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Abstract 

In this technological information age, dimension reduction methods are key because 

they enable the almost instantaneous extraction of relevant information from large 

complex data sets.  This is particularly crucial within the process analytical environment 

where �right-first-time� and �just-in-time� approaches push the technological and 

economic persuasions of a manufacturing culture.  In line with this paradigm, 

mathematical tools which decompose highly complex multivariate and multicomponent 

measurements into their lowest dimensionality without the need of a priori knowledge 

have been used to provide intelligence regarding different processes.  This intelligence 

includes the pure spectra and concentration profiles of the reaction constituents, by-

products and short lived intermediates.  These tools are known as calibration free 

techniques (CFT) and in this thesis they have been developed and applied to complex 

academic and industrial problems, which include the rhodium catalysed asymmetric 

transfer hydrogenation reaction of a prochiral imine, the pyridine catalysed 

esterification reaction of acetic anhydride and the vinyl acetate monomer process.  

These chemical systems are typically deficient in a priori information leading to the 

generation of a chemical or dynamic process model.  The application of CFTs are 

favourable because they do not require a priori information to provide intelligence 

regarding the reaction constituents which may lead to a reduction in process cost and 

increased efficiency of the manufacturing process. 
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Abbreviations 

ALS Alternating Least Squares 

CATHy Catalysed Asymmetric Transfer Hydrogenation Reaction 

CFT Calibration Free Techniques 

CLS Classical Least Squares 

CPAC Center for Process Analytical Chemistry 

CPACT Centre for Process Analytics and Control Technology 

Csel Equality constraint Concentration 

DAD Diode Array Detection 

ee Enantiometic excess 

EFA Evolving Factor Analysis 

EPSRC Engineering and Physical Sciences Research Council 

FA Factor Analysis 

FDA Food and Drug Administration 

FID Flame Ionisation Detector 

FNNLS Fast Non-Negative Least Squares 

FSW-EFA Fixed Size Window- Evolving Factor Analysis 

FTIR Fourier Transform Infrared 

GC Gas Chromatography 

GRR Generalised Ridge Regression 

GUI Graphical User Interface 

HELP Heuristic Latent projective Analysis  

HPLC High Performance Liquid Chromatography 

HPLC-DAD High Performance Liquid Chromatography-Diode Array Detection 

ILS Inverse Least Squares 

IR Infrared 

ITTFA Iterative Target Transformation Factor Analysis 

LC Liquid Chromatography 

LOF Lack-of-fit 

LS Least Squares 

MCR Multivariate Curve Resolution 

MCR-ALS Multivariate Curve Resolution - Alternating Least Square 

MIR Mid-infrared 
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MLR Multiple Linear Regression 

MSEP Mean Squared Error of Prediction 

NIR Near Infrared 

NMR Nuclear Magnetic Resonance 

NNC Non-Negativity constraint Concentration 

NNLS Non-Negative Least Squares 

NNS Non-Negativity constraint Spectra 

NWAY P-ALS Multi-way Penalty-Alternating Least Squares 

OPA Orthogonal Projection Analysis 

PAC Process Analytical Chemistry 

P-ALS Penalty-Alternating Least Squares 

PAT Process Analytical Technology 

PC Principal Component 

PCA Principal Component Analysis 

PCR Principle Component Regression 

PLS Partial Least Squares 

QITTFA Quantitative Iterative Target Transformation Factor Analysis 

RE Relative Error 

RMSEP Root Mean Squared Error of Prediction 

RMSPE Root Mean Square Prediction Error 

RR Ridge Regression 

SEC Size Exclusion Chromatography 

SEP Standard Error of Prediction 

SFA Subwindow Factor Analysis 

SFC Supercritical Fluid Chromatography 

SIMPLISMA Simple to-use interactive Self modelling Mixture Analysis 

SMCR Self Modelling Curve Resolution 

SNV Standard Normal Variate 

SVD Singular Value Decomposition 

T-SIMPLISMA Transposed - Simple to-use interactive Self modelling Mixture Analysis 

TTFA Target Transformation Factor Analysis 

UV Ultraviolet 

UV-visible Ultraviolet-visible 
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VAM Vinyl Acetate Monomer 

WFA Window Factor Analysis 
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Mathematical Notation 

Much of the work in this thesis has involved the use of matrices, vectors and scalars.  

Throughout the text the following mathematical notation is followed.  A notations list is 

given in the glossary. 

Scalar quantities (i.e., numbers) are represented by lowercase letters, i.e., a, b, c, x, y 

and z.  Vectors (i.e., one dimensional arrays of numbers) are symbolised by bold, 

lowercase letters, i.e., s, t, u, x, y and z.  Superscript T implies a transposition of a 

column vector to a row vector.  Row vectors are denoted by a superscript T, i.e., 

Ts , Tt , Tu , Tx , Ty and Tz .  Subscripts are used to characterise matrices, vectors and 

scalars.  Numbers and lowercase letters are used as subscripts.  Bold, uppercase letters 

or enclosures in square brackets [ ]  signify matrices.  Matrix transformation, whereby 

rows and columns are interchanged are denoted by a superscript T, consistent with the 

vector notation. 

Based on this notation: 

bij is a scalar. 

















=

j

j

j

j

b
b
b

3

2

1

b is the jth column vector. 

[ ]ijiji bb .......=Tb  is the ith column vector. 

[ ]















==

3231

2221

1211

bb
bb
bb

BB is a matrix. 
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[ ] 







==

322212

312111

bbb
bbbTT BB is the transposed matrix. 

The �, called �hat� above a quantity signifies an estimated (or calculated) quantity.  

D is the matrix containing the measured data, ijd . 

D� and D~ represent different estimations of D. 

*D is an estimation of D based on a reduced factor space. 

Another specialised notation that will be used consistently throughout the text is: 

( ) XXXX ′′= −+ 1 is the pseudoinverse of X. 

( ) ( ) 2/12/12 rr′== ∑ irr is the norm of vector r. 

( ) 2/12∑∑= ijrR is the norm of matrix R. 
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Glossary 

All symbols used in the text are defined in the notation list given below. 

Symbol Description 
n Number of mixture spectra / samples 
m Number of variables in the spectrum / sample 
t Number of experiments 
i Row / sample index 
j Column / variable index 
k Pure variable index 
D ( )mn × bilinear multi-component and multivariate instrumental 

measurements 
C Matrix of component concentration profiles 
S Matrix of component spectral profiles 
A Absorbance  
c Analyte concentration 
0I  Incident radiation 

I  Transmitted radiation 
a Absorptivity  
l Pathlength through the absorbing medium 
ε Molar absorptivity (mol dm-3 cm-1).  If c (mol dm3) and l(cm)   
λ Wavelength (nm)  
v  Wavenumber (cm-1) 
T Transmittance 
y Analytes quantitative (concentration) information 
b Regression coefficients (ILS) 

0a  Intercept determined by the regression (CLS) 

1a  Regression coefficient determined by the regression (CLS) 

0b  Intercept determined by the regression (ILS) 

1b  Regression coefficient determined by the regression (ILS) 
E ( )mn ×  Error (residual) matrix of D 

0C  Initial estimate of the concentration profiles 

0S  Initial estimate of the spectral profiles 

nitC  Final concentration solution at maximum number of iterations 

nitS  Final spectral solution at maximum number of iterations 
nit Maximum number of iterations 
R ( )ncnc ×  Rotation Matrix  
q  Scalar 

0T  Top sub-matrix (EFA) 

0B  Bottom sub-matrix (EFA) 
T  PCA Scores matrix (eigenvalue decomposition) 
P PCA loadings matrix (eigenvalue decomposition)  
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f Purity spectrum (SIMPLISMA) 
µ  Mean value 
σ  Standard deviation 
δ  Constant (offset) to correct for noise (SIMPLISMA) 
ω  Weight factor (SIMPLISMA) 
n  Number of factors 
nc Number of independent factors / chemical components included in 

decomposition 
int  Scores of the target spectrum, in 

in Target spectrum 
out Output target spectrum 
snorm Normalised spectrum according to equation 26 or 27 

1  A vector of ones 
Csel Concentration selectivity matrix  

CALS The LS estimated concentration matrix 
x Estimated concentration values in the cALS vector 
o  Unknown concentration values in the cALS vector 
z  z -scores from SNV correction 
e  Prediction errors from a quantitative model 
d  Difference between predictive errors from two competing 

quantitative models (differences per case) 
d  Mean of differences per case  

T  Test statistic 
Tobs Evaluation data 
S Evaluation set 
m  Number of randomised trials 

rD  ( )mtn×  Row-wise augmented measurement matrix 

cD  ( )mnt ×  Column-wise augmented measurement matrix 

tD  ( )nmt ×  Tube-wise augmented measurement matrix 

cC  Column-wise augmented concentration matrix 

g  Predefined values for constraints (NWAY P-ALS) 

H Constraints matrix (NWAY P-ALS) 
ϕ  The penalty factor weighting (NWAY P-ALS) 
IN Needle matrix  
U  Column-orthonormal singular vectors from SVD 
V  Row-orthonormal singular vectors from SVD  
Λ  Diagonal matrix of singular values from SVD 
W Scores matrix 
L Loadings matrix 

α and β Factor Scaling coefficients 

inw  Scores of the target spectrum, in 

Zs Needle output spectral matrix (spectra) 
Zc Needle output spectral matrix (concentration) 

inl  Loadings of the target spectrum, in 
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Prologue 

Chemometrics is �a chemical discipline that uses mathematics, statistics and formal 

logic a) to design or select optimal experimental procedures; b) to provide maximum 

relevant chemical information by analysing chemical data and c) to obtain knowledge 

about chemical systems� [1].  This chemical discipline forms part of the fundamental 

strategy for exploratory chemical analysis and monitoring and control of a vast array of 

chemical processes within analytical chemistry.   

At the industrial level chemometrics coincides with the Process Analytical Technology 

(PAT) initiative.  PAT is a system of designing, analysing and controlling 

manufacturing through timely measurements (i.e., during processing) of critical quality 

and performance attributes of raw and in-process materials and processes with the goal 

of ensuring final product quality.  Within PAT, analytical is viewed broadly to include 

chemical, physical, microbiological, mathematical and risk analysis conducted in an 

integrated manner [2].  Chemometric tools are suited to PAT application because they 

provide effective and efficient means for acquiring information to facilitate process 

understanding, develop risk-mitigation strategies, to achieve continuous improvement 

and share information and knowledge.   

Tools which are defined as PAT tools include any technological developments which 

enable scientific, risk managed, pharmaceutical developments, manufacture and quality 

assurance and these tools can be categorised as; 

1. Multivariate data acquisition and analysis tools 

2. Modern process analysers or process analytical chemistry tools 

3. Process and endpoint monitoring and control tools 
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4. Continuous improvement and knowledge management tools. 

An appropriate contribution of some, or all of these tools may be applicable to a single 

unit operation, or to an entire manufacturing process and its quality assurance. 

The PAT initiative has received support from the Food and Drug Administration (FDA) 

Science Board and the Advisory Committee for Pharmaceutical Science. 

Process Analytical Chemistry (PAC) was initiated in the late 1970s and is a subsidiary 

field of PAT and deals specifically with control and optimisation of the performance of 

a chemical process in terms of capacity, quality, cost, consistency and waste reduction 

[3, 4].  The standing of PAC as an academic discipline has grown enormously in recent 

times, mainly catalysed by the creation of the Center for Process Analytical Chemistry 

(CPAC) at the University of Washington in 1984 [5].  The industry/academic 

collaboration continues to thrive with around 50 industrial funding partners.  Similarly, 

the creation of the Centre for Process Analytics and Control Technology (CPACT) in 

1997 at the Universities of Hull, Strathclyde and Newcastle is also an industry/academic 

collaboration.  Other academic institutions are active in PAC to some extent small 

specialist groups have been established particularly in The Netherlands, and at other 

academic institutes in the UK. 

The move towards PAC has been fuelled by two developments.  Firstly increasing 

international competitiveness within the chemical industry has led to the widespread 

adoption of �right-first-time� and �just-in-time� approaches to manufacturing and 

quality.  This has placed the emphasis of building quality into all stages of the process, 

increased manufacturing flexibility, reduced inventory and improved control of 

processes.  Secondly, during the past decade advances in analytical chemistry and in 

particular the development of the microcomputer and improved algorithms for data 
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handling, have enabled almost instantaneous generation of information from large 

complex measurement matrices [3].   
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Rationale 

In this thesis multivariate analytical PAT tools, known as CFT, have been developed 

and applied to complex academic and industrial problems.  These complex problems are 

confined to chemical systems which evolve in a systematic, non-random way as a 

function of time, pH, temperature, etc. These chemical systems are typically deficient in 

a priori information leading to the generation of a chemical or dynamic process model.  

Such information may include the number of reacting chemical constituents, their 

evolutionary profiles, their identity, material and energy balances, heat and mass 

transfer considerations and known reaction kinetics.  In some cases, although enough 

chemical information is available to establish a chemical model, changes in the external 

conditions may deteriorate the predictive capabilities of the model, i.e., fluctuations in 

temperature for predictive modelling using isothermal reaction kinetics.  In another 

case, the acquisition of neat reference spectral data for a target analyte may be difficult 

under the specified reaction conditions, i.e., the vaporisation of a high density organic 

compound at a temperature and pressure not appropriate for complete vaporisation, 

which could impede the development of a calibration model for that analyte. 

In the past these problems were not tackled and were simply avoided because too many 

uncontrollable variables influenced the data.  In such circumstances advanced 

chemometric approaches known as calibration free modelling techniques are required 

because they do not rely on a priori information to reveal the underlying chemical 

model directly from the multivariate measurements.  A mathematical decomposition is 

used to deconvolve the two-way signals from instrumentally unresolved multi-

component mixtures into single specie component spectra and compositional profiles 

from evolutionary systems.  This information can be used to answer the most 

fundamental questions in a chemical problem, i.e., how many factors influence the 
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observable? What is the nature of these factors in terms of physically significant 

parameters?   

Therefore, CFT can play a significant role within industry and academia because data of 

great complexity can be investigated, large quantities of data can be analysed using 

standard computer programs, data can be simplified and interpreted in useful ways and 

many types of problems can be studied.   

The only premise for the decomposition is that the total response is a linear additive 

signal of each component, i.e., the elements of the measurement matrix, D must be a 

linear sum or combination of the product terms C and S.  Therefore, the measurement 

must be of the form, see equation 1. 

D = C ST Equation 1

In common practice, these premises are naturally satisfied by two-way data obtained 

from multivariate measurements, such as near-infrared (NIR), mid-infrared (MIR), or 

Fourier transform infrared (FTIR) on mixtures with varying composition.     

Therefore, the ultimate aim of CFT is to determine: 

1. The number of absorbing components (i.e., reagents, intermediates, products) 

2. The evolutionary profile of each component in the mixture (i.e., for purity 

determination or the prediction of the optimum reaction endpoint) 

3. The spectrum of each component (i.e., for identification of each absorbing 

component). 
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Aims of Thesis 

The feasibility of the application of CFT was shown using several different academic 

and industrial problems.  The first problem was the exploratory and quantitative 

investigation of the rhodium catalysed asymmetric transfer hydrogenation (CATHy) of 

a prochiral imine.  Here CFT were applied to find an alternative approach to 

chromatographic analysis of 1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline and 1-

methyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline monitored using in-situ FTIR.  

The prochiral imine and chiral amine were quantified using high performance liquid 

chromatography (HPLC).  However, an alternative approach was required because the 

sampling time, including pre-sampling preparation was approximately twice as long as 

the reaction (~1hr).  The foreseeable advantages of applying CFT to this data were: a) 

the ability to determine the concentration and pure spectral profile of the target analytes 

from extremely overlapped FTIR spectroscopic data without previous calibration 

information, which would remove the need for constant sampling and free operator 

time; b) the reduced time required to obtain the quantitative information; and c) the 

determination of other reaction constituents not previously identified through 

chromatographic analysis, which could shed light on the number of reaction 

constituents, their identities and their evolutionary profiles for contribution towards 

mechanistic studies. 

Secondly, to develop a new Multi-way Penalty Alternating Least Squares (NWAY P-

ALS) function to enable optionally hard constraints (no deviation from predefined 

constraints) or soft constraints (small deviations from predefined constraints) to be 

applied through the application of a row-wise penalty least squares function.  The 

significant benefits of this method were a) reduced distortion of resolved profiles, b) 

reduction in the number of active constraints at convergence which reduced the model 
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lack-of-fit, and c) a reduced impact of noise and non-ideal response on constraints 

which lead to improved results. 

NWAY P-ALS was applied to the multi-batch data acquired from the base catalysed 

esterification reaction of acetic anhydride.  The aim of the study was to resolve the 

concentration and spectral profiles of 1-butanol with the reaction constituents.  The 

benefits of using the NWAY P-ALS approach included the reduction of the number of 

active constraints at the solution point, whilst the batch column-wise augmentation 

allowed strong constraints in the spectral profiles and resolved rank deficiency problems 

of the measurement matrix.  The results were validated by comparing the percent yield 

of 1-butyl acetate determined by gas chromatography (GC) for each batch.  The NWAY 

P-ALS results were also compared with the multi-way multivariate curve resolution 

alternating least squares (MCR-ALS) results using hard and soft constraints to 

determine whether any advantages had been gained through using the weighted least 

squares function of NWAY P-ALS over the MCR-ALS resolution. 

A new calibration free strategy was developed, with the aim of producing starting 

estimates which approximated the true solution from two-way measurement data to 

enable MCR-ALS to converge to the correct solution (particularly in cases where no a 

priori information existed for the pure constituents).  A tool such as this was required 

because the quality of the initial estimates and application of constraints had been found 

to be integral to the success of the resolution procedure.  Normally, the MCR-ALS 

solution can be improved by the addition of a priori information in the initial estimates 

and/ or in the constraints.  However, in cases where no a priori information exists, an 

exploratory tool which could produce starting estimates which approximate the actual 
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solution was required Quantitative Iterative Target Transformation Factor Analysis 

(QITTFA) was developed as a solution to this problem. 

QITTFA was used to resolve the pure spectrum of vinyl acetate monomer (VAM) with 

the rest of the reaction constituents in the vapour state from the two-way calibration 

mixture data collected from a British Petroleum (BP) process NIR analyser on the vinyl 

acetate plant.  This was especially important for VAM because neat VAM tended to 

condense at the specified reaction conditions.  The MCR-ALS resolution initialised 

from the QITTFA starting estimates was compared to the MCR-ALS resolution 

initialised from a more traditional exploratory tool, Simple to use Interactive Self-

modeling Mixture Analysis (SIMPLISMA) in order to demonstrate the robustness and 

reliability of the QITTFA approach.   
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I.1 Preliminaries 

I.1.1 Modern Process Analysers 

Chemical process measurements consist primarily of traditional engineering variables 

such as temperature, pressure, flow rate and electrical power because they can be 

measured easily.  These measurements are generally used to calibrate instrumental 

responses in order to qualitatively model the plant in-line operation for process control 

[2, 3, 6-9] etc.  However, due to developments in fibre optics, fibre optic interfacing and 

the advent of micro-computers, there has been a tremendous development of 

instrumentation which can be used on-line or at-line.  This additional information 

provides better estimates of chemical composition throughout the reaction for quality 

control [2-4, 6, 8-15].   

In particular, the use of on-line optical spectroscopic techniques such as NIR [3, 8, 16-

18], MIR [3, 8, 19-24], FTIR [3, 8, 25-28], Raman [3, 8, 29-33] and ultraviolet-visible 

(UV-visible) [3, 8, 34-38] are of interest for reaction monitoring.  This is because they 

not only provide physical process parameters, such as temperature, pressure, flow rate 

and liquid level, but also molecular parameters relating to component concentrations, 

molecular structure and composition of process constituents.  Also they allow real-time 

control during a manufacturing process.  Both the physical process parameters and 

molecular parameters can be used in process control, quality control, industrial hygiene, 

safety or for other value-adding purposes.   

Applications of optical spectroscopy for process analysis continues to grow steadily 

because process spectrometers now have a higher standard of automation, ruggedness, 

and simplicity in order to withstand harsh manufacturing environments (i.e., humidity, 
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corrosion, temperature fluctuations).  This has resulted in large amounts of 

spectroscopic data being produced that reflect the optical properties of both process 

stream and batches in real time. The ease with which in situ spectroscopic 

measurements can be made when coupling the spectrometer with fibre optics makes 

process spectroscopy a much more effective choice over chromatography for process 

analysis [39, 40].  Drawbacks associated with on-line chromatographic analysis in batch 

process analysis include sample processing and instrumental maintenance, that effect 

the system stability and reproducibility.  Quenching the reaction during sample 

preparation destroys reactive intermediates so the composition of the sample analysed 

does not accurately reflect the composition of the reaction mixture, which can be a great 

limitation for exploratory analysis of synthetic processes.  Additionally, the limited 

number of data points that can be determined using the current systems may result in a 

less than ideal representation of the concentration profile of a specific constituent.  

Nevertheless, once in operation chromatographic methods can provide good quantitative 

information with high selectivity and acceptable accuracy, precision and sensitivity.   

Spectroscopic measurements have great potential on-line because under the right 

conditions they can be used as truly non-invasive monitoring techniques.  Information 

relating to the chemical composition and molecular structures is extracted from the 

spectroscopic data using chemometric dimensional reduction methods.  These methods 

remove correlated or redundant information (e.g., heteroscedastic noise, caused by 

drifting baselines, fluctuations in the surrounding environment on the reaction vessel) 

from the measurement data and retains the essential information.  Chemometric 

dimensional reduction methods are particularly well suited for improving the 

effectiveness of process spectroscopic analytical techniques through two main 
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functions; (1) extracting a wealth of useful information from convoluted measurements, 

and (2) facilitating the automation of in-situ analytical techniques.   

Optical absorbance spectroscopic datasets, such as ultraviolet (UV), visible and infrared 

(IR) are suitable for dimensional reduction because the basis of an absorption method 

for quantitative determination of absorbing species is expressed as a linear sum or 

combinations of the product terms.  This is given in the relationship between the 

absorbance, A, and the analyte concentration, c, known as Beer�s Law (Bougier-Beer-

Lambert-Law), given in equation 2. 

acl
I
IA == 0

10log  Equation 2

It is related in a logarithmic way to the ratio of the intensity of the incident radiation, 0I  

and the intensity of the radiation transmitted through the sample solution I , a is a 

proportionality constant called the absorptivity and l is the pathlength through the 

absorbing medium.  When concentration is expressed in moles per litre and l is in 

centimetres, the proportionality constant is called the molar absorptivity and is given the 

symbol ε.  Thus the absorbance, A, is related to the molar concentration, c, times the 

pathlength, l, in centimetres times the molar absorbptivity, ε, see equation 3.   

clA ε=  Equation 3

where ε has the units of mol dm-3 cm-1.  The desired parameter in spectroscopy is 

absorbance, but it cannot be directly measured.  Thus, a UV-visible spectrophotometer 

compares the intensity of the transmitted radiation with that of the incident UV-visible 

radiation.  An IR spectrometer records IR spectra as a plot of the wavelengths, λ, or 

wavenumbers, v , of absorbed radiation against the intensity of absorption in terms of 



26 

transmittance, T, or absorbance, A, see equations 4-5.  Presently, the wavenumber unit is 

used because it is directly proportional to energy.   

I
IT 0=  Equation 4

T
A 1log10=  Equation 5

For a multi-component spectroscopic system, the total response at a specific 

wavenumber (at a constant light pathlength) is the linear additive signal of each 

chemical constituent, provided no interactions occur among the various species, see 

equation 6. 

Aλ = c1 ελ1 + c2 ελ2 + ��.+ cnc ελ, nc  ∑
=

=
nc

k
kkc

1
λε  Equation 6

where Aλ is the absorbance at wavelength, λ, ελ is the molar absorbtivity, mol dm-3 cm-1, 

for the kth component at wavelength lambda and c is the concentration, mol dm-3, for 

the kth component.   

It must be stressed that Beers Law is only strictly applicable to dilute solutions, where 

the interactions between the absorbing particles are insignificant.  Deviations can also 

be seen as a consequence of associations, dissociations or reaction of the absorbing 

species with the solvent.  Instrumental effects come from the use of polychromatic 

radiation (generally not significant) and stray light due to instrumental imperfections.  

The effect of these is to reduce the measured absorbance [8, 41]. 

I.1.2 Multivariate Data Acquisition and Analysis Tools 

Factor analysis based methods, such as principal component analysis (PCA) 

multivariate calibration analysis [11, 42-48] and CFT (otherwise known as self 
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modelling curve resolution (SMCR) [11, 48-74] are linear models which can be applied 

to compress and extract relevant information from the measurements.  The ultimate goal 

of PCA is to decompose a bilinear measurement matrix into its component parts (under 

the two constraints of orthonormality and maximum variance) to reveal patterns and 

trends within the data, the goal of multivariate calibration is the establishment of a 

calibration model from multivariate measurements allowing the quantitative 

determination of the analyte in the presence of unknown interferents or in a complex 

chemical matrix, even if the analyte signal selectivity is poor (i.e., prediction of the 

expensive measurement).  CFT, on-the-other hand, resolve multi-component and 

multivariate measurement matrices into pure factors, such as spectral profiles, time 

profiles, and pH profiles, for individual species with no a priori knowledge of the 

system.  This allows the qualitative and semi-quantitative determination of the reaction 

constituents, including unknown interferents  

Traditional exploratory and quantitative tools, such as chromatography and multivariate 

calibration are used extensively within the process analytical environment for reaction 

monitoring and process control because once in operation they can provide good 

quantitative information with high selectivity and acceptable accuracy, precision and 

sensitivity.  However, if there are reactions or processes for which it is not possible to 

prepare mixtures of known composition, due for instance, the absence of isolated 

reference material, stability issues and where the preparation of such samples are time 

consuming and expensive, CFT are much more favourable because no assumptions are 

made concerning the underlying chemical or physical model and these techniques are 

relatively simple to use.  This has been shown by recent application within many 

diverse fields such as environmental studies [75-80], kinetic reactions [71, 81-86], 
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quantitative analysis [73, 79, 87-91], peak purity assessments [49, 61, 92-95], 

characterisation of batch reactions and on-line reaction monitoring [21, 96-103]. 



29 

I.2 Calibration Free Analysis 

I.2.1 Principles of Calibration Free Methodologies 

The aim of CFT is to determine: 

1. The number of absorbing components (i.e., reagents, intermediates, products) 

2. The evolutionary profile, C of each component in the mixture 

3. The spectrum, S of each component  

The main steps used to generate and alternatively estimate the pure spectra  S and 

concentration profiles C are outlined in box 1, and consists of an optional preprocessing 

of the raw data to remove any extraneous factors caused by instrumental artefacts.  A 

selection of some initial starting point followed by iterative refinement with constrained 

alternating least squares steps until convergence to a stationary solution and validation 

of the model using an external method.  

I.2.1.1 Alternating Least Squares 

1. An initial solution or �estimate� is selected by any number of popular exploratory 

tools (see section I.2.3.2).  If good information is available about the concentration 

profiles, an initial estimate of the concentration profiles, 0C , may be used or 

alternatively, spectra, 0S , or variables from the measurement matrices themselves 

which are hypothesised to be good approximations of pure component spectra or 

pure variables. 

2. The initial starting point 0C or 0S , seldom obeys the constraints imposed, and 

constrained ALS steps are used to fit the initial unconstrained solution producing 

better �constrained� estimates. 
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a. Given some initial estimate of C, find S such that S minimises an error 

function, i.e., TCSD −  subject to constraints on S such as S > 0, etc.  

b. Given some least squares estimate of S, find C such that C minimises an 

error function, i.e., TCSD −  subject to constraints on C such as C > 0, etc. 

 

Box 1.  Flow chart of SMCR methodology 

RAW DATA 

INITIAL ESTIMATES
Determine 0C  or 0S  

(SIMPLISMA, EFA etc..) 

Optional preprocessing of 
raw data 

*
0 DCS +=  

LS spectra 

+= SDC *  
LS concentration 

Optional application 
of constraints to C

Optional application 
of constraints to S

FINAL SOLUTION
TCSD =*  

MODEL VALIDATION 

ALS 
PROCEDURE 
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Thus, an estimate of the unknown species spectra is given by least squares, which is 

simply, *
0 DCS += and the new estimation of the concentration profile is given by 

+= SDC * .  Where *D  is estimated based on reduced factor space. 

The purposed of constraints during fitting is to ensure that the original starting 

solution converges smoothly and monotonically to the desired result.  Several 

published papers describe in detail the mechanism for solving these types of 

constrained problems in a least square manner that ensures monotonic convergence, 

the most widely used being the non-negative least squares (NNLS) method of 

Lawson and Hansen [104], adapted by Bro and de Jong [105].  Despite this, the 

direct substitution approach; in which the ALS estimate is substituted with the 

constrained ALS estimate, does not result in a least square solution, but is 

commonly used.  One of the reasons for its popularity among SMCR practitioners is 

that it is fast and convenient.  Further research completed by Van Benthen et al. 

[106] revealed that for a particular set of simulations with various levels of noise 

and magnitudes of offsets, the solutions using equality constrained least square 

procedure versus the equality constrained substitution approach were not 

substantially different.  Although the most important factor was not being able to 

predict when the results would be discrepant.   

3. Each application of the two least squares steps (2a and 2b) produce a better estimate 

of the constrained concentration profiles and the constrained component spectra; 

thus a simple iterative refinement process is used whereby these two alternating 

steps are repeated until no further improvement in the estimates of nitC or nitS , is 

observed or the maximum number of iterations, nit, is reached.  This is the basis of 
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the multivariate curve resolution-alternating least squares (MCR-ALS) routine used 

by R. Tauler et al. [107]. 

4. If reference information is available, the resolved profiles can be validated against 

independent external reference measurements. 

Therefore, the basic principles of calibration free analysis or SMCR is to seek a bilinear 

model that gives the best fit, in the sense of least squares, to the two way data D.  In 

other words, SMCR estimates pure variables C and S that minimise the following error 

criteria E, see equation 7. 

TCSDE −=  Equation 7

 

The most commonly used error criterion is the squared difference between D and CST, 

though some techniques use weighted error [108] or normalised squared error [109]. 

The minimisation of equation 7 over C and S cannot guarantee a unique solution to the 

pure variables, i.e., there are many solutions of C and S which reproduce the data with 

the same fit quality.  Put another way, the correct reproduction of the original data 

matrix can be achieved by using response variables differing in shape (rotational 

ambiguity) or in magnitude (intensity ambiguity) from the true solution, without 

changing the residual associated with the model [59, 68, 110, 111]. 

The basic equation associated with resolution methods, (see equation 1) can be 

transformed as shown in equations 8-10; 
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Equation 8 

Equation 9 

Equation 10 

Where ( )CRC =�  and ( )TSRS 1� −=  describes the D matrix as correctly as the true C and 

TS matrices do, though C� and TS� are not the true solutions.  The rotational ambiguity 

problem indicates that a resolution method can potentially provide as many solutions as 

rotation matrices, R can exist, i.e., infinite unless C and S are forced to obey certain 

conditions.  In a hypothetical case with no rotational ambiguity, the basic resolution 

model could still be rewritten as shown in equations 11-12: 

( )∑
=









=

n

i
iii

i

q
q1

1 TscD  
Equation 11

TSCD ��=  Equation 12

Where iq are scalars.  The concentration profiles of the new C�  matrix would have the 

same shape as the real ones, but being iq times smaller, whereas the spectra of the new 

TS� matrix would be shaped like the S spectra though iq times more intense.  This is 

known as the intensity ambiguity. 

