
THE UNIVERSITY OF HULL

Automatic Generation of High Level Fault
Simulation Models for Analogue Circuits

being a Thesis submitted for the Degree of

Doctor of Philosophy

in the University of Hull

by

Likun Xia, MSc.

November, 2008

i

Acknowledgements

The author would like to express his deepest gratitude to the following people:

Dr. I.M. Bell, the first supervisor, for his guidance, support and useful discussion

throughout the research.

Dr. A.J. Wilkinson, the second supervisor, for his encouragement and useful discussion

regarding development of the automated model generation system during the research.

Thanks are also due to the postgraduate and academic staff of the Department of

Engineering, Hull University for their support.

The author wishes to give most special gratitude to his wonderful parents for their

encouragement, tolerance and their financial support during these years in UK.

And last but not least, the author wishes to thank his friends around the world,

especially to Miss Ning Zhang, for their encouragement and support throughout.

ii

Abstract

High level modelling (HLM) for operational amplifiers (op amps) has been previously

carried out successfully using models generated by published automated model

generation (AMG) approaches. Furthermore, high level fault modelling (HLFM) has

been shown to work reasonably well using manually designed fault models. However,

no evidence shows that published AMG approaches based on op amps have been used

in HLFM.

This thesis describes an investigation into the development of adaptive self-tuning

algorithms for automated analogue circuit modelling suitable for HLM and HLFM

applications. The algorithms and simulation packages were written in MATLAB and the

hardware description language - VHDL-AMS.

The properties of these self-tuning algorithms were investigated by modelling a two-

stage CMOS op amp and a comparator, and comparing simulations of the macromodel

against those of the original SPICE circuit utilizing transient analysis.

The proposed algorithms generate multiple models to cover a wide range of input

conditions by detecting nonlinearity through variations in output error, and can achieve

bumpless transfer between models and handle nonlinearity.

This thesis describes the design, implementation and validation of these algorithms,

their performance being evaluated for HLFM for both analogue and mix mode systems.

HLFM results show that the models can handle both linear and nonlinear situations with

good accuracy in a low-pass filter, and model digital outputs in a flash ADC correctly.

Comparing with a published fault model, better accuracy has been achieved in terms of

output signals using fault coverage measurement.

iii-1

Table of Contents

Acknowledgements...i

Abstract ………...ii

Table of Contents ...iii

Table of Figures ...iv

List of Ternminologies ..v

Chapter 1: Introduction..1-1

Chapter 2: Literature Review of Approaches for High Level Modelling and

Automated Model Generation ..2-1

2.1 Review of Possible Models of a System..2-1

2.2 Review of Various Modelling Techniques ..2-3

2.2.1 Macromodeling (structural approach) ..2-3

2.2.2 Behavioural modelling ...2-4

2.2.3 Transfer function modelling...2-4

2.3 Review of Automated Model Generation (AMG) Approaches …………2-5

2.4 Review of Approaches to Generating a Model in Different Computing

Languages …………………………………………………………………………... 2-18

Chapter 3: Literature Review of High Level Fault Modelling and Simulation

………………………………………………………………………3-1

3.1 Different Test Techniques for Analogue and Mixed Mode Circuits3-1

3.1.1 Description of IC Failure Mechanism and Defect Analysis3-1

3.1.2 Structural Test..3-4

3.2 High Level Fault Modelling and Simulation ...3-6

3.3 Inductive Fault Analysis (IFA) ..3-10

3.4 Design for Testability with Controllability and Observability (Design and

quality issue) ..3-13

3.5 Test Coverage and Test Quality...3-14

iii-2

Chapter 4: High Level Fault Modelling and Simulation based on Other’s

Fault Models ……………. ...4-1

4.1 Introduction ..4-1

4.2 Two-stage CMOS Op amp...4-1

4.3 High Level Fault Models ...4-3

4.3.1 Linear HLFMs..4-3

4.3.1.1 DC op amp model ..4-3

4.3.1.2 DC/AC op amp model..4-4

4.3.1.3 DC and dc/ac Macromodel with Complex Input Inpedance Function...4-8

4.3.2 Nonlinear HLFMs ..4-10

4.3.2.1 Model Architecture ..4-10

4.3.2.2 Implementation in MAST ..4-10

4.4 Conclusion ...4-13

Chapter 5: The Multiple Model Generation System (MMGS) for Automated

Model Generation ……..5-1

5.1 Introduction ..5-1

5.2 Algorithm Evaluation based on an Mathematical Equation………………….. 5-4

5.3 Training Data for Estimation using PseudoRandom Binary Sequence Generator

(PRBSG) …………………………………………………………………………....5-5

5.4 The Multiple Model Generation System (MMGS)..5-6

5.4.1 Manual Implementation ...5-6

5.4.2 The MMGS ...5-13

5.4.2.1 The Automated Model Estimator (AME) ..5-13

5.4.2.1.1 The Pre-analysis ..5-14

5.4.2.1.2 The Estimator ...5-15

5.4.2.1.3 Post-analysis ..5-15

5.4.2.2 The Automated Model Predictor (AMP) ...5-17

5.5 Key Factors to Improvement of Estimation Quality..5-17

5.5.1 The Offset Parameter Related to Model Operating Points..................5-17

5.2.2 Quality Improvement based on the Number of Samples5-19

5.6 Experimental Results ...5-20

5.6.1 Simulation for Nonlinearity ...5-20

iii-3

5.6.2 Validation Test for MMGS Generated Models via Time-domain

(transient) Simulations ...5-21

5.7 Conclusion ...5-22

Chapter 6: The Multiple Model Generation System (MMGS) for Multiple-

Input Single-Output (MISO) Systems..6-1

6.1 Introduction ..6-1

6.2 The Algorithm on the MMGS for MISO Models ..6-1

6.3 Experimental Results ...6-3

6.3.1 Analysis of MMGS ...6-3

6.3.2 Simulation for Nonlinearity ...6-6

6.3.3 Validation for Test for MMGS Generated Models via Time-domain

(Transient) Simulations..6-7

6.4 Conclusion ...6-7

Chapter 7: High Level Modelling based on Models from the MMGS7-1

7.1 Introduction ..7-1

7.2 Manual Conversion ..7-1

7.2.1 Structure of the Behavioural Model...7-1

7.2.2 Investigation to Bumpless Transfer using SMASH Simulator7-1

7.3 The Multiple Model Conversion System (MMCS) ...7-9

7.4 Experimental Results ...7-10

7.4.1 The Inverting Amplifier ..7-10

7.4.2 The Differential Amplifier ..7-12

7.5 Conclusion ...7-14

Chapter 8: Multiple Model Generation System using Delta Operator8-1

8.1 Introduction ..8-1

8.2 Overview of MMGSD ...8-1

8.2.1 The Deltarise Function ..8-4

8.2.2 The Undeltarise Function ..8-5

8.2.3 Two Functions Utility in MMGSD ...8-7

8.2.3.1 The AME..8-7

8.2.3.2 The AMP..8-9

iii-4

8.3 Experimental Results ...8-10

8.3.1 A Single Model Detection...8-10

8.3.2 Comparison between MMGS and MMGSD...8-14

8.3.3 System Test Using a Lead-lag Circuit..8-15

8.3.4 Verification on the Multiple Model Generation Approach8-17

8.3.5 Nonlinearity Modelling ..8-19

8.4 Conclusion ...8-20

Chapter 9: High Level Fault Modelling and Simulation based on Models from

the MMGSD ………...9-1

9.1 Introduction ..9-1

9.2 The Approach for Multiple Model Conversion System (MMCS).....................9-2

9.3 High Level Modelling and High Level Fault Modelling9-7

9.4 Conclusion ...9-19

Chapter 10: High Level Fault Simulation of a 3bit Flash Analogue to Digital

Converter……………………………………………………………………………10-1

10.1 Introduction ..10-1

10.2 Introduction to the 3bit Flash ADC..10-1

10.3 Multiple Model Generation by the Simulator and MMGSD10-5

10.3.1 Sample & Hold and Decoder Model..10-5

10.3.2 Comparator Model...10-5

10.4 High Level Fault Modelling of the 3bit Flash ADC ..10-7

10.5 Conclusion ...10-10

Chapter 11: Conclusions and Future Work ..11-1

11.1 Introduction ..11-1

11.2 Automated Model Generation Approaches..11-1

11.3 High Level Fault Modelling...11-2

11.4 Future Work ...11-2

Appendix A: Characterises of the Two-stage Op Amp in HSPICE..................A-1

A.1 Open-loop Mode with the Offset Compensation ..A-2

A.2 Open-loop Gain Measurement ..A-3

iii-5

A.3 Input Offset Voltage..A-4

A.4 Common-mode gain..A-5

A.5 Common-mode Reject Ratio (CMRR) ...A-6

A.6 Power Supply Reject Ratio (PSRR)..A-7

A.7 Configuration of Unit Gain for Input and Output CMRA-8

A.8 The Output Resistance ..A-9

A.9 The Slew Rate and Settling Time..A-10

A.10Comparison of the Simulation with Specification ..A-12

Appendix B: User Guide for MAST Language and Cosmos Simulator in Saber

……………………………………………………………………...B-1

B.1 Introduction to Saber Simulator ..B-1

B.2 Introduction to the MAST...B-2

B.2.1 Construction of the MAST Language.. B-2

B.2.2 The complete program in MAST language ... B-3

B.2.3 Explanation ... B-4

B.2.3.1 Comment Section...B-4

B.2.3.2 Template Section...B-4

B.2.3.3 Declaration Section ...B-5

B.2.3.3.1 Header Declaration.. B-5

B.2.3.3.2 Local declaration ... B-6

B.2.3.4 Values Section...B-6

B.2.3.5 The Equations Section...B-8

B.2.3.6 Netlist Section ...B-9

B.3 Implementation in the Cosmos Simulator...B-10

B.3.1 Simulation Run .. B-10

B.3.2 Analysis ... B-10

B.3.2.1 The Transient Analysis ...B-11

B.3.2.2 DC Analysis ..B-12

B.3.2.3 AC analysis ...B-13

B.4 Conclusion ..B-14

Appendix C: Behavioral Models Written in MAST ...C-1

C.1 MAST Code of Linear HLFMs ..C-1

iii-6

C.1.1 MAST Code of opdc ..C-1

C.1.2 MAST Code of opac ..C-3

C.2 MAST Code of Nonlinear HLFMs ..C-6

Appendix D: Analysis of Boyle’s Output Stage in the Complex Frequency

Domain ……….……………………………………………………………………...D-1

D.1 Input Output Transfer Function ...D-1

D.2 Output Impedance ..D-3

Appendix E: Manual Implementation for the MMGS.......................................E-1

E.1 Process With the Offset Parameter ... E-1

E.1.1 The Estimator .. E-1

E.1.2 The Predictor .. E-5

E.2 Process without the offset parameter .. E-7

E.2.1 The Estimator .. E-7

E.2.2 The Predictor .. E-11

Appendix F: Quality Measurement based on Number of Samples F-1

Appendix G: Methodologies for Quality Improvement of the MMGS in

MATLAB……..……………………………………………………………………...G-1

G.1 Suitable Values Check ..G-1

G.2 Sample Detection ..G-1

G.3 Observation of Covariance p...G-2

G.4 Stability Detector ..G-3

G.5 The Saturation Detector ..G-4

Appendix H: Codes for the MMGS and MMGSD... H-1

H.1 The MMGS ...H-1

H.1.1 The AME..H-1

H.1.2 The AMP..H-6

H.2 The MMGSD ..H-9

H.2.1 The AME..H-9

H.2.2 The AMG ...H-16

iii-7

Appendix I: Analytical Systems in MATLAB .. I-1

I.1 Analytical System in Signal Processing Toolbox .. I-1

I.2 Analytical System in System Identification Toolbox .. I-3

Appendix J: The AME System Validation Using the HDL Simulator..............J-1

J.1 Introduction .. J-1

J.2 Analogue Simulation.. J-2

J.2.1 VHDL-AMS Model Structure ...J-2

J.2.2 Output Signal Using Data Loading and Writing FunctionsJ-2

J.3 Test for the AME system ... J-3

Appendix K: Comparison of Various HDLs and SimulatorsK-1

K.1 Introduction ...K-1

K.2 Brief Introduction to Different HDLs ...K-2

K.3 Introduction to Different Simulators...K-2

K.3.1 Introduction to SMASH...K-2

K.3.2 Introduction to SystemVision ..K-3

K.3.3 Introduction to Cosmos in Saber...K-3

K.4 Experimental Results ..K-3

K.5 Conclusion ..K-9

Appendix L: The RML Estimation Algorithm Updates Equations for Both z

and delta Transforms..L-1

L.1 Estimation in z Transform .. L-1

L.2 Estimation in Delta Transform ... L-2

L.2.1 Deltarise Function .. L-3

L.2.2 Undeltarise Function .. L-4

References

List of Publications

iv-1

Table of Figures

Figure 2-1: Abstraction hierarchy [Pella97] ..2-1

Figure 2-2: The proposed general structure of a high-level model................................2-3

Figure 2-3: Linear time invariant block ...2-5

Figure 2-4: Linear time varying block ...2-6

Figure 2-5: The general process of the estimation ...2-7

Figure 2-6: Overview of conversion routine within a design process [Grout05]2-19

Figure 2-7: SAMSA general architecture and dependences with other MATLAB

toolboxes [Zorzi02]..2-21

Figure 3-1: Analogue fault category [Maly88] ..3-2

Figure 3-2: Source (a)/ Drain (b) open fault models; Gate oxide short model (c).........3-3

Figure 3-3: MOS transistor short fault models: DSS (a), GDS (b) and FSS (c)3-3

Figure 3-4: Specification for catastrophic faults ..3-4

Figure 3-5: Graphical representation of the realistic defect based testability

methodology for analogue circuit [Sachdev95] ...3-5

Figure 3-6: Macromodel of inverting and non-inverting amplifiers [Zwo96]...............3-7

Figure 3-7: Structure of IFA [Ferguson88]..3-10

Figure 3-8: Various Applications for IFA [Olbrich97]..3-11

Figure 3-9: Analogue fault modelling from concept and schematic to layout. The arrows

width represents the size of the fault lists [Sebeke95] ...3-16

Figure 4-1: Schematic of the two-stage CMOS op amp ..4-2

Figure 4-2: dc macromodel (see Appendix C: C.1.1) ..4-3

Figure 4-3: AC macromodel op amp (see Appendix C: C.1.2)4-5

Figure 4-4: Additional pole/zero stages ...4-8

Figure 4-5: Linear HLFM with arbitrary number of poles and zeros of the input

impedance function opdc_zin and opac_zin (see Appendix C: C.1.1 and C.1.2)..........4-9

Figure 4-6: Nonlinear macromodels (see Appendix C: C.2 (for block 1&4))4-10

Figure 4-7: Linear model parameterization..4-11

Figure 4-8: Algorithm of obtaining the output current function4-11

iv-2

Figure 4-9: Nonlinear two dimensional output current function),(inout VVfi 4-12

Figure 5-1: Schematics for the procedure of MMGS...5-2

Figure 5-2: The general process of the estimation ...5-3

Figure 5-3: Schematic of the two-stage CMOS operational amplifier5-4

Figure 5-4: The training data from PRBSG and output response using the open-loop

amplifier ...5-6

Figure 5-5: Input and output circuit transfer characteristic (one linear model)5-7

Figure 5-6: Input and output circuit transfer characteristic (m1-m5 and input threshold

selected linear models)...5-8

Figure 5-7: The input voltage and the output error voltage ...5-9

Figure 5-8: Comparison of output signals based on one model during estimation process

..5-10

Figure 5-9: The variation in epsilon vs input range based on one model5-11

Figure 5-10: The variation in epsilon vs input range based on five models5-12

Figure 5-11: Comparison of output signals based on five models...............................5-12

Figure 5-12: The flowchart for the AME...5-14

Figure 5-13: The algorithm for post-analysis ..5-16

Figure 5-14: The predicted signal without the offset parameter5-18

Figure 5-15: The predicted signal with the offset parameter5-19

Figure 5-16: Signals from the predictor with 10,000 samples5-19

Figure 5-17: The estimated signal from the AME system ...5-20

Figure 5-18: The signal from the AMP system..5-21

Figure 5-19: Predicted square waveform based on models from the MMGS..............5-22

Figure 6-1: Schematic of the two-stage CMOS operational amplifier6-2

Figure 6-2: Two inputs and one output signals from HSPICE6-3

Figure 6-3: The lead-lag circuit with two low-pass filters...6-4

Figure 6-4: The coefficients from the system identification toolbox.............................6-4

Figure 6-5: The model under discrete-time from MMGS..6-5

Figure 6-6: The predicted signal from the analytical system...6-5

Figure 6-7: The predicted signal from MMGS ..6-6

Figure 6-8: The predicted signal with multiple models generated from MMGS...........6-7

iv-3

Figure 7-1: Structure of the behavioural op amp model ..7-2

Figure 7-2: Model selection algorithm based on input range ..7-4

Figure 7-3: The model selection process for the predictor ..7-4

Figure 7-4: Data writing based on the sampling interval ...7-6

Figure 7-5: Assigning data as stimuli...7-6

Figure 7-6: Data writing based on the sampling interval ...7-7

Figure 7-7: Predicted signal from the AMP based on all model....................................7-8

Figure 7-8: High level modelling based on all model..7-9

Figure 7-9: Signals between the transistor level and the high level modelling7-11

Figure 7-10: Simulation Speed Comparison between level 2 transistors and level 3

transistors ...7-12

Figure 7-11: The differential amplifier ..7-13

Figure 7-12: Signals between the transistor level and the high level modelling7-13

Figure 8-1: The algorithm for the AME system ..8-2

Figure 8-2: The square PRBS signal..8-11

Figure 8-3: The triangle PRBS signal ..8-11

Figure 8-4: The predicted signal ..8-12

Figure 8-5: The estimated signal..8-13

Figure 8-6: The predicted signal ..8-13

Figure 8-7: The estimated signal..8-14

Figure 8-8: Coefficients under discrete-time from the AMP in the MMGS................8-15

Figure 8-9: A linear system with a high pass and low pass filter8-16

Figure 8-10: The coefficients from the high-pass filter ...8-16

Figure 8-11: The estimated signal..8-17

Figure 8-12: Threshold and samples for each model ...8-20

Figure 8-13: The estimated signal with nonlinearity ...8-20

Figure 9-1: The structure of the behavioural op amp model..9-2

Figure 9-2: The algorithm for the model selection ..9-3

Figure 9-3: A flowchart for fault coverage measurement..9-4

Figure 9-4: The conditions for detecting the distance of two signals9-5

Figure 9-5: The input signals with the saturation part ...9-8

Figure 9-6: The biquadratic low-pass filter..9-9

iv-4

Figure 9-7: The output signals from the low-pass filter...9-9

Figure 9-8: The output signals from the low-pass filter...9-10

Figure 9-9: The output signal from the transistor level fault-free simulation..............9-11

Figure 9-10: HLFM for M11_dss_1...9-13

Figure 9-11: HLFM for M10_gss_2...9-13

Figure 9-12: Investigation which model is applied in relation to input and output9-14

Figure 9-13: Threshold and samples for each model ...9-15

Figure 9-14: New thresholds and samples for each model ..9-15

Figure 9-15: HLFM for M10_gss_2 based on new threshold set9-15

Figure 9-16: ACM for TLFS, HLFM and Linear HLFM ..9-16

Figure 9-17: Average speed measurement for TLFS, HLFM and Linear HLFM9-17

Figure 9-18: Simulation Speed Comparison between level 2 transistors and level 3

transistors ...9-18

Figure 10-1: Block diagram of the 3bit flash ADC ...10-2

Figure 10-2: Schematic of the 3bit flash ADC ..10-3

Figure 10-3: The CMOS comparator ...10-4

Figure 10-4: Architecture of the comparator model ..10-5

Figure 10-5: Threshold and samples for each model ...10-6

Figure 10-6: The estimated signal..10-6

Figure 10-7: Nominal operation of the 3bit flash ADC ...10-7

Figure 10-8: Failure of modelling in M6_gss_1 ..10-8

Figure 10-9: Average speed for each simulation ...10-9

Figure A-1: Open-loop circuit with the offset compensationA-2

Figure A-2: The signal for the offset voltage..A-3

Figure A-3: A method of measuring open-loop characteristics with dc bias stability..A-3

Figure A-4: The open-loop gain measurement ...A-4

Figure A-5: Configuration for measuring the input offset voltageA-5

Figure A-6: a) Configuration for simulation the common-mode gain, b) Signal for

common-mode gain...A-5

Figure A-7: Configuration for direct measurement of CMRR......................................A-6

Figure A-8: CMRR frequency response of magnitude and phaseA-7

Figure A-9: Configuration for direct measurement of PSRRA-8

iv-5

Figure A-10: Signals for PSRR and PSRR ...A-8

Figure A-11: a) Unit-gain for input CMR and b) the signal ...A-9

Figure A-12: Signal for the input CMR a) and the signal b)A-10

Figure A-13: a) Measurement of the output resistance, b) output signal....................A-10

Figure A-14: Measurement of the slew rate and settling time....................................A-11

Figure A-15: Signals from a) settling time and b) slew rateA-11

Figure A-16: Improved slew rate by reducing the compensating capacitanceA-12

Figure B-1: The structure of the MAST language ..B-2

Figure B-2: The program in MAST language...B-3

Figure B-3: The syntax for the values statement ..B-7

Figure B-4: The resistor ..B-7

Figure B-5: The syntax for if statement ..B-8

Figure B-6: The syntax for equations section ...B-8

Figure B-7: The syntax for the netlist ...B-9

Figure B-8: The netlist for the operational amplifier ..B-9

Figure B-9: Signals from the transient analyses ...B-11

Figure B-10: Combination between input and output signals.....................................B-12

Figure B-11: Results from the DC transfer analysis ...B-13

Figure B-12: The RC filter for the ac analysis..B-13

Figure B-13: Signals from AC analysis ..B-14

Figure D-1: Boyle’s output stage ..D-1

Figure F-1: Predicted signals based on different samples... F-2

Figure G-1: Number of samples in each model ..G-2

Figure G-2: 1st iteration for unstable model detection ..G-4

Figure G-3: 2nd iteration for unstable models replacement...G-4

Figure J-1: The triangle PRBS ... J-2

Figure J-2: The output signal ... J-3

Figure J-3: The estimated signal .. J-3

iv-6

Figure J-4: The predicted signal in the analogue system ... J-4

Figure K-1: The linear op amp..K-3

Figure K-2: The op amp model written in MAST ..K-4

Figure K-3: The model written in VHDL-AMS ...K-5

Figure K-4: The top level in MAST..K-5

Figure K-5: VHDL-AMS top level in SMASH ..K-7

Figure K-6: The output signal from Cosmos ..K-7

Figure K-7: The signal in VHDL-AMS from SMASH ..K-8

Figure K-8: The signal in VHDL-AMS from SystemVision..K-8

Figure K-9: The signal from SMASH with ri=15kΩ ..K-9

v-1

List of Terminologies

AC: Alternate Current

ACM: Average Distance Confidence Measure

ADC: Analogue to Digital Converter

AHDL: Analogue Hardware Description Language

AMC: Automated Model Conversion

AMG: Automated Model Generator

AMS: Analogue and Mixed Signal

ANN: Artificial Neural Network

ARIMAX: AutoRegressive Integrated Moving Average with eXogenous

ARX: AutoRegressive with eXogenous variables

ASA: Analogue Signature Analyzer

ASIC: Application Specific Integrated Circuit

ATE: Analogue Test Equipment

ATPG: Automated Test Pattern Generation

AWE: Asymptotic Waveform Evaluation

BDF: Backward Differences Formula

BE: Backward Euler

BIST: Built-In Self-Test

BJT: Bipolar Junction Transistor

CAD: Computer Aided Design

CAFFEINE: Canonical Functional Form Expression in Evolution

CCCS: Current Controlled Current Source

CCVS: Current Controlled Voltage Source

CG: Conjugate Gradient

CMCOS: Current-Mode Control and Observation Structure

CMOS: Complementary Metal Oxide Semiconductor

CMR: Common-mode Range

CMRR: Common-mode Reject Ratio

CPU: Central Processing Unit

CUT: Circuit under Test

v-2

DAEs: Differential-Algebraic Equations

DC: Direct Current

DFT: Design-for-Test

DPM: Defects Per Million

DPTG: Deterministic Pattern Testability Generation

DUT: Design under Test

EDA: Electronic Design Automation

e.g.: for instance, for example

ELS: Extended Least Squares

Eq.: Equation

etc.: et cetera

ff: Forgetting Factor

FL: Fuzzy Logic

FPC: Fault Propagation Capabilities

FPGA: Field Programmable Gate Arrays

GP: Genetic Programming

HBIST: Hybrid Built-In Self Test

HDL: Hardware Description Language

HLFM: High-Level Fault Model(ling)

HLFS: High-Level Fault Simulation

HLM: High-Level Model(ling)

HTSG: Hybrid Test Stimulus Generator

IC: Integrated Circuit

i.e.: that is to say

LMM: Levenberg-Marquardt Method

LMSE: Least-Mean-Square Error

LSE: Least Square Estimate

LSM: Least Square Method

LTI: Linear-time Invariant

LTV: Linear-time Varying

MBFDI: Model Based Fault Detection and Identification

MC: Monte Carlo

MEMS: Microelectromechanical System

MFD: Multiple Fault Diagnosis

v-3

MISO: Multi-input Single-output

MMCS: Multiple Model Conversion System

MMCSD: Multiple Model Conversion System using Delta operator

MMGS: Multiple Model Generation System

MMGSD: Multiple Model Generation System using Delta operator

MNA: Modified Nodal Analysis

MOR: Model Order Reduction

MOSFET: Complementary Metal Oxide Semiconductor Field Effect Transistor

NaN: Not A Number

NARX: Nonlinear AutoRegressive with eXogenous input

NF: Neural-Fuzzy

NN: Neural Network

NORM: Nonlinear model Order Reduction Method

ODE: Ordinary Differential Equation

Op amp: Operational Amplifier

OTA: Operational Trans-conductor Amplifier

PCB: Printed Circuit Board

PDE: Partial Differential Equation

PLD: Programmable Logic Device

PLL: Phase Locked Loop

PR: Positive-Real

PRBSG: PseudoRandom Binary Sequence Generator

PRESS: Predicted Residual Error Sum of Squares

PRIMA: Passive Reduced-Order Interconnect Macromodeling Algorithm

PR-TBR: Positive-Real TRB

PRW: PseudoRandom Walk

PSRR: Power Supply Rejection Ratio

PVL: Padé-via-Lanczos

PWL: Piecewise Linear

PWP: Piecewise Polynomial

RBF: Radial Basis Functions

RML: Recursive Maximum Likelihood

RPEM: Recursive Prediction Error Method

RPLR: Recursive Pseudo-Linear Regression

v-4

RTL: Register Transfer Level

SAG: Simplification after Generation

SAT: Simulation after Test

SBT: Simulation before Test

SDARX: Situation-dependent ARX

SPD: Symmetric Positive Definite

SPICE: Simulation Program with Integrated Circuit Emphasis

SR: Slew Rate

SRAM: Static Random Access Memory

TBR: Truncated Balanced Realization

tlu: Table Look-up

TPWL: Trajectory PWL

TRAP: Trapezoidal

VCCS: Voltage Controlled Current Source

VCVS: Voltage Controlled Voltage Source

VHDL: VHSIC Hardware Description Language

VHSIC: Very High Speed Integrated Circuits

VLSI: Very Large Scale Integration

1-1

Chapter 1: Introduction

It is well known that most electronics manufacturing processes are not perfect; most

products may contain defects. An electronic product may fail either due to

manufacturing defects or out of specification performance. The latter can be caused by

inadequate design. Manufacturing defects include excess material shorting

interconnection wiring on printed circuit boards (PCBs) or integrated circuits (ICs),

open circuits due to breaks in wires and use of out-of-specification components. In

industry, many types of defects can happen with varying probability, which can be

reduced by improving the quality of the manufacturing process. Moreover, if the design

is not sufficiently tolerant of in-specification component or process variations a circuit

may be faulty even though it is manufactured correctly. With fault-free components,

fault tolerance should be improved if a chip is designed far beyond the specification, but

this design may be more expensive, so no profits are made. Other factors including

simulation time, test application time and commercial costs also need to be taken into

account. Therefore, efficient test is required so that manufacturers will not lose profits.

There are two approaches to test: structural test and functional test. The former, also

known as defect oriented test (DOT), is used to detect manufacturing defects directly

rather than the functional error produced. The latter ignores the internal mechanism of a

system or component and focuses solely on the outputs generated in response to

selected inputs and execution conditions, i.e., test the specifications of the device under

test (DUT). Functional test has always been the dominant approach for analogue circuits,

and it is often the only possibility without the availability of tools to support structural

test such as analogue fault simulation and associated fault models. Therefore, the DUT

is sometimes overtested. Moreover, complete functional test is economically impractical

for production stage test of most digital integrated circuits (ICs), for example, a 32 bit

adder may require about 6,000 years to test all operations at 100MHz. Therefore,

structural test is normally adopted for digital circuits. This is feasible because digital

fault simulation using stuck-at faults and gate-level models is straightforward and

effective. Fault simulation and modelling can also be used in structural test, so that

DOT may be more efficient and effective.

1-2

In recent years, functional complexity, speed and performance of analogue and mixed

signals ICs have increased, which have resulted in even higher test costs because the

tester needs to be more accurate and faster than the circuit under test (CUT), otherwise

it can not test all the specifications. Buying and running high performance analogue test

equipment (ATE) is very expensive. Thus structural test is required for analogue circuits

due to its potential efficiency and low cost [Olbrich96] [Fang01] [Aktouf05].

Furthermore, structural test may provide additional information on quality and

reliability which is not available from functional test [Rich92] [Healy05].

Analogue test is very time consuming and expensive, its costs dominate approximately

90% of the whole testing cost in modern analogue and mixed mode ICs [Abra95].

Analogue test suffers from a lack of automated test pattern generation (ATPG)

algorithms, long testing time and unknown test quality [Bartsch99] [Healy05]. These

can be resolved by establishing design for test (DFT) and built-in self-test (BIST)

techniques [Ohletz91] [Russell93] [Renovell96] [Healy05] to improve testability.

Moreover, the test pattern generation can be simplified, because the test vectors are

generated internally, and it allows field testing to be performed for many years after

manufacture [Zwo00]. For digital circuits DFT and BIST are well established and easily

applied to almost all circuits. Unfortunately, in analogue domain, these techniques can

only be employed for certain classes of circuits [Spinks98].

It is desirable to use defect oriented test (DOT) strategies at the layout level in order to

simplify test of analogue or mixed mode circuits [Bratt95] [Kalpana04]. Application of

inductive fault analysis (IFA) techniques for DOT development has received a lot of

attention. IFA was a subject of research beginning in the middle 1980s, including

several significant projects at Carnegie Mellon University [Ferguson88]. It is a

systematic and automatic method for determining what faults are most likely to take

place in a large circuit from details of the manufacture process such as circuit’s

technology, realistic defect occurrences, fabrication defect statistics, and physical layout.

IFA can distribute defects over the physical layout of the circuit, and simulate to

determine what faults may result. However, a description of the manufacturing defect

statistics is required, which provides a list of possible electrical faults when mapped

onto the layout. At circuit level the fault list includes short, opens, breaks in lines and

1-3

parameter variations in both active and passive components such as resistors, capacitors

and transconductors. Therefore, DOT can be enhanced with IFA [Harvey95].

During the last few years, high level fault modelling (HLFM) and high level fault

simulation (HLFS) techniques have been proposed for modern complex analogue and

mixed mode system design due to its high speed [Wilson02] [Kilic04] [Joannon08].

Fault simulation is an essential element in the development of structural test programs

for digital, analogue and mixed mode ICs, and can be carried out at transistor level and

high level. The aim of simulation is to define an efficient structural test program and to

simulate the behaviour of a circuit in the presence of a fault specification. Simulation

and modelling are dynamically related, especially when high level simulation is run,

hence a modelling technique is required.

High level models comprise both faulty and fault-free models. High level fault-free

modelling may simply indicate behaviour of a fault-free circuit, but normally it is not

able to cope with faulty conditions with strong nonlinearity. The only way to solve this

is to replace the fault-free model with a faulty one. Furthermore, in fault-free simulation,

the difference between transistor level and high level may not be obvious, but this may

be shown under fault simulation. HLFM techniques have shown the potential ability to

deal with at least some degree of nonlinearity in large systems.

Unlike for linear systems, no technique currently guarantees for completely general

nonlinear systems, even in principle, to produce a macromodel that conforms to any

reasonable fidelity metric. The difficulty stems from the fact that nonlinear systems can

be widely varied, with extremely complex dynamical behaviour possible, which is very

far from being exhaustively investigated or understood. Generally in view of the

diversity and complexity of nonlinear systems, it is difficult to conceive of a single

overarching theory or method that can be employed for effective modelling of an

arbitrary nonlinear block.

Models can be obtained either manually or automatically. Automated model generation

(AMG) methodologies are becoming an increasingly important component of

methodologies for effective system verification. Similar to manual creation, AMG can

generate lower order macromodels via an automated computational procedure by

1-4

receiving the information from transistor level models [Roychowdhury03]

[Roychowdhury04].

There are several broad methodologies for AMG, a fundamental decision is the model

structure, which in general terms divides into linear time-invariant (LTI), linear time-

variant (LTV), nonlinear time-invariant and nonlinear time-variant types. An estimation

algorithm is then required in order to obtain parameters for these models. These

algorithms may use lookup tables [Yang04], radial basis functions (RBF) [Mutnury03],

artificial neural networks (ANN) [Davalo91] [Zhang00] and its derivations such as

fuzzy logic (FL) [Kaehler] and neural-fuzzy network (NF) [Uppal05], and regression

[Middleton90] [Ljung99]. Model generators can also be categorized into the black, grey

or white box approaches, depending on the level of existing knowledge of the system’s

structure and parameters.

These models are in the form of mathematical equations that reproduce the input-output

relationships of the original circuit, and can be easily converted into any format

convenient for use with system-level simulation tools, e.g., VHDL-AMS [Ashenden03],

MAST [Saber04], and even as SPICE subcircuits. piecewise polynomial (PWP) is

further used to capture different loading effects, simultaneous switching noise (SSN),

crosstalk noise and so on [Dong04] [Dong05], faster modelling speed is achieved, but

multiple training data is required to cover various operating regions.

However, AMG may produce high order models of excessive complexity (e.g.,

[Huang03] [Tan03] [Wei05]), in which case model order reduction (MOR) techniques

are required [Gielen05]. A survey paper [Roychowdhury04] discusses MOR techniques

with respect to various model types, and in a variety of contexts: LTI MOR [Pilliage90],

LTV MOR [Phillips98] [Roychowdhury99] and weakly nonlinear methods including

polynomial-based [Li03] [Li05], trajectory piecewise linear (TPWL) [Rewienski01],

and piecewise polynomial (PWP) [Dong03].

Unfortunately, there are not any papers describing the use of AMG approaches for

HLFM at a system level. For straightforward system simulation relatively simple

models may be adequate, but they can prove inadequate during HLFM and HLFS. The

accuracy and speedup of existing models may be doubted when fault simulation is

1-5

implemented because faulty behaviour may force (non-faulty) subsystems into highly

nonlinear regions of operation, which may not be covered by their models. Multiple

training data is required to cover the potentially wide range of operating conditions.

Although a fault model can behave accurately in a circuit, it may fail in a large system

due to fault propagation [Zwo97] [Bartsch99]. It is a major problem in the industry

because if a fault distributes along a fault propagation path in a system, several process

can be affected. It is therefore important to understand the mechanism of propagation

that identify the order of occurrence of events and specify the paths of fault propagation

in causal qualitative models [Batra04]. For HLFM techniques in a system, it is crucial to

know whether or not the high level fault-free operational amplifier (op amp) model is

able to correctly model propagation of the faulty behaviour, and how fault propagation

can be predicted so that the suitable model is chosen for the whole system. Therefore,

not only parameters of the model but also the system need to be varied [Bartsch99].

The general aim of this study is to prove that models generated using automated model

generation can be employed to implement high level fault modelling (HLFM). This

thesis begins with an introduction to model generation and model order reduction

approaches in chapter 2. In chapter 3 fault modelling techniques and other important

approaches for fault detection are introduced. High level fault modelling and simulation

using MAST is reviewed in chapter 4. The algorithm termed multiple model generation

system (MMGS) for the automated model generation (AMG) is developed for single-

input and single-output (SISO) systems in chapter 5 followed by the introduction of

MMGS for multiple-input single-output (MISO) systems in chapter 6. Chapter 7

introduces high level modelling using the models generated from last two chapters. The

multiple model generation system using the delta operator (MMGSD) is discussed in

chapter 8 followed by the high level fault modelling in chapter 9. In chapter 10 HLFM

of a 3bit flash ADC is investigated. In chapter 11 conclusion and future discussion are

supplied.

2-1

Chapter 2: Literature Review of
Approaches for High Level

Modelling and Automated Model
Generation

The aim of the chapter is to review some model generation approaches for high level

fault-free models. These approaches can be realised either manually or automatically.

The general structure of system modelling is reviewed in section 2.1. In section 2.2

various modelling techniques are introduced. Automated model generation approaches

for high level fault-free models are discussed in section 2.3. Section 2.4 reviews various

approaches to generate a model in different computing languages.

2.1 Review of Possible Models of a System

Figure 2-1 shows the possible abstraction hierarchy of an electronic system [Pella97].

This is also reckoned by [Ashenden03] [Joannon08]. Models, which can refer to both

“circuits” and “devices” [Getreu93], are produced by combining lower-level building

blocks to create higher-level building blocks. Lower-level blocks can be either

elemental models or previously created hierarchical models, elemental intrinsic building

blocks are at the bottom of all hierarchical models [Fang01] [Joannon06].

Level of
abstraction in
structural view

Functional

Behavioural

Macro

Circuit

Component

Conservation
laws are not
considered

Conservation
laws are valid

Figure 2-1: Abstraction hierarchy [Pella97]

2-2

On moving from bottom to top the structure, the circuit model becomes simpler and the

simulation speed can be increased significantly. At the component level transistors and

passive devices are available as basic elements; the circuit level consists of operational

amplifiers (op amps), comparators and so on; at the macro level the functionality of a

basic element is replaced by a more abstract representation including controlled voltage

and current sources. Models at the behavioural level comprise mathematical

relationships between input and output signals. The connection pins of these models

carry physical signals, which are subjected to conservation laws. These are Kirchhoff’s

current and voltage law in electrical systems; at the functional level, complex elements

such as data acquisition or even modem blocks are available, but the conservation laws

are not available at connection pins, that is, signals are not physical any more [Rosen98]

[Nikitin07]. Each level in the hierarchy may be represented by a model, so the whole

system can be simulated by high level modelling (HLM) to deal with nonlinear

behaviour. Moreover, structure of the system is less complex which may result in

reduction of simulation time [Kalpana04] [Joannon08].

Another design flow methodology is from top to bottom methodology seen in Figure

2-1, which is the opposite way to bottom to top methodology. One of the advantages of

this methodology is that behavioural models have previously been built, so each

structural block description can be validated in the overall system using other block

behavioural models [Joannon06].

Moreover, a method between top to bottom and bottom to top methodologies is the

“Meet in the middle” methodology [Joannon06]. It takes advantages of each method.

The first step is coming from top to bottom design method: system architecture is

described thanks to functional block models. Once again, system specifications are

budgeted into numerous block specifications. In this methodology, a trade-off between

system engineers and component designers allow them to determine realistic

specifications for each block. Then these blocks are separately designed and assembled

together. Finally, the system is validated as in a bottom to top flow.

2-3

2.2 Review of Various Modelling Techniques

The aim of the section is mainly to introduce three types of models because they will be

used in the thesis: macromodels, behavioural models and transfer function models.

Macromodels and behavioural model are commonly used in these days. These models

normally include three stages as shown in Figure 2-2.

Input Stage Function Stage Output Stage

Figure 2-2: The proposed general structure of a high-level model

The input stage acts as an interface between electrical signals outside the block and the

internal representation of the function by mathematical equations in the function stage.

The input stage models properties such as input resistance, input capacitance, input bias

current, input offset voltage, the bounds of input current and the limits of the input

voltage. The function stage is the central part of the model, which makes use of

mathematical functions to represent any kind of analogue circuit such as op amps,

ADCs and DACs. The output stage maps the results provided by the function stage into

the electrical environment of the output block. Like the input stage, it can be

implemented with components such as transistors, resistors and mathematical functions

[Fang01] [Nikitin07]. There may be some cases, in which more stages are required to

model extra information. [Bartsch99] developed a behavioural model that consists of

two middle stages in order to include extra poles and zeros. In following subsections the

strengths and weakness of these modelling techniques are addressed.

2.2.1 Macromodelling (structural approach)

In macromodelling two techniques can be utilised: the simplification and the built-up

technique [Joannon06]. The former replaces parts of an electronic circuit with ideal

components, while the built-up technique completely rebuilds a part of the circuit with

ideal elements to meet certain external circuit specification. The well-known Boyle op

amp macromodel [Boyle74] is an excellent example of macromodelling. The model

2-4

employs ideal components such as ideal current sources and ideal transistors based on

SPICE primitives [Bartsch99]. Macromodels themselves can become building blocks

for other models. However, there is a significant restriction: the modeller must use the

pre-defined element, which can limit the ability to easily incorporate required effects

[Getreu93].

2.2.2 Behavioural modelling

Behavioural modelling uses mathematical equations and control statements such as

If…then…else. It is well-suited to provide models that match requirements of designers

at all stages of the design process. This type of model can describe the behaviour of a

block directly without consideration of how the block is built. A simple example is the

2-pole transfer function: k/(s+1)(s+2). Behavioural modelling through the use of a

hardware description language (HDL) is often preferred with respect to macromodelling

because of its high speed and simplicity [Joannon06] [Nikitin07]. Moreover, its

mathematical equations can be easily converted into the format of HDLs such as

VHDL-AMS and its high simulation speed [Getreu93] [Dong03]. Like macromodelling

there are also two ways to realize behavioural models: analytical and statistical

[Getreu93]. The analytical description of a sub-circuit is usually created by a designer.

However, it may still be an expensive approach and behavioural modelling still needs

verification even though an analytical approach is adopted. A statistical behavioural

model can be built in the same way as a statistical macromodel [Yang98]. Unlike

macromodelling, behavioural modelling does not need look-up techniques. Once the

structure of a macromodel is known, a behavioural model can always be developed,

however, not always vice versa.

2.2.3 Transfer function modelling

Transfer function models do not have the full capabilities of equation based descriptions.

They make use of the flexibility of the SPICE dependent sources (VCCS, CCCS, VCVS

and CCVS), where the output source has a transfer function or nonlinear dependency on

the input [Bartsch99]. The implementation of these sources can be “hidden” by being

coded directly into the simulator, but they can be recognised by the restrictions of using

a fixed number of pins and being unidirectional [Getreu93].

2-5

2.3 Review of Automated Model Generation (AMG)

Approaches

In this subsection work on automated model generation (AMG) methodologies is

reviewed. The model generated can be structured as either linear-time invariant (LTI),

linear-time varying (LTV), nonlinear-time invariant or nonlinear-time varying. LTI no

doubt form the most important class of dynamical systems. The basic structure of a LTI

block for mixed mode circuits is illustrated in Figure 2-3, where u(t) and y(t) represent

inputs, and output to the system in the time domain, respectively. U(s) and Y(s) are

forms in the Laplace domain. The definitive property of any LTI system is that the input

and output are related by convolution with an impulse response h(t) in the time-domain,

i.e.,)()()(thtxty  , their transforms are related to multiplication with a system transfer

function H(s), i.e.,)()()(tHtXtY  . Their relationship can be expressed by partial

differential equations (PDEs) or ordinary differential equations (ODEs). Such

differential equations can be easily implemented using analogue hardware description

language (AHDL) descriptions. A typical model structure for LTI is AutoRegressive

with eXogenous (ARX) that is able to describe any single-input single-output (SISO)

linear discrete-time dynamic system [Ljung99].

Impulse response h(t)
ODEs/PDEs

Transfer function H(s)
u(t)/U(s) y(t)/Y(s)

Figure 2-3: Linear time invariant block

LTV are used in practice because most real-world systems are time-varying as a result

of system parameters changing as function of time. They also permit linearization of

nonlinear systems in the vicinity of a set of operating points of a trajectory. Similar to

LTI systems, LTV can also be completely characterized by impulse responses or

transfer functions. The main difference between them is that time-shift in the input of

LTV does not necessarily result in the same time-shift of the output. A basic structure of

LTV is depicted in Figure 2-4, where u(t) and y(t) represent inputs, and output to the

system in the time domain, respectively. U(s) and Y(s) are forms in the Laplace domain.

2-6

Impulse response h(t,tau)
T-V ODEs/PDEs

Transfer function H(t,s)
u(t)/U(s) y(t)/Y(s)

Figure 2-4: Linear time varying block

LTV are better able to handle time variation in state-space forms [Ljung99].

Furthermore, nonlinear models such as the Wiener and Hammerstein model, and

Situation-Dependent AutoRegressive with eXogenous (SDARX) give much richer

possibilities to describe systems.

These models can be generated by using estimation algorithms, which comprise lookup

tables [Yang04], radial basis functions (RBF) [Mutnury03], artificial neural networks

(ANN) [Davalo91] [Zhang00] and its derivations such as fuzzy logic (FL) [Kaehler] and

neural-fuzzy network (NF) [Uppal05], and regression [Simeu05]. Model generators can

also be categorized into the black, grey or white box approaches, depending on the level

of existing knowledge of the system’s structure and parameters. [Dong05] indicates that

white-box methods can produce more accurate macromodels than black-box methods.

However, this work was only applied to a limit number of digital circuits.

Regression is an approach that is of interest in this thesis. It is a form of statistical

modelling that attempts to evaluate the relationship between one variable (termed the

dependent variable) and one or more other variables (termed the independent variables)

[Regression]. It can be divided into linear regression and nonlinear regression [Ljung99]

for generating linear or nonlinear models. [McConaghy05] [McConaghy05a] use the

regression approach [Hong03], via the predicted residual error sums of squares (PRESS)

statistic [Breiman96], to test predictive robustness of linear models that are generated by

an automatic symbolic model generator named CAFFEINE (Canonical Functional Form

Expression in Evolution). CAFFEINE takes SPICE simulation data as inputs to generate

open-loop symbolic models by using genetic programming (GP) via a grammar that is

specially designed to constrain the search to a canonical functional form without cutting

out good solutions. Results show that these models are interpretable, and handle

nonlinearity with better prediction quality than posynomials (coefficients of a

polynomial need not be positive, and, on the other hand, the exponents of a posynomial

2-7

can be real numbers, while for polynomials they must be non-negative integers).

Unfortunately, McConaghy et al did not address whether the generated model can be

fitted into a large system and model nonlinearity well. Additionally, speed of model

generation was not mentioned.

Linear models can be obtained using recursive least square (RLS) estimation. It is a

mathematical procedure for finding the best-fitting curve to a given set of points by

minimizing the sum of the squares of the offsets of the points from the curve [Ljung99].

Its general process is shown in Figure 2-5, where u(t) is the input stimulus, which is

used to connect both a system and the estimator; y(t) is the output response from a

system using the transistor level simulation (TLS); yE(t) is the output response using an

estimation approach such as the RLS.

Output y(t)Input u(t)

A system
(TLS)

Estimator
(RLS)

Original
signals

-

Estimated
Output yE(t)

Figure 2-5: The general process of the estimation

Both the system and estimator use the input stimulus to produce individual output

response, both response are then compared, if the difference is significant, the

parameters of the model will be changed in order to achieve smaller difference.

