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Abstract 

To construct a spectroscopic multivariate calibration model, a set of representative mixture 

spectra (independent variables) and the corresponding reference values for the property of 

interest (dependent variables) must be obtained.  For a dynamic system such as a batch or 

semi-batch chemical reaction, creating such a data set may be very difficult or extremely 

time consuming.  It may not be possible to create synthetic mixtures because reaction 

between the various reactants may occur.  If the reaction proceeds via a reactive 

intermediate or affords a reactive product, isolated reference standards of those species 

may not be available.  Reactions in industry are often heterogeneous and highly 

concentrated; sampling the batch throughout the course of the reaction for off-line analysis 

can be problematic and therefore introduce significant error into measured reference 

values. 

An alternative approach that combined Self-Modelling Curve Resolution (SMCR) methods 

and Partial Least Squares (PLS) to construct a quantitative model using only minimal 

reference data was implemented.  The objective was to construct a quantitative calibration 

model to allow real-time in-situ UV/ATR measurements to be used to determine the end-

point of a chlorination reaction.  Difficult reaction sampling conditions and the absence of 

isolated reference standards for the product and reactive intermediate required the method 

to be developed using only a few key reference measurements.   

Utilising Evolving Factor Analysis and Orthogonal Projection Approach, initial estimates 

of the concentration and spectral profiles for the intermediate and product were obtained.  

Further optimisation using Multivariate Curve Resolution-Alternating Least Squares (MCR-

ALS) led to refined estimates of the concentration profiles.  PLS models were then 

constructed using the calculated concentration profiles and the pre-processed UV spectra.  

Using a standard PLS model compatible with the spectrometers standard process software 

facilitated real-time predictions for new batches.   

This method was applied to five 45 L batches in a Large Scale Laboratory facility.  The 

method was used successfully to predict the product concentration of batch 1, but 

exhibited larger prediction error for subsequent batches.  Probe fouling was observed and 

this resulted in lower measured absorbance values that in turn contributed to larger 

prediction errors.  The largest prediction error was attained during batch 3 (an error of 

18.8%).  However, the qualitative real-time profiles proved to be extremely useful as they 
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allowed the end-point to be determined without sampling and performing off-line analysis.  

Furthermore, the model facilitated real-time visualisation of the intermediate concentration 

profile which could not be observed using the off-line method.  This provided further 

confidence that the process was approaching the end-point.  This work was published in 

Applied Spectroscopy (2007, volume 61, number 9, pp 940-949). 

During the manufacture in the LSL, the extent to which the fibre-optic cables would be 

subjected to movement during normal operation was observed.  A custom fibre-optic cable 

assembly for use with a double beam spectrometer was designed to reduce the effects of 

movement.  A test was devised that allowed reproducible curvature to be introduced into 

both the standard and custom fibre-optic cables and the effect on the resulting spectra was 

compared.  The tests revealed that although the custom fibre-optic cable assembly did not 

completely eliminate the effects of movement; the custom fibre reduced the effect of fibre 

movement by approximately 25% relative to the standard fibre assembly. 

The work combining Self-Modelling Curve Resolution (SMCR) methods and PLS 

demonstrated that a regression model could be constructed from concentration profiles 

derived directly from the spectral data using SMCR methods.  The motivation for this 

approach was to construct a PLS regression model compatible with standard process 

spectrometer software that could then be used for the prediction of future batches.  The 

use of SMCR facilitates the estimation of the underlying concentration profiles in the 

absence of suitable reference measurements.  

The premise for SMCR methods to provide the correct concentration profiles is the ability 

to isolate the correct pure spectral profiles for each component of interest.  The concept of 

utilising a vectorised adaptive Kalman filter for self-modelling curve resolution was 

investigated.  Vectorised linear and adaptive Kalman filters were implemented in Matlab.  

Using simulated spectral reaction data representing the N-benzylation of 1H-indole using 

benzyl bromide, it was demonstrated that a vectorised Kalman filter performs identically to 

the linear Kalman filter but offered much faster computation times.  The standard linear 

Kalman filter took approximately 1.14 seconds to filter a simulated UV data set comprising 

333 spectra acquired at 131 wavelengths variables; the vectorised Kalman filter reduced the 

execution time to approximately 0.03 seconds (a factor of 38 times faster).  The advantage 

of the vectorised linear Kalman filter became more significant when applied to larger data 

sets.  The standard linear Kalman filter took approximately 70 seconds to filter a data set 

comprising 427 spectra acquired at 3301 wavenumber variables; the vectorised linear 
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Kalman filter only took approximately 0.74 seconds (a factor of 95 times faster).  The 

standard adaptive Kalman filter took approximately 400 seconds to filter the same Raman 

data set whilst the vectorised adaptive Kalman filter took only 1.60 seconds (a factor of 95 

times faster).  This considerable improvement in execution speed made it feasible to use 

the vectorised adaptive Kalman filter in a novel SMCR application where it was necessary 

to re-run the filter several hundred times.  

The recursive prediction-correction operations of the vectorised adaptive Kalman filter 

were then employed in a novel self-modelling curve resolution method called Vectorised 

Adaptive Kalman Filtering with Iterative Spectral Optimisation.  This approach utilised 

Vertex Vector Sequential Projection analysis to provide initial estimates of the pure 

component spectra.  The transformation matrix of these initial spectra was calculated and 

iteratively refined using Newton-Gauss-Levenberg / Marquardt non-linear optimisation.  

During each iterative cycle, new test reference spectra were calculated from the spectral 

basis vectors by changing the elements of transformation matrix.  Each set of test reference 

spectra are then tested using the vectorised adaptive Kalman filter.  The resulting 

innovations matrix, state-parameter matrix and the diagonal elements of the final state 

estimate covariance matrix are used to calculate a weighted residual matrix that guides the 

NGL/M optimisation towards a feasible solution.  The performance of this new algorithm 

was first assessed using simulated UV reaction data by comparing the spectral and 

concentration profiles with the estimated profiles.  The spectral residual sum-of-squares 

values indicated that the VAKFISO performed as well as the pure variable SMCR method, 

vertex vector sequential projection.  VAKFISO was able to correctly identify the true 

spectrum of component B, whereas VVSP could only isolate the mixture spectrum 

corresponding to the maximum concentration of component B.  The concentration 

profiles estimated using VAKFISO exhibited a small amount of rotational ambiguity but 

the characteristic features of each profile were recovered more successfully than VVSP.  

When VAKFISO was applied to real data sets, it was observed that initiating the 

optimisation process using random spectra produced results equivalent or better than those 

obtained using VVSP initial spectra.  One reason for this was that the VVSP initial spectra 

for the various components were often very similar.  Using randomly generated spectra 

started the optimisation process further away from the final solution and allowed the 

algorithm to cover a larger search space.  When applied to real, highly overlapped data, the 

VAKFISO method was not able to unambiguously recover the true spectral and 

concentration profiles.  However it did perform as well as existing SMCR methods using 
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only non-negativity constraints.  Specifically, the VAKFISO method was able to identify 

the most selective regions of each pure spectrum.  This information could be useful for 

further optimisation employing additional constraints. 

The base catalysed N-benzylation of 1H-indole using benzyl bromide was used as test 

reaction and several reactions using different reactant and base ratios were performed.  

During each reaction, Raman and UV spectra were acquired and several samples were 

taken for off-line analysis using HPLC to provide reference measurements.  Both the UV 

and Raman spectra required considerable data preparation and a moving window median 

filter was written to automate the correction of these data sets.  The Raman reaction 

spectra had a broad, complex baseline contribution and although the median filter provided 

a good approximation of the underlying baseline spectrum, an automated moving window 

iterative polynomial baseline fitting method was written.  The moving window iterative 

polynomial baseline fitting method was found to produce better results than median 

filtering alone and also performed better than the original iterative polynomial baseline 

subtraction method published by Lieber and Mahadevan-Jansen.  
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Algebraic nomenclature 

Throughout this thesis, the standard nomenclature for the description of chemometric 

equations and algorithms was employed.  The nomenclature is universal throughout the 

chemometrics community and is used by the authors of text books and research papers. 

Scalars are represented by upper or lower case italics such as a  or .A   A vector is denoted 

by a lower case, bold italic letters; for example x  or .y   All vectors are column vectors 

unless otherwise indicated.  Matrices are denoted by upper case, bold italic letters; for 

example X  or .Y   In general, array dimensions or the upper value of an integer based 

counter will be denoted by upper case italics; for example the dimensions of a two 

dimensional array could be defined JKX ( ).J K×   The transpose operation is denoted by 

superscript .T   The individual elements of a vector or matrix are denoted by subscript 

indices;  for example, the j th element of a ( 1)J ×  vector x  is ,jx  whilst the j th and k th 

elements of a matrix X are denoted .jkx   For matrices, individual column or row vectors 

can be also be referenced;  for example, the j th row of X  is T
jx  whilst the k th column is 

denoted .kx   The pseudo-inverse of a matrix is often used to calculate the inverse of a 

collinear (non-invertible) matrix and is denoted by the superscript +.  This refers to the 

matrix operation 1( ) .T T+ −=X X X X   Predicted values are denoted by the superscript ^ 

(‘hat’), so Y  would indicate actual reference values whilst Ŷ  is a vector or matrix 

containing the corresponding values predicted using a model. 

To describe the Kalman filter or other algorithms that use iterative calculations, the 

iteration number, time or spectral variable is denoted by a lower case number in 

parentheses, for example, ( )mX  is the m th iteration of an algorithm to calculate the matrix 

.X   The same nomenclature can be applied to scalars or matrices.  Throughout the 

literature, descriptions of the Kalman filer also employ time-domain terminology to 

distinguish between estimates made a priori or a posteriori.  The a priori estimate of x  

(conditioned on all prior measurements except the one at time k ) is written ( 1).k k −x   

The a posteriori estimate (conditioned on all measurements available at time k ) is written 

( ).k kx  
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1 Introduction Equation Chapter 1 Section 1 

1.1 Process Analytical Technology (PAT) 

1.1.1 PAT in the pharmaceutical industry 

A number of regulatory organisations such as the United States Food and Drug 

Administration (FDA) and the European Medicines Agency (EMEA) have implemented 

initiatives advocating the increased use of Process Analytical Technologies (PAT) during 

development and manufacture[1].  Historically, a pharmaceutical manufacturing process 

would be approved based upon a standard operating procedure that had been reproducibly 

demonstrated to produce product of appropriate quality.  If the manufacturer wished to 

make any changes to the approved process, it was required to submit a large volume of 

supporting data to the regulatory authority to demonstrate that the product quality would 

not be affected.  The time and cost required to request approval for a process change were 

sufficient to deter many companies from attempting to implement process improvements.  

To remove this barrier, regulatory authorities are encouraging a move away from fixed 

operating procedures to flexible, knowledge-based process development using “quality-by-

design” concepts.  These concepts combine the use of experimental design, continuous 

process monitoring and process modelling and control[2, 3].  The goal of employing a 

“quality-by-design” approach is to study a large experimental space, called a “knowledge 

space”, for a particular product or process.  From this “knowledge space”, a smaller 

“process space” that is known to provide product of the desired quality is registered with 

the regulatory authorities.  A manufacturer then has the opportunity to optimise a process 

as making changes to the process parameters within the “process space” are permitted.  An 

important part of this concept is the use of process analytical technologies to continuously 

monitor and control processes.  

1.1.2 Process analysis of batch processes 

Currently, the pharmaceutical and fine chemical industries predominately use batch 

reactors in their pilot- and full-scale manufacturing plants.  The research chemists and 

engineers responsible for developing a process therefore use small-scale batch reactors to 

emulate the full-scale equipment for which the process is destined.  A batch process is 

characterised by the introduction of the raw materials into the process in a specific 

sequence and their conversion into products within a finite duration.  The objective of 

operating a batch process is to achieve reproducibility of those process variables that have 



Chapter 1 - Introduction 

 - 2 - 

the greatest influence upon the products quality parameters.  However, most processes will 

exhibit some batch-to-batch variation owing to differences in raw materials or performance 

of the plant equipment.  At the end of each batch, a sample is sent to a quality control 

laboratory to confirm that the process has produced material of suitable quality.  If a severe 

process deviation has occurred, the final product may not meet the required specification 

and would have to be re-worked or disposed.   

Through the use of process analytical technology it is possible to move analytical 

instrumentation closer to a process.  This facilitates analysis at more frequent intervals and 

measurements can therefore be made throughout the duration of the process.  This 

provides an opportunity for the process operator or control system to detect process 

deviations much earlier, and if necessary, adjust process parameters to prevent the 

deviation from affecting the quality of the end product.  For this reason, high throughput 

industries such as the bulk chemical, oil, petroleum and polymer industries have 

implemented some form of PAT for several decades.  Early instrumentation included the 

measurement of traditional variables such as temperature, pressure and flow; and the use of 

simple chemical sensors such as pH meters and oxygen sensors[4].  Advanced 

instrumentation such as on-line chromatography, spectroscopy, NMR and X-ray was also 

adopted much sooner than other lower throughput industries such as fine chemicals, 

pharmaceuticals and other speciality products. 

The key driver for high throughput industries to move analytical instrumentation closer to 

the process was to reduce the time required to extract a sample, send it to a remote quality 

control laboratory and receive the result.  If this time was several hours, a large volume of 

material would have been processed, and may this may need to be disposed or re-worked if 

it did not meet specification.  The considerable cost benefit of diagnosing process 

deviations earlier was sufficient to justify the investment in PAT. 

Guenard and Thurau[4] discussed the differences between the implementation of PAT in 

the pharmaceutical and bulk chemical industries.  One reason for lower exploitation of 

PAT in the pharmaceutical industry was attributed to the high attrition of chemical entities 

that reach commercial manufacture.  The manufacturing costs of commercial 

pharmaceutical products are also a lower proportion of the total cost of the product owing 

to the high development costs and low manufacturing throughput.  For regulatory and 

release purposes, most pharmaceutical processes are devised as a series of discrete batch 

processes.  Historically, the regulatory requirements for product release have also led to 
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pharmaceutical manufacturing sites building extensive quality control laboratories and the 

preferential use of off-line testing utilising sophisticated instrumentation. 

The availability of process measurements naturally led to the development and 

implementation of control charts[5].  Statistical Process Control (SPC) charts allow the 

evolution of a process variable to be compared with statistical limits derived from a 

number of ‘good’ batches manufactured using normal operating conditions.  These charts 

are calculated individually for each process variable of interest and do not consider any 

interaction between the different variables.  Multivariate Statistical Process Control is the 

extension of SPC principles to multivariate data[6-10].  A variety of multivariate projection 

methods can be used to find linear combinations of process variables and an ideal 

trajectory can be calculated.  The variation of the latent variables can also be correlated to 

input raw material quality or the final product quality.  MSPC models are more robust to 

variation of individual ‘noisy’ variables and can account for interactions between multiple 

variables.  These methods also allow spectroscopic variables to be combined with 

traditional process variables to create complex models that incorporate both physical and 

chemical parameters. 

1.1.3 Process spectroscopy 

Process analytical technology encompasses any analytical instrumentation that is used to 

make timely process measurements in-line, on-line or at-line, and include electrochemical 

methods, chromatography, spectroscopy, mass spectrometry and even specific sensors 

such as pH or temperature probes, flow meters and pressure sensors.  In contrast to 

traditional process variables such as temperature, pressure, flow and viscosity; process 

spectroscopy provides data that is much richer in chemical information[11].  Spectroscopy is 

non-destructive and can be interfaced with the process to facilitate rapid sampling.  These 

two factors make process spectroscopy a powerful tool as it can be used to rapidly, and 

frequently determine the chemical composition of a process stream without disturbing the 

system.  The sampling rate of an in-line spectroscopic method is often far greater than 

other in-line and off-line analytical methods such as chromatography.  This allows in-line 

spectroscopy to provide more detailed trend information that can be extremely useful for 

gaining understanding about a process, such as the appearance or disappearance of 

reactants, intermediates and products.  The detailed concentration-time profiles extracted 

from spectroscopic data can then be fitted to a number of different kinetic models to 



Chapter 1 - Introduction 

 - 4 - 

identify or confirm the reaction mechanism.  The empirical kinetic model can then be used 

to predict the performance of the reaction when it is scaled-up to a larger vessel.    

There are a number of different types of spectroscopy that have been employed for 

process analysis and they are distinguished by the region of the electromagnetic spectrum 

they use to interact with a sample, and also the physical phenomenon by which they 

interact with the sample.  Some of the most widely used techniques include ultraviolet / 

visible absorbance spectroscopy, mid-infrared absorbance spectroscopy, near-infrared 

absorbance spectroscopy, near-infrared diffuse reflectance spectroscopy, Raman 

spectroscopy, fluorescence spectroscopy, microwave spectroscopy and acoustic 

spectroscopy[4, 12].  Each of the techniques offers its own set of advantages and 

disadvantages that must be taken into account when selecting a method.  For example, 

what is the physical nature of the sample and would a transmission, reflection or emission 

based measurement be most suitable? What are the differences between the molecular 

structure of the reactants and products in the reaction, and would the change in molecular 

structure produce observable differences in the measured spectra?  Is the method required 

to accurately quantify a component in a mixture or would a qualitative (relative change) 

method be suitable to detect steady-state conditions?  What is the concentration range of 

the species to be observed and does the method offer suitable limits of detection?  It is 

usually a combination of all of these factors that ultimately dictate the choice of 

spectroscopy employed.   

1.1.4 Examples of spectroscopic reaction monitoring 

A number of different in-situ spectroscopic methods have been used to monitor chemical 

reactions at laboratory and plant scale. 

Ampiah-Bonney and Walmsley used Raman spectroscopy to monitor the acid catalysed 

esterification of ethanol[13].  In this work, molecular fluorescence and other process noise 

contributed to the measured spectra and obscured the chemical variation of interest.  It was 

observed that PCA of the mean-centred data required only two principal components to 

model nearly 99.9% of the total variance in the data.  The first principal component was 

found to correspond to the fluorescent baseline dominating the spectra, whilst principal 

components three and above were modelling measurement noise.  Reconstruction of the 

spectral data using only the second principal component removed the contributions from 

fluorescence and measurement noise.  This allowed the reaction profiles of interest to be 

plotted using the selective bands of each component.  This demonstrated the advantage of 
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making multivariate measurements, even if the individual chemical components were 

spectrally resolved. 

De Braekeleer et al. used in-situ mid-infrared spectroscopy and self-modelling curve 

resolution methods to determine the end-point of an unspecified reaction[14].  The 

dissimilarity criterion provided by the orthogonal projection approach was used to 

determine when the reaction had reached steady-state.  In this case the reference spectra 

used to calculate the dissimilarity values were taken from the start of each new region 

where a different perturbation had occurred, such as a temperature change or the addition 

of reagent.  The spectra from the various steady-state regions were then combined and 

modelled using multivariate curve resolution-alternating least squares to provide relative 

quantitative information about the evolution of the reaction.  This example also 

demonstrated that a simple qualitative model could be used to indicate the reaction end-

point and reveal the effect of temperature upon the pure component spectra.  

Mid-infrared spectroscopy has also been used to monitor a batch polymerisation reaction 

of methylmethacrylate (MMA) to polymethylmethacrylate (PMMA)[15].  Twelve solutions of 

known MMA/PMMA composition were used to construct a PLS model that was 

subsequently used to predict the concentration of MMA in the reaction mixture.  The 

MMA concentrations from eighteen batches operating under normal operating conditions 

were predicted using PLS and then used to build statistical control charts.  Three further 

batches were used to test the performance of the control chart.  The first test batch was 

operated using normal conditions and the concentration remained well within the 99% 

control limits of the model.  When the second test batch was operated below the normal 

temperature, the control charts clearly indicated that the conversion was occurring slower 

than expected.  In batch three, a small amount of polystyrene was added and this also 

seemed to slow down the conversion to product.  This example demonstrated that 

multivariate spectroscopic measurement of a process can serve two purposes: the 

measurement can be used to predict a property of interest, for example reactant 

concentration; and the spectra were also sensitive to abnormal physical and chemical 

perturbations, providing early indication of a process fault or deviation.  

Ma et al. reported the use of in-situ spectroscopy and calorimetry to characterise batch 

reactions[16].  In this work, the acetylation of salicylic acid was monitored using UV/Visible 

spectroscopy with simultaneous logging of the reaction temperature and reactor jacket 

temperature.  Several reactions were performed at different temperatures and 
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concentrations of salicylic acid.  The data sets were combined and subjected to multiway 

self-modelling curve resolution.  The reason for combining the data sets was to remove the 

scaling ambiguity of the concentration profiles that would be observed if the data sets were 

analysed individually, whilst still allowing the batch-to-batch variation of the pure 

component spectral profiles to be retained.  The relative intensity of the estimated 

concentration profile for the product showed good correlation with the relative amount of 

limiting reagent added.  

NIR spectroscopy was used to monitor the esterification of isoamyl alcohol using acetic 

acid[17].  Eleven batches were performed according to an experimental design (32 + 2 centre 

points) which varied the molar ratio of reagents and the amount of catalyst.  NIR spectra 

were acquired at three minute intervals and the resulting three-dimensional array of spectral 

data (batch × time × wavelength) was decomposed using parallel factor analysis 

(PARAFAC).  PARAFAC was chosen over two-way curve resolution methods because it 

will give a unique mathematical decomposition for a particular set of data.  The 

experimental design parameters and loadings produced by the PARAFAC model were then 

fitted to a regression model.  In this way, the affect of changing each of the design 

parameters upon the measured spectra could be interpreted from the loadings vectors and 

characteristic bands could be identified. 

More recently, Garrido et al.  reported the use of NIR and 13C-NMR spectroscopy to study 

the reaction between phenylglycidylether and aniline[18].  The reactions were performed in 

the small liquid cell of a NIR spectrophotometer and spectra were acquired at five minute 

intervals.  An identical reaction was performed simultaneously in a different cell using the 

same reagent stoichiometries and reaction temperature. From this cell, samples were taken 

at several time points and their 13C-NMR spectra were acquired.  MCR-ALS was applied to 

the NIR data using six concentration values obtained from the quantitative 13C-NMR 

measurements as additional constraints.  Using this external information reduced the 

rotational ambiguity of the solution and the concentration profiles estimated by MCR-ALS 

were verified by off-line HPLC measurements.  
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1.2 Multivariate data analysis and calibration 

1.2.1 Taxonomy of data processing methods 

The taxonomy shown in Figure 1.1 illustrates the general classification of the various 

spectral pre-processing and data analysis methods used or described in this thesis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.1:  Taxonomy of the various spectral pre-processing and data analysis methods used or 
described in this thesis. 
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One of the methods most commonly used for the analysis of multivariate data sets such as 

process spectra is principal components analysis.  This is example of an unsupervised 

method of data analysis as it does not try to fit the data to a known physical model require 

any prior knowledge.  In many cases, process spectra can contain additional unwanted 

contributions such as multiplicative scattering effects, variable baseline or intensity scaling 

and additional measurement artefacts.  A variety of spectral pre-processing methods are 

therefore required to remove the additional contributions from the spectra so the true 

underlying chemical information can be recovered.  If the purpose of the application is to 

predict a chemical property from the measured spectrum, a number of methods such as 

MLR, PCR and PLS are available.  In addition to a set of training spectra, these methods 

also require a set of reference values for the property of interest in order to construct the 

calibration model.  When reference values are not available, supervised methods of data 

analysis can be applied.  The objective of supervised data analysis methods is to 

deconvolute a set of spectra to recover the underlying structure of a data set that best 

represents the true physical process occurring in the system.  Hard-modelling methods use 

a theoretical model of the physical process that the data represents, for example a kinetic 

model can be used to trial different reaction mechanisms and rate constants to find the best 

model for the data set.  Soft-modelling methods do not implement a theoretical model but 

many apply a least-square approach to find the best fit of the data set.  To reduce the range 

of feasible solutions obtained, known constraints such as spectral non-negativity can be 

applied. 

1.2.2 Univariate calibration 

Univariate calibration is a regression technique commonly used to derive the mathematical 

expression that relates two single variables to each other[19].  The independent variable, 

often denoted x  is a scalar value and is derived directly from an analytical measurement.  

For example, x  could be the integrated peak area from a chromatographic measurement or 

the absorbance value at a single wavelength obtained from a spectrophotometric 

measurement.  The dependent variable, often denoted y  is the physical or chemical 

property, such as concentration.  For analytical chemists, the aim of employing a univariate 

calibration is to establish the mathematical relationship between the instrument response 

(independent variable) and the chemical property of interest (dependent variable) using a 

set of samples for which both sets of variables are known.  The regression coefficients 

(slope and intercept for a linear calibration) are then used to predict the dependent variable 

of unknown samples using the measured instrumental response (independent variable). 
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1.2.3 Multi linear regression (MLR)  

It is possible to extend linear regression to include multiple independent variables.  This 

has the advantage of averaging out the noise that may influence individual variables and 

helps to stabilise the regression coefficients.  Using multiple independent variables is also 

necessary if more than one chemical component is contributing to the measurement[20, 21].  

For example, if a sample contains N  components, at least N  independent variables are 

required to calculate a regression model.  Multi linear regression (MLR) can be applied to 

simple spectroscopic calibration applications when the concentrations of all the 

components contributing to the training samples are known.  The relationship between the 

matrix of independent variables (spectra), denoted ,X  and the dependent variables 

(concentrations), denoted ,Y  is shown in equation 1.1.  Once the matrix of regression 

coefficients have been calculated, the concentrations of new samples can then be predicted 

from their spectra using equation 1.2. 

 1( ) T−= TB X X X Y  (equation 1.1) 

 ˆ =Y XB  (equation 1.2) 

The limitations of the MLR approach are that the matrix inversion step in equation 1.1 can 

be yield unstable regression coefficients when ( )TX X  is ill-conditioned (almost singular 

owing to collinearity between the variables of X ).  If the spectra contain varying amounts 

of additional, unknown components, MLR will also be unsuitable. 

1.2.4 Principal component based calibration methods 

Principal components regression (PCR) and partial least squares (PLS) regression are two 

of the methods most commonly applied to multivariate calibration problems.  These 

methods are suited to spectroscopic calibration because they include data compression 

steps that help to overcome the problem of collinearity in the matrix of independent 

variables (X-block).   

In principal components regression[12, 21-25], data compression of the spectroscopic data (X-

block) is achieved by first applying principal components analysis to the matrix of 

independent variables ( X ) as shown in equation 1.3.  The first A  principal components 

that adequately model the matrix of spectroscopic data are then used to calculate the 

regression coefficients using the expression shown in equation 1.4.  
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 T= +X TP E  (equation 1.3) 

 1( ) T−= TB T T T Y  (equation 1.4) 

Since the spectroscopic data has been compressed by calculation of the first A  principal 

components, and the columns of the score matrix T  are orthogonal, the problem of 

collinearity in the spectral data is overcome.  The inverse of ( )TT T  is well conditioned and 

yields stable regression coefficients.  PCR can be applied to spectra with many variables 

and does not require the concentrations of all components to be known so it is useful for 

complex mixtures.  Disadvantages of PCR are that the largest principal components may 

not be correlated to the property of interest and therefore a larger number of principal 

components are required.  This can make interpretation of the loadings vectors more 

difficult.  PCR also assumes that the vector or matrix of dependent variables is error free. 

Partial least squares[12, 20-25] is an alternative approach to PCR and has a number of 

advantages.  The PLS algorithm is described in chapter 2 (section 2.6) so only a brief 

introduction is given for comparison with PCR.  Unlike PCR that applies data compression 

to the spectral (independent) variables only, PLS decomposes both the independent and 

dependent variables.  The objective of PLS is to find a common set of principal 

component scores that maximise the amount of variance explained in both the X- and Y-

blocks.  By modelling both the independent and dependent variables using the same set of 

scores, not only does PLS achieve data compression, it also calculates factors that maximise 

the correlation between t  and .y   The additional advantage of PLS over PCR is that the 

dependent variables are also compressed using a small number of principal components.  

This helps to remove measurement error from the Y-block and thus explains the 

structured variance in X  and Y  using fewer components. 

1.3 Calibration free modelling 

To construct a spectroscopic calibration model, a common approach is to obtain a data set 

comprising a series of spectral measurements and the corresponding values for the 

properties of interest are measured using an external reference method, for example HPLC, 

GC, NMR, titration, assay etc.  A mixture design could be used to design a set of non-

reacting mixtures with known composition, or process samples could be taken whilst 

acquiring spectral data.  In reactions or processes where it is not possible to prepare 

mixtures of known composition, perhaps because reference components are unstable or 



Chapter 1 - Introduction 

 - 11 - 

cannot be isolated, sampling from the process is usually the only practical alternative.  

However, the lack of reference standard materials for the components that cannot be 

isolated will still preclude the quantification of that component using an off-line reference 

method. 

The difficulties described above naturally led to the investigation and development of 

‘calibration free’ methods of data analysis and prediction.  Kubista et al.[26] proposed a 

method suitable for the calibration of equilibrium systems such as pH-, concentration-, 

temperature- and ionic strength-titrations.  The method was based upon principal 

components analysis of the spectral data followed by derivation of a rotation matrix that 

transforms the abstract spectra (principal component loadings) and concentration profiles 

(principal component scores) into the true spectral and concentration profiles.  This 

approach used the measurement of physical properties such as pH, volume, temperature, 

pressure, ionic strength etc. that affected the concentrations of the components in a 

predictable way.  By fitting the data using a known thermodynamic model, the 

concentration parameters were derived indirectly.  Although this method has been 

demonstrated for systems with well-understood equilibria, it is not suited to dynamic 

systems such as reactions. 

If a dynamic process can be described by first principle models, the mathematical model 

could be used to calculate the concentrations directly.  A comparison of kinetic and soft 

modelling for reaction modelling was published by Dyson et al.[27].  The catalytic 

hydrogenation of 1-chloro-2-nitrobenzene was monitored using Raman and IR 

spectroscopy and the authors used kinetic modelling to calculate the relative concentration 

profiles.  The calculated profiles showed good agreement with the off-line NMR results.  A 

number of self modelling curve resolution methods such as evolving factor analysis (EFA), 

Window Factor Analysis (WFA) and Iterative Target Transformation Factor Analysis 

(ITTFA) were used to derive the relative concentration profiles of the major species 

directly from the spectroscopic data and these too compared well with the off-line NMR 

results.  In this example, the qualitative (relative) concentration profiles were obtained post-

hoc. 

A calibration-free method using NIR reaction spectra acquired during the 4-

(dimethylamino)pyridine catalysed esterification of butanol was reported by Gemperline et 

al.[28].  A non-linear fitting routine was used to fit a third order reaction mechanism to five 

batches simultaneously.  In this work, the data from four batches was used to predict the 
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profiles of the fifth batch.  Prediction of new data required the augmentation of the new 

spectra with spectra acquired in previous runs and fitting a multi-way kinetic model using 

initial estimates of the kinetic parameters obtained from the previous four reactions. 

1.4 Self-Modelling Curve Resolution  

Owing to the difficulty, time and cost of constructing valid calibration sets for 

spectroscopic multivariate calibration models, a number of calibration-free methods based 

upon factor analysis or alternating least-squares have been devised.  These methods derive 

an empirical model directly from the spectroscopic data and attempt to minimise the sum-

of-squares of the residuals between the measured and the reconstructed data.   

1.4.1 Classification of SMCR methods 

Self Modelling Curve Resolution (SMCR) is the general name given to the family of 

techniques employed for the mathematical deconvolution of two-way multivariate data 

obtained from instrumentally unresolved multi-component mixtures[29].  The function of 

these techniques is to resolve a bilinear data set obtained from a complex multi-component 

system into factors that describe the instrumental response and relative concentration 

profile of each chemical species contributing to the unresolved signal.  

In a review of SMCR, Jiang et al.[29] classified SMCR methods into two types; unique 

resolution and rational resolution.  Methods that are able to find a unique definition of the 

factors required to model each chemical species are said to provide unique resolution.  

These methods often exploit selective regions of the data that only contain information 

about a specific component.  If selective regions are available for most of the components, 

a unique resolution should be possible.  The limitation of unique resolution methods is that 

in practice, selective regions are often unavailable.  The second group of methods are said 

to provide a rational resolution.  These methods use prior knowledge about the expected 

properties of the factors, such as non-negativity, to produce a feasible solution (or set of 

solutions) for each species.  When the various components exhibit poor resolution, i.e. a 

high degree of correlation between two or more species in the spectral or time dimension 

of the data, the accuracy of the recovered profiles may be sub-optimal because of rotational 

or intensity ambiguity. 
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1.4.2 Relationship between PCA and factor transformation 

Principal components analysis is a factor analysis method commonly used to express the 

variance structure of a two-dimensional array of data using a reduced number of abstract 

factors (principal components).  The history and algorithms of PCA are described in 

almost all chemometrics text books and a number of review or tutorial papers are also 

available[20-25, 30-33].  The basic theorem of principal components analysis is that a matrix of 

data, X  with dimensions ( )J K×  can be expressed as the product of two smaller matrices 

as shown in equation 1.5. 

 = +TX TP E  (equation 1.5) 

The scores matrix, denoted T  has the dimensions ( )J A×  where J  is the number of 

objects (samples or spectra) and A  is the number of principal components included in the 

model.  The columns of T  are orthogonal.  The loadings matrix, denoted P  has the 

dimension ( )K A×  where K  is the number of measurement variables.  The columns of P  

are orthonormal and represent the basis vectors that span the A−dimensional subspace of 

the original measurement data.  The residual matrix, denoted E  has the same dimensions 

as X  and contains the remaining variance present in X  that is not modelled by the first 

A  principal components.  Singular value decomposition (SVD) is a computationally 

efficient way of factorising a data matrix[30, 34] and is commonly used to perform PCA.  The 

SVD factorisation of a matrix is shown in equation 1.6.   

 = TX UΣV  (equation 1.6) 

If ,J K<  which is typical for spectroscopic measurements, U  is a ( )J J×  matrix of 

orthonormal left singular vectors that span the column space of the original data. Σ  is a 

( )J J×  diagonal matrix whose off-diagonal elements are zero and the diagonal elements 

contain the singular values.  Singular values are equivalent to the square-root of the 

corresponding eigenvalues and describe the amount of variance captured by each factor.  

V  is a ( )K J×  matrix of orthonormal right singular vectors that span the row space of the 

original data.  The matrices obtained by subjecting a matrix to SVD are related to principal 

component scores and loadings by the equalities shown in equation 1.7.   

 ,   = =T TT UΣ P V  (equation 1.7) 
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Principal components analysis is a powerful method that allows the mathematical rank of 

the data to be determined.  The mathematical rank is the number of factors (principal 

components) required to reproduce the measurement matrix such that the residual matrix 

contains only measurement noise.  The chemical rank is the number of chemical species 

that make independent contributions to the mixture data and is usually a lower number 

than the mathematical rank owing to additional noise contributions from non-ideal 

measurements.  Determining the correct chemical rank is an important part of SMCR.  If 

the chemical rank of the data is ,N  the matrices obtained by SVD can be truncated to 

retain only the first N  singular vectors / singular values, denoted ( )J N×U , ( )N N×Σ  and 

( ).K N×V  

The scores and loadings vectors obtained from PCA are often called abstract factors 

because they are obtained by the mathematical decomposition of the measurement data 

such that the maximal amount of variance is explained by the minimal number of 

orthogonal factors.  Although the abstract factors (principal component loadings) will 

possess spectrum like features, they do not represent the true spectral profiles of the 

individual chemical components.  However, the orthonormal loadings vectors do span the 

same spectral subspace that contains the true spectral profiles and the correct linear 

combination of these basis vectors will generate the true spectral profiles[31].  Factor 

transformation can therefore be used to transform abstract factors into physical or 

chemically meaningful profiles.  This transformation is summarised in equation 1.8  where 

R  is an invertible ( )N N×  transformation matrix. 

 1 T−=TS R V  (equation 1.8) 

 =C UR  (equation 1.9) 

If the correct values for the elements of R  can be determined, the orthogonal abstract 

factor matrices U  and TV  can be transformed into a new set of matrices C  and TS .  The 

columns of C  describe the true (unscaled) concentration profiles of each chemical 

component and the rows of TS  contain the corresponding pure component spectral 

profiles. 

Most SMCR methods do not explicitly use a transformation matrix to produce new 

estimates of the concentration and spectral profiles.  However, they do all share the 
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common goal of trying to find feasible estimates of the real profiles C  and .TS   The 

bilinear model used to express the matrix measurement data as the product of the true 

concentration profiles and the true spectral profiles of each component contributing to the 

system is shown in equation 1.10. 

 T= +X CS E  (equation 1.10) 

The objective of curve resolution is to find the best fit of the data (in a least-squares sense) 

using the above bilinear model such that the residual between the reconstructed and 

measured data matrix is minimised (equation 1.11). 

 2|| ||TE = −X CS  (equation 1.11) 

1.4.3 Multivariate Curve Resolution – Alternating Least Squares 

Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) is a rational 

resolution technique that has successfully been applied to a wide range of analytical 

problems[35].  The success of MCR-ALS can be attributed to its flexibility.  Any number of 

chemometric methods can be used to obtain initial estimates of either the concentration or 

spectral profiles.  These can then refined using an alternating least squares approach 

defined by equation 1.12 and equation 1.13.  Since both the concentration and spectral 

estimates are alternatively re-estimated, neither set of profiles will dominate the final model. 

 1ˆ ˆ ˆ ˆ( )T T T−=S C C C X  (equation 1.12) 

 ˆ ˆ ˆ ˆ( )T −= 1C XS S S  (equation 1.13) 

Solutions obtained from an alternating least squares procedure that only incorporate basic 

constraints such as non-negativity can suffer from two types of ambiguity.  Scaling 

ambiguity occurs when the relative intensity of a components profile with respect to 

another component is incorrect.  This can be corrected using external information to 

rescale the profiles.  A more severe problem is rotational ambiguity.  This is characterised 

by a difference in the shape of recovered and true profiles and often occurs when the 

measurement data does not contain selective regions for each of the components.  

Rotational ambiguity can produce a range of different solutions that are all feasible in a 

least-squares sense and obey non-negativity constraints but have different spectral and 

concentration profiles.  
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What makes MCR-ALS such a powerful technique is that a number of constraints can be 

applied to either the concentration or spectral matrix during each cycle of the ALS 

procedure.  These constraints force the data to comply with a range of criteria that are 

appropriate to the data, for example non-negativity, uni-modality, closure (sum of 

components is a constant) and equality (certain elements of the concentration or spectral 

profiles match known values).  The flexibility with which these constraints can be applied 

means that any external information that is significant to the data can be incorporated and 

used to guide the resolution. 

Owing to its flexibility, MCR-ALS has become widely used and a considerable number of 

examples describing its application to a wide variety of analytical systems are published in 

the chemistry literature.  Garrido et al.[36] recently published a review describing the use of 

MCR-ALS applied to spectroscopic data acquired during chemical reactions and contains 

over one hundred references to examples published between 2000 and 2007.  The 

examples included in this review paper include the application of MCR-ALS to 

spectroscopic reaction data acquired using UV/Vis, fluorescence, fluorescence energy 

transfer (FRET), nuclear magnetic resonance, circular dichroism, near-infrared, Raman, and 

FTIR spectroscopy.  

As with all modelling procedures, the quality of the model produced by MCR-ALS is 

dependent upon the quality of the data and the initial estimates used.  For this reason, 

researchers continue to investigate and develop new methods for calculating initial 

estimates that can be further resolved using ALS procedures.  Richards and Walmsley 

proposed a novel method called Quantitative Iterative Target Transformation Factor 

Analysis (QITTFA) that could be used to provide initial spectral estimates for further 

refinement by MCR-ALS[37].  This method can be summarised by the following steps.  A 

( )c c×  matrix of needle input spectra (a needle spectrum consists of one spectral variable 

set to one and all other variables set to zero) is first created, where c  is the number of 

spectral variables.  The position of the needle is unique to each needle spectrum.  The 

original ( )r c×  data matrix is subjected to singular value decomposition and the first nc  

primary eigenvectors are retained.  A matrix of needle output spectra are then created by 

the sequential projection of each needle input spectrum onto the spectral subspace spanned 

by the first nc  right singular vectors (denoted TV ).  Iterative target transformation factor 

analysis is applied to each needle input spectrum until a non-negative spectral profile is 

obtained.  The final spectral profiles output by the ITTFA procedure are collected into a  
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( )c c×  matrix denoted sZ  and simple-to-use interactive self modelling mixture analysis 

(SIMPLISMA) is used to select the nc  purest spectra.  This approach can yield good initial 

spectral estimates that are well resolved and can be further refined using MCR-ALS to 

incorporate additional constraints.   

Richards et al.[38] applied the QITTFA method to the quantification of ethylene, acetic acid, 

water, vinyl acetate monomer and carbon dioxide from NIR spectra acquired during an 

industrial vinyl acetate monomer (VAM) process.  Utilising spectral non-negativity and 

concentration non-negativity and correlation constraints, the matrix of measurement data 

was deconvoluted using MCR-ALS with initial spectral estimates provided by QITTFA.  

The models obtained using quantitative SMCR compared well with the established PLS 

calibration but offered a 90% reduction in calibration time owing to the reduced number of 

training samples used. 

To overcome the issue of rank-deficient data obtained from spectroscopic monitoring of 

chemical reactions, a number of papers describing the simultaneous application of MCR-

ALS to multiple data sets have been published.  Combining several experiments run using 

different molar ratios of reactants can overcome rank overlap that occurs when two 

reactants or products are formed at similar rates[39, 40].  For example, Garrido et al.[41] created 

an augmented measurement matrix of NIR spectra acquired during five runs of a curing 

reaction using different ratios of phenyl glycidyl ether and aniline.  The rank of the 

individual data matrices was three, which was correct for the underlying reaction scheme. 

When the data sets were combined, the rank of the augmented matrix matched the total 

number of absorbing species (four) and confirmed that rank-deficiency had been broken.  

This approach allowed the spectral and concentration profiles of all four species to be 

resolved using MCR-ALS.  

1.5 Kinetic modelling of reaction spectral data 

A significant amount of valuable information can be gained through the acquisition and 

modelling of reaction spectra.  To model a reaction system using first principle kinetic 

expressions, one must correctly identify the order of the reaction kinetics and obtain the 

values of the various constants used in the rate constants.  In the soft-modelling curve 

resolution approaches described in the previous sections, the matrix of reaction spectra is 

factorised into two smaller sub-matrices corresponding to the estimated pure spectral 

profiles of each active component and their corresponding concentration profiles.  
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Providing the concentration profiles are correctly resolved and scaled (to describe the 

concentration of each species in mol.L-1 units), the correct rate equation can be selected 

and the rate constant derived from the concentration profiles.  This approach can be 

considered as the mathematical deconvolution of the mixture data to obtain feasible 

estimates of the spectral and concentration profiles, followed by derivation of the kinetic 

parameters from the estimated concentration profiles.   

An alternative approach to the soft-modelling approach described above is to calculate the 

concentration profiles directly using a specific kinetic model.  The various kinetic 

parameters are found using an iterative fitting method to obtain the best fit of the 

experimental data.  Puxty et al.[42] and Maeder and Neuhold[22] published excellent reviews of 

the methods available for the kinetic modelling of multivariate spectroscopic data with 

non-linear least-squares regression.  The basis of these methods is that if the correct kinetic 

model has been identified, an optimisation method can be used to determine the best 

estimates of the kinetic parameters.  During each iterative cycle of the optimisation process, 

the concentration profiles are calculated using the current estimates of the kinetic 

parameters.  The matrix of pure component spectral profiles can then be calculated using 

least-squares owing to the linear relationship between the concentration of a species and its 

measured spectral response.  The residuals between the true and estimated measurement 

response matrix are used as the objective function to be minimised during the optimisation 

process.  These steps are summarised as follows.  The matrix of measured reaction spectra 

can be expressed as the product of the matrix of concentration profiles (C ) and the 

corresponding matrix of pure spectral profiles ( TS ), plus un-modelled noise as expressed 

by equation 1.14.  The kinetic parameters k̂  are estimated using a suitable optimisation 

method and the concentration matrix Ĉ  is calculated using the appropriate rate equations.  

The current estimate of the matrix of concentration profiles is used to calculate a matrix of 

spectral profiles using the explicit least-squares expression shown in equation 1.16.  The 

residual matrix is calculated using equation 1.17.  During the optimisation process, some 

function of the residual matrix E  is used as the objective function to be minimised. 

 = +TX CS E  (equation 1.14) 

 ˆ ˆ(model, )f=C k  (equation 1.15) 
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 1ˆ ˆ ˆ ˆ( )T T T−=S C C C X  (equation 1.16) 

 ˆ ˆ= − TE X CS  (equation 1.17) 

Since the spectroscopic absorbance coefficients (the pure spectral profiles) can be 

calculated explicitly using the least-squares expression shown in equation 1.16, the number 

of parameters to be estimated is reduced to a few kinetic parameters only.  If the quality of 

the current estimates can be expressed as a scalar value, for example the sum-of-squares of 

the residual matrix ,E  simplex optimisation could be applied to find the optimal values of 

the unknown kinetic parameters.  However, Maeder and Neuhold suggest that for 

approximately ten parameters or more, Newton-Gauss-Levenberg / Marquardt non-linear 

optimisation is recommended[22].  This is a gradient based method that uses the full residual 

matrix to find the optimal parameters.  It is called a gradient method because the shift 

parameter used to produce new estimates of the unknown parameters is calculated from 

the derivative of the residuals with respect to the parameters.  This method is particularly 

robust to divergence and the starting estimates are not required to be as close to the true 

values as other methods such as simplex optimisation. 

Jaumot et al.[43] presented a modification of the NGL/M based multivariate non-linear least-

squares kinetic fitting method in which a non-negativity constraint was applied to the 

matrix of spectral profiles before calculating the model residual matrix.  This modification 

ensures that incorrect solutions are eliminated during the optimisation step as the residuals 

are a function of both the kinetic parameters and the non-negatively constrained spectral 

profiles. 

Furusjö and Danielsson proposed a novel method that utilised kinetic modelling to provide 

initial concentration profiles that were subsequently refined using a target testing 

procedure[44].  The motivation for developing this method was to provide a means of 

testing a number of possible reaction mechanisms using only the measured spectroscopic 

data.  The proposed rate equations were used to create a matrix of concentration profiles 

corresponding to the measurement times of each spectrum in the data set.  This matrix 

(denoted simC ) was then tested by projection onto the subspace spanned by the principal 

components scores .T   The difference between the calculated and projected concentration 

matrix was calculated and the resulting sum-of-squares of this residual matrix was used as 

an objective function for simplex optimisation to find the optimal values of the rate 
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constants.  Rotation of the loading vectors using the final transformation matrix obtained 

from an optimal fit would yield the pure spectral profiles for each chemical component.   

The limitation of the kinetic modelling methods described here is that the spectroscopic 

data must resemble close to ideal conditions.  Rate constants are temperature dependent so 

if significant temperature variation occurs during the course of the experiment, the 

underlying rate constant will also vary.  The reactants and products must be observable by 

the spectroscopic measurement; incomplete dissolution of the reactants or precipitation of 

the products can alter the initial concentration or cause deviations from the expected 

concentration profiles predicted using the kinetic model.  Additional contributions such as 

baseline drift or by-products formed during un-modelled side reactions can also introduce 

errors into the estimated spectral profiles   

Hybrid models that combine the hard constraints of kinetic modelling with the soft 

modelling constraints of curve resolution methods such as MCR-ALS have been developed 

to overcome some of the issues described above.  De Juan et al.[45] combined hard-

modelling constraints provided by kinetic modelling with the well established soft-

modelling method MCR-ALS.  The principle of this method is to use MCR-ALS in a 

similar manner to its soft-modelling use by determining the appropriate number of 

components and identifying suitable initial estimates to start the ALS routine.  The usual 

soft-modelling constraints such as non-negativity, uni-modality, equality and selectivity 

constraints can be applied where appropriate.  During each ALS cycle, the matrix of 

estimated concentration profiles is modified before they are used to calculate a new 

estimate of the spectral matrix.  To modify the concentration matrix, the columns 

corresponding to the chemical components that are to be subjected to kinetic modelling 

are extracted and used as input vectors that are refined using non-linear multivariate kinetic 

fitting.  The refined concentration profiles then replace the original soft-model estimates 

and are used to calculate a new spectral matrix.  The concentration profiles that are not 

subjected to kinetic constraints, for example those corresponding to baseline drift or a 

background interferent are not refined during this step and continue to be refined using the 

soft-modelling procedure.  The selective application of kinetic constraints to selected 

components allows the combined hard- and soft-modelling approach to reduce rotational 

ambiguity whilst still modelling non-kinetic contributions to the measurement data. 

As with the previous methods, the pre-requisite for the successful implementation of 

kinetic modelling constraints is that a valid model can be identified and is applicable to the 
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measurement data.  Deviations from non-ideal kinetic behaviour introduce additional 

complexity or make the kinetic model too cumbersome so that only soft modelling 

constraints can be applied in practice. 

1.6 Band Target Entropy Minimisation 

Band target entropy minimisation (BTEM) is a relatively new method for recovery of pure 

spectral profiles from a set of mixture spectra and was proposed by Chew et al.[46, 47] in 2002.  

The objective of this method is to reconstruct a number of feasible pure spectral profiles 

from a set of mixture spectra using a combination of singular value decomposition (SVD), 

entropy minimisation and simulated annealing.  Some elements of the BTEM approach 

were influential to the development of the vectorised adaptive Kalman filter with iterative 

spectral optimisation (VAKFISO) method reported in this thesis.  The algorithm and some 

recent applications are therefore reviewed.  The nomenclature used to describe the 

VAKFISO algorithm in chapter 2 is used to clarify the similarities and differences between 

the two algorithms. 

The basic principle of the BTEM method is to obtain a set of orthonormal spectral basis 

vectors by factorisation of the ( )J K×  measurement matrix A  using singular value 

decomposition.  The matrix of right singular vectors is truncated to retain the first N  

primary vectors as shown in equation 1.18.  In some applications of BTEM such as the 

recovery of minor components corresponding to catalytic species from FTIR data[48], the 

number of singular vectors included was often increased to more than 50 so that more 

information from secondary singular vectors can be included.  In this case the 

transformation matrix is rectangular with dimensions ( )N Z×  where Z  is the number of 

singular vectors used. 

 ( ) ( ) ( ) ( )
T

J K J Z Z Z Z K× × × ×=A U Σ V  (equation 1.18) 

Various linear combinations of these basis vectors are then searched by changing the 

elements of a ( )N Z× transformation matrix, denoted ,T  to create different estimates of 

the pure spectral profiles using equation 1.19.  In practice, this would make the 

optimisation very slow as it would be required to optimise a large number of elements in 

the transformation matrix.  The spectra are therefore reconstructed one at a time using a 

(1 )Z×  transformation vector as shown in equation 1.20. 
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 ( ) ( ) ( )
ˆ T
N K N Z Z K× × ×=S T V  (equation 1.19) 

 (1 ) (1 ) ( )ˆ    NT
K Z Z K Z× × ×= ≥s T V  (equation 1.20) 

Although conventional parameter optimisation methods such as the Nelder-Mead simplex 

could be applied to optimise the elements of the transformation matrix, for a large number 

of parameters, the simplex method can become trapped in local minima.  To overcome this 

issue, the authors used simulated annealing (SA) owing to its ability to locate the global 

minimum and it is also relatively insensitive to the initial parameter estimates. 

Since the orthonormal basis vectors stored in TV span the subspace of the original data, 

any linear combination of those basis vectors would produce spectra that also lie within the 

subspace of the original data.  To guide the optimisation process, a penalty function that 

penalised negativity in both the estimated spectral profiles and the corresponding 

concentration profiles is employed.  The objective of the simulated annealing optimisation 

is to minimise the penalty function obtained from each estimate of the transformation 

matrix .T   The non-negativity penalty function is calculated using equation 1.21 and 

equation 1.22 where γ  is a scaling factor used to give the non-negativity penalty function 

the appropriate weighting. 

2 2ˆ ˆ ˆ ˆ( ) ( )nk nk nj nj
n k n j

P F S S F C Cγ
⎡ ⎤

= +⎢ ⎥
⎣ ⎦
∑∑ ∑∑  

(equation 1.21) 

 {0  ( 0)( ) 1   ( 0)
yF y y
≥= ≤  (equation 1.22) 

One of the main features of the BTEM method is the use of the Shannon entropy function 

to measure the degree of simplicity in the estimated spectral profiles.  If the linear 

combination of basis vectors produces realistic spectral features within the band selected, 

the entropy (calculated using the first derivative spectrum) will be low.  Conversely, if the 

spectral profiles within the selected band are featureless, the entropy of the first derivative 

spectrum will be large.  The Shannon information entropy function is calculated using 

equation 1.23 where nkh  is the normalised absolute value of the derivative spectrum (of 

degree m ). 
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To prevent the BTEM method from producing spectral estimates with very similar or even 

identical profiles, a spectral dissimilarity function (a measure of the orthogonality between 

two spectra) was also included.  Of the four measures of dissimilarity trialled (angle, 

Euclidean inner product, determinant of covariance matrix and condition number), the 

angle constraint gave the best results.  However, the authors state that the choice of angle 

for the angle constraint is arbitrary and will vary from case to case.  The inclusion of the 

dissimilarity function added to the complexity of the overall objective function but was 

necessary when trying to estimate N  spectral profiles simultaneously.    

For a synthetic set of FTIR data constructed from seven components and three elementary 

reactions, comprising 234 spectra measured at 2501 spectral variables, the average time to 

resolve the spectra was 36.2 hours.  However, the method did successfully recover the true 

spectral profiles from the overlapped mixture spectra using non-negativity, entropy and 

vector-angle constraints.   

One of the limitations of the BTEM method is that a number of band targets containing 

characteristic spectral features must be selected by the user and the pure component 

spectral profiles are reconstructed one at a time, each corresponding to a global minimum 

of the objective function using different band targets.  The simulated annealing procedure 

is repeated several times to identify each new component.  A recent modification of BTEM 

called multi-reconstruction entropy minimisation (MREM) was reported by Zhang et al.[49] 

in 2007.  This method retained the penalty functions of BTEM but uses a localised form of 

the simulated annealing method to identify a number of local minima corresponding to 

possible pure component spectra.  The optimisation process is applied to the full spectrum 

so the user is not required to specify bands targets.  As this method will identify a large set 

of admissible candidate pure component spectral profiles, the “best” spectral profile for 

each component is selected based upon the signal entropy.  Typically, the spectrum with 

the lowest signal entropy is selected.   
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Since 2002, over sixty papers reporting the use of BTEM have been published.  The 

applications of BTEM include the resolution of DRIFT, Raman, UV, NMR, FTIR, 

fluorescence, mass spectrometry, IR emission and XRD data.  One of the applications 

most similar to the research reported in this thesis was the application of BTEM to a set of 

Raman spectra acquired during the hydrolysis of acetic anhydride[50].  In this work, BTEM 

was used to reconstruct spectral profiles from a measurement matrix created by combining 

data from four reactions using different reactant ratios.  The first twelve right singular 

vectors were retained and three bands regions that contain significant spectral features were 

selected.  Three pure component spectral profiles corresponding to acetic anhydride, acetic 

acid and white light were recovered using the BTEM method.  The corresponding 

concentration profiles were then calculated using least-squares and the relative differences 

in initial concentration of acetic anhydride could be observed.  Although the band 

positions of the peaks in recovered spectral profiles were compared with literature values, a 

direct comparison with the true pure component spectra was not shown.      

1.7 The Kalman filter 

The Kalman filter is a recursive regression method developed for the least-squares 

estimation of several parameters (called state parameters).  More accurately, the Kalman 

filter is a way of “estimating the instantaneous “state” of a linear dynamic system perturbed 

by white noise; by using measurements linearly related to the state but corrupted by white 

noise”[51]. 

The first paper describing the system of equations now known as the Kalman filter was  

published in 1960 by Rudolph Emil Kalman in a paper titled “A New Approach to Linear 

Filtering and Prediction Problems”[52].  Over the next several decades, many variations of 

the Kalman filter have been developed and applied in literally hundreds of applications 

throughout the fields of electrical and mechanical engineering, navigation, astronautical 

guidance systems, hydrological monitoring and modelling and meterological forecasting to 

name just a few. 

The Kalman filter algorithm is described in the Theory chapter (section 2.8).  

1.7.1 The Kalman filter in chemistry 

One of the earliest examples describing the application of the Kalman filter to a chemical 

measurement was published by Seelig and Blount in 1976[53].  In this paper, the authors 

introduced the theory of the discrete Kalman filter and identified the requirements that 
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must be met for the filter to be applicable to an analytical measurement.  The main 

requirements identified were that a measurement transformation matrix that relates the 

state parameters to the measurement is available; a state transition matrix that models the 

time-dependency of the state parameters is known; the measurement noise is zero-mean 

and an estimate of the measurement variance can be provided; the variance of the initial 

state parameter values can be estimated; and an initial estimate of the state parameters can 

be provided.  A mathematical model previously reported in the literature was used to 

populate the measurement transformation matrix and related the voltammetric 

measurements to the concentration of the electroactive species.  The Kalman filter was 

applied to synthetic model data corrupted by white noise to estimate a single state 

(concentration) from the measured current.  The authors investigated the affect of varying 

the ratio of the initial error covariance (denoted 0p ) to measurement noise variance 

(denoted 0r ) upon the Kalman gain.  It was reported that as 0r  became much larger than 

0,p  the filter became insensitive to new measurements and the Kalman gain values 

become very small.  Consequently, the Kalman filter returned a final state parameter 

estimate very similar to the initial estimate provided.  When the initial error covariance 

( 0p ) was large relative to the measurement variance ( 0r ), the innovations were 

overweighted, causing large fluctuations in the final state estimates.  This work illustrated 

that for very noisy data (S/N = 1.20), significantly decreasing the value of the initial error 

covariance relative to the measurement variance ( 0 0log( / )p r = -6) would produce a very 

small standard deviation value for the final state estimates, but the state estimates would be 

in error and close to the initial estimate.  As the ratio 0 0log( / )p r  was increased to values in 

range -3 to 1, the final state estimates became more accurate although the standard 

deviation of the estimate was increased to reflect the increased uncertainty of the 

measurements.  The effect of varying the initial state estimate over a large range (1.00×10-1 

to 1.00×10-9) was found to have a negligible affect upon the final estimate when the system 

and measurement error were well defined.  It is the ability of the Kalman filter to produce 

good results from poor initial estimates and noisy measurements that make it so useful for 

modelling analytical measurements.  Seelig and Blount published two further papers in 

1979 describing the application of the Kalman filter to the real time quantification of lead 

in water samples using voltammetric measurements[54, 55].  The Kalman filter was compared 

with a non-real time method (multivariate linear regression) and pseudo-real time digital 

methods that involved various smoothing and automatic peak picking routines to identify 
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the maximum current used for the univariate calculation of analyte concentration.  The 

correlation coefficient for the estimates obtained using the Kalman filter (real time 

estimation) and multivariate linear regression (non-real time estimation) were found to be 

greater than 0.99.  The Kalman filter was able to converge to the final state estimates well 

before the maximum amplitude of the signal was measured, whereas the MLR approach 

required the complete signal to be measured before calculation of the analyte 

concentration.  However, the precision of the two methods (MLR and KF) was 

comparable but found to be better than the pseudo-real time algorithms when the S/N < 

5. 

Throughout the 1980’s and early 1990’s, the Kalman filter has been applied to a variety of 

different analytical measurements.  There have been several reviews of the development 

and application of the Kalman filter published in the analytical chemistry literature, for 

example;  Brown (1986)[56], Rutan (1987 and 1990)[57, 58] and Tranter (1990)[59].  The 

applications covered in these reviews include noise removal (voltammetry, gas 

chromatography, mass spectrometry), peak resolution (UV spectroscopy, voltammetry, 

photoacoustic spectroscopy), detection and compensation of instrumental drift and model 

identification and improvement, determination of kinetic parameters and the removal of 

variable background responses.   

Many of the reported applications describe the use of the discrete Kalman filter to resolve 

an instrument signal obtained for a multi-component mixture.  The real-time capability of 

the Kalman filter was often mentioned, but was not usually the primary motive for using 

the Kalman filter.  For example, Shi et al. described the use of the discrete Kalman filter for 

the simultaneous spectrophotometric determination of Co(II), Ni(II), Cu(II), Zn(II) and 

Cd(II) in synthetic and environmental samples[60].  In this application, standard solutions of 

each analyte were prepared and measured independently over the spectral range 500 to 620 

nm to provide the reference measurement functions required by the Kalman filter.  The 

concentrations of the analytes were then quantified for a number of synthetic and 

environmental samples using the Kalman filter.  The Kalman filter successfully estimated 

the analyte concentrations of the analytes with a recovery of 94% to 107% for the synthetic 

samples and 91.6% to 108% for the environmental samples.  The authors reported that the 

major advantage of using the Kalman filter was that it allowed the simultaneous 

quantification of all five analytes.  The complexes of the five metals all had significantly 

overlapped spectra and traditionally sample pre-treatment (precipitation, solvent extraction 
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and ion exchange) was required to isolate each analyte so it could be quantified 

independently.  The Kalman filter made it possible to quantify the mixtures simultaneously.  

Although the Kalman filter did converge to the final estimates before the full spectrum had 

been acquired, the final (most refined) estimate was used so the real-time advantage of the 

Kalman filter was not required or utilised in this application.  

A similar use of the Kalman filter was reported by Volka et al.[61].  In this application, the 

authors used infra-red spectroscopy to quantify the concentration of heptane, hept-1-ene, 

cis-hept-2-ene and hept-3-ene in synthetic mixtures.  The matrix of reference measurement 

functions was populated with the spectral profiles of each pure solvent acquired 

independently.  The point of interest here was that the authors compared the performance 

(accuracy) of the conventional and adaptive Kalman filters when applied to the same data 

over the same spectral range.  The adaptive Kalman filter performed slightly better than the 

conventional Kalman filter; the improved performance was attributed to the ability of the 

adaptive Kalman filter to adapt the measurement error variance value and therefore 

heteroscedastic noise was modelled more accurately than using a fixed value.  

Obtaining accurate reference measurement functions is an essential requirement for the 

successful application of the Kalman filter.  In 1993, Yongnian et al.[62] reported the use of 

the Kalman filter for the curve resolution of pyrazines measured using differential pulse 

polarography.  Multi-component mixtures containing pyrazine and up to four of its methyl 

derivatives were measured using differential-pulse polarography.  The polarograms of the 

various components were highly overlapped and previously PLS or PCR had been used to 

quantify the composition of unknown mixtures.  In this work, the authors assessed the 

performance of the Kalman filter and compared two different methods of deriving the 

matrix reference measurement functions (denoted H ).  In the first method, the 

conventional approach of measuring the polarogram of each individual component was 

employed.  The second method employed a least-squares approach to calculate the 

reference measurement functions from a set of 13 multi-component standards of known 

composition.  The composition of the standards employed a factorial design to ensure 

orthogonality and prevent collinearity in the matrix of measurements, .X   The reference 

measurement functions were calculated using equation 1.26. 

 T=Y H X  (equation 1.25) 
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 1ˆ ( )T T T −=H YX XX  (equation 1.26) 

A blank solution was also measured to obtain a background polarogram that was used to 

augment the matrix ˆ .TH  Using the two methods of deriving ,H  the authors estimated the 

concentrations of three components in 22 samples and calculated the mean recovery (%) 

and relative mean error (%) values.  It was reported that using a matrix of reference 

measurement functions obtained by directly measuring each component independently, the 

mean recoveries of pyrazine, 2-trimethylpyrazine and 2,2-dimethylpyrazine were 81.8%, 

93.1% and 110% respectively, with relative mean errors of 21%, 12% and 9.2% 

respectively.  The results estimated using the Kalman filter improved when the matrix of 

reference measurement functions calculated using least-squares was used, returning mean 

recoveries for the same components of 101%, 99.6% and 103%; and relative mean errors 

of 10%, 9.9% and 3.8% respectively.  Small, non-linear perturbations of the pure 

component polarograms caused by interactions between the various components was 

attributed to the improvement of the least-squares derived measurement model over the 

conventional method of measuring each component independently. 

An interesting approach using Iterative Target Transformation Factor Analysis (ITTFA) to 

derive reference measurement functions prior to application of the Kalman filter was 

reported by Ni et al.[63].  The aim of this work was to quantify trace amounts of calcium in 

rare-earth matrices using ICP-OES.  The presence of high background levels of rare-earth 

elements such Pr, Nd, Tb, Ho and Er caused spectral interferences that would cause large 

prediction errors if not included in the model.  A standards additions approach was 

employed by taking five aliquots of the same sample solution and adding different amounts 

of a calcium standard.  The emission spectra of each solution were acquired and collated 

into a matrix for further analysis.  To initiate the ITTFA procedure, an initial vector that 

contained a contribution from the background but a minimal contribution from the analyte 

of interest was required.  The authors used a standard spectrum of calcium to calculate an 

orthogonal projection matrix using equation 1.27, where I is a ( )h h×  identity matrix (h  is 

the number of spectral variables), and k is a spectrum of calcium.  The initial vector, ( )0
bk  

was calculated by projection of the sample spectrum (denoted a ) onto the orthogonal 

projection matrix .G  

 T= −G I kk  (equation 1.27) 
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 (0)
b =k Ga  (equation 1.28) 

The ITTFA procedure was then performed to refine the background spectrum for each set 

of sample spectra.  The standard spectrum of calcium and the ITTFA estimated spectrum 

of the interfering background were then used as the reference measurement functions to 

estimate the concentration of calcium using the Kalman filter.  The results obtained from 

the ITTFA-KF approach were compared with the routine standard addition method 

(RSA).  When the spectrum of the background interferent was not too severely overlapped 

with the spectrum of calcium, the results obtained from the two methods were very similar.  

However, when the spectra of the background interferent and calcium were severely 

overlapped, the ITTFA-KF method gave better accuracy and precision compared to the 

RSA method.  This application of ITTFA to provide spectral profiles for Kalman filtering 

demonstrates the promise of combining factor analysis methods with an optimised 

estimation method such as Kalman filtering.   

In the previous examples, the real time filtering ability of the Kalman filter was not 

exploited and the filter was simply used as a least-squares estimator.  In 1993, Pérez-Arribas 

et al.[64] published an interesting study comparing the Kalman filter with classical least 

squares and pure component calibration methods to quantify quaternary mixtures of 

chlorophenols using UV spectrophotometry.  In this work, an extensive set of standard 

solutions (40 standards for each component) were prepared at different concentrations in 

the range 3-15 mg.L-1, the UV spectra were obtained and normalised to 1.0 mg.L-1 and the 

mean spectrum was used as the pure component spectrum for that component.  Each 

column of the reference K  matrix was used to store the first-derivative mean spectrum for 

each of the four components.  A set of 20 quaternary mixtures was also prepared, their 

spectra obtained and transformed to their first derivative.  A reference matrix K  was 

calculated from those mixture spectra using least-squares.  The same set of mixture spectra 

was also used to estimate the reference matrix K  using the Kalman filter.  The Kalman 

filter was used to provide multi-component predictions of two, three and four component 

mixtures using the reference matrix K obtained from the three methods (pure component, 

classical least-squares and Kalman filter).  With few exceptions, the reference matrix K  

obtained from pure component spectra returned the largest prediction errors.  The 

reference matrix calculated using the Kalman filter returned prediction errors that were 

equivalent but often better than the same predictions made using reference matrix obtained 

using CLS.  Unfortunately, the authors did not compare the performance of the three 



Chapter 1 - Introduction 

 - 30 - 

methods for the prediction step but the results clearly indicated that using a reference 

matrix derived from pure components with the Kalman filter produced higher prediction 

errors than using a reference matrix derived using CLS or the Kalman filter.  The 

significance of this work was that using least-squares with Kalman filtering seemed to offer 

the possibility of a more accurate and robust model than using pure component calibration 

alone.  As many SMCR methods employ an alternating least squares step, the use of the 

Kalman filter in the derivation or application of curve resolution models could offer great 

potential.   

1.7.2 The adaptive Kalman filter 

The adaptive Kalman filter is a development of the discrete Kalman filter that allows the 

estimation process to adapt to variation in magnitude of the measurement noise or 

compensate for some model errors during the filtering process.  A detailed description of 

the adaptive Kalman filter is described in section 2.9.  The adaptive Kalman filter was first 

reported in a number of electrical and engineering applications in the late 1960’s and early 

1970’s, and was developed to provide an optimal minimal variance state estimate in the 

presence of unknown system and measurement noise covariance matrices[65], traditionally 

denoted Q  and .R    

Rutan and Brown[66] first proposed the idea of utilising the adaptive Kalman filter for 

analytical chemistry applications in 1984.  The discrete Kalman filter will yield optimal 

results if the measurement model is accurate and the system and measurement noise are 

well characterised.  Since many analytical chemistry applications use a time-invariant system 

model, the covariance matrix of the system noise (Q ) is often assumed to be zero.  If this 

assumption is correct, the measurement model is the most probable source of error that 

can prevent the Kalman filter operating optimally.  The measurement model, typically 

denoted TS  contains the reference measurement functions that are used to relate the 

measurement to system states.  For multi-component spectroscopic measurements, the 

rows of TS  store the pure spectral profiles of each component contributing to the system.  

