr ad=0;
end
aa=max(z(:, 2)) % find out the maxi mum val ue of input
bb=min(z(:, 2)) % find out the m ni mum val ue of input
yhat =[ ]; % set up the default condition for the output
for kcou=1:nz % start the | oop

i f((bb<=z(kcou, 2)) &(z(kcou, 2)<0.01))

%=1
yh=phi (i)' *th;
epsi =z(kcou, 1) -yh;
if ~grad,
K=p*psi (i)/(lam+ psi (i)' *p*psi(i));
p=(p-K*psi (i)' *p)/| am-R1;
el se
K=adg*psi (i);



end
if adm(1l)=="n', K=K/ (eps+psi (i)' *psi(i));end
t h=t h+K* epsi ;
i f nc>0,
c=fstab([1;th(tic)])";
el se
c=1,
end
th(tic)=c(2:nc+l1);
epsi |l on=z(kcou, 1) - phi (i)' *th;
i f nb>0,
zb=[ z(kcou, 2), -psi (ibc)'];
el se
zb=[1];
end
ztil=[[z(kcou, 1), psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi (ii+1)=phi (ii);psi(ii+l)=psi(ii);
i f na>0, phi (1)=-z(kcou, 1);psi(1)=-ztil (1);end

i f nb>0,
phi (namtl) =z(kcou, 2) ; psi (namtl) =ztil (2);
end
i f nb==0,
zc=ztil (2);
el se
zc=ztil (3);
end

i f nc>0, phi (namtnbmt+1) =epsi | on; psi (namrnbmt+1) =zc; end

thnO(kcou, : )=t h'; yhat (kcou) =yh;
end

if ((0.01l<=z(kcou, 2))&(z(kcou, 2)<0.1))
yh=phi (i)' *t hl,
epsi =z(kcou, 1) -yh;
if ~grad,
K=pl*psi (i)/(lam+ psi (i)' *pl*psi(i));
pl=(pl-K*psi (i)' *pl)/| am-R1;
el se
K=adg*psi (i);
end
if adm(1l)=="n', K=K/ (eps+psi (i)' *psi(i));end
t hl=t h1+K*epsi ;
i f nc>0,
c=fstab([1;th1l(tic)])";
el se
c=1,
end
thi(tic)=c(2: nc+l);
epsi |l on=z(kcou, 1) -phi (i)' *thl
i f nb>0,
zb=[ z(kcou, 2), -psi (ibc)'];
el se
zb=[];
end
ztil=[[z(kcou, 1), psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi (ii+1)=phi (ii);psi(ii+l)=psi(ii);
i f na>0, phi (1)=-z(kcou, 1);psi(1)=-ztil (1);end
i f nb>0,

phi (namtl) =z(kcou, 2) ; psi (namtl) =ztil (2);
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end

i f nb==0,
zc=ztil (2);
el se
zc=ztil (3);
end

i f nc>0, phi (namtnbmt+1) =epsi | on; psi (namrnbmt+1) =zc; end

thml(kcou, : )=t hl'; yhat (kcou) =yh;
end

i f((0.1<=z(kcou, 2))&(z(kcou, 2)<=aa))
9%=3
yh=phi (i)' *t h2;
epsi =z(kcou, 1) -yh;
if ~grad,
K=p2*psi (i)/(lam+ psi (i)' *p2*psi(i));
p2=(p2-K*psi (i)' *p2) /1 am-R1;
el se
K=adg*psi (i);
end
if adm(1l)=="n', K=K/ (eps+psi (i)' *psi(i));end
t h2=t h2+K* epsi ;
i f nc>0,
c=fstab([1;th2(tic)])";
el se
c=1,
end
th2(tic)=c(2: nc+l);
epsi |l on=z(kcou, 1) - phi (i)' *t h2;
i f nb>0,
zb=[ z(kcou, 2), -psi (ibc)'];
el se
zb=[];
end
ztil=[[z(kcou, 1), psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi (ii+1)=phi (ii);psi(ii+l)=psi(ii);
i f na>0, phi (1)=-z(kcou, 1);psi(1)=-ztil (1);end

i f nb>0,
phi (namtl) =z(kcou, 2) ; psi (namtl) =ztil (2);
end
i f nb==0,
zc=ztil (2);
el se
zc=ztil (3);
end

i f nc>0, phi (namtnbmt+1) =epsi | on; psi (namrnbmt+1) =zc; end

thn2(kcou, : )=t h2'; yhat (kcou) =yh;
end
end
yhat = yhat"';

% conbi ne these three groups of paraneters
thne[ t hnO, t hnil, t hnR] ;

E.2.2 The Predictor

function yhat= AMP_nooffset(u, nn,thn
% nr ar max2 generates the output node
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disp('Imin the predictor');

% define the size of input u, and the size of matrix nn
[ nz, ns] =si ze(u);[ordnr, ordnc] =si ze(nn);

na=nn(1); nb=nn(2); nc=nn(3); nk=nn(4); nu=1;

if nk<l,error('Sorry, this routine requires nk>0; Shift input sequence
i f necessary!'),end

% def i ne nunber of parameters from nn
d=na+nb+nc;

i f nb==0, nk=1; end

nan=max( [ na, nc] ) ; nbmemax ([ nb+nk-1, nc]);
ti c=na+nb+1: na+nb+nc;

i a=1:na;i ac=1: nc;

i b=namtnk: namrnb+nk- 1

i bc=namt+1: namtnc;

i c=namtnbm+1: nam+rnbmtnc;

iia=l:nam1;iib=namtl: namrnbm 1;ii c=namtnbmt+1l: namtnbmtnc- 1
dmenamtnbmtnc;

if nb==0,iib=[];end
ii=[iiaiibiicl;i=[iaibic];

psi =zeros(dm 1) ;
phi =zeros(dm 1) ;

aaa=phi (i)
t hO=eps*ones(d, 1);

[thOnr, thOnc] =size(th0);if thOnr<thOnc, thO=th0';end

% define the size of resulting estinmating
[tmtn]=size(thm;

% find out how many groups, and the closest integer
p=round(tn/d);

%find the the indices of thmthat point to nonzero el ements.
% I1f none is found, find returns an enpty matri x.
i ndO=fi nd(abs(thm(:, 1)) >eps);

g0=si ze(i nd0)

i nd1=fi nd(abs(thm(:, 1+d)) >eps);
i nd2=find(abs(thn(:, 1+2*d)) >eps);

% find the best nodel from each group by searching the three nmaxi num
i ndex (from1l

%to d, fromd+l to 2d, from 2d+1 to 3d)

t h=t hm( mex (i nd0), 1: d)

t hl=t hm(mex(i nd1), (1+d): 2*d)

t h2=t hn(mex (i nd2), (1+2*d): 3*d)"

aa=max(u) % find out the maxi mum val ue of input
bb=mi n(u) % find out the m nimum val ue of input
yhat =[ ]; % set up the default condition for the out put
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for kcou=1l:nz % start the | oop

i f((bb<=u(kcou)) &(u(kcou)<0.01))
yh=phi (i)' *th;
if nb>0
zb=[ u(kcou), -psi (ibc)'];
el se
zb=[1];
end

phi (ii+1)=phi (ii);psi(ii+1l)=psi(ii);
i f na>0, phi (1) =-yh; end
i f nb>0,
phi (namt1) =u( kcou) ;
end

i f nc>0, phi (namtnbmt+1) =0; psi (nam+tnbm+1) =0; end

yhat (kcou) =yh;
end

if ((0.01l<=u(kcou)) & u(kcou)<0.1))
%l=2
yh1l=phi (i)' *t h1l;
i f nb>0,
zb=[ u(kcou), -psi (ibc)'];
el se
zb=[1];
end

phi (ii+1)=phi (ii);psi(ii+1)=psi(ii);

if na>0
phi (1) =-yh1;
end
if nb>0
phi (namt1) =u( kcou) ;
end

i f nc>0, phi (namtnbmt+1) =0; psi (nam+tnbm+1) =0; end

yhat (kcou) =yh1,;
%hl

end

i f((0.1<=u(kcou)) & u(kcou)<=aa))
yh2=phi (i)' *t h2;

i f nb>0,
zb=[ u(kcou), -psi (ibc)'];
el se
zb=[1];
end
phi (ii+1)=phi (ii);psi(ii+l)=psi(ii);
i f na>0,
phi (1) =-yh2;
end
if nb>0
phi (namt1) =u( kcou) ;
end
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i f nc>0, phi (namtnbmt+1) =0; psi (nam+tnbm+1) =0; end

yhat (kcou) =yh2;
end
end
yhat = yhat"';
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Appendix F: Quality Measurement
based on Number of Samples

It is known that generally more samples produce better quality results during modeling
and simulation. However, thisis not always true. An example is shown, in which many
simulations are run using various numbers of samples. The same pulse waveform is
used each time as input to an open-loop amplifier. 9 models are generated by the
MMGS for prediction. Predicted signals are plotted in Figure F-1.
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Figure F-1: Predicted signals based on different samples

It is seen that these predicted signals can match the original signal with good accuracy.
However, by comparing the signal in 30,000 with the one in 40,000 samples, it is seen
that the former is more accurate. It indicates that more samples do not have to give rise

to better results.

As it is seen the output signa using 40,000 samples shows that it is struggling on
saturation regions, it indicates that samples in some of models may not be informative.
Although it has more stable models (8) than others, some of them may not be very
accurate because information such as the number of samples has to be balanced across
all models used.



Appendix G: Methodologies for
Quality Improvement of the MMGS in
MATLAB

In this section various methods are used in either the AME or AMP to improve their
quality and diagnose problems in this system. This work focuses mainly on the AME
because models are generated here. In addition, it has been discovered that the AME has
a higher tolerance of handling nonideal or wrong parameters than the predictor.