A thorough discussion of constraints that are required to reduce or eliminate either the 

rotational ambiguity or intensity ambiguity is discussed below:   

I.2.1.2 Constraints  

There are various constraints which can be imposed during the ALS procedure in order 

to reduce or eliminate the rotational or intensity ambiguity.  Such constraints include the 

i) non-negativity, ii) normalisation, iii) closure, iv) unimodality and v) selectivity, see 

steps 2-3 of the SMCR methodology, section I.2.1.  If the constraints selected are 
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characteristic (or fulfilled) by the measurements, the constraints can be perceived as the 

driving force of the iterative process to the correct solution, with the aim of ensuring 

fast monotonical convergence [68, 72]. 

I.2.1.2.1 Non-negativity  

This is probably the most commonly used constraint in curve resolution since the initial 

work of Lawton and Sylvestre [50].  This constraint assumes that the concentration 

estimates can only be positive or zero ( )0≥C  and in many spectroscopies, spectral 

values can only be positive or zero ( )0≥S .  The application of this constraint will 

reduce the rotational or intensity ambiguity, but it will not constrain the problem 

sufficiently to give unique solutions [50, 58, 111]. 

I.2.1.2.2 Normalisation 

It is possible to limit the size of the concentration or the spectral profiles using 

appropriate normalisation and closure constraints.  In Tauler�s MCR-ALS procedure, 

the pure spectral profiles ncsss ,...,, 21 , can be optionally normalised to either length or 

height [107].  By the constant length normalisation procedure each pure spectrum is 

normalised to a constant Euclidean norm, by dividing the square root of the sum of 

squares with the absorbance values, see equation 13.  In the second normalisation 

procedure the spectral profiles are normalised by dividing the maximum intensity with 

the absorbance values, see equation 14.  This ensures that the signal height or maximum 

intensity of the spectral profile is equal to a constant value.    

k

k
knorm s

ss =,  nck ,...,2,1=  Equation 13



35 

)max(,
k

k
knorm s

ss =  nck ,...,2,1=  Equation 14

Application of this constraint will reduce the intensity ambiguity, but it will not lead to 

the unique solution [58].   

I.2.1.2.3 Closure 

The closure constraint is applied to the rows of the pure concentration profiles.  By this 

constraint the sum of the elements of each row of the concentration matrix is equal to a 

known constant.  A chemical example of this may be a reaction-based system, in which 

a mass balance equation is obeyed by the concentration profiles of the species present in 

the system.   

For example, a matrix C with closure is; 



















=

4.06.0
5.05.0
3.07.0
0.00.1

C  

 

Where in each row of C the numbers add up to 1.  This can be written in matrix notation 

as; 
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Where the symbol nc1 is used to indicate a ( )1×nc vector of ones.  Note that despite the 

closure, the number of independent components in C is two.  If the matrix C is column-
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mean centred, the rank is reduced by one [112, 113].  The closure constraint can be 

formulised as given in equation 15; 

nnc 1C1 =  Equation 15

Where n1 is the number of rows (samples) in the measurement matrix.  Imposing the 

closure constraint does not solve the rotational ambiguity, however, it has been shown 

that the intensity ambiguity is removed if closure constraints are imposed, provided that 

C has full column rank [114]. 

I.2.1.2.4 Unimodality 

This constraint is typically applied to either elution profiles or concentration profiles in 

reaction-based systems.  This constraint assumes that only one peak maxima exists in 

each concentration profile [115].  This constraint can be applied to ensure (a) vertical 

unimodality (the classic unimodality), (b) horizontal unimodality or (c) average 

unimodality [107, 116].   

The common steps in each unimodal constraint are:   

1. Determination of the maximum intensity in the concentration profile 

2. Suppression of the left local maxima 

3. Suppression of the right local maxima 

In (a) the vertical (classical) unimodal constraint, the secondary maxima are eliminated 

by setting the non-unimodal elements equal to zero, in (b) the horizontal unimodal 

constraint, the secondary maxima are reduced by setting the non-unimodal element 

equal to the nearest element keeping the unimodal condition.  In (c) the average 

unimodal constraint, the secondary maxima are reduced by setting the non-unimodal 

elements to the average of the nearest element keeping the unimodality condition and 
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the non-unimodal element.  The values adjacent to the concentration maxima can be 

weighted to allow small departures from unimodality, to compensate for noisy peaks 

normally associated with minor compounds.  The application of this constraint will 

reduce the rotational or intensity ambiguity, but it will not constrain the problem 

sufficiently to give unique solutions [114]. 

I.2.1.2.5 Equality 

If a concentration (e.g., zero concentration) or spectral intensity (e.g., baseline offset, 

slope or pure component spectra) is known, this allows equality constraints to be 

introduced.  Equality constraints in the best case can alleviate rotational ambiguity and 

in the worst case reduce rotational ambiguity.  The known concentration or spectral 

estimates are set to be invariant along the iterative process.  Following this concept the 

knowledge of a profile does not need to be complete to be used.  Equality constraints, 

however, are sometimes too strong during the optimisation and in many circumstances 

it is not possible to know whether the values are precise.  Under these circumstances an 

inequality constraint bounded by an upper threshold can be defined, which assumes that 

a particular species does not exist at appreciable concentrations or that it does not 

contribute to the signal in an appreciable way [58, 68]. 

I.2.1.2.6 Selectivity and local rank 

Selectivity [111] and local rank constraints [117] refer to the fact that in certain 

windows or regions in the data matrix D, a particular species is known to exist while 

others are known not to exist, i.e., spectral and concentration windows where only one 

component is present.  In all circumstances selectivity and local rank constraints have a 

tremendous effect of narrowing considerably the band of feasible solutions, eventually 

collapsing them into unique solutions.  For instance, in a reaction based system it is a 
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common situation that some of the species are not present at the beginning or at the end 

of the reaction process.  Similarly, spectroscopic data may not absorb a component in a 

particular spectral range.  This information can be used in the selectivity constraint to 

define the spectral regions or concentration windows where only one species exists.  

Local rank constraints identify regions where species are non-existent.  Evolutionary 

factor analysis methods, such as EFA can be used to define zero component regions.  

Difficulties may arise because of noise or low contribution from analytes in the signal 

and therefore, defining the beginning and the end of the concentration for the particular 

analyte may be difficult. 

I.2.2 SMCR Research Hypothesis 

The use of constraints during the ALS procedure predetermines a SMCR research 

hypothesis, i.e.  There exists an unconstrained bilinear model with unimodal, non-

negative pure component concentration profiles and pure component non-negative 

spectral profiles that fits the data matrix of measurements obtained from the evolving 

system.  To determine whether the hypothesis is true or false the hypothesis is normally 

tested by iteratively fitting a constrained model until convergence is achieved. If the 

proposed research hypothesis is correct, the resultant SMCR solution would contain no 

active constraints.  However, active constraint are often present in the solution because 

of noise, non-ideal chemical response and non-ideal spectroscopic response.  Active 

constraints may improve the model interpretability at the expense of an increase in the 

model lack-of-fit.  In some cases, the lack-of-fit can be so severe that it call into 

question the validity of the original research hypothesis. 

In such cases, a soft constrained solution may be sought.  Soft constraints refers to a 

situation where a natural constraints such as non-negativity are not strictly enforced, i.e. 



39 

small deviation from non-negativity allowed.  Conversely, hard constraints refers to a 

situation were the constraints are strictly enforced, i.e. no deviation from condition.  For 

many datasets, it has been observed that the use of hard constraints leads to final 

solutions with many active constraints [72].  These types of solutions may exhibit 

distorted composition and spectral profiles.  Compared to hard constraints, SMCR 

models with soft constraints often have fewer active constraints which minimises the 

impact of noise and non-ideal response and hence lowers model lack-of-fit, and are 

more likely to fit the original research hypothesis.   

The soft constrained solution can be implemented using a least squares penalty 

alternating least squares algorithm, called penalty Alternating Least Squares (P-ALS).   

I.2.2.1 Penalty Alternating Least Squares 

The P-ALS methods uses the same four steps (outlined in section I.2.1.1); however, the 

two alternating least squares problems are solved in a row-wise fashion with least 

squares penalty functions to implement constraints.  Bro showed that finding the 

optimum least squares estimate of individual rows in S (row-wise estimation of S) or 

column-wise estimation of ST) can be performed independently for rows in the same 

mode [72].  Thus steps 2a and 2b outlined in section I.2.1.1. become: 

a) Given some initial or intermediate estimate of C for every j, find js such that 

js  minimises TCsd jj − subject to constraints on js , such as jj gs = , where jg is 

a vector of constraints, defined later. 

b) Given some least squares estimate of TS  for every i, find ic such that ic  

minimises TScd ii −  subject to constraints on ic , such as ii gc =  
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The global solution to S is obtained by solving the row-wise subproblem  j times.  The 

procedure is illustrated schematically in figure 1a.  By transposing the problem, the 

same algorithm can be used to solve the row-wise estimation of CT as shown in figure 

1b. 

 

Figure 1a.  Schematic illustration of the row-wise fitting algorithm for finding rows of S.  Figure 1b.  
Schematic illustration of the row-wise fitting algorithm for finding rows of C. 

Details of how the penalty function can be used to construct equality constraints[106], 

non-negativity constraints, closure constraints[106] and unimodality constraints using 

the row-wise method of Bro[72] is given below. 

I.2.2.1.1 Equality Constraints 

Approximate equality constraints can be implemented for least squares problems y=Xb  

via penalty functions [72, 106].  Notice that both row-wise P-ALS subproblems (a) and 

(b) described can be generalised to this form.  Suppose the equality constraints bi=gi  are 

desired, where the elements gi are desired, where the elements gi represent the desired 

jd = C Ts j

id = S Tci

=

D C
S

D
S

C

Figure 1b 

Figure 1a 
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goals for selected coefficients bi of b.  By augmenting y with g  and X  with a matrix, H, 

of appropriately positioned ones and zeros, one or more coefficients of the normal least 

squares solution vector, b, can be forced to conform to the desired values, gi. The model 

is written as shown in equation 16; 

Tb
H
X

g
y

j
j









≅








ϕϕ

 Equation 16

The penalty function weighting factor ,ϕ , can be adjusted to small values when soft 

constraints are desired, or it can be set very large to give hard constraints.  To properly 

weight problems of different sizes and different measurement scales, the penalty 

function weighting factor,ϕ , can be adjusted relative to the norm of X; for example, 

( )Xnorm01.0 ×  for soft constraints or ( )Xnorm10×  for hard constraints. 

If one or more pure component spectra are known a priori, this information can be 

included as equality constraints on ST in step (a) of the P-ALS method.  If reference 

data is available for concentrations, say for example, aliquots of a reaction mixture are 

analysed at selected time intervals by HPLC, these sparsely sampled reference data can 

be used as equality constraints on C  in step (b) of the P-ALS method.  To implement 

non-negativity, unimodality, closure and equality constraints during P-ALS the 

following procedures are followed: 

I.2.2.1.2 Non-negativity Constraints 

A simple modification of P-ALS steps 2a and 2b can be used to impose approximate 

non-negativity constraints using the least squares penalty functions and equality 

constraints.  First the standard unconstrained least squares problem is solved.  The 

resulting coefficients, bi, are inspected.  For any coefficient, bi, that are negative an 
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equality constraint, bi = 0 is set.  With a large penalty value, the resulting solution 

converges to same result that would be obtained using hard constraints, such as those 

obtained from algorithms NNLS or FNNLS.  An example illustrating the 

implementation of non-negativity constraints is shown below.  First the unconstrained 

least squares solution to a sample problem is given in equation 17. 
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�

3795.06721.04186.0
6813.02026.04660.0
0196.05252.09318.0
8381.08462.04451.0

4057.0
1763.0
7382.0
9218.0

by
Equation 17

Noting that coefficient b3 is negative, the non-negativity constrained least squares 

problem is solved as shown below with equality constraints and penalty weighting 

function ϕ =10, giving the approximate non-negativity constrained solution 

( ) [ ]0003.07645.02749.010:ALS-P −=ϕb , see equation 18.  If hard constraints are 

imposed by use of algorithm NNLS, the solution [ ]07643.02749.0NNLS =b is 

obtained.  This solution compares favourably to the solution obtained with penalty 

weight ϕ =100, ( ) [ ]6
100:ALS-P 1037643.02749.0 −×−=ϕb .  If soft constraints are 

desired, a smaller penalty weight, such as ϕ =1.0,can be used producing the solution 

( ) [ ]0189.07809.02721.01:ALS-P −=ϕb . 
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I.2.2.1.3 Closure Constraints 

In some cases such as batch reactions studies or chemical equilibrium studies, the 

principles of mass balance can be invoked such that the sum of all or selected species 

concentration profiles should equal a constant.  Closure constraints can be implemented 

with equality constraints in the manner shown by Van Benthem, Keenan and Haaland 

[106] using [ ]1...,,11=H  and [ ]1=g .  Augmenting the previous example with 

closure constraints with a penalty weighting function ϕ =10 gives the following results 

with ( ) 0005.1sum ALS-P =b , given in equation 19.  This example also illustrates that 

many different combination of constraints can be solved in one step. 
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bXy  Equation 19

For some chemical systems, a weighted sum of several species would be expected to 

give a constant, for example, as in the reaction CBA2 →→ .  Here the appropriate 

constraint would be [ ]1121=H  and [ ]1=g .   

I.2.2.1.4 Unimodality Constraints 

Further modification of P-ALS step 2b can be used to impose approximate unimodality 

constraints using least squares penalty function and equality constraints.  In a fashion 

similar to the non-negativity constraint implementation described above, the standard 

unconstrained least squares problem is solved first.  The resulting concentration profiles 

are inspected as a function of time to find the global peak maximums, one for each 



44 

profile.  Searching in both the forward and reverse directions from the global peak 

maximums of each constituent, unimodality constraints must be added at time 1+i , 

jiji cg ,,1 =+ , if secondary local maximums are encountered, for example, jiji cc ,1, +< or 

jiji cc ,1, −> .  An example illustrating the implementation of unimodality constraints is 

shown below.  First, the unconstrained least squares solution to a sample problem is 

given in equation 20. 
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by  
Equation 20

Suppose it is expected that a peak maximum occurs at b2.  Noting the coefficients b3 in 

the unconstrained solution is too large, the unimodal constrained least squares problem 

is solved, as shown  below, with the equality constraint b3 = 0.4085 and the penalty 

weighting function ϕ =10, giving the approximate unimodal constrained solution,  

( ) [ ]4102.05908.01720.010:ALS-P =ϕb .  After several iterations of the ALS algorithm, 

the result converges to ( ) [ ]5323.05311.01408.010:ALS-P =ϕb . 



45 

I.2.3 Exploratory Analysis Tools 

I.2.3.1 Number of components 

When applying SMCR to �black� systems, i.e., when the concentration of the 

constituents and the spectra of the constituents are unknown, and perhaps even the 

number of the constituents is unknown, the first step is to estimate the chemical rank.  

The correct estimation of the number of chemical components in the system is crucial 

for the correct resolution.  If there were no measurement noises and other pitfalls from 

measurements in the data, the mathematical rank (the number of independent 

components and or factors in two-dimensional data) and chemical rank (the number of 

chemical components in unknown mixtures) should be the same.  The determination of 

the mathematical rank of a noise-free matrix is a trivial task.  One can reduce the matrix 

to row-echelon form by Gaussian elimination and count the number of non zero rows.  

However, determining the chemical rank of an experimental data matrix is a difficult 

task because of the following factors: (i) the presence of measurement noise and their 

non-assumed distributions, (ii) heteroscedasticity of the noise; and (iii) collinearity in 

the measurement data, i.e., if the chemical species do not vary independently within a 

mixture, the rank of the measurement matrix will be different to the number of chemical 

species.  For example, in an overall second order kinetic reaction, A + B! C (first 

order in constituents A and B), both reagents would be consumed at the same rate, such 

that the concentration profiles of A and B are mathematically indistinguishable.  In this 

instance the overall rank of the system is less than the number of chemical constituents.  

This system is said to be rank deficient, i.e., the number of independent components is 

less than the number of chemical species.  Rank deficiency may also be caused by data 

pretreatment (e.g., mean centering, autoscaling, differentiation).  To circumvent this 
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problem the measurement matrix is augmented either by using multiple process runs or 

by adding known amounts of absorbing species already present in the mixture [112].   

Exploratory tools such as FA or principal component analysis (PCA) can be used to 

estimate the chemical rank of two-way data because they can decompose the matrix into 

several independent and orthogonal components [1, 11, 48].  The number of 

independent and orthogonal principal components (PC) will correspond to the number 

of independent chemical species in the mixture.  The mathematical formula of PCA is 

expressed elsewhere [1, 48].  Methods used for estimating the number of independent 

components include PCA [1, 48], the Scree test [48], Malinowski�s F-Test [11], and a 

number of calibration free exploratory tools, such as  SIMPLISMA [64, 118-121], 

Evolving Factor Analysis (EFA) [62, 122, 123] etc.   

I.2.3.2 Exploratory Methods 

Calibration free methodologies can be divided into two general categories; those which 

produce boundaries of solutions and those which produce single solutions for each 

component.  In their seminal paper, Lawton and Sylvestre [50] introduced SMCR for 

two-component mixtures.  The algorithm based on PCA generated boundaries of valid 

solution meet three criteria; 

1. All pure component spectral values are non-negative 

2. All pure component concentration values are non-negative 

3. All pure component spectra must lie within the subspace spanned by two 

eigenvectors in the spectra space. 

A constraint of unit-area spectra was also applied to resolve ambiguities of scale.  It was 

further indicated in the paper that if there were channels in which only one component 
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gave a response, single solutions rather than boundaries could be obtained. The original 

SMCR method proposed by Lawton and Sylvestre was restricted to two components.  

Further extensions of the method to three components was completed by Ohta in 1973 

[124], Sasaki et al. in 1983 [125] and Borgen and Kowalski in 1985 [51].  However 

because the algorithms were quite complex, difficult to program and computationally 

intensive, SMCR methods that produced single solution were favoured and as a result 

developed in parallel with boundary search methods.  These single solution methods can 

be divided into unique methods and rational resolution methods. 

Unique methods can be identified as those methods which try to pick up a unique 

resolution in which the factors for single species are uniquely defined according to the 

mathematical principles involved.  A characteristic feature of unique resolution 

techniques is to exploit information in local feature regions such as selective regions or 

zero concentration regions to reduce or eliminate rotational and intensity ambiguities in 

the solution.  The drawbacks of these methods is the accurate determination of the 

feature regions through exploratory local rank analysis, often the solution obtained tend 

to be dependent on the experience of the analyst [59].  Unique methods include EFA 

[62, 122, 123], Fixed-Sized Window�Evolving Factor Analysis (FSW-EFA) [126], 

Heuristic Latent Projection Analysis (HELP) [127-129],Window Factor Analysis, 

(WFA) [130] and Subwindow Factor Analysis (SFA) [66]. 

Rational techniques such as, Iterative Target Transformation Factor Analysis (ITTFA) 

[49, 131], ALS [67, 70], SIMPLISMA [64, 118, 120, 121, 132], Orthogonal Projection 

Analysis (OPA) [95, 97, 133, 134] can be classified by those techniques which aim at 

finding a rational resolution in which the factors for single species do not violate the 

generic prior knowledge, such as non-negativity, unimodality, etc.  Rational resolution 
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may produce a set of feasible solutions and the accuracy of the solutions depends on the 

correlation or collinearity among the pure profiles underlying the two-way data.  

Rational resolution methods tend to produce solutions which approximate the true 

solution very well, if the correlation amongst the chemical constituents is not severe.  

Rational resolution methods can be distinguished in the way in which the initial 

estimates are determined or in the optimisation algorithm to iteratively improve the 

solution [59]. 

The methods of EFA, SIMPLISMA and ITTFA are described below.  These tools were 

used in the investigation of some of the processes under study (see Chapter 2 and 3).   

I.2.3.2.1 EFA 

EFA, developed by Maeder et al. [62, 123],  is a unique resolution method, that was 

originally developed for the resolution of overlapping chromatographic peaks.  

However, this technique can be applied to any chemical system which evolves in a 

systematic non-random way as a function of time, pH, temperature, etc.  These systems 

are called evolutionary systems and are normally complex systems.  Examples of such 

systems include partially resolved chromatographic peaks eluting as a function of time 

[79, 92, 135, 136].   

There are two EFA methods which can be used to estimate the evolutionary profiles.  

Method (1) is the iterative approach, in which evolutionary profiles are estimated 

through successive local rank analysis of sub-windows within a measurement matrix.  

ALS regression is used to compute the normalised spectra of the analytes.  Method (2) 

is a non-iterative approach, in which the zero component regions of the estimated 

evolutionary profiles derived from the initial EFA analysis (see Method 1) are used to 
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determine the rotation matrix R.  The �real� evolutionary profiles are computed and a 

least square calculation is used to compute the normalised spectra of the analytes.   

Typically in curve resolution analysis the initial estimate of the evolutionary profile is 

determined using the iterative approach (Method 1).  To reduce the number of feasible 

solutions a selectivity condition can be included for the generation of the �real� 

evolutionary profiles in the form of zero component regions.  To complete this zero 

component regions are determined from the evolutionary profiles derived from method 

1 and this information with the  evolutionary profile are used in the non-iterative 

procedure.  An overview of both the iterative and non-iterative procedures is given in 

figure 2 and described below.    

Iterative EFA 

Datasets can either be factor analysed column-wise or row-wise (depending on the 

information required).  The rows tend to follow a logical sequence, such as response 

according to time and this property can be exploited to locate the pure row factors in the 

matrix.  This is illustrated on a four component chromatogram given in figure 3.  The 

compounds are present in well defined time windows, e.g., compound A is present in 

window 41 tt − , compound B is present in window 52 tt − , compound C is present in 

window 73 tt − and compound D is present in window 86 tt − .  Factor analysis is applied 

in succession to the sub-matrices Di formed by the first 1,2, �,i ,�,n spectra (formed 

by adding rows from an initial top sub-matrix, 0T to the bottom sub-matrix 0B ).  In the 

example the rank of these matrices increase from one to four as schematically shown in 

figure 3.    By analysing the ranks as a function of the number of added rows, time 

windows are derived where one, two or three etc. significant PCs are present.  By 

plotting the eigenvalue, variance described by each eigenvector (or the log of the 
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eigenvalue) against the number of rows added, it is possible to derive (from the 

significant eigenvectors), the number of new components being produced for each sub-

matrix.   

 
Figure 2.  Overview of the  iterative and non-iterative EFA procedures 

This is shown in figure 4b and the chromatographic elution of components A-D is 

shown in figure 4a.  Figure 4b can be interpreted as follows.  For each sub-matrix a new 

significant eigenvector appears each time a new compound is introduced into the 
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spectra, thus at 321 ,, tttt =  and 5t .  This is observed from an increase in eigenvalue.  

Naturally the ith eigenvalue is not a direct measure of the concentration of the kth 

species.   

 
Figure 3.  Time windows in which four compounds are present.  The rank of the data matrices are 
formed by adding rows to a top matrix T0 (from the top to the bottom matrix) or by adding rows to 
a bottom matrix B0 (from the bottom to the top). 
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Figure 4.  Forward Evolving PCA.  Figure 4a.  The model chromatographic profiles.  Figure 4b.  
Eigenvalues calculated when adding rows to T0 (forward evolving PCA).  The forward EFA plot 
indicates the elution of new components at windows t1, t2, t3 and t5. 

 

Figure 5.  Backward Evolving PCA.  Figure 5a.  The model chromatographic profiles.  Figure 5b.  
Eigenvalues calculated when adding rows to B0 (backward evolving PCA).  The backward EFA plot 
indicates the disappearance of components at windows t4, t6, t7 and t8. 
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Figure 6.  Reconstructed concentration profiles from the combination of figures 4b and 5b.  The 
concentration window for the kth component is defined by the rise of the ith eigenvalue in the 
forward EFA plot(__) and the (n+1-i)th eigenvalue in the backward EFA plot (---). 

The eigenvalues are strongly dependent on the dissimilarity of the absorption spectra 

and the elution profiles [62].    Nevertheless, from figure 4b it is not yet possible to 

derive the compound windows, as this plot indicates the appearance of a new compound 

but not its disappearance.  Therefore, a second analysis is completed in the reverse 

order, i.e., one starts from the bottom sub-matrix, 0B , and rows are added to this sub-

matrix to the top sub-matrix, 0T .  A similar plot is shown in figure 5b of the reverse 

analysis.  New factors appear at 321 ,, tttt =  and 5t  in the forward EFA analysis and 

disappear at 764 ,, tttt =  and 8t  in the backward EFA analysis.  The compound windows 

are found by connecting the rising part of the ith forward curve with the falling part of 

the (n+1-i)th backward curve.  This results in a rough estimate of the concentration 

window of the kth component.  The compound regions are found by connecting the first 

appearing compound with the last appearing compound, shown in figure 6.  All the 

resulting curves are arranged into the columns of the concentration matrix C.  These 
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evolutionary profiles are abstract representations of the true concentration profiles.  

These concentration estimates are used to initialise the ALS procedure, see step 1 and 2 

of the SMCR methodology, section I.2.1.1. 

Non-Iterative EFA 

The non-iterative calculation of the evolutionary profiles is described below.  The  

evolutionary profiles and the zero component regions derived from the iterative EFA 

procedure are used in the non-iterative procedure.   The rotation matrix R is calculated 

using the concentration windows determined from EFA analysis (see above).  The 

important factor for resolution with EFA is the so-called zero-concentration window.  

An analytes zero�concentration window is defined as the part of the data matrix where 

the analyte does not contribute to the signal, but all other analytes do.  All analytes must 

have a good zero-concentration window if the non-iterative EFA is to succeed.  In this 

context, the term �good� implies that the other analytes contribute significantly to the 

signal in the zero-concentration window when compared to the contribution from the 

noise. 

If we concentrate on the evolutionary profiles, where C in TT PTRRCSD 1−== can be 

written as equation 21. 

TRC =  Equation 21

Where T and PT are the independent eigenvectors.  

Once the rotation matrix R is found the resolved concentration profiles C are computed.  

Use of equation ( ) DCCCS TTT 1−
=  resolves the spectra.  Figure 7 illustrates how R is 

found.  The grey areas symbolise the zero-concentration window for each of the three 
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analytes present.  Column k in R represents the rotation vector that takes us from the 

abstract evolutionary profiles T, which is the scores matrix of D, to the real 

evolutionary profiles kc .  This means that we can solve the rotation problem separately 

for each analyte as indicated in figure 7b and equation 22. 

kk Trc =  Equation 22

Equation 22 is represented in figure 7b.  The crucial idea here is that the grey areas of 

kc is a linear combination of the grey areas of T .  To get figure 7c the grey areas of the 

vectors are employed.  0
kc is the zero vector and therefore is a homogeneous system of 

equations with the obvious trivial solution 0=kr .  The rank of 0T however is only 

1−nc  as the contribution of component kc is eliminated.  Therefore, this homogeneous 

system of equations has a non-trivial solution; one element of kr can be chosen freely 

and the rest of kr  is calculated by a simple linear regression.  kc  is determined by 

application of equation 22.  This procedure is repeated in turn for all nc components, 

thus yielding the complete concentration matrix C which at the end of the calculation is 

used to compute the spectral matrix. 
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Figure 7.  Finding the rotation matrix of R using EFA.  Figure 7a. The scores of T are rotated into 
the evolutionary profiles C by means of R.  The grey areas designate the zero-concentration 
window of the analytes.  Figure 7b.The rotation step is completed independently for each analyte.  
The kth analytes concentration profile is found by rotating the score by means of the kth column in 
R.  Figure 7c. Solving the rotation equation.  0

kc is the zero component vector of kc and 0
kT is the 

part of the scores that correspond to the analytes zero-component window.  The rotation vector, 

kr , that rotates the scores into the evolutionary profiles can now be found. 

EFA is not dependent upon selective regions, which means that even systems with 

complete overlap in both directions can be solved [136].  It is important to note that 

EFA identifies independent factors not constituents. Reactants that co-vary would not 

be split out as a separate factor [17].    

I.2.3.2.2 SIMPLISMA 

SIMPLISMA [64, 118-121], on the other hand, provides the number of components and 

the purest concentration or spectral profiles directly from the measurement matrix, 

based upon a purity criterion.  SIMPLISMA forms part of the rational resolution 

C       T          R  kc            T        kr  

= =

=

 0
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Figure 7a Figure 7b 

Figure 7c 
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method or pure column or row factor analysis methods developed by Windig and 

Guilment [64].   

SIMPLISMA is a pure-variable based method[64] and is used to select the pure 

components from the original measurement matrix.  This means that it is assumed that 

every component in the mixture under study has a variable, which has a finite intensity 

for that particular component, and that the variable has a zero intensity for all other 

components in the mixture.  In contrast to most SMCR methods, SIMPLISMA does not 

use PCA to resolve the data.  It is based on the evaluation of the relative standard 

deviation ( )jj µσ of the columns (wavelength) j on D.  This yields a standard deviation 

spectrum, referred to as the purity spectrum, f.  The pure variable is basically the 

variable having the maximum ratio of the standard deviation and the mean of all the 

intensities.  The corresponding concentration profile at this pure variable is used as an 

initial estimate for this component.   

( )jjjf µσ=  Equation 23

In equation 23, jf represents the purity value at the jth variable index.  The mean of the 

column vector at variable j, jµ  is calculated as given in equation 24; 

∑
=

=
n

i
jij d

n 1
,

1µ  Equation 24

and jσ  represents the standard deviation of variable j, as shown in equation 25; 

( )∑
=

−=
n

i
jjij d

n 1

2
,

1 µσ  Equation 25
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Where jid , is the intensity at the jth variable, for the ith case.  Problems may arise for 

variables with a low noise range intensity.  In order to correct for this, the purity is 

redefined by the addition of a constant (offset), δ , to the denominator of equation 23, as 

shown in equation 26;  

δµ
σ

+
=

j

j
jf  Equation 26

If δ  has a relatively low value with respect to jµ  (i.e., for a high value of jµ ), the 

effect will be negligible, but for low values of jµ  (i.e., in the noise range), the effect is 

that this noise correction term will make the purity value lower, which is what is 

required to correct for noise.  Typical values for δ  range from 1-5% of the maximum 

of jµ .  The % is selected through sequentially increasing the percent deviation by a 

percentage mark and evaluating the SIMPLISMA solution.  A good estimate of the 

constituent profile would appear to be smooth, whereas a noisy profile may appear to be 

rugged. 

All the jf  values are plotted in the form of a spectrum, a so-called purity-spectrum, f, 

in which the wavelengths with the highest intensity represents the first pure variable.  

The visualisation of the purity of the variables facilitates the detection of pure variables 

caused by unwanted features in the datasets such as noise.   

The determination of the next pure variable, kjf , , where k is the kth pure variable that 

will be selected from the kth purity spectrum, is different to the determination of the 

first pure variable (wavelength) 1,jf , because the weight factor, kj ,ω  is calculated using 

a determinant-based function; this ensures that the second pure variable is selected 
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orthogonal to the first (or is least uncorrelated to the first pure variable).  The general 

formula for the purity spectrum with the determinant-based function is given in 

equation 27. 

δµ
σ

ω
+

=
j

j
kjkjf ,,  

Equation 27

kj ,ω , is a weight factor, which is added to correct for previously chosen variables. 

Variables which are highly correlated with the previously selected pure variable are 

down weighted, i.e., they have a value for kj ,ω  close to 0, while variables that are 

dissimilar to the previously selected pure variable have a high value for kj ,ω  close to 1.  

All the jf  values for the kth pure variable are plotted in a purity-spectrum, fk, in which 

the wavelength with the highest intensity represent the next pure variable.  This 

procedure is repeated for the all the nc pure variables to be determined. 

An alternative procedure is to evaluate the purity of the rows i instead of the purity of 

the columns j, this is known as the T-SIMPLISMA approach [77], given in equation 28. 