This thesis will make use of algorithms to derive models based on [Wilkinson91]

[Middleton90]. The following outlines the algorithms used. [Wilkinson91] employ RLS

estimation combined with the delta operator [Middleton90] to obtain the transfer

function of a real time controller for a servo motor system instead of using discrete-time

transfer function because that model coefficients in discrete-time models strongly

depend on the sampling rate, which result in aliasing and slow simulation time. By

using the delta operator the coefficients produced relate to physical quantities, as in the

2-8

continuous-time domain model, but are less susceptible to the choice of sampling

interval [Wilkinson91]. Initially a discrete-time system is given in Eq. 2-1:

)()2()1()()2()1()(2121 nbtubtubtubnatyatyatyaty nbna  

Eq. 2-1

This equation is then written in a linear regression form, as shown in Eq. 2-2:

)()(tty T Eq. 2-2

where θ is the parameter vector shown in Eq. 2-3, φ(t) is the regression vector displayed

Eq. 2-4.

θ = [a1 a2 … ana b1 b2 … bnb]T Eq. 2-3

)]()1()()1([)(nbtutunatytytT   Eq. 2-4

The least square estimate (LSE) of the parameter vector can be found from

measurements of u(t) and y(t) using Eq. 2-5 [Ljung99]:

















 







N

t

N

t

T tyt
N

tt
N

t
1

1

1

)()(
1

)()(
1

)( Eq. 2-5

Its recursive form is expressed in Eq. 2-6, where ε(t) is the prediction error, λ(t)

represents forgetting factor (ff), P(t) indicates covariance matrix, L(t) is the gain vector.























)()1()()(
)1()()()1(

)1(
)(

1
)(

)()1()()(
)()1(

)(

)1()()()(

)()()1()(

ttPtt
tPtttP

tP
t

tP

ttPtt
ttP

tL

tttyt

ttLtt

T

T

T

T













Eq. 2-6

2-9

The linear regression is then restructured using the delta operator as shown Eq. 2-7

[Middleton90], where δ represents delta, q is the forward shift operator and Ts is the

sampling interval. The relationship between δ and q is a simple linear function, so δ can

offer the same flexibility in the modelling of discrete-time systems as q does.

Ts
q 1

 Eq. 2-7

This operator behaves as a form of the forward-difference formula, as shown in Eq. 2-8

[Burden85]. This is used extensively in numerical analysis for computing the derivative

of a function at a point.

h
xfhxf

xf
)()(

)('


 Eq. 2-8

The delta operator makes use of the discrete incremental difference (or delta) operator

that whilst operating on discrete data samples, is similar to those of the continuous-time

Laplace operator. A better correspondence can be obtained between continuous and

discrete time if the shift operator is replaced by a difference operator that is more like a

derivative [Middleton90].

A similar procedure is used to achieve regression based on the delta operator. This starts

by considering a continuous time transfer function shown in Eq. 2-9.

01
1

01
10)(

sasas
sbsbsb

sG
m

mm
n

nn







 



Eq. 2-9

When Ts is sufficiently short, the continuous time transfer function G(s) is equal to the

delta transfer function G(δ) [Middleton90] displayed in Eq. 2-10.

01
1

01
10

)(
)(

)(




m

mm
n

nn

aa
bbb

tu
ty

G






 



Eq. 2-10

After arranging this equation, Eq. 2-11 is obtained:

2-10

)()()()()(0
1

1 tubbtyaaty n
n

m
mm     Eq. 2-11

This can be written as Eq. 2-12 [Middleton90], which is similar to Eq. 2-2:

)()(tty Tm  Eq. 2-12

where

θ = [a1 a2 … am b0 b1 … bn]T Eq. 2-13

)()([)(01 tytyt mT    )]()(0 tutun   Eq. 2-14

Using a similar approach to least square estimate (LSE) in the discrete-time transform,

the parameter vector is obtained using the delta operator in Eq. 2-15:

















 







N

t

m
N

t

T tyt
N

tt
N

t
1

1

1

)()(
1

)()(
1

)( Eq. 2-15

RLS is also obtained in Eq. 2-16:























)()1()()(
)1()()()1(

)1(
)(

1
)(

)()1()()(
)()1(

)(

)1()()()(

)()()1()(

ttPtt
tPtttP

tP
t

tP

ttPtt
ttP

tL

tttyt

ttLtt

T

T

T

Tm












Eq. 2-16

However, the approach in [Wilkinson91] is only available to any single-input single-

output (SISO) systems.

Unfortunately, AMG may produce high order models of excessive complexity for both

continuous-time and discrete-time systems, so model order reduction (MOR) techniques

are required. The purpose of MOR is to use the properties of dynamical systems in

order to find approaches for reducing their complexity, while preserving (to the

2-11

maximum possible extent) their input-output behaviour. It comprises a branch of

systems and control theory [Roychowdhury04]. Combining MOR with the model

structures produces new model structures dubbed LTI MOR [Pilliage90], LTV MOR

[Phillips98] [Roychowdhury99] and weakly nonlinear methods including polynomial-

based [Li03] [Li05], trajectory piecewise linear (TPWL) [Rewienski01], and piecewise

polynomial (PWP) [Dong03].

Mathematically, a LTI model with a MOR method is expressed as a set of differential

equations. In Eq. 2-17 u(t) represents the input waveforms to the block and y(t) are the

outputs. The number of inputs and outputs is relatively small compared to the size of

x(t), which is the state of the internal variables of the block. A, B, C, D and E are

constant matrices, ppppnnn RtuRCRBRAE  )(,,,& .

)()()(

)()(

tDutxCty

tButAxxE
T 


Eq. 2-17

MOR methods for LTI systems fall into two major groups: Projection-based methods

and Non-projection based methods. The former consists of such methods as Krylov-

subspace (moment matching methods), Balanced-truncation method, proper orthogonal

decomposition (POD) methods etc. Krylov-subspace based techniques such as Padé-

via-Lanczos (PVL) techniques [Feldmann95], Krylov-subspace projection methods

were an important milestone in LTI MOR macromodelling [Grimme97]. Non-

projection based methods comprise methods such as Hankel optimal model reduction,

singular perturbation method, various optimization-based methods etc. Via Krylov-

subspace operation, reduced models are obtained in Eq. 2-18, where CBAE
~

,~,
~

,~ are

reduced order matrices, qppqpq RCRBRAE  
~

,~,
~

&~ , W and V are matrices for

spanning the matrices.

CVCBWBAVWAEVWE TTT 
~

,~,
~

,~ Eq. 2-18

However, the reduced models using Krylov methods retained the possibility of violating

passivity, or even being unstable [Roychowdhury03]. In this thesis we model

operational amplifiers (op amps) instead of passive systems. A passive system is

2-12

defined as one that can not generate energy under any circumstances. A system is stable

for any bounded inputs, its response remains bounded. In a LTI model passivity

guarantees stability if its response remains bounded for any bounded input. Passivity is

a natural characteristic of many LTI networks, especially interconnect networks. It is

essential that reduced models of these networks also be passive, since converse implies

that under some situation of connectivity, the reduced system will become unstable and

diverge unboundedly from the response of the original system [Roychowdhury04]. An

algorithm termed PRIMA (Passive Reduced-Order Interconnect Macromodeling

Algorithm) [Odabasioglu97] has been developed to preserve this possibility. It

generates provably passive reduced-order N-port models for RLC interconnect circuits.

The modified nodal analysis (MNA) equation is formed using these ports along with

sources in time domain as seen in Eq. 2-19:

n
T

N

Nnn

xLi

BuGxxC




Eq. 2-19

where the vectors iN and uN indicate the port currents and voltages respectively, and C,

G are matrices representing the conductance and susceptance matrices.

The Arnoldi algorithm [Silveira96] is employed by PRIMA to generate vectors required

for applying congruence transformations to the MNA matrices, i.e., V=W. These

transformations are used to reduce the order of circuits [Kerns95]. Because of the

moment-matching properties of Krylov-subspaces, the order reduced model can comply

with the original model up to the first q derivatives, where q is the order of the reduced

model. Models from PRIMA are able to improve accuracy compared with Arnoldi.

Unfortunately, it has drawback in that model size is proportional to the number of

moments (moment is matched by multiplying by the number of ports). Thus for large

port numbers the algorithm leads to impractically large models.

This can be improved by using the truncated balanced realization (TBR) approach

presented originally in [Moore81]. TBR based techniques can be classed as positive-

real TBR (PR-TBR), bounded-real TBR (BR-TBR) and hybrid TBR [Phillips02].

Phillips et al present an algorithm based on the input-correlated TBR for parasitic

2-13

models, which shares some of their advantages such as computable error bounds. They

claim that the size of parasitic models from projection-like procedures can be reduced

by exploiting input information such as nominal circuit function. This algorithm can

compute guaranteed passive, reduced-order models of controllable accuracy for state-

space systems with arbitrary internal structure. However, TBR methods are not

commonly used for reduction from three-dimensional simulation because the

computational cost grows cubically with original system’s size. [Kamon00] combines

Krylov subspace techniques with TBR methods so that the size of TBR is reduced and

potentially the computational cost can be reduced.

LTI MOR may not be applicable for many functional blocks in mixed signal systems

that are usually nonlinear. It is unable to model behaviours such as distortion and

clipping in amplifiers. Therefore, LTV MOR is required. The detailed behaviour of the

system is described using time-varying differential equations as shown in Eq. 2-20:

)()()()()(

)()()()()(

tutDtxtCty

tutBtxtAxtE
T 


Eq. 2-20

The dependence of A, B, C, D and E on t is able to capture time-variation in the system.

This time-variation is periodic in some practical case such as in mixers, the local

oscillator input is often a square waveform or a sine waveform, switched or clocked

systems are driven by periodic clocks [Roychowdhury03].

It is known that LTV systems can not directly use LTI MOR methods due to the time-

variation of the impulse response and transfer function. However, [Roychowdhury99]

demonstrates that LTI model reduction techniques can be applied to LTV systems, by

reformulating Eq. 2-20 as a LTI system similar to Eq. 2-17, but with extra artificial

inputs that capture the time-variation. The reformulation firstly separates the input and

system time variations explicitly using multiple time scales [Roychowdhury01] in order

to obtain an operator expression for the transfer function H(t,s) in Figure 2-4. This

expression is then evaluated using periodic steady-state methods [Kundert90] to achieve

an LTI system with extra artificial inputs. Once this LTI system is reduced to a smaller

one using any LTI MOR technique, the reduced LTI is reformulated back into the LTV

2-14

system form seen in Eq. 2-20. Moreover, [Phillips98] [Phillips00] claim that without the

use of multiple time scales the LTV-to-LTI reformulation may still be performed using

standard linear system theory concepts [Zadeh63].

Although LTV MOR may be used when modelling some weakly nonlinear systems, in

most of cases nonlinear system techniques are required for such systems. A standard

nonlinear system formation is based on a set of nonlinear differential-algebraic

equations (DAEs) shown in Eq. 2-21, where, nRx , n is the order of matrices, x(t) and

y(t) indicate the vectors of circuit unknowns and outputs, u is the input,)(q and)(f

are nonlinear vector functions, and b and c are input and output matrices, respectively.

)()(

)())(())((

txcty

tbutxftxq
T


Eq. 2-21

A polynomial approximation is simply extension of linearization, with f(x) and q(x)

replaced by the first few terms of a Taylor series at the bias point x0 as shown in Eq. 2-

22, where q(x) = x (assumed for simplicity),  is the Kronecker tensor products

operator,
inn

xxi

i

i R
x
f

i
A 

 




0!

1
. The utility of this system in Eq. 2-22 is that it becomes

possible to leverage an existing body of knowledge on weakly polynomial differential

equation systems.

)()(

)()()()()()())(()(
0002010

txcty

tbuxxAxxxxAxxAxftx
dt
d

T

i
i



 
Eq. 2-22

Volterra series theory [Schetzen80] and weakly nonlinear perturbation techniques

[Nayfeh95] can then be used to justify a relaxation-like approach for this kind of

systems. The former provides an elegant way to characterize weakly nonlinear systems

in terms of nonlinear transfer functions [Volterra]. By using Volterra series, response x(t)

in Eq. 2-22 can be expressed as a sum of responses at different orders, i.e.,







1

)()(
n

n txtx , xn is the nth-order response. The linearized first order through third

2-15

order nonlinear responses in Eq. 2-22 need to be solved recursively using Volterra

series as shown in Eq. 2-23 to Eq. 2-25, where))()((
2
1

)(122121 xxxxxx  .

buxAtx
dt
d

 111))((Eq. 2-23

)()())((11112212 xx
dt
d

xxAxAtx
dt
d

 Eq. 2-24

)(2)()()(2))((211111113212313 xxxxx
dt
d

xxxAxxAxAtx
dt
d

 Eq. 2-25

The nth-order response can be related to a Volterra kernel of order n, hn(τ1,...,τn), which

is an extension to the impulse response function of the LTI system exhibited in Eq. 2-26,

to capture both nonlinearities and dynamics by convolution. Volterra kernels are the

backbone of any Volterra series. They contain knowledge of a system’s behaviour, and

predict the response of the system [Volterra].

nnnnn ddtutuhtx  








  111)()(),,()(Eq. 2-26

Alternatively, a variant that matches moments at multiple frequency points is shown in

Eq. 2-27, where hn(τ1,...,τn) is transformed into the frequency domain via Laplace

transform.

n
ss

nnnn ddehssH nn   








  
1

)(
11

11),,(),,(Eq. 2-27

),,(1 nn ssH  is referred to as the nonlinear transfer function of order n. The nth-order

response, xn, can also be related to the input using),,(1 nn ssH  .

Unfortunately, the size of Volterra based nonlinear descriptions often increase

dramatically with problem size. [Li03] combines and extends Volterra and projection

approaches using a method termed NORM (Nonlinear model Order Reduction Method)

to reduce the model size. This method computes a projection matrix by explicitly

2-16

considering moment-matching of the nonlinear transfer function. For the system in Eq.

2-22, the first-order transfer function of the linearized system is seen in Eq. 2-28:

bsHAs )()(11 or bAssH 1
11)()( Eq. 2-28

Without loss of generality, Eq. 2-28 is expanded at the origin (0,0) as shown in Eq. 2-29,

where M1,k is a kth-order moment of the first-order transfer function, bAr 1
11
 .











0

,1
0

11)(
k

k
k

k

kk MsrAssH Eq. 2-29

This approach can also be applied to achieve the moments of the second-order or third-

order transfer functions. Comparing with existing projection based reduction models

such as [Phillips98] [Phillips00], this method provides a significant reduction of model

size. A particularly attractive property of NORM is that the reduced order model

produced matches certain number of transfer function moments.

[Batra04] employ NORM to generate reduced-order models of circuits from transistor

level netlists. The difference from [Li03] is that Batra et al exploit least-mean-square

error (LMSE) fitting techniques to find the 3rd order macromodel coefficients instead of

from the model equations. Results show that the macromodels generated achieve

significant decrease in model size with good accuracy to full transistor-level simulation.

Unfortunately, modelling speed is not comparing with transistor level simulation (TLS).

In addition the values of these results may be doubtable because this macromodel is not

converted into hardware description language (HDL) for high level modelling (HLM).

Outside a relatively small range of validity, but polynomials are known to be extremely

poor for global approximation [Roychowdhury04], so other methods such as piecewise

approximation can be used to achieve better solutions. [Rewienski01] developed an

approach termed trajectory piecewise-linear (TPWL) using a piecewise-linear (PWL)

system. Initially Rewienski et al select a reasonable number of “centre points” along a

simulation trajectory in the state space, which is generated by exciting the circuit with a

representative training input. Around each centre point, system nonlinearities are

2-17

approximated by implicitly defined linearization. A model is generated if the current

state point x is ‘close enough’ to the last linearized point xi, i.e.,  ixx , which

means that x lies within a circle of radius of ε and centred at xi. Each of the linearized

models takes the form shown in Eq. 2-30, with expansions around states x0 ,…, xs-

1:where x0 is the initial state of the system and Ai are the Jacobians of f(.) evaluated at

states xi.

BuxxAxf
dt
dx

iii )()(Eq. 2-30

A Krylov subspace projection method is then used to reduce the complexity of the

linear model within each piecewise region. Rewienski et al then combined all s linear

models according to a weighting equation in Eq. 2-31, where)(~ xwi are weights

depending on state x.

BuxxAxwxfxw
dt
dx s

i
iii

s

i
ii  









1

0

1

0

)()(~)()(~ Eq. 2-31

TPWL is more suitable for circuits with strong nonlinearities such as comparators, and

has more advantages than PWL because as the dimension of the state-space in PWL

grows one concern with these methods is a potential explosion in the number of regions

which may severely limit simplicity of a small macromodel. However, Rewienski et al

did not address the criterion of the training stimulus. Moreover, because PWL

approximations do not capture higher-order derivative information, the ability of TPWL

to reproduce small-signal distortion or intermodulation is limited. Therefore, Krylov-

TBR TPWL was developed using TBR projection to obtain further order reduction

[Vasilyev03].

The PWP technique [Dong03], which is a combination of polynomial model reduction

with the trajectory piecewise linear method, is able to improve TPWL by dividing the

nonlinear state-space into different regions, each of which is fitted with a polynomial

model around the centre expansion point. These points can be selected either from

“training simulation” or from DC sweeps. The resulting macromodel is refined

2-18

incrementally by new piecewise regions until a desired accuracy is reached. Firstly they

expand a polynomial function into many points, each of them is then simplified by

approximating the nonlinear function in each piecewise region to obtain much smaller

size models. These models are then stitched together. Finally a scalar weight function is

used to ensure fast and smooth switching from one region to another. A key advantage

of PWP is that a macromodel generated can capture not only linear weakly nonlinear

(such as distortion and intermodulation) but also strongly nonlinear (such as clipping

and slewing) system dynamics. Moreover, fidelity in large-swing and large-signal

analysis can be retained. PWP is further implemented in [Dong04] for extracting

broadly applicable general-purpose macromodels from SPICE netlists such that the

generated model is able to capture different loading effects, simultaneous switching

noise (SSN), crosstalk noise and so on. Furthermore, a speed up of eight times

simulation speed is achieved [Dong05]. However, multiple training data is used to cover

different operating regions.

2.4 Review of Approaches to Generating a Model in Different

Computing Languages

With the development of the HDLs and application software languages, each designer

and programmer is able to design individual systems and implement individual

programs and systems more efficiently and conveniently. These languages are divided

hierarchically into three levels: at the highest level application languages include C/C++,

or MATLAB that is a powerful scientific tool for numerical analysis [MATLAB6.5];

the next level contains HDLs such as VHDL-AMS, MAST, which provide behavioural

modelling capability for both digital and analogue systems [Frey98]; the lowest level,

i.e., the transistor level, has Spice-like languages such as HSPICE [Watkins]. Each

language has individual advantages and disadvantages; HDLs work especially well for

circuit structures, application languages such as C are efficient for general purposes.

However, as systems become more complicated, particularly in very large scale

integration (VLSI), one language may not be sufficient to handle all applications.

Increasingly, the gap between the high-level behavioural descriptions of the required

circuit functionality in commonly used mathematical modelling tools, and HDLs can be

highlighted by the requirement of seamlessly linking high-level behavioural

2-19

descriptions of electronic hardware for purposes of modelling and simulation to the

final application hardware [Grout05]. [Grout00] developed a prototype software to

analyze and process a Simulink block diagram model to produce a VHDL representation

of the model. The derived model includes a combination of behavioural, register

transfer level (RTL) structural definitions that are mapped directly from the Simulink

model. This design flow is shown in Figure 2-6.

Simulink model
(.mdl file)

Conversion
utility

Logic
simulation

Synthesis

Optimization

ASIC: silicon foundry
interface

Netlist/schematic:
simulation

Layout place & routeFPGA/PLD:
configuration data

System Digital part for
conversion

Simulink model
(.mdl file)

VHDL model
(.vhd file)

VHDL model
(.vhd file)

3

2

1

System level
simulation

Figure 2-6: Overview of conversion routine within a design process [Grout05]

It is seen that it consists of three stages: the first one is to model the behaviour of the

overall system and then define a behavioural model of the controller core. There are two

model files (.mdl): one is used to store the resulting data for the system, another is to

2-20

create VHDL code (entities and architectures). The second stage includes data

conversion and synthesis with technology targeting. There are two model files (.vhd) in

this stage: the first one stores VHDL entities and architectures, and is used to perform

an optimization routine to map the functions to a predefined architecture. The

second .vhd file is used within a suitable design flow to compile the entities and

architectures into VHDL design units for logical simulation. Synthesis is employed in

the third stage to generate a netlist or schematic for further implementation on devices

such as FPGAs (field programmable gate arrays) and ASICs (application specific

integrated circuits). This concept allows for discrete time algorithms to be modelled

[Grout01]. Unfortunately, this process is only available in the digital domain. Moreover,

the conversion is implemented at the system level, whereas our research mainly focuses

on model conversion at the lower level (e.g., operational amplifier) for analogue or even

mixed signal domain.

[Watkins] states that in the mixed-signal domain standard VHDL and Verilog may be

employed to model analogue and mixed signals, this approach is referred as Vanilla

VHDL mixed signal modelling. It uses the standard arithmetic operators (primarily

multiplication and addition), and standard conversion functions, for example,

CONV_INTEGER, CONV_STD_LOGIC_VECTOR, and type casting. This process

has several major advantages such as faster simulation, and complete portability to the

most widely-used simulation environments [Smith96]. However, the Spice-like analysis

(DC operation point, small signal AC) can not be implemented by Vanilla HDL, and

filters are hard to be modelled accurately.

[Zorzi02] developed the software named SAMSA for the simulation of analogue and

digital systems written in VHDL-AMS in MATLAB. A schematic of the system is

shown in Figure 2-7. It consists of a Java compiler and a solver. The former is used to

exploit the capability of directly loading Java classes into its workspace. The design unit

is analyzed after the file parsing and symbols are loaded from included libraries. The

MATLAB default C compiler is employed to compile two C functions generated by the

parser. After compilation two dynamically linked functions are available for the VHDL-

AMS system. The solver is a function call of the form),,,,('
00 ao IFCyyf , where 0y

and '
0y are the initial condition vectors for the system of differential-algebraic equations

2-21

(DAE) being solved, oC is an array of control options, F is the pointer to the run-

function and Ia is used as a temporary array for sharing information. The user can set

control options such as the relative tolerance and the max step allowed during transient

analysis.

Compiler

SAMSA

Solver
(Analogue/Digital)

Command
File

Libraries

VHDL-AMS

Output FileWorkspace
Variable

Toolbox3

Toolbox2

Toolbox1

MATLAB

Figure 2-7: SAMSA general architecture and dependences with other MATLAB

toolboxes [Zorzi02]

Simulation in SAMSA involves three steps: 1. A Spice-like command file, which

describes the simulation that should be performed, and variable that should be printed

and some other options. 2. The solver calls the setup-function, which initializes the

simulated system, for the specified design unit and creates a structure that describes the

system to be simulated in the MATLAB workspace. 3. The run-function is called,

which updates some workspace vectors and variables, and an output is produced as a

workspace variable, or a file in the work directory. Furthermore, the system may be

more flexible when output data is post-processed or used within a particular Toolbox.

[Zorzi03] also uses SAMSA, but mainly focus on the architecture of digital circuits, and

a C++ compiler is utilized instead of C compiler to compile C++ code that is converted

2-22

from VHDL-AMS. Unfortunately, simulation time is not compared with transistor level

simulation.

Unfortunately, all modelling approaches above are invoked under fault-free conditions,

accuracy and speedup of existing models may be doubted when fault simulation is

implemented because faulty behaviour may force (non-faulty) subsystems into highly

nonlinear regions of operation, which may not be covered by their models.

Therefore, work based on various fault modelling techniques and other important

approaches for fault detection are reviewed.

3-1

Chapter 3: Literature Review of
High Level Fault Modelling and

Simulation

In this chapter we will introduce techniques for analogue fault modelling and simulation

based on existing publications.

In section 3.1 techniques for analogue and mixed signal test in the development of

modern mixed mode ICs are discussed. Fault analysis and structural test of ICs are also

introduced in this section. An overview of existing fault modelling techniques for

analogue and mixed mode circuits is introduced in section 3.2 following by IFA

techniques in section 3.3. The quality and accuracy of testability measurement is

discussed, and improved analogue testing through the use of analogue fault modelling is

described in section 3.4. In section 3.5 test coverage and test quality are introduced.

3.1 Different Test Techniques for Analogue and Mixed Mode

Circuits

3.1.1 Description of IC Failure Mechanism and Defect Analysis

A fault is defined as the electrical effect of a defect [Wilkins86]. At device level or

circuit level, many factors may cause failures in different processing stages. These

failures may result from any one of several different defects [Wilkins86]:

1. Manufacturing defects occur at the wafer stage in ICs, for example, short in metal

interconnect and defect in gate oxide.

2. Defect during packaging: imperfect bonding and poor encapsulation.

3. Production defects on PCBs. a) components placement b) soldering

4. Operational stress: components are destroyed or dirty.

At the abstract level, faults, mainly analogue faults, are classified in [Maly88] as shown

in Figure 3-1.

3-2

Analogue faults

Structural faults

Open faults

Out-of-specification

Catastrophic
performance

deviation
(malfunction)

Out–of-specification

Parametric faults

Short faults

Catastrophic
performance

deviation
(malfunction)

Out-of-specificationCatastrophic
performance

deviation
(malfunction)

Figure 3-1: Analogue fault category [Maly88]

This categorisation shows that analogue faults can be divided into two main types:

structural faults and parametric faults. Structural faults are random defects that cause

structural deformations like short and open circuits which change the circuit topology,

or cause large variations in design parameters (e.g., a change in the W/L ratio of a

transistor caused by a dust particle on a photolithographic mask) [Kalpana04] [Jiang06].

Parametric faults are caused by statistical fluctuations in the manufacturing environment.

Changes in process parameters (e.g., oxide thickness and substrate doping) can cause

the values of components to vary beyond their tolerance levels (malfunction).

Parametric faults are also caused by process gradients which produce device mismatch

[Nagi93].

Unfortunately, the definition of this category is less applicable and limited to the

modern technology such as 90nm, 65nm and beyond CMOS [Healy05]. However, it

still provides useful information, particularly for this research.

It is known that the short fault mechanism is the dominating analogue fault effect, and

that open fault is more difficult to model, especially when floating capacitors are

produced [Bartsch96]. Short faults can be modelled as one small value resistor (e.g., 1Ω)

connected between two nodes [Bell96] [Kalpana04]. Open faults may be modelled by

using a large value resistor to connect two nodes serially [Spinks98]. The catastrophic

3-3

faults in a MOS transistor include: drain/source opens (DOP, SOP), gate-drain, gate-

source, drain-source shorts (GDS, GSS, DSS); and gate-oxide short (GOS) are shown in

Figure 3-2, Figure 3-3, respectively [Stopja04].

DS
Rsop

G

(a)

G

DS
Rdop

(b)

G

S

D

Rgos

(c)

Figure 3-2: Source (a)/ Drain (b) open fault models; Gate oxide short model (c)

DS

Rdss

G

(a)

G

DS

Rgds

(b)

DS

GRgss

(c)

Figure 3-3: MOS transistor short fault models: DSS (a), GDS (b) and FSS (c)

The gate open is more difficult to model without knowing gate’s dc voltage. The

isolated capacitor can hold any voltage because the high impedance and leakage can

charge or discharge the node of the open gate. One way to approach the problem is to

set up voltage in the real device on this capacitor in order to implement simulation, for

example [Caunegre95] sets gate voltage to 0V.

The relationship between out-of-specification and malfunctions are not completely

isolated, for example, in a cascode circuit when two transistors are shorted, the circuit

may still work, but be out of specification. Moreover, if a resistor is only shorted

between two branches of its layout instead of the whole part, the circuit will still work,

but the resistance changes. These two situations are shown in Figure 3-4 a), b)

respectively.

3-4

a) Cascode transistor is shorted b) Part of the resistor is shorted

Figure 3-4: Specification for catastrophic faults

3.1.2 Structural Test

As was mentioned in the introduction, functional test is to assess whether the DUT

meets its test specification and does not require detailed knowledge of circuit structure.

However, this approach may fail to test all parts of the IC evenly, may offer poor fault

coverage, and may be very time consuming. Therefore, structural test or defect-oriented

test (DOT) is required especially in the analogue domain because it has already

established in digital domain [Voo97] [Xing98] [Fang01] [Kalpana04].

The analogue fault detection and classification can broadly be divided into the following

categories:

1. Estimation method: This can be further divided into the analytical (or deterministic)

method and the probabilistic method. In the former, the actual values of the parameters

of the device are determined analytically or based on the estimation criteria using least

square criterion approach, e.g., [Simeu05]. [Simeu05] introduces a parameter

optimization algorithm termed Situation-Dependent AutoRegressive with eXogenous

(SDARX). It combines the Levenberg-Marquardt method (LMM) for nonlinear

parameter optimization with least square method (LSM) for linear parameter estimation.

However, this algorithm is only available for single-input single-output (SISO) systems,

and the offset parameter is not included, which is the slowest parameter to converge

because there is no signal to stimulate it. In probabilistic methods the values are inferred

from the tolerance of the parameters, e.g., inverse probability method is a representative

of this class. [Elias79] employs statistical simulation techniques to select parameters to

be tested and then formulates the test limits on this basis.

3-5

2. Topological method: This is also known as simulation-after-test (SAT) method. The

topology of the circuit is known and SAT method essentially reverse engineers a circuit

to determine the values of the circuit component parameters.

3. Taxonomical method: This is known as simulation-before-test (SBT) method

[Sachdev95]. This structure is shown graphically in Figure 3-5. It is seen that the fault

dictionary is a key part; it holds potential faulty and fault-free responses. Inductive fault

analysis (IFA) is used to determine realistic faults classes. Analogue fault simulation is

implemented using Spice-like simulation over these fault classes. It generates a

catastrophic defect list. During the actual test the measured value is compared with the

stored response in the dictionary. If the measurements from the actual response are

different from the fault-free response by predetermined criteria the fault is regarded as

detectable. If the faulty response does not differ from the fault-free response by the

threshold, the result is considered as undetected by the stimulus, so another stimulus is

tried. The whole process is carried out for all the faults. With this approach most of the

faults can be detected, and the test cost and time are reduced compared to the functional

test. Some marginal failures can not be detected, which may be removed by using

improved process control or detected by limited functional test.

Fail

Pass
Tester

No
defects

defects

Test Program

Realistic fault
dictionary

Analogue
simulation

Analogure
fault model

Device
to be
tested

Figure 3-5: Graphical representation of the realistic defect based testability

methodology for analogue circuit [Sachdev95]

3-6

Due to the size of circuits and the number of faults, faults cannot be manually

introduced and simulated. It is necessary to run fault simulation automatically without

modifying the core simulator [Caunegre95]. [Caunegre95] develop a comprehensive

system based on automated fault modelling and simulation. It comprises many parts:

fault list generator, components faults catalogue, simulation control file generator and

fault coverage analyzer. The fault list generator can generate a list of possible faults

from a given circuit schematic. This system provides a simulator format netlist. It

searches for appropriate models from the component fault catalogue for each

component referenced in the fault list. The component fault catalogue provides a

generic description of fault models for each library component. However, these models

have to be designed and updated by experts in this domain, so it is not convenient for

someone who is unfamiliar with circuit design and structure. The simulation control file

generator in [Caunegre95] can create two command files by processing a previously

built reduced fault list. One of files contains a command script to control the simulator,

another includes parameter modification commands for parametric faults. Fault

modelling and simulation can then be implemented after this process. The results are

recorded in a result file.

3.2 High Level Fault Modelling and Simulation

A successful model should provide high simulation speed, high accuracy, robustness

and ease of use [Getreu93]. High level fault modelling (HLFM) is one of the best

solutions for reducing fault simulation time [Kalpana04] [Nikitin07] [Joannon08].

Generally there are two approaches to fault simulation: 1. Injecting only the chosen fault

into the low level cell by using a tool such as ANTICS [Spinks97] and observing the

fault effects on the specifications of the modules at higher levels of design hierarchy

[Olbrich96] [Olbrich97] [Joannon06]. 2. High level fault models are obtained by

abstracting faults from transistor level into a behavioural description of their effects

[Pan96] [Zwo96] [Wilson02] [Simeu05] [Joannon06]. In both cases transistor level

simulation is an important and necessary step.

Generally high level fault models can be either linear or nonlinear. Both of them can be

written in SPICE [Nagi92] or hardware description language (HDL) such as VHDL

[Zwo00], MAST [Wilson02] and VHDL-AMS [Nikitin07] [Joannon08]. Linear models

3-7

are mainly built with linear sources and passive components [Pan96] [Yang98]. Using

linear models can achieve high speed, accuracy and be implemented easily. However,

the limitation is obvious. Nonlinear models can be built with nonlinear elements such as

diodes, transistors, non-linear controlled sources and have moderate modelling

efficiency and a wide range of operation [Zwo96] [Bartsch99] . Sometimes it is the only

possibility due to a highly nonlinear behaviour.

In [Zwo96] a behavioural model for a two-stage CMOS op amp is described, as shown

in Figure 3-6.

vinofst

Gidd

voffset

Fload

Egain

Rout

Out idd Out

RinVin

In

Figure 3-6: Macromodel of inverting and non-inverting amplifiers [Zwo96]

It includes input and output stages. The latter consists of two sections: the voltage

controlled current source (Gidd) and current controlled current source (Fload). The former

can model the power supply current of the output transistors; the latter is capable of

modelling the power supply current variation due to the output load. Moreover, the

output stage can model output offset voltage with Voffset, and fault propagation with the

voltage controlled voltage source (Egain). The input offset voltage can be modelled with

Vinofst in input stage. Furthermore, the input and output impedance can be modelled with

Rin and Rout, respectively. This model can be embedded within a large circuit such as a

mixer. By comparing the transistor level simulation, this behavioural model shows that

not only fault-free but also faulty behaviour (short faults) can be accurately modelled

for all faults, and faulty effects propagated correctly. Simulation speed is over 7 times

faster than for the transistor level simulation for a transient analysis. In addition fault

collapsing is also mentioned in this paper. However, only short faults are modelled and

the behavioural model is only implemented with HSPICE, it may be more efficient if a

HDL is adopted such as MAST. A similar model is described in [Bartsch99], this faulty

3-8

behavioural model is not only able to simulate all faulty behaviours of [Zwo96], but

also can model other behaviours such as bias current (Ib) and bias voltage (Vb), and extra

poles and zeros are also added to improve the accuracy. Moreover, the model is

implemented in the hardware description language (HDL). The macromodel in [Pan96]

can model not only extra poles and zeros, but also phase shift, and DC power

dissipation. However, output impedance is modelled with a linear resistor, so it is

susceptible to nonlinearities in circuit behaviour and looses accuracy when applied to

non-linear behavioural macromodels of analogue subsystems.

Another modelling technique is presented in [Chang00]. This linear macromodel is

similar to [Zwo96] and [Bartsch99]. Like [Bartsch99] voltage clipping is modelled with

two diodes connected between the output and the positive and negative power supplies,

respectively. However, it is not capable of modelling power supply current variation

and bias current. This behavioural fault model shown in Eq. 3-1 is based on the fact that

the offset voltage in most cases has a linear relationship with the input voltage for the

closed-loop op amp, and is composed of two parts, i.e.

Fos = mVin+ k Eq. 3-1

where m is the gain attenuation part and k is the output offset part. The values of m and

k are independent of the input. With this behavioural model faulty behaviours such as

stuck-at faults and other nonlinear behaviour such as slew rate can be performed well.

This faulty model may be run in both DC and AC domains. Moreover, this model can

be inserted into a large circuit such as a benchmark biquad filter. The behavioural model

is about 11 times faster than transistor level. However, this faulty model is only

implemented with SPICE. [Wilson01] used the same model in the hardware description

language – MAST run on the Saber simulator [Saber04], [Kilic04] further developing it

with VHDL-AMS. A comparison between transistor and behavioural models at all

stages shows the latter simulation speed is faster.

A mapping technique is described in [Pan97]. The aim is to map each performance

parameter set P to the corresponding macro parameter set B, B = F(P). A sensitivity

matrix S, derived by perturbing the value of each component of the seed point B0, along

with the faults P1, P2,…, PN is used to estimate the region of interest Rb in the macro

3-9

space, and the least square method used to reduce the model order. After Rb is obtained,

a large number of random faults at the macro level are generated by randomly

perturbing the values of the macro parameter set B0. The values of the corresponding

performance parameter set P can be generated by macro-level simulation. Then the

dimensionality can be reduced by using a cross-correlation based technique, finally the

mapping function B = F(P) is derived by utilising a neural network. By running

transistor level simulation to obtain P, the fault macromodel can be obtained according

to the mapping function. The technique is a good step for automating the macromodel

synthesis procedure. Unfortunately only a linear op amp macromodel is used to test the

neural mapping. Problems occur with large performance variations such as stuck-at

faults, because the macromodel structure itself is not able to model such faulty

behaviours. Moreover, the parameter mapping can be applied by the system DRAFTS

using analytical design equations [Nagi93], but it is doubted whether the system can

still be suitable for modern analogue and mixed mode ICs because of their increasing

complexity.

[Bartsch99] developed an algorithm that employs both linear and nonlinear fault models

to implement high level fault simulation (HLFS). In this algorithm a transistor level

operating point analysis is performed on the whole circuit. These points are collected for

the model creation. In the case of a linear fault model the operating point information is

used to ensure that the linear model is in the region where the model is parameterized. If

this does not hold true a check is made to determine if the faulty behaviour can still be

simulated with a linear model. If so, new parameters are derived, otherwise a nonlinear

fault model has to be used. The operating point analysis can be further used as a

convergence aid for the nonlinear models. After these checks the high-level fault model

is injected. Then a check is made to see if the fault-free op amp is either in one of the

saturation regions, or if it is in the linear region. If the op amp is in any of these regions,

a linear model is inserted, otherwise, a nonlinear one is inserted to handle nonlinearity.

After the injection the actual fault simulation is performed. During fault simulation it

has to be ensured that the operating region for which the linear model was designed is

never violated. A warning mechanism is implemented for this purpose with a simple if-

else statement. Instead of asserting a warning message, the linear model could also be

exchanged with a non-linear model. Then the simulation continues with a nonlinear

3-10

model. However, [Bartsch99] did not reach the point where these models can be

switched automatically.

3.3 Inductive Fault Analysis (IFA)

IFA was a major departure from traditional high level fault modelling and simulation

because it accounted for an IC's technology, fabrication defect statistics, realistic defect

occurrences, and physical layout [Ferguson88] [Jiang99] [Jiang06]. It also provides a

connection between circuit level faults and technology level defects. The general

structure of IFA is shown in Figure 3-7 [Ferguson88]:

Technology
Analysis

Layout
Parsing

Defect
Generation

Primitive Fault
Extraction

Circuit Fault
Translation

Technology
Description

Circuit
Layout

Defect
Statistics

Primitive Fault
Taxonomy

Layout Data
Structures

Defects

Primitive Fault
List

Ranked Circuit
Fault List

Figure 3-7: Structure of IFA [Ferguson88]

The structure includes three columns: the left column shows the three inputs which

contribute to the accuracy of the resulting fault list; five ovals represent the phases of

IFA; the right column represents the output of 5 phases. The primitive fault taxonomy

created by technology analysis, parameterised for the fabrication technology and

considered defect types, lists all possible local changes in conductance, which may

result from each defect type and the conditions which must exist for the local changes to

result in a fault. The layout parsing combines pre-processing of the physical layout

information with circuit extraction to facilitate the subsequent fault extraction and

3-11

translation phases. Defect generation uses information from defect statistics and layout

parsing. Data statistics, gathered from an actual fabrication line is used to generate the

correct mixture of defect types and sizes. These defects are transferred to the fourth

phase-primitive fault extraction, together with results from the primitive fault taxonomy

and layout data structures. The primitive fault extraction extracts the primitive faults by

checking the geometric relationships between the defects and the circuit layout using the

primitive fault taxonomy. Both the defect generation and primitive fault extraction are

required once for every defect. The last phase, circuit fault translation, receives the

generated fault list and exacted faults, and adds this information to the primitive faults.

The final output, ranked circuit fault list, is used for many applications as shown in

Figure 3-8 [Olbrich97].

IFA

Fault
Simulation

Test
Development

Testability
Analysis

Yield
Prediction

Layout
Optimisation

Quality
Estimaion

Figure 3-8: Various Applications for IFA [Olbrich97]

IFA techniques can be used for applications such as fault simulation, design for

testability and quality estimation. IFA based on modelling and simulation techniques is

used to extract weighted fault lists, and then fault simulation and testability analysis

take this information, together with the device netlist, to model the complete

manufacturing and test process. Limitations of inaccurate fault models have been

overcome by using realistic, layout dependent defect modelling techniques. A

“weighting” factor may be assigned to each fault to describe how the probability of

occurrence is related to quality. Using Eq. 3-2, the relative probability of occurrence of

a fault n (of N faults) as Wn can be found.

3-12

%100

1

1 








N

n
n

N

n
nn

W

WF
FC Eq. 3-2

FC is the weighted fault coverage, Wn represents the total number of circuits in the

batch affected by fault n and N is the total number of fault across all circuits. Fn is a

fault detection figure. Fn = 1 if the fault is detectable, otherwise is 0 [Olbrich97]. This

weighted fault coverage figure may be used for analogue and mixed circuits.

IFA can be used for qualifying and optimizing design for test (DFT) schemes

[Olbrich96]. The method proposed in Olbrich et al requires a fault list. This can be

achieved in two ways. The first one, based on IFA, is performed using a tool such as

VLASIC (VLSI LAyout Simulation for Integrated Circuits), which uses either a Monte

Carlo algorithm or critical area analysis to obtain the fault lists. Yield information,

physical layout and process information are required to perform this. The second one is

based on a transistor level fault model (short faults). The model uses the following

formula for defect resistance:

ThicknessDiameter
L

dW
l

RF 



 min Eq. 3-3

where  is resistivity of the materials, Wl, are the length and width of the particle,

respectively, d is the layer thickness. l can be approximated by the minimum distance

rule, Lmin, between two lines of the same layer. Diameter and Thickness are chosen

depending on the types of fault, for an open fault, Lmin≈Diameter, and for pinhole faults,

Lmin≈Thickness. By comparing these two methods for the testability analysis of a self-

test function in a high-performance switched-current design, it was shown that IFA

generates multiple faults for modelling, the faults are weighted to reflect actual

manufacturing statistics, and testability and quality prediction can be performed.

However, the IFA route does not supply statistically based information on in-field

failures. Moreover, it depends on an appropriate fault-model to describe the physical

defects in a form which is simulatable in a circuit level netlist, so it can not adjust

simulation inaccuracies resulting from inappropriate fault-models. Furthermore, the

3-13

result of this comparison is likely to be inaccurate if high level fault model is used

instead of transistor level model.

An approach based on statistical process and device simulation is proposed in

[Jaworski97]. It is implemented with two special programs: a statistical circuit extractor

EXCESS ІІ and a statistical process and device simulator SYPRUS. The former is used

to simulate layout disturbance and performs an extraction which generates a topological

netlist. A separate device model for each critical component in each netlist is computed

by SYPRUS. These models are generated from the full process simulation and device

modelling. A set of netlists is produced. These netlists may include models of the

variation of parameters such as temperature and parasitic components. Moreover, they

are used as input to a standard circuit simulator performing appropriate simulations.

Results from these simulations are used to estimate the fault region for the given circuit.

Only transistor level fault simulation is implemented.

Recently IFA has been employed to investigate defects and corresponding behaviour

that are caused by particles contaminants introduced into the fabrication of a combdrive

surface-micromachined microresonator [Jiang06], which possesses all the primitive

elements used in many types of capacitive-based microelectromechanical systems

(MEMS) [Jiang99]. Jiang et al used Monte Carlo (MC) analysis to find complete

category of the defects. HSPICE simulation was run to evaluate misbeaviors associated

with the categories of defective structure. The next step is to incorporate abstracted

models of the contaminants into MEMS CAD environments. This will enable the

evaluation and optimization of MEMS testability for a range variety of capacitive-based

MEMS.

3.4 Design for Testability with Controllability and

Observability (Design and quality issue)

According to the international technology roadmap semiconductors reports that the

semiconductor industry has reached a point where testing a chip costs as much as

manufacturing it [Aktouf05]. With greater functionality being packed into each design,

both the time required to test each integrated circuit (IC) and the cost of the necessary

testing equipment keep increasing. Design for test (DFT), which essentially means

3-14

constructing designs with easy testability in mind, is key to solving the problems of both

time and expense [Aktouf05]. In the digital domain testability is mainly an issue of

control and observation of deeply embedded internal nodes. The ability of setting an

input condition is named “controllability” and the ability to observe the output is called

“observability” [Wilkins86]. In analogue or mixed mode domain, DFT may be largely

unsuccessful due to its impact on the circuit performance.

DFT consists of methods such as built-in self-test (BIST) and automatic test pattern

generation (ATPG) based methodologies. [Healy05] indicated that pseudorandom BIST

is displacing the latter at 90nm and beyond. This is because as the technology shrunk,

the need for more and more test patterns and the need for at speed testing drove ATPG

developers to various forms of data compaction and double capture timing in an attempt

to identify the un-modeled failure mechanisms present in these complex devices. At

90nm and beyond these ATPG models are inaccurate and incomplete in covering all of

the ways that parts actually misbehave. This has resulted in high defects per million

(DPM) at manufacturing, due to the lower quality of test. “Continued attempts to extend

the life of ATPG, by compressing patterns or developing faster than life timing schemes,

is akin to rearranging the deck chairs on the Titanic as the un-modeled faults iceberg

looms ever larger” [Healy05].

[Bratt95] proposed a DFT structure based on a configurable op amp that allows access

to embedded analogue blocks such as phase locked loop (PLL). This implementation of

DFT allows injection of control voltages by using this op amp. Both detection and

diagnostic capabilities associated with a number of hard and soft faults are improved.

[Hsu04] improved the controllability and observability by developing a current-mode

control and observation structure (CMCOS) for analogue circuits with current test data.

With this approach, all test points can be controlled simultaneously, also no expensive

testing equipments are required for measurement. However, simulation speed is not

mentioned.

3.5 Test Coverage and Test Quality

Test coverage and quality can be investigated with fault simulation and fault modelling

techniques. A fault coverage analyzer can be used to determine if the test detects each

3-15

fault by comparing the simulation measurements with the values from a fault-free

simulation [Caunegre95]. A tolerance margin is defined by the designer to verify these

detected and undetected faults. Decisions includes: a) if the measurement interval is

outside of the allowed interval, the fault is easily detected. b) if the measurement falls

inside the allowed interval, the test is passed and a fault will never be detected. c) if the

measurement is half outside and half inside the allowed interval, the fault is considered

as undetected. With the well chosen tolerance range, high test coverage can be obtained,

and test quality can be improved.

Fault coverage ratio is
s

d

n
n

, where nd is the number of detected faults and ns is the

number of simulated faults. Unfortunately, there is no further discussion on c) in the

paper, even though some of faults can be detected if the range of interval is adjusted. A

further investigation based on section c) has been performed by [Spinks97] [Spinks98].

They developed a fault simulator named ANTICS, which is able to inject faults into a

transistor level model of the fault-free netlist. The range of allowed interval may be

adjusted by using Monte Carlo (MC) sensitivity analysis to obtain the better fault

stimuli. Therefore, the accuracy may be improved. However, Monte Carlo simulation

has disadvantages: it is hard to accurately model complex circuits by using a simple

system and is computationally expensive, even though fast modern computers are used

[Johnson03].

[Sebeke95] defines a similar tool to [Spinks97] [Khouas00] and [Grout04] shown in

Figure 3-9. It comprises an automatic analogue fault simulator called AnaFAULT and

an automatic fault extraction tool, LIFT. The latter can extract sets of faults from a

given analogue or mixed mode circuit layout and generate a list of realistic and relevant

faults using IFA. This list represents the interface to AnaFAULT, which converts faults

into fault models and fault simulation models. By this link, the tool allows a more

comprehensive fault simulation, and results that are more realistic and relevant.

Moreover, the overall time for the fault simulation decreases significantly compared

with the assumption of the complete set of possible faults.