The estimate residuals at each measurement point are stored in a vector called the 

innovations sequence and can be used to assess the quality of the Kalman filter estimates.  

If the measurement model is correct and suitable estimates of the measurement noise 

variance and state parameter error covariance matrix are provided, the Kalman filter will 

return optimal state estimates and the innovations sequence will resemble zero-mean, white 

noise.  If the measurement model is incomplete, i.e. a component contributing to the 



Chapter 1 - Introduction 

 - 31 - 

measurement is not included in the model; or the measurement model is inaccurate, for 

example, one or more reference functions contain errors, the resulting innovations 

sequence will exhibit correlated structure related to the model error. 

For the discrete Kalman filter, the measurement noise variance at variable ,k  denoted 

( ),R k  is often set to a constant value R  that is applied to all measurement variables.  The 

adaptive Kalman filter uses a smoothing window to adaptively update the estimate of ( )R k  

using the previous m  points of the innovations sequence.  Over variable regions where the 

measurement model is correct, the innovations values and the adaptively estimated value of 

( )R k  will be small; the Kalman gain and state estimate update equations will therefore be 

sensitive to new measurements.  When the measurement model is incorrect over several 

consecutive variables, the innovation and resulting ( )R k  values will increase; this will 

reduce the sensitivity of the Kalman gain and state-estimate update calculations to new 

measurements and changes to the state parameter estimates will be small.  Large values of 

( )R k  essentially reduce the sensitivity of the Kalman filter to new measurements until the 

measurement model is valid again.  The fundamental requirement for the adaptive Kalman 

filter to provide accurate state parameter estimates in the presence of model errors is that 

the measurement model is not invalid over the entire range of measurement variables.  

Rutan and Brown also presented a series of simple equations that allow the innovations 

sequence and the estimated adaptive measurement noise variance values to be used to 

either modify an existing component in the measurement model, or augment the model 

with an estimate of an un-modelled component. 

Since the introduction of the adaptive Kalman filter to the analytical chemistry community 

by Rutan and Brown in 1984, a large number of applications were reported throughout the 

1980’s and 1990’s.  Many of the applications reported the use of the adaptive Kalman filter 

to obtain estimates of state-parameters (such as the concentration of a chemical 

component) in the presence of an unknown background signal or other interferent.  For 

example, Gerow and Rutan[67] used the adaptive Kalman filter to remove background 

fluorescent signals from silica thin layer chromatography plates.  The aim of this work was 

to quantify various polynuclear aromatic hydrocarbons (PAHs) that were 

chromatographically unresolved using thin layer chromatography.  Emission spectra of the 

separated components, individual standards and background were acquired from the same 

plates and the Savitzky-Golay first derivative spectra were calculated.  The derivative 

spectrum of the background was set as the measurement model, the spectrum of the 
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unknown or standard were set as the response and the adaptive Kalman filter was used to 

estimate the “concentration” of the background.  The calculated value was then used to 

subtract the correct amount of background from the unknown sample spectrum and also 

the standard spectra that were eluted in tracks parallel to the unknown.  The background 

corrected spectra of the appropriate standards were set as the measurement model, whilst 

the background corrected sample spectrum were set as measured response and Kalman 

filtering was performed a second time to quantify the amount of PAHs in the unknown 

sample.  This approach successfully removed the correct amount of background 

contribution and the co-eluting PAH components were accurately quantified using the 

adaptive Kalman filter.  When the conventional Kalman filter was used, the prediction 

errors were much larger because small model errors would cause the state-estimates to 

diverge.  The Kalman filter based background removal method reduced the limit of 

detection for the various PAH components by a factor of 8.4 compared to simple baseline 

subtraction.   

An interesting extension of the baseline subtraction work described in the previous 

paragraph was presented by the same authors in which a series of background spectra were 

acquired and modelled using PCA[68].  The primary loadings vectors were set as reference 

measurement functions and the weightings required to subtract the appropriate amount of 

background signal from a sample or standard spectrum was calculated using the adaptive 

Kalman filter.  In this case, the background signal was broader than the analytical signal of 

interest; consequently there were regions in the measured response where the background 

signal was the only contribution and this allowed the Kalman filter to accurately estimate 

the background using an incomplete model.   

The accuracy of the state parameter estimates returned by Kalman filtering can be assessed 

by examination of the diagonal elements of the state estimate error covariance matrix .P   

When the filter has produced optimal results for a specified measurement model, the 

diagonal elements of P  will be minimised.  When attempting to estimate state parameters 

using an incomplete measurement model, the most accurate estimates will be returned by 

the adaptive filter when the initial state estimates are close to the true values.  This would 

typically require the Kalman filter to be re-run several times using different initial estimates 

of the state parameters.  To automate this process, Rutan and Brown introduced a simplex 

optimised adaptive Kalman filter[69].  The quality of the state estimates was assessed during 

the simplex optimisation process by calculating the scalar value log .iiY =∑ P   As the 
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initial state estimates approached the true values, the adaptive Kalman filter would yield an 

optimal fit and the diagonal elements, and therefore the trace of P  would be minimised.   

This was an interesting concept as the adaptive Kalman filter was used to assess the quality 

of initial state estimates using the resulting covariance matrix, but simplex optimisation was 

used to locate the best values.  During the research presented in this thesis, a similar use of 

the covariance matrix was employed in the VAKFISO method to optimise the 

measurement model. 

1.7.3 Parallel and multi-model Kalman filters 

In many of the Kalman filter applications reported in the analytical chemistry literature, the 

instrument response is a vector comprising K  measurement variables such as a spectrum, 

chromatogram or voltammogram.  The recursive Kalman filter calculations are therefore 

performed using scalar measurement values ( )z k  to estimate the vector of state parameters 

for the n  components in the measurement model.  Parallel Kalman filters have also been 

applied to a number of applications in various fields of engineering and signal processing.  

A parallel (or multi-model) Kalman filter allows a measurement datum to be passed 

through a number of alternative models and the most appropriate model is selected based 

upon various statistics derived from the innovations and state-estimate error covariance 

matrix.  For example, Sitting and Cheung reported a parallel Kalman filtering algorithm 

that could detect the occurrence of arrhrythmia from the R-R intervals of an 

electrocardiogram (ECG) signal in real-time[70].  The ECG waveform could exhibit one of 

four different temporal patterns corresponding to normal fluctuations or various degrees of 

arrhrythmia.  Each new data point was input into each of the four models which attempted 

to fit the data to the various patterns that define each model.  The probability of each 

model was assessed at each time point and could be used to indicate the current behaviour 

of the patients heartbeat in real-time.  In this example, the efficiency of the parallel 

implementation was 1.77 times faster than the sequential implementation of the same 

models.  The authors did concede that for this application, the additional cost of four 

separate processors may not be justified by the small gain in execution time, but were able 

to demonstrate that using a parallel structure to assess multiple models simultaneously can 

be helpful for variable data streams that cannot be described using a single model.  

Parallel Kalman filters have also been employed in analytical chemistry.  Wentzell and 

Vanslyke reported the use of a network of parallel Kalman filter models to determine the 

accurate value of a pseudo-first order rate constant from kinetic UV absorbance data[71].  A 
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series of 81 models using fixed values of k  covering the range nomk ±  40% were used to 

estimate two state parameters.  The parallel Kalman filters were all updated with the new 

absorbance reading at each time point and the model that returned an innovations 

sequence with the lowest running sum-of-squares was used to determine the best estimates 

of ,AΔ  B  and ,k  corresponding to the change in absorbance contributed by the product 

at ,t = ∞ the background absorbance and the rate constant respectively.  In this example, 

the Kalman filters were operating independently on the same set of measurement data.  

Vanslyke and Wentzell reported the use of a parallel Kalman filter network applied to 

HPLC-DAD data for real-time peak purity analysis[72, 73].  A subset of n  spectral variables 

measured at each chromatographic retention time were passed through a network of 

parallel Kalman filters.  At each retention time, a set of ( 1)n −  one-dimensional models, 

and a set of ( 2)n −  two-dimensional models were used to represent the n  wavelengths 

using a linear and planar model respectively.  The root-mean-square innovations from each 

set of models were plotted as a function of retention time and the resulting profiles were 

used to assess the rank of the data at each time point.  If only one component was 

contributing to the chromatographic data points, both the one-dimensional and two-

dimensional models would produce a relatively flat profile with a magnitude equivalent to 

the measurement noise.  If two components were contributing to the chromatographic 

data points, the RMS innovations values for the two-dimensional model would still 

resemble a flat line but the innovations of the one dimensional model would begin to 

increase as the concentration of the un-modelled component increased.  By inspection of 

these plots it was possible to assess the local rank at each time point.  The weightings 

applied to each of the n  variables from the one- and two dimensional models were used to 

form vectors that were comparable to the eigenvectors obtained using principal 

components analysis.  This approach could therefore be considered as a viable alternative 

to performing principal components analysis in real time.  The disadvantage of the parallel 

Kalman filter approach was the number and complexity of the models required to model 

more than two dimensions.  Although conceptually, the Kalman filters were operating in 

parallel, in practice each of the (2 3)n −  models were calculated sequentially at each time 

point.  

Rutan and Brown reported the application and comparison of the Kalman filter to two- 

and three-dimensional spectroscopic-kinetic data obtained from a first-order reaction[74].  

The two-dimensional data comprised of absorbance values measured at a single wavelength 
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acquired at number of time points; the three-dimensional data comprised of multi-

wavelength spectra acquired at a number of time points.  For the three-dimensional data, 

the reference measurement model comprised of the independently measured spectral 

profiles of the reactant and product.  The system model contained the kinetic expression 

that relates the expected concentration (and mixture signal) to elapsed time.  The Kalman 

filter performed the recursive calculations on each of the j  wavelengths of the spectrum 

measured at time kt to obtain estimates of the state parameters k (the rate constant) and 

0[ ] .A  When the last variable in the spectrum was reached, the final estimates of the state 

parameters were propagated to the next spectrum at time 1kt +  and used as initial estimates.  

The recursive filtering calculations were then repeated for next spectrum starting at the first 

variable.  The results obtained by this approach produced estimates of the rate constant 

and initial substrate concentration that were superior to simplex optimised linear and non-

linear least-squares estimation.  Although the full set of measurement data was stored in a 

two dimensional array, the Kalman filter only operated on one scalar value at a time.  

Quencer and Crouch reported a similar application of the extended Kalman filter to 

simulated multi-component kinetic data[75].  They investigated a simulated system in which 

two reagents would react with a common reagent to form two similar products assuming 

pseudo-first order kinetics.  The j  wavelength measurements recorded at time t   were 

used to update the estimates of the initial reagent concentrations and two rate constants 

(five state parameters in total).  The final estimates were then propagated to be used as 

initial estimates for the Kalman filtering of the next spectrum.  The authors noted that it 

was necessary to follow the reaction to approximately 50-60% of full completion for the 

filter to yield accurate estimates.  An interesting aspect of the work reported in this paper 

was the investigation of the affect of varying the degree of spectral overlap between the 

two products.  However, the number of wavelengths used was very small (up to six) and 

the degree of spectral overlap was only classified as “none”, “medium” or “high”.  

Providing the spectral profiles were sufficiently different, the filter could accurately 

estimate the state parameters even when the ratio of rate constants was unity.  However, as 

the difference between the spectral profiles was reduced, it required more wavelengths to 

return accurate estimates.  
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1.8 Model reactions 

To synthese a new chemical entity, a variety of different chemical transformations may be 

required to synthesise the starting materials, intermediates and final product.  In synthetic 

organic chemistry, there are many different transformations that are typically used, such as 

(de-)alkylation, (de-)acylation, (de-)esterification, (de-)halogenation, (de-)hydrolysis, 

(de-)sulphonation, oxidation, reduction and polymerisation.   

During the development of a process, a research chemist or engineer would need to 

determine the composition of the reaction mixture at various times throughout the course 

of a reaction.  Sophisticated analytical instrumentation such a nuclear magnetic resonance 

spectroscopy, high-performance liquid chromatography, gas chromatography and mass 

spectrometry detection are typically used to analyse samples taken from the reaction 

mixtures.  These analytical techniques provide data that are extremely rich in chemical 

information and allow the scientist to study the reaction by tracking a number of specific 

chemical species of interest.  During sample preparation, the reaction sample is usually 

filtered and diluted prior to analysis.  The individual components in the mixture can then 

separated and quantified using the analytical instrumentation.  The various components are 

either physically separated prior to detection (for example, chromatographic separation 

followed by UV detection) or the instrument has a measurement response resolution that is 

high enough to identify individual species in an un-separated mixture (for example high 

resolution NMR or mass spectrometry).  The combination of the sample preparation step 

and instrument resolution means that the physical properties of the reaction mixture, co-

varying formation or consumption of products and reagents and molecular structure 

similarities do not usually complicate the analytical measurement.  

The benefits of using in-situ spectroscopic measurements during chemical process 

development were discussed previously in section 1.1.3.  However, since the process is 

measured directly, the physical properties of the process, such as temperature and 

heterogeneity will influence the spectral measurement.  Also, no physical separation of the 

individual chemical components occurs prior to the spectral measurement so only 

differences in the measurement response functions can be used to resolve the individual 

components.  For subtle changes in molecular structure, the differences between the 

spectral profiles of each component in the mixture are often very small.  The two reactions 

studied in this thesis were chosen because they possess the difficulties commonly 

encountered during industrial process monitoring.  
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1.8.1 Chlorination of “acetoxyone” using phosphorus oxychloride 

Heterocyclic ring structures are useful building blocks in the synthesis of pharmaceutical 

drugs and are present in many natural products.  During the synthesis of organic molecules, 

alkylation, amination and arylation are common chemical transformations used to couple 

two or more moieties.  Amino-de-halogenation[76] is the coupling of ammonia or a primary 

or secondary amine (R3N) to an activated aryl halide (ArX).  Halogenation of a heterocyclic 

ring is therefore an important synthetic step that can be used to activate a heterocyclic ring 

prior to nucleophilic substitution. 

The reaction monitored in this work was the chlorination of 7-methoxy-4-oxo-3,4-

dihydroquinazolin-6-yl acetate (“acetoxyone”) using phosphorus oxychloride to form 4-

chloro-7-methoxyquinazolin-6-yl acetate (“haloacetoxyone”), shown below in Figure  1.2. 

This reaction and several similar variants have been utilised during the synthesis of a 

number of AstraZeneca compounds.  The chlorination step was originally performed using 

thionyl chloride (SOCl2) as the chlorinating reagent and solvent, with a small amount of 

dimethylformamide (Me2NCHO) present as a catalyst.  The thionyl chloride would then be 

removed by distillation and replaced by toluene.  It was necessary to perform a second 

distillation of the toluene solution to remove the residual thionyl chloride.  However, this 

process was unsuitable for scale-up to a large scale laboratory or pilot plant because the 

large excess of thionyl chloride would lead to corrosion of the plant equipment.    

An alternative process was developed to replace the large excess of thionyl chloride with a 

much lower excess of phosphorus oxychloride (3.3 to 3.7 equivalents) in toluene.  

Di-isopropylethylamine (DIPEA) was also required to consume the hydrochloride (HCl) 

produced during the reaction.  In this process, it was not necessary to remove the excess 

phosphorus oxychloride by distillation as it could be quenched by addition of propan-2-ol.  

This permitted the active haloacetoxyone product (a chloroimine species) to be kept in 

solution and telescoped directly into the next step, which was a coupling reaction with an 

aniline derivative (amino-de-chlorination).  
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Figure  1.2:  Reaction scheme for the chlorination of acetoxyone using phosphorus oxychloride. 

 

1.8.2 N-benzylation of 1H-indole using benzyl bromide 

The alkylation of the basic or substituted indole moiety is a useful chemical transformation 

in the pharmaceutical industry.  In 1973, Heaney and Ley published a simple method for 

the N-benzylation of indole using benzyl bromide[77].  The use of potassium hydroxide 

combined with a dipolar aprotic solvent (dimethyl sulphoxide) was reported to be 

important for improving the selectivity of N-benzylation over C3-benzylation.  The 

procedure involves pre-formation of the potassium salt of indole, which is then alkylated 

by addition of 2 equivalents of benzyl bromide.  The use of 2 equivalents of benzyl 

bromide was required to ensure complete conversion of the indole (95% yield) as it was 

known to react with DMSO.  A similar method was reported by Kikugawa and Miyake[78] in 

which acetone was used in place of dimethyl sulphoxide.  Alkylation was achieved by 

addition of benzyl chloride (2 eq.) but with reported yields of 85%, the method offers no 

advantage over the use of DMSO.  

The use of tetraalkylammonium salt catalysis was first reported for this reaction in 1976[79].  

The approach was quite different to those described previously as the indole was added to 

a two phase system of tetra-n-butylammonium hydrogen sulphate (5 mol% with respect to 

indole) in 50% aqueous sodium hydroxide and benzyl bromide (1.5 eq.) dissolved in 

benzene.  A yield of 93% after 18 hours at 33˚C was reported.  In the same year, Bocchi et 

al. reported a similar use of a phase transfer catalyst[80].  These authors commented that the 

organic phase was not necessary and actually slowed down the reaction.  Utilising a 

stoichiometry amount of methyltriotylammonium chloride, they achieved a yield of 93% 

1-benzylindole with approximately 5% dibenzylindole detected.  The reaction time was not 

reported.   
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The indole benzylation reaction was recently employed in an AstraZeneca project.  That 

particular application required the use of non-aqueous reaction conditions to prevent 

hydrolysis of an ester group substituted at the 2 position of indole.  A “soft” inorganic base 

such as potassium carbonate or cesium carbonate was used in combination with an aprotic 

solvent such as acetonitrile.  The N-benzylation of an un-substituted indole using an 

aprotic solvent and a “soft” inorganic base was selected as a model reaction.   

Initial trial experiments for this reaction confirmed that the use of a phase transfer catalyst, 

tetrabutylammonium bromide (TBAB) improved the reaction selectivity, rate of reaction 

and extent of conversion with respect to experiments in which a phase transfer catalyst was 

not used.  The reaction scheme and nominal reaction conditions are shown below in Figure 

 1.3. 

N
H

Br
N

+ + HBr

15 vols MeCN
2.0 eq. Cs2CO3
0.1 eq. TBAB

40°C, 6 hours

1H-indole benzyl bromide 1-benzyl-1H-indole  

Figure  1.3:  Reaction scheme for the N-benzylation of 1H-indole using benzyl bromide. 

1.9 Summary of project aims 

The goal of this research was to investigate the use and development of chemometric 

methods that could be applied to facilitate the recovery and prediction of component 

concentrations using real process spectra.  Of specific interest were methods that could be 

applied to spectral data sets acquired during processes that resemble typical reactions 

employed in the fine chemicals and pharmaceutical industries.  Industrial reaction processes 

are often difficult to sample, or the reaction mechanism proceeds via a reactive 

intermediate that cannot be isolated.  An important element of this research was therefore 

the implementation and development of self modelling curve resolution methods that 

would allow quantitative or semi-quantitative models to be developed in the absence of 

external reference data.  Process spectra often contain additional contributions that hinder 

the recovery of the desired chemical information.  Improving the robustness of the spectral 

measurement, and the development of methods that could be used to remove unwanted 

spectral variation, such as significant baseline contributions were also investigated.   
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2 Theory Equation Chapter 2 Section 1 

2.1 Ultraviolet / Visible (UV/Vis) Spectroscopy 

The ultraviolet and visible regions of the electromagnetic spectrum extend from 10 to 780 

nm.  However these are arbitrarily split into a number of regions that reflect the various 

instrumental or experimental distinctions[19].  The region 10 to 200 nm is called the 

vacuum-ultraviolet region.  This is because atmospheric oxygen will absorb strongly below 

200 nm so ultraviolet measurements in this region must be performed under vacuum.  The 

visible region of the electromagnetic spectrum extends from 380 to approximately 780 nm 

and is so called because it is the region that is visible to the human eye.  The near-

ultraviolet region extends from 200 nm to 380 nm.  The near UV and visible regions are 

the most useful for analytical chemistry applications because they correspond to electronic 

transitions that are sensitive to changes in molecular structure.  

Ultraviolet and visible spectroscopy is often called electronic spectroscopy and refers to the 

nature of the transitions involved.  The absorption of ultraviolet or visible radiation results 

in the transition of electrons between different electronic states of an atom or molecule[81].  

Electronic transitions can include σ, π and n electrons, d and f electrons and charge transfer 

electrons.  Sigma (σ) electrons reside in the bonding molecular orbitals associated with 

single bonds and transitions to the corresponding anti-bonding molecular orbital are 

designated σ → σ*.  This type of transition requires the largest amount of energy relative to 

other types of electronic transition, and requires photons with higher energy (shorter 

wavelength) that are assigned to the vacuum ultraviolet region (typically 100 to 200 nm). 

Consequently, these transitions cannot be observed in the spectral range that is accessible 

to ordinary laboratory spectrometers.  Transitions involving the promotion of unshared 

(non-bonding) electron pairs to a sigma anti-bonding orbital are designated n → σ*.  These 

transitions require less energy than σ → σ* transitions but as most absorptions occur below 

200 nm, they are not observed using ordinary spectrometers.  The energy required to effect 

n → π* and π → π* transitions is lower and results in absorptions occurring in the region 

200 to 700 nm.  For this reason, they are most convenient for applications using standard 

UV/vis spectrometers.   

The relative intensity of an absorption band at a specific wavelength is defined by its molar 

absorptivity, ε.  The magnitude of this value is proportional to the product of the capture 

cross section of the species and the probability of an electronic transition occurring on 
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absorption of a photon at that wavelength.  This value has the units dm3.mol-1.cm-1 or 

L.mol-1.cm-1, depending upon which units of molar concentration are used.  The value of ε 

for wavelengths corresponding to n → π* and π → π* transitions are typically 10 to 103 and 

103 to 105 L.mol-1.cm-1 respectively[82].  The spectra of organic molecules over the 

wavelength range 200 to 780 nm are therefore dominated by π → π* transitions, and to a 

lesser extent n → π* transitions. 

A molecule must contain absorbing groups called chromophores for its UV/vis spectrum 

to possess useful features.  Most organic molecules will possess conjugated double or triple 

bonds in either open chains or aromatic ring systems.  These result in a large number of 

delocalised π electrons and such functional groups are strong chromophores with 

characteristic absorbance bands.  An auxochrome is an atom or functional group, such as 

halogens, hydroxyl groups or amino groups that are not themselves considered 

chromophores but can affect the absorption of the chromophore to which they are 

attached.  Auxochromes possess n electrons that can interact with the π electrons of the 

chromophore to produce one or more of the following spectral changes.  A shift of the 

absorption maximum to longer wavelengths is called a bathochromic shift; a shift to 

shorter wavelengths is called a hypsochromic shift.  An increase of the molar absorptivity 

at a specific wavelength is known as hyperchromism and hypochromism is a decrease in 

the molar absorptivity.  These various spectral changes can be quite subtle but often the 

spectra of different components in a mixture (such as a reaction system) can still be 

distinguished. 

2.2 Raman spectroscopy 

Raman spectroscopy is a photon scattering phenomenon that provides information about 

the quantised vibrational energy levels in a molecule.  Raman spectroscopy therefore 

provides complementary information to mid-infrared spectroscopy over the spectral region 

100 to 4000 cm-1.  The phenomenon of inelastic photon scattering was postulated by 

Smekal in 1923 and was first observed experimentally in 1928 by Raman and Krishnan[83].   

When a sample is irradiated with monochromatic radiation, the photons may be simply 

transmitted without any interaction.  If the energy of the photon corresponds to the energy 

difference between two vibrational levels (i.e. the energy of the photon is in the range 100 

to 4000 cm-1) the photon may be absorbed by the molecule, resulting in a vibrational 

transition.  This is the process studied by mid-infrared absorption spectroscopy.  If the 

energy of the incident photon is far greater than the vibrational energy level spacing, the 
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photon can still be absorbed but the molecule is raised from the ground electronic state to 

a virtual state.  The virtual state is not a stationary electronic state but a short lived energy 

level somewhere between the ground and first electronic excited state, caused by the 

temporary shift of the electron distribution of a covalent bond (molecular orbitals).  If the 

molecule relaxes back to the same initial vibrational level in the ground electron state, a 

photon is emitted with the same energy as the incident photon.  This process is called 

Rayleigh scattering[82].  The molecule does not experience any net gain or loss of energy 

during Rayleigh scattering and the process is therefore termed elastic scattering.  This 

process is very efficient and the intensity of a Rayleigh line is several orders of magnitude 

stronger than the Raman scattering process.  If the molecule relaxes from the virtual state 

to a higher vibrational level in the ground electronic state, the photon emitted will have less 

energy (longer wavelength) than the incident photon[84].  This process is called Stokes 

Raman scattering.  There is a net gain in vibrational energy to the molecule and the energy 

difference between the incident and scattered photons is called the Stokes Raman shift.  It 

is also possible for the molecule to relax from the virtual state to a lower vibrational level in 

the ground electronic state.  In this case, the photon emitted will have more energy (shorter 

wavelength) than the incident photon.  This process is called anti-Stokes Raman scattering 

and there is a net loss of vibrational energy from the molecule. 

For typical laboratory conditions, the intensity of Stokes Raman transitions are much more 

intense than anti-Stokes transitions.  This is because anti-Stokes Raman scattering requires 

that the molecule is initially in a higher vibrational level before the incident photon is 

absorbed.  The Boltzmann distribution can be used to calculate the fraction of molecules in 

one vibrational level relative to a higher vibrational level for a specific temperature.  At 

room temperature, the fraction of molecules residing in a higher vibrational energy level is 

much lower than those in a ground vibrational energy level.  Throughout this work, all 

Raman shifts quoted refer to Stokes Raman shifts. 

An important property of Raman spectroscopy is that the scattering intensity is 

proportional to the number of molecules illuminated by the incident radiation[84].  This 

allows Raman spectroscopy to be used for quantitative analysis.  The expression that relates 

the measured Raman intensity for a specific molecular vibration to the number of 

molecules (concentration) is shown in equation 2.1.  This form is similar to the Beer-

Lambert law used in quantitative absorption spectroscopy, shown in equation 2.2.   
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( )R LI I K clσ=  (equation 2.1) 

( )A clλ λε=  (equation 2.2) 

RI  Measured Raman intensity, in photons per second 

LI  Laser intensity, in photons per second 

σ  Absolute Raman cross-section, cm2 per molecule 

K  Measurement parameters.  Instrument optical parameters such as collection 

efficiency and transmission are combined in this single constant.  

l  Sample path-length, in cm 

c   Concentration, in molecules per cm3 (equation 2.1) or mol.L-1 (equation 2.2) 

Aλ  
Absorbance at wavelength λ  

λε  Molar absorptivity at wavelength λ , in L.mol-1.cm-1 

 
A requirement of the mechanism by which Raman transitions occur is that the vibrational 

mode is polarisable.  This is because Raman scattering involves a transient ‘virtual’ state 

created by distortion of the electron distribution of a bond on absorption of a photon.  

The polarisability of a molecular bond is a measure of the degree to which the bonds 

electron distribution can be deformed.  Bonds that already have a large dipole moment that 

changes during the vibration have a low polarisability and consequently they are either 

weak Raman scatterers or are Raman inactive.  Bonds that have a symmetrical electron 

distribution have a large polarisability and are Raman active.  Examples of bonds that are 

Raman active include homonuclear bonds such as C-C, C=C, C≡C, N=N, O=O, 

heteronuclear bonds with weak dipoles such as C=N, C=S and ring-breathing modes of 

aromatic or saturated ring systems such as benzene.   
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2.3 Evolving Factor Analysis (EFA) 

Evolving Factor Analysis (EFA) was originally developed by Gampp and Maeder et al.[85-88] 

for the model free resolution of spectrophotometric titration data and was later applied to 

multi-wavelength chromatographic data.  

An ( )I J×  matrix of reaction spectra, where I  is the number of observations (spectra) 

and J  is the number of variables (wavelengths) can be expressed as the matrix product:  

T= +X CS E  (equation 2.3) 

Where ( , )I KC  is the matrix of concentration profiles for K  components, ( , )J KS  is the 

matrix of spectral profiles for the same k  components and ( , )I JE  is the matrix of residuals 

(remaining part of X  not modelled by C  and S  that usually accounts for measurement 

noise).  In the absence of measurement noise the expression can be simplified to: 

T=X CS   (equation 2.4) 

Singular Value Decomposition of X  would yield K  non-zero singular values equal to the 

rank of data.  The corresponding scores and loadings calculated from the eigenvalues and 

eigenvectors would loosely resemble concentration and spectral profiles.  However, these 

are abstract solutions and would require additional transformations to obtain the true 

profiles.  Performing principal components analysis (PCA) on the complete data matrix X  

would reveal the maximum rank of the data but does not provide any information about 

local rank, i.e. how many species are contributing to the signal at each time point. 

One advantage of Evolving Factor Analysis is that it utilises the inherent evolutionary 

structure of the data to determine the local rank at each time point.  The basis of EFA is 

evolving principal components analysis.  Starting from the first spectrum, a sub-matrix is 

created and principal components analysis is performed to calculate the principal 

components and their corresponding eigenvalues.  The analysis is then continued by 

incrementing the size of the sub-matrix by one spectrum and calculating a new set of 

eigenvalues.  This process is then repeated until the last spectrum in the data matrix is 

reached.  The reverse analysis is performed by starting with the last spectrum and 

incrementing the window in the opposite direction.  The log of the eigenvalues obtained 

from both forward and backward analysis are then plotted as a function of spectrum 

number (time).  The forward analysis shows the appearance of new components whilst the 
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backward analysis shows the disappearance of components.  The concentration window of 

each component k  can be calculated by combining the k th eigenvalues obtained from the 

forward EFA with the ( 1)K k− +  set of eigenvalues obtained from the backward EFA 

min([ , ]).K I J=  The resulting concentration windows are then re-scaled and collected 

into the matrix .C   The corresponding spectral profiles can be calculated using least 

squares using the expression: 

-1T TS = X C(C C)   (equation 2.5)

The matrix S  calculated above can then be used to calculate a new estimate of C  using: 

1( )T −=C XS S S   (equation 2.6)

Alternating Least Squares (ALS) is performed by repeating the calculations shown in 

equation 2.5  and equation 2.6 to further improve the concentration and spectral profiles 

utilising basic constraints such as non-negativity.  This iterative approach produces 

physically meaningful solutions that are optimised in a least-squares sense. 

2.4 Orthogonal Projection Approach (OPA) 

The Orthogonal Projection Approach (OPA) was developed by Sanchez et al.[89] for peak 

purity assessment of HPLC-DAD data.  The aim of OPA is to find the purest set of 

spectra (rows) or variables (columns) in a data matrix and works on the basic assumption 

that the purest spectra are mutually more dissimilar than the corresponding mixture 

spectra[25].  The measure of dissimilarity id  is defined as the determinant of the dispersion 

(covariance) matrix of ,iY  given by: 

det( )T
i i id = Y Y  

 (equation 2.7)

where iY  comprises one or more of the reference spectra and the spectrum ,ix  the i th 

spectrum from .X   The determinant of the dispersion matrix iY  is a measure of the area 

of the parallelogram defined by the reference spectrum (or spectra) and .ix   If the 

spectrum ix  is very similar to the reference spectra, the angle between the two vectors in 

the J − dimensional space will be small, so the resulting parallelogram will have small area 

and thus a low dissimilarity value.  A spectrum that is quite different to the previously 

found reference spectra will give a high dissimilarity value. 
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The routine is usually initiated by selecting the mean spectrum, x  as the first reference 

spectrum.  The mean-spectrum is normalised to unit length and the dissimilarity of un-

normalised spectrum ( ,ix 1i =  to I ) is calculated iteratively using equation 2.7.  The 

spectrum with the highest dissimilarity value will replace the mean spectrum as the first 

reference spectrum and the process will be repeated.  The spectrum with the highest 

dissimilarity value with respect to the first reference spectrum is normalised and added to 

.Y   The procedure is continued until the desired number of pure spectra have been 

identified; the magnitude of the dissimilarity values drop below a threshold value or the 

dissimilarity profiles resemble noise.  Plotting the dissimilarity values for each pure 

spectrum as a function of spectrum number (time) will often provide a good 

approximation of its corresponding concentration profile.  OPA can be applied in either 

the row (spectral) direction or the column (variable) direction. 

2.5 Multivariate Curve Resolution – Alternating Least Squares 

(MCR-ALS) 

The purpose of Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS)[22, 35, 

45, 90-94] is to resolve a multi-component system assumed to have an additive bilinear model 

as shown in equations equation 2.3 and equation 2.4.  MCR-ALS is an iterative method that 

gives equal priority to the concentration and spectral profile matrices and optimises both 

C  and TS  during each iteration cycle.  All components are modelled simultaneously by 

alternatively calculating C  or TS  using equation 2.6 and equation 2.5 respectively. 

Methods such as EFA or OPA can be applied to a two-way data matrix to produce initial 

estimates of the underlying concentration or spectral profiles; Alternating Least-Squares 

can then be used to refine the estimates using simple constraints such as non-negativity.  

The true power and flexibility of MCR-ALS lies in its ability to use and combine initial 

estimates obtained from various methods and apply a number of physically meaningful 

constraints such as non-negativity, unimodality, and closure.  Additional external 

information such as known concentration or spectral profiles for one or more species can 

be incorporated and zero-concentration regions can be specified when it is known that a 

particular species will not be present over a specific time period.  These additional options 

require user input and thus a good understanding of the data and its underlying structure is 

necessary to prevent the use of invalid assumptions.  The advantage of including additional 

constraints and external information is that it further reduces the range of feasible solutions 
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obtained (C  and TS ) and is therefore more likely to produce a solution that resembles the 

true underlying structure. 

2.6 Partial Least Squares Regression (PLS) 

Partial Least Squares  (also referred to as Projection to Latent Structures)[12, 20-25, 31, 32] is a 

multivariate regression method commonly used throughout many disciplines such as 

chemometrics, physical and biological sciences, social sciences, economics etc..   

PLS is often used in spectroscopic calibration applications as it can help to overcome the 

problem of high collinearity between spectral variables that can lead to unstable regression 

coefficients if traditional multi-linear regression (MLR) were applied.  The problem of 

collinearity is reduced by representing both the X  and Y  blocks (spectra and 

concentrations respectively) as linear combinations of the original variables. 

= +TX TP E  (equation 2.8)

TY = UQ + F  (equation 2.9)

The objective of PLS is to find a set of latent variables that maximise the covariance 

between X  and .Y   The factors are calculated to maximise the correlation between the X  

and Y  blocks whilst also accounting for the maximal amount of structured variance in 

each block.  The number of factors to use in the PLS model is usually chosen by selecting 

the value that minimises the root mean square error of cross validation (RMSECV) or root 

mean square error of prediction (RMSEP).  

During the calculation of each set of latent variables, the loading vectors Tp  and Tq  are 

iteratively improved.  Projection of X  and Y  onto the loading vectors results in a pair of 

scores vectors t  and .u   The final scores vectors will be found when the difference 

between two consecutive iterations is below a pre-defined threshold.  The inner-

relationship that relates the scores matrices T  and U  ( X  and Y  blocks respectively) is 

.=U TW   Although equation 2.8 and equation 2.9 suggest that the loading vectors are 

calculated for each block independently, this can actually lead to poor correlation between 

the two sets of scores.  In practice, the inner-relationship is improved by exchanging the 

scores vectors t  and u  during the iterative cycle.  Once all the latent vectors have been 

found, the regression matrix is calculated using: 
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1ˆ ( )T T−=B P P P WQ  
(equation 2.10) 

Each column of B̂  contains the regression spectrum for the corresponding column of .Y   

Future values are predicted from measured spectra using the expression: 

ˆ ˆ=Y XB   (equation 2.11) 

2.7 Vertex Vector Sequential Projection (VVSP) 

Vertex Vector Sequential Projection (VVSP) is a self-modelling curve resolution method 

first published by Wang et al.[95, 96] in 2006.  The method was originally applied to HPLC-

DAD data to resolve two artificial data sets and two real data sets into their pure 

component spectral and chromatographic profiles.  When applied in the row (time) 

direction of a data set, VVSP will identify the spectra that most represent the pure 

component spectra.  These spectra can be used to calculate the corresponding 

concentration profiles using simple least-squares or constrained alternating least squares 

(CALS). 

As with all SMCR methods, the data is assumed to have a bilinear model of the form 

shown in equation 2.12: where X  is a two-way data matrix with dimensions ( );J K×  C  is 

a ( )J N×  matrix of pure component concentration profiles; S  is a ( )K N×  matrix of 

pure component spectra. 

T=X CS  (equation 2.12) 

The method is based on the fact that when the spectra are normalised to unit length, they 

represent data points in a K − dimensional space.  These points are distributed across a 

polyhedral hyper-“spherical” surface with the pure component variables located at the 

vertices.  By normalising each spectrum (row) of X  to unit p-norm, the bilinear model can 

be written as: 

p T
s c=Y W S  

(equation 2.13) 

where sY  is the normalised two-way data matrix, p
cW  is the normalised weighting 

(concentration) matrix and S  is the matrix of normalised pure spectra.  It was proven by 

the authors that the quadratic function ( ) T Tf = ⋅ ⋅ ⋅ ⋅w w S A S w  must be maximised at the 



Chapter 2 - Theory 

 - 49 - 

pure variable 1K+s  if it exists, where A  is the null matrix of the first K  pure spectra 

collected in the matrix 1 2[ , ,..., ]( )M M M N= <Z s s s . 

K M M
+= −A I Z Z  (equation 2.14) 

The VVSP algorithm procedure therefore identifies the first N  pure spectral profiles by 

sequentially solving the expression in equation 2.15, using the M  previously identified 

components to calculate the null space as shown in equation 2.14. 

( ) ( )T T T
j j jf = ⋅ ⋅w y A y  

 

(equation 2.15) 

When N  pure spectral profiles have been identified, the corresponding spectral 

concentration profiles may be calculated using least-squares: 

( )T +=C X S  (equation 2.16) 

 

2.8 Linear Kalman filter 

The Kalman filter is a set of equations that use a recursive prediction – correction 

approach to optimise the prediction of state parameters for a given measurement vector. 

Each element in the measurement vector (such as a spectrum) is used in the recursive 

calculations and the final estimation of the state parameters is optimal in the sense that they 

minimise the estimated error covariance.  The equations summarising the linear Kalman 

filter are shown in Table  2.1.   

The first equation describes the system dynamics of the model; how the system state 

parameters change from time ( 1)k −  to .k    For a time-variant system model, the equation 

is ( ) ( | 1) ( 1) ( )j k k k k k= − ⋅ − +x H x w .  The matrix ( 1)k −H  is called the state transition 

matrix and describes how the system state parameters change from time ( 1)k −  to .k   It 

should be noted that throughout the literature, descriptions of the Kalman filter often refer 

to the index k  as time.  When applying the Kalman filter to multivariate spectroscopic data 

to estimate the concentration of each component of interest, the Kalman filter is applied to 

each element in the spectrum and k  therefore denotes spectroscopic variables, not time.  

When the Kalman filter is applied to multivariate spectroscopic data, the state parameters 

are invariant with respect to k  and the time-invariant system model shown in 
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equation 2.17 is used.  The time-invariant system model substitutes ( | 1)k k −H  with a 

( )N N×  identity matrix, .I   The variable ( )kw  is the system noise vector at time (or 

variable) k  and is assumed to be zero-mean white noise. 

State estimate extrapolation (equation 2.18) and error covariance extrapolation 

(equation 2.19) allows the estimated state parameters and the associated error covariance 

calculated at index ( 1)k −  to be propagated to index .k   The ( )N N×  matrix ( 1)k −Q  is 

the covariance matrix of the noise in the system model ( )kw  and each diagonal element is 

the variance contribution from each of the N  components to the system model.  For the 

time-invariant model used for spectroscopic data, ( )kQ  and ( )kw  are assumed to be zero.  

The variance of the noise contributing to the measurement process, defined by the scalar 

( ),R k  is therefore assumed to be the major source of error. 

The Kalman gain is calculated to minimise the a posteriori error covariance ,P  and is then 

used to update the state parameter estimates.  The Kalman gain is calculated using 

equation 2.21.  The reference measurement function S  is a ( )N K×  row-oriented matrix 

of reference spectra (pure spectral profiles) for each component contributing to the system.  

When the Kalman gains have been calculated, a new estimate of the state parameters using 

the measurement at index k  is calculated using equation 2.22.  The error covariance is 

updated at each iteration using equation 2.23 where the diagonal elements of the ( )N N×  

matrix P  contain the variance of the corresponding state parameters estimates. 

The innovation, calculated using equation 2.20, is the residual of the Kalman filter fit at 

each point of the measurement vector and is the difference between the measured data 

point at index k  and the predicted value from the a priori prediction of the state 

parameters.  In the basic linear Kalman filter, the innovation ( )jv k  is a scalar but is usually 

stored in a row-vector to form an innovations sequence.  When the Kalman filter is 

operating optimally, the innovations sequence should resemble zero-mean white noise with 

variance .R   The structure of the innovations sequence is therefore a useful way to assess 

the performance of the filter. 

The linear Kalman filter is suitable for applications where the reference measurement 

function vectors (pure spectral profiles) for all components contributing to the system are 

known.  Once the Kalman gains and the error covariance matrix have been calculated for 

one spectrum, they do not need to be recalculated for subsequent measurement vectors if 
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the variance of the measurement noise is unchanged.  The Kalman gains and error 

covariance matrix can therefore be used to calculate the state parameters directly using 

equation 2.18, equation 2.20 and equation 2.22 only. 
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Table  2.1:  Linear and Adaptive Kalman filter equations 

Time invariant system model  

( | 1) ( )j j k k k= ⋅ − +x I x w  
(equation 2.17) 

State estimate extrapolation  

( | 1) ( 1| 1)j jk k k k− = − −x x  
(equation 2.18) 

Error covariance extrapolation  

( | 1) ( 1| 1) ( 1)k k k k k− = − − + −P P Q  (equation 2.19) 

Calculate innovations  

( ) ( ) ( ) ( | 1)T
j j k jv k z k k k k= − ⋅ −s x  

(equation 2.20) 

Kalman gain update  

1( ) ( | 1) ( ) [ ( ) ( | 1) ( ) ( )]kk k k k k k k k R k −= − ⋅ ⋅ ⋅ − ⋅ +T
k kg P s s P s  

(equation 2.21) 

State estimate update  

( | 1) ( | 1) ( ) [ ( ) ( ) ( | 1)]T
j j j k jk k k k k z k k k k− = − + ⋅ − ⋅ −x x g s x  

(equation 2.22) 

Error covariance update (Joseph implementation)  

( | ) [ ( ) ( )] ( | 1) [ ( ) ( )] ( ) ( ) ( )T T T T
k kk k k k k k k k k R k k= − ⋅ ⋅ − ⋅ − + ⋅ ⋅⋅P I g s P I g g gs  

 (equation 2.23) 

Additional Adaptive Kalman filter equation  

Update measurement noise variance estimate   

1

1( ) [ ( ) ( )] ( ) ( | 1) ( )
m

T
j j j k k

i
R k v k i v k i k k k k

m =

= − ⋅ − − ⋅ − ⋅∑ s P s
 

(equation 2.24) 
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2.9 Adaptive Kalman filter 

The adaptive Kalman Filter was developed by Rutan and Brown[66] to allow the Kalman 

filter to be applied to a system containing measurement model errors.  The adaptive 

Kalman filter uses the standard equations of the linear Kalman filter shown in Table  2.1. 

The innovation values calculated using equation 2.20 are stored in a vector and the adaptive 

measurement noise variance ( )R k  is calculated over a window of size m  using the 

expression shown in equation 2.24.  When the model is valid, ( )R k  is small and the state-

estimate update is sensitive to the small changes in the innovation.  If there is an error in 

the model, for example an additional component is contributing to the measurement, the 

resulting innovation will be large which in turn leads to a larger value of  ( ).R k   When 

( )R k  is large, the state parameter update becomes less sensitive to the changes in the 

innovations sequence and is therefore less affected by the model errors.  If the values of 

( )R k  are stored in a vector, they can be used to either augment the reference measurement 

function matrix with an additional component, or correct an existing measurement 

function that is suspected of being in error.  The equations required to determine the sign 

of the model error and update or augment the reference measurement function matrix[66] 

are shown in Table  2.2. 

For the adaptive Kalman filter to be successful, each component represented in the matrix 

of reference measurement functions must have a small region in the variable space where 

the model is valid and can yield an accurate estimate of its state parameter.  This requires 

that the reference measurement functions are not completely overlapped with each other 

or any additional un-modelled component that is contributing to the measurement vector.  

If the reference measurement functions are all highly overlapped with the additional un-

modelled component, the calculated innovations sequence will contain large values which 

in turn will produce relative large values of ( ).R k   A large value of ( )R k  will decrease the 

value of the Kalman gain and therefore the sensitivity of the state parameter update to 

future measurements. 

Another point to consider is that because the measurement noise variance ( )R k  is 

adaptively updated at each measurement point, the Kalman gain matrix will also change 

from spectrum to spectrum if it is not fully modelled by the reference measurement 

function.  Only once the system is completely and accurately modelled will the Kalman 

gain and error covariance matrices be applicable to all spectra in the data set. 
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Table  2.2:  Functions used by adaptive Kalman filter to augment or correct the reference 
measurement function matrix. 

Sign of model error deviations  

1
( ) 1,   for ( / 2) / 0

m

l
b k v k l m m

=

= − + >∑
 

(equation 2.25) 

1
( ) 1,   for ( / 2) / 0

m

l
b k v k l m m

=

= − − + <∑
 

(equation 2.26) 

Augmentation of the reference measurement function with a new component 

* 1/ 2
1( ) ( ) [ ( / 2)] ,  for ( ) 0NS k b k R k m b k+ = ⋅ + >  

(equation 2.27) 

*
1( ) 0,                               for ( ) 0NS k b k+ = >  

(equation 2.28) 

Correction of the thn component of the reference measurement function 

* 1/ 2 *( ) ( ) ( ) [ ( / 2)] ,  for ( ) 0n n nS k S k b k R k m S k= + ⋅ + >  
(equation 2.29) 

* *( ) 0,                                             for ( ) 0n nS k S k= <  
(equation 2.30) 

 

2.10 Vectorised Kalman filters 

Vectorised Linear Kalman filter 

The Kalman filter algorithms described in sections  2.8 and  2.9 have been implemented to 

operate recursively on scalar data points ,kz  where k  is the k th element of the 

measurement vector .z   At each iteration, the scalar measurement value kz  is used to 

update the estimates of the state parameters in a ( 1)N ×  vector .x   The Kalman filter 

algorithms were readily extended to a ( )J K×  matrix of measurement vectors by 

incorporating an additional loop to process each measurement vector T
jz  independently.  

In the case of the linear Kalman filter, the Kalman gain and state estimate error covariance 

matrices was calculated for the first measurement vector in the data set and applied to 

subsequent measurement vectors without recalculation.  This did relieve some of the 

computational burden but each measurement vector was still filtered sequentially.  To 
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increase the computational efficiency of the Kalman filter when applied to large data sets, a 

vectorised Kalman filter was implemented.  The vectorised Kalman filter operates 

recursively on a ( 1)J ×  column vector of data points from a ( )J K×  matrix Z  

comprising J  measurements acquired at K  variables.  The modified equations used to 

describe the vectorised Kalman filters are shown in Table  2.3.  

Consistent with the linear Kalman filter, a time invariant system model is used when 

applied to multivariate spectroscopic measurements.  The system model in equation 2.31 

now uses a matrix of state-parameters denoted .X   The state estimate extrapolation 

equation (equation 2.32) also retains the same form but has been updated to indicate that 

the operation is performed on a matrix of state parameters.  As written for the original 

linear Kalman filter, the error covariance matrix P  is a ( )N N×  square matrix and the 

extrapolation equation (equation 2.33) remains unchanged.  The diagonal elements of P  

still correspond to the variance of the state parameter estimates for each of the N  

components, but the variance is now based upon simultaneous prediction and correction 

of J  measurement vectors.  The Kalman filter is a recursive least-squares estimator that 

seeks to minimise the error covariance of the state estimates.  The vectorised Kalman filter 

therefore provides a global minimum error covariance by simultaneously updating all 

elements of X  during each iterative cycle. 

The innovations calculation was vectorised as shown in equation 2.34.  The innovations 

vector is the residual between the current column of measurement data at variable 

(iteration) k  and the predicted column of measurement data calculated from the product 

of the current state parameter estimates ( )X  and the reference measurement functions at 

variable (iteration) ,k  denoted ( ).k ks   Although the innovations are written and calculated 

as a column vector, they are stored in a ( )J K×  matrix .V  

The update of the Kalman gains shown in equation 2.35 is unchanged from the equation 

used by the original linear Kalman filter.  The Kalman gain update is proportional to the 

magnitude of the elements in the error covariance matrix .P   As explained previously, P  

represents the global error covariance for all of the state parameters estimates in .X  

Therefore, simultaneously applying the same Kalman gains vector ( )kg  to all J  

measurements in the state estimate update will lead to final state parameter estimates that 

have a globally minimised error covariance. 
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The state estimate update shown in equation 2.36 is the main difference between the 

original and vectorised Kalman filters.  The entire ( )J N×  matrix of state parameters X  is 

updated during each of recursive Kalman filter iterations.  The Kalman gain vector 

calculated in the previous step is applied to all measurement vectors simultaneously using 

the column vector of innovations denoted ( ).k kv    

The error covariance update using the Joseph implementation[51] shown in equation 2.37 is 

identical to the expression used by the original Kalman filter.  This is because the 

dimensions of the Kalman gain vector ( )g  and error covariance matrix ( )P  remain the 

same as those used by the original Kalman filter.  

Vectorised Adaptive Kalman filter 

It was also possible to extend the vectorised Kalman filter equations to the adaptive 

Kalman filter.  The columns of the innovations matrix V  are used to calculate a vector of 

adaptive measurement noise variances ( ),k kr  as shown in equation 2.39.  As explained 

previously in section  2.9, the purpose of the adaptive Kalman filter is to reduce the 

sensitivity of the Kalman filer update equations in the regions that possess large model 

error.  For the original adaptive Kalman filter, when the measurement model is valid, ( )R k  
is small and the state-estimate update is sensitive to the small changes in the innovation.  If 

there is an error in the model, the innovations and therefore ( )R k  are large and the state 

parameter update becomes less sensitive to the changes in the innovations sequence.  This 

ensures that the state-estimate updates are less affected by the model errors.  To extend this 

principle to the vectorised adaptive Kalman filter, the largest value in the column vector 

( )k kr  is assigned to ( ).R k   This ensures that the vectorised adaptive Kalman filter will 

calculate the Kalman gain update, error covariance update and state estimate update using 

the largest values in the innovations matrix.  For those spectra containing contributions 

from an un-modelled component; the innovations vectors will possess characteristic 

spectral features of the un-modelled component in the variable regions where it is not 

overlapped with the known components.  If the reference measurement functions 

accurately model the measurement data, the innovations vectors will resemble zero-mean 

white noise.  
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Table  2.3:  Vectorised Linear and Adaptive Kalman filter equations 

Time invariant system model (system noise assumed to be zero)  

( ) ( | 1)k k k= ⋅ −X I X  (equation 2.31) 

State estimate extrapolation  

( | 1) ( 1| 1)k k k k− = − −X X  (equation 2.32) 

Error covariance extrapolation  

( | 1) ( 1| 1)k k k k− = − −P P  (equation 2.33) 

Calculate innovations  

( ) ( ) ( | 1) ( )k k kk k k k k= − − ⋅v z X s  (equation 2.34) 

Kalman gain update  

1( ) ( | 1) ( ) [ ( ) ( | 1) ( ) ( )]kk k k k k k k k R k −= − ⋅ ⋅ ⋅ − ⋅ +T
k kg P s s P s  

(equation 2.35) 

State estimate update  

( | ) ( | 1) [ ( ) ( | 1) ( )] ( )

( | ) ( | 1) [ ( )] ( )

T
k k

T
k

k k k k k k k k k

k k k k k k

= − + − − ⋅ ⋅

= − + ⋅

X X z X s g

X X v g
 

(equation 2.36) 

Error covariance update (Joseph implementation) (equation 2.37) 

( | ) [ ( ) ( )] ( | 1) [ ( ) ( )] ( ) ( ) ( )T T T T
k kk k k k k k k k k R k k= − ⋅ ⋅ − ⋅ − + ⋅ ⋅⋅P I g s P I g g gs  

Additional Adaptive Kalman filter equations  

Update measurement noise variance estimate   

1

1( ) ( ) ( ) ( ) ( | 1) ( )
i m

T
k k i k i k k

i
k k i k i k k k k

m

=

− −
=

⎡ ⎤
= − ⋅ − − ⋅ − ⋅⎢ ⎥

⎣ ⎦
∑r v v s P s  

(equation 2.38) 

( ) max( ( ))kR k k= r  (equation 2.39) 
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2.11 Vectorised Adaptive Kalman filter with Iterative Spectral 

Optimisation 

Overview 

The motivation for developing the vectorised Kalman filter with iterative spectral 

optimisation (VAKFISO) was to investigate whether recursive prediction-correction 

operations of the vectorised Kalman filter could be exploited for self-modelling curve 

resolution.   

When the adaptive Kalman filter was originally developed and applied to data acquired 

using analytical instrumentation, the measurement vectors were considered as independent 

first order measurements, for example a single spectrum or voltammogram.  When it is 

appropriate to consider all previously acquired measurement vectors, for example during a 

reaction monitoring experiment, the resulting data matrix becomes a second order data set.  

The bilinear nature of the data matrix may then be exploited, as the reference measurement 

functions of each component contributing to the measurement will lie within a subspace 

spanned by the primary eigenvectors obtained by singular value decomposition.  

The objective of VAKFISO is to find a matrix of reference measurement functions (pure 

spectral profiles) that minimise a weighted residual matrix when used to calculate the 

corresponding state parameters using the vectorised adaptive Kalman filter.  The advantage 

of utilising the Kalman filter is that it provides a state-parameter error covariance matrix.  

The diagonal elements of the state-parameter error covariance matrix, corresponding to the 

variance of the state estimates will be minimised when the matrix of reference 

measurement functions accurately models the measurement data.  To find the set of 

reference measurement functions that minimise the diagonal elements of the error 

covariance matrix, the elements of a transformation matrix T  are optimised using 

Newton-Gauss-Levenberg / Marquardt[22, 42] non-linear optimisation.  During each iterative 

cycle, a new estimate of the optimised transformation matrix is calculated.  Each spectrum 

in the matrix of test reference measurement functions is a linear combination of the 

primary eigenvectors spanning the spectral space.  The transformation matrix T  is used to 

transform the eigenvectors into test reference functions.  The vectorised adaptive Kalman 

filter then allows the state-parameters of all components for all available measurement 

vectors to be calculated simultaneously; analogous to the way ALS methods such as MCR-

ALS estimate the entire concentration matrix C  during each iterative cycle.   
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As the matrix of test reference measurement functions approaches a feasible solution, the 

diagonal elements of the state-parameter error covariance matrix will be minimised.  The 

innovations vector of each spectrum in the data set will resemble zero-mean, white noise 

indicating the Kalman filter is operating optimally.  Without invoking any penalties, 

minimisation of the diagonal elements of the error covariance matrix or the residual matrix 

could correspond to negative spectra and / or negative state parameters.  To prevent this, a 

weighted residual matrix is constructed from the initial innovations matrix, but also 

includes additional terms to penalise large state-estimate variances as well negativity in the 

test spectra and estimated state-parameters. 

Detailed description of the VAKFISO algorithm 

The major steps of the VAKFISO method are described below. 

Initiation 

The Kalman filter requires a reference measurement function (denoted S ) containing the 

pure spectral profile of each component contributing to the measurement data.  Any 

SMCR method that allows the rank of the data to be estimated and provides initial 

estimates of the pure spectral profiles could be used, although VAKFISO specifically uses 

VVSP.  The first step of VAKFISO is therefore to perform VVSP analysis of the full 

( )J K×  matrix of data denoted Z  to obtain initial, normalised estimates of the pure 

spectral profiles, denoted ˆ .0S   The VVSP method is described in section  2.7. 

Singular value decomposition[21, 30, 31, 34] is then applied to the matrix of measurement data to 

obtain the matrices of singular values and left and right singular vectors (eigenvectors). 

=Z UΛV  (equation 2.40) 

Z  is the original or pre-processed data matrix; U  is the matrix of left singular vectors that 

span the column space of ;Z  V  is the matrix of right singular vectors that span the row 

(spectral) space of Z  and Λ  is a diagonal matrix of singular values. 

The matrix of right singular vectors V  is truncated to only retain the first N  primary 

singular vectors to yield a ( )K N×  matrix .V  

The initial ( )N N×  transformation matrix, 0T  is calculated from the initial estimates of the 

pure spectral profiles using the least-squares expression shown in equation 2.41. 
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1 ˆ( )T T T−=0 0T V V V S  (equation 2.41) 

Optimisation of the transformation matrix 

The main operation of VAKFISO is to search for a transformation matrix T  that 

minimises a weighted residual matrix .E   The transformation matrix is used to calculate a 

( )K N×  matrix of reference measurement functions ( Ŝ ) that are then tested using the 

vectorised adaptive Kalman filter.  The matrix of reference measurement functions is 

obtained using equation 2.42.  Each column of Ŝ  is normalised to unit length or unit 

height using equation 2.43. 

ˆ =S VT  (equation 2.42) 

ˆ ˆ ˆ/n n n p
=s s s  (equation 2.43) 

The vectorised adaptive Kalman filter is applied to the matrix of measurement data ( )Z  

using the current estimate of the pure spectral profiles to obtain a ( )J N×  matrix of 

estimated state parameters, ˆ .X   The outputs of the Kalman filter,  ˆ ,X  V  and ,P  along 

with the current matrix of reference measurement functions ˆ( )S  are used to calculate a 

weighted residual matrix .E   The elements of T  are optimised to minimise the elements 

of E  using Newton-Gauss-Levenberg / Marquardt (NGL/M) non-linear optimisation[22, 

42].  This optimisation approach allows an unsupervised search of the K − dimensional 

subspace of Z  that is spanned by the matrix of right singular vectors .V   The use of the 

state parameter error covariance matrix P  in the calculation of the weighted residual 

matrix guides the search towards solutions of T  (and therefore Ŝ ) that allow the Kalman 

filter to operate optimally.  These solutions should closely resemble the true spectral 

profiles. 

One of the key characteristics of the Kalman filter that make it suitable for this type of 

optimisation problem are the recursive prediction-estimation nature of the calculations as 

the filter operates along the variable mode of the data.  This allows the Kalman filter to 

provide an estimate of the errors associated with the final state-parameters in a error 

variance-covariance matrix denoted .P   The sum of the diagonal elements of error 

variance-covariance matrix will only approach a minimum if the product of the state 
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parameters and the current reference measurement functions completely model the data 

within the measurement error.  This will be characterised by a complete set of innovations 

vectors that resemble zero-mean white noise.  The optimisation of T  will terminate when 

the maximum number of iterations or a convergence tolerance is reached.  The advantage 

of using the adaptive Kalman filter is that the measurement variance R  is not fixed but is 

adapted to the previous innovations values.  This means that an accurate estimate of the 

measurement variance is not required and also makes the Kalman filter more tolerant of 

heteroscedastic noise. 

Definition of the weighted residual matrix 

The elements of the transformation matrix T  are optimised in the sense that they 

minimise a weighted residual matrix .E   During each iterative cycle of the optimisation, 

the elements of T are changed and a new matrix of reference measurement functions, Ŝ  is 

calculated.  The vector adaptive Kalman filter is applied to the data using the latest estimate 

of Ŝ  and the estimated state parameters ˆ( ),X  spectral innovations ( ),V  and state estimate 

error covariance matrix ( )P are used to formulate the weighted residual matrix .E   The 

weighted residual matrix also includes penalty terms that penalise negative values in the 

reference measurement functions and the estimated state parameters.  These penalty terms 

can be can be used as non-negativity constraints to further guide the optimisation of .T  

The generalised expression for E  is shown in  

3 4( ) ( ) ( )α α α α= + Π + Σ + Ξ1 2E V V V V  (equation 2.44) 

1α  Weighting coefficient for the matrix of innovations, .V   Usually used to down-

weight this term with respect to the other terms. 

2α  Weighting coefficient for the term that includes the trace of the variance-covariance 

matrix .P   Usually set to one or greater. 

3α  Weighting coefficient for the spectral negativity penalty function .Π   Usually set to 

one or greater.  Set to zero if spectral negativity is permitted. 

4α  Weighting coefficient for the state parameter negativity penalty function .Ξ  Usually 

set to one or greater.  Set to zero if state parameter negativity is permitted 
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The penalty functions expressed in equation 2.44 are defined as follows. 

Π  is the parameter related to the error covariance matrix for the final state parameter 

estimates and corresponds to the sum of the diagonal elements of .P  

 ( )trΠ = P  (equation 2.45) 

Σ  is the penalty function related to the fraction of negative values in the test reference 

measurement functions and is calculated as shown in equation 2.46. 

2 2
, ,

1 1

1 ˆ( / )
k K n N

k n k n
k nN

= =

= =

Σ = ∑ ∑ Ω S  

1 ˆ ˆ(| | )
2

= −Ω S S  

(equation 2.46) 

The penalty function Σ  will have a value in the range zero to one.  If none of the test 

reference measurement functions have any negative regions, the value of Σ  will be zero.  If 

each reference measurement function is completely negative, the value of Σ  will be one. 

A similar penalty function Ξ  can be applied to the state parameter matrix X̂  as shown in 

equation 2.47. 

2 2
, ,

1 1

1 ˆ( / )
j J n N

j n j n
j nN

= =

= =

Ξ = ∑ ∑ Θ X  

1 ˆ ˆ(| | )
2

= −Θ X X  

(equation 2.47) 

The penalty function Ξ  will also have a value in the range zero to one. 

The coefficients 1α , 2α , 3α  and 4α  may be used to adjust the weighting of each term.  

It is important that the expected values of V  and Π  are considered as they can differ by 

several orders of magnitude and may need to be weighted to ensure the optimisation does 

not take a long time to converge. 
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2.12 Iterative polynomial baseline subtraction 

A method for automatically subtracting a broad, complex baseline from Raman or FTIR 

spectra was developed for this work.  This method is based upon the automated method 

for subtraction of fluorescence from Raman spectra published by Lieber and Mahadevan-

Jansen[97], and uses a least-squares based polynomial curve-fitting approach to approximate 

the underlying baseline.  The method published by Lieber and Mahadevan is useful for 

correcting a relatively small region of interest (covering a range of just a few hundred 

wavenumbers) if the underlying baseline is a simple, continuous function.  However it was 

found to be less suitable for processing a full spectrum (spectral range of three to four 

thousand wavenumbers) containing a complex baseline function.  The iterative polynomial 

baseline subtraction algorithm is an extension of the method published in the reference 

cited above and includes several modifications.  An estimate of baseline function is first 

obtained by applying a moving window median filter to the original, unprocessed spectrum 

.Ts   A large window is employed to ensure that none of the Raman peaks of interest are 

removed by the filter (size of window is 10% to 20% of total number of points in the 

spectrum).  The output of the median filter is the filtered spectrum (desired Raman 

spectrum) and a residual spectrum that is used as an initial estimate of the underlying 

baseline spectrum.  The spectra are denoted T
mfs  and T

rs  respectively.  The algorithm then 

fits a polynomial function of degree n  to a sub-window of .Trs   The width of the sub-

window, pw  is defined by the user.  A polynomial function is sequentially fitted to each 

sub-window of T
rs  to produce a new estimate of the baseline, denoted .Tbs   An overlap 

parameter can also be specified to prevent discontinuity in the final baseline.  If an overlap 

factor of 0.10 is used, a polynomial function is fitted to a window comprising of the current 

window, ,w  concatenated to the final 10% of the fitted points in the previous window, 

( 1).w−   During the first iteration, when all W  windows have been fitted with a 

polynomial function, the estimate of the baseline T
bs  is corrected using the following 

criterion: 

If any point in the estimated baseline T
bs  is larger than the corresponding point in the initial 

estimate of the baseline ,Trs  that point is replaced by the original data point.  

( ) ( )T Tk k=b rs s  for ( ) ( )T Tk k>b rs s        
 

(equation 2.48) 
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If any point in the estimated baseline T
bs  is less than zero, that point is replaced by the 

corresponding point in the median filter residual spectrum .Trs  

( ) ( )T Tk k=b rs s  for ( ) 0T k <bs        
 

(equation 2.49) 

After correcting the baseline estimate using the above criterion, the polynomial fitting 

procedure is repeated using .Tbs   When all W  windows of T
bs  have been fitted with a 

polynomial function, the updated estimate of the baseline, T
bs  is corrected using the 

following criterion: 

If any point in the estimated baseline T
bs  is larger than the corresponding point in the 

original unprocessed spectrum ,Ts  that point is replaced by the original data point.  

( ) ( )T Tk k=bs s  for ( ) ( )T Tk k>bs s        
 

(equation 2.50) 

If any point in the estimated baseline T
bs  is less than zero, that point is replaced by the 

corresponding point in the original unprocessed spectrum .Ts  

( ) ( )T Tk k=bs s  for ( ) 0T k <bs        
 

(equation 2.51) 

This process is then repeated until the sum-of-squares residual between two consecutive 

estimates of T
bs  is less than a predefined convergence tolerance or the maximum number 

of iterations is reached. 

The final estimate of the baseline is then subtracted from the original spectrum to give the 

baseline subtracted spectrum, .Tcs  

T T T= −c bs s s  
 

(equation 2.52) 

The use of an initial estimate of the baseline spectrum obtained by median filtering allows 

the algorithm to converge must faster than starting from the original spectrum, and 

produces a smoother, more continuous baseline spectrum. 
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3 Experimental Equation Chapter 3 Section 1 

3.1 Reagents and Equipment 

3.1.1 Reagents 

Table  3.1:  List of reagents and solvents used. 

Reagent Grade Manufacturer / Supplier 
Acetonitrile HPLC Grade Romil, UK 

Benzyl bromide >98% Fluka Chemie GmbH, Germany 

1-benzyl-1H-indole >90% Synthesis product 

Cesium carbonate 99.8% Chemetall GmbH, Germany 

4-chloro-7-methoxyquinazolin-6-

yl acetate 

“Haloacetoxyone” 

>98% Synthesis product 

Di-isopropylethylamine >99% Acros Organics bvba, Belgium 

1H-indole >99% Fluka Chemie GmbH, Germany 

7-methoxy-4-oxo-3,4-

dihydroquinazolin-6-yl acetate 

“Acetoxyone” 

>99.0% Fluka Production GmbH, 

Switzerland 

Phosphorus oxychloride  99% Acros Organics bvba, Belgium 

Tetrabutylammonium bromide >99% Sigma Aldrich, UK 

Toluene HPLC grade Fisher Scientific, UK 

Trifluoroacetic acid HPLC grade Fisher Scientific, UK 
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3.1.2 Spectrometers 

3.1.2.1 Ultraviolet / Visible diode array spectrophotometers 

Description 

A Carl Zeiss MCS501 single beam UV/Vis diode array spectrophotometer (Clairet 

Scientific Ltd, Northampton, UK) was used to acquire data for laboratory scale reactions.  

This instrument was a single beam configuration employing a deuterium source lamp to 

provide a working spectral range of 200 to 650 nm.  However, the use of fibre-optic cables 

restricted the spectral range further as the instrument uses a high pass filter to attenuate the 

output of the source below 220 nm to prevent solarisation of the optical fibres.  The 

detector module comprises an aberration corrected concave grating (248 lines / mm) that 

directs the wavelength dispersed light onto a 512 pixel diode array.  The grating and diode 

array provide a spectral resolution of 0.8 nm.   

A Carl Zeiss MCS601 double beam UV/Vis diode array spectrophotometer (Clairet 

Scientific Ltd, Northampton, UK) was used to assess and compare the effect of fibre 

movement with standard and custom fibre-optic cable assemblies.  This instrument had 

two detector modules and was enclosed in a purged, explosion proof cabinet so that it 

could be used within a manufacturing facility.  In its standard configuration, the output of 

the source lamp was split into two using a short, bifurcated cable.  One leg of the 

bifurcated cable transmitted the source light to a process probe, where it was returned to 

one of the detector modules via a separate fibre-optic cable.  The second leg of the 

bifurcated cable transmitted the source light through a closed loop to the second detector 

module.  This configuration allowed the spectrometer to compensate for the flash-to-flash 

intensity variation of a xenon flash lamp or the slow intensity reduction of a deuterium 

lamp if process monitoring was required over several days. 