G.1 Suitable Values Check

In the AME a command isnan is used within an if statement in MATLAB to detect if
the estimator fails to converge shown in Eq. G-1. When not a number (NaN) is detected
the program is stopped. The specia status is indicated by a K appearing that indicates
the keyboard takes control. Where yh is the estimated output signal, keyboard indicates
the keyboard takes control.

ifisnan(yh)
keyboard Eqg. G-1
end

G.2 Sample Detection

A method for counting the number of samples in each model was developed in both the
AME and AMP, so that the author is able to observe if each individua model has
obtained sufficient information to behave correctly. A variable count is defined and

initialized in Eq. G-2, where modt indicates the total number of models.
count=zeros(1,modt) Eqg. G-2

A for loop is used to count how many samples present in each model shown in Eg. G-3,
where modn stands for the number of models, +1 indicates one more sample is checked.
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for modn =1: modt
count(modn) = count(modn) +1 Eqg. G-3
end

For instance, assume there is a five-model system with 20,000 samples, and that during

the simulation the number of samplesin each model is shown in Figure G-1:

count = 2508 2756 2694 9522 2520

Figure G-1: Number of samplesin each model

It is seen that all models have similar amount of samples except for the fourth one,
which indicates that it may exhibit high nonlinearity and require more samples to

converge properly.

G.3 Observation of Covariancep

In the estimator the diagonal element of covariance p is observed. It contains a large
diagona value (initialized from 10,000), so that the model may find it hard to gain
enough information. However, p isa d xd matrix, where d is the size of variables. In
order to achieve diagonal elementsit has to be reshaped. A command reshape is used to
shape the matrix into al:d xd row and save it in a temporary file (ptmp), as shown in
Eqg. G-4).

ptmp = reshape( p(20000,1: d * d),d, d) Eqg. G-4

Eqg. G-5 is designed to pick up only diagonas (pdiag), where eye(d) gives the d-by-d
identity matrix with 1's on the diagona and O's elsewhere; .* indicates array
multiplication, which only produces the element-by-element product of the arrays,
ones(d,1) showsvalues of 1 in the d-by-1 matrix.

pdiag = eye(d).* ptmp* ones(d,1) Eqg. G-5

After that atest based on these diagona elements is implemented. If they are very large
the model may be disregarded.
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G.4 Stability Detector

It is known that an unstable model may cause inaccuracies, so it is necessary to detect
such models and replace them with stable ones. The unstable model is caused because
there are not enough samples for the RLS estimator to tune. If this model is used it may
cause the predictor to numerically explore very quickly. Therefore, it is necessary to
ignore this model and use its neighbouring one. In z transform the way to know if a
model is stable is to check the roots of its polynomial (within a unit circle), in the delta

transform or Laplace transform the roots of its polynomial (left half plane) is observed.

In the MMGS we developed a stability detector, which consists of two parts: the first
part detects these unstable models iteratively; the second one replaces the unstable one
with the nearest one. It is noticed during detection if the first model is unstable, the last
model from the first scan is used to replace it, but it is not the neighbour of the first
model. Thus, during model detection the detector starts from detecting the last model to
the first one. The second iteration remains increasing order. With this method a stable

model will be available to replace the first unstable model.

During first iteration the roots of the model are found using the MATLAB roots
command. If a model is unstable, it will be stored in a temporary file temp, otherwise
the stable model is stored. Thisisimplemented in MATLAB with an if-else statement as
shown in Figure G-2, where h is an array to handle variables for outputs; na is the

number of the output variables; abs is used to find absolute values for all the roots.

h=[1 thm(j,1:nd)];
Noofroot=roots(h);
abvalue=abs(Noofroot);

if any(abvalue>1)
temp=[temp j];

else
thst=thm(j,:);
pst=p(,:);

end

Figure G-2: 1% iteration for unstable model detection
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The function any is used to find out if al values are greater than unit, thst and pst are

variables used to store the coefficients and covariance of the stable model, respectively.

The second iteration ensures there is always a stable model. Figure G-3 shows that if the

model is unstable the previous stable one from the first iteration is used.

if any(abvalue>1)
thm(j,:) = thst;
Pp(,) = pst;
else
thst = thm(j,:);
pst = p(j,:);
end

Figure G-3: 2" iteration for unstable models replacement
With this method, quality of predicted signal is significantly improved.

G.5 The Saturation Detector

It is known that the estimator only works well with the right excitation and input
information; if there is a long period of saturation part from the input signa the
estimator may not be trained well. Therefore, a saturation detector was designed in

order to find constant outputs and remove them.

Initialy the first sample in the output library is compared with its neighbouring one (the
second one), if they are same its neighbour’s index is stored in a library. Then the
second sample is compared with the third one, and so on until all samples are processed.
These indices stored are then deleted. One sample in the saturation part is alowed so
that the estimator can still estimate the model under the saturation conditions.
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Appendix H: Codes for the MMGS
and MMGSD

H.1 TheMMGS
H.1.1 TheAME

function

[thm yhat, epsi |l on, epsi | onhat, epsi | onTest, t hreshol d, t hreshol d1, t hr eshol d2, pm ph
i,psi] = ane(z, nn,adm adg, t h0, p0, phi, psi)

% Model sel ector based on RARMARX

disp('you are in the estimator');

% def ault val ues for the output signals

thme[]; %initialise the estinates
yhat =[]; %initialize the predicted result
epsilon=[];

epsil onhat =[] ;
epsilonTest =[];
threshol d=[];

t hreshol d1=[];
t hreshol d2=[];
p=[1;

phi =[];

psi =[];

% adm and adg are part of forgetting factor, admis adaptation nechani sm
% and adg i s adaptation gain
if nargin < 4
di sp(' Usage: MODEL_PARS = RARMAX( DATA, ORDERS, ADM ADG) ')
di sp(' [ MODEL_PARS, YHAT, COV, PHI , PSI] =
RARMAX( DATA, ORDERS, ADM ADG, THO, COVO, PHI, PSI) ")
disp('ADMis one of ""ff'"', "'kf'', "‘ng'', "‘ug'"'.")
return
end
adn¥l ower (adn( 1: 2));
if ~(adme="ff'|adn=="kf'|adm=="ng'|adm=="ug")
error (' The argument ADM shoul d be one of '"'ff'', ""kf'', ""ng'', or
"tug't.")
end

% new i nput and out put data are anal ysed
[nz, ns] =size(z); % define the new output data w thout saturation

[ ordnr, ordnc] =si ze(nn); % define the size of matrix for all paraneters

if ns~=3,error('This routine is for double inputs only. Use RPEM
instead!"'), end
if ns==1,
if ordnc~=2;error('For a tinme series nn should be [na nc]!"'), end
el se
% f ordnc~=4, error('the argunent nn should be [na nb nc nk]!'), end,
if ordnc~=5, error('the argunent nn should be [na nb nc nk ne]!'), end,

end
if ns==1,
na=nn( 1) ; nb=0; nc=nn(2); nk=1; ne=0
el se
na=nn(1); nb=nn(2); nc=nn(3); nk=nn(4); nu=1; ne=nn(5);
end

if nk<l,error('Sorry, this routine requires nk>0; Shift input sequence if
necessary!'), end
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d=na+nb+nc+1+ne; % define a paraneter for the offset

i f ns==1, nb=0; ne=0; end
i f nb==0| ne==0, nk=1; end

nanmFmax( [ na, nc]) ; nbmemax( [ nb+nk-1, nc]);
ndnemax([ 1, nc]); % extra data for offset

nenkEmax([ ne+nk-1, nc]);

ti c=na+nb+1: na+nb+nc;

% i c=na+nb+ne+1: na+nb+ne+nc;

i a=1: na;i ac=1: nc;

i b=namtnk: nam+nb+nk- 1; i bc=nam+1: nam+nc;

i c=namrnbm+1: nam+nbmtnc;

i d=nam+rnbm+nc+1;

i dc=namtnbmtnc+1: namtnbm+nc+ndm % set indices for the offset

i e=namrnbm+nc+ndm+nk: nam+nbm+tnc+ndmtne+nk- 1; % define for the second inputs
i ec=namtnbmtnc+ndm+1: nam-nbm+-nc+ndm+nc;

iia=l:nam1;iib=nam+-1l: namrnbm 1;ii c=namrnbm+1: nam+-nbmtnc- 1;
i i d=namtnbmtnc+1: namtnbmtnc+ndm 1; % set indices for the offset
% i d=namrnbm+nc+1; % set indices for the offset

i i e=namtnbmtnc+ndm+1: namrnbmtnc+ndmnem 1; % for the second input

dnEnamtnbmtnc+ndmtnem
% f nb==0,iib=[];end
ii=[iiaiibiiciidiie]
i=[iaibicidie]

i f nargin<8, psi=zeros(dm1);end

i f nargi n<7, phi=zeros(dm1);end

i f nargi n<6, p0=10000*eye(d);end

i f nargi n<5, thO=eps*ones(d,1);end

if isenpty(psi), psi=zeros(dm1);end

if isenpty(phi), phi=zeros(dm1);end

if isenpty(p0), p0=10000*eye(d); end

if isenpty(thO),thO=eps*ones(d,1);end

if length(thO)~=d, error(' The length of thO nust equal the nunber of estinated
parameters!'), end

[thOnr,thOnc] =si ze(th0);if thOnr<thOnc, thO=th0';end

if adm(1)=="f', Rl=zeros(d,d);|amradg; end
if adm(1l)=="k', [sRl, SR1]=size(adg);

if sRl~=d | SRl~=d,

error(' The RL matrix should be a square matrix with di mension equal to

nunber of paranmeters!'),

end

Rl=adg; | am1;
end
if adm(2)=="¢g",

grad=1;
el se

gr ad=0;
end

%only the last 5000 sanples are interested
testinterval =[ (nz-10000): nz];

u=z(:,2); % define the input data for estimator (whole data)
u2=z(:,3); % define the input data for estimtor (whole data)
Qu=[ ul u2?];