δµ
σω
+

=
i

i
kikif ,,  

Equation 28

The rows with the highest purities are estimates of the row factors.  The corresponding 

spectral profile at this pure row factor is used as an initial estimate for the kth pure 

component. 

The concentration estimates determined by the SIMPLISMA approach or the initial 

spectral estimates determined by the Transposed - Simple to-use interactive Self modelling 
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Mixture Analysis (T-SIMPLISMA) approach can be used to initialise the ALS procedure, 

see step 1 and 2 of the SMCR methodology, section I.2.1.1.   

I.2.3.2.3 ITTFA 

The final exploratory method described is ITTFA.  This method is similar to target 

transformation factor analysis (TTFA) [11, 63], the only difference being that target 

factor analysis is completed on a series of input vectors, which have been constrained to 

a known property of the data such as non-negativity.  ITTFA is generally applied when 

good candidate spectra are not available.  It was first introduced by Hope et al. in 

environmetrics [137], and Gemperline [49, 61] and Vandeginste et al. [131] in 

chromatography.  

Method TTFA 

The method of ITTFA is based on TTFA.  By TTFA each candidate spectrum is tested 

individually on its presence in the mixture.  The targets are tested in the space defined 

by the significant PCs of the data matrix.  Therefore, TTFA begins with PCA of the data 

matrix D of the measured spectra.  Any row of D can be written as shown in equation 

29. 

iii ePtd T += **  Equation 29

Where id ( )m×1  is the ith row of D, *
it ( )nc×1  is the scores of the ith row of D for the 

nc significant eigenvectors, TP* ( )mnc ×  is the loadings of the nc significant 

eigenvectors and ie  ( )m×1  is the error associated with the ith row of D. 

Each mixture spectrum is a linear combination of the nc significant eigenvectors.  

Equally, the pure spectra are linear combinations of the first nc PCs.  A target spectrum 
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taken from the library can be tested on this property.  If the test passes, the spectrum or 

target may be one of the pure factors.  This is completed as described below; 

The first step is to calculate the scores *
int of the target spectrum, in, to be tested by 

solving equation 30: 

( ) *1**** inPPPinPt T
in ==

−
 Equation 30

These scores give the linear combination of the PCs that provides the best estimation (in 

a least squares sense) of the target spectrum.  How good that estimation is can be 

evaluated by calculating the sum of squares of the residuals between the re-estimated 

targets or output target (from its scores) and the input target.  The output target out is 

equal to T
in Pt ** .  The overall expression for TTFA is given in equation 31. 

TPinPout **=  Equation 31

If the difference between out and in ( )inout −  can be explained by the variance of the 

noise, the test passes and the target is possibly one of the pure factors. 

Method of ITTFA 

In the absence of good candidate targets to be tested by TTFA, one defines initial targets 

of the nc pure components which are gradually improved until the test passes. The 

initial targets can be found using the uniqueness test [49, 61, 69] which is performed by 

constructing a vector of zeros with a single element set to a value 1.  The test is 

performed for each row (sample) in the original data matrix: 
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( )

( )1,0,0,...,0,0,0
.
.
.

0,0,0,...,0,1,0
0,0,0,...,0,0,1

2

1

=

=
=

nin

in
in

 

Each test vector can be thought to approximate a very narrow Gaussian or skewed 

Gaussian distribution at a particular retention time.  When the retention time represented 

by in corresponds to the retention time of a real component, a local minima is observed 

in the sum of the squares of the difference between the test vector, in, and the predicted 

vector out.  The local minimum indicates that the very narrow Gaussian test peak is a 

better approximation of the real elution profile at the selected retention time.  The test is 

repeated at each of the retention times represented in the raw data matrix so that nc local 

minima may be found, each one corresponding to the retention time of one of the nc real 

components.  When more than nc minima are found, only the nc smallest are selected.  

This is the so-called needle search. 

An initial input target 1in is projected into space defined by the eigenvectors.  The target 

is tested by inspecting the output vector 1out as described in TTFA.  If the input and 

output vector are significantly different then the loadings of the output vector can be 

inspected to ensure that specific requirements are met for the data, such as the non-

negativity of the response for elution profiles, or removal of secondary maxima or 

shoulders in peaks.  The data is constrained by correcting negative values and removing 

certain noise from the data.  The consequence of the application of the constraint is that 

vector 1out is lifted from the plane and rotated over a smaller angle, giving vector 1ni ′ , 

to obtain results which are closer to the true factors, than 1in . 
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The input vector 1ni ′ is regarded as a new target spectrum.  TTFA is applied and a 

second output vector 1tou ′  is produced.  The overall result is the rotation of 1tou ′ to  

1ni ′′ additional constraints are placed on the loadings until the differences between the 

input and the output converges to zero, which indicates a stable solution. This solution 

indicates a pure factor, a second factor may be found by repeating the procedure with a 

new target input spectrum.  

A good solution can be obtained when appropriate constraints are formulated and when 

good target spectra are available. 

The main steps of ITTFA are summarised below: 

1. Calculate the significant PC from the data matrix 

2. Choose an initial target 1in  

3. Project 1in in the space defined by the eigenvectors by applying equation 31.  An 

output target 1out is obtained. 

4. Evaluate the correlation between the input and output target; if the correlation is 

larger than a specified value, the procedure converges to a factor.  Repeat the 

procedure with another initial target, until all pure factors are estimated. 

5. Otherwise adapt the projection target by applying constraints.  This gives a new 

target to be tested.  Return to step 3. 

This method has proved to be quite successful, although practitioners have realised the 

importance of the quality of the initial iterative vector to ensure the success of the 

resolution and to ensure that the algorithm converges quickly and accurately [81].   
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I.3 Model Validation 

Validation is defined here as ensuring a suitable model is obtained.  This covers many 

diverse areas such as data preprocessing and pretreatment methods, validation of MCR-

ALS solution, validation of multivariate calibration analysis and comparative validation 

of various calibration methodologies using significance testing.   

I.3.1.1 Preprocessing and pretreatment methods 

The data pretreatment methods optionally applied in the calibration free analysis include 

truncation, minimum offset, zero average offset, normalisation and standard normal 

variate (SNV).   

Truncation 

Truncation removes uncorrelated and uninformative regions from the measured matrix 

without compromising the bilinearity assumption.  In the spectral dimension, truncation 

allows the removal of wavelength regions which have high amounts of noise or 

uncorrelated and uninformative regions.  Similarly the truncation in the concentration 

dimension allows the removal of spectral samples measured during times which should 

not be included in the calibration free data analysis.  For example, sampled pre-reaction 

mixture spectra of a multi-stage reaction may need be separated into individual stages 

and calibration free analysis attempted separately on each stage. 

Offset Methods 

The offset methods (the minimum offset method and the zero average offset method) 

enable small baseline adjustments to reduce rotational ambiguity by removal of a 

predefined offset.  The minimum offset method searches for the minimum value in each 
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spectrum and subtracts it from the corresponding value, to ensure that the minimum 

value in each spectrum is set to zero.  If the measured data contains negative values, this 

method would remove all negative values in the data.  This would enable the application 

of the non-negativity constraint in the ALS optimisation, to reduce the number of 

feasible solutions.  The zero average offset method ensures that the average value in a 

predefined region which is supposed to be zero, is set to zero.  In each spectrum, the 

average row value of the selected range is subtracted from the corresponding spectrum 

[138].    

Normalisation 

In the application of SMCR methods it has been shown that with a specific 

normalisation, (the profiles are assumed to have either unit norm, which is usually taken 

as the Euclidean norm or 1-norm in accordance with the specific SMCR method [56, 

59, 109]) and under a general non-negativity constraint, the data points in the two-way 

data D are contained in the simplex whose vertices are constituted by the pure 

components [51, 52, 139].  This has important consequences for reducing the intensity 

ambiguity and locating the pure variable, and for the development of non-algebraic 

SMCR techniques.  However, this aspect of SMCR analysis (i.e., determining pure 

variables by locating the vertices of a simplex) is beyond the scope of this thesis.   

SNV 

An effective preprocessing method is the use of SNV.  This type of standardisation 

works by considering each spectrum, id , as a set of n observations and calculating their 

z -scores, (not to be confused with needle output spectrum, z), given in equation 32: 
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( ) iiii σµ−= dz  Equation 32

It has the effect of removing an overall offset by subtracting the mean spectral reading, 

iµ , and it corrects for differences affecting the overall variation.  SNV effectively 

reduces sample-to-sample intensity differences and preserves spectral shape without the 

need of any user-defined parameter.  In various settings it has been found to be an 

effective preprocessing method [48].  However, absolute quantitative information may 

be lost after SNV transformation due to the scaling operation and thus SNV is primarily 

used with qualitative methods. 

I.3.1.2 Validation of MCR-ALS Solution 

To determine whether a stable MCR-ALS solution has been obtained the lack of fit 

(LOF), which gives a measure of the relative fit quality between the experimental data 

and ALS reconstructed data, is assessed [107].  The MCR-ALS solutions converge once 

the LOF (%) is within the defined experimental error, given in equation 33.  Where dij is 

the experimental absorbance at the sampled point, i, and the wavenumber, j, and ijd� is 

the ALS calculated absorbance for that element. 

( )
∑

∑ −
=

ij
ij

ij
ijij

d

dd
LOF 2

2�

100(%)  

Equation 33

I.3.1.3 Validation of Multivariate Calibration Models 

The multivariate calibration models are validated using the regression statistics 

stipulated below.  The regression statistics are substantiated just for the error in the test 

set.  However, the regression statistics for the calibration are calculated analogously 

using the values from the training set.  
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The slope and offset of the regression gives an indication of the accuracy of the 

calibration models.  The correlation coefficient between the reference concentrations, 

iy , and predicted concentration, iy� , are calculated to determined whether a linear 

relationship exist between iy  and iy� .  A correlation value of plus one, represents a 

perfect positive correlation, a value of zero means that there is no correlation.  The Root 

Mean Square Error of Prediction (RMSEP) is a measure of the accuracy of prediction.  

The sum of the prediction error for all, n samples for the test set is calculated to assess 

the predictive capabilities of the calibration model.  The RMSEP is measured in the 

same units as iy , given in equation 34. 
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The Standard Error of Prediction (SEP) is a measure of the precision of prediction, 

given in equation 35.  The BIAS (absolute deviation from y ) tracks the systematic 

prediction error, given in equation 36.  The Relative Error (RE %) is similar to the LOF 

calculation, but gives a measure of the fit quality between the predicted and reference 

concentrations, given in equation 37. 
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II.1 Exploratory and Quantitative Analysis of the Catalysed Asymmetric 

Transfer Hydrogenation Reaction of a Prochiral Imine 

II.1.1 Introduction 

This study was completed in collaboration with Melanie Ropic and Professor Donna 

Blackmond, The Catalyst Group, The University of Hull, UK.   

Aim 

The aim of the study was to use calibration free techniques to characterise the 

asymmetric transfer hydrogenation reaction of prochiral imine, 1-methyl-6,7-

dimethoxy-3,4-dihydroisoquinoline, without the explicit use of the underlying chemical 

model linked to it.  This avoided error caused by the assumption of a wrong model and 

allowed the presence and modelling of chemical components, which were not realised 

from prior quantitative analysis.  Secondly, CFT were applied to provide an alternative 

method for the HPLC analysis of the prochiral imine and chiral amine; 1-methyl-6,7-

dimethoxy-1,2,3,4-tetrahydroisoquinoline.  This was essential as the HPLC method was 

time consuming (the HPLC workup was approximately twice as long as the reaction 

(~1hr)). For explorative analysis, the HPLC method was limited to target analytes, as 

intermediates and by-products were frequently lost in the work-up procedure. 

Introduction 

The catalysed asymmetric transfer hydrogenation reaction is an increasingly common 

industrial reaction which is used for the in-situ hydrogenation of prochiral imines to 

produce enantiomerically pure chiral amines.  Enantiomerically pure chiral amines are 

of increasing commercial value in the fine chemical and pharmaceutical areas in view of 
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their application as resolving agents, chiral auxiliaries/chiral bases and catalysts for 

asymmetric synthesis.  However, chiral amines often possess pronounced biological 

activity in their own right, and hence are in significant demand as intermediates for 

pharmaceuticals and agrochemicals in an expanding market where revenues due to 

chiral technology are expected to reach US$19.9 billion by 2009 [140].   
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Figure 8. Noyori and Hashiguchi's [141] proposed reaction mechanism for the asymmetric 
hydrogenation of imines. 

The catalysed asymmetric transfer hydrogenation (CATHy) has been shown to be a 

beneficial generic method both economically and technically for the reduction of C=N 

and the saturation of C=C and C=O linkages [141, 142].  It is operationally very simple 

and requires non-hazardous organic molecules.  It has been shown to be a powerful 

alternative to asymmetric hydrogenation using molecular hydrogen with chiral Ru(II)-

bisphosphane catalysts due to its practical simplicity and the possibility of using 

accessible and robust ligands [143]. Noyori and coworkers [141, 142] found that 

CATHy reactions were particularly useful for the asymmetric enantioselective reduction 
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of cyclic imines giving amines with 90�97% enantiomeric excess (ee) (using Ru-

CATHy), which opened a new general route to natural and synthetic isoquinoline 

alkaloids as well as a convenient preparation for chiral amines [141, 142]. 

Nevertheless, a complete investigation of the CATHy mechanism is required (from an 

industrial perspective) to monitor and predict the evolution of specific chemical 

constituents within the reaction to aid control.  Uematsu et al. [142] proposed the most 

feasible and detailed mechanism for this reaction, shown in figure 8, with Casey [144] 

and Yi [145] affirming the likelihood of steps 3, 5 and 6 of the stepwise hydrogen 

transfer.  In this mechanism in-situ formation of the catalyst precursor from the reaction 

of (Rh(cp)Cl2)2 and 1,2-diphenyl-1-tosyl-2-aminoethane, B, is followed by a reaction to 

remove HCl to give the active catalyst species, D.  It is suggested that formic acid adds 

irreversibly to form the metal hydride, which undergoes concerted transfer of the 

hydride and the N-H proton to afford the amine product, C.  In the study completed by 

M. Ropic et al. [146, 147], no erosion of ee was observed, supporting the evidence of 

the irreversibility of the cycle.  However, the potential for catalyst poisoning in side 

reactions that form carbon monoxide has been noted, cited in [146], see step 4b of the 

stepwise hydrogen transfer.  One of the special features of the imine-formic acid system 

is the acid-base equilibria that exists peripheral to the catalytic cycle, where both imine, 

A, and amine, C, are shifted to the protonated imine and amine respectively.  Nuclear 

magnetic resonance (NMR) studies completed by M. Ropic et al. [146, 147], showed 

that under the reaction conditions of 1M formic acid/0.4M triethylamine in methanol, 

both imine and amine were strongly shifted to the aminium A’ and iminium salts C’ 

respectively.   
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In this study, CFT were used to resolve the concentration of imine and amine as an 

alternative to HPLC analysis and to reveal the evolutionary profiles of species not 

identified through chromatographic analysis.   

II.1.2 Experimental 

II.1.2.1 Reaction Conditions 

The FTIR data was collected by M. Ropic and S. Richards.  

Two batches were run, FTIR(I) and FTIR(II), that were identical except for the 

background collection method. 

 
Figure 9. CATHy reation set-up 

Negative FTIR(I) - Background subtraction of Triethylamine and formic 

acid (TEAF) 
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The reaction solvent, acetonitrile [17.34M; Fisher Chemicals], hydrogen donating 

reagent TEAF [distilled formic acid 1.0M: distilled triethylamine 0.4M; both Fisher 

Chemicals] and the HPLC internal standard phenanthrene [0.01M; Aldrich] were placed 

in a 250ml round bottom flask, which was constantly stirred using a magnetic stirrer and 

a ReactIR background spectrum of the components was acquired, shown in figure 9.  

TEAF was subtracted from each of the measured reaction spectrum to prevent the imine 

signal being swamped.  Three sample spectra of 1-methyl-6,7-dimethoxy-3,4-

dihydroisoquinoline (imine) [0.25M: Acros Organics] was acquired after imine was 

added to the reaction mixture and the reaction was initiated by injecting the pre-catalyst 

components into the round bottom flask [0.0005M, 

dichloro(pentamethylcyclopentadienyl) rhodium(III) dimer; Strem Chemicals: 0.001M 

(1R,2R)-(-)-N-p-tosyl-1,2-diphenylethylenediamine (TsDPEN); supplied by Avecia, 

Huddersfield, UK].  

Non-Negative FTIR(II)-No background subtraction of TEAF  

A second experiment was performed to remove the negative absorbance caused by the 

subtraction of TEAF from the measured spectra, in order to increase the number of 

constraints in the calibration free analysis.  The reaction constituents subtracted from 

the measured spectra were the reaction solvent; acetonitrile and the internal standard; 

phenanthrene.  Three sample spectra of the 1-methyl-3,4-dihydroisoquinoline and 

TEAF, were taken before initiating the reaction by the addition of the pre-catalyst 

components, to define the start point of the reaction. 

HPLC Reference Analysis 
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Nine aliquots of the reaction mixture were taken and quenched [2M sodium hydroxide 

(BDH GPR) and dichloromethane (Fisher Chemicals)] at time intervals 0, 1, 2, 5, 10, 

15, 30, 45 and 60 minutes for analysis by HPLC [Daicel Chemical Industries, Ltd., 

Chiralcel OD Analytical column 0.46cm ID x 25cm, chiral stationary phase; cellulose 

tris(3,5-dimethylphenylcarbamate), mobile phase; Hexane: isopropyl alcohol (IPA), 96: 

4].  HPLC samples were worked up by addition of 2M NaOH and dicholomethane 

(DCM).  DCM was dried over MgSO4 before filtering through cotton wool and diluting 

with MeOH to a total volume of 2ml. 

II.1.2.2 Data Acquisition Parameters 

The reactions were monitored for an hour using the ASi ReactIR 1000, because it 

allowed bond changes to be continuously observed during the reaction.  The resolution 

of the instrument was 8cm-1, and a total of 869 points were recorded in the spectral 

direction.  The sample spectra were recorded every 30 seconds for the first 5 minutes, 

followed by every 2 minutes for the remaining time, a total of 39 samples were 

recorded.  This was to ensure a higher sampling frequency during the kinetically-

controlled stage of the reaction.  Each spectrum was recorded at a predefined time using 

an average of 32 scans.  The data was converted to the correct format for data 

processing in the MATLAB6p5® (The Math Works, Inc) environment using the 

RECATIR software and an in-house written file conversion program.   

II.1.3 Results and Discussion 

The aim of this study was to use CFT to characterise the asymmetric transfer 

hydrogenation reaction of 1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline, without the 

explicit use of  the underlying chemical model and secondly, to provide an alternative 
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method for the HPLC analysis of the prochiral imine and amine; 1-methyl-6,7-

dimethoxy-1,2,3,4-tetrahydroisoquinoline.  

II.1.3.1 Pure Spectra 

The reference spectra of the reaction constituents were acquired to validate the results of 

the calibration free analysis.  The neat spectra of formic acid and distilled triethylamine 

were acquired both separately and as a mixture.  The neat spectra of imine and carbon 

dioxide were acquired prior to data acquisition (acetonitrile in the background).  The 

amine spectrum was acquired from a previous synthesis [147].  The traditional notation 

of v for a stretching mode and δ for a bending mode is used in the spectral figures.  The 

common group frequencies for imine and amine were identified and are tabulated in 

table 1.  Characteristic group frequencies for imine are 1675-1600 cm-1 for >C=N-C and 

1700-1575 cm-1 for C=N stretch in substituted imine shown in figure 10.  For secondary 

amines, characteristic group frequencies are 3700-3000 cm-1 for N-H stretch, 3500-3100 

cm-1 for CH-NH-CH stretch and 1650-1500 cm-1 for NH bend in secondary amine, 

shown in figure 11.  The characteristic group frequencies of carbon dioxide are 2348-

2336 cm-1 for the asymmetric stretch of O=C=O and 683-648 cm-1 for the degenerate 

bending of O=C=O, shown in figure 12a.  The characteristic bands of formic acid are 

3300-2500 cm-1 for the O-H stretch, the peak ~1730 cm-1 is due to the C=O stretch in 

saturated carboxylic acid, the peak 1340-1150 cm-1 is due to the C=O stretch and 830-

670 cm-1 is due to the OH deformation, shown in figure 12b.  The characteristic 

functional group frequencies of triethylamine are 1210-1150 cm-1 for the CN stretch of 

the tertiary amino.   
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Figure 10.  The neat spectrum of 1-methyl-6,7-dimethoxy-3,4-dihydrisoquinoline.  
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Figure 11. The neat spectrum of 1-methyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 
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Figure 12a-b. The neat spectrum of carbon dioxide and formic acid respectively 

 

Table 1.  Common functional group frequencies of imine and amine 

II.1.3.2 Exploratory Analysis of the CATHy Reaction 

The CATHy reaction was completed using the TsDPEN ligand because it was 

recognised to be the optimal ligand for the rhodium(III) catalysed asymmetric 

hydrogenation [148].  Formic acid was used as the hydrogen source to reduce the need 
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for high pressure, from H2, which may affect the enantio-selectivity and increase the 

threat of an explosion.  Acetonitrile was used as the solvent because very rapid reaction 

rates were observed compared to isopropyl alcohol, ether and acetone in which the 

reaction did not reach completion [146]. 

II.1.3.3 Data Pretreatment 

The region of data where diamond absorbs 3188.4 - 2763.8cm-1 was removed from both 

the negative FTIR (I) dataset and the non-negative FTIR (II) dataset.  Initially, the 

resolution of imine and amine were optimised based on the baseline correction methods, 

which was essential as the analysis using no pretreatment or a soft baseline correction 

method, such as zero average offset, resulted in poor resolution of the spectral and 

concentration profiles.   

Negative FTIR(I) � Background subtraction of TEAF 

The negative FTIR(I) dataset was baseline corrected using a standardisation method, 

known as SNV.  It was found that the SNV corrected measurement matrix produced 

excellent resolution when initial estimates close to the actual solution were used to 

initialise the ALS optimisation, for typical fitting see appendix (1.1.1 to 1.1.3).  The 

standardisation was completed by considering each spectrum as a set of observations 

and then calculating the z -scores [48].   

Non-negative FTIR(II) � No background subtraction of TEAF 

The non-negative FTIR(II) dataset was baseline corrected using the minimum offset 

method, rather than the SNV method, as in this case this method was found to give a 

better solution when initial estimates close to the actual solution was incorporated into 

the resolution.     
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FTIR Reaction Profiles 

Initial observations of the negative FTIR(I) dataset, shown in figure 13 showed several 

regions of interest.  The first is the negative absorbance emanating from regions A, B 

and C 660.9�718.2cm-1, 1141.4-1225.1cm-1 and 1692.4-1767.3cm-1 respectively.   

 

 
Figure 13.  Negative FTIR(I) reaction profile � Background subtraction of TEAF.  The negative 
absorbance of regions A, B and C are representative of formic acid.  Region D is representative of 
the asymmetric stretch of O=C=O in carbon dioxide. 
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dioxide escapes from the solution into the air because of the high pressure of the gas 

over the solution.  As such, peak D increased as carbon dioxide was produced and 

decreased as it escaped from the solution.  It was difficult to distinguish any other 

characteristic group frequencies from the negative FTIR(I) reaction profile because 

many of the reaction constituents contained the same functional groups at similar 

vibrational frequencies and so yielded severely overlapped peaks.   

 

Figure 14. Non-negative FTIR (II) reaction profile � No background subtraction of TEAF.   

The reaction profile of the non-negative FTIR(II) dataset is given in figure 14.  It is 

possible to distinguish the asymmetric stretch of O=C=O in carbon dioxide and some 

common group frequencies of the prochiral imine and amine. 

II.1.3.4 Preliminary Analysis 

PCA was used to determine the number of components to include in the MCR-ALS 

analysis, through visual inspection of the scores and loadings.  The exploratory tools 

used to validate the number of components and generate the initial estimates of the 

vasO=C=O 
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independent reaction constituents for MCR-ALS were SIMPLISMA, EFA and the 

needle spectral estimates derived from the MCR-ALS concentration profiles (see 

section II.1.3.5). 

Principal component analysis 

Principal component analysis of the SNV corrected negative FTIR(I) reaction profile 

revealed structured variance in the scores and loading plots of the first three principal 

components, shown in figures 15-19.  Characteristic peaks of formic acid and amine 

were present in the PC1 loading plot, see figure 15.  Imine and carbon dioxide were 

present in the PC2 loading plot, see figure 16 and the characteristic functional group 

frequencies of carbon dioxide was present in the PC3 loading plot, shown in figure 17.  

It was clear that carbon dioxide varied independently within the mixture because it was 

resolved separately.  The fourth PC loading plot was likely to be due to the atmospheric 

absorption of carbon dioxide in the sample spectrum, rather than a reaction constituent 

because it contained the asymmetric stretch of O=C=O, but not the degenerate bending 

of O=C=O (683-648cm-1), see figure 18.  The scores plot of PC1, 2 and 3 were 

relatively smooth, whereas the fourth profile was erratic in nature and as such was 

attributed to a noise component, figure 19.  

Therefore, three independent reaction constituents were resolved although at least five 

chemical components were expected, which were imine, formic acid, carbon dioxide, 

amine, and triethylamine substantiated from the proposed Noyori [4] reaction, (see 

figure 8, step 4a).  The catalyst components were unlikely to be resolved as the 

molecular changes occurred at concentrations lower than the limit of detection.  The 

data is rank deficient because the chemical rank, i.e., the number of reacting chemical 

components is greater than the mathematical rank of the matrix.  No sample outliers 
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were observed from the first three PCs.  Approximately ~97% of the variance was 

attributed to PC 1, ~3% to PC 2, and ~0.3% of the variance was attributed to PC 3.   

 
Figure 15. Loadings for the First PC of the negative FTIR (I) reaction profile 

 

 
Figure 16. Loadings for the Second PC of the negative FTIR (I) reaction profile 
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Figure 17.  Loadings for the Third PC of the negative FTIR (I) reaction profile 

 
Figure 18  Loadings for the Fourth PC of the negative FTIR (I) reaction profile    

 

Carbon dioxide  
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Figure 19.  Scores on the First to Fourth PC of the negative FTIR(I) reaction profile 

PCA analysis of the non-negative FTIR(II) reaction profile also revealed three 

independent components.  The loadings patterns of the first principal component 

differed to the negative FTIR(I) loadings profile because the formic acid peaks were not 

present, shown in appendix 1.2.1.  The first loading plot contained the characteristic 

functional group frequencies of amine and the mixture spectrum of triethylamine and 

formic acid, the second loading plot contained the common functional group 

frequencies of imine and amine and the third loading plot contained characteristic group 

frequencies of carbon dioxide, with a small contribution from imine and amine, as 

shown in appendix 1.2.1.  The plot of each of the singular vectors versus time revealed 

evolutionary profiles similar to those described in the PCA analysis of the negative 

FTIR(I) reaction profile.  Approximately ~99% of the variance was attributed to the first 

PC, ~0.2% was attributed the second PC and ~0.02% was attributed to the third 

component.  
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As noted above, three independent constituents were present in both the negative 

FTIR(I) and the non-negative FTIR(II) measurement matrices.  All components apart 

from triethylamine were identified from the loadings plot.  Triethylamine was not 

observed because of the severe overlap of (1) the asymmetric and symmetric stretch 

(2970-2950cm-1 and 2880-2860cm-1) and bend (1470-1430cm-1 and 1380-1370cm-1) of 

the CH methyl group, (2) the asymmetric and symmetric stretch (2935-2915cm-1 and 

2865-2845cm-1) and bend (1485-1445cm-1) of the CH methylene group, and (3) the 

CH3-C functional group frequency (3000-2860cm-1) in triethylamine, with the methyl 

groups present in imine and amine.  Severe overlap of the characteristic CN stretch 

(1210-1150cm-1) of the tertiary amino present in triethylamine with both the aryl-O 

stretch (1270-1230cm-1) present in imine and amine and the C-O (1300-900cm-1) 

present in imine, amine and formic acid obscured the characteristic peaks of 

triethylamine. 

The scores and loadings profiles obtained from PCA are abstract representations of the 

concentration profiles and spectral profiles, whereas the goal of calibration free analysis 

is to produce the true concentration profiles and spectral profiles.  Realistic starting 

estimates of the components was required for the initialisation of ALS. 

II.1.3.5 Initial Estimates 

SIMPLISMA 

SIMPLISMA was used to determine the pure spectral profiles of the independent 

components.  The inputs were the measurement matrix and δ, a noise correction factor.  

The value of δ varied between 1% and 15% of the maximum mean spectrum.  Larger 

correction factors from (6-15%) were used because the solution obtained using a lower 
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correction 5% of jµ were noisy.  This did not have any noticeable effect on the solution.  

The negative values in the negative FTIR(I) data were zeroed before SIMPLISMA was 

applied.  This transformation was necessary because the �mixture behaviour� utilised in 

the algorithm, assumes positive spectra and positive concentration [121].  However, this 

transformation was not necessary for the analysis of the non-negative FTIR(II) data.   

Analysis of negative FTIR(I) 

The first pure spectrum and standard deviation spectrum determined from the 

transformed negative FTIR(I) data using a 15% noise correction factor is given in figure 

20.  The standard deviation spectrum is plotted to give clues to the identification of the 

pure factor.  Variables with a high standard deviation can be attributed to pure factors.  

The first purity spectrum is a linear combination of all the reaction constituents.  The 

maximum intensity in the first purity spectrum is found at 1215.9cm-1 in the common 

group frequency range of imine and amine.  Variables which were correlated to the first 

pure variable virtually disappear in the second standard deviation spectrum, shown in 

figure 21.  The maximum intensity in the second purity spectrum is found at 2343.0cm-1 

in the characteristic group frequency range of carbon dioxide, shown in figure 21.  The 

maximum intensity in the third purity spectrum was 1165.7cm-1 and was located in the 

common group frequency range of imine and amine, shown in figure 22.  The three 

purest variables selected were wavenumbers 1215.9cm-1, 2343.0cm-1 and 1165.7cm-1.  

Of the three variables chosen, variable one and variable three were chosen from regions 

of low selectivity in the spectral domain, whereas the second variable was chosen from 

a region of relatively high spectral selectivity corresponding to the asymmetric stretch 

of O=C=O.  
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Figure 20.  The first purity and standard deviation spectrum obtained from the transformed 
negative FTIR(I) reaction profile. 

 
Figure 21.  The second purity and standard deviation spectrum obtained from the transformed 
negative FTIR(I) reaction profile. 
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Figure 22.  The third purity and standard deviation spectrum obtained from the transformed 
negative FTIR(I) reaction profile. 

 

Figure 23.  The SIMPLISMA concentration estimates obtained from the transformed negative 
FTIR(I) reaction profile. 

Noise component 
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The concentration estimates are shown in figure 23, they were plotted to establish 

whether the pure variables contained structured variance or were attributed to noise.    

The concentration profiles of the first component decreased with time, and the majority 

of change occurred between 0-15 minutes.  This profile was representative of a reagent.  

The second concentration profile increased for the first 5 minutes and slowly declined 

over the remaining time.  This was indicative of an intermediate component.  The third 

concentration profile decreased with respect to time and the greatest change occurred 

over the first 2 minutes of the reaction before levelling off.  This component was 

attributed to noise, therefore, increasing the noise correction factor to 15% did not 

improve the solution. 