The probe used with this instrument was a Hellma UV/ATR probe, model number 

661.822 (Hellma UK Ltd, Southend-on-Sea, UK).  The probe was constructed from 

Hastelloy C22, and was 300 mm in length with a barrel diameter of 6.35 mm.  The ATR 

sapphire prism was a three-bounce design.  The probe was fitted with integral 4.5 m fibre-

optic cables with high OH content, solarisation resistant 600 μm quartz glass cores 

terminated with standard SMA905 connectors.  The specified spectral range for the probe 

was 220 to 1100 nm. 
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Spectral acquisition parameters 

For normal reaction monitoring applications, the instrument parameters were configured as 

follows:  The collection mode was set to absorbance using automatic interpolation over the 

range 220.0 to 650.0 nm in 1.0 nm intervals.  In this mode, the spectrometer would collect 

a single beam energy spectrum, automatically convert it to an absorbance spectrum using a 

background spectrum previously acquired in air, and then interpolate the absorbance 

spectrum at 1.0 nm intervals.  The detector exposure time was tuned for each experiment 

to maximise the signal intensity without saturating the detector, but typical values would 

range from 40 to 80 ms.  The exposure time used would depend on the age of the source 

lamp and the length of the probe and its fibre-optic cables.  Each absorbance spectrum was 

the average of 100 single beam energy spectra.  The software was configured to acquire 

absorbance spectra at 1 minute intervals and to acquire a new dark spectrum before each 

measurement. 

3.1.2.2 Ultraviolet / Visible Scanning Spectrophotometer 

Description 

The Varian Cary 50 (Varian Limited, Oxford, UK) was a scanning ultraviolet / visible 

spectrophotometer.  The instrument used a focused high intensity xenon flash lamp 

operating at 80 Hz to provide a highly collimated beam.  An internal beam splitter allowed 

the instrument to use a simultaneous reference beam to correct for flash-to-flash intensity 

variation.  The fast scanning monochromator grating could operate at a maximum scan rate 

of 24000 nm.min-1 over the spectral range 190 to 1100 nm.  A fibre-optic coupler module 

was fitted in the sample compartment of the instrument to allow external probes to be 

connected using fibre-optic cables terminated with standard SMA905 connectors. 

The probe used with this instrument was a Hellma UV/ATR probe, model number 

661.822 (Hellma UK Ltd, Southend-on-Sea, UK).  The probe was constructed from 

Hastelloy C22, and was 400 mm in length with a barrel diameter of 12.7 mm.  The ATR 

sapphire prism was a three-bounce design.  The probe was fitted with integral 4.5 m fibre-

optic cables with high OH content, solarisation resistant 600 μm quartz glass cores 

terminated with standard SMA905 connectors.  The specified spectral range for the probe 

was 220 to 1100 nm. 
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Spectral acquisition parameters 

The instrument was controlled using the Cary WinUV suite of software and in this work 

the Scanning Kinetics application was used.  This allowed multiple spectra to be acquired at 

sampling intervals and spectral ranges defined by the user.  The scan parameters used to 

collect reaction spectra were configured as follows:  The scan mode was set to collect 

absorbance spectra using double beam correction.  In this mode, the spectrometer would 

collect a double beam energy spectrum and automatically convert it to an absorbance 

spectrum using a background spectrum previously acquired in air.  The scan range was 400 

to 220 nm at 1.0 nm intervals, using a scan speed of 480 nm.min-1.  The signal averaging 

time per wavelength point was set to 0.1250 seconds (equivalent to 10 lamp flashes).  The 

software was configured to acquire absorbance spectra at 1 minute intervals. 

3.1.2.3 Raman spectrometer 

Description 

The instrument used to acquire all Raman spectral data was a Kaiser Optical Systems Inc. 

Rxn1 Raman System (Clairet Scientific Ltd, Northampton, UK).  The system was a 

dispersive Raman spectrometer that used a 785 nm Invictus NIR diode laser with a 

maximum power output of 400 mW as the excitation source.  The spectrometer was 

coupled to a probe head using fibre-optic cables terminated with FC connectors.  The 

probe head allowed a variety of probe attachments such as immersion probes or non-

contact optics to be used.  The probe-head also contained an optical notch filter that 

reduceed the intensity of Rayleigh scattered light returning to the spectrometer.  The 

Raman scattered light then passed through an f/1.8 holographic imaging spectrograph.  

This comprised of a holographic notch filter that removed the remaining Rayleigh radiation 

and dispersed the Raman signal into its component wavelengths.  The dispersed light was 

then directed onto a thermoelectrically cooled (-40ºC) charged coupled device (CCD).  The 

instruments spectral range was +100 to + 3450 cm-1 with a spectral resolution of 1 cm-1. 

The probes used with this instrument were Raman immersion optics comprising of a 

Hastelloy C276 body (12.7 mm diameter) and a short focus optic protected by a sapphire 

window.  The two probes used through out this work were identical in construction but 

had barrel lengths of 300 mm or 450 mm.  Both probes were manufactured by Kaiser 

Optical Systems Inc. 
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Spectral acquisition parameters 

The instrument manufacturer’s software, HoloGRAMSTM was used for instrument setup 

and control.  The individual spectra were automatically saved in a proprietary binary format 

(.hol) but were also exported as individual Thermo Scientific GRAMS (.spc) format 

files.  The full set of reaction spectra could be loaded into HoloREACTTM and then 

exported as a single Matlab (.mat) file to facilitate further data analysis within Matlab.  

The general instrument specific parameters used to acquire spectral data were as follows:  

the exposure time and number of accumulations was set to give total acquisition time of 30 

to 45 seconds without saturating the detector.  For the N-benzylation of 1H-indole 

reactions, the exposure was set to 45 seconds and the number of accumulations was set to 

1 (a total exposure of 45 seconds).  In all experiments, intensity correction and wavelength 

calibration were applied to the raw spectra.  The cosmic ray filter and automatic acquisition 

of a new dark spectrum was disabled as this would multiply the time required to acquire 

each spectrum by a factor of four.  The laser power was set to a nominal value of 300 mW 

and the measured power at the probe focal point was 145 to 150 mW. 

3.1.3 Chromatographic instruments 

3.1.3.1 High Performance Liquid Chromatography 

High performance liquid chromatography was performed using an Agilent 1100 Series 

HPLC system (Agilent Technologies UK Ltd., Wokingham, Berkshire, UK) comprised of a 

quaternary pump module with degasser, an autosampler module, a heated column 

compartment module with column switcher and a variable wavelength detector (VWD) 

module.  The analogue output from the variable wavelength detector (VWD) was 

connected to a LabSystems ChromServer that digitised the analogue signal (0-1000 mV) 

and transferred the digitised data via Ethernet to a chromatographic data acquisition server 

(Atlas).  The Atlas software could then be used to set peak windows, name and integrate 

peaks and perform calibrations or quantitative calculations.   

The column, mobile phase solutions and method parameters are detailed in section 3.3.2.1. 
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3.1.4 Reaction vessels 

3.1.4.1 Chlorination of acetoxyone using phosphorus oxychloride 

The reaction vessel and associated equipment used for small scale laboratory experiments 

comprised of a 100 mL glass jacketed reaction vessel (Radleys, Saffron Walden, UK) with a 

Huber Ministat 230 thermoregulator unit (Huber UK, Saffron Walden UK) providing 

temperature control.  The custom glass vessel lid had five Rodavis-type necks that were 

used to accommodate various items configured as follows:  the central B19 port was used 

to accommodate a 3-blade overhead agitator, the 0º (vertical) B14 port was used to 

accommodate a Pt100 temperature probe and the remaining B19 ports were used to 

accommodate a condenser with nitrogen purge, a PTFE addition line introduced through a 

septum and a 6.35 mm diameter UV-ATR probe.  The agitator was coupled to an IKA 

Werke Eurostar digital overhead stirrer (Fisher Scientific, Loughborough, UK) using a 

flexible stirrer shaft.  A Harvard Apparatus 11 plus syringe driver (Fisher Scientific, 

Loughborough, UK) was used to deliver liquid reactants such as phosphorus oxychloride at 

a constant rate.  A Contronics 2000M fume cupboard safety monitor was used to monitor 

the water flow to condenser.  This would switch off the Huber unit if the water supply to 

the condenser failed, preventing evaporation of the reaction mixture.  The configuration of 

the reaction vessel and probes is illustrated in Figure  3.1. 
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 Overhead stirrer with 
flexible stirrer shaft 

 6.35 mm diameter 
UV-ATR probe 

  

 

Huber thermoregulator Syringe pump 100 mL reaction 
vessel  

Contronics fume 
cupboard safety 
monitor 

 

 

Bubbler for nitrogen purge 
 
Agitator shaft 

Condenser 
 
Pt100 temperature probe 

 
PTFE addition line coupled to syringe 
for charging liquid reactants 
 

 

Bottom run-off valve 
 

 

Figure  3.1:  Reaction vessel and equipment as configured to perform the laboratory scale reactions 
for the chlorination of acetoxyone.  
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3.1.4.2 N-benzylation of 1H-indole using benzyl bromide 

The reactions for these experiments were carried out in a 100 mL glass jacketed reaction 

vessel described in the previous section.  The ports on the vessel head were used to 

accommodate an overhead agitator, a water-cooled condenser, a 12.7 mm diameter 

UV/ATR probe and a 12.7 mm diameter Raman immersion probe.  The final port was 

fitted with a PTFE addition line passing through a septum to allow the addition of benzyl 

bromide via a syringe.  The line was also used to take samples for off-line analysis.  A 

Contronics 2010M fume cupboard safety monitor was used to monitor the water flow to 

condenser.  This would switch off the Huber unit if the water supply to the condenser 

failed.  The equipment configuration is shown in Figure  3.2. 

 

Bubbler for nitrogen purge 

12.7 mm diameter Raman immersion 
probe 

Condenser 

Pt 100 temperature probe 

Syringe and PTFE addition line for 
charging benzylbromide 

12.7 mm diameter UV/ATR probe 

 

 

 

Figure  3.2:  Reaction vessel and equipment as configured to perform the N-benzylation of 1H-indole 
reactions. 
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3.1.5 Computers and software 

All Matlab scripts and data analysis were performed using Matlab 7.0.1 [R14] (The 

Mathworks, Natick, MA, USA) running on a Toshiba Satellite Pro 6100 laptop computer 

(Intel® Pentium ® 4 processor, 2.GHz, 1Gb RAM, Windows XP Professional).  The 

Eigenvector PLS Toolbox (version 3.5, Eigenvector Research, Inc., Washington, USA) was 

used for data pre-processing and preliminary data analysis.  The GRAMS PLSplus/IQ 

toolbox (Thermo Scientific, Waltham, MA, United States) was also used to transfer and run 

PLS calibration models on the spectroscopic instruments. 

3.1.6 Visual Basic program used to prepare Cary 50 UV/Vis data 

The original format of the UV data exported by the Varian Cary 50 software was a comma 

separated variable (.csv) file that stores the wavelength variable number and the 

corresponding absorbance values in adjacent columns.  For a data set of N samples, the file 

would comprise of N pairs of columns containing the wavelength variables and the 

corresponding absorbance values for that sample.  Although it was a simple procedure to 

directly import the data into Matlab and remove every alternate column, there were 

additional complications.  Whilst acquiring data, the instrument software allowed the user 

to plot a kinetic profile at a single wavelength.  Unfortunately, each time a profile was 

viewed, two additional columns were inserted into the data file.  The first column 

contained the time at which each spectrum was acquired, and the second column contained 

the corresponding absorbance values at the selected wavelength.  Finally, as the instrument 

used a scanning monochromator, it would occasionally skip a wavelength variable (for 

example … 284 nm, 283 nm, 282 nm, ( ), 280 nm …).  This would cause the columns of 

data for that spectrum to become misaligned with previous columns. 

To overcome these issues, and to provide a solution to other users who did not have access 

to Matlab, an easy to use Visual Basic 6 program was written to automatically filter and 

convert the data into a convinient format.  The program was compiled into a stand-alone 

executable file which could be installed onto any Windows based PC.  By writing a 

standalone application to automate this task, the risk of accidentally removing valid data 

points would be eliminated.  Furthermore, other users of the instrument could also use the 

application to prepare their data for subsequent data analysis without being required to 

manually format or edit the data.  The output of this program is a row-orientated data 

matrix.  The first row of the processed data file contains the wavelength variable labels and 

the first column contains the sample numbers.  All unwanted columns (such as those 
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generated by time profiles or duplicated wavelength variables) are detected and removed 

and the data then correctly aligned to compensate for any missed data points.  The filtered 

data file is then saved as a comma separated variable text file with the extension (.uvd) 

that could then be imported into Matlab or Umetrics SIMCA for further analysis.   

3.1.7 Custom Matlab scripts 

Most multivariate data analysis was performed using Matlab and many custom scripts 

(functions) were written throughout the course of this research.  Some scripts were written 

to facilitate the automation of simple pre-processing or data formatting tasks, others were 

written to perform calculations using specific algorithms published in the literature.  The 

Matlab scripts for the various functions referenced in this thesis are included in Appendix 

II.  To aid the reader, the code contains many comment lines describing the variables and 

calculations used and a detailed overview of each script is provided in the following 

section.  The default command line syntax will be shown for each script. The input / 

output arguments shown in italic font are optional, whilst those shown in regular font are 

mandatory. 

Table  3.2: Summary of Matlab functions. 

Matlab Function name Description Section 
ResidualComps.m Visualisation of PCA residual spectra 3.1.7.1 
OPA.m Orthogonal projection approach 3.1.7.2 
MedianFilter.m Moving window median filter 3.1.7.3 
IPBS.m Iterative polynomial baseline subtraction 3.1.7.4 
LinearKF.m Linear Kalman filter (scalar 

implementation) 
3.1.7.5 

AdaptiveKF.m Adaptive Kalman filter (scalar 
implementation) 

3.1.7.6 

VecLinearKF.m Vectorised Kalman filter 3.1.7.7 
VecAdaptiveKF.m Vectorised adaptive Kalman filter 3.1.7.8 
VVSP.m Vertex vector sequential projection  3.1.7.9 
VAKFISO.m Vectorised adaptive Kalman filter with 

iterative spectral optimisation 
3.1.7.10 
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3.1.7.1 Visualisation of PCA residual spectra (ResidualComps.m) 

Function 

The function of this simple script is to perform PCA (specifically SVD) on a data set.  

Using the singular values and eigenvectors calculated, the data is re-constructed using an 

increasing number of components, up to a maximum number of principal components 

specified by the user.  The main benefit of this function is that it will display the re-

constructed data alongside the corresponding residual data calculated using a different 

number of principal components.  This allows the contribution of each new principal 

component to be assessed visually.  For each principal component, the residual sum-of-

squares are calculated and plotted versus principal component number to provide a 

numerical indication of the information contributed by each additional component.  The 

user can then specify the number of principal components to use to re-construct the data, 

and the reduced data is written to the Matlab workspace.  This is useful way to filter or 

clean up data prior to further analysis. 

Input arguments 

[Data] is a 2-dimensional array of data.  The dimensions of this data matrix are ( )I J×  

where I is the number of observations (samples or time points) and J  is the number of 

experimental variables (e.g. wavelengths).   

[maxcomps] is the maximum number of principal components to be used. 

[fig_num] is the figure filename prefix to store the resulting figures.  For example, if 

the user enters 'figure6', the resulting figure will be saved as 'figure6.fig' and 'figure6.emf'. 

[Xaxis] is the vector containing the x-axis scale. 

[Xlabel] is a string variable to used as the x-axis label on the plots generated by the 

script, e.g. 'wavelength (nm)' 

[Ylabel] is a string variable to used as the y-axis label on the plots generated by the 

script, e.g. 'Absorbance'. 

Output arguments 

[RegenData] is the reduced data set re-constructed using the number of principal 

components specified by the user during the execution of the function. 
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Overview of ResidualComps.m 

The script will perform some simple checks of the input arguments to ensure that string variables are used for the x- 
and y-axis labels; the size of the x-axis scale matches the dimensions of the data and that the maximum number of 
components is specified by the user. 

Command line syntax 
[RegenData] = ResidualComps(Data, maxcomps, fig_num, Xaxis, Xlabel, 
Ylabel) 

1. Determine number of full figures, nfig, required to plot re-constructed data based upon number 
maximum number of principal components specified by user. 

The default is 4 subplots (2 PCs) per figure, so 8 PCs would require 4 full figures 

2. Determine number of subplots, nplotsfinal, required for a partially filled figure.  For example 9 
PCs would require 4 complete figures (with 4 subplots each) and 2 subplots in the final figure. 

3. Perform singular value decomposition (SVD) on data.  Store U, S, V 

4. Set figurecounter=1 

5. Outer loop (increment from n=1 to n=nfig, step size 1) 

nfig is the number of figures with 4 subplots required. 

 6. Open new figure 

 7. Inner loop (increment from i=(n*2)-2+1  to  i=(n*2)) 

  8. Re-construct data using i principal components 

X=U*S*V’, use first i columns of U and V and first i rows and columns of S 

  9. Calculate residual 
E=Data–X 

  10. Calculate residual sum-of-squares 
SSQ(i)=trace(E’*E) 

  11. Plot X and E  

 12. Return to 7 

 13. Save figure 

14.  Return to 5 

15. If nplotsfinal > 0 

loop (increment from i=(n*2)-2+1 to i=((n-1)*2)+nplotsfinal) 

 16. Repeat steps 8 to 11 using i principal components  

17. Return to 15 

18. Plot residual sum-of-squares versus principal component number 

Save figure 

19. User input ncomp:  Number of principal components to use when re-constructing data 

20. Re-construct data using ncomp principal components (calculated as shown in step 8)  

21. Save output variables to workspace 
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3.1.7.2 Orthogonal Projection Approach (OPA.m) 

Function 

The function of this script is to search a two-dimensional array of data, such as that 

obtained from a spectroscopic reaction monitoring experiment for estimates of the 

underlying pure component spectra (or other instrument response profile) using the 

Orthogonal Projection Approach (described previously in section 2.4)[25, 89, 98-100].  The 

function does not perform subsequent ALS calculations to optimise the pure component 

spectra or concentration profiles as this can be achieved using other functions. 

Input arguments 

[Data] is a 2-dimensional array of evolutionary experimental data such as spectra 

acquired during a reaction monitoring experiment.  The dimensions of this data matrix are 

( )I J×  where I  is the number of observations (samples or time points) and J  is the 

number of experimental variables (wavelengths, response variables).   

[N]is the number of OPA components to calculate.   

[plotting] allows the user to specify whether results are plotted.  Plotting is 'off' when 

plotting=0 and 'on' when plotting=1. 

Output arguments 

[PureSpec] is a ( )J N×  matrix of pure component spectra located using OPA.  

[Dissim] is an ( )I N×  matrix containing the calculated dissimilarity values for each 

spectrum as it compared with the previously located reference spectra.   

[DW] is a ( 1)N ×  column vector containing the Durbin-Watson values calculated for each 

new OPA component. 

[SI] is a ( 2)N ×  matrix.  The first column stores the index (spectrum) numbers of the 

OPA pure component spectra and the second column stores the corresponding 

dissimilarity values.  
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Overview of OPA.m 

Prior to performing the main OPA calculations, the script carries out some simple error checking of the input 
arguments.  A number of appropriately dimensioned storage vectors or matrices with all elements set to zero are 
then created. 

Command line syntax 
[PureSpec, Dissim, DW, SI] = OPA(Data, N, plotting) 

1. Calculate the mean spectrum of the input data matrix and assign to variable xs 

2. Normalise xs to unit length 

3. Assign xs as first column of Yi 

 4. Outer loop (increment from n=1 to n=N, step size 1) 

N is the number of OPA components to calculate 

  5. Inner loop (increment from i=1 to i=I, step size 1) 

I is the number of observations / spectra 

   6. If n=1, set spectrum from row i, (xi) as second column of Yi 

If n>1, set spectrum from row i, (xi) as n-th column of Yi 

   7. Calculate the dissimilarity of spectrum xi  
Dissim(i,n) = det(Yi’* Yi) 

  8. Return to 5 (counter for i) 

  9. Identify the most dissimilar spectrum for component n from dissimilarity values 
(Dissim) 

Save index (spectrum) number in storage matrix SI(n,1) 

Save dissimilarity value in storage matrix SI(n,2) 

  10. Normalise most dissimilar spectrum identified in step 9 to unit length 
(xs_norm) 

  11. If n=1, store xs_norm as first column of Yi 

If n>1, store xs_norm as n-th column of Yi 

  12. Calculate Durbin-Watson value from the n-th column of dissimilarity matrix 
(Dissim) 

Save value in storage vector DW(n) 

 13. Return to 4 (counter for n) 

14. Plot results 

15. User input ncomp:  Number of OPA components to retain 

16.  Truncate output variables to retain first ncomp OPA components  

17. Save variables to workspace 
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3.1.7.3 Moving Window Median Filter (MedianFilter.m) 

Function 

This script will perform median filtering using a fixed sized window that moves along the 

variable direction of data vector or matrix.  The function is an implementation of the 

method for the removal of low-frequency background drift based upon a moving window 

median filter published by Moore and Jorgenson in 1993[101].  Moore and Jorgenson 

originally developed this method to remove a baseline drift from liquid chromatographic 

data.  The moving median filter is a non-linear filter that does not discriminate by 

frequency (such as the high-pass or low-pass linear digital filters based upon a fast Fourier 

transform).  The median filter will remove impulses relative to a local background signal. 

So by selection of an appropriately sized window, both low and high frequency 

components of a signal are filtered simultaneously.    

The function also permits the use of an increasingly larger (or decreasingly smaller) 

window.  This option is for testing purposes and allows the user to directly compare the 

results obtained using different window sizes.  The script will only allow a single spectrum 

to be used to test a range of window sizes. 

An optional non-negativity correction has been included to remove negative values in the 

filtered data if desired. 

Input arguments 

[Data] is a 1- or 2-dimensional array of data.  The dimension of this data matrix are       

( ),J K×  where J  is the number of observations (1 for a single spectrum or 

chromatogram) and K  is the number of experimental variables (e.g. wavelengths or 

retention times). 

[WS] is the initial window size to be used for median filtering.  [WS] must be odd-

numbered.  The user can specify a fixed window size by only entering a value for [WS]. 

[WE] is an optional input argument that allows the user to specify a final window size 

when assessing a range of windows sizes for median filtering. [WE] must be odd-

numbered.  This input argument can be omitted if filtering using fixed window size is 

required. 
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[step] is an optional input argument used with [WE] and allows the user to specify the 

increment of the window size.  This value must be an even-number.  If [WE] and 

[step] are not provided, a fixed-size window defined by [WS]will be used during 

filtering. 

[NN] is an optional input argument that allows the user to specify whether a non-

negativity correction should be applied to the filtered data.  Non-negativity is 'off' when 

NN=0 and 'on' when NN=1. 

[plotting] specifies whether the function will display plots during run-time.  Plotting 

is 'off' when plotting=0 and 'on' when plotting=1. 

Output arguments 

[Filtered] is a ( )J K×  matrix of signal component subtracted by the process of 

median filtering.  If the original signal is broad and a small window size has been applied to 

remove high frequency 'spikes', [Filtered] will be the high-frequency part of the 

signal.  If the signal contains high frequency peaks, such as FTIR or Raman spectra, and a 

large window size has been applied to remove a broad baseline contribution, 

[Filtered] will comprise of the desired Raman signal. 

[Residual] is a ( )J K×  matrix of the residual signal component after subtraction of 

the median filtered signal from the original data.  If the original signal is broad and a small 

window size has been applied to remove high frequency 'spikes', [Residual] will be the 

desired low frequency part of the signal.  If the signal contains high frequency peaks such 

as FTIR or Raman spectra, and a large window size has been applied to remove a broad 

baseline contribution, [Residual] will be the underlying baseline.   

During testing [Filtered] and [Residual] are ( )n K×  matrices where n  is the 

number of increments defined by the values of [WS], [WE] and [step]. 
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Overview of MedianFilter.m 

Prior to performing the main median filter calculations, the script carries out some simple error checking of the input 
arguments.  A number of appropriately dimensioned storage vectors or matrices with all elements set to zero are 
then created.  The following description is for normal use when a vector or matrix of data is filtered using a fixed size 
window. 

Command line syntax 
[Filtered, Residual] = MedianFilter(Data, WS, WE, step, NN, plotting) 

1. Assign original data matrix to X 

2. Set window size to WS 

3. Calculate the number of points either side of data point using window size WS  
X_win = (WS-1)/2 

4. To allow the filter to operate on the first and last x_win columns of the data, concatenate the original 
data matrix with mirror images of the first and last  x_win columns of X 
Xf=fliplr(X(:,1:x_win)) 

Xl=fliplr(X(:,end-x_win+1:end)) 

Xpad=[Xf, X; Xl]  

5. Create a zero matrix, Residual, with dimensions J*(K+2*x_win) to store the median points 

6. Loop (increment from k=(1+x_win) to k=(K+x_win), step size 1) 

K is the number of variables 

 7. Copy columns k-x_win to k+x_win from Xpad and assign to variable Subset 
Subset = Xpad(:,k - x_win:k + x_win) 

 8. Sort each row of Subset into ascending order 
Subset=sort(Subset’) 

 9. Assign the column of centre points (median values) from the ordered submatrix Subset 
to the matrix Residual 
Residual(:,k) = Subset(x_win + 1)’ 

10. Return to 6 (counter for k) 

11. Remove the padded columns from Xpad and Residual that were added in step 4 

12. Calculate the filtered data (Filtered) by subtracting the median values (Residual) from the 
original data 
Filtered = X – Residual;  

13. Plot results and save variables to workspace 
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3.1.7.4 Iterative Polynomial Baseline Subtraction (IPBS.m) 

Function 

The function of this script is to automatically subtract a broad, complex baseline from 

Raman or FTIR spectra.  The method (described in section 2.12) is an extension of the 

automated method for subtraction of fluorescence from Raman spectra published by 

Lieber and Mahadevan-Jansen[97].  This method calls the Matlab script 

MedianFilter.m to first calculate an initial estimate of the baseline spectrum.  The 

IPBS algorithm then proceeds to iteratively fit and refine this estimate by sequentially 

fitting a polynomial function to each sub-window of the data.  The entire baseline spectrum 

is corrected during each iteration to preserve the original Raman features and non-

negativity. 

Input arguments 

[D] is a ( )J K×  matrix or (1 )K×  vector containing the spectra or spectrum to be 

processed. 

[n] is the degree of the polynomial function to be used when fitting the data.  The 

minimum value is n=1, the maximum value is n=10, default value is n=4. 

[Tol] is the convergence tolerance to be used when iteratively refining the estimates of 

the polynomial baseline.  The default value is Tol=1E-03.  Convergence is calculated as 

the sum-of-squares residual between two consecutive estimates of the background 

function.   

[win] is the window size to be used when fitting the polynomial baseline.  This value may 

be an odd- or even-number. 

[MFwin] is the window size to be used when applying median filtering to obtain an initial 

estimate of the underlying baseline function.  This number must be an odd-number. 

[OLP] is the overlap parameter and defines the fraction of the data in the previous 

window to be added to the current window.  The total size of the window used to fit the 

polynomial function then becomes win+(win×OLP).  The value of [OLP] must be in 

the range 0.00 to 1.00.  Note: a value of 1.00 is equivalent to doubling the size of [win].  

The default value is OLP=0.20. 
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[PlotOn] allows the user to specify whether plotting during runtime is 'off' 

(PlotOn=0) or 'on' (PlotOn=1).   

Output arguments 

[IPBS_OUTPUT] is a structured array generated by this script to store the various 

outputs listed below. 

[.CorrSpec] is a ( )J K×  matrix or (1 )K×  vector containing the processed spectra 

after subtraction of the baseline. 

[.Baseline] is a ( )J K×  matrix or (1 )K×  vector containing the fitted baselines 

subtracted from the original data. 

[.MF_Residual] is a ( )J K×  matrix or (1 )K×  vector containing the initial estimates 

of the baselines provided by median filtering of the unprocessed spectra.  

[.MF_Filtered] is a ( )J K×  matrix or (1 )K×  vector containing the processed 

spectra after median filtering.  

[.MF_CorrSpec] is a ( )J K×  matrix or (1 )K×  vector containing the processed 

spectra after subtraction of a polynomial baseline estimated during the first iteration.  This 

allows the user to compare the spectra obtained by subtraction of a polynomial baseline 

with the spectra obtained by median filtering.   

[.MF_Baseline] is a ( )J K×  matrix or (1 )K×  vector containing the polynomial 

baselines estimated during the first iteration.  This allows the user to compare the baselines 

calculated by polynomial fitting with the baselines obtained by median filtering.   
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Overview of IPBS.m 

Prior to performing the iterative polynomial fitting, the script carries out some simple error checking of the input 
arguments.  A number of appropriately dimensioned storage vectors or matrices are then created.  If the user has not 
provided all input arguments, the various optional inputs are set to the default values.  

Command line syntax 
IPBS_OUTPUT = IPBS(D, n, Tol, win, MFwin, OLP, PlotOn); 

1. First perform moving window median filtering using the window width defined by MFwin. The Matlab 
function MedianFilter.m is called using the following command. 
[MF_Filtered, MF_Residual]=MedianFilter(D, MFwin,[],[],[],1); 

2. Outer loop (increment from j=1 to j=J, step size 1) 

J is the number of spectra 

 3. Reset initial convergence for spectrum j:  Convergence=1000; 

Reset iteration counter for spectrum j:  Counter=1; 

Initialise vector to store new estimate of baseline:  EBG_new=zeros(1,K);  

Initial estimate of the baseline from MF:  EBG_old=MF_Residual(j,:);   

 4. Whilst Convergence is greater than the convergence tolerance,  
While Convergence > Tol  

  5. Reset counter used to identify first window from subsequent windows 
WinCounter=1; 

  6. Loop to move sub-window through spectrum with step size win 

(Increment from w=1 to w=(nwin-1)*win, step size win) 

   7. Create variable index vector for sub-window w and create matrix M 
used to calculate polynomial coefficients. OL is the number of 
overlap points from previous window to be used. 

If WinCounter=1 
     x=1:1:(1+win-1); x=x'; 

     M=zeros(win,n+1); 

If WinCounter>1 
     x=w-OL:1:(w+win-1); x=x'; 

     M=zeros(win+OL,n+1); 

   8. Populate M with correct values (1 + x + x2 + x3 + x4 …). n is the 
degree of the polynomial 
M(:,1)=1; 

for p=1:n 

     M(:,p+1)=x.^p; 

end 
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   9. If the iteration counter (Counter) is 1, use data from median filter 
baseline, otherwise use previous estimate of baseline function 

if Counter=1 
     Dj=MF_Residual(j,:); 

if Counter>1 
     Dj=Baseline(j,:);        

   10. Create subwindow Dw and populate with data from current window 
w and overlap points from previous window 

if WinCounter=1 
     Dw=zeros(1,win); 

     Dw(1,1:win)=Dj(1,1:win); 

     Ds=D(j,1:win); 

if WinCounter>1 
     Dw=zeros(1,win+OL); 

     Dw(1,1+OL:win+OL)=Dj(1, w:w+win-1); 

     Dw(1,1:OL)=EBG_new(1,w-OL:w-1); 

     Ds=D(j,x); 

   11. Calculate polynomial coefficients A for subwindow Dw 
A=M\Dw'; 

   12. Estimate background for window w, using polynomial coefficients A 
EBG=(M*A)'; 

   13. Correct estimate EBG to preserve Raman features and non-
negativity. 

A difference spectrum is calculated by subtracting EBG from the 
original data Ds over the same window,  
Diff=Ds-EBG;  

Find vector of indices (z) where Diff is less than zero 
z=find(Diff<0); 

Update those values of EBG where Diff is less than zero 
EBG(z)= Ds(z); 

Find vector of indices (z) where EBG is less than zero 
z=find(EBG<0); 

Update those values of EBG where EBG is less than zero 
EBG(z)= Ds(z);   

   14. Copy updated window to vector storing the full spectrum baseline  
EBG_new(1,x)=EBG; 

   15. Update window counter  
WinCounter = WinCounter+1 

  16. Return to 6 (counter for w) 

  17. Calculate convergence 
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  18. Update estimates of the full baseline spectrum 
Baseline(j,:)=EBG_new; 

EBG_old=EBG_new; 

  19. Update iteration counter 
Counter=Counter+1; 

  20. If maximum number of iterations has been reached, exit while loop (step 4) 

 21. Return to step 4 (while Convergence > Tol) 

22. Return to step 2 (counter for j) 

23. Calculate corrected spectrum by subtracting baseline spectrum from original data 
CorrSpec=D-Baseline 

24. Plot results and save results to output variable 
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3.1.7.5 Linear Kalman filter (LinearKF.m) 

Function 

This function is an implementation of the linear Kalman filter (section 2.8) as described by 

Rutan et al.[57, 66].  This script will run the linear Kalman filter using the first spectrum to 

calculate the Kalman gain and state parameter error covariance matrices.  These are then 

used directly in the estimation of the state parameters for the remaining measurement 

vectors.  The user can also provide Kalman gain and state parameter error covariance 

matrices calculated previously using another similar data set.  The Kalman filter will also 

run through each measurement vector (spectrum) twice.  The final estimates of the state 

parameters are propagated from the first pass and the Kalman filter will run through a 

second time to recalculate the innovations.  Although this will not improve the state 

parameter estimates, the final innovations sequence and innovations based lack-of-fit 

values will be calculated using optimised state parameters.  

Input arguments 

[S] is a ( )N K×  row matrix of reference measurement functions, such as pure 

component spectra.  N  is the number of individual components and K  is the number of 

measurement variables. 

[Z] is a ( )J K×  matrix or (1 )K×  vector of process measurement data where J  is the 

number of observations (spectra) and K is the number of measurement variables. 

[KF_options] is a structured array that can be used to provide additional optional 

input arguments.  If the user does not provide any additional input arguments, the script 

will call the default values described below. 

[.R] is an estimate of the measurement noise variance.  The default value is 0.0001.  

[.G] is a ( )N K×  matrix of Kalman gain values to be applied during Kalman filtering. 

The user may provide [G] if the Kalman filter has been run previously using the same 

reference measurement functions.  The default value is [ ] (empty field). 

[.Xin] is a ( )J N×  matrix of initial estimates of the state parameters.  Enter a row 

vector for a single measurement vector or a row orientated matrix ( J  rows) if a number of 

measurement vectors (spectra) are used.  The default value is [ ] (empty field). 
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[.EvoluOn] allows the user to specify whether the input matrix [Z] contains 

evolutionary data (such as HPLC-DAD or reaction spectra).  If the data is evolutionary, the 

values of the state parameters at measurement ( j +1) will be similar to the values of the 

state parameters at measurement .j   If EvoluOn=1, the final estimated values of the state 

parameters at sample ,j  variable k K= are propagated to be the initial estimates for sample 

( 1)j +  variable 1.k =   The default value is EvoluOn=0. 

[.Pin] is a ( )N N×  matrix of final state estimate variances to be used by Kalman filter.  

The default value is Pin=[] (empty field). 

[.Plotting] allows the user to specify whether results are plotted after Kalman 

filtering has been performed.  The default value is Plotting=1 ('on'). 

Output arguments 

[KF_output] is a structured array generated by this script to store the various outputs 

listed below: 

[.X] is a ( )J N×  matrix or (1 )N×  row vector of calculated state parameters; where J  is 

the number of observations (spectra) and N  is the number of state parameters (e.g. 

number chemical components in the system). 

[.G] is a ( )N K×  matrix of Kalman gains calculated for the first measurement vector,  

( 1)j =  and used during Kalman filtering of the remaining  ( 1)J −  measurements. 

[.V] is a ( )J K×  matrix or (1 )K×  row vector of innovation values for each iteration 

( )k of the Kalman filter.  

[.LOF] is the average measurement lack-of-fit with respect to the original data for each 

measurement .j   This produces a ( 1)J ×  column vector.  A larger value indicates that the 

Kalman filter has estimated the original measurement vector with less accuracy and is a 

good indication of the presence of an un-modelled component. 

[.Pf] is a ( )N N×  matrix that stores the final state parameter error variances (the 

diagonal elements of the error covariance matrix P ) at the K th iteration. 
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Overview of LinearKF.m 

Prior to performing the main Kalman filter calculations, the script carries out some simple error checking of the input 
arguments.  A number of appropriately dimensioned storage vectors or matrices are then created.  If the user has not 
provided the options structure [KF_options], the various optional inputs are set to the default values.  

Command line syntax 
KF_output = LinearKF(S, Z, KF_options) 

1. If user has not provided Pin, calculate initial estimate of error covariance matrix from the reference 
measurement function S: 
P = cov(S’) * eye(N)* 100 

If user has provided Pin: 
P = Pin 

2. Outer loop (increment from SecondPass=-1 to SecondPass=0, step size 1) 

 3. Inner loop (increment from j=1 to j=J, step size 1) 

J is the number of measurement vectors (spectra) to filter. 

  4. If EvoluOn=1 and j>1 

propagate state parameter estimates; 
X(j,:) = X(j-1,:) 

  5. If j>1 

Turn off calculation to update state parameter covariance matrix, P 
UpdateP = 0 

Turn off calculation to recalculate Kalman gains, G 
UpdateG = 0 

  6. Inner loop (increment from k=1 to k=K, step size 1) 

K is the number of measurement variables. 

   7. State estimate extrapolation 
X_old(j,:) = X(j,:) 

   8. Error covariance extrapolation 
P_old = P 

   9. Calculate innovations 
V(j,k) = Z(j,k) - (S(:,k)’* X_old(j,:)’) 

   10. If UpdateG = 1;  

Calculate Kalman gain for variable k 
G(:,k) = (P_old * S(:,k)) *  

     inv((S(k,:)’* P_old * S(:,k)) + R) 

   11. Update state parameter estimate, X 
g = G(:,k) 

X(j,:) = X_old(j,:) + (g * V(j,k))' 
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   12. If UpdateP = 1;  

Update state parameter error covariance matrix, P 
P = (eye(N) - (g * S(k,:)’)) * P_old *  

(eye(N)-((g * S(k,:)’)))' + (g * R * g'); 

else  
P = P_old 

  13. Return to 6 (counter for k) 

  14. Calculate spectral lack-of-fit from innovations sequence 
VSSQ = V(j,:) * V(j,:)' / (K);  

DATASSQ = Z(j,:) * Z(j,:)' /(K); 

LOF(j) = (sqrt(VSSQ / DATASSQ)) * 100; 

 15. Return to 3 (counter for j) 

16. Return to 2 (counter for SecondPass) 

17. Plot results and save variables to workspace 
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3.1.7.6 Adaptive Kalman filter (AdaptiveKF.m) 

Function 

This function is an implementation of the adaptive Kalman filter (section 2.9) as described 

by Rutan et al.[57, 66].  As with the previous script (LinearKF.m), this function will run 

through the data twice.  The state parameters are propagated from the first pass and the 

Kalman filter will run through a second time to recalculate the innovations.  This will often 

yield a small improvement of the state parameter estimates but importantly, the final 

innovations sequence and innovations based lack-of-fit values will be calculated using 

optimised state parameters.  The adaptive Kalman filter uses a moving window to adapt the 

measurement variance R  to measurement model errors that lead to larger innovations 

values.  This allows the filter to reduce the sensitivity of the state parameter update whilst 

the measurement model is in error.  The user will then have the option to augment the 

matrix of reference measurement functions with a new component, or update an existing 

reference measurement function for one of the components.  The augmentation or update 

assumes the reference measurement functions are non-negative as described by Rutan and 

Brown. 

Input arguments 

The input arguments[S] and [Z]are as previously described in section  3.1.7.5.  

[W] is the window size to be used for adapting the measurement variance estimates, Rk.  W 

must be an even-number. 

[KF_options] is a structured array that can be used to provide additional optional 

input arguments.  [.Rmin] is the minimum measurement noise variance permitted.  The 

actual measurement noise variance will be calculated adaptively during the Kalman filtering 

but the value of Rk is not permitted to drop below Rmin.  This value should be two or 

three orders of magnitude lower than the expected measurement noise variance.  The 

default value is 1.0×10-6.  The other additional input arguments are as described previously 

in section  3.1.7.5.  

Two optional input arguments that are not included in the structured array for 

AdaptiveKF.m are [.G] (matrix of Kalman gain values to be applied during Kalman 

filtering) and [.Pin] (matrix of final state estimate variances).  This is because both the 
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Kalman gain and state parameter error covariance update calculations use R , which will be 

adaptively updated during filtering and does not remain constant. 

Output arguments 

[KF_output] is a structured array generated by this script to store the various outputs 

described below: 

[.X] is a ( )J N×  matrix or (1 )N×  row vector of calculated state parameters, where J  is 

the number of observations (spectra) and N  is the number of state parameters (e.g. 

number chemical components in the system). 

[.G_ALL] is a ( )N K J× ×  array of Kalman gains calculated for each measurement 

vector.   

[.Pf_ALL] is a ( )J N×  matrix that stores the final state parameter error variances (the 

diagonal elements of the error covariance matrix P) at the K th iteration for each 

measurement vector. 

[.V] is a ( )J K×  matrix or (1 )K×  row vector of innovation values for each iteration 

( )k  of the Kalman filter.  

[.Rk] is a ( )J K×  matrix or (1 )K×  row vector of adaptive measurement error values 

calculated at each iteration.   

[.S_new] is the reference measurement function [S] after augmentation or correction 

using adaptive variance ( )Rk  values. 
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Overview of AdaptiveKF.m 

Prior to performing the main Kalman filter calculations, the script carries out some simple error checking of the input 
arguments.  A number of appropriately dimensioned storage vectors or matrices are then created.  If the user has not 
provided the options structure [KF_options], the various optional inputs are set to the default values.  

Command line syntax 
KF_output = AdaptiveKF(S, Z, KF_options) 

1. Loop (increment from SecondPass=-1 to SecondPass=0, step size 1) 

 2. Loop (increment from j=1 to j=J, step size 1) 

J is the number of measurement vectors (spectra) to filter. 

  3. If SecondPass=-1,  

Calculate initial state parameter error covariance matrix, P 
P = cov(S')*eye(N)*100 

If SecondPass=0, 

Use previously calculated P stored in 3-dimensional array Pf_ALL2 
P = squeeze(Pf_ALL2(j,:,:)) 

  4. If EvoluOn=1 and j>1 

propagate state parameter estimates; 
X(j,:) = X(j-1,:) 

  5. Loop (increment from k=2 to k=K-1, step size 1) 

K is the number of measurement variables. 

   6. State estimate extrapolation 
X_old(j,:) = X(j,:) 

   7. Error covariance extrapolation 
P_old = P 

   8. Calculate innovations 
V(j,k) = Z(j,k) - (S(:,k)’* X_old(j,:)’) 

   9. Calculate adaptive measurement variance, R 
m=W 

if m >= k 

m = k-1 

   10. Loop (increment from i=1 to i=m, step size 1) 

    11. V_sum(i)=(V(j,k-i)*V(j,k-i)) 

   12. Return to 10 (counter for i) 

   13. V_sum=sum(V_sum); 

   14. Update estimate of R, measurement error 
Rk(j,k)=((inv(m))*(V_sum)) –               

                  (S(k,:)’*P_old*S(:,k)) 

   15. Limit variance to prevent R(j,k) approaching zero as that can 
result in a singular error covariance matrix P. 

if Rk(j,k)<Rmin 
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Rk(j,k)=Rmin 

   16. Calculate Kalman gain for variable k 
G(:,k) = (P_old * S(:,k)) *  

  inv((S(k,:)’* P_old * S(:,k)) + Rk(j,k) 

   17. Update state parameter estimate X 
g = G(:,k) 

X(j,:) = X_old(j,:)+(g*V(j,k))' 

   18. Update state parameter error covariance matrix, P 
P = (eye(N)-(g*S(k,:)’)) * P_old *  

(eye(N)-((g*S(k,:)’)))'+(g*Rk(j,k)*g') 

  19. Return to 5 (counter for k) 

  20. Store state parameter error covariance matrix, P 
Pf_ALL1(j,:) = diag(P) 

Pf_ALL2(j,:,:) = P 

  21. Calculate spectral lack-of-fit from innovations sequence 
VSSQ = V(j,:) * V(j,:)' / (K);  

DATASSQ = Z(j,:) * Z(j,:)' /(K); 

LOF(j) = (sqrt(VSSQ / DATASSQ)) * 100; 

 22. Return to 2 (counter for j) 

23. Return to 1 (counter for SecondPass) 

24. User selects from following options 

'Press (1) to Augment the Reference Measurement Function' :  Calls subfunction Augment 

'Press (2) to Modify a component of Reference Measurement Function':  Calls subfunction Update 

'Press (3) to make no change to the Reference Measurement Function' :  goto End 
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Overview of Augment and update 

These subfunctions are called during AdaptiveKF function and will augment the reference measurement function 
with an estimate of the un-modelled component using the adaptive variance values in Rk, or update an existing 
estimate. The measurement number with the largest lack-of-fit value, LF_Index is used for calculations.  

Command line syntax 
[S_new]=augment(V,Rk,S,W,LOF_Index) 

[S_new]=update(V,Rk,S,W,LOF_Index) 

The first loop (steps 1 to 7) will calculate the value of Bk for each variable k.  This is used to calculate the average 
sign of the innovations values. 

1. Loop (increment from k=2 to k=K-(W/2)-1, step size 1) 

 2. m=W 

if m >= k 

m = k-1 

 3. Loop (increment from i=1 to i=m, step size 1) 

  4. Calculate average value of b 
b(i)=V(LOF_Index,k-i+(floor(m/2)))/m 

 5. Return to 3 (counter for i) 

 6. b_sum=sum(b); 

if b_sum > 0;  Bk(k)=1; 

if b_sum < 0;  Bk(k)=-1; 

7. Return to 1 (counter for k) 

The second loop (steps 8 to 12) will perform the calculations to augment or update the reference measurement 
function 

8. Loop (increment from k=2 to k=K-(W/2)-1, step size 1) 

 9. m = W 

if m >= k 
m = k-1 

 10. If subfunction augment is called 

if Bk(k)=1 
S_Aug(k)=Bk(k)*(sqrt(Rk(LOF_Index, k+(floor(m/2))))) 

If Bk(k)~=1 
S_Aug(k)=0 

If subfunction update is called, n is the reference spectrum to update 
S_new=S 

S_new(n,k)=S(n,k)+Bk(k)*(sqrt(Rk(LOF_index,k+(floor(m/2))))) 

if S_new(n,k)<0 
S_new(n,k)=0 

11. Return to 8 (counter for k) 

12. Augment reference measurement function (augment only); S_new=[S;S_Aug] 
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3.1.7.7 Vectorised Linear Kalman filter (VecLinearKF.m) 

Function 

This is a vectorised implementation of the linear Kalman filter described in section 2.10.  

The Kalman filter calculations have been vectorised so if the user specifies a matrix of 

measurement data, the entire matrix of state parameter estimates will be updated at each 

iteration (variable k).  The vectorised Kalman filter will produce identical results to the 

standard Kalman filter for the same data set ,Z  reference measurement functions S  and 

measurement noise variance .R   However the script will run much faster.  The user can 

also provide Kalman gain and state parameter error covariance matrices calculated 

previously.  The script will run through the data twice.  The state parameters are 

propagated from the first pass and the Kalman filter will run through a second time to 

recalculate the innovations.  This will provide a better estimate of the final innovations 

(spectral) lack-of-fit calculated using optimised state parameters. 

Input arguments 

The input arguments [S] and [Z] have been described previously in sections  3.1.7.5 and 

 3.1.7.6.  [KF_options] is a structured array that can be used to provide additional 

optional input arguments.  The optional input arguments [.R], [.G], [Xin], [.Pin] 

and [.Plotting] are identical to those described in sections  3.1.7.5 and  3.1.7.6.  

Output arguments 

[KF_output] is a structured array generated that stores the following outputs; [.X], 

[.G], [.V], [.Pf] and [.LOF].  The output variables are identical to those described 

previously in section  3.1.7.5. 
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Overview of VecLinearKF.m 

Prior to performing the main Kalman filter calculations, the script carries out some simple error checking of the input 
arguments.  A number of appropriately dimensioned storage vectors or matrices are then created.  If the user has not 
provided the options structure [KF_options], the various optional inputs are set to the default values.  

Command line syntax 
KF_output = VecLinearKF(S, Z, KF_options) 

1. If user has not provided Pin, allow KF to update P. 
UpdateP = 1 

If user has provided Pin: 
UpdateP = 0 

2. Outer loop (increment from SecondPass=-1 to SecondPass=0, step size 1) 

 3. If UpdateP = 1,  

Calculate initial state parameter covariance matrix, P 
P = cov(S')*eye(N)*100 

If UpdateP = 0,  

Use Pin provided by user 
P = Pin 

 4. Inner loop (increment from k=1 to k=K, step size 1) 

K is the number of measurement variables. 

  5. State estimate extrapolation (entire matrix is extrapolated) 
X_old = X 

  6. Error covariance extrapolation 
P_old = P 

  7. Calculate innovations vector 
V(:,k)=Z(:,k)-(X_old*S(:,k)) 

  8. If UpdateG = 1;  

Calculate Kalman gain for variable k 
G(:,k) = (P_old * S(:,k)) * inv((S_trans(k,:) 

            * P_old * S(:,k)) + R) 

  9. Update matrix of state parameter estimates, X 
g = G(:,k) 

X=X_old + (V(:,k)*g') 

  10. If UpdateP = 1;  

Update state parameter error covariance matrix, P 
P = (eye(N) - (g * S(k,:)’)) * P_old *  

(eye(N)-((g * S(k,:)’)))' + (g * R * g'); 

If UpdateP = 0;  
P = P_old 

 11. Return to 4 (counter for k) 

 12. After first pass, turn off update of P and G 
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UpdateP=0  

UpdateG=0 

Store final estimate of error covariance matrix 
Pf=P 

13. Return to 2 (counter for SecondPass) 

14. Calculate spectral lack-of-fit from innovations sequence 
VSSQ=sum((V.^2),2)/(K) 

DATASSQ=sum((Z.^2),2)/(K) 

LOF = (sqrt(VSSQ ./ DATASSQ))*100 

15. Plot results and save variables to workspace 
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3.1.7.8 Vectorised Adaptive Kalman filter (VecAdaptiveKF.m) 

Function 

This function is a vectorised implementation of the adaptive Kalman filter described in 

section 2.10.  The Kalman filter calculations have been vectorised so if the user specifies a 

matrix of measurement data, the entire matrix of state parameter estimates will be updated 

during each iteration (variable k ).  The vectorised adaptive Kalman filter will produce 

identical results to the original Kalman filter for the same data set ,Z  reference 

measurement functions S  and measurement noise variance .R   However the script will 

run much faster as a consequence of vectorisation.  The script will run through the data 

twice; the state parameters are propagated from the first pass and the Kalman filter will run 

through a second time to recalculate the innovations.  This will provide a better estimate of 

the final spectral lack-of-fit calculated using optimised state parameters.  Unlike the original 

adaptive Kalman filter 'AdaptiveKF.m', the user is not given the option to augment the 

matrix of reference measurement functions with a new component, or update an existing 

reference measurement for one of the components.    

Input arguments 

The input arguments [S], [Z]and [W] have been described previously in section  3.1.7.6. 

[KF_options] is a structured array that can be used to provide additional optional 

input arguments.  The optional input arguments [.Rmin], [Xin] and [.Plotting] 

are identical to those described in sections  3.1.7.5 and  3.1.7.6.  Two optional input 

arguments that are not included in the structured array for VecAdaptiveKF.m are 

[.G] and[.Pin].  This is because both the Kalman gain and state parameter error 

covariance update calculations use R , which will be adaptively updated during filtering and 

does not remain constant. 

Output arguments 

[KF_output] is a structured array generated by this script to store various outputs 

arguments. [.X], [.V], [.Rk] and [.LOF] are identical to the output arguments 

described previously in section  3.1.7.6.  [.G] and[.Pf] are identical to the output 

arguments described in section  3.1.7.7. 
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Overview of VecAdaptiveKF.m 

Prior to performing the main Kalman filter calculations, the script carries out some simple error checking of the input 
arguments.  A number of appropriately dimensioned storage vectors or matrices are then created.  If the user has not 
provided the options structure [KF_options], the various optional inputs are set to the default values.  

Command line syntax 
KF_output = VecAdaptiveKF(S, Z, W, KF_options) 

1. Outer loop (increment from SecondPass=-1 to SecondPass=0, step size 1) 

 2. If SecondPass=-1,  

Calculate initial state parameter covariance matrix, P 
P = cov(S')*eye(N)*100 

If SecondPass=0,  
P = Pf 

 3. Inner loop (increment from k=2 to k=K, step size 1) 

K is the number of measurement variables. 

  4. State estimate extrapolation (entire matrix is extrapolated) 
X_old = X 

  5. Error covariance extrapolation 
P_old = P 

  6. Calculate innovations vector 
V(:,k)=Z(:,k)-(X_old*S(:,k)) 

  7. Calculate adaptive measurement variance, R 
m=W 

if m >= k 
m = k-1 

  8. Initialise storage matrix V_sum to zeros 
V_sum=zeros(J, m) 

  9. Loop (increment from i=1 to i=m, step size 1) 

   10. Square each element in the adaptive variance window  
V_sum(:,i)=(V(:,k-i).*V(:,k-i)) 

  11. Return to 9 (counter for i) 

  12. V_sum2=sum(V_sum, 2); 

  13. Calculate vector of measurement errors Rk for variable (index) k 
Rk(:,k)=(inv(m).*V_sum2') – 

                   (S_trans(k,:)*P_old*S(:,k)) 

  14. Find maximum value of Rk to use in update of Kalman gain 
Rnew=max(Rk(:,k)) 

  15. Limit variance to prevent Rnew approaching zero as that can result in a 
singular error covariance matrix P. 

if Rnew<Rmin 
Rnew=Rmin 
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  16. Calculate Kalman gain for variable k 
G(:,k) = (P_old * S(:,k)) * inv((S_trans(k,:) 

            * P_old * S(:,k)) + Rnew) 

  17. Update matrix of state parameter estimates, X 
g = G(:,k) 

X=X_old + (V(:,k)*g') 

  18. Update state parameter error covariance matrix, P 
P = (eye(N) - (g * S(k,:)’)) * P_old *  

(eye(N)-((g * S(k,:)’)))' + (g * Rnew * g') 

 19. Return to 3 (counter for k) 

 20. Store final estimate of error covariance matrix 
Pf=P 

21. Return to 1 (counter for SecondPass) 

22. Calculate spectral lack-of-fit from innovations sequence 
VSSQ=sum((V.^2),2)/(K) 

DATASSQ=sum((Z.^2),2)/(K) 

LOF = (sqrt(VSSQ ./ DATASSQ))*100 

23. Plot results and save variables to workspace 
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3.1.7.9 Vertex Vector Sequential Projection (VVSP.m) 

Function 

This function will perform Vertex Vector Sequential Projection analysis on a two-

dimensional data array using the algorithm described by Wang et al.[95, 96] (section 2.7).  The 

main principle of VVSP is that after p-normalisation (where p>1), all points in a two-way 

data matrix lie on a polyhedral hyper-"spherical" surface, with the pure variables (spectra) 

forming the vertices (vertex vectors).  A certain quadratic expression 

( ) ( )T T T
j j jf = ⋅ ⋅w y A y  is maximised at those spectra that form the vertex vectors, allowing 

the closest estimates of the pure component spectral profiles to be located.  To aid the 

selection of the number of components to retain the Durbin-Watson values (a measure of 

autocorrelation) are calculated using the vector of quadratic values ( )f w  used to locate 

each successive VVSP component.  The log10 of projection residuals sum-of-squares is also 

calculated for each component.  The measurement data X  is assumed to have a bilinear 

model .T= +X CS E   This function does not apply constrained alternating least squares to 

refine the initial estimates of C  or .TS    

Input arguments 

[X] is the row-orientated 2-way data matrix with dimensions ( )J K×  where J  is the 

number of sample or observations and K  is the number of variables. 

[NL] is the number of VVSP pure component profiles to initially locate.  

[NR] is the number of VVSP pure component profiles to retain. 

[p_norm] is the type of spectral normalisation to apply during VVSP analysis. 

Acceptable values are:  [p_norm]=2, normalise to unit length; [p_norm]=inf, 

normalise to maximum value = 1 (normalise height).  [p_norm] may also have values of 

3, 4, 5 but this type of normalisation is uncommon. 

[plotting] allows the user to specify whether plotting is 'off' ([plotting]=0) or 

'on' ([plotting]=1). 
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Output arguments 

[VVSP_output] is a structured array containing the following output variables: 

[.X] is the workspace variable name of data matrix that VVSP was applied to. 

[.p_norm] is the value of p-normalisation applied to the original spectra. 

[.Sopt] is a ( )K NR×  matrix of VVSP pure component spectral profiles. 

[.Copt] is a ( )J NR×  matrix of concentration profiles estimated using least-squares. 

[.SI] is a ( 2)NR×  matrix storing the spectrum number (column 1) and corresponding 

( )f w  value (column 2) for each retained VVSP spectrum. 

[.fw] is a ( )J NR×  matrix storing the vector of solutions to the quadratic expression 

( ) ( ) ,T T T
j j jf = ⋅ ⋅w y A y  calculated for each VVSP component. 

[.fwNorm] is a ( )J NR×  matrix storing the normalised vector of ( )f w  values.   

[.DW] is a ( 1)NL×  vector storing the Durbin-Watson value for each VVSP component 

and is calculated from the corresponding vector of ( )f w  values. 

[.PR] is a ( 1)NL× vector storing the logarithmic SSQ projection residuals calculated for 

each new VVSP component located. 
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Overview of VVSP.m 

Prior to performing the main VVSP calculations, the script carries out some simple error checking of the input 
arguments.  A number of appropriately dimensioned storage vectors or matrices are pre-allocated. 

Command line syntax 
VVSP_output = VVSP(X, NL, NR, p_norm, plotting) 

1. Loop (increment from j=1 to j=J, step size 1) 

J is the number of spectra (row) in the data matrix X. 

 2. First normalise each spectrum in the original data matrix X using p-normalisation defined by 
p_norm.  Also create a vector of 1-norms 
u_norm_s(j) = norm(X(j,:),1) 

p_norm_s(j) = norm(X(j,:),p_norm) 

Y(j,:) = X(j,:)./ p_norm_s(j) 

3. Return to 1 (counter for j) 

4. Identify the largest 1-norm value from u_norm_s and store spectrum index and 1-norm value in first 
row of SI 
[SI(1,1), SI(1,2)]=max(u_norm_s)  

5. Normalise the spectrum with largest 1-norm to give r.  The spectrum is normalised using the 1-norm 
r = X(SI(1,2),:) ./ u_norm_s(SI(1,2)) 

6. Find the spectrum 1z  that maximises 
2

T T
j−r y  

Calculate the residual between the spectrum r and each p-normalised spectrum in Y. 
R=repmat(r,J,1) 

E=R-Y 

7. Loop (increment from j=1 to j=J, step size 1) 

 8. Calculate the p-norm of each spectrum in the residual matrix E. 
ResidNorm(j)=norm(E(j,:),p_norm)  

9. Return to 7 (counter for j) 

10. Select the spectrum with largest residual p-norm and store as column vector in Z. 
[SI(1,1), SI(1,2)]=max(ResidNorm); 

Z=Y(SI(1,2),:)' 

11. Now that the first spectrum has been selected, can start the loop to find NL VVSP spectra. 

Loop (increment from m=1 to m=NL, step size 1) 

 12. Calculate null matrix for the vectors in Z 
A=eye(K)-(Z*pinv(Z)) 

 13. Use matrix expression to calculate ( )f w  for each normalised spectrum in Y 

fw(:,m) = (diag(Y*A*Y'))  

Normalise each column of fw 
fwNorm(:,m) = fw(:,m) ./ norm(fw(:,m),2) 

 14. Find maximum value and concatenate to Z (unless m=1) 

[SI(m,1), SI(m,2)]=max(fw(:,m)).  Store spectrum number and fw value 
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Z(:,1)=Y(SI(m,2),:)'                Replace first spectrum if m = 1 

Z=[Z, Y(SI(m,2),:)']                Concatenate to Z if m > 1 

 15. Calculate Durbin-Watson value for vector of ( )f w  values 

fw_diff = diff(fw(:,m))  

fw_diff = [fw_diff; 0]  

fw_SSQ  = fw(:,m)' * fw(:,m) 

fw_diff_SSQ = fw_diff' * fw_diff 

DW(m,1) = fw_diff_SSQ ./ fw_SSQ 

 16. Calculate the log10 of the projection residual sum-of-squares, PR 

Re-calculate the null matrix A using updated Z 
A=eye(K)-(Z*pinv(Z)) 

Calculate the projection residuals using original data 
XA=X*A 

Calculate the log10 value of the projection residuals sum-of-squares 
PR(m,1)=log10(trace(XA'*XA)) 

17. Return to 11 (counter for m) 

18. If NR is not provided as an input argument, ask user to specify the number of VVSP components to 
retain.  Truncate Z, fw, fwNorm and SI to retain only first NR VVSP components  

19. Calculate the concentration profiles using least-squares 
Sopt=Z 

Copt=X*pinv(Sopt') 

20. Plot results and save variables to workspace 
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3.1.7.10  Vectorised Kalman Filter with Iterative Spectral Optimisation (VAKFISO) 

Function 

The function of VAKFISO (section 2.11) is to find a matrix of reference measurement 

functions that minimise a weighted residual matrix when used to calculate the 

corresponding state parameters using the vectorised adaptive Kalman filter.  The diagonal 

elements of the state-parameter error covariance matrix will be minimised when the matrix 

of reference measurement functions accurately model the measurement data.  To find the 

set of reference measurement functions that minimise the diagonal elements of the error 

covariance matrix, the elements of a transformation matrix are optimised using Newton-

Gauss-Levenberg / Marquardt non-linear optimisation.  During each iterative cycle, a new 

estimate of the optimised transformation matrix is calculated.  Each spectrum in the matrix 

of test reference measurement functions is a linear combination of the primary 

eigenvectors spanning the spectral space.  The transformation matrix is used to transform 

the eigenvectors into test reference functions and the vectorised adaptive Kalman filter 

then allows the state-parameters of all components for all available measurement vectors to 

be calculated simultaneously.  As the matrix of test reference measurement functions 

approach a feasible solution, the diagonal elements of the state-parameter error covariance 

matrix will be minimised.  Without invoking any penalties, minimisation of the diagonal 

elements of the error covariance matrix or the residual matrix could correspond to negative 

spectra and / or negative state parameters.  To prevent this, a weighted residual matrix is 

constructed from the initial innovations matrix but also includes additional terms to 

penalise large state-estimate variances as well negativity in the test spectra and estimated 

state-parameters. 

Input arguments 

[Z] is a ( )J K×  matrix of process measurement data where J  is the number of 

observations (spectra) and K  is the number of measurement variables. 

[N] is the number of reference measurement functions (pure spectral profiles) to locate 

and optimise. 

[S] is a ( )K N×  matrix of initial estimates of the reference measurement functions.  If 

[S] is not provided, initial estimates would be obtained by applying VVSP to the data set. 
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[VAKFISO_options] is a structured array that can be used to provide additional 

optional input arguments.  If the user does not provide any additional input arguments, the 

script will call the default values described below.  The script 'VAKFISO_SetOptions' 

may be run to create an options structure with the default values. 

[.W] is window size to be used for adapting the measurement variance estimates, ( )kR k  

during adaptive Kalman filtering.  [.W] must be even-numbered. 

[.Rmin] is the minimum measurement noise variance permitted as described previously 

in sections  3.1.7.6 and  3.1.7.8. 

[.p_norm] is the type of spectral normalisation to apply during VVSP analysis or when 

calculating the state parameters using the final estimates of the reference measurement 

functions. 

[.alpha1] is a weighting coefficient applied to the original matrix of innovations 

(spectral residuals) .V  

[.alpha2] is a weighting coefficient applied to penalty term .Π   Π  corresponds to the 

sum of the diagonal elements of the state estimate error covariance matrix .P   The default 

value is 1.  Set this value to 0 if Π  should not contribute to the residual matrix used during 

NGL/M optimisation. 

[.alpha3] is a weighting coefficient applied to spectral negativity penalty term .Σ   The 

default value is 1.  Set this value to 0 if Σ  should not contribute to the residual matrix used 

during NGL/M optimisation. 

[.alpha4] is a weighting coefficient applied to state-estimate negativity penalty term .Ξ   

The default value is 1.  Set this value to 0 if Ξ  should not contribute to the residual matrix 

used during NGL/M optimisation. 

[.delta] is the shift to be added to the elements of the transformation matrix T during 

NGL/M optimisation.  A suitable value would be in the range 1.0×10-4 to 1.0×10-6. 

[.mp] is the Marquardt parameter used to prevent divergence during the NGL/M 

optimisation step.  This value is typically set to 1 or a similar value to [.delta]. 
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[.mu] is the convergence tolerance limit calculated from the total sum-of-squares of the 

weighted residual matrix .E  

[.MaxIterations] is the maximum number of iterations permitted.  The NGL/M 

optimisation will terminate if the convergence tolerance value has not been reached and the 

number of iterations performed is equal to MaxIterations. 

Output arguments 

[VAKFISO_output] is a structured array generated by this script to store the various 

outputs listed below. 

[.S0] is a ( )K N×  matrix containing the initial estimates of the reference measurement 

functions.  These will either be provided by the user or estimated by performing VVSP 

analysis. 

[.Sf] is a ( )K N×  matrix containing the final, optimised estimates of the reference 

measurement functions. 

[.X], [.Pf], [.G], [.V], [.Rk] and [.LOF] are the final outputs from the 

vectorised adaptive Kalman filter obtained by applying the normalised, final estimates of 

reference measurement functions to .Z   These output arguments have been described 

previously in section  3.1.7.8. 

[.T] is the final optimised ( )N N×  transformation matrix used to create [.Sf]. 

[.counter] is the number of iterations reached before the optimisation step was 

terminated.  Termination may have occurred because the convergence tolerance was 

achieved or because the maximum number of iterations was reached. 

[.convergence] is the final convergence value when the optimisation step was 

terminated. 

[.sigma_t] is column vector containing the standard error for each of the elements in 

the final transformation matrix [.T]. 

[.VVSP_fw], [.VVSP_fwNorm], [.VVSP_SI], [.VVSP_DW] and 

[.VVSP_PR] are the outputs from the initial VVSP analysis of Z and have been 

described in section  3.1.7.9. 
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Overview of VAKFISO.m 

VAKFISO will call two other Matlab scripts during execution.  These are called using the feval function and function 
handles are assigned to improve performance during repeated calls.  If user has not provided the options structure 
VAKFISO_options, the Matlab function VAKFISO_SetOptions will be called to provide the default 
parameter values. 

Command line syntax 
VAKFISO_output = VAKFISO(Z, N, S, VAKFISO_options) 

1. Assign function handles.  This improves performance when functions are called repeatedly. 
fh_VVSP=@VVSP 

fh_VAKF=@VecAdaptiveKF 

fh_NGLM=@NGLM 

2. If user has not provided initial estimates of the reference measurement functions, apply VVSP analysis 
and extract S0 
VVSP_output=feval(fh_VVSP, Z, N+2, N, p_norm, 0) 

S0=VVSP_output.Sopt 

If user has provided initial estimates of the reference measurement functions, assign to S0  
S0=S 

3. Obtain right singular vectors by applying Singular Value Decomposition to Z 
[U, S, V]=svd(Z, 'econ') 

Truncate V to retain first N primary singular vectors 
V_bar=V(:,1:N) 

4. Calculate initial transformation matrix T0 from normalised matrix of reference measurement functions 
S0. 
T0 = pinv(V_bar) * S0 

Vectorise the transformation matrix 
t0 = T0(:) 

5. Call the sub-function NGLM using the function handle fh_NGLM to begin optimisation process.   
[T, Jn, counter, convergence]= feval(fh_NGLM, Z, t0, V_bar, 
VAKFISO_options) 

See separate description of the NGLM sub-function. 

6. Use final estimate of T to re-estimate Sf 
Sf = V_bar * T   

7. Loop (increment from n=1 to n=N, step size 1) 

 8. Normalise the spectra in Sf using p-normalisation specified in the input argument 
p_norm  
Sf(:,n)=Sf(:,n) ./ norm(Sf(:,n), p_norm) 

9. Return to 7 (counter for n) 

10. Call the function VAKF using the function handle fh_VAKF to perform Kalman filtering using final 
estimate of S to obtain final estimate of X 
VAKF_output=feval(fh_VAKF, Sf',Z, W, KF_options) 

11. Calculate standard errors for the transformation parameters. 

Vectorise final transformation matrix 



Chapter 3.1 – Experimental: Reagents, Equipment and Matlab scripts 

 - 110 - 

t=T(:) 

Calculate the sum-of-squares SSQ of the final innovations matrix. 
SSQ=trace(V'*V) 

Calculate the number of degrees of freedom, nu 
nu=(J*K)-length(t)-(N*K) 

Calculate the standard deviation of the error in the original data  
sigma_Z = SSQ ./ nu 

Calculate the standard error for transformation parameters in T 
sigma_t = sigma_Z * sqrt(diag(inv(Jn'*Jn))) 

12. Write output variables to VAKFISO_output 

 

Overview of NGLM 

This sub-function is called from the main VAKFISO function and performs the main NGL/M calculations as written 
in the Matlab example provided by Maeder and Neuhold[22].  This function in turn calls a sub-function called 
VAKF_opt that calculates the reference measurement functions from the vectorised transformation matrix T, calls 
VAKF.m to perform the Kalman filtering and calls a sub-function called CWRM to calculate the weighted residual 
matrix.  