Yut est 1=z(testinterval, 2); % define the input data for the test

Yt est 2=z(testinterval, 3); % define the input data for the test
utest=z(testinterval, 2); % define the input data for the test
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aa=max(mx(u)); % find out the maxi num value of all inputs
bb=mi n(m n(u)); % find out the m nimumvalue of all inputs

t hr eshol d=[ bb, aa] ; % initialise threshold

%li sp(' the nunber of division for the input has to be integer');
di vi si ondi nput =5;

i f(division4input==0)
error('the nunber of division for the input can not be zero');
end

i f(rem(divisiondinput, 2)==0)
error('the nunber of divisions for the input has to be even');
end

m ddl el ndex=(di vi si on4i nput +1)/ 2; % define the nmiddle of index for u=0;

i nRange=(aa- bb)/ di vi si ondi nput ; % define the number of ranges for input,
% t he division nunber has to be even

i nt erval =bb: i nRange: aa; % define the interval of input

Lenl nterval =l ength(interval); % define the |l ength of interval

for j=1:(Lenlnterval-1) % define a range

indlnterval {j}=find((utest<interval (j+1))& utest>=interval (j)));
% find out the index by using accel erator

end

i ndl nterval ;

| engt hThr esh( 1) =0; %initialise the size of first threshold
| engt hThresh(2)=l ength(threshold); %initialise the size of threshold

% runni ng the estimator

yhat =[]; % set up the default condition for the output
while (lengthThresh(1)~=lengthThresh(2))
nodt =l engt hThresh(2) - 1; % define the total No. of nodels, which is
noof t hr eshod- 1
f or nmobdn=1: nodt % define the No. of nbdels, which is noofthreshod-1
t hm( nodn, 1: d) =t h0' ; %initialize thm
pm( nodn, 1: d*d) =p0(:)"; %initialize pm-covariance
end

% di sp(' di splay the nunber of nodels');

% deci de which range of u is used, result in the value of j,j decide which
nodel .

| ow=t hr eshol d( 1: nodt) ;

si zeof | ower =si ze(l ow) ;

hi gh=t hr eshol d( 2: nodt +1) ;
si zeof hi gher =si ze( hi gh);

% hr eshol d=sort (t hreshol d)

count =zeros(1, nodt); % initialization

% ndext hreshol d=[];

psi (i d)=1;

for kcou=1l:nz % start the |oop for estimator

% define the threshold index,i.e., where the threshold is
i ndext hr eshol d=fi nd( (u(kcou) >=l ow) & u( kcou) <=hi gh));

modn=m n(i ndext hreshol d); % nake sure there is only one index
count ( nodn) =count ( nodn) +1;

t h=t hn(modn, 1: d) " ; % redefine the paraneters
eeee=d*d;,



ffff=d;
p=r eshape( pm nodn, 1: d*d) ', d, d); % redefine the covari ance
nmodn;
Y%pause
phi (i d)=1,;
%psi (id)=1,;
yh=phi (i)' *th;
gggg=phi (i)";
epsi =z(kcou, 1) - yh; % define the innovation error
if ~grad,
K=p*psi (i)/(lam + psi (i)' *p*psi(i));
p=(p-K*psi (i)’ *p)/lamR1;
el se
K=adg*psi (i);
End

% paranmeters for unpdating th
if adm(1)=='n', K=K/ (eps+psi (i)' *psi(i));end
t h=t h+K*epsi ; % updat e the innovation error

if nc>0,
% stabilizes a MONIC polynom al with respect to the unit circle
c=fstab([1;th(tic)])";
si zeof c=si ze(c);
el se
c=1;
end
th(tic)=c(2:nc+l);

epsi l on=z(kcou, 1) -phi (i)' *th; % define the residual error
i f nb>0,
zb=[ z(kcou, 2), -psi (ibc)'];
el se
zb=[];
end

if ne>0,

ze=[ z(kcou, 3),-psi(iec)'];
el se

ze=[];
end

ztil=[[z(kcou,1),psi(iac)'];zb;[epsilon,-psi(ic)'];[1,-
psi(idc)'];ze]*c;

% shifting procedure

phi (ii+1)=phi(ii);

psi (ii+1)=psi(ii);

% updat e paraneters for output

i f na>0, phi (1) =-z(kcou, 1); psi(1)=-ztil(1);end

% updat e paranmeters for input
if nb>0
phi (nam+1) =z(kcou, 2) ; psi (namtl) =ztil (2);

end
i f nb==0,
zc=ztil (2)
el se
zc=ztil (3)
end

% updat e noi se paraneters
if nc>0
phi (namtnbmt+1) =epsi | on;
psi (namtnbmt+1) =zc¢
end
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% update information for the offset

i f nb==0,
zd=ztil (3);
el se
zd=ztil (4);
end

phi (namtnbmtnc+1) =1;
psi (namtnbmtnc+1) =zd;

% update information for the second input
if ne>0
i f nb==0,
phi (namtnbmtnc+ndm+1) =z( kcou, 3);
psi (namtnbmtnc+ndm+1) =zt il (4);
el se
phi (namtnbmtnc+ndm+1) =z( kcou, 3);
psi (namtnbmtnc+ndm+1) =ztil (5);
end
end

% store and undate these data
thm(nodn, 1: d)=th';

pm( nodn, 1: d*d)=p(:)";

nodn;

yhat (kcou) =yh;

i f isnan(yh)
keyboard
end
epsi | onhat (kcou) =epsi | on;
end % end of for |oop

epsil onTest =epsi | onhat (testinterval); %informthe range of data we choose

% define the mninumvalue in each interval
m ni Si zel nt 1(m ddl el ndex) =m n(epsi |l onTest (i ndl nterval {n ddl el ndex}));

% define the maxi mum val ue in each interval
maxSi zel nt 1( m ddl el ndex) =max( epsi | onTest (i ndl nt erval {m ddl el ndex}));

% define the medi am range of each interval
nmedi amRangel( m ddl el ndex) =(maxSi zel nt 1( m ddl el ndex) -
m ni Si zel nt 1( m ddl el ndex))/ 2;

% post-estimation: after the estimator, error range can be defined.
for j=1:(Lenlnterval-1) % define a range
% define the mnimumvalue in each interval
m ni Si zel nt{j }=m n(epsilonTest(indInterval {j}));

% define the maxi mum val ue in each interval
nmaxSi zel nt {j } =nax(epsi |l onTest (i ndl nterval {j}));

% define the medi amrange of each interval
nmedi anRange{j }=(maxSi zel nt{j}-mni Si zelnt{j})/ 2;

% define the critical range of each interval
critical Range{j}=(maxSi zelnt{j}+mni Sizelnt{j})/?2;

%t he procedure for adding a new threshold
i f (abs(medi amRange{j }- medi amRangel(m ddl el ndex)) >critical Range{j})

% define the criteria of range
%if the index is greater than m ddl e, we use the smaller index

i f(j >ni ddl el ndex)

% add one threshold on | ower index
threshol d=[threshol d,interval (j)];
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bbb=1;
el se
%if the index is less than m ddl e, we use the | arger index
% add one threshold on higher index
threshol d=[threshol d,interval (j +1)];
end
el se
% show there is change if size of threshold remains sane
t hr eshol d=t hr eshol d;
end
end

% sort thresholdtest in the ascending order, and increase
t hreshol dl=sort (threshol d);
t hreshol d1=[t hreshol d1 0] ; % increase the length by 1

| engt hThr eshl=l engt h(t hreshol d1); % define the Il ength of threshold

% renmove the same threshol ds
aaaa=t hreshol d1(1: (| engt hThreshl-1));
bbbb=t hr eshol d1(2: | engt hThreshl);

% conpari ng nunmbers between 1st to the one b4 and 2nd to | ast

t np=bbbb- aaaa;

% define the i ndex when difference of two nunbers are not equal

i ndex=fi nd(t nmp~=0);

t hreshol d2=t hr eshol d1(i ndex); % find sorted thresholds which are not equal

| engt hThresh(1) =l engt hThresh(2); %ol d I ength of threshold increase
ab=l engt hThresh(1);

% new | ength of threshold goes to second
I engt hThr esh(2) =l engt h(t hr eshol d2);

cd=l engt hThresh(2);

t hr eshol d=t hr eshol d2;

end % end of while |oop
count

% di splay the result for these paraneters

t hmet hm

p=pm

yhat = yhat';

epsi | onTest =epsi | onTest ' ;
epsi EsSi ze=si ze(epsi |l onTest) ;

t hr eshol d2=t hr eshol d'
si zet hr eshol d=si ze(t hr eshol d2)

H.1.2 TheAMP

function [yhat] = anp(u, nn,thmthreshol d)
% Model predictor based on RARMARX
disp('you are in the predictor');

ul=u(:, 1);
u2=u(:, 2);

% def ault val ues for the output signals
yhat =[]; %initialize the predicted result

%only input data is interested

[nz, ns] =size(u);

[ordnr, ordnc] =si ze(nn);
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% define names for the paraneters in the natrix
na=nn(1); nb=nn(2); nc=nn(3); nk=nn(4); nu=1; ne=nn(5);

d=na+nb+nc+1+ne; % define a paranmeter for the offset

if ns>3,error('Sorry, this routine is double single input only!'),end

i f ns==1, nb=0; ne=0; end
i f nb==0| ne==0, nk=1; end

nanFmax( [ na, nc]) ; nbmemax( [ nb+nk+ne- 1, nc]);
ndnemax([ 1, nc]); % extra data for offset
nenkEmax([ ne+nk-1, nc]);

ti c=na+nb+ne+1: na+nb+ne+nc;

i a=1: na; i ac=1: nc;

i b=namtnk: namtnb+nk- 1; i bc=namt1: nam+nc;
i c=namrnbm+1: nam+nbmtnc;

i d=namtnbmtnc+1;

i dc=namtnbmtnc+1: namrnbm+nc+ndm % set indices for the offset

i e=namrnbm+nc+ndm+nk: namtnbm+tnc+ndmtne+nk- 1; % define for the second inputs

i ec=namtnbmtnc+ndm+1: nam-nbm+-nc+ndm+nc;

iia=1l:nam1;iib=naml: namtnbm 1;i i c=namrnbm+1: namrnbmtnc- 1;
i i d=namtnbmtnc+1: namrnbmtnc+ndm 1; % set indices for the offset

i i e=namrnbmtnc+ndm+1: namtnbm+nc+ndmtnem 1; % for the second input

dnEnamtnbmtnc+ndmtnem
% f nb==0,iib=[];end

ii=[iiaiibiiciidiie]l;i=[iaibicidie];

psi =zeros(dm 1) ;
phi =zeros(dm 1) ;