Analysis of non- negative FTIR(II) 

SIMPLISMA was applied to the non-negative FTIR(II) dataset using a noise correction 

factor of 15%.  The maximum intensity of the first purity spectrum was 1069.2cm-1, 

chosen in the characteristic group frequency range of amine.  The corresponding 

concentration profile was smooth and representative of a reagent which was consumed 

throughout the reaction.  The standard deviation spectrum also contained characteristic 

group frequencies of amine.  The second variable was 2343cm-1 selected in the 

characteristic group frequency range of the asymmetric stretch of O=C=O.  The 

corresponding concentration profile was relatively smooth and represented an 

intermediate component.  The third variable selected was 2362.3cm-1 which had a very 

low standard deviation value.  The  corresponding concentration profile was rugged 

which confirmed that this factor was a noise component. 

To reduce the effect of noise in the SIMPLISMA analysis, the analysis was repeated on 

both reaction profiles using correction factors of up to 15% to compensate for low 
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intensity variables (appendix).  However, this did not improve the selection of key 

factors from the measurement matrices.  The dimension of the measurement matrices 

(negative FTIR(I) and the non-negative FTIR(II)) were not reduced prior to selection 

because the pure variables were selected from within the fingerprint region of the FTIR 

spectrum.   

Through this analysis it was found that the concentration profiles resolved from the 

negative FTIR(I) and the non-negative FTIR(II) datasets were not appropriate for MCR-

ALS analysis because in each case a noise component was resolved rather than the 

evolutionary profiles expected for the reaction constituents. 

In the next section, EFA was applied to the negative FTIR(I) and non-negative FTIR(II) 

dataset to extract the evolutionary profiles of the three independent components from 

the reaction profiles, based upon local rank analysis of successive sub-matrices to obtain 

better initial estimation of the independent components. 

EFA 

Analysis of negative FTIR(I) 

EFA was applied to the negative FTIR(I) dataset.  The inputs required for the data 

analysis were (1) the measurement matrix, (2) the number of rows in the dataset ,and (3) 

the number of components (factors).  There were 37 rows and three components. 

The log10 of the forward and backward EFA singular values is shown in figure 24.  The 

forward EFA analysis revealed two components in the first 1.5 minutes and a third 

component appeared at 2 minutes.   
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Figure 24.  Forward and backward EFA analysis of negative FTIR(I) reaction profile. 

 

Figure 25.  Singular vectors determined by EFA of negative FTIR(I)-TEAF reaction profile. 

The backward analysis showed the disappearance of component one at the 57th minute, 

components two and three were present throughout the remaining reaction time.  The 
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arranged and cleaned profiles are shown in figure 25.  In the course of the reaction there 

was no time where either no components or just one component was present. However, 

a zero component constraint could be applied in the constrained ALS procedure because 

component three was not present in the first two sampled time points.  

Analysis of non-negative FTIR(II) 

The EFA analysis was completed using the same inputs as the negative FTIR(I) data.  

The evolutionary profiles resolved resembled a reagent, product and intermediate 

species.  The time profiles (window of existence) were similar to the negative FTIR(I) 

data.  

Generation of Needle Initialisation Spectra 

Needle spectra for use in MCR-ALS were generated through a correlation analysis of 

MCR-ALS results obtained using EFA initialisation.  The Pearson correlation 

coefficients (of the concentration profiles determined from MCR-ALS with EFA 

initialisation) were calculated with the column data at every measured wavelength 

which had a correlation r2 > 0.800, a value of one was set in the needle spectra for that 

component.  This technique was used to generate needle spectrum for initialisation of a 

second MCR-ALS step by following this procedure.  Wavelengths in the original 

measurements that tended to respond uniquely for pure concentration components were 

identified and included in their corresponding needle spectra.   

Analysis of negative FTIR(I) 

The needle spectrum of the first component represented imine because characteristic 

and common group frequencies associated with imine predominated the spectrum.  The 
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spectrum of the second needle profile contained four groups of needles; two groups 

were located in the characteristic functional group frequencies of carbon dioxide, and 

the second two groups were located in common functional group frequencies of imine 

and amine.  The third needle spectrum contained characteristic group frequencies 

associated with amine, formic acid and carbon dioxide.   

Analysis of non-negative FTIR(II) 

The first needle spectrum contained common group frequencies of imine and 

characteristic functional group frequencies of imine and formic acid.  The second needle 

spectrum contained characteristic functional group frequencies of carbon dioxide and 

the third needle spectrum contained common group frequencies of amine and 

characteristic group frequencies of amine and formic acid.  
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II.1.3.6 MCR-ALS Analysis of the FTIR data 

Data Analysis 

The starting estimates determined from EFA and the needle spectra were used to 

initialise the ALS procedure.  A flow chart of the optional constraints in the multivariate 

analysis is given in figure 26 and a list of the experiments completed using the different 

initial estimates and constraints for both datasets are tabulated in tables 2-4.   

The three optional constraints applied in these experiments were; non-negativity in the 

concentration profiles, non-negativity in the spectral profiles and equality in the 

concentration profiles.  The spectral profiles in each of the experiments were normalised 

to height (see equation 14).  The error was measured using the LOF between successive 

iterations, the convergence criteria was 0.1% and the maximum number of iterations 

was set to 100.   

Validation 

The FTIR samples measured at 1, 2, 5, 15, and 45 minutes, which coincided with the 

HPLC samples were used to validate the MCR-ALS resolution.  The reaction samples 

were scaled between zero and one in the Root Mean Square Prediction Error (RMSPE) 

calculation.   
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Figure 26. Flow Chart of Multivariate Analysis 
*Initial Estimates: a)EFA Evolutionary profiles b)Needle Spectra obtained from correlation 
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Constraints: NNS � Non-negativity constraint spectra, NNC � Non-negativity constraint 
concentration, Csel � Equality constraint concentration 

 

Expt. 

No. 

Data Starting 

Estimates 
Concentration Spectra (Normalised) 

1 FTIR (I) EFA None None 

2 FTIR (I) EFA NNC None 

3 FTIR (I) EFA NNC and Csel None 

4 FTIR (II) EFA None None 

5 FTIR (II) EFA NNC NNS 

6 FTIR (II) EFA NNC and Csel NNS 

Table 2. Exploratory analyses completed on FTIR(I) and FTIR(II) datasets using no a priori 
knowledge in the MCR-ALS resolution.   

Expt. 

No. 

Data Starting 

Estimates 
Concentration Spectra (normalised) 

7 FTIR (I) Needle Estimate None None 

8 FTIR (I) Needle Estimate NNC None 

9 FTIR (II) Needle Estimate None None 

10 FTIR (II) Needle Estimate NNC NNS 

Table 3.  Exploratory analyses completed on FTIR(I) and FTIR (II) datasets using no a priori 
knowledge in the MCR-ALS resolution.   

Expt. 

No. 

Data 
Starting Estimates Concentration Spectra (Normalised) 

11 FTIR (I) Pure Spectra (I,C,A) None None 

12 FTIR (I) Pure Spectra (I,C,A) None NNS CO2 

13 FTIR (I) Pure Spectra (I,C,A) None NNS CO2 and Imine 

14 FTIR (I) Pure Spectra (I,C,A) None NNS CO2 and Amine 

Table 4. Exploratory analyses completed on FTIR (I) using a priori knowledge in the MCR-ALS 
resolution. I(Imine), C(Carbon dioxide), A(Amine).  
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II.1.3.6.1 MCR-ALS Analysis of the FTIR measurement matrices using 

exploratory profiles  

EFA Initialisation 

Experiments 1-3 in table 5 gives the results of the MCR-ALS analysis of the negative 

FTIR(I) dataset, initialised from the EFA concentration estimates.  The MCR-ALS 

experimental design for these experiments are given in table 2.  In each of the 

experiments the RMSPE of the imine was ~0.10 and the RMSPE of amine was ~0.30.  

Neither the imine concentration profile nor the amine concentration profile were 

predicted particularly well.  Addition of the non-negativity constraint in the 

concentration profiles showed no real improvement to the results, i.e., no active 

constraints were present in the solution, although the number of iterations required for 

convergence increased.  It is most likely that the addition of the constraint moved the 

solution further away from the local minima, thereby increasing the time for 

convergence.  The addition of the zero component constraints, increased the LOF, but 

the number of iterations required for convergence decreased in comparison to 

experiment 2.  This suggests that the constrained solution was closer to a local minima, 

but the increased LOF suggests that the proposed model was incorrect.  The resolved 

spectral profiles of the three components using EFA did not exhibit good agreements 

with the expected spectral profiles.  This is because the predicted imine and amine 

spectrum contained the characteristic formic acid peaks.  The predicted carbon dioxide 

profile contained characteristic vibrational frequencies from both formic acid and 

amine.  Each of the predicted spectral profiles tended to be highly correlated to formic 

acid because of linear dependency amongst the constituents.  Similarly in the MCR-

ALS analysis of the non-negative FTIR(II) data, (the MCR-ALS experimental design is 
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given in table 2 (experiments 4-6) and the results for these experiments are given in 

table 5), each of the predicted spectra contained the characteristic and common group 

frequencies of imine, amine and carbon dioxide.   

Expt. 
No. Data Initial 

Estimates 
No 

iterations
LOF 
(%) 

RMSPE 
Imine 

RMSPE 
Amine 

1 FTIR(I) EFA 2 2.5 0.13 0.34 
2 FTIR(I) EFA 26 2.5 0.12 0.35 
3 FTIR(I) EFA 6 4.9 0.15 0.35 
4 FTIR(II) EFA 2 0.7 0.09 0.35 
5 FTIR(II) EFA 2 0.7 0.08 0.33 
6 FTIR(II) EFA 100 0.9 0.03 0.34 

Table 5.  Results of the MCR-ALS analysis using the EFA starting estimates. 

The probable reason for the large difference between the predicted concentration and 

expected concentration and the predicted spectral profiles and expected spectral profiles 

was due to the highly collinear EFA starting estimates.   

Needle Spectra Initialisation 

The results of the MCR-ALS analysis of the negative FTIR(I) and the non-negative 

FTIR(II) datasets are given in table 6 (see experiments 7-10).  The concentration 

profiles resolved from the MCR-ALS analysis of the negative FTIR(I) dataset without 

constraints is shown in figure 27.  The concentration profiles were comparable to the 

HPLC data (see experiment 7).  The use of the needle spectral estimates to initialise the 

ALS optimisation noticeably reduced the RMSPE of imine and amine.  Despite the 

improved selectivity of the needle spectral estimates compared to SIMPLISMA and 

EFA starting estimates, the resolved spectral profiles of imine and amine each contained 

identical characteristic and common functional group frequencies attributed to imine, 

amine and formic acid, see appendix 1.3.1.  The resolved spectral profile of carbon 

dioxide also contained contribution from imine and amine contained as well as the 

correct functional group frequencies, i.e., the asymmetric stretch and degenerate 
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bending of O=C=O.  The addition of the non-negativity constraint in the concentration 

profiles (experiment 8) did not improve the solution. 

 
Figure 27.  Concentration profiles resolved from the MCR-ALS analysis of the FTIR(I)-TEAF 
measurement matrix using needle spectral estimates (Expt. 7), see appendix 1.3.1 for spectral 
profiles 

Similarly, the results of the MCR-ALS analysis of the negative FTIR(II) dataset 

produced excellent concentration profiles, comparable to the HPLC data, (see 

experiment 9).  However, each spectral profile contained contributions from imine, 

amine and carbon dioxide, see appendix 1.3.2 for concentration and spectral profiles.  

The addition of the non-negativity constraint in both the concentration and spectral 

direction only increased the RMSPE of amine (see experiment 10).  The best solution; 

in terms of the lowest RMSPE values were obtained using  experiment 7 and 9.  The 

higher LOF was due to incorrectly predicted spectral profiles.   

Expt. 
No. Data Initial 

Estimates 
No 

iterations LOF (%) RMSPE Imine RMSPE Amine 

7 FTIR(I) Needle 3 2.5 0.04 0.05 
8 FTIR(I) Needle 9 6.2 0.05 - 
9 FTIR(II) Needle 2 0.7 0.03 0.06 
10 FTIR(II) Needle 10 0.9 0.03 0.34 

Table 6.  Results of the MCR-ALS analysis using the needle spectral estimates 
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Summary 

Overall the concentration profiles resolved from MCR-ALS analysis of the negative 

FTIR(I) and non-negative FTIR(II) datasets were agreeable to the HPLC results using 

the needle spectra initialisation with no constraints applied during the ALS optimisation 

(see experiments 7 and 9, table 6).  However, the resolved spectral profiles did not 

exhibit good agreement with the expected profiles.  Therefore, the results from MCR-

ALS analysis could not be used as an alternative to the HPLC analysis for either 

datasets because the spectral profiles resolved were incorrect.   

The spectra and concentration profiles resolved using the EFA initial estimates 

exhibited differences to the expected profiles.  This was because the starting estimates 

did not approximate the true solution.  The SIMPLSMA approach was found to be 

unreliable because noise components were resolved in each case, i.e., with the negative 

FTIR(I) data and the non-negative FTIR(II) data rather than the structured independent 

components.  The SIMPLISMA approach was also observed to be unreliable by Chew 

et al. [74], particularly when a large but unknown number of species were present and 

their component spectra were highly overlapping.  They attributed this to the conditions 

of resolution which assume the number of observable species present and the so-called 

�pure-wavelength� for each species. 

The non-negative FTIR(II) dataset which was acquired in order to increase the number 

of constraints in the MCR-ALS analysis, i.e., the addition of the non-negativity 

constraint in the spectral dimension, did not result in any real improvement.  Therefore, 

no further analysis was completed with this dataset.  

In the next section the pure spectra of imine, amine and carbon dioxide were used to 

initialise the MCR-ALS procedure, because it has been observed that favourable initial 
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estimates, i.e., those which approximate the true solution offer great assistance to cause 

the concentration and spectral vectors to converge fast and uniquely [74, 81].   

II.1.3.6.2 MCR-ALS Analysis of the negative FTIR(I) measurement matrix using 

a priori knowledge 

Excellent resolution of the concentration and spectral profiles were obtained using the 

neat spectrum of imine, amine and carbon dioxide to initialise the ALS procedure, when 

no constraints were applied in either the concentration or spectral direction (see table 7, 

experiment 11, and figure 28) and when only the non-negative constraints were applied 

in the spectral profile of carbon dioxide (see experiment 12).   

 
Figure 28.  Concentration profiles resolved from the MCR-ALS analysis of the negative FTIR(I) 
measurement matrix using the reference spectra (experiment 11). 

The predicted spectral profiles resolved from MCR-ALS using the resolution conditions 

from experiments 11 and 12 were comparable to 1) the reference spectra of imine, 2) 

amine with significant contamination with formic acid, and 3) carbon dioxide.  
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However, there were a small number of spectral differences between the neat and 

predicted spectral profiles. 

 

Figure 29.  MCR-ALS resolved spectral profile of imine, amine and carbon dioxide.  No constraints 
applied in the spectral or concentration direction, see experiment 11. 

The resolved spectrum of imine contained a negative peak between 1800-1750cm-1, 

which is indicative of a carbonyl or imino group, highlighted in figure 29.  To determine 

whether this peak was from formic acid the characteristic functional group frequencies 

of the C-O-H stretch and O-H deformation were searched for in the resolved imine 

spectrum.  As peaks attributed to the C-O-H stretch and O-H deformation were not 
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found, this extra peak was attributed to slight contamination of formic acid in the 

spectrum.   

The resolved spectrum of amine is linearly combined with formic acid because it 

contained negative absorbance at the characteristic vibrational frequencies of formic 

acid, i.e., C-O, C-O-H, and O-H groups, 1780-1680cm-1, 1230-1140cm-1 and 750-

650cm-1 respectively, highlighted in figure 29.  Formic acid and amine are collinear as 

formic acid is consumed (decreased negative signal as the reaction proceeds) at the 

same rate that amine is produced, and as a result the concentration profiles could not be 

mathematically separated.  The concentration profile of amine was comparable to the 

assay data collected and the concentration profile of formic acid was resolved.  The 

resolved spectral profile of carbon dioxide contained all the characteristic functional 

group frequencies, although slight differences in the solution persisted between 3450-

3100cm-1 and 1800-800cm-1. 

Experiments 13 and 14 showed no improvements over the results obtained using no 

constraints in the ALS resolution or when non-negative constraints were applied in the 

spectral profile of carbon dioxide (see experiments 11 and 12).  In fact, the LOF 

appreciated substantially in both the MCR-ALS solution using the non-negative 

constraint in the spectral profiles of carbon dioxide and imine with slight contamination 

from formic acid (experiment 13) and the MCR-ALS solution using the non-negative 

constraints in the spectral profiles of carbon dioxide and linear combined amine and 

formic acid (experiment 14), caused by the truncation of the formic acid peaks during 

the ALS optimisation. 

Using MCR-ALS with the resolution conditions of experiments 11 and 12 it was 

possible to successfully resolve the concentration profiles of imine and linear combined 
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amine and formic acid to provide an alternative approach to HPLC analysis, as well as 

the concentration profiles of carbon dioxide which could not be realised from the 

chromatographic analysis. 

Expt. 
No. Data Initial 

Estimates 
No 

iterations
LOF 
(%) 

RMSPE 
Imine 

RMSPE 
Amine 

11 FTIR(I) Pure spectra 3 2.5 0.02 0.04 
12 FTIR(I) Pure spectra 2 4.6 0.03 0.03 
13 FTIR(I) Pure spectra 2 19.9 0.04 0.05 
14 FTIR(I) Pure spectra 2 56.9 0.03 0.01 

Table 7.  Results of the MCR-ALS analysis of the negative FTIR(I) dataset using the neat spectra of 
imine, amine and carbon dioxide. 

II.1.4 Conclusion  

The combination of in situ FTIR with MCR has been used successfully to determine the 

spectral and concentration profiles of imine, linear combined formic acid and amine, 

and carbon dioxide in the complex CATHy reaction using the resolution conditions 

found in experiments 11 and 12.  The resultant pure spectra and concentration profiles 

of the analytes of interest ensured that this technique could be used as an economically 

viable and convenient replacement to the currently used HPLC method.  The additional 

information from MCR with respect to the carbon dioxide could be used to notify batch 

operators of dangerous levels of carbon dioxide in the reactor.  The FTIR method 

developed enabled the reaction to be monitored in situ and eliminated the need for 

constant sampling.  The combined approach offers significant advantages in cases 

where viewing complex experimental data by eye is problematic. 

Future Work 

Future work would include breaking the rank deficiency of the dataset through chemical 

perturbation of the system and partial kinetic modelling of the data could be applied to 

give clues about the reaction mechanism. 
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II.2 Multi-way Penalty Alternating Least Squares 

II.2.1 Introduction 

In this study an extension to the P-ALS approach [72] is introduced, called multi-way P-

ALS (NWAY P-ALS)[149], in which optionally hard constraints or soft constraints are 

applied.  The novel aspect of this work is that it is the first time penalty ALS constraints 

are used in conjunction with multi-way constraints to enable the application of soft 

constraints during the multi-way P-ALS analysis.  The limitation of P-ALS approach is 

that when multiple batches are available; it is not possible to take advantage of the 

optional multi-way constraints that can be applied in either the spectral or concentration 

profiles.   

In the NWAY P-ALS routine a row-wise penalty least squares function is used to 

implement the constraints.  The advantage of this technique is that it incorporates all the 

advantages of the P-ALS approach.  In addition, species common to two or more 

experiments gain a second order advantage, especially if there are more active 

constraints in the multiple experiments [111].  The multi-way constraints that can be 

employed include i) common species must have the same spectrum in all matrices ii) 

common species must have concentration profiles with equivalent shape in all data 

matrices iii) one or more regions of zero concentration components may be present 

[111].   A detailed description of the NWAY P-ALS approach employed herein is given 

below.  Note this approach combines the P-ALS method outlined in ref. [111] with 

multi-way constraints.  This is a novel marriage of algorithms and the view taken is to 

determined whether it is a useful and feasible methodology.   
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II.2.2 Methodology 

A dataset sized tmn ×× with at least one order in common, can be unfolded in three 

different directions: along the row space (n), along the column space (m) and along the 

third direction of the cube (t), also called the tube space.  

Figure 30.  Example of the three different modes or augmentations of a three-way dataset. 
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The three unfolding procedures give a row-wise augmented matrix, ( )mtnr ×D , a 

column-wise augmented matrix, ( )mntc ×D , and a tube-wise augmented matrix, 

( )nmtt ×D , respectively, shown in figure 30.  In typical spectroscopic applications, 

rows in the data matrix represent mixture spectra recorded as a function of time (n), 

columns represent wavelengths (m) and tubes represent different experiments (t).   

In chemistry the most common structure of a three-way dataset is bilinear, rather than 

trilinear.  A three-way dataset can be classified as trilinear only if the dataset can be 

represented as the sum of the product of triads of vectors in rows, columns and tubes.  

This implies that the set of basic vectors or rows, columns and tubes have equal rank.  

Normally multi-way chemical data do not have equal rank in each dimension owing to 

the underlying chemical process.  For example, a chemical process monitored by NIR at 

several different experimental conditions may have different shaped kinetic profiles 

which increase the rank of the row matrix.  Alternatively, the instrument may have 

sample-to-sample variation in the response profiles, such as retention time shifts or 

shape changes in different HPLC-DAD runs [150]. 

Row-wise augmentation can be applied if two or more types of measurement are made 

in which the row space is common, such as simultaneous spectroscopic acquisition from 

multiple detectors.  Column-wise augmentation can be applied when multiple batches 

have a common column space, i.e., multiple batches run of the same IR spectrometer.  

Here, the NWAY P-ALS function is presented for the column-wise augmentation of the 

measurement matrices.  The bilinear decomposition of the augmented matrix, cD , 

would result in an augmented concentration matrix, shown in figure 31a.  Each matrix 

contains the concentration profile of the common species in each batch, cC , and a 



110 

common spectral matrix, S.  This leads to an ALS algorithm with the following two 

steps, a) and b), and is diagrammatically outlined in box 2. 

 

Box 2.  Flow chart of NWAY P-ALS methodology 
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a) Given some initial or intermediate estimate of cC for every j, find js such that js  

minimises TsCd jccj − subject to constraints on js , such as jj gs = , where jg is a vector 

of constraints, defined later. 

b) Given some least squares estimate of TS  for every i, find cic such that cic  

minimises TScd cici −  subject to constraints on cic , such as ici gc =  

Steps a) and b) are repeated in an iterative fashion to alternatively constrain S 

and cC until the starting solutions converge smoothly and monotonically to the desired 

result.  The row-wise fitting algorithm for finding rows of S and cC is illustrated in 

figures 31 a-b for the column-wise augmentation.   

The least squares problem TsCd jccj = , is solved for Ts j with the adaptation of the 

equality constrained weighting method described by Lawson and Hanson [104, 106], 

using a vector of constrained values and a constraint matrix g and H respectively.  The 

model is written as shown in equation 38;  

Ts
H

C
g

d
j

ccj








≅








ϕϕ

 Equation 38

where, cjd is a column vector of the augmented measurement matrix, cC is the initial 

estimate of the concentration profiles for each matrix and Ts j is an estimate of the 

absorptivity of each component at a specific wavelength.   



112 

3a

cjd = C Ts j

=

3b

cid = S Tcci

=

D C

S

D
S

C

 

Figure 31a Schematic illustration of the row-wise fitting algorithm for finding rows of S.  Figure 
31b Schematic illustration of the row-wise fitting algorithm for finding rows of C. 

The constraint matrix is a binary matrix of ones and zeros, which contain the 

coordinates for the application of the respective constraints.  The number 1 specifies 

where the constraint is applied for that specific component and 0 where the constraint is 

not applied.  The penalty factor weighting function, ϕ , can be adjusted; this allows 

flexibility in the implementation of the constraint, such that a reduced weight can be 

applied in the analysis of noisy data and a larger weight can be applied in the analysis of 

clean data.  For data of different measurement scales and sizes, ϕ , can be adjusted 

relative to the norm of cC  i.e. ( )cnorm C×01.0 for soft constraints or ( )cnorm C×10 , for 

hard constraints.   

A detailed description of the application of the equality constraint, non-negativity 

constraints, unimodality constraints and closure constraint using the single matrix P-

ALS is described in the references [72].  An example of how the non-negativity and 
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equality constraints are applied simultaneously in a multi-way case for a three 

component model is given below to show how it is possible to apply several types of 

constraints simultaneously due to the structure of the model.  The unconstrained least 

squares solution is shown below for a column-wise augmentation of two matrices.   
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The first column vector from the augmented matrix, cD and the augmented matrix, cC is 

used to solve the first column vector of TS .  Suppose an equality constraint is required 

in coefficients s1 and s3, such that s1 = g1 = 0.0580 and s3 = g3 = 0.4821 (values can be 

reference values or derived from an external reference method) and a penalty weighting 

function 10=ϕ .  The weighted values are place in the constraint matrix 

[ ]4821.0100580.010 ××=gϕ  and the penalty value is placed in the constraint matrix 

H, where the constraint is to be applied as given below.  As a positive equality 

coefficient is applied in s1, there is no need for a non-negativity constraint.   

c1

c2

d1 

d2 
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The least squares result after the first iteration is shown.  As a hard constraint was 

imposed the constrained values are close to the predefined constrained values, 

( ) [ ]4829.02696.00570.0� 10:1 =Ts ϕ .  A harder constraint 

( ) [ ]4821.02693.00580.0� 100:1 =Ts ϕ  would have resulted in constrained values closer to 

the predefined equality constraints stipulated for coefficients s1 and s3.  A smaller 

penalty would have resulted in a smaller deviation from the unconstrained values, such 

that slight deviations are allowed from the equality constrained coefficients,  

i.e. ( ) [ ]5808.02665.00153.0� 1.0:1 −=Ts ϕ . 

In order to test for the presence of active constraints, once the NWAY P-ALS has 

converged, it is useful to turn off all constraints and estimate the concentration profiles 

and spectral profiles using a conventional unconstrained least-squares method.  If the 

unconstrained solution is a good match with the constrained solution, one may deduce 

that there were relatively few active constraints, that they had a minimal impact on the 

final solution, and the research hypothesis is fulfilled.  On the other hand, when large 

differences are observed between the final constrained and unconstrained solutions, one 

may conclude there are strong active constraints that exert a significant influence on the 

results, thus the original research hypothesis is not fulfilled.  Constrained models with 

ϕ g Hϕ
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many influential active constraints suggest the SMCR model is inappropriate for one or 

more reasons.  Some examples might include non-linear response or other significant 

deviations from the bilinear model, i.e., the wrong number of components was used in 

the SMCR model, or the shapes of the profiles estimated by SMCR are a poor match to 

the true underlying profiles. 

Software Implementation of NWAY P-ALS   

GUIPRO is a MATLAB program with a graphical user interface which has been 

designed to enable non-experts to easily apply pre-processing steps and perform data 

analysis using a variety of curve resolution methods.  The NWAY P-ALS GUI in 

GUIPRO is described below and pictured in figure 32. 

 
Figure 32.  Screen shot of the NWAY P-ALS options window for the first constituent. Figure 32a. 
The pull down menu can be used to change the constraint options for the different constituents.  
Figure 32b.  Optional non-negativity, closure and unimodality constraints can be applied in the 
concentration profile of constituent one, through checking the appropriate boxes.  Optional non-
negativity constraints can be applied in the spectral profile of constituent one, through checking the 
appropriate box.  Figure 32c-d.  Sparse or complete auxiliary concentration data with the 
corresponding time axis can be selected by pressing the browse button and uploading the 
appropriate files into the NWAY P-ALS analysis for equality constraints.  This option is also 
available for the spectral auxiliary data.  Figure 32e.  The penalty factor extends from 0.01 to 20 
and can be set by typing a value in the text box or sliding the bar adjacent to the text box.  The 

A
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maximum number of iterations and convergence tolerances can be set by typing a value in the 
appropriate text box.  The �Done� button is pressed when all the constraints are set to start the 
calculation. 

 

The matrices to be loaded for NWAY P-ALS analysis should first be individually pre-

treated and saved using compatible pre-treatment options.  Pre-treatment options 

include selection of sub-matrices of spectra and concentration profiles, baseline 

correction, removal of outliers, normalisation, and estimation of the number of PCs.  

Once an initial pre-treated sub-matrix (individual data matrix) has been loaded into the 

GUIPRO environment, the user can select the NWAY P-ALS function from the drop 

down menu, under N-way methods.  Up to 10 pre-processed sub-matrices can be loaded 

into the GUIPRO environment.  Initial guesses of the concentration profiles are required 

to start the NWAY P-ALS algorithm.  These can be determined using a variety of 

methods.  The first method simply uses initial estimates defined in the analysis of 

individual data matrices.  The second method uses the needle search technique of single 

batches while the third method uses EFA estimates of the single batches.  The options 

available in the constrained least squares optimisation for the different concentration 

profiles include non-negativity constraints, closure constraints, and unimodality in the 

concentration profiles.  Non-negativity constraints can also be applied in the spectral 

profiles.  Auxiliary data in the form of reference spectra or reference concentration 

values can be uploaded into the NWAY P-ALS environment and used as equality 

constraints for selected spectral profiles or concentration profiles, respectively.  Penalty 

factors for the constraints can be set by inputting values directly in the text boxes, or by 

using a sliding bar.  The tolerance and the convergence criteria can be predefined by the 

user.   
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II.3 Qualitative Analysis of the Base Catalysed Esterification Reaction of 

Acetic Anhydride using NWAY P-ALS 

II.3.1 Introduction 

This study was completed in collaboration with Prof. Paul Gemperline, East Carolina 

University, USA.  

Aim  

The aim of the study was to use NWAY P-ALS to resolve the concentration and 

spectral profiles of 1-butanol with the reaction constituents of the base catalysed 

esterification reaction of acetic anhydride.  The benefits of using the NWAY P-ALS 

approach include the reduction of the number of active constraints at the solution point, 

whilst the batch column-wise augmentation allowed strong constraints in the spectral 

profiles and resolved the rank deficiency.  The NWAY P-ALS solution was validated 

by comparing the percent yield of 1-butyl acetate determined by GC for each batch.  

The results were also compared with the multi-way MCR-ALS results using hard and 

soft constraints to determine whether any advantage had been gained through using the 

weighted least squares function of NWAY P-ALS over the MCR-ALS resolution. 

Introduction 

The base catalysed esterification reaction of acetic anhydride was studied because it was 

expected to provide a relatively simple reaction mechanism to study for the multi-batch 

analysis using NWAY P-ALS.  The proposed reaction mechanism for the catalysed 

esterification is as follows.  An activated complex of acetic anhydride with pyridine is 

formed in the pre-reaction mixture from nucleophilic attack of pyridine on the carbonyl 

carbon atom of acetic anhydride, giving a tetrahedral intermediate.  The intermediate 
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reacts with 1-butanol to form 1-butyl acetate, acetic acid, and liberating the catalyst, 

pyridine, as shown in figures 33-34. 
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Figure 33.  Base catalysed esterification of acetic anhydride 
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Figure 34.  Postulated reaction mechanism of the base catalysed esterification of acetic anhydride 

In a previous study completed by R. Miller [151], the concentration of 1-butyl acetate 

was predicted using several chemometric approaches CLS, PLS and P-ALS as well as 

an empirical approach, kinetic fitting.  The study concluded that the kinetic fitting 

approach gave the best prediction for 1-butyl acetate because the underlying chemical 

model of the system was known and a priori information relating to the starting 

conditions was available.  The predominant factors for the reduced prediction 

Nucleophilic attack of pyridine 
on carbonyl carbon 

Activated acetic anhydride-
pyridine intermediate 
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capabilities of the remaining methods were attributed to the rank deficiency of the 

solution for both CLS and P-ALS, the large number of feasible solutions produced from 

P-ALS and the design and implementation of the PLS model.  To improve the P-ALS 

results sequential batch analysis of the multiple experiments using NWAY P-ALS was 

applied.  This approach was expected to reduce the number of feasible solutions and 

break the rank deficiency in the measurement matrices. 