3-16

All faults L²RFM LIFT

AnaFAULT

Stimulus Netlist FCP

Figure 3-9: Analogue fault modelling from concept and schematic to layout. The

arrows width represents the size of the fault lists [Sebeke95]

[Spinks98] presents ANAFINS as the fault generator for generation a list of possible

faults from a given circuit schematic. The difference between [Spinks98] and [Sebeke95]

is: ANTICS uses HSPICE as the modelling kernel, whereas AnaFAULT adopts ELDO.

However, both are implemented at the transistor level simulation, so it is very CPU

intensive and not suitable for complete modern complex analogue and mixed mode ICs.

The next chapter will re-implement work based on [Bartsch99] in the Hull University as

the starting point of author’s research and also for comparison.

4-1

Chapter 4: High Level Fault
Modelling and Simulation based

on Other’s Fault Models

4.1 Introduction

In this chapter we will reproduce some work based on Bartsch’s work [Bartsch99] as

the starting point of author’s research. Moreover, one of the fault models will be

employed in chapter 9 and 10 for comparison in terms of accuracy and speed during

analogue fault modelling. The difference from Bartsch’s work is that the models

reproduced in this chapter are rewritten in the hardware description language (HDL)

termed MAST [Saber04] instead of SpectreHDL. Simulation speed is not a key issue in

this chapter because it has been discussed in [Bartsch99].

The structure of this chapter is as follows: section 4.2 introduces a two-stage CMOS

operational amplifier (op amp) used for our investigation. HLFM techniques are

summarised in section 4.3. Section 4.4 demonstrates these approaches with different

netlist followed by the conclusion in section 4.5.

4.2 Two-stage CMOS Op amp

In this section the two-stage CMOS op amp from [Bartsch99] is used. Its design is

based on [Allen87]. A schematic of this op amp is shown in Figure 4-1. It consists of an

input stage and an output stage. The former is realised as a CMOS differential amplifier

using p-channel MOSFETs. The differential amplifier is biased with the current mirror

M13&M14. Three NMOS diodes (M4, M5 and M6) are used to keep the gate to source

voltage of the current mirror small (VGS = -1.175V). The output stage (M7 and M10) is

a simple CMOS push-pull inverter. Characteristic measurement of the op amp can be

found in Appendix A.

4-2

M4

M5

M6

M13 M14

M11 M12

M8 M9

C
C

M10

M7

Vdd

Vss

In- In+
Out

2

1

4

4

12

12

11

5

8

3 0

6

9

IEE

Iref

Figure 4-1: Schematic of the two-stage CMOS op amp

Fault injection is required in order to perform TLFS. This is done using the fault

injector named ANAFINS, which is the part of the transistor level fault simulator

ANTICS [Spinks98] [Spinks04]. Only shorts are of interest throughout the whole thesis,

other faults such as open faults will be investigated in the future work.

There are 11 transistors in this op amp, the maximum number of short faults on one

transistor is 3 and therefore the number of short faults in this op amp is 33. However,

only 19 of them need to be investigated because ANTICS is able to collapse redundant

faults such as gate to source short on M4 (m4_gss1) and drain to source short on M4

(m4_dss2). It also recognises that m4_gds3 has already been presented in the normal

design and thus it is not a fault. Unfortunately ANTICS does not detect the equivalence

of faults m4_gss, m5_gss and m6_gss due to the identical design of M4, M5 and M6.

Therefore, only 17 faults are simulated, as summarised in Table 4-1. This shows that

about 53% of the faults are stuck-at faults and only 17.6% of the injected shorts result in

out-of-specification faults. Others catastrophic faults include failure to inverted gain, so

the output signal follows the input one.

1 short between gate and source on transistor 4
2 short between drain and source on transistor 4
3 short between gate and drain on transistor 4

4-3

total
faults

stuck-at
2.5V

stuck-at
-2.5V

stuck-at
other

voltages

parametric
faults

other
catastrophic

faults4

17 8 2 0 3 4

Table 4-1: Characterisation of MOS transistor short faults

4.3 High Level Fault Models

In this section we start by introducing and producing linear and nonlinear HLFMs

[Bartsch99] written in MAST in subsection 4.3.1 and 4.3.2, respectively.

4.3.1 Linear HLFMs

They consist of three groups: dc; dc/ac; dc and dc/ac. They are developed written in

MAST [Saber04]. More details about the syntax and construction of this language are

given in Appendix B.

4.3.1.1 DC op amp model

The DC model shown in Figure 4-2 is a modified version of the ones published by

[Boyle74] with the exception of input impedance.

r c

Vn

vin

off

Vin

Voffin

gnd

Voffout

Avvin
out

gnd

Ro

Vp

Ibp

IbnIz Vs1

Vs2

D1

D2

Vdd

Vss

Input Stage Output Stage

gnd

Figure 4-2: dc macromodel (see Appendix C: C.1.1)

4 They include faults such as the output is not inverted to input signal because gain Av is not
negative.

4-4

It is seen that this macromodel consists of two stages, the input stage is a standard input

stage for modelling non-ideal op amp behaviour such as the input offset voltage Voffin,

input bias current Ibp, Ibn and dc/ac input impedance with r and c. The combination of r

and c creates one pole in the left half plane as seen in Eq. 4-1.

cr
Wpole 


1

Eq. 4-1

If the input impedance behaves like a capacitor, r has to be near infinity, e.g., r = 1E20Ω,

and then c can be determined by Eq. 4-2, where Zin is the magnitude of the input

impedance at a certain frequency f in Hertz.

inZf
c




2
1

Eq. 4-2

The output stage is able to model the output impedance Ro, output offset voltage voffout,

gain, and output voltage clipping using diodes D1, D2, vs1 and vs2.

4.3.1.2 DC/AC op amp model

In this section a dc/ac op amp model is designed as shown in Figure 4-3. It is seen that

this model includes three stages: the input stage, a transfer function and an output stage.

The input stage is the same as the one in the dc op amp model; the output stage is able

to model the dominant pole of the input-output transfer function [Boyle74].

4-5

Vs1

r c

Vn

vin

gnd

Ibn

input stage

off
Voffin

gnd

Ibp

transferfunction
pole/zero stages

additional pole/zero stages

vin vaf_out

Ga vaf_out

Vp

vb

Vs2

Ro1 out

D2

Vss

Vdd

D1

va

Vstuck

Rstuck

output stage

Ra Gb va ioffset

Ro2

Rpd

gnd
gnd

Cc

Figure 4-3: AC macromodel op amp (see Appendix C: C.1.2)

For the model in Figure 4-2, the number of poles and zeros are restricted to the input

impedance function and for the output impedance function. With the additional stage an

arbitrary number of poles and zeros can be modelled for the input-output transfer

function. For certain op amps the dominant pole may not be enough, or not be modelled

accurately by Boyle’s output stage alone, so an input-output transfer function (as

described in Appendix C) is added to obtain additional poles and zeros shown in Eq. 4-3,

assuming the output voltage clipping with D1, D2, Vs1 and Vs2 is not included and Rstuck

is set to infinity ( 1E20 ).

 
   2

1
2

2

11
=

ocRbcocb

bco
a

in

out
f RCsGCsRCsG

GCsR
G

V
V

A
a




 Eq. 4-3

It is seen that with the Boyle’s output stage one zero in the right half plane and one pole

in the left half plane can be realised. From Eq. 4-4 the pole frequency fp,Af, the zero

frequency fz,Af and the dc gain Af can be derived:

 boac
bo

a

o
ac

Afp GRRC
GR

R
R

RC

f















2

2
2

, 12
1

12

1




Eq. 4-4

4-6

c

b
Afz C

G
f




2, Eq. 4-5

2)0(obaaf RGRGfA  Eq. 4-6

A straight forward circuit analysis of the output stage gives the further following

equation for the output impedance in the complex frequency s-domain seen in Eq. 4-7:

  
  22

21212121

11 oobac

oobooooacoo

out

out
out RRGRCs

RRGRRRRRCsRR
i
v

Z



 Eq. 4-7

With this equation the pole frequency fp,zout, the zero frequency fz,zout and the dc output

impedance can be derived as shown in Eq. 4-8, Eq. 4-9, Eq. 4-10, respectively to realise

one pole and one zero in the left half plane:

  )1(2
1

12
1

222
,

abocoobac
zoutp RGRCRRGRC

f








Eq. 4-8

  212121

21
, 2 oobooooac

oo
zoutz RRGRRRRRC

RR
f







Eq. 4-9

21)0(ooout RRfz  Eq. 4-10

Usually GbRo2>>1 and GbRa>>1, so fp,zout  fp,Af. This is because the pole frequency of

Zout and Af are almost the same without additional zero/pole stages. The model is

capable of modelling ac behaviour of the output impedance. Ro2 represents the output

impedance at low frequencies and Ro1 represents the output impedance at high

frequencies. The above equations can be transformed in the following equation system:

I: 21)0(ooout RRfz 

II:   212121

21
, 2 oobooooac

oo
zoutz RRGRRRRRC

RR
f







III:   )1(2
1

12
1

222
,

abocoobac
zoutp RGRCRRGRC

f








IV:
c

b
Afz C

G
f




2,

4-7

For ‘active region’ considerations, the selection of Ra is not important. However, this

means that the voltage response at node vb is linear with Ra. If Ra is too large a value of

vb is developed during a transient excursion through the active region of the op amp, a

considerable discharge or recovery time can be encountered after the active region

excursion. Therefore, a small value of Ra is required to prevent these discharge delays.

Empirically, Boyle suggested Ra is set to 100k [Boyle74] and then the equation

system can be solved for Ro1, Ro2, Cc and Gb. The advantage of this equation system is

that one zero for the gain transfer function can be arbitrary chosen, whilst the pole and

zero of the output impedance are exactly modelled [Bartsch99]. As the pole frequency

of the gain is nearly the same as the pole frequency of the output impedance and it can

not be arbitrarily chosen. However, if it can not be modelled well by the output stage

alone additional pole/zero stages may be utilised to adjust the location of the first pole.

Furthermore, a different equation system is used when the solution results in the

negative resistance or capacitance.

I:   212121

21
, 2 oobooooac

oo
zoutz RRGRRRRRC

RR
f







II:   )1(2
1

12
1

222
,

abocoobac
zoutp RGRCRRGRC

f








Ro1 is set to Ro,ac, where Ro,ac = ac output impedance for frequencies well above fp,zout

and Ro2 = Ro - Ro1, where Ro = dc output impedance. The equation system is then solved

for Cc and Gb. However, the zero with the solution of the above equation system is

always located at very high frequencies with the investigated faults. When a zero is still

required for the input-output transfer function, an additional zero stage has to be added.

Parameters for Ro1, Ro2, Gb and Cc are obtained according to one of methods above. The

value of Ga can be determined with Eq. 4-11:

aob

f
a RRG

fA
G






2

)0(
Eq. 4-11

To model stuck-at faults Vstuck, Rstuck and Ioffset are introduced. The value of Ioffset can be

derived by knowing the output stuck-at voltage Vstuck,out and Ro2 (Ro1 is set to 0.001 ):

4-8

2

,

o

outstuck
offset R

V
I  Eq. 4-12

With Rstuck and Vstuck the output can be shorted to any arbitrary potential. The potential is

determined with Vstuck. The output impedance is determined by Ro1, Ro2 and Rstuck.

Conveniently Ro1, Ro2 should be much greater than Rstuck, thus the output impedance is

approximately Rstuck. Moreover, in order to model additional transfer function

characteristics, the pole and zero stages seen in Figure 4-4 are used.

Zero stage

Vin_z
Gz Vin_z

Rz

Lz

Vout_z

Pole stage

Vin_p
Gp Vin_p

Rp

Vout_p

Cp

gnd gnd

Figure 4-4: Additional pole/zero stages

The following transfer functions are created with those stages shown in Eq. 4-13 and Eq.

4-14, respectively:

Pole stage:
pp

pp

pin

pout

CRs

RG

V

V






1_

_ Eq. 4-13

Zero stage: 









z

z
zz

zin

zout

R
L

sRG
V

V
1

_

_ Eq. 4-14

Any arbitrary real pole/zero sequence in the left half plane can be achieved with these

stages. For convenience Gp  Rp = 1 and Gz  Rz = 1.

4.3.1.3 DC and dc/ac Macromodel with Complex Input Impedance Function

In order to realise any arbitrary sequence of real poles and zeros for the input impedance

function with the suggested pole/zero stages, elements r and c in Figure 4-2 are replaced

by a voltage controlled current source (VCCS (gin  Vzin)), which is controlled by

additional input impedance pole/zero stages. The dc input impedance is set by either

4-9

Gp  Rp or Gz  Rz. The additional input impedance pole/zero stages are fed with the

differential input voltage of the op amp. Figure 4-5 illustrates the concept. It is seen that

the output stage comprises either block 3 or block 4 and 5 depending on whether only

dc parameters are modelled or both dc and ac parameters are included. Except for block

1 and 2 the macromodel has the same architecture as the dc macromodel. All of the

equations in section 4.3.1.1 and section 4.3.1.2 apply to this model.

transferfunction
pole/zero stages

additional pole/zero stages

vin vaf_out

Output stage

transferfunction
pole/zero stagesvin vaf_out

Vn

Ibn

gin vzin_out

Voff
Ibp

gnd

gnd

Vp

vin

Voffout

gain vin

gnd

Ro

Vs1

D1

D2

Vdd

Vss

out

Vs2

Vdd

Vss

dc macromodel

ac macromodel

Input stage

1

2

3

4

5

Cc vb

Vs2

Ro1 out

D2

D1

gnd

va

Vstuck

Rstuck

Ga vafout Ra Gb va ioffset

Ro2

Rpd

gnd

Vs1

Figure 4-5: Linear HLFM with arbitrary number of poles and zeros of the input

impedance function opdc_zin and opac_zin (see Appendix C: C.1.1 and C.1.2)

All of macromodels shown in this work have a highly modular structure as many

pole/zero stages may be applied as necessary without affecting other models. Moreover,

the presented models can be exchanged with more accurate ones. For example the input

stage can be modified in order to model the common mode gain.

4-10

4.3.2 Nonlinear HLFMs

4.3.2.1 Model Architecture

This nonlinear model consists of two parts as seen in Figure 4-6, both are implemented

using functions ()(inin VfC  ,)(inout Vfz  ,)(inL VfV  ,)(inin Vfi  and

),(inout VVfi ). The input stage comprises either block 1 or block 2. The former is used

when the input impedance is modelled with a nonlinear controlled capacitor, otherwise

block 2 is selected. In block 2 the input impedance is modelled with a nonlinear voltage

controlled current source (VCCS) ()(inin Vfi ). The output stage including either

block 3 or block 4 determines accuracy and modelling capabilities. In block 3 the output

impedance is a one-dimensional function dependent on the input voltage. The nonlinear

voltage controlled voltage source (VCVS) ()(inL VfV ) models the input-output

transfer function (loadnoinout VfV _|)(). A two-dimensional function can be

implemented with block 4 (),(inout VVfi ) when the output impedance is dependent on

not only the input voltage, but also the output voltage.

vin

Vn

Vp
voffin ibp

ibn

Cin=f(vin)

1

Input Stage Output Stage

vL=f(vin)

out

Zout=f(vin)

3

vL=f(vin)

out

i=f(vout,vin)

4

vin

2

iin=f(vin)

or and or

Vn

Vp

Figure 4-6: Nonlinear macromodels (see Appendix C: C.2 (for block 1&4))

4.3.2.2 Implementation in MAST

Block 1 and block 4 are used in this section to build the nonlinear macromodel. A cubic

spline interpolation is applied to pre-simulated data obtained from the transistor level

4-11

simulation. Interpolation techniques are commonly used when no mathematical

relationship can be derived, or if such a relationship is very difficult to find. For a good

spline interpolation the number of sample points and the sample point distance is very

important [Bartsch99]. Nonlinear parts need to be simulated with more data to achieve

accurate signals, but more samples require a large table size that causes low speed.

Whereas fewer sample points tends to cause oscillation in regions of high curvature.

Therefore, it is necessary to find a compromise between table size and model accuracy.

The op amp in Figure 4-1 is configured as an open loop amplifier as shown in Figure

4-7. This circuit is modelled at transistor level (HSPICE).

Vout
Vinput

dc ffset=voff,sim

Figure 4-7: Linear model parameterization

A set of dc analysis run is necessary with the strategy shown in Figure 4-8:

· A dc voltage source is connected to both the negative input and to the output
of the op amp to measure the output current.
· The simulation is performed in the following way:

FOR dc voltage source at the input node = -2.5v to 2.5v
FOR dc voltage source at the output node = -2.5 to 2.5v

Perform DC analysis of the op amp block
END;

END;

Figure 4-8: Algorithm of obtaining the output current function

Firstly dc analysis is run over the whole input voltage region with a step size of 500mV.

It is observed that the linear range is between 0 to 10mV, so the second simulation is

only implemented around this linear region with a smaller step size of 10uV, a high

accuracy near the linear region is achieved. These two dc analyses gives 1,500 sample

4-12

points, which are then stored in a text file. The table look-up (tlu) functionality in

MAST is then utilized with data interpolations to create the model that goes exactly

through all their data points without involving any optimization algorithm [Saber04].

During development of block 4 it was realised that the Cosmos simulator does not have

the function to generate the 2-D graph. Although SaberSketch in Saber can implement it,

it does not have an export function to save signals. Therefore, MATLAB is employed to

achieve the nonlinear two-dimensional output current function using the command

griddata [MATLAB6.5] depicted in Figure 4-9.

Figure 4-9: Nonlinear two dimensional output current function),(inout VVfi 

The x and y axis are spanned with the differential input voltage Vi and the output voltage

Vo, respectively, the output current i forms the z axis. The nonlinear VCVS)(inL VfV 

is not required since this function is already included in the highly nonlinear function

),(inout VVfi  . Such a nonlinear function can be very powerful because it is able to

model the nonlinear input-output transfer function as well as the nonlinear output

impedance. Such a non-linear function is very powerful. It models the non-linear input-

output transfer function as well as the non-linear output impedance.

4-13

4.4 Conclusion

In this chapter various types of high level fault models are introduced. They are divided

into two categories: linear and nonlinear. The former can only be used for certain types

of faults. However, the linear and nonlinear models can be used together. Those models

are written in MAST and run on the Cosmos simulator. The netlist used is the open-loop

amplifier, inverting amplifier and state-variable band-pass filter, respectively. Results

have shown that HLFM can model faulty behaviour correctly compared with TLFS.

Simulation speed is not focused in the chapter because it has been discussed and shown

significantly in [Bartsch99].

In the next chapter a novel automated model generation (AMG) approach will be

introduced.

5-1

Chapter 5: The Multiple Model
Generation System (MMGS) for
Automated Model Generation

5.1 Introduction

Automatic generation of circuit models for handling strong nonlinearity has received

great interest over the last few years. It is essential for realistic exploration of the design

space in current and future mixed-signal SoCs (system-on-chips) and SiPs (system-in-

packages). Generally such techniques take a detailed description of a block such as

SPICE level netlist and then generate a much smaller macromodel via an automated

computational procedure. The advantage of this approach is its generality. As long as

the equations of the original system are available numerically, knowledge of circuit

structure, operating principles and so on are not very important [Roychowdhury03].

In this chapter a novel automated model generation (AMG) approach named multiple

model gradation system (MMGS) is developed for single-input single-output (SISO)

macromodels capable of coping with a larger range of conditions than more

conventional macromodels. The process is shown in Figure 5-1. The MMGS generates

macromodels by observing the variation in output voltage error against input range. The

advantage is that the estimated signal can be adjusted recursively in time to handle

nonlinearity. It consists of two parts: the automated model estimator (AME) and

automated model predictor (AMP). The AME implements the model generation

algorithm, and the AMP uses these models to predict signals in the simulation with

different types of stimuli. The system is based on a set of models n. The location of each

model is decided by the thresholds seen in u(t).

5-2

Output y(t)Input u(t)

1st model

2nd model

nth model

Predicted
signal

AME AMP

.

.

.

Original
signals Input

u(t) or
Other types
of stimuli

Model library

Figure 5-1: Schematics for the procedure of MMGS

Individual models in the n-model set are based on the RARMAX (Recursive

AutoRegressive Moving Average eXogenous variables model) system [Ljung99] in the

system identification toolbox in MATLAB [MATLAB6.5]. It is a single-input single-

output (SISO) system and used to compute recursively for an ARMAX (AutoRegressive

Moving Average eXogenous variables model) [Ljung99]. ARMAX is a robustified

quadratic prediction error criterion that is minimized using an iterative Gauss-Newton

algorithm that is a modification of Newton’s method that does not use second

derivatives. The algorithm is due to Carl Friedrich Gauss [Broyden65].

The structure can be expressed in Eq. 5-1 [Ljung99], where u(t) and y(t) represent input

and output signals, respectively;)(te is known as the noise parameter or prediction error;

a, b and c are coefficients.

)...1()()(...)1()(...)1()(111  tectenbtubtubnatyatyaty nbna Eq. 5-1

The method used to obtain the coefficients (a, b, c…) is the recursive maximum

likelihood (RML) method, which is an improved version of the extended least squares

(ELS) technique [Ljung99] to distinguish measurement errors from modelling errors by

5-3

properly weighting and balancing the two error sources [Yeredor00]. The RML

algorithm is summarised in Appendix L. Ljung was the first person to prove

mathematically that RML is able to converge more reliably than ELS [Ljung75]. The

key difference from ELS is that the RML does not include the prefilter, which can filter

noise properties in a c polynomial that controls whether or not the estimator converges

properly. The recursive method processes all samples one at a time and iterates the

algorithm to obtain the estimation result during one sampling interval. Compared with

non-recursive models it allows use of relatively small arrays, and is able to find the

neighbourhood of a reasonably acceptable working model even when a unique solution

is not available, whereas for a non-recursive model all results are processed

simultaneously, which produces large matrices of stored information.

The estimation process is described in Figure 5-2, where u(t) is the input stimulus,

which is used to connect both the SPICE op amp model and the estimator; y(t) is the

output response from the transistor level simulation (TLS); yE(t) is the output response

using RML.

Output y(t)Input u(t)

SPICE model
(TLS)

Estimator
(RML)

Original
signals

-

Estimated
Output yE(t)

Figure 5-2: The general process of the estimation

The RML estimates the data obtained from TLS to produce coefficients for the

RARMAX model and the estimated output signal. We then compare the estimated

output signal with the one from the original SPICE model, if it is not good enough the

condition of the estimator will be changed in order to achieve better results.

5-4

These generated models comprise bilinear equations [Ashenden03] that reproduce the

input-output relationships of the original circuit, and can be easily converted into

formats used by system-level simulation tools, e.g., VHDL-AMS (used in this work),

MAST, and even SPICE subcircuits. Model order reduction (MOR) techniques may be

used to reduce the order of model and improve the simulation speed.

In this thesis the SPICE model used as an example to evaluate the MMGS is the same

two-stage CMOS operational amplifier (op amp) as shown in Figure 4-1, shown again

in Figure 5-3. The op amp is used in open-loop configuration.

M4

M5

M6

M13 M14

M11 M12

M8 M9

C
C

M10

M7

Vdd

Vss

In- In+
Out

2

1

4

4

12

12

11

5

8

3 0

6

9

IEE

Iref

Figure 5-3: Schematic of the two-stage CMOS operational amplifier

The following chapter is outlined: the quality measurement based on an mathematical

equation is introduced in section 5.2; section 5.3 introduces the training data for

estimation; the MMGS is presented in section 5.4; section 5.5 overviews the some key

factors to improve the quality of estimation; illustrative results are given in section 5.6

followed by the conclusion in section 5.7.

5.2 Algorithm Evaluation based on an Mathematical Equation

We need to investigate the quality of estimation by comparing the output signals. The

determination of ‘closeness’ between two signals is based on the normalized evaluation

range seen in Eq. 5-2. Where Average_dif is the percentage of average difference, y(i),

yP(i) indicate the difference between the original signal and predicted signal at ith point.

5-5

N represents the number of samples. y_peak-to-peak is the peak- to-peak amplitude of

the original signal y.

100
_

)()(

_

1











peaktopeaky
N

iyiy

difAverage

N

i
P

Eq. 5-2

Furthermore, the simulation speed measurement was also investigated but will be

introduced in chapter 9.

5.3 Training Data for Estimation using PseudoRandom Binary

Sequence Generator (PRBSG)

It is necessary to use a robust training data for estimation so that the model(s) generated

can handle a wide input spectrum and nonlinearity. In this work a triangle waveform

with pseudorandom binary sequence (PRBS) superimposed on it is used as the training

data for estimation. The training data is generated by a pseudorandom binary sequence

generator (PRBSG). The PRBSG is written in C++ and run in the visual C++

environment. A command srand is used to make sure that signals generated by PRBSG

start from the different initial conditions, otherwise their sequences will be correlated.

Another way to achieve PRBS is to build a linear feedback shift register (LFSR).

An example of the signal is shown in Figure 5-4, where x axis indicates the number of

samples, y axis represents the amplitude in voltage (V). It is a 155Hz, 5.1mV triangle

waveform with a 51uV PRBS superimposed on it. The PRBS has a time interval of 10us.

20,000 samples are used but only the last 1,000 samples are displayed. Connecting the

signal to the negative input (In-) of the open-loop op amp, the positive input (In+) is

grounded. The output signal is obtained in Figure 5-4. It is seen that the output signal is

inverted compared with the input signal, and it does not cover full output range (-2.5V

to 2.5V) because of the input offset voltage (5.94mV). It has only saturated at 2.5V but

not cover the negative range. The full coverage data as the training data will be used in

chapter 6.

5-6

Figure 5-4: The training data from PRBSG and output response using the open-loop

amplifier

5.4 Multiple Model Generation System (MMGS)

In this section the multiple model generation system (MMGS) is introduced. It includes

two sections: in subsection 5.4.1 we illustrate how multiple linear models are used to

represent a nonlinear characteristic, and criteria used to select the family of models; in

subsection 5.4.2 the automatic approach for the MMGS is introduced.

5.4.1 Manual Implementation

This section describes two issues: one is the selection of models to be used, and the

other is the investigation of the quality of estimation.

Imagine a typical input and output circuit transfer characteristic and a modelling

estimate using a linear model, and corresponding error against input with one iteration.

The following illustrates the theory of the issues shown in Figure 5-5. Where y is the

original signal, ŷ is the estimated signal using the estimator based on a linear model m1,

error ε is the difference between y and ŷ , that is, yy ˆ . Ideally ε should be zero for

all values of input.

5-7

input (u)

output

m1

input (u)

error (ε)

m1

0

ŷ

y

ε = y- ŷ

Figure 5-5: Input and output circuit transfer characteristic (one linear model)

Comparing the two outputs y and ŷ indicates that the linear model struggles to model

the nonlinear characteristics, this can be determined by observing variation of the output

error.

Imagine the same circuit transfer characteristic and the modelling estimate based on five

linear models m1, m2, m3, m4 and m5 instead of one (top figure), and corresponding

error for one cycle (bottom figure) shown in Figure 5-6. Where y is the original signal,

ŷ is the estimated one by the estimator, error ε is the difference between y and ŷ , that

is, yy ˆ .

5-8

input (u)

output

m1 m2

m3

m4 m5

input (u)

error (ε)

m1 m2

m3

m4
m5

0

ŷ

y

ε = y- ŷ

Figure 5-6: Input and output circuit transfer characteristic (m1-m5 and input threshold

selected linear models)

It is shown that ŷ is constructed from five linear functions to form a piecewise

nonlinear model. Each model is only valid for certain ranges of input indicated by the

vertical lines on Figure 5-6, i.e., input thresholds. The linear parts of the signal y can be

approximated reasonably well, that is, ε  0. The modelling error tends to be larger at

the change over input thresholds between models. These have been circled in Figure 5-6

and are highlighted in the plot of error ε figure. It can be seen that the amplitude of the

error ε is much smaller than Figure 5-5.

Therefore, in theory estimation accuracy can be improved by using multiple models,

and the output error ε vs input can be used to assess performance.

5-9

Based on the theory, the rest of the subsection 5.4.1 shows the actual simulation using

the op amp in Figure 5-3. The input and output signals from TLS are shown in Figure

5-4. This process starts by observing the error using a linear model to fit the whole

range of operation. In RML there are two error parameters: the innovation error epsi and

residual error epsilon, both are the difference between the original signal and the

estimated one. However, epsi is not only related to the value at current time but also the

one at the previous time, which is difficult to observe. Therefore, epsilon is the criterion

adopted for threshold creation. In this stage the number of samples does not affect the

shape of the error.

We plot epsilon against the input voltage as shown in Figure 5-7, only last 1,000

samples are displayed. It is seen that the error varies significantly during estimation.

The vertical line indicates where the largest error is and how it corresponds to the input

signal.

Figure 5-7: The input voltage and the output error voltage

The estimated output voltage and the original signal are plotted in Figure 5-8, only the

last 1,000 samples are displayed. It is seen that the estimated signal does not match the

original signal well. This indicates that the linear model is unable to model the

saturation and nonlinear parts. Thus, more models are required to handle nonlinearity.

5-10

Figure 5-8: Comparison of output signals based on one model during estimation

process

We decide to split the region up into two regions at the vertical line shown in Figure 5-7

because this is where the maximum error voltage appears. Now each new region will

contain one model. Both models are then estimated, and then we observe if the error is

too large to tolerate, if this is the case we split the regions again and then run the whole

estimation. It is important to know that the models generated for new regions may be

different from ones that have been obtained over the same range previously. This is

because they are only generated using the training data in individual regions as it

gradually learns over the operating time.

To observe the whole history of error behaviour over the whole input range of the

system, we plot them shown in Figure 5-9. This method will be used in the rest of thesis.

It is seen that the error does not appear as a uniform bar instead it is varying with the

input at the time. It has the negative bias in the negative area of the input, increasing to a

peak at approximate an input voltage of 1mV, and becoming more negative as the input

voltage reaches its maximum (5mV).

This proves that the system can not be represented by a linear model. Therefore, we

search where the largest error (maximum amplitude) is, which is displayed by the

5-11

second vertical line for inputs voltage at 4.7mV (the first and last vertical lines indicate

the boundary of the input). The line divides the input range into two parts, each of them

contains a model.

Figure 5-9: The variation in epsilon vs input range based on one model

Instead of two models, five models (within six vertical lines) are employed. The value

of epsilon against input range is plotted in Figure 5-10, the ranges over which these

models apply are indicated by the vertical divisions. It is seen that the first model

between the first vertical line (-5.1mV) and second vertical line models nonlinear

behaviour with good accuracy due to the straight and narrow error band. The second

error voltage amplitude between the second and third vertical lines is larger than the

first one. The error amplitude is similar in the third and fourth models. The error

between the fifth and the last vertical lines (5.1mV) has the largest amplitude, because

here we find the stronger nonlinearity and there are fewer samples in this region, but

this is the best that can be achieved by the last model. However, the amplitude of error

has been significantly reduced compared with Figure 5-9. The quality of the predicted

signal is therefore greatly improved shown in Figure 5-11 compared with Figure 5-8.

According to Eq. 5-2 the average difference between them is 0.0013%.

5-12

Figure 5-10: The variation in epsilon vs input range based on five models

Figure 5-11: Comparison of output signals based on five models

In this section we have demonstrated that using multiple linear models improves

estimation quality. The operating ranges where the models are needed are obtained by

observing the output voltage error variation against input voltage.

5-13

There is a potential problem when one model is moved to another, there may be

discontinuity. More details about it will be discussed in Chapter 7.

The automatic approach of the MMGS is developed in the following section.

5.4.2 The MMGS

In this section we are going to introduce the automatic model generation algorithm of

the MMGS. It includes the automated model estimator (AME) and automated model

predictor (AMP). The former automatically generates models by observing output error

voltage variation through input voltage range. The AMP uses the models to predict

circuit response.

5.4.2.1 The Automated Model Estimator (AME)

The AME comprises three stages: the pre-analysis, estimator and post-analysis. Pre-

analysis is mainly to set up conditions such as input range and the number of intervals

for model creation and is only performed once; the estimator is used to determine the

quality of output data; post-analysis is the critical step because procedures for creating

models are implemented here. This process terminates when no new model is created.

The general structure is shown in Figure 5-12. Its MATLAB codes can be found in

Appendix H.1.1.

5-14

start

Pre-analysis

Create model

Estimator

Post-analysis

yes

end

no

Is a new model
needed?

Figure 5-12: The flowchart for the AME

5.4.2.1.1 The Pre-analysis

The pre-measurement is used to determine the input range and set the maximum number

of sub-models. Initially, maximum and minimum values of the input signal are

measured. It is then divided into a number of intervals. The number has to be even so

that the middle interval is centred in the full range of input voltage. There may be a

model within one of the intervals, but it is not necessary because the final decision to

adding a model is made in the post-analysis.

5-15

5.4.2.1.2 The Estimator

The RML estimator provides output responses and the residual error epsilon [Ljung99].

Its mathematical process can be found in appendix L.

The process is implemented in MATLAB [MATLAB6.5]. It starts by running through

all samples using a for loop. The indices for creating the threshold are found with a find

statement. A statement min is used to guarantee that only the smallest index is selected,

and then the new model pointed by this index is generated. Parameters (th) and the

covariance matrix (p) in each model need to be created and updated. The innovation

error (epsi) and residual error (epsilon) are all calculated. Moreover, the prefilter needs

also to be updated. The estimation is not over until all samples finish [Ljung99].

5.4.2.1.3 Post-analysis

Post-analysis is a critical step because the model generation process is implemented

here. The workflow is described in Figure 5-13.

The decision to add a new model to an interval of input voltage is based on Eq. 5-3,

where mediumRange is half of the difference between the maximum amplitude of the

error (highInterval) and the minimum amplitude of the error (lowInterval) for the

interval. criticalRange is the equivalent summation. criteria calculated for the interval

results from the comparison of these measures and that of the central interval of the

simulation (mediumRange(central)).

ngecriticalRacentralemediumRangemediumRangcriteria
llowIntervaalhighIntervngecriticalRa
llowIntervaalhighIntervemediumRang





)]([
2/)(
2/)(

Eq. 5-3

If the difference between two mediumRange is greater than the criticalRange, one

model is added within the jth interval (if there are j intervals), otherwise no action is

taken. If j is greater than a central point, the threshold will be set at the lower range,

otherwise it is set at the higher range in order to obtain the position close to the central

point. In order to increase simulation speed a shift mechanism is used to delete

equivalent models. Finally the new threshold array is sorted into monotonic order. Only

5-16

one model is created per iteration, because the error profile is recalculated whenever a

model is added.

Measure the minimum and
maximum values of epsilon

within each interval

Is a new model
required?

Make a decision to add a
model based on some

mathematical equations

A new threshold is needed
for the new model and

stored in an array

Yes

No
End

start

Sorting the threshold
array in an ascend order

end

Detect the same
thresholds in the array

and delete them

Compare the size of the
new threshold with the size
of the previous threshold in

order to end the iteration

Figure 5-13: The algorithm for post-analysis

5-17

5.4.2.2 The Automated Model Predictor (AMP)

The AMP is used to verify the AME system. It loads models generated by the AME to

predict output responses. Its process is similar to the estimator in section 5.4.2.1.2.

Unlike the estimator, the prefilter is not required. The MATLAB codes can be found in

Appendix H.1.2.

5.5 Key Factors to Improvement of Estimation Quality

In this section some key factors that can improve the quality of estimation are discussed.

They include the offset parameter, the number of samples and the training data.

The op amp already shown in Figure 5-3 is configured as an open-loop amplifier in

these experiments. The estimator and predictor each comprise three programs written in

MATLAB (see Appendix E).

5.5.1 The Offset Parameter Related to Model Operating Points

Within the multiple model generation process, each individual model is allocated in a

unique range of operating input values given by the thresholds. It is known that the

model created for each of the ranges has a linear relationship between the input and

output seen in Eq. 5-1. As a result it must have an additional parameter termed offset to

place its operation in the middle of its allocated input operating range. The transfer

function in Eq. 5-1 is modified seen in Eq. 5-4, where voffset is the offset vector and d is

the coefficient for the offset.

offsetnbna vdtectenbtubtubnatyatyaty )...1()()(...)1()(...)1()(111

Eq. 5-4

The following will show how important this parameter is in the system to improve the

accuracy of estimation. Two results are compared: one is with the offset, another

without it. Full source code can be found in Appendix E.1 and Appendix E.2,

respectively. The input signal is a sine waveform with an amplitude of 0.2V at 100Hz. It

is connected to the inverting input (In-), the non-inverting input (In+) is grounded.

1,000 samples are used. Initially simulation results without the offset parameter show

5-18

that the predicted signal yPredict has failed to model saturation compared with the

original signal y in Figure 5-14.

Figure 5-14: The predicted signal without the offset parameter

The determination of ‘closeness’ between two signals is based on the normalized

evaluation range seen in Eq. 5-2. In this case Average_dif is 4.88%.

After that simulation using the offset parameter was run. During simulation the

predicted signal is obtained in Figure 5-15, the quality of the predicted signal yPredict

has been improved compared with the one without the offset parameter. According to

Eq. 5-2 the average difference is 3.283%, which is less than 4.88%.

There is some noise on the nonlinear parts because the estimator can not obtain enough

information on that region; it has to generate information itself. This can be improved

by using a saturation detector to delete the saturated samples, thus the estimator will

focus on available information. However, it has been proved that with the offset

parameter the quality of predicted signal can be improved.

5-19

Figure 5-15: The predicted signal with the offset parameter

5.5.2 Quality Improvement based on the Number of Samples

In this subsection a longer simulation is performed using 10,000 samples instead of

1,000 in order to investigate if better quality estimation can be achieved. The same sine

waveform signal as above is used with the open-loop amplifier. The predicted output

signals yPredict is shown in Figure 5-16. Illustrative results show that with 10,000

samples spikes have been reduced. According to Eq. 5-2 the average difference is

1.8946%, which is less than 3.283%. It has proved that sometimes quality of predicted

signal can be improved with more samples.

Figure 5-16: Signals from the predictor with 10,000 samples

5-20

However, this is not always true, for example models on saturation regions, because

samples in the models may not be informative. Illustrative results can be found in

Appendix F.

Moreover, many methodologies for improving quality of the MMGS have been

developed and described in Appendix G.

5.6 Experimental Results

5.6.1 Simulation for Nonlinearity

In this subsection the transistor-level open-loop amplifier shown in Figure 5-3 is

modelled with inclusion of strong nonlinearity. Five models are generated, the stimulus

for both the AME and AMP is the same PRBS in Figure 5-4 (20,000 samples). The

estimated signal yEstimate and the original signal y are plotted in Figure 5-17 (last

2,000 samples). The x axis is the number of samples, and the y axis is the output voltage

(V). It is seen that yEstimate matches y. The average difference measurement is

0.3746%. This proves that this algorithm for automatic model estimation has worked

successfully.

1.92

1.97

2.02

2.07

2.12

2.17

2.22

2.27

2.32

2.37

2.42

2.47

2.52

1 201 401 601 801 1001 1201 1401 1601 1801

No. of Samples

A
m

pl
it

ud
e

(V
)

y yEstimate

Figure 5-17: The estimated signal from the AME system

5-21

The AMP system then uses these models to predict the nonlinear system with the same

input stimulus in Figure 5-4, signals are shown in Figure 5-18 (last 2,000 samples).

1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

2.50

1 201 401 601 801 1001 1201 1401 1601 1801

No. of Samples

A
m

pl
it

ud
e

(V
)

y yPredictor

Figure 5-18: The signal from the AMP system

It is shown that both the predicted signal yPredictor and the original signal y are very

close. The average difference measurement is 0.572%.

Although there is some difference on the saturation part in the predicted signal, because

the process of prediction is “dead reckoning”, that is, in the predictor we derive the

output response from the input directly without any information on output to work on,

so we accumulate errors, whereas in the estimator we use genuine data from the real

process.

5.6.2 Validation Test for MMGS Generated Models via Time-domain (transient)

Simulations

In this subsection another stimulus is used in order to validate the models from section

5.6.1 (five models). The circuit used is the open-loop amplifier. A square waveform

stimulus was used based on the pulse source function in HSPICE: PULSE (v1 v2 td tr tf

pw per), where v1 is the initial value of the voltage or current before the pulse onset, v2

is the plateau value, td, tr and tf represent the delay time, rising time and falling time,

respectively, pw is the pulse width, per is the pulse repletion period in seconds. In this

5-22

case these parameters are chosen as follows: PULSE (-0.2mV 0.2mV 100us 100us

100us 700us 1000us). All conditions in the system remain the same as above, the

predicted signal is seen in Figure 5-19.

Figure 5-19: Predicted square waveform based on models from the MMGS

It is seen that the shape of the predicted signal (bottom) is close to the original one (top).

The average difference between them is 0.524%.

5.7 Conclusion

In this chapter an AMG based approach termed multiple model generation system

(MMGS) has been developed for SISO models. It consists of the automated model

estimator (AME) and automated model predictor (AMP). A PRBS-signal generator is

used to generate robust training data for the AME. Results show that these generated

models are able to model nonlinear behaviours, and model circuits subjected to various

stimuli such as the pulse waveform with good accuracy.

In the next chapter the multiple model generation system (MMGS) for multiple-input

single-output (MISO) models based on recursive maximum likelihood (RML) is

implemented.

6-1

Chapter 6: The Multiple Model
Generation System (MMGS) for

Multiple-Input Single-Output (MISO)
Systems

6.1 Introduction

In this chapter the multiple model generation system (MMGS) for multiple-input single-

output (MISO) models based on recursive maximum likelihood (RML) is implemented

in MATLAB [MATLAB6.5]. The reason for developing a MISO model is that the

system of interest is a two-input operational amplifier (op amp). Existing approaches for

MISO models such as the recursive prediction error (rpem) method or the recursive

pseudo-linear regression (rplr) method [MATLAB6.5] can also be used. The difference

between them is that different gradient approximations are utilized [Ljung99].

Currently, the model generation process is dependent on threshold measurement of one

input, the other input is not responsible for model generation and selection, because this

reduces the complexity of the process for our investigation. The generation method

based on both inputs will be investigated in the future work. The input for the model

generation has the most nonlinear relationship, so the input and output transfer

characteristic is the one with the worst nonlinearity, which is the one used to generate

models, the other input is more linear in the relationship with the output.

This chapter is outlined as following: section 6.2 overviews the MMGS for MISO

models. Experimental results are given in section 6.3 to verify the system works. In

section 6.4 the conclusion is given.

6.2 Algorithm on the MMGS for MISO Models

The MMGS comprises two parts: the AME and AMP. The former generates models

based on the model generation algorithm, the latter uses these models to predict signals.

It uses the same approach as the SISO models to generate multiple models, that is, by

observing the variation in output error against input range. Moreover, the criteria in Eq.

6-2

5-4 are employed to decide when a new model is added. The difference is that the

structure of RARMAX system is modified seen in Eq. 6-1, i.e., a second input vector v

is added compared with Eq. 5-3.

offsetnf

nbna

vdtectenftvftvf
nbtubtubnatyatyaty



...)1()()(...)1(

)(...)1()(...)1()(

11

11
Eq. 6-1

where u(t), v(t) represent first and second inputs, respectively; y(t) is the output signal;

)(te is the noise parameter or prediction error; voffset is the offset vector; a, b, c, d and f

are their coefficients.

The same two-stage CMOS operational amplifier (op amp) as Figure 4-1 is employed

also shown in Figure 6-1 as an open-loop amplifier in these experiments.

M4

M5

M6

M13 M14

M11 M12

M8 M9

C
C

M10

M7

Vdd

Vss

In- In+
Out

2

1

4

4

12

12

11

5

8

3 0

6

9

IEE

Iref

Figure 6-1: Schematic of the two-stage CMOS operational amplifier

In addition, the pseudorandom binary sequence generator (PRBSG) developed in

chapter 5 is used to generate two PRBS signals for the MMGS as shown in Figure 6-2,

in which 30,000 samples, only last 1,000 are displayed.

6-3

Figure 6-2: Two inputs and one output signals from TLS

It is seen that two input signals have different shapes with approximately the same

amplitude but different frequencies. The first input signal for the estimator is a 125Hz,

11mV triangle waveform with a 0.5mV pseudorandom binary sequence (PRBS)

superimposed on it. The second input signal for the estimator is a 25Hz, 10mV triangle

waveform with a 1mV pseudorandom binary sequence (PRBS) superimposed on it. The

PRBS has a time interval of 10us. The first signal (higher frequency) is connected to the

inverting input (In-), another PRBS (lower frequency) is connected to the non-inverting

input (In+). The output signal saturates at  2.5V.

6.3 Experimental Results

6.3.1 Analysis of MMGS

The aim of the section is to investigate if the MISO MMGS system is able to model a

linear system. A linear circuit as shown in Figure 6-3 is used. This circuit is able to

simultaneously achieve small steady-state error, large phase margin, and large gain

crossover frequency [Chirlian82]. This circuit is based on a differential amplifier, which

is a type of an electronic amplifier that multiplies the difference between two inputs by

the differential gain. It consists of two low-pass filters with the frequencies of 100Hz and

6-4

10Hz, respectively. The transfer function is given in Eq. 6-2, where R1 = 1kΩ, Rf =

10kΩ, Cf = 0.15915uF, R3 = 10kΩ and C4 = 1.5915uF.

R1

C4

vo

vin

vip

Rf

Cf

R3

V(inn)
V(inp)

Figure 6-3: A linear circuit with two low-pass filters

ip
ffff

fff

in
ffff

ff
o

v
RsCRRRCRsCRRCR

RRsRCR

v
RsCRRRCRsCRRCR

RsCRR
v













14311
2

431

11

14311
2

431

43

)(

)(Eq. 6-2

Its transfer function under discrete-time is shown in Figure 6-4 produced in the system

identification toolbox in MATLAB.

>> Discrete-time IDPOLY model:y(t)=[B(q)/F(q)]u(t)+ e(t)
B1(q) = -0.8421 q^-1 + 0.8347 q^-2

B2(q) = 0.0125 q^-1 - 0.004393 q^-2

F1(q) = 1 - 1.907 q^-1 + 0.9078 q^-2

F2(q) = 1 - 1.907 q^-1 + 0.9078 q^-2

This model was not estimated from data.
Sampling interval: 0.00014

Figure 6-4: The coefficients from the system identification toolbox

The investigation uses two steps:

6-5

1) The analytical simulation is used for analyzing the circuit, both input and output

data are then stored in a text file.

2) The MMGS generates a model based on these data.

The circuits analysed can be found Appendix I-1 and Appendix I-2, respectively.

The same training data shown in Figure 6-2 is used again, in which the higher frequency

signal is connected to the inverting input vin, and the other one is applied to the non-

inverting input vip. All (i.e., two inputs and output) signals are then passed to the MMGS

to generate a model. Its transfer function is shown in Figure 6-5. Comparing this model

with the one from the circuit in Figure 6-4, their coefficients are seen to match.

ipino V
qq

qq
V

qq
qq

V 21

21

21

21

9078.0907.11
)0044.00125.0(

9078.0907.11
)8347.08421.0(


















Figure 6-5: The model under discrete-time from MMGS

The MMGS was then used to predict the behaviour of the same circuit. Results are

shown in Figure 6-6, only the last 4,000 samples are plotted, where the x axis is the

number of samples, and the y axis shows the amplitude voltage (V).

-0 .2

-0 .15

-0 .1

-0 .05

0

0 .05

0 .1

0 .15

0 .2

1 501 1001 1501 2 00 2501 30 0 3501

No. of Samples

A
m

pl
itu

de
(V

)

y yPredictor

Figure 6-6: The predicted signal from the analytical system

6-6

The difference between the predicted signal yP and the original one y is measured using

the average difference measurement, which can be found in Eq. 5-2. In this case

Average_dif is 0.000143%.

Further analysis of various low-pass filters with different cut-off frequency showed that

reasonable results are achieved using the procedure detailed above. Unfortunately, this

form of MMGS is unable to model high-pass filters accurately due to aliasing. An anti-

aliasing filter can be employed to make sure there are no signals beyond the Nyquist

sampling frequency. However, this may cause too much phase shift or other

discrepancies.