[ modt, col umofth] =si ze(thn);
i f d~=col umofth
error('these two nmust be the sane')

end

| ow=t hr eshol d( 1: nodt)
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si zeof | ower =si ze(l ow) ;

hi gh=t hr eshol d( 2: nodt +1)
si zeof hi gher =si ze( hi gh);

% hr eshol d=sort (t hreshol d)
count =zeros(1, nodt);

for kcou=1l:nz

% define the threshold index,i.e.,

%initialization

% start the |oop for estinmator
where the threshold is

i ndext hr eshol d=fi nd( (u(kcou) >=l ow) & u( kcou) <=hi gh));

i f ~i senpty(indexthreshol d)
modn=m n(i ndext hreshol d);

count ( modn) =count ( modn) +1;
%cou

% hm

th=t hm(modn, 1: d) " ;

phi (i d)=1;

yh=phi (i)' *th;
if nc>0,

sizeoftic=length(tic);
si zeof t h=l engt h(th);

% stabilizes a MONI C pol ynom a

c=fstab([1;th(tic)])";

th(tic)=c(2:nc+1);

epsi | on=yh-phi (i)' *th;

phi (ii+1)=phi(ii);

i f na>0, phi (1) =-yh; end

% updat e paraneters for the first

if nb>0
phi (nam+1) =ul( kcou);
end

% nake sure there is only one index

% find nunber of sanples on each nodel

% redefine the paraneters

with respect to the unit circle

% define the residual error

i nput

i f nc>0, phi (namtnbmt+1) =epsi | on; end



phi (namtnbmtnc+1) =1;

% update information for the second input
if ne>0
i f nb==0,
phi (namtnbmtnc+ndmt+1) =u2( kcou) ;
el se
phi (namtnbmtnc+ndnmt+1) =u2( kcou) ;
end

end

% store and undate these data
thm(nodn, 1: d)=th';
yhat (kcou) =yh;

i f isnan(yh)
keyboard
end
el se
fprintf('u(%) =%, kcou, u(kcou));
error('no nodel available!');
end
end % end of for |oop
yhat = yhat';

H.2 The MMGSD
H.21 TheAME

function
[thm yhat, epsi |l on, epsi | onhat, epsi | onTest, t hreshol d, t hreshol d1, t hr eshol d2, pm ph
i,psi] = ane(z, nn,adm adg, Ts, t hO, pO, phi, psi)

%In this estimator we are going to undeltarise epsilon and epsie
% Model sel ector based on RARMARX
disp('you are in the estimator');

% def ault val ues for the output signals

thme[]; %initialise the estinates

yhat =[]; %initialize the predicted result
dyh=[];

epsilon=[];

epsi l onhat =[] ;
epsil onTest =[];
t hreshol d=[];
t hreshol d1=[];
t hreshol d2=[];
p=[1];

prE[];

phi=[];

psi =[];

dz=[];

dphi =[];

dphi 4y=[];
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dpsi =[] ;

depsilon=[];
depsi =[];
yh=[1];

% adm and adg are part of forgetting factor, admis adaptation nechani sm
% and adg i s adaptation gain
if nargin < 4
di sp(' Usage: MODEL_PARS = RARMAX( DATA, ORDERS, ADM ADG) ')
di sp(' [ MODEL_PARS, YHAT, COV, PHI, PSI] =
RARVAX( DATA, ORDERS, ADM ADG, THO, COVO, PHI, PSI) ")
disp('*ADMis one of ""ff"", "'kf'', "‘ng'', "‘ug'"'.")
return
end
adn¥l ower (adn( 1: 2));
if ~(adne="ff'|adm="kf'|adn¥='ng'|adnm=="ug')
error (' The argument ADM shoul d be one of '"ff'', ""kf'", ""ng'', or
Cugt)
end

% new i nput and out put data are anal ysed
[nz, ns] =size(z); % define the new output data w thout saturation

[ordnr, ordnc] =si ze(nn); % define the size of matrix for all paraneters

if ns~=3,error('This routine is for double inputs only. Use RPEM
instead!"'), end
if ns==1,
if ordnc~=2;error('For a time series nn should be [na nc]!"), end
el se
% f ordnc~=4, error('the argument nn should be [na nb nc nk]!'), end
if ordnc~=5, error('the argunent nn should be [na nb nc nk ne]!'), end

end
if ns==1,
na=nn( 1) ; nb=0; nc=nn( 2) ; nk=1; ne=0;
el se
na=nn(1); nb=nn(2); nc=nn(3); nk=nn(4); nu=1; ne=nn(5);
end

if nk<l,error('Sorry, this routine requires nk>0; Shift input sequence if
necessary!'), end
d=na+nb+nc+1+ne; % define a paraneter for the offset

i f ns==1, nb=0; ne=0; end
i f nb==0| ne==0, nk=1; end

if nc>1

ti c=na+nb+1: na+nb+nc
el se

tic=[];
end

% create the array for i
iiia=1:na;
i iib=na+nk: na+nb+nk-1
if nc>1

iiic=na+nb+1: na+nb+nc;
el se

iiic=[];
end

i iid=na+nb+nc+1;
iiie=na+nb+nc+1l+nk: na+nb+nc+1+ne+nk-1; % define for the second inputs

% create the array for i
iia=1l:na-1,
i i b=na+1: na+nb- 1,

if nc>1
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i i c=na+nb+1: na+nb+nc- 1;

el se
iic=[];
end
i i d=na+nb+nc+1; % set indices for the offset
i i e=na+nb+nc+1+1: na+nb+nc+1l+ne-1; % for the second input

ii=[iiaiibiiciidiie];
i=[iitaiiibiiiciiidiiie];
sizeofiii=size(i);

dnmena+nb+nc+1+ne;

i f nargi n<9, psi=zeros(dm1);end

i f nargi n<8, phi=zeros(dm1);end

i f nargi n<7, p0=10000*eye(d); end

i f nargi n<6, thO=eps*ones(d,1);end
if isenpty(psi), psi=zeros(dm1);end
if isenpty(phi), phi=zeros(dm1);end
if isenpty(p0), p0=10000*eye(d); end

%initialise dpsi
dpsi =zeros(dm nc+1);

%initialise dpsit
dpsi t=zeros(dm1);

if isenpty(thO),thO=eps*ones(d,1);end

if length(thO)~=d, error(' The length of thO nust equal the nunber of estimated
paraneters!'), end

[thOnr, t hOnc] =si ze(thO);if thOnr<thOnc, thO=th0';end

if adm(1)=="f', Rl=zeros(d,d);|amradg; end
if adm(1)=="k', [sRl, SR1]=size(adg);

if sRl~=d | SRl~=d,

error(' The RL matrix should be a square matrix with di nmension equal to

nunber of paranmeters!'),

end

Rl=adg; | am1;
end
if adm(2)=="¢",

grad=1,;
el se

gr ad=0;
end

%only the last 5000 sanples are interested
testinterval =[ (nz-8000): nz];

u=z(:,2); % define the input data for estimator (whole
dat a)

u2=z(:,3); % define the input data for estimator (whole
dat a)

Yut est=z(testinterval, 2); % define the input data for the test
aa=max(max(u)); % find out the maxi mum value of all inputs
bb=mi n(m n(u)); % find out the m ninum value of all inputs

t hr eshol d=[ bb, aa] ; %initialise threshold

[ modt , nodt col um] =si ze(t hr eshol d) ;
di vi si on4i nput =5;

i f(division4input==0)
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error('the nunber of division for the input can not be zero');
end

i f (rem(divisiondinput, 2)==0)
error('the nunber of divisions for the input has to be even');
end

m ddl el ndex=(di vi si on4i nput +1)/ 2; % define the niddle of index for u=0;

i nRange=(aa- bb)/ di vi si on4i nput % defi ne the nunber of ranges for input,
% the division nunber has to be even

i nterval =bb: i nRange: aa % define the interval of input

Lenl nterval =l engt h(i nterval) % define the I ength of interval

for k=1:(Lenlnterval-1) % define a range

% find out the index by using accel erator

i ndl nterval {k}=find((u<interval (k+1)) & u>=interval (k)));
end
si zeof i ndl nt erval =si ze(i ndl nterval)

| engt hThr esh( 1) =0; %initialise the size of first threshold
| engt hThresh(2)=l ength(threshold); %initialise the size of threshold

% runni ng the estimator

yhat =[]; % set up the default condition for the
out put
while (lengthThresh(1)~=lengthThresh(2))
nodt =l engt hThresh(2) - 1; % define the total No. of nodels, which is
noof t hr eshod- 1
for nmodno=1: nodt % define the No. of nodels, which is
noof t hr eshod- 1
t hm(nodno, 1: d) =t h0' ; %initialize thm
pm( nodno, 1: d*d) =p0(:)"; %initialize pm-covariance
end

% di sp(' di splay the nunber of nodels');

% deci de which range of u is used, result in the value of j,j decide which
nodel .

| ow=t hr eshol d( 1: nodt) ;

si zeof | ower =si ze(l ow) ;

hi gh=t hr eshol d( 2: nodt +1) ;
si zeof hi gher =si ze(hi gh);