A unique feature of the P-ALS algorithm is the ability for user control implementation 

of constraints such that weighted constraints, i.e., soft constraints which allow small 

deviations from the constrained values, can be applied during P-ALS.  Advantages of 

the implementation of soft constraints during P-ALS include reduced distortions of 

resolved profiles, reduction of the number of active constraints at convergence which 

reduces the model lack-of-fit, and a reduced impact of noise and non-ideal response on 

constraints which lead to improved results.  The NWAY P-ALS approach also gains a 

second order advantage especially if there are more active constraints in the multiple 

experiments.  The multi-way constraints that can be employed include i) common 

species must have the same spectrum in all matrices, ii) common species must have 

concentration profiles with equivalent shape in all data matrices, and iii) one or more 

regions of zero components may be present [111]. 

In this study NWAY P-ALS is applied to the sequential batch data to reduce the number 

of feasible solutions, to break the rank deficiency in the measurement matrix, to 

improve the prediction capabilities of the P-ALS analysis and to determine whether any 

advantage had been gained using the weighted least squares function of NWAY P-ALS 

over MCR-ALS resolution. 
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II.3.2 Experimental 

The NIR data was collected by Robert Miller, East Carolina University.   

II.3.2.1 Reaction Conditions 

Three reactions of the pyridine catalysed esterification of acetic anhydride were 

completed at equimolar ratios of anhydrous 1-butanol (46.3ml, Aldrich Milwaukee, 

WI), to acetic anhydride (47.6ml, Aldrich Milwaukee, WI), with different pyridine 

catalyst concentrations, (4ml, 2ml, 8ml, Aldrich Milwaukee, WI).  All reactions were 

performed in an auto-MATE (H.E.L. Inc., Lawrenceville, NJ computer controlled 

reactor system).  Process conditions, including reaction temperature, jacket temperature 

and agitation were controlled by WinISO® software from H.E.L. running on 333 MHz 

Pentium II computer.  A custom glass reactor (75 mL) designed to accept a bundle 

fiber-optic NIR transflectance probe was used.  The temperature of the reactions were 

thermostated with a recirculating Lauder RM6 Heater/chiller at 30ûC.  For each run, the 

reactor was allowed to equilibrate until stable temperature was maintained.  

The reactor vessel of the AutoMATE reactor system was charged with the respective 

volume of acetic anhydride and pyridine.  Nine pre-reaction spectra were acquired 

initially to measure the two reagents in the absence of 1-butanol, so as to partially break 

rank deficiency in estimated concentration profiles.  Between acquisition of the ninth 

and tenth spectrum, the pre-measured aliquot of anhydrous 1-butanol (BuOH, Aldrich) 

was charged into the reaction manually to initiate the reaction.  Spectral acquisition 

occurred every 30 seconds for ~1.5hours.   
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II.3.2.2 Data Acquisitions 

Near-IR background spectra were acquired using a FOSS-NIRSystems model 6500 

spectrophotometer, fitted with a transflectance bundle fiber-optic probe (Silver Springs, 

MD).  The probe gap was set to 0.5 mm giving an effective pathlength of 1.0 mm.  

Spectra were acquired over the range of 1100 to 2498 nm, at a resolution of 2nm and 

ratioed against an air blank recorded prior to the start of the reactions.  After the start of 

a reaction, spectra were recorded every 30 seconds for about 1.5 hours, by averaging 10 

scans using the VISION data acquisition software from FOSS-NIRSystems.  

MATLAB6p5® (The Math Works, Inc) was used to complete all data processing.  

II.3.2.3 Validation 

The chromatographic analyses were carried out on a Hewlett-Packard GC (Model: GC-

6890), equipped with a split/splitless injection port (the split injection port was used).  

The fused capillary column (HP-35MS), 30.0 m x 0.25 mm I.D, was connected to a 

flame ionisation detector (FID). The initial temperature was set to 30°C, with a 

temperature ramp of 10°C/min, the final temperature being 120°C.  The complete run 

took 12 minutes.  Helium was used as the carrier gas with a flow rate of 20mL/min. The 

data acquisition, data analysis and instrument control was carried out using HP 

Chemstation software. 

GC standards were prepared by the following procedure.  A Mettler AT400 digital 

balance was used to accurately weigh each of the chemicals; 1-butanol (Fisher 

Scientific), 1-butyl acetate (Fisher Scientific) and methanol (Fisher Scientific).  The 

final working standards were prepared over a weight ratio range of 1:1, 2:1, 3:1, 5:1 and 

7:1 of 1-butyl acetate:1-butanol.  The stock solutions were diluted with methanol 

(10.0g).  
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Approximately 1 µL aliquots from each standard was injected onto the GC column.  

Quantification was performed by measuring the ratio of the peak height of 1-butanol 

and 1-butyl acetate and the percent weight ratio of 1-butanol by 1-butyl acetate.  A 

linear calibration curve was constructed, see R. Miller�s thesis [151]. 

II.3.3 Results and Discussion 

II.3.3.1 Aim 

The first objective of this study is to illustrate the use of NWAY P-ALS to resolve the 

concentration and spectral profiles of the reaction constituents of the base catalysed 

esterification reaction of l-butanol with acetic anhydride.  The second objective is to 

compare the results of the multi-way NWAY P-ALS method with the multi-way 

multivariate curve resolution Alternating least squares (MCR-ALS)  [67, 70]  results 

using both hard and soft constraints to determine whether any advantages had been 

gained through the application of the weighted least squares function of NWAY P-ALS 

over the MCR-ALS resolution. 

II.3.3.2 Research Hypothesis 

The SMCR research hypothesis for these experiments, states: There exists an 

unconstrained bilinear model with unimodal, non-negative pure component 

concentration profiles and pure component non-negative spectral profiles of acetic 

anhydride and 1-butanol that fits the data matrix of measurements obtained from the 

evolving system.   

II.3.3.3 Reaction Profiles 

The data was column-wise augmented and the segment between 2200 to 2498nm was 

deleted as non-linear detector response was observed above 2200nm due to high levels 
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of stray light.  Spectra were baseline corrected by subtracting the average absorbance 

from 1100 to 1124nm where no significant NIR absorbance was observed.  From the 

reaction spectral profiles it was possible to observe a non-linear shift of the 1150-

1200nm peak to 1180-1230nm upon the addition of 1-butanol to the pre-reaction 

mixture, shown in figure 35.  The broad O-H stretching overtone peak of 1-butanol in 

the region from 1400 nm to 1600 nm appeared to coalesce into a new sharp peak at 

1390-1470nm (discussed in section II.3.3.4), suggesting the extensive O-H bonding in 

1-butanol was disrupted to a significant degree by possible molecular association 

(hydrogen bonding) between 1-butanol and acetic anhydride. 

 
Figure 35. Column-wise augmentation of the NIR batches of the pyridine catalysed esterification 
reaction of acetic anhydride 

The number of principal components was estimated using an F-Test for each batch.  

Three components were identified representing 1-butanol, acetic anhydride and a 

pseudo product; which was a linear combination of the two products; 1-butyl acetate 

and acetic acid both of which were formed at identical rates.  Initial estimates of the 

Batch 3 

Batch 2 

Batch 1 
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concentration profiles were resolved from the original single batch analysis using EFA.  

The EFA initial estimates were column augmented in the appropriate order to initialise 

the alternating least squares procedure. 

In the NWAY P-ALS analysis, non-negativity and unimodality constraints were applied 

in the concentration profiles of all constituents.  Pure component reference spectra of 1-

butanol and acetic anhydride were loaded for use as equality constraints for the 

estimation of the spectral profiles of 1-butanol and acetic anhydride because it was 

defined in the research hypothesis that these components were present in the SMCR 

solution.  Non-negativity constraints were applied in the spectral profiles of all three 

constituents.  In cases where hard constraints were desired, the penalty value was set to 

20 and for soft constraints the penalty value was set to 1.  The convergence criteria was 

1e-9 (relative change in residual sum of squares from one iteration to the next) and the 

maximum number of iterations was 500. 

II.3.3.4 Hard vs. Soft NWAY P-ALS Constraints 

The calculated spectra of the resolved constituents, acetic anhydride, 1-butanol and the 

pseudo-product, using hard and very soft penalty functions in the NWAY P-ALS 

calculation are given in figures 36a-b respectively.  After convergence, the 

unconstrained solutions were also computed and superimposed on the constrained 

solutions to test for the presence of influential active constraints.   
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Figure 36a-b. Resolved spectral profiles.  Figure 37a.  Hard NWAY P-ALS options and Figure 37b. 
Soft NWAY P-ALS options.  The constrained profile (bold line), unconstrained profile (dashed 
line). 

Comparison of the spectral profiles for the constrained and unconstrained solutions 

using hard constraints are shown in figure 36a.  Comparison of the unconstrained 

spectrum of 1-butanol to the hard constrained spectrum reveals significant differences, 

B 
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indicating the presence of many, active influential constraints in the hard constrained 

solution.  Comparison of the unconstrained solution and the soft constrained solution 

shown in figure 36b reveals there are no influential active constraints. 

On the other hand, both the hard unconstrained profile (figure 36a) and the soft 

constrained profile (figure 36b) of 1-butanol contain two distinct differences from the 

constrained profile (figure 37a), which were initially thought to be due to water 

contamination in the reagent [82].  The presence of water was ruled out in a separate 

experiment by measuring the NIR spectrum of 1-butanol dried over molecular sieves.  It 

was speculated that the addition of 1-butanol to acetic anhydride caused the formation 

of a new complex between 1-butanol and acetic anhydride, which in turn disrupted the 

extensive hydrogen-bonding network in neat 1-butanol.  In hydrogen-bonded alcohols, 

there is a broad peak in the 1460-1600 nm region, this peak was attributed to the first 

overtone of the O-H stretching vibration [152, 153], shown in the constrained solution.  

L G Weyer and S-C Lo [153], and other workers report that the series of peaks between 

1410 nm and 1600 nm are due to the first overtone of the O-H stretching vibration of 

different hydrogen bonded aggregates.  In dilute solutions using a non-hydrogen 

bonding solvent, aliphatic alcohols have a first overtone peak at about 1410nm, 

corresponding to non-hydrogen bonded O-H stretching vibrations.  A peak at this 

position can be observed in the unconstrained spectral profile of 1-butanol, although it 

is significantly broader than the first overtone of the non-hydrogen bonded O-H 

stretching vibration reported by other workers [152, 153].  Other supporting evidence 

determined by Czarnecki et al. and Weyer et al. [152, 153], found that the hydrogen 

bonded peak at 1570 nm decreases in intensity with temperature whereas the non-

hydrogen bonded peak at 1410 nm increases in intensity, which supports the theory that 

it is due primarily to non-hydrogen bonded O-H overtones.  It has been shown that in 
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the mid-IR, a diffuse O-H association band related to the deformation of the O-H bond 

occurs at 1420 cm-1 which accounts for the 2100 nm NIR band.  This diffuse band is 

reported to disappear in dilute solutions of alcohols in the mid-IR, where hydrogen 

bonding does not occur [152, 153].  In the NIR spectrum, the peak at 2100nm becomes 

narrower and is shifted towards a shorter wavelength in dilute solution of non-hydrogen 

bonding solvent or with increasing temperature.   

Further analysis to determine whether the peak at 1410 nm was formed by a complex 

formation between 1-butanol and acetic anhydride was completed by Gemperline et al. 

[154].  Initially 5ml of 1-butanol was added to acetic anhydride without the catalyst 

present.  From the reaction profile it was possible to observe the appearance of a peak at 

~1410 nm, which suggested that the extensive hydrogen bonding in 1-butanol was 

disrupted, as a complex was formed between 1-butanol and acetic anhydride.  

Therefore, the research hypothesis concerning the estimated spectrum of 1-butanol was 

inaccurate as both the complexed 1-butanol and uncomplexed 1-butanol was present at 

the beginning of the reaction.  A pseudo spectrum of these species was calculated by 

adding the spectrum of 1-butanol with the spectrum of 1-butanol obtained from the 

original soft NWAY P-ALS analysis.  This pseudo spectrum was used as an equality 

constraint in place of the neat 1-butanol spectrum.   

Furthermore, it was postulated that there were at least four components in the NWAY 

solution because the concentration of pyridine varied in the batches.  This was 

confirmed by visual inspections of the PCA scores plot of the column-wise augmented 

measurement matrices, see appendix 1.4.1.  Structured variance was observed in the 

first four principle components.  A new research hypothesis was tested; There exists an 

unconstrained bilinear model with unimodal, non-negative pure component 
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concentration profiles and pure component non-negative spectral profiles of a) acetic 

anhydride, b) linear combination of complexed 1-butanol and uncomplexed 1-butanol, 

and c) pyridine that fits the data matrix of measurements obtained from the evolving 

system.  Therefore the pure spectrum of acetic anhydride, pyridine and a linear 

combination of complexed 1-butanol and uncomplexed 1-butanol were loaded for use as 

equality constraints.  Starting estimates for the four component�s resolutions were 

obtained using EFA of the single batches.  The initial estimates from the three batches 

were automatically column augmented in the NWAY P-ALS algorithm in the 

appropriate order to initialise the ALS procedure.  The hard penalty equality constraint 

was set to 20 and the soft penalty equality constraint was set to 1.  The convergence 

criteria and the maximum number of iterations were as specified previously.   

In this case the application of soft constraints enabled the correct resolution of the 

spectral and concentration profiles of acetic anhydride, linear combination of 

complexed and uncomplexed 1-butanol and the linear combination of 1-butyl acetate 

and acetic acid.  This can be observed in figure 37b and figure 38b respectively.  The 

hard constrained profile is shown in figure 37a and figure 38a respectively.  For the 

hard constraint, the correct spectral profiles of the reaction constituents were resolved, 

i.e., the correct functional groups were present in each of the unconstrained profiles.  

However, there were minor deviations between the unconstrained and constrained 

profiles of the pseudo 1-butanol spectrum and the unconstrained and constrained 

profiles of pyridine.  The main deviations in the pseudo 1-butanol spectrum occurred in 

the spectral ranges between 1400-1600 nm and ~2000-2200 nm which were attributed 

to the disruption of the extensive hydrogen bonding network in neat 1-butanol caused 

by complex formation between 1-butanol and acetic anhydride and in the pyridine 

spectrum between 1700-2100nm.   
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Figure 37.  NWAY P-ALS options.  Figure 37a. Hard NWAY-PALS resolved spectral profiles and 
Figure 37b. Soft NWAY P-ALS resolved spectral profiles. The constrained profile (bold line), 
unconstrained profile (normal line). 

The soft constrained spectral profiles shown in figure 37b contained less active 

constraints in the pseudo 1-butanol spectrum, although the deviations in the pyridine 
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spectrum persisted.  However, from observation it was possible to realise overall that 

deviations between the constrained and unconstrained spectra were minimal.   

 
Figure 38. NWAY P-ALS options.  Figure 38a.  Hard NWAY-P-ALS resolved concentration 
profiles and Figure 38b.  Soft NWAY P-ALS resolved concentration profiles. The constrained 
profile (bold line), unconstrained profile (normal line). 
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In this application the real benefit of using less stringent constraints was readily 

observed in the resolved concentration profiles of acetic anhydride, pseudo 1-butanol 

spectrum and pyridine.  Comparing figure 38a and figure 38b for the hard and soft 

constrained solution respectively, it was possible to observe that the soft constrained 

reagent profiles were consumed at approximately the same rate, whereas the hard 

constrained reagent profiles did not give as good a solution.  The concentration profile 

resolved for pyridine using the hard constraint was also incorrect because the hard 

constraints forced a non-negative solution with unrealistic concentration profiles.  This 

is shown in figure 38a where the constrained solutions of batches 1 and 2 show a zero 

concentration profile and batch 3 shows an increase of concentration.  The soft 

constrained profiles on-the-other hand produce the correct concentration profiles of 

pyridine in each of the batches, which were constant and non-negative in batch 1 and 3, 

although batch 2 shows a slight positive incline of concentration.  The RMS error 

between the reconstructed matrix and the original matrix was calculated and it was 

found that less error was found in the soft constrained solution as more variance was 

described than in the hard constrained solution (RMS 61094.8 −× and 

51072.3 −× respectively).  The NWAY P-ALS algorithms converged smoothly and 

monotonically, however, the hard constrained solution converged faster than the soft 

constrained solution. 

The percent yield of 1-butyl acetate quoted from R. Miller�s thesis and calculated from 

the NWAY P-ALS results for the hard and soft constrained profiles are given in table 8.  

The average percent yield deviation from the GC results was %128 ±  for the hard 

constrained profile and %27 ±  for the soft constrained profile.  The percent yield 

obtained for the hard constrained profiles of batches 1 and 2 had an error margin of 

%22 ± , and showed that these results were close to the GC percent yield data for the 
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respective batches.  However, the third batch produced the greatest error in the 

prediction of the 1-butyl acetate and is responsible for the marked increase in the 

percent deviation.  On the-other-hand the error produced in the soft constraints were 

more equally distributed across the three batches, reducing the error margin in the final 

result.   

Batch No GC (%) Hard NWAY P-ALS(%) Soft NWAY P-ALS(%) 

1 87 87 82 

2 81 77 72 

3 89 109 97 

Table 8.  Comparison of the GC percent yield with the percent yield obtained from hard and soft 
NWAY P-ALS analysis 

As the percent deviation in the GC data was unknown it was impossible to determine 

whether the results were within the acceptable range for the solution.  It was postulated 

that the GC results were slightly imprecise because of a possible side reaction occurring 

during the work-up procedure.  This side reaction was postulated to occur when the 

reaction was quenched using methanol, causing the equilibrium to be shifted to the left-

hand-side, reducing the expected concentration of 1-butyl acetate [151]. 

Nevertheless, from the data available, it was concluded that the solution obtained from 

the soft NWAY P-ALS solution contained less error than the hard NWAY P-ALS 

solution and was closer to the percent yield GC data calculated for 1-butyl acetate. 

Summary 

It has been shown that the use of soft multi-way constraints greatly assisted in the 

resolution of the correct concentration and spectral profiles of the reagents and product 

profiles.  Additionally, the application of the soft multi-way constraints reduced the 

number of active constraints whilst the batch augmentation allowed strong constraints in 
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the spectral profiles and the breaking of the rank deficiency to resolve the concentration 

and spectral profile of pyridine.  Here, the importance of understanding the effects of 

intermolecular interactions on the pure component spectrum was integral to the correct 

application of equality constraints in the NWAY P-ALS resolution. 

In the following section the results of the soft constrained four component NWAY P-

ALS resolution was compared with the results of the multi-way MCR-ALS analysis 

using both hard and soft constraints. 

II.3.3.5 Comparison of the resolution using NWAY P-ALS and multi-way MCR-

ALS  

Aim 

The aim of this analysis was to compare the results of the soft NWAY P-ALS analysis 

with the results of multi-way MCR-ALS analysis using both hard and soft constraints to 

determine whether any advantage had been gained using the weighted least squares 

approach. 

Hard MCR-ALS vs. Hard NWAY P-ALS 

The research hypothesis specified for the four component resolution using NWAY P-

ALS was tested for the four component resolution using multi-way MCR-ALS.  In the 

multi-way MCR-ALS analysis the EFA starting estimates were used to initialise the 

multi-way MCR-ALS procedure.  The hard options used for the constraints imposed in 

the concentration profile were non-negativity and average unimodality with a tolerance 

of 1.00 in each constituent profiles [107].  The hard constraints imposed in the spectral 

profiles were non-negativity in each constituent profile and equality constraints in the 
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spectral profiles of acetic acid, pyridine and pseudo 1-butanol.  The convergence criteria 

was set to 1e-9 and the maximum number of iterations was 500. 

Figure 39.  The resolved concentration and spectral profiles obtained using the hard multi-way 
MCR-ALS options.  Figure 39a. The resolved concentration profiles.  Figure 39b. The resolved 
spectral profiles.  Constrained profile (bold line), unconstrained profile (normal line). 
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The hard multi-way MCR-ALS analysis produced good estimations of the reagent 

concentration profiles, shown in figure 39a.  The reagent concentration profiles were 

observed to be consumed at approximately the same rate.  Active constraints were found 

in the concentration profiles of acetic anhydride and pseudo 1-butanol in batches 1 and 

3, 1-butyl acetate in batch 3 and pyridine in batches 1-3 due to the application of the 

non-negativity constraint.  The effect of this was unrealistic estimates of each 

constituent where the non-negativity constraint was applied.  This was also reflected in 

the flat concentration profiles of 1-butyl acetate predicted for batch 3, shown in figure 

39a.  The hard constrained multi-way MCR-ALS spectral profiles were similar to the 

hard constrained NWAY P-ALS spectral profiles, shown in figure 40b.  The spectral 

profile of the pseudo 1-butanol spectrum contained minor deviations from the 

unconstrained solution (as discussed in the four component hard NWAY P-ALS 

resolution), and the spectrum of acetic anhydride contained minimal active constraints.  

However, the constrained pyridine spectral profile contained influential active 

constraints, which were particularly noticeable between 1374-1250nm, 1523-1645nm, 

1684-1835nm and 1823-2115nm.  The first three peaks in the unconstrained profiles 

spectra were attributed to pseudo 1-butanol, i.e., the unconstrained pyridine spectrum 

was contamination by pseudo 1-butanol.  It was postulated that the inclusion of these 

peaks in the solution by relaxing the constraints in the multi-way MCR-ALS would 

produce an erroneous solution.  This was tested using the soft multi-way MCR-ALS 

options.    

The RMS error between the reconstructed matrix and the original matrix was calculated.  

It was observed that slightly less error was found in the hard NWAY P-ALS approach 

than in the hard MCR-ALS solution (RMS 51072.3 −× and 51092.4 −× respectively).  The 

percent yield deviation from the GC result was less than the hard NWAY P-ALS 
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solution ( %48 ± ).  The deviation in the multi-way MCR-ALS was less because the zero 

concentration of pseudo 1-butanol and acetic anhydride in the final batch reduced the 

expected 1-butyl acetate concentration, see unconstrained solution, figure 39a.  No real 

advantage had been observed though employing the hard multi-way MCR-ALS 

approach over the hard NWAY P-ALS approach in this application. 

Soft MCR-ALS vs. Soft NWAY P-ALS 

The soft options for the constraints imposed in the concentration profiles were non-

negativity and average unimodality with a tolerance of 1.05 in each constituent 

profile[107].  The soft options for the constraints imposed in the spectral profiles were 

non-negativity in each constituent profile and the less than equality constraint in the 

spectral profiles of acetic anhydride, pyridine and the pseudo 1-butanol.  The same 

convergence criteria and the maximum number of iterations as specified previously 

were used in the analysis. 

The application of the soft options in the MCR-ALS resolution resulted in the correct 

resolution of acetic anhydride spectrum, pseudo 1-butanol spectrum and pyridine with 

less active constraints.  However, the concentration profiles of acetic anhydride and 

pseudo 1-butanol were not resolved well.  The reagents were consumed at 

approximately the same rate, however the mole fraction of the reagents, after 1-butanol 

was added to the pre-reaction mixture, were markedly different, producing 

concentration profiles which did not approximate the true solution.  Slightly less error 

was found in the soft constrained MCR-ALS solution than in the soft constrained 

NWAY P-ALS solution (RMS 61078.8 −× and 61094.8 −× respectively).  However, the 

deviation from the GC percent yield data was greater than the soft NWAY P-ALS 

approach.  Reduced error was found in the soft constrained MCR-ALS solution 
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compared to the hard constrained MCR-ALS solution (RMS 51092.4 −× and 

61078.8 −× respectively).    

The application of the soft MCR-ALS constraints did not improve the soft NWAY P-

ALS solution.  However, the application of soft constraints in the multi-way MCR-ALS 

resolution enabled a better resolution of the reaction constituent spectral profiles with 

less active constraints.  

II.3.4 Conclusion 

To summarise, it was not possible to resolve the correct concentration and spectral 

profiles for the reaction constituents using the hard multi-way MCR-ALS method and 

no real advantage was observed from the application of the hard NWAY P-ALS method 

over the hard multi-way MCR-ALS method.  However, employing the soft constraints 

in the MCR-ALS resolution enabled a reduction in the number of active constraints in 

the spectral profiles, in comparison to the hard constraints in the MCR-ALS resolution 

and the reduction of the RMS.   

Overall the best solution was obtained using the soft NWAY P-ALS options.  The 

reagent and product concentration and spectral profiles of acetic anhydride, pyridine, 

linear combination of complexed and uncomplexed 1-butanol and linear combination of 

1-butyl acetate and acetic acid were resolved from the multi-batch measurement matrix.  

The percent yield of 1-butyl acetate predicted using the soft NWAY P-ALS approach 

was closest to the percent yield calculated using GC, although from the available data it 

was not possible to determine whether the results were within an acceptable range.  The 

increased success in the NWAY P-ALS resolution of the reaction constituents over the 

multi-way MCR-ALS approach was attributed to the increased flexibility and hence 

control in the application of constraints.  Additionally, the application of the soft 
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NWAY P-ALS approach enabled a reduction in the number of active constraints in the 

solution and a smooth, monotonical convergence.   
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II.4 Quantitative Iterative Target Transformation Factor Analysis 

II.4.1 Introduction 

In the studies discussed so far, the quality of the initial estimates and application of 

constraints has been integral to the success of the resolution procedure, especially when 

the application of constraints produced local minima or divergence (NWAY P-ALS, 

Chapter II.2) or in the case where the variables found using the traditional exploratory 

tools were far from pure, i.e., they contained sizeable contributions from other 

components in the mixture (CATHy, Chapter II.1).  Traditionally the improvement of 

the solution from the constrained ALS procedure has been executed by the addition of a 

priori information to the initial estimates and / or constraints.  However, there are cases 

where this information is impossible to acquire under the process conditions or the 

information simply does not exist.  Therefore, new exploratory tools are required to find 

refined starting estimates close to the actual solution in order to reduce the error in the 

MCR-ALS solution. 

In this work a new type of rational SMCR strategy, based on ITTFA and SIMPLISMA, 

called Quantitative Iterative Target Transformation Factor Analysis (QITTFA)[155] has 

been developed.  QITTFA was developed in order to produce initial estimates which 

approximate the true solution in the absence of selectivity for the individual 

constituents.  QITTFA incorporates both a noise reduction procedure and generic 

constraints in the production of  initial estimates.  The ALS solution is improved in 

cases where no selectivity for individual constituents exist or where the application of 

constraints produce local minima or divergence.  No a priori information regarding the 

process, such as pure spectral features or calibration information is required in the 

QITTFA procedure.  Therefore, the advantage of this algorithm is attributed to two 
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novel features, which are: 1. Each spectrum (or concentration profile) in the solution 

space can be repeatedly constrained and projected using generic constraints; the 

constrained estimates are often closer to actual solution; and 2. Absence of unstructured 

variance (noise) in the solution space, from which the initial estimates are determined.   

The difference between the ITTFA and QITTFA procedure lie in the selection of the 

pure spectrum or initial estimates for alternating least squares.  In the ITTFA procedure 

(using the needle search algorithm to select the starting estimates) each needle is 

projected into the space defined by the eigenvectors once, and the correlation between 

the input and output target is evaluated.  The number of significant eigenvectors are 

retained to start the iteration procedure.  In the QITTFA procedure each needle vector is 

projected into the space defined by either the reduced column orthonormal vector or the 

reduced row orthonormal vector (see later) and all output target spectra are retained and 

refined using generic constraints.  SIMPLISMA is then used to select the most pure 

variables from the refined output target spectra.   

In conventional SIMPLISMA applications, SIMPLISMA is used to select the pure 

components from the original measurement matrix.  This method is known as the 

conventional SIMPLISMA approach, which is a pure-variable based method [64].  This 

means that it is assumed that every component in the mixture under study has a 

variable, which has a finite intensity for that particular component, and that the variable 

has a zero intensity for all other components in the mixture.  A major limitation is that 

in the absence of pure regions for each component this technique is not suitable.  To 

overcome this limitation  a strategy was developed, in which SIMPLISMA was used to 

select pure components from inverted non-negative second derivative spectra [118, 

121].  However, it was later recognized, that the second derivative approach could not 
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resolve well components, which were characterized by broad spectral features.  A 

strategy combining the use of conventional and inverted non-negative second derivative 

spectra was formulated [156].  The second derivative spectra were used for a 

component, which was characterized, by narrow spectral feature (sharp peaks) and the 

conventional spectra was used for a component, which was characterized by broad 

spectral features.  A limitation of the combined approach was that it was not very clear 

from the intermediate results whether one had to deal with a component with broad 

spectral feature or narrow spectral features.  This lack of clarity in the character of the 

components to be extracted complicated the combined approach.  The stepwise 

maximum angle calculation (SMAC) algorithm was introduced to enhance the 

intermediate results so it was easier to determine the character of the component (i.e. 

broad or narrow band) to be being extracted [157].  However, the limitation of both of 

the approaches (combined strategy and SMAC) is one still needs to subjectively 

characterize the component spectrum in order to select the correct approach.  Therefore 

a method which enables the resolution of pure components in both the presence and 

absence of selectivity and components of differing spectral characteristics (narrow or 

broad spectral features) is required.   QITTFA is also presented as a solution to this 

problem.  In the QITTFA procedure, SIMPLISMA is used to select the most pure 

variables from the refined output target spectra.   The advantages of the selection from 

the refined output target spectra are (a) the variance contribution due to noise is 

markedly reduced and (b) the refined target output spectra span the solutions space 

defined by the independent components.  This enables the resolution of pure 

components in both the presence and absence of selectivity and components of differing 

spectral characteristics (narrow or broad spectral features) can be resolved from the 
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refined target output spectral matrix.  The differences between the QITTFA, ITTFA and 

SIMPLISMA methodologies are in box 3. 

 
Box 3.  Outline of  the QITTFA, ITTFA and SIMPLISMA methodologies 
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II.4.2 Methodology 

In QITTFA procedure the pure variables are selected from a noise reduced solutions 

matrix, called the needle output spectral matrix, rather than either the original matrix as 

in the conventional SIMPLISMA approach or the second derivative measurement 

matrix as in the second derivative SIMPLISMA approach.  The calculation of the 

needle output spectral matrix is described below. 

II.4.3 QITTFA procedure 

QITTFA is an automatic procedure for the determination of initial estimates from a 

measurement matrix.  The user inputs required for QITTFA are (a) the data matrix, D, 

where each row represents a sample spectrum and each column represents the total 

response, the latter of which is a linear additive signal of each chemical constituent (at a 

constant pathlength), (b) the estimated number of chemical components (nc), (c) a 

correction factor ( ), and (d) the maximum number of iterations (nit).  The outputs of 

QITTFA are (a) the needle output spectral matrix (Z), and (b) the initial estimates 

(either 0S  or 0C ). See appendix C for MATLAB routines.  The main steps of QITTFA 

are given in table 9.   

Steps Procedure 

1 Aggregation of user inputs for QITTFA analysis 

2 Generation of needle spectra 

3 Generation of needle output spectra 

4 Optional application of constraints to the needle output spectra 

5 Production of needle output spectral matrix 

6 Selection of initial estimates from the needle output spectral matrix 

Table 9.  Steps of the QITTFA procedure. 

In the following section a description of the QITTFA procedure is given, using the 

simulated HPLC-DAD data (see Experimental Chapter II.5.2.1). 
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1.  Aggregation of user inputs for QITTFA analysis 

  
Figure 40.  Simulated HPLC-DAD data 

The measurement matrix for the simulated HPLC-DAD data is shown in figure 40.  The 

measurement matrix has 500 spectral channels and 100 samples.  The user inputs for 

QITTFAs are the data, four components, 1% correction factor and maximum iterations 

of 100. 