6.3.2 Simulation for Nonlinearity

The aim of the section is to investigate whether the MMGS is able to model strong

nonlinear behaviour. In this subsection the training data is obtained from the transistor-

level open-loop op amp SPICE model from Figure 6-1 is simulated with inclusion of

strong nonlinearity. Three stable models are used by the MMGS, and the stimuli are the

same as in Figure 6-2, for both the AME and AMP. The signals are shown in Figure

6-7, only last 5,000 samples are displayed, where the x axis is the number of samples, y

axis is the amplitude (V).

-3

-2

-1

0

1

2

3

4

1 501 1001 1501 2001 2501 3001 3501 4001 4501
No. of Samples

A
m

pl
it

ud
e

(V
)

yPredictor y

Figure 6-7: The predicted signal from MMGS

6-7

It is seen that the predicted signal yPredictor is able to match the original signal y. The

percentage of average difference between the two signals is 0.1593%. There is some

noise in the saturation regions because the estimator struggles to obtain enough

information where there is no relationship between input and output, that is, the output is

not dependant on input. Here it has to generate excitation itself to make the best guess.

This can be improved by using a saturation detector to delete the samples in the

saturation region, so the estimator will focus on available information. These results

indicate that the MMGS is able to handle nonlinearity with good accuracy.

6.3.3 Validation for Test for MMGS Generated Models via Time-domain

(Transient) Simulations

Various stimuli including sine and square waveforms were used in order to validate the

models in subsection 6.3.2. However, only sine waveform is shown in this section. The

two inputs are 0.6mV at 500Hz, and 0.3mV at 100Hz. Signals are plotted in Figure 6-8.

It is seen that the predicted signal yPredictor is close to the original y in term of the

amplitude, but the offset is not as expected. The result may be improved by adding an

offset parameter, which will be discussed in next chapter.

y

2.486

2.487

2.488

2.489

2.49

2.491

2.492

1 501 10011501200125013001350140014501

A
m

pl
it

ud
e

yPredictor

1.6505

1.6515

1.6525

1.6535

1.6545

1.6555

1.6565

1 501 10011501200125013001350140014501

Figure 6-8: The predicted signal with multiple models generated from MMGS

6.4 Conclusion

In this chapter the multiple model generation system (MMGS) is developed for MISO

models from transistor level SPICE simulations. It has been shown that these generated

6-8

models are able to model nonlinear behaviours, handle low-pass filters accurately, and

predict various circuit responses reasonably, except for their offset. Offset can be

handled by adding a parameter to the model, and problems concerning automation of

determining offset will be improved by implementing high level modelling (HLM) in

chapter 7.

7-1

Chapter 7: High Level Modelling
based on Models from the MMGS

7.1 Introduction

As was discussed in chapter 2 high level modelling (HLM) is an important part of

modern design flows.

In this chapter HLM based on models generated from the multiple model generation

system (MMGS) is implemented using both manual and automatic approaches. The

following sections are outlined: section 7.2 introduces how to implement this

conversion manually. The automatic algorithm is discussed in section 7.3 followed by

the result in section 7.4. Section 7.5 supplies the conclusion.

7.2 Manual Conversion

The aim of this section is to introduce the structure of the behavioural model and prove

that there is no discontinuity caused during model switching.

7.2.1 Structure of the Behavioural Model

The structure of the behavioural model used in this work is shown in Figure 7-1, which

is similar to the linear model in chapter 3. However, this behavioural model takes

nonlinearity into account, that is, multiple models from the MMGS are included in the

voltage controlled voltage source (VCVS) (implementing)(ino VfV ) to handle

nonlinearity. In this case the same models from the multiple model generation system

(MMGS) are used in chapter 5, and the input voltage range is 01.0 V.

Two linear resistors ir and ro provide the input impedance and output impedance,

respectively, and voffin and voffout are parameters for modelling the input offset and output

offset, respectively.

7-2

- ro

ri

+

gnd

Vin

MMGS (Vo=f(Vin))

out

Voffin

Voffout

Vn

Vp

Figure 7-1: Structure of the behavioural op amp model

Each model in the MMGS can be expressed as a multiple-input single-output (MISO)

system. The high level model is similar to this, but without the noise vector as shown in

Eq. 7-1, where u(t), v(t) represent the first and second inputs, respectively; y(t) is the

output signal; voffset is the offset vector; a, b, d and f are their coefficients.

offsetnf

nbna

vdnftvftvf
nbtubtubnatyatyaty




)(...)1(
)(...)1()(...)1()(

1

11
Eq. 7-1

The equation above is then modified using the z transform as shown in Eq. 7-2 in order

to facilitate implementation in the VHDL-AMS language.

12
2

1
1

2
2

1
1

2
2

1
1

)...(

)...()...(








zdzazazav

zfzfzfvzbzbzbvv
na

naout

nb
nbp

nb
nbnout Eq. 7-2

where vn, vp and vout represent inputs and output signals, respectively; z-1, z-2… are the

first and second delay operations, and so on; nbbb ...1 and nfff ...1 are coefficients of the

inputs, a0, a1 … ana are coefficients for the outputs, and d is the offset coefficient.

Each behavioural model written in VHDL-AMS is at the form shown in Eq. 7-3.

7-3

;2_1_

2_1_2_1_

);('1_2_
);('1_

);('1_2_

);('1_

);('1_2_

);('1_

211

2121























zmvoutazmvoutad

zmvipfzmvipfzmvinbzmvinbvout

Tdelayedzmvoutzmvout
Tdelayedvoutzmvout

Tdelayedzmvipzmvip

Tdelayedvzmvip

Tdelayedzmvinzmvin

Tdelayedvzmvin

p

n

Eq. 7-3

where the attribute ‘delayed is employed to perform a z domain delay by the sampling

interval T; voltage sources vn, vp and vout are regarded as quantities at discrete-time in

VHDL-AMS using the zero-order hold attribute (‘zoh) that acts as a sample-hold

function to allow for the periodic sampling of the quantity, in which the value is held

between samples.

In VHDL-AMS there are three types of quantity: free, branch and source quantities. A

free quantity is an analogue-valued object that can be used in signal-flow modelling; a

branch quantity is similar, but is specifically used to model conservative energy systems;

and a source quantity is used for frequency and noise modelling [Ashenden03].

Free quantities vin_zm1, vin_am2, vip_zm1,…, vout_zm2 represent first and second

delays of the sampling interval Ts. Ts is derived from the sampling frequency, i.e.,

s
s T

f
1

 , which has to be at least two times higher than the input signal frequency (using

Nyquist’s law) in order to extract all of the information from the bandwidth [Bissell94].

Failure to do so can cause aliasing, which produces unwanted frequencies within the

range expected [Bissell94]. These unwanted frequency components occur at the

difference between the input and sampling frequencies, and produce erroneous sampled

waveforms. To overcome aliasing, anti-aliasing filters can be employed by sampling

systems.

As previous discussed the model selection process during the MMGS is based on input

ranges shown in Figure 7-2.

7-4

If the input signal is within the range for the first model use
The first model is selected

Else if the input signal is within the range for the second model use
The second model is selected

.

.

.

Else the input signal is not included in these ranges
Either the first or the last model is selected

Figure 7-2: Model selection algorithm based on input range

However, during high level modelling (HLM) we decided to focus on the model

selection process based on the output values instead of inputs in order to achieve

bumpless transfer, but input information is fed to all the models all the time. During

model switching, two models either side of a boundary (interface) giving the same input

will approach each other, because they have been trained by the estimator to be

consistent at the interface point.

This process is shown in Figure 7-3 using an if-else statement. Initially we displayed all

transfer functions of models in HLM, we then run all the models in parallel, meanwhile

input information are fed to all the models all the time. We only switch from one output

to another when they reach the particular area of the input signal.

Display the transfer function for the first model
Display the transfer function for the second model

.

.

.
Display the transfer function for the last model

If the input signal is within the range for the first model use
The output voltage of the first model is selected

Else if the input signal is within the range for the second model use
The output voltage of the second model is selected

.

.

.
Else the input signal is not included in these ranges

Either the output voltage of the first or the last model is selected

Figure 7-3: The model selection process for the predictor

7-5

By doing this way we can achieve reasonable bumpless transfer. Although it is not

guaranteed that complete bumpless transfer is achieved, discontinuities will be small

because the two models are estimated to have the same value for the input because they

have both been subjected to the same boundary zone in the training data. However,

higher simulation speed may not be achieved. This can be improved by feeding only the

neighbouring models instead of all models.

This behavioural model is used to implement various systems such as a differential

amplifier and a low-pass filter in order to verify that it works well. Simulations were run

using two simulators: SMASH from Dolphin [Dolphin] and SystemVision from Mentor

Graphics [Mentor], respectively. The difference between them has been discussed in

Appendix K.

7.2.2 Investigation to Bumpless Transfer using SMASH Simulator

The aim of the subsection is to prove that bumpless transfer between models can be

achieved using an example. This is realised in four steps:

1. TLS in HSPICE is performed. The circuit used is an open-loop amplifier based on

the op amp in Figure 4-1. The stimulus containing 20,000 samples is connected to

the inverting input port (In-). It is a 82.5Hz, 0.5mV triangle waveform with a 0.1mV,

100kHz pseudorandom binary sequence (PRBS) superimposed on it. The MMGS

generates three models by estimating these data from TLS. These models

correspond to input voltage thresholds [-0.6mV -0.4909mV -0.3818mV 0.6mV],

respectively.

2. The AMP in the MMGS uses the first model in step 1 to predict the output signal. A

sine waveform with the amplitude of 0.6mV at 1MHz is used as the stimulus

connected to the inverting-port of the open-loop amplifier.

3. The same process in step 2 is implemented for the VHDL-AMS model using the

SMASH simulator [SMASHR05] [SMASHU05].

4. Results from step 2 and step 3 are compared.

In step 1 a data loading process is run to load data from the pseudorandom binary

sequence generator (PRBSG) as a stimulus for estimation. This is implemented by a

subprogram function written in VHDL-AMS shown in Figure 7-4.

7-6

The file is open in read_mode, and then data is read line by line with a procedure

readline, which creates a string object in the host computer’s memory and returns a

pointer to the string. The read procedure is then used to read this string into an array. A

warning message is given if the size of the returned data is different from the data in the

file.

-- define a function for data loading
impure function read_array(file_name:string;array_length:natural)

return real_vector is
--type real_file is file of real;
file vsoce:text;

variable result:real_vector(0 to array_length-1);
variable iline : Line;
variable index:natural;

begin
--load all the data from the file
index:=0; --initialization

--open the file for reading
file_open(vsoce, file_name, READ_MODE);

while not endfile(vsoce) and index <= array_length loop
readline(vsoce, iline);
read(iline,result(index));

index:=index+1;
if array_length>result'length then

report"the store is not large enough!" severity warning;
end if;

end loop;
return result;

end function read_array;

Figure 7-4: Data writing based on the sampling interval

A real vector is then used to store these data. After that the data are assigned to a

quantity as the input signal. This is translated into VHDL-AMS in Figure 7-5:

real_convertor: process is
begin

for i in solutions'range loop
sigvalue <= solutions(i);
wait for 1.0us;

end loop;
end process real_convertor;

sig_break:process (sigvalue) is
begin

break;
end process sig_break;

vinsource==sigvalue'ramp;

Figure 7-5: Assigning data as stimuli

7-7

where ‘range is an attribute used to determine the range of the real_vector; a wait for

statement is necessary to allow time to elapse between applying new signals, otherwise

the new signal may overwrite the previous one, the analogue solver will restart every

1.0us and wait for the new data load. Use of the ‘ramp attribute without any parameters

allows the quantity to follow the signal exactly [Ashenden03]. Furthermore, a break

statement can be used immediately after the signal assignment process to restart the

analogue solver effectively.

As has been discussed, models from the MMGS are developed under discrete-time, so

in step 3 the sine waveform has to be sampled using the sampling interval (0.01us)

before it can be used for prediction. The discrete-time data is obtained by using some

functions written in VHDL-AMS and shown in Figure 7-6.

vin_sampled==vin'zoh(Tsmp);
-- Process to generate sample clock
sample_tick: process (tick) is
begin

tick <= not tick after Tsmp * 0.02 Sec;
end process sample_tick;

-- Process to sample vin and write to the log f ile
sample_vin: process (tick) is
variable iline:Line;
variable open_status : file_open_status;
variable index : natural := 1;
begin

if not file_is_open then
file_open(open_status, vsoce, filename, WRITE_MODE);
file_is_open <= true;

end if;
if open_status /= open_ok then

report file_open_status'image(open_status) & " while opening file "
severity warning;
file_is_open <= false;

end if;
--report "sampled vin data point is " & real'image(vin_sampled) severity note;
if index <= index_max then

write (iline,vin_sampled);
writeline(vsoce, iline);

index := index + 1;
if index > index_max then

report "index can not be over the maximum size!"
severity error;
file_close(vsoce); --close the file

end if;
end if;

end process sample_vin;

Figure 7-6: Data writing based on the sampling interval

7-8

The zero-order hold attribute (‘zoh) samples the continuous quantity vin at discrete

points in time Tsmp (0.01us). The first process statement with the signal tick monitors

when Tsmp changes. The second process statement is to implement data writing. In this

statement initially a file open check is employed to determine if the file can be opened,

the parameter status is used to return information about the success or failure of the

operation. This parameter is predefined in the package standard as file_open_status,

others include open_ok, status_error and so on [Ashenden03]. If the file is open

successfully, the value open_ok is returned, and further processes can be run. After the

file is opened the procedures write and writeline are used for data writing. A file_close

operation is provided paired with the file_open operation, so that we do not

inadvertently write the wrong data to the wrong file.

The results from step 2 and 3 are compared using all model in [-0.6mV 0.6mV] to prove

model switches without bumps, signals from the AMP and VHDL-AMS model are

illustrated in Figure 7-7 and Figure 7-8, respectively. It has been mentioned previously

that the voltage thresholds are set at [-0.6mV -0.4909mV -0.3818mV 0.6mV]. It is seen

that the output signals (bottom) from both figures can be matched. Therefore, the model

conversion for the model is successful.

Figure 7-7: Predicted signal from the AMP based on all model

7-9

Figure 7-8: High level modelling based on all model

It is seen that amplitudes and shapes of output signals (bottom) can be matched in terms

of shape and amplitude. There is not any discontinuity on the outputs when the system

is operating. Therefore, bumpless transfer can be achieved during model switching by

using the procedure mentioned in Figure 7-3.

7.3 The Multiple Model Conversion System (MMCS)

In this section an automatic multiple model conversion system (MMCS) is developed to

convert models from the MMGS into VHDL-AMS models once these models have

been validated. The MMCS is written in MATLAB and located after the MMGS. The

structure of the VHDL-AMS model is based on Figure 7-1.

This system is defined as a function in MATLAB shown in Eq. 7-4:

function MMCS(thm,threshold,nn,filename) Eq. 7-4

where MMCS is the function name, thm, threshold and nn are parameters that are

obtained from the AME, filename is used to create a HDL file with .vhd extension for

VHDL-AMS models, the directory is required so that the user is able to decide where

7-10

the file can be created. This function does not return anything because only the file

saved in the directory of filename is required.

Initially the size of thm, threshold and nn are defined in order to obtain the number of

models, the ranges for these models and the orders of each vector of the model seen Eq.

7-2, respectively. thm contains a two-dimension array. Its rows and columns contain the

models and the parameters, respectively. The system dynamically loads coefficients in

thm for each model seen Eq. 7-2 and its corresponding threshold.

The general structure of a VHDL-AMS model consists of three parts: entity,

architecture and testbench [Ashenden03], which are obtained by employing multiple

fprintf statement in MATLAB. Other statements such as fopen are also used to open a

file and then write the key words in the file. It is noted that the file directory needs to be

set up before the creation is implemented because fopen does not create a directory, but

accesses it and generates new files. At the end of the system a fclose statement is used to

close the file.

7.4 Experimental Results

In this section the transistor level simulation (TLS) and high level modelling (HLM)

based on the models from the MMGS and MMCS are compared. The aim is to observe

whether our models are able to achieve higher speed and reasonable accuracy. The

models used in this case have been generated in section 6.3.2. Both TFS and HLM are

run in SystemVision [SystemVision], facilitating comparison.

7.4.1 The Inverting Amplifier

An inverting amplifier with a gain of -4 is used for simulation. The stimulus is a sine

waveform with the amplitude of 1mV and the frequency of 100Hz. The transient

analysis is performed using t(start) = 2ms, t(end) = 50ms with a step of 0.001ms. The

output signals from the transistor level V(out)_TLM and high level modelling

V(out)_HLM are shown in Figure 7-9.

7-11

Figure 7-9: Signals between the transistor level and the high level modelling

It is seen that both signals can be matched in terms of shape and amplitude.

Comparing the simulation time under the same condition, the TLS takes 8.53s of CPU

time, the HLS needs about 45.135s, which is about 5 times slower than the TLS. This is

because the simulator has not been optimised to use this kind of approach, and so the

computational overhead is high.

To investigate simulation speed, two types of experiments are implemented using the

same inverting amplifier: 1) during HLM we replace multiple models by a single model

to observe simulation time. 2) we consider the SPICE level of the transistor model and

prove that the level of transistor model can affect the simulation results.

Firstly we run HLS using a single model instead of multiple models under the same

circumstance, the simulation time is 40.234s, which is faster than HLS using multiple

models (45.135s). This is because the simulator has not been optimised to use this kind

of approach, and so the computational overhead is high.

Secondly we use different level transistor models in the same netlist of the op amp in

Figure 4-1. It is known that the transistor that has been used through the thesis is at level

2. In this experiment we use a new transistor, which is a 1.2 micron CMOS model

7-12

(Level 3 instead of level 2) [Spiegel95]. Each type of simulation has been run 10 times,

the average value is then chosen in order to reduce affects of interaction in computer.

The comparison is shown in Figure 7-10.

45.4002

8.5619

45.3993

8.6953

0

5

10

15

20

25

30

35

40

45

TLS HLS

S
im

u
la

ti
o

n
T

im
e

(s
)

Level 2
Level 3

Figure 7-10: Simulation Speed Comparison between level 2 transistors and level 3

transistors

It is seen that during TLS simulation speed based on the level 3 transistor (8.6953s)

becomes slower than the one using the level 2 transistor (8.5619s). This is because the

former is more complex than the level 2 transistor, it takes more time to complete

simulation.

Although the difference between TLS time is not very significant, it has indicated that

as the transistor is getting more complex (the parameter level in the transistor is higher),

TLS becomes slower, whereas simulation time from HLS almost does not change.

Therefore, simulation speed-up during HLS may be observed.

In the future work, we will use more complex CMOS transistors (e.g., IBM 0.13 micron

level 49 [Mosis]) to investigate the improvement of simulation speed.

7.4.2 The Differential Amplifier

Initially we consider a differential amplifier. The differential amplifier is useful for

handling signals referred not to the circuit common, but to other signals, known as

floating signal sources. Its capability of rejecting common signals makes it particularly

7-13

valuable for amplifying small voltage differences contaminated with the same amount

of noise. Its typical circuit is shown in Figure

7-11.  kRkRkRkR fifi 5',1',10,2 . The stimuli are two sine waveforms:

one has the amplitude of 0.6mV at 500Hz for vin, another has the amplitude of 0.3mV at

100Hz for vip. Transient analysis is performed using t(start) = 20ms, t(end) = 60ms, and

the time step is 0.001ms.

Ri’

Ri

Rf’

vo

vin

vip

Rf

Figure 7-11: The differential amplifier

The output signals from the transistor level and high level are plotted in Figure 7-12.

Figure 7-12: Signals between the transistor level and the high level modelling

7-14

Compared with the transistor level simulation (TLS), the shapes and amplitudes of the

signals from the model are very close.

Under the same conditions TLS takes 14.72s of CPU time, and the behavioural model

takes about 80.093s. To investigate why HLS is slower than TLS the behaviour model

using multiple models is replaced by a single model. Under the same circumstance with

only one model, HLS needs 70.234s, which is faster than HLM using multiple models.

This is because the simulator has not been optimised to use this kind of approach, and

so the computational overhead is high.

Moreover, the offset issue in section 5.5.1 has been improved by adding an offset

parameter in the model.

7.5 Conclusion

In this chapter HLM is implemented using a behavioural model. The model is produced

using the MMCS, which converts models generated by the MMGS into VHDL-AMS

models. This MMCS can dynamically load parameters and thresholds for each model.

The model switching process has been validated using a manual experiment in the

SMASH simulator.

Results show that the behavioural model can model various systems including an

inverting amplifier and a differential amplifier. Speed-up is not achieved because the

simulator is not optimised to deal with a lot of computational overhead present when the

high level model structure is used. Moreover, speed-up can be improved by feeding the

neighbouring models instead of all models during model selection process.

In the next chapter a similar system to the MMGS that generates continuous-time

models will be implemented in order to address the speed-up issue.

8-1

Chapter 8: Multiple Model
Generation System using Delta

Operator

8.1 Introduction

The objective of the chapter is to obtain a novel behavioural model in order to perform

high level fault modelling (HLFM) and high level fault-free modelling. The ideal model

should have higher simulation speed with reasonable accuracy compared with transistor

level simulation (TLS). We develop a system named multiple model generation system

using delta operator (MMGSD) for generating either single-input single-output (SISO)

or multiple-input single-output (MISO) macromodels, so that the simulation speed may

be improved compared with the MMGS in chapter 5. The MMGSD employs a similar

approach to the MMGS, i.e., this model generation process still detects nonlinearity

through variations in output error. The difference is that the delta transform is employed

instead of the discrete-time transform. By using the delta operator the coefficients

produced relate to physical quantities as in the continuous-time domain model and are

less susceptible to the choice of sampling interval, provided it is chosen appropriately

[Wilkinson91].

This chapter is outlined as follows: section 8.2 overviews the MMGSD; illustrative

results for verifying the system are given in section 8.3; section 8.4 supplies the

conclusion.

8.2 Overview of MMGSD

Similar to the MMGS the MMGSD includes an automated model estimator (AME) and

an automated model predictor (AMP). The former implements the model generation

algorithm. The AMP is use to implement these generated models. The AME includes

three stages as illustrated in Figure 8-1: pre-analysis, estimator and post-analysis. Pre-

analysis is mainly to set up conditions such as input range measurement and the number

of intervals for model location. In the whole algorithm, this stage is only run once. Post-

analysis is the critical step because procedures for creating models are run here.

8-2

start

Pre-analysis

Add a model

Post-analysis

Estimator

yes

no

end

Is a new model
needed?

Figure 8-1: The algorithm for the AME system

The estimator is based on modified recursively maximum likelihood (RML) estimation

[Middleton90], more details can be found in Appendix L.2. The model structure is

related to the Laplace transfer function of a process as follows. Initially a continuous

time transfer function is considered, as shown in Eq. 8-1.

01
1

01
10)(

sasas
sbsbsb

sG
m

mm
n

nn







 



Eq. 8-1

As it has been mentioned in the introduction when the sampling interval is sufficiently

short, the continuous time transfer function G(s) is equal to the delta transfer function

G(δ) [Middleton90] shown in Eq. 8-2.

01
1

01
10

)(
)(

)(




m

mm
n

nn

aa
bbb

tu
ty

G






 



Eq. 8-2

8-3

After rearranging this equation, Eq. 8-3 is obtained:

)()()()()(0
1

1 tubbtyaaty n
n

m
mm     Eq. 8-3

It is known that error is related to the quality of estimation, i.e., a smaller error indicates

that a better estimated signal has been achieved. Thus the variation in output error

against the input amplitude is analyzed in the MMGSD to decide if a new model needs

to be generated. As with the MMGS, residual error is used for observing model errors.

The difference is that deltarised error depsilon is observed instead of epsilon. depsilon

has been discussed in relation to Eq. 2-16.

Initially the number of intervals to be used on the input voltage is set up. The decision to

add a new model on one of the intervals is based on three equations shown in Eq. 8-4:

ngecriticalRadexsmallestinemediumRangemediumRangcriteria
llowIntervaalhighIntervngecriticalRa
llowIntervaalhighIntervemediumRang





)]([
2/)(
2/)(

Eq. 8-4

where the medium range mediumRange is the half of difference between the maximum

amplitude of error maxInterval and the minimum amplitude of error minInterval in the

same interval; criticalRange is equivalent to the half of summation to maxInterval and

minInterval; the variable criteria is the difference between the mediumRange and

criticalRange at the same interval and then subtracts mediumRange; smallestindex is the

index appointing to the interval where minimum range of epsilon is.

The difference from Eq. 5-4 in the MMGS is the reference index. In the MMGS the

central index, based on the shape of the error (full value of errors), is used because it has

the minimum magnitude of error. However, for the delta transform the central index

may not be the index of the smallest error, and so the one relating to the smallest error

value is selected.

A new model is required in an interval when criteria is greater or equal to zero,

otherwise no action is taken. Only one model is created per iteration (Figure 8-1), which

8-4

is necessary because the shape of the error changes when a model is added. This process

is complete when the number of models does not increase any more.

The same two-stage CMOS operational amplifier (op amp) shown in Figure 4-1 is used

to illustrate our methodology. The training data used for the estimator is a 93.34Hz,

0.25V triangle waveform with a 0.04V, 10us PRBS superimposed on it. A similar signal

but with lower amplitude and frequency is applied to the non-inverting input, because as

it has been explained before the model generation process is only based on one input.

The model structure is for the MMGSD still based on the RARMAX system [Ljung99]

but with modification because it is based on the discrete-time transform, whereas the

MMGSD is based on delta transform. Therefore, during simulation (estimation) some

quantities in the system need to be either deltarised or undeltarised, for example, epsilon

in the AME and AMP is already deltarised, but during the vector update the

undeltarised value is required. Therefore, we create two functions in the MMGSD: the

Deltarise function and Undeltarise function. The former is to generate derivative

vectors based on original vectors. The undeltarise function requires original data during

the estimation. These two functions are used in different places in the MMGSD.

8.2.1 The Deltarise Function

The deltarise function is used to find the deltarised value using the delta operator given

in Eq. 8-5, where delta (δ) is related to both the present and future values, Ts is the

sampling rate, q is the forward shift operator used to describe discrete models, which is

shown in Eq. 8-6.

dt
d

T
q

s





1 Eq. 8-5

1 kk xqx Eq. 8-6

The equivalent form of Eq. 8-6 is obtained in Eq. 8-7, the relationship between δ and q

is a simple linear function, so δ can offer the same flexibility in the modelling of

discrete-time systems as q does.

8-5

dt
dx

T
kTxTkTx

T
xx

x
s

sss

s

kk
k 





 )()(1 Eq. 8-7

The use of delta operator and its relationship is illustrated in the following example. It is

a discrete-time model, but only output vectors are displayed in Eq. 8-8. Initially each

vector is subtracted from the one next to it, as seen in Eq. 8-9, and is then divided by Ts,

so deltarised value is obtained, as seen in Eq. 8-10. However, the last one highlighted by

the rectangle is not involved in the calculation.

y(t) y(t-1) y(t-2) y(t-3) Eq. 8-8

y(t-1) y(t-2) y(t-3) Eq. 8-9

δy(t-1) δy(t-2) δy(t-3) Eq. 8-10

δy(t-2) δy(t-3) Eq. 8-11

To achieve δ2y(t-3), Eq. 8-10 is subtracted from Eq. 8-11, and then divided by Ts. The

same procedure is used to obtain δ3y(t-3).

δ2y(t-2) δ2y(t-3) Eq. 8-12

δ2y(t-3) Eq. 8-13

δ3y(t-3) Eq. 8-14

Thus, the deltarised version of Eq. 8-8 is obtained shown in Eq. 8-15.

δ3y(t-3) δ2y(t-3) δ1y(t-3) δ0y(t-3) Eq. 8-15

The same procedure is also used for other vectors such as the inputs vectors u, e and the

noise vector c. Delay is not included here. However, there is some difference such that

in the input vector the current deltarised values (u(t), v(t)) are not required. More details

about the modification will be discussed in section 8.2.1.3.

8.2.2 The Undeltarise Function

This function is based on Eq. 7-5 but with the modification, q = δTs+1, in order to

model at the current time. An example is also used to demonstrate how this reverse

8-6

algorithm works. It is a model in delta transform, but only the output vectors y are

shown in Eq. 8-16. Firstly each vector, except for the last one, highlighted by the

rectangle because it is already undeltarised, is multiplied by Ts in Eq. 8-17. We then add

the output vectors as shown in Eq. 8-17 and Eq. 8-18, so undeltarised vectors are

obtained in Eq. 8-19, i.e., y(t-2) is obtained.

δ3y(t-3) δ2y(t-3) δ1y(t-3) δ0y(t-3) Eq. 8-16

Tsδ3y(t-3) Tsδ2y(t-3) Tsδ1y(t-3) Eq. 8-17

+ + +

δ2y(t-3) δ1y(t-3) δ0y(t-3) Eq. 8-18

|| || ||

δ2y(t-2) δ1y(t-2) y(t-2) Eq. 8-19

To achieve y(t-1), Eq. 8-19 is multiplied by Ts, and then we add the vectors shown in Eq.

8-21

Tsδ2y(t-2) Tsδ1y(t-2) Eq. 8-20

+ +

δ1y(t-2) δ0y(t-2) Eq. 8-21

|| ||

δ1y(t-1) y(t-1) Eq. 8-22

Finally y(t) is obtained using the same procedure as above.

Tsδ1y(t-1) Eq. 8-23

+

y(t-1) Eq. 8-24

||

y(t) Eq. 8-25

Therefore, the undeltarised version of Eq. 8-16 is achieved shown in Eq. 8-26.

y(t) y(t-1) y(t-2) y(t-3) Eq. 8-26

8-7

The number of iterations depends on a variable numb, the reason to use the variable is

that during undeltarising, a vector such as output vector needs to be undeltarised once to

obtain the value at next time, but during the prefilter update, it needs to be fully

undeltarsied. If a full undeltarisation is required, numb is set to 0, otherwise an integer is

selected. If the number is greater than the size of the vector array an error message is

produced.

8.2.3 Two Functions Utility in MMGSD

It is known that the delta operator is a very high gain system because of the sampling

interval Ts (10us in this case), so it is important not to put a vector or a variable in the

wrong place during the manipulation, otherwise, the whole process may numerically

explode very quickly.

In this subsection some key modifications in the MMGSD based on the functions

defined above are described in section 8.2.3.1 and section 8.2.3.2, respectively.

8.2.3.1 The AME

In order to obtain the deltarised output data dy at current time and the deltarised vector

array dphi, the vector array phi (φ) and the original output data y at current time are

needed. The deltarise function is employed in Eq. 8-27.

dphi4y = deltarise([y phi(iiia)], Ts) Eq. 8-27

where iiia indexes the array for the output vector in phi. Ts is the sampling interval,

dphi4y is the deltarised vector array for output, in which the first element is dy, and all

other elements are assigned to dphi(iiia).

Similarly input vectors u and e, and the noise vector c are deltarised values for dphi.

However, their deltarised values at the current time are not required.

Secondly the prefilter ztil in RML is modified as seen in appendix L.2. It is already

known that the relationship between psi (ψ) and phi (φ) in z transform is expressed as:

phi(t) = c(z)*psi(t), or phi(t) = psi(t)+c1psi(t-1)+  +cncpsi(t-nc), where c is the

polynomial coefficients [1, c1,  , cnc] for noises to improve the property of psi so that

8-8

the estimator converges more reliable. It is seen that phi(t) is related to psi at both

current and previous time. The relationship between psi and phi in delta (δ) transform is

expressed as in Eq. 8-28, where the c polynomial is a deltarised version of the

coefficients,

)()()(tpsictphi   Eq. 8-28

or its full expression in Eq. 8-29.

δnc-1phi(t-nc) = δnc-1psi(t-nc)+c1δnc-2psi(t-nc)+…+ cncpsi(t-nc) Eq. 8-29

To achieve deltarised psi at current time, this equation is manipulated as shown in Eq.

8-30. It is a two-dimensional array, the number of rows is equal to the size of vectors in

phi and the number of columns is equal to the number of terms in the c polynomial.

δnc-1psi(t-nc) = δnc-1phi(t-nc) - c1δnc-2psi(t-nc) -…- cncpsi(t-nc) Eq. 8-30

When using the z transform, [Ljung99] makes use of the fact that past values of psi and

phi are readily available in the estimator, so that psi(t) can be obtained easily from

available data vectors in the estimator. This is because the nature of the data does not

change with storage position in the data vector. However, when using the delta

transform δnc-1psi(t-nc) can not be obtained using the same procedure, because samples

in the data vector are different orders of δ. All these data vectors have to be refilled at

each sampling interval.

The vectors in δnc-1psi(t-nc) are shown in Eq. 8-31 if, for example, the coefficients array

nn is [3 4 2 1 4].

)4()4(,1),2()2(),4()4(),3()3(03010302  tvtvtttututyty  

Eq. 8-31

)3()3(02  tyty   are obtained by deltarising)3()1( tyty  using

deltarise function given in 8.2.1. The undeltarise function in 8.2.2 is also required to

8-9

firstly fully undeltarise each row of dpsi at previous time to achieve the current time

psi(t), e.g.,)3()1( tyty  is achieved by fully undeltarising

)3()3(02  tyty   . The undeltarise function is employed again but only for a

single iteration (numb = 1) to obtain dpsi the next time, so this matrix is shifted forward

once. The last term (δ0psi) in the array is then thrown away, so δ1psi becomes δ0psi and

so on in order to add the new array in front and keep the algorithm consistent.

Finally the vector array phi is updated with the new estimation including the noise

vector that is updated by residual error epsilon. We must keep in mind that depsilon is

the deltarised version of epsilon, in this case we only have depsilon at current time, thus

the undeltarise function is needed for epsilon, as shown in Eq. 8-32.

epsilon = undeltarise([depsilon dphi(iiic)], Ts, 0) Eq. 8-32

where dphi(iiic) includes noise vectors at previous time, iiic is the index array for noise

vectors in dphi, Ts is the sampling rate, 0 indicates the full undeltarisation as has been

discussed above.

The complete MATLAB codes for the AME system can be found in Appendix H.2.1.

8.2.3.2 The AMP

Similar to the AME both the deltarise and undeltarise functions are required through the

system. Unlike the AME, the predicted value y is used for updating the vector array phi,

whereas in the AME inputs u, e and output y are obtained from the training data.

To obtain the output data y, dy is fully undeltarised by employing the undeltarise

function shown in Eq. 8-33:

y = undeltarise([dy -dphi(iiia)], Ts, 0) Eq. 8-33

where dphi(iiia) includes the previous deltarised output vector, iiia is the array for the

outputs in dphi, Ts is the sampling rate, 0 indicates the full undeltarisation is utilized.

8-10

The full MATLAB codes for the AMP system can be found in Appendix H.2.2.

8.3 Experimental Results

In this subsection the system is investigated in order to prove that it is able to hunt for

known models and converges well.

8.3.1 A Single Model Detection

The process follows two steps:

1. The AMP system is applied to a known linear model. Both input data and output data

are stored in a text file.

2. The AME generates the model based on these data

The reason to work in the opposite way is that the AMP is less complicated than the

AME and it is easier to find out whether or not the delta operator works well in the

MMGSD. The system used in this example is a linear model given in Eq. 8-34.

50020

250)25010()50020(
2 




ss

VVsVs
V offsetipin

o Eq. 8-34

Two types of training data are generated from the PRBSG for the MISO AMP: one is a

0.6V, 50Hz square waveform with a 0.12V, 100kHz PRBS superimposed on it for the

inverting input, a similar signal but with lower amplitude and frequency is applied to the

non-inverting input as shown in Figure 8-2 with 14,000 samples. Another training

waveform is a 0.2V, 100Hz triangle waveform with a 0.05V, 100kHz PRBS

superimposed on it for the inverting input, the second input is a similar signal but with

lower amplitude and frequency for the non-inverting input displayed in Figure 8-3 with

14,000 samples.

8-11

Figure 8-2: The square PRBS signal

Figure 8-3: The triangle PRBS signal

The output signal from the AMP using the square PRBS is plotted in Figure 8-4.

8-12

Figure 8-4: The predicted signal

The AME is employed to generate the model seen in Eq. 8-35 with Ts of 0.1ms. It is

seen that two models can be matched referring to their coefficients.

50020

02.250)25010()50020(
2 




ss

VVsVs
V offsetipin

o Eq. 8-35

The output signal is depicted in Figure 8-5 (last 5,000 samples). It is seen that the

original signal is closely be matched to the estimated signal. Using Eq. 5-2 the average

difference between the original signal y and estimated signal yEstimator is 8.1567e-8%.

8-13

-0.49

-0.29

-0.09

0.11

0.31

0.51

0.71

0.91

1.11

1.31

1 301 601 901 1201 1501 1801 2101 2401 2701 3001 3301 3601 3901 4201 4501 4801
No. of Samples

A
m

pl
it

ud
e

(V
)

y yEstimator

Figure 8-5: The estimated signal

The triangle PRBS is then used following the same process. The predicted signal is

shown in Figure 8-6.

Figure 8-6: The predicted signal

After that the estimator is employed to generate the model. The same coefficients are

achieved from the two models. The output signal from AME is shown in Figure 8-7

(last 1,000 samples). The average difference between the original signal y and estimated

signal yEstimator is 7.24e-12%.

8-14

0.51

0.52

0.53

0.54

0.55

0.56

0.57

1 101 201 301 401 501 601 701 801 901 1001

No. of Samples

A
m

pl
it

ud
e

(V
)

y yEstimator

Figure 8-7: The estimated signal

The similar experiment as above is also implemented using the SystemVision simulator

in order to prove the whole process works well in both MATLAB and VHDL-AMS.

More details on the implementation can be found in Appendix J. It has proved that the

MMGSD can produce a single model accurately.

8.3.2 Comparison of convergence speed between MMGS and MMGSD

In this section using the same procedure in section 8.3.1we compare two systems

(MMGS and MMGSD) based on the linear model seen in Eq. 8-34. The same triangle

PRBS in Figure 8-3 is employed.

The AME system in the MMGSD is used to generate a model using the data from the

AMP system. The model is shown in Eq. 8-36, only 250 samples were used.

5.49901.20

7.249)5.24910()49901.20(
2 




ss

VVsVs
V offsetipin

o Eq. 8-36

It is seen that coefficients in both models are matched reasonably well, and the

difference does not affect accuracy of the output signal.

We then investigate the MMGS. This continuous-time model is first converted into its

corresponding discrete-time model using the system identification toolbox in MATLAB,

8-15

as seen in Figure 8-8, with a sampling rate of 0.1ms. In Figure 8-8 B1, B2 and B3 are

coefficients for the first input, second input and offset, respectively; F1, F2 and F3 are

the coefficients for the output:

Discrete-time IDPOLY model: y(t) = [B(q)/F(q)]u(t) + e(t)
B1(q) = -0.002401 q^-1 + 0.002394 q^-2

B2(q) = 0.0012 q^-1 - 0.001197 q^-2

B3(q) = 1.799e-006 q^-1 + 1.797e-006 q^-2

F1(q) = 1 - 1.998 q^-1 + 0.9976 q^-2

F2(q) = 1 - 1.998 q^-1 + 0.9976 q^-2

F3(q) = 1 - 1.998 q^-1 + 0.9976 q^-2

Figure 8-8: Coefficients under discrete-time from the AMP in the MMGS

The MMGS loads these data from a text file to generate the model show in Eq. 8-37,

only 500 samples are required.

21

22121

99752.09975.11

000002.0)001197.00012.0()002393.0002401.0(









qq

VqVqqVqq
V offsetipin

o

Eq. 8-37

Comparing the coefficients in Figure 8-8 with Eq. 8-37 we see that the two groups of

discrete-time coefficients are reasonably close.

It is thus proved that the MMGSD is able to generate a model that has been set up.

Moreover, it can converge about two times faster than the MMGS using a linear model.

8.3.3 System Test Using a Lead-lag Circuit

We demonstrate that the MMGSD is able to generate a single more complex linear

model than section 8.3.1. A linear lead-lag circuit is employed using a high-pass filter

and low-pass filter with frequencies of 1kHz and 10Hz, as shown in Figure 8-9, where

R1 = 1kΩ, Rf = 10kΩ, Cf = 0.15915uF, R4 = 10kΩ and Cip = 15.915nF.

8-16

R1

R4

vo

vin

vip

Rf

Cf

Cip

V(inn)
V(inp)

Figure 8-9: A linear system with a high pass and low pass filter

The transfer function is shown in Eq. 8-38:

ip
ipff

ipfff
in

ff

f
o v

sRCRsCRR

sRCRRsCRR
v

RsCRR

R
v 



















)1()(

)()(

411

411

11

Eq. 8-38

The system was analysed using the system identification toolbox in MATLAB to

generate the polynomial based model seen in Figure 8-10 using the same PRBS training

signals as above. The sampling interval is 0.1ms. B1 and B2 are coefficients for inputs,

F1 and F2 represent the output.

Continuous-time IDPOLY model:
y(t) = [B(s)/F(s)]u(t) + e(t)

B1(s) = -62.83 s - 3.948e004

B2(s) = s^2 + 69.12 s

F1(s) = s^2 + 634.6 s + 3948

F2(s) = s^2 + 634.6 s + 3948

Figure 8-10: The coefficients from the high-pass filter

Both input and output data are then stored in a text file. The MMGSD was used to

generate a model based on this data, as seen in Eq. 8-39. The output coefficients are

8-17

reasonably close to F1 and F2, and the two input coefficients are very close to B1 and

B2 in Figure 8-10. The output signals are shown in Figure 8-11 with last 400 samples:

2.38253.615

)16.67()38252812.62(
2

2






ss

VssVs
V ipin

o Eq. 8-39

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401
No. of Samples

A
m

pl
itu

de
s

(V
)

y yEstimator

Figure 8-11: The estimated signal

It is seen that the MMGSD can generate the model that has been set. The average

difference between two signals is 2.992e-13%.

Comparing with the MMGS, the MMGSD is able to handle both the low-pass and high-

pass filters.

8.3.4 Verification on the Multiple Model Generation Approach

The aim of this section is to verify that the MMGSD is able to generate multiples

models that have been set up. The same triangle PRBS stimulus in Figure 8-3 is

employed. Three stable models used are shown in Eq. 8-40. Each of them has two input

parameters and one offset parameter. The intervals used to divide the range of this

stimulus for these models are: [-0.25V 0.0V 0.095V 0.25V], the sampling rate Ts is

0.1ms. The number of samples in each model (vo1, vo2 and vo3) is obtained: count = 6942,

8-18

3300, 3758, the first model contains more samples than others, which indicates that it

may require more time to tune the system.

150020

250)25010()50020(
100020

250)25010()50020(
50020

250)25010()50020(

2

333
3

2
222

2

2
111

1
















ss

VVsVs
V

ss

VVsVs
V

ss

VVsVs
V

offsetipin
o

offsetipin
o

offsetipin
o

Eq. 8-40

It is seen that the steady-states of the models are not identical at the transfer points,

which may result in discontinuities. However, it is known that during estimation

different models should have the same steady-state values in their interfaces because of

the way the models have been trained. It has been mentioned with reference to Figure 7-

5 that the way that we are dealing with models selection is not expected to achieve

completely bumpless transfer but should suffer from minimum discontinuities, because

we have all models are running in parallel and just switch their outputs at the right time,

when two neighbouring models are not near the switching interface, the outputs are

different. However, when they are approaching to the same switching interface, their

outputs will line up, there should not be a discontinuity.

Initially the AMP is used to run the models with the triangle PRBS. After simulation

both input and output data are stored in a text file. The AME then loads the data to

produce the models shown in Eq. 8-41. These coefficients generated are reasonably

close to those in Eq. 8-40, although the third model is not as accurate as the others

because as the pole value is gets higher, instability is more likely. This can be improved

by manually selecting a smaller value such as 1200 instead of 1500.

139043.18

3.248)23910()5.48320(
100020

01.250)25010()50020(
5.49920

249)25010()50020(

2

333
3

2

222
2

2

111
1
















ss

VVsVs
V

ss

VVsVs
V

ss

VVsVs
V

offsetipin
o

offsetipin
o

offsetipin
o

Eq. 8-41

Furthermore, the same procedure was also implemented but using four models with

different poles. The models are shown in Eq. 8-42. The intervals used to divide the

8-19

range of this stimulus for these models are: [-0.25 0.01 0.11 0.18 0.25], the sampling

rate Ts is 0.1ms.

50020

250)25010()50020(
150020

250)25010()50020(
100020

250)25010()50020(
50020

250)25010()50020(

2
444

4

2
333

3

2
222

2

2
111

1





















ss

VVsVs
V

ss

VVsVs
V

ss

VVsVs
V

ss

VVsVs
V

offsetipin
o

offsetipin
o

offsetipin
o

offsetipin
o

Eq. 8-42

The number of samples on each model (vo1, vo2, vo3 and vo4) is: count = 7255, 3515,

1941, 1289. This indicates that the first model uses more samples to tune the system.

After simulation both input and output data are stored in a text file. The AME then loads

this data to produce the models shown in Eq. 8-43. It is seen that the coefficients

generated are close to the original ones.

23.49994.19

5.249)1.24910()4.49720(
57.14984.20

1.245)4.24510()471.20(
1.108695.18

245)5.23010()8.44220(
73.50014.20

5.249)25210()84.51120(

2

444
4

2

333
3

2

222
2

2

111
1





















ss

VVsVs
V

ss

VVsVs
V

ss

VVsVs
V

ss

VVsVs
V

offsetipin
o

offsetipin
o

offsetipin
o

offsetipin
o

Eq. 8-43

This indicates that the MMGSD is able to generate various suitable models.

8.3.5 Nonlinearity Modelling

In this section the open-loop op amp SPICE netlist from Figure 4-1 is modelled using

training data which creates strong nonlinearity (into saturation). A new stimulus is used:

a 2.5V, 83.33Hz triangle waveform with a 0.5V, 100kHz PRBS superimposed on it. A

similar signal but with same amplitude and lower frequency is applied to the non-

inverting input. Five models are generated. The input voltage range is  2.5V. The

thresholds and the number of samples for each model are shown in Figure 8-12:

8-20

30482452226720102263count
2.5]1.50.50.5-1.5-[-2.5threshold




Figure 8-12: Threshold and samples for each model

The estimated signal yEstimate is illustrated in Figure 8-13 with 2,000 samples:

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

1 201 401 601 801 1001 1201 1401 1601 1801 2001
No. of Samples

A
m

pl
it

ud
e

(V
)

y yEstimator

Figure 8-13: The estimated signal with nonlinearity

It is seen that yEstimate is able to match the original output y, the difference between

two signals is 9.5768% using an average difference measurement. Although there is

some noise due to high sampling rate of 10kHz for the delta operator. Moreover, the

estimator struggles to obtain enough information to make the best guess because there is

no relationship between input and output in the saturation regions, that is, the output is

not dependant on input. It has to generate excitation itself. This can be improved by

using a saturation detector to delete the samples in the saturation region, so the estimator

will focus on available information.

8.4 Conclusion

In this chapter the multiple model generation system using delta operator (MMGSD) is

developed for either SISO or MISO models from transistor level SPICE simulations to

perform high level fault modelling (HLFM). The MMGSD is able to converge twice as

fast as discrete-time models using a linear model. We have shown that acceptably small

8-21

discontinuities can be achieved between models generated by using the algorithm

developed. Moreover, it can handle both low-pass and high-pass filters accurately, and

model nonlinear behaviours.

9-1

Chapter 9: High Level Fault
Modelling and Simulation based on

Models from the MMGSD

9.1 Introduction

The aim of the chapter is to evaluate that during high level fault modelling (HLFM) the

models generated by the MMGSD can achieve better results in terms of simulation

speed and accuracy than transistor level fault simulation (TLFS) and results from

[Bartsch99]. The multiple model conversion system using delta transform (MMCSD)

was developed to convert the models from the MMGSD into a suitable format, i.e., from

MATLAB to VHDL-AMS. The model selection process is implemented by selecting

the output of the model within its corresponding input range.