Command line syntax 
[T, Jn, counter, convergence]=NGLM(Z, t0, V_bar, VAKFISO_options) 

1. Assign function handle.  This improves performance when functions are called repeatedly. 
fh_VAKF_opt=@VAKF_opt 

2. Calculate initial sum-of-squares (ssq_old) using data matrix Z 
ssq_old=trace(Z'*Z) 

3. Initialise vector of transformation elements t  
t=t0 

4. Pre-allocate storage array for Jacobian matrix Jn 
Jn=zeros((J*K),(N*N)) 

5. Initialise iterations counter and Marquardt parameter 
counter = 0 

mpp=mp 

6. Loop until break 

 7. First call of VAKF_opt to calculate vector of residuals re0 using initial values of t 
re0 = feval(fh_VAKF_opt, Z, V_bar, t, VAKFISO_options) 

 8. Calculate sum-of-squares from re0 and use sum-of-squares to determine convergence 
ssq_new=sum(re0.*re0)   

convergence=(ssq_old-ssq_new)/ssq_old 

 9. Determine whether convergence tolerance (mu) has been reached. 

If abs(convergence) <= mu and mp=0 

Convergence tolerance has been reached and Marquardt parameter is zero so break loop 
break 
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If abs(convergence) <= mu and mp≠0                          

Convergence tolerance has been reached but Marquardt parameter is not zero so set mp to 0 
and confirm convergence by performing another iteration. 
mp=0                   

re0_old=re0 

 10. If convergence is greater than convergence tolerance, reduce value of Marquardt parameter and 
estimate new values of the transformation vector t (steps 11 to 16) 

If convergence > mu  
mp=mp/3 

ssq_old=ssq_new 

re0_old=re0 

 11. Loop to update each element of the transformation vector t.  This is slice-wise numerical 
differentiation to create the Jacobian matrix Jn 

Loop (increment from q=1 to q=N2, step size 1) 

  12. Add delta to current value of t(q) 
t(q)=(1+delta)*t(q)    

  13. Calculate residuals for shifted element t(q) by calling sub-function VAKF  
re=feval(fh_VAKF_opt, Z, V_bar, t, VAKFISO_options)  

  14. Populate the q-th column of the Jacobian matrix Jn 
Jn(:,q) = (re - re0)/(delta*t(q)) 

  15. Calculate new shift value for element t(q) 
t(q) = t(q)/(1 + delta) 

 16. Return to 11 (counter for q) 

 17. If convergence is not detected in steps 9 and 10, determine whether divergence is occurring. 

If convergence<-mu and mp=0  

Divergence is observed and the Marquardt parameter is set to 0 so set the parameter back to 
mpp and perform another iteration. 
mp=mpp 

If convergence<-mu and mp≠0     

Divergence is observed but the Marquardt parameter is not set to 0 so increase the value of the 
parameter and perform an other iteration. 
mp=mp*5 

If divergence is observed (irrespective of value of mp), take back the shifts added previously. 
t=t-delta_t 

 18. Now Marquardt parameter has been appropriately set according to the observation of 
convergence or divergence, perform the main calculations to update the elements of t 

Augment Jacobian matrix with diagonal matrix of Marquardt parameters 
Jn_mp=[Jn; mp*eye(length(t))] 

 19. Augment residual vector with a vector of zeros 
re0_mp=[re0_old; zeros(size(t))] 

 20. Calculate parameter shifts for every element in the transformation vector t 
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delta_t=-Jn_mp \ re0_mp 

 21. Add the transformation vector parameter shifts to current estimate of t 
t=t+delta_t   

 22. Increment iteration counter 
counter = counter + 1 

 23. If counter is equal to or greater than the number of iterations, break loop 

if counter >= MaxIterations 
break 

24. When the elements of t have been optimised, or the maximum permitted number of iterations is reached, 
the vector of transformation elements are re-matricised to give T  

Initialise (N × N) matrix of zeros T 
T=zeros(N) 

25. Loop (increment from n=1 to n=N, step size 1) 

 26. T(:,n) = t((n*N)-(N-1):(n*N)) 

26. Return to 25 (counter for n) 

27. End of sub-function NGLM 
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Overview of VAKF_opt 

This sub-function is called from the sub-function NGLM and calculates the reference measurement functions from the 
vectorised transformation matrix T, calls VAKF.m to perform the Kalman filtering and calls a sub-function called 
CWRM to calculate the weighted residual matrix E.  

Command line syntax 
re = VAKF_opt(Z, V_bar, t, VAKFISO_options) 

1. Assign function handles.  This improves performance when functions are called repeatedly. 
fh_VAKF=@VecAdaptiveKF 

fh_CWRM=@CWRM 

2. Extract relevant options values from options structure VAKFISO_options 

3. Re-matricise the vector of transformation elements to give T  

Initialise (N × N) matrix of zeros T 
T=zeros(N) 

4. Loop (increment from n=1 to n=N, step size 1) 

 5. T(:,n) = t((n*N)-(N-1):(n*N)) 

6. Return to 4 (counter for n) 

7. Use current estimate of transformation matrix to calculate S_hat 
S_hat = V_bar * T 

8. Loop (increment from n=1 to n=N, step size 1) 

 9. Normalise the spectra in S_hat using p-normalisation specified in the input argument p_norm  
S_hat(:,n)=S_hat(:,n) ./ norm(S_hat(:,n), p_norm) 

10. Return to 8 (counter for n) 

11. Apply Vectorised Adaptive Kalman filtering to Z using current estimate of S_hat 
VAKF_output=feval(fh_VAKF, S_hat', Z,  W, KF_options) 

12. Extract X, V and Pf from the Kalman filter output structured array 
X=VAKF_output.X 

V=VAKF_output.V 

Pf=VAKF_output.Pf 

13. Call the sub-function CWRM using the function handle fh_CWRM to calculate the weighted residual matrix 
E.  The matrix E is then vectorised (stacked) to produce re  
re = feval(fh_CWRM, S_hat, VAKF_output, alpha1, alpha2, alpha3,  

                                                         alpha4) 

14. End of sub-function VAKF_opt 
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Overview of CWRM 

This sub-function is called from the sub-function VAKF_opt and calculates the weighted residual matrix E.   

Command line syntax 
re = CWRM(S_hat, VAKF_output, alpha1, alpha2, alpha3, alpha4) 

1. Assign function handles.  This improves performance when functions are called repeatedly. 
fh_VAKF=@VecAdaptiveKF 

fh_CWRM=@CWRM 

2. Extract relevant options values from Kalman filter output structure VAKF_output 
X=VAKF_output.X 

V=VAKF_output.V 

Pf=VAKF_output.Pf 

3. Calculate PI (Π ) 
PI=trace(Pf) 

4. Calculate SIGMA (Σ ) 
OMEGA=(abs(S_hat)-S_hat)./2 

SIGMA = (trace(OMEGA'*OMEGA))./ (trace(S_hat'*S_hat)) 

SIGMA = SIGMA ./ N 

5. Calculate XI (Ξ ) 
THETA=(abs(X)-X)./2 

XI = (trace(THETA'*THETA))./ (trace(X'*X)) 

XI = XI ./ N 

6. Calculate weighted residual matrix E 
E = (alpha1.*V) + (alpha2.*PI.*V) + (alpha3.*SIGMA.*V) +  

                                                  (alpha4.*XI.*V) 

7. Vectorise E for NGL/M calculations 
re=E(:) 

8. End of sub-function CWRM 
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3.2 Combining Self-Modelling Curve Resolution and PLS regression 

3.2.1 Equipment 

The equipment used throughout this work is listed below for convenience and is described 

in more detail in section 3.1. 

Spectrometers and probes 

Zeiss MCS501 single-beam UV/Vis diode array spectrophotometer 

Zeiss MCS601 double-beam UV/Vis diode array spectrophotometer (used for comparison 

of standard and custom fibre assemblies). 

Hellma UV/Vis ATR Probe (diameter: 12.7 mm; length: 400 mm) 

Hellma Process UV / Vis ATR probe (diameter: 25.0 mm; length 850 mm) 

Standard fibre-optic cables:  Hellma UV/Vis high -OH, solarisation resistant fibre optic 

cables with 600 micrometer cores.  Length: 4.00 m; terminated with standard SMA-905 

connectors. 

Custom fibre-optic cables:  Ocean optics (Ocean Optics B.V., EW Duiven, Netherlands) 

custom probe design (ZDF-10369).   

Figure  3.5 shows the configuration and dimensions of the fibre assembly. 

3.2.2 Laboratory scale development experiments 

Aim 

The purpose of the initial experiments was to assess the feasibility of using UV/ATR 

spectroscopy to monitor the chlorination reaction described in section 1.8.1.  Although 

other spectroscopic techniques such as FTIR, Raman or NIR were available, there were a 

number of practical issues that precluded their use for this reaction.  Molecular 

fluorescence prevented the use of Raman spectroscopy and it was not possible to monitor 

the whole reaction using NIR spectroscopy because the process started as heterogeneous 

slurry and became a homogenous slurry.  This would require both a diffuse reflectance 

probe and transmission probe combined with a dual channel NIR spectrophotometer (not 

available).  Although it was possible to monitor the laboratory scale reactions using 
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FTIR/ATR, the corresponding process probe and instrument were not available for use in 

the LSL.  

Experimental 

The initial laboratory reactions were performed in a 100 mL jacketed glass vessel.  Prior to 

charging any materials to the reaction vessel, an air background spectrum was acquired at 

room temperature.  The reaction was prepared by charging 5.00 g (1.0 equivalent) of the 

starting reactant (acetoxyone) to the reaction vessel, followed by 70 mL toluene (14 relative 

volumes) and di-isopropylethylamine (3.0 g, 1.10 equivalents).  The mixture was then 

heated to 70°C.  When the set point temperature had been reached, the reaction mixture 

was a thick but mobile slurry owing to the very low solubility of the acetoxyone starting 

material.  The reaction was then started by charging phosphorus oxychloride (8.30 g, 2.50 

equivalents) using a syringe driver over 20 minutes.  At the end of the addition, the reaction 

mixture was still a heterogeneous slurry owing to un-dissolved starting material.  After 

approximately 2 hours, the starting material had completely dissolved to give a dark 

homogeneous solution. 

Throughout the course of the experiment, several attempts were made to sample the 

mixture for analysis by HPLC.  Unfortunately, the reaction mixture was supersaturated and 

began to precipitate immediately as the sample cooled in the sampling pipette. 

3.2.3 Key reference measurements 

Aim 

Although initial examination of the UV/ATR reaction data suggested that the reaction 

progress could monitored spectroscopically, there were a number of practical issues that 

would preclude attempts to obtain reliable reference measurements for subsequent 

development of a calibration model.  To aid the resolution of the spectral data using SMCR 

methods, and to provide scaling factors for the recovered profiles, a few experiments were 

performed to provide key reference measurements. 

Experimental 

The solubility of the acetoxyone starting material was established by adding small amounts 

of the material to 100 mL of a toluene / di-isopropylethylamine solution heated to 70°C.  

When un-dissolved solid was observed in the bottom of the reaction vessel, the 
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supernatant liquid was sampled and assayed against a standard of known concentration 

using reversed-phase HPLC.   

A ‘calibration’ reaction was then performed by repeating the experiment described in 

section  3.2.2.  At the end of the reaction, when all starting material had been consumed and 

the mixture was homogenous, a 10.0 mL sample was extracted using a pipette and diluted 

immediately for off-line analysis.  The concentration of product (haloacetoxyone) was 

determined by solution assay against a standard of known concentration using reversed-

phase HPLC.  The extent of reaction based upon the ratio of product to starting material 

was also determined using HPLC. 

3.2.4 Overview of the spectral data 

Aim 

The structure and features of the spectral data were first examined by visual inspection, 

simple peak profiling and PCA.  The aim was to assess the number of individual 

components contributing to the data and their corresponding kinetic (time-series) profiles. 

Method 

The spectra were exported from the Zeiss Aspect Plus software as a comma separated 

variable (*.csv) and imported into Matlab for further data analysis. 

The original absorbance spectra were transformed to their second derivative spectra using 

Savitsky-Golay smoothing and differentiation (Eigenvector PLS toolbox, savgol 

function).  The parameters used to calculate the second-order derivative were a 13-point 

smoothing window and second-order polynomial. 

Both the original absorbance spectra and second derivative spectra were analysed using 

principal components analysis (PCA) to identify the number of significant, independent 

factors contributing to the data sets.  The function pca from the Eigenvector PLS toolbox 

was used. 

To examine how the structure of the re-constructed and corresponding residual spectral 

changes as the data was regenerated using an increasing number of principal components, a 

simple custom Matlab function (ResidualComps)was written (section 3.1.7.1).  Visual 

examination of the residual spectra obtained by reconstructing the data set using different 

numbers of principal components was a useful way to aid the identification of the correct 
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number of factors without over fitting.  This function was applied to the second derivative 

data (265 to 350 nm). 

3.2.5 Derivation of initial concentration profile estimates using EFA 

Aim 

The initial analysis of the data acquired from the calibration reaction indicated that there 

were three to four significant components contributing to the total variance in the data set.  

Evolving Factor Analysis was applied to provide initial estimates of the true underlying 

concentration profiles of the major species.   

Method 

To provide an estimate of the concentration profiles of the spectroscopically active major 

species, Evolving Factor Analysis was applied to the truncated, second derivative spectra.   

The spectral data were not mean-centred prior to applying evolving factor analysis. 

The combined (forward and backward) EFA estimates of the concentration profiles were 

calculated for two, three and four components.  

3.2.6 Derivation of initial spectral profile estimates using OPA 

Aim 

In addition to the concentration profile estimates obtained using EFA, the Orthogonal 

Projection Approach was also applied to second derivative UV data to obtain initial 

estimates of the pure component spectra for the intermediate and product species. 

Method 

OPA is a very useful technique for identifying and visualising each different spectrum 

contributing to a data set.  The method is based upon a dissimilarity measurement and 

simply identifies and stores the spectrum that is most dissimilar to the other reference 

spectra already identified.  This procedure is repeated until the number of components 

requested by the user is reached.   

A custom Matlab function, OPA, was written based upon the algorithm published by 

Sanchez et al.[89, 99] and is described in section 3.1.7.2.  The Durbin-Watson values used to 

test for correlation in the dissimilarity vectors for each OPA component were calculated as 

described by Gourvénec et al.[100]. 
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As OPA is not a variance or eigenvector based method, it can be very sensitive to peak 

shifts that only account for a small fraction of the total variance in the data.  In the 

previous sections, the data were analysed using PCA and EFA and both methods indicated 

that more components than the expected chemical rank were necessary to model the 

spectral data.  To confirm whether this is a consequence of peak movement, OPA was 

applied to the truncated (265 to 350 nm), second derivative spectra with a maximum of 8 

components sought.   

3.2.7 Refinement of profiles using MCR-ALS 

Aim 

The initial estimates of the concentration and spectral matrices obtained using EFA and 

OPA respectively, were further refined using MCR-ALS to provide the reference 

concentration data required to construct a PLS model.  MCR-ALS was performed using 

the MCR-ALS graphical user interface, a Matlab toolbox developed by Jaumot et al.[94] that 

can be freely downloaded from the internet[102]. 

Method 

The concentration profiles were constrained to non-negative solutions and a concentration 

selectivity matrix was used to include the starting reactant and product concentration 

information provided by the reference analysis (HPLC solution assay).  A concentration 

selectivity matrix was also used to constrain the concentration of the product to zero 

during the very early part of the reaction.  A spectral selectivity matrix was used to 

constrain the scaled starting reactant / toluene and product spectra as obtained from OPA.  

The spectrum for the intermediate species was not initially constrained.  In this particular 

application the truncated second-derivative spectra were used, but in those cases where the 

original un-transformed spectra are used, the spectral non-negativity constraint could also 

be applied. 

3.2.8 Calculation of PLS models using refined concentration profiles 

Aim 

Using curve resolution methods, the unit concentration pure component spectra had been 

estimated and refined.  However it was not possible to incorporate these spectra directly 
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into a ProcessXplorer1 method as a standard model for predicting the concentrations of 

future reactions (for example using CLS).  The ProcessXplorer software was compatible 

with PLS or PCR models created using GRAMS PLSplus/IQ chemometric software so the 

concentration profiles derived using SMCR methods were used to construct a PLS model. 

Using a standard PLS model allowed predictions to be made in real-time as GRAMS 

PLSplus/IQ chemometric models could be imported and used by the instrument software. 

Method 

The original un-processed reaction spectra acquired during the calibration reaction and the 

corresponding MCR-ALS optimised concentration vectors for the intermediate and 

haloacetoxyone species were imported into GRAMS PLSplus/IQ chemometric software.  

The spectra were pre-processed as described previously (265 to 350 nm, transformation to 

Savitsky-Golay second derivative spectra using 13-point smoothing window).  Both the X 

(spectral) and Y (concentrations) matrices were mean-centred. 

A series of PLS1 and PLS2 models were constructed using leave-one-out (LOO) cross 

validation and also leave out 50 spectra with odd-even split cross-validation.  This was 

equivalent to removing approximately 25% of the spectra prior to calculating the PLS 

models and therefore produced models with larger cross-validation statistics than leave-

one-out cross validation. 

The resulting Root Mean Standard Error of Cross Validation (RMSECV) and cumulative 

variance explained statistics were then examined to select the most suitable model type and 

number of factors (principal components) to use. 

3.2.9 Comparison of PLS regression coefficients and MCR-ALS spectra 

Aim 

In addition to the RMSECV statistics, the regression spectra B̂  of the various PLS models 

were examined.  This was particularly important in this application as the reference data 

used to construct the PLS models were derived using SMCR methods.  The SMCR 

methods produced not only the concentration profiles but also a set of complimentary pure 

                                                 

1 ProcessXplorer is the process monitoring software used by Carl Zeiss process spectrometers such as the 

MCS500 and MCS600 series UV diode array spectrometers used during this work. 
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component spectra.  These pure component spectra revealed the characteristic absorbance 

features of each constituent.  If the PLS model was a good transformation of the pure 

component spectra into a set of regression spectra, the regression spectrum for each 

constituent should be similar to the corresponding pure component spectrum. 

Method 

The vector or matrix of regression coefficients B̂  for each PLS1 and PLS2 model were 

imported into Matlab.  The least-squares method described by Trygg[103] for calculating the 

pure spectral profiles from the PLS regression vectors was employed.  These were 

calculated using the simple expression 1ˆ ˆ ˆ ˆ( )T −=K B B B  where K̂ is a matrix of pure spectral 

profile estimates and B̂  is the vector or matrix of PLS regression coefficients.  The PLS 

regression vectors and the subsequent pure spectral profiles estimates contained scaling 

information so they could be directly compared with the MCR-ALS spectra without 

normalisation.  The root mean square sum of errors (RMSE) for the residual spectra were 

also calculated to quantify the difference between the MCR-ALS and PLS pure spectral 

profiles.  

3.2.10 Application of the UV method in a Large Scale Laboratory 

The instrument used during method development was transferred to the large scale 

laboratory facility and coupled to an 850 mm process UV ATR probe via two 4.00 m 

lengths of fibre-optic cable terminated with standard SMA905 connectors.  The probe was 

installed using a customised flange fitted to the charging port of the vessel lid.   The 

photograph2 in Figure  3.3 shows the 50 L reaction vessel and the probe inserted through 

the man-way used to charge solids to vessel.  This configuration was problematic as it was 

not possible to acquire a background spectrum with the probe installed.  As the 

spectrometer was a single-beam instrument using a deuterium source lamp, a new 

background spectrum was required prior to starting each batch.  For the first batch, it was 

possible to collect a spectrum with the probe installed on the vessel lid and the ATR crystal 

positioned in the reactor headspace.  In subsequent batches, the background spectra had to 

be acquired prior to re-installation of the probe. 

                                                 

2 Paul Rowan and Simon Watkins from Process R&D, AstraZeneca R&D Charnwood, Loughborough, UK 

are gratefully acknowledged for the preparation of the vessel for this photograph. 
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Figure  3.3:  A 50 L reaction vessel a Large Scale Laboratory (LSL) facility.  This vessel was used to 
manufacture five batches of haloacetoxyone. 

3.2.11 Design of a custom fibre optic cable assembly 

When the UV/ATR probe was coupled to a single beam spectrometer using a pair of 

standard fibre optic cables, the light from the source lamp passed along one fibre optic 

cable, through the probe (where it interacted with the sample) and returned along a second 

fibre optic cable to the detector module.  The process spectrometer with a double beam 

configuration had two detectors.  The additional ‘bypass’ channel was used to actively 

compensate for flash to flash intensity variation when a xenon flash lamp was used.  Figure 

 3.4 shows the standard configuration of the double beam spectrometer. 
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Figure  3.4:  Diagram showing standard configuration for a double beam process spectrometer.  The 
light from the source lamp is split using a Y-cable.  The fibre optic cable for the sample channel 
transmits light to the probe.  A second cable then transmits the return signal and is connected to 
detector 1.  The fibre optic cable for the bypass channel forms a closed loop and is connected 
directly to detector 2. 

The main consideration when designing the custom fibre assembly was to utilise the 

second detector channel to correct for the change in transmission through the fibre owing 

to movement.  To achieve this, the fibre that transmitted the signal for the bypass channel 

was required to follow a path as similar as possible to the sample signal without interacting 

with the sample.  Using a single fibre for the by-pass channel in a looped configuration was 

not feasible because the minimum bend radius of the fibre would restrict the minimum 

diameter of the loop to several centimetres.  It was not possible to contain this bypass loop 

within the fibre assembly so it would not be very robust and would also be sensitive to 

movement.  To overcome this issue, a mirror was used to re-direct the by-pass channel.  

This allowed the light transmitted through the bypass fibre to be reflected 180º in a very 

short distance without using a loop of fibre.  The final design of the fibre assembly 

constructed is shown in Figure  3.5. 
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Figure  3.5:  Diagram showing the external and internal configurations of the custom fibre assembly. 
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3.2.12 Testing of a custom fibre optic assembly 

3.2.12.1 Comparison of the relative transmission of the standard and custom fibre 

optic cables 

Aim 

The purpose of this experiment was to establish whether there was a significant difference 

in the sensitivity of the two detector modules in the instrument.  This was achieved by 

measuring a single beam energy spectrum through a closed loop using the same fibre optic 

cable and collection parameters.  By repeating the procedure with each fibre leg of the 

standard and custom cables, the relative transmission of each set of cables was also 

assessed. 

Configuration of instrument and fibres 

The output from the deuterium source lamp was passed through a 50% attenuation filter 

coupled to a short (30 cm) SMA-SMA patch lead.  The test fibre was then attached to the 

attenuation filter, passed over a bracket positioned 1.96 m above the floor and connected 

to the detector to form a closed loop. 

Method 

A quick test of each set of fibres established that using the instruments minimum 

integration time (12 ms) produced spectra with a maximum intensity between 25% and 

75% of the detectors working range.  Using the same integration time allowed direct 

comparison of all the measured single beam energy spectra.  The single beam spectra of 

each leg of the standard and custom fibre assemblies were acquired on each detector in 

turn.  

3.2.12.2 Optimisation of the internal reflection mirror position 

Aim 

The custom fibre assembly used an adjustable mirror to return the source light from the 

lamp back along the return fibre to bypass channel.  Since the bypass fibre and mirror 

assembly did not have a collimating lens, the intensity of the light returned along the bypass 

channel varied as the distance of the mirror from the fibres was changed.  The aim was to 

match the throughput of the sample and bypass channels as closely as possible by tuning 

the position of the mirror. 
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Configuration of instrument and fibres 

As the process ATR probe further attenuated the optical signal transmitted through the 

sample chain, the best approach was to tune the bypass channel to give a similar 

throughput to the sample channel.  The equipment was configured as follows 

The instrument end of the cable containing both the probe illumination fibre A and the 

bypass fibre B was connected directly to the source lamp (no attenuation filter required).  

The probe end of fibre B was connected directly to the process ATR probe and the return 

fibre D connected to the detector 1 (sample).  The bypass return fibre C was connected to 

detector 2 (bypass). 

Method 

The instrument was configured as a double beam instrument and the energy monitor 

function was used to tune the energy throughput of the bypass channel by changing the 

position of the adjustable mirror. 

The best achievable throughput of the bypass channel relative to the sample channel 

passing through the ATR probe was approximately 10%.  With a 12 ms exposure, the 

sample channel maximum signal was approximately 35000 counts and the bypass channel 

maximum signal was approximately 3000 counts.  The robustness tests were therefore 

performed using unmatched channels. 

3.2.12.3 Quantification of fibre transmission as a function of cable displacement 

Aim 

The aim of this experiment was to apply decreasingly smaller bend radii to the fibre optic 

cable assemblies by increasing the vertical displacement from the ground at their centre-

point.  This allowed the change in optical throughput to be measured as a function of the 

displacement from the nominal starting position for each set of fibres. 

Configuration of instrument and fibres: standard fibre assembly 

The common leg of a bifurcated cable was connected directly to the source lamp.  One leg 

of the bifurcated cable was passed through a 10% attenuator and then connected to 

detector 2 (bypass channel) using a 35 cm SMA-SMA patch lead.  The second leg of the 

bifurcated cable was coupled with one leg of the standard fibre using a 35 cm SMA-SMA 

patch lead and a SMA-SMA union.  The remaining leg of the standard fibre pair was 
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connected to directly to detector 1 (sample channel).  The probe ends of the standard fibre 

assembly were connected to the process ATR probe. 

The standard fibre assembly was marked 90 cm from the instrument end terminations.  

The fibres connected to the instrument were clamped at the 90 cm mark at a height of 8 

cm above floor level (the lowest possible height possible with the clamp stand).  The 

instrument was then positioned 50 cm from the clamp (measured from instrument front 

face to clamp).  This relieved the fibres from any tension and prevented this 90 cm section 

from moving when adjusting the position of the probe. 

The fibre was laid across the floor in a straight line and attached to the probe.  The probe 

was clamped in a horizontal position 8 cm above the ground.  The length of fibre between 

the 90 cm marker and the probe was 2.90 m.  The centre point of this section of fibre was 

marked (1.45 m from 90 cm marker).  This was the point at which the fibre was raised 

above the ground to give reproducible displacement. 

The throughput through this configuration was slightly lower than observed for the custom 

fibre so the integration time was increased to give comparable maximum throughput 

(maximum signal ~53300 counts).  This difference was a consequence of using additional 

attenuators and SMA-SMA patch leads which all introduced additional optical losses.  An 

integration time of 100 ms gave an equivalent maximum throughput. 

Configuration of instrument and fibres: custom fibre assembly 

The instrument and custom fibre assembly were configured as described in section  3.2.12. 

The fibres were then marked, clamped and positioned as described in the previous section. 

The integration time was set to 20 ms.  A lower integration time was required for the 

custom fibre assembly compared to the standard fibre assembly because no attenuation 

filter was used. 

Procedure for the reproducible displacement of the fibres 

With the cables set out as described in the previous sections, the energy spectra were 

measured on both detectors simultaneously.  This starting configuration represented the 

highest transmission of the fibres as they had almost no bends in the fibre optic cable. 

The cables were then raised above the ground in 20 cm increments using an adjustable 

bracket until a maximum displacement of 120 cm was reached.  As the fibres were raised, it 

was necessary to move both the bracket at the centre point and the probe closer to the 
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instrument to maintain a symmetrical bend around the bracket.  At each position, the 

double beam energy spectra were recorded.  When the maximum displacement was 

reached, the fibres and probes were returned to the starting position and the procedure 

repeated a further three times to give four replicates at each position. 

3.2.12.4 The effect of fibre movement upon the calculated absorbance 

Aim 

To examine the contribution of baseline variation that solely arose from fibre movement, 

the double beam energy spectra were transformed into absorbance spectra. 

Method 

In many double beam spectrometers such as the Zeiss MCS series, the absorbance value is 

calculated as shown in equation 3.1: 
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(equation 3.1) 

ja  
is the vector of absorbance values for sample j 

jr  
is the ratio of the sample and reference bypass energy spectra (using the 2-norm) 

0b  is the energy spectrum for the bypass channel of the reference measurement 

jb  
is the energy spectrum for the bypass channel of the sample measurement j 

0s  is the energy spectrum for the sample channel of the reference measurement 

js  
is the energy spectrum for the sample channel of the sample measurement j 

The 2-norms of the bypass channel spectra are used to calculate a simple scalar ratio to 

correct for intensity variation.  The original reference spectrum 0s  is multiplied by this 

factor prior to calculating absorbance in the usual way.  Another approach is to use an 

element by element division to calculate ratio spectra ( 0s / 0b ) and ( js / jb ).  The 

absorbance spectrum is then calculated from these ratio spectra.  The energy spectra for 

each set of fibres were converted to absorbance spectra using the first method.  
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3.2.12.5 Quantification of the effect of fibre movement upon CLS calculations 

Aim 

In the previous section, the single beam energy spectra acquired using the standard and 

custom fibre assemblies were transformed into absorbance spectra.  The results showed 

that both cable assemblies had variable baselines as the fibres were displaced but the 

variation of the custom fibre was lower.  To put this difference in variation into context, 

the aim of this experiment was to examine the effect of the baseline movement upon 

estimated concentration profiles calculated from a synthetic data set using CLS.    

Method 

A two-component synthetic reaction data set based upon the chlorination of acetoxyone 

was created.  The concentration vectors for the intermediate and haloacetoxyone species, 

derived from the laboratory scale experiments using SMCR (described in section  3.2.7) 

were used as the initial profiles.  The concentration profiles were smoothed by applying 

Savitsky Golay filtering several times (sgolayfilt.m, Matlab Signal Processing 

Toolbox).  A first order polynomial and five point window were used.  The smoothed 

concentration profiles were truncated between 20 and 120 minutes to give a (100×2) 

matrix, .simC  

The original (zero-order) spectra at 45 and 170 minutes, the time-points when the 

intermediate species and product were at their maximum concentrations were used as 

‘pure’ component spectra.  The spectra were truncated to 220 to 400nm and scaled to unit 

molarity by dividing each spectrum by 0.27 mol.L-1 to give a (181×2) matrix, simS .  The 

simulated reaction data set was created by calculating the outer product of the 

concentration and spectral matrices ( T= ⋅sim sim simX C S ).   

The absorbance baselines calculated for each cable assembly in section  3.2.12.4 were 

replicated to give two, (100×181) matrices, stdB  and ..custB   The rows (spectra) of the 

baseline matrices were randomly re-ordered and then added to the simulated reaction data 

to produce stdX  and ..custX  

The concentration profiles were then estimated from each data set using the least-squares 

calculation shown in equation 3.2. 
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1ˆ ( )T −= ⋅ ⋅ ⋅C X S S S  (equation 3.2) 

The concentration profiles were also estimated from the second derivative spectra by 

calculation of the Savitsky-Golay second derivative spectra using the simulated spectral 

data sets stdX  and .custX  and the pure component spectra, .simS  
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3.3 Vectorised Kalman filtering for SMCR 

3.3.1 N-benzylation of 1H-indole 

Aim 

A series of reactions were performed to provide spectral data for algorithm development 

and testing.  Off-line reference measurements were provided by HPLC analysis of reaction 

samples extracted during the course the reaction.   

Method 

The nominal reaction conditions for the N-benzylation of 1H-indole reaction (described in 

section 1.8.2) were based upon the material stoichiometries used in a similar reaction 

developed by AstraZeneca Process R&D and are summarised in Table  3.3. 

Table  3.3: Nominal stoichiometry of materials for the N-benzylation of 1H-indole and amounts 
required for a 100 mL reaction. 

Material Molecular 
weight 

(g.mol-1) 

Molar 
equivalent

Relative 
volumes 

Weight 
(g) 

Volume 
(mL) 

1H-indole 117.15 1.00 - 6.00 - 

Benzyl bromide 171.04 1.00 - 8.76 - 

Cesium carbonate 325.82 2.00 - 33.37 - 

Tetrabutylammonium 

bromide 

322.28 0.10 - 1.65 - 

Acetonitrile 41.05 - 15.0 - 90.0 

 
The experimental parameters for the series of reactions performed are listed in Table  3.4.  

To aid the reader, each experiment has been given a unique name that comprises of the 

reaction name and the major parameters that distinguish each reaction.  The nomenclature 

used to name each experiment is BnIndole _Byy_MRzz_D where the prefix BnIndole 

refers to the series of experiments (the N-benzylation of 1H-indole); the suffix Byy refers 

to the amount of base relative to the nominal amount 1H-indole (yy denotes the molar 

equivalent of base); the suffix MRzz is the molar ratio of 1H-indole to benzyl bromide (zz 

is the molar ratio) and the suffix D is used to indicate the data acquired during the 

experiment (HPLC, Raman or UV). 
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Table  3.4:  List of N-benzylation of 1H-indole reactions performed.  

Amount of 
base 

Amount of 1H-indole and 
benzyl bromide 

Experiment 
numbera  

Experiment name 

Molar 
Eq. 

Weight 
(g) 

Molar 
ratio 
(1H-

indole : 
Benzyl 

bromide

Weight 
1H-

indole 
(g) 

Weight 
benzyl 

bromide 
(g) 

1 BnIndole_B2.0_MR0.67 2.00 33.37 0.67 6.00 13.13 

2   BnIndole_B2.0_MR1.00 2.00 33.37 1.00 6.00 8.76 

3   BnIndole_B2.0_MR1.50 2.00 33.37 1.50 9.00 8.76 

 
The reactions were performed in a 100 mL jacketed reaction vessel described previously in 

section 3.1.  Prior to starting each reaction, the vessel was cleaned and purged overnight 

with nitrogen to ensure it was dry.  The reaction vessel jacket temperature set to 40ºC.  A 

UV background spectrum was acquired with the ATR probe positioned in the nitrogen 

atmosphere of the vessel.  The required amount of 1H-indole was accurately weighed into 

a tared 100 mL amber bottle.  To this bottle, 80.0 mL of acetonitrile was charged and the 

bottle was shaken until the 1H-indole was completely dissolved.  The required amount of 

benzyl bromide was accurately weighed into a tared 50 mL amber bottle, followed by 10.0 

mL acetonitrile.  Cesium carbonate and tetrabutylammonium bromide were accurately 

weighed into a tared weigh boat and transferred directly to the reaction vessel.  The 1H-

indole solution was quantitatively transferred to the reaction vessel, the overhead agitator 

set to 600 rpm and spectroscopic data acquisition was started.  The mixture was left for 

sixty minutes to ensure that the tetrabutylammonium bromide was fully dissolved and that 

the cesium carbonate was completely wetted.  After sixty minutes, the benzyl bromide 

solution was charged rapidly through the PTFE addition line using a syringe.  This would 

initiate the reaction.  Reaction samples were extracted 10, 20, 30, 40, 50, 60, 90, 120, 150, 

180, 240, 300 and 360 minutes after the addition of the benzyl bromide solution.  At the 

end of the experiment, 90 mL water was charged to quench the reaction. 
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3.3.2 Analysis of reaction samples using HPLC 

3.3.2.1 HPLC solution assay method 

A HPLC assay method was developed to allow the concentration of 1H-indole, benzyl 

bromide and 1-benzyl-1H-indole to be determined.  Reaction samples were analysed off-

line and the concentrations determined using HPLC provided useful reference data that 

were compared with the reaction profiles estimated from spectroscopic data. 

An Agilent 1100 Series HPLC system with a quaternary solvent pump and variable 

wavelength detection was used to analyse the reaction samples.  The HPLC method 

parameters used for the analysis of reaction samples are listed below: 

Mobile phase A: 0.10% trifluoroacetic acid (TFA) in water 

Mobile phase B: 0.08% trifluoroacetic acid (TFA) in 90/10 v/v acetonitrile /water 

Sample diluent: 50/50 v/v acetonitrile / water 

Column: Jones Genesis C18 (10 cm × 4.6 mm × 3 μm) 

Injection volume: 2 μL 

Column compartment oven temperature: 40˚C 

Flow rate: 0.750 mL.min-1 

Detector wavelength: 222 nm (bandwidth 7nm) 

Mobile phase gradient 

Time (minutes) %B 

0.00 20.0 

2.00 20.0 

16.00 100.0 

20.0 100.0 
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3.3.2.2 Preparation of HPLC solution assay standards 

To allow the consumption of starting materials and the formation of product to be 

quantified offline by solution assay, standards of 1H-indole, benzyl bromide and 1-benzyl-

H-indole were prepared using the weights and dilutions summarised in Table  3.5 and Table 

 3.6.  Stock solutions of each compound were prepared in 100 mL volumetric flasks.  The 

diluent was 50:50 v/v acetonitrile / water.  The assay standards were then prepared by 

quantitative dilution of the stock standards, again using 50:50 v/v acetonitrile / water as 

the diluent. 

Table  3.5:  Sample weights and dilution volumes used to prepare solution assay stock standards. 

Standard 

Standard 
weight 

 
(mg) 

Dilution 
volume 

 
(mL) 

Dilution 
weight 

 
(g) 

Stock 
standard 

conc. 
(mg.mL-1) 

Stock 
standard 

conc. 
(mg.g-1) 

1H-indole 100.5 100.0 78.3557 1.005 1.283 
Benzyl 

bromide 210.3 100.0 78.6731 2.103 2.673 

1-benzyl-
1H- indole 123.6 100.0 78.4308 1.236 1.576 

 

Table  3.6: Sample weights, dilution volumes and final concentrations of solution assay standards. 

Standard 

Aliquot 
volume 

 
(mL) 

Aliquot 
weight 

 
(g) 

Dilution 
volume 

 
(mL) 

Dilution 
weight 

 
(g) 

Assay 
standard 

conc. 
(mg.mL-1)

Assay 
standard 

conc. 
(mg.g-1) 

1H-indole 10.0 7.8266 100.0 78.2628 0.1005 0.1283 
Benzyl 

bromide 10.0 7.8574 100.0 78.2628 0.2103 0.2684 

1-benzyl-
1H-indole 10.0 7.8342 100.0 78.2715 0.1026 0.1309 

3.3.2.3 Preparation of reaction samples for HPLC analysis 

A small aliquot of the reaction mixture (approximately 500 μL) was removed from the 

reaction vessel at the prescribed sampling time and transferred to a 2 mL screwtop vial.  

Using an air displacement pipette, 75 μL of the supernatant reaction mixture was then 

transferred to a tared 50 mL volumetric flask.  The aliquot weight was recorded.  The 

sample was diluted to volume with 50:50 v/v acetonitrile / water and the weight of diluent 

added was recorded.  The mixture was well mixed before transferring approximately 1 mL 

of solution to a HPLC vial for analysis. 
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3.3.3 Preparation and analysis of spectroscopic reference standards 

Aim 

To provide reference measurement functions (reference spectra) for Kalman filtering, a 

number of spectroscopic reference standard solutions of the main reactants and product 

were prepared at typical reaction concentrations.  The spectra were also used to create a 

simulated data set that was used during the implementation and development of the 

Kalman filter algorithms. 

Method 

Spectroscopic reference standard solutions of acetonitrile, 1H-indole, benzyl bromide, 

1-benzyl-1H-indole, cesium carbonate and tetrabutylammonium bromide were prepared at 

typical reaction concentrations using the weights and dilution volumes summarised in 

Table  3.7.  The instrument parameters used to acquire the UV spectra were previously 

described in section 3.1.  The exposure time for the Raman spectrometer was reduced to 5 

seconds to prevent saturation of the detector when acquiring the spectra of clear solutions.  

This was necessary because the solutions did not contain cesium carbonate (solid) that 

significantly attenuated the detected Raman signal in the reaction mixtures.  The cosmic ray 

filter was enabled to prevent contamination of the spectra by random, high intensity peaks 

resulting from cosmic rays striking the detector during acquisition.  

The UV spectral data files were then processed as described in section 3.3.4.  The Raman 

spectral data files (.spc format) were imported directly into Matlab using the spcreadr 

function from the Eigenvector PLS toolbox. 
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Table  3.7: Sample weights, dilution volumes and final concentrations of spectroscopic standard 
solutions. 

Standard 
Weight of 
reagent 

(g) 

Volume of 
solvent 
(mL) 

Molecular 
weight 

(g.mol-1) 

Concentration 
 

(mol.L-1) 
Acetonitrile Neat 90.0 41.05 32.02 
1H-indole 3.3319 50.0 117.15 0.569 
Benzyl bromide 4.8603 50.0 171.04 0.568 
1-benzyl-1H-indole 3.4600 25.0 207.28 0.570a 
Cesium carbonate 18.5590 50.0 325.82 1.139 
Tetrabutylammonium 

bromide 0.9302 50.0 322.28 0.057 

 

3.3.4 Preparation and pre-processing of the UV spectral data 

Aim 

The spectral data acquired using the Varian Cary 50 UV spectrometer required formatting 

before they could be imported into Matlab.  Once imported into Matlab, the spectra 

required pre-processing to remove unwanted spectral artefacts (‘spikes’) and baseline 

variation prior to Kalman filtering. 

Method 

The Cary 50 spectral data were exported as comma separated variable (.csv) text files.  

The Visual Basic program described in section 3.1.6 was then used to filter and reformat 

the data files to remove duplicated wavelength variable columns and re-align rows with 

missing values.  The output of this program was comma separated variable text files with 

the extension (.uvd).  The .uvd files were then imported into Matlab for further 

processing. 

Many of the data sets contained several spectra that were characterised by a single, high 

intensity spike.  These spikes were believed to be artefacts that resulted from a skipped 

wavelength as the monochromator scanned across the wavelength range.  Although it was 

possible to remove each spectrum that contained spikes, that approach would have 

required each affected spectrum to be manually identified and removed.  A custom Matlab 

script, MedianFilter.m (section 3.1.7.3) was written to perform moving window 
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median filtering to remove the spikes.  For this application, a window size of three was 

used.  Median filtering was applied to every data set.   

The median filtered absorbance spectra were then baseline corrected by subtraction of a 

linear sloped baseline with the function 0 1( )f x b b x= +  from each spectrum.  The Matlab 

function polyfit was used to calculate the polynomial coefficients 0b  and 1b  for each 

spectrum over the wavelength range 320 to 370 nm.  The coefficients were then used to 

extrapolate each baseline over the full spectral range 220 to 400 nm using the Matlab 

function polyval.  The extrapolated baseline was subtracted from its corresponding 

spectrum. 

3.3.5 Optimisation of the IPBS method parameters 

Aim 

The custom Matlab function IPBS.m  described previously in section 3.1.7.4 uses several 

parameters that can influence the results obtained when applying automated iterative 

polynomial baseline subtraction.  The aim of these experiments was to locate the optimal 

values of some of the key parameters by performing an exhaustive search over a defined 

range of values for the degree of the polynomial ( n ) and the window width ( pw ).   

Method 

To find the optimal values of the key parameters n  and ,pw  an exhaustive search was 

performed using a range of values applied to a reaction spectrum from one of the Raman 

data sets described previously in section  3.3.1.  The specific Raman spectrum used to 

optimise the parameters was acquired at t=30 minutes and corresponded to a spectrum of 

1H-indole, a small amount of tetra butyl ammonium bromide and the un-dissolved 

inorganic base (cesium carbonate) in acetonitrile.  This spectrum was expected to be very 

similar to the reference spectrum of 1H-indole in acetonitrile described in section  3.3.3, 

except that it also had a large baseline contribution from the suspended cesium carbonate.  

The values of the parameters n  and pw  were considered optimal in the sense that they 

minimised the residual sum-of-squares between the normalised, baseline subtracted test 

spectrum and the normalised reference spectrum of 1H-indole in acetonitrile. 

Before the search of the parameters n  and pw was started, a suitable window width to use 

during the median filtering step was chosen.  MedianFilter.m was applied to the test 
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spectrum using a window width of 101, 201, 301, 401 and 501 points.  Initial 

experimentation showed that there was no further improvement using a window width 

greater than 501.  A median filter window width of 501 was selected. 

The IPBS method was then applied to the test spectrum using the following range of 

values: 

Degree of polynomial: n  = 2 to n  = 6 in steps of 1, (5 levels) 

Window width: pw = 21 to pw  = 581 in steps of 8, (71 levels) 

This was repeated three times using overlap values of 0.10, 0.20 and 0.30.  The total 

experiment took approximately 12 hours to complete.  The residual sum-of-squares values 

were stored in three (71×5) matrices. 

3.3.6 Preparation and pre-processing of the Raman spectral data 

Aim 

The Raman spectral data acquired during the N-benzylation of 1H-indole reactions 

required pre-processing to remove the complex baseline contributing to each spectrum.  

Once the variable baseline contribution had been removed, the spectrum to spectrum 

intensity variation inherent in Raman spectra was eliminated by spectral normalisation.   

Method 

Each data set was corrected by calculation and subtraction of the baseline contribution 

using the automated iterative polynomial baseline subtraction method (IPBS).  The 

optimal parameters derived previously in section  3.3.5 were used. 

Degree of polynomial: n  = 3  

Median filter window width: MFw = 501 

Polynomial window width: pw = 157 

Degree of window overlap: 0.20 (20%) 

Convergence tolerance: 1.00×10-7 

During data acquisition, the option to automatically filter cosmic rays was disabled in the 

Raman spectrometer software (HoloGrams) as this would have doubled the amount of 

time required to acquire each spectrum.  To remove the cosmic rays from the data 

manually, the spectral data sets were reproduced using the first four principal components 

following singular value decomposition of the un-centred baseline corrected data.  After 
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removing the cosmic rays, the spectra were then normalised to max=1.  Examination of 

the variance spectrum of pre-processed data revealed that the spectra contained no 

significant structured variance outside the spectral range 100 to 1800 cm-1.  The final step 

of spectral pre-processing was therefore the truncation of the spectra to exclude the data 

outside this wavenumber range.   

3.3.7 Creation of a simulated UV data set for algorithm testing 

Aim 

A simulated UV data set that represented a set of reaction spectra acquired during the non-

aqueous N-benzylation of 1H-indole using benzyl bromide was created.  This data set was 

used to develop and test the various Kalman filter algorithms using a well defined system 

with known noise contributions. 

Method 

A second order reaction with the general expression shown below was simulated using the 

kinetic parameters listed in Table  3.8.  

 kA B C+ ⎯⎯→  

The integrated rate equations[42, 104] used to calculate the concentration profiles of a second 

order reaction are:  
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Table  3.8:  Parameters used to calculate simulated concentration profiles for the N-benzylation of 
1H-indole using a second-order kinetic model.  

Parameter Description Value 

0[ ]A  Initial concentration of 

species A (1H-indole) 

0.452 mol.L-1 

0[ ]B  Initial concentration of 

species B (benzyl bromide) 

0.542 mol.L-1 

k  Rate constant 1.00×10-3 L.mol-1.s-1 

 
After creating the concentration profiles using the integrated rate equations and the 

parameters above, a 30 minute induction period was inserted.  During this period, only 

species A  was present.  After 30 minutes, B was then introduced very quickly (within 1 

sample time).  To make the concentration profiles more realistic, the dilution that would be 

observed on addition of the benzyl bromide solution was included.  The concentration of 

1H-indole prior to addition of the benzyl bromide solution was 0.532 mol.L-1 (equivalent to 

6.00 g 1H-indole in 96.0 mL of solution comprising 80 mL acetonitrile, 1.65 g TBAB and 

33.37 g Cs2CO3).  The addition of the benzyl bromide solution at 30 minutes resulted in a 

total reaction volume of 113 mL and reduced the concentration of 1H-indole to 0.452 

mol.L-1 ( 0[ ]A ).  The final concentration profiles were stored in a (333×3) matrix denoted 

.simC1  

The UV spectra of the 1H-indole, benzyl bromide and 1-benzyl-1H-indole spectroscopic 

solutions described previously in section  3.3.3  were normalised to unit concentration (1.0 

mol.L-1) and collated in single (181×3) matrix denoted .simS1   The outer product of the 

concentration and spectral profiles was calculated using T= ⋅sim sim simD1 C1 S1  to produce 

the noise-free reaction spectra in a (333×181) matrix.  Homoscedastic noise with zero mean 

and variance 1.0×10-6   was added to the data matrix to give the final simulated data matrix, 

.simD2   The absorbance spectra were transformed to their first derivative form using 

Savitsky-Golay smoothing and differentiation (Eigenvector PLS toolbox, savgol 

function).  The first-derivative spectra were calculated from simS1  and simD2  using a 13-

point smoothing window and third-order polynomial, producing simS2  and .simD3   The 

reaction spectra simD2  and ,simD3  and the reference spectra simS1  and simS2  were then 

truncated to 220 to 350 nm. 
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3.3.8 Demonstration of the equivalence of the standard and vectorised linear 

Kalman filter 

Before development of a vectorised version of the adaptive Kalman filter for self-

modelling curve resolution of spectral data, it was confirmed that a vectorised linear 

Kalman filter produced the same results as the standard linear Kalman filter.  The two 

Kalman filter algorithms (standard linear Kalman filter and vectorised linear Kalman filter) 

were applied to the simulated UV data sets ( simD2  and simD3 ) and the calculated Kalman 

gain vectors, estimated state parameters and spectral lack-of-fit values were compared. 

3.3.8.1 Determination of the measurement noise variance, R  

Aim 

A critical parameter when applying the linear Kalman filter to a data set with 

homoscedastic noise is the measurement noise variance, .R   If this value is too large, the 

Kalman filter will not produce accurate results because the data are assumed to have a large 

measurement error associated with each data point.  Using a value of R  smaller than the 

actual measurement variance will generally lead to estimated state parameters and 

innovations very similar to those that calculated using the actual measurement variance.  

However, as the elements of the error covariance matrix P  are calculated using ,R  they 

will also have much lower values.  This will give a misleading estimate of the error 

associated with each state parameter estimate.  The optimal value of R  is a value equal to 

the actual measurement noise variance.  This will be characterised by the start a minimum 

in a plot of the innovations sum-of-squares versus .R  

Method 

Using the last spectrum of the data sets simD2  and ,simD3  the linear Kalman filter 

(linearKF.m, section 3.1.7.5) was run using a range of values 10x, for x=-10 to x=-3 

using an increment of 0.1.  This produced R  values from 1.0×10-10 through to 1.0×10-3 

with ten points for each order of magnitude.  The spectral root-mean-square lack-of-fit was 

calculated using the expression shown in equation 3.6.  This calculated the average lack-of-

fit of the predicted spectral data points as a percentage of the original data. 
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(equation 3.6) 

3.3.8.2 Application of the linear Kalman filter functions to simulated UV data  

Aim 

The standard linear Kalman filter (linearKF.m) and vectorised linear Kalman filter 

(VecLinearKF.m) were to the simulated data sets to obtain the estimated state 

parameters, Kalman gains and state parameter error covariances.  These were then 

compared directly to confirm that both algorithms produced the same results. 

Method 

The standard linear Kalman filter (LinearKF.m, section 3.1.7.5) and the vectorised linear 

Kalman filter (VecLinearKF.m, section 3.1.7.7) were applied to the simulated data sets 

simD2 and simD3  using the reference spectra simS1  and simS2 as the reference measurement 

functions.  The estimated measurement noise variance determined previously in section 

 3.3.8.1 were used (R =3.16×10-6 for simD2 and R =1.00×10-9 for simD3 ).  The option to 

treat the data as evolutionary was not applied for the standard linear Kalman filter as there 

was not an equivalent option for the vectorised linear Kalman filter.    

A simple test was also performed to investigate how the calculated Kalman gain vectors 

changed as the number of components in the reference measurement function was 

changed.  The linear Kalman filter (LinearKF.m) and the vectorised linear Kalman filter 

(VecLinearKF.m) functions were applied to the first spectrum of the simulated data set 

simD2  using different reference measurement functions.  In the first run, the reference 

measurement function only contained the spectrum of component A; in the second run, 

the reference measurement function contained the spectra of components A and B; in the 

third run, the reference measurement function contained the spectra of components A, B 

and C. 
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3.3.9 Application of the adaptive Kalman filter to simulated UV spectra 

The adaptive Kalman filter based upon the description of algorithm published by Rutan 

and Brown[66] was implemented as a Matlab function,  AdaptiveKF.m (section 3.1.7.6).  

The adaptive Kalman filter was applied to the simulated UV data set simD2  to assess the 

performance of this method, and to investigate its limitations when applied to highly 

overlapped spectra.   

3.3.9.1 Application of the adaptive Kalman filter using incomplete reference 

functions 

Aim 

The purpose of these experiments was to assess the performance of the adaptive Kalman 

filter when used to predict the concentration of known components in the presence of 

model errors.  The model errors arose from the appearance of a new chemical species not 

included in the reference measurement function matrix.  The adaptive Kalman filter also 

allowed the reference measurement function to be augmented with an approximation of 

the unknown component calculated from the vector of innovations.  The augmented 

reference functions were compared with the true spectral profiles and the state parameters 

compared with the true, scaled concentration profiles. 

Method 

The adaptive Kalman filter was applied to the simulated UV data set simD2  using 

incomplete reference measurement functions.  To emulate a self-modelling application, the 

Kalman filter was applied using no prior knowledge of the true spectral profiles.  To 

provide the first reference measurement function corresponding to component A, singular 

value decomposition was applied to a subset comprising the first three spectra of the data 

set.  The subset was reproduced using the first left and right singular vectors and the first 

singular value.  The mean spectrum from the reproduced subset was calculated and 

normalised to unit length (2-norm).  This de-noised, normalised spectrum was used as the 

first reference measurement vector corresponding to component A.   

The adaptive Kalman filter was applied as explained below using the measurement noise 

variance ( R =3.16×10-6) determined previously in section  3.3.8.1. 
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Estimation of the state parameters for component A in the presence of component 

B 

In the simulated data ,simD2  component B appeared quickly at spectrum 32, representing 

the fast addition of a final reagent to initiate the reaction.  Component C also began to 

appear as the reaction proceeded but over the very early part of the reaction, its 

concentration was very low.  The purpose of this test was to assess the ability of the 

adaptive Kalman filter to predict the concentration of component A in the presence of 

component B.  The adaptive Kalman filter (AdaptiveKF.m) was applied to spectra 1 to 

32 of data set simD2  using a window size of 4.   

Re-estimation of the state parameters for components A and B using an augmented 

reference measurement function 

After application of the adaptive Kalman filter to the first 32 spectra in the above 

experiment, the innovations indicated a model error corresponding to the rapid appearance 

of the unmodelled component B.  The reference measurement function matrix was 

augmented with the estimated spectral profile for component B calculated from the 

adaptive measurement error values ( kR ).  The adaptive Kalman filter was then applied to 

spectra 1 to 32 a second time.   

Estimation of the state parameters for components A and B in the presence of 

component C 

The reaction was initiated at spectrum 32 on addition of component B.  From spectrum 32 

through to spectrum 333, the product (component C) began to increase in concentration as 

it was slowly formed.  Using the augmented matrix of reference measurement functions 

obtained in the previous step, the adaptive Kalman filter was applied to the complete set of 

spectra. 

Re-estimation of the state parameters for components A, B and C using an 

augmented reference measurement function 

After application of the adaptive Kalman filter to the full data set, the innovations again 

indicated a model error corresponding to the slow formation of component C.  The 

reference measurement function was augmented with the estimated spectral profile for 

component C calculated from the adaptive measurement error values ( kR ).  The adaptive 

Kalman filter was then applied to the complete set of spectra using the augmented matrix 
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of reference measurement functions to recalculate the state parameters for all three 

components.    

3.3.10 Application of VVSP to simulated UV data 

Aim 

The Vertex Vector Sequential Projection method was implemented as a Matlab function 

(VVSP.m, section 3.1.7.9) and applied to the simulated UV data set .simD2   The aim of this 

experiment was investigate the ability of VVSP to detect the number of components 

contributing to the data set and locate the spectra that best resembled the true, pure 

spectral profiles. 

Method 

The Matlab function VVSP.m was applied to the simulated data set .simD2   The number 

of components to locate (NL) was set to 8 and the type of spectral normalisation was set to 

p_norm = 2 (each spectrum normalised to unit length).  

3.3.11 Application of VAKFISO to simulated UV data 

Aim 

The purpose of this set of experiments was to determine how the VAKFISO method 

(described in section 2.10 and 3.1.7.10) performed when different weighting coefficients 

( 1α , 2α , 3α  and 4α ) were used to calculate the weighted residual matrix E that is used 

during NGL/M optimisation step.   

Identification of suitable method parameters 

It was possible to identify suitable starting parameters by assessing the magnitude of the 

elements in an innovations vector and state-parameter error covariance matrix for a fully 

modelled system.  In the absence of a priori information, a fully modelled system may be 

approximated using the first N primary eigenvectors that span the spectral space of the 

data set.  The primary eigenvectors (denoted V ) obtained by applying singular value 

decomposition to the data set simD2  were set as the matrix of reference measurement 

functions, .S   The vectorised adaptive Kalman filter (VecAdaptiveKF.m, section 

3.1.7.10) was applied to the data set simD2  using a window size of 4.  
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Application of VAKFISO using the initial method parameters 

Following the initial examination of the data to estimate suitable weighting coefficients, 

VAKFISO was applied to simD2  using the parameters listed in Table  3.9.  The maximum 

number of iterations was set to 250 to allow the function to break from the optimisation 

cycle if the convergence tolerance was not achieved. 

Table  3.9:  List of initial parameters used to test the VAKFISO method.  The method was applied to 
the simulated data set D2sim.  

Parameter VAKFISO 
variable  

Value Comment 

1α  alpha1 1.0×10-3 Weighting coefficient for first term ( 1αV ) 

2α  alpha2 1 Weighting coefficient for second term ( 2α ΠV ) 

3α  alpha3 1 Weighting coefficient for third term ( 3α ΣV ) 

4α  alpha4 1 Weighting coefficient for fourth term ( 4α ΞV ) 
δ  delta 1.0×10-6 Shift parameter 
mp  mp 1.0×10-3 Marquardt parameter 
μ  mu 1.0×10-4 Convergence tolerance 

Application of VAKFISO with exclusion of the state parameter error covariance 

term 

It was possible to eliminate the contribution of state parameter error covariance term from 

the calculation of the weighted residual matrix by setting the value of 2α to zero.  By setting 

2α to zero, but leaving all other parameters as listed in Table  3.9, the VAKFISO method 

optimised the model in the sense that it minimised the residual sum-of-squares.  The same 

constraints of spectral and state-parameter non-negativity were applied during the 

optimisation but the sum of the state estimate variances were not be used in the calculation 

of the weighted residual matrix.  The purpose of this experiment was to demonstrate that 

using the Kalman filter during the optimisation process provides a unique advantage over 

simple constrained least squares methods.   
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3.3.12 Application of VAKFISO to real UV data 

Aim 

In section  3.3.11, the VAKFISO method was applied to simulated UV data and the results 

obtained were compared with the known spectral and concentration profiles.  To assess 

how VAKFISO performs on real data, it was applied to the UV/ATR spectra acquired 

during the N-benzylation of 1H-indole reactions described previously in section  3.3.1.  The 

estimated pure component reference spectra were compared with the true measured 

reference spectra and the estimated concentration profiles were compared with the 

reference data provided by the analysis of reaction samples using HPLC. 

3.3.12.1 Preparation and pre-processing of the UV spectral data 

The preparation and pre-processing of the UV spectra was described in detail in  3.3.4.  In 

summary, a median filter was applied to each spectrum to remove any spikes (instrument 

artefacts) that were present.  The variable baseline contribution was then removed by 

fitting a first order polynomial to the 320 to 370 nm region of each spectrum.  The 

calculated intercept and slope were used to subtract the sloped baseline from each 

spectrum.  The first fifty-five spectra were removed from each data set as they 

corresponded to the region where the mixture of 1H-indole, TBAB and cesium carbonate 

was stirred for one hour to ensure full dissolution of the TBAB prior to addition of benzyl 

bromide. 

3.3.12.2 Examination of the UV spectral data using PCA 

To assess the number of independent components contributing to the data, PCA was 

applied to each data set.  Selection of the appropriate number of principal components also 

allowed the approximate value of measurement noise variance to be estimated from the 

residual matrix.  PCA was applied to both un-centred and mean-centred data to examine 

the structure of the loadings and scores vectors of the minor principal components before 

and after subtraction of the mean spectrum.  

3.3.12.3 Derivation of initial spectral profile estimates using VVSP 

The VAKFISO method uses VVSP to obtain initial estimates of the pure component 

spectral profiles if none are provided by the user.  VVSP was applied to each of the three 

data sets individually to allow the resulting sets of initial estimates to be compared.  
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3.3.12.4 Application of VAKFISO using VVSP initial spectral profile estimates  

The initial examination of the data using PCA and VVSP revealed that three-components 

were sufficient to model the data.  The measurement noise variance estimated from the 

PCA residual matrix was approximately 1.0×10-6 AU2 so VAKFISO was applied to each 

UV data using the parameters described in Table  3.9.  VAKFISO automatically performed 

VVSP to produce initial estimates of the spectral profiles if none were provided by the 

user. 

3.3.12.5 Application of VAKFISO using a random transformation matrix 

It is possible to provide initial spectral estimates to the VAKFISO method that will 

override the default use of VVSP.  In the previous section, VAKFISO was applied using 

VVSP initial estimates.  This approach was not successful for the third data set 

(BnIndole_B2.00_MR1.50) because the initial spectral profiles for the three components 

were all very similar.  To overcome this problem, a set of random spectral profiles were 

created.  This approach is employed by BTEM and MREM and uses a transformation 

matrix comprising of randomly generated numbers. 

A (3×3) matrix of random numbers was created using the Matlab function randn.  This 

function creates a matrix of “pseudo-random values drawn from a random distribution 

with zero mean and standard deviation of one”.  The resulting matrix was multiplied by the 

(131×3) matrix of eigenvectors to create the initial spectral estimates using the equation 

ˆ .= ⋅S V T   The spectra were normalised to unit length and VAKFISO was then applied to 

each UV data set using the parameters described in Table  3.9.  

3.3.13  Application of VAKFISO to real Raman spectra 

Aim 

In section  3.3.11 and  3.3.12, the VAKFISO method was applied to simulated and real 

UV/ATR spectra.  The UV spectra were severely overlapped and there were very few 

selective regions in the concentration mode.  To assess how VAKFISO performed on 

Raman spectra acquired simultaneously during the same reactions, the estimated pure 

component reference spectra were compared with the true measured reference spectra.  

The estimated concentration profiles were qualitatively compared with the HPLC reference 

profiles. 
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3.3.13.1 Preparation and pre-processing of the Raman data 

The preparation and pre-processing of the Raman spectral data was described previously in 

section  3.3.6.  The pre-processing involved the removal of the significant baseline 

contribution using the custom iterative polynomial baseline subtraction algorithm; removal 

of random cosmic rays by reducing the dimensionality of the data using SVD, 

normalisation of the spectra to maximum value equal to one (normalisation to infinity) and 

truncation of the spectra between 100 to 1800 cm-1. 

3.3.13.2 Application of VAKFISO using a random transformation matrix 

The ability of VAKFISO to recover estimates of pure spectral profiles starting from 

random spectra was investigated.  A (3×3) matrix of random numbers was created and 

multiplied by the (131×3) matrix of eigenvectors to create the initial spectral estimates 

using the equation ˆ .= ⋅S V T   The spectra were normalised to unit height (normalisation to 

infinity) and VAKFISO was then applied to each Raman data set using the parameters 

described in Table  3.9.   
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4 Results and Discussion 

4.1 Combining Self-Modelling Curve Resolution and PLS regression 

4.1.1 Laboratory scale development experiments 

The aim of this work was to develop a multivariate calibration model to quantitatively 

monitor a reaction using in-situ spectroscopy.  Reaction end-point criterions are often 

defined as an acceptable molar ratio of product to starting material or simply a minimum 

target concentration of product.  To build a Partial Least Squares (PLS) model in the 

traditional manner would typically require off-line analysis (e.g. using HPLC) of many 

synthetic mixture or actual reaction samples to determine the concentration of each 

reactant and product of interest.  

Observations made during the initial trial experiment revealed that it would not be possible 

to sample the reaction mixture during the course of the reaction to obtain the necessary 

concentration reference data owing to the follow difficulties:  

(i) The reaction mixture started as a heterogeneous slurry and the starting material 

(acetoxyone) was only partially soluble so it dissolved slowly during the course of the 

reaction. 

(ii) The reaction solution rapidly cooled on sampling, causing a mixture of acetoxyone / 

haloacetoxyone to precipitate out of solution; the measured concentrations in a filtered 

solution was not representative of what the ATR probe measured in the solution phase.  

This would have led to discrepancies between the in-situ spectra and the off-line reference 

measurements. 

(iii) Following complete addition of phosphorus oxychloride, the UV reaction spectra 

indicated the presence of an intermediate species for which there was no reference material 

available.  Without this reference material, it was not possible to measure a pure UV 

reference spectrum or prepare a HPLC assay standard of the isolated intermediate species. 

A few simple experiments were performed to provide key reference measurements that 

aided subsequent modelling.  The solubility of the starting material in the reaction solvent 

was determined using HPLC solution assay.  Under nominal reaction conditions, the 

solubility of acetoxyone prior to the addition of phosphorus oxychloride was found to be 
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2.52×10-4 mol.L-1.  Examination of the UV/ATR spectra also revealed that owing to the 

low solubility of the starting material, its UV spectrum could not be distinguished from the 

solvent.  As a consequence, an in-situ reaction monitoring method based on the 

consumption of acetoxyone was not possible. 

Upon reaction completion, the reaction mixture was a dark homogeneous solution and 

although still highly saturated, it was easier to sample than the heterogeneous mixture.  The 

concentration of acetoxyone and haloacetoxyone were measured using HPLC solution 

assay.  The concentration of haloacetoxyone at the end of the calibration reaction was 

0.272 mol.L-1.  The extent of reaction, based upon a peak area ratio of product to starting 

material was greater than 98%. 

4.1.2 Overview of the spectral data 

During the calibration reaction a spectral data matrix comprised of 172 spectra at 1 minute 

intervals over the wavelength range 220 to 400 nm at 1 nm intervals (resulting in 180 

variables) was acquired.  Figure  4.1(a) and Figure  4.1(b) show the reaction spectra obtained. 

The absorbance values in the original spectra between 220 and 265 nm were almost 3 AU 

and were not suitable for quantitative modelling as the spectra were optically saturated and 

contained significant levels of measurement noise.  The region between 350 and 400 nm 

contained no useful spectral features and were also ignored.  The data were therefore 

truncated to only include the region 265 to 350 nm prior to subsequent data analysis.  The 

second derivative spectra support the observations above.  The spectral region between 

220 and 265 nm contained higher levels of noise relative to the rest of the spectra.  The 

region between 350 and 400 nm had derivative absorbance values of zero, providing 

confirmation that there were no significant features present in the original absorbance 

spectra.  

The second derivative spectra shown in Figure  4.1(b) reveal a third species in addition to 

the starting material / solvent and product.  The two independent sets of peaks for the 

intermediate and product can be seen in the spectral region 290 to 340 nm. 
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Figure  4.1:  (a) UV spectra from laboratory scale reaction.  Every fifth spectrum is shown to improve 
clarity; (b) Second derivative spectra from laboratory scale reaction.  Every fifth spectrum is shown 
to improve clarity   

Visual examination and a preliminary examination of the data using principal components 

analysis also indicated that the region 220 to 265 nm was highly overlapped and was 

significantly noisier than the region 265 to 400 nm.   

Principal components analysis of the mean-centred, second derivative data suggested that 

two major components could be resolved from spectra.  The first two principal 

components accounted for 98.96% of the total variance whilst the third and fourth 

components contributed a further 0.51% and 0.37% respectively.  The eigenvalues, scores 

and loadings are shown in Figure  4.2. 

Major component is toluene and partially dissolved acetoxyone 
Major component is intermediate 
Major component is haloacetoxyone 
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Figure  4.2:  Summary plots from PCA of mean centred, second derivative UV spectra acquired 
during the laboratory scale calibration reaction; (a) plot of eigenvalue versus principal component 
number; (b) plot of log10(eigenvalue) versus principal component number; (c) plot of scores for first 
two principal components versus time (min) - Principal component 1 exhibits a profile characteristic 
of product formation, whilst principal component 2 exhibits a profile characteristic of intermediate 
formation and  subsequent consumption; (d) plot of loading vectors for the first two principal 
components versus wavelength.   

The plot of eigenvalues versus principal component number in Figure  4.2(a) shows that the 

eigenvalues decreased rapidly over the first three principal components.  The eigenvalues 

then maintained a value close to zero for the remaining principal components.  The log10 of 

the eigenvalues is a more sensitive measure of changes in value over a large range but there 

was still an obvious break-point at three principal components.  This implied that three 

principal components would be sufficient to model the mean-centred data.  As SMCR 

methods are typically applied to non-centred data, an additional component may be 

required.  This is because when PCA is applied to un-centred data, the first principal 

component will model the mean and variance about the mean spectrum.   