2.  Generation of Needle Spectra 

The needle spectra are the starting estimates from which QITTFA generates the pure 

profiles (the needle spectra are not unique to curve resolution and have been used over 

several years to provide starting estimates in the absence of a priori information).  Due 

to the dual space of the measurement matrix, QITTFA can either be applied in the 

spectral or concentration dimension, abbreviated to QITTFAs and QITTFAc 

respectively.  For a measurement matrix, D, of size ( )mn × , with n absorption spectra in 

each row at m wavelengths.  The initial estimates for the spectral domain (QITTFAs), 
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would have m needle spectra inj ( )m×1 .  Each needle spectrum has a spike equal to unit 

length one, at a single position, which is unique to each needle spectrum and the 

remaining elements are equal to zero.  The m needle spectra would be expressed as 

follows: 

in1 = (1, 0, 0, �.,0) 

in2 = (0, 1, 0, �.,0) 

inm = (0, 0, 0, �.,1) 

The size of the needle matrix, INs, is ( )mm× .   

If QITTFAc is applied to the measurement matrix, D ( )mn × , n needle spectra ini ( )n×1  

would be generated, with a spike equal to unit length one and the remaining elements 

equal to zero, and the size of the needle matrix INc, is ( )nn × .   

The properties of the needle spectra are that they are linearly independent, and so 

represent n or m independent components.  The response at each variable is maximised 

to a unit length, i.e., one, so that the variance contribution from each needle spectrum is 

the same.  A typical needle spectrum is shown in figure 41.  

 

 

 

 

Figure 41.  Needle spectrum with spike at 265.5nm 
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3. Generation of Needle Output Spectra  

Singular value decomposition (SVD) is used to decompose the measurement matrix.  

The SVD of measurement matrix D is defined by equation 39, where D is the 

measurement matrix, U is the U ( )nn ×  column-orthonormal singular vectors and V is 

the ( )nm×  row–orthonormal singular vectors and  is a ( )nn ×  diagonal matrix of 

singular values whose elements are arranged in decreasing value.  The dimension of n   

can be at most equal to or smaller than the dimensions n or m. 

TVΛUD =  Equation 39

The solutions space is defined by the estimated number of chemical species.  The 

chemical rank is equal to the mathematical rank (i.e., the number of independent 

components) when no noise is present in the data and the chemical species are 

independent.  The mathematical rank of the data can easily be determined by the 

reduction of the matrix to row-echelon form by Gaussian elimination, and is equal to the 

number of non-zero rows.  The determination of the chemical species is more complex 

because of the presence of measurement noise and their non-assumed distribution, 

heteroscedasticity and collinearity of the measurement matrix [11, 59].  Once the 

number of components have been determined, the reduced singular vectors are written 

as shown in equation 40, where U* ( )ncn × , V*T ( )mnc ×  and Λ* ( )ncnc ×  are the 

independent singular vectors and E is the ( )mn ×  residual matrix, (*) refers to the 

reduced singular vectors and nc refers to the number of independent components which 

are retained in the model. 

EVΛUD T += ***  Equation 40

4.  Optional Application of Constraints 



147 

The needle output spectral matrix is constructed to store the refined estimates for each 

of the projected and constrained needle spectra.  The formation of the needle output 

spectral matrix in the QITTFAs procedure is described below. 

Each row spectrum in the needle spectral matrix, IN ( )mm× , represents a spectral 

estimate.  The needle spectra are each tested within the space defined by the reduced 

row-orthonormal basis vectors (loadings) of the data matrix, see equation 40.  A row 

spectrum of D would be written as, equation 41, where id is a ( )m×1  vector, *w is a 

( )nc×1  vector, TL* is a ( )mnc ×  vector and ie  is a ( )m×1  vector.  Each row represents 

either a mixture or pure spectrum, which is a linear combination of the singular vectors; 

which span the space of all the components.  The first needle spectrum, in1, is projected 

into the basis vectors defined by the reduced loadings.  The scores *
1inw  of this needle 

spectrum, in1, is calculated by solving equation 42 using equation 43.  The scores, *
1inw  

of the needle spectrum gives the linear combination of singular vectors which best 

describe the initial needle spectrum, as shown in figure 42.  

 

 

 

 

Figure 42.  Needle output spectrum calculated for the needle spectrum with spike at  265.5nm  

 

ii eLwd T += **  Equation 41
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1
**

1 1
eLwin T += in  Equation 42

( ) *
1

1***
1

*
1

LinLLLinw T ==
−

in  Equation 43

The needle output spectrum ( )TLwoutout **
11 1in= , described by the least squares 

estimate *
1inw , may contain some sort of deviation from the generic characteristics of the 

system, i.e., negativity.  To correct for this, a non-negativity constraint can be applied to 

the loadings vector out1, to ensure that the solution contains no negative signals, (if this 

is a fulfilment of the measured system).  This constraint is applied by setting all 

negative values to zero, prior to the proceeding projection.  The constrained needle 

output spectrum ( )1
**

11 1
eLwnini T +=′′ in  is then projected into the reduced singular 

vector space and the needle output spectrum tou ′ is assessed.  This procedure is 

repeated until the difference between 1ni ′ and 1tou ′  is representative of the noise or the 

maximum number of iterations has been exceeded, as shown in figure 43.  The overall 

expression is given in equation 44.   

TLLinout **
11 =  Equation 44

This is repeated for all the needle spectra in1, in2,�, inm.   
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Figure 43. Constrained needle output spectrum.  Figure 44a.  Non-negative constrained needle 
output spectrum.  Figure 44b. Final non-negative constrained needle output spectrum 

5.  Production of needle Output Matrix 

The constrained needle output spectra for each projected needle spectra are arranged 

sequentially into an Zs ( )mm×  needle output spectral matrix, as shown in figure 44.  

z1 ( )m×1  = out1 = in1 V* V*T 

z2 ( )m×1  = out2 = in2 V* V*T 

. 

. 

. 

zn ( )m×1  = outn = inn V* V*T 

The Zc ( )nn ×  needle output spectral matrix, representative of the concentration 

profiles, is calculated in a similar way to the needle output spectral matrix representative 

of the spectral profiles.  The needle output spectrum in1 ( )n×1  is projected into the 

reduced column-orthonormal vectors (scores), see equation 45.  The loadings which 

best describe the initial needle spectrum is described by equation 45 and solved using 



150 

equation 46.  The overall expression of QITTFAc for concentration estimate is 

expressed in equation 47.  An additional constraint to QITTFAc for the concentration 

domain include the average unimodality constraint [116]. 

1
**

1 1
elWin T += in  Equation 45

( ) 1
*

1
*1***

1
inWinWWWl TTTT ==

−
in  Equation 46

1
**

1 inWWout T=  Equation 47

 

Figure 44. Needle output spectral matrix 

The refined estimates in the needle output matrix, Zs or Zc, are often closer to the actual 

solution than randomly generated initial estimates, because the initial estimates are 

defined from the reduced singular vector space, i.e., the space from which the majority 

of noise has been removed.  The variance contribution from each of the components in 

the needle output matrix are maximised, which makes it easier to resolve minor 
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components and the needle output spectra can be optionally constrained with 

characteristic constraints prior to ALS analysis. 

6.  Selection of Initial Estimates from Solutions Matrix 

The method of selecting initial estimates from one or the other Zs or Zc matrix is 

described below.   

For the selection of the initial spectral estimates from the Zs matrix, the needle output 

spectra are arranged in the needle output spectral matrix, Zs such that each row 

represents a refined spectral estimate for the determination of the pure spectral profiles.  

SIMPLISMA is used to determine the purest needle variables from the needle output 

spectral matrix Zs to provide the initial estimates of the spectra, shown in figure 45.   

 

Figure 45. Initial spectral estimates selected from needle output matrix 
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For the selection of the initial concentration estimates from the Zc matrix, the needle 

output concentration profiles are arranged in the needle output spectral matrix, Zc such 

that each column represents a refined concentration estimate for the determination of the 

pure concentration profiles.  SIMPLISMA is used to determine the purest needle 

variables from the needle output concentration matrix Zc to provide the initial estimates 

of the concentration.   

Either the spectra or concentration estimates can be used to initialise the ALS 

procedure.  The advantage of the determination of the initial estimates from one or the 

other needle output matrix, Zs or Zc, is that the majority of the variance contribution due 

to noise has been removed.  Secondly, SIMPLISMA selects sub-matrices from one or 

the other Zs or Zc matrix that spans the space defined by the independent variables, 

which allows each component to be easily resolved.   

The performance of the QITTFAc method was initially compared with its counter-part 

exploratory tool, EFA, using a noise free simulated dataset (simulated HPLC-DAD (I)) 

to highlight the importance of the generation of accurate initial estimates.  In the second 

comparison, the determination of the key variables from the needle output spectral 

matrix (QITTFAs) was compared with the determination of the key variables from the 

original matrix (SIMPLISMA).  The analysis was completed in order to find out 

whether the construction of the needle output spectral matrix improved the selection of 

the pure variables and hence the final MCR-ALS solution.  This analysis was completed 

with the simulated HPLC-DAD (II) dataset. 
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II.5 Exploratory Analysis of Simulated HPLC-DAD using QITTFA 

II.5.1 Qualitative Analysis of the Simulated HPLC-DAD (1) Data 

The simulated (I) HPLC-DAD data consisted of 51 spectra following a pseudo elution 

of four analytes (A-D), shown in figure 46.  The data was generated as part of an 

example used for resolution of multi-batch measurement matrices using MCR-ALS 

[107].  No selectivity exists in the spectral direction and fully selective conditions exist 

in the concentration dimension.  Combinations of these two conditions are normally 

required for good resolution.  The spectra have 96 spectral channels from 200-295nm 

(resolution of 1nm) and the size of the data is 9651× .  The residence times of species 

A-D were 13-31 minutes, 21-41 minutes, 31-47 minutes and 4�26 minutes respectively.   

MATLAB6p5® (The Math Works, Inc) was used to complete all data processing.   

 
Figure 46. The reference spectra and elution profiles of species A-D. 
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II.5.1.1 Application of QITTFAc Concentration to the Simulated HPLC-DAD (I) 

Data  

II.5.1.2 Simulated HPLC-DAD (I) Data  

No observable unique features could be distinguished from preliminary observations of 

the surface plot of the simulated HPLC-DAD (I) dataset, shown in figure 47.  The 

MCR-ALS solution generated from the QITTFAc and EFA starting estimates were 

expected to be close to the actual solution because regions of low local rank (i.e., a rank 

of 1 or 2) existed in the concentration direction for a good resolution. 

 

Figure 47. Simulated HPLC-DAD (I) data.  No selectively is present in the spectral profiles and 
local rank conditions are present in the elution profiles. 

II.5.1.3 Initial Estimates 

In the QITTFAc procedure fifty-one independent needle vectors representative of 

elution profiles were automatically generated (input vectors) and sequentially projected 
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into the reduced scores space, to obtain the output solution matrix, Zc, shown in figure 

48.   

 

Figure 48. The output matrix, Zc contained fifty-one possible solutions, one for each needle 
spectrum projected and constrained using non-negativity and average unimodality constraint 
within the reduced scores space.  

The constraints imposed during the QITTFAc procedure were non-negativity and the 

average unimodality constraint (see section I.2.1.2.4), because the solutions were 

expected to have absorbance values equal to or greater than zero and Gaussian shaped 

profiles.  The solution matrix, Zc, contained fifty-one possible solutions, one for each 

needle vector projected.  The surface plot of the solution space is similar to a contour 

plot of a DAD; however, the absorbance is plotted as a function of the retention time 

and the needle variable.    

The percent variance of the principal components and the rank of both the simulated 

HPLC-DAD (I) data and the needle output spectral matrix, Zc were calculated and are 

shown in table 10.  The rank of the simulated data and the needle output spectral matrix, 

C 

B 

A

D



156 

Zc, was four.  The variance was spread more evenly across the PCs of the needle output 

spectral matrix.  The condition number of the HPLC-DAD (I) data and the needle 

output spectral matrix (Zc) were calculated.  The condition number of a matrix measures 

the sensitivity of the solution of a system of linear equations to errors in the data. It 

gives an indication of the accuracy of the results from matrix inversion and the linear 

equation solution.   

% Variance  PC 1 PC 2 PC 3 PC 4 PC 5 

HPLC- DAD (I) 90.24      8.43       0.92      0.41       0.00 

Zc 40.95 30.39 19.10 9.56 0.00 

Table 10.  The percent variance distribution of PCs 1-5, calculated for the simulated HPLC-DAD 
(I) data and the needle output spectral matrix. 

The condition number was calculated by dividing the maximum singular value with the 

smallest singular value, for each measurement matrix.  The condition number of the 

simulated HPLC-DAD (I) data was 14.91 and the needle output spectral matrix was 

2.07, which indicated that the quality of the needle output spectral matrix and hence the 

final least squares solutions had improved over the original data, in terms of the 

sensitivity to error and accuracy of the linear equation solution.   

The needle variables were selected from the solutions matrix.  The maximum intensity 

in the first purity spectrum was found at 38 minutes, which coincided with the tmax of 

component C.  The second pure variable which was least correlated to the first 

component, was located in the second purity spectrum at 30 minutes.  The second pure 

needle variable was close to the tmax of constituent B.  The third purest needle variable 

was located at 17 minutes in the third purity spectrum and coincided with components 

A and D, however, the pure needle variable was closer to the tmax of component D than 

A.  The final pure needle variable was found at 21 minutes.  Thus, the pure needle 

variables selected for components A-D were 21, 30, 38 and 17 respectively.  The 
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reference elution profiles are shown in figure 49a and the initial estimates selected from 

the solutions matrix are shown in figure 49b.  Good starting estimates of the elution 

profiles were obtained from the needle output spectral matrix, because it was assumed 

that the principal axes (basis vectors) coincided with the independent components.  The 

difference between the QITTFAc profiles and the reference profiles were due primarily 

to differences in the scaling of the component profiles.  The evolutionary profiles 

estimated using the EFA approach are given in figure 49c.  The plot of the log 

eigenvalue versus time in the forward direction revealed new independent components 

at 5, 13, 22 and 32 minutes while the plot of the backward analysis showed the 

disappearance of the independent components at 26, 31, 41 and 48 minutes.  The 

combined forward and reverse profiles from EFA revealed the windows of existence of 

the four independent components.  It was observed that the EFA profiles did not closely 

represent the pure elution profiles because of difference between the shapes of the 

profiles, but the QITTFAc elution profiles closely represented the pure elution profiles.   

The elution windows predicted for components A-D using QITTFAc and EFA are 

tabulated in table 11.  Deviation from the reference data was shown in the elution 

profile of the QITTFAc constituent D, which had a weak tail peak between 25-

35minutes, highlighted in figure 49b.  

Elution windows (min) A B C D 

Reference 13-31 21-41 31-47 4�26 

QITTFAc 13-31 21-40 31-47 4-35 

EFA 13-31 22-41 32-48 5-26 

Table 11. Elution windows of components A-D, predicted using QITTFAc and EFA compared to 
the reference elution windows. 
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Figure 49. The elution profiles of constituents A-D. Figure 49a.  The reference elution profiles of 
constituents A-D.  Figure 49b. The QITTFAc elution profiles; selected from the needle output 
spectral matrix, rank 4.  Figure 49c. The EFA estimates of the elution profiles. 

 

II.5.1.4 MCR-ALS 

The MCR-ALS solution obtained with the QITTFAc and EFA starting estimates are 

shown in figure 50.  During the ALS optimisation the concentration profiles were 

constrained with non-negativity and vertical unimodality constraints.  The spectral 

profiles were normalised to a height of one and non-negativity constraints were applied.  

The model error was measured using the relative error between successive iterations.  
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The convergence criterion was 0.1% of the difference between the MCR-ALS 

reconstructed matrix and the PCA constructed matrix.  The maximum number of 

iterations was set to 100.  The resolved spectral and concentration profiles were 

compared to the reference profiles by scaling the response of each component between 

0 and 1.  The reference and predicted profiles were overlaid for visual comparison and 

the relative error (RE %) which gives a measure of the quality of fit between the 

predicted and reference concentration and spectral profiles was determined. 

The resolved elution profiles generated from the QITTFAc starting estimates showed no 

observable deviations from the reference elution profiles, see figure 50a.  This was also 

observed in the resolved spectral profiles generated from the QITTFAc starting 

estimates, see figure 50c.  On the-other-hand, the resolved elution profiles obtained 

using the EFA estimates showed observable deviations in the prediction of the elution 

profiles of constituents A, B and D.  This was particularly noticeable between 13-18 

minutes in component A, 21-32 minutes and 34-45 minutes in component B and 15-25 

minutes in component D, highlighted in figure 50b. The resolved spectral profiles 

obtained using the EFA starting estimates did not agree with the reference spectral 

profiles of the constituents A-D, which is highlighted in figure 50d and is reflected in 

the percent RE of each of the constituents, see table 12.    

 Elution Profiles Spectral Profiles 

%RE QITTFAc EFA QITTFAc EFA 

A 0.40 4.00 0.24 12.97 

B 0.12 9.08 0.22 0.84 

C 0.00 0.03 0.05 2.92 

D 0.15 10.38 0.00 1.57 

Table 12. The percent RE calculated for the prediction of the elution and spectral profiles for each 
constituent.  The solutions were obtained from the constrained ALS procedure using the QITTFAc 
and EFA starting estimate.    
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Figure 50.  The MCR-ALS elution and spectral profiles.  Figure 50a and 50c - The resolved spectral  
and elution profiles using the QITTFAc initial estimates overlaid with the reference elution profiles 
for constituents A-D respectively.  Figure 50b and 50d - The MCR-ALS elution and spectral 
profiles resolved using the EFA estimates overlaid with the reference spectral profiles for 
constituents A-D respectively.  
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The percent RE of each of the constituents concentration and spectral profiles resolved 

using the QITTFAc starting estimates varied between 0-0.50%.  The best QITTFAc 

result was found for the resolved spectral profile of constituent D which contained no 

error.  The percent RE of each of the constituents concentration and spectral profiles 

resolved using the EFA starting estimates varied between 0.03% and 12.97%.  

Therefore, using the QITTFA initial estimates, which closely represented the actual 

solution, produced results with little or no deviation from the true solution. 

II.5.1.5 Summary 

The solutions obtained using the QITTFAc starting estimates closely resembled the 

actual elution profiles.  The evolutionary profiles determined using EFA analysis were 

abstract representations of the concentration profiles, and as such the starting estimates 

were not as accurate as those determined using the QITTFAc procedure.  Here, the 

importance of the generation of accurate initial estimates approximating the true 

solution has been shown, as the error in the predicted concentration and spectral profiles 

using the EFA starting estimates were greater than those obtained with the QITTFAc 

starting estimates. 
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II.5.2 Qualitative Analysis of the Simulated HPLC �DAD (II) Data 

II.5.2.1 Simulation(II) � Partial Selectivity in spectral direction 

Simulated dataset (II) consisted of 100 HPLC-DAD spectra following a pseudo elution 

of the target analyte, and three by-products, which eluted with the main product, species 

A-D, shown in figure 51.  The spectra have 500 spectral channels from 250.5 - 500.0nm 

(resolution equal to 0.5nm) and the size of the data is 500100× .  The chromatographic 

profiles and the spectral profiles were created using Gaussian functions.  

MATLAB6p5® (The Math Works, Inc) was used to complete all data processing.  

 
Figure 51.  The reference spectra and elution profiles of species A-D.  

 

The reaction profile of the simulated HPLC-DAD data (II) is shown in the schematic 

overview of the QITTFAs procedure, step 1 (Chapter II.4.2). 
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II.5.2.2 Initial Estimates 

In the QITTFAs procedure a reduced loadings space of rank 4 (number of independent 

components) was used to obtain the needle output spectral matrix, Zs.  The constraint 

imposed during the QITTFAs procedure was non-negativity, as the solutions were 

expected to have absorbance values equal to or greater than zero.  The output matrix, Zs, 

contained five hundred possible spectral solutions, one for each needle vector projected.  

The four purest spectra were extracted from the Zs matrix at needles 10, 273, 174 and 

31, the original needle input spectra at these needles had a spike at wavelength variables 

255.0nm, 386.5nm, 377.0nm and 265.0nm respectively.  The needle spectra were 

representative of components A, C, D and B respectively.  In figure 52a, the output of 

the selected needle spectra are overlaid with their corresponding reference spectra to 

determine the selectivity of the key variables, based upon absorptivity.  SIMPLISMA 

was applied to the simulated HPLC-DAD (II) data and the four purest elution profiles 

were selected at wavelength variables 275.0 nm, 498.0 nm, 417.5 nm and 300.0 nm, 

which were representative of components B, D, C and A respectively.  In figure 52b, 

the key variables are overlaid with their corresponding reference spectra. 
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Figure 52.  The key variables selected from the needle output spectral matrix and the original 
HPLC-DAD (II) data.  Figure 52a. The key variables selected from the needle output spectral 
matrix.  Figure 52b. The key variables selected from the original HPLC-DAD (II) using the 
SIMPLISMA analysis.   

Purity (max) P1 P2 P3 P4 

QITTFAs 1.907 1.279 1.092 0.443 

SIMPLISMA 0.964 0.393 0.066 0.002 

Table 13. The purity value of the key variables (P1-P4) determined from the purity spectra 1-4 
calculated from the needle output spectral matrix and the simulated HPLC-DAD (II) data. 

The key variables selected from the needle output spectral matrix differed to the key 

variables selected from the original matrix in two aspects.  Firstly, the QITTFAs key 

variables had higher purity values than the SIMPLISMA key variables.  Secondly, the 

pure variables were easier to select from the needle output spectral matrix because the 

variance contribution for each spectrum in the matrix had been maximised, whereas the 

purity of the original data was largely dependent on the variance contribution of each of 

the constituents in the original matrix (see table 13).   
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The initial QITTFAs spectral estimate and the elution profiles estimated using the 

SIMPLISMA analysis are shown in figure 53.  It is clear that the correct key variables 

were selected from the needle output matrix as the initial QITTFAs estimates were 

similar to the reference spectra in terms of shape.  The final key variable selected from 

the original matrix using the SIMPLISMA procedure was incorrect.  This was because 

the final purity spectrum had a relatively low signal-to-noise ratio, so it was difficult to 

distinguish the key variable from the final purity spectrum.  As such, the wrong key 

variable was selected for constituent C. 

II.5.2.3 MCR-ALS 

The MCR-ALS solutions obtained using the QITTFAs and SIMPLISMA initial 

estimates are given in figures 54-55.  During the ALS optimisation the concentration 

profiles were constrained with non-negativity and vertical unimodality constraints.  The 

spectral profiles were normalised to a height of one and non-negativity constraints were 

applied.  The model error was measured using the lack of fit between successive 

iterations.  The convergence criterion was 0.1% for the difference between the MCR-

ALS reconstructed matrix and the PCA constructed matrix.  The maximum number of 

iterations was set to 100.  The resolved spectral and concentration profiles were 

compared to the reference profiles by scaling the response of each component between 

0 and 1.  The reference and predicted profiles were overlaid for  visual comparison and 

the determination of  the relative error (RE %). 
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Figure 53.  The initial estimates of the spectral profiles and elution profiles.  Figure 52a. The 
reference elution profiles of constituents A-D.  Figure 53b. The QITTFAs elution profiles; selected 
from the reduced solution space of rank 4.  Figure 53c. The SIMPLISMA estimates of the elution 
profiles. 
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Figure 54.  The MCR-ALS resolved spectral profiles.  Figure 54a. The MCR-ALS spectral profiles 
resolved using QITTFAs initial estimates overlaid with the reference spectral profiles for 
constituents A-D.  Figure 54b. The MCR-ALS spectral profiles resolved using SIMPLISMA initial 
estimates overlaid with the reference spectral profiles for constituents A-D. 
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Figure 55.  The MCR-ALS resolved elution profiles.  Figure55a. The MCR-ALS elution profiles 
resolved using QITTFAs initial estimates overlaid with the reference spectral profiles for 
constituents A-D.  Figure 55b. The MCR-ALS elution profiles resolved using SIMPLISMA initial 
estimates overlaid with the reference spectral profiles for constituents A-D.   

The percent RE are given in table 14.   

The MCR-ALS spectral and elution profiles resolved using the QITTFAs initial 

estimates were comparable to the reference data.  Good agreement was observed in the 
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overlay spectra.  The MCR-ALS spectral and elution profiles obtained with the 

SIMPLISMA initial estimates were not as accurate as the MCR-ALS solutions obtained 

using the QITTFAs initial estimates.  Slight differences between the resolved spectral 

profiles and the reference spectral profiles of components B and C were found see 

figure 54b (shaded areas).  This was expected as the key variables selected for each 

component had low purity values.  The concentration profiles resolved using the 

SIMPLISMA estimates contained errors that were particularly noticeable in the 

concentration profiles of constituents A and D.  This was not expected as the key 

variables selected for these constituents were relatively pure (i.e., the purity values of 

the variables were high, see table 13).     

 Spectral Profiles Elution Profiles 

%RE QITTFAs SIMPLISMA QITTFAs SIMPLISMA 

A 0.46 0.10 0.07 2.47 

B 0.44 13.65 0.27 0.44 

C 1.44 9.19 0.02 0.25 

D 1.05 1.46 0.85 8.32 

Table 14. The percent RE of the elution profiles and the spectral profiles for each constituent.  The 
solutions were obtained from the constrained ALS procedure using the QITTFAs and SIMPLISMA 
starting estimate.   

II.5.2.4 Summary 

In this example the SIMPLISMA starting estimates did not approximate the actual 

solution very well.  This had an adverse effect on the quality of the final MCR-ALS 

solution, and as such the MCR-ALS solutions obtained using the SIMPLISMA initial 

estimates contained greater error.  These results have indicated that the QITTFAs 

routine is superior to the SIMPLISMA method for the determination of the initial 

estimates using the simulated HPLC-DAD (II) dataset and this example has highlighted 
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the importance of using initial estimates, which closely approximate the true solution to 

gain a successful resolution. 

II.5.3 Conclusions 

The MCR-ALS solution obtained using the QITTFAc and QITTFAs starting estimates in 

examples II.5.1 and II.5.2 contained less error than its traditional counterpart methods 

using simulated noise-free datasets.  This is because the needle output spectra were 

constrained using constraints which were characteristic of the data, which meant that the 

singular vectors were not abstract representations of the solutions.  Secondly, the 

singular vectors were not scaled, so the selection of the initial estimates from the needle 

output spectral matrix was not based on its variance contribution. 

In the following study, a quantitative MCR-ALS approach was developed using 

accurate initial estimates determined from QITTFA and a correlation constraint 

(regression constraint) for the calibration of an industrial process. 
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II.6 Semi-Quantitative Analysis of Calibration samples from the BP Vinyl 

Acetate Process 

II.6.1 Introduction 

This study was completed in collaboration with Dr Edo Becker and Dr Alasdair 

Thomson, Spectroscopic On-Line Analysis, Program Development, BP Chemicals Ltd, 

Saltend Lane, UK.  

Aim 

The aim of the study was to determine whether the pure spectrum of VAM in the 

vapour state could be resolved using CFT from the two-way NIR mixture data collected 

from the vinyl acetate plant.  Previously, the pure spectrum of VAM was not available 

because neat VAM tended to condense at the specified reaction conditions.  The new 

exploratory tool, QITTFA, (see section II.4) was employed in order to resolve the pure 

spectrum of VAM.  The resolution using the QITTFA starting estimates was compared 

to the resolution using a traditional exploratory tool, SIMPLISMA, in order to 

demonstrate the robustness and reliability of the approach.   

Introduction 

The manufacture of vinyl acetate is an industrially significant process.  In 1999 the total 

world demand for vinyl acetate was approximately 4 million metric tonnes per annum.  

This number has increased steadily to almost 5 million metric tonnes over the last 4 � 5 

years.  Forty percent of VAM production is currently controlled by two major 

manufacturers, BP Chemicals and Celanese, although there are many producers with 

smaller capacities [158].  The majority of vinyl acetate is used in the manufacture of 

poly vinyl alcohol for textiles, textile fibres, adhesives, emulsions and photosensitive 

coatings [159]. 
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In the VAM reaction, ethylene, pure oxygen, and acetic acid are converted into the vinyl 

acetate monomer product.  Water and carbon dioxide are by-products.  The reaction 

takes place as follows, see equations 48-49; 

C2H4+ CH3COOH + ½ O2 ! CH2 = CHOCOCH3 + H2O Equation 48

C2H4+ 3O2!2CO2+ 2H2O Equation 49

The industrial manufacture of VAM was first developed by Wacker via the vapour 

phase reaction of acetic acid and acetylene during the early 1930s, by the use of the 

Wacker PdCl2 catalyst with CuCl2 and O2 [160], see equations 50-51.    

Pd0 + 2CuX2   !   PdX2+ 2CuX Equation 50 

2CuX + 2HX + ½O2 ! 2CuX2 + H2O Equation 51

Virtually all VAM was produced by this technology until the early 1960s when the 

advent of selective transition metal oxidation catalysts enabled the replacement of 

acetylene by ethylene as the feedstock.  The VAM production using the ethylene based 

routes became more popular because of the lower raw material cost, which translated 

into a lower cost product.  In the early 1960s several liquid phase ethylene based 

production processes were developed and commercialised.  Between the late 1960s and 

the early 1970s all of the liquid phase VAM plants were shut down primarily due to the 

unexpected corrosion problems that necessitated expensive equipment modifications.  

The chemistry of vapour phase ethylene acetoxylation to vinyl acetate was discovered 

around 1960.  In less than a decade, fixed bed, vapour phase ethylene acetoxylation 

VAM manufacturing became the process of choice and further decreased product cost.  

The fluid-bed process is another method of improving the VAM manufacture and 

reducing production costs. 
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BP is the industrial leader in the development of fluid-bed processing for the 

manufacture of vinyl acetate.  The continuous reactor fluid-bed at BP Chemicals 

produces ~250,000 tonnes of vinyl acetate per annum.  LEAP® is the registered 

trademark referring to the new method of manufacturing vinyl acetate developed by BP.  

This development was driven by the need to reduce manufacturing cost.  The 

advantages of the fluid-bed reactor over the fixed bed reactor is that it is easier and 

cheaper to construct.  Due to engineering constraints most world-scale fixed bed plants 

utilise two reactors.  For the fluid-bed, only a single bed is required leading to a major 

cost saving.  In addition, the nature of the fluid-bed allows the feeds to be processed in a 

completely different manner, which eliminates the number of pieces of equipment 

[161]. 

II.6.2 Experimental 

The calibration data was collected by Edo Becker, Alasdair Thomson, Dave 

Lightowlers and Ian Taylor-Hayward, BP Chemicals, Hull.   

II.6.2.1 Reaction Conditions 

Three hundred and thirty nine NIR calibration standards were prepared in the plant as 

mixtures of five organic components, ethylene (BOC Gases Ltd), carbon dioxide (BOC 

Gases Ltd), water (demineralised), acetic acid (BP Chemicals final product) and vinyl 

acetate (BP Chemicals final product).  An automated mixing system, �stealth trolley�, 

was designed specifically to make-up the calibration standards in the SPECAC NIR, 

Typhoon T13 gas cell, using evaporators and mass flow controllers.  Each sample took 

~20 minutes to prepare and was introduced into the gas cell at 120ûC.  The partial 

pressure of each constituent and the total pressure for each calibration sample differed 

from sample-to-sample to mimic varying process conditions.   
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II.6.2.2 Data Acquisition 

The spectra were acquired using a BOMEM MB-155 and MB-160 fitted with a TE-

cooled InAs detector.  Each spectrum was recorded using the average of 32 scans, the 

spectral region was 9998.2- 4497.7cm-1 and the resolution was 7.7cm-1.  Reference 

spectra of the vaporised pure components, ethylene, water, carbon dioxide and acetic 

acid were obtained prior to the analysis.  MATLAB6p5® (The Math Works, Inc) was 

used to complete all data processing.   