% hr eshol d=sort (t hreshol d)
count =zeros( 1, nodt); %initialization
% ndext hreshol d=[];

t h=t hO;

psi (iiid)=1;

for kcou=1l:nz % start the |oop for estinmator
% cou
% define the threshold index,i.e., where the threshold is
i ndext hr eshol d=fi nd( (u(kcou) >=l ow) & u( kcou) <=hi gh));

nmodn=m n(i ndext hreshol d); % nmake sure there is only one index
count ( modn) =count ( modn) +1;

% Preventing the junp while the nodels are switching
i f count (nmodn)~=1

t h=t hn(modn, 1: d) " ; % redefine the paraneters
end
p=r eshape( pm nodn, 1: d*d) ', d, d); % reshape the covari ance
% increase the size for the offset
phi (iiid)=1;
psi (iiid)=1,
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% the operation for the delta operator
phi 4y=phi (iiia);

dphi 4y = del tady([z(kcou, 1) phidy']',Ts);
si zeof phi 4y=Il engt h( dphi 4y);

dz(kcou, 1) =dphi 4y(1);
dphi y=dphi 4y( 2: si zeof phi 4y) ;

phi 4u=phi (iiib);
dphi 4u = del t ady(phi 4u', Ts);
si zeof phi 4u=l engt h( dphi 4u);

%phi (iiic)=0;
dphi 4c = del tady(phi(iiic)',Ts);
si zeof phiic=si ze(phi(iiic)');

dphi 4d = deltady(phi(iiid)', Ts);
si zeof phii d=si ze(phi (iiid)");

phi 4e=phi (iiie);
dphi 4e = del t ady(phi 4e', Ts);
si zeof phi 4e=l engt h( dphi 4e) ;

% Make sure the delay is always 1
dphi = [-dphiy dphi 4u dphi 4c dphi 4d dphi 4e]"’

dyh=dphi (i)' *th
depsi =dz(kcou, 1) - dyh; % define the innovation error

epsi =undel ta([ depsi dphi(iiic)'],Ts,0);
%lepsi 1=undel t a( [ depsi dphi 4c], Ts, 1)

if nc>0,
% stabilizes a MONIC polynonmial with respect to the unit circle
c=[1;th(tic)];
si zeof c=si ze(c);
%li sp('imhere!');
th(tic)=c(2:nc+l);

dpsit=[dphi -dpsi(1:dm 2:nc+l)]*c
dpsi (1:dm 1) =dpsi t;
%lpsi (1: dm 1) =[ dphi -dpsi(1:dm 2: nc+1)]*c
si zeof dpsi dml=si ze(dpsi (1:dm 1));
psi =undel t a(dpsi, Ts, 0);
dpsi =[ zeros(dm 1) undel ta(dpsi, Ts,1)];
Y%pause
el se
c=1;
dpsi t =dphi *¢
dpsi =dpsi t;
psi =dpsi ;
dpsi =zeros(dm 1) ;
end

if ~grad,
K=p*dpsit(i)/(lam+ dpsit(i)' *p*dpsit(i));
si zeof K=si ze(K);
p=(p-K*dpsit(i)' *p)/| am-R1;
el se
K=adg*dpsit(i);
end
% paraneters for unpdating th
if adm(1l)=="n', K=K/ (eps+dpsit(i)' *dpsit(i));end

t h=t h+K*depsi ; % updat e the innovation error
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% define the residual error
depsi | on=dz(kcou, 1) -dphi (i)"' *th;

%epsi | on=undel t a([depsilon dphi(iiic)'],Ts,O0)
epsi l on=undel ta([depsilon dphi(iiic)'],Ts,0);

% undel tari se the out put
yh=undel ta([dyh -dphi(iiia)'], Ts, 0);
%h=undel ta([dyh dphiy], Ts, 0);

% shifting procedure for phi
phi (ii+1)=phi(ii);

%psi (ii+1)=psi(ii);

phi (iid)=1;

phi (1) =z(kcou, 1);

phi (na+1) =u(kcou) ;

phi (na+nb+1) =epsi | on;

phi (natnb+nc+1) =1;

phi (na+nb+nc+1+1) =u2(kcou);

% store and undate these data
t hm(nodn, 1: d)=th";
pr(modn, 1: d*d) =p(:)";

yhat (kcou) =yh;

i f isnan(yh)
keyboard
end

%epsi | onhat ( kcou) =depsi ;

epsi | onhat (kcou) =depsi | on;

i f isnan(depsilon)
keyboard

end

end % end of for |oop

%epsi | onTest =epsi |l onhat (testinterval ); % informthe range of data we choose
epsi | onTest =epsi | onhat ; % informthe range of data we choose

% post-estimation: after the estimator, error range can be defined.
for j=1:(Lenlnterval-1) % define a range
% define the mnimumvalue in each interval
m ni Si zel nt (j)=m n(epsilonTest(indlnterval {j}));

% define the maxi mum val ue in each interval
nmaxSi zel nt (j ) =nax(epsil onTest (i ndl nterval {j}));

% define the nedi amrange of each interval
nmedi anRange(j ) =(maxSi zelnt (j)-mni Sizelnt(j))/2;

% define the critical range of each interval
critical Range(j)=(maxSi zelnt(j)+mni Sizelnt(j))/2;
end
ol dmi ddl el ndex=mi ddl| el ndex

% Det ect the index for the m ni nrumrange
m ddl el ndex=mi n(find(n n(medi amRange) ==nedi anmRange) )

% or n=(Lenlnterval-1):-1:1
for nel:(Lenlnterval-1)
%t he procedure for adding a new threshold
i f (abs(nmedi anrRange(m - medi anRange( m ddl el ndex))>critical Range(m)

% define the criteria of range
%if the index is greater than m ddl e, we use the smaller index
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i f (nPm ddl el ndex)
i ndt est 1=fi nd(i nterval (m ==t hr eshol d)
if (isenmpty(indtestl))
% add one threshold on | ower index
threshol d=[t hreshol d, i nterval (n)]
br eak
end
el se %if the index is less than m ddl e, we use the | arger index
i ndt est 2=fi nd(i nterval (mtl) ==t hreshol d)
if (isempty(indtest?2))
% add one threshold on higher index
t hreshol d=[t hreshol d, i nterval (m+1)]
br eak
end
end
el se
% show there is change if size of threshold remains sane
t hr eshol d=t hr eshol d;
end

end

t hreshol dl=sort (t hreshol d); % sort thresholdtest in the ascending

order, and increase

2nd

t hreshol d1=[t hreshol d1 0] ; % increase the length by 1
| engt hThreshl=l engt h(t hreshol d1); % define the length of threshold
% renove the sanme threshol ds

aaaa=t hreshol d1( 1: (| engt hThresh1-1));
bbbb=t hr eshol d1(2: 1 engt hThreshl);

t np=bbbb- aaaa; % conpari ng nunmbers between 1st to the one b4 and
to | ast

i ndex=fi nd(t nmp~=0); % define the index when difference of two nunbers
not equa

t hr eshol d2=t hr eshol d1(i ndex) ; % find sorted threshol ds which are not

equal

| engt hThresh(1) =l engt hThresh(2); %old I ength of threshold increase
ab=l engt hThresh(1)
| engt hThresh(2) =l engt h(t hreshol d2); % new | ength of threshold goes to

second

end

cd=l engt hThr esh( 2)
t hr eshol d=t hr eshol d2

count

% di

splay the result for these paraneters

t hmet hm
prmFpm

yhat
epsi
epsi

= yhat';
| onTest =epsi | onTest "' ;
EsSi ze=si ze(epsi |l onTest) ;

t hr eshol d2=t hr eshol d'
si zet hr eshol d=si ze(t hr eshol d2)

H.2.

2 TheAMG

function [yhat] = anp(u, nn,thmthreshol d, Ts)

%In this estimator we are going to undeltarise epsilon and epsie
% Mobdel sel ector based on RARMARX
disp('you are in the predictor.");

yhat

=[1:
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% def ault values for the output signals

ul=u(:, 1);
si zeof ul=si ze(ul);
u2=u(:, 2);

si zeof u2=si ze(u2);

% new i nput and out put data are anal ysed
[nz, ns]=size(u); % define the new output data w thout saturation
% or dnr, ordnc] =si ze(nn); % define the size of matrix for all paraneters

if ns>=3,error('This routine is for double inputs only.'),end
na=nn(1); nb=nn(2); nc=nn(3); nk=nn(4); nu=1; ne=nn(5);

if nk<l,error('Sorry, this routine requires nk>0; Shift input sequence if
necessary!'), end
d=na+nb+nc+1+ne; % define a paraneter for the offset

i f ns==1, nb=0; ne=0; end
i f nb==0| ne==0, nk=1; end

ti c=na+nb+1: na+nb+nc;

% create the array for i

iiia=1:na;

iiib=na+nk: na+nb+nk- 1;

iiic=na+nb+1: na+nb+nc;

iiid=na+nb+nc+1;

i i i e=na+nb+nc+1+nk: na+nb+nc+1l+ne+nk- 1; % define for the second inputs

%create the array for ii
iia=1:na-1;

i i b=na+1: na+nb-1;

i i c=na+nb+1: na+nb+nc- 1;

i i d=na+nb+nc+1 % set indices for the offset
% i d=na+nb+nc+1: na+nb+nc+1-1 % set indices for the offset
i i e=na+nb+nc+1+1: na+nb+nc+1+ne- 1; % for the second input

ii=[iiaiibiiciidiie]
i=[iiiaiiibiiiciiidiiie]
sizeofiii=size(i);

dnmena+nb+nc+1+ne;

%initialise phi
phi =zeros(dm 1) ;

dphi 4y=zeros(1, na);
[ modt, col umoft h] =si ze(t hm)

i f d~=col umofth
error('these two must be the sane')
end

% deci de which range of u is used, result in the value of j,j decide which
nmodel .