HLFM is run using the SystemVision simulator from Mentor Graphics [SystemVision],

the faulty transistor level op amp in HSPICE will be replaced by the model from the

MMCSD in VHDL-AMS and the rest of them remain at the transistor level. With this

procedure we can observe if our model is able to model the fault and propagate it

correctly. Only short faults are investigated, other faults will be covered in future work.

The short faults are modelled at transistor level using a 1 resistor connected between

the shorted nodes. This can be realised by using the fault injector ANAFINS, which is

the part of the transistor level fault simulator ANTICS [Spinks98]. More details about

how it works can be found in [Spinks04].

Simulation results in terms of accuracy and simulation speed are compared under the

same conditions using the average confidence measure (ACM) [Spinks98]. The ACM

basically measures the distance between two waveforms taking variability into account.

To facilitate comparison the fault coverage has to be appropriate. On one hand, if the

error band for the waveform is very large all faults may be undetectable; on the other

hand, if the error band is narrow enough all faults can be detectable. We need to avoid

the extreme situations above, so that we are able to investigate the quality of simulation

for different models.

9-2

The following sections are outlined: section 9.2 introduces how to implement the

multiple model conversion system using delta operator (MMCSD) based on a

behavioural model; quality measurement methods based on mathematical equations are

introduced in section 9.3; some experimental results from high level modelling (HLM)

and high level fault modelling (HLFM) are given in section 9.4 using a biquadratic low-

pass filter; section 9.5 supplies the conclusion.

9.2 The Approach for Multiple Model Conversion System using Delta

Operator (MMCSD)

In this section the algorithm for automatically generating a VHDL-AMS model is

introduced. This is based on the structure of a behavioural model shown in Figure 9-1,

which is similar to Figure 7-1.

- ro

ri

+

gnd

Vin

MMGSD (Vo=f(Vin))

out

Voffin

Voffout

Vn

Vp

Figure 9-1: The structure of the behavioural op amp model

Multiple models from the MMGSD are included in the VCVS (implementing

)(ino VfV ) to handle nonlinearity. In this case the same models from MMGSD are

used in chapter 8, and the input voltage range is 5.2 V. Two linear resistors ir and ro

represent the input impedance and output impedance, respectively, voffin and voffout are

parameters for modelling the input offset and output offset, respectively.

The MMCSD converts models from the MMGSD into this behavioural model. Each of

the models behaves as a continuous domain low-pass filter as shown in Eq. 9-1, where

vn, vp and voffset represent the three inputs; vout is the output; naaa ...1 are coefficients of

the output; nbbbb ..., 10 , neeee ..., 10 are coefficients of the first and second inputs,

respectively; and d represents coefficients for the offset.

9-3

offset
na

nanap
na

nana
ne

nene

n
na

nana
nb

nbnb

out v
asas

d
v

asas
esese

v
asas

bsbsb
v




















......
...

...
...

)1(
1

)1(
1

)1(
10

)1(
1

)1(
10

Eq. 9-1

The equation above can be easily implemented in VHDL-AMS with the help of either

‘dot or ‘ltf attributes; both produce the same results. The latter is used in this case

because it is far easier to derive and implement a higher order transfer function as a

simple ratio of s-domain polynomials than it is to derive the equivalent differential

equations for the functions [Ashenden03]. The model in VHDL-AMS is shown in Eq.

9-2.

),3_('),2_('),1_(' dennumltfvdennumltfvdennumltfvv offsetpnout  Eq. 9-2

where ‘ltf is the attribute for forming the transfer function; num and den are the

coefficients for the numerator and denominator, respectively; vn, vp and voffset represent

the input voltages; vout is the output voltage.

The MMCSD extracts these coefficients one by one dynamically from each model

library to form the equation in Eq. 9-1. The model selection algorithm has been

discussed in Figure 7-3, now showing in Figure 9-2.

Display the transfer function for the first model
Display the transfer function for the second model

.

.

.
Display the transfer function for the last model

If the input signal is within the range for the first model use
The output voltage of the first model is selected

Else if the input signal is within the range for the second model use
The output voltage of the second model is selected

.

.

.
Else the input signal is not included in these ranges

Either the output voltage of the first or the last model is selected

Figure 9-2: The algorithm for the model selection

It has been discussed that by doing this way we can achieve reasonable bumpless

transfer. However, higher simulation speed may not be achieved. This can be improved

by feeding only the neighbouring models instead of all models.

9-4

9.3 Introduction to Quality Measurement

In the section quality measurement methods for simulation accuracy and speed are

introduced in subsection 9.3.1 and subsection 9.3.2, respectively.

9.3.1 Average Confidence Measurement

The object of the section is to calculate the average of a number of values (output

voltage in this case). The method used is the average confidence measure or ACM

[Spinks98]. The aim of the section is to verify that our model performs better than

other’s macromodel and that our model can model faulty behaviour with good accuracy

compared with TLFS.

Unlike previous work using ANACOV [Spinks98] this measurement was implemented

in MATLAB to provide better integration with the other tools developed here. The

whole process consists of multiple steps illustrated in Figure 9-3. A script is used to

create a MATLAB editor file that accesses each of the files which require processing to

calculate ACM for each file.

end

ACM

Script

Open a text file

Saving Data after Measuring

Start

Data Comparison

File close

Data Sorting

Running Average Measurement

Detactability Measurement

Figure 9-3: A flowchart for fault coverage measurement

9-5

The ACM skips header text and reads data from the analogue SystemVision simulation

results file. For fault analysis and detectability measurement, a fixed envelope is

applied not only around the fault-free response to define the region of acceptability, but

also around each faulty circuit response. The points at which the two envelopes do not

overlap are classed as detectable. This can be expressed mathematically as follows:

HH

LL

HH

LL

FiFiF
FiFiF
GiGiG
GiGiG











][][
][][
][][
][][

Eq. 9-3

where G[i], F[i] represent the fault-free (good) and faulty signals at ith point,

respectively; GL[i], GH[i] indicate the low and high value of the envelope of the good

signals at the ith point, respectively; FL[i], FH[i] represent the low and high value of the

envelop of the faulty signal at the ith point, respectively; δGL, δGH indicate the lower

and upper bounds of the good signal, respectively; δFL, δFH represent the lower and

upper bounds, respectively, which are defined by the user.

Different types of circuit and test techniques will use various fault detection criteria

which require different envelope regions. In all cases however a description for a region

of acceptability (GL[i]<yg<GU[i]) and a faulty response range (FL[i]<yf<FU[i]) is

required. Fault detectability is based on the separation of the two regions. A sample

point is defined as detectable if the two regions are non-overlapping at that point.

Moreover, for each sample point, a confidence measure x[i] can be defined based on the

distance between the faulty and fault-free envelopes since a larger distance implies that

at a given sample point the circuit under a particular fault condition is more easily

detectable. This is described by Figure 9-4.

GL[i]-FU[i] for GL[i]>FU[i]

x[i] = FL[i]-GU[i] for FL[i]>GU[i]

0 otherwise

Figure 9-4: The conditions for detecting the distance of two signals

9-6

The number of detectable points NP out of a total d can be defined as shown in Eq. 9-4,

where U(x) = 1 when x > 0, otherwise it is 0.







1

0

])[(
d

i

ixUNP Eq. 9-4

A fault is classed as detectable if NP>c, where c is a user defined cutoff value, normally

it is 1, but this can be increased if a higher confidence in the results is required. For each

fault, the mean separation distance between the good and faulty thresholds for all

detectable sample points can also be used as an additional confidence measurement. The

average confidence measurement (ACM) based on these detectable data is given in Eq.

9-5.

NP

ix
ACM

d

i





1

0

][
Eq. 9-5

The number of times that the ACM is employed is equal to the number of detectable

faults.

9.3.2 Mathematical Equations for Measuring Simulation Speed

This section is to investigate the simulation speed using two mathematical equations:

total average speed and simulation speed-up. Both of them will be used to evaluate our

behavioural model during HLM and HLFM.

9.3.2.1 Average Time

The total average time of simulation is calculated using Eq. 9-6. The total simulation

time is divided by the number of faults to give the average speed Ave_time for an

individual fault simulation; NS is the number of simulations; CPU[i] is the simulation

cpu time of the ith fault.

NS

iCPU
timeAve

NS

i






1

0

][
_ Eq. 9-6

9-7

9.3.2.2 Simulation Speed-up

The speed-up is calculated using Eq. 9-7, where tTLFS is transistor level simulation time,

tHLFM is high level modelling time, top is operating point analysis time at transistor level,

it is 100ms in the case.

opHLFM

TLFS

tt
t

upspeed


_ Eq. 9-7

9.4 High Level Modelling and High Level Fault Modelling

In this section, both HLM and HLFM based on the models from the MMGSD are

implemented in order to investigate if they are able to model faulty behaviour and

handle nonlinearity in a system. The whole process requires the following steps:

1. The MMGSD generates models.

2. The MMCSD is used to convert these models into a VHDL-AMS behavioural

model.

3. Transistor level fault-free and fault simulation are run based on short fault (one

simulation run per fault).

4. The behavioural model from the MMCSD is used to replace the faulty transistor

level op amp, the rest of circuits remaining the same.

5. The average coverage measurement (ACM) is used to measure quality of our model

compared with TLFS. The average speed is also calculated and compared.

6. The same process for HLFM based on other published models is repeated from step

4.

7. Results from the two HLFM are compared.

The two-stage CMOS op amp in chapter 3 is employed, the training stimulus is a 2.5V,

83.33Hz triangle waveform with a 0.5V, 100kHz PRBS superimposed on it. A similar

signal but with lower amplitude and frequency is applied to the non-inverting input,

both inputs and output are shown in Figure 9-5. Only the last 2,000 samples are

displayed. The x axis indicates the number of samples and the y axis show amplitudes of

input voltage (V). The reason to use a higher amplitude of input signals is to force the

generated models to cover saturation voltage ranges ( 2.5V). By running the MMGSD

9-8

five models are generated. The MMCSD is then employed to convert these models into

a VHDL-AMS behavioural model. Therefore, HLM and HLFM can be implemented

under transient analysis in SystemVision [SystemVision].

Figure 9-5: The input signals with the saturation part

9.4.1 High Level Modelling and Simulation

The same biquadratic low-pass filter used in chapter 8 was simulated using transient

analysis seen in Figure 9-6. Two types of simulation are run: one is purely based on the

transistor level circuit; another uses the MMGSD model to replace the first op amp op1.

The input signal is a sine waveform with an amplitude of 2.5V at 80Hz. The simulation

starts from 40ms to 100ms with step of 0.1ms.

9-9

op1 op2 op3
in

out

R5

R1

R2 C2

R3 R4

R6

C1
100k

100k 100k 100k

100k0.01u

0.01u

70.7k

1 2 3 4 5

Figure 9-6: The biquadratic low-pass filter

The output signals from TLS vout_sp and HLS vout_mix are plotted in Figure 9-7. It is

seen that both signals can be matched with good accuracy. The total cpu time for HLM

is 2.03s, and 1.062s for TLS.

Figure 9-7: The output signals from the low-pass filter

It is seen that HLM is slower than TLS. This is because the SystemVision simulator has

not been optimised to this kind of model structure, and so the computational overhead is

high. Moreover, the model selection process requires time, this can be improved by

feeding the neighbouring models instead of all models. Therefore, HLM using a single

model instead of multiple models requires less time (1.07s) than 2.03s under the same

9-10

circumstance. However, accuracy becomes worse because the single model is not good

enough to model nonlinearity.

Another transient analysis was conducted using this low-pass filter, the stimulus is a

sine waveform with the amplitude of 2.5V at 40Hz. The simulation starts from 40ms to

100ms with step of 0.1ms. Output voltage signals are plotted in Figure 9-8.

Figure 9-8: The output signals from the low-pass filter

The results show the output signal at HLM vout_mix can be matched reasonably well to

the one at TLS vout_sp, so the nonlinearity is modelled correctly.

The total cpu time for HLM is 1.625s, it is 1.0s for TLS. The same process is then

implemented but using one model instead of multiple models for HLM in order to

investigate simulation time. It requires 0.953s of CPU time, which is faster than HLM

using multiple models (1.625s), but accuracy is reduced significantly because the single

model is not good enough to model nonlinearity.

Furthermore, accuracy is preserved when the behavioural model replaces other op amps

in this filter. Unfortunately, significant speed-up using multiple models is not achieved

compared with TLS due to significant computational overhead.

9-11

9.4.2 High Level Fault Modelling (HLFM) and High Level Fault Simulation

(HLFS)

The aim of the section is to verify that our model performs better than other

macromodels and that our model can model faulty behaviour with good accuracy

compared with TLFS by using ACM seen in section 9.3.

By running fault modelling and simulation, three groups of results are obtained: two

from HLFM, one from TLFS. Two models are employed from the same behavioural

model from the MMGSD and the macromodel [Bartsch99] seen in Figure 3-2,

respectively. All fault modelling and simulation are implemented under the same

simulator setting and test circuit conditions. This circuit employed is the low-pass filter

introduced in Figure 9-6. Only short faults are used. The stimulus is a sine waveform

with the magnitude of 2.0V at 20Hz. Transient analysis is implemented from 10ms to

150ms with a step of 0.1ms. The signal from the transistor level fault-free simulation is

plotted in Figure 9-9.

Figure 9-9: The output signal from the transistor level fault-free simulation

The same behavioural model from the MMGSD as above then replaces the faulty op

amp for HLFM, and the rest of fault-free op amps remain unchanged, so that we can

observe if it models faulty behaviour correctly. It is known that there are possible 99

9-12

short faults in this filter, so 99 simulations are performed for both TLFS and HLFM,

with data for each saved in an individual file. The quality of output signals is

determined using the ACM, in which the cutoff value c is set to 1, and the tolerance

range for both good (δG) and faulty signals (δF) is set to 50uV after using different

ranges in order to avoid extreme conditions mentioned above in this case.

Testability measurement results using ACM from TLFS show that some faults (M8 and

M13) are undetectable because they do not affect circuit behaviour. However, according

to HLFM the same faults appear to be detectable because of difficulty in setting

parameters such as offset voltage. These faults include m4_gds_1 1 , m4_gds_2,

m5_gds_1, m5_gds_2, m6_gds_1, m6_gds_2, m8_dss_22, m8_dss_3, m13_gds_1 and

m13_gds_2. Therefore, 89 out of 99 detectable faults are investigated under transient

analysis.

The results demonstrate that HLFM based on linear macromodel can not model certain

faults including M7_gds_2, M10_gds_2, M10_gss_3 and M11_dss_3 due to high

nonlinearity. These can be modelled by the MMGSD model. Moreover, the MMGSD

model can achieve more accurate fault simulation than the linear fault macromodel, for

example, M11_dss_1, as illustrated in Figure 9-10, where vout_TLFS is the output

voltage signal from TLFS, and vout_HLFS_H and vout_HLFS_L represent the output

voltage signals from the behavioural model by the MMGSD and the macromodel,

respectively. It is seen that vout_HLFS_H is closer to vout_TLFS than the macromodel

vout_HLFS_L.

1 short between gate and drain on transistor 4 at op1
2 short between drain and source on transistor 8 at op2

9-13

Figure 9-10: HLFM for M11_dss_1

However, the linear macromodel may achieve better quality than our behavioural model

when M10_gss_2 is modelled, output signals are plotted in Figure 9-11. Where

vout_HLFS_L represents the output signal from HLFS based on the model from

[Bartsch99], vout_TLFS is the output signal from TLFS and vout_HLFS_H is the output

signal from HLFS using our model.

Figure 9-11: HLFM for M10_gss_2

9-14

It is seen that vout_TLFS contains extreme nonlinearity, vout_HLFS_L gives the

saturation part because op3 is still the nonlinear transistor level model. The MMGSD

model can not follow this nonlinear part accurately, especially the flat part.

To find out the reason we observe the input and the output signals of our model seen in

Figure 9-12 because they are ones that are used to generate right models and thresholds.

v(inn) is the input stimulus, vout_h and vout_t are output voltages from TLFS and HLFS,

respectively. Several vertical lines are displayed to show where the thresholds and the

extreme nonlinearities are and corresponding inputs.

Figure 9-12: Investigation which model is applied in relation to input and output

It is seen that the sharp corner (nonlinearity) at the output of TLFS vout_t corresponds

to the input at 0.67867V and 0.79781V. Whereas the output from HLFS vout_h shows

that the nonlinearity is at the input of 1.514V and 1.53114V.

If we check the thresholds for the models seen in Figure 9-13, we find that one of them

is at 1.5V. It indicates that the model thresholds are in the wrong place.

9-15

30482452226720102263count
2.5]1.50.50.5-1.5-[-2.5threshold




Figure 9-13: Threshold and samples for each model

To prove this we manually change the position of the thresholds to where nonlinearities

are (0.67867V), and also the neighbouring ones in order to supply enough samples to

these models. They are shown in Figure 9-14.

25302451360711892263count
2.5]1.70.70.9-1.5-[-2.5threshold




Figure 9-14: New thresholds and samples for each model

The output voltages from TLFS and HLFS are shown in Figure 9-15 based on the new

thresholds. It is seen that the output signal from our model vout_HLFM_L is reasonably

close to the TLFS vout_t, and the quality of our model has been improved compared

with Figure 9-11.

Figure 9-15: HLFM for M10_gss_2 based on new threshold set

9-16

It indicates that the MMGSD is not intelligent enough to pick thresholds where the

extreme nonlinearities are. In the future work a more intelligent threshold generator will

be developed.

Using ACM in Eq. 9-5, average quality of HLFM and TLFS are measured in Figure

9-16. The aim is to verify that our model performs better than other macromodels and

that our model can model faulty behaviour with good accuracy compared with TLFS. It

is seen that TLFS achieves the best fault coverage (1.2053V), our models has the fault

coverage of 1.2676V, which has shown better quality than the linear macromodel

(1.2899V).

Average confidence measurement for TLFS, HLFM
and Linear HLFM (Lower value is better)

1.2053

1.2676
1.2899

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

TLFS HLFM Linear HLFM

Types of Fault modeling and Simulation

A
ve

ra
g

e
M

ea
su

re
m

en
t

(V
)

Figure 9-16: ACM for TLFS, HLFM and Linear HLFM

Furthermore, the simulation time for TLFS and HLFS is required. It is noticed that the

highest speed-up is achieved using the linear fault model; for example for M4_gss_1

HLFM needs 1.218s, whereas TLFS requires 1.341s.

The total average time for each simulation is shown in Figure 9-17. It is seen that TLFS

has the highest average time of 1.412s, HLFM based on the MMGSD is about 0.3s

9-17

slower than TLFS, and HLFM based on the linear fault model has an average time of

1.467s.

Average speed for TLFS, HLFM and Linear HLFM
(Lower value is better)

1.412
1.7247

1.467

0

0.3

0.6

0.9

1.2

1.5

1.8

TLFS HLFM Linear HLFM
Types of Fault Modeling and Simulation

A
ve

ra
g

e
S

p
ee

d
(s

)

Figure 9-17: Average speed measurement for TLFS, HLFM and Linear HLFM

In some cases our model needs less simulation time than HLFM based on the linear

macromodel, for example, M10_dss_3, the models from MMGSD takes 1.68s to

complete simulation, whereas the linear model requires 1.89s.

According to Eq. 9-7 simulation speed-up is obtained shown in Eq. 9-8:

774.0
1.07247.1

412.1
_ 


upspeed Eq. 9-8

To investigate simulation speed, this time we focus on the SPICE level of the transistor

model and prove that the level of transistor model can affect the simulation results. It is

known that the transistor that has been used through the thesis is at level 2. In this

experiment we use a new transistor, which is a 1.2 micron CMOS model (Level 3

instead of level 2) [Spiegel95]. The same op amp netlist in Figure 4-1 is still employed,

9-18

and the fault used is m7_dss_1, and the circuit used for simulation is the low-pass filter

in Figure 9-6. The input stimulus is a 2V sine waveform at 20Hz.

Two types of comparisons are implemented: 1) simulation using the level 3 transistor is

run, so we compare results from the TLFS, HLFM and HLFM based on the linear

model in terms of simulation speed and accuracy. 2) we compare results based on the

two levels of transistors.

Initially HLFM and TLFS based on the level 3 transistor are run. The simulation

measurement is based on the section 9.3.2. Accuracy is preserved. Each type of

simulation has been run 10 times, the average value is then chosen in order to reduce

affects of interaction in computer shown in Figure 9-18. The fastest simulation is from

HLFS using the linear model (0.9704s). Simulation speed from HLFS based on the

MMGSD model (1.3681s) is slower than TLFS (1.061s). This is because the simulator

SystemVision is not optimised to the structure of our models, but optimised to the

structure of linear behavioural model and proves that the behavioural model is able to

run faster than TLFS. It indicates that changing the level of transistors in the op amp

does not improve speed of HLFM based on the MMGSD model.

We then compare simulation speed between the level 3 transistor and the level 2

transistor. Illustrative results are shown in Figure 9-18.

1.3681

1.032 0.969

1.366

0.9704
1.061

0

0.2

0.4

0.6

0.8

1

1.2

1.4

TLFS HLFM HLFM_ERN

S
im

u
lti

o
n

T
im

e
(s

)

Level 2
Level 3

Figure 9-18: Simulation Speed Comparison between level 2 transistors and level 3

transistors

9-19

It is seen that during TLFS simulation speed based on the level 3 transistor (1.061s) is

slower than the one using the level 2 transistor (1.032s). This is because the former is

more complex than the latter.

Although the difference between TLFS time is not very significant, it has indicated that

as the transistor is getting more complex (parameter level in the transistor is higher),

TLFS becomes slower, whereas simulation time from HLFM almost does not change.

Therefore, simulation speed-up during HLFM may be shown.

In the future work, more complex CMOS transistors (e.g., IBM 0.13 micron level 49

[Mosis]) will be employed to investigate the improvement of simulation speed.

9.5 Conclusion

In this chapter both VHDL-AMS HLM and HLFM are implemented using a

behavioural model generated by the MMCSD. The ACM and average time

measurement are developed to evaluate HLFM. We have demonstrated that our

behavioural model is not only able to model linear but also nonlinear behaviour with

good accuracy for HLM. Using the ACM we have proved that our model provides

better quality than a fault macromodel [Bartsch99]. During simulation it is found that

our system can not intelligently find the right thresholds to handle the extreme

nonlinearity, which will be investigated in the future. Speed-up is not achieved

compared with TLFS. This is because the simulator has not been optimised to deal with

this kind of approach, and so the computational overhead is high. Moreover, speed-up

can be improved by feeding the neighbouring models instead of all models during

model selection process.

In the next chapter the process used in this chapter will be repeated but with in a more

complex system in order to investigate simulation speed.

10-1

Chapter 10: High Level Fault
Simulation of a 3bit Flash

Analogue to Digital Converter

10.1 Introduction

In this chapter a more complex circuit is subjected to HLFM in order to investigate if

our behavioural model based on the MMGSD is able to achieve better quality (accuracy

and speed-up) compared with a TLFS. This is demonstrated by a 3bit flash analogue to

digital converter (ADC) realised in CMOS technology under the simulator

SystemVision [SystemVision]. Section 10.2 introduces the architecture and the design

of the 3bit flash ADC. Models based on the MMGSD are generated in section 10.3. In

section 10.4 the TLFS and HLFM are compared based on this ADC. The conclusion is

drawn in section 10.5.

10.2 Introduction to the 3bit Flash ADC

The flash analogue to digital conversion concept is mainly used in telecommunication,

high speed signal processing (e.g. video) and radar. A flash ADC converts the analogue

input signal into digital code bits in one step. All other types of ADC such as successive

approximation, semi-flash, sigma-delta need more than one step and therefore the main

advantage of a flash ADC is its speed. There are 2n-1 reference voltages and comparator

stages for a n-bit flash ADC. The reference voltages are usually generated with a

voltage divider (reference ladder) and consequently 2n resistors are required. As a result

flash ADCs with high resolution require a huge chip area. Therefore flash ADCs are

generally used for analogue to digital conversion with low resolution (2-8 bits). The

high power dissipation is also a drawback for flash ADCs. Both chip area and power

dissipation increase linearly with the number of comparators and d-flip-flops (sample &

hold stage) and thus exponentially with the number of bits. Similarly the input

capacitance of the ADC increases exponentially with the number of bits.

10-2

The block diagram of the 3bit flash ADC is shown in Figure 10-1 [Bartsch99]. It

converts an analogue input voltage from -2.5V to 2.5V to the corresponding binary code

with a resolution of 3 bits. It consists of five functional blocks: the reference ladder, the

bias generator, the comparator stages, the digital sample and hold stages and the 3bit

decoder.

reference
ladder

comparator
stages

digital sample
& hold stages 3bit decoder

digital output <2:0>

analogue
input

[-2.5V, +2.5V]

bias generator

±2.5V +5V-5V+1.4V-3.6V

Vref1
&

Vref2
Vbias1 Vbias2

VddVss

Vdd

Vss

Vin o3 o2 o1

3bit flash ADC

Figure 10-1: Block diagram of the 3bit flash ADC [Bartsch99]

The schematic of this 3bit flash ADC is shown in Figure 10-2. The reference ladder

comprises 8 resistors and can generate 7 reference voltages. These resistors all have the

same values except for the first and the last resistors, which are exactly half of others. In

this case these two are set to 500 for the rest of them have the value of 1k. This is a

good compromise between chip area and power dissipation. The ADC is based on the

one used in [Bartsch99].

10-3

Figure 10-2: Schematic of the 3bit flash ADC

The comparator is designed in CMOS technology, see in Figure 10-3. It has an input

voltage range of 2.5V and an output voltage swing of 5V (0V to +5V). Each

comparator comprises an input stage and an output stage. The input stage is realised as a

CMOS differential amplifier using n-channel MOSFETs. The differential amplifier is

biased with a current mirror M3&M4. M5 is a current source. The output stage (M6 and

M7) behaves as a voltage shifter to ensure the output voltage is always positive, M7 is

also a current source.

10-4

Figure 10-3: The CMOS comparator

The comparator stages compare the analogue input voltage with the 7 reference

voltages. The output voltages of the comparator stages form a so called thermometer

code (Table 10-1).

comparator output voltages (thermometer code)5 digital output of the ADC (binary code) decimal
c7 c6 c5 c4 c3 c2 c1 o3 o2 o1 d
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 1 0 1 0 2
0 0 0 0 1 1 1 0 1 1 3
0 0 0 1 1 1 1 1 0 0 4
0 0 1 1 1 1 1 1 0 1 5
0 1 1 1 1 1 1 1 1 0 6
1 1 1 1 1 1 1 1 1 1 7

Table 10-1: Truth table for the 3bit flash ADC

This thermometer code is then digitally sampled with 7 D-flip-flops. The digital sample

and hold stage is necessary to avoid temporary wrong binary code words. Usually the

result of the analogue to digital conversion is stored in a memory and so there is always

a certain probability that a temporary wrong code is stored. The D-flip-flops can

10-5

guarantee that this situation can be avoided when the input signals of the decoder stays

constant over the whole conversion period. Moreover, with digital sample and hold

stage a very fast analogue to digital conversion can be realised, whereas only

frequencies of a few megahertz can be reached with enormous effort with analogue

sample and hold stages [Tietze93].

10.3 Multiple Model Generation by the Simulator and MMGSD

10.3.1 Sample & Hold and Decoder Model

In SystemVision there is a built-in VHDL-AMS library, the digital part of this flash

ADC (the 3bit decoder and D-flip-flop) is implemented and mixed with the analogue

part on a schematic platform to perform simulation.

10.3.2 Comparator Model

The behavioural model shown in Figure 9-1 (repeated in Figure 10-4) is used to model

the comparator, in which the generated models from the MMGSD are used to handle

nonlinearity. This behavioural model is created by the multiple model conversion

system in delta transform (MMCSD) discussed in the previous chapter.

- ro

ri

+

gnd

Vin

MMGSD (Vo=f(Vin))

out

Voffin

Voffout

Vn

Vp

Figure 10-4: Architecture of the comparator model

The CMOS comparator in open-loop is analysed by the MMGSD to generate multiple

models using same PRBS training data in Figure 9-5. One such signal is applied at the

inverting terminal and another is connected to the non-inverting terminal. Five models

10-6

are generated. Thresholds and the number of samples for each model are shown in

Figure 10-5.

38012705258324993412count
2.5]1.50.50.5-1.5-[-2.5threshold




Figure 10-5: Threshold and samples for each model

The estimated signal is seen in Figure 10-6, only the last 500 samples are displayed.

-0.7

0.3

1.3

2.3

3.3

4.3

5.3

1 51 101 151 201 251 301 351 401 451 501

No. of Samples

A
m

pl
it

ud
e

(V
)

y yEstimator

Figure 10-6: The estimated signal

Average difference between the estimated signal yEstimator from the MMGSD and

original output signal y is 9.2672%, which is measured by the same equation used

before and seen in Eq. 10-1. These models are then inserted in the behavioural model in

Figure 10-4.

100
_

)()(

_

1











peaktopeaky
N

iyiy

difAverage

N

i
P

Eq. 10-1

The nominal operation of the 3bit flash ADC is plotted in Figure 10-7. A ramp input

stimulus covering from 0V to 2.5V is used and the clock frequency is set to 500kHz.

10-7

Figure 10-7: Nominal operation of the 3bit flash ADC

10.4 High Level Fault Modelling of the 3bit Flash ADC

During HLFM and HLFS the comparison procedure using quality and speed as

described in previous chapter is employed. Quality measurement focuses on accuracy of

digital outputs. Only short faults are simulated at transistor level with a 1Ω resistor

connected between the shorted nodes, which is injected by ANAFINS [Spinks98]. It is

known that there are 7 transistors in the comparator, the number of short faults on one

transistor is 3 and therefore the number of short faults in this comparator is 21. Since

there are 7 comparators in this 3bit flash ADC, a total of 147 short faults are simulated

for each model. This MMGSD model and the same fault macromodel in Figure 4-2 will

replace every faulty comparator each time, separately, and the rest of system remains

the same. The same ramping signal as above is supplied to the non-inverting terminal. A

transient analysis is run from 0 to 0.1s with a step of 2ms.

The simulation results indicate that HLFM based on the MMGSD model is able to

model all faults correctly compared with TLFS, but HLFM based on the fault

macromodel can not accurately model some faults including M1_dss_11, M2_gss_2,

1 Short between drain and source on transistor 1 at 1st comparator

10-8

M5_gss_1, M5_gss_7 2 , M6_gss_1, M6_gss_2, M7_dss_1, M7_gss_1 because this

macromodel is unable to handle high nonlinearity. One example of modelling failure,

for M6_gss_1, is plotted in Figure 10-8, where o1, o2 and o3 are the output bits from

TLFS, and o1_lh, o2_lh and o3_lh are for HLFM. It is seen that there is bit mismatched

at between 50ms and 52ms.

Figure 10-8: Failure of modelling in M6_gss_1

Simulation speed is also measured. In 146 out of 147 times TLFS takes less time than

HLFM, but M4_dss_7 our behavioural model has same simulation time as TLFS (0.5s).

In 15 out of 147 times the linear macromodel can achieve fastest simulation time.

The average time for each simulation is calculated using Eq. 10-2, which has been

previously defined in Eq. 9-9, where Ave_time is the average time for individual fault

simulation; NS indicates the number of simulation; CPU[i] represents the cpu time at

the ith fault during simulation.

NS

iCPU
timeAve

NS

i






1

0

][
_ Eq. 10-2

2 Short between gate and source on transistor 5 at 7th comparator

10-9

Speed for each simulation is obtained and depicted in Figure 10-9.

0.475

0.485

0.495

0.505

0.515

0.525

0.535

0.545

Average_speed 0.503 0.5345 0.543

TLFS HLFM HLFM_L

Figure 10-9: Average time for each simulation

It is seen that TLFS has the fastest average time of 0.503s, HLFM based on the

MMGSD (0.5345s) is slower than TLFS due to the low complexity of this comparator,

that is, the CMOS comparator consists of only 7 MOSFETs. HLFM based on the linear

fault model HLFM_L contains average time of 0.543s, which is slower than our HLFM.

The speed-up is then calculated according to Eq. 10-3, where tTLFS is transistor level

simulation time, tHLFM is high level modelling time, top is operating point analysis time at

transistor level (100ms). Substituting the data into this equation, the speed-up of

simulation is obtained in Eq. 10-4.

opHLFM

TLFS

tt
t

upspeed


_ Eq. 10-3

793.0
1.05345.0

503.0
_ 


upspeed Eq. 10-4

10-10

Comparing this with the result in Eq. 9-11 using a low-pass filter: 0.793 > 0.774, i.e.,

speed has been decreased as the circuit used for HLFS and HLFM gets larger. It may

indicate speed-up can be achieved when a more complex system is used.

Moreover, during simulation it is observed that some faults have given rise to the same

digital outputs, e.g., M1_dss_1 and M1_gds_1, M5_gss_1 and M5_gss_2. These faults

may be grouped and collapsed, for each fault group only one high-level simulation run

of the whole ADC has to be performed. The more complex the design gets the larger the

likelihood of fault groups and the number of faults within one group. So simulation time

can be saved. However, for such a simple CMOS comparator not many fault groups can

be found and relatively fewer faults can be grouped in one fault group.

10.5 Conclusion

In this chapter the comparison between TLFS and HLFM is continued using a more

complex circuit (3bit flash ADC). The MMGSD generates multiple models for a CMOS

comparator. These models are inserted in a behavioural model to handle nonlinearity.

During HLFM this behavioural model and a fault macromodel replace the faulty

comparator in the ADC, separately. Results have shown that the behavioural model can

model all faults correctly according to the digital outputs, whereas the linear

macromodel fails to model some faults.

A simulation time comparison of the whole ADC shows that no speed up can be gained

from HLFM, although in some cases HLFM based on the linear macromodel can

achieve fastest simulation time. This is because the event driven simulation in the digital

domain is much faster than the Newton Raphson based iteration solving of the circuit

equations in the analogue domain. The high level modelling just compensates this.

However, according to speed-up equation HLFM of the flash ADC requires less

simulation time than a low-pass filter. It indicates that speed-up may be achieved as the

circuit used gets more complex.

11-1

Chapter 11: Conclusions and Future
Work

11.1 Introduction

In recent years there has been a large increase in mixed-signal ICs with higher levels of

integration. Although research in the digital test domain has provided well established

fault models, DFT methodologies and test automation, the same is not true for the

analogue test domain. Many of the problems in testing analogue and analogue portions

of mixed-signal ICs are described in the literature review.

High level fault modelling (HLFM) has become one of the most important approaches

for analogue test due to its high speed. The models can be created either manually or

automatically. Automated model generation (AMG) approaches have showed their

ability to handle soft or strong nonlinearity. Speed-up can be achieved using model

order reduction (MOR) approaches. However, most published AMG approaches have

been developed and evaluated in its context of high level fault-free modelling rather

than HLFM. This thesis has investigated HLFM using the AMG approach.

11.2 Automated Model Generation Approaches

In this work two novel automated model generation (AMG) approaches based on the

recursive maximum likelihood (RML) were developed for SISO and MISO systems: the

multiple model generation system (MMGS) in z transform and multiple model

generation system using delta operator (MMGSD). Both were evaluated using a two-

stage CMOS open-loop operational amplifier (op amp), the input stimulus was a PRBS

to achieve a wide spectrum. The MMGS can handle low-pass filters, and model

nonlinear behaviour with good accuracy. The work has been published at DTIS in 2008

[Xia08a] and ISCAS in 2008 [Xia08b]. The MMGSD can converge twice as fast as the

MMGS, handle both low-pass and high-pass filters, and model nonlinear behaviour

correctly. This work has been published at WCE in 2008 [Xia08c].

Some key issues need to be considered: during estimation the estimator may not

accurately estimate the offset coefficients because it is difficult for the estimator to

11-2

obtain enough information since it is a constant value. This has been improved by

adding an offset parameter during HLM and HLFM. Furthermore, the MMGSD is not

intelligent enough to always pick thresholds exactly where the extreme nonlinearities

are because of fixed positions used for the thresholds, so it sometimes may not model

nonlinearity accurately. This can be improved by manually adding a threshold on the

nonlinear area.

11.3 High Level Fault Modelling

A VHDL-AMS behavioural model is developed to implement HLM and HLFM for

transient analysis. The models from the MMGSD are used to form VCVSs in this

model. Short faults were investigated, which are obtained from the fault injector

ANAFINS [Spinks04]. The netlists used are a low-pass filter and a 3bit flash ADC.

Results show that the model can handle both linear and nonlinear situations with good

accuracy in the filter, and model digital outputs in the ADC correctly. Comparing with a

published fault model [Bartsch99], better quality has been achieved in terms of output

signals using fault coverage measurement [Spinks98].

Although speed-up is not achieved during simulation because the op amp only contains

a small number of transistors (11 transistors), it has been proved that as the system is

getting larger speed-up can be achieved more easily.

11.4 Future Work

Based on the findings and conclusions of this work, future work is justified in several

areas.

1. A more complex system such as an IV amplifier will be employed for HLFM to

investigate simulation speed. The same procedure will be used as the one for the low-

pass filter.

2. A flexible threshold creation method for nonlinearity will be investigated.

3. The work here uses a model partitioning system based on a single input, further work

will focus on model generation process by observing multiple inputs.

11-3

4. The simulator used (SystemVision) in the thesis is not optimised to the structure of

the MMGSD model, which results in slow simulation. In the future work another

simulator using different iteration method instead of the Newton-Raphson in

SystemVision method will take place in order to deal with nonlinear part with less

number of iterations.

5. The same technique of the transistor with different levels will be used for simulation

speed investigation. Moreover, more update transistors will be used for simulation.

A-1

Appendix A: Characterises of the
Two-stage Op Amp in HSPICE

The objective of this section is to provide the knowledge on how to simulate and test a

CMOS operational amplifier (op amp). Thus, users who do not have the datasheet can

still know about its range of performance when it is integrated in a system. It also gives

users more confidence, even though the datasheet is supplied. The methods are suitable

not only for SPICE, but also for other types of computer-simulation programs because

the simulation and measurement of the CMOS op amp are almost identical and

presented simultaneously. In this case the op amp used is the same one in Figure 4-1.

The characteristics of the op amp include: open-loop gain, open-loop frequency

response (including the phase margin), input-offset voltage, common-mode gain

(CMG), power-supply rejection ratio (PSRR), common-mode input- and output-voltage

ranges, open-loop output resistance, and the transient response including slew rate (SR).

Its design specification is shown in Table A-1.

Specification Design

Open loop gain >20000 = 86dB

GB (MHz) >1

Input CMR (V) ±2

Slew Rate(V/us) >2

Pdiss (uW) <400

Vout range (V) >4

PSRR+ (dB) -

PSRR- (dB) -

Settling Time (us) -

Output Resistance (Kilohms) 524.2

Table A-1: Results between design and simulation

A-2

A.1 Open-loop Mode with the Offset Compensation

Offset voltage is tested with the circuit shown in Figure A-1. RL = 10kΩ, CL = 10pF, Vdd

and Vss are 2.5V and -2.5V, respectively. The input signal is swept between -0.05V and

0.05V with 100µV steps.

RL

V1

V2
out

in

CL

Vos

Figure A-1: Open-loop circuit with the offset compensation

The signal is seen in Figure A-2.It is seen that this circuit has the reasonable offset

voltage: Vos ≈ 5.94mV because it should be in the range of millivolts.

Figure A-2: The signal for the offset voltage

A.2 Open-loop Gain Measurement

The open-loop gain is the gain obtained when no feedback is used in the circuit. Ideally

it is infinite, but normally it is around 510 . The method for measuring the open-loop

gain is implemented shown in Figure A-3.

A-3

RL

R

V1

V2
out

C

in

CL

Figure A-3: A method of measuring open-loop characteristics with dc bias stability

In this circuit it is necessary to select the reciprocal RC time constant a factor of Av(0)

times less than the anticipated dominant pole of the op amp, so the op amp has total dc

feedback which stabilizes the bias. The dc value of output will be exact the dc value of

input. Moreover, the true open-loop frequency characteristics will not be observed until

the frequency is approximately Av(0) times 1/RC. Above this frequency, the ratio of Vout

to Vin is essentially the open-loop gain of the op amp. The anticipated loading at the

output is required to obtain meaningful results [Allen87].

The dominant pole is calculated as follows. From the SPICE output file, λ9 = 0.03, λ12 =

0.024, λ10 = 0.012, λ7 = 0.015, kp’ = 17µ. Also, Id = 2.2µA, Id1 = 73µA, Cc = 1.6pF.

gm10 = VuA
L

W
IK d /2.93)('2 1  Eq. A-1

Referring to [Allen87], the first pole is found:

kHzP

kHz
gC

IIII

Cg
gggg

P

mc

dddd

cm

dsdsdsds

142.11

142.1
))((

))((
1

10

17110129

10

710129
















Eq. A-2

Assuming R is large enough, otherwise, it will take current from op amp, R =

300MegΩ, C = 30uF, RL = 10MegΩ, CL = 10pF. The signal is shown in Figure A-4.

A-4

Figure A-4: The open-loop gain measurement

It is seen that the open-loop gain is about 85.539dB, i.e., 1.892Meg, and the critical

frequency is about 96.277Hz. The gain bandwidth (GB) is the product of the open-loop

gain and the critical frequency, which is 1.82MHz, and the phase margin is 47.682.

Moreover, power dissipation is 383.1uW (found in the output file).

A.3 Input Offset Voltage

It is known that the input offset voltage is not only due to the bias mismatches, but also

due to device and component mismatches. Moreover, it can be affected by time and

temperature due to its small value. Therefore, it is difficult to simulate. In this case it is

performed by using the circuit of Figure A-5.

V1

V2 Vout = Vos

Vos

Figure A-5: Configuration for measuring the input offset voltage

A-5

A.4 Common-mode gain

The common-mode gain is the ratio of the output voltage to the common-mode input

signal. Ideally it is zero, but this is not the case for a real op amp due to the noise. The

common-mode gain is most easily simulated or measured using the circuit in Figure A-

6-a).

V1

V2

Vout

Vos

Vin

a) b)

Figure A-6: a) Configuration for simulation the common-mode gain, b) Signal for

common-mode gain

The input voltage Vin is set to 0.05V, the offset compensation voltage Vos is -5.9365mV,

from simulation the signal shown in Figure A-6-b) is obtained. The output voltage gain

is about 2.5 dB, i.e., ≈ 1.334.

A.5 Common-mode Reject Ratio (CMRR)

The common-mode gain is the ratio of the common-mode voltage at the input of a

circuit, to the corresponding voltage at the output. The lower the CMRR, the larger the

effect on the output signal [Allen87]. The circuit used for the measurement is shown in

Figure A-7.

A-6

ip

Vout
in

VDD

Vcm

Vcm

Vss

Figure A-7: Configuration for direct measurement of CMRR

Initially we measure the common mode gain and then use Eq. A-3 to obtain CMRR,

where Av is the open-loop gain.










cm

out

V
V

=
v

c

A
A ||

=
CMRR

1
Eq. A-3

From simulation the output response shown in Figure A-8 is obtained.

Figure A-8: CMRR frequency response of magnitude and phase

It is seen that the magnitude of common mode gain is -83.491dB, according to Eq. A-3,

the CMRR = 2.048dB. The phase is shifted about 180 degree.

A-7

A.6 Power Supply Reject Ratio (PSRR)

The power supply rejection ratio (PSRR) is a measure of how well the device rejects

noise on the power supply line. Normally it is separated into rejection ratios for the

positive power supply PSRR and negative power supply PSRR . Eq. A-4 shows the

relationship between PSRR and supply voltage.










dd

out

V
V

= PSRR
1

or 








ss

out

V
V

= PSRR
1

Eq. A-4

A circuit from [Allen87] is used to measure PSRR shown in Figure A-9. A sinusoidal

with amplitude 0.1mV and frequency 1kHz is used. It is inserted in series with VDD and

VSS to measure PSRR and PSRR , respectively.

ip

Voutin

Vs_d
VDD

Vss

Vs_s

Figure A-9: Configuration for direct measurement of PSRR

The signals for PSRR and PSRR from the simulation are shown in Figure A-10. It is

seen that they are almost the same: about 80dB.

A-8

Figure A-10: Signals for PSRR and PSRR

A.7 Configuration of Unit Gain for Input and Output CMR

Typically, the output common-mode voltage range (CMR) is about half the power-

supply range in open-loop [Allen87]. However, op amps are normally used in close-

loop, so it makes more sense that both input and output CMR should be measured and

simulated. Unit gain configuration shown in Figure A-11-a) is efficient for this

measurement.

ip

Vout
in

Vdd

Vin

Vss
CL

a) b)

Figure A-11: a) Unit-gain for input CMR and b) the signal

DC analysis is performed from -5V to 5V with steps of 0.1V, the output signal is shown

in Figure A-11-b). The linear part, where the slope is unity, corresponds to the input

common-mode voltage range. It quickly increases at about 2V because the value of the

compensation capacitor Cc is small, the voltage Vc essentially follows the voltage at in.

During the rising edge of the signal, the charging current to Cc can be much bigger than

A-9

the current around output stage, which results in a bigger charge current to Cc.

Therefore a rapid rise of the output voltage is caused. It is seen that the range of input

CMR is -1.2V to +2V with dc supply voltages of 5.2 V.

The range of the output voltage can be measured with an inverting amplifier seen in

Figure A-12-a), the feedback resistance is ten times bigger than the input resistance, i.e.,

10vK . The signal is shown in Figure A-12-b). The output voltage range is between

-2.429V and 2.49V. Moreover, the linear part of transfer curve corresponds to the

output-voltage swing.

ip

Vout
in

Vdd

Vin

Vss

R

10R

a) b)

Figure A-12: Signal for the input CMR a) and the signal b)

A.8 The Output Resistance

In this section, the output resistance is calculated with the circuitry shown in Figure A-

13-a). The dc voltage sources are 05.0 V,  kRL 100 .

ip

Vout
in

Vdd

RL

Vi

Vss

a)
b)

Figure A-13: a) Measurement of the output resistance, b) output signal

A-10

The output voltage drop caused by load resistance RL is obtained from Figure A-13-b.

The relationship between the input voltages and output resistance is given in Eq. A-5,

where VwithoutRL is the voltage without measuring the load resistor RL, and VwithRL is the

voltage when RL is included.

Rout = RL (








withRL

withoutRL

V
V

-1) Eq. A-5

Therefore, the output resistance is Rout ≈ 520.054kΩ.

A.9 The Slew Rate and Settling Time

The slew rate (SR) is the maximum rate of change of signal at the amplifier output. In

general, the settling time is defined as the time that it takes the system to settle within a

certain value (tolerance say 1%) when it is stimulated. In the amplifier it includes a very

brief propagation delay, plus the time required for the output to slew to the vicinity of

the final value, recover from the overload condition associated with slewing, and finally

settle to within the specified error.

In this case, the same circuitry as Figure A-11-a) is used, as shown in Figure A-14 to

measure the slew rate and settling time. The load capacitance CL is set to 10pF.

ip

Vout
in

Vdd

Vin

Vss
CL

Figure A-14: Measurement of the slew rate and settling time

The results of settling time measurement is shown in Figure A-15-a), which is obtained

by using the small signal transient response with a 0.2V pulse to the circuit above. The

relatively large value of compensation capacitor Cc prevents the 10pF load from causing

A-11

significant ringing in the transient response. It is seen that the settling time to within

 5% is about 28.547-28 = 0.547us.

a) Settling time b) Slew rate

Figure A-15: Signals from a) settling time and b) slew rate

The slew rate is then calculated. A pulse input signal with the amplitude of 2V is

utilized, the input step has to be sufficiently large, so the op amp is able to slew by

virtue of not having enough current to charge or discharge the compensating and/or load

capacitances. The simulated output signal is shown in Figure A-15-b). The slew rate is

determined by the slope of the output waveform during the rise or fall of the output.

Both positive and negative slew rates are approximate 1.65V/us, which are less than the

specification. One way to improve it is to reduce the compensating capacitance cc to

1.8pF. The signal is shown in Figure A-16. It is seen that the slew rate is increased: SR+

= 2.2V/us, SR- = -2.43V/us.