II.6.3 Results and Discussion 

In the final investigation, the aim was to resolve the pure spectrum of VAM in the 

vapour state from the two-way calibration mixture data collected from a BP process 

NIR analyser on the vinyl acetate plant using CFT.  The pure spectrum of VAM was not 

available because neat VAM tended to condense at the specified reaction conditions.  In 

this study QITTFA was applied in order to resolve the pure spectrum of VAM.  The 

MCR-ALS resolution initialised from the QITTFA starting estimates was compared to 

the MCR-ALS resolution initialised from SIMPLISMA, in order to demonstrate the 

robustness and reliability of the approach.    

II.6.3.1 Reaction Profile 

The NIR data consists of five components, ethylene, carbon dioxide, water, acetic acid 

and vinyl acetate.  The first 160 NIR spectroscopic samples acquired are shown in 

figure 56.  The traditional designation of v for a stretching mode and δ for a bending 

mode is used in the figure.  There were several regions of interest in the NIR spectra, 

representative of three of the five chemical constituents.  The first overtone of the OH 

group associated with monomer acetic acid is apparent at ~6994cm-1.  The first overtone 

of the asymmetric C-H stretch from ethylene cover 6200-6090cm-1 and the first 
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overtone of the symmetric C-H stretch appear at 5993cm-1 together with the 

combination bands with relatively strong absorbance appearing at 4760cm-1.  The 

combination bands from the asymmetric and symmetric stretching modes of water 

appear at ~5150 and ~6900cm-1.   

 
Figure 56.  The first 160 calibration samples acquired from the industrial NIR process analyser.   

Selective regions for vinyl acetate and carbon dioxide were not identified as they 

coincided with characteristic functional group frequencies of ethylene, acetic acid and 

water.  

II.6.3.2 Qualitative Data Analysis 

For each investigation the mixture�s NIR calibration spectra were baseline corrected 

using the minimum-offset method (removal of negative absorbencies).  Sample 168 was 

removed as an outlier because it had an abnormally high absorption.  The two methods 

employed to determine the starting estimates were QITTFA and SIMPLISMA.   

vC-H + vC=C 
Ethylene 

vOH~6994cm-1

Acetic acid

vasC-H 

Ethylene 

vOH + δOH 
Water 

vasOH + vsOH 
Water 
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QITTFAs analysis was repeated using 4, 5 and 6 components to describe the reduced 

space and capture the structured variation.  In each analysis the needle output spectra 

were constrained with non-negativity constraints.  The QITTFAs initial estimates were 

used to initialise the MCR-ALS procedure.  In a separate analysis, SIMPLISMA was 

applied to resolve the chemical constituents.  The analysis was repeated using 4, 5 and 6 

components.  The SIMPLISMA initial estimates were used to initialise the MCR-ALS 

procedure.   

In both applications (QITTFA followed by MCR-ALS analysis and SIMPLISMA 

followed by MCR-ALS analysis) the spectral profiles were normalised to a height of 

one.  Non-negativity constraints were not applied in the spectra or concentration profiles 

because the predicted vinyl acetate spectrum contained the first overtone of the OH 

group associated with monomer acetic acid (~6994cm-1).  This occurred in both the 

MCR-ALS analysis initialised using the QITTFAs starting estimates and the MCR-ALS 

analysis initialised using the SIMPLISMA starting estimates.  The convergence 

criterion was 7% (chosen to maintain data quality) and the maximum number of 

iterations was set to 100.  The predicted and the reference concentration profiles were 

scaled between zero and one for visual comparison. 

II.6.3.3 Initial Estimates 

Initial QITTFA Estimates 

The preliminary investigation was completed using four components, which were 

chosen to describe the reduced space and to capture the structured variation.  The needle 

output spectra were constrained with a non-negativity constraint.  Initial spectral 

estimates obtained from the needle output spectral matrix were ethylene, water, acetic 
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anhydride and vinyl acetate monomer.  Each spectrum contained the absorption bands 

associated with the characteristic overtones and combination bands of the functional 

groups present in each molecule.  Carbon dioxide could not be resolved by simply 

increasing the number of components in the needle output spectral matrix by one.  A 

subspace of six components was used to account for additional noise and five 

components were selected from the needle output spectral matrix.  The results of the 

MCR-ALS analysis using five components was not correct because the spectrum of 

vinyl acetate was contaminated with the first overtone of the OH group associated with 

monomer acetic acid.  The best solution was obtained when six components were used 

to describe the reduced loadings space and six components were incorporated into the 

MCR-ALS resolution.  The sixth component is strong baseline component which is 

slightly contaminated by residual variance from water and acetic acid.  The sixth 

spectrum and the corresponding ALS concentration profile is shown in figure 57.   

 
Figure 57.  Sixth QITTFA spectral component resolved from the NIR measurement matrix. 
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The sixth component spectrum contained peaks at the characteristic functional groups of 

water, acetic acid and ethylene.  A rising baseline was also observed between 10 000-

7500cm-1.  Consequently, the corresponding concentration profile resolved did not vary 

according to any design parameters.  This component, although independent, was 

putatively attributed to structured variance in the data which was uncorrelated to the 

concentration profiles of the reaction constituents.  Thus, the initial spectral estimates 

resolved from the needle output spectral matrix were ethylene, water, acetic acid, 

carbon dioxide, vinyl acetate monomer and a probable structured noise component.  

Each spectrum contained the correct absorption bands associated with the functional 

groups present in each molecule, apart from carbon dioxide which contained slight 

contribution from a methyl group between 6190-6110cm-1 in the spectrum.  

Initial SIMPLISMA Estimates 

Six components were selected from the original NIR measurement matrix using the 

SIMPLISMA procedure because preliminary MCR-ALS analysis using five 

components resulted in spectra and concentration profiles which deviated substantially 

from the true solution.  The sixth spectrum and concentration profile resolved using 

SIMPLISMA followed by MCR-ALS resolution is given in figure 58.  The sixth 

component spectrum contained a strong contribution from ethylene, as well as water 

and acetic acid.  However, the rising baseline observed in the sixth component spectrum 

using the QITTFA initial estimate was not observed in the respective profile.  The 

corresponding concentration profile contained structured variance which was not too 

dissimilar from the concentration profile expected for ethylene.  The strong similarity 

between the ethylene concentration profile and the sixth component concentration 

profile was attributed to the strong contribution of ethylene in the sixth component 
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spectrum (evident in figure 58).  In this application the sixth component resembled a 

combination spectrum of ethylene, water and acetic acid. 

 
Figure 58.  Sixth component resolved from NIR measurement using SIMPLISMA initial estimates 
to initialise MCR-ALS. 

The SIMPLISMA concentration estimates were used to initiate the MCR-ALS 

procedure instead of the SIMPLISMA spectral profiles because each of the spectral 

profiles resolved contained; a) the free stretching first overtone of the OH group 

associated with acetic acid, b) the first overtone of the asymmetric C-H stretch and the 

first overtone of the symmetric C-H stretch as well as the combination bands from 

ethylene, and c) the combination bands of the asymmetric and symmetric modes of 

water.  The lack of selectivity in the sample direction was the probable cause of the 

linear combination spectra resolved from the measurement matrix. 

For both the QITTFAs and SIMPLISMA analysis, six components were required to 

initialise the MCR-ALS procedure.  The rank of the needle output matrix was six and 

the rank of the original matrix was equal to the number of sample spectra.  The 
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condition number was calculated based on the significant singular values from the 

needle spectral matrix.  The condition number of the needle output spectral matrix was 

3.1 and the original matrix was 67.8, which indicated that the quality of the needle 

output matrix and hence the final least squares solution had improved over the original 

data, in terms of sensitivity to error and accuracy of the linear equation solution. 

II.6.3.4 MCR-ALS 

The MCR-ALS resolved spectral profiles obtained using the QITTFAs initial estimates 

are shown in figures 59-63.  The resolved MCR-ALS spectrum of ethylene contained 

the correct absorption bands associated with the functional groups, however, slight 

intensity differences persisted between 9300-8600cm-1, 6230-5850cm-1 and 5100-

4550cm-1, highlighted in figure 59.  The carbon dioxide spectrum contained the correct 

absorption bands associated with the functional groups, apart from two incorrect bands 

6200-6100cm-1 and 4620-4500cm-1, shown in figure 60.  The water and acetic acid 

spectral profiles were predicted accurately, shown in figures 61 and 62, respectively.  

The vinyl acetate spectrum contained the correct absorption bands, i.e., the first 

overtone and combination bands from CH groups, and the first and second overtones 

from an alkene vinyl group are present in the predicted vinyl acetate spectrum, shown in 

figure 63.  Overall the spectral profiles resolved from the NIR data using the QITTFAs 

initial estimates closely resembled the actual solution.   
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Figure 59. The MCR-ALS ethylene spectrum resolved using QITTFAs initial estimates overlaid 
with the reference spectrum of ethylene. 

 

Figure 60. The MCR-ALS carbon dioxide spectrum resolved using QITTFAs initial estimates 
overlaid with the reference spectrum of carbon dioxide. 
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Figure 61. The MCR-ALS water spectrum resolved using QITTFAs initial estimates overlaid with 
the reference spectrum of water. 

 

Figure 62. The MCR-ALS acetic acid spectrum resolved using QITTFAs initial estimates overlaid 
with the reference spectrum of acetic acid. 
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Figure 63. The MCR-ALS vinyl acetate spectrum resolved using QITTFAs initial estimates overlaid 
with the reference spectrum of vinyl acetate. 

The MCR-ALS spectra obtained using the SIMPLISMA initial estimates did not exhibit 

good agreement with the expected spectral profiles.  The resolved ethylene spectral 

profile was similar to the spectral profile resolved using QITTFAs initial estimates, i.e., 

slight intensity differences persisted in the region of the spectrum associated with first 

overtones of the asymmetric and symmetric stretch of the C-H groups and combination 

bands.  The resolved spectral profile of carbon dioxide deviated from the expected 

spectral profile, and this was observed through a rising baseline (10,000-7500cm-1), 2) 

and the presence of a) the first overtone of the OH stretch and OCO bending from acetic 

acid or vinyl acetate (7450-7000cm-1), and b) asymmetric stretching of C-H from 

ethylene or first overtone from -CH3 in acetic acid (~5990-5930cm-1).  The baseline 

artefact resolved in the QITTFA analysis (component 6) was not separated from the 

measurement matrix using SIMPLISMA starting estimates.  This baseline artefact 

seems to have contaminated the predicted spectrum of carbon dioxide, which resulted in 

CH2-CH-O~6192cm-1 

vCH of CHR ~6200cm-1 

vasCH2 + vsCH 
vCH=CH2 
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the incorrect prediction of this spectrum.  The resolved water profile contained 

differences from the expected spectra profile between 9000-8600cm-1 which was 

possibly due to contamination from ethylene or acetic acid.  The acetic acid profile 

contained the correct absorption bands associated with functional groups between 6000-

4000cm-1, and slight deviations from the reference profile were observed between 7530-

7040cm-1, 5600-5400cm-1 and 5300-5020cm-1.  The resolved vinyl acetate spectral 

profiles contained the correct absorption bands associated with the functional groups.   

The MCR-ALS resolved concentration profiles obtained using the QITTFAs starting 

estimates are shown in figures 64-68.  The resolved MCR-ALS ethylene concentration 

profile was comparable to the reference data.  Samples 167-228 were not synchronised 

which was attributed to experimental error in sampling the data.  The carbon dioxide 

profile followed the same trend as the reference concentration data, although there were 

slight intensity differences in parts of the profile.  The greatest discrepancy was for 

samples 278-301, where the actual shape of the concentration profiles differed from the 

reference data.  The water concentration profile contained slight differences in 

intensities, shown at samples 12-22, 49-56, 105-119 and 228-234.  Nevertheless, the 

correct profile was obtained for this component.  The acetic acid profile contained slight 

shape differences for sample 50-90, although the general shape of the concentration 

profile was consistent with the reference data.  The shape of the vinyl acetate profile 

was in accordance with the reference data, but slight intensity differences persisted. 
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Figure 64. The MCR-ALS ethylene concentration profile resolved using QITTFAs initial estimates 
overlaid with the reference concentration data. 



186 

 

Figure 65. The MCR-ALS carbon dioxide concentration profile resolved using QITTFAs initial 
estimates overlaid with the reference concentration data. 

 
Figure 66. The MCR-ALS water concentration profile resolved using QITTFAs initial estimates 
overlaid with the reference concentration data. 
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Figure 67. The MCR-ALS acetic acid concentration profile resolved using QITTFAs initial 
estimates overlaid with the reference concentration data. 

 

Figure 68. The MCR-ALS vinyl acetate concentration profile resolved using QITTFAs initial 
estimates overlaid with the reference concentration data. 
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The MCR-ALS resolved concentration profiles obtained using the SIMPLISMA initial 

estimates were worse than those obtained using the QITTFAs initial estimates.  The 

resolved MCR-ALS ethylene concentration profile contained similar types of errors as 

the ethylene concentration profiles resolved using the QITTFAs initial estimates.  There 

were severe errors in the resolved concentration profile of carbon dioxide.  High 

concentrations were predicted well, but low relative concentrations were incorrect.  

There were shape differences in the carbon dioxide profile, possibly due to the 

similarity of the concentration profile of this component with acetic acid.  The water 

concentration profile contained more obvious resultant errors as the actual shape and 

direction of the step changes within the data differed from the reference concentration 

values.  The acetic acid concentration profile was not consistent with the reference data.  

The vinyl acetate concentration profile contained more deviation from the reference 

data than the resolved profile obtained using the QITTFAs initial estimates, which is 

reflected in the percent RE and RMSPE, see table 15. 

 Concentration Profiles 

 QITTFAs SIMPLISMA 

 RMSPE %RE RMSPE %RE 

C2H4 0.137 27.16 0.137 27.03 

CO2 0.164 39.05 0.293 69.69 

H2O 0.057 17.67 0.124 38.41 

CH3COOH 0.118 35.33 0.174 52.00 

VAM 0.094 29.01 0.135 41.55 

Table 15. The RMSPE and percent RE of the elution profiles for each constituent.  The solutions 
were attained from the constrained ALS procedure using the QITTFAs and SIMPLISMA starting 
estimates.   
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II.6.4 Conclusion 

Here it was shown that when good initial estimates were available it was possible to 

resolve the spectrum of vinyl acetate in the vapour state from the mixture measurement 

matrix with no a priori information.  The four reaction constituents; ethylene, acetic 

acid, water and carbon dioxide (a by-product) were also resolved simultaneously from 

the mixture measurement matrix with no a priori information.  The QITTFA starting 

estimates approximated the actual solution and the baseline artefact was separated from 

the mixture.  The success of the application was attributed to two novel features of the 

QITTFA algorithm, which are: 1. Each spectrum (or concentration profile) in the 

solution space can be repeatedly constrained and projected using generic constraints; the 

constrained estimates are often closer to actual solution; and 2. Absence of unstructured 

variance (noise) in the solution space, from which the initial estimates are determined.  

SIMPLISMA, on-the-other hand, did not provide estimates which approximated the 

actual solution and it was not possible to separate the baseline artefact.  Therefore, it has 

been shown that if SIMPLISMA is used to select the initial estimates from the needle 

output spectral matrix rather than the original matrix the solutions are improved where 

there is a lack of selectivity and noise is present in the measurement matrix. 
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III.1 General Conclusions 

Several multivariate calibration free strategies have been developed and applied to 

analyse and predict the concentration and spectral profiles of reagents, products and 

intermediate constituents using either no a priori or very little a priori knowledge 

relating to the chemical or physical properties of the system.  Significant contributions 

from this research include; 

1. The quantitative determination of 1-methyl-6,7-dimethoxy-3,4-

dihydroisoquinoline, 1-methyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, 

carbon dioxide and formic acid from a catalysed asymmetric transfer 

hydrogenation reaction.   

2. The development and application of a NWAY P-ALS function to the base 

catalysed esterification reaction of acetic anhydride.  The rank deficiency of the 

measurement matrix was broken and the pure spectral and concentration profile 

of acetic anhydride, pseudo 1-butanol, pyridine and a linear combination 

spectrum of 1-butylacetate and acetic acid was resolved with the implementation 

of the soft NWAY P-ALS constraints. 

3. The development and application of a rational resolution exploratory tool called 

QITTFA.  It was shown that QITTFA out-performed its counterpart tools, 

SIMPLISMA and EFA.  Secondly, QITTFA was also applied to a complex 

industrial problem to resolve the pure spectrum of VAM in the gaseous state.   

The most important conclusion from the work reported here was the use of initial 

estimates, which approximate the true solution, and appropriate constraints to get good 

resolution of the reaction constituents.  A number of applications of different origin and 
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nature have shown that calibration free analysis can give good results pertaining to the 

pure component spectra and concentration profiles of the reaction constituents, from 

which it is possible to infer the underlying chemical model to enable reaction 

monitoring, process control, end point determination or purity assessments.  Improved 

alternatives to existing techniques have been developed and in some cases the new 

techniques have allowed the resolution of reaction constituent concentrations and 

spectral profiles which could not otherwise have been obtained using other techniques. 

The ultimate advantage of calibration free analysis is its ability to identify the reaction 

constituents, the number of independent constituents and their evolutionary profile 

without a priori information, which may provide huge economic savings and increased 

insights for reaction monitoring and process control.  The weakness of the technique is 

centred around the non-uniqueness of the solution and this may present a challenge to 

the widespread adoption of the techniques, particularly in applications where it is not 

possible to eliminate the rotational and intensity ambiguity in the solution through the 

addition of a priori information in the form of constraints or initial estimates.  This is 

primarily a result of the rotational and intensity ambiguity and without external 

validation methods or some chemical knowledge, it is not possible to know whether the 

results make chemical sense or not.  Therefore, to increase the confidence in the results 

and aid interpretation, solutions should be presented alongside the feasible solutions 

space to alert users of the ambiguity in the solution. 

Calibration free analysis can be beneficially utilised within many fields such as 

analytical chemistry for developing fast and cheap calibration methods for a variety of 

chemical analytes.  Such methods may well reduce the cost and use of additional 

chemicals.  In food analysis, for the determination and quantification of compounds 
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which may degrade the food quality, this would lead to improved quality of food, and 

hence greater profitability.  In biomedical applications for identification and 

classification of biomarkers for the early diagnosis of certain conditions, such as cancer, 

diabetes, obesity etc.  This method would save lives and reduce spiralling health costs.  

Other industries include, bioprocesses, environmental analysis, pharmaceutical etc.    

This thesis is a contribution to the maturing field of calibration free analysis; of which 

the principles were introduced in the 1970s. The multitude of problems that have been 

shown to be handled efficiently with calibration free analysis holds promise for future 

work.  Getting a grasp of complex situations and data is a limiting factor for any sound 

problem solution in science and technology.  Calibration free analysis may help here. 
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1.1 CATHy Data Pretreatment  

Referenced from section II.1.3.3, pg. 80  
 

Baseline 
Correction 

Data Initial 
Estimate 

No. 
Iterations 

LOF(%) RMS
PE 

Imine 

RMSPE 
Amine 

None FTIR (1) Pure 
spectra 

5 2.46 0.04 0.72 

Zero average 
offset 

FTIR (1) Pure 
spectra 

30 2.36 0.05 0.74 

Table 1.  Results of MCR-ALS analysis of the negative FTIR(1) dataset using different baseline 
correction methods and the neat spectra of imine, amine and carbon dioxide as starting estimates 
for ALS.   The experimental conditions for ALS resolution is given in experiment 11 (pg 98).   

 

1.1.1 No Baseline Correction 

 
Figure 1.  Non-negative FTIR(I).  No baseline correction applied to FTIR profiles 
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Figure 2.  MCR-ALS resolution of the concentration profiles determined using experiment 11 (pg. 
98) MCR-ALS protocol and the FTIR profiles with no baseline correction.  The amine (MCR-ALS) 
concentration profile is predicted incorrectly 

 
Figure 3. MCR-ALS resolution of the imine spectral profile determined using experiment 11 (pg. 
98) MCR-ALS protocol and the FTIR profiles with no baseline correction.  The imine MCR-ALS 
profile contains contribution from amine. 
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Figure 4.  MCR-ALS resolution of the amine spectral profile determined using experiment 11 (pg. 
98) MCR-ALS protocol and the FTIR profiles with no baseline correction.  The amine MCR-ALS 
profile contains contribution from formic acid. 

 
Figure 5. MCR-ALS resolution of the carbon dioxide spectral profile determined using experiment 
11 (pg. 98) MCR-ALS protocol and the FTIR profiles with no baseline correction.  Good prediction 
of the carbon dioxide spectrum. 



iv 

1.1.2 Zero Average Offset 

 
Figure 6.  Non-negative FTIR(I).  Zero average offset (3917-3998 cm-1) applied to FTIR profiles 

 
Figure 7.  MCR-ALS resolution of the concentration profiles determined using experiment 11 (pg. 
98) MCR-ALS protocol and the FTIR profiles with zero average offset correction (3917-3998 cm-1).  
The amine MCR-ALS profile is predicted incorrectly 



v 

 
Figure 8. MCR-ALS resolution of the imine spectral profile determined using experiment 11 (pg. 
98) MCR-ALS protocol and the FTIR profiles with zero average offset correction (3917-3998 cm-1.  
The imine MCR-ALS profile contains contribution from amine.   

 
Figure 9.  MCR-ALS resolution of the amine spectral profile determined using experiment 11 (pg. 
98) MCR-ALS protocol and the FTIR profiles with zero average offset correction (3917-3998 cm-1.  
The amine MCR-ALS profile contains contribution from formic acid.   
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Figure 10. MCR-ALS resolution of the carbon dioxide spectral profile determined using 
experiment 11 (pg. 98) MCR-ALS protocol and the FTIR profiles with zero average offset 
correction (3917-3998 cm-1).  The carbon dioxide profile is predicted correctly 

1.1.3 Minimum Offset method 

 
Figure 11. Non-negative FTIR(I).  Minimum offset applied to FTIR profiles, which not maintained 
the original structure of the data, which is evident from the baseline shift between 800-2500 cm-1.  
No further analysis completed with this measurement matrix. 
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1.2 Principle Component Analysis 

1.2.1 FTIR(II) PCA Scores and Loadings plot 

Referenced from section II.1.3.4, pg. 86  

 
Figure 12.   PCA loadings calculated from the FTIR (II) data.  The first loading plot contained the 
characteristic functional group frequencies of amine and the mixture spectrum of triethylamine 
and formic acid, 

 

 
Figure 13.  PCA loadings calculated from the FTIR (II) data.  The second loading plot contained 
the common functional group frequencies of imine and amine 
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Figure 14.  PCA loadings calculated from the FTIR (II) data.  The third loading plot contained 
characteristic group frequencies of carbon dioxide, with a small contribution from imine and amine 

1.3 Needle Spectral Initialisation 

1.3.1 FTIR(I) 

Referenced from section II.1.3.6.1, pg.100  

 
Figure 15. MCR-ALS analysis of the FTIR(I) data using the needle spectral estimates (expt 7).  The 
imine spectral profile resolved using MCR-ALS analysis.  The resolved spectral profiles of imine 
contains characteristic and common functional group frequencies attributed to imine, amine and 
formic acid 
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Figure 16.  MCR-ALS analysis of the FTIR(I) data using the needle spectral estimates (expt 7).  The 
carbon dioxide spectral profile resolved using MCR-ALS analysis.  The resolved spectral profiles of 
carbon dioxide contains characteristic and common functional group frequencies attributed to 
imine, amine and formic acid 

 
Figure 17.  MCR-ALS analysis of the FTIR(I) data using the needle spectral estimates (expt 7).  The 
amine spectral profile resolved using MCR-ALS analysis.  The resolved spectral profiles of amine 
contains characteristic and common functional group frequencies attributed to imine, amine and 
formic acid 
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1.3.2 FTIR(II) 

Referenced from section II.1.3.6.1, pg.101 
 

 
Figure 18. Concentration profiles resolved from the MCR-ALS analysis of the FTIR(II) 
measurement matrix using needle spectral estimates (Expt. 9).  Good prediction of the imine and 
amine concentration profiles 

 
Figure 19.  MCR-ALS analysis of the FTIR(II) data using the needle spectral estimates (expt 9).  
The imine spectral profile resolved using MCR-ALS analysis.  The resolved spectral profiles of 
imine contains contributions from amine. 
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Figure 20. MCR-ALS analysis of the FTIR(II) data using the needle spectral estimates (expt 9).  
The carbon dioxide spectral profile resolved using MCR-ALS analysis.  The resolved spectral 
profiles of carbon dioxide contains contributions from imine and amine. 

 
Figure 21.  MCR-ALS analysis of the FTIR(II) data using the needle spectral estimates (expt. 9).  
The amine spectral profile resolved using MCR-ALS analysis.  The resolved spectral profiles of 
amine contains contributions from imine and amine 
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1.4 NWAY P-ALS 

1.4.1 PCA scores plots 

Referenced from section II.3.3.4, pg.127 
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Figure 22.  PCA analysis of the column-wise augmented NIR measurement matrix.  Visual 
inspection of the PCA scores confirms structural variance in each of the four PC.  The fifth 
component varies quite dramatically over the three batches. 

 
 

Principle 
component number 

Eigenvalue of 
Cov(X) 

% Variance 
Captured by this PC 

% Variance 
captured  Total 

1 3.80e+001         99.41 99.41 
2 1.58e-001          0.41 99.98 
3 6.09e-002          0.16 99.99 
4 5.18e-003          0.01 99.99 
5 1.48e-003          0.00 100.00 

Table 2.  PCA variance statistics calculated for the five PC�s. 
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ABSTRACT 

This work demonstrates the application of a new quantitative self modeling 

curve resolution (SMCR) approach for the simultaneous qualitative and quantitative 

recovery of reaction constituents; ethylene, acetic acid, water, vinyl acetate monomer 

and carbon dioxide from the BP Chemicals Vinyl Acetate Monomer (VAM) process.  A 

cheaper, easier and faster method for the calibration of the VAM process was required 

because the current calibration procedure is time consuming and expensive.  A 

quantitative SMCR strategy which uses a correlation constraint (regression constraint) 

during the Alternating Least Squares (ALS) procedure was used to quantify each 

reaction constituent.  Starting estimates for ALS were determined using Quantitative 

Iterative target Factor analysis (QITTFA) and the NIR spectroscopic data.  Vinyl acetate 

could not be vaporised, therefore QITTFA was selected to provide starting estimates 

approximating the true solution in the absence of selectivity and a priori knowledge.  

The results were compared to a well-established multivariate calibration method; Partial 

Least Squares (PLS) using a non-parametric statistical randomisation test for 

multivariate calibration models and the model reference error (relative error (RE)) for 

the prediction of each constituent.  It was concluded that the quantitative SMCR 

procedure could be used to quantify ethylene 9.06% (RE), acetic acid 19.30% (RE), 

water 13.77% (RE) and carbon dioxide 30.46% (RE) within the defined relative error 

margin.  The advantages of the new approach were a ~90% reduction in the calibration 

time, ~90% reduction in the number of training samples required for the calibration and 

the simultaneous recovery of the reaction constituent spectral profiles.  Therefore this 

quantitative SMCR strategy could be used for reactions or processes for which it is not 

possible to prepare mixtures of known composition, due to the absence of isolated 

reference material, stability issues and where the preparation of such samples are time 

consuming and expensive. 
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Keywords: Vinyl Acetate Monomer (VAM), Correlation Constraint, Quantitative 

Iterative Target Transformation Factor Analysis (QITTFA), NIR Spectroscopy, 

Multivariate Calibration, Multivariate Curve Resolution-Alternating Least Squares 

(MCR-ALS). 

 

INTRODUCTION  

Process Analytical Control (PAC) is required to control and optimise the 

performance of a chemical process in terms of capacity, quality, cost, consistency and 

waste reduction[1].  Typically on-line process analysers, such as Mid Infrared (MIR), 

Near Infrared (NIR), Raman, Fourier Transform Infrared (FTIR) etc., provide not only 

physical process parameters, such as temperature, pressure, flow rate and liquid level, 

but also molecular parameters relating to component concentrations, molecular structure 

and degree of reaction[2].  Due to the complexity of some process samples and 

robustness of the analytical instruments, one is focused on finding relationships between 

the cheap measurements which are easy to acquire, and measurements, which are either 

expensive or labour intensive.  Therefore the goal is to find good relationships to predict  

the expensive measurements rapidly and with high accuracy, from the cheaper ones[3].  

Factor analysis based methods, such as multivariate calibration methods[3-7] and Self 

Modelling Curve Resolution methods (SMCR)[8, 9] are linear models which can be 

applied to compress and extract relevant information from the measurements.  The 

ultimate goal of multivariate calibration methods is the establishment of a calibration 

model from multivariate measurements allowing the quantitative determination of the 

analyte in the presence of unknown interferents or in a complex chemical matrix, even 

if the analyte signal selectivity is poor.  SMCR methods decompose unresolved multi-
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component and multivariate measurement matrices into pure factors, such as spectral 

profiles, concentration profiles, pH profiles, for individual species with no a priori 

knowledge of the system.  The requirement for the application of curve resolution 

techniques is that the data should be at least, bilinear, i.e. the elements of the 

measurement matrix, D must be a linear sum or combination of the product terms C and 

B.  Therefore the measurement must be of the form given in equation 1, 

D = C BT + E Equation 1

Where D ( )mn × , has n absorption spectra in each row at m wavelengths.  

C ( )ncn ×  is the concentration profiles, for the nc components and BT ( )mnc ×  is the 

corresponding spectral profiles for the pure components and E ( )mn × , is the error 

matrix associated with the decomposition.  Such measurements include spectroscopic 

measurement of multi-components systems, i.e. Infrared (IR), Near Infrared (NIR), 

Raman, or two-way data from hyphenated chromatographic methods with multi-channel 

detection.  Recent applications of SMCR techniques include quantification of trace 

analytes[10], peak purity assessments[11], characterisation of batch reactions[12, 13] 

and on-line reaction monitoring[14] see references[15, 16] for comprehensive reviews.   

 In this paper, the feasibility of an alternative approach to multivariate calibration 

is presented.  A cheaper, easier and faster method for the calibration of the vinyl acetate 

process was required because the current calibration procedure requires over 300 

hundred calibration samples and each sample takes approximately 20 minutes to create.  

Currently there are no commercially available calibration mixtures of the gases 

(ethylene, acetic acid, carbon dioxide, water and vinyl acetate).  Consequently this 

procedure is time consuming and expensive.  To address this issue a quantitative SMCR 

strategy was applied to the gaseous NIR mixtures to simultaneously resolve the reaction 

constituents.  The quantitative procedure uses a correlation (regression) constraint 

developed by Antunes et al [17] and an exploratory approach called Quantitative 
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Iterative Target Transformation Factor Analysis (QITTFA)[18].  QITTFA was 

developed to provide initial estimates approximating the true solution.  No a priori 

information regarding the process, such as key spectral features or calibration 

information was required.  In a previous study it was found that QITTFA improved the 

performance of Simple-To-Use-Interactive Self-modeling Mixture Analysis 

(SIMPLISMA) [19-23] in cases where pure variables did not exist or where the 

contribution of these components were low.  In addition components of differing 

spectral characteristics shapes (narrow or broad spectral features) were resolved, 

without a priori knowledge of the shapes of the constituents[18]. 

 The advantage of the quantitative SMCR approach are (a) marked reduction in 

the number of training samples (b) marked reduction in sampling time and (c) 

simultaneous resolution of qualitative information i.e. the pure spectral profiles from the 

mixture measurement matrix.  The prediction ability of the quantitative SMCR models 

were compared with PLS models using a non-parametric statistical randomised test and 

the model reference error (relative error (RE)) for the prediction of each constituent.  A 

description of the quantitative SMCR procedure is outlined below and given in figure 1. 