The scores profiles for the first two principal components exhibited features that 

correspond to possible concentration profiles for an intermediate species and product.  It 

was confirmed using off-line HPLC analysis that the reaction did reach completion (assay 

0.27 mol.L-1, conversion >98%) in two hours (reaction sampled at 120 minutes).  The 
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loadings in Figure  4.2(d) clearly show the distinctive peaks for the intermediate and product 

species.  However the loading vectors are not necessarily the true pure component spectra 

for the intermediate and product.  Application of SMCR methods allowed alternative 

candidates for the true pure component spectra to be calculated.  

Another way to confirm the correct number of principal components required to 

sufficiently model the structured variance in a spectral data set without over-fitting was to 

examine the residual spectra.  A custom Matlab script, ResidualComps was written that 

decomposes the un-centred spectral data using singular value decomposition (SVD).  The 

spectral data are then reconstructed several times using an increasing number of principal 

components.  The corresponding residual matrix is calculated at each principal component 

number by subtracting the reconstructed data from the original data matrix.  The total 

sum-of-squares (SSQ) is calculated for each residual matrix and plotted against principal 

component number.  Although this plot will have an identical profile to the plot of 

eigenvalues against principal component number, the ability to directly visualise and 

compare the reconstructed and residual data sets can also be very useful. 

The output plots produced by applying ResidualComps to the second derivative 

spectra acquired during the calibration reaction are shown in Figure  4.3 and Figure  4.4.  

The total sum-of-squares of each residual matrix, plotted against the number of principal 

components used to reconstruct the data set are shown in Figure  4.3(a).  The line plot 

shows that the residual sum-of-squares decreased rapidly over the first three principal 

components as the major contributions to the total variance were modelled.  There was a 

clear break-point at three principal components where the decrease in the residual sum-of-

squares was more gradual.  This indicated that all subsequent components used to model 

the data were only capturing small contributions.  In spectral data, these components 

usually account small, non-linear effects such as slight movement of the peak maxima or 

the peak shapes that cannot be captured by single principal components.  The plot of log10 

values also suggested that three or four principal components were sufficient to model the 

useful structured variance in the data. 
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Figure  4.3:  (a) total sum-of-squares of each residual matrix plotted against the number of principal 
components used to reconstruct the data set; (b) log10(sum-of-squares) of each residual matrix 
plotted against the number of principal components used to reconstruct the data set.  The changes 
in gradient indicated on the plots suggest that three principal components would be adequate to 
model most of the structured spectral variation. 

The reconstructed and residual spectra calculated using one to eight principal components 

are shown in Figure  4.4.  The residual spectra provided a convenient way to examine the 

remaining structure not modelled by the principal components.  For the first three 

principal components, the additional contributions to regenerated spectra are clearly visible.  

For principal components four and above, the contribution of the additional components 

to the regenerated spectra could not be seen.  However, the difference to the respective 

residual spectra was easier to see.  When examining the residual spectra, both the structure 

and the magnitude of the remaining features must be considered.  Comparison of the 

residual spectra after regeneration of the data set using three and four principal 

components confirmed that the position and profile of the spectral features were very 

similar.  Upon closer inspection, it was observed that the peak maxima in each set of 

residual spectra were at slightly different wavelengths; indicating that the additional 

components were modelling subtle peak shifts and changes in peak shape.  
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The conclusions from these initial examinations of the data were that the original data 

could be truncated without loss of information and only the spectral region 265 to 350 nm 

was retained.  Application of Savitsky-Golay smoothing and differentiation to calculate the 

second derivative spectra was sufficient to remove any additive baseline contributions and 

also enhanced the spectral resolution between the major components of interest.  

Multivariate analysis using PCA indicated that three principal components were sufficient 

to model 99.87% of the total variance, and the inclusion of a fourth component accounted 

for 99.96% of the total variance.  Visual examination of the regenerated and residual 

spectra suggested that three to four components were sufficient to model the data without 

over-fitting. 
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 Figure  4.4:  The reconstructed and residual spectra obtained using 1 to 4 principal components. 
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4.1.3 Derivation of initial concentration profile estimates using EFA 

The two-, three- and four component EFA profiles obtained by application of EFA to the 

second derivative UV data are shown below in Figure  4.5. 
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Figure  4.5:  Combined forward and backward profiles obtained by applying EFA to the second 
derivative UV spectra:  (a) two EFA components; (b) three EFA components; (c) four EFA 
components 

The two component EFA profiles are shown in Figure  4.5(a).  Component 1 corresponds 

to the starting mixture spectrum (toluene / acetoxyone) and its subsequent dilution on 

addition of phosphorus oxychloride.  It is the ability of EFA to perform a local rank 

analysis of the first several spectra that allowed this feature to be detected.  The 

intermediate species was not modelled explicitly and was therefore embedded in one or 

both of the two-component profiles. 
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The three component EFA profiles shown in Figure  4.5(b) now include a profile that 

corresponds to the likely concentration window for the intermediate species.  The profile 

reached a maximum at approximately 45 minutes and therefore showed good agreement 

with the corresponding scores profile obtained using simple PCA.  The profile 

corresponding to product formation also suggested a faster rate of reaction and shows 

much closer agreement to the time-series profiles obtained using PCA and univariate 

profiling at selective wavelengths. 

The four component EFA profiles shown in Figure  4.5(c) have two profiles that could 

correspond to intermediate species.  The profile corresponding to the formation of product 

was a feasible estimate as it was similar to the product profile obtained from the three 

component EFA estimates.  However it began earlier in the reaction and was more 

overlapped with the intermediate profiles.  Furthermore, the maxima of the two 

intermediate profiles were at 34 and 52 minutes (not 45 minutes as expected).  The two 

intermediate profiles obtained from the four component EFA estimates were therefore 

believed to be modelling subtle spectral peak shifts occurring during the formation and 

reaction of the intermediate species. 

Based upon the observations discussed above, it was concluded that the three component 

EFA profiles were the best initial estimates of the true concentration profiles.  The start 

and end-points of the EFA profiles were manually corrected to remove the artefacts 

produced during the EFA analysis.  The corrected profiles are shown in Figure  4.6. 
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Figure  4.6:  (a) Smoothed estimates of concentration profiles obtained by application of Evolving 
Factor Analysis to the second derivative UV spectra; (b) Scaled initial estimates of the concentration 
profiles.  The profiles were scaled using the HPLC assay concentrations shown in the figure. 

Using the experimental values obtained from the HPLC solution assays, the EFA profiles 

were scaled to provide initial estimates of the underlying concentration profiles in mol.L-1 

units.  In the absence of any concentration reference values for the intermediate species, 

the profile of the intermediate was scaled to the same maximum value as the product.  As 

the profiles were to be refined using MCR-ALS, it was only necessary to scale the 

intermediate profile so that it had a comparable magnitude to the product profile; the 

actual value was not critical.  The scaled profiles are shown in Figure  4.6(b). 

4.1.4 Derivation of initial spectral profile estimates using OPA 

OPA was applied to the truncated (265 to 350 nm), second derivative spectra to confirm 

whether the additional components identified using PCA and EFA were a consequence of 

peak shifting in the original data.  The output from calculation of the first eight OPA 

components is shown below in Figure  4.7. 

The most dissimilar (pure component) spectra are shown in Figure  4.7(a).  The spectra 

were automatically normalised to unit length by the OPA function.  The first three 

components are plotted with bold lines to improve clarity.  The first spectrum (OPA comp. 
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1) corresponds to the starting mixture of toluene, partially dissolved acetoxyone and di-

isopropylethylamine.  The second spectrum (OPA comp. 2) corresponds to the product, 

haloacetoxyone and the third component (OPA comp. 3) corresponds to the intermediate.  

The spectra for OPA components four to eight were also very similar to the first three 

spectra.  The largest differences occur between variables 1 to 20 (265 nm to 282 nm) and 

variables 50 to 75 (307 nm to 329 nm).  This confirmed that the spectra for the minor 

OPA components were very similar to the major components but were shifted by a few 

nanometers. 

Examination of the dissimilarity plots in Figure  4.7(b) also confirmed that the minor 

components represent spectral peak shifts.  The dissimilarity profiles have all been scaled to 

max.= 1 to aid comparison but the minor components were much noisier and have less 

structure (autocorrelation) than the major components.  

The Durbin-Watson values calculated for each OPA component’s dissimilarity vector are 

shown in Figure  4.7(c).  These values are a measure of the correlation or randomness 

existing in the dissimilarity profiles.  As the Durbin-Watson value tends to zero, there is a 

strong serial correlation in dissimilarity vector, indicating the OPA component may 

correspond to true underlying structure in the data.  The Durbin-Watson value will increase 

as the successive values in dissimilarity vector becomes less correlated.  The plot in Figure 

 4.7(c) shows there was a distinct increase in value after 3 components, indicating that the 

dissimilarity vector for the fourth OPA component was less correlated than the first three 

components.  
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Figure  4.7:  Application of OPA to the truncated, second-derivative UV spectra:  (a) normalised pure 
component spectra.  The first three OPA components are plotted using bold lines; (b) scaled 
dissimilarity profiles (scaled to max. = 1).  The first three OPA components are plotted using bold 
lines; (c) Durbin-Watson values calculated using the dissimilarity vectors for each OPA component. 
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Based upon the EFA profiles, it was expected that the most selective spectra would be 

observed at approximately 0, 45 and 172 minutes, corresponding to the starting spectrum 

(predominately toluene), the maximum concentration of the intermediate species and the 

product at end of reaction respectively.  The most dissimilar spectra were identified at 0, 43 

and 168 minutes.  The un-normalised ‘pure’ spectra were collected into a matrix estS  and 

scaled to unit concentration (1.0 mol.L-1).  The pure spectra corresponding to the starting 

material and product were scaled using the concentration values obtained by HPLC 

solution assays at the start and end of the reaction.  Since reference standard material for 

the intermediate species was not available, an assumption regarding its unit concentration 

intensity was necessary.  The spectrum for the intermediate species displays a very similar 

shape but exhibits a hypsochromic shift with respect to the product spectrum.  It was 

therefore assumed that the 2-norm of the intermediate and product spectra were 

equivalent.  After scaling the product spectrum to unit concentration, the spectrum of the 

intermediate species was scaled to give the same 2-norm as the unit concentration product 

spectrum (
2 2i pS S= ).  The concentration of acetoxyone at the start of the reaction was 

2.524×10-4 mol.L-1.  This was a factor of 1078 times lower than the concentration of 

haloacetoxyone at the end of reaction (0.272 mol.L-1).  The consequence of this was that 

when the spectrum of acetoxyone was scaled to unit molarity, its intensity was 1078 times 

larger than the scaled spectrum of haloacetoxyone.  This did not affect subsequent MCR-

ALS calculations as its spectrum was constrained.  The scaled OPA spectra for the 

intermediate and haloacetoxyone are shown in Figure  4.8(b). 

4.1.5 Refinement of profiles using MCR-ALS 

Although EFA identified three profiles, the first component was believed to correspond to 

the dilution of toluene during the addition of phosphorus oxychloride.  PCA of the same 

data indicated that no significant factors corresponding to this dilution were observed.  

Since none of the first three principal components modelled this behaviour, the dilution 

accounted for less than 0.35% of the total variance.  Emphasis was therefore placed upon 

resolution of the profiles for the intermediate and product species only. 

To help the MCR-ALS optimisation focus on refinement of the profiles of the intermediate 

and product species only, the scaled spectrum of acetoxyone / toluene was constrained to 

prevent it from being updated during each iteration.  The scaled spectrum of 

haloacetoxyone (product) was also constrained.  The inclusion of the two known 
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concentration values for the start and end of reaction in the concentration selectivity matrix 

ensured that the profiles were forced through two known reference points.  In addition, the 

first several points of the product’s concentration vector were set to zero as no product 

was present before the phosphorus oxychloride was added.  The unknown parts of the 

concentration profiles and the spectrum of the intermediate species were free to be 

updated during the MCR-ALS optimisation.  The refined concentration and spectral 

profiles are shown in Figure  4.8. 

The lack-of-fit of the MCR-ALS optimised factors with respect to the reduced data 

reconstructed from the first three principal components was 0.0085%.  The lack-of-fit of 

the MCR-ALS optimised factors with respect to the experimental data was 3.55%.  This 

relatively high lack-of-fit value was not surprising as the rank of the data was larger than 

three owing to non-linear contributions such as peak shifting.  The three component 

MCR-ALS model provided the best least-squares fit of the full-rank data but did not 

account for the minor contributions that increase the rank of the data above three.  The 

percentage of variance explained by the three MCR-ALS components was 99.47% (cf. PCA 

99.87%).  These statistics revealed that the non-orthogonality of the MCR-ALS pure 

spectral profiles reduced the amount of variance captured by a three component model 

relative to the three component PCA model.   
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Figure  4.8:  (a) MCR-ALS optimised concentration profiles for intermediate and haloacetoxyone; (b) 
MCR-ALS optimised spectral profiles.  Initial estimates of the pure component spectra were 
obtained using Orthogonal Projection Approach and were scaled to unit concentration.  The OPA 
spectrum for the intermediate species was scaled to have the same 2-norm as the scaled 
haloacetoxyone spectrum.  During the MCR-ALS optimisation, the spectra of the acetoxyone / 
toluene and haloacetoxyone were constrained to prevent them from being updated.  The spectrum 
of the intermediate species was automatically modified during the MCR-ALS optimisation to give 
the best least-squares fit of the data. 

 

4.1.6 Calculation of PLS models using refined concentration profiles 

A series of PLS1 and PLS2 models were calculated using the concentration profiles derived 

using MCR-ALS.  A PLS model was required to allow the real-time prediction of 

haloacetoxyone concentration during a manufacturing campaign in a large scale laboratory.  

The unit molarity pure component spectra were derived using SMCR methods but could 

not be used directly to predict the concentration of the intermediate and product species.  
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This was because the standard process monitoring software used by UV spectrometer 

would not facilitate this approach.  The function of the PLS model was to transform the 

pure component spectra into a set of PLS regression coefficients, B̂  via the corresponding 

concentration profiles.  The Root Mean Standard Error of Cross Validation (RMSECV) 

values for the various PLS models are shown in Table  4.1.  It should be noted that 

although the results from the cross-validation procedure were reported as RMSECV 

values, they do not correspond to RMSECV values in the traditional sense.  Traditionally, 

RMSECV values indicate the accuracy to which values for a property of interest that have 

been measured by an off-line reference method can be predicted using a calibration model.  

In this case, the RMSECV values correspond to the accuracy to which the scaled 

concentration profiles derived directly from the spectral data using SMCR methods could 

be predicted using the PLS models.     

Table  4.1:  Root Mean Standard Error of Cross Validation (RMSECV) values for predicted 
constituent concentrations using PLS1 and PLS2 models with one to five factors.  The values for the 
three factor model are shown in bold.  The units of the RMSECV values are mol.L-1.   

 
PLS1 PLS2 

Constituent Factors 
Leave-one-

out CV 
Leave-out-

fifty CV 
Leave-one-

out CV 
Leave-out 
fifty CV 

1 3.60×10-5 3.98×10-5 4.78×10-5 5.53×10-5 
2 1.15×10-6 1.21×10-6 1.19×10-6 1.25×10-6 
3 9.47×10-7 9.83×10-7 1.06×10-6 1.12×10-6 
4 8.04×10-7 8.73×10-7 1.01×10-6 1.05×10-6 

Acetoxyone 

5 7.62×10-7 8.10×10-7 9.70×10-7 1.07×10-6 
1 3.16×10-2 3.79×10-2 4.18×10-2 4.69×10-2 
2 3.41×10-3 3.40×10-3 3.43×10-3 3.42×10-3 
3 2.46×10-3 2.44×10-3 2.56×10-3 2.52×10-3 
4 2.35×10-3 2.42×10-3 2.47×10-3 2.50×10-3 

Intermediate 

5 2.31×10-3 2.27×10-3 2.50×10-3 2.53×10-3 
1 9.83×10-3 1.04×10-2 8.67×10-3 9.55×10-3 
2 4.73×10-3 4.64×10-3 4.81×10-3 4.71×10-3 
3 2.71×10-3 2.64×10-3 2.76×10-3 2.79×10-3 
4 2.28×10-3 2.74×10-3 2.64×10-3 2.63×10-3 

Haloacetoxyone 

5 1.78×10-3 2.03×10-3 1.90×10-3 2.18×10-3 
 

The two methods of cross-validation did not produce values that were consistently higher 

or lower than the other method.  Generally the leave-out-fifty cross validation returned 

RMSECV values that were between 5% and 20% higher than leave-one-out cross 

validation for the first factor.  For factors two to four, the leave-out-fifty cross validation 

returned RMSECV values that were approximately ±5% relative to leave-one-out cross 



Chapter 4.1 – Results and Discussion: Combining SMCR and PLS regression 

 - 167 - 

validation.  And for factor five, the values were approximately 10% to 15% higher.  As 

expected, the RMSECV values for acetoxyone were very much lower than those returned 

for the intermediate or haloacetoxyone (10-7 to 10-6 mol.L-1 and 10-3 to 10-2 mol.L-1 

respectively).  These values reflect the difference in the magnitude of the concentration 

profiles.  Owing to poor solubility, the concentration of acetoxyone only reaches a 

maximum concentration of approximately 2.524×10-4 mol.L-1, the concentration of 

haloacetoxyone at the end of reaction was almost 1100 times higher (0.272 mol.L-1). 

When deriving the concentration profiles using SMCR methods, it was concluded that the 

chemical rank (i.e. number of independent spectroscopically active species that change 

concentration during the reaction) was three.  The mean3 RMSECV values returned by the 

three-factor PLS1 and PLS2 models for product were 2.68×10-3 mol.L-1 and 2.78×10-3 

mol.L-1 respectively.  At the end of the reaction, this corresponded to a prediction error of 

0.99% (PLS1) and 1.02% (PLS2).  The addition of a fourth or fifth factor only gave a 

marginal improvement of 0.84% (PLS1) or 0.93% (PLS2).  Although including additional 

factors reduced the RMSECV, a three factor model provided a prediction error equivalent 

to the HPLC assay method used to derive the key reference measurements.   

The choice of whether to use a PLS1 or PLS2 model was considered.  The RMSECV 

values show that a three-factor PLS1 model gave a slightly better prediction than a three-

factor PLS2 model, but both were fit for purpose.  A PLS2 model was selected as it allows 

a matrix of dependent variables (Y-block) to be fitted simultaneously within a single model.  

PLS1 models fit each component of Y independently and although this gave better 

RMSECV values, it results in a set of scores, weights and loadings matrices for each 

component of Y.  A PLS2 model was chosen because it returned good prediction errors 

within a single model and like MCR-ALS, it models all components simultaneously. 

The main figures of interest for the resulting 3-factor PLS2 model are shown in Figure  4.9. 

                                                 

3 Mean of the RMSECV values returned by the two methods of cross-validation; leave-one-out and leave-out-

fifty. 
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Figure  4.9:  (a) Cumulative variance explained, (%) versus principal component number for spectral 
matrix (X) and concentration matrix (Y); (b) RMSECV versus principal component number; (c) 
MCR-ALS derived concentrations and PLS predicted concentrations versus time (min); (d) MCR-
ALS derived concentrations versus PLS predicted concentrations (analogous to Actual v. Predicted). 

4.1.7 Comparison of PLS regression coefficients and MCR-ALS spectra 

A least-squares method was used to calculate the pure spectral profiles from each set of 

PLS1 or PLS2 regression vectors or matrices.  The resulting spectral profiles were 

compared with the MCR-ALS derived pure component spectra for the intermediate and 

product.  This was repeated for each model type (PLS1 or PLS2) and for one to five 

factors.  The overlaid spectra are shown in Figure  4.10. 

The plots in the first column show the PLS1 spectral profiles obtained using one to five 

factors.  It is possible to see that the PLS1 spectra showed a strong correlation with the 

MCR-ALS derived spectra over the region 290 to 350 nm, although there were obvious 
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differences in the region 265 to 290 nm.  It was also possible to discern that the fit between 

PLS1 and MCR-ALS spectra reached an optimum around three factors.  The plots in the 

second column show the PLS2 spectral profiles obtained using one to five factors.  The 

plots corresponding to the first factor clearly exhibit a huge scaling difference between the 

PLS2 spectra and the MCR-ALS spectra.  The reason for this was that the PLS2 model 

attempted to fit all three constituents (acetoxyone, intermediate and haloacetoxyone) 

simultaneously.  Consequently, the large difference in the magnitude of the concentration 

profiles for acetoxyone and the other two constituents meant that the first factor needed to 

account for the large difference in magnitude between the different constituents.  Auto-

scaling the Y-block would overcome this issue but unfortunately it was not possible to 

independently auto-scale the Y-block in the PLSPlus/IQ software.  The spectral profiles 

for the subsequent factors show much better correlation and seemed to reach an optimum 

at three factors. 
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Figure  4.10:  Comparison of the pure spectral profiles calculated from the PLS regression vectors 
(bold lines) and the corresponding pure component spectra derived using SMCR. 
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To quantify the differences between the PLS and MCR-ALS spectra, the root-mean-square 

error (RMSE) of the spectral residuals were calculated.  These values are shown in Figure 

 4.11.  Although the values obtained from a one-factor PLS2 model were several orders of 

magnitude larger than a one-factor PLS1 model, the subsequent factors produced more 

comparable values.  The RMSE values for the intermediate approached a minimum starting 

at three factors and only showed marginal improvement with four or five factor models.  

The RMSE values for haloacetoxyone were minimised at three factors.  It is interesting to 

note that the RMSE values were almost identical for PLS1 and PLS2 three-factor models.  

This confirmed that both methods were reproducing the pure component spectra with the 

same accuracy. 
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Figure  4.11:  RMSE values calculated from the spectral residuals (MCR-ALS - PLS spectrum).  The 
RMSE values obtained for PLS2 1-factor model were too large to show effectively on the same plot.  
The value for intermediate was 3.07×105, the value for haloacetoxyone was 5.57×105.  

The difference between the MCR-ALS spectra and the pure spectral profiles calculated 

from the PLS regression vectors may have been a consequence of the way they were 

derived using each method.  Both self-modelling curve resolution and PLS are based upon 

a bilinear model of the spectral data.  The aim of curve resolution is to factorise the 

spectral data matrix into two appropriately sized matrices representing the pure analyte 
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concentration and spectral profiles.  The factors recovered using curve resolution are 

optimised in a least-squares sense, i.e. they minimise the total sum of squares of the residual 

un-modelled part of the data.  The factors recovered using curve resolution are not 

constrained to be orthogonal and represent a linear combination of all possible basis 

vectors spanning the data.  If applied to the original data matrix, curve resolution therefore 

represents a full-rank model.  However, PLS will search for a set of orthogonal basis 

vectors that both maximise the covariance of X / Y and the amount of variance explained 

in X and Y.  These basis vectors form a subspace that span only part of the spectral space.  

Increasing the number of PLS factors would include additional contributions to the 

spectrum, subject to the above constraints of maximising the covariance. 

4.1.8 Application of the UV method in a Large Scale Laboratory 

The PLS model was used to monitor five batches over the period of four weeks.  For the 

first batch, the model successfully produced concentration profiles similar to those 

observed in the laboratory.  More importantly, the predicted end-point concentration 

showed good agreement with both the expected theoretical value and the actual measured 

value obtained using HPLC analysis (0.27 mol.L-1).  The results for batch 1 are shown in 

Figure  4.12(a).  The profiles at the start of the reaction were not zero as expected and 

clearly show the point at which the addition of phosphorus oxychloride was added at 39 

minutes. 

The product concentration prediction results obtained from the subsequent four batches 

were not so accurate.  Figure  4.12(b) shows the overlaid predicted product concentration 

profiles for all five batches.  The batches were aligned by setting the time at which 

phosphorus oxychloride addition was started to t0.  The five overlaid batches all exhibit 

very similar profiles but the true concentrations were not correctly predicted.  The largest 

prediction error attained was during batch three for which a final concentration of 0.22 

mol.L-1 was predicted; whilst the true measured value was 0.271 mol.L-1 (an error of 

18.8%). 
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Figure  4.12:  (a) Predicted concentrations for batch 1, manufactured in a Large Scale Laboratory; (b) 
Comparison of predicted product concentrations for 5 batches manufactured in a Large Scale 
Laboratory.  The dashed line shows the theoretical end of reaction limit (0.27 mol.L-1).  The batches 
were aligned by setting the start of the phosphorus oxychloride addition to t0.  During the 
manufacture of batch 3, it was noted that the product (haloacetoxyone) profile was increasing slower 
than observed for previous batches.  The batch temperature was checked and found to be 10ºC lower 
than the process set-point.  The temperature was set to 70ºC at 110 minutes as indicated on the plot. 

There were two potential experimental factors contributing to the observed prediction 

errors.  The first factor was a consequence of the way in which the background spectrum 

was acquired for batches 2 to 5.  In batch 1, the background spectrum was acquired with 

the probe installed on the vessel lid but not fixed to the full immersion depth, this allowed 

the tip to be positioned in the headspace above the charged reactants.  Therefore both the 

probe and the fibre-optic cables were very close to their final orientation when the 

background spectrum was acquired.  Unfortunately, this approach could not be adopted in 

subsequent batches so the reference spectra were acquired prior to installation of the 

probe.  The change in the optical transmissitivity of the fibres when the probe was installed 

resulted in subsequent single beam spectra with higher or lower intensity than the 

background spectrum.  Upon conversion to an absorbance spectrum, the difference 

between the intensities of the background and sample single beam spectra was observed as 

an increase or decrease in calculated absorbance values.  This was usually observed as a 

baseline shift and could be removed by zero-minimum offset correction or transformation 
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of the spectra to their first or second derivative form.  As the predictions were based upon 

second derivative spectra, the effect of fibre movement should have been minimised.   

The major factor that contributed to the observed prediction error was the magnitude of 

the absorbance values of the measured spectra and their subsequent derivative spectra.  

Examination of the second derivative spectra indicated that the magnitude of the 

absorbance values for the final four batches were lower than those for the development 

reaction and batch 1.  The peak positions and peak shapes for the spectra acquired in all 

batches showed excellent correlation but clearly displayed a scaling discrepancy.  A variable 

baseline offset was present in all six data sets but was more severe in the LSL batches.  

Although this could have been caused by movement of fibres as discussed above, it could 

also suggest that probe fouling was occurring.  A potential consequence of probe fouling is 

that the adsorbed solid can reduce absorbance by the continuous phase owing to a reduced 

penetration depth and available measurement area on the ATR crystal.  The reduced 

absorbance values were believed to be the reason the values predicted using the PLS model 

exhibited the correct reaction profiles but the predicted concentrations were low. 

Despite the problems with the quantitative predictions described above, the real-time data 

still proved to be very useful during manufacture.  With the exception of batch 3 (the 

profile in Figure  4.12(b) marked with a dotted line), the qualitative shape of both the 

intermediate and product profiles for batches 2 to 5 showed good agreement with those 

observed in the laboratory and batch 1 in the large scale reactor.  It was noted at the time 

of manufacture that the profile for batch 3 suggested that the reaction was proceeding 

more slowly than was observed for previous batches.  This prompted the operators to 

check the process conditions and identify that temperature set-point was 10°C lower than 

required.  The inflection point in the profile at approximately 110 minutes corresponds to 

the time at which the operators corrected the temperature set-point.  The appropriate time 

at which to take a sample for off-line analysis to confirm the end-point was also correctly 

identified from the reaction profiles.  Further confidence was taken from the ability to see 

the appearance and disappearance of the intermediate species as well as the appearance of 

the product. 



Chapter 4.1 – Results and Discussion: Combining SMCR and PLS regression 

 - 175 - 

4.1.9 Conclusions:  Derivation and implementation of a PLS model using 

minimal reference data 

An alternative approach for the derivation and implementation of a PLS model for in-situ 

reaction monitoring using UV spectroscopy was investigated.  The reaction studied was the 

chlorination of acetoxyone using phosphorus oxychloride in toluene.  The initial trial 

experiments showed that the UV spectroscopy was suitable for monitoring this reaction 

and additional experiments were performed to provide the necessary reference 

measurements.  The solubility limit of acetoxyone at the start of the reaction under nominal 

reaction conditions was established by solution assay of the supernatant liquid.  The 

concentration of haloacetoxyone (product) at the reaction end-point was measured using 

HPLC solution assay (0.27 mol.L-1).  The reaction was then repeated using the nominal 

process conditions to provide spectra that were subsequently used to construct a PLS 

model for process monitoring in a large scale laboratory facility.   

Savitsky-Golay smoothing and differentiation (second derivative, 13-point smoothing) of 

the spectral data was adequate to remove baseline off-sets and also enhanced the 

differences between the spectra of the major constituents.  PCA of the data revealed that 

the first two principal components accounted for 98.96% of the total variance.  The scores 

profiles for the first two principal components provided a useful indication of the 

underlying concentration profiles of the intermediate and product.   A custom Matlab 

function called ResidualComps was also written and applied to the second derivative 

spectra.  The results confirmed that three principal components were sufficient to model 

the major contributions to the data.  Additional components were simply modelling the 

minor contributions that arose from spectral peaks shifts and other non-linear effects.  

Evolving factor analysis (EFA) was applied to the data and the results were used to 

confirm the rank of the data, and also to provide initial estimates of the concentration 

profiles.  The output from the two-, three and four-component EFA models were 

compared and it was judged that the three-component model was most suitable.  The EFA 

profiles were smoothed and scaled using the HPLC concentration data to provide the 

initial estimates of the concentration profiles for acetoxyone, intermediate and 

haloacetoxyone.   

A Matlab script (OPA) was written to perform analysis using the orthogonal projection 

approach.  OPA is not an eigenvalue based approach but identifies each possible pure 

component spectrum based upon it dissimilarity.  This was found to be very sensitive to 
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the subtle peak shifts that were occurring.  The direction of the peak shifting could be 

visualised by overlaying the OPA spectra.  The significance of each OPA spectrum was 

assessed by examination of its corresponding dissimilarity profile.  As the significance of 

each OPA spectrum decreased, it dissimilarity profile exhibited more noise.  The Durban-

Watson values are a measure of the autocorrelation in the dissimilarity profiles and 

indicated that three OPA components were appropriate.  The OPA spectra corresponding 

to acetoxyone, intermediate and haloacetoxyone were scaled using the HPLC reference 

measurements.  OPA was found to be a very powerful method because it allowed the 

effect of peak shifting to be visualised.   

Multivariate Curve Resolution – Alternating Least Square (MCR-ALS) was used to 

combine the initial estimates derived using EFA and OPA.  Although MCR-ALS could 

have been executed using either initial estimate of the concentration or the spectral matrix; 

using both sets of estimates with equality constraints helped to further constrain the final 

solutions produced.  The final concentration and spectral profiles produced by the 

optimised MCR-ALS model could not be used directly for the real-time prediction of 

haloacetoxyone concentration from new reaction spectra.  This was because the process 

monitoring software used by the UV spectrometer did not support the use of the MCR-

ALS pure component spectral matrix for the prediction of new spectra.  To overcome this 

restriction, the pure component spectra were converted to a set of PLS regression spectra 

using the corresponding matrix of concentration profiles from the MCR-ALS model to 

calculate the PLS model. 

The performance of PLS1 versus PLS2 models using different numbers of factor were 

compared.  Based upon the root mean square error of cross validation (RMSECV) values, a 

three-factor PLS1 model for the prediction of haloacetoxyone gave a RMSECV of  

2.68×10-3  mol.L-1, whilst the three-factor PLS2 model gave a RMSECV of 2.78×10-3 

mol.L-1.  This corresponded to a prediction error of 0.99% (PLS1) or 1.02% (PLS2) at the 

reaction end-point.  Although lower RMSECV values were achieved using four or five 

factors, the effect upon the corresponding PLS regression spectra was detrimental.   

The purpose of calculating a PLS model was to transform the MCR-ALS pure component 

spectra into a set of PLS regression coefficients.  The PLS pure spectral profiles were 

calculated using the PLS regression coefficients and compared with the MCR-ALS pure 

component spectra.  Visually, it could be seen that the PLS pure spectral profiles correlated 

well with the MCR-ALS spectra and a three-factor PLS model offered the best fit.  The 
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root mean square errors of the residual spectra for the intermediate and haloacetoxyone 

constituents reached a minimum at three factors and confirmed the above observations.  

The RMSE values for the haloacetoxyone residual spectra were almost equivalent for the 

PLS1 and PLS2 three-factor models.  This confirmed that both PLS1 and PLS2 

reproduced the pure component spectra with equal accuracy. 

The outcome of using the derived PLS model for predicting new batches was a mixed 

success.  The predicted concentrations from batch 1 showed good agreement with the 

expected values and the measured reference value provided by HPLC.  The predicted 

concentrations for the remaining batches were less accurate.  However, the resulting 

qualitative reaction profiles all displayed the same characteristic shape and successfully 

indicated the reaction end-point.  The ability to observe the appearance and disappearance 

of the intermediate species provided further confidence when interpreting the qualitative 

profiles to judge the end-point.  The apparent rate of intermediate and product formation 

also allowed the low set point temperature of batch 3 to be identified.  The temperature 

was corrected and the batch successfully reached completion in the expected time. 

The major cause of inaccuracy in the predictions was a consequence of probe fouling.  

Improved agitation of the reaction mixture would help to minimise probe fouling, but 

ultimately it is an engineering problem and new probe designs are required that offer some 

form of in-process cleaning. 
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4.1.10 Testing of a custom fibre optic cable assembly 

4.1.10.1 Comparison of the relative transmission of the standard and custom fibre 

optic cables 

To assess the relative sensitivity of each detector, the 2-norm of each energy spectrum was 

calculated.  The ratio of the 2-norms calculated for the sample and by-pass channels were a 

measure of the relative sensitivity of each detector. 

Table  4.2:  Table showing the 2-norm values calculated from the single beam energy spectra 
acquired using the standard and custom fibre assemblies.  The ratio of the 2-norm values were a 
measure of the relative sensitivity of detector 1 to detector 2 

Cable (fibre) Detector 2-norm Ratio of 2-norm 
(Sample:Bypass) 

Standard (A) Sample 345728.0 
Standard (A) Bypass 398069.9 0.869 

Standard (B) Sample 341499.3 
Standard (B) Bypass 411841.0 0.829 

Custom (B) Sample 127923.3 
Custom (B) Bypass 146841.0 0.871 

Custom (D) Sample 378147.1 
Custom (D) Bypass 445653.4 0.849 

 

The table above shows that for the same integration time and fibre assembly, the relative 

response of the sample channel to the response of the bypass channel was approximately 

0.85 (mean, n = 4).  The results also showed that the throughput of standard fibres A and 

B were well matched but the throughput of custom fibre B (illumination) was significantly 

lower than custom fibre D (return).  The relative response of the custom fibre B to the 

response of custom fibre D was 0.334 (mean, n = 2).  This difference in throughput may 

have been a consequence of the illumination cable containing two fibres (A and B) which 

were positioned side-by-side.  As the two fibres were not exactly in the centre of the cable, 

the focused light from the source lamp may not have been illuminating the fibres as 

efficiently as a single fibre core.  In a future design a single bifurcated core (splitting into A 

and B) could be used as this would allow the single core to be positioned in the centre of 

the SMA connector and would improve the illumination efficiency 
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4.1.10.2 Optimisation of the internal reflection mirror position 

The energy spectra of the sample and bypass channels for the standard fibre and custom 

fibre configurations are shown in Figure  4.13.  The spectra acquired using the standard 

fibre assembly were well matched by using a 10% attenuation filter on the bypass channel 

to match the attenuation of the process ATR probe on the sample channel.  The 

integration time used to acquire the spectra with the standard fibre assembly was 100 ms. 

The initial fibre / instrument configuration for tuning the position of the mirror in the 

custom fibre assembly did not include an attenuation filter on either the sample or bypass 

channels.  The justification for this was that the initial position of the mirror was not 

optimised and that tuning the position of the mirror would be sufficient to match the 

throughput of the sample and bypass channels.  Figure  4.13(b) shows that with the tuning 

mirror in the optimum position, the throughput of the sample channel was still significantly 

lower than the bypass channel.  This showed that the reduction in transmission through the 

bypass fibres and mirror assembly was even greater than when the sample channel included 

a process ATR probe.  It was believed that the main cause of the reduced transmission 

through the bypass fibres was that the fibres in the mirror assembly were not terminated 

with collimating lenses.  This in turn resulted in a poor collection efficiency of the return 

fibre C as the light was emitted from fibre A and reflected from the mirror.  In a future 

design, the efficiency could be improved by incorporating collimating lenses as used in UV 

and NIR transflectance probes. 
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Figure  4.13:  Comparison of the energy spectra acquired for the sample and bypass channels using 
the standard (a) and custom (b) fibre assemblies.  The spectra were acquired with the fibres coupled 
directly to a process ATR probe. 

4.1.10.3 Quantification of fibre transmission as function of cable displacement 

The 2-norms were calculated for each spectrum acquired and the mean 2-norm value 

determined for each fibre / displacement / detector combination from the corresponding 

set of replicates (n = 4).  The results are shown in Figure  4.14. 
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Figure  4.14:  The effect of vertical displacement on the transmission of the standard and custom 
fibre assemblies:  (a) 2-norm values for the replicate measurements acquired using standard fibres – 
sample channel; (b) 2-norm values for the replicate measurements acquired using the standard 
fibres – bypass channel; (c) 2-norm values for the replicate measurements acquired using the custom 
fibre assembly – sample channel; (d) 2-norm values for the replicate measurements acquired using 
the custom fibre assembly – bypass channel.  In each plot the line drawn using diamond markers (◊) 
shows the corresponding mean values 

The 2-norm values obtained from the standard fibre assemblies are shown in plots (a) and 

(b) and exhibit the anticipated profiles.  In plot (a), the overall spectral intensity for the 

sample channel decreased as the displacement of the fibre was increased.  This clearly 

confirmed that as the radius of the bend in the fibres was increased, the transmission 

decreased.  The profiles for the bypass channel are shown in plot (b).  As expected, the 

profiles are almost horizontal lines and confirm that displacing the fibres connected to the 

probe did not have any effect upon the throughput of the bypass channel.  This was 

expected as the bypass fibre was contained within the instrument cabinet and should not 

have been sensitive to movement of the sample fibre. 

The 2-norm values obtained from the custom fibre assemblies are shown in plots (c) and 

(d).  In plot (c) the spectral intensity for the sample channel decreased as the displacement 

of the fibre was increased and reflects the behaviour observed for the standard fibre 

assembly in plot (a).  However, the profiles of the bypass channel for the custom fibre 
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assembly shown in plot (d) are not horizontal lines but show behaviour similar to the 

sample channel.  As the transmission of the bypass channel should also be affected by 

displacement of the fibres, the profiles of the lines in plots (c) and (d) should be very 

similar and this was observed by the curvature of the profiles in plot (d) 

Using the mean 2-norm values, the ratio of the sample to bypass channel values were 

calculated for each fibre / displacement.  The results are plotted below in Figure  4.15. 
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Figure  4.15:  The effect of vertical displacement on the mean ratio of spectral intensity (sample to 
bypass) for:  (a) Standard fibre assembly; (b) Custom fibre assembly. 

Plot (a) shows the mean ratio values for the standard fibres and again exhibited the familiar 

decrease in transmission of the sample channel relative to the bypass channel as the radius 

of the bend in fibres was increased.  The mean ratio values for the custom fibre assembly 

are shown in plot (b).  If the fibre assembly was completely eliminating all effects of 

movement, the plot would be a horizontal line with an intercept at 12.56 (the ratio of the 

sample to bypass channel at 0 cm displacement).  

The scale on the ordinate axes of plots (a) and (b) reflect the difference in the intensity of 

the sample and bypass spectra measured for the standard and custom fibre assemblies.  
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The intensity of sample and bypass spectra were more closely matched for the standard 

fibres so the ratio values are smaller than those for the custom fibres.  

As the ratio values were different for the two sets of fibres, the relative standard deviation 

was used to express the relative amount of variation across the two profiles. 

Cable  Standard 
deviation  

(n = 7) 

Mean 
(n = 7) 

%RSD 

Standard 0.0226 1.9341 1.169 
Custom 0.1094 12.3676 0.885 

 

The table shows that the relative standard deviation across the range 0 to 120 cm for the 

custom fibre assembly was lower than for the standard fibre assembly.  The increase in 

robustness of the custom fibre relative to the standard fibre was 24.3%.  

The result indicates that the custom fibre assembly did not completely eliminate the effect 

of movement upon the relative transmission of the sample and bypass fibres.  However, 

the custom fibre still offered a 24.3% improvement in the robustness to movement relative 

to a standard fibre assembly. 

4.1.10.4 The effect of fibre movement upon the calculated absorbance spectra  

The energy spectra acquired in the previous experiments were used to calculate the 

absorbance spectra.  These are shown in Figure  4.16.  Plot (a) shows that as the vertical 

displacement was increased, the absorbance spectrum displayed a positive translation along 

the ordinate axis.  This was confirmed by plot (c) which shows the mean value of each 

spectrum plotted against displacement.  The spectra in plot (b) were acquired using the 

custom fibre assembly and show much smaller translations along the ordinate axis.  This 

was again confirmed by the mean values shown in plot (d).  With the exception of the 

point at 120 cm, the mean values are much closer to a horizontal line and indicate lower 

sensitivity to movement of the fibres.  The shape of the spectral profiles in plots (a) and (b) 

should also be considered.  In plot (a) the slope of the spectrum over region 220 to 350 nm 

increased as the displacement was increased, resulting in a change of the spectral profile.  

However, the spectral profiles shown in plot (b) are all very similar; indicating that 

movement of the fibres did not affect the resulting absorbance spectra as much. 
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Figure  4.16:  (a) Absorbance spectra at various displacements acquired using standard fibres; (b) 
Absorbance spectra at various displacements acquired using custom fibre assembly; (c) Mean value 
of each spectrum acquired using the standard fibres plotted against the displacement; (d) Mean 
value of each spectrum acquired using the custom fibre assembly plotted against the displacement. 

 

4.1.10.5 Quantification of the effect of fibre movement upon CLS calculations 

The aim of this simulation experiment was examine the effect of the baseline movement 

upon estimated concentration profiles calculated from a synthetic data set using CLS.  A 

two-component synthetic reaction data set based upon the chlorination of acetoxyone was 

created.  The smoothed concentration vectors are shown in Figure  4.17(a).  The original, 

zero-order spectra used to represent pure component spectra for the intermediate and 

haloacetoxyone species are shown in Figure  4.17(b).  The spectra were scaled to unit 

molarity.  The synthetic reaction data set was generated by calculating the outer product of 

the concentration and spectral matrices.  The resulting spectral data matrix contained the 

spectral variation contributed solely by the absorbing species in the absence of any 

additional system or measurement noise.  This matrix therefore represented the underlying 

chemical spectra and was independent of additional baseline or instrument noise artefacts.   

The resulting reaction spectra are shown in Figure  4.18(a).  Every tenth spectrum is shown 

to improve clarity. 
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Figure  4.17:  (a) Smoothed concentration vectors used to synthesise a two-component UV reaction 
data set; (b) unit molarity absorbance spectra for intermediate and haloacetoxyone used to 
synthesise a two-component UV reaction data set. 

A matrix of randomly ordered baseline spectra from each set of the fibres was added to the 

synthetic reaction spectra simX  to give the final data matrices stdX  and ..custX   The 

baseline variation exhibited by each set of fibres is shown in Figure  4.18(b).  As 

demonstrated in the previous sections, the variation in baseline offset exhibited by the 

standard fibres was greater than the custom fibres.  The maximum baseline offset was 15 

mAU for the standard fibres and 5 mAU for the custom fibres.  The baseline contribution 

from the standard fibre therefore contributed up to ~25% of the signal intensity for the 

low intensity spectra (when maximum absorbance was ~ 0.06 AU) at the start of the 

reaction, and up to ~2.5% of the signal intensity for the high intensity spectra (when 

maximum absorbance was ~ 0.60 AU) at the end of the reaction.  The custom fibres 

exhibited less variation and contributed up to ~8.3% of the signal intensity for the low 

intensity spectra and up to ~0.083% of the signal intensity for the high intensity spectra. 
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Figure  4.18:  (a) Synthetic UV reaction spectra before addition of baseline noise - every tenth 
spectrum is shown for clarity; (b) baselines for each fibre type that were added to each synthetic data 
set.  The baselines calculated from the double beam energy spectra acquired using standard fibres 
exhibit greater variation than those acquired with custom fibres.  

To assess the effect of the variation contributed by the baselines on least-squares 

calculations, estimates of concentration profiles calculated using stdX  and .custX  were 

compared.  The concentration profiles were calculated directly from the spectral data 

matrices using the pure component spectra and are shown in Figure  4.19.  The 

concentration profiles estimated from the un-processed absorbance spectra with baseline 

contributions calculated from the standard and custom fibre assemblies are shown in 

Figure  4.19(a) and Figure  4.19(b) respectively.  The difference in the level of noise present 

in the two sets of concentration estimates can be clearly observed.  This shows that 

although the baseline variation appeared to be quite a small contribution to the overall 

signal intensity, it had a large effect on the subsequent least-squares calculations.  The 

concentration profiles estimated from the second-derivative spectra, shown in Figure 

 4.19(c) and (d) had lower noise contributions relative to the estimates derived from the un-
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processed absorbance spectra.  This was not surprising as transformation of the spectra to 

their second-derivative form removed a constant offset and a linear sloping baseline.   
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Figure  4.19:  Least-squares estimates of concentration profiles calculated from synthetic spectral 
data with baselines added.  (a) un-processed spectra with baseline contribution from standard fibre; 
(b) un-processed spectra with baseline contribution from custom fibre; (c) second-derivative spectra 
with baseline contribution from standard fibre; (d) second-derivative spectra with baseline 
contribution from custom fibre.  

To quantify the differences between the estimated and actual concentration profiles, the 

root mean squared deviation (RMSD) was calculated for each set of results.  These are 

shown in Figure  4.20.  The RMSD values support the observations based upon the visual 

examination of the noise present in the estimated concentration profiles.  For the un-

processed spectra, the RMSD value decreased by approximately 69% when the profiles 

were estimated using the spectral data containing the reduced baseline contribution from 

the custom fibres.  This demonstrated that although the contribution of the baseline in 

both data sets appeared small, the accuracy of least-squares calculations was improved 

considerably when data from the custom fibres were used.  The RMSD values for the 

second-derivative spectra were two to three orders of magnitude lower than those for the 

unprocessed spectra.  This was a consequence of two major factors:  the transformation to 

second-derivative spectra removed a constant off-set and linear sloping baseline so the 
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effect of fibre movement was greatly attenuated; and transformation to second-derivative 

spectra also enhanced the differences between the two pure component spectra and 

therefore aided the calculation of their concentration profiles using least-squares. 

Although the effect of the baseline variation had been greatly reduced by transformation to 

second-derivative spectra, the RMSD values for the custom fibre data still showed a 31% 

improvement relative to the standard fibre data. 

This simulation experiment suggested that using a by-pass channel to actively compensate 

for movement of fibres, baseline artefacts in the unprocessed data were reduced.  

Consequently the error of least-squares calculations were reduced, even if spectral pre-

processing was used to eliminate baselines. 
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Figure  4.20:  Root-mean-standard-deviation values for concentration profiles estimated using least-
squares.
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4.1.11 Conclusions:  Testing of a custom fibre optic cable assembly 

A custom fibre assembly was designed to investigate whether the effects of fibre 

movement could be removed from the subsequent absorbance spectra.  An experiment 

was devised to directly compare the effect of fibre movement on a standard fibre cable and 

the custom fibre assembly.  Comparing the optical throughput of the various legs of the 

custom assembly suggested that the transmission of the cable containing two fibres (fibres 

A and B) was approximately 34% the transmission of the cable containing a single fibre 

(fibre D).  This was perhaps a consequence of the two fibres being off-centre and not 

illuminated as well as a single fibre positioned in the centre of the SMA connector.  The 

use of a bifurcated fibre with a single illuminated leg may help to overcome this in future 

designs.  The use of a mirror to reflect the bypass channel light did work in principle but 

also resulted in poor optical throughput relative to a closed loop.  It is possible that using 

collimating lenses to collimate the light illuminating and reflected from the mirror could 

improve the throughput in a future design.  The results obtained by measuring the 

transmission after vertical displacement of the cable to introduce small bend radii indicated 

that the custom fibre assembly reduced the effect of fibre movement by approximately 

25% relative to the standard fibre assembly.  Furthermore the shape of the resulting 

absorbance spectra showed much less variation for the custom fibre assembly compared to 

the standard fibres.  Although, the custom fibre did not completely remove the effects of 

fibre movement, it demonstrated that transmitting the bypass fibres along the same outer 

cables as the sample fibres does help to reduce some of the effects of movement and led to 

more reproducible spectra.  There are clearly areas for improvement that could help to 

refine the design.  The effect of the baseline variation obtained from a standard fibre and 

the custom fibre assembly were compared using a synthetic data set.  This simulation 

experiment suggested that use of a by-pass channel to actively compensate for movement 

of fibres reduced baseline artefacts in the unprocessed data, and also reduced the error in 

subsequent least-squares calculations.  For the data used in this experiment, the RMSD 

values for the estimated concentration profiles improved (decreased) by approximately 

69%.  Even if spectral pre-processing was used to eliminate baselines, the RMSD values 

suggest that an improvement of approximately 31% was still achieved using the custom 

fibre assembly.
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4.2 Vectorised Kalman filtering for SMCR 

4.2.1 N-benzylation of 1H-indole using benzyl bromide 

The N-benzylation of 1H-indole using benzyl bromide was used as a typical reaction for 

model development.  This reaction was selected because it used an inorganic base 

producing a heterogeneous reaction mixture typical of those encountered in many 

industrial processes.  The reference spectra of the two reactants and product were acquired 

and used to create a synthetic data set that was used for subsequent algorithm development 

and testing.  Three reactions were then performed using the nominal amount of cesium 

carbonate base (2.00 equivalents with respect to the nominal amount of 1H-indole).  The 

molar ratio of the two major reactants was varied to give molar ratios 0.67, 1.00 and 1.50 

equivalents of 1H-indole with respect to benzyl bromide.   

4.2.2 Analysis of reaction samples using HPLC 

During each of the experiments listed in section 3.3, several reaction samples were 

extracted and analysed using reversed-phase HPLC.  The sample solutions were assayed 

against external reference standards to determine the solution concentration of 1H-indole, 

benzyl bromide and 1-benzyl-1H-indole.  The retention times of the three components 

1H-indole, benzyl bromide and 1-benzyl-1H-indole were 6.35 minutes, 9.41 minutes and 

11.85 minutes respectively.  The solvent front eluted at 0.80 minutes.  Typical 

chromatograms obtained from the HPLC analysis of the assay standards and reaction 

samples are shown in Figure  4.21. 

The heterogeneous nature of the reaction mixture made the extraction of representative 

samples for off-line analysis difficult; this in turn introduced additional error into the 

estimated concentration values.   

4.2.2.1 Solution assay of reaction samples 

The consumption of 1H-indole, benzyl bromide and 1-benzyl-1H-indole was determined 

by solution assay using external standards of known concentration.  Figure  4.22 shows the 

calculated concentration values plotted against time for three reactions using different 

molar ratios and equivalents of base.   
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 (a) 

 

(b) 

 

(c) 

 

 
Figure  4.21:  Typical chromatograms obtained from the HPLC analysis of assay standards and 
reaction samples for the N-benzylation of 1H-indole reaction:  (a) mixed assay standard containing 
1H-indole and benzyl bromide; (b) 1-benzyl-1H-indole assay standard; (c) a reaction sample. 
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Figure  4.22:  Concentration profiles derived from HPLC solution assay of reaction samples:  (a) 
experiment BnIndole_B2.0_MR0.67 using 2.00 equivalent of base and a molar ratio of 1H-indole to 
benzyl bromide of 0.67; (b) experiment BnIndole_B2.00_MR1.00 using 2.00 equivalents of base and 
a molar ratio of 1H-indole to benzyl bromide of 1.00; (c) experiment BnIndole_B2.00_MR1.50 using 
2.00 equivalents of base and a molar ratio of 1H-indole to benzyl bromide of 1.50. 
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4.2.3 Examination of reference standard spectra 

To provide reference measurement functions (reference spectra) for Kalman filtering and 

to create a simulated data set, spectroscopic reference standard solutions of acetonitrile, 

tetrabutylammonium bromide, cesium carbonate, 1H-indole, benzyl bromide and 1-benzyl-

1H-indole were prepared at typical reaction concentrations.  The UV spectra acquired are 

shown in Figure  4.23; the Raman spectra acquired are shown in Figure  4.24. 
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Figure  4.23:  UV spectra of the main components in the N-benzylation of 1H-indole reaction:  (a) 
un-processed absorbance spectra; (b) Savitsky-Golay first derivative absorbance spectra. 

The UV spectra in Figure  4.23(a) show that over the spectral range 220 to 350 nm, 

acetonitrile and tetrabutylammonium bromide wereare UV inactive and did not have any 

significant absorbance features.  Benzyl bromide did have a significant absorbance feature 

in the region 220 to 270 nm but it was completely overlapped by the spectra of 1H-indole 

and 1-benzyl-1H-indole.  The difference between the spectra of 1H-indole and 1-benzyl-



Chapter 4.2 – Results and Discussion: Vectorised Kalman filtering for SMCR 

 - 194 - 

1H-indole can be observed clearly in first derivative spectra shown in Figure  4.23(b), 

particularly in the regions 220 to 240 nm and 280 to 310 nm.  However the spectra still 

exhibit considerable overlap.  The broad absorbance feature of benzyl bromide was 

attenuated significantly by transformation to the first derivative spectrum.  Since benzyl 

bromide was one of the main components of interest, data analysis was restricted to the use 

of the original spectra only. 
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Figure  4.24:  Raman spectra of the main components in the N-benzylation of 1H-indole reaction:  
(a) original un-processed Raman spectra; (b) Raman spectra normalised to maximum = 1. 

The un-processsed Raman spectra shown in Figure  4.24(a) indicate that the peaks with the 

largest intensity corresponded to the C-C stretch of acetonitrile at 919 cm-1 and the C≡N 

stretch of acetonitrile at 2250 cm-1.  As anticipated, the intensity of the cesium carbonate 

spectrum was much weaker than the homogeneous solutions because the scattered Raman 

signal was attenuated by the suspended solid.  The spectra shown in Figure  4.24(b) are 
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normalised to maximum = 1.  The cesium carbonate spectrum had a weak feature at 1045 

cm-1, corresponding to carbonate (CO3
2-) or bicarbonate (HCO3

- ) ions but had no 

significant features that could distinguish it from the acetonitrile spectrum.  The spectrum 

of benzyl bromide has several small peaks that were not present in the other spectra.  

These include 237 cm-1, 455 cm-1 (C-Br stretch), 608 cm-1 (ring deformation of 

monosubsituted benzene), 1230 cm-1 and 1602 cm-1.  

4.2.4 Preparation and pre-processing of the UV spectral data 

To prepare the UV data for subsequent analysis using Kalman filtering, it was necessary to 

apply two forms of spectral pre-processing to remove unstructured variation.  Many of the 

spectra contained narrow, high intensity peaks that were believed to be an artefact resulting 

from a skipped wavelength as the monochromator scanned across the across the 

wavelength range.  A custom Matlab script, MedianFilter.m, was used to remove 

these spikes by applying moving window median filtering to each spectrum using a window 

size of three.  The effect of pre-processing the UV spectra using median filtering is shown 

in Figure  4.25.  Figure  4.25(a) shows the un-processed UV spectra with the characteristic 

spikes where the absorbance dropped to zero.  Figure  4.25(b) shows the median filtered 

spectra obtained using a window width of three.  All the useful spectral features were 

allowed to pass through the median filter, preserving the structured variation.  Figure 

 4.25(c) shows the residual spectra calculated by subtraction of the median filtered spectra 

from the original spectra.  The residual spectra correspond to the unwanted spikes. 

The median filtered absorbance spectra still had a significant baseline contribution that 

increased as the reaction proceeded.  The baseline was believed to be a consequence of 

probe fouling and was assumed to have a linear sloped baseline contribution that could be 

corrected by subtraction of a linear baseline with the function 0 1( )f x b b x= +  from each 

spectrum.  The Matlab functions polyfit and polyval were used to calculate the 

polynomial coefficients 0b and 1b  over the wavelength range 320 to 370 nm and extrapolate 

each baseline over the full spectral range 220 to 400 nm.  The extrapolated baselines were 

subtracted from their corresponding spectra to give the final pre-processed data.  This is 

illustrated in Figure  4.26. 
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Figure  4.25:  Example of applying a moving window median filter to UV/ATR data acquired using a 
Varian Cary 50 scanning UV spectrometer; (a) original un-filtered data; (b) data filtered using a 3-
point moving window; (c) residual spectra after median filtering to remove the spikes. 
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Figure  4.26:  (a) illustration of how a linear sloped baseline was calculated for each spectrum; (b) 
spectrum after baseline correction 

4.2.4.1 Conclusions:  Pre-processing of the UV data using median filtering 

Median filtering was found to be a useful pre-processing technique for UV spectroscopy.  

A median filter was originally implemented as a Matlab function (MedianFilter.m) to 

remove unwanted ‘spikes’ from UV spectra acquired using a Cary 50 UV spectrometer.  

This instrument used a high intensity xenon flash lamp and a fast scanning 

monochromator to rapidly scan across a wavelength range of several hundred nanometers 

in just a few seconds.  The cause of these spectral artefacts is suspected to be caused by the 

monochromator and detector becoming briefly un-synchronised with the xenon flash lamp.  

Using a median filter with a window width of three points successfully removed these 

artefacts from each data set without changing any of the spectral features.  Another 

approach that could have been utilised to remove random contributions such as this would 

be to re-produce the data set using only the primary principal components.  The advantage 

of the median filter is that it can be applied to an individual spectrum. 
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4.2.5 Optimisation of the IPBS method parameters 

Selection of the appropriate window width for the median filtering step 

The custom Matlab function IPBS.m uses several parameters that can influence the 

results obtained when applying automated iterative polynomial baseline subtraction.  To 

find the optimal values of the key parameters n  (degree of the polynomial) and pw  

(window width) an exhaustive search was performed over a specific range of values.  

Before the search of the parameters n  and pw  could be started, a suitable window width 

to use during the median filtering step was chosen.  MedianFilter.m was applied to 

the test spectrum using a window width of 101, 201, 301, 401 and 501 points.   

The effect of using different window widths is shown in Figure  4.27.  Increasing the 

window width to values above approximately 500 points did not offer any significant 

improvement.  The plot in Figure  4.27(a) shows the un-processed Raman test spectrum 

from the N-benzylation of 1H-indole reactions.  This spectrum was acquired at t=30 

minutes and corresponds to a spectrum of 1H-indole, a small amount of tetra butyl 

ammonium bromide and the un-dissolved inorganic base (cesium carbonate) in acetonitrile.  

Also shown is the reference spectrum of 1H-indole in acetonitrile described in section 3.3.  

The large baseline contribution in the reaction test spectrum was a consequence of the un-

dissolved cesium carbonate.  Figure  4.27(b) shows the corrected spectrum after subtraction 

of the median filtered spectrum using different window widths.  Figure  4.27(c) shows the 

median filtered spectrum obtained using different window widths.  The median filtered 

spectrum was a good approximation of the baseline contribution.  Examination of the 

spectra in Figure  4.27(b) and Figure  4.27(c) revealed that using smaller window widths 

allowed part of the true Raman peaks in the spectrum to pass through the median filter.  

The peaks at 400 to 500 cm-1, 1300 to 1500 cm-1 and 2300 to 2400 cm-1 illustrate this most 

clearly.  As the window width was increased, less of the true Raman spectrum passed 

through the median filter although it did introduce more negative regions to the corrected 

spectrum.  The median filter also completely eliminated the peak at 100 to 300 cm-1.  As the 

median filter is only used by IPBS to provide an initial estimate of the underlying baseline, 

a window width of 501 seemed to be the most appropriate. 
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Figure  4.27:  Median filtering a reaction Raman spectrum using various window widths:  (a) the 
original unprocessed Raman spectrum from the N-benzylation of 1H-indole at t=30 minutes, and a 
Raman spectrum of 1H-indole in acetonitrile acquired in the absence of cesium carbonate; (b) 
Raman spectra after subtraction of the median filtered spectrum; (c) the estimated background 
spectrum (median filtered spectrum). 

Assessment of the degree of polynomial and window width parameters 

The effect of the degree of polynomial (n ), window width ( pw ) was investigated using a 

fixed median filter window width of 501.  For each combination of n  and ,pw  the sum-of-

squares of the residual spectrum obtained by subtraction of the normalised, baseline 

subtracted test spectrum from normalised reference spectrum of 1H-indole in acetonitrile 

was calculated.  This produced three (71×5) matrices.  The minimum sum-of-squares values 
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and the corresponding window width for each degree of polynomial and degree of overlap 

are summarised in Table  4.3.  The results in Table  4.3 suggested that for a fixed overlap of 

0.10 (10%), a second degree polynomial ( 2
0 1 2( )f x b b x b x= + + ) with a window width of 

141 produced the lowest residual sum-of-squares (SSQ = 2.1095).   

Increasing the degree of overlap set to 0.20 (20%) only offered a marginal improvement.  A 

third degree polynomial ( 2 3
0 1 2 3( )f x b b x b x b x= + + + ) with a window width of 157 gave a 

minimum sum-of-squares value of 2.1081.  This was the lowest SSQ obtained for all 

combinations of parameters.  Increasing the degree of overlap to 0.30 (30%) did not 

improve the SSQ values any further.   

Table  4.3:  Minimum sum-of-squares (SSQ) values and corresponding window width for each 
degree of polynomial and degree of overlap.  The lowest values for each column are shown in italics. 

Degree of 
polynomial 

Overlap = 0 .10 Overlap = 0 .20 Overlap = 0 .30 

( n ) Min(SSQ) Window 
width 

Min(SSQ) Window 
width 

Min(SSQ) Window 
width 

2 2.1095 141 2.2081 165 2.2173 77 
3 2.1355 157 2.1081 157 2.1577 133 
4 2.1923 133 2.1697 101 2.1963 101 
5 2.1752 133 2.1759 133 2.1807 101 
6 2.1698 109 2.1669 133 2.1762 101 

 
These results suggested that the optimal parameter values to use with this particular set of 

Raman data were a median filter window width of 501; a third degree polynomial (n  = 3); 

an overlap factor of 0.20 and a window width of 157.  The spectra obtained by application 

of these parameter values to the test spectrum are shown in Figure  4.28.  The unprocessed 

test spectrum is shown in Figure  4.28(a).  Figure  4.28(b) shows  the corrected spectra after 

subtraction of the baselines estimated using median filtering and IPBS.  This plot shows 

that the corrected spectrum obtained using IPBS exhibit good correlation with the 

reference spectrum of 1H-indole in acetonitrile.  The spectrum obtained using median 

filtering only was also a reasonable estimate although it did have several regions that were 

negative and some Raman spectral features had reduced intensity or were missing 

completely.  Figure  4.28(c) shows the subtracted baseline spectra estimated using median 

filtering and IPBS.  The baseline spectrum estimated using IPBS was iteratively refined so 

that it did not remove any valuable Raman features of interest.   
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Figure  4.28:  Applying IPBS to the test spectrum using the optimal parameters (median filter 
window width = 501 points, polynomial fitting window width = 157 points, degree of polynomial = 3, 
degree of overlap = 0.20):  (a) the unprocessed Raman test spectrum; (b) comparison of the 
corrected spectra obtained using median filtering and IPBS with the standard spectrum of 1H-indole 
in acetonitrile; (c) the subtracted baseline spectra estimated using median filtering and IPBS. 
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To allow this algorithm to be compared with the original algorithm published by Lieber 

and Mahadevan-Jansen[97], the original method (LMJ_IPBS.m) was applied to the same 

test spectrum using second, third, fourth, fifth, sixth, seventh and eighth degree 

polynomials.  In the original Lieber and Mahadevan-Jansen method, it was not necessary to 

specify a window size as the fitting was applied to the whole data set.  Typically the data 

would be manually truncated to a much smaller region before applying the baseline 

correction.  However the purpose of this test was to compare the ability of each algorithm 

to correctly subtract the baseline from a full range spectrum.  The residual sum-of-squares 

values for each order of polynomial are shown below in Table  4.4.  The residual sum-of-

squares values in the table show that the original baseline subtraction method was less 

successful at removing the complex, polynomial baseline from a full range Raman 

spectrum.  The best correction was obtained using a fourth degree polynomial but the 

residual sum-of-squares value was 61.7 (cf. 2.11 for the modified IPBS method).  The 

baseline corrected spectrum and the subtracted baseline obtained using a fourth degree 

polynomial are shown in Figure  4.29.  This figure shows that a significant amount of the 

original baseline contribution still remained in the corrected spectrum.   

Table  4.4:  Residual sum-of-squares (SSQ) values obtained by applying the original IPBS method to 
the Raman test spectrum using different orders of polynomial. 

Degree of 
polynomial (n) 

Residual SSQ 

2 103.9 
3 77.5 
4 61.7 
5 109.6 
6 112.7 
7 115.1 
8 116.4 

 

The original IPBS method was more successful if the two halves of the spectrum were 

fitted independently.  However the modified IPBS method still gave a better result because 

it used many windows to fit the full spectrum.  Furthermore, each window used a small 

section of the previous window to ensure the final baseline function was continuous. 
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Figure  4.29:  Application of the original IPBS method to the test spectrum using the optimal 
parameters (a fourth degree polynomial):  (a) the unprocessed Raman test spectrum; (b) comparison 
of the baseline corrected spectrum with the standard spectrum of 1H-indole in acetonitrile; (c) the 
subtracted baseline spectra estimated using the original IPBS method. 

4.2.5.1 Conclusions:  Iterative Polynomial Baseline Subtraction 

A median filter was applied to Raman spectra acquired during the N-benzylation of 1H-

indole reactions.  The Raman spectra featured a broad baseline feature that contributed 

additional, unwanted variation.  To correctly normalise the Raman spectra, it was necessary 

to minimise the baseline contribution as much as possible.  The median filter was applied 

to a Raman spectrum (3400 variables) using window widths of 101, 201, 301, 401 and 501 

points.  A window width of 501 points was found to offer the best approximation of the 
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underlying baseline but the baseline subtracted spectrum did have several negative regions 

where the baseline was overestimated.  However to obtain a first approximation of the 

underlying baseline, the median filter proved to be a useful approach 

To obtain a more accurate estimation of the underlying baseline contribution to the Raman 

spectra described in the previous section, a custom algorithm called iterative polynomial 

baseline subtraction (IPBS.m) was written.  The iterative polynomial fitting was based 

upon the method reported by Lieber and Mahadevan-Jansen[97].  In this paper, the authors 

used an iterative fourth-order polynomial fitting routine to remove fluorescence from 

Raman spectra of biological samples.  However, the Raman spectrum shown was truncated 

to between 600 and 1800 cm-1.  This simplified the fitting of the underlying fluorescent 

background but required the user to select the specific region of interest before performing 

the baseline correction.  The method described in this thesis was extended to allow a full 

Raman spectrum to be corrected by splitting the spectrum into a number of windows 

defined by the window width.  An additional feature of the iterative polynomial baseline 

subtraction method is that it allows the windows to overlap using an overlap parameter 

(typically 10 to 20% of the window width).  This was found to minimise the discontinuities 

that were observed if the polynomial fitting was applied to each window independently. 

Although computationally intensive, the results were very good and the complex baseline 

contribution of each spectrum were accurately modelled.  The best parameters for 

correcting this particular set of Raman spectra were a median filter width of 501 points; a 

third degree polynomial (n=3); an overlap factor of 0.20 and a window width of 157 

points.  The baseline corrected spectra had a completely flat baseline, did not feature any 

negative regions yet retained all of the useful Raman features.  This was a significant 

improvement over the Pearson[105] correction function available in the instruments 

HoloReact software.  The time taken to correct each spectrum was between 30 and 60 

seconds using the laptop PC described in chapter 3.1.  This was a big disadvantage when 

the method is applied to a large data set comprising several hundred spectra, as the 

processing time was two to three hours or more.  However, it would still be possible to 

apply the method in real-time as Raman acquisition times for heterogeneous mixtures are 

often one to two minutes in order to improve the signal to noise.   
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4.2.6 Preparation and pre-processing of the Raman spectral data 

The Raman spectral data acquired during the N-benzylation of 1H-indole reactions were 

pre-processed to remove the variable baseline contributing to each spectrum.  The 

automated iterative polynomial baseline subtraction method (IPBS) was applied using the 

optimal settings described in section  4.2.5.  The data set were then reproduced using the 

first four principal components calculated by applying singular value decomposition to the 

un-centred data.  This was necessary to remove the cosmic rays that occured randomly 

throughout the data.  The data contained cosmic rays because the option to automatically 

remove cosmic rays was disabled in the Raman spectrometer software (HoloGrams).  For 

real-time applications where de-noising the spectra by data reproduction using principal 

components analysis is not an option, the ‘cosmic ray filter’ must be enabled.  The time 

required to acquire each spectrum would be doubled but random cosmic rays would be 

eliminated.  Finally, to remove spectrum to spectrum intensity variation from each data set, 

the spectra were all normalised to max = 1.  The maximum value in each spectrum 

corresponded to the 920 cm-1 C-C stretch of acetonitrile.  The final step of spectral pre-

processing was to truncate the spectra to exclude the data outside the range 100 to 1800 

cm-1.  The variance spectrum of the normalised data revealed that the spectra contained no 

significant structured variance outside this range and would not be useful in resolving the 

spectra.   