Figure A-16: Improved slew rate by reducing the compensating capacitance

A-12

A.10 Comparison of the Simulation with Specification

In this section designed values are compared with these results from the simulation in

HSPICE illustrated in Table A-2:

Specification Design Simulation in SPICE

Open loop gain >20000 = 86dB 85.539dB

GB (MHz) >1 1.82

Input CMR (V) ±2 +2, -1.2

Slew Rate(V/us) >2 +2.2, -2.43

Pdiss (uW) <400 383.1

Vout range (V) >4 +2.49, -2.43

PSRR+ (dB) - 80

PSRR- (dB) - 80

Settling Time (us) - 0.547

Output Resistance

(Kilohms)

524.2 520.054

Table A-2: Results between design and simulation

It is seen that characters of the op amp between the design and simulation have been

well matched, although the open loop gain and the input CMR from the simulation are a

little less than expected. Therefore, this op amp is designed successfully.

B-1

Appendix B: User Guide for MAST
Language and Cosmos Simulator in

Saber

B.1 Introduction to Saber Simulator

In 1987 the Saber simulator was developed, which is able to support both a hardware

description language (HDL) and single kernel mixed-signal simulation solution

[DataSheet93]. It has various optional model libraries that contain thousands of models

for designing integrated circuits (ICs) to complete high-power embedded control

systems. Saber controls simulation through an intuitive, graphical user interface, for

example, the interface between MATLAB and Saber, and supports all the standard

analog simulation analysis – DC operating point such as transfer analyses, transient,

AC, noise, distortion and Fourier spectral analysis. Furthermore, the Saber and inSpecs

family of design analysis products provide the ability to perform Monte Carlo, stress,

sensitivity, and parametric analysis.

The Cosmos simulator in Saber is used to specially support the hardware description

language (HDL) – MAST. Unfortunately full information on how to operate Cosmos is

not provided in Saberbook [Saber03], which is one of few documents to introduce this

language. In addition although each function in MAST is explained with an example,

they are not based on a complete model. Thus it is difficult and tedious for users

especially for beginners to understand and learn quickly about the HDL. This appendix

introduces the user guide on MAST language and Cosmos to bridge the gap between

fundamental knowledge and more complex work.

This user guide is divided into four sections: section B.2 introduces structures of the

MAST language with a complete example. Section B.3 demonstrates how to manipulate

the Cosmos simulator to display results. The conclusion is supplied in section B.4.

B-2

B.2 Introduction to the MAST

B.2.1 Construction of the MAST Language

The general form of the MAST language is shown in Figure B-1:

Unit definitions

Connection point definitions

Template header

Header declarations

{

Local declarations

Parameters section

Netlist section

When statements

Values section

Control section

Equations section

}

Figure B-1: The structure of the MAST language

Some of these sections may be optional depending on the requirement of the circuits

and users. The MAST language is recognized by the simulator with .sin extension. More

details can be found in Saberbook.

B.2.2 The complete program in MAST language

In this section a full program in MAST for an op amp is supplied as shown in Figure

B-2 [Wilson01]. Each line is numbered, so readers are able to follow explanations

easily.

1) #... A closed loop op amp

2) template test vout vin1 vin2 = a,m,k

3) electrical vout, vin1, vin2

4)

5) #...Operational Amplifier Parameters

6) number a=1

B-3

7) #...Fault offset Voltage Parameters

8) number m=0

9) number k=0

10) {

11) #... local Declarations

12) var i ic

13) val v vou,vi,fo,voutcalc

14) #...Procedural Expressions

15) values{

16) #...Terminal Voltages

17) vou=v(vout)-v(vin2)

18) vi=v(vin1)-v(vin2)

19) #...Fault offset voltage

20) fo=m*vi+k

21) voutcalc=a*(vi+fo)

22) #...Supply Voltage Limit

23) if (voutcalc> 2.5) voutcalc=2.5

24) if (voutcalc< -2.5) voutcalc=-2.5

25) }

26) equations{

27) #...Fundamental Equations

28) i(vout->vin2) +=ic

29) vou=voutcalc

30) }

31) }

Figure B-2: The program in MAST language

B.2.3 Explanation

These explanations are separated into following sections: B.2.3.1 Comment section;

B.2.3.2 Template section; B.2.3.3 Declaration section; B.2.3.4 Values section and

Equations section in B.2.3.5.

B.2.3.1 Comment Section

1) #...A closed loop op amp

5) #...Operational Amplifier Parameters

B-4

7) #...Fault offset Voltage Parameters

11) #...local Declarations

…

Comment line is recognized by a hash sign (#) as running to the end of the line. This is

same as (//) in the C program, or (--) in VHDL. It starts anywhere within a line and is

useful to temporarily remove a line or part of the program during debugging. In this

program line 1), 5), 7), 11), 14), 16), 19), 22) and 27) are comments.

B.2.3.2 Template Section

template is a required keyword that identifies the line as a template header, see line 2).

2) template test vout vin1 vin2 = a,m,k

It is seen that the name of the template is test, then connections: vout vin1 vin2,

and arguments a,m,k. Note: it is important to insert the comma between each of the

arguments. It is necessary to include the (=) sign to isolate connections from arguments.

There are two types of templates: the standard template, which does not have a

specified type; the element template that uses the keyword element for the

type. Templates can be in a program and have relationship such as hierarchy, so if one

template (template A) contains a reference to another (template B), this indicates, in the

model, the system represented by template B is a subsystem of that represented by

template A. Designers can create a template that defines a subsystem, and then refer to

it in the system template wherever the subsystem is used. It is similar to the function

class in C++, whose public member of the base class can be inherited by its subclass.

B.2.3.3 Declaration Section

B.2.3.3.1 Header Declaration

3) electrical vout, vin1, vin2

4)

5) #...Operational Amplifier Parameters

6) number a=1

7) #...Fault offset Voltage Parameters

8) number m=0

B-5

9) number k=0

There are two types of documents: header declaration and local declaration. Similar to

application languages such as C, C++, all names (identifiers) must be defined before

they are used. The aim of header declarations is to define the system names used in the

header. It specifies connection points and argument names, as seen from line 3) to line

9). Connection nodes and argument names are defined after keywords electrical

and number, respectively. electrical is used in the analogue part; keywords such

as state logic_4 are employed in the digital part. Connection names can not have

a number as the first character unless all remaining characters are numbers, non-

alphanumeric characters (such as + or -) are not allowed. Furthermore, between names

of arguments, commas are necessary. For example:

Correct: V10, 2, Vcc94b, 124

Incorrect: 10V, +15V, 15V1 18megV

number is a keyword for parameters. It indicates both integers and floats. It needs to

follow the rule: simple, composite, or arrays of simple/composite. More details can be

found in [Saber03].

B.2.3.3.2 Local declaration

11) #... local Declarations

12) var i ic

13) val v vou,vi,fo,voutcalc

14) #...Procedural Expressions

Lines 11) to 14) are the local declaration, which have to be inside template. It

comprises declarations for all identifiers used inside the template such as vars, ref,

vals, states. The general syntax is: keyword unit nameOfParameter.

keyword (names are a required part of MAST statements) is predefined by MAST and

requires no further declaration. In this case keywords var and val are used for

variables and values, respectively. i is used to declare a variable of type of current. The

second ic is a variable. If many parameters need to be defined such as line 13),

B-6

commas are used to separate each of the parameters, alternatively they can be defined

one by one. For example,

val v vou

val v vi

val v fo

val v voutcalc

B.2.3.4 Values Section

15) values{

16) #...Terminal Voltages

17) vou = v(vout)-v(vin2)

18) vi = v(vin1)-v(vin2)

19) #...Fault offset voltage

20) fo = m*vi+k

21) voutcalc = -a*(vi+fo)

22) #...Supply Voltage Limit

23) if (voutcalc > 2.5) voutcalc = 2.5

24) if (voutcalc < -2.5) voutcalc = -2.5

25) }

In MAST the values section is either operational or declarative. It is set up for handling

foreign functions that are required in the equations section, and promotes clarity in the

equations. The foreign section is not discussed in this user guide, and the equations

section will be introduced later. The values section starts with the keyword values

followed by a left-hand brace ({), and the right-hand brace (}) must be used at the end

when all statements are complete as seen in Figure B-3. Note: the left-hand brace should

not start from a new line, which is regarded as an error during simulation. This is the

same as other statements such as equations or if.

values {

statements

}

Figure B-3: The syntax for the values statement

B-7

On line 18) vi is defined in the local declaration section, vin1 and vin2 are the

connection nodes defined in the header declaration section. This equation shows that the

voltage between two nodes (v(vin1), v(vin2)) is vi. These variables are

described using Figure B-4.

vin1 vin2

v(vin1) v(vin2)
vi

+ -

Figure B-4: The resistor

Lines 20) and 21) display the relationship between the input and output voltage.

Parameters (a, m, k) and values (vo, vi, fo, voutcalc) have been defined

in the header declaration and local declaration, respectively. The if statement on lines

23) and 24) are used to execute two expressions. It can be used in parameters,

values, control, and equations sections of the template, and also in when

statements. If there is more than one expression, else if and else statements are

required. Note: else if statement may appear more than once. The syntax is

shown in Figure B-5:

if(expression){

statements

}

else if(expression){

statements

}

...

else {

statements

}

Figure B-5: The syntax for if statement

B-8

B.2.3.5 The Equations Section

The equations section describes the analogue characteristics at the terminals of the

element being modeled.

26) equations{

27) #...Fundamental Equations

28) i(vout->vin2) += i

29) vou = voutcalc

30) }

The syntax of the equations section is shown in Figure B-6.

equations{

statements

}

Figure B-6: The syntax for equations section

Statements in the equations section either define the dependent through vars or

refs in the system, they are expressed as the across variables or the equations

necessary for each var declared in the template. It is important to know that a

compound statement in a template can not have an empty body, e.g.,

equations{

statement -- that is illegal

}

On line 28) where all values have been defined in the local declaration, the symbol ->

indicates a flow of the through variable from the first node (vout) to the second

(vin2). Operators (+=, -=) indicate whether to add to or subtract from the node. Line

29) shows that two specified voltages are equal. More details such as other types of

statement which can be used in this section can be found in [Saber03]. Line 30) shows

the end of the equations section. Lines 10) and 31) inform the Saber simulator

when the template starts and finishes, respectively.

B-9

B.2.3.6 Netlist Section

In order to check if the op amp behaves as expected a netlist is required. The general

syntax of a netlist is shown in Figure B-7:

templatename.refdes connection_pt_list

[=argument_assignments]

Figure B-7: The syntax for the netlist

where templatename indicates the name of template in the model. refdes is the

reference designator, connection_pt_list shows the connections for the

template, and argument_assignments supplies values of parameters for the

model.

In this case an inverting amplifier is configured as shown in Figure B-8.

1) #... Top level of design

2) v.vinp y 0 = tran=(sin=(vo=0.1, va=0.5, f=100))

3) #...v.vinp y 0 = dc = 0.5

4) r.Ri y vin = 10k # define input resistance

5) #...define the op amp's nodes

6) test.inv vo vin 0 = 2, 0, 0

Figure B-8: The netlist for the operational amplifier

Line 1), line 3) and line 5) are comments. Line 2) declares a sinusoid voltage source,

v.vinp, v is predefined as voltage (i will be used if a current source is required),

vinp is the name of the sinusoid voltage source. y and 0 are two connections, 0

indicates ground. tran expresses transient analysis, sin stands for the sinusoid signal,

the parameter vo is the offset voltage, va, f are the amplitude and the frequency,

respectively. These parameters have to be defined in coupled square brackets. Line 3)

defines a dc voltage source with a value of 0.5V. Line 4) declares the input resistor. r

is predefined for resistors Ri and Rl. Line 6) instantiates the op amp defined above.

test is the name of template for the op amp. vo vin 0 are the connections of the

B-10

op amp, 2, 0, 0 are values of parameters. Note: these connections and values must

match the orders and numbers of the op amp model.

B.3 Implementation in the Cosmos Simulator

In this section, different types of analysis are described in section B.3.1 and B.3.2,

respectively.

B.3.1 Simulation Run

The aim of the section is to demonstrate how to use the Cosmos simulator. Follows

steps: file -> open -> design, select a file with a .sin extension, the Cosmos transcript

starts to compile, the report dialog appears with information such as copyright, license,

and date. If there are errors, double click highlighted error parts in the dialogue, it will

take the user to where the error is in the program. Note: when the program is changed, it

has to be saved again, or the simulator will not recognize the update. After that the user

may go back to the file, and then choose reload design to check if there are other errors.

The analysis is implanted if there are not errors any more.

B.3.2 Analysis

The aim of the section is to observe if the model behaves as expected. Three types of

analyses are introduced: the transient, dc and ac analysis.

B.3.2.1 The Transient Analysis

Transient analysis is typically used to investigate the response of the system to a time-

dependent excitation. Uses: analyses -> time -> domain -> transient, after that a

dialog appears to prompt users to input both end time and time step. Note: users must

not input a unit for these values, otherwise an error is displayed. Then choose yes to

Run DC Analysis First, after that press ok. Finally the signal is plotted from plotfiles:

file -> open -> plotfiles, then find the directory where the file is saved, and choose the

name with .tr.ai_pl extension, two dialog boxes appear: signal management and

filename.tr.ai_pl extension. Therefore, users can display any signals. In this case signals

vi and vo are selected shown in Figure B-9.

B-11

Figure B-9: Signals from the transient analyses

If the user prefers to compare these signals in the same graph, they initially have to

select both signals, and then right click the mouse to choose select signals -> stack

region -> analogue 1. Thus two signals are combined into a same box shown in Figure

B-10.

Figure B-10: Combination between input and output signals

B-12

B.3.2.2 DC Analysis

The dc analysis follows a similar procedure to transient analysis: analyses -> operating

point -> dc, a dialog box appears to prompt the user to choose independent source,

then sweep type, note: there are many types, in this case, step by is chosen. The range

is defined by the user, for example, from -0.5 to 0.5 by 100, which means the voltage

ranges between -0.5V to 0.5V with 100 steps. Values in Sample Point Density and

Monitor Progress are set to their default values of 1 and 0 respectively, or defined by

the designer. It is noted the former needs to be large, or an error appears. In this case it

is set to 200. After that, DC Analysis Run First is selected. Finally, dc analysis is

invoked. Plotfile is required to display signals: file -> open -> plotfiles, then a dialog

box appears so that the file with .dt.ai_pl extension is selected. Unfortunately, this

extension does not appear automatically in the Plotfiles dialog box, thus the user needs

to choose All in the files of type, then selects .dt.ai_pl file. After that choose open, two

dialog boxes appear: signal management and filename.dt.ai_pl. The result is shown in

Figure B-11.

Figure B-11: Results from the DC transfer analysis

B.3.2.3 AC analysis

A simple RC circuit is used to demonstrate ac analysis as shown in Figure B-12:

B-13

Rin

Cinvin

in out

vo

0

1) #...AC voltage source

2) v.vin in 0 = ac = (1,0)

3) #...define value of R1 and C1

4) r.Rin in out = 1k

5) c.Cin out 0 = 1u

Figure B-12: The RC filter for the ac analysis

Most of lines have been explained except for line 2) that presents the ac source. The

values in parentheses (1,0) stand for the magnitude and phase, respectively. The

same procedure as for transient analysis is used except that Analyses -> Frequency ->

Small signal is selected to display signals. They are shown in Figure B-13.

Figure B-13: Signals from AC analysis

Above all three frequently used analyses are introduced, others such as the Monte Carlo

(MC) simulation can be found in [Saber03].

B.4 Conclusion

A user guide based on [Saber03] has been developed. It consists of two parts: the first

one introduces the structure of the MAST language using an operational amplifier (op

amp) model that includes commonly used statement and syntax with detailed

B-14

explanations for each line; the second part demonstrates how to subject the model to

frequently used analyses. For each analysis, explanations are given. Comparing with

Saberbook this user guide is structured more simply, especially for beginners to

understand languages and the process of manipulating the simulator.

C-1

Appendix C:Behavioral Models
Written in MAST

C.1MAST Code of Linear HLFMs

C.1.1 MAST Code of opdc

#... behavioural model of an op amp for general modeling

template Opamp out inn inp vdd vss gnd = gain, r, c, ro, voffin,

voffout, ibn, ibp, vb1, vb2

electrical out, inn, inp, vdd, vss, gnd

#... parameters values

number gain = -1

number r = 1k

number c = 1u

number ro = 1k

number voffin = -0.5u

number voffout = 0.1u

number ibn = 0.1n

number ibp = 0.1n

number vb1 = 0.7

number vb2 = 0.7

{

electrical off, n1, n2

val v vin, vip, vi, voff, vout, vd, vs

val i iR1, iRo

var i iC1, ioff, i1, i2

d.diode1 out n1

d.diode2 n2 out

#... thermal noise from the input resistor

noiseR.nr inn off= r

noiseR.nro out gnd= ro

values{

#... define all connections

C-2

vin = v(inn)-v(gnd)

vip = v(inp)-v(gnd)

vout = v(out)-v(gnd)

vd = v(vdd)-v(gnd)

vs = v(vss)-v(gnd)

#... equation between input and output

#... define the input offset voltage

voff = vip + voffin

vi = vin - voff

#... define the current for the resistor

iR1 = vi/r

#... output current

iRo = (vout + voffout - gain*vi)/ro

}

equations{

#... define current around the capacitor

iC1:iC1 = d_by_dt(vi*c)

#... current in input stage

i(inn->off)+= iR1+iC1

#... bias current

i(off->gnd)+=ibp

i(inn->gnd)+=ibn

#... current of the input impedance

i(inp->off)+= ibp-(iR1+iC1)

#... define current and voltage in the point

i(inp->off)+= ioff

ioff :v(inp)-v(off) = voff

#... current in output stage

i(out->gnd)+= iRo

#... define the bias voltage

i(vdd->n1) += i1

C-3

i1: v(vdd)-v(n1) = vb1

i(n2->vss) += i2

i2: v(n2)-v(vss) = vb2

}

}

C.1.2 MAST Code of opac

#... behavioural model of an op amp ac with extra pole and zero.

template Opamp out inn inp vdd vss gnd = r, c, ro1, voffin, ibn, ibp,

vb1, vb2, ro2, cc, ra, rstuck, vstuck, ioffset, Gb, cpL, LzL, Ga

electrical out, inn, inp, vdd, vss, gnd

#... parameters values

#number gain = -1

number r = 1k

number c = 1u

number ro1 = 1k

number voffin = -0.5u

#number voffout = 0.1u

number ibn = 0.1n

number ibp = 0.1n

number vb1 = 0.7

number vb2 = 0.7

#number rdp = 1k

number ro2 = 1k

number cc = 10p

number ra = 1k

number rstuck = 1meg

number vstuck = 0

number ioffset = 0

number Gb = 2.9e-3

number cpL = 10p

number LzL = 1m

number Ga= 10e-6

{

electrical off, n1, n2, no, no1, pL, zL

C-4

val v vin, vip, vi, voff, vout, vd, vs

val i iR1

var i iC1, ioff, i1, i2, iC2, izL

d.diode1 out n1

d.diode2 n2 out

values{

#... define all connections

vin = v(inn)-v(gnd)

vip = v(inp)-v(gnd)

vout = v(out)-v(gnd)

vd = v(vdd)-v(gnd)

vs = v(vss)-v(gnd)

#... equation between input and output

#... define the input offset voltage

voff = vip + voffin

vi = voff-vin

#... define the current for the resistor

iR1 = vi/r

}

equations{

#... define current around the capacitor cin

iC1:iC1 = d_by_dt(vi*c)

#... current in input stage

i(inn->off)+= iR1+iC1

#... bias current

i(off->gnd)+=ibp

i(inn->gnd)+=ibn

#... current of the input impedance

i(inp->off)+= ibp+(iR1+iC1)

#... define current and voltage in the point

i(inp->off)+= ioff

ioff :v(inp)-v(off) = voff

C-5

#... define the bias voltage

i(vdd->n1) += i1

i1: v(vdd)-v(n1) = vb1

i(n2->vss) += i2

i2: v(n2)-v(vss) = vb2

#... define the current between supply voltage

#i(vdd->vss) += idp

#... current in output stage between ro1

i(no1->out)+= (v(no1)-v(out))/ro1

#... define current around the capacitor cc

i(no->no1)+= iC2

iC2:iC2 = d_by_dt((v(no)-v(no1))*cc)

#... define current around Ra

i(no->gnd)+= (v(no)-v(gnd))/ra

#... define stuck current

#i(out->gnd)+=istuck

#... define the voltage for vno1

i(no1->gnd)+=(v(no1)-v(gnd))/ro2

#... additional poles and zeros

i(pL->gnd)+= vi*1e-3

i(pL->gnd)+=(v(pL)-v(gnd))*1e-3+ d_by_dt((v(pL)-

v(gnd))*CpL)

i(zL->gnd)+=izL

izL:v(zL)-v(gnd)=(v(pL)-v(gnd))+ d_by_dt(((v(pL)-

v(gnd))*1e-3)*LzL)

#... define the voltage around no

i(no->gnd)+=Ga*(v(zL)-v(gnd))

#... define offset current for output stage

i(no1->gnd)+=ioffset

C-6

#... define current between Gb

i(no1->gnd)+= v(no)*Gb

}

}

C.2 MAST Code of Nonlinear HLFMs

this op amp is developed for surface response model.

element template wholedata inp inn out gnd = model,c,voffin,r

electrical inp, inn, out, gnd

number c=10p

number voffin=0.5m

number r=1k

struc {

string

file="E:\LiKun\Interpolation1\HSPICE4data\FinalData\FinalData500

m.txt"

number interp=1,

extrap[4]=[1,1,1,1],

fill[2]=[2,0],

density[2]=[200,200]

} model=()

{

foreign tlu

number dim=2,datap[*],sp1[*],sp2[*]

#number rdat[*]

number vx1,vx2,vy

electrical off

val v v1,v2,vout

val i io, ir

var i iC,ioffin

parameters {

datap=tlu(0,2,model->file,datap,1,[1,1,1,1],[2,0])

#message("can the file % be loaded?,the length is %",model-

>file,datap)

C-7

sp1=tlu(1,addr(datap),1,1)

#rdat=tlu(7,addr(datap),0,0)

#message("the rdat is %",rdat)

sp2=tlu(1,addr(datap),2,1)

#message("sp2 is %",sp2)

vx1=0

vx2=0

vy = tlu(2,addr(datap),vx1,vx2)

message("value at (%,%) is %",vx1,vx2,vy)

}

control_section {

#...declare dependant source iout depends on two independant

sources v1 and v2

pl_set(io,(v1,v2))

#...two arrays sp1 and sp2 holds sample points for two variables

v1 and v2

sample_points(v1,sp1)

#message("the value is %",v1)

sample_points(v2,sp2)

}

values {

v1=v(inn)-v(gnd)

v2=v(inp)-v(gnd)

vout=v(out)-v(gnd)

ir=v(inn,off)/r

io=tlu(2,addr(datap),v1,v2)

#iout=tlu(2,addr(datap),io,(v1-v2),vout)

}

equations {

i(inp->off)+=ioffin

ioffin:v(inp)-v(off)=voffin

iC:iC = d_by_dt(v(off,inn)*c)

i(inn->off)+=-iC

i(inn->off)+=-ir

i(inn->inp)+=-(iC+ir)

i(out->gnd)+=io

}

}

D-1

Appendix D: Analysis of Boyle’s
Output Stage in the Complex

Frequency Domain

The notation shown in Figure D-1 is used in the whole of Appendix D.

Ga Vin

Va

Ra Gb va

Cc

ioffset=0!

Vb

Ro2

Ro1

Vout

out

Vin

in

gnd

icc

ira iro2

iro1

Figure D-1: Boyle’s output stage

D.1 Input Output Transfer Function

According to the current law, the following system of equations is obtained:

Node Va: icc + ira + Ga  Vin = 0 Eq. D-1

It is known: ira =
a

a

R
v

, and icc = (va - vb)·s·Cc, substitue it into Eq. D-1:

(va - vb)  sCc +
a

a

R
v

+ Ga  Vin = 0 Eq. D-2

Node Vb: icc = Gb  va + iro2 + iro1 Eq. D-3

The above equation is then transformed into the following system of equations (iro1 = 0,

no load):

icc = Gb  va +
2o

b

R
v

Eq. D-4

With Eq. D-4 and icc = (va - vb)sCc one can derive:

D-2

c
o

bc

a

b

c
o

bbca

o
babcbca

o

b
abcba

Cs
R

GCs
v
v

Cs
R

vGCsv

R
vvGCsvCsv

R
v

vGCsvv












2

2

2

2

1

)
1

()(

1

)(

Eq. D-5

With Eq. D-1 and Eq. D-2 Eq. D-6 can be derived:

0
11

2

 ina
a

a
o

bab VG
R

v
R

vvG Eq. D-6




















2

11

o
bina

a
ba R

vVG
R

Gv Eq. D-7

By combining Eq. D-7 with Eq. D-4 the final equation for the input output transfer

function can be derived:

 

    inbca
o

bc

aoa

c

o

b
cbb

inbcabc
oo

c
a

bb

o
c

bc

o
bina

a
b

b

VGCsG
R

GCs
RRR

Cs
R
G

CsGv

VGCsGGCs
RR

Cs
R

Gv

R
Cs

GCs

R
vVG

R
G

v








 




















222

22

22

1

)](
1

)
1

()
1

[(

11

1

    
  ina

bco

ocRbcocbb VG
GCsR

RCsGCsRCsGv
a 






2

2
1

2 1+1

Since iro1 = 0 (no load!) vb = Vout. Therefore, vb is replaced by vout:

 
   2

1
2

2

11
=

ocRbcocb

bco
a

in

out

RCsGCsRCsG
GCsR

G
V
V

a





D-3














bo
a

o
ac

booc
aa

in

out

GR
R
R

RCs

GRRCs
RG

V
V

2
2

22

11
-= Eq. D-8

D.2 Output Impedance

The current on the output node can be expressed as:

1

=
o

bout
out R

vV
i


Eq. D-9

Therefore, 1ooutoutb RiVv  Eq. D-10

Furthermore,
1

=
1

2 cCsa
bab

o

b
out R

vvG
R
v

i


 Eq. D-11

a

c
a

a
b v

Cs
R

R
v 





1

Eq. D-12

With the help oof Eq. D-5, Eq. D-11 and Eq. D-12 the following relation are obtained

for the output impedance:

    0
11 11

2

1 












ca

c
ooutout

ca

ca
ooutoutb

o

ooutout
out CRs

Cs
RiV

CRs
CRs

RiVG
R

RiV
i

0
1

111
1

+

1

1
2

1

2




















ca

c
oout

ca

c
out

ca

ca
boout

ca

ca
bout

o

o
out

o
outout

CRs
Cs

Ri

CRs
Cs

V
CRs

CRs
GRi

CRs
CRs

GV
R
R

i
R

Vi

ca

c
oout

ca

ca
boout

o

o
outout

ca

c
out

ca

ca
bout

o
out

CRs
Cs

Ri
CRs

CRs
GRi

R
R

ii

CRs
Cs

V
CRs

CRs
GV

R
V





















11

11
1

11
2

1

2


































ca

c
o

ca

ca
bo

o

o
out

ca

c

ca

ca
bout CRs

Cs
R

CRs
CRs

GR
R
R

i
CRs

Cs
CRs

CRs
GV

11
1

11R
1

11
2

1

o2

     
 
 

 
     
















































cao

coo

cao

caobo

cao

cao

cao

cao
out

cao

oc

cao

obca

cao

ca
out

CRsR
CRRs

CRsR
CRRGRs

CRsR
CRsR

CRsR
CRsR

i

CRsR
RCs

CRsR
RGCRs

CRsR
CRs

V

111
1

1
1

111
1

2

21

2

21

2

1

2

2

2

2

2

2

2

D-4

 

  

























cao

coocbaoocaoocaoo
out

cao

cocbaoca
out

CRsR
CRRsCGRRRsCRRsRCRRsR

i

CRsR
CRsCGRRsCRs

V

1

1
+++1

2

21211122

2

22

 
 22

212112

1
21

oobaac

oobaooaoaocoo

out

out

RRGRRCs

RRGRRRRRRRCsRR

i
V






  
  22

21212121

11 oobac

oobooooacoo

out

out

RRGRCs
RRGRRRRRCsRR

i
V




 Eq. D-13

Thus, the output impedance is obtained.

E-1

Appendix E: Manual Implementation
for the MMGS

E.1 Process With the Offset Parameter

E.1.1 The Estimator
function [thm,yhat,p,phi,psi] = Estimator(z,nn,adm,adg,th0,p0,phi,psi)
% RARMAX Computes estimates recursively for an ARMAX model.

disp('im in the estimator');

% default values for the output signals
thm=[]; % initialise the estimates
yhat=[]; % initialize the estimated result
p=[];
phi=[];
psi=[];

if nargin < 4
disp('Usage: MODEL_PARS = RARMAX(DATA,ORDERS,ADM,ADG)')
disp(' [MODEL_PARS,YHAT,COV,PHI,PSI] =

RARMAX(DATA,ORDERS,ADM,ADG,TH0,COV0,PHI,PSI)')
disp(' ADM is one of ''ff'', ''kf'', ''ng'', ''ug''.')
return

end
adm=lower(adm(1:2));
if ~(adm=='ff'|adm=='kf'|adm=='ng'|adm=='ug')

error('The argument ADM should be one of ''ff'', ''kf'', ''ng'', or
''ug''.')
end

[nz,ns]=size(z);[ordnr,ordnc]=size(nn);
if ns>2,error('This routine is for single input only. Use RPEM
instead!'),end
if ns==1,

if ordnc~=2;error('For a time series nn should be [na nc]!'),end
else

if ordnc~=4, error('the argument nn should be [na nb nc nk]!'),end,
end
if ns==1,

na=nn(1);nb=0;nc=nn(2);nk=1;
else

na=nn(1);nb=nn(2);nc=nn(3);nk=nn(4);nu=1;
end
if nk<1,error('Sorry, this routine requires nk>0; Shift input sequence
if necessary!'),end
d=na+nb+nc+1; % define a parameter for the offset
if ns>2,error('Sorry, this routine is for single input only!'),end
if ns==1,nb=0;end
if nb==0,nk=1;end
nam=max([na,nc]);nbm=max([nb+nk-1,nc]);
tic=na+nb+1:na+nb+nc;
ia=1:na;iac=1:nc;
ib=nam+nk:nam+nb+nk-1;ibc=nam+1:nam+nc;
ic=nam+nbm+1:nam+nbm+nc;

E-2

id=nam+nbm+nc+1;

iia=1:nam-1;iib=nam+1:nam+nbm-1;iic=nam+nbm+1:nam+nbm+nc-1;
iid=nam+nbm+nc-1+1;
dm=nam+nbm+nc+1;
if nb==0,iib=[];end
ii=[iia iib iic iid];i=[ia ib ic id];

if nargin<8, psi=zeros(dm,1);end
if nargin<7, phi=zeros(dm,1);end
if nargin<6, p0=10000*eye(d);end
if nargin<5, th0=eps*ones(d,1);end
if isempty(psi),psi=zeros(dm,1);end
if isempty(phi),phi=zeros(dm,1);end
if isempty(p0),p0=10000*eye(d);end
if isempty(th0),th0=eps*ones(d,1);end
if length(th0)~=d, error('The length of th0 must equal the number of
estimated parameters!'),end
[th0nr,th0nc]=size(th0);if th0nr<th0nc, th0=th0';end
p=p0;th=th0; % initialise the p matrix
p1=p0;th1=th0;
p2=p0;th2=th0;
f=1

if adm(1)=='f', R1=zeros(d,d);lam=adg;end
if adm(1)=='k', [sR1,SR1]=size(adg);

if sR1~=d | SR1~=d,
error('The R1 matrix should be a square matrix with dimension

equal to number of parameters!'),
end
R1=adg;lam=1;

end
if adm(2)=='g',

grad=1;
else

grad=0;
end

thm0(nz,:)=th'; % seperate different estimated parameters
thm1=thm0;
thm2=thm0;

aa=max(z(:,2)); % find out the maximum value of input
bb=min(z(:,2)); % find out the minimum value of input

yhat=[]; % set up the default condition for the output
for kcou=1:nz % start the loop

if((bb<=z(kcou,2))&(z(kcou,2)<0.01))
phi(id)=1;psi(id)=1;
yh=phi(i)'*th;
epsi=z(kcou,1)-yh;
if ~grad,

K=p*psi(i)/(lam + psi(i)'*p*psi(i));
p=(p-K*psi(i)'*p)/lam+R1;

else
K=adg*psi(i);
end
if adm(1)=='n', K=K/(eps+psi(i)'*psi(i));end
th=th+K*epsi;
if nc>0,

c=fstab([1;th(tic)])';

E-3

else
c=1;

end
th(tic)=c(2:nc+1);
epsilon=z(kcou,1)-phi(i)'*th;
if nb>0,

zb=[z(kcou,2),-psi(ibc)'];
else

zb=[];
end
ztil=[[z(kcou,1),psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);phi(iid)=1;psi(iid)=1;
if na>0,phi(1)=-z(kcou,1);psi(1)=-ztil(1);end
if nb>0,

phi(nam+1)=z(kcou,2);psi(nam+1)=ztil(2);
end
if nb==0,

zc=ztil(2);
else

zc=ztil(3);
end
if nc>0,phi(nam+nbm+1)=epsilon;psi(nam+nbm+1)=zc;end

thm0(kcou,:)=th';yhat(kcou)=yh;
end

if((0.01<=z(kcou,2))&(z(kcou,2)<0.1))
phi(id)=1;psi(id)=1;
yh=phi(i)'*th1;
epsi=z(kcou,1)-yh;
if ~grad,

K=p1*psi(i)/(lam + psi(i)'*p1*psi(i));
p1=(p1-K*psi(i)'*p1)/lam+R1;

else
K=adg*psi(i);

end
if adm(1)=='n', K=K/(eps+psi(i)'*psi(i));end
th1=th1+K*epsi;
if nc>0,

c=fstab([1;th1(tic)])';
else

c=1;
end
th1(tic)=c(2:nc+1);
epsilon=z(kcou,1)-phi(i)'*th1;
if nb>0,

zb=[z(kcou,2),-psi(ibc)'];
else

zb=[];
end
ztil=[[z(kcou,1),psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);
phi(iid)=1;
psi(iid)=1;
if na>0,phi(1)=-z(kcou,1);psi(1)=-ztil(1);end
if nb>0,

phi(nam+1)=z(kcou,2);psi(nam+1)=ztil(2);
end
if nb==0,

E-4

zc=ztil(2);
else

zc=ztil(3);
end
if nc>0,phi(nam+nbm+1)=epsilon;psi(nam+nbm+1)=zc;end

thm1(kcou,:)=th1';yhat(kcou)=yh;
end

if((0.1<=z(kcou,2))&(z(kcou,2)<=aa))
phi(id)=1;psi(id)=1;
yh=phi(i)'*th2;
epsi=z(kcou,1)-yh;
if ~grad,

K=p2*psi(i)/(lam + psi(i)'*p2*psi(i));
p2=(p2-K*psi(i)'*p2)/lam+R1;

else
K=adg*psi(i);

end
if adm(1)=='n', K=K/(eps+psi(i)'*psi(i));end
th2=th2+K*epsi;
if nc>0,

c=fstab([1;th2(tic)])';
else

c=1;
end
th2(tic)=c(2:nc+1);
epsilon=z(kcou,1)-phi(i)'*th2;
if nb>0,

zb=[z(kcou,2),-psi(ibc)'];
else

zb=[];
end
ztil=[[z(kcou,1),psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);phi(iid)=1;psi(iid)=1;
if na>0,phi(1)=-z(kcou,1);psi(1)=-ztil(1);end
if nb>0,

phi(nam+1)=z(kcou,2);psi(nam+1)=ztil(2);
end
if nb==0,

zc=ztil(2);
else

zc=ztil(3);
end
if nc>0,phi(nam+nbm+1)=epsilon;psi(nam+nbm+1)=zc;end

thm2(kcou,:)=th2';yhat(kcou)=yh;
end

end
yhat = yhat';

% combine these three groups of parameters
thm=[thm0,thm1,thm2];

E.1.2 The Predictor
function yhat= Predictor(u,nn,thm)

% define the size of input u, and the size of matrix nn

E-5

[nz,ns]=size(u)
[ordnr,ordnc]=size(nn);
na=nn(1);nb=nn(2);nc=nn(3);nk=nn(4);nu=1;

if nk<1,error('Sorry, this routine requires nk>0; Shift input sequence
if necessary!'),end
d=na+nb+nc+1; % define number of parameters from nn

%if ns==1,nb=0;end
if nb==0,nk=1;end

nam=max([na,nc]);nbm=max([nb+nk-1,nc]);
tic=na+nb+1:na+nb+nc;
ia=1:na;iac=1:nc;
ib=nam+nk:nam+nb+nk-1;
ibc=nam+1:nam+nc;
ic=nam+nbm+1:nam+nbm+nc;
id=nam+nbm+nc+1; % increase the dimention of th

iia=1:nam-1;iib=nam+1:nam+nbm-1;iic=nam+nbm+1:nam+nbm+nc-
1;iid=nam+nbm+nc-1+1;
dm=nam+nbm+nc+1;

if nb==0,iib=[];end
ii=[iia iib iic iid];i=[ia ib ic id];

psi=zeros(dm,1);
phi=zeros(dm,1);

aaa=phi(i)
th0=eps*ones(d,1);

[th0nr,th0nc]=size(th0);if th0nr<th0nc, th0=th0';end

[tm,tn]=size(thm); % define the size of resulting estimating

p=round(tn/d); % find out how many groups, and the closest integer

% find the the indices of thm that point to nonzero elements.
% If none is found, find returns an empty matrix.
ind0=find(abs(thm(:,1))>eps);
%ind0
g0=size(ind0)

ind1=find(abs(thm(:,1+d))>eps);
%ind1
g1=size(ind1)

ind2=find(abs(thm(:,1+2*d))>eps);
%ind2
g2=size(ind2)

% find the best model from each group by searching the three maximum
index (from 1 to d, from d+1 to 2d, from 2d+1 to 3d)
th=thm(max(ind0),1:d)'
th1=thm(max(ind1),(1+d):2*d)'
th2=thm(max(ind2),(1+2*d):3*d)'

aa=max(u); % find out the maximum value of input
bb=min(u); % find out the minimum value of input

E-6

yhat=[]; % set up the default condition for the output
for kcou=1:nz % start the loop

if((bb<=u(kcou))&(u(kcou)<0.01))
phi(id)=1;psi(id)=1;
%d=1
yh=phi(i)'*th;
%aaa=phi(i)
if nb>0

zb=[u(kcou),-psi(ibc)'];
else

zb=[];
end

phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);phi(iid)=1;psi(iid)=1;
if na>0,phi(1)=-yh;end
if nb>0,

phi(nam+1)=u(kcou);
end

if nc>0,phi(nam+nbm+1)=0;psi(nam+nbm+1)=0;end

yhat(kcou)=yh;
%yh

end

if((0.01<=u(kcou))&(u(kcou)<0.1))
phi(id)=1;psi(id)=1;
%d=2
yh1=phi(i)'*th1;
if nb>0,

zb=[u(kcou),-psi(ibc)'];
else

zb=[];
end

phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);phi(iid)=1;psi(iid)=1;

if na>0
phi(1)=-yh1;

end

if nb>0
phi(nam+1)=u(kcou);

end

if nc>0,phi(nam+nbm+1)=0;psi(nam+nbm+1)=0;end

yhat(kcou)=yh1;
%yh1

end

if((0.1<=u(kcou))&(u(kcou)<=aa))
phi(id)=1;psi(id)=1;
%d=3
yh2=phi(i)'*th2;
%yh2
if nb>0,

zb=[u(kcou),-psi(ibc)'];
else

zb=[];
end

E-7

%phi(1)
phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);phi(iid)=1;psi(iid)=1;
if na>0,

phi(1)=-yh2;
end
if nb>0

phi(nam+1)=u(kcou);
end

if nc>0,phi(nam+nbm+1)=0;psi(nam+nbm+1)=0;end

yhat(kcou)=yh2;
end

end
yhat = yhat';

E.2 Process without the offset parameter

E.2.1 The Estimator
function [thm,yhat,p,phi,psi] =
AME_nooffset(z,nn,adm,adg,th0,p0,phi,psi)
% RARMAX Computes estimates recursively for an ARMAX model.

% default values for the output signals
thm=[]; % initialise the estimates
yhat=[]; % initialize the predicted result
p=[];
phi=[];
psi=[];

if nargin < 4
disp('Usage: MODEL_PARS = RARMAX(DATA,ORDERS,ADM,ADG)')
disp(' [MODEL_PARS,YHAT,COV,PHI,PSI] =

RARMAX(DATA,ORDERS,ADM,ADG,TH0,COV0,PHI,PSI)')
disp(' ADM is one of ''ff'', ''kf'', ''ng'', ''ug''.')
return

end
adm=lower(adm(1:2));
if ~(adm=='ff'|adm=='kf'|adm=='ng'|adm=='ug')

error('The argument ADM should be one of ''ff'', ''kf'', ''ng'', or
''ug''.')
end

[nz,ns]=size(z);[ordnr,ordnc]=size(nn);
if ns>2,error('This routine is for single input only. Use RPEM
instead!'),end
if ns==1,

if ordnc~=2;error('For a time series nn should be [na nc]!'),end
else

if ordnc~=4, error('the argument nn should be [na nb nc nk]!'),end,
end
if ns==1,

na=nn(1);nb=0;nc=nn(2);nk=1;
else

na=nn(1);nb=nn(2);nc=nn(3);nk=nn(4);nu=1;
end
if nk<1,error('Sorry, this routine requires nk>0; Shift input sequence
if necessary!'),end
d=na+nb+nc;

E-8

if ns>2,error('Sorry, this routine is for single input only!'),end
if ns==1,nb=0;end
if nb==0,nk=1;end
nam=max([na,nc]);nbm=max([nb+nk-1,nc]);
tic=na+nb+1:na+nb+nc;
ia=1:na;iac=1:nc;
ib=nam+nk:nam+nb+nk-1;ibc=nam+1:nam+nc;
ic=nam+nbm+1:nam+nbm+nc;

iia=1:nam-1;iib=nam+1:nam+nbm-1;iic=nam+nbm+1:nam+nbm+nc-1;
dm=nam+nbm+nc;
if nb==0,iib=[];end
ii=[iia iib iic];i=[ia ib ic];

if nargin<8, psi=zeros(dm,1);end
if nargin<7, phi=zeros(dm,1);end
if nargin<6, p0=10000*eye(d);end
if nargin<5, th0=eps*ones(d,1);end
if isempty(psi),psi=zeros(dm,1);end
if isempty(phi),phi=zeros(dm,1);end
if isempty(p0),p0=10000*eye(d);end
if isempty(th0),th0=eps*ones(d,1);end
if length(th0)~=d, error('The length of th0 must equal the number of
estimated parameters!'),end
[th0nr,th0nc]=size(th0);if th0nr<th0nc, th0=th0';end
p=p0;th=th0; % initialise the p matrix
p1=p0;th1=th0;
p2=p0;th2=th0;
f=1
thm0(nz,:)=th'; % seperate different estimated parameters
thm1=thm0;
thm2=thm0;

if adm(1)=='f', R1=zeros(d,d);lam=adg;end
if adm(1)=='k', [sR1,SR1]=size(adg);

if sR1~=d | SR1~=d,
error('The R1 matrix should be a square matrix with dimension

equal to number of parameters!'),
end
R1=adg;lam=1;

end
if adm(2)=='g',

grad=1;
else

grad=0;
end

aa=max(z(:,2)) % find out the maximum value of input
bb=min(z(:,2)) % find out the minimum value of input

yhat=[]; % set up the default condition for the output
for kcou=1:nz % start the loop

if((bb<=z(kcou,2))&(z(kcou,2)<0.01))
%d=1
yh=phi(i)'*th;
epsi=z(kcou,1)-yh;
if ~grad,

K=p*psi(i)/(lam + psi(i)'*p*psi(i));
p=(p-K*psi(i)'*p)/lam+R1;

else
K=adg*psi(i);

E-9

end
if adm(1)=='n', K=K/(eps+psi(i)'*psi(i));end
th=th+K*epsi;
if nc>0,

c=fstab([1;th(tic)])';
else

c=1;
end
th(tic)=c(2:nc+1);
epsilon=z(kcou,1)-phi(i)'*th;
if nb>0,

zb=[z(kcou,2),-psi(ibc)'];
else

zb=[];
end
ztil=[[z(kcou,1),psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);
if na>0,phi(1)=-z(kcou,1);psi(1)=-ztil(1);end
if nb>0,

phi(nam+1)=z(kcou,2);psi(nam+1)=ztil(2);
end
if nb==0,

zc=ztil(2);
else

zc=ztil(3);
end
if nc>0,phi(nam+nbm+1)=epsilon;psi(nam+nbm+1)=zc;end

thm0(kcou,:)=th';yhat(kcou)=yh;
end

if ((0.01<=z(kcou,2))&(z(kcou,2)<0.1))
yh=phi(i)'*th1;
epsi=z(kcou,1)-yh;
if ~grad,

K=p1*psi(i)/(lam + psi(i)'*p1*psi(i));
p1=(p1-K*psi(i)'*p1)/lam+R1;

else
K=adg*psi(i);

end
if adm(1)=='n', K=K/(eps+psi(i)'*psi(i));end
th1=th1+K*epsi;
if nc>0,

c=fstab([1;th1(tic)])';
else

c=1;
end
th1(tic)=c(2:nc+1);
epsilon=z(kcou,1)-phi(i)'*th1;
if nb>0,

zb=[z(kcou,2),-psi(ibc)'];
else

zb=[];
end
ztil=[[z(kcou,1),psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);
if na>0,phi(1)=-z(kcou,1);psi(1)=-ztil(1);end
if nb>0,

phi(nam+1)=z(kcou,2);psi(nam+1)=ztil(2);

E-10

end
if nb==0,

zc=ztil(2);
else

zc=ztil(3);
end
if nc>0,phi(nam+nbm+1)=epsilon;psi(nam+nbm+1)=zc;end

thm1(kcou,:)=th1';yhat(kcou)=yh;
end

if((0.1<=z(kcou,2))&(z(kcou,2)<=aa))
%h=3
yh=phi(i)'*th2;
epsi=z(kcou,1)-yh;
if ~grad,

K=p2*psi(i)/(lam + psi(i)'*p2*psi(i));
p2=(p2-K*psi(i)'*p2)/lam+R1;

else
K=adg*psi(i);

end
if adm(1)=='n', K=K/(eps+psi(i)'*psi(i));end
th2=th2+K*epsi;
if nc>0,

c=fstab([1;th2(tic)])';
else

c=1;
end
th2(tic)=c(2:nc+1);
epsilon=z(kcou,1)-phi(i)'*th2;
if nb>0,

zb=[z(kcou,2),-psi(ibc)'];
else

zb=[];
end
ztil=[[z(kcou,1),psi(iac)'];zb;[epsilon,-psi(ic)']]*c;

phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);
if na>0,phi(1)=-z(kcou,1);psi(1)=-ztil(1);end
if nb>0,

phi(nam+1)=z(kcou,2);psi(nam+1)=ztil(2);
end
if nb==0,

zc=ztil(2);
else

zc=ztil(3);
end
if nc>0,phi(nam+nbm+1)=epsilon;psi(nam+nbm+1)=zc;end

thm2(kcou,:)=th2';yhat(kcou)=yh;
end

end
yhat = yhat';

% combine these three groups of parameters
thm=[thm0,thm1,thm2];

E.2.2 The Predictor
function yhat= AMP_nooffset(u,nn,thm)
% mrarmax2 generates the output model

E-11

disp('Im in the predictor');
% define the size of input u, and the size of matrix nn
[nz,ns]=size(u);[ordnr,ordnc]=size(nn);
na=nn(1);nb=nn(2);nc=nn(3);nk=nn(4);nu=1;

if nk<1,error('Sorry, this routine requires nk>0; Shift input sequence
if necessary!'),end

% define number of parameters from nn
d=na+nb+nc;

if nb==0,nk=1;end

nam=max([na,nc]);nbm=max([nb+nk-1,nc]);
tic=na+nb+1:na+nb+nc;
ia=1:na;iac=1:nc;
ib=nam+nk:nam+nb+nk-1;
ibc=nam+1:nam+nc;
ic=nam+nbm+1:nam+nbm+nc;

iia=1:nam-1;iib=nam+1:nam+nbm-1;iic=nam+nbm+1:nam+nbm+nc-1;
dm=nam+nbm+nc;

if nb==0,iib=[];end
ii=[iia iib iic];i=[ia ib ic];

psi=zeros(dm,1);
phi=zeros(dm,1);

aaa=phi(i)
th0=eps*ones(d,1);

[th0nr,th0nc]=size(th0);if th0nr<th0nc, th0=th0';end

% define the size of resulting estimating
[tm,tn]=size(thm);

% find out how many groups, and the closest integer
p=round(tn/d);

% find the the indices of thm that point to nonzero elements.
% If none is found, find returns an empty matrix.
ind0=find(abs(thm(:,1))>eps);

g0=size(ind0)

ind1=find(abs(thm(:,1+d))>eps);
ind2=find(abs(thm(:,1+2*d))>eps);

% find the best model from each group by searching the three maximum
index (from 1
% to d, from d+1 to 2d, from 2d+1 to 3d)
th=thm(max(ind0),1:d)'
th1=thm(max(ind1),(1+d):2*d)'
th2=thm(max(ind2),(1+2*d):3*d)'

aa=max(u) % find out the maximum value of input
bb=min(u) % find out the minimum value of input

yhat=[]; % set up the default condition for the output

E-12

for kcou=1:nz % start the loop

if((bb<=u(kcou))&(u(kcou)<0.01))
yh=phi(i)'*th;
if nb>0

zb=[u(kcou),-psi(ibc)'];
else

zb=[];
end

phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);
if na>0,phi(1)=-yh;end
if nb>0,

phi(nam+1)=u(kcou);
end

if nc>0,phi(nam+nbm+1)=0;psi(nam+nbm+1)=0;end

yhat(kcou)=yh;
end

if ((0.01<=u(kcou))&(u(kcou)<0.1))
%d=2
yh1=phi(i)'*th1;
if nb>0,

zb=[u(kcou),-psi(ibc)'];
else

zb=[];
end

phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);

if na>0
phi(1)=-yh1;

end

if nb>0
phi(nam+1)=u(kcou);

end

if nc>0,phi(nam+nbm+1)=0;psi(nam+nbm+1)=0;end

yhat(kcou)=yh1;
%yh1

end

if((0.1<=u(kcou))&(u(kcou)<=aa))
yh2=phi(i)'*th2;
if nb>0,

zb=[u(kcou),-psi(ibc)'];
else

zb=[];
end
phi(ii+1)=phi(ii);psi(ii+1)=psi(ii);
if na>0,

phi(1)=-yh2;
end
if nb>0

phi(nam+1)=u(kcou);
end

E-13

if nc>0,phi(nam+nbm+1)=0;psi(nam+nbm+1)=0;end

yhat(kcou)=yh2;
end

end
yhat = yhat';

F-1

Appendix F: Quality Measurement
based on Number of Samples

It is known that generally more samples produce better quality results during modeling

and simulation. However, this is not always true. An example is shown, in which many

simulations are run using various numbers of samples. The same pulse waveform is

used each time as input to an open-loop amplifier. 9 models are generated by the

MMGS for prediction. Predicted signals are plotted in Figure F-1.