THEORY 

Scalars, including elements of vectors and matrices, are indicated by lower case 

italics, i.e. x, y and z.  Vectors by bold lowercase characters, i.e. x, y and z.  Bold 

capitals are used for two-way matrices i.e. X, Y and Z.  The letters n and m are reserved 

for indicating the dimension of the first and second mode of the two-way matrix and  i 

and j are used as indices for each of these modes.   

Initial estimates of the pure spectral profile of each constituent were determined 

from the NIR spectral profiles of the multi-component mixture using QITTFA.  The 

inputs required for the QITTFA procedure are the number of components, a noise 

correction factor, the maximum number of iterations and the selection of constraints.  
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The initial estimates were used to initialise the ALS procedure.  Constrained ALS steps 

are used to fit the initial estimates (BT) producing better �constrained� estimates.  An 

estimate of the unknown species concentration profile is given by least squares, which 

is simply, += BDC * and the new estimation of the spectra is given by *
0 DCB += .  

Where *D  only contains the correlated variance due to the independent components.  

Constraints are used to obtain chemically meaningful solutions and include non-

negativity constraints[24], selectivity constraints [25], unimodality constraints[26], 

correlation constraints[17] etc.  The correlation constraint is a regression constraint, 

which enables quantitative analysis to be performed on unresolved mixtures.  The 

correlation constraint is applied to the concentration profiles of known components.  To 

implement the correlation constraint, the concentration values in matrix C for a 

particular analyte is divided into two subsets; those corresponding to the training subset 

used to build the calibration model and those corresponding to the test subset.  

Concentration values calculated for the training sample subset are then correlated with 

their known ‘true’ concentration values, using classical least squares and the best 

regression line are obtained in each case.  Using both the linear equation and the 

concentration values obtained from MCR-ALS for the test sample subset, the predicted 

concentration values are obtained.  These values are regressed against their true values 

and validated using the regression statistics described in the proceeding section.  A 

graphical description of the correlation constraint is presented in figure 2, and is further 

expounded in the following text.  

 

The Correlation Constraint 

Initialisation 

The concentration selectivity matrix Csel ( )ncr ×  contains sparse known 

(training) concentration values for the target analyte (known concentration values 



215 

shown as black rectangles).   The optimum number of known concentration samples 

required to build a good model using this procedure has not been investigated.  The 

known concentration values in the vector csel should span the concentration range for the 

target analyte.  

Least Squares 

The QITTFAs initial estimates of the spectral profiles are used to initiate the 

ALS procedure, where, +B ( )ncc ×  is the pseudo inverse of the QITTFAs spectral 

estimates, the estimated concentration matrix; CALS ( )ncr ×  is the concentration 

calculated from the least squares estimate, equation 2. 

+= DBCALS  Equation 2

 
Correlation Constraint 

In step A, the known concentration values (k) in the csel vector corresponding to 

the target analyte is regressed against the corresponding estimated concentration values 

(x) in cALS vector of the target analyte using classical least squares, see equations 3-4. 

k = b1 x + b0 Equation 3

p = b1 u  + b0  Equation 4

Where b1 is the regression coefficient and b0 is the intercept. In step B, the 

model, defined in equation 4 is used to predict the concentration in the unknown (test) 

samples (u) in the cALS vector.  In step C, the target analyte concentration vector is 

cALS ( )1×r  is updated with the predicted values (p) and the known values (k).  In step D 

the new CALS matrix is used to predict the spectral profiles. 

 
Regression Statistics 
 

The calibration models were assessed using the regression statistic stipulated 

below, in each case the quantitative SMCR model was compared with the PLS model to 

determine whether the results were significantly different.  The slope and offset of the 
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regression gives an indication of the accuracy of the models.  The correlation coefficient 

between the reference concentrations, ic and predicted concentration, ic�  was calculated 

to determined whether a linear relationship existed between ic and ic� .  A correlation 

value of plus one, represents a perfect positive correlation, a value of zero means that 

there is no correlation.  Here, due to the complexity of the process data analysed, typical 

correlation greater than 0.990 was not expected.  The Root Mean Square Error of 

Prediction (RMSEP) is a measure of the accuracy of prediction.  The sum of the 

prediction error for all (N) samples for the training set was calculated to assess the 

future predictive properties of the calibration model and the predictive capabilities of 

the test set.  RMSEP is measured in the same units as ci, equation 5. 
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Equation 5

The Standard Error of Prediction (SEP) is a measure of the precision of 

prediction, equation 6.  The bias (absolute deviation from c ) tracks the systematic 

prediction error, equation 7.  The Relative Error (RE %) is similar to the lack of fit 

calculation, but gives a measure of the fit quality between the predicted and reference 

concentration, equation 8. 
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Convergence Criteria for ALS 
 

The convergence criterion for ALS was assessed using the lack of fit (lof), 

which gives a measure of the relative fit quality between the experimental data and ALS 

reconstructed data.  The solutions converge once the lof (%) is within the defined 

experimental error, equation 9.  Where, dij is the experimental absorbance at the 

sampled point i, and the wavenumber j, and ijd� is the ALS calculated absorbance for 

that element. 
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Equation 9

Significance Testing 

To determine whether the predictive ability of the quantitative SMCR models 

were comparable to the PLS1 models, a significance test was completed using the 

randomised t-test, based on Monte Carlo simulation[27].    The MSEP (mean squared 

error prediction) was used as a simple indicator for the predictive abilities of models.  

Each test was completed using a two-sided randomised t-test, 199 randomised trials, 

permitting a p value of p = 0.005.  In a randomised trials if a significance value is below 

the significance level, i.e. p = 0.005, there is a significant difference between the 

prediction accuracy of the two methods.  If a significance value is above this level, there 

is no significant difference between the prediction accuracy of the two methods.   
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EXPERIMENTAL 

Data Acquisition 

The spectra were acquired using a BOMEM MB-155 and MB-160 fitted with a 

TE-cooled InAs detector. Each spectrum was recorded using the average of 32 scans, 

the spectral region was 9998.2- 4497.7cm-1 and the resolution was 7.7cm-1.  Reference 

spectra of the vaporised pure components, ethylene, water, carbon dioxide and acetic 

acid were obtained prior to the analysis. 

One hundred and sixty nine NIR calibration standards were prepared in the plant 

as mixtures of five organic components, ethylene (BOC Gases Ltd), carbon dioxide 

(BOC Gases Ltd), water (demineralised), acetic acid (BP Chemicals final product) and 

vinyl acetate (BP Chemicals final product).  An automated mixing system, �stealth 

trolley�, was designed specifically to make-up the calibration standards in the SPECAC 

NIR, Typhoon T13 gas cell, using evaporators and mass flow controllers.  Each sample 

took ~20 minutes to prepare and was introduced into the gas cell at 120ûC.  The partial 

pressure of each constituent and the total pressure for each calibration sample differed 

from sample-to-sample to mimic varying process conditions.         

MATLAB6p5® (The Math Works, Natick, MA, USA) was used to complete the 

programming and calculations relating to QITTFA, MCR-ALS and PLS.  The MCR-

ALS algorithm can be obtained from (http://www.ub.es/gesq/mcr/mcr.htm).  The PLS 

analysis was completed using the MATLAB PLS Toolbox (Eigenvector Research, 

Manson, WA, USA).   

 

Data Pretreatment 

The NIR spectroscopic samples acquired are given in figure 3.  The data were 

baseline corrected using the minimum-offset method (removal of negative 
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absorbencies).  Sample 168 was removed as an outlier because it had an abnormally 

high absorption. 

 

Quantitative Analysis  

In the quantitative investigation separate quantitative models were built to 

predict the quantities of ethylene, vinyl acetate, water, carbon dioxide and acetic acid in 

the calibration samples.  The data set was divided into two subsets, one training set and 

one test set to allow for block validation of each model.   

 

Training Set 

Forty training samples were used in the calibration of each model (i.e. ethylene, 

carbon dioxide, water, acetic acid and vinyl acetate monomer).  The concentration 

vectors were each ordered from the smallest to largest concentration, and five samples 

were selected every 50 samples along the ordered concentration range.  The training 

samples were chosen such that they spanned the concentration range.  Identical training 

samples were used to build both the corresponding constituent quantitative SMCR 

model and the corresponding constituent PLS models.  The resulting predicted values 

from each model were regressed against the known reference values in order to assess 

the prediction capabilities of the models. 

 

Test Set 

The remaining one hundred and nineteen test samples were used to assess the 

performance of each model, that is the quantitative SMCR models and the PLS models 

for the prediction of ethylene, carbon dioxide, water, acetic acid and vinyl acetate 

monomer.  Identical test sets were used to validate the corresponding constituent in the 

quantitative SMCR models and in the corresponding constituent PLS models.  The 
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concentrations of test samples were estimated using both the quantitative SMCR models 

and the PLS models.  The resulting predicted values were regressed against the known 

values in order to validate the models. 

 

Reference values 

The partial pressure for each constituent in the calibration sample was measured 

in bar absolute.  The (%) volume for each constituent was calculated as a percentage of 

the total pressure.  Here, it is important to note that the reference data was the partial 

pressure (which is a misnomer due to the molecular interactions) of each gas delivered 

into the mixing chamber.  The relationship between pressure, P (atm), volume V (dm3) 

and temperature, T (K) is approximate as the gases and gas mixtures are non-ideal.  If 

the gaseous mixtures were ideal and under standard temperature and pressure, it would 

be possible to express the pressure as a function of PVT using the 

equation, RT
V
nP 





= , and for mixtures ( )∑= nccRTP .  The results which are 

presented here assume ideal behaviour.  The inherent errors in the prediction of the 

individual constituents were acceptable for the process under study.  This calibration 

technique also corrects for the presence of acetic acid dimers, which are also known to 

be present under these conditions. 

 

Determination of Initial QITTFA Spectral Estimates 

In the application of QITTFAs, six components were chosen to describe the 

reduced space and to capture the structured variation.  The sixth component contained a 

strong baseline component which was mixed with a spurious signal at approximately 

~4500 cm-1.  This component was attributed to structured variance in the data, which 

was uncorrelated to the concentration profiles of the reaction constituent.  In each 

analysis the needle output spectra were constrained with non-negativity constraints.  An 
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offset value of 1% was used to select the pure variables from the output matrix and the 

maximum number of iterations was 500.   

 

Qualitative SMCR Models 

The QITTFAs spectral estimates were used to initiate the ALS procedure.  

During constrained ALS the spectral profiles were normalized to a height of one.  Non-

negativity constraints were applied in the each of the component spectra apart from 

vinyl acetate, as previous analysis showed that the non-negatively constrained vinyl 

acetate spectrum contained the free stretching first overtone of the OH group associated 

with monomer acetic acid.  The concentration profiles were constrained with the non-

negativity constraint. The convergence criterion was 7% (relative change of the LOF 

from one iteration to the next) and the maximum number of iterations was 500.  The 

concentration profiles were scaled between 0 and 1 and the predicted test samples for 

ethylene, carbon dioxide, water, acetic acid and vinyl acetate monomer were regressed 

against the scaled known reference values. 

 

Quantitative SMCR Models 

The QITTFAs spectral estimates were used to initiate the ALS procedure.  In the 

application of MCR-ALS the spectral profiles were normalised to a height of one and 

the correlation constraints were applied in the concentration profile.  The 

aforementioned convergence criterion was maintained (see qualitative analysis).  The 

training and test set used in MCR-ALS with correlation constraints are described above.  

However, the training and test set have a slightly different meaning with respect to the 

normal use of the respective terms.  Here, the training set refers to the subset of known 

concentration values which were used in the MCR correlation constraint (k).  The test 

set refers to the subset of concentration which were predicted by the resulting model 
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(p), see correlation constraint.  The resulting cALS values from the training set and test 

set for each of the five calibration models  were regressed against the known reference 

values in order to validate the models and assess the prediction capabilities of the 

models. 

 

PLS1 models 

Initially the analysis was completed on the mean centred NIR data and compared 

to the analysis with no mean centring, the comparison of the residual error for the mean 

centred and not mean centred data for each model was not significant.  The results for 

the analysis with no mean centring is presented and compared to the resolution with no 

constraint and the correlation constraint.  The NIR spectroscopic data was divided in to 

a training set and test set (see above).  The contiguous block, cross validation method 

with 7 points was used to determine the number of latent variables to include in each 

model, see number of components, (N.o.C).  In cases where this was difficult to decide, 

the error in the calibration and validation of the model was calculated, and the model 

which gave the smallest error was selected.  

 

Reference Method Error 

The original BP calibration model reference error (relative error) for the 

prediction of each constituent are give in table 1.  No actual concentration values are 

reported in the results and discussion because this information is confidential. 

 

RESULTS AND DISCUSSION 

There were several regions of interest in the NIR spectra, which is shown in 

figure 3, representative of three of the five chemical constituents.  The first overtone of 

the OH group associated with monomer acetic acid apparent at ~6994 cm-1.   The first 
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overtone of the asymmetric C-H stretch from ethylene appears at 6149 cm-1,  showing a 

PQR structure covering 6200-6090 cm-1 and the first overtone of the symmetric C-H 

stretch showing PR structure at 5993 cm-1 together with the combination bands with 

relatively strong absorbance  appearing at 4760 cm-1. The combination bands from the 

asymmetric and symmetric stretching modes of the water molecule appear at ~5150 and 

~6900 cm-1.  Selective regions for vinyl acetate and carbon dioxide were not identified..   

Initial Estimates 

The QITTFA initial spectral estimates and the corresponding reference spectra 

are given in figure 4.  The resolution of the initial estimates was not a trivial task, due to 

the severe overlap of bands from functional groups in different molecules, such as (1) 

the first overtones and combination bands from hydrocarbon and carbon-carbon double 

bond in ethylene and vinyl acetate,  (2) the carbonyl groups in carbon dioxide and (3) 

vinyl acetate and the combination bands from hydroxyl present in water and acetic acid.  

The QITTFA initial estimates are comparable to the reference data available for 

ethylene, water and acetic acid.  The carbon dioxide spectrum contained the correct 

functional groups apart from asymmetric stretching of =CH2 (6190-6110 cm-1).   No 

reference data was available for vinyl acetate.  The correct functional group, i.e. the first 

overtones and combination bands from CH groups bending from vinyl acetate are 

present in the predicted vinyl acetate spectrum.  

 

Qualitative SMCR Analysis 

The ALS spectral profiles of the reaction constituents ethylene, water, acetic 

acid, vinyl acetate and carbon dioxide calculated using the initial QITTFA spectral 

estimates and the NIR spectra in the ALS procedure are given in figure 5.  Each of the 

constituent spectral profiles contained the correct absorption bands associated with the 

functional groups.  The relative concentration profiles determined from the ALS model 
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with the five separate quantitative SMCR models (for ethylene, carbon dioxide, water, 

acetic acid and vinyl acetate monomer) were compared to the five separate PLS models.  

The results are discussed below.   

Quantitative SMCR Analysis 

Ethylene 

Training Samples 

The calibration model for ethylene determined using the correlation constraint in 

the ALS optimisation was compared with the calibration model determined using the 

PLS1 model, see the regression statistics in table 2.  The application of correlation 

constraints in the ALS regression resulted in perfect predictive modelling, i.e. no error 

was found in the correlation calibration model.  This result is not representative of the 

predictive capabilities of the correlation constraint, since calibration modelling is 

usually a question of local approximation to some unknown, more or less non-linear 

function, therefore all calibration models must be expected to contain some degree of 

model error.  However, since the correlation calibration estimates were generated 

through a local linear model to approximate the regression coefficients, perfect 

predictive abilities were gained because the algorithm converged just after the cALS 

vector was updated with the calibration samples from the concentration values from k 

and p.  The prediction of the ethylene test samples was not effected because they were 

determined from the model. 

 

Test Samples 

The ethylene results obtained for the qualitative SMCR analysis of the NIR data 

using ALS without the correlation constraint were compared to the quantitative SMCR 

analysis using the correlation constraint, see tables 3 and 4 for the regression statistics 
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and p-values of the two-tailed randomised t-test respectively.  The first difference 

observed between the two methods was the increased LOF in the constrained solution.  

This was attributed to the addition of reference concentration information in the 

constrained ALS procedure.  The slight reduction in the model fit quality suggest that 

active constraint were present in the solution.  Although the addition of the correlation 

constraint reduced the RE to 9.06%, the solution with no constraints was less biased and 

therefore more accurate and more precise (RMSEP = 0.15, SEP = 0.15 and BIAS = -

0.01) than the constrained solution (RMSEP = 0.07, SEP = 0.07 and Bias = 0.03). 

The ethylene quantitative results obtained from the correlation constraint was 

compared to the PLS1 model determined for ethylene.  The validation samples 

predicted using the correlation constraint were more precise, but less accurate than the 

PLS1 solution, due to the greater bias in the correlation constraint model.  Only 3 latent 

variables could be used in the PLS calibration to predict ethylene concentration.  

Incorporating more latent variables in the PLS1 model increased the error of prediction.  

The two-tailed randomised t-test was revealed that there were no significant differences 

between the concentration profiles predicted using the correlation constraint and the 

PLS1 model given in table 3.  The quantitative model determined for ethylene using the 

correlation constraint was acceptable in the pre-defined range for this component.  In 

this example the correlation constraint was comparable to the PLS1 model.     

 

Water 

Training Samples 

The MCR-ALS resolution of the concentration profiles for water using the 

correlation constraint converged in 9 iterations, which indicated that the initial estimate 

was further away from the optimum solution under the specified convergence criteria.  

The quantitative correlation results were compared with the quantitative PLS1 results. 
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The results indicated that the quantitative SMCR model and the PLS1 calibration model 

were both accurate.  Quantitative SMCR model; (RMSEP = 0.09 and SEP = 0.09 and 

BIAS = 0.00) and PLS1 model; (RMSEP = 0.06 and SEP = 0.06 and BIAS = 0.00).  

However, the PLS1 model was slightly more precise, see SEP in table 2.  Thus the 

PLS1 calibration had slightly better predictive properties than the correlation constraint.  

The correlation coefficients obtained from both models indicated that there was a strong 

positive correlation (correlation coefficient: 0.968; quantitative SMCR and 0.986; 

PLS1) between the reference and predicted samples. 

Test Samples  

The qualitative model for water determined from the MCR-ALS application 

with no constraints was better than the PLS1 model and correlation constraints model, 

in terms of the accuracy and precision of the concentration profiles, RMSEP, SEP and 

Bias are shown in table 2.  The results indicated that it was possible to qualify the 

constituent with no priori information as the model did not deviate exceptionally from 

the conditions of resolution and the initial estimate closely represented the true profile.  

The predictive abilities of the quantitative PLS and correlation constraint model, were 

comparable.  The quantitative SMCR model was less accurate, but was more precise 

than the PLS1 model.  The two-tailed randomised t-test was revealed that there were no 

significant differences between the concentration profiles predicted using the correlation 

constraint and the PLS1 model, this is shown in table 3.  The quantitative model 

determined for water using the correlation constraint was acceptable in the pre-defined 

range for this component. 

 
Acetic acid 

Training Samples 

The ALS resolved profiles converged after 12 iterations, which suggested that 

the initial estimates were further away from the optimal resolved profiles under the 
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specified convergence criteria.  The results indicated that the quantitative SMCR model 

and the PLS1 calibration model were both accurate.  Quantitative SMCR model; 

(RMSEP = 0.09 and SEP = 0.09 and BIAS = 0.00) and PLS1 model; (RMSEP = 0.05 

and SEP = 0.05 and BIAS = 0.00), but the PLS1 model was slightly more precise, see 

SEP in table 2.      

 

Test  Samples 

The samples predicted using no constraints were not as accurate as the 

constrained solution and the PLS model.  The addition of the correlation constraint 

reduced the relative error by ~16%.  Comparing the PLS1 model to the quantitative 

SMCR model showed that the predictive ability, i.e. the accuracy and precision of both 

models were similar.  This suggest that both models determined are very close to the 

best model that could be determined for this constituent.  It is proposed that the 

prediction error may be due to the molecular interactions of acetic acid with water and 

dimerisation, however further investigation needs to be completed.  The two-tailed 

randomised t-test was revealed that there were no significant differences between the 

concentration profiles predicted using the correlation constraint and the PLS1 model, 

see  table 3.   The quantitative model determined for acetic acid using the correlation 

constraint was an acceptable calibration model in the pre-defined range for this 

component. 

 

Vinyl Acetate 

Training Samples 

The predictive property of the correlation constraint was compared to the PLS1 

model.  The MCR-ALS solution with the correlation constraint converged in 13 

iterations, which suggest initial estimates were slightly further away from the optimum 
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ALS solution, this may be due to slight scaling ambiguity in the spectral resolution.  

The precision of the PLS1 model was better than the correlation constraint, although 

both methods were accurate.  

 

Test  Samples 

The qualitative determination of the vinyl acetate concentration profiles with no 

constraint were more precise than the correlation constraint and PLS1 model, but was 

less accurate due to the greater bias.  The addition of the correlation constraint in the 

MCR-ALS resolution reduced the relative error by 3.3%.  Generally the predictive 

ability of the correlation constraint was slightly lower than the PLS1 model.  Although 

the two-tailed randomised t-test revealed that there were no significant differences 

between the concentration profiles predicted using the correlation constraint and the 

PLS1 model.  The quantitative model determined for vinyl acetate using the correlation 

constraint was not an acceptable calibration model in the pre-defined range for this 

component, see tables 2-3. 

Carbon dioxide 

Training Samples 

The calibration model determined for carbon dioxide using the correlation 

constraint converged in 12 iterations.  The correlation constraint and PLS1 model were 

both accurate (Bias = 0.00 for both models), but the PLS1 model was a little more 

precise, see the SEP in table 2.  

 

Test Samples  

The relative error of prediction for the resolution in which no constraints were 

applied was low, RE 41.7%.  The addition of the correlation constraint improved the 

prediction by ~10%.  Comparing the regression statistic for the correlation constraint 
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model with the PLS1 model, it was possible to observe a difference in the accuracy of 

prediction between the two methods.  The PLS1 model was less bias and hence more 

accurate than the correlation constraint, see RMSEP, SEP and bias in table 2.  The two-

tailed randomised t-test was revealed that there were no significant differences between 

the concentration profiles predicted using the correlation constraint and the PLS1 

model.  The quantitative model determined for carbon dioxide using the correlation 

constraint was an acceptable calibration model in the pre-defined range for this 

component. 

 

CONCLUSION  

The quantitative SMCR procedure could be used to quantify ethylene 9.06% 

(RE), acetic acid 19.30% (RE), water 13.77% (RE) and carbon dioxide 30.46% (RE) 

within the defined relative error margin.  The advantages of the new approach were a 

~90% reduction in the calibration time, ~90% reduction in the number of training 

samples required for the calibration and the simultaneous recovery of the reaction 

constituent spectral profiles.  Therefore this quantitative SMCR strategy could be used 

for reactions or processes for which it is not possible to prepare mixtures of known 

composition due to the absence of isolated reference material, stability issues and where 

the preparation of such samples are time consuming and expensive.  The %RE of the 

vinyl acetate model was outside the acceptable range for use on the plant.  Therefore, 

further investigations need to be completed to determine how this model could be 

improved.  Nevertheless, the overall economic gain of using the quantitative SMCR 

strategy more than adequately compensates any further refinement to the vinyl acetate 

model.  The resolution and identification of by-products and intermediates from the 

vinyl acetate process in the absence of selectivity and a priori information using the 



230 

QITTFA spectral estimates provides a useful tool to study complex, information 

deficient processes and reactions to enable efficient monitoring and control.  
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FIGURE and TABLE LABELS 

 

Figure 1 Quantitative SMCR procedure for the simultaneous qualitative and 

quantitative recovery of reaction constituents from the vinyl acetate 

monomer process. 

Figure 2   

 

Implementation of the Correlation constraint.  1. Initialisation - The 

Csel matrix contains sparse known concentration values for the target 

analyte (black rectangles).  2.  Least squares � The starting estimate 

are regressed against the data matrix to estimate the CALS concentration 

profiles for each constituent. 3.  Correlation Constraint � Step A: 

The k and x vectors are regressed using the classical least squares.  

Step B: The model determined in step one is used to predict p for the 

unknown values, u. Step C: The CALS matrix is updated with p and the 

known values k.  Step four: CALS is used in the least squares estimate 

of S. 

 

 

Figure 3  

 

The NIR spectra of the five component gas mixture.  Regions of 

interest include the first overtone of the OH group associated with 

monomer acetic acid is apparent at ~6994 cm-1.   The first overtone of 

the asymmetric C-H stretch from ethylene appears at 6149 cm-1,  

showing a PQR structure covering 6200-6090 cm-1 and the first 

overtone of the symmetric C-H stretch showing PR structure at 5993 

cm-1 together with the combination bands with relatively strong 

absorbance  appearing at 4760 cm-1. The combination bands from the 

asymmetric and symmetric stretching modes of the water molecule 
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appear at ~5150 and ~6900cm-1. 

 

Figure 4 The initial spectral estimates of the reaction constituents ethylene, 

water, acetic acid, vinyl acetate and carbon dioxide calculated using the 

QITTFA routine and the NIR spectra, shown in Figure 4, labelled A-E 

respectively.  The NIR spectral profiles of the neat vaporised samples 

of the reaction constituents shown in Figure 4, labelled F-J 

respectively. 

Figure 5 The MCR-ALS spectral profiles of the reaction constituents ethylene, 

water, acetic acid, vinyl acetate and carbon dioxide calculated using the 

initial QITTFA spectral estimates and the NIR spectra in the ALS 

procedure. 

Table 1 The original BP calibration model reference error (%RE) for the 

prediction of the reaction constituents. 

Table 2 The regression statistics for the qualitative SMCR models, quantitative 

SMCR models and the PLS1 models quoted for each of the VAM 

reaction constituents 

Table 3   Two sided tests, 199 iterations in each randomised t-test. p values are 

for comparison with PLS1 model for each constituent 
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Figure 1.Quantitative SMCR procedure for the simultaneous qualitative and quantitative recovery of 
reaction constituents from the vinyl acetate monomer process 
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Figure 2.  Implementation of the Correlation constraint.  1. Initialisation - The Csel matrix contains 
sparse known concentration values for the target analyte (black rectangles).  2.  Least squares � The 
starting estimate are regressed against the data matrix to estimate the CALS concentration profiles for each 
constituent. 3.  Correlation Constraint � Step A: The k and x vectors are regressed using the classical 
least squares.  Step B: The model determined in step one is used to predict p for the unknown values, u. 

1. Initialisation: 

 1  2  3  4 

2. Least Squares: 

Csel 

 
 
 

D 

A B C D

CALS 

3. Correlation Constraint: 

1  2  3  4

CALS 

Conc. Selectivity matrix (Csel) 

S+

QITTFAs Initial Spectral 
Estimates 

=

k x k x

=   b0          +    b1 

=   b0          +    b1 

Step A Step B 

Step C Step D 

DCS ALS
T +=

p u

Classical least squares
k and x 

Update CALS matrix with 
predicted values, p, and 

known concentration 
values, k 



237 

Step C: The CALS matrix is updated with p and the known values k.  Step four: CALS is used in the least 
squares estimate of S. 
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Figure 3. The NIR spectra of the five component gas mixture.  Regions of interest include the first 
overtone of the OH group associated with monomer acetic acid is apparent at ~6994 cm-1.   The first 
overtone of the asymmetric C-H stretch from ethylene appears at 6149 cm-1,  showing a PQR structure 
covering 6200-6090 cm-1 and the first overtone of the symmetric C-H stretch showing PR structure at 
5993 cm-1 together with the combination bands with relatively strong absorbance  appearing at 4760 cm-1. 
The combination bands from the asymmetric and symmetric stretching modes of the water molecule 
appear at ~5150 and ~6900cm-1. 
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Figure 4. The initial spectral estimates of the reaction constituents ethylene, water, acetic acid, vinyl 
acetate and carbon dioxide calculated using the QITTFA routine and the NIR spectra, shown in Figure 4, 
labelled A-E respectively.  The NIR spectral profiles of the neat vaporised samples of the reaction 
constituents shown in Figure 4, labelled F-J respectively. 

va =CH2 
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Figure 5. The MCR-ALS spectral profiles of the reaction constituents ethylene, water, acetic acid, vinyl 
acetate and carbon dioxide calculated using the initial QITTFA spectral estimates and the NIR spectra in 
the ALS procedure. 
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 Ethylene Water Acetic Acid Vinyl 

Acetate 
Carbon 
dioxide 

% RE 10 ± 2 15 ± 2 20 ± 2 15 ± 2 30 ± 2 
Table 1. The original BP calibration model reference error (%RE) for the prediction of the reaction 
constituents. 
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Method N.o.C LOF Nit RMSEP SEP Bias RE% Slope Offset Cor
Ethylene
Training Correlation 6 4.40 3 0.00 0.00 0.00 0.00 1.000 0.00 1.000

PLS 3 N.A N.A 0.76 0.77 -0.03 12.75 0.613 2.27 0.842
Test No Constraint 6 1.57 3 0.15 0.15 -0.01 29.46 0.857 0.07 0.783

Correlation 6 4.40 3 0.53 0.53 0.08 9.06 0.748 1.37 0.863
PLS 3 NA N.A 0.59 0.59 -0.04 10.11 0.652 2.04 0.822

Water
Training Correlation 6 1.57 9 0.09 0.09 0.00 17.53 0.936 0.02 0.968

PLS 4 N.A N.A 0.06 0.06 0.00 11.43 0.974 0.01 0.986
Test No Constraint 6 1.57 3 0.05 0.05 0.00 14.63 0.896 0.02 0.982

Correlation 6 1.57 9 0.06 0.06 0.03 13.77 0.944 -0.01 0.983
PLS 4 N.A N.A 0.07 0.07 0.02 16.16 0.947 0.00 0.973

Acetic Acid
Training Correlation 6 1.57 12 0.09 0.09 0.00 14.78 0.936 0.03 0.967

PLS 6 N.A N.A 0.05 0.05 0.00 8.28 0.977 0.01 0.990
Test No Constraint 6 1.57 3 0.11 0.08 -0.08 35.03 1.028 0.07 0.912

Correlation 6 1.57 12 0.09 0.09 -0.01 19.30 0.976 0.02 0.923
PLS 6 N.A N.A 0.09 0.09 0.01 18.67 0.907 0.03 0.920

Vinyl Acetate
Training Correlation 6 1.57 13 0.11 0.12 0.00 20.11 0.910 0.04 0.954

PLS 5 N.A N.A 0.03 0.03 0.00 6.02 0.994 0.00 0.996
Test No Constraint 6 1.57 3 0.09 0.08 -0.04 26.95 0.816 0.09 0.926

Correlation 6 1.57 13 0.11 0.11 0.02 23.67 0.848 0.04 0.915
PLS 5 N.A N.A 0.07 0.07 0.00 15.72 0.988 0.00 0.964

Carbon dioxide
Training Correlation 6 1.57 12 0.27 0.28 0.00 19.09 0.885 0.14 0.941

PLS 4 N.A N.A 0.15 0.16 0.00 10.73 0.964 0.04 0.982
Test No Constraint 6 1.57 3 0.17 0.14 -0.08 41.17 0.764 0.16 0.820

Correlation 6 1.57 12 0.38 0.37 -0.10 30.46 0.810 0.30 0.831
PLS 4 N.A N.A 0.36 0.36 -0.04 28.23 0.910 0.14 0.860

Table 2. The regression statistics for the qualitative SMCR models, quantitative SMCR models and the 
PLS1 models quoted for each of the VAM reaction constituents 
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Randomised T-test Ethylene Water Acetic acid Vinyl acetate Carbon dioxide 

p values 0.075 0.025 0.665 0.005 0.140 

Table 3.  Two sided tests, 199 iterations in each randomised t-test. p values are for comparison with 

PLS1 model for each constituent 

 