| ow=t hr eshol d( 1: nodt)

si zeof | ower =si ze(l ow) ;

hi gh=t hr eshol d( 2: nodt +1)
si zeof hi gher =si ze(hi gh);

% hr eshol d=sort (t hreshol d)
count =zeros(1, nodt); %initialization

for kcou=l:nz % start the loop for estimator

% define the threshold index,i.e., where the threshold is
i ndext hr eshol d=fi nd( (ul(kcou)>=l ow) & ul( kcou) <=hi gh));
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i f ~i senpty(indexthreshol d)

modn=m n(i ndext hreshol d) ; % nmake sure there is only one index
count ( nodn) =count ( modn) +1; % find nunber of sanples on each nodel
t h=t hn(modn, 1: d) " ; % redefine the paraneters

% increase the size for the offset
phi (iiid)=1;

% the operation for the delta operator
phi 4y=phi (iiia);

dphi 4y = del t ady(phi dy', Ts);

si zeof phi 4y=Il engt h( dphi 4y);

phi 4u=phi (iiib);
dphi 4u = del t ady(phi 4u', Ts);
si zeof phi 4u=l engt h( dphi 4u);

phi (iiic)=0;
dphi 4c = del tady(phi(iiic)',Ts);
si zeof phiic=si ze(phi(iiic)');

dphi 4d = deltady(phi(iiid)', Ts);
si zeof phii d=si ze(phi (iiid)");

phi 4e=phi (iiie);
dphi 4e = del t ady(phi 4e', Ts);
si zeof phi 4e=l engt h( dphi 4e) ;

%lphi = [dphiy dphiu dphi 4c dphi 4d dphi e]
dphi = [-dphi 4y dphi 4u dphi 4c dphi 4d dphi 4e]";

dyh=dphi (i)' *th;

% fully undeltarise prediction error in order to achieve the
yh=undel ta([dyh -dphi(iiia)'], Ts, 0);

% shifting procedure
phi (ii+1)=phi(ii);
phi (iid)=1,;

% Assign the output to the vector array
phi (1) =yh;

phi (na+1) =ul(kcou);

phi (na+nb+1) =0;

phi (natnb+nc+1) =1;

phi (na+nb+nc+1+1) =u2(kcou);

% store and undate these data
thm(nodn, 1: d)=th";

yhat (kcou) =yh;

i f isnan(yh)
keyboard
end
el se
fprintf('u(%)=%", kcou, ul(kcou));
error('no nodel available!");
end
end % end of for |oop
yhat = yhat';
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Appendix I: Analytical Systems in
MATLAB

.1 Analytical System in Signal Processing Toolbox

% | oad i nput signals fromthe PRBSG

| oad d:\Ilikun\AfterTransferReport\ Aut omat edFaul t Model Gener ati on\
sof t war eDesi gn\ Li brary_PWP\ MATLAB\ Rar max\ Dat a\ LeadLagNewf | 159f | 15kr f 10
kr410k.txt -ASClI

vout =LeadLagNewf | 159f | 15kr f 10kr 410k;
LeadLagNewf | 159f | 15kr f 10kr 410k=[];

% define the size of data, mn are the row and col umm, respectively
[mn]=size(vout);

% def i ne the out put-input data
ul=vout (:,1);

u2=vout (:, 2);

u=[ul u2];

y=vout (:, 3);

z=[y ul u?];

% preprocessing for detection and del eting saturation data
znew=cl eanSat (z) ;

ynew=znew(:, 1);
unewl=znew(:, 2)";
unew2=znew(:, 3) "' ;

unew=[ unewl; unew?2];
si zeOf unews=si ze(unew) ;

% define the size of new output data sets
[ zewr ow, zewcol um] =si ze(znew) ;

i nterval s=[ (zew ow 10000) : zewr oW ;

% define the System

% define the sanpling rate
t=1: zewr ow,

T_s=140. OE- 6;

f s=1/T_s;

ts=T_s*t;
sizeOrts=si ze(ts);

% define the low pass filter for vip
f | pvi p=10;

R3=10. OE+3;

CA=1/ (2*pi *R3*f _| pvi p);

% define the |l ow pass filter for vin



f _I'pvin=f_|pvip*10;
Rf =10. OE+3;
=1/ (2*pi *Rf *f _| pvin);

R1=Rf/ 10;

% define coefficients for the systemcoefficients for vin
dd=R1*Rf * Cf ;
dd1=Rf * C4* R3;

% coefficents for vip
ee=R1* Rf * Cf * CA* R3;
%eel=(RL+Rf)*C p*R4;
eel=R1+Rf;

ee2=dd+R1* R3* C4;

% define the transfer functions for two inputs with
% common denomi nators

hi=tf([-ddl -Rf],[ee ee2 R1l]);

h2=tf ([ dd eel],[ee ee2 R1]);

% define the two systens in continous tine
sysc=[hl h2];

% obtain the output data wiht the |Isimfunction
si zeOr sysc=si ze(sysc);
si zeOr unew=si ze(unew) ;

ysi nel si n(sysc, unew, ts);
si zeOry=si ze(y);

% conpare the original signal with the generated signal
subplot(2,1,1); plot(ynew(intervals));
subplot(2,1,2); plot(ysim(intervals));

% convert the Laplace transforminto z transform
sysd=c2d(sysc, T_s, ' zoh")

%wite out these signals
si zeOrysi nFsi ze(ysim

si zeOr unewl=si ze(unewl')
si zeOr unew2=si ze(unew?2')

znew=[ unewl' unew?2' ysinm;
si zeOr znews=si ze(znew) ;

fid =
fopen('d:\1ikun\ AfterTransferReport\Aut omat edFaul t Model Gener ati on\ sof t

war eDesi gn\ Li brary_PWP\ MATLAB\ Rar max\ Dat a\ pr bs42i nput sLeadLagNewfilter
test2.txt ',"wW);

fprintf(fid,' % 20.10f 9% 20.10f 9% 20.10f\n', znew );
fclose(fid);

1.2 Analytical System in System | dentification Toolbox

% | oadi ng i nput signals fromthe PRBSG



| oad e:\likun\ AfterTransferReport\ AutomatedFaul t Model Generati on\
sof t war eDesi gn\ Li brary_ PWP\ MATLAB\ Rar max\ Dat a\ LeadLagNewf | 159f | 15kr f 10
kr410k.txt -ASClI

vout =LeadLagNewf | 159f | 15kr f 10kr 410k;
LeadLagNewf | 159f | 15kr f 10kr 410k=[];

% define the size of data, mn are the row and col umm, respectively
[ mn] =size(vout);

% def i ne the output-input data
ul=vout(:,1);

u2=vout (:, 2);

u=[ul u2?];

y=vout (:, 3);

z=[y ul u2];

% preprocessing for detection and deleting saturation data
znew=cl eanSat (z) ;

ynew=znew(:, 1);
unewl=znew(:, 2)";
unew2=znew(:, 3)"';

unew=[ unewl; unew?2];
si zeOr unew=si ze(unew) ;

% defi ne the size of new output data sets
[ zewr ow, zewcol umm] =si ze(znew) ;

i nterval s=[ (zew ow 10000) : zewr oW ;

% define the System

% define the sanpling rate
t=1: zewr ow,

T_s=140. OE- 6;

f s=1/T_s;

ts=T_s*t;
sizeOfts=si ze(ts);

% define the |l ow pass filter for vip
f I pvi p=10;

R3=10. OE+3;

CA=1/ (2*pi *R3*f _| pvi p);

% define the |l ow pass filter for vin
f I pvi n=10*f _| pvi p;

Rf =10. OE+3;

Cf =1/ (2*pi *Rf *f _I pvi n);

R1=Rf/ 10;

% define coefficients for the systemcoefficients for vin
dd=1/ (R1*Cf);

dd1=1/ (R1*Cf *C4* R3) ;

ff1=1/ (R3*C4) ;
ff 2=( R1+Rf ) / (RL* Rf * Cf * CA*R3) ;

eel=(1/ (RE*Cf))+ff1:
ee2=1/ (Rf*Cf *R3*C4) ;



% define the transfer functions for two inputs with
% conmon denomni nat ors

hl=[-dd -dd1; ff1l ff2];

h2=[1 eel ee2;1 eel ee?];

m = idpoly(1,h1,1,1,h2 1,0);

sysd= c2d(m T_s)

si zeOF sysd=si ze(sysd);

y = sin(sysd, [unewl' unew?']);

% redesi gn the rel ationship between i nputs and out put
znew=[ unewl' unew2' vl;
si zeOf znews=si ze(znew) ;

% open a file and then wite signals into the file and then close it
fid =

fopen('e:\likun\ AfterTransferReport\Aut onat edFaul t Model Gener ati on

\ sof t war eDesi gn\ Li brary_PWP\ MATLAB\ Rar max\ Dat a\ pr bs42i nput sLeadLagNewf
iltertest3.txt','w);

fprintf(fid,' % 20.10f 9% 20.10f 9% 20.10f\n', znew );
fclose(fid);



Appendix J: The AME System
Validation Using the HDL Simulator

J.1 Introduction
It is known that the models from the MMGSD are used for the analogue simulation, so
in this section we vaidate the MMGSD using a known model implemented in

SystemVision. The process comprises two steps.

1. The analogue simulation is implemented using a linear model. Both input data and
output data are stored in atext file.
2. The MMGSD generates the model based on these data

The model used isalinear model givenin Eq. J-1.

y _ = (205+500)V, + (105 + 250)V;, + 250V,

Eqg. J-1
° s? + 20s + 500 .

The stimulus is a 0.2V, 100Hz triangle waveform with a 0.05V, 100kHz PRBS
superimposed on it for the inverting input, the second input is a similar signal but with
lower amplitude and frequency for the non-inverting input displayed in Figure 8-5
(14,000 samples).

This section consists of two subsections: J.2 introduces the analogue simulation. The
estimator is tested in subsection J.3.