4.2.7 Creation of a simulated UV data set for algorithm testing 

Two simulated data sets comprising UV spectra representing the reaction spectra acquired 

during the non-aqueous N-benzylation of 1H-indole using benzyl bromide were created.  

These data sets were used during the development and implementation of the VVSP and 

Kalman filter algorithms.  

The simulated concentration profiles and the corresponding pure component spectra for 

the three major species (1H-indole, benzyl bromide and 1-benzyl-1H-indole) are shown in 

Figure  4.30.   
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Figure  4.30:  (a) simulated concentration profiles; (b) actual pure component spectra for the three 
major components used to create the synthetic reaction data.  The pure component spectra were 
acquired using reference standards of each component. 

The outer product of the concentration and spectral profiles was calculated to produce the 

noise-free reaction spectra in a (333×181) matrix, .simD1   Homoscedastic noise with zero 

mean and variance 1.0×10-6   was added to the data matrix to give the final simulated data 

matrix, .simD2   The Savitsky-Golay first-derivative spectra were calculated from simD2   

using a 13-point smoothing window and third-order polynomial to give .simD3   The 

overlaid spectra of simD2  and simD3  are shown in Figure  4.31.  The reaction spectra simD2  

and ,simD3  and the reference spectra simS1  and simS2  were then truncated to 220 to 350 

nm to give (333×131) and (131×3) matrices respectively. 
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Figure  4.31:  Simulated UV data sets; (a) simD2 ; (b) simD3 .  Every tenth spectrum is shown to 

improve clarity. 

These data sets are particularly challenging for SMCR methods as the concentration of B 

(benzyl bromide) is in excess and never reaches zero.  Also, there are no selective regions 

(pure variables) for each species in the UV spectra. 

4.2.8 Demonstration of the equivalence of the standard and vectorised linear 

Kalman filter 

4.2.8.1 Determination of measurement noise variance, R  

The measurement noise variance, R  is a critical parameter of the linear Kalman filter.  If 

the value of R  is too large, the Kalman filter will not produce accurate results because the 

data are assumed to have a large measurement error associated with each data point.  As 

the elements of the error covariance matrix P  are calculated using ,R  using a value of R  

smaller than the actual measurement variance will give a misleading estimate of the error 
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associated with each state parameter estimate.  The optimal value of R  is therefore a value 

equal to the actual measurement noise variance.  To determine a suitable value of R  for a 

data set of unknown measurement noise variance, the innovations sequence of a spectrum 

can be assessed using a range of values.  The optimum value will be located at the point 

where the innovations sum-of-squares begins to approach its minimum value and shows 

no significant decrease when the value of R  is decreased by one or two more orders of 

magnitude. 

The linear Kalman filter (linearKF.m) was applied to the last spectrum of the data sets 

simD2  and ,simD3  using R  values ranging from 1.0×10-10 through to 1.0×10-3 with ten 

points for each order of magnitude.  The spectral root-mean-square lack-of-fit (RMS-LOF) 

was calculated using the expression shown in equation 3.6 and plotted against log10 ( )R .  

The simple first derivative of the RMS-LOF values was also calculated.  The results are 

shown in Figure  4.32. 

The LOF values for the unprocessed spectra had a defined minimum at R =3.16×10-6, 

(log10 ( )R =-5.5).  The variance of the noise matrix added to the simulated data was 

1.00×10-6, so the value estimated from spectral residuals was a good approximation of the 

true noise variance.  Figure  4.32(a) shows that the LOF values for the first derivative 

spectra reached a local minimum at a similar value of R  as the unprocessed spectra.  

However the profile then approached the global minimum at approximately R =1.00×10-9,     

(log10 ( )R =-9.0).  The values of R  that were used to directly compare the original and 

vectorised linear Kalman filter were R =3.16×10-6 for the unprocessed spectra or 

R =1.00×10-9 for the first derivative spectra. 
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Figure  4.32:  The spectral root-mean-square lack-of-fit values calculated using the innovations 
sequence produced by the linear Kalman filter using different values of R:  (a) LOF values for the 
unprocessed and first derivative spectra; (b) LOF values differentiated with respect to log10(R).  The 
unprocessed spectra approach a minimum at approximately R = 3×10-6, the first derivative spectra 
approach a minimum at approximately R = 1×10-9. 

4.2.8.2 Application of the linear Kalman filter functions to simulated UV data  

To confirm that the vectorised linear Kalman filter (VecLinearKF.m) produced the 

same results as the standard linear Kalman filter (linearKF.m), both functions were 

applied to the simulated data sets data sets simD2  and .simD3   The resulting Kalman gains, 

state parameters, state parameter error covariances and the spectral lack-of-fit values were 

then directly compared.  The outputs from the two Kalman filter functions are shown in 

Figure  4.33. 
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Figure  4.33:  Comparison of standard and vectorised linear Kalman filters:  (a) Kalman gain vectors 
for components A, B and C; (b) estimated state parameters; (c) state parameter residuals (actual – 
estimated) for vectorised Kalman filter – the values obtained from the standard linear Kalman filter 
were identical; (d) spectral lack-of-fit (integrated innovations). 
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The Kalman gain vectors shown in Figure  4.33(a) confirm that the vectorised Kalman filter 

produces identical Kalman gain trajectories to the standard linear Kalman filter.  This result 

was expected and demonstrated that performing the Kalman filtering using a column 

vector of measurements, rather than a single element does not affect the operation of the 

filter.  The state parameter estimates and spectral lack-of-fit values shown in Figure  4.33(b), 

Figure  4.33(c) and Figure  4.33(d) also provide confirmation that the filter calculations can 

be vectorised without any detriment to the filters performance or output.  The calculated 

variance of the final state parameter estimates was also identical for both functions.  There 

was a significant decrease in the execution time as the standard Kalman filter calculated the 

state parameters for 333 spectra, using 131 variables in approximately 1.14 seconds, whilst 

the vectorised Kalman filter produced the same results in approximately 0.03 seconds (38 

times faster).  This considerable improvement in calculation time became more significant 

as the number of spectral variables is increased.  For example,  when the standard and 

vectorised linear Kalman filters were applied to a data set comprising 427 Raman spectra 

with a spectral range 100 to 3400 cm-1 (3301 variables per spectrum), the observed 

calculation time for the vectorised linear Kalman filter (0.74 seconds) was almost 95 times 

faster than the standard linear Kalman filter (70 seconds).  The reduction in calculation 

time was more significant when comparing the standard adaptive and vectorised adaptive 

Kalman filters.  The standard adaptive Kalman filter took almost 400 seconds to process 

the Raman data set described earlier, whilst the vectorised adaptive Kalman filter took 

approximately 1.60 seconds.  This represents a decrease in calculation time by a factor of 

250.  This reduction in calculation time was important for the implementation of the 

adaptive Kalman filter in the VAKFISO method as it would be necessary to repeatedly fit 

the entire data set several times at each iterative cycle during the optimisation step.  It 

would not have been feasible to develop and implement the VAKFISO method using the 

standard adaptive Kalman filter as the time required to perform adaptive Kalman filtering 

several hundred times would have led to execution times of two days or more.  The 

vectorised adaptive Kalman filter reduced this time to less than one hour.  

4.2.8.3 Conclusions:  Comparison of the standard and vectorised linear Kalman 

filters 

The potential of using the Kalman filter for SMCR applications was investigated.  The 

original, linear Kalman filter was implemented as a Matlab function (LinearKF.m) and 

applied to the simulated UV reaction data.  This confirmed that if accurate reference 

measurement functions (pure spectral profiles) were provided; and the measurement noise 
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was homoscedastic, the linear Kalman filter could be used to accurately predict the state 

parameters (concentration profiles).  In the case where the data was fully modelled by the 

reference measurement functions, the linear Kalman filter produced identical results to 

least-squares ( 1( )T −=C XS S S ).  The difference between the two methods is that the 

Kalman filter uses recursive estimation-correction calculations to specifically minimise the 

state estimate error covariance matrix; the least-squares approach calculates a solution that 

directly minimises the elements of the residual matrix.   

During the implementation of the linear Kalman filter it was noted that there was 

considerable redundancy in the calculations when applied to a matrix of data.  Initially, the 

linear Kalman filter function (LinearKF.m) was written such that the Kalman gains and 

error covariance update calculations were repeated for each measurement vector 

(spectrum) in the data set.  A simple loop was used to apply the full set Kalman filter 

calculations to each spectrum in the ( )J K× matrix of spectral data.  When the all of the 

spectra in a data set are fully modelled by the reference measurement functions and all have 

the same measurement noise, the Kalman gain and error covariance matrices are identical 

for each spectrum.  To avoid unnecessary recalculation of the Kalman gain (G ) and error 

covariance matrices ( P ), they are only calculated for the first spectrum.  The recursive 

Kalman filter calculations are then applied to subsequent spectra in the data set but the 

Kalman gain matrix is then applied directly and is not re-estimated each time.  As this will 

produce the same state estimate error-covariance matrix, it is not necessary to recalculate 

P . 

When the reference measurement functions are applicable to each spectrum in the data set, 

the resulting Kalman gains computed during the recursive calculations are identical.  To 

further improve the computational efficiency, the Kalman filter equations were vectorised. 

In the original linear Kalman filter, an outer loop applied the Kalman filter calculations to 

each of the J measurement vectors (spectra) individually.  The (1 )N×  vector of state 

parameter estimates is optimised for each spectrum before moving on to the next 

spectrum.  Since the Kalman gain and error covariance matrices are identical and applicable 

to all J spectra, the Kalman filter equations were vectorised so that the state estimate 

update step simultaneously updates the entire ( J ×N ) matrix of state parameters (denoted 

X ).  This approach was implemented as a Matlab function called VecLinearKF.m.  

The calculations still operate recursively along the variable direction but the outer loop to 

apply the filter calculations to each spectrum individually was now removed.  To confirm 
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that this approach did indeed yield identical results (in terms of the estimated state 

parameters and innovations based lack-of-fit), the equivalence of the standard and 

vectorised linear Kalman filters was demonstrated using the simulated UV data.  Using the 

optimal value of the measurement noise variance (R =3.16×10-6), LinearKF.m and 

VecLinearKF.m were applied to the (333×131) matrix of simulated data.  As expected, 

the Kalman gain vectors, estimated state parameters and innovations based spectral lack-

of-fit values were all identical.  However, there was a significant decrease in the time taken 

to execute the vectorised Kalman filter relative to the standard Kalman filter.  The standard 

Kalman filter took 74 seconds but the vectorised version only took 0.03 seconds 

(approximately 2400 times faster).  This is a considerable improvement in the calculation 

time and became even more significant as the number of spectral variables was increased.  

For example NIR, MIR or Raman spectra may have up to two thousand variables or more.  

Furthermore, the aim of this work was to utilise the unique features of the Kalman filter to 

develop a SMCR method.  The method that was developed (VAKFISO) requires the 

adaptive Kalman filter to be applied several hundred times and the vectorised 

implementation therefore offered a huge improvement in computation time. 

4.2.9 Application of the adaptive Kalman filter to simulated UV spectra 

The purpose of these experiments was to assess the performance of the adaptive Kalman 

filter (AdaptiveKF.m) when applied to a simulated UV data set comprising highly 

overlapped spectra.   

4.2.9.1 Application of the adaptive Kalman filter using incomplete reference 

functions 

The adaptive Kalman filter was applied using incomplete reference measurement functions 

to assess how accurately it could estimate the state parameters of known components in 

the presence of model errors.  The model errors arise from the appearance of new 

chemical species not included in the reference measurement function matrix.  The adaptive 

Kalman filter also allows the reference measurement function to be augmented with an 

approximation of the unknown components spectrum, calculated from the vector of 

innovations.  The augmented reference functions estimated using the adaptive Kalman 

filtered were directly compared with true spectral profiles. 
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Re-scaling of the pure component concentration and spectral profiles 

The estimated reference measurement functions of each component were normalised to 

unit length (2-norm) prior to running the Kalman filter.  The scaling of the spectral profiles 

was different to the unit concentration spectra used to create the simulated data so the 

concentration profiles estimated using the adaptive Kalman filter also had different scaling.  

To allow the spectral and concentration profiles estimated using the adaptive Kalman filter 

to be directly compared with the true profiles used to create the data set, the true profiles 

were re-scaled as described below. 

The 2-norms of each component (column) in simS1  were calculated and stored in the 

diagonal elements of a (3×3) diagonal-matrix, .N   The true spectral and concentration 

profiles were rescaled using the expressions N
−= ⋅ 1

simS1 S1 N  and = ⋅N simC1 C1 N   

Estimation of the state parameters for component A in the presence of component 

B 

The adaptive Kalman filter was applied to the first 32 spectra of simD2  using a reference 

measurement function comprising a normalised estimate of component A only.  Some of 

the outputs from AdaptiveKF.m are shown in Figure  4.34.  In the simulated data 

,simD2  component B was absent for the first 31 spectra, and was then present in high 

concentration at spectrum 32, representing the fast addition of a final reagent to initiate the 

reaction.  The aim of this test was to assess the ability of the adaptive Kalman filter to 

predict the concentration of component A in the presence of component B.   

Figure  4.34(a) shows the estimated state parameters for component A using an incomplete 

reference measurement function.  As anticipated, the estimated state parameters for 

component A show excellent agreement with the expected values for the first 30 spectra.  

This was because over this time range, component A was the only species contributing to 

the reaction spectra and the reference measurement function was completely modelling the 

measurement data.  At spectrum 32, component B was present so the measurement data 

was no longer fully modelled by the reference measurement function.  This is illustrated by 

the deviation of the estimated state parameter for component A at spectrum 32.  This also 

confirmed by the spectral innovations shown in Figure  4.34(b) and Figure  4.34(c).  For the 

first 31 spectra, the spectral innovations represent zero-mean white noise, indicating the 

Kalman filter was operating optimally.  This resulted in low spectral lack-of-fit values as 
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shown in Figure  4.34(c).  At spectrum 32, the reference measurement function did not 

completely model the measurement data and the spectral innovations and spectral lack-of-

fit values increased significantly. 

Re-estimation of the state parameters for components A and B using an augmented 

reference measurement function 

In the previous experiment, the adaptive Kalman filter was applied to the first 32 spectra 

and a model error corresponding to the rapid appearance of the un-modelled component B 

was observed.  The AdaptiveKF.m function was then used to augment the reference 

measurement function with an estimate of the spectral profile for component B, calculated 

from the adaptive measurement error values ( kR ).  This spectrum was normalised to unit 

length and the adaptive Kalman filter was then applied to spectra 1 to 32 a second time to 

provide new state parameter estimates for components A and B.  The normalised spectral 

profile for component B, estimated from the adaptive measurement error values ( kR ) is 

shown in Figure  4.34(d).  This spectrum exhibited a reasonable correlation with the true 

spectral profile of component B, but also shows significant deviation at those wavelengths 

where component B was most overlapped with component A (approximately 220 to 230 

nm and 255 to 280 nm).   

The estimated state parameter values for components A and B, calculated using the 

augmented reference measurement function are shown in Figure  4.34(a).  The estimated 

state parameter for component A showed very little improvement at spectrum 32.  The 

previous prediction error at spectrum 32 was 0.273 mol.L-1 (14.5% relative error) whilst the 

updated prediction error was 0.264 mol.L-1 (14.0% relative error).  Component B was not 

previously estimated when the Kalman filtering was performed using an incomplete 

reference measurement function.  The estimated state parameter at spectrum 32 using 

augmented reference measurement function resulted in a prediction error of 0.111 mol.L-1 

(20.3% relative error). 

As before, the spectral innovations for the first 31 spectra resembled zero-mean white 

noise, indicating the Kalman filter is operating optimally.  At spectrum 32, the values of 

innovations sequence were lower than those obtained previously using an incomplete 

reference measurement function, but still did not resemble zero-mean white noise. 

Correlated structure in the innovations sequence at spectrum 32 indicates that although the 

model error had been reduced, it had not been eliminated completely.  The remaining 
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model error was contributed by the estimated spectral profile of component B used to 

augment the reference measurement function as it did not completely match the true 

spectral profile.  The measurement model was therefore improved but was not fully 

resolved (rotational ambiguity). 
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Figure  4.34:  Outputs from the adaptive Kalman filter applied to the first 32 spectra of the simulated 
data set D2sim using incomplete and augmented reference measurement functions:  (a) estimated 
state parameters; (b) spectral innovations; (c) spectral lack-of-fit; (d) true spectral profiles and 
augmented reference measurement functions. 
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Estimation of the state parameters for components A and B in the presence of 

component C 

After augmenting the reference measurement function with an estimated spectral profile of 

component B, the adaptive Kalman filter was then applied to the full data set (333 spectra).  

The reaction was initiated at spectrum 32 by addition of component B.  From spectrum 32 

through to spectrum 333, the product (component C) began to increase in concentration as 

it was slowly formed.  The results obtained from this test are shown in Figure  4.35. 

Figure  4.35(a) shows the estimated state parameters for components A and B using an 

incomplete reference measurement function.  The reference measurement function 

comprising components A and B was inaccurate because the estimated spectral profile of 

component B did not completely match the true profile.  This measurement model error 

led to errors in the estimated state parameters for both components A and B.  This was 

characterised by the deviation of the estimated state parameters for components A and B at 

spectrum 32 and 33, even though component C was only present at very low levels and 

should not have greatly influenced the measurement.  The estimated state parameters 

deviated further from the true values as the concentration of component C increased.  This 

was because component C was not included in the reference measurement function and 

therefore contributed to the total measurement model error.  

The spectral innovations shown in Figure  4.35(b) and Figure  4.35(c) indicate that the 

spectral innovations were a combination of the model errors arising from the model error 

for component B and un-modelled component C. 

Re-estimation of the state parameters for components A, B and C using an 

augmented reference measurement function 

In the previous experiment, the adaptive Kalman filter was applied to the full set of spectra 

and a measurement model error corresponding to the slow formation of un-modelled 

component C was observed.  The AdaptiveKF.m function was used to augment the 

reference measurement function with an estimate of the spectral profile for component C, 

calculated from the adaptive measurement error values ( kR ).  This spectrum was 

normalised to unit length and the adaptive Kalman filter was then applied a second time to 

provide new state parameter estimates for components A, B and C.  The normalised 

spectral profile for component C, estimated from the adaptive measurement error values 

( kR ) is shown in Figure  4.35(d).  The estimated spectrum exhibited poor correlation with 
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the true spectral profile of component C and was set to zero over most of the spectrum.  

Comparison of the estimated spectrum with the true spectral profiles for components A, B 

and C revealed that the estimated spectrum was set to zero wherever it is overlapped with 

the other reference spectra.  This was expected as the adaptive measurement error 

calculations set kR to zero whenever the innovations were negative.  The estimated 

spectrum of component C was only correlated with the true spectrum in the spectral region 

290 to 305 nm, which corresponded to the wavelengths that were selective for component 

C.   

The estimated state parameters calculated using the augmented reference measurement 

function are shown in Figure  4.35(a).  The results indicate that the accuracy of the state 

parameter estimates for component B were decreased slightly by incorporating the 

estimated spectrum of component C.   

The innovations for spectrum 32 and 333 in Figure  4.35(b) show that there was still a 

significant measurement model error using a two-component reference function.  After 

augmenting the matrix reference measurement functions with an estimated spectrum of 

component C, the innovations over the spectral range 290 to 305 nm were significantly 

reduced, whilst over the region 220 to 290 nm, the innovations remained almost 

unchanged.  Figure  4.35(c) shows that the spectral lack-of-fit increased from 17.5% to 

18.5% when the matrix of reference measurement functions was augmented with a poor 

estimate of the spectral profile for component C.  This was because the model was not 

accounting for all of the spectral contribution from component C, so the Kalman filter was 

attempting to minimise the innovations by increasing the state parameter values for 

component B.   

Another purpose for performing these experiments was to determine whether the adaptive 

Kalman filter could be implemented as a method for SMCR.  The initial idea was to 

sequentially locate new spectral species from the adaptive variance values and using these 

augmented spectra as initial estimates for iterative target testing factor analysis.  However, it 

was apparent from the results above, and from early tests using ITTFA that the augmented 

adaptive variance spectra for overlapped species such as component C did not have 

enough structure for the target testing to converge to feasible pure component spectra.  

Furthermore, existing pure variable methods such as OPA or VVSP could equally be 

applied to identify the purest spectra. 
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Figure  4.35:  Outputs from the adaptive Kalman filter applied to the first 40 spectra of the simulated 
data set D2sim using incomplete and augmented reference measurement functions:  (a) estimated 
state parameters; (b) spectral innovations; (c) spectral lack-of-fit; (d) true spectral profiles and 
augmented reference measurement functions. 
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4.2.9.2 Conclusions:  Application of the adaptive Kalman filter to simulated UV 

data 

Throughout the analytical chemistry and chemometrics literature, one of the most flexible 

and widely used versions of Kalman filter is the adaptive Kalman filter.  The linear Kalman 

filter described in the previous paragraph assumes that the measurement noise variance 

(R ) is constant for each of the variables.  It is possible to modify the Kalman filter so that 

a vector of measurement noise variances can be supplied for data with heteroscedastic 

noise, but the noise distribution must be determined and provided before applying the 

Kalman filter.  The adaptive Kalman filter does not use a constant value for R  but allows 

it to adapt during the recursive estimation-correction calculations.  A moving window is 

used to calculate the RMS value of the previous m  values in the innovations sequence and 

R  is updated at each step to adapt to the innovations values.  The useful feature of this 

approach is that it allows the Kalman filter to compensate for certain model errors by 

reducing the sensitivity of the Kalman gain and state update calculations in regions where 

the measurement model is in error.  Furthermore, the vector of adaptive measurement 

noise variances can be used to augment the matrix of reference measurement functions or 

correct an existing reference measurement function suspected to be inaccurate. 

The initial motivation for investigating the adaptive Kalman filter was assess whether it 

could be used as the basis of a SMCR method to provide good initial estimates of the pure 

component concentration profiles when a full measurement model is not available.  These 

estimates may be optimal already (in a constrained least-squares sense) or could be further 

refined using constrained ALS.  The basic requirement for using the adaptive Kalman filter 

in this manner is that the number of components to recover must be pre-determined.  

Furthermore, the Kalman filter calculations require at least one reference measurement 

function so it is necessary to identify a suitable spectrum that may represent a pure spectral 

profile.  The adaptive Kalman filter was implemented as Matlab function 

(AdaptiveKF.m) and included the additional calculations described by Rutan et al.[57, 58, 66] 

that allow the reference measurement function to be augmented or updated using the 

adaptive variance spectrum.  To test the approach, the adaptive Kalman filter was applied 

to a simulated UV reaction data set ( simD2 ) using an incomplete reference measurement 

function.  One of the restrictions of using the adaptive Kalman filter to sequentially 

estimate the spectral profiles of each component is that the data must first be examined to 

identify where the largest model errors will occur.  This can be done by assessing the 

innovations based lack-of-fit values at each step; or it could be done using PCA or a SMCR 
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method such as EFA, OPA, VVSP, SIMPLISMA etc. to indicate when new components are 

introduced or reach their maximum concentration.   

For the simulated data, it was known that the maximum concentration of component B 

occured at spectrum 32 and component C reached its maximum concentration at spectrum 

333.  Starting with a 1-component reference measurement function comprising the first 

spectrum of the data set, the adaptive Kalman filter was applied to the first 32 spectra.  As 

expected the measurement model error increased significantly at spectrum 32 and the 

resulting adaptive measurement variance spectrum was used to augment the reference 

measurement function.  The spectrum derived from the vector of adaptive measurement 

noise variances was a reasonable approximation of the true spectral profile of component 

B but also exhibited significant error where the spectrum of component B was highly 

overlapped with the spectrum of component A.  Applying the Kalman filter a second time 

using the augmented (2-component) matrix of reference measurement functions offered 

only a small improvement in prediction error for component A at spectrum 32 (the error 

for a 1-component reference measurement function was 14.5%; the error for 2-component 

reference measurement function was 14.0%).  The procedure was then repeated using the 

complete data set to obtain an estimate of component C.  However, the estimated 

spectrum for component C was only non-zero over the region that was not completely 

overlapped with the reference measurement functions for components A and B.  Using an 

augmented (3-component) reference measurement function did not improve the accuracy 

of the final state parameter estimates and they were unsuitable as initial estimates for 

further refinement.   

This experiment demonstrated that for highly overlapped data such as UV spectra, there 

was not sufficient selectivity in variable mode for the adaptive Kalman filter to accurately 

estimate the state parameters.  This limitation of the adaptive Kalman filter is well reported 

in the literature.  However the objective was to assess whether the Kalman filter could be 

used to provide suitable starting estimates for further refinement using other methods such 

as CALS.  Although the results were not shown, iterative target transformation factor 

analysis was applied to the pure component spectral profiles estimated using the adaptive 

Kalman filter.  This did offer some improvement as the zero values corresponding to 

regions of high overlap were replaced with non-zero values.  However, the approach did 

not seem to provide any advantage over existing methods and was not pursued further. 
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4.2.10 Application of VVSP to simulated UV data 

The Vertex Vector Sequential Projection (VVSP) method is a SMCR method that was 

published in 2006 by Wang et al.[95, 96].  The VVSP method is a pure variable approach that 

identifies the purest spectra (vertex vectors) of a normalised bilinear data set.  After the 

first VVSP component has been identified, the null matrix of that spectrum is calculated 

and used to identify the next component.  The null matrix will span the spectral space 

orthogonal to the previously located components and should therefore yield pure 

component spectra that are most dissimilar to previous components, even if they only 

account for a small percentage of the variance in the data.  The VVSP method is therefore 

suitable for providing initial estimates of the pure component spectra.  The initial estimates 

can then be further refined using a constrained ALS approach as described by the authors.  

In this work, VVSP was used to provide a set of reference measurement functions (spectral 

profiles) to initiate the VAKFISO method. 

The Vertex Vector Sequential Projection method was implemented as Matlab script 

(VVSP.m) and then applied to the simulated UV data set .simD2   The aim of this 

experiment was to investigate the ability VVSP to detect the true number of components 

contributing to an overlapped data set and also to locate the spectra that best resemble the 

true, pure spectral profiles.  This would also demonstrate that pure variable based SMCR 

methods such as VVSP, OPA, SIMPLISMA etc. are often unable to successfully recover the 

true spectral (or concentration) profiles from data that comprise heavily overlapped 

spectra.   

When VVSP was applied to ,simD2  the spectral normalisation was set to p = 2 (normalise 

each spectrum to unit length).  The number of components to locate (NL) was set to 8.  

The results obtained are shown in Figure  4.36.  Figure  4.36(a) shows the ( )jf w  values 

used to locate each VVSP spectrum.  The profiles show that the magnitude of the ( )jf w  

values decreased with each successive VVSP component located.  This is to be expected as 

each normalised spectrum T
jy  is projected into the null space of the previously located 

VVSP spectra stored in the matrix .MZ   This plot indicates that the ( )jf w values for the 

fourth VVSP component are very low and resemble unstructured random noise.  This 

indicates that three components were sufficient to model the data.  This result was 

expected as the true rank of the data was three.  The Durbin-Watson and 
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10log ( ( ))SSQ δY values shown in Figure  4.36(b, c) also indicate that the rank of the data 

was three. 

The pure component spectral profiles located using VVSP are shown in Figure  4.36(d).  

VVSP component 1 (corresponding to spectrum number 327) was found to be an excellent 

match with the true spectral profile of component C.  VVSP component 2 (corresponding 

to spectrum number 24) was also found to be an excellent match with the true spectral 

profile of component A.  VVSP did successfully locate the spectrum number 

corresponding to the maximum concentration of component B at spectrum number 32, 

but because this spectrum was actually a mixture of components A and B, the VVSP 

spectrum did not match the true spectral profile of component B.    
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Figure  4.36:  Results obtained from VVSP analysis of the simulated data set D2sim.  (a) f(wj) values 
for the first four VVSP components; (b) the Durbin-Watson values for each VVSP spectrum; (c) 
log10(SSQ(δY)) values plotted against number of VVSP components; (d) spectral profiles for the first 
three VVSP components – VVSP component 3 was an estimate of the true spectral profile of 
component B. 
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The concentration profiles estimated using least-squares using the VVSP spectra ( VVSPS ) 

are shown in Figure  4.37.  As neither the spectral or concentration profiles have any 

negative regions, applying a constrained alternating least squares optimisation did not 

improve VVSPS  or .VVSPC   The least-squares estimated concentration profile of VVSP 

component 1 exhibited excellent correlation with the true, scaled concentration profile of 

component C.  Only a small scaling factor discrepancy between the two profiles was 

evident.  The least-squares estimated concentration profile of VVSP component 2 was well 

correlated with the true, scaled concentration profile of component A for the first 31 

spectra, but exhibited a step change to zero when component B appeared.  The least-

squares estimated concentration profile of VVSP component 3 also exhibited excellent 

correlation with the true, scaled concentration profile of component B but a there was a 

significant scaling discrepancy between the two profiles.  This scaling ambiguity is common 

to all SMCR methods but can be minimised by invoking additional closure and equality 

constraints using additional knowledge about the system. 
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Figure  4.37:  Comparison of the true, scaled concentration profiles used to generate the simulated 
data set D2sim and the least-squares estimate of the concentration profiles calculated using the VVSP 
pure component spectra.  Note the step change in the concentration profile of VVSP component 2 
(corresponding to component A) at spectrum 32. 

VVSP was applied to the simulated data to find the correct number of components.  

Although the pure component concentration and spectral profiles were optimal in a least-

squares sense, they did not completely match the true pure component profiles used to 

create the data set.  This experiment demonstrated that VVSP can provide suitable starting 

estimates of the pure component profiles, but further optimisation was required. 

Another useful feature of a pure variable SMCR method such as VVSP is that the purity of 

spectra can be assessed by comparing the correlation coefficients of each VVSP spectrum 
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and the corresponding least-squares estimated spectrum calculated using the normalised 

matrix of  ( )jf w  values. 

To calculate the correlation coefficients, the dimensionality of the original data set simD2  

was first reduced by reconstructing the data using the first three principal components to 

yield .D  The least-squares spectra were estimated using the matrix of normalised ( )f w  

values, denoted ,Fw  using the equation ( )ˆ .
T+=S Fw D   The columns of ˆ

LSS  were 

normalised to unit length and the correlation coefficients of each column of VVSPS  and the 

corresponding column of ˆ
LSS  were calculated.  The correlation coefficient for VVSP 

spectrum 1 and the corresponding least-squares spectrum was 0.9998; the correlation 

coefficient for VVSP spectrum 2 and the corresponding least-squares spectrum was 0.9999; 

the correlation coefficient for VVSP spectrum 3 and the corresponding least-squares 

spectrum was 0.8872.  This indicated that for VVSP components 1 and 2, the “pure” 

spectra identified using VVSP as pure spectral profiles were very likely to correspond to 

actual pure spectra, whilst VVSP component 3 had clearly located the purest, mixture 

spectrum.  This approach can be extremely useful for identifying which VVSP spectra are 

closest to isolated, pure spectral profiles in the absence of any prior knowledge of the 

system.  The VVSP and least-squares estimated spectra are shown in Figure  4.38. 
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Figure  4.38:  Comparison of the VVSP and least-squares estimated spectra.  The least-squares 
estimated spectra were calculated using the normalised vectors of f(w) values, that formed the 
columns of the matrix Fw.  The correlation between VVSP spectrum 1 and the least-squares 
spectrum was 0.9998, the correlation between VVSP spectrum 2 and the least-squares spectrum was 
0.9999 and the correlation between VVSP spectrum 3 and the least-squares spectrum was 0.8872.  
This seems to be a convenient method for identifying which spectra are purest without requiring any 
prior knowledge.   
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4.2.10.1 Conclusions:  Application of VVSP method to simulated UV data 

A relatively new SMCR method called Vertex Vector Sequential Projection[95, 96] was 

implemented as a Matlab function (VVSP.m).  This method locates the mixture spectra 

that most closely resemble pure spectral profiles (vertex vectors).  The fundamental 

principal of VVSP is that by applying p-normalisation to each spectrum in the data set, the 

spectra can be represented as a points distributed across a polyhedral hyper-“spherical” 

surface.  The purest spectrum will be located at the vertices of the hyper-surface.  Although 

the calculations used to locate each pure spectrum are quite different to those used by 

OPA, both methods were found to produce almost identical results for the UV data.  

4.2.11 Application of VAKFISO to simulated UV data 

4.2.11.1 Examination of the effect of the weighting coefficients 

The aim of this set of experiments was to learn how the VAKFISO method performed 

when different weighting coefficients ( 1,α 2,α 3α  and 4α ) were used to calculate the 

weighted residual matrix E  (used during the NGL/M optimisation step).   

Identification of suitable method parameters 

To identify suitable starting parameters, the magnitude of the elements in an innovations 

vector and state-parameter error covariance matrix obtained from a fully modelled system 

were assessed.  As VAKFISO was developed as a SMCR method, it was necessary to 

approximate a fully modelled system using the first N primary eigenvectors that span the 

spectral space of the data set.  The primary eigenvectors (denoted V ) obtained by 

application of singular value decomposition to the data set simD2  were set as the matrix of 

reference measurement functions, .S   The vectorised adaptive Kalman filter 

(VecAdaptiveKF.m) was applied to the data set simD2  using a window size of 4.  

The approximate magnitude of the elements in the innovations vector were summarised by 

calculating the root-mean-squared value.  The RMS value was 0.0011 

The sum of the diagonal elements in state-estimate covariance matrix ( P ) was 9.44×10-6.  

The second term of the weighted variance covariance shown in equation 2.44 is the 

product of the innovations (V ) and the sum of the diagonal elements of P (denoted Π ).  

For a three component model of the data set simD2 , the approximate value of Π  for a 

matrix of optimised reference measurement functions was 9.44×10-6.  
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The contribution from first term ( 1αV ) can be given an approximately equivalent 

weighting to the second term ( 2α ΠV ) by using a weighting coefficient value 1α =1×10-7 to 

1×10-5.  However, when testing the initial parameters using 1α = 1×10-6, it was found that 

the trace of the error variance matrix was larger (approximately 1×10-5).  Experimentation 

revealed that if the RMS value of the second term ( 2α ΠV ) was approximately one to ten 

percent of the RMS value of the first term ( 1αV ), the method would converge faster.  For 

data set ,simD2  a value of 1α = 1×10-3 was used.  The VAKFISO script displays the RMS 

value for each of the four terms contributing the weighted residual matrix so that the user 

can adjust the values of 1,α 2 ,α 3α  and 4.α  

The third and fourth terms of equation 2.44 are 3α ΣV  and 4α ΞV respectively.  The 

valuesΣ  and Ξ  can range from 0 (complete non-negativity) to 1 (complete negativity) in 

the test spectra and estimated state-parameters.  The product of 3α ΣV  and 4α ΞV  terms 

will approach zero as Σ  and Ξ  approach zero.  A value of 1 for the weighting coefficients 

3α  and 4α  should be appropriate, although they can be increased to 10 or larger to make 

the product of the terms even larger when Σ  and Ξ  are non-zero.  

Application of VAKFISO using the initial method parameters 

The initial examination of the data in the previous section provided suitable weighting 

coefficients that could be used to apply VAKFISO to the simulated data set.  Using the 

parameters listed in Table  3.9, VAKFISO was applied to the data set .simD2   The algorithm 

did not achieve convergence and therefore terminated when the maximum number of 

iterations was reached.  However, observing the plots of the estimated spectra and state-

estimates during the optimisation process revealed that the algorithm reached the final 

solution after approximately fifty iterations and did not visibly improve during subsequent 

iterations.   

The RMS residuals between the normalised spectra obtained using VAKFISO and the true 

normalised spectra are shown in Table  4.5.  For reference, the spectral and concentration 

profile RMS residuals were also calculated for the vectorised adaptive Kalman filter using 

the true spectra; the pure component spectra located using VVSP and the corresponding 

LS concentration profiles; and the VVSP pure component spectra used as reference 
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measurement functions for the vectorised Kalman filter.  The rescaled, true concentration 

profiles calculated as described in section  4.2.9.1 were used to calculate the RMS error. 

The second column of Table  4.5 shows the results obtained from applying the vectorised 

adaptive Kalman filter to the simulated data using normalised, true spectral profiles as the 

reference measurement functions.  This provided a bench mark against which the other 

results could be compared.  As the true, normalised spectral profiles were used as the 

reference measurement functions, calculation of the spectral model residuals was not 

applicable.  As expected, the value of the concentration residuals was also low, ranging 

from 3.10×10-3 to 1.09×10-2 mol.L-1.  This resulted in a concentration RMSE of 7.27×10-3 

mol.L-1 and was the lowest concentration RMSE obtained.  The root-mean-square sum of 

residuals calculated from the innovation matrix was 2.00×10-3 AU and the innovations 

vectors resemble zero-mean white noise as expected.  The state parameter variances for 

components A, B and C were 1.02×10-4, 3.95×10-5 and 2.11×10-4 mol2.L-2 respectively.  

These values represent the state-estimate variances for a model that was optimal in the 

sense that the true spectral profiles were provided. 

To allow a comparison to be made, the same set of statistics were calculated for the 

estimates of the pure component spectra located using VVSP and the corresponding 

concentration profiles calculated using least squares.  The results are shown in the third 

column of Table  4.5.  The spectral RMSE values indicate how closely the estimated pure 

component profiles match the true spectral profiles.  As described previously in section 

 4.2.9.2, it could be seen visually that the spectrum for VVSP component 1 exhibited 

excellent correlation with the true spectral profile of component C, whilst VVSP 

component 2 exhibited excellent correlation with component A.  This was reflected in the 

spectral RMSE values of 7.59×10-4 AU for component A and 2.30×10-3 AU for component 

C.  The RMSE value for component B was larger as the correlation of the corresponding 

VVSP spectrum was not so good.  The overall spectral RMSE value was 1.88×10-2 AU and 

was a measure of how closely Ŝ  matched .S   The concentration RMSE values were 

calculated using the LS estimated concentration profiles.  The concentration RMSE was 

2.21×10-1 mol.L-1.  As the concentration matrix was calculated using least-squares, the RMS 

of the data residual matrix was minimised.  RMS of the data residual matrix was 1.40×10-3 

AU.  This value is actually slightly lower than the innovations matrix RMS value calculated 

for the true model.  
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To allow the performance of VAKFISO to be compared with the solution provided using 

VVSP, the vectorised Kalman filter was used to estimate the concentration profiles of the 

simulated data using the VVSP spectra as reference measurement functions.  The results 

are shown in column four of Table  4.5.  The spectral matrix RMSE values are unchanged 

and the concentration RMSE values were very similar to those obtained using least-squares.  

The concentration RMSE was reduced slightly (1.99×10-1 mol.L-1 for the VAKF compared 

to 2.21×10-1 mol.L-1 for the least-squares estimates).  The state-estimate variances for each 

component are also listed.  Since only two of the three spectral profiles were a good match 

to the true spectral profiles, one would expect the state-estimate variance values to be 

increased relative to those obtained using the true spectral profiles.  The state estimate 

variance for component A (corresponding to VVSP component 2) was 1.30×10-3 mol2.L-2 

(cf.  1.02×10-4  mol2.L-2 for the true model).  This demonstrates that although the VVSP 

spectrum corresponding to component A showed excellent correlation with the true 

spectral profile, it is the simultaneous performance of all components contributing to the 

model that will influence the error variances.  The state estimate variance for component B 

(corresponding to VVSP component 3) was 2.20×10-3 mol2.L-2 (cf.  3.95×10-5  mol2.L-2 for 

the true model).  This was the largest state estimate standard deviation value and indicated 

that the VVSP spectrum corresponding to component B contributed the largest error to 

the measurement model.  This supports the observation that the VVSP spectral profile 

corresponding to component B was not accurate.  Finally, the state estimate standard 

deviation for component C (corresponding to VVSP component 1) was 9.57×10-4 mol2.L-2 

(cf.  2.11×10-4  mol2.L-2 for the true model).  A small state estimate variance indicated that 

the VVSP spectrum of the component corresponding to component C was a good estimate 

and did not contribute significant error to the model.  This was also supported by the 

concentration RMSE value for component C which was lower than for the other 

components. 



Chapter 4.2 – Results and Discussion: Vectorised Kalman filtering for SMCR 

 - 232 - 

Table  4.5:  Comparison of VAKFISO and VVSP applied to simulated data. 

 VAKF 
using 
known 
spectra 

VVSP 
spectra 
(LS) 

VAKF 
using 
VVSP 
spectra 

VAKFISO 
with 2α = 1 

VAKFISO 
with 2α = 0 

Spectral 
RMSE  (A) 

N/A 7.59×10-4 7.59×10-4 9.00×10-3 8.40×10-3 

Spectral 
RMSE (B) 

N/A 5.32×10-2 5.32×10-2 1.10×10-3 2.80×10-2 

Spectral 
RMSE (C) 

N/A 2.30×10-3 2.30×10-3 9.00×10-3 3.55×10-2 

Total /3 N/A 1.88×10-2 1.88×10-2 6.37×10-3 2.40×10-2 
Concentration 
RMSE  (A) 

7.80×10-3 3.15×10-1 3.21×10-1 2.41×10-1 6.87×10-1 

Concentration 
RMSE (B) 

3.10×10-3 2.40×10-1 2.22×10-1 2.81×10-1 2.50×10-1 

Concentration 
RMSE (C) 

1.09×10-2 1.08×10-1 5.39×10-2 4.17×10-1 7.35×10-1 

Total / 3 7.27×10-3 2.21×10-1 1.99×10-1 3.13×10-1 0.557 
Innovation / 
Residual 
matrix RMSE 

2.00×10-3 1.40×10-3 4.50×10-3 1.00×10-3 1.00×10-3 

State 
parameter 
variance (A) 

1.02×10-4 N/A 1.30×10-3 8.68×10-6  7.72×10-6  

State 
parameter 
variance (B) 

3.95×10-5 N/A 2.20×10-3 

 
1.02×10-5  2.18×10-5 

State 
parameter 
variance (C) 

2.11×10-4 N/A 9.57×10-4 2.19×10-5 1.19×10-5 

trace(P) 3.52×10-4 N/A 4.46×10-3 4.08×10-5 4.14×10-5 
 
The results obtained from the application of VAKFISO to the simulated data using the 

weighting coefficients 1α = 1.0×10-3 and 2α = 1 are shown in the fifth column of Table  4.5 

and are illustrated in Figure  4.39.  The quality of the pure spectral profiles estimated using 

VAKFISO was quantified by the spectral RMSE values shown in the table.  The estimated 

spectra and true spectral profiles are shown in Figure  4.39(a) and the residuals used to 

calculate the spectral RMSE values are shown in Figure  4.39(b).  Visually, the VAKFISO 

spectra show very good correlation with the true spectral profiles and this was confirmed 

by the RMSE values.  The RMSE values for components A and C were both 9.00×10-3 AU; 

this was not quite as good as the RMSE values produced using VVSP (7.59×10-4 and 

2.30×10-3 AU respectively).  The spectra in Figure  4.39(a) do indicate that there was some 

rotational ambiguity for components A and C.  However, the pure spectral profile of 

component B estimated using VAKFISO exhibited excellent correlation with the true 
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spectrum.  For component B, the corresponding VVSP pure component spectrum was 

least accurate and the improvement is reflected in the spectral RMSE values for 

component B.  The RMSE value for the VVSP spectrum corresponding to component B 

was 5.32×10-2 AU whilst the RMSE value for the VAKFISO spectrum was 1.10×10-3 AU. 

The improvement in the pure component spectral profile of component B meant that the 

total error of the matrix of estimated spectral profiles ( Ŝ ) produced using VAKFISO was 

slightly lower than that produced using VVSP.  However, examination of the individual 

spectral RMSE values revealed that VVSP produced better estimates of the spectral 

profiles for components A and C, whilst VAKFISO, produced a much better estimate of 

component B’s spectral profile. 

As the spectral profiles for the three components were all highly overlapped, there was 

some rotational ambiguity in the spectral profiles estimated using VAKFISO.  

Consequently, this led to some rotational ambiguity in the estimated concentration profiles.  

The estimated concentration and true concentration profiles are shown in Figure  4.39(c) 

and the residual used to calculate the concentration RMSE values are shown in Figure 

 4.39(d).  It is apparent from Figure  4.39(c) that the concentrations of components A and B 

were over-estimated at the expense of component C, which was under estimated when 

compared with the true concentration profiles.  The concentration RMSE values suggest 

that overall, the VAKFISO model was slightly worse than the VVSP model.  The 

concentration RMSE value for the VAKFISO model was 3.13×10-1 mol.L-1; the 

concentration RMSE values for VVSP model was 1.99×10-1 mol.L-1.  However, it is worth 

noting that the concentration profile of component A estimated using VVSP, shown in 

Figure  4.37(b), did not have the correct features and displayed a step change to zero at 

spectrum 32.  The concentration profiles estimated using VAKFISO (Figure  4.39(c)) all 

had the correct features and were more feasible reaction profiles but did exhibit intensity 

ambiguities. 

Two of the contributions to the weighted residual matrix minimised by the NGL/M 

optimisation are the Kalman filter innovation matrix and the sum of the diagonal elements 

of the state estimate variance covariance matrix.  The innovations RMSE for the 

VAKFISO model was 1.00×10-3 AU and was lower than the value obtained using the true 

spectral profiles (2.00×10-3 AU).  This was a consequence of the optimisation method as 

NGL/M is a least-squares optimisation method that will minimise the model residuals. 

Each innovations vector for the VAKFISO model resembled zero-mean, white noise as 
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expected.  The innovations RMSE value indicated that the VAKFISO optimisation process 

converged to a feasible solution that minimised the weighted residual matrix whilst 

adhering to the non-negativity requirements.  

The second parameter that contributes to the weighted residual matrix is the trace of the 

state estimate variance covariance matrix.  The individual state estimate variance values are 

shown in Table  4.5.  The sum of the individual state estimate variance values for the 

VAKFISO model was 4.08×10-5 mol2.L-2.  This was lower than the value obtained using 

the true spectral profiles (3.52×10-4 mol2.L-2) and shows that VAKFISO successfully 

converged to a solution that minimised the elements of innovations matrix and the 

diagonal elements of the state estimate error covariance matrix.  It was noted that when the 

vectorised adaptive Kalman filter was applied to the same data set using the first three right 

singular vectors, the innovations RMSE value was 1.00×10-3 AU and the sum of the state 

estimate standard deviations was 9.44×10-6 mol2.L-2.  This suggested that whilst neither the 

right singular vectors, nor the calculated state parameters were strictly non-negative, they 

were a solution that minimised the residual matrix.  As the singular vectors were 

orthogonal, the degree of spectral overlap was minimised and this helped to reduce the 

values of the diagonal elements of the state-estimate covariance matrix.  
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Figure  4.39:  Results obtained by the application of VAKFISO to simulated data D2sim using the 
weighting coefficients α1 = 1.0×10-3 and α2 = 1:  (a) comparison of pure component spectra estimated 
using VAKFISO and the true, normalised spectral profiles; (b) Residual spectra; (c) comparison of 
the pure component concentration profiles estimated using VAKFISO and the true, scaled 
concentration profiles; (d) concentration residuals calculated by subtraction of the VAKFISO 
estimated concentration profiles from the true, scaled concentration profiles.  
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Application of VAKFISO with exclusion of the state parameter error covariance 

term 

To demonstrate that using the Kalman filter during the optimisation process provides a 

unique advantage over simple constrained least squares methods, the contribution of state 

parameter error covariance term was eliminated from the calculation of the weighted 

residual matrix by setting the value of 2α to zero.  All other parameters were set to the 

values listed in Table  3.9.  Using these parameters, the VAKFISO method will optimise the 

model in the sense that it minimises the residual sum-of-squares.  The same constraints of 

spectral and state-parameter non-negativity were applied during the optimisation.  As the 

sum of the state estimate variances were not used in the calculation of the weighted 

residual matrix, they would not be minimised directly.   

The results obtained by applying VAKFISO using these parameters are shown Table  4.5 

and Figure  4.40.  Visual inspection of the estimated spectral profiles in Figure  4.40(a) 

revealed that the optimised spectra were not as highly correlated to the true spectral 

profiles as those obtained in the previous model.  This was confirmed by the spectral 

RMSE values.  The spectral RMSE value for this model was 2.40×10-2 AU, which was 

larger than both the previous VAKFISO model (6.37×10-3 AU) and the VVSP pure 

component spectra (1.88×10-2 AU).  It was apparent that in this model, the estimated 

spectral profiles for components B and C were not as accurate as those obtained in the 

previous VAKFISO model. 

The errors in the estimated spectral profiles also led to a larger error in the calculation of 

the concentration profiles.  This is illustrated in Figure  4.40(c) and Figure  4.40(d). 

Component C had the correct profile but exhibited considerable intensity ambiguity and 

was under estimated; whilst components A and B were both over estimated.  Furthermore, 

component A did not have the correct features and still exhibited a large step at spectrum 

32.  The concentration RMSE value for this VAKFISO model was 0.557 mol.L-1. 

Despite the large errors in the estimated pure component spectral and concentration 

profiles, the RMS of the innovations matrix was still minimised to the same value as the 

previous model (1.00×10-3 AU).  As with the previous VAKFISO model, the innovations 

vectors resemble zero-mean, white noise.  Consequently, the sum of the state estimate 

error standard deviations was also very small (1.09×10-2 mol.L-1).  Although this value was 

not as low as the value obtained with the previous VAKFISO model (2.02×10-3 mol.L-1) it 

did confirm that when the elements of the innovations matrix residual are minimised, the 
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diagonal elements of the error covariance matrix are also minimised.  This suggests that 

although the innovations and error covariance statistics of the two VAKFISO models are 

very similar, including the error covariance term in the calculation of the weighted residual 

matrix had a significant effect on the accuracy of the estimated pure component spectra. 

Comments on the performance of VAKFISO applied to simulated data 

The testing of the VAKFISO method using simulated data generated from known spectral 

and concentration profiles allowed the performance of this algorithm to be assessed.  The 

algorithm is computationally intensive and requires the Kalman filter to be run many times.  

In the tests described above, the maximum number of iterations was 250 and in each test, 

this limit was reached.  Although the algorithm did appear to converge to the final solution 

well before 250 iterations were performed, it is clear that the convergence criterion need to 

be chosen carefully.  During the each iteration of the optimisation, the vectorised adaptive 

Kalman filter is called 2N  times, where N is the number of components to refine.  This is 

because NGL/M optimisation will individually adjust the value of each element in the 

( )N N×  transformation matrix .T   This meant that during each test, the vectorised 

adaptive Kalman filter was called approximately 2250 times.  The calculation time for 250 

iterations was approximately twenty minutes; if the original adaptive Kalman filter was 

called instead, this time would be increased to several hours. 

The results of the tests using simulated data revealed that the concept of utilising the 

diagonal elements of the error covariance matrix to construct a weighted residual matrix 

did seem to offer an advantage over least-square minimisation alone.  However, the final 

solution was not completely accurate and it is clear that in this case, VAKFISO can not be 

used in isolation.  A benefit of VAKFISO is that it arrives at a set of feasible pure 

component spectral profiles using only basic non-negativity constraints.  If necessary, this 

solution can be refined further by utilising knowledge of the system commonly utilised in 

MCR-ALS for example.  Additional constraints that would be applicable to this example 

would be to utilise known regions of zero concentration.  These can be identified from the 

data directly using by examining the VVSP ( )f w  vectors or applying EFA.   
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Figure  4.40:  Results obtained by the application of VAKFISO to simulated data D2sim using the 
weighting coefficients α1 = 1.0×10-3 and α2 = 0:  (a) comparison of pure component spectra estimated 
using VAKFISO and the true, normalised spectral profiles; (b) Residual spectra; (c) comparison of 
the pure component concentration profiles estimated using VAKFISO and the true, scaled 
concentration profiles; (d) concentration residuals calculated by subtraction of the VAKFISO 
estimated concentration profiles from the true, scaled concentration profiles. 
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4.2.12 Application of VAKFISO to real UV data 

4.2.12.1 Examination of the UV spectral data sets using PCA 

PCA was applied each data set to allow the correct number of independent components 

contributing to the data to be determined.  The eigenvalues, variance explained for each PC 

and cumulative variance explained values obtained by applying PCA to both un-centred 

and mean-centred data are shown in Table  4.6.  The eigenvalues and variance explained 

values for the un-centred data show that the first PC explained 99.80% of the total 

variance.  For the PCA models calculated using the un-centred data, the first principal 

component corresponded to the mean spectrum.  The loading of principal component 1 

matched the normalised mean spectrum of the data set.  The scores profile for the second 

principal component correlated to the expected formation of product and the third 

component corresponded to the addition of benzyl bromide and its subsequent 

consumption.  The scores vector for principal component 4 resembled random noise and 

its loading vector did not have any spectral features.  This indicates that there were not any 

additional chemical species contributing to the data.  It also indicates that there were no 

significant peak shifts that required additional principal components to model their 

contribution to the data.  

The PCA models for the mean-centred data confirmed that two principal components 

were sufficient to model most of the structured variance about the mean.  For the mean-

centred data, the scores for the first principal component corresponded to a combination 

of the addition of benzyl bromide and the formation of 1-benzyl-1H-indole.  The second 

component also corresponded to the addition of benzyl bromide and its subsequent 

consumption.  In both cases, the absence of a significant third (mean-centred data) or 

fourth component (un-centred data) indicated that two of the chemical species co-vary. 

Table  4.6:  Table of eigenvalues and variance explained obtained by applying principal components 
analysis to the UV data set BnIndole_B2.00_MR0.67_UV. 

 Un-centred data Mean-centred data 
PC 

number 
Eigen-
value 

Var. 
(%) 

Cum. Var. 
(%) 

Eigen-
value 

Var. 
 (%) 

Cum. Var. 
(%) 

1 6.316 99.8001 99.8001 2.309×10-2 81.9919 81.9919 
2 1.045×10-2 0.1652 99.9653 4.247×10-3 15.0792 97.0711 
3 2.021×10-3 0.0319 99.9972 6.584×10-4 2.3373 99.4084 
4 3.140×10-5 0.0005 99.9977 3.117×10-5 0.1107 99.5190 
5 1.730×10-5 0.0003 99.9980 1.730×10-5 0.0614 99.5805 
6 1.653×10-5 0.0003 99.9983 1.620×10-5 0.0575 99.6379 
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The variance of each column of the residual matrices calculated using three-component 

PCA models were used to estimate the approximate measurement noise variance.  The 

average variance value for the 131 spectral variables was approximately 1×10-6 AU2.  

4.2.12.2 Derivation of initial spectral profile estimates using VVSP 

VVSP was individually applied to each of the three data sets to allow the resulting sets of 

initial estimates to be compared.  The reason for performing the reaction with different 

reagent stoichiometries was to allow the VAKFISO algorithm to be initiated with different 

initial estimates of the spectral profiles.  

Estimation of the number of components required 

When VVSP was applied to the real UV data sets, it was more difficult to determine the 

correct number of components from the Durbin-Watson and log10(SSQ(δY )) values 

(shown in Figure  4.41).  The Durbin-Watson calculation is used to determine the 

correlation or randomness of a vector.  The DW values will tend towards zero if the values 

in the vector are highly correlated (and therefore represent a true signal or profile); 

conversely the DW values will increase as the degree of randomness increases[106].  The 

log10(SSQ(δY )) values indicate how the projection residuals decrease as additional VVSP 

components are located.  If all of the structured variation in the data is captured by the 

VVSP components, the projection residuals for addition components will resemble random 

noise.  When interpreting plots of the DW and log10(SSQ(δY )) values, one must consider 

the value and the difference between consecutive pairs of values.  For the data sets 

BnIndole_B2.00_MR0.67_UV and BnIndole_B2.00_MR100_UV, the difference between 

consecutive DW values was largest between components three and four.  This indicated 

that three VVSP components were appropriate.  For the data set, 

BnIndole_B2.00_MR1.50_UV, the largest difference between consecutive DW values 

occured between components four and five.  This suggested that four VVSP components 

were the most appropriate, but on examination of the spectral profiles for the first four 

VVSP components, it was obvious that VVSP component four was very highly correlated 

to VVSP component one (corresponding to 1-benzyl-1H-indole).  Based upon this 

observation, it was concluded that only three components were required to model each 

data set.  The log10(SSQ(δY )) projection values shown in Figure  4.41(b) also suggested that 

three VVSP components were adequate to model most of the structured variance in the 

data.    
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Figure  4.41:  (a) Durbin-Watson values plotted against VVSP component number, calculated during 
the application of VVSP to real UV data sets acquired during the N-benzylation of 1H-indole 
reactions; (b) log10(SSQ(δY)) values plotted against VVSP component number. 

Comparison of the VVSP spectral profiles obtained from each data set 

The initial estimates of the pure component spectral profiles obtained by application of 

VVSP to each of the three data sets were compared visually (shown in Figure  4.42).  As 

there was a region at the beginning of each data set where 1H-indole was the only 

component contributing to the data, one would expect the VVSP spectral profiles 

corresponding to this component to be the most similar.  The spectral profiles for VVSP 

component 2 were overlaid and found to be almost identical.  For the VVSP components 

that corresponded to1-benzyl-1H-indole (VVSP component 1) and benzyl bromide (VVSP 

component 3), there was a larger difference between the spectra obtained from each data 

set.  The reason for this was that in each of the experiments, one or both of the reagents 

were not consumed completely.  In experiment BnIndole_B2.00_MR1.00, the reagents 1H-

indole and benzyl bromide were charged in equal amounts.  The HPLC profiles for this 

experiment indicated that 1H-indole was not completely consumed and approximately 10% 

of the initial amount charged remained at the end of the reaction.  The VVSP spectrum 

corresponding to 1-benzyl-1H-indole therefore included a small contribution from un-

consumed 1H-indole.   
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In experiment BnIndole_B2.00_MR0.67, 1.5 molar equivalents of benzyl bromide were 

charged.  The HPLC profiles for this experiment indicated that at the end of the reaction, 

1H-indole was completely consumed but approximately 25% of the initial charge of benzyl 

bromide remained.  Therefore approximately 25% of the contribution to VVSP spectrum 

corresponding to 1-benzyl-1H-indole was from benzyl bromide.  The VVSP pure 

component spectral profiles corresponding to benzyl bromide were actually a weighted 

mixture of 1H-indole and benzyl bromide.  As the reagent stoichiometries were different in 

each experiment, the VVSP spectra derived from them were also different.  
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Figure  4.42:  Comparison of the spectral profile estimates obtained by application of VVSP to each 
UV data set individually.  The profiles for the VVSP components corresponding to benzyl bromide 
and 1-benzyl-1H-indole were translated by +0.1 AU and +0.2 AU respectively. 

4.2.12.3 Application of VAKFISO using VVSP initial spectral profile estimates 

Examination of the data sets using PCA and VVSP indicated that three-components were 

sufficient to model the data.  Once the chemical rank of the data had been established, 

VAKFISO was applied to each UV data set individually using the parameters described in 

Table  3.9.  The measurement noise variance was estimated to be 1.0×10-6 AU2.   

The first observation from these experiments was that VAKFISO did not converge to the 

same final estimates of the pure component spectral profiles when using the different initial 

estimates provided using VVSP.  VAKFISO performed better for the experiments 

BnIndole_B2.00_MR0.67 and BnIndole_B2.00_MR1.00 than it did for experiment 

BnIndole_B2.00_MR1.50.  The final estimates of the pure component spectral profiles 

obtained for experiment BnIndole_B2.00_MR1.50 were all very similar; consequently the 

resulting concentration profiles calculated using the Kalman filter were very noisy.  It was 
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suspected that the reason VAKFISO produced very similar final spectral profiles for this 

experiment was because the reaction was performed using an excess of 1H-indole.  The 

spectrum of 1H-indole was very similar to the spectrum of 1-benzyl-1H-indole and since 

an excess of 1H-indole was charged, it was not fully consumed at the end of the reaction.  

The ‘pure’ spectrum identified using VVSP at the end of the data set was therefore a 

mixture of 1H-indole and 1-benzyl-1H-indole.  For this reason, the three VVSP spectra 

obtained from this experiment were all very similar and VAKFISO did not successfully 

separate them during the optimisation process. 

As with the application of VAKFISO to the simulated data set, VAKFISO modified the 

initial spectral profiles obtained using VVSP to produce a new set of spectral profiles.  The 

new spectral profiles were optimal in the sense that when they are used by the Kalman 

filter as reference measurement functions, they minimised the diagonal elements of the 

resulting state parameter error covariance matrix whilst also satisfying the spectral and 

concentration non-negativity constraints.  Despite invoking non-negativity constraints 

through the use of weighted penalty functions during the NGL/M optimisation step, there 

remained sufficient rotational freedom in the spectral subspace to produce a range of 

feasible solutions.  This rotational freedom prevented the recovery of a single final solution 

that matched the true underlying system and is a problem encountered in most curve 

resolution methods.  When applied to real data, the VAKFISO method was not able to 

converge to a solution that was as close to the true model as that achieved for the 

simulated data.  The reduced accuracy of the recovered spectral profiles from real data is 

believed to be a combination of the inherent heteroscedastic measurement noise and less 

selectivity in the concentration mode.  

The initial results obtained by application of VAKFISO to the each of the data sets are 

shown in Figure  4.43  Visual comparison of the VAKFISO and true spectral profiles in 

Figure  4.43 indicates that 1H-indole (VAKFISO component 2) was the most accurately 

modelled component.  This was not surprising as this component had a small selective 

region in the concentration mode during the first several spectra of each data set.   
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Figure  4.43:  Comparison of the pure component spectral profiles estimated using VAKFISO and the 
true spectral profiles of 1H-indole, benzyl bromide and 1-benzyl-1H-indole.  The profiles for the 
spectra corresponding to benzyl bromide and 1-benzyl-1H-indole were translated by +0.1 AU and 
+0.2 AU respectively.  The estimated spectral profile of benzyl bromide obtained from experiment 
BnIndole_B2.00_MR0.67 is highlighted because it was very similar to the estimated spectral profiles 
of 1H-indole and 1-benzyl-1H-indole.  This resulted in very poor of the concentration profiles.  
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Figure  4.44:  Concatenated concentration profiles calculated using the final spectral estimates 
produced using VAKFISO.  VAKFISO was performed using initial spectral estimates obtained by 
applying VVSP to each data set individually.  The noisy profiles obtained for the third reaction were 
a consequence of VAKFISO producing very similar spectral profiles for all three components. 
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4.2.12.4 Application of VAKFISO using a random transformation matrix  

A set of initial spectral estimates were created using a (3×3) transformation matrix of 

random numbers.  The spectra were normalised to unit length and VAKFISO was then 

applied to each UV data set using the parameters described in Table  3.9.  The initial spectra 

comprised of positive and negative values so the VAKFISO algorithm would be iteratively 

modify the spectra to create non-negative profiles.  Starting with random spectral profiles 

ensured that the initial state parameter error variance and innovation values were large, 

allowing the NGL/M optimisation to converge to smaller values.   

Starting from a set of random spectral profiles did produce better results than starting from 

the VVSP derived spectra.  The use of random spectral profiles overcame the problem of 

VAKFISO allowing the profiles of two components to converge to the same solution in an 

attempt to minimise the innovations and state parameter error variance values. 

The results obtained from this experiment are shown in Figure  4.45.  It was encouraging to 

note that although the VAKFISO algorithm was initiated using a set of random spectra, 

the spectral profile of each component obtained from the three different data sets were 

very similar.  The estimated spectral profiles of 1H-indole were all very similar and show 

the highest correlation to the true spectrum for this component.  This is a promising 

feature of the VAKFISO method as it is was able to produce a very good estimate of the 

spectral profile for 1H-indole starting from a set of random, unrelated spectra as initial 

estimates.  The spectral profiles for the VAKFISO components corresponding to benzyl 

bromide and 1-benzyl-1H-indole possessed a higher degree of rotational ambiguity.  Some 

of the characteristic features of 1-benzyl-1H-indole in the region 280 to 305 nm were also 

present in the estimated spectral profiles of benzyl bromide.  The maxima of the estimated 

profiles for benzyl bromide and 1-benzyl-1H-indole both occured at approximately the 

same wavelength (228 nm), whereas the maxima in the true spectra occured at 

approximately 225 nm and 230 nm respectively.   
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Figure  4.45:  Comparison of the pure component spectral profiles estimated using VAKFISO using 
initial random estimates, and the true spectral profiles of 1H-indole, benzyl bromide and 1-benzyl-
1H-indole.  The profiles for the spectra corresponding to benzyl bromide and 1-benzyl-1H-indole 
were translated by +0.1 AU and +0.2 AU respectively.  The estimated spectral profiles of each 
component were more similar between data sets than those obtained in the previous experiment, 
although rotational ambiguity was still evident. 

The concentration profiles calculated using the final estimates of the spectral profiles are 

shown in Figure  4.46.  An approximation of the underlying features of the data can be 

interpreted from these results although there was still a significant degree of ambiguity.  It 

may be possible to refine these estimates further by applying equality constraints such as 

those used by the MCR-ALS method.  For example, if it was known that only one species 

is present at the start of the reaction, the concentration profiles can be manually corrected 

to meet this requirement.  Similar equality constraints can be applied to the spectral profiles 

but this requires further user knowledge of the system and the expected result.  VAKFISO 

may therefore be used as an alternative method to deconvolute the data and provide a 

means to obtain these initial estimates.  However, the purpose of these experiments was to 

investigate the ability of VAKFISO to recover useful spectral and concentration estimates 

using only non-negativity constraints.  These particular data sets represent a significant 

challenge because of the lack of selectivity in both the spectral and concentration modes 

but are representative of the type of data that is often produced during chemical process 

development. 
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Figure  4.46:  Concatenated concentration profiles calculated using the final spectral estimates 
produced using VAKFISO.  VAKFISO was performed using randomly generated spectra.  Although 
the profiles for each component possessed the expected characteristic features, both rotational and 
intensity ambiguity were evident. 

4.2.13 Application of VAKFISO to real Raman spectra 

VAKFISO was applied to Raman data sets using initial spectral profiles calculated from a 

(3×3) transformation matrix of random numbers and the (1701×3) matrix of eigenvectors 

(V ).  An example of the initial spectral estimates produced using this method is shown in 

Figure  4.47. 
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Figure  4.47:  Initial spectral profiles created using a transformation matrix comprising of random 
numbers.  The negative peaks were retained and the spectra were refined using VAKFISO. 
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VAKFISO was applied to each data set (BnIndole_B2.00_MR0.67, 

BnIndole_B2.00_MR1.00 and BnIndole_B2.00_MR1.50) using a different set of randomly 

generated initial spectral profiles.  Although the starting spectra were different for the three 

experiments, VAKFISO converged to similar final estimates of the pure component 

spectral profiles.  The estimated pure component spectral profiles are shown in Figure 

 4.48.  It was confirmed that the peak with the largest intensity in each was the solvent band 

at approximately 830 cm-1.  This was a positive result as the initial spectra were not initially 

normalised to this peak.   
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Figure  4.48:  Comparison of the pure component spectral profiles estimated using VAKFISO using 
initial random estimates, and the true spectral profiles of 1H-indole, benzyl bromide and 1-benzyl-
1H-indole.  The profiles for the spectra corresponding to benzyl bromide and 1-benzyl-1H-indole 
were translated by +0.2 and +0.4 units respectively.  The estimated spectral profiles of each 
component were all very similar although rotational ambiguity was evident.  The selective peaks for 
each component are indicated by arrows.  Presence of these peaks in the estimated profiles of the 
other components was a result of rotational ambiguity during the spectral optimisation step. 

The estimated spectral profiles were compared with the expected spectra measured 

experimentally.  The selective peaks for each component are indicated by arrows and 

VAKFISO had successfully recovered some of these features.  For example, the distinctive 

peak at 450 cm-1 in the true spectral profile of benzyl-bromide, corresponding to a C-Br 

stretch was clearly visible in the estimated profile for that component, but was absent from 

the estimated spectrum of 1H-indole.  There was also a peak at approximately 210 cm-1 in 

the true spectral profile of 1-benzyl-1H-indole, corresponding to deformation of C-C 

aliphatic chain of the benzyl group.  This peak was present in the estimated spectral 

profiles of 1-benzyl-1H-indole but was absent from the other components.  Other selective 
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peaks were less well resolved.  For example, the band at 1280 cm-1 (the asymmetric C-N-C 

stretch) was selective for 1H-indole but was present in the estimated spectra of both 1H-

indole and benzyl bromide.  This rotational ambiguity can also be observed for several 

other minor peaks and consequently, the spectral profiles of each component were not 

completely recovered.   