No. of
samples

No. of
models
(stable

models)

Original Signal Predicted Signal

30, 000 9

(6)

40,000 9

(8)

F-2

50,000 9

(7)

60,000 9

(7)

Figure F-1: Predicted signals based on different samples

It is seen that these predicted signals can match the original signal with good accuracy.

However, by comparing the signal in 30,000 with the one in 40,000 samples, it is seen

that the former is more accurate. It indicates that more samples do not have to give rise

to better results.

As it is seen the output signal using 40,000 samples shows that it is struggling on

saturation regions, it indicates that samples in some of models may not be informative.

Although it has more stable models (8) than others, some of them may not be very

accurate because information such as the number of samples has to be balanced across

all models used.

G-1

Appendix G: Methodologies for
Quality Improvement of the MMGS in

MATLAB

In this section various methods are used in either the AME or AMP to improve their

quality and diagnose problems in this system. This work focuses mainly on the AME

because models are generated here. In addition, it has been discovered that the AME has

a higher tolerance of handling nonideal or wrong parameters than the predictor.

G.1 Suitable Values Check

In the AME a command isnan is used within an if statement in MATLAB to detect if

the estimator fails to converge shown in Eq. G-1. When not a number (NaN) is detected

the program is stopped. The special status is indicated by a K appearing that indicates

the keyboard takes control. Where yh is the estimated output signal, keyboard indicates

the keyboard takes control.

end
keyboard
yhisnanif)(

Eq. G-1

G.2 Sample Detection

A method for counting the number of samples in each model was developed in both the

AME and AMP, so that the author is able to observe if each individual model has

obtained sufficient information to behave correctly. A variable count is defined and

initialized in Eq. G-2, where modt indicates the total number of models.

count=zeros(1,modt) Eq. G-2

A for loop is used to count how many samples present in each model shown in Eq. G-3,

where modn stands for the number of models, +1 indicates one more sample is checked.

G-2

end
1)count(modn)count(modn

modt:1modnfor



Eq. G-3

For instance, assume there is a five-model system with 20,000 samples, and that during

the simulation the number of samples in each model is shown in Figure G-1:

count = 2508 2756 2694 9522 2520

Figure G-1: Number of samples in each model

It is seen that all models have similar amount of samples except for the fourth one,

which indicates that it may exhibit high nonlinearity and require more samples to

converge properly.

G.3 Observation of Covariance p

In the estimator the diagonal element of covariance p is observed. It contains a large

diagonal value (initialized from 10,000), so that the model may find it hard to gain

enough information. However, p is a dd  matrix, where d is the size of variables. In

order to achieve diagonal elements it has to be reshaped. A command reshape is used to

shape the matrix into a dd :1 row and save it in a temporary file (ptmp), as shown in

Eq. G-4).

),),*:1,20000((ddddpreshapeptmp  Eq. G-4

Eq. G-5 is designed to pick up only diagonals (pdiag), where eye(d) gives the d-by-d

identity matrix with 1's on the diagonal and 0's elsewhere; .* indicates array

multiplication, which only produces the element-by-element product of the arrays;

ones(d,1) shows values of 1 in the d-by-1 matrix.

pdiag = eye(d).*ptmp*ones(d,1) Eq. G-5

After that a test based on these diagonal elements is implemented. If they are very large

the model may be disregarded.

G-3

G.4 Stability Detector

It is known that an unstable model may cause inaccuracies, so it is necessary to detect

such models and replace them with stable ones. The unstable model is caused because

there are not enough samples for the RLS estimator to tune. If this model is used it may

cause the predictor to numerically explore very quickly. Therefore, it is necessary to

ignore this model and use its neighbouring one. In z transform the way to know if a

model is stable is to check the roots of its polynomial (within a unit circle), in the delta

transform or Laplace transform the roots of its polynomial (left half plane) is observed.

In the MMGS we developed a stability detector, which consists of two parts: the first

part detects these unstable models iteratively; the second one replaces the unstable one

with the nearest one. It is noticed during detection if the first model is unstable, the last

model from the first scan is used to replace it, but it is not the neighbour of the first

model. Thus, during model detection the detector starts from detecting the last model to

the first one. The second iteration remains increasing order. With this method a stable

model will be available to replace the first unstable model.

During first iteration the roots of the model are found using the MATLAB roots

command. If a model is unstable, it will be stored in a temporary file temp, otherwise

the stable model is stored. This is implemented in MATLAB with an if-else statement as

shown in Figure G-2, where h is an array to handle variables for outputs; na is the

number of the output variables; abs is used to find absolute values for all the roots.

h=[1 thm(j,1:na)];
Noofroot=roots(h);
abvalue=abs(Noofroot);

if any(abvalue>1)
temp=[temp j];

else
thst=thm(j,:);
pst=p(j,:);

end

Figure G-2: 1st iteration for unstable model detection

G-4

The function any is used to find out if all values are greater than unit, thst and pst are

variables used to store the coefficients and covariance of the stable model, respectively.

The second iteration ensures there is always a stable model. Figure G-3 shows that if the

model is unstable the previous stable one from the first iteration is used.

end
:);p(j,=pst

:);thm(j,=stth
else

pst;=:)p(j,
thst;=:)m(j,th

1)>eany(abvaluif

Figure G-3: 2nd iteration for unstable models replacement

With this method, quality of predicted signal is significantly improved.

G.5 The Saturation Detector

It is known that the estimator only works well with the right excitation and input

information; if there is a long period of saturation part from the input signal the

estimator may not be trained well. Therefore, a saturation detector was designed in

order to find constant outputs and remove them.

Initially the first sample in the output library is compared with its neighbouring one (the

second one), if they are same its neighbour’s index is stored in a library. Then the

second sample is compared with the third one, and so on until all samples are processed.

These indices stored are then deleted. One sample in the saturation part is allowed so

that the estimator can still estimate the model under the saturation conditions.

H-1

Appendix H: Codes for the MMGS
and MMGSD

H.1 The MMGS

H.1.1 The AME
function
[thm,yhat,epsilon,epsilonhat,epsilonTest,threshold,threshold1,threshold2,pm,ph
i,psi] = ame(z,nn,adm,adg,th0,p0,phi,psi)
% Model selector based on RARMARX
disp('you are in the estimator');

% default values for the output signals
thm=[]; % initialise the estimates
yhat=[]; % initialize the predicted result
epsilon=[];
epsilonhat=[];
epsilonTest=[];
threshold=[];
threshold1=[];
threshold2=[];
p=[];
phi=[];
psi=[];

% adm and adg are part of forgetting factor, adm is adaptation mechanism,
% and adg is adaptation gain
if nargin < 4

disp('Usage: MODEL_PARS = RARMAX(DATA,ORDERS,ADM,ADG)')
disp('[MODEL_PARS,YHAT,COV,PHI,PSI] =

RARMAX(DATA,ORDERS,ADM,ADG,TH0,COV0,PHI,PSI)')
disp('ADM is one of ''ff'', ''kf'', ''ng'', ''ug''.')
return

end
adm=lower(adm(1:2));
if ~(adm=='ff'|adm=='kf'|adm=='ng'|adm=='ug')

error('The argument ADM should be one of ''ff'', ''kf'', ''ng'', or
''ug''.')
end

% new input and output data are analysed
[nz,ns]=size(z); % define the new output data without saturation

[ordnr,ordnc]=size(nn); % define the size of matrix for all parameters

if ns~=3,error('This routine is for double inputs only. Use RPEM
instead!'),end
if ns==1,

if ordnc~=2;error('For a time series nn should be [na nc]!'),end
else

%if ordnc~=4, error('the argument nn should be [na nb nc nk]!'),end,
if ordnc~=5, error('the argument nn should be [na nb nc nk ne]!'),end,

end
if ns==1,

na=nn(1);nb=0;nc=nn(2);nk=1;ne=0
else

na=nn(1);nb=nn(2);nc=nn(3);nk=nn(4);nu=1;ne=nn(5);
end
if nk<1,error('Sorry, this routine requires nk>0; Shift input sequence if
necessary!'),end

H-2

d=na+nb+nc+1+ne; % define a parameter for the offset

if ns==1,nb=0;ne=0;end
if nb==0|ne==0,nk=1;end

nam=max([na,nc]);nbm=max([nb+nk-1,nc]);
ndm=max([1,nc]); % extra data for offset

nem=max([ne+nk-1,nc]);

tic=na+nb+1:na+nb+nc;
%tic=na+nb+ne+1:na+nb+ne+nc;
ia=1:na;iac=1:nc;
ib=nam+nk:nam+nb+nk-1;ibc=nam+1:nam+nc;
ic=nam+nbm+1:nam+nbm+nc;
id=nam+nbm+nc+1;
idc=nam+nbm+nc+1:nam+nbm+nc+ndm; % set indices for the offset

ie=nam+nbm+nc+ndm+nk:nam+nbm+nc+ndm+ne+nk-1; % define for the second inputs
iec=nam+nbm+nc+ndm+1:nam+nbm+nc+ndm+nc;

iia=1:nam-1;iib=nam+1:nam+nbm-1;iic=nam+nbm+1:nam+nbm+nc-1;
iid=nam+nbm+nc+1:nam+nbm+nc+ndm-1; % set indices for the offset
%iid=nam+nbm+nc+1; % set indices for the offset

iie=nam+nbm+nc+ndm+1:nam+nbm+nc+ndm+nem-1; % for the second input

dm=nam+nbm+nc+ndm+nem;
%if nb==0,iib=[];end
ii=[iia iib iic iid iie]
i=[ia ib ic id ie]

if nargin<8, psi=zeros(dm,1);end
if nargin<7, phi=zeros(dm,1);end
if nargin<6, p0=10000*eye(d);end
if nargin<5, th0=eps*ones(d,1);end
if isempty(psi),psi=zeros(dm,1);end
if isempty(phi),phi=zeros(dm,1);end
if isempty(p0),p0=10000*eye(d);end
if isempty(th0),th0=eps*ones(d,1);end
if length(th0)~=d, error('The length of th0 must equal the number of estimated
parameters!'),end
[th0nr,th0nc]=size(th0);if th0nr<th0nc, th0=th0';end

if adm(1)=='f', R1=zeros(d,d);lam=adg;end
if adm(1)=='k', [sR1,SR1]=size(adg);

if sR1~=d | SR1~=d,
error('The R1 matrix should be a square matrix with dimension equal to

number of parameters!'),
end
R1=adg;lam=1;

end
if adm(2)=='g',

grad=1;
else

grad=0;
end

% only the last 5000 samples are interested
testinterval=[(nz-10000):nz];

u=z(:,2); % define the input data for estimator (whole data)
u2=z(:,3); % define the input data for estimator (whole data)
%u=[u1 u2];

%utest1=z(testinterval,2); % define the input data for the test
%utest2=z(testinterval,3); % define the input data for the test
utest=z(testinterval,2); % define the input data for the test

H-3

aa=max(max(u)); % find out the maximum value of all inputs
bb=min(min(u)); % find out the minimum value of all inputs

threshold=[bb,aa]; % initialise threshold

%disp('the number of division for the input has to be integer');
division4input=5;

if(division4input==0)
error('the number of division for the input can not be zero');

end

if(rem(division4input,2)==0)
error('the number of divisions for the input has to be even');

end

middleIndex=(division4input+1)/2; % define the middle of index for u=0;

inRange=(aa-bb)/division4input; % define the number of ranges for input,
% the division number has to be even
interval=bb:inRange:aa; % define the interval of input
LenInterval=length(interval); % define the length of interval

for j=1:(LenInterval-1) % define a range
indInterval{j}=find((utest<interval(j+1))&(utest>=interval(j)));
% find out the index by using accelerator

end
indInterval;

lengthThresh(1)=0; % initialise the size of first threshold
lengthThresh(2)=length(threshold); % initialise the size of threshold

% running the estimator
yhat=[]; % set up the default condition for the output

while (lengthThresh(1)~=lengthThresh(2))
modt=lengthThresh(2)-1; % define the total No. of models, which is

noofthreshod-1
for modn=1:modt % define the No. of models, which is noofthreshod-1

thm(modn,1:d)=th0'; % initialize thm
pm(modn,1:d*d)=p0(:)'; % initialize pm--covariance

end

% disp('display the number of models');
% decide which range of u is used, result in the value of j,j decide which

model.
low=threshold(1:modt);
sizeoflower=size(low);

high=threshold(2:modt+1);
sizeofhigher=size(high);

%threshold=sort(threshold)
count=zeros(1,modt); % initialization
%indexthreshold=[];
psi(id)=1;
for kcou=1:nz % start the loop for estimator

% define the threshold index,i.e., where the threshold is
indexthreshold=find((u(kcou)>=low)&(u(kcou)<=high));

modn=min(indexthreshold); % make sure there is only one index

count(modn)=count(modn)+1;

th=thm(modn,1:d)'; % redefine the parameters
eeee=d*d;

H-4

ffff=d;
p=reshape(pm(modn,1:d*d)',d,d); % redefine the covariance
modn;
%pause
phi(id)=1;
%psi(id)=1;
yh=phi(i)'*th;
gggg=phi(i)';
epsi=z(kcou,1)-yh; % define the innovation error
if ~grad,

K=p*psi(i)/(lam + psi(i)'*p*psi(i));
p=(p-K*psi(i)'*p)/lam+R1;

else
K=adg*psi(i);

End

% parameters for unpdating th
if adm(1)=='n', K=K/(eps+psi(i)'*psi(i));end
th=th+K*epsi; % update the innovation error

if nc>0,
% stabilizes a MONIC polynomial with respect to the unit circle
c=fstab([1;th(tic)])';
sizeofc=size(c);

else
c=1;

end
th(tic)=c(2:nc+1);

epsilon=z(kcou,1)-phi(i)'*th; % define the residual error
if nb>0,

zb=[z(kcou,2),-psi(ibc)'];
else

zb=[];
end

if ne>0,
ze=[z(kcou,3),-psi(iec)'];

else
ze=[];

end

ztil=[[z(kcou,1),psi(iac)'];zb;[epsilon,-psi(ic)'];[1,-
psi(idc)'];ze]*c;

% shifting procedure
phi(ii+1)=phi(ii);
psi(ii+1)=psi(ii);

% update parameters for output
if na>0,phi(1)=-z(kcou,1);psi(1)=-ztil(1);end

% update parameters for input
if nb>0

phi(nam+1)=z(kcou,2);psi(nam+1)=ztil(2);
end
if nb==0,

zc=ztil(2);
else

zc=ztil(3);
end

% update noise parameters
if nc>0

phi(nam+nbm+1)=epsilon;
psi(nam+nbm+1)=zc;

end

H-5

% update information for the offset
if nb==0,

zd=ztil(3);
else

zd=ztil(4);
end
phi(nam+nbm+nc+1)=1;
psi(nam+nbm+nc+1)=zd;

% update information for the second input
if ne>0

if nb==0,
phi(nam+nbm+nc+ndm+1)=z(kcou,3);
psi(nam+nbm+nc+ndm+1)=ztil(4);

else
phi(nam+nbm+nc+ndm+1)=z(kcou,3);
psi(nam+nbm+nc+ndm+1)=ztil(5);

end
end

% store and undate these data
thm(modn,1:d)=th';
pm(modn,1:d*d)=p(:)';
modn;
yhat(kcou)=yh;

if isnan(yh)
keyboard

end
epsilonhat(kcou)=epsilon;

end % end of for loop

epsilonTest=epsilonhat(testinterval); % inform the range of data we choose

% define the minimum value in each interval
miniSizeInt1(middleIndex)=min(epsilonTest(indInterval{middleIndex}));

% define the maximum value in each interval
maxSizeInt1(middleIndex)=max(epsilonTest(indInterval{middleIndex}));

% define the mediam range of each interval
mediamRange1(middleIndex)=(maxSizeInt1(middleIndex)-

miniSizeInt1(middleIndex))/2;

% post-estimation: after the estimator, error range can be defined.
for j=1:(LenInterval-1) % define a range

% define the minimum value in each interval
miniSizeInt{j}=min(epsilonTest(indInterval{j}));

% define the maximum value in each interval
maxSizeInt{j}=max(epsilonTest(indInterval{j}));

% define the mediam range of each interval
mediamRange{j}=(maxSizeInt{j}-miniSizeInt{j})/2;

% define the critical range of each interval
criticalRange{j}=(maxSizeInt{j}+miniSizeInt{j})/2;

% the procedure for adding a new threshold
if(abs(mediamRange{j}-mediamRange1(middleIndex))>criticalRange{j})

% define the criteria of range
% if the index is greater than middle,we use the smaller index

if(j>middleIndex)

% add one threshold on lower index
threshold=[threshold,interval(j)];

H-6

bbb=1;
else
% if the index is less than middle,we use the larger index

% add one threshold on higher index
threshold=[threshold,interval(j+1)];

end
else

% show there is change if size of threshold remains same
threshold=threshold;

end
end

% sort thresholdtest in the ascending order, and increase
threshold1=sort(threshold);
threshold1=[threshold1 0]; % increase the length by 1

lengthThresh1=length(threshold1); % define the length of threshold

% remove the same thresholds
aaaa=threshold1(1:(lengthThresh1-1));
bbbb=threshold1(2:lengthThresh1);

% comparing numbers between 1st to the one b4 and 2nd to last
tmp=bbbb-aaaa;
% define the index when difference of two numbers are not equal
index=find(tmp~=0);
threshold2=threshold1(index); % find sorted thresholds which are not equal

lengthThresh(1)=lengthThresh(2); % old length of threshold increase
ab=lengthThresh(1);

% new length of threshold goes to second
lengthThresh(2)=length(threshold2);
cd=lengthThresh(2);
threshold=threshold2;

end % end of while loop
count
% display the result for these parameters
thm=thm;
p=pm;
yhat = yhat';
epsilonTest=epsilonTest';
epsiEsSize=size(epsilonTest);

threshold2=threshold'
sizethreshold=size(threshold2)

H.1.2 The AMP
function [yhat] = amp(u,nn,thm,threshold)

% Model predictor based on RARMARX

disp('you are in the predictor');

u1=u(:,1);

u2=u(:,2);

% default values for the output signals

yhat=[]; % initialize the predicted result

% only input data is interested

[nz,ns]=size(u);

[ordnr,ordnc]=size(nn);

H-7

% define names for the parameters in the matrix

na=nn(1);nb=nn(2);nc=nn(3);nk=nn(4);nu=1;ne=nn(5);

d=na+nb+nc+1+ne; % define a parameter for the offset

if ns>3,error('Sorry, this routine is double single input only!'),end

if ns==1,nb=0;ne=0;end

if nb==0|ne==0,nk=1;end

nam=max([na,nc]);nbm=max([nb+nk+ne-1,nc]);

ndm=max([1,nc]); % extra data for offset

nem=max([ne+nk-1,nc]);

tic=na+nb+ne+1:na+nb+ne+nc;

ia=1:na;iac=1:nc;

ib=nam+nk:nam+nb+nk-1;ibc=nam+1:nam+nc;

ic=nam+nbm+1:nam+nbm+nc;

id=nam+nbm+nc+1;

idc=nam+nbm+nc+1:nam+nbm+nc+ndm; % set indices for the offset

ie=nam+nbm+nc+ndm+nk:nam+nbm+nc+ndm+ne+nk-1; % define for the second inputs

iec=nam+nbm+nc+ndm+1:nam+nbm+nc+ndm+nc;

iia=1:nam-1;iib=nam+1:nam+nbm-1;iic=nam+nbm+1:nam+nbm+nc-1;

iid=nam+nbm+nc+1:nam+nbm+nc+ndm-1; % set indices for the offset

iie=nam+nbm+nc+ndm+1:nam+nbm+nc+ndm+nem-1; % for the second input

dm=nam+nbm+nc+ndm+nem;

%if nb==0,iib=[];end

ii=[iia iib iic iid iie];i=[ia ib ic id ie];

psi=zeros(dm,1);

phi=zeros(dm,1);

[modt,columnofth]=size(thm);

if d~=columnofth

error('these two must be the same')

end

low=threshold(1:modt)

H-8

sizeoflower=size(low);

high=threshold(2:modt+1)

sizeofhigher=size(high);

%threshold=sort(threshold)

count=zeros(1,modt); % initialization

for kcou=1:nz % start the loop for estimator

% define the threshold index,i.e., where the threshold is

indexthreshold=find((u(kcou)>=low)&(u(kcou)<=high));

if ~isempty(indexthreshold)

modn=min(indexthreshold); % make sure there is only one index

count(modn)=count(modn)+1; % find number of samples on each model

%kcou

%thm

th=thm(modn,1:d)'; % redefine the parameters

phi(id)=1;

yh=phi(i)'*th;

if nc>0,

sizeoftic=length(tic);

sizeofth=length(th);

% stabilizes a MONIC polynomial with respect to the unit circle

c=fstab([1;th(tic)])';

else

c=1;

end

th(tic)=c(2:nc+1);

epsilon=yh-phi(i)'*th; % define the residual error

phi(ii+1)=phi(ii);

if na>0,phi(1)=-yh;end

% update parameters for the first input

if nb>0

phi(nam+1)=u1(kcou);

end

if nc>0,phi(nam+nbm+1)=epsilon;end

H-9

phi(nam+nbm+nc+1)=1;

% update information for the second input

if ne>0

if nb==0,

phi(nam+nbm+nc+ndm+1)=u2(kcou);

else

phi(nam+nbm+nc+ndm+1)=u2(kcou);

end

end

% store and undate these data

thm(modn,1:d)=th';

yhat(kcou)=yh;

if isnan(yh)

keyboard

end

else

fprintf('u(%g)=%g',kcou,u(kcou));

error('no model available!');

end

end % end of for loop

yhat = yhat';

H.2 The MMGSD

H.2.1 The AME
function
[thm,yhat,epsilon,epsilonhat,epsilonTest,threshold,threshold1,threshold2,pm,ph
i,psi] = ame(z,nn,adm,adg,Ts,th0,p0,phi,psi)

% In this estimator we are going to undeltarise epsilon and epsie
% Model selector based on RARMARX
disp('you are in the estimator');

% default values for the output signals
thm=[]; % initialise the estimates
yhat=[]; % initialize the predicted result
dyh=[];
epsilon=[];
epsilonhat=[];
epsilonTest=[];
threshold=[];
threshold1=[];
threshold2=[];
p=[];
pm=[];
phi=[];
psi=[];
dz=[];
dphi=[];
dphi4y=[];

H-10

dpsi=[];
depsilon=[];
depsi=[];
yh=[];

% adm and adg are part of forgetting factor, adm is adaptation mechanism,
% and adg is adaptation gain
if nargin < 4

disp('Usage: MODEL_PARS = RARMAX(DATA,ORDERS,ADM,ADG)')
disp('[MODEL_PARS,YHAT,COV,PHI,PSI] =

RARMAX(DATA,ORDERS,ADM,ADG,TH0,COV0,PHI,PSI)')
disp('ADM is one of ''ff'', ''kf'', ''ng'', ''ug''.')
return

end
adm=lower(adm(1:2));
if ~(adm=='ff'|adm=='kf'|adm=='ng'|adm=='ug')

error('The argument ADM should be one of ''ff'', ''kf'', ''ng'', or
''ug''.')
end

% new input and output data are analysed
[nz,ns]=size(z); % define the new output data without saturation

[ordnr,ordnc]=size(nn); % define the size of matrix for all parameters

if ns~=3,error('This routine is for double inputs only. Use RPEM
instead!'),end
if ns==1,

if ordnc~=2;error('For a time series nn should be [na nc]!'),end
else

%if ordnc~=4, error('the argument nn should be [na nb nc nk]!'),end,
if ordnc~=5, error('the argument nn should be [na nb nc nk ne]!'),end,

end
if ns==1,

na=nn(1);nb=0;nc=nn(2);nk=1;ne=0;
else

na=nn(1);nb=nn(2);nc=nn(3);nk=nn(4);nu=1;ne=nn(5);
end
if nk<1,error('Sorry, this routine requires nk>0; Shift input sequence if
necessary!'),end
d=na+nb+nc+1+ne; % define a parameter for the offset

if ns==1,nb=0;ne=0;end
if nb==0|ne==0,nk=1;end

if nc>1
tic=na+nb+1:na+nb+nc;

else
tic=[];

end

% create the array for i
iiia=1:na;
iiib=na+nk:na+nb+nk-1;
if nc>1

iiic=na+nb+1:na+nb+nc;
else

iiic=[];
end

iiid=na+nb+nc+1;
iiie=na+nb+nc+1+nk:na+nb+nc+1+ne+nk-1; % define for the second inputs

% create the array for ii
iia=1:na-1;
iib=na+1:na+nb-1;

if nc>1

H-11

iic=na+nb+1:na+nb+nc-1;
else

iic=[];
end
iid=na+nb+nc+1; % set indices for the offset
iie=na+nb+nc+1+1:na+nb+nc+1+ne-1; % for the second input

ii=[iia iib iic iid iie];
i=[iiia iiib iiic iiid iiie];
sizeofiii=size(i);

dm=na+nb+nc+1+ne;

if nargin<9, psi=zeros(dm,1);end
if nargin<8, phi=zeros(dm,1);end
if nargin<7, p0=10000*eye(d);end
if nargin<6, th0=eps*ones(d,1);end
if isempty(psi),psi=zeros(dm,1);end
if isempty(phi),phi=zeros(dm,1);end
if isempty(p0),p0=10000*eye(d);end

% initialise dpsi
dpsi=zeros(dm,nc+1);
sizeofdpsiiiiii=size(dpsi);

% initialise dpsit
dpsit=zeros(dm,1);
sizeofdpsiiiiii=size(dpsit);

if isempty(th0),th0=eps*ones(d,1);end
if length(th0)~=d, error('The length of th0 must equal the number of estimated
parameters!'),end
[th0nr,th0nc]=size(th0);if th0nr<th0nc, th0=th0';end

if adm(1)=='f', R1=zeros(d,d);lam=adg;end
if adm(1)=='k', [sR1,SR1]=size(adg);

if sR1~=d | SR1~=d,
error('The R1 matrix should be a square matrix with dimension equal to

number of parameters!'),
end
R1=adg;lam=1;

end
if adm(2)=='g',

grad=1;
else

grad=0;
end

% only the last 5000 samples are interested
testinterval=[(nz-8000):nz];

u=z(:,2); % define the input data for estimator (whole
data)
u2=z(:,3); % define the input data for estimator (whole
data)

%utest=z(testinterval,2); % define the input data for the test

aa=max(max(u)); % find out the maximum value of all inputs
bb=min(min(u)); % find out the minimum value of all inputs

threshold=[bb,aa]; % initialise threshold

[modt,modtcolumn]=size(threshold);

division4input=5;

if(division4input==0)

H-12

error('the number of division for the input can not be zero');
end

if(rem(division4input,2)==0)
error('the number of divisions for the input has to be even');

end

middleIndex=(division4input+1)/2; % define the middle of index for u=0;

inRange=(aa-bb)/division4input % define the number of ranges for input,
% the division number has to be even
interval=bb:inRange:aa % define the interval of input
LenInterval=length(interval) % define the length of interval

for k=1:(LenInterval-1) % define a range
% find out the index by using accelerator
indInterval{k}=find((u<interval(k+1))&(u>=interval(k)));

end
sizeofindInterval=size(indInterval)

lengthThresh(1)=0; % initialise the size of first threshold
lengthThresh(2)=length(threshold); % initialise the size of threshold

% running the estimator
yhat=[]; % set up the default condition for the
output
while (lengthThresh(1)~=lengthThresh(2))

modt=lengthThresh(2)-1; % define the total No. of models, which is
noofthreshod-1

for modno=1:modt % define the No. of models, which is
noofthreshod-1

thm(modno,1:d)=th0'; % initialize thm
pm(modno,1:d*d)=p0(:)'; % initialize pm--covariance

end

% disp('display the number of models');
% decide which range of u is used, result in the value of j,j decide which

model.
low=threshold(1:modt);
sizeoflower=size(low);

high=threshold(2:modt+1);
sizeofhigher=size(high);

%threshold=sort(threshold)
count=zeros(1,modt); % initialization
%indexthreshold=[];

th=th0;
psi(iiid)=1;
for kcou=1:nz % start the loop for estimator

%kcou
% define the threshold index,i.e., where the threshold is
indexthreshold=find((u(kcou)>=low)&(u(kcou)<=high));

modn=min(indexthreshold); % make sure there is only one index

count(modn)=count(modn)+1;

% Preventing the jump while the models are switching
if count(modn)~=1

th=thm(modn,1:d)'; % redefine the parameters
end
p=reshape(pm(modn,1:d*d)',d,d); % reshape the covariance

% increase the size for the offset
phi(iiid)=1;
psi(iiid)=1;

H-13

% the operation for the delta operator
phi4y=phi(iiia);
dphi4y = delta4y([z(kcou,1) phi4y']',Ts);
sizeofphi4y=length(dphi4y);

dz(kcou,1)=dphi4y(1);
dphiy=dphi4y(2:sizeofphi4y);

phi4u=phi(iiib);
dphi4u = delta4y(phi4u',Ts);
sizeofphi4u=length(dphi4u);

%phi(iiic)=0;
dphi4c = delta4y(phi(iiic)',Ts);
sizeofphiic=size(phi(iiic)');

dphi4d = delta4y(phi(iiid)',Ts);
sizeofphiid=size(phi(iiid)');

phi4e=phi(iiie);
dphi4e = delta4y(phi4e',Ts);
sizeofphi4e=length(dphi4e);

% Make sure the delay is always 1
dphi = [-dphiy dphi4u dphi4c dphi4d dphi4e]';

dyh=dphi(i)'*th;

depsi=dz(kcou,1)-dyh; % define the innovation error

epsi=undelta([depsi dphi(iiic)'],Ts,0);
%depsi1=undelta([depsi dphi4c],Ts,1)

if nc>0,
% stabilizes a MONIC polynomial with respect to the unit circle
c=[1;th(tic)];
sizeofc=size(c);
%disp('im here!');
th(tic)=c(2:nc+1);

dpsit=[dphi -dpsi(1:dm,2:nc+1)]*c;
dpsi(1:dm,1)=dpsit;
%dpsi(1:dm,1)=[dphi -dpsi(1:dm,2:nc+1)]*c
sizeofdpsidm1=size(dpsi(1:dm,1));
psi=undelta(dpsi,Ts,0);
dpsi=[zeros(dm,1) undelta(dpsi,Ts,1)];
%pause

else
c=1;
dpsit=dphi*c;
dpsi=dpsit;
psi=dpsi;
dpsi=zeros(dm,1);

end

if ~grad,
K=p*dpsit(i)/(lam + dpsit(i)'*p*dpsit(i));
sizeofK=size(K);
p=(p-K*dpsit(i)'*p)/lam+R1;

else
K=adg*dpsit(i);

end
% parameters for unpdating th
if adm(1)=='n', K=K/(eps+dpsit(i)'*dpsit(i));end

th=th+K*depsi; % update the innovation error

H-14

% define the residual error
depsilon=dz(kcou,1)-dphi(i)'*th;

%epsilon=undelta([depsilon dphi(iiic)'],Ts,0)
epsilon=undelta([depsilon dphi(iiic)'],Ts,0);

% undeltarise the output
yh=undelta([dyh -dphi(iiia)'],Ts,0);
%yh=undelta([dyh dphiy],Ts,0);

% shifting procedure for phi
phi(ii+1)=phi(ii);
%psi(ii+1)=psi(ii);
phi(iid)=1;

phi(1)=z(kcou,1);
phi(na+1)=u(kcou);
phi(na+nb+1)=epsilon;
phi(na+nb+nc+1)=1;
phi(na+nb+nc+1+1)=u2(kcou);

% store and undate these data
thm(modn,1:d)=th';
pm(modn,1:d*d)=p(:)';

yhat(kcou)=yh;

if isnan(yh)
keyboard

end

%epsilonhat(kcou)=depsi;
epsilonhat(kcou)=depsilon;
if isnan(depsilon)

keyboard
end

end % end of for loop

%epsilonTest=epsilonhat(testinterval);% inform the range of data we choose
epsilonTest=epsilonhat; % inform the range of data we choose

% post-estimation: after the estimator, error range can be defined.
for j=1:(LenInterval-1) % define a range

% define the minimum value in each interval
miniSizeInt(j)=min(epsilonTest(indInterval{j}));

% define the maximum value in each interval
maxSizeInt(j)=max(epsilonTest(indInterval{j}));

% define the mediam range of each interval
mediamRange(j)=(maxSizeInt(j)-miniSizeInt(j))/2;

% define the critical range of each interval
criticalRange(j)=(maxSizeInt(j)+miniSizeInt(j))/2;

end
oldmiddleIndex=middleIndex

% Detect the index for the minimum range
middleIndex=min(find(min(mediamRange)==mediamRange))

%for m=(LenInterval-1):-1:1
for m=1:(LenInterval-1)

% the procedure for adding a new threshold
if(abs(mediamRange(m)-mediamRange(middleIndex))>criticalRange(m))

% define the criteria of range
% if the index is greater than middle,we use the smaller index

H-15

if(m>middleIndex)
indtest1=find(interval(m)==threshold)

if (isempty(indtest1))
% add one threshold on lower index
threshold=[threshold,interval(m)]
break

end
else % if the index is less than middle,we use the larger index

indtest2=find(interval(m+1)==threshold)
if (isempty(indtest2))

% add one threshold on higher index
threshold=[threshold,interval(m+1)]
break

end
end

else
% show there is change if size of threshold remains same

threshold=threshold;
end

end
threshold1=sort(threshold); % sort thresholdtest in the ascending

order, and increase
threshold1=[threshold1 0]; % increase the length by 1

lengthThresh1=length(threshold1); % define the length of threshold

% remove the same thresholds
aaaa=threshold1(1:(lengthThresh1-1));
bbbb=threshold1(2:lengthThresh1);
tmp=bbbb-aaaa; % comparing numbers between 1st to the one b4 and

2nd to last

index=find(tmp~=0); % define the index when difference of two numbers
are not equal

threshold2=threshold1(index); % find sorted thresholds which are not
equal

lengthThresh(1)=lengthThresh(2); % old length of threshold increase
ab=lengthThresh(1)
lengthThresh(2)=length(threshold2); % new length of threshold goes to

second
cd=lengthThresh(2)
threshold=threshold2

end
count

% display the result for these parameters
thm=thm;
pm=pm;
yhat = yhat';
epsilonTest=epsilonTest';
epsiEsSize=size(epsilonTest);

threshold2=threshold'
sizethreshold=size(threshold2)

H.2.2 The AMG
function [yhat] = amp(u,nn,thm,threshold,Ts)

% In this estimator we are going to undeltarise epsilon and epsie
% Model selector based on RARMARX
disp('you are in the predictor.');
yhat=[];

H-16

% default values for the output signals
u1=u(:,1);
sizeofu1=size(u1);
u2=u(:,2);
sizeofu2=size(u2);

% new input and output data are analysed
[nz,ns]=size(u); % define the new output data without saturation
%[ordnr,ordnc]=size(nn); % define the size of matrix for all parameters

if ns>=3,error('This routine is for double inputs only.'),end
na=nn(1);nb=nn(2);nc=nn(3);nk=nn(4);nu=1;ne=nn(5);

if nk<1,error('Sorry, this routine requires nk>0; Shift input sequence if
necessary!'),end
d=na+nb+nc+1+ne; % define a parameter for the offset

if ns==1,nb=0;ne=0;end
if nb==0|ne==0,nk=1;end

tic=na+nb+1:na+nb+nc;

% create the array for i
iiia=1:na;
iiib=na+nk:na+nb+nk-1;
iiic=na+nb+1:na+nb+nc;
iiid=na+nb+nc+1;
iiie=na+nb+nc+1+nk:na+nb+nc+1+ne+nk-1; % define for the second inputs

% create the array for ii
iia=1:na-1;
iib=na+1:na+nb-1;
iic=na+nb+1:na+nb+nc-1;
iid=na+nb+nc+1 % set indices for the offset
%iid=na+nb+nc+1:na+nb+nc+1-1 % set indices for the offset
iie=na+nb+nc+1+1:na+nb+nc+1+ne-1; % for the second input

ii=[iia iib iic iid iie]
i=[iiia iiib iiic iiid iiie]
sizeofiii=size(i);

dm=na+nb+nc+1+ne;

% initialise phi
phi=zeros(dm,1);

dphi4y=zeros(1,na);

[modt,columnofth]=size(thm)

if d~=columnofth
error('these two must be the same')

end

% decide which range of u is used, result in the value of j,j decide which
model.
low=threshold(1:modt)
sizeoflower=size(low);

high=threshold(2:modt+1)
sizeofhigher=size(high);

%threshold=sort(threshold)
count=zeros(1,modt); % initialization

for kcou=1:nz % start the loop for estimator
% define the threshold index,i.e., where the threshold is
indexthreshold=find((u1(kcou)>=low)&(u1(kcou)<=high));

H-17

if ~isempty(indexthreshold)
modn=min(indexthreshold); % make sure there is only one index

count(modn)=count(modn)+1; % find number of samples on each model

th=thm(modn,1:d)'; % redefine the parameters

% increase the size for the offset
phi(iiid)=1;

% the operation for the delta operator
phi4y=phi(iiia);
dphi4y = delta4y(phi4y',Ts);
sizeofphi4y=length(dphi4y);

phi4u=phi(iiib);
dphi4u = delta4y(phi4u',Ts);
sizeofphi4u=length(dphi4u);

phi(iiic)=0;
dphi4c = delta4y(phi(iiic)',Ts);
sizeofphiic=size(phi(iiic)');

dphi4d = delta4y(phi(iiid)',Ts);
sizeofphiid=size(phi(iiid)');

phi4e=phi(iiie);
dphi4e = delta4y(phi4e',Ts);
sizeofphi4e=length(dphi4e);

%dphi = [dphiy dphiu dphi4c dphi4d dphie]'
dphi = [-dphi4y dphi4u dphi4c dphi4d dphi4e]';

dyh=dphi(i)'*th;

% fully undeltarise prediction error in order to achieve the
yh=undelta([dyh -dphi(iiia)'],Ts,0);

% shifting procedure
phi(ii+1)=phi(ii);
phi(iid)=1;

% Assign the output to the vector array
phi(1)=yh;
phi(na+1)=u1(kcou);
phi(na+nb+1)=0;
phi(na+nb+nc+1)=1;
phi(na+nb+nc+1+1)=u2(kcou);

% store and undate these data
thm(modn,1:d)=th';

yhat(kcou)=yh;

if isnan(yh)
keyboard

end
else

fprintf('u(%g)=%g',kcou,u1(kcou));
error('no model available!');

end
end % end of for loop
yhat = yhat';

H-18

I-1

Appendix I: Analytical Systems in
MATLAB

I.1 Analytical System in Signal Processing Toolbox

% load input signals from the PRBSG

load d:\likun\AfterTransferReport\AutomatedFaultModelGeneration\
softwareDesign\Library_PWP\MATLAB\Rarmax\Data\LeadLagNewfl159fl15krf10
kr410k.txt -ASCII

vout=LeadLagNewfl159fl15krf10kr410k;
LeadLagNewfl159fl15krf10kr410k=[];

% define the size of data, m,n are the row and column, respectively
[m,n]=size(vout);

% define the output-input data
u1=vout(:,1);
u2=vout(:,2);
u=[u1 u2];
y=vout(:,3);
z=[y u1 u2];

% preprocessing for detection and deleting saturation data
znew=cleanSat(z);

ynew=znew(:,1);
unew1=znew(:,2)';
unew2=znew(:,3)';

unew=[unew1; unew2];
sizeOfunew=size(unew);

% define the size of new output data sets
[zewrow,zewcolumn]=size(znew);

intervals=[(zewrow-10000):zewrow];

% define the System
% define the sampling rate
t=1:zewrow;
T_s=140.0E-6;
f_s=1/T_s;

ts=T_s*t;
sizeOfts=size(ts);

% define the low pass filter for vip
f_lpvip=10;
R3=10.0E+3;
C4=1/(2*pi*R3*f_lpvip);

% define the low pass filter for vin

I-2

f_lpvin=f_lpvip*10;
Rf=10.0E+3;
Cf=1/(2*pi*Rf*f_lpvin);

R1=Rf/10;

% define coefficients for the system coefficients for vin
dd=R1*Rf*Cf;
dd1=Rf*C4*R3;

% coefficents for vip
ee=R1*Rf*Cf*C4*R3;
%ee1=(R1+Rf)*Cip*R4;
ee1=R1+Rf;
ee2=dd+R1*R3*C4;

% define the transfer functions for two inputs with
% common denominators
h1=tf([-dd1 -Rf],[ee ee2 R1]);
h2=tf([dd ee1],[ee ee2 R1]);

% define the two systems in continous time
sysc=[h1 h2];

% obtain the output data wiht the lsim function
sizeOfsysc=size(sysc);
sizeOfunew=size(unew);

ysim=lsim(sysc,unew,ts);
sizeOfy=size(y);

% compare the original signal with the generated signal
subplot(2,1,1); plot(ynew(intervals));
subplot(2,1,2); plot(ysim(intervals));

% convert the Laplace transform into z transform
sysd=c2d(sysc,T_s,'zoh')

% write out these signals
sizeOfysim=size(ysim)
sizeOfunew1=size(unew1')
sizeOfunew2=size(unew2')

znew=[unew1' unew2' ysim];
sizeOfznew=size(znew);

fid =
fopen('d:\likun\AfterTransferReport\AutomatedFaultModelGeneration\soft
wareDesign\Library_PWP\MATLAB\Rarmax\Data\prbs42inputsLeadLagNewfilter
test2.txt ','w');

fprintf(fid,'%-20.10f %-20.10f %-20.10f\n',znew');
fclose(fid);

I.2 Analytical System in System Identification Toolbox

% loading input signals from the PRBSG

I-3

load e:\likun\ AfterTransferReport\ AutomatedFaultModelGeneration\
softwareDesign\Library_PWP\MATLAB\Rarmax\Data\LeadLagNewfl159fl15krf10
kr410k.txt -ASCII

vout=LeadLagNewfl159fl15krf10kr410k;
LeadLagNewfl159fl15krf10kr410k=[];

% define the size of data, m,n are the row and column, respectively
[m,n]=size(vout);

% define the output-input data
u1=vout(:,1);
u2=vout(:,2);
u=[u1 u2];
y=vout(:,3);
z=[y u1 u2];

% preprocessing for detection and deleting saturation data
znew=cleanSat(z);

ynew=znew(:,1);
unew1=znew(:,2)';
unew2=znew(:,3)';

unew=[unew1; unew2];
sizeOfunew=size(unew);

% define the size of new output data sets
[zewrow,zewcolumn]=size(znew);

intervals=[(zewrow-10000):zewrow];

% define the System
% define the sampling rate
t=1:zewrow;
T_s=140.0E-6;
f_s=1/T_s;

ts=T_s*t;
sizeOfts=size(ts);

% define the low pass filter for vip
f_lpvip=10;
R3=10.0E+3;
C4=1/(2*pi*R3*f_lpvip);

% define the low pass filter for vin
f_lpvin=10*f_lpvip;
Rf=10.0E+3;
Cf=1/(2*pi*Rf*f_lpvin);

R1=Rf/10;
% define coefficients for the system coefficients for vin
dd=1/(R1*Cf);
dd1=1/(R1*Cf*C4*R3);

ff1=1/(R3*C4);
ff2=(R1+Rf)/(R1*Rf*Cf*C4*R3);

ee1=(1/(Rf*Cf))+ff1;
ee2=1/(Rf*Cf*R3*C4);

I-4

% define the transfer functions for two inputs with
% common denominators
h1=[-dd -dd1; ff1 ff2];
h2=[1 ee1 ee2;1 ee1 ee2];
m = idpoly(1,h1,1,1,h2,1,0);
sysd= c2d(m,T_s)
sizeOfsysd=size(sysd);
y = sim(sysd,[unew1' unew2']);

% redesign the relationship between inputs and output
znew=[unew1' unew2' y];
sizeOfznew=size(znew);

% open a file and then write signals into the file and then close it
fid =
fopen('e:\likun\AfterTransferReport\AutomatedFaultModelGeneration
\softwareDesign\Library_PWP\MATLAB\Rarmax\Data\prbs42inputsLeadLagNewf
iltertest3.txt','w');

fprintf(fid,'%-20.10f %-20.10f %-20.10f\n',znew');
fclose(fid);

J-1

Appendix J: The AME System
Validation Using the HDL Simulator

J.1 Introduction

It is known that the models from the MMGSD are used for the analogue simulation, so

in this section we validate the MMGSD using a known model implemented in

SystemVision. The process comprises two steps:

1. The analogue simulation is implemented using a linear model. Both input data and

output data are stored in a text file.