J.2 Analogue Simulation

J.2.1 VHDL-AMSModse Structure

The linear model in Eq. J-1 is converted into a VHDL-AMS model in Eq. J-2 using the
attribute ‘Itf , which isfor a Laplace transfer function [ Ashenden03].

v, ==V, 'Itf (num_one,den) +v, ,'Itf (num_two, den) + V., 'Itf (num_three, den)



Eq. J2

where num_one includes coefficients (-20 -500) of vin, num _two has coefficients (10

250) of vip, num_three is 250 for Ve, and den includes the output coefficients (1 20

500) of Vo.

J.2.2 Output Signal Using Data L oading and Writing Functions

We use the data loading function mentioned in section 6.2.2 to load the triangle PRBS

as stimuli, which is shown in Figure J-1 by the analogue simulator SystemVision.
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The output signal is shown in Figure J-2:
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Both inputs and output signals are be written to a text file by using data writing process

discussed in section 6.2.2.

J.3 Test for the AME system
The AME system generates a model based on the data in the text file. The estimated

signd isillustrated in Figure J-3:
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Figure J-3: The estimated signal

It is seen that the signal from the analogue simulator y matches the estimated signal

yEstimator. The average difference between two signalsis 5.21e-8% using Eqg. 5-2.

During the simulation the coefficients are obtained as shown in Eq. J-3.

_ —(20.165+518.22)V;, + (10.085+ 259.095)V,, + 250.25N i, Eq. J-3

o

s® +20.969s +524.716

It is shown this model is close to the linear model in Egq. J1 by comparing the

coefficients.



To prove the model generated is correct, we convert it into a VHDL-AMS model for

analogue simulation using the same stimuli in Figure J-1. Signals are illustrated in

Figure J-4:
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Figure J-4: The predicted signal in the analogue system

It is seen that the predicted signa in VHDL-AMS (vo_VHDL_AMS) matches the

original signa (vo_MATLAB) in terms of amplitude and shape.
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Appendix K: Comparison of Various
HDLs and Simulators

K.1 Introduction

With the development of hardware description languages (HDLsS) based on design
methodologies, IC design and simulation have become simpler. For the digital I1C
design HDLs including VHDL, Verilog, etc. are already well established. Many books
have been published to assist them such as [Zw02000]. Unfortunately, for analogue and
mixed-signal design, textbooks or references on HDLs such as MAST [Saber04],
Verilog-AMS, SpectreHDL [Spec97] and VHDL-AMS [Ashenden03] are limited.
[Ashenden03] is one of few books to introduce VHDL-AMS in detail, others may only
supply part of information based on a particular system (e.g. [Getreu93], [Nikitin07],
[Pecheux05]).

A number of commercial simulators for HDLs are currently available from several
electronic design automation (EDA) companies. They include Cosmos in Saber from
Synopsys [Synopsys], Virtuoso AMS Designer from Cadence [Cadence], Simplorer
from Ansoft [Ansoft], SMASH from Dolphin [Dolphin], SystemVision from Mentor
Graphics [Mentor], etc. Each of them has individual features in terms of simulation
speed, ease of use. In this chapter we briefly compare two types of HDLs (MAST,
VHDL-AMS) and simulators (Cosmos, Smash, SystemVision) based on a behavioural
operational amplifier (op amp) model.

The objective of the section isto compare two or three HDLs and individual simulators

using alinear model in terms of complexity and accuracy.
The following section is outlined: in section K.2 different HDLs are introduced;

multiple simulators for these HDLs are presented in section K.3. In section K.4 high

level modelling isimplemented. The conclusion is supplied in section K.5.
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K.2 Brief Introduction to Different HDLs

In this subsection, MAST and VHDL-AMS are introduced. Since 1987, MAST has
been enhanced to include mixed-signal modelling constructs such that it is able to
improve simulation speed and support top-down design methods for analogue and
mixed signal designs [Saber04]. MAST language files use the .sin extension. More
information can be found in [ Saber04].

In 1999, the analogue and mixed signal (AMS) extension to VHDL (VHSIC Hardware
Description Language) was standardized as VHDL-AMS [SMASHRO05]. It inherits all
advantages from VHDL, handles severa levels of design hierarchy and provides
behavioural modelling capability for both digital and analogue systems [Frey98].
VHDL-AMSfilesusualy have .vhd or .vhdl extensions.

K.3 Introduction to Different Simulators

This subsection introduces three simulators: SMASH, SystemVision and Cosmos in
Saber.

K.3.1 Introduction to SMASH

The SMASH simulator requires two mandatory files: the netlist file abbreviated as .nsx,
and a pattern file .pat. The former contains the circuit description. The latter is
associated with but separated from the netlist file and provides the stimulus descriptions
and simulation directives. These two files must have the same name and be located in
the same directory. In the netlist file, various languages such as Spice, Verilog, as well
as VHDL are allowed to describe both the analogue part and the logic part, at any level
of refinement from behavioural to transistor level [SMASHUOQS]. Each part must be
preceded by a specific language identifier >>>, which allows the switch from one
language to another such as >>> VERILOG for Verilog, >>> SPICE for Spice and >>>
VHDL for VHDL. Library files resulting from model compilations are stored in awork
directory created by SMASH at the same level as netlist and pattern files. Note: in the
pattern file the order of multiple specifications of this directive is important. If the
compilation order does not correspond to the order required by the VHDL source files,
an error message will be displayed [SMASHRO5]. This pattern file comprises
directories of al components from the netlist. The name of the entity and optionally of

the corresponding architecture or configuration at the top level is also indicated.
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K.3.2 Introduction to SystemVision

The SystemVision simulator provides a virtual lab for creating and analyzing analogue,
digital and mixed-signa systems and alows design verification of hierarchical
schematic and circuit elements. Industry-standard languages such as VHDL-AMS,
SPICE, and C are supported by this software. Moreover, this simulator provides concept
verification through block diagrams and transfer functional blocks [SystemVision].
There is a large built-in library in SystemVision, so the user is able to select many
models or even schematics for any design. The nestlist file needs a project that prefers

to be separated from library project.

K.3.3 Introduction to Cosmosin Saber

Cosmos is the smulator for the MAST language in Saber. Similar to other two
simulators it can handle analogue and mixed mode circuitry. It includes a large digital
and analogue model library and alows different levels of modelling [Ana94]. The
model in Cosmos can be described using a traditional netlist (the normal SPICE method)
or in the differential equations directly [SaberO4]. The simulator can recognise the
SPICE signals extension such as .trO for transient simulation and displays them.
SystemVision can not display these signals even thought it is able to recognise these
extensions because of different configuration. Furthermore, Saber has interfaces with
MATLAB and C libraries.

K.4 Experimental Results

In this section, we compare both HDLs and simulators using a linear behavioura op
amp) model shown in Figure K-1:

inp + —  +—-oOout

Vin I @ Gainvin

inn - e

Figure K-1: Thelinear op amp
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The model comprises two parts: the input stage has a resistor r; representing the input
impedance; the output stage consists of the gain G, and the resistor r,, representing the
output impedance. The code in the MAST and VHDL-AMS are shown in Figure K-2
and Figure K-3, respectively.

#... behavioural nodel of an op anp
tenpl ate opanp out inn inp gnd= gain, ri, ro
electrical out, inn, inp, gnd

#... paraneters val ues
nunber gain = 50k
number ri = 1k

number ro = 1k

{

val v vin, vip, vi, vout

val i iR, iRo

val ues{
#... define all connections
vin = v(inn)-v(gnd)
vip = v(inp)-v(gnd)
vout = v(out)-v(gnd)
#... equation between input and output
Vi = vin-vip
#... define the current for the input resistor
iRL = vi/ri
#... output current
i Ro = (gain*vi+vout)/ro

}

equat i ons{
#... current in input stage
i(inn->inp)+= iRl
#... current in output stage
i (gnd->out)+= i Ro

}

}

Figure K-2: The op amp model writtenin MAST
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library ieee;
use ieee.electrical _systens.all;
use ieee.math_real.all

use work. all;

entity op is
generic(gain,ri,ro: real);
port(term nal inn,inp,outp: electrical); --interface ports

end entity op

architecture opanpb of op is
quantity vo across io through outp to ground;
quantity v_in across i_in through inn to inp
begi n
i _in==v_in/ri
i o==(vo+gai n*v_in)/ro;

end architecture opanpb

Figure K-3: The modd writtenin VHDL-AMS

This op amp is configured as an inverting amplifier with again of -4. Theinput stimulus
is a sine wave with the amplitude of 0.1mV at 100Hz. The netlist structured in MAST
and VHDL-AMS are shown in Figure K-4 and Figure K-5, respectively.

#... define the voltage source
v.sourceN inn0 0 = tran = (sin=(va=0.0001, f=100))

#... define value of R
r.Rininn0 innl = 10k

r.Rf outl innl = 40k

#... assign variables for the op anp
opanp.rc outl innl 0 O = 500k, 50k, 100

Figure K-4: Thetop level in MAST

-- .nsx file
>>> VHDL

library ieee;
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use ieee.math _real.all;

use ieee.electrical _systens.all;

entity inverter is
port(term nal inn,ou:electrical);
end inverter;

architecture behav of inverter is
term nal innn:electrical
constant FREQ real := 1.0e2;
constant anpt: real := 0.0001

quantity V across inn to ground,;

quantity vo across io through ou to ground;
begin

V == anpt *si n( MATH_2_PI * FREQ* NOW ;

opanp_behav: entity work. op(opanpb)
generic map (gai n=>5.0e+5, ri=>5.0e4, ro0=>100.0)
port map(inn=>i nnn, i np=>ground, out p=>o0u);

rin: entity work.resistor(behav r)
generic map(r=>1. 0e+4)

port map(pl=>i nn, p2=>i nnn);

rf: entity work. resistor(behav_r)
generic map(r=>4. 0e+4)
port map(pl=>i nnn, p2=>ou);
ebd behav;

-- .pat file

. VHDL set ki nd=ans

. VHDL conpile library=work source=e:/VHDL- AMS/ opanp. vhdl
.VHDL conpile library=work source=e:/VHDL- AMS/resi stor.vhd

.VHDL el aborate entity=inverter unit=behav

. Eps 1m 100m 500
. Tol erance DEFAULT_TCOLERANCE 100m
. H 100fs 100fs 10ns 125m 2

. Tran 100ps 10nms 1.5us noi se=no noi sest ep=10ns traceBreak=yes
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. Met hod
. Trace

. Trace

BDF sync=l ockstep current=yes gl obal =yes
Tran | NN_REFERENCE M n=-7. 2000E- 004 Max=7. 2000E- 004

Tran OU_REFERENCE M n=2. 4940487E+000 Max=2.5110145E+000

Figure K-5: VHDL-AMStop level in SMASH

The signal produced by MAST in Saber simulator is shown in Figure K-6; signals
created by VHDL-AMS in both SMASH and SystemVision simulators are depicted in
Figure K-7 and Figure K-8, respectively.