The rotational ambiguity in the spectral profiles affected the recovery of their 

corresponding concentration profiles.  The estimated concentration profiles for the three 

experiments are shown in Figure  4.49.  VAKFISO was applied to each data set individually 

so the expected differences in the profiles intensities for the three experiments observed 

using HPLC was not be observed in the spectral profiles.  However, it was possible to see 

that characteristic profiles for the appearance and subsequent consumption of benzyl 

bromide and the formation of 1-benzyl-1H-indole were recovered successfully.  

Unfortunately, the profile of 1H-indole was not accurately predicted.  Although not shown,  

other curve resolution methods such as OPA, VVSP, SIMPLISMA and EFA produce 

similar results, although there was often larger ambiguity between 1H-indole and benzyl 

bromide. 
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Figure  4.49:  Concatenated concentration profiles calculated using the final spectral estimates 
produced using VAKFISO.  VAKFISO was performed using randomly generated spectra.  Although 
the profiles for benzyl bromide and 1-benzyl-1H-indole possessed the expected characteristic 
features, rotational ambiguity prevented the correct recovery of the profile for 1H-indole. 

These experiments suggest that although VAKFISO operates in a very different manner to 

the other curve resolution methods described above, the results produced are often very 

similar.  It was demonstrated that the VAKFISO method can be applied using a random 
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set of initial spectra to produce very similar final results.  The disadvantage of this method 

is the time taken to perform the calculations, which can often take an hour or more 

depending upon the number of variables, the number of components and the number of 

iterations. 

4.2.13.1 Conclusions:  VAKFISO 

The method of VAKFISO was developed to investigate whether the unique features of the 

Kalman filter could be employed for self-modelling curve resolution.  The Kalman filter 

estimates the state parameters (concentration of the pure component contributing to the 

mixture signal) using a recursive estimation-correction approach.  The objective of the 

Kalman filter is to minimise the state estimate covariance matrix, denoted .P   To perform 

Kalman filtering, a matrix of reference measurement functions, denoted S  must be 

provided.  When the Kalman filter is applied to spectroscopic data, the reference 

measurements functions represent the pure component spectral profiles of each chemical 

species contributing the measured signal.  If the reference measurement functions are 

accurate, the Kalman filter will correctly estimate the state parameters.  The quality of the 

state-parameter estimates are described by the state-estimate variance (the diagonal 

elements of P ).  For an ideal system with homoscedastic noise, the matrix of innovations 

values (spectral prediction residuals) will resemble zero-mean white noise.  If the reference 

measurement functions are not accurate, the estimated state parameters will also be in 

error.  This will be characterised by larger state-estimate error variances and innovations 

sequences that have structured features.   

The objective of VAKFISO is to find the best estimates of the pure component spectral 

profiles for an un-modelled system.  The unique aspect of VAKFISO is that it employs the 

Kalman filter to test each set of feasible spectra and the resulting state-estimate variances 

and innovations sequences are used define the quality of the current estimates.  To create 

each set of spectral estimates, a transformation matrix is used to calculate linear 

combinations of the primary eigenvectors spanning the spectral space of the original data.  

Newton-Gauss-Levenberg / Marquardt non-linear optimisation is used to optimise the 

elements of the transformation matrix.  The algorithm was originally developed using 

simplex optimisation but this was found to be too slow and did not seem to converge to a 

final solution (either correct or incorrect). 

The use of a transformation matrix to create estimates of the pure spectral profiles is 

employed in a method called Band Target Entropy Minimisation (BTEM)[46-49, 107].  This 
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method uses simulated annealing to find a combination of several (primary and secondary) 

eigenvectors that produce feasible spectra based upon the minimisation of an objective 

function.  The objective function is constructed from penalty functions such as spectral 

negativity and spectral entropy to ensure that the pure spectral estimates have true features.  

The simulated annealing search routine is re-started several times and each minimum of the 

objective function corresponds to a possible spectrum.  BTEM will produce a set of 

feasible spectra but the user must select the correct subset of spectra to calculate the 

corresponding concentration profiles.  However, any non-negative spectrum that lies 

within the subspace spanned by the primary eigenvectors and has characteristic spectral 

features will correspond to a minimum of the objective function.  The objective of 

VAKFISO was to combine the steps of calculating feasible spectra and testing them using 

the Kalman filter.   

4.2.13.2 Conclusions:  Application of VAKFISO to a simulated UV data set 

The VAKFISO method was implemented as a Matlab function (VAKFISO.m) and tested 

using a simulated data set to determine appropriate parameters.  In this case, initial 

estimates of the pure spectral profiles were provided using VVSP; although any method for 

obtaining initial estimates can be employed.  The maximum number of iterations was 

limited to 250 cycles as preliminary tests indicated that convergence was not achieved.  This 

was because a small change to the elements of the transformation matrix produced a large 

change in the resulting matrix of spectral profiles.  This in turn can produced a significant 

change to the residual sum-of-squares used to calculate the convergence.  Despite the 

failure to achieve the convergence criterion, it was observed visually that VAKFISO 

reached an approximation of the final solution after approximately 75 to 100 iterations.  

The algorithm produced very good estimates of the true spectral profiles although they did 

exhibit some rotational ambiguity.  This was characterised by rotational and scaling 

ambiguity of the corresponding concentration profiles.  Although VAKFISO successfully 

obeyed the non-negativity constraints invoked through the weighted penalty function, there 

was still sufficient freedom of rotation in the spectral subspace to prevent a unique 

resolution.  Other established methods such as MCR-ALS minimise this problem by 

invoking additional constraints such as equality and closure constraints during each iterative 

cycle.  These additional constraints require specific knowledge of the system but are a 

powerful way to guide the resolution of the data to a final solution that meets a specific set 

of criterion.  It would not be possible to directly apply these types of constraints during 

each iterative cycle of VAKFISO as it would conflict with the NGL/M optimisation 
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process.  However, one could perhaps consider running the VAKFISO for many iterative 

cycles until convergence is achieved, applying the equality constraints to the current 

estimate of either the concentration and / or spectral matrix and restarting the VAKFISO 

calculations using the corrected spectral estimates.  This process could be repeated several 

times if necessary and could be readily automated. 

4.2.13.3 Conclusions:  Application of VAKFISO to real data 

The VAKFISO method was applied to UV and Raman data acquired during the N-

benzylation reactions used a model for the simulated data.  Although the use of the 

adaptive Kalman filter made the method quite robust to the heteroscedastic measurement 

noise, the VAKFISO approach did not successfully recover the true spectral and 

concentration profiles.  For the UV data, there was significant rotational ambiguity between 

the estimated profiles of benzyl bromide and 1-benzyl-1H-indole.  However, the approach 

did successfully identify the regions that best characterise the differences between the true 

spectral profiles of each component.  The concentration profiles calculated from the 

estimated spectra did have the recognisable features of the true concentration profiles but 

also exhibited significant scaling and rotational ambiguity.  Similar results were obtained 

from the Raman data and it was concluded that VAKFISO produces very similar results to 

existing curve resolution methods such as VVSP and SIMPLISMA.  However, unlike 

VVSP, OPA and other “pure” spectrum based methods which simply locate the most 

dissimilar spectra, the spectral profiles produced using VAKFISO are calculated as a linear 

combination of the spectral basis vectors.  The combination of spectra that best models the 

data set whilst obeying the non-negativity constraints are considered the best solutions.   

Initially, VAKFISO was developed to use initial spectral estimates provided by another 

curve resolution method such as VVSP.  However, it was found that if the data was highly 

overlapped and lack selectivity in the concentration mode, the initial spectral profiles 

provided by application ofVVSP (and OPA) were very similar.  VAKFISO may then 

converge to a solution where two or more of the estimated spectral profiles were identical.  

Starting from a set of random spectra often produced better results as the algorithm had an 

opportunity to converge to a reasonable solution and then refine it slowly.  

These experiments demonstrated that for particularly challenging data sets, VAKFISO will 

not produce a unique solution but does produce a feasible solution that can be optimised 

further using additional knowledge.  The spectral solutions are feasible in the sense they are 

already a linear combination of the basis eigenvectors, they are non-negative (if required) 
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and produce a set of non-negative concentration profiles for which the error covariance 

matrix has been minimised.  VAKFISO can therefore be used as a means of gaining a 

valuable insight to the underlying structure of an unknown data set, and identification of 

the features that most distinguish the spectral profiles of each component.  Other soft-

modelling methods that allow a large number of constraints to be applied simultaneously 

(such as MCR-ALS) or even a hard-modelling approach could be used to further refine the 

model.   
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5 Conclusions 

5.1 Background and project aims 

In this work, approaches for developing qualitative or quantitative models for the real-time 

monitoring of chemical reactions using process spectroscopy were investigated.  Of 

specific interest was the development of such models when reference values were either 

unavailable or only a minimal number of reference measurements could be acquired.   

Throughout the literature, there are many examples describing the use of quantitative 

multivariate calibration models to correlate the structured variation in a set of spectral 

measurements to some physical or chemical property of interest, such as chemical 

concentration.  The calibration models are then used for the prediction of the same 

chemical property in future batches using only the spectroscopic measurement.  There are 

numerous algorithms available for constructing the calibration models such a multivariate 

linear regression (MLR), principal components regression (PCR), partial least squares or 

projection to latent structure (PLS), ridge regression (RR) and neural networks (NN) to 

name a few.  Most of the reported applications describe situations where a large number of 

samples with good quality reference values were available.  The focus of these publications 

is therefore the application and comparison of various spectral pre-processing and 

calibration methods to increase the robustness and accuracy of model, whilst reducing its 

complexity (the number of factors required).  The objective of pre-processing methods is 

to minimise the amount of spectral variation contributed by sources other than the 

property of interest; whilst maximising the correlation between the corrected spectra and 

property of interest. 

In a manufacturing environment where there is a high throughput of materials, a number 

of calibration strategies are possible.  The first method is to collect samples from a large 

number of batches.  For each sample, the values of all the properties of interest must be 

measured using a reliable reference method and a spectrum of each sample (or the original 

batch) must be acquired.  Often the most difficult aspect of this approach is to ensure that 

the sample is representative of the entire batch or process stream.  An alternative approach 

is to use an experimental design to create a set of synthetic mixtures that span the range of 

property values expected during normal production.  This approach requires that each 

constituent of the mixture is available as an isolated material so it can be added in various 

amounts to create the synthetic mixture samples.  If representative synthetic mixtures can 
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be prepared, the difficulty of sampling from a large batch is removed.  Also, it is often 

unnecessary to perform any reference analysis, as the reference values for the properties of 

interest can be calculated directly from the known composition of the mixtures.  With this 

approach, the most difficult aspect is to acquire spectra of the mixtures under normal 

process conditions (temperature, pressure, pH, flow-rate etc.).  

When the aim of the application is to monitor a chemical reaction, the approaches 

described above are often rendered impractical by a number of complications.  Many 

industrial reactions are heterogeneous owing to the use of insoluble materials such as 

inorganic salts or catalysts on a carbon or silica based support.  The reaction mixtures can 

also have multiple phases such as dissolved gas, liquid-liquid or solid-liquid interfaces.  The 

concentration of the reactants and products is often high (close to super-saturation) to 

reduce the volume of solvent required and can be performed at elevated or sub-ambient 

temperatures and pressures.  All of these factors can make sampling very difficult.  Cooling 

(or heating), precipitation and crystallisation, solvent loss and degassing when taking a 

sample can change its composition so that it is no longer the same composition as the 

mixture observed using an in-situ spectroscopic probe.  The alternate approach of creating 

synthetic mixtures may not be possible because the reaction mechanism may proceed via a 

reactive intermediate species that cannot be isolated.  Reactivity of the reactants may also 

prevent the preparation of synthetic mixtures with known composition.  The time and 

expense required to develop a full calibration may not be justified during the early stage of 

development for a process because the chemistry or process conditions may change 

regularly. 

The difficulties described in the previous paragraph are commonly encountered in a 

chemical R&D department so alternative approaches for constructing qualitative, semi-

quantitative or fully quantitative spectroscopic methods are required.  One of the most 

powerful tools that can be exploited for this purpose is the mathematical approach known 

as self-modelling curve resolution (SMCR).  The objective of this research was to 

investigate methods for pre-processing typical spectroscopic process data and extracting 

the underlying structure using only the minimal amount of reference data.  
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5.2 Combining SMCR and PLS regression 

Curve resolution is the name given to any method that can be applied to deconvolute 

(factorise) a matrix of bilinear data set into two smaller matrices representing the true, 

underlying profiles that characterise the structure in the data.  For spectroscopic data 

acquired during a reaction monitoring experiment, the matrix of data represents the series 

of spectra acquired at different times throughout the course of the reaction.  Curve 

resolution can then be applied to deconvolute the data set into its major dyads.  The first 

matrix (often denoted C ) will contain the concentration profiles for each individual 

component that can be extracted from the data; the second matrix (often denoted S ) will 

contain the corresponding pure spectral profiles for each component in .C   Since the 

concentration profiles are derived directly from the spectral data,  reference values are not 

required to establish a correlation between the structured variation in the reference data 

and the spectral data. 

To assess how curve resolution could be used to develop a quantitative spectroscopic 

reaction monitoring method using only minimal reference data, an approach that combined 

SMCR and PLS regression was explored.  

The reaction used to test this approach was the chlorination of 7-methoxy-4-oxo-3,4-

dihydroquinazolin-6-yl acetate (‘acetoxyone’) using phosphorus oxychloride.  This reaction 

was particularly problematic because it was very difficult to take samples for off-line 

analysis during the course of the reaction.  Taking samples from the reaction mixture was 

precluded by a number of factors:  the reaction mixture started as a heterogenous slurry 

owing to poor solubility of the starting material (acetoxyone); the reaction was performed 

at 70°C and a sample would cool rapidly, leading to precipitation of acetoxyone and 

haloacetoxyone (product).  Furthermore, the reaction proceeds via an intermediate species 

for which no reference material was available so it could not be quantified using offline 

analysis.  The only reference data that could be measured was the initial concentration of 

acetoxyone based upon its solubility limit at normal process conditions; and the final 

concentration of haloacetoxyone at the end of reaction.  The reference data was provided 

using reversed-phase HPLC. 

The objective was to construct a quantitative UV/ATR method that could be transferred 

to a large scale laboratory facility to monitor several 50 L scale batches.  The UV data sets 

obtained from small scale laboratory experiments were initially examined using principal 
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component analysis (PCA), the orthogonal projection approach (OPA) and evolving factor 

analysis (EFA).  The purpose of this initial examination was to determine the spectroscopic 

rank of the data (i.e. how many independent, spectroscopically active components were 

contributing to each mixture spectrum).  The various methods all suggested that there were 

three components contributing to the data set, corresponding to acetoxyone (starting 

material), an intermediate species and haloacetoxyone (product).  The initial concentration 

profiles obtained using EFA and the initial spectral profiles obtained using OPA were 

scaled using the known concentration of each species at the start and end of reaction.  

MCR-ALS was then applied using spectral and concentration equality constraints to refine 

the concentration profiles and the spectral profile of the intermediate species.  MCR-ALS 

was found to be a powerful technique for refining the deconvolution of the spectral data 

set into its pure component profiles through the incorporation of additional information 

and the use of valid constraints to guide the process.   

Once feasible concentration profiles had been derived from the spectral data, the MCR-

ALS model was translated to a PLS regression model.  There were several reasons why it 

was necessary and advantageous to translate the MCR-ALS derived model into a PLS 

model.  The standard process monitoring software that was currently available for the Zeiss 

MCS501 UV/vis diode array spectrophotometer was called ‘ProcessXplorer’ and only 

supported the use of Thermo Scientific GRAMS PLSplus/IQ PLS models.  Since neither 

ProcessXplorer nor GRAMS PLSplus/IQ currently support the use of pure spectral 

profiles to perform least-squares calculations, translation of the MCR-ALS model to a PLS 

model was required.  Another advantage of translating a MCR-ALS model to a PLS model 

is that it facilitates the use of the standard calibration transfer corrections available within 

the GRAMS PLSplus/IQ software.  Using a calibration transfer algorithm is necessary 

when transferring a model created on one instrument to another instrument such as a 

process analyser, as this corrects for shifts of peak position and different instrument 

intensity profiles.  A final consideration for the use of a PLS model is that it should be 

more robust to additional non-structured noise present in the process spectra.  This is 

because PLS is a subspace projection method.  This means that each measured process 

spectrum is projected onto a set of basis vectors that span the spectral subspace containing 

the part of the spectrum that is correlated to the property of interest.  Any additional noise 

components that are not spanned by the basis vectors do not contribute to the prediction.  

A least-squares calculation applied to the process spectrum using the pure spectral profiles 

will attempt to minimise the residual vector by maximising the contribution of the 
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additional noise in the estimation of the concentrations.  It is possible to de-noise the 

spectrum prior to the least-squares calculation using a PCA model calculated using the 

calibration set.  However, PLS combines these steps in one simple model.   

Using the matrix of concentration profiles derived using MCR-ALS as the Y-block, and the 

corresponding matrix of second derivative spectra as the X-block, a series of PLS1 and 

PLS2 models were constructed.  The performance of each model was assessed and 

compared using the RMSECV statistics.  The number of factors required for the pure 

component spectral profiles calculated from PLS regression vectors to match the pure 

spectral profiles derived using MCR-ALS was also examined. 

The RMSECV values returned by the three-factor PLS1 and PLS2 models for the 

prediction of haloacetoxyone (product) were 2.68×10-3 mol.L-1 and 2.78×10-3 mol.L-1 

respectively.  At the reaction end-point, this corresponds to a prediction error of 0.99% 

(PLS1) and 1.02% (PLS2).  Although including additional factors would marginally reduce 

the RMSECV, a three factor model provided a prediction error equivalent, if not better 

than that expected from a HPLC assay method.  A PLS2 model was chosen because it 

returned low prediction errors for all components within a single model.  To quantify the 

differences between the PLS and MCR-ALS pure spectral profiles, the root-mean-square-

error (RMSE) of the spectral residuals were calculated.  The RMSE values for the 

intermediate species began to tend towards a minimum starting at three factors, and only 

showed marginal improvement for four or five factor models.  The RMSE values for 

haloacetoxyone reached a minimum at three factors.  The RMSE values were almost 

identical for PLS1 and PLS2 three-factor models.  This confirmed that both methods were 

reproducing the MCR-ALS pure spectral profiles with the same accuracy.   

The three-factor PLS2 model was then used to monitor five batches in a large scale 

laboratory facility (50 L) over a period of four weeks.  For the first batch, the concentration 

profiles predicted using the PLS model were similar to the profiles observed in the 

laboratory.  The predicted end-point concentration showed excellent agreement with both 

the expected theoretical value and the actual value measured using off-line HPLC analysis 

(0.27 mol.L-1).  The predictions of the product concentrations for the subsequent four 

batches were less accurate.  Although each batch exhibited a similar profile to the first 

batch, the largest prediction error was attained during batch three, for which a final 

concentration of 0.22 mol.L-1 was predicted, whilst the true measured value was 0.271 

mol.L-1 (corresponding to a prediction error of 18.8%).  Despite the prediction errors, the 
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real-time display of the reaction profiles proved to be extremely useful during the 

manufacturing campaign.   

When the spectral data for the five batches were examined post hoc, it was observed that the 

although the spectral profiles were comparable for all five batches, the intensity of the 

original absorbance spectra acquired during batches two to five were lower than those 

acquired during the first batch.  This measurement error was the reason for the prediction 

error described previously. 

Two experimental factors thought to have contributed to the spectroscopic measurement 

error were probe fouling and movement of the fibre-optic cables.  A consequence of probe 

fouling is that an adsorbed solid or film can reduce the effective pathlength of the light 

through the continuous phase, and can also reduce the effective measurement area on the 

ATR crystal.  A reduced pathlength would attenuate the measured absorbance spectra and 

can also cause an increase in the baseline height across the spectrum.  Probe fouling can 

occur during the reaction and can affect the measurement of sample spectra during the 

experiment; or it can result from ineffective cleaning between batches and contaminate the 

new reference (background) spectrum.   

The increased baseline height observed in the spectra could also have been a consequence 

of movement of the fibre-optic cables.  The movement of fibre-optic cables whilst they are 

in use is often unavoidable but is known to cause baseline shifts.  The baseline shifts arise 

from a change in the transmissitivity of the fibre core as the cable is moved and is caused 

by a change in the number of internal reflections and other optical losses.  To investigate 

whether this effect could be minimised when using a double-beam spectrophotometer, a 

custom fibre-optic cable was designed.  The basis of this design was to utilise the second 

detector channel to actively correct for the changes in transmissitivity of the fibre caused 

by movement.  To achieve this, the fibre transmitting the signal for the bypass channel was 

designed to follow a path very similar to the sample signal, without interacting with the 

sample.  

The custom fibre assembly was compared with a standard pair of fibre-optic cables in a 

double beam configuration by measuring the effect of displacing the cable by different 

amounts.  This was achieved by vertically displacing the cables at their centre point to 

introduce increasing amounts of curvature; starting with the cables lying in a straight line 

along the ground to represent zero displacement.  The energy spectra acquired at each 
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stage of displacement were used to compare the two configurations.  The results obtained 

indicated that the custom fibre assembly reduced the effect of fibre movement by 

approximately 25% relative to a standard pair of fibre optic cables.  Two simulated data 

sets, each containing the spectral variability expected from the standard and custom fibre-

optic cable configurations were created.  The results suggested that using a by-pass channel 

to actively compensate for movement of fibres will reduce baseline artefacts in the 

unprocessed data.  Reducing the baseline artefacts will consequently reduce the prediction 

error in concentration profiles estimated using least-squares calculations.  The RMSD 

values for the estimated concentration profiles improved (decreased) by approximately 

69% using the custom fibre assembly.  Even if spectral pre-processing is used to eliminate 

baseline variation, the RMSD values suggest that an improvement of approximately 31% 

can still be achieved using the custom fibre assembly.  Although the spectral measurements 

can still be affected by probe fouling, the amount of additional variation introduced 

through fibre movement can be minimised using the custom fibre assembly. 

5.3 Kalman filtering for SMCR 

In the previous section, an application demonstrating the use of various SMCR methods to 

extract concentration profiles directly from the spectral data was presented.  These 

concentration profiles were then used to construct a PLS regression model for the real-

time prediction of future batches.  This approach was necessary because of the problems 

experienced when trying to sample the reaction mixture to obtain reference measurements 

using an offline method.  In this particular case, it was possible to extract the pure 

component concentration and spectral profiles because each component was relatively well 

resolved in time mode owing to the semi-batch nature of the reaction.  In many cases, the 

pure spectral profiles of each component are highly overlapped and the corresponding 

concentration profiles are correlated to each other as reactant is transformed to product.  A 

number of hard-modelling methods devised to overcome this issue have been reported in 

the literature. 

Although hard-modelling methods can be extremely powerful and have enjoyed a lot of 

success, they do rely on the user to decide upon a feasible reaction mechanism to use as the 

basis of the optimisation.  The use of these methods can also be hindered in those 

situations where the data obtained from process monitoring experiments that are non-ideal.  

The main limitation of these methods is that the optimisation process seeks to find a rate 

constant, .k   The rate constant is applied to the data using the rate equations for the 
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proposed mechanism to create a set of estimated concentration profiles; in turn these 

profiles are used to calculate the pure spectral profiles using least-squares.  If the correct 

reaction mechanism has been chosen, the optimal solution of k  will minimise the sum-of-

squares of the residual matrix.   However rate constants are temperature dependent and 

typical industrial reactions are rarely operated using isothermal conditions.  This is because 

temperature ramps are often necessary to aid the dissolution of reactants or to achieve the 

desired reaction temperature following charge of solvents, catalysts, reactants etc.  The 

consequence of using a temperature ramp is that the initial concentration of reactant 

(denoted 0[ ]A or 0[ ]B ) will be unknown and will change with temperature.  To include this 

behaviour in the rate equations will require additional information (such as temperature-

solubility curves) and will increase the complexity of the model significantly.  For this 

reason, soft-modelling curve resolution methods are still required to obtain an initial 

estimate of a model that describes the data set under investigation. 

In the hard-modelling approach described above, the matrix of concentration profiles is 

continuously refined by solving the rate equations until the sum-of-squares of the residual 

matrix is minimised.  During each iterative cycle, the pure component spectral profiles are 

calculated using least-squares to complete the model and calculate the residual sum-of-

squares.  An alternate approach employed by many soft modelling SMCR methods is to 

identify the purest spectra in a data set and then calculate the concentration profiles using 

least-squares.  Alternating least squares is often applied to refine these estimates whilst 

incorporating constraints such as non-negativity, closure and equality constraints.  The 

success of this approach requires each species to have a selective window of existence 

where it is the major contribution to the mixture spectrum.  In many reaction systems, pure 

spectral profiles for one or more of the reactants can be retrieved, along with the spectrum 

of the product(s), providing the reaction has reached completion and the reactants have 

been fully consumed.  It is more difficult to extract the pure spectral profiles of additional 

reagents or intermediates that are added or formed during the course of the reaction.  If the 

reaction does not proceed to full conversion, the pure spectral profile of the product(s) 

cannot be extracted because the mixture spectra will contain significant contributions from 

other components. 

In an attempt to address this problem, alternative approaches for modelling this type of 

data using the Kalman filter were considered.  The N-benzylation of 1H-indole was 

selected as a model reaction to represent a typical process encountered in industry.  This 
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reaction was characterised by the relatively high concentrations of reactants and products, 

the use of an insoluble base to yield a heterogeneous reaction mixture, and a relatively slow 

reaction time of six to eight hours.  The rapid introduction of a final reactant to initiate 

reaction is a typical approach for investigating the effect of different reagent ratios upon 

the reaction rate as it produces a defined start point ( 0t ).  The reference UV spectra of 1H-

indole, benzyl bromide and 1-benzyl-1H-indole were acquired and used to create a 

synthetic data set that featured the true reaction profiles.  This data set was used for 

algorithm development and testing.  The reference spectra of the two reactants and 

product were heavily overlapped and had very few selective regions (pure variables).   

A relatively new SMCR method called Vertex Vector Sequential Projection[95, 96] was 

implemented as a Matlab function (VVSP.m) and then applied to simulated data.  This 

method locates the mixture spectra that most closely resemble pure spectral profiles (vertex 

vectors).  Although the calculations used to locate each pure spectrum are quite different to 

those used by OPA, both methods were found to produce almost identical results for the 

UV data.  VVSP was also used as a method for providing initial estimates of the pure 

spectral profiles that could be refined using VAKFISO.  

A novel SMCR method called the Vectorised Adaptive Kalman Filter with Iterative 

Spectral Optimisation (VAKFISO) was developed as an alternative approach for estimating 

the pure spectral profiles from a bilinear data set.  The objective of VAKFISO is to find 

the best estimates of the pure component spectral profiles for an un-modelled system.  The 

unique aspect of VAKFISO is that it employs the Kalman filter to test each set of feasible 

spectra and the resulting state-estimate variances and innovations sequences are used to 

define the quality of the current estimates.  Each set of spectral estimates is created using a 

transformation matrix to calculate linear combinations of the primary eigenvectors 

spanning the spectral space of the original data.  Newton-Gauss-Levenberg / Marquardt 

non-linear optimisation is used to optimise the elements of the transformation matrix.  

VAKFISO shares some similarities with another spectral search method called Band Target 

Entropy Minimisation (BTEM)[47, 48, 107].  BTEM will produce a set of feasible spectra, but 

the user must then select a subset of spectra to calculate the corresponding concentration 

profiles.  The objective of VAKFISO was to combine the steps of calculating feasible 

spectra and testing them using a vectorised adaptive Kalman filter.   

The VAKFISO method was tested using a simulated UV data set to determine appropriate 

weighting parameters.  The algorithm produced very good estimates of the true spectral 
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profiles although they did exhibit some rotational ambiguity.  This then produced 

rotational and scaling ambiguity in the corresponding concentration profiles.  The most 

challenging component to recover was ‘component B’ because it its spectrum was 

completely overlapped with the other components.  However, the estimated spectral 

profile for component B produced using VAKFISO was much closer to the true spectrum 

than that produced by other methods such as VVSP/MCR-ALS, OPA/MCR-ALS, ITTFA 

or SIMPLISMA.  This result demonstrated that the VAKFISO was a viable alternative to 

existing SMCR methods.  

The VAKFISO method was also applied to UV and Raman data acquired during the N-

benzylation reactions.  This data resembled true process data and was particularly 

challenging.  Unfortunately the VAKFISO approach did not successfully recover the true 

spectral and concentration profiles.  For the UV data, there was significant rotational 

ambiguity between the estimated profiles of benzyl-bromide and 1-benzyl-1H-indole. 

Similar results were obtained from the Raman data and it was concluded that VAKFISO 

produces very similar results to existing curve resolution methods.  However, unlike VVSP, 

OPA, SIMPLISMA and other “pure” spectrum based methods that simply locate the most 

dissimilar spectra or variables, the spectral profiles produced using VAKFISO are 

calculated as a linear combination of the spectral basis vectors.  The combination of spectra 

that best models the data set whilst obeying the non-negativity constraints are considered 

the best solutions.  It is also possible to start VAKFISO from a set of random spectra and 

this often produced better results as the algorithm had an opportunity to converge to a 

reasonable solution and then refine it slowly.  

These experiments demonstrated that for particularly challenging data sets, VAKFISO will 

not produce a unique solution but does produce a feasible solution that could be optimised 

further using additional knowledge.  The spectral solutions are feasible in the sense they are 

already a linear combination of the basis eigenvectors, they are non-negative (if required) 

and produce a set of non-negative concentration profiles for which the error covariance 

matrix has been minimised.  VAKFISO can therefore be used as a means of gaining a 

valuable insight to the underlying structure of an unknown data set, and identification of 

the features that most distinguish the spectral profiles of each component.  Other methods 

that allow a large number of constraints to be applied simultaneously (such as MCR-ALS) 

or even a hard-modelling approach could be used to further refine the model.   
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To pre-process the UV spectra acquired during these experiments, median filtering was 

found to be very useful.  A median filter was implemented as a Matlab function 

(MedianFilter.m) to remove unwanted ‘spikes’ from UV spectra acquired using a 

Cary 50 UV spectrophotometer.  Using a median filter with a window width of three points 

successfully removed these artefacts without changing any of the useful spectral features.  

The median filter was also applied to Raman spectra acquired during the same experiments.  

The Raman spectra featured a broad baseline feature that would contribute additional, 

unwanted variation.  The median filter was applied to a Raman spectrum (3400 variables) 

using window widths of 101, 201, 301, 401 and 501 points.  A window width of 501 points 

was found to offer the best approximation of the underlying baseline, but after subtraction 

of the baseline the corrected spectrum had several negative regions where the baseline was 

overestimated.  However to obtain a first approximation of the underlying baseline, the 

median filter proved to be a useful approach. 

A custom algorithm called iterative polynomial baseline subtraction (IPBS.m) was written 

to obtain a more accurate estimation of the underlying baseline contribution to the Raman 

spectra.  This method uses a median filter to obtain an initial estimate of the baseline.  A 

fixed size moving window then moves through the data and a polynomial of degree n  is 

fitted to the data.  The polynomial coefficients for each window are then iteratively 

optimised to prevent the subtraction of any high frequency Raman features.  The iterative 

polynomial fitting is based upon the method reported by Lieber and Mahadevan-Jansen[97].  

The method described in this thesis was extended to allow a full Raman spectrum to be 

corrected by splitting the spectrum into a number of windows defined by the window 

width.  An additional feature of the modified iterative polynomial baseline subtraction 

method is that it allows the windows to overlap using an overlap parameter (typically 10 to 

20% of the window width).  The discontinuities observed if the polynomial fitting was 

applied to each window independently were removed by incorporating an overlap between 

windows. 

Although computationally intensive (30 to 60 seconds per spectrum), the results were very 

good and the complex baseline contribution of each spectrum was accurately modelled.  

The best parameters for correcting this particular set of Raman spectra were a median filter 

width of 501 points; a third degree polynomial ( n=3); an overlap factor of 0.20 and a 

window width of 157 points.  The baseline corrected spectra have a completely flat 

baseline, do not feature any negative regions yet retain all of the useful Raman features.  
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This was a significant improvement over the Pearson[105] correction function available in 

the instruments HoloReact software. 

5.4 Overall conclusions 

The goal of this research was to investigate the use and development of chemometric 

methods that could be applied to facilitate the recovery and prediction of component 

concentrations using real process spectra.  An important component of this research was 

the investigation and development of self modelling curve resolution methods that would 

allow quantitative or semi-quantitative models to be developed in the absence of external 

reference data.   

A reaction that exhibited many of the difficulties encountered when trying to model an 

industrial process was the chlorination of acetoxyone using phoshorus oxychloride.  This 

reaction was used to investigate an approach that combined SMCR with PLS regression.  

In the absence of reliable reference data,  SMCR methods such as EFA and OPA were 

used to extract the underlying concentration profiles of the major components of interest.  

The concentration profiles were then used to construct a PLS model that could be 

implemented in real-time to predict future batches.  The pure component spectra 

calculated from the PLS regression coefficients were compared with the SMCR spectra to 

ensure that the correct number of principle components were used.  This work was 

published in Applied Spectroscopy (2007, volume 61, number 9, pp 940-949). 

Improving the robustness of the spectral measurements is also an important element for 

the reliable application of process spectroscopy.   During the application of the UV/ATR 

PLS method used to determine the end-point of the chlorination reaction in a large scale 

laboratory facililty (chlorination of acetoxyone using phosphorus oxychloride), the fibre-

optic cables were subjected to significant movement during the process.  To investigate 

how fibre-movement affected spectral measurements, a series of experiments were 

performed.  A custom fibre-optic cable assembly that used the spectrophotometers by-pass 

channel to compensate for fibre movement was designed and compared with standard 

fibre-optic cables.  The experiments demonstrated that although the custom fibre-optic 

assembly did not completely eliminate the effects of fibre movement, it did offer a 

significant improvement relative to standard fibres. 
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Process spectra often contain contributions from additional physical or chemical factors 

caused by the process or the measurement technique itself.  The additional contributions 

can hinder the recovery of the desired chemical information and need to be removed prior 

as part of the data analysis step.  Both the UV and Raman spectra acquired during the N-

benzylation of 1H-indole reactions contained additional spectral contributions that 

required specific methods to be implemented.  A moving window median filter was 

implemented as a Matlab script remove the high intensity spikes present in the UV data.  

The moving window median filter could also be used to remove subtle baseline 

contributions that are often present in FTIR and Raman spectra.  However the median 

filter was not sufficient to remove significant, complex baselines such as those observed in 

the Raman spectra acquired during the N-benzylation of 1H-indole reactions described in 

chapters 3.3 and 4.2.  The original iterative polynomial baseline subtraction method (IPBS) 

was implemented as Matlab script and trialled, but this was also unsuccessful when applied 

to a full Raman spectrum.  The original IPBS method was modified to utilise a moving 

window median filter to provide an initial estimate of the underlying baseline.  The 

modified IPBS method also applies the iterative polynomial fitting to a number of windows 

across the spectrum, using a certain degree of overlap between the windows to ensure that 

the baseline function is continuous.  This modified IPBS algorithm was successfully applied 

to the Raman data described above and removed the complex baseline function without 

perturbing the spectral information of interest.  The modified IPBS algorithm also offered 

significant improvement compared to the Pearson correction function available in the 

Raman spectrometers control and acquisition software.  

The use of adaptive Kalman filter for SMCR was investigated.  The linear and adaptive 

Kalman filters were implemented as vectorised algorithms in Matlab.  The vectorisation 

offered significant computational efficiency that allowed the Kalman filter to be applied to 

large data sets.  A novel SMCR method called vectorised adaptive Kalman filtering with 

iterative spectral optimisation (VAKFISO) was developed.   This method was applied to 

both simulated and real data obtained from UV and Raman spectroscopy acquired during 

the N-benzylation of indole reactions.  This reaction data was specifically used because it 

was particularly challenging.  The spectral profiles of each major component were highly 

overlapped and the reaction profiles were also linearly dependent.  When applied to the 

simulated UV reaction data, VAKFISO successfully recovered the spectral profiles with 

very little rotational ambiguity.  Indeed, VAKFISO seemed to offer an advantage over 

other established SMCR methods such as OPA-ALS, VVSP-ALS and EFA-MCR-ALS.  
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When applied to real reaction spectra, VAKFISO was less successful, although other 

established SMCR methods also failed to resolve the same data sets.  For these particular 

data sets, VAKFISO performed better when initiated using random spectra than it did 

when initiated using spectral profiles derived by application of VVSP.  VAKFISO 

therefore shows promise as an alternative SMCR method and there are several potential 

areas for further development. 

5.5 Further work 

The reactions investigated during this research were performed in jacketed glass reaction 

vessels that provided excellent temperature control, although some small variation in the 

reaction temperature was still observed.  Larger reaction vessels such as those used on 

pilot- or full-scale manufacturing plants would exhibit larger temperature variations as the 

temperature controllers and heating components respond much slower than laboratory 

scale reaction vessels.   

Temperature variation can introduce small, non-linear perturbations into the measured 

spectra such as small peak shifts, and can also cause subtle changes to the peak intensity. 

When employing a typical calibration strategy, it is possible to incorporate temperature 

variation by recording the spectra of synthetic mixtures at a number of different 

temperatures, or by running the reaction at several different temperatures.  The 

temperature can then be implicitly or explicitly modelled by the calibration model.  A more 

robust approach would be to correct the spectra to remove the temperature dependent 

contributions prior to construction or application of a calibration model.  Several methods 

that model and remove the effects of temperature from a spectrum have been reported.  

Amongst the most promising are Loading Space Standardisation (LSS)[108], Optical 

Pathlength Error Correction (OPLEC)[109] and Extended Loading Space Standardisation 

(ELSS)[110].  In the work reported in this thesis, the concentration profiles were not 

obtained by off-line analysis of reaction samples, but were derived directly from the 

spectral data by application of self-modelling curve resolution methods.  To apply this 

approach to a calibration that is also required to span a range of temperatures, it would be 

necessary to acquire several data sets by performing the reaction at different temperatures.  

As each data set would be acquired at a different temperature, it would not be appropriate 

to concatenate the data sets prior to the application of SMCR methods because the pure 

spectral profiles in each data set would be slightly different owing to the temperature 

variation.  However, by correcting the spectra of each data set to remove the effects of 
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temperature, they can be concatenated whilst retaining the true chemical rank.  The 

advantages of performing SMCR to multiple data sets (to overcome scaling ambiguity) can 

then be exploited.  The feasibility of utilising LSS for this purpose was investigated by the 

author and shows great promise.   

During the N-benzylation of 1H-indole reactions, both UV/ATR and Raman spectroscopy 

were used to acquire spectra simultaneously.  VVSP and VAKFISO were applied to each 

set of data individually, or to multiple data sets concatenated vertically.  It was 

demonstrated that if the true pure spectral profiles of each chemical species contributing to 

the system were known, and an accurate estimation of the measurement noise variance was 

also provided, the Kalman filter could accurately estimate the underlying concentration 

profiles, even if the data is rank deficient (e.g. a linearly dependent reaction).  An area of 

research that could further be exploited to obtain such models is the analysis of two 

different spectral data sets acquired simultaneously, for example FTIR and UV.  One 

method that could be employed to analyse the structure of two data sets is O2-PLS[111, 112].  

This method could be employed to filter each data set to remove the specific structured 

variation inherent to each type of spectroscopy (for example, fluorescence in Raman 

spectroscopy), whilst retaining the underlying chemical variation common to both data sets 

(the desired profiles).  The regression spectra obtained from O2-PLS could also be used to 

calculate initial pure component spectral profiles for use by VAKFISO or other SMCR 

methods to refine the model of each data set individually.  Other two-block methods such 

as Canonical Correlation Analysis[113] and Common Components Specific Weights 

Analysis[114-118] were also investigated by the author and show considerable promise.  

However, directly integrating estimates obtained from the multi-block methods described 

above with SMCR methods such as VAKFISO or MCR-ALS was not investigated and 

could offer great potential for reaction modelling.  

There are also opportunities for further development of the VAKFISO algorithm.  With 

particularly challenging data sets, the VAKFISO method would occasionally converge to a 

solution that produced almost identical pure spectral profiles for two of the components.  

This did not occur when the algorithm was initiated using random spectra, but there may 

be situations when it would be desirable to utilise initial estimates of the pure spectral 

profiles obtained by measurement of standards or by application of other SMCR methods.  

To prevent convergence to identical spectra, a spectral dissimilarity criterion could be 

included as a penalty function when calculating the weighted residual matrix. 
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Appendix II 

ResidualComps.m 

function [RegenData]=ResidualComps(Data, maxcomps, fig_num, Xaxis, Xlabel, Ylabel) 
% [RegenData] = ResidualComps(Data, maxcomps, fig_num, Xaxis, Xlabel, Ylabel) 
% 
% The function of this simple script is to perform PCA (specifically SVD) 
% on a data set. Using the singular values and eigenvectors calculated,  
% the data is re-constructed using an increasing number of components, up 
% to a maximum number of principal components specified by the user.  
% The main benefit of this function is that it will display the  
% re-constructed data alongside the corresponding residual data calculated 
% using a different number of principal components. This allows the 
% contribution of each new principal component to be assessed visually.  
% For each principal component, the residual sum-of-squares are 
% calculated and plotted versus principal component number to provide  
% a numerical indication of the information contributed by each  
% additional component. The user can then specify the number of  
% principal components to use in re-constructing the data and this reduced 
% data is written to the MATLAB workspace. This is useful way to filter 
% or clean up data prior to further analysis. 
% The resulting figures are automatically saved as '.fig' and '.emf'  
% files using the filename prefix provided by the user. 
%  
% INPUT ARGUMENTS 
% [Data] is a 2-dimensional array of data. The dimensions of this data 
% matrix are (I × J) where I is the number of observations (samples or  
% time points) and J is the number of experimental variables (e.g. wavelengths). 
% 
% [maxcomps] is the maximum number of Principal Components to be used. 
% 
% [fig_num] is the figure filename prefix to store the resulting figures. 
% For example, if the user enters 'figure6', the resulting figure will  
% be saved as 'figure6.fig' and 'figure6.emf'. 
%  
% [Xaxis] is the vector containing the x-axis scale. 
% 
% [Xlabel] is a string variable to used as the x-axis label on the plots  
% generated by the script, e.g. 'wavelength (nm)'. 
% 
% [Ylabel] is a string variable to used as the y-axis label on the plots  
% generated by the script, e.g. 'Absorbance'. 
% 
% OUTPUT ARUGUMENTS 
% [RegenData] is the reduced data set re-constructed using the number of 
% principal components specified by the user during the execution of the 
% function. 
% 
% Note, if the user selects maxcomps greater than 2, the plots will be 
% split over a number of figures with the suffix a,b,c etc added to the 
% filename. 
% 
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% Nicholas I. Pedge 
% Department of Chemistry, University of Hull, Cottingham Road, Hull, 
% HU6 7RX  
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough,  
% Leicestershire, LE11 5RH 
% 
% [RegenData] = ResidualComps(Data, maxcomps, fig_num, X_axis, X_label, Y_label); 
% 
% CHECK INPUT ARGUMENTS 
  
if nargin<6 || isempty(Ylabel) 

fprintf( '\n' ) 
fprintf( 'Ylabel was not specified! \n' ) 
fprintf( 'The default label ''Value'' will be used. \n' )  
Ylabel= 'Value' ; 

end 
% 
if ischar(Ylabel)==0 

error( 'Please enter [Ylabel] as a string variable!' ) 
end 
% 
if nargin<5 || isempty(Xlabel) 

fprintf( '\n' ) 
fprintf( 'Xlabel was not specified! \n' ) 
fprintf( 'The default label ''Variable'' will be used. \n' ) 
Xlabel= 'Variable' ; 

end 
% 
if ischar(Xlabel)==0 

fprintf( '\n' ) 
error( 'Please enter [Xlabel] as a string variable!' ) 

end  
% 
if ischar(Xaxis)==1 

fprintf( '\n' ) 
error( 'Please enter [Xaxis] as a column vector!' ) 

end 
% 
if nargin<4 || isempty(Xaxis) 

Xaxis=(1:size(Data,2))'; 
end 
% 
if size(Xaxis,1) ~= size(Data,2) 

error( 'The dimensions of Xaxis do not match the data set' ) 
end 
% 
if nargin <3 || isempty(fig_num) 

fprintf( '\n' ) 
fprintf( 'Figure output name not specified! \n' ) 
fprintf( 'Using the default name ''ResidualComps_Figure''. \n' ); 
fig_num= 'ResidualComps_Figure' ; 

end 
% 
if ischar(fig_num)==0 

fprintf( '\n' ) 
fprintf( 'Please enter [fig_num] as a string variable! \n' ) 
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fprintf( 'For example ''Figure01''. \n' ) 
fprintf( 'Using the default name ''ResidualComps_Figure''. \n' ); 
fig_num= 'ResidualComps_Figure' ; 

end  
% 
if nargin < 2 || isempty(maxcomps) 

error( 'maxcomps variable was not provided!' ) 
end 
% 
nsubplots=2; % Variable specifying the number of PCs per figure 
% 
% Calculate the number of figures required 
if maxcomps < nsubplots 

nfigs=1; % Only need 1 figure 
else 

% Number of full figures required 
nfigs=floor(maxcomps/nsubplots);  
% Total number of figures required  
nfigstotal=ceil(maxcomps/nsubplots); 
% Number of subplots in final figure 
nplotsfinal=maxcomps-(nfigs*nsubplots);  

end 
% 
SSQ=zeros(maxcomps,1); 
% 
disp([ 'This routine will generate ' ,num2str(nfigstotal+1), ' figures' ]) 
% char(97)= a 
% char(98)= b 
% char(99)= c etc 
% 
% Perform Singular Value Decomposition on the data 
% 
[U,S,V]=svd(Data); 
%  
% Perform Data regeneration and calculate the residuals 
figurecounter=1; 
charactercounter=0; 
% 
for n=1:nfigs 

% create figures with nsubplots Principal Components per plot,  
% and create final figure with nplotsfinal subplots 
% 
figure() % Open new figure 
j=0; 
% 
for i=(n*nsubplots)-nsubplots+1:1:(n*nsubplots) 

RegenData=U(:,1:i)*S(1:i,1:i)*V(:,1:i)'; 
ResidData=Data-RegenData; 
SSQ(i)=trace(ResidData'*ResidData); 
j=j+1;  
subplot(nsubplots,2,j) 
plot(Xaxis,RegenData); 
text1=( ' PC: Regenerated Data' ); 
figuretitle=num2str(i); 
figuretitle=[figuretitle, text1]; 
title(figuretitle); 
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xlabel(Xlabel) 
ylabel(Ylabel) 
axis tight 
% 
j=j+1; 
% 
subplot(nsubplots,2,j) 
plot(Xaxis, ResidData); 
text1=( ' PC: Residual Data' ); 
figuretitle=num2str(i); 
figuretitle=[figuretitle, text1]; 
title(figuretitle); 
xlabel(Xlabel) 
ylabel(Ylabel) 
axis tight 

end 
% Save the figures 
fprintf( '*** Saving figure %i *** \n' , figurecounter) 
saveas(gcf,[fig_num, char(97+charactercounter)], 'fig' ) 
saveas(gcf,[fig_num, char(97+charactercounter)], 'emf' ) 
% 
charactercounter = charactercounter +1; 
figurecounter=figurecounter+1; 

end 
% Now create last plot (if needed). 
% 
if nplotsfinal>0 

figure() 
n=n+1; 
j=0; 
for i=(n*nsubplots)-nsubplots+1:1:((n-1)*nsubplots)+nplotsfinal 

j=j+1; 
RegenData=U(:,1:i)*S(1:i,1:i)*V(:,1:i)'; 
ResidData=Data-RegenData; 
% 
subplot(nplotsfinal,2,j) 
plot(Xaxis,RegenData); 
text1=( ' PC: Regenerated Data' ); 
figuretitle=num2str(i); 
figuretitle=[figuretitle, text1]; 
title(figuretitle); 
xlabel(Xlabel) 
ylabel(Ylabel) 
axis tight 
% 
j=j+1; 
subplot(nplotsfinal,2,j) 
plot(Xaxis, ResidData); 
text1=( ' PC: Residual Data' ); 
figuretitle=num2str(i); 
figuretitle=[figuretitle, text1]; 
title(figuretitle); 
xlabel(Xlabel) 
ylabel(Ylabel) 
axis tight 

end 
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% 
% Save the figures 
fprintf( '*** Saving figure %i *** \n' , figurecounter) 
saveas(gcf,[fig_num, char(97+charactercounter)], 'fig' ) 
saveas(gcf,[fig_num, char(97+charactercounter)], 'emf' ) 
figurecounter=figurecounter+1; 
charactercounter = charactercounter +1; 

end 
% 
figure() 
subplot(2,1,1) 
plot((1:1:maxcomps), SSQ, 'b+-' ) 
hold on 
plot((1:1:maxcomps), SSQ, 'bO' ) 
xlabel( 'Principal Component' ) 
ylabel( 'Sum of squares' ) 
title( 'Residual sum of squares vs. Number of Principal Component ' ) 
subplot(2,1,2) 
plot((1:1:maxcomps), log10(SSQ), 'b+-' ) 
hold on 
plot((1:1:maxcomps), log10(SSQ), 'bO' ) 
xlabel( 'Principal Component' ) 
ylabel( 'log_1_0(Sum of squares)' ) 
title( 'Residual sum of squares vs. Number of Principal Component ' ) 
% 
fprintf( '*** Saving figure %i *** \n' , figurecounter) 
saveas(gcf,[fig_num, char(97+charactercounter)], 'fig' ) 
saveas(gcf,[fig_num, char(97+charactercounter)], 'emf' ) 
% 
% Ask user to select the number of components to retain when regenerating 
% the data. 
ncomp=input( 'Enter the number of components you wish to retain: ' ); 
RegenData=U(:,1:ncomp)*S(1:ncomp,1:ncomp)*V(:,1:ncomp)'; 
% 
if nargout < 1|| isempty(RegenData) 

varname= 'RegenData' ; 
assignin( 'base' ,varname,RegenData) 

end 
end  % END OF FUNCTION
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OPA.m 

function [PureSpec, Dissim, DW, SI]=OPA(Data, N, plotting) 
% function [PureSpec,Dissim, DW, SI]=OPA(Data,N,plotting) 
% 
% This function will perform Orthogonal Projection Analysis using the OPA 
% algorthm described in Analytica Chimica Acta 519 (2004) 11-21, 
% S.Gourvenec, X. Capron and D.L. Massart, and also Chemometrics and 
% Intelligent Laboratory Systems, 61 (2002) 51-61, S. Gourvenec, D.L 
% Massart and D.N Rutledge. This function also calculates the 
% Durbin-Watson values to aid identification of the correct number of 
% components to model the data. The function will not perform ALS to 
% calculate the corresponding concentration profiles or optimise the 
% spectral profiles, but will simply output the selected number of OPA 
% spectra, the normalised dissimilarity profiles and the Durbin-Watson 
% values. 
% 
% INPUT ARGUMENTS 
% [Data] is a 2-dimensional array of evolutionary experimental data such 
% as spectra acquired during a reaction monitoring experiment, HPLC-DAD 
% or any other bilinear experimental data matrix. The dimensions of this 
% data matrix are (I x J) where I is the number of observations (samples 
% or time points) and J is the number of experimental variables 
% (wavelengths, response variables). The data matrix should therefore be 
% row orientated so that the OPA can be performed along the 'time' 
% dimension. 
% 
% [N]is the number of OPA components to calculate. This number should 
% be equal to or greater than the number of experimentally visible  
% components that are contributing to the instrument response. 
% 
% [Plotting] allows the user to specifiy whether plotting is 'off' 
% {plotting = 0} or 'on' {plotting =1} 
%  
% OUTPUT ARGUMENTS 
% 
% [PureSpec] is the matrix of pure component spectra located by 
% OPA. The number of columns is equal to N, the number of individual 
% chemical components whilst the number of rows is equal to J, the number 
% of spectral variables. 
% 
% [Dissim] is a matrix containing the calculated Dissimilarity values for 
% each OPA spectrum as it compared with the previously located reference 
% spectra. As explained in the literature, the dissimilarity value is 
% defined as the determinant of the dispersion matrix (YiYi'). This will 
% be a matrix with N columns (one column for each OPA component) and I 
% rows (one row for each observation or spectrum in the data matrix).  
% 
% [DW] is a column vector containing the Durbin-Watson values 
% calculated for each new OPA component. 
% 
% [SI] is an (N x 2) matrix. The first column stores the index (spectrum) 
% numbers of the OPA pure component spectra and the second column stores  
% the corresponding dissimilarity values. 
% 
% Nicholas I. Pedge 
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% Department of Chemistry, University of Hull, Cottingham Road, Hull, 
% HU6 7RX  
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough,  
% Leicestershire, LE11 5RH 
% 
% [PureSpec,Dissim,DW, SI]=OPA(Data,N,plotting); 
% BASIC INPUT VARIABLES CHECK 
% 
% Set plotting to 'on' if user does not specify  
if nargin < 3, plotting = 1; end  
%  
% Prompt user for N if the number of OPA components is not specified  
if nargin <2 ||isempty(N) 

N = input( 'Please enter the number of components' ); 
end 
% 
% Determine the dimensions of the original data matrix [Data] 
[I, J]=size(Data); 
% 
if I ==1 || J == 1 

fprintf( 'Error! OPA cannot be performed on a vector input. \n' ) 
fprintf( 'Please provide a matrix as input variable [Data] \n' ) 
return 

end 
%  
% PRE-ALLOCATE STORAGE VECTORS AND MATRICES 
% 
% Prepare an output matrix for dissimilarity values [Dissim] 
Dissim=zeros(I, N); 
% 
% Prepare a column vector to store the Durbin-Watson values. 
DW=zeros(N,1); 
DW(1)=0; 
% 
% Prepare a matrix to store the index of each OPA component and their 
% corresponding dissimilarity values. 
SI=zeros(N,2); 
% 
% Calculation of initial mean spectrum xs 
xs = mean(Data); 
% 
% Normalise initial mean spectrum xs to unit length 
PureSpec=xs./norm(xs,2); 
% 
% ORTHOGONAL PROJECTION ANALYSIS: MAIN LOOP 
% 
% Outer loop counts the number of OPA components calculated, max = N  
% 
tic % Start timer 
h = waitbar(0, 'Please wait...Calculating OPA Components' ); 
% 
for n=1:N 

waitbar(n/N, h); 
% 
% Inner loop counts the observation (spectrum) number, max = nmeas 
for i=1:I 
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Yi=[PureSpec; Data(i,:)]';  
Dissim(i,n)=det(Yi'*Yi); 

end 
%  
% Identify the most dissimilar spectrum and store its index and 
% dissimilarity value 
[xs_max, xs_index]=max(Dissim(:,n)); 
SI(n,1)=xs_index; 
SI(n,2)=xs_max; 
% 
% Select spectrum with largest dissim and normalise to length = 1 
xs=Data(xs_index,:); 
xs_norm=xs./norm(xs,2); 
% 
% Assign / concatenate spectrum to PureSpec matrix 
if n==1 

PureSpec(n,:)=xs_norm; % Replace mean spectrum if n = 1 
else 

PureSpec=[PureSpec;xs_norm]; % concatenate spectrum if n > 1 
end 
% 
% Calculation of Durbin-Watson value for the dissimilarity 
% vector of component n, Dissim(:,n).  
dw_diff(1:I,1)=0; 
% 
for i=2:I 

dw_diff(i)=Dissim(i,n)-Dissim(i-1,n); 
end 
dw_sum_sq=Dissim(:,n)'*Dissim(:,n); 
dw_diff_sum_sq=dw_diff'*dw_diff; 
DW(n)=dw_diff_sum_sq/dw_sum_sq; 

end % End outer loop, n  
close(h) 
toc % End timer 
% 
% Transpose PureSpec 
PureSpec = PureSpec'; 
% 
% Plot outputs 
if plotting ==1 

subplot(3,1,1) 
plot(PureSpec) 
axis tight 
title( 'Pure component spectral profiles calculated by OPA' ); 
xlabel( 'Variable number' ) 
Str1(1)={ 'Normalised' }; 
Str1(2)={ 'Intensity' }; 
ylabel(Str1) ; 
% 
subplot(3,1,2) 
plot(Dissim) 
title( 'Dissimilarity values vs. measurement number' ); 
xlabel( 'Measurement / Spectrum number' ); 
ylabel( 'Dissimilarity' ); 
%  
subplot(3,1,3) 
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plot(DW, 'marker' , 'O' ); hold on ;plot(DW, '+' ) 
title( 'Durbin-Watson values vs. component number' ); 
xlabel( 'Component number' ); ylabel( 'DW value' ); 

 drawnow 
end 
% 
% User can now specify how many components to retain 
user_N=input( 'Please enter the number of OPA components to retain: ' ); 
PureSpec(:,user_N+1:end)=[ ]; % Remove N+1 OPA components 
Dissim(:,user_N+1:end)=[ ];  % Remove N+1 dissimilarity profiles 
SI(user_N+1:end,:)=[ ];  % Remove N+1 spectrum indices and dissimilarity values 
% Normalise dissimilarity values to make profiles easier to see on plot 
Dissim_Norm = Dissim ./ repmat((max(Dissim)),I,1); 
% 
figure() 
subplot(3,1,1) 
plot(PureSpec) 
axis tight 
title( 'Pure component spectral profiles calculated by OPA' ); 
xlabel( 'Variable number' ); 
Str1(1)={ 'Normalised' }; 
Str1(2)={ 'Intensity' }; 
ylabel(Str1); 
% 
subplot(3,1,2) 
plot(Dissim_Norm) 
axis([1 I 0 1.1]); 
title( 'Normalised dissimilarity values vs. measurement number' ); 
xlabel( 'Measurement / Spectrum number' ); 
Str2(1)={ 'Normalised' }; Str2(2)={ 'Dissimilarity' }; 
ylabel(Str2); 
% 
subplot(3,1,3) 
plot(DW, 'marker' , 'O' ); hold on ;plot(DW, '+' ) 
title( 'Durbin-Watson values vs. component number' ); 
xlabel( 'Component number' ); ylabel( 'DW value' ); 
drawnow 
end % END OF FUNCTION
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MedianFilter.m 

function [Filtered, Residual]=MedianFilter(Data, WS, WE, step, NN, plotting); 
% [Filtered, Residual]=MedianFilter(Data, WS, WE, step, NN, plotting); 
%  
% This function will perform median filtering using a moving window and is 
% based upon the algorithm published by A. W. Moore and J. W. Jorgenson, 
% Median filtering for removal of low-frequency background drift, 
% Analytical Chemistry, 1993, 65, p188-191. 
% 
% Median filtering can be applied to broad spectral data to such UV spectra 
% to remove high frequency 'spikes' using a small window of 3 or 5. Median 
% filtering can also be used to remove low frequency baseline contributions 
% from FTIR or Raman spectra or chromatograms using a larger window size. 
% 
% This function also permits the use of an increasingly larger (or 
% decreasingly smaller) window. This option is for testing purposes 
% only as the result will be the same as using a fixed window at the final 
% window size. A single spectrum must be used for this test as the filtered 
% spectra obtained using the different window sizes are output to the 
% matrices [Filtered] and [Residual]. 
% 
% INPUT ARGUMENTS 
% [Data] is a 1- or 2-dimensional array of data. The dimension of this 
% data matrix are (J x K), where J is the number of observations (1 for a 
% single spectrum or chromatogram) and K is the number of experimental 
% variables (e.g. wavelengths or retention times). 
% 
% [WS] is the initial window size to be used for median filtering. [WS] 
% must be odd-numbered. The user can specify a fixed window size by only 
% entering a value for [WS]. 
% 
% [WE] is an optional input argument that allows the user to specify a 
% final window size when assessing a range of windows sizes for median 
% filtering. [WE] must be odd-numbered. This input argument can be omitted 
% if filtering using fixed window size is required. 
% 
% [step] is an optional input argument used with [WE] and allows the user 
% to specify the increment of the window size. This value must be 
% even-numbered. If [WE] and [step] are not provided, a fixed-size window 
% defined by [WS] will be used during filtering. 
% 
% [NN] is an optional input argument that allows the user to specify 
% whether a non-negativity correction should be applied to the filtered 
% data. Non-negativity is 'off' when {NN=0} and 'on' when {NN=1}. 
% 
% [plotting] specifies whether the function will display plots during 
% run-time. Plotting is 'off' when {plotting=0} and 'on' when {plotting =1} 
% 
% OUTPUT ARGUMENTS 
% During normal use: 
% [Filtered] is a (J x K) matrix of signal component subtracted by the 
% process of median filtering. If the original signal is broad and a small 
% window size has been applied to remove high frequency 'spikes', 
% [Filtered] will be the high-frequency part of the signal. If the signal 
% contains high frequency peaks, such as FTIR or Raman spectra, and a large 
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% window size has been applied to remove a broad baseline contribution, 
% [Filtered] will comprise of the desired Raman signal. 
% 
% [Residual] is a (J x K) matrix of the residual signal component after 
% subtraction of the median filtered signal from the original data. If the 
% original signal is broad and a small window size has been applied to 
 % remove high frequency 'spikes', [Residual] will be the desired low frequency 
% part of the signal. If the signal contains high frequency peaks such as 
% FTIR or Raman spectra, and a large window size has been applied to remove 
% a broad baseline contribution, [Residual] will be the underlying 
% baseline. 
% 
% During testing: 
% [Filtered] and [Residual] are (n x K) matrices where n is the number of 
% increments defined by the values of [WS], [WE] and [step]. 
% 
% Nicholas I. Pedge 
% Department of Chemistry, Univeristy of Hull, Cottingham Road, Hull, 
% HU6 7RX 
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, 
% Leicetershire, LE11 5RH. 
% 
% [Filtered, Residual]=MedianFilter(Data, WS, WE, step, NN, plotting); 
  
% BASIC INPUT VARIABLES CHECK 
if nargin<6||isempty(plotting)==1 

fprintf( 'Plotting will be set to ''Off'' \n' ) 
plotting=0; 

end 
% 
if nargin<5||isempty(NN)==1 

fprintf( 'Non-negativity will be set to ''Off'' \n' ) 
NN=0; 

end 
% 
if nargin <4 || isempty(step)==1 

fprintf( 'Step value not entered...default value [2] will be used \n' ) 
step = 2; 

end 
% 
if nargin <3 || isempty(WE)==1 

WE=WS; 
step=2; 
fprintf( 'WE = WS, no incremental filtering \n' ) 

end 
% 
if nargin<2 

error( 'Minimum inputs are [Data] and [WS]' ) 
end 
% 
if WS==WE 

IncFilter=0; 
fprintf( 'WE = WS, no incremental filtering \n' ) 
step=2; 

else 
IncFilter=1; 
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end 
% 
if WS<3 || WE<3 

error( 'The minimum for [WS] and [WE] is 3' ) 
end 
% Check if input arguments [WS] and [WE] are odd-numbered. 
if rem(WS,2)==0 || rem(WE,2)==0 

error( 'Input arguments [WS] and [WE] must be odd-numbered' ) 
end 
% Check if input argument [step] is even-numbered. 
if rem(step,2)==1 

error( 'Input argument [step] must be even-numbered' ) 
end 
% 
% Check that if the incremental window size is on, the input argument 
% [Data] is a vector. 
[nrows, ncols]=size(Data); 
if IncFilter == 1 

if nrows ~=1 
error( 'The input argument [Data] must be a vector when' , ... 