2. The MMGSD generates the model based on these data

The model used is a linear model given in Eq. J-1.

50020

250)25010()50020(
2 




ss

VVsVs
V offsetipin

o Eq. J-1

The stimulus is a 0.2V, 100Hz triangle waveform with a 0.05V, 100kHz PRBS

superimposed on it for the inverting input, the second input is a similar signal but with

lower amplitude and frequency for the non-inverting input displayed in Figure 8-5

(14,000 samples).

This section consists of two subsections: J.2 introduces the analogue simulation. The

estimator is tested in subsection J.3.

J.2 Analogue Simulation

J.2.1 VHDL-AMS Model Structure

The linear model in Eq. J-1 is converted into a VHDL-AMS model in Eq. J-2 using the

attribute ‘ltf , which is for a Laplace transfer function [Ashenden03].

),_('),_('),_(' denthreenumltfvdentwonumltfvdenonenumltfvv offsetpiino 

J-2

Eq. J-2

where num_one includes coefficients (-20 -500) of vin, num_two has coefficients (10

250) of vip, num_three is 250 for voffset, and den includes the output coefficients (1 20

500) of vo.

J.2.2 Output Signal Using Data Loading and Writing Functions

We use the data loading function mentioned in section 6.2.2 to load the triangle PRBS

as stimuli, which is shown in Figure J-1 by the analogue simulator SystemVision.

Figure J-1: The triangle PRBS

The output signal is shown in Figure J-2:

Figure J-2: The output signal

J-3

Both inputs and output signals are be written to a text file by using data writing process

discussed in section 6.2.2.

J.3 Test for the AME system

The AME system generates a model based on the data in the text file. The estimated

signal is illustrated in Figure J-3:

Figure J-3: The estimated signal

It is seen that the signal from the analogue simulator y matches the estimated signal

yEstimator. The average difference between two signals is 5.21e-8% using Eq. 5-2.

During the simulation the coefficients are obtained as shown in Eq. J-3.

716.524969.20

259.250)095.25908.10()22.51816.20(
2 




ss

VVsVs
V offsetipin

o Eq. J-3

It is shown this model is close to the linear model in Eq. J-1 by comparing the

coefficients.

J-4

To prove the model generated is correct, we convert it into a VHDL-AMS model for

analogue simulation using the same stimuli in Figure J-1. Signals are illustrated in

Figure J-4:

Figure J-4: The predicted signal in the analogue system

It is seen that the predicted signal in VHDL-AMS (vo_VHDL_AMS) matches the

original signal (vo_MATLAB) in terms of amplitude and shape.

K-1

Appendix K:Comparison of Various
HDLs and Simulators

K.1 Introduction

With the development of hardware description languages (HDLs) based on design

methodologies, IC design and simulation have become simpler. For the digital IC

design HDLs including VHDL, Verilog, etc. are already well established. Many books

have been published to assist them such as [Zwo2000]. Unfortunately, for analogue and

mixed-signal design, textbooks or references on HDLs such as MAST [Saber04],

Verilog-AMS, SpectreHDL [Spec97] and VHDL-AMS [Ashenden03] are limited.

[Ashenden03] is one of few books to introduce VHDL-AMS in detail, others may only

supply part of information based on a particular system (e.g. [Getreu93], [Nikitin07],

[Pecheux05]).

A number of commercial simulators for HDLs are currently available from several

electronic design automation (EDA) companies. They include Cosmos in Saber from

Synopsys [Synopsys], Virtuoso AMS Designer from Cadence [Cadence], Simplorer

from Ansoft [Ansoft], SMASH from Dolphin [Dolphin], SystemVision from Mentor

Graphics [Mentor], etc. Each of them has individual features in terms of simulation

speed, ease of use. In this chapter we briefly compare two types of HDLs (MAST,

VHDL-AMS) and simulators (Cosmos, Smash, SystemVision) based on a behavioural

operational amplifier (op amp) model.

The objective of the section is to compare two or three HDLs and individual simulators

using a linear model in terms of complexity and accuracy.

The following section is outlined: in section K.2 different HDLs are introduced;

multiple simulators for these HDLs are presented in section K.3. In section K.4 high

level modelling is implemented. The conclusion is supplied in section K.5.

K-2

K.2 Brief Introduction to Different HDLs

In this subsection, MAST and VHDL-AMS are introduced. Since 1987, MAST has

been enhanced to include mixed-signal modelling constructs such that it is able to

improve simulation speed and support top-down design methods for analogue and

mixed signal designs [Saber04]. MAST language files use the .sin extension. More

information can be found in [Saber04].

In 1999, the analogue and mixed signal (AMS) extension to VHDL (VHSIC Hardware

Description Language) was standardized as VHDL-AMS [SMASHR05]. It inherits all

advantages from VHDL, handles several levels of design hierarchy and provides

behavioural modelling capability for both digital and analogue systems [Frey98].

VHDL-AMS files usually have .vhd or .vhdl extensions.

K.3 Introduction to Different Simulators

This subsection introduces three simulators: SMASH, SystemVision and Cosmos in

Saber.

K.3.1 Introduction to SMASH

The SMASH simulator requires two mandatory files: the netlist file abbreviated as .nsx,

and a pattern file .pat. The former contains the circuit description. The latter is

associated with but separated from the netlist file and provides the stimulus descriptions

and simulation directives. These two files must have the same name and be located in

the same directory. In the netlist file, various languages such as Spice, Verilog, as well

as VHDL are allowed to describe both the analogue part and the logic part, at any level

of refinement from behavioural to transistor level [SMASHU05]. Each part must be

preceded by a specific language identifier >>>, which allows the switch from one

language to another such as >>> VERILOG for Verilog, >>> SPICE for Spice and >>>

VHDL for VHDL. Library files resulting from model compilations are stored in a work

directory created by SMASH at the same level as netlist and pattern files. Note: in the

pattern file the order of multiple specifications of this directive is important. If the

compilation order does not correspond to the order required by the VHDL source files,

an error message will be displayed [SMASHR05]. This pattern file comprises

directories of all components from the netlist. The name of the entity and optionally of

the corresponding architecture or configuration at the top level is also indicated.

K-3

K.3.2 Introduction to SystemVision

The SystemVision simulator provides a virtual lab for creating and analyzing analogue,

digital and mixed-signal systems and allows design verification of hierarchical

schematic and circuit elements. Industry-standard languages such as VHDL-AMS,

SPICE, and C are supported by this software. Moreover, this simulator provides concept

verification through block diagrams and transfer functional blocks [SystemVision].

There is a large built-in library in SystemVision, so the user is able to select many

models or even schematics for any design. The nestlist file needs a project that prefers

to be separated from library project.

K.3.3 Introduction to Cosmos in Saber

Cosmos is the simulator for the MAST language in Saber. Similar to other two

simulators it can handle analogue and mixed mode circuitry. It includes a large digital

and analogue model library and allows different levels of modelling [Ana94]. The

model in Cosmos can be described using a traditional netlist (the normal SPICE method)

or in the differential equations directly [Saber04]. The simulator can recognise the

SPICE signals extension such as .tr0 for transient simulation and displays them.

SystemVision can not display these signals even thought it is able to recognise these

extensions because of different configuration. Furthermore, Saber has interfaces with

MATLAB and C libraries.

K.4 Experimental Results

In this section, we compare both HDLs and simulators using a linear behavioural op

amp) model shown in Figure K-1:

+

ro

ri

- gnd

Vin GainVin

outinp

inn

Figure K-1: The linear op amp

K-4

The model comprises two parts: the input stage has a resistor ri representing the input

impedance; the output stage consists of the gain Gain and the resistor ro representing the

output impedance. The code in the MAST and VHDL-AMS are shown in Figure K-2

and Figure K-3, respectively.

#... behavioural model of an op amp

template opamp out inn inp gnd= gain, ri, ro

electrical out, inn, inp, gnd

#... parameters values

number gain = 50k

number ri = 1k

number ro = 1k

{

val v vin, vip, vi, vout

val i iR1, iRo

values{

#... define all connections

vin = v(inn)-v(gnd)

vip = v(inp)-v(gnd)

vout = v(out)-v(gnd)

#... equation between input and output

vi = vin-vip

#... define the current for the input resistor

iR1 = vi/ri

#... output current

iRo = (gain*vi+vout)/ro

}

equations{

#... current in input stage

i(inn->inp)+= iR1

#... current in output stage

i(gnd->out)+= iRo

}

}

Figure K-2: The op amp model written in MAST

K-5

library ieee;

use ieee.electrical_systems.all;

use ieee.math_real.all;

use work.all;

entity op is

generic(gain,ri,ro: real);

port(terminal inn,inp,outp: electrical); --interface ports

end entity op;

architecture opampb of op is

quantity vo across io through outp to ground;

quantity v_in across i_in through inn to inp;

begin

i_in==v_in/ri;

io==(vo+gain*v_in)/ro;

end architecture opampb;

Figure K-3: The model written in VHDL-AMS

This op amp is configured as an inverting amplifier with a gain of -4. The input stimulus

is a sine wave with the amplitude of 0.1mV at 100Hz. The netlist structured in MAST

and VHDL-AMS are shown in Figure K-4 and Figure K-5, respectively.

#... define the voltage source

v.sourceN inn0 0 = tran = (sin=(va=0.0001,f=100))

#... define value of R

r.Rin inn0 inn1 = 10k

r.Rf out1 inn1 = 40k

#... assign variables for the op amp

opamp.rc out1 inn1 0 0 = 500k, 50k, 100

Figure K-4: The top level in MAST

-- .nsx file

>>> VHDL

library ieee;

K-6

use ieee.math_real.all;

use ieee.electrical_systems.all;

entity inverter is

port(terminal inn,ou:electrical);

end inverter;

architecture behav of inverter is

terminal innn:electrical;

constant FREQ: real := 1.0e2;

constant ampt: real := 0.0001;

quantity V across inn to ground;

quantity vo across io through ou to ground;

begin

V == ampt*sin(MATH_2_PI*FREQ*NOW);

opamp_behav: entity work.op(opampb)

generic map (gain=>5.0e+5, ri=>5.0e4, ro=>100.0)

port map(inn=>innn,inp=>ground, outp=>ou);

rin: entity work.resistor(behav_r)

generic map(r=>1.0e+4)

port map(p1=>inn, p2=>innn);

rf: entity work.resistor(behav_r)

generic map(r=>4.0e+4)

port map(p1=>innn, p2=>ou);

ebd behav;

-- .pat file

.VHDL set kind=ams

.VHDL compile library=work source=e:/VHDL-AMS/opamp.vhdl

.VHDL compile library=work source=e:/VHDL-AMS/resistor.vhdl

.VHDL elaborate entity=inverter unit=behav

.Eps 1m 100m 500

.Tolerance DEFAULT_TOLERANCE 100m

.H 100fs 100fs 10ns 125m 2

.Tran 100ps 10ms 1.5us noise=no noisestep=10ns traceBreak=yes

K-7

.Method BDF sync=lockstep current=yes global=yes

.Trace Tran INN_REFERENCE Min=-7.2000E-004 Max=7.2000E-004

.Trace Tran OU_REFERENCE Min=2.4940487E+000 Max=2.5110145E+000

Figure K-5: VHDL-AMS top level in SMASH

The signal produced by MAST in Saber simulator is shown in Figure K-6; signals

created by VHDL-AMS in both SMASH and SystemVision simulators are depicted in

Figure K-7 and Figure K-8, respectively.

Figure K-6: The output signal from Cosmos

Figure K-7: The signal in VHDL-AMS from SMASH

K-8

Figure K-8: The signal in VHDL-AMS from SystemVision

It is seen that with the equivalent set up both Figure K-6 and Figure K-8 supply the

correct solutions. However, in Figure K-7 the correct output signal does not have the

correct amplitude. One way to improve it is to change the input resistance ri to 15kΩ.

The signal is plotted in Figure K-9:

Figure K-9: The signal from SMASH with ri=15kΩ

K-9

Furthermore, when the gain of amplifier is changed to -5, with the SMASH simulator

the correct results are not obtained until the parameters ri is changed again. With other

simulators the correct response can be achieved.

It is seen that the structure of the model in the MAST language is more complex than

VHDL-AMS because the latter does not require many sections. Moreover, it provides

attributes such as ‘slew for slew rate and ‘zoh for sampling and hold, but in MAST ‘zoh

has to be defined in the when section, in which the statements such as schedule_event

are used. Additionally in SMASH there is not a way to export signals, the only way to

obtain them is to use the Prt Sc key on the keyboard, whereas the Saber and

SystemVision simulators can save signals with the export option.

In Saber the schematics design entry is provided by the SaberSketch software that is

separated from Cosmos, whereas both SMASH and SystemVision can handle HDLs

and schematics. However, in SystemVision a projector is required for each simulation,

whereas the Saber simulator does not need this.

K.5 Conclusion

In this section two popular HDLs are reviewed: MAST and VHDL-AMS, and

simulators for them: Cosmos in Saber, SMASH and SystemVision are compared in

terms of accuracy and convenience using a linear op amp model. Results show that

structure of VHDL-AMS language is simpler than MAST. Cosmos and SystemVision

can achieve accurate solution more easily than SMASH.

L-1

Appendix L: The RML Estimation
Algorithm Updates Equations for

Both z and delta Transforms

L.1 Estimation in z Transform

)()()()(

)()()1()(

)()1()()(
)1()()()1(

)1(
)(

1
)(

)()1()()(
)()1(

)(

)()()(

)1()()()(
11

tttyt

ttLtt

ttPtt
tPtttP

tP
t

tP

ttPtt
ttP

tL

ttzC

tttyt

T

T

T

T

Tt

T












































where,

)(t is the innovation error sequence.

)(t is the residual error sequence.

P(t) is the covariance matrix.

L(t) is the gain vector.

Estimator Observation Vector

)]()1(,1),()1(),()1(),()1([)(nbtutuncttnbtutunatytyt   

Estimated Parameter Vector

 Tnencnbna ffdccbbaat  1111 ,,,,)(

Define the c polynomial for the prefilter

L-2

nct
nc

tt zczczc   1
1

1 1)(

Pre-whitened Estimator Observation Vector



























































































































































)(

)1(

1

)(

)1(

)(

)1(

)(

)1(

)(/)(

)(/)1(

)(/1

)(/)(

)(/)1(

)(/)(

)(/)1(

)(/)(

)(/)1(

)(

11

11

11

11

11

11

11

11

11

netv

tv

nct

t

nbtu

tu

naty

ty

zcnetv

zctv

zc

zcnct

zct

zcnbtu

zctu

zcnaty

zcty

t

C

C

C

C

C

C

C

C

C

t

t

t

t

t

t

t

t

t

























L.2 Estimation in Delta Transform

)()()()(

)()()1()(

)()1()()(
)1()()()1(

)1(
)(

1
)(

)()1()()(
)()1(

)(

)()()(

)1()()()(
1

tttyt

ttLtt

ttPtt
tPtttP

tP
t

tP

ttPtt
ttP

tL

ttC

tttyt

Tna

T

T

T

Tt

Tna












































where,

)(t is the innovation error sequence.

)(t is the residual error sequence.

P(t) is the covariance matrix.

L(t) is the gain vector.

L-3

The deltarise function and undeltarise function are necessary to update other vectors.

Examples for both are given.

L.2.1 Deltarise Function

The deltarise function is used to obtain deltarised value using the delta operator given in

Eq. L-1, where delta (δ) is related to both the present and future values, Ts is the

sampling rate, q is the forward shift operator used to describe discrete models, which is

shown in Eq. L-2.

dt
d

T
q

s





1 Eq. L-1

1 kk xqx Eq. L-2

The equivalent form of Eq. L-2 is given in Eq. L-3, the relationship between δ and q is a

simple linear function, so δ can offer the same flexibility in the modelling of discrete-

time systems as q does.

dt
dx

T
kTxTkTx

T
xx

x
s

sss

s

kk
k 





 )()(1 Eq. L-3

The use of delta operator and its relationship is illustrated in the following example.

Imagine there is a vector array for y, see in Eq. L-4. Initially each vector is subtracted

from the one next to it seen in Eq. L-5, and is then divided by Ts, so the deltarised value

is obtained, as shown in Eq. L-6. However, the last one highlighted by the rectangle is

not involved in the calculation.

y(t) y(t-1) y(t-2) y(t-3) Eq. L-4

y(t-1) y(t-2) y(t-3) Eq. L-5

δy(t-1) δy(t-2) δy(t-3) Eq. L-6

δy(t-2) δy(t-3) Eq. L-7

To obtain δ2y(t-3), Eq. L-6 is subtracted by Eq. L-7, and then divided by Ts. The same

procedure is used to obtain δ3y(t-3).

L-4

δ2y(t-2) δ2y(t-3) Eq. L-8

δ2y(t-3) Eq. L-9

δ3y(t-3) Eq. L-10

Therefore, the deltarised version of Eq. L-4 is obtained as shown in Eq. L-11.

δ3y(t-3) δ2y(t-3) δ1y(t-3) δ0y(t-3) Eq. L-11

The same procedure is also used for other vectors such as the inputs vectors u, e and

noise vector c. Delay is not included here.

L.2.2 Undeltarise Function

This function is based on Eq. L-1 but with modification, that is, q = δTs+1, in order to

model at the current time. An example is also used to demonstrate this reverse algorithm.

It is a model in delta transform, but only output vectors y are shown in Eq. L-12. Firstly

each vector, except for last one highlighted by the rectangle because it is already

undeltarised, is multiplied by Ts in Eq. L-13, and then adds the terms in Eq. L-14, so

undeltarised vectors are obtained in Eq. L-15, i.e., y(t-2) is obtained.

δ3y(t-3) δ2y(t-3) δ1y(t-3) δ0y(t-3) Eq. L-12

Tsδ3y(t-3) Tsδ2y(t-3) Tsδ1y(t-3) Eq. L-13

+ + +

δ2y(t-3) δ1y(t-3) δ0y(t-3) Eq. L-14

|| || ||

δ2y(t-2) δ1y(t-2) y(t-2) Eq. L-15

To achieve y(t-1), Eq. L-15 is multiplied by Ts, and then adds ones in Eq. L-17

Tsδ2y(t-2) Tsδ1y(t-2) Eq. L-16

+ +

δ1y(t-2) δ0y(t-2) Eq. L-17

|| ||

δ1y(t-1) y(t-1) Eq. L-18

L-5

Finally y(t) is obtained using the same procedure as above.

Tsδ1y(t-1) Eq. L-19

+

y(t-1) Eq. L-20

||

y(t) Eq. L-21

Therefore, the undeltarised version of Eq. L-12 is obtained as shown in Eq. L-22.

y(t) y(t-1) y(t-2) y(t-3) Eq. L-22

The number of iterations is dependent on a variable numb. If a fully deltarisation is

required, numb is set to 0, otherwise a number is selected. If the number is greater than

the size of the vector array an error message is displayed.

After knowing the procedure for obtaining deltarise or undeltarise vectors, more details

about vectors in RML are introduced.

Estimator Observation Vector

)]()(,1),()(),()(),()([)(1111 tvtvtttututytyt nencnbna    

Estimated Parameter Vector

 Tnencnbna ffdccbbaat  1111 ,,,,)(

Define the c polynomial for the prefilter

t
nc

nctt ccc 1
1

01)(  

Pre-whitened Estimator observation vector

L-6

)()()()(02
1

11 nctcnctcnctnct nc
ncncnc    

The relationship between delta ψ(t) and φ(t) is shown in Eq. L-2 when the size of vector

array nn is set to [3 4 3 1 3].

)3()3()3()3(0
2

1
1

22  tctctt 

R-1

References

[Abra95] J.A. Abraham, M. Soma, Mixed-Signal Test-Tutorial C, The European

Design and Test Conference, 1995.

[Aktouf05] C. Aktouf, Why Haven’t EDA Vendors Given Us DFT at the Register

Transfer Level?, DeFacTo Technologies,

http://www.soccentral.com/results.asp?CatID=488&EntryID=13071 [Accessed on

12/08/08].

[Allen87] P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design (Holt, Rinehart and

Winston, Inc., 1987).

[Ana94] Oregon: Saber Reference Manual, Analogy Inc. Beaverton, release 3.3, 1994.

[Ansoft] <http://www.ansoft.com>.

[Ashenden03] P. J. Ashenden, G. D. Peterson and D. A. Teegarden, The System

Designer’s Guide to VHDL-AMS (Morgan Kaufmann Publishers, Elsevier Science,

2003).

[Bartsch96] E.K. Bartsch, I.M. Bell, High-Level Analogue Fault Simulation using

Linear and Non-Linear Models, Radioengineering, 8(4), April 1996, 32-34.

[Bartsch99] E.K. Bartsch, Improved Analogue Fault Simulation Through High Level

Modelling, MSc thesis, University of Hull, 1999.

[Batra04] R. Batra, P. Li, L.T. Pileggi, Yu-Tsun Chien, A Methodology for Analog

Circuit Macromodeling, BMAS, 21-22 October, 2004, 41-46.

R-2

[Bell96] I.M. Bell, S.J. Spinks and J.Machado da Silva, Supply Current Test of

Analogue and Mixed Signal Circuits, IEEE Proceedings on Circuits Devices and

Systems, 143(6), December 1996, 399-407.

[Bissell94] C.C. Bissell, Control Engineering (Chapman & Hall, 1994).

[Boyle74] G.R. Boyle, D.O. Pederson, B.M. Cohn, and J.E. Solomon, Macromodeling

of Integrated Circuit Operational Amplifiers, IEEE Journal of Solid State Circuits, 9(6),

Dec. 1974, 353-67.

[Bratt95] A.H. Bratt, A.M.D. Richardson, R.J.A. Harvey, A.P. Dorey, A Design-For-

Test Structure for Optimising Analogue and Mixed Signal IC Test, Proceedings of the

European Design and Test Conference (ED&TC), Paris, March 1995, 24-33.

[Breiman96] L. Breiman, Stacked Regression, Machine Learning, 24(1), 1996, 49-64.

[Broyden65], C.G. Broyden, A class of methods for solving nonlinear simultaneous

equations, Mathematics of Computation, 19, 577-593, 1965.

[Burden85] R.L. Burden and J.D. Faires, Numerical Analysis (Prindle, Weber and

Schmidt, 1985).

[Cadence] <http://www.cadence.com/products/cusmom_ic/ams_designer>.

[Caunegre95] P. Caunegre, C. Abraham, Achieving Simulation-Based Test Program

Verification and Fault Simulation Capabilities for Mixed-signal Systems, Proceedings

of the European Design and Test Conference (ED&TC), 1995, 469-477.

[Chang00] Y.J. Chang, C.L. Lee, A Behaviour Level Fault Model for the Closed-Loop

Operational Amplifier, Journal of Information Science and Engineering, 16, 2000, 751-

766.

R-3

[Chiprout94] E. Chiprout and M.S. Nakhla, Asymptotic Waveform Evaluation and

Moment Matching For Interconnect Analysis (Kluwer Academic Publisher, Norwell,

MA, 1994).

[Chirlian82] P.M. Chirlian, Analysis and Design of Integrated Electronic Circuits

(Harper & Row Ltd., 1981).

[DataSheet93] Saber-Industry Standard for Multi-Technology and Mixed-Signal

Simulation, Synopsys, 2003.

[Davalo91] E. Davalo, P. Naïm, Neural Networks (Macmillan Education Ltd., 1991).

[Dolphin] <http://www.dolphin.fr/medal/smash/smash_overview.html>.

[Dong03] N. Dong and J. Roychowdhury, Piecewise Polynomial Nonlinear Model

Order Reduction, Proceedings Design Automation Conference, 2003, 484-489.

[Dong04] N. Dong and J. Roychowdhury, Automated extraction of broadly applicable

nonlinear analog macromodels from SPICE-level descriptions, CICC, 2004, 117-120.

[Dong05] N. Dong and J. Roychowdhury, Automated Nonlinear Macromodelling of

Output Buffers for High-Speed Digital Applications, DAC, 2005, 51-56.

[Elias79] N.J. Elias, The Application of Statistical Simulation to Automated Analog

Test Development, IEEE Trans. on Circuits and Systems, 26(7), 1979, 513-517.

[Fang01] L. Fang, F. Fronthoud, H.G. Kerkhoff, Reducing Analogue Fault-Simulation

Time by Using High-Level Modelling in Dotss for an Industrial Design, Proceedings of

the IEEE European Test Workshop, 2001, 61.

[Feldmann95] P. Feldmann and R.W. Freund, Efficient linear circuit analysis by Padé

approximation via the Lanczos process, IEEE Trans. CAD, 14(5), May 1995, 639-649.

R-4

[Ferguson88] F. Joel Ferguson, F. P. Shen, Extraction and Simulation of Realistic

CMOS Faults using Inductive Fault Analysis, Proceeding of International Test

Conference, 1988, 475-484.

[Frey98] P. Frey, K. Nellayappan, V. Shanmugasundaram, R.S. Mayiladuthurai, C.L.

Chandrashekar, H.W. Carter, SEAMS: Simulation Environment for VHDL-AMS,

proceeding of simulation conference, 1, 1998, 539-546.

[Getreu93] I. Getreu, D. Teegarden, An Introduction to Behavioural Modelling,

Microelectronics Journal, 24(7), 1993, 708-716.

[Gielen05] G. Gielen, T. McConaghy, T. Eechelaert, Performance Space Modeling for

Hierarchical Synthesis of Analog Integrated Circuits, DAC, June 2005, 881-886.

[Grimme97] E.J. Grimme, Krylov Projection Methods for Model Reduction, doctoral

thesis, University of Illinois, USA, 1997.

[Grout00] I.A. Grout and K. Keane, A Matlab to VHDL conversion toolbox for digital

control, IFAC Symposium on Computer Aided Control Systems Design (CACSD),

Salford, UK, 11th – 13th September 2000, 13-18.

[Grout01] I.A. Grout, Modelling, simulation and synthesis: From Simulink to VHDL

generated hardware, Systemics, Cybernetics and Informatics (SCI), Orlando, Florida,

USA, July 22nd-25th, 2001, 443-448.

[Grout04] I.A. Grout, C. Wegener and M.P. Kennedy, Reducing Fault Simulation

Effort by Sensitivity Analysis of Circuit Structure, IEEE IC Test Workshop, Limerick,

Ireland, 13-14 September 2004.

[Grout05] I.A. Grout, J. Ryan and T. O’Shea, Configuration and debug of field

programmable gate arrays using MATLAB/SIMULINK, Journal of Physics:

Conference Series, 15, 2005, 244–249.

R-5

[Harvey95] R.J.A. Harvey, A.M.D. Richardson, H.G. Kerkhoff, Defect Oriented Test

Development Based on Inductive Fault Analysis, IEEE Int’l Mixed Signal Testing

Workshop, Grenoble, 1995, 2-9.

[Healy05] J.T. Healy, The New DFT at 90nm, LogicVision, Inc.,

http://www.soccentral.com/results.asp?CatID=488&EntryID=13086 [Accessed on

12/08/08].

[Hong03] X. Hong, P.M. Sharkey, K. Warwick, A Robust Nonlinear Identification

Algorithm Using PRESS statistic and Forward Regression, IEEE Trans. Neural

Networks, 14(2), March 2003, 454-458.

[Hsu04] C. Hsu, Control and Observation Structure for Analog Circuits with Current

Test Data, J. of Electronic Testing, 20, 2004, 39-44.

[Huang03] X. Huang, C.S. Gathercole, and H.A. Mantooth, Modeling nonlinear

dynamics in analog circuits via root localization, IEEE Trans. CAD, 22(7), July 2003,

895-907.

[Jaworski97] Z. Jaworski, M. Niewczas and W. Kuzmicz, Extension of Inductive Fault

Analysis to Parametric Faults in Analog Circuits with Application to Test Generation,

IEEE VLSI Test Symposium (VTS), 1997, 172-176.

[Joannon06] Y. Joannon, V. Beroulle, R. Khouri, C. Robach, S. Tedjini and J.

Carbonero, Behavioral Modeling of WCDMA Transceiver with VHDL-AMS Language,

IEEE Design and Diagnostics of Electronic Circuits and Systems (DDECS), 2006, 113-

118.

[Jiang99] T. Jiang, C. Kellon and R.D. Blanton, Inductive Fault Analysis of a

Microresonator, Proc. Modeling and Simulation Microsystems, 1999, 498-501.

[Jiang06] T. Jiang and R.D. Blanton, Inductive Fault Analysis of Surface-

Micromachined MEMS, IEEE Transactions on Computed-aided Design of Integrated

Circuits and Systems, 25(6), 2006, 1104-1116.

R-6

[Joannon08] Y. Joannon, V. Beroulle, C. Robach, S. Tedjini and J. Carbonero, Choice

of a High-Level Fault Model for the Optimization of Validation Test Set Reused for

Manufacturing Test, Journal of VLSI Design, 2008.

[Johnson03] D.R. Johnson, Conformability analysis for the control of quality costs in

electronic systems, doctoral thesis, University of Hull, 2003.

[Kaehler] K.D. Kaehler, FUZZY LOGIC - AN INTRODUCTION,

http://www.ece.rochester.edu/research/wcng/meetings/FUZZY%20LOGIC%20-

%20Presented.doc [Accessed on 09/07/08].

[Kalpana04] P. Kalpana, K. Gunavathi, Behavioral Modeling and Fault Simulation of

System on Chips, Academic Open Internet Journal, 13, 2004, 1-6.

[Kamon00] Mattan Kamon, Frank Wang and Jacob White, Generating nearly optimally

compact models from Krylov-subspace based reduced-order models, IEEE Transactions

on Circuits and Systems II: Analog and Digital Signal Processing, 47(4), April 2000,

239-248.

[Kerns95] K.J. Kerns, I.L. Wemple and A.T. Yang, Stable and efficient reduction of

substrate model networks using congruence transforms, IEEE/ACM Pro. ICCAD, Nov.

1995, 207-214.

[Khouas00] A. Khouas, A. Derieux, Fault Simulation for Analog Circuits Under

Parameter Variations, Journal of Electronic Testing: Theory and Applications, 16, 2000,

269-278.

[Kilic04] Y. Kilic, M. Zwolinski, Behavioral Fault Modeling and Simulation Using

VHDL-AMS to Speed-Up Analog Fault Simulation, Journal of Analog Integrated

Circuits and Signal Processing, 39(2), 2004, 177-190.

[Kundert90] K.S. Kundert, J.K. White and A. Sangiovanni-Vincentelli, Steady-state

Methods for Simulating Analog and Microwave Circuits (Kluwer Academic Publishers,

1990).

R-7

[Li03] P. Li and L.T. Pileggi, NORM: Compact Model Order Reduction of Weakly

Nonlinear Systems, Proceeding of ACM/IEEE DAC, 2003, 472-477.

[Li05] P. Li and L.T. Pileggi, Compact Reduced-order Modeling of Weakly Nonlinear

Analog and RF Circuits, IEEE Transactions on computer-aided design of integrated

circuits and systems, 23(2), February 2005, 184-203.

[Ljung75] L. Ljung, T. Soderstrom and I. Gustavsson, Counterexamples to the General

Convergence of a Commonly Used Recursive Identification Method, IEEE

Transactions on Automatic Control, 20(5), 1975, 643-652.

[Ljung99] L. Ljung, System Identification-Theory for the User (Prentice-Hall, Inc.,

1999).

[Maly88] W. Maly, W.R. Moore and A.J. Strojwas, Yield Loss Mechanisms and Defect

Tolerance, Research Report No. CMU-CAD-88-18, 1998.

[MATLAB6.5] Help File, MATLAB6.5.

[McConaghy05] T. McConaghy, T. Eeckelaert, and G. G. E. Gielen, CAFFEINE:

Template-Free Symbolic Model Generation of Analog Circuits via Canonical Form

Functions and Genetic Programming, Proceedings Design Automation and Test in

Europe Conference, 2, Mar 2005, 1082-1087.

[McConaghy05a] T. McConaghy and G. Gielen, Analysis of Simulation-Driven

Numerical Performance Modeling Techniques for Application to Analog Circuit

Optimization, ISCAS, May 2005, 1298-1301.

[Mentor]

<http://www.mentor.com/products/ic_nanometer_design/simulation/advance_ms>.

[Middleton90] R.H. Middleton, G.C. Goodwin, Digital Control and Estimation – A

Unified Approach (Prentice-Hall, Inc., 1990).

R-8

[Moore81] Bruce Moor, Principal component analysis in linear systems: Controllability,

observability, and model reduction, IEEE Transactions on Automatic Control, 26(1),

February 1981, 17-32.

[Mosis] The MOSIS Service, http://www.mosis.com/cgi-

bin/cgiwrap/umosis/swp/params/ibm-013/t82h_8rf_8lm_dm-params.txt [Accessed on

05/11/08].

[Mutnury03] B. Mutnury, M. Swaminathan, and J. Libous, Macro-modelling of non-

linear I/O drivers using spline functions and finite time difference approximation, Proc.

Electrical Performance of Electronic Packaging, 2003, 273-276.

[Nagi92] N. Nagi, Jacob A. Abraham, Hierarchical Fault Modeling for Analog and

Mixed-Signal Circuits, IEEE VLSI test symposium, 1992, 96-101.

[Nagi93] N. Nagi, A. Chatterjee, Jacob A. Abraham, DRAFTS: Discretized Analog

Circuit Fault Simulator, 30th ACM/IEEE Design Automation Conference, 1993, 509-514.

[Nayfeh95] A. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics: Analytical,

Computational, and Experimental Methods (Wiley, 1995).

[Nikitin07] Pavel V. Nikitin, C.-J. Richard Shi, VHDL-AMS based modeling and

simulation of mixed-technology Microsystems: a tutorial, Integration, the VLSI journal,

40, 2007, 261-273.

[Odabasioglu97] A. Odabasioglu, M. Celik and L. Pileggi, Prima: Passive reduced-

order interconnect macromodeling algorithm, International Conference on Computer

Aided-Design, San Jose, California, November 1997, 58-65.

[Ohletz91] M.J. Ohletz, Hybrid Built-In Self-Test (HBIST) for Mixed Analogue/Digital

Integrated Circuits, Proceedings of European Test Conference, 1991, 307-316.

R-9

[Olbrich96] T. Olbrich, J. Pèrez, I.A. Grout, A.M.D. Richardson, C. Ferrer, Defect-

Oriented VS Schematic-Level Based Fault Simulation for Mixed-Signal ICs,

Proceedings of the International Test Conference (ITC), 1996, 511-520.

[Olbrich97] T. Olbrich, I.A. Grout, Y. Eben Aimine, A.M. Richardson and J.

Contensou, A New Quality Estimation Methodology for Mixed-Signal and Analogue

ICs, European Design and Test Conference (ED&TC), Paris, March 1997, 573-580.

[Pan96] C.Y. Pan and K.T. Cheng, Fault Macromodeling and A Testing Strategy for

Opamps, Journal of Electronic Testing: Theory and Applications, 9, 1996, 225-235.

[Pan97] C.Y. Pan and K.T. Cheng, Fault Macromodeling for Analog/Mixed-Signal

Circuits, International Test Conference, 1997, 913-922.

[Pecheux05] F. Pecheux, C. Lallement, A. Vachoux, VHDL-AMS and Verilog-AMS as

alternative hardware description languages for efficient modeling of multidiscipline

systems, IEEE Trans. Comput. Aided Des. Integrated Circuits Syst, 24(2), 2005, 204-

205.

[Pella97] F. Pellandini, V. Moser and H.P. Amann, Behavioral Modelling of Analogue

Systems with absynth (Kluwer Academic Press, 1997).

[Phillips98] J. Phillips, Model reduction of time-varying linear systems using

approximate multipoint Krylov-subspace projectors, International Conference on

Computer Aided-Design, Santa Clara, California, November 1998, 96-102.

[Phillips00] J. Phillips, Automated extraction of nonlinear circuit macromodels,

Proceeding of IEEE CICC, 2000, 451-454.

[Phillips02] J. Phillips, L. Daniel and L.M. Silveira, Guaranteed passive balancing

transformations for model order reduction. Proc. IEEE DAC, June 2002, 52-57.

[Pillage90] L.T. Pillage and R.A. Rohrer, Asymptotic waveform evaluation for timing

analysis, IEEE Trans. CAD, 9, April 1990, 352-366.

R-10

[Regression] A place in history: a guide to using GIS in historical research,

http://ahds.ac.uk/history/creating/guides/gis/sect101.html [Accessed on 05/04/08].

[Renovell96] M. Renovell, F. Azaїs and Y. Bertrand, Analog Signature Analyzer for

Analog Circuits: BIST Implementations, In 2nd Intl. Mixed Signal Testing Workshop,

Quebec, Canada, 1996, 233-238.

[Rewienski01] M. Rewienski and J. White, A Trajectory Piecewise-Linear Approach to

Model-Order Reduction and Fast Simulation of Nonlinear Circuits and Micromachined

Devices, Proceedings IEEE/ACM International Conference on Computer Aided Design,

2001, 252–257.

[Rich92] A.M.D. Richardson, A.P. Dorey, Reliability Indicators, European Symposium

on reliability of electron devices, failure physics and analysis (ESREF), Schwabisch

Gmund, Germany, 5-8th October 1992, 277-283.

[Rosen98] R. Rosenberger, S.A. Huss, A Systems Theoretic Approach to Behavioural

Modeling and Simulation of Analog Functional Blocks, Proceedings of DATE, 1998,

721-728.

[Roychowdhury99] J. Roychowdhury, Reduced-Order Modelling of Time-Varying

Systems, IEEE Transactions on circuits and systems-II: Analog and Digital Signal

Processing, 46(10), October 1999, 1273-1288.

[Roychowdhury01] J. Roychowdhury, Analysing Circuits with Widely-separated Time

Scales using Numerical PDE Methods, IEEE Trans. on Circuits and Systems-I, 48, May

2001, 578-594.

[Roychowdhury03] J. Roychowdhury, Automated Macromodel Generation for

Electronic Systems, IEEE Behavioral Modeling and Simulation Workshop, San Jose,

CA, Oct. 2003, 11-16.

R-11

[Roychowdhury04] J. Roychowdhury, Algorithmic Macromodelling Methods for

Mixed-Signal Systems, Proceedings of the 17th International Conference on VLSI

Design (VLSID), 2004, 141-147.

[Russell93] D.S. Learmonth, G. Russell, BIST Schemes for Testing Analogue Circuits,

IEE Colloquium on Testing-the Gordian Knot of VLSI Design, 1993, 7/1-7/4.

[Saber03] SaberBook reference, 2003.

[Saber04] Saber Library and Model User Guide, Synopsys, Inc., 2004.

[Sachdev95] M. Sachdev, A Realistic Defect Oriented Testability Methodology for

Analog Circuits, Journal of Electronic testing: Theory and Applications, 6, 1995, 265-

276.

[Schetzen80] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems

(New York: John Wiley, 1980).

[Sebeke95] C. Sebeke, J.P. Teixeira, and M.J. Ohletz, Automatic Fault Extracting and

Simulation of Layout Realistic Faults for Integrated Analogue Circuits, Proc. European

Design and Test Conference, 1995, 464-468.

[Silveira96] L. Miguel Silveira, M. Kamon, I. Elfadel, and J. White, A Coordinate-

Transformed Arnoldi Algorithm for Generating Guaranteed Stable Reduced-Order

Models of RLC Circuits, Proc. ICCAD, November 1996, 288-294.

[Simeu05] E. Simeu, S. Mir, Parameter Identification Based Diagnosis in Linear and

Non-linear Mixed-Signal Systems, 11th International Mixed-Signals Testing Workshop,

June 27-29, 2005.

[SMASHR05] SMASH™ Reference Manual, 5.6, December 2005.

[SMASHU05] SMASH™ User Manual, 5.6, December 2005.

R-12

[Smith96] D. Smith, VHDL and Verilog Compared and Contrasted-Plus Modeled

Example Written in VHDL, Verilog and C, Proceedings of the 33rd Design Automation

Conference, June 1996, 771-776.

[Spec97] SpectreHDL Reference Manual, Product Version 4.4.1, Cadence Design

Systems, Inc., San Jose (USA), 1997.

[Spiegel95] Jan Van der Spiegel, SPICE Models for Selected Devices and Components,

University of Pennsylvania, 1995,

http://www.seas.upenn.edu/~jan/spice/spice.models.html#mosis1.2um [Accessed on

01/10/08].

[Spinks97] S.J. Spinks, C.D. Chalk, I.M. Bell, M. Zwolinski, Generation and

Verification of Tests for Analogue Circuits Subject to Process Parameter Deviations,

International Symposium on Defect and Fault Tolerance in VLSI Systems, Paris, France,

October 1997, 100-108.

[Spinks98] S.J. Spinks, Fault Simulation for Structural Testing of Analogue Integrated

Circuits, doctoral thesis, University of Hull, 1998.

[Spinks04] S. Spinks, I. Bell, ANTICS 1.3 User Guide, VLSI Design and Test Group,

Department of Electronic Engineering, University of Hull, 2004.

[Stopja04] V. STOPJAKOVÁ, P. MALOŠEK, D. MIČUŠÌK, M. MATEJ, M.

MARGALA, Classification of Defective Analog Integrated Circuits Using Artificial

Neural Networks, Journal of Electronic Testing: Theory and Applications, 20, 2004, 25-

37.

[Synopsys] <http://www.synopsys.com>.

[SystemVision] Getting Started with SystemVision,

http://www.mentor.com/products/sm/systemvision/demos/getting_started.cfm/

[Accessed on 15/08/06].

R-13

[Tan03] S.X.-D Tan and C.J.-R Shi, Efficient DDD-based term generation algorithm

for analog circuit behavioral modeling, Proc. IEEE ASP-DAC, January 2003, 789-794.

[Tietze93] U. Tietze, C. Schenk and E. Gamm, Halbleiter-Schaltungstechnik (Springer-

Verlag, Berlin, 1993).

[Uppal05] F.J. Uppal and R.J. Patton, Neuro-fuzzy uncertainty de-coupling: a multiple-

model paradigm for fault detection and isolation, Int. J. Adapt. Control Signal Process,

2005, 281-304.

[Vasiyev03] D. Vasiyev, M. Rewienski, J. White, A TBR-based Trajectory Piecewise-

Linear Algorithm for Generating Accurate Low-order Models for Nonlinear Analog

Circuits and MEMS, DAC, June 2-6, 2003, 490-495.

[Volterra] Volterra Series and Volterra Kernel,

http://ctas.east.asu.edu/chnam/ASE_Book/Volterra%20Theory.htm [Accessed on

06/08/05].

[Voo97] R. Voorakaranam, S. Chakrabarti, J. Hou, A. Gomes, S.Cherubal, A.Chatterjee,

Hierarchical Specification-Driven Analog Fault Modeling for Efficient Fault Simulation

and Diagnosis, International Test Conference, 1997, 903-912.

[Watkins] S. Watkins and K. Wong, Mixed-Signal Modeling with Vanilla VHDL and

Verilog, Blue Pacific Computing, Inc., San Diego, California,

http://www.bluepc.com/mixpap.html, [Accessed on 08/05/06].

[Wei05] Y. Wei and A. Doboli, Systematic Development of Analog Circuit Structural

Macromodels through Behavioral Model Decoupling, DAC, June, 2005, 57-62.

[Wilkins86] B.R. Wilkins, Testing Digital Circuits: An Introduction (Chapman and

Hall, 1986).

[Wilkinson91] A.J. Wilkinson, S. Roberts, P.M. Taylor, G.E. Taylor, “Real time plant

monitoring using recursive identification”, Proceedings of COMADEM, 1991, 310-315.

R-14

[Wilson01] P.R. Wilson, Y. Kilic, J.Neil Ross, M. Zwolinski, A.D.Brown, Behavioural

Modelling of Operational Amplifier Faults using Analogue Hardware Description

Languages, BMAS, 2001, 106-112.

[Wilson02] P.R. Wilson, Y. Kilic, J. Neil Ross, M. Zwolinski, A.D.Brown, Behavioural

Modelling of Operational Amplifier Faults using VHDL-AMS, Proceedings of Design,

Automation and Test in Europe (DATE), 2002, 1133-.

[Xia08a] L. Xia, I.M. Bell and A.J. Wilkinson, Automated Macromodel Generation for

High Level Modelling, Design and Technology Integrated Systems (DTIS), Tozeur,

Tunisia, March 25-28, 2008.

[Xia08b] L. Xia, I.M. Bell and A.J. Wilkinson, A Novel Approach for Automated

Model Generation, International Symposium on Circuits and Systems (ISCAS), Seattle,

WA, 2008, pp. 504-507.

[Xia08c] L. Xia, I.M. Bell and A.J. Wilkinson, An Automated Model Generation

Approach for High Level Modeling, World Congress on Engineering (WCE), London,

UK, July 2-4, 2008.

[Xing98] Y. Xing, Defect-Oriented Testing of Mixed-Signal ICs: Some Industrial

Experience, Proc. IEEE International Test Conference (ITC), 1998, 678-687.

[Yang98] Z.R. Yang, M. Zwolinski, A Methodology for Statistical Behavioral Fault

Modeling, BMAS, 1998.

[Yang04] B. Yang and B. MacGaughy, An Essentially Non-Oscillatory (ENO) High-

Order Accurate Adaptive Table Model for Device Modeling, Proc. IEEE DAC, 2004,

864-867.

[Yeredor00] A. Yeredor, The Extended Least Squares Criterion: Minimization

Algorithms and Applications, IEEE Transactions on signal processing, 49(1), January

2000, 74-86.

R-15

[Zadeh63] L.A. Zadeh and C.A. Desoer, Linear System Theory: The State-space

Approach (McGraw-Hill, New York, 1963).

[Zhang00] Q.J. Zhang and K.C. Gupta, Neural Networks for RF and Microwave Design

(Boston: Artech House, 2000).

[Zorzi02] M. Zorzi, N. Speciale, G. Masetti, A New VHDL-AMS Simulation

Framework in Matlab, BMAS, Santa Rosa, CA, 6-8 October 2002, 185-190.

[Zorzi03] M. Zorzi, F. Franze, N. Speciale, Construction of VHDL-AMS simulator in

Matlab, BMAS, 2003, 113-117.

[Zwo96] M. Zwolinski, C. Chalk and B.R. Wilkins, Analogue Fault Modelling and

Simulation for Supply Current Monitoring, Proceedings of European Design and Test

Conference, 1996, 547-552.

[Zwo97] M. Zwolinski, C. Chalk and A.J. Perkins, Multi-Level Fault Modeling of

Analog Circuits, IEEE/VIUF International Workshop on Behavioral Modeling and

Simulation (BMAS), 1997, 107-113.

[Zwo00] M. Zwolinski, Digital System Design with VHDL (Pearson Education Ltd.,

2000).

List of Publications

[1] Likun Xia, I.M. Bell, A.J. Wilkinson, Automated Macromodel Generation for High

Level Modelling, Design and Technology Integrated Systems (DTIS), Tozeur, Tunisia,

March 25-28, 2008.

[2] Likun Xia, I.M. Bell, A.J. Wilkinson, A Novel Approach for Automated Model

Generation, International Symposium on Circuits and Systems (ISCAS), Seattle, USA,

May 18-21, 2008, pp. 504-507.

[3] Likun Xia, I.M. Bell, A.J. Wilkinson, An Automated Model Generation Approach

for High Level Modelling, World Congress on Engineering (WCE), London, UK, July

2-4, 2008.

Submitted Papers

[1] Likun Xia, Ian M. Bell, Antony J. Wilkinson, High Level Fault Modelling using an

Automated Model Generation Algorithm, Journal of IEEE Trans. CAD. (Submitted in

July, 2008)

[2] Likun Xia, Ian M. Bell, Antony J. Wilkinson, Analogue Simulation using

Automated Model Generation based on SPICE-level Description, International Journal

of Modelling and Simulation, ACTA. (Submitted in June, 2008)

[3] Likun Xia, Ian M. Bell, Antony J. Wilkinson, A Robust Approach for Automated

Model Generation, Design, Automation and Test in Europe (DATE), Nice, France, April

20-24, 2009. (Submitted)