100u

Fhu

50u

25u

) 0.0
-25u
-50u
-F5u
-100u
4000
300u
200u
100u

= 0.0
-100u
-200u
-300u

-400uI

= 36.79ms, dt= 36

The Inverting Amplifier in Saber

) 1 t(s)

inn

V) tis)

au

tis)

Figure K-6: The output signal from Cosmos

79ms, y=-112.50V, dy=-112.5u, fregueney= 27.18Hz, slope = -0.00306
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“48m
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FigureK-7: Thesigna in VHDL-AMS from SMASH
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Figure K-8: Thesignal in VHDL-AMS from SystemVision

It is seen that with the equivalent set up both Figure K-6 and Figure K-8 supply the
correct solutions. However, in Figure K-7 the correct output signal does not have the
correct amplitude. One way to improve it is to change the input resistance r; to 15kQ.

The signal is plotted in Figure K-9:

t=20.87ms, dt=8.113ms, y= 28.56uY, dy=19.TBuY frequency =123 3Hz, slope = 0.00244
4m am 12m “16m “30m “24m “28m 3m 36m 40m -44m -48m

INMN_REFERENCE

OU_REFERENCE

Figure K-9: The signal from SMASH with r;=15kQ
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Furthermore, when the gain of amplifier is changed to -5, with the SMASH simulator
the correct results are not obtained until the parameters r; is changed again. With other

simulators the correct response can be achieved.

It is seen that the structure of the model in the MAST language is more complex than
VHDL-AMS because the latter does not require many sections. Moreover, it provides
attributes such as ‘slew for slew rate and ‘ zoh for sampling and hold, but in MAST ‘zoh
has to be defined in the when section, in which the statements such as schedule event
are used. Additionally in SMASH there is not a way to export signas, the only way to
obtain them is to use the Prt Sc key on the keyboard, whereas the Saber and

SystemVision simulators can save signals with the export option.

In Saber the schematics design entry is provided by the SaberSketch software that is
separated from Cosmos, whereas both SMASH and SystemVision can handle HDLs
and schematics. However, in SystemVision a projector is required for each simulation,

whereas the Saber simulator does not need this.

K.5 Conclusion

In this section two popular HDLs are reviewed: MAST and VHDL-AMS, and
simulators for them: Cosmos in Saber, SMASH and SystemVision are compared in
terms of accuracy and convenience using a linear op amp model. Results show that
structure of VHDL-AMS language is simpler than MAST. Cosmos and SystemVision

can achieve accurate solution more easily than SMASH.
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Appendix L: The RML Estimation
Algorithm Updates Equations for
Both z and delta Transforms

L.1 Estimation in z Transform

e(t)=y(t) - Ot~
CH(zMe () =y (1)
A+ (OP(E-Do(t)
(1) A1)+ ()Pt -Do(t)
0(t) = 0(t—1)+ L(t)e(t)
()= y()-¢" (DO

where,
g(t) istheinnovation error sequence.
g (t) istheresidua error sequence.

P(t) is the covariance matrix.
L(t) isthe gain vector.
Estimator Observation V ector
v(®) =[-y(t-1...—y(t—na),u(t-1)...u(t—nb),e(t-1)...e(t—nc)Lu(t-1...u(t —nb)]
Estimated Parameter Vector

ot)=[a...a,.b...b,.c...c..d,f...f.[

Define the ¢ polynomial for the prefilter
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c'(zY=1l+gz +-+cC 2™
Pre-whitened Estimator Observation V ector

—y(t-D/cMzY) | [-yea-D) |

—y(t-na)/c™(zh)| |-y°(t—-na)
ut-1/c(z" u(t-1

u(t—nb)/c™(z u®(t—nb)

o) =| E(t-D/c(zY) |=|&z°@1-1)
g(t—nc)/c™(zh) g°(t—nc)
1/c™(zh 1°

v(t-1)/c(z 1) ve(t-1)

| V(t-ne)/ c(zh) _v° (t—ne)

L.2 Estimation in Delta Transform

e(t)=5"y(t)-" (VO(t-1)
CH(@B)e" M) =y (1)

)+ (OPE-Do(t)
(1) A1)+ P -Do(t)
0(t) =0(t-1) + L) (t)
() =3"y(t)-¢" (1)O(1)

where,

g(t) istheinnovation error sequence.
g (t) istheresidua error sequence.

P(t) is the covariance matrix.

L(t) isthe gain vector.
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The deltarise function and undeltarise function are necessary to update other vectors.

Examples for both are given.

L.2.1 Deltarise Function

The deltarise function is used to obtain deltarised value using the delta operator given in
Eqg. L-1, where delta (9) is related to both the present and future values, Ts is the
sampling rate, q is the forward shift operator used to describe discrete models, which is
shown in Eq. L-2.

q-1
T

(o7
Il
I

d
— Eq. L-1
dt a

S

Xy = Xiiy Eq. L-2

The equivalent form of Eq. L-2 isgiven in Eq. L-3, the relationship between d and g isa
simple linear function, so 6 can offer the same flexibility in the modelling of discrete-

time systems as q does.

SX. = X1 — Xy — X(kTs +Ts) — X(kTs) ~ d_X
“ T T, dt

S

Eq. L-3

The use of delta operator and its relationship is illustrated in the following example.
Imagine there is a vector array for y, see in Eq. L-4. Initially each vector is subtracted
from the one next to it seen in Eq. L-5, and is then divided by Ts, so the deltarised value
is obtained, as shown in Eqg. L-6. However, the last one highlighted by the rectangle is

not involved in the calculation.

v YD) y(E2) i_)_/(_t_—_32 _; Eq. L-4
y(t-1)  y(t-2)  y(t-3) Eq. L-5
Sy(t-1) Sy(t-2) iéy(t-S)E Eq. L-6
oV(t-2) oy(t-3) Eq. L-7

To obtain 5%(t-3), Eq. L-6 is subtracted by Eq. L-7, and then divided by Ts. The same
procedure is used to obtain &6°y(t-3).
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Sy(t-2) iézy(t-B)E Eq. L-8

54y(t-3) Eq. L-9
5%y(t-3) Eq. L-10

Therefore, the deltarised version of Eq. L-4 is obtained as shown in Eq. L-11.

Sy(t-3) 5y(t-3) Sy(t-3) y(t-3) Eq. L-11

The same procedure is also used for other vectors such as the inputs vectors u, e and

noise vector c. Delay is not included here.

L.2.2 Unddtarise Function
This function is based on Eq. L-1 but with modification, that is, q = 0Tst+1, in order to
model at the current time. An exampleis aso used to demonstrate this reverse agorithm.
It isamodel in deltatransform, but only output vectorsy are shown in Eq. L-12. Firstly
each vector, except for last one highlighted by the rectangle because it is aready
undeltarised, is multiplied by T in Eqg. L-13, and then adds the terms in EQ. L-14, so
undeltarised vectors are obtained in Eq. L-15, i.e., y(t-2) is obtained.

Sy(t-3) SA(t-3) Sy(t-3) iéoy(t-3)i Eq. L-12

TSY(E3) THY(t3) THYED) Eq. L-13
+ + +

oy(t-3)  oy(t-3)  Oy(t-3) Eq. L-14
|| i

SY(t-2)  Sy(t-2) y(t-2): Eq. L-15

To achieve y(t-1), Eq. L-15ismultiplied by T, and then adds onesin Eqg. L-17

TIA(t2) THY(t-2) Eq. L-16
+ +
oy(t-2)  Oy(t-2) Eq. L-17
I ,---“--.,
Sy(t-1) y(t-1) | Eq. L-18



Finally y(t) is obtained using the same procedure as above.

TOY(t-1) Eq. L-19
+

y(t-1) Eq. L-20
I

L y() Eq. L-21

Therefore, the undeltarised version of Eq. L-12 is obtained as shown in Eq. L-22.

y© - yt-1) y(t-2)  y(t-3) Eq. L-22
The number of iterations is dependent on a variable numb. If a fully deltarisation is
required, numb is set to 0, otherwise a number is selected. If the number is greater than

the size of the vector array an error message is displayed.

After knowing the procedure for obtaining deltarise or undeltarise vectors, more details

about vectorsin RML are introduced.

Estimator Observation Vector
w(t) =[-6™ty(t)...— y(t),6 ™ u(t)...u(t),s e (t)...2 ()L (). .. v(t)]
Estimated Parameter Vector
ot)=[a...a,.b...b,,c...c..d, f,...f [
Define the c polynomia for the prefilter
c'(8)=1+6° +---+35"'c.,

Pre-whitened Estimator observation vector
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5™y (t—nc)=8""p(t—nc)—c, 6™ Ay (t—nc)—--—c, 5w (t—nc)

The relationship between delta w(t) and ¢(t) is shown in Eq. L-2 when the size of vector
array nnissetto[34313].

Sy(t-3 = 6%p(t-3 - cSy(t-3) - (-3
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