    ' used with [WE] for incremental filtering' ) 
end 

end 
% 
% CHECK VALUES OF [WS], [WE] AND [step] 
% Ensure that the difference between WE and WS is an integer 
% number of steps sizes. 
% 
% Forward direction; WE is larger than WS 
if WS < WE 

win_diff=WE - WS; 
n = floor(win_diff / abs(step)); 
% 
% Update WE to be an integer number of step sizes from WS 
WE=WS + (n*step); 
step=(abs(step)); 
fprintf( 'WE has been updated to match step size \n' ) 
fprintf( 'WE value has been set to %g \n' ,WE) 

else 
win_diff=WS-WE; 
n = floor(win_diff / abs(step)); 
% Update WS to be an integer number of step sizes from WE 
WS=WE + (n*abs(step)); 
step=abs(step)*-1; 
fprintf( 'WS has been updated to match step size \n' ) 
fprintf( 'WS value has been set to %g \n' ,WS) 

end 
% 
% PRE-ALLOCATE STORAGE VECTORS AND MATRICES 
% 
% Determine size of original data matrix 
[nrows, ncols]=size(Data); 
% 
if IncFilter==0 

Filtered=zeros(nrows, ncols); 
Residual=zeros(nrows, ncols); 
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else 
Filtered=zeros(n+1, ncols); 
Residual=zeros(n+1, ncols); 

end 
% 
% 
% PERFORM MOVING MEDIAN FILTERING 
% 
tic 
index=1; 
h=waitbar(0, 'Please wait...' ); 
% 
% THIS SECTION IS USED IF INCREMENTAL WINDOW SIZE IS SET TO ON 
% 
if IncFilter==1 

% 
for w=WS:step:WE 

% 
waitbar(index/n, h); 
% 
x_win=(w-1)/2; % number of points either side of window centre-point 
% 
X=Data; 
% 
% To ensure smooth filtering, the ends of the spectral data must be 
% padded with additional columns. The additional columns are a mirror 
% imag e of the first x_win or final x_win columns of the data. 
% 
Xpad=[(fliplr(X(:,1:x_win))),X,(fliplr(X(:,(end-x_win+1):end)))]; 
ResidualTemp=zeros(1, ncols+(2*x_win)); 
% 
for k=(1+x_win):(ncols+x_win); 

Subset=Xpad(:,(k-x_win):(k+x_win)); 
Subset=sort(Subset); 
ResidualTemp(k)=Subset(:,x_win+1); 

end 
% 
% Remove padded columns before updating residuals 
Residual(index,:)=ResidualTemp(:,1+x_win:end-x_win); 
Xpad=Xpad(:,1+x_win:end-x_win); 
Filtered(index,:)=Xpad-Residual(index,:); 
% Find and remove negative values in filtered data 
if NN==1 

Residual(index,find(Filtered(index,:)<0))= ... 
Residual(index,find(Filtered(index,:)<0)) ... 
+ Filtered(index,find(Filtered(index,:)<0)); 

Filtered(index,:)=Xpad-Residual(index,:); 
end 
% 
if plotting == 1 

clf; 
subplot(3,1,1); 
plot(Data', 'linewidth' ,2); 
title( 'O riginal data' ) 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 
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subplot(3,1,2); 
plot(Filtered(1:index,:)'); hold on ; 
plot(Filtered(index,:), 'r' , 'linewidth' ,2) 
title( 'Median filtered data' ) 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 
subplot(3,1,3); 
 plot(Residual(1:index,:)');hold on ; 
plot(Residual(index,:), 'r' , 'linewidth' ,2) 
title( 'Residual: Original data - filtered data' ) 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 
drawnow 

 end 
% 
index = index +1; 

end 
close(h) 

end 
% 
if IncFilter==0 

% THIS SECTION IS USED IF INCREMENTAL WINDOW SIZE IS OFF 
  x_win=(WS-1)/2; % number of points either side of window centre-point 

% 
X=Data; 
% 
% To ensure smooth filtering, the ends of the spectral data must be 
% padded with additional columns. The additional columns are a mirror 
% image of the first x_win or final x_win columns of the data. 
% 
Xpad=[(fliplr(X(:,1:x_win))),X,(fliplr(X(:,(end-x_win+1):end)))]; 
Residual=zeros(nrows, ncols+(2*x_win)); 
% 
for k=(1+x_win):(ncols+x_win); 

waitbar(k/ncols, h) 
Subset=Xpad(:,(k-x_win):(k+x_win)); 
Subset=sort(Subset'); 
Residual(:,k)=Subset(x_win+1,:)'; 

end 
  close(h) 

% 
% Remove padded columns before updating residuals 
Residual=Residual(:,1+x_win:end-x_win); 
Xpad=Xpad(:,1+x_win:end-x_win); 
Filtered=Xpad-Residual; 
% 
% Find and remove negative values in filtered data 
if NN==1 

Residual(find(Filtered<0))= Residual(find(Filtered<0)) ... 
+ Filtered(find(Filtered<0)); 

Filtered=Xpad-Residual; 
end 

end 
% 
subplot(3,1,1); 
plot(Data'); axis tight 
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title( 'Original data' ) 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 
subplot(3,1,2); 
plot(Filtered'); axis tight 
title( 'Median filtered data' ) 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 
subplot(3,1,3); 
plot(Residual'); axis tight 
title( 'Residual: Original data - filtered data' ) 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 
% 
toc 
end % END OF FUNCTION
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LMJ_IPBS.m  

function IPBS_OUTPUT = LMJ_IPBS(D, n, Tol, MaxIterations, PlotOn) 
% IPBS_OUTPUT = LMJ_IPBS(D, n, Tol, MaxIterations, PlotOn) 
% 
% This function is the iterative background removal algorithm published in 
% Applied Spectroscopy, Vol 57, Number 11, (2003) p1363 by Chad A. Lieber 
% and Anita Mahadevan-Jansen. The function fits an n degree polynomial to 
% the whole spectrum and iteratively modifies the estimated background 
% spectrum until the convergence tolerance or maximum number of iterations 
% 'MaxIterations' is reached.  
% 
% INPUT ARGUMENTS 
% 
% [D] is a (J x K) matrix or (1 x K) vector containing the spectra or 
% spectrum to be processed. 
% 
% [n] is the degree of the polynomial function to be used when fitting the data. 
% Minimum value is n=1, maximum value is n = 10, default value is n=4. 
% 
% [Tol] is the tolerance to be used when iteratively refining the estimates 
% of the polynomial baseline. Warning: if the value of [Tol] is too small, 
% the baseline fitting function may never reach convergence. 
% The default value is 1E-03. Convergence is calculated as the 
% sum-of-squares residual between two consecutive estimates of the baseline 
% function.  
%  
% [MaxIterations] is the maximum number of iterations the function is 
% permitted to perform if it does not reach the convergence tolerance 
% first. 
% 
% [PlotOn] allows the user to specify whether plotting during runtime is 'off' 
% {PlotOn = 0} or 'on' {PlotOn =1}.  
% 
% OUTPUT ARGUMENTS 
%  
% [IPBS_OUTPUT] is a structured array generated by this script to store the 
% various outputs listed below. 
% 
% [.CorrSpec] is a (J x K) matrix or (1 x K) vector containing the 
% processed spectra after subtraction of the baseline. 
% 
% [.Baseline] is a (J x K) matrix or (1 x K) vector containing the fitted 
% baselines subtracted from the original data 
% 
% Nicholas I. Pedge 
% Department of Chemistry, University of Hull, Cottingham Road, Hull, 
% HU6 7RX  
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough,  
% Leicestershire, LE11 5RH 
 
% CHECK INPUT ARGUMENTS 
if nargin<5 

PlotOn=0; 
end 
% 
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if nargin <4 || isempty(MaxIterations) 
MaxIterations=100; % Default maximum number of iterations 

end 
% 
if nargin <3 || isempty(Tol) 

Tol=1E-2; % Default tolerance 
end 
% 
if nargin < 2 || isempty(n) 
 n = 4; % Default order of polynomial to be fitted 
end 
% 
if n>10 || n<1 

error( 'The value of [n] should be between 1 and 10' ) 
end 
% 
[J,K]=size(D); 
% 
% Display parameters to user 
fprintf( 'Order of polynomial function: %g \n' ,n) 
fprintf( 'Convergence tolerance: %e \n' ,Tol) 
% 
% Dimension temporary storage matrices 
Baseline=zeros(J,K); 
% 
tic 
warning off all 
% 
h1=gcf; 
if PlotOn==1 

figure(); h2=gcf; 
end 
% 
hw=waitbar(0, 'Performing IPBS calculations...please wait' ); 
% 
for j=1:J % Outer loop to process each row (spectrum) in D 
  % 

Convergence=1000; % Reset initial convergence 
  Counter=1; % Reset counter (iterations) to 1 
  Dj=zeros(1,K); % Temporary vector to store current spectrum 

EBG_new=zeros(1,K); % Initialise vector to store estimate of baseline 
EBG_old=D(j,:); % Initial estimate of the baseline 
% 
while Convergence > Tol % Loop to check convergence of baseline 

if J>1 
waitbar(j/J, hw); 

else 
waitbar(Counter/MaxIterations, hw); 

end 
%  
M=zeros(K,n+1);  
x=1:1:K; 
M(:,1)=1; 
% 
for p=1:n 

M(:,p+1)=x.^p; 
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end 
% 
% To obtain an initial estimate of the baseline, a 

             % polynomial function will be fitted to original data. 
             % The estimated baseline function will then be refined 

% during each successive iterative cycle. 
% 
if Counter==1 

Dj=D(j,:); % Use original data for first estimate 
else 

Dj=Baseline(j,:); % Refine baseline estimate 
end 
% 
% Calculate polynomial coefficients 
A=M\Dj'; 
% Estimate background using calculated polynomial coefficients 
EBG=(M*A)'; 
% 
% Find values in EBG that are larger than original signal 
Diff=Dj-EBG; 
z=find(Diff<0); 
EBG(z)= Dj(z); % Check EBG is not larger than data 
z=find(EBG<0); 
EBG(z)= Dj(z); % Check for negativity in EBG 
% 
EBG_new(1,x)=EBG; 
% 
% 
% Check for convergence 
EBG_Diff = EBG_new-EBG_old; 
EBG_DiffSSQ = trace(EBG_Diff'*EBG_Diff); 
EBG_newSSQ = trace(EBG_new'*EBG_new);   
EBG_oldSSQ = trace(EBG_old'*EBG_old); 
Convergence = EBG_DiffSSQ ./ EBG_oldSSQ; 
% 
if PlotOn==1 

clf(h2) 
plot(D(j,:)', 'k' ); hold on 
plot(EBG_new', 'r' ); 
plot((D(j,:)-EBG_new), 'b' ); 
axis tight 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 
drawnow 

end 
% Rename baseline estimate before next iteration 
Baseline(j,:) = EBG_new; 
EBG_old=EBG_new; 
% 
Counter=Counter+1; 
% 
if Counter == MaxIterations 

break 
end 
% 

end  % end loop for convergence check 
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end  % end loop for j 
% 
close(hw) 
if PlotOn==1 

close(h2) 
end 
%  
fprintf( '\nIterative Polynomial Baseline Subtraction complete! \n' ) 
toc % Stop timer 
% 
CorrSpec=D-Baseline; 
% 
 if PlotOn==1 

figure() 
subplot(2,1,1) 
plot(CorrSpec', 'b' ); axis tight 
title( 'Baseline subtracted spectra' , 'fontweight' , 'bold' ) 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 
subplot(2,1,2) 
plot(Baseline', 'r' ); hold on 
plot(D', 'k' ); axis tight 
title( 'Subtracted baselines' , 'fontweight' , 'bold' ) 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 

end 
% 
IPBS_OUTPUT.CorrSpec=CorrSpec; 
IPBS_OUTPUT.Baseline=Baseline; 
IPBS_OUTPUT.Parameters.n=n; 
IPBS_OUTPUT.Parameters.Tol=Tol; 
% 
end 
% END OF FUNCTION 
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IPBS.m 

function IPBS_OUTPUT = IPBS(D, n, Tol, win, MFwin, OLP, PlotOn) 
% IPBS_OUTPUT = IPBS(D, n, Tol, win, MFwin, OLP, PlotOn) 
% 
% This function is based upon the iterative background removal algorithm 
% published in Applied Spectroscopy, Vol 57, Number 11, (2003) p1363 by 
% Chad A. Lieber and Anita Mahadevan-Jansen. It has been adapted to use 
% an initial estimate of the underlying baseline function calculated using 
% a moving window median filter (MedianFilter.m). The data is then divided 
% into a series of windows of width [win] and a polynomial function of  
% degree [n] is iteratively fitted to each window. The overlap parameter 
% [OLP] allows the user to specify what fraction of the fitted polynomial 
% from the previous window is added to the current window. This feature 
% eliminates any discontinuities that could appear if the baseline is fitted 
% as a series of discrete windows. The whole spectrum is fitted once, and  
% then the convergence calculations are performed, rather than refine 
% each window to convergence before fitting the next window. 
% 
% INPUT ARGUMENTS 
% 
% [D] is a (J x K) matrix or (1 x K) vector containing the spectra or 
% spectrum to be processed. 
% 
% [n] is the degree of the polynomial function to be used when fitting the data. 
% Minimum value is n=1, maximum value is n = 10, default value is n=4. 
% 
% [Tol] is the tolerance to be used when iteratively refining the estimates 
% of the polynomial baseline. Warning: if the value of [Tol] is too small, 
% the baseline fitting function may never reach convergence. 
% The default value is 1E-03. Convergence is calculated as the 
% sum-of-squares residual between two consecutive estimates of the baseline 
% function.  
%  
% [win] is the window size to be used when fitting the polynomial 
% baseline. This value may be an odd- or even-number. 
% 
% [MFwin] is the window size to be used when applying median filtering to 
% obtain an initial estimate of the underlying baseline function. This 
% number must be an odd-number. 
%  
% [OLP] is the overlap parameter and defines the fraction of the data in 
% the previous window to be added to the current window. The total size of 
% the window used to fit the polynomial function then becomes  
% [win] + [win]*[OLP]. The value of [OLP] must be in the range 0.00 to 
% 1.00. Note, a value of 1.00 is equivalent to doubling the size of [win]. 
% The default value is 0.20. 
%  
% [PlotOn] allows the user to specify whether plotting during runtime is 'off' 
% {PlotOn = 0} or 'on' {PlotOn =1}.  
% 
% OUTPUT ARGUMENTS 
%  
% [IPBS_OUTPUT] is a structured array generated by this script to store the 
% various outputs listed below. 
% 
% [.CorrSpec] is a (J x K) matrix or (1 x K) vector containing the 



Appendix II – Matlab Functions: IPBS.m 

 - A31 - 

% processed spectra after subtraction of the baseline. 
% 
% [.Baseline] is a (J x K) matrix or (1 x K) vector containing the fitted 
% baselines subtracted from the original data 
% 
% [.MF_Residual] is a (J x K) matrix or (1 x K) vector containing the 
% initial estimates of the baselines provided by median filtering of the 
% unprocessed spectra.  
% 
% [.MF_Filtered] is a (J x K) matrix or (1 x K) vector containing the 
% processed spectra after median filtering.  
% 
% [.MF_CorrSpec] is a (J x K) matrix or (1 x K) vector containing the 
% processed spectra after subtraction of a polynomial baseline estimated 
% during the first iteration. This allows the user to compare the spectra 
% obtained by subtraction of a polynomial baseline with the spectra 
% obtained by median filtering.  
%  
% [.MF_Baseline] is a (J x K) matrix or (1 x K) vector containing the 
% polynomial baselines estimated suring the first iteration. This allows 
% the user to compare the baselines calculated by polynomial fitting with 
% the baselines obtained by median filtering.  
% 
% Nicholas I. Pedge 
% Department of Chemistry, University of Hull, Cottingham Road, Hull, 
% HU6 7RX  
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough,  
% Leicestershire, LE11 5RH 
  
% CHECK INPUT ARGUMENTS 
if nargin<7 

PlotOn=0; 
end 
% 
if nargin<6 || isempty(OLP) 

OLP=0.20; 
end 
% 
if OLP<0 || OLP>1 

error( 'The value of [OLP] should be between 0 and 1' ) 
end 
% 
if nargin <5 || isempty(MFwin) 

MFwin=ceil(sqrt(size(D,2))*2); 
end 
% 
if nargin <4 || isempty(win) 

win=ceil(sqrt(size(D,2))); 
end 
% 
if nargin <3 || isempty(Tol) 

Tol=1E-2; % Default number of iterations 
end 
% 
if nargin < 2 || isempty(n) 

n = 4; % Default order of polynomial to be fitted 



Appendix II – Matlab Functions: IPBS.m 

 - A32 - 

end 
% 
if n>10 || n<1 

error('The value of [n] should be between 1 and 10' ) 
end 
% 
[J,K]=size(D); 
% 
% Calculate size of window overlap. 
OL=floor(win*OLP); 
% 
% Display parameters to user 
fprintf('Window size: %g \n' ,win) 
fprintf('Median filter window size: %g \n' ,MFwin) 
fprintf('Order of polynomial function: %g \n' ,n) 
fprintf('Convergence tolerance: %e \n' ,Tol) 
fprintf('Overlap window size factor: %g \n' ,OLP) 
fprintf('Overlap window: %g \n' ,OL) 
% 
% This algorithm splits the data into a series of windows with window size 
% defined by the user. The iterative algorithm is then applied to each 
% window to find the polynomial that best describes the underlying 
% baseline. 
% 
% Calculate total number of windows 
nwin=ceil(K/win); 
% Calculate size of last window 
LastWin=K-((nwin-1)*win); 
if LastWin > 0 

lwi=((nwin-1)*win)+1; % Index of the start point for the last window  
lws=K-((nwin-1)*win); % Size of the last window  

else 
nwin=nwin+1; 

end 
% 
% Dimension temporary storage matrices 
Baseline=zeros(J,K); 
MF_Baseline=zeros(J,K); 
MF_CorrSpec=zeros(J,K); 
% 
tic 
warning off all 
MaxIterations=50; 
% 
% Apply median filtering to obtain initial estimate of the baseline 
fprintf( 'Applying median filtering...please wait \n' ) 
[MF_Filtered, MF_Residual]=MedianFilter(D, MFwin, [], [], [], 1); 
fprintf( 'Median filtering complete. \n' ) 
% 
h1=gcf; 
if PlotOn==1 

figure(); h2=gcf; 
end 
% 
hw=waitbar(0, 'Performing IPBS calculations...please wait' ); 
% 
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for j=1:J % Outer loop to process each row (spectrum) in D 
% 
Convergence=1000;   % Reset initial convergence 
Counter=1;    % Reset counter (iterations) to 1 
Dj=zeros(1,K);   % Temporary vector to store current spectrum 
EBG_new=zeros(1,K);  % Initialise vector to store estimate of baseline 

  EBG_old=MF_Residual(j,:);  % Initial estimate of the baseline 
  % 
  while Convergence > Tol  % Loop to check convergence of baseline 
   if J>1 
    waitbar(j/J, hw); 
   else 
    waitbar(Counter/MaxIterations, hw); 
   end 
   % 
   WinCounter=1; 
   for w=1:win:((nwin-1)*win) 
    if WinCounter==1 
     x=1:1:(1+win-1); x=x'; 
     M=zeros(win,n+1); 
    else 
     x=w-OL:1:(w+win-1); x=x'; 

M=zeros(win+OL,n+1); 
end 
% 
M(:,1)=1; 
% 
for p=1:n 

M(:,p+1)=x.^p; 
end 
% 
% To a obtain good initial estimate of the baseline, a 
% polynomial function will first be fitted to the estimate 
% of the underlying baseline obtained by median filtering 
% the data. Copy the current window from the median 
% filtered data to Dj 
% 
if Counter==1 

Dj=MF_Residual(j,:);  % Use MF baseline estimate 
else 

Dj=Baseline(j,:);  % Refine baseline estimate 
end 
% 
if WinCounter==1 

Dw=zeros(1,win); 
Dw(1,1:win)=Dj(1,1:win); 
Ds=D(j,1:win); 

else 
Dw=zeros(1,win+OL); 
Dw(1,1+OL:win+OL)=Dj(1, w:w+win-1); % Data 
Dw(1,1:OL)=EBG_new(1,w-OL:w-1); % Previous window 
Ds=D(j,x); 

end 
% 
% Calculate polynomial coefficients 
A=M\Dw'; 
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% Estimate background using calculated polynomial coefficients 
EBG=(M*A)'; 
% 
% Find values in EBG that are larger than original signal 
Diff=Ds-EBG; 
z=find(Diff<0); 
EBG(z)= Ds(z);  % Check EBG is not larger than data 
z=find(EBG<0); 
EBG(z)= Ds(z);  % Check for negativity in EBG 
% 
EBG_new(1,x)=EBG; 
WinCounter=WinCounter+1; 
% 

end % end loop w=1:win:((nwin-1)*win) 
% 
% Fit final window if necessary. 
if LastWin>0 

x=lwi-OL:1:(lwi+lws-1); x=x'; 
M=zeros(lws+OL,n+1); 
% M=zeros(lws+OL+1,n+1); 
M(:,1)=1; 
for p=1:n 

M(:,p+1)=x.^p; 
end 
% 
if Counter==1 

Dj=MF_Residual(j,:);  % Use MF baseline estimate 
else 

Dj=Baseline(j,:);  % Refine baseline estimate 
    end 

% 
Dw=zeros(1,lws+OL); 
Dw(1,1+OL:lws+OL)=Dj(1, lwi:lwi+lws-1); % Data 
Dw(1,1:OL)=EBG_new(1,lwi-OL:lwi-1); % Previous window 
Ds=D(j,x); 
% 
% Calculate polynomial coefficients for spectrum j, window w 
A=M\Dw'; 
% Estimate background (EBG) using calculated polynomial coefficients 
EBG=(M*A)'; 
% 

    % Find values in EBG that are larger than original signal 
Diff=Ds-EBG; 
z=find(Diff<0); 
EBG(z)= Ds(z);  % Check EBG is not larger than data 
z=find(EBG<0); 
EBG(z)= Ds(z);  % Check for negativity in EBG 
EBG_new(1,x)=EBG; 

end 
% 
% Check for convergence 
EBG_Diff = EBG_new-EBG_old; 
EBG_DiffSSQ = trace(EBG_Diff'*EBG_Diff); 
EBG_newSSQ = trace(EBG_new'*EBG_new); 
EBG_oldSSQ = trace(EBG_old'*EBG_old); 
Convergence = EBG_DiffSSQ ./ EBG_oldSSQ; 



Appendix II – Matlab Functions: IPBS.m 

 - A35 - 

% 
if PlotOn==1 

clf(h2) 
plot(D(j,:)', 'k' ); hold on 
plot(EBG_new', 'r' ); 
plot((D(j,:)-EBG_new), 'b' ); 
axis tight 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 
drawnow 

end 
% Smooth estimate before next iteration 
Baseline(j,:) = EBG_new; 

   EBG_old=EBG_new; 
% 

   if Counter==1 
MF_Baseline(j,:)=Baseline(j,:); 
MF_CorrSpec(j,:)=D(J,:)-Baseline(j,:); 

end 
% 
Counter=Counter+1; 
% 
if Counter == MaxIterations 

break 
end 
% 

end % end loop for convergence check   
end % end loop for j 
% 
close(hw) 
if PlotOn==1 

close(h2) 
end 
%  
fprintf( '\n Iterative Polynomial Baseline Subtraction complete! \n' ) 
toc % Stop timer 
% 
CorrSpec=D-Baseline; 
% 
if PlotOn==1 

figure() 
subplot(2,1,1) 
plot(CorrSpec', 'b' ); axis tight 
title( 'Baseline subtracted spectra' , 'fontweight' , 'bold' ) 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 
subplot(2,1,2) 
plot(Baseline', 'r' ); hold on 
plot(D', 'k' ); axis tight 
title( 'Subtracted baselines' , 'fontweight' , 'bold' ) 
xlabel( 'Variable number' ) 
ylabel( 'Intensity (Arb.)' ) 

end 
% 
IPBS_OUTPUT.CorrSpec=CorrSpec; 
IPBS_OUTPUT.Baseline=Baseline; 
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IPBS_OUTPUT.MF_Residual=MF_Residual; 
IPBS_OUTPUT.MF_Filtered=MF_Filtered; 
IPBS_OUTPUT.MF_CorrSpec=MF_CorrSpec; 
IPBS_OUTPUT.MF_Baseline=MF_Baseline; 
IPBS_OUTPUT.Parameters.n=n; 
IPBS_OUTPUT.Parameters.Tol=Tol; 
IPBS_OUTPUT.Parameters.win=win; 
IPBS_OUTPUT.Parameters.MFwin=MFwin; 
IPBS_OUTPUT.Parameters.OLP=OLP; 
IPBS_OUTPUT.Parameters.OL=OL; 
% 
end % END OF FUNCTION 
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VVSP.m 

function VVSP_output = VVSP(X, NL, NR, p_norm, plotting) 
% VVSP_output = VVSP(X, NL, NR, p_norm, plotting) 
% 
% This function will perform Vertex Vector Sequential Projection analysis 
% on a two-dimensional data array using the algorithm described in "Vertex 
% Vectors Sequential Projection for self-modelling curve resolution of 
% two-way data", Zhi-Guo Wang et al., Chemometrics and Intelligent 
% Laboratory Systems, 82 (2006) 154-164. 
% The function is based upon the principle that after p-normalisation (p>1), 
% all points in a two-way data matrix lie on a polyhedral hyper-"spherical" 
% surface, with the pure variables (spectra) forming the vertices (vertex 
% vectors). A certain quadratic expression f(w)= yj'.A.(yj')'is maximised 
% at those spectra that form the vertex vectors, allowing the closest 
% estimates of the pure component spectral profiles to be located. 
% To aid the selection of the number of components to retain the 
% Durbin-Watson values (a measure of autocorrelation) are calculated using 
% the vector of quadratic values fw used to locate each successive VVSP 
% component. The log10 of the sum of projection residuals is also 
% calculated for each component. 
% The measurement data X is assumed to have a bilinear model X=CS'+E. This 
% function does not apply constrained alternating least squares to refine 
% the C or S'.  
% 
% INPUT ARGUMENTS 
%  
% [X] is the row-orientated 2-way data matrix with dimensions (J x K) where 
% J is the number of sample or observations and K is the number of 
% variables. 
% 
% [NL] is the number of VVSP pure component profiles to initially locate.  
% 
% [NR] is the number of VVSP pure component profiles to retain. 
% 
% [p_norm] is the type of spectral normalisation to apply during VVSP 
% analysis. Acceptable values are; 
% [p_norm] = 2, Normalise to unit length 
% [p_norm] = inf, Normalise to maximum value = 1 (normalise height) 
% [p_norm] may also have values of 3, 4, 5 but this is uncommon. 
% 
% [plotting] allows the user to specify whether plotting is 'off' 
% {plotting = 0} or 'on' {plotting =1} 
% 
% OUTPUT ARGUMENTS 
% 
% [VVSP_output] is a structured array containing the following output 
% variables; 
%  
% [.X] is the workspace variable name of data matrix that VVSP was 
% applied to. 
% 
% [.p_norm] is the value of p-normalisation applied to the original spectra. 
% 
% [.Sopt] is a (K x NR) matrix of VVSP pure component spectral profiles. 
% 
% [.Copt] is a (J x NR) matrix of concentration profiles estimated by LS. 
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% 
% [.SI] is a (NR x 2) matrix storing the spectrum number (column 1) and 
% corresponding f(w) value (column 2) for each retained VVSP spectrum. 
%  
% [.fw] is a (J x NR) matrix storing the vector of solutions to the  
% quadratic expression yj'.A.(yj')', calculated for each VVSP component. 
% 
% [.fwNorm] is a (J x NR) matrix storing the normalised vector of  
% solutions to the quadratic expression yj'.A.(yj')'.  
%  
% [.DW] is an (NL x 1) vector storing the Durbin-Watson value for each VVSP 
% component and is calculated from the corresponding vector of f(w) values. 
%  
% [.PR] is an (NL x 1) vector storing the logarithmic SSQ projection residuals 
% calculated for each new VVSP component located. 
% 
% Nicholas I. Pedge 
% Department of Chemistry, University of Hull, Cottingham Road, Hull, 
% HU6 7RX  
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough,  
% Leicestershire, LE11 5RH 
% 
% VVSP_output = VVSP(X, NL, NR, p_norm, plotting) 
  
% BASIC INPUT VARIABLES CHECK 
if nargin < 5 || isempty(plotting) 

fprintf( '[plotting] input variable not specified. \n' ) 
fprintf( 'Setting plotting to ''on'' \n' ) 
plotting = 1; 

end 
% 
if nargin < 4 || isempty(p_norm) 
  fprintf( 'Spectral p-norm not specified. \n' ) 
  fprintf( 'The default p-norm {2} will be used \n' ) 
  p_norm=2;  
end 
% 
if nargin < 2 || isempty(NL) 
  error( 'The number of components to locate [NL] was not specified' ) 
end 
% 
if nargin < 1 || isempty(X) 
  error( 'Please provide [X]' ) 
end 
% 
if nargout < 1 
  error( 'Output variable [VVSP_output] not specified! ' ) 
end 
% 
% PRE-ALLOCATE STORAGE VECTORS AND MATRICES 
% 
% Establish the size of the input data matrix 
[J, K]= size(X); 
% 
% Vector to store the spectral norms of each spectrum in X 
u_norm_s=zeros(J,1);  



Appendix II – Matlab Functions: VVSP.m 

 - A39 - 

p_norm_s=zeros(J,1);  
% 
% Matrix to select the spectral norms and indices of each VVSP component. 
SI=zeros(NL, 2); 
% 
% Matrix to store the solutions of the quadratic expression yi'.A.(yi')' 
fw=zeros(J,NL); 
fwNorm=zeros(J,NL); 
% 
% Vector to store the Durbin-Watson values calculated from the values 
% derived from the quadratic form yi'.A.(yi')' 
DW=zeros(NL,1); 
% 
% Vector to logartithmic projection residuals 
PR=zeros(NL,1); 
% 
% Matrix to store normalised data calculated from original data 
Y=zeros(J,K);  
% 
% MAIN VVSP CALCULATIONS 
% 
tic % Start timer 
fprintf( 'Finding spectrum to initialise VVSP calculations \n' ) 
% 
% Calculate the p-norms (p=pnorm) of each spectrum in original data 
for j=1:J 
  u_norm_s(j)=norm(X(j,:),1);   % Calculate the 1-norm of each spectrum 
  p_norm_s(j)=norm(X(j,:),p_norm);  % Calculate the p-norm of each spectrum 
  Y(j,:)=X(j,:)./ p_norm_s(j);   % Normalise each spectrum in X 
end 
% 
% Identify the spectrum with the largest 1-norm value from u_norm_s and 
% store in SI 
[SI(1,1), SI(1,2)]=max(u_norm_s); 
% 
% Normalise the spectrum with largest 1-norm to give r. The spectrum is 
% normalised using the 1-norm 
% 
r=X(SI(1,2),:) ./ u_norm_s(SI(1,2)); 
% 
% Find the spectrum z1 that maximises ||r'-yj'||_2 
% 
R=repmat(r,J,1); % Create a matrix filled with the spectrum r 
E=R-Y; % Calculate the residual between the r spectrum and  
 % each normalised spectrum in Y 
% 
%Calculate the p-norm of each spectrum in the residual matrix E 
for j=1:J  

ResidNorm(j)=norm(E(j,:),p_norm);  
end  
% 
% Select the spectrum with largest residual p-norm. This corresponds to the 
% spectrum that maximises ||r'-yj'||_2 
[SI(1,1), SI(1,2)]=max(ResidNorm); 
Z=Y(SI(1,2),:)'; % Set spectrum as a column vector 
% Now that the first spectrum has been selected, can start the loop to find 
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% NL VVSP spectra. 
% 
for m = 1: NL 

fprintf( 'Calculating VVSP component %i \n' , m) 
  A=eye(K)-(Z*pinv(Z)); % null matrix for the vectors in z 
  % A = Ij-ZnZn^+ 
  % 
  % Use matrix expression to calculate f(w) for each normalised spectrum 
  % in Y 
  fw(:, m)=(diag(Y*A*Y'));  
  % 
  % Normalise vector of f(w) values 
  fwNorm(:,m)=fw(:,m) ./ norm(fw(:,m),2); 
  % 
  % find the maximum value and concatenate to Z (unless first spectrum) 
  [SI(m,1), SI(m,2)]=max(fw(:,m)); 
  if m == 1 
   Z(:,1)=Y(SI(m,2),:)'; 
  else 
   Z=[Z, Y(SI(m,2),:)']; 
  end 
  % 
  % Calculte the Durbin-Watson value 
  fw_diff = diff(fw(:,m)); 
  fw_diff = [fw_diff; 0]; 
  fw_SSQ = fw(:,m)' * fw(:,m); 
  fw_diff_SSQ = fw_diff' * fw_diff; 
  DW(m,1) = fw_diff_SSQ ./ fw_SSQ; 
  % 
  % Calculate the log10 of the projection residual sum-of-squares, PR 
  % Re-calculate the null matrix A using updated Z 

A=eye(K)-(Z*pinv(Z)); 
% Calculate the projection residuals using original data, X 
XA=X*A; 
% Calculate the log10 value of the projection residuals sum-of-squares 
PR(m,1)=log10(trace(XA'*XA)); 

end 
% 
toc % Stop timer 
% 
if plotting == 1 

figure() 
subplot(2,1,1) 
plot(fw(:,1:m), 'linewidth' ,2); axis tight 
title( 'f(w) = y_j^T.A.(y_j^T)^T' , 'fontweight' , 'bold' ) 
xlabel( 'Measurement number' ) 
ylabel( 'Value' ) 
subplot(2,1,2) 
plot(fwNorm(:,1:m), 'linewidth' ,2); axis tight 
title( 'f(w) = y_j^T.A.(y_j^T)^T / ||y_j^T.A.(y_j^T)^T||_2' ,'fontweight' , 'bold' ) 
xlabel( 'Measurement number' ) 
ylabel( 'Value' ) 

end 
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if plotting == 1 
figure() 
subplot(2,1,1) 
plot(DW(1:m), 'marker' , '+' , 'linewidth' ,1); hold on ; 
plot(DW(1:m), 'marker' , 'O' , 'linewidth' ,1) 
title( 'Durbin-Watson Values' , 'fontweight' , 'bold' ) 
xlabel( 'Component number' ), ylabel( 'DW Value' ) 
subplot(2,1,2) 
plot(PR(1:m), 'marker' , '+' , 'linewidth' ,1); hold on ; 
plot(PR(1:m), 'marker' , 'O' , 'linewidth' ,1) 
title( 'Logarithmic Projection Residual' , 'fontweight' , 'bold' ) 
xlabel( 'Component number' ), ylabel( 'Log_1_0 Projection Residual' ) 
drawnow 

end 
% User can now specify how many components to retain 
if nargin < 3 || isempty(NR) 

NR=input( 'Please enter the number of VVSP components to retain: ' ); 
end 
 
Z(:,NR+1:end)=[]; 
fw(:,NR+1:end)=[]; 
fwNorm(:,NR+1:end)=[]; 
SI(NR+1:end,:)=[]; 
Sopt=Z; 
Copt=X*pinv(Sopt'); 
  
if plotting ==1 

figure() 
subplot(2,1,1) 
plot(Sopt, 'linewidth' ,2) 
string1=[ 'VVSP Spectra (p-norm = ' ,num2str(p_norm), ')' ]; 
title(string1, 'fontweight' , 'bold' ) 
xlabel( 'Variable number' ), ylabel( 'Intensity (Arb.)' ), axis tight 
subplot(2,1,2) 
plot(Copt, 'linewidth' ,2) 
title( 'Least squares estimate of concentration profiles' ,'fontweight' , 'bold' ) 
xlabel( 'Spectrum number' ), ylabel( 'Intensity (Arb.)' ),axis tight 

end 
% Store name of data matrix VVSP was applied to 
VVSP_output.X=inputname(1); 
% Store the value of p used for p-normalisation of spectra 
VVSP_output.p_norm=p_norm; 
% Store the VVSP pure component profiles (Sopt) 
VVSP_output.Sopt=Sopt; 
% Store the LS estimates of the concentratio profiles (Copt) 
VVSP_output.Copt=Copt; 
% Store the index and maximum values of the expression yj'.A.(yj')' 
VVSP_output.SI=SI; 
% Store the calculated values of the expression yj'.A.(yj')' 
VVSP_output.fw=fw; 
% Store the normalised values of the expression yj'.A.(yj')' 
VVSP_output.fwNorm=fwNorm; 
% Store the Durbin-Watson values 
VVSP_output.DW=DW; 
% Store the projection residuals 
VVSP_output.PR=PR;  
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LinearKF.m 

function KF_output=LinearKF(S, Z, KF_options) 
% KF_output=LinearKF(S, Z, KF_options) 
% 
% Linear Kalman Filter.  
% Implementation based upon description of the linear and adaptive Kalman  
% filter published by Sarah C. Rutan et al. in Analytica Chemica Acta, 160 
% (1984) 99-119. This script will run the linear Kalman filter on the first 
% spectrum to calculate the Kalman gain and state parameter error 
% covariance matrices. These are then used directly in the estimation of 
% the state parameters of the remaining measurement vectors. The user can 
% also provide Kalman gain and state parameter error covariance matrices 
% calculated previously. The script will also run through the data twice. 
% The state parameters are propagated from the first pass and the Kalman 
% filter will run through a second time to recalculate the innovations. This 
% will provide a better estimate of the final lack-of-fit.  
% 
% INPUT ARGUMENTS 
% 
% [S] is an (N x K) row matrix of reference measurement functions, such as 
% pure component spectra. N is the number of individual components and K 
% is the number of measurement variables. 
% 
% [Z] is a (J x K) matrix or (1 x K) vector of process measurement data where 
% J is the number of observations (spectra) and K is the number of 
% measurement variables. 
% 
% [KF_options] is a structured array that can be used to provide 
% additional optional input arguments. If the user does not provide any 
% additional input arguments, the script will call the default values 
% described below. 
% 
% [.R] is an estimate of the measurement noise variance. This value will 
% not change during Kalman filtering so the accuracy of the estimated state 
% parameters will be reduced by selecting an inappropriate value. 
% The default value is 0.0001.  
%  
% [.G] is an (N x K) row matrix of Kalman gain values to be applied during 
% Kalman filtering. The user may provide [G] if the Kalman filter has 
% been run previously using the same reference measurement functions. This 
% will prevent the Kalman filter from re-calulating the Kalman gain for the 
% first measurement vector, j=1. 
% The default value is [] (empty field). 
% 
% [.Xin] is a (J x N) matrix of initial estimates of the state parameters. 
% Enter a row vector for a single measurement vector or a row orientated  
% matrix (J rows) if a number of measurement vectors (spectra) are 
% used.  
% The default value is [] (empty field). 
% 
% [.EvoluOn] allows the user to specify whether the input matrix [Z] 
% contains evolutionary data (such as HPLC-DAD or reaction spectra). If 
% the data is evolutionary, the values of the state parameters at 
% measurement(time) j + 1 will be similiar to the values of the state 
% parameters at measurement (time) j. 
% If [.EvoluOn] = 1, the final estimated values of the state parameters at 
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% at sample j, variable k = K are propagated to be the initial estimates for 
% sample j+1, variable k = 1.  
% If [.EvoluOn] = 0, the final estimate of the state parameters for 
% measurement (time) j are not propagated to the measurement j+1. 
% The default value is 0 ([.EvoluOn] is off). 
% 
% [.Pin] is an (N x N) matrix of final variances to be used by Kalman filter. 
% 
% [.Plotting] allows the user to specify whether results are plotted after 
% Kalman filtering has been performed. 
% The default value is 1 ([.Plotting] is on). 
%  
% OUTPUT ARGUMENTS 
%  
% KF_output is a structured array generated by this script to store the 
% various outputs listed below. 
% 
% [.X] is a (J x N) matrix or (1 x N) row vector of the calculated state 
% parameters, where J is the number of observations (spectra) and N is the 
% number of state parameters (e.g. chemical components). 
%  
% [.G] is an (N x K) matrix of Kalman gains calculated for the first 
% measurement vector, j = 1 and used during Kalman filtering of the 
% remaining J-1 measurements. 
% 
% [.V] is a (J x K) matrix or (1 x K) row vector of innovation values for 
% each iteration k of the Kalman filter.  
% 
% [.Pf] is an (N x N) matrix that stores the final error variance (the 
% diagonal elements of the error covariance matrix P) at the K-th iteration. 
% 
% Nicholas I. Pedge 
% Department of Chemistry, University of Hull, Cottingham Road, Hull, 
% HU6 7RX  
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough,  
% Leicestershire, LE11 5RH 
% 
% KF_OUTPUT=LinearKF(S, Z, KF_options); 
  
% CHECK INPUT ARGUMENTS 
% Check that an options structure array, KF_options has been provided 
if nargin < 3 

fprintf( 'No options structure provided. Default values will be used \n' ) 
fprintf( 'This default options structure will be stored in the output structure \n' ) 
KF_options.R=1E-4; 
KF_options.G=[ ]; 
KF_options.Xin=[ ]; 
KF_options.EvoluOn=0; 
KF_options.Pin=[ ]; 
KF_options.Plotting=1; 

end 
% Check that the user provided KF_options is a structured array 
if isstruct(KF_options)==0 

error( 'The input argument [KF_options] should be a structured array' ) 
end 
% Check user has provided at least two input arguments 
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if nargin < 2 
error( 'Please provide [S] and [Z]' ) 

end 
% 
% Check the dimensions of [S] and [Z].  
[N,K]=size(S); 
S_trans=S'; 
% N is the number of components in reference data 
% K is the number of measurement variables in reference data 
 % 
[J, K2]=size(Z); 
% J is the number of observations or spectra (number of row vectors) 
% K2 is the number of variables 
% 
if K ~= K2 

error( 'The number of variables in [S] and [Z] are not equal' ) 
end 
% 
% EXTRACT VALUES FROM [KF_options] OR INITIALISE AS REQUIRED. 
R=KF_options.R; 
fprintf( 'Measurement error variance has been set to: %E \n' , R) 
% 
% If user has not provided Kalman gain matrix, initialise values of KG to 
% 1.0 
if isempty(KF_options.G)==1 

UpdateG=1; 
G=zeros(N, K); 

else 
UpdateG=0; 
G=KF_options.G; 
fprintf( 'User has provided matrix of Kalman gains \n' ) 

end 
% 
% If the user has not entered a vector or matrix [Xin] of initial estimates 
% for the state parameters (e.g. component concentrations), [X] is set to a 
% matrix of ones with dimensions (J,K). 
if isempty(KF_options.Xin)==1 

X = ones(J,N); 
fprintf( 'No initial estimates of X were provided by user \n' ) 

else 
X=KF_options.Xin; 
fprintf( 'A matrix of initial estimates of X were provided by user \n' ) 

end 
% 
EvoluOn=KF_options.EvoluOn; 
if EvoluOn==0 

fprintf( 'Data set will be treated as non-evolutionary \n' ) 
else 

fprintf( 'Data set will be treated as evolutionary \n' ) 
end 
% 
% If user has not provided error covariance matrix [.Pin], use initial 
% estimate calculated from reference measurement function [S]. 
if isempty(KF_options.Pin)==1 

UpdateP=1; 
P = cov(S'); 
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P = eye(N)*P*100; 
else 

UpdateP=0; 
Pin=KF_options.Pin; 
fprintf( 'User has provided matrix of state estimate errors \n' ) 

end 
% 
Plotting=KF_options.Plotting; 
if Plotting==0 

fprintf( 'Display plots is set to off \n' ) 
else 

fprintf( 'Display plots is set to on \n' ) 
end 
 % 
% PRE-ALLOCATE STORAGE VECTORS AND MATRICES 
V = zeros(J, K); 
%V(:,1)=Z(:,1);  
% 
% Matrix to store final state paramater estimate variance values. 
Pf=zeros(N, N); 
% 
% Vector to store the innovations square-root, sum-of-squares 
LOF=zeros(J,1); 
% 
%************************************************************************** 
% Recursive Kalman Filter Calculations             * 
%************************************************************************** 
tic 
% 
SecondPass=-1; % Counter so filter will make second pass through the data 
% 
while SecondPass < 1 

hw=waitbar(0, 'Please wait...' ); 
% 
for j=1:J; 

waitbar(j/J, hw) 
% 
if j==1 && UpdateP==1  

P = cov(S'); 
P=eye(N)*100*P; 

elseif j==1 && UpdateP==0 
P = Pin; 

elseif j~=1 && UpdateP==0 
P = Pf; 

end 
% 
% Update initial state estimates if evolutionary data is used. 
if (j>1) && EvoluOn == 1 

% Propagate state parameters to next sample. 
X(j,:)=X(j-1,:); 

end 
%  
for k = 1:K;  

% State estimate extrapolation. 
_old(j,:) = X(j,:); 
% x(k|k-1) = x(k-1:k-1) 
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% 
% Error covariance extrapolation. 
P_old = P; 
% P(k|k-1) = P(k-1|k-1) 
% 
% Calculate innovation INV(j,k) 
V(j,k)=Z(j,k)-(S(:,k)'*X_old(j,:)'); 
% V(k) = z(k) - (S(k)' * x(k|k-1)) 
%  
% Update Kalman gain 
if UpdateG==1 

G(:,k) = (P_old * S(:,k))*inv((S_trans(k,:) ... 
 *P_old*S(:,k))+R); 
% k(k)=(P(k|k-1).S(k)).[S(k)'.P(k|k-1).S(k)+R]^-1 

end 
% 
% State estimate update 
g=G(:,k); 
X(j,:)=X_old(j,:) + (g*V(j,k))'; 
% x(k|k)= x(k|k-1) + k(k)v(k) 
% 
% Error covariance update, numerically stable solution 
if UpdateP==1 

P=(eye(N)-(g*S_trans(k,:))) * P_old * ... 
(eye(N)-(g*S_trans(k,:)))'+ (g * R * g'); 
% P(k|k)= [I - k(k).S(k)'].P(k|k-1). 
% [I-k(k).S(k)']'+ k(k).R.k(k)' 

else 
P=P_old; 

end 
end % end k 
% 
UpdateP=0;  % After first spectrum, turn off updating of P 
UpdateG=0;  % After first spectrum, turn off updating of G 
Pf=P;   % After first spectrum, Pf = P 
% 
% ANALYSE INNOVATIONS SEQUENCE 
% 
% The innovations sequence contains the difference between the  
% predicted measurement value at variable k and the actual measured 
% value. If the Kalman filter is operating correctly, the  
% innovations sequence for each observation should be white noise  
% with zero mean. The square-root, sum-of-squares of each samples'  
% innovations sequence should decrease as Kalman filtering improves 
% 
VSSQ=V(j,:)*V(j,:)'/(K);  
DATASSQ=Z(j,:)*Z(j,:)'/(K); 
LOF(j) = (sqrt(VSSQ / DATASSQ))*100; 
% 
% This LOF statistic gives the average lack-of-fit per spectral  
% data point as a percentage of the average data point in [Z]. 

end % end j 
% 
close(hw) 
SecondPass=SecondPass+1; % increment counter so Kalman filter makes second pass 
Pin=Pf; 
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end % while 
% 
toc 
 
%************************************************************************** 
% End of Recursive Kalman Filter Calculations, update final outputs          * 
%************************************************************************** 
% 
% OUTPUT RESULTS 
KF_output.X=X; 
KF_output.G=G; 
KF_output.V=V; 
KF_output.LOF=LOF; 
KF_output.Pf=Pf; 
KF_output.KF_options=KF_options; 
% 
if Plotting ==1 
  if J>1 

figure() 
subplot(3,1,1) 
plot(1:J,X);axis tight ; 
title( 'State parameters' , 'fontweight' , 'bold' ); 
xlabel( 'Sample number' ); 
ylabel( 'State parameter' ); 
% 
subplot(3,1,2) 
plot(1:K,V); axis tight ; 
title( 'Innovations' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Innovations' ); 
% 
subplot(3,1,3) 
plot(1:J,LOF); axis tight ; 
title( 'Average LOF per variable point (%)' , 'fontweight' , 'bold' ); 
xlabel( 'Sample number' ); 
ylabel( 'LOF (%)' ); 

else 
figure() 
plot(1:K,V); axis tight ; 
title( 'Innovations' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Innovations' ); 

end 
end 
end % END OF FUNCTION
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AdaptiveKF.m 

function KF_output=AdaptiveKF(S, Z, W, KF_options) 
% KF_output=AdaptiveKF(S, Z, W, KF_options); 
% 
% Algorithm based upon description of the linear and adaptive Kalman  
% filter published by Sarah C. Rutan et al. in Analytica Chemica Acta, 160 
% (1984) 99-119. The script will run through the data twice. 
% The state parameters are propagated from the first pass and the Kalman 
% filter will run through a second time to recalculate the innovations. This 
% will provide a better estimate of the final spectral lack-of-fit 
% calculated using optimised state parameters. 
% The user will then have the option to augment the matrix of reference 
% measurement functions with a new component, or update an existing 
% reference measurement function for one of the components. The 
% augmentation or update assumes the reference measurement functions are 
% non-negative as described by Rutan and Brown. 
% 
% INPUT ARGUMENTS 
% 
% [S] is an (N x K) row matrix of reference measurement functions, such as 
% pure component spectra. N is the number of individual components and K 
% is the number of measurement variables. 
% 
% [Z] is a (J x K) matrix or (1 x K) vector of process measurement data where 
% J is the number of observations (spectra) and K is the number of 
% measurement variables. 
%  
% [W] is window size to be used for adapting the measurement variance 
% estimates, Rk. W must be even-numbered 
% 
% [KF_options] is a structured array that can be used to provide 
% additional optional input arguments. If the user does not provide any 
% additional input arguments, the script will call the default values 
% described below. 
% 
% [.Rmin] is the minimum measurement noise variance permitted. 
% The actual measurement noise variance will be calculated adaptively 
% during the Kalman filtering but the value of R is not permitted to drop 
% below Rmin. This value should be two or three orders of magnitude lower 
% than the expected measurement noise variance.  
% The default value is 1.0E-6  
%  
% [.Xin] is a (J x N) matrix of initial estimates of the state parameters. 
% Enter a row vector for a single measurement vector or a row orientated  
% matrix (J rows) if a number of measurement vectors (spectra) are 
% used.  
% The default value is [] (empty field). 
% 
% [.EvoluOn] allows the user to specify whether the input matrix [Z] 
% contains evolutionary data (such as HPLC-DAD or reaction spectra). If 
% the data is evolutionary, the values of the state parameters at 
% measurement (time) j + 1 will be similar to the values of the state 
% parameters at measurement (time) j. 
% If [.EvoluOn] = 1, the final estimated values of the state parameters at 
% at sample j, variable k = K are propagated to be the initial estimates for 
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% sample j + 1, variable k = 1.  
% If [.EvoluOn] = 0, the final estimate of the state parameters for 
% measurement (time) j are not propagated to the measurement j+1. 
% The default value is 0 ([.EvoluOn] is off). 
% 
% [.Plotting] allows the user to specify whether results are plotted after 
% Kalman filtering has been performed. 
% The default value is 1 ([.Plotting] is on). 
%  
% OUTPUT ARGUMENTS 
%  
% KF_output is a structured array generated by this script to store the 
% various outputs listed below. 
% 
% [.X] is a (J x N) matrix or (1 x N) row vector of the calculated state 
% parameters, where J is the number of observations (spectra) and N is the 
% number of state parameters (e.g. chemical components). 
%  
% [.G_ALL] is an (N x K x J) array of Kalman gains calculated for each 
% measurement vector. It is necessary to recalculate the Kalman gains 
% for each measurement vector as the measurement variance is adapted based 
% on the innovations sequence. 
% If input [Z] is a single measurement vector, the output [.G_ALL] will 
% be a N x K matrix of Kalman gain values 
% 
% [.Pf_ALL] is a (J x N) matrix or (1 x N) row vector which stores the final  
% error variance (the diagonal elements of the error covariance matrix P)  
% at the K-th iteration for ach of the J measurements 
% 
% [.V] is a (J x K) matrix or (1 x K) row vector of innovation values for 
% each iteration k of the Kalman filter.  
% 
% [.Rk] is a (J x K) matrix or (1 x K) vector of adaptive measurement error  
% values calculated at each variable index k.  
% 
% [.LOF] is the average measurement lack-of-fit with respect to the original 
% data for each measurement j. This produces a (J x 1) column vector. A 
% large value indicates that the Kalman filter has fitted the original 
% measurement vector with less accuracy and is a good indication of the 
% presence of an un-modelled component. 
%  
% [.LOF_Index] is index number (j) of the measurement vector that yields 
% the largest LOF value. This is usually the measurement in which an 
% contribution of an un-modelled component is at its largest. 
%  
% [.S_new] is the reference measurement function [S] after augmentation or 
% correction using adaptive variance (Rk) values. 
% 
% [.KF_options] is a structured array containing the various input options 
% used to run the Kalman filter. 
% 
% Nicholas I. Pedge 
% Department of Chemistry, University of Hull, Cottingham Road, Hull, 
% HU6 7RX  
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough,  
% Leicestershire, LE11 5RH 
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% 
% KF_output=AdaptiveKF(S, Z, W, KF_options); 
  
% CHECK INPUT ARGUMENTS 
% Check that an options structure array, KF_options has been provided 
if nargin < 4 

fprintf( 'No options structure provided. Default values will be used \n' ) 
fprintf( 'This default options structure will be stored in the output structure \n' ) 
KF_options.Rmin=1E-6; 
KF_options.Xin=[ ]; 
KF_options.EvoluOn=0; 
KF_options.Plotting=1; 

end 
% Check that the user provided KF_options is a structured array 
if isstruct(KF_options)==0 

error( 'The input argument [KF_options] should be a structured array' ) 
end 
% Check user has provided at least two input arguments 
if nargin < 3 

error( 'Please provide [S], [Z] and [W]' ) 
end 
% 
% Check the dimensions of [S] and [Z].  
[N,K]=size(S); 
S_trans=S'; 
% N is the number of components in reference data 
% K is the number of measurement variables in reference data 
% 
[J, K2]=size(Z); 
% J is the number of observations or spectra (number of row vectors) 
% K2 is the number of variables 
% 
if K ~= K2 

error( 'The number of variables in [S] and [Z] are not equal' ) 
end 
% 
% EXTRACT VALUES FROM [KF_options] OR INITIALISE AS REQUIRED. 
Rmin=KF_options.Rmin; 
fprintf( 'Minimum permitted measurement error variance has been set to: %E \n' , Rmin) 
% 
% If the user has not entered a vector or matrix [Xin] of initial estimates 
% for the state parameters (e.g. component concentrations), [X] is set to a 
% matrix of ones with dimensions (J,K). 
if isempty(KF_options.Xin)==1 

X = ones(J,N); 
fprintf( 'No initial estimates of X were provided by user \n' ) 

else 
X=KF_options.Xin; 
fprintf( 'A matrix of initial estimates of X were provided by user \n' ) 

end 
% 
EvoluOn=KF_options.EvoluOn; 
if EvoluOn==0 

fprintf( 'Data set will be treated as non-evolutionary \n' ) 
else 

fprintf( 'Data set will be treated as evolutionary \n' ) 
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end 
% 
% Calculate initial estimate of P from reference measurement function [S]. 
P = cov(S'); 
P=eye(N)*100*P; 
% 
Plotting=KF_options.Plotting; 
if Plotting==0 

fprintf( 'Display plots is set to off \n' ) 
else 

fprintf( 'Display plots is set to on \n' ) 
end 
% 
if rem(W,2)~=0 % W is odd 

W=W+1; 
end 
% PRE-ALLOCATE STORAGE VECTORS AND MATRICES 
V = zeros(J, K); 
X_old = zeros(J, N); 
% 
% Array to store the Kalman gains matrix for each measurement vector 
G_ALL=zeros(N,K,J); 
% Matrix to store final state paramater error variance values. 
Pf_ALL1=zeros(J,N); 
Pf_ALL2=zeros(J,N,N); 
% 
% Vector to store the innovations square-root, sum-of-squares 
LOF=zeros(J,1); 
% 
% Matrix to store the Rk values calculated during the calculation of the 
% adaptive measurement noise variance.  
Rk=zeros(J,K); Rk(:,1)= Rmin; 
% 
%************************************************************************** 
% Recursive Kalman Filter Calculations              * 
%************************************************************************** 
tic 
% 
SecondPass=-1; % Counter so filter will make second pass through the data 
% 
while SecondPass < 1 

hw=waitbar(0, 'Please wait...' ); 
% 
for j=1:J; 

waitbar(j/J, hw) 
% 
if SecondPass==-1 

P = cov(S'); 
P = eye(N)*P*100; 

else 
P = squeeze(Pf_ALL2(j,:,:)); 

end 
% 
% Update initial state estimates if evolutionary data is used. 
if (j>1) && EvoluOn == 1 

% Propagate state parameters to next sample. 
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X(j,:)=X(j-1,:); 
end 
% 
for k = 2:K; 

% State estimate extrapolation. 
X_old(j,:) = X(j,:); 
% x(k|k-1) = x(k-1:k-1) 
% 
% Error covariance extrapolation. 
P_old = P; 
% P(k|k-1) = P(k-1|k-1) 
% 
% Calculate innovation INV(j,k) 
V(j,k)=Z(j,k)-(S(:,k)'*X_old(j,:)'); 
% V(k) = z(k) - (S(k)' * x(k|k-1)) 
% 
% Calculate adaptive variance R, use available data if k < W 
m=W; 
if m >= k 

m = k-1; % if k=2, m=1 etc. 
end 
% 
for i=1:m; 

V_sum(i)=(V(j,k-i)*V(j,k-i)); 
end 
% 
V_sum=sum(V_sum); 
% Update estimate of R, measurement error (equation 11) 
Rk(j,k)=((inv(m))*(V_sum)) - (S_trans(k,:)*P_old*S(:,k)); 
% R(k) = 1/m [ j=1 Sigma m v(k-j).v(k-j)] - 
%     S(k)'.P(k|k-1).S(k) 
% 
% Limit variance to prevent R approaching zero as that can result 
% in a singular error covariance matrix P. 
if Rk(j,k)<Rmin 

Rk(j,k)=Rmin; 
end 
% Update Kalman gain 
G(:,k) = (P_old * S(:,k))*(inv((S_trans(k,:) ... 

*P_old*S(:,k))+Rk(j,k))); 
% k(k)=(P(k|k-1).S(k)).[S(k)'.P(k|k-1).S(k)+R]^-1 
% 
g=G(:,k); 
G_ALL(:,k,j)=g; 
% 
% State estimate update 
X(j,:)=X_old(j,:) + (g*V(j,k))'; 
% x(k|k)= x(k|k-1) + k(k)INV(k) 
% 
% Error covariance update, numerically stable solution 
P = (eye(N)-(g*S_trans(k,:))) * P_old * ... 

(eye(N)-(g*S_trans(k,:)))' + (g * Rk(j,k) * g'); 
% P(k|k)= [I - k(k).S(k)'].P(k|k-1). 
%   [I-k(k).S(k)']'+ k(k).R.k(k)' 

end % end k 
% 
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Pf_ALL1(j,:)=diag(P); 
Pf_ALL2(j,:,:)=P; 
% 
% ANALYSE INNOVATIONS SEQUENCE 
 % The innovations sequence contains the difference between the 
% predicted measurement value at variable k and the actual measured 
% value. If the Kalman filter is operating correctly, the 
% innovations sequence for each observation should be white noise 
% with zero mean. The square-root, sum-of-squares of each samples' 
% innovations sequence should decrease as Kalman filtering improves 
% 
VSSQ=V(j,:)*V(j,:)' ./(K); 
DATASSQ=Z(j,:)*Z(j,:)' ./(K); 
LOF(j) = (sqrt(VSSQ / DATASSQ))*100; 
% 
% This LOF statistic gives the average lack-of-fit per spectral 
% data point as a percentage of the average data point in [Z]. 
% 

end % end j 
% 
close(hw) 
SecondPass=SecondPass+1; % increment counter 

end % while 
LOF_Max, LOF_Index]=max(LOF); 
Pf_ALL=Pf_ALL1; clear Pf_ALL1 Pf_All2 
toc 
% 
%************************************************************************** 
% End of Recursive Kalman Filter Calculations              * 
%************************************************************************** 
% 
if Plotting ==1 

if J>1 
figure() 
subplot(2,1,1) 
plot(1:J,X);axis tight ; 
title( 'Estimated state parameters' , 'fontweight' , 'bold' ); 
xlabel( 'Sample number' ); 
ylabel( 'State parameter' ); 
% 
subplot(2,1,2) 
plot(1:J,LOF); axis tight ; 
title( 'Average LOF per variable point (%)' , 'fontweight' , 'bold' ); 
label( 'Sample number' ); 
label( 'LOF (%)' ); 
% 
figure() 
subplot(2,1,1) 
plot(1:K,V); axis tight ; 
title( 'Innovations sequence' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Innovations' ); 
subplot(2,1,2) 
plot(1:K,Rk); axis tight ; 
title( 'Adaptive measurement variance' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
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ylabel( 'R' ); 
else 

subplot(2,1,1) 
plot(1:K,V); axis tight ; 
title( 'Innovations sequence' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Innovations' ); 
subplot(2,1,2) 
plot(1:K,Rk); axis tight ; 
title( 'Adaptive measurement variance' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'R' ); 

end  
end  
% 
%************************************************************************** 
% Update or augment the reference measurement function S if there is an         * 
% un-modelled contribution to the data. The matrices Bk and the           * 
% innovation matrix V are used to create to augment or correct the          * 
% measurement function               * 
%************************************************************************** 
% 
disp( 'Press (1) to Augment the Reference Measurement Function' ) 
disp( 'Press (2) to Modify a component of Reference Measurement Function' )  
disp( 'Press (3) to make no change to the Reference Measurement Function' ) 
UserOpt1=input( 'Select an option ' ); 
while UserOpt1 <1 || UserOpt1 >3 

disp( 'Invalid option' ) 
disp( 'Do you wish to Augment Reference Measurement Function? (1)' ) 
disp( 'Do you wish to Modify Reference Measurement Function? (2)' ) 
disp( 'Make no changes to the Reference Measurement Functions? (3)' ) 
UserOpt1=input( 'Please select an option? ' ); 

end 
% 
if UserOpt1 == 1 

[S_new]=augment(V,Rk,S,W,LOF_Index); 
end 
% 
if UserOpt1 == 2 

[S_new]=update(V,Rk,S,W,LOF_Index); 
end 
% 
if UserOpt1 == 3 

S_new=S; 
end 
% 
% OUTPUT RESULTS 
KF_output.X=X; 
KF_output.G_ALL=G_ALL; 
KF_output.Pf_ALL=Pf_ALL; 
KF_output.V=V; 
KF_output.Rk=Rk; 
KF_output.LOF=LOF; 
KF_output.LOF_Index=LOF_Index; 
KF_output.S_new=S_new; 
KF_output.KF_options=KF_options; 
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% Use the command KF_options=KF_output.KF_options; to extract options 
% structure at command line. 
end % END FUNCTION 'AdaptiveKF' 
 
 
 
%************************************************************************** 
% Subfunction Augment                * 
% ************************************************************************* 
function [S_new]=augment(V,Rk,S,W,LOF_Index) 
% subfunction augment  
[N,K]=size(S); 
[J,K]=size(V);  
% Vector to store augmented reference function 
S_Aug=zeros(1,K);  
% 
% Augmentation calculation using spectrum with largest spectral LOF 
Bk=zeros(1,K); 
for k=2:K-(W/2)-1 

m=W; 
if m>k 

m=k-1; 
end 
b=zeros(m,1); 
for i=1:m  

b(i)=V(LOF_Index,k-i+(floor(m/2)))/m; 
end 
% 
b_sum=sum(b); 
% 
if b_sum > 0 

Bk(k)=1; 
else 

Bk(k)=-1; 
end 

end 
% 
for k=2:K-(W/2)-1 

m=W; 
if m>k 

m=k-1; 
end 
% 
if Bk(k)==1 

S_Aug(k)=Bk(k)*(sqrt(Rk(LOF_Index,k+(floor(m/2))))); 
else 

S_Aug(k)=0; 
end 

end 
% 
S_Aug=S_Aug/norm(S_Aug,2); % Normalise spectrum 
S_new=[S;S_Aug]'; % Augment reference measurement function matrix 
% 
figure() 
plot(1:K, S_new(:,1:end-1), 'linewidth' ,1);hold on ; 
plot(1:K, S_new(:,end), 'linewidth' ,2); 
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legend 
title( 'Augmented Reference Measurement Function' , 'fontweight' , 'bold' ) 
xlabel( 'Variable' ) 
ylabel( 'Value' ) 
% 
end % END SUBFUNCTION 'augment' 
 
%************************************************************************** 
% Subfunction Update                * 
% ************************************************************************* 
function [S_new]=update(V,Rk,S,W,LOF_Index) 
% subfunction update  
[N,K]=size(S); 
[J,K]=size(V);  
S_new=S; 
% 
figure() 
subplot(2,1,1) 
plot(1:K, S, 'linewidth' ,1);hold on ; 
legend 
title( 'Original Reference Measurement Function' , 'fontweight' , 'bold' ) 
xlabel( 'Variable' ) 
ylabel( 'Value' ) 
subplot(2,1,2) 
plot(1:K, Rk(LOF_Index,:), 'linewidth' ,2); 
title( 'Rk at maximum lack-of-fit' , 'fontweight' , 'bold' ) 
xlabel( 'Variable' ) 
ylabel( 'Value' ) 
% 
disp( 'Please select the component you wish to modify' ) 
string1=[ 'Select an integer number between 1 and ' ,num2str(N), ': ' ]; 
UserOpt2=input(string1); 
while UserOpt2 <1 || UserOpt2 > N 

disp( 'The number you selected is out of range' ) 
UserOpt2=input(string1); 

end 
% 
% Update reference measurement function using spectrum with largest spectral LOF 
Bk=zeros(1,K); 
for k=2:K-(W/2)-1 

m=W; 
if m>k 

m=k-1; 
end 
% 
b=zeros(m,1); 
for i=1:m  

b(i)=V(LOF_Index,k-i+(floor(m/2)))/m; 
end 
% 
b_sum=sum(b); 
% 
if b_sum > 0 

Bk(k)=1; 
else 

Bk(k)=-1; 
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end 
end 
% 
for k=2:K-(W/2)-1 

m=W; 
if m>k 

m=k-1; 
end 
% 
S_new(UserOpt2,k)=S(UserOpt2,k) + ... 
Bk(k)*(sqrt(Rk(LOF_Index,k+(floor(m/2))))); 
% 
if S(UserOpt2, k)< 0 

S_new(UserOpt2, k)= 0; 
end 

end 
% 
figure() 
plot(1:K, S, 'linewidth' ,1);hold on ; 
plot(1:K, S_new(UserOpt2,:), 'linewidth' ,2); 
legend 
title( 'Updated Reference Measurement Function' , 'fontweight' , 'bold' ) 
xlabel( 'Variable' ) 
ylabel( 'Value' ) 
end % END SUBFUNCTION 'update' 
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VecLinearKF.m 

function KF_output=VecLinearKF(S, Z, KF_options) 
% KF_output=VecLinearKF(S, Z, KF_options); 
% 
% Vectorised Linear Kalman Filter.  
% This is a vectorised implementation of the linear Kalman filter and is 
% based upon the description of the linear and adaptive Kalman filter 
% published by Sarah C. Rutan et al. in Analytica Chemica Acta, 160 
% (1984) 99-119.  
% The Kalman filter calculations have been vectorised so if the user 
% specifies a matrix of measurement data, the entire matrix of state 
% parameter estimates will be updated at each iteration (variable k). 
% The vectorised Kalman filter will produce identical results to the 
% standard Kalman filter for the same data set [Z],reference measurement 
% functions [S] and measurement noise variance [R]. However the script 
% will run much faster. The user can also provide Kalman gain 
% and state parameter error covariance matrices calculated previously.  
% The script will run through the data twice. The state parameters are 
% propagated from the first pass and the Kalman filter will run through a 
% second time to recalculate the innovations. This will provide a better 
% estimate of the final innovations (spectral) lack-of-fit calculated using 
% optimised state parameters 
% 
% INPUT ARGUMENTS 
% 
% [S] is an (N x K) row matrix of reference measurement functions, such as 
% pure component spectra. N is the number of individual components and K 
% is the number of measurement variables. 
% 
% [Z] is a (J x K) matrix or (1 x K) vector of process measurement data where 
% J is the number of observations (spectra) and K is the number of 
% measurement variables. 
% 
% [KF_options] is a structured array that can be used to provide 
% additional optional input arguments. If the user does not provide any 
% additional input arguments, the script will call the default values 
% described below. 
% 
% [.R] is an estimate of the measurement noise variance. This value will 
% not change during Kalman filtering so the accuracy of the estimated state 
% parameters will be reduced by selecting an inappropriate value. 
% The default value is 0.0001.  
%  
% [.G] is an (N x K) row matrix of Kalman gain values to be applied during 
% Kalman filtering. The user may provide [G] if the Kalman filter has 
% been run previously using the same reference measurement functions. 
% The default value is [ ] (empty field). 
% 
% [.Xin] is a (J x N) matrix of initial estimates of the state parameters. 
% Enter a row vector for a single measurement vector or a row orientated  
% matrix (J rows) if a number of measurement vectors (spectra) are 
% used.  
% The default value is [ ] (empty field). 
% 
% [.Pin] is an (N x N) matrix of final variances to be used by Kalman 
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% filter. 
% 
% [.Plotting] allows the user to specify whether results are plotted after 
% Kalman filtering has been performed. 
% The default value is 1 ([.Plotting] is on). 
%  
% OUTPUT ARGUMENTS 
%  
% KF_output is a structured array generated by this script to store the 
% various outputs listed below. 
% 
% [.X] is a (J x N) matrix or (1 x N) row vector of the calculated state 
% parameters, where J is the number of observations (spectra) and N is the 
% number of state parameters (e.g. chemical components). 
%  
% [.G] is an (N x K) matrix of Kalman gains calculated during Kalman 
% filtering. 
% 
% [.V] is a (J x K) matrix or (1 x K) row vector of innovation values for 
% each iteration k of the Kalman filter.  
% 
% [.Pf] is an (N x N) matrix that stores the final error variance (the 
% diagonal elements of the error covariance matrix P) at the K-th iteration. 
% 
% [.LOF] is a (J x 1) vector of spectral Lack-of-fit values calculated from 
% the corresponding innovations sequences. 
% 
% Nicholas I. Pedge 
% Department of Chemistry, University of Hull, Cottingham Road, Hull, 
% HU6 7RX  
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough,  
% Leicestershire, LE11 5RH 
% 
% function KF_output=VecLinearKF(S, Z, KF_options); 
  
% CHECK INPUT ARGUMENTS 
% Check that an options structure array, KF_options has been provided 
if nargin < 3 

fprintf( 'No options structure provided. Default values will be used \n' ) 
fprintf( 'This default options structure will be stored in the output structure \n' ) 
KF_options.R=1E-4; 
KF_options.G=[ ]; 
KF_options.Xin=[ ]; 
KF_options.Pin=[ ]; 
KF_options.Plotting=1; 

end 
% Check that the user provided KF_options is a structured array 
if isstruct(KF_options)==0 

error( 'The input argument [KF_options] should be a structured array' ) 
end 
% Check user has provided at least two input arguments 
if nargin < 2 

error( 'Please provide [S] and [Z]' ) 
end 
% 
% Check the dimensions of [S] and [Z].  
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[N,K]=size(S); 
S_trans=S'; 
% N is the number of components in reference data 
% K is the number of measurement variables in reference data 
% 
[J, K2]=size(Z); 
% J is the number of observations or spectra (number of row vectors) 
% K2 is the number of variables 
% 
if K ~= K2 

error( 'The number of variables in [S] and [Z] are not equal' ) 
end 
% 
% EXTRACT VALUES FROM [KF_options] OR INITIALISE AS REQUIRED. 
R=KF_options.R; 
fprintf( 'Measurement error variance has been set to: %E \n' , R) 
% 
% If user has not provided Kalman gain matrix, initialise values of G to 
% 1.0 
if isempty(KF_options.G)==1 

UpdateG=1; 
G=zeros(N, K); 

else 
UpdateG=0; 
G=KF_options.G; 
fprintf( 'User has provided matrix of Kalman gains \n' ) 

end 
% 
% If the user has not entered a vector or matrix [Xin] of initial estimates 
% for the state parameters (e.g. component concentrations), [X] is set to a 
% matrix of ones with dimensions (J,K). 
if isempty(KF_options.Xin)==1 

X = ones(J,N); 
fprintf( 'No initial estimates of X were provided by user \n' ) 

else 
X=KF_options.Xin; 
fprintf( 'A matrix of initial estimates of X were provided by user \n' ) 

end 
% 
% If user has not provided error covariance matrix [.Pin], use initial 
% estimate calculated from reference measurement function [S]. 
if isempty(KF_options.Pin)==1 

UpdateP=1; 
P=cov(S'); 
P=eye(N)*P*100; 

else 
UpdateP=0; 
Pin=KF_options.Pin; 
fprintf( 'User has provided matrix of state estimate errors \n' ) 

end 
% 
Plotting=KF_options.Plotting; 
if Plotting==0 

fprintf( 'Display plots is set to off \n' ) 
else 

fprintf( 'Display plots is set to on \n' ) 
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end 
% 
% PRE-ALLOCATE STORAGE VECTORS AND MATRICES 
V = zeros(J, K);  
% 
% Matrix to store final state paramater estimate variance values. 
Pf=zeros(N, N); 
% 
% Vector to store the innovations square-root, sum-of-squares 
LOF=zeros(J,1); 
% 
%************************************************************************** 
% Vectorised linear Kalman Filter Calculations                      * 
%************************************************************************** 
tic 
% 
SecondPass=-1; % Counter so filter will make second pass through the data 
% 
while SecondPass < 1 

hw=waitbar(0, 'Please wait...' ); 
% 
if UpdateP==1  

P = cov(S'); 
P = eye(N)*P*100; 

else 
P = Pin; 

end 
% 
for k = 1:K; 

waitbar(k/K, hw) 
%  
% State estimate extrapolation 
X_old = X; 
% X(k|k-1) = X(k-1:k-1) Matrix notation 
% 
% Error covariance extrapolation 
P_old = P; 
% P(k|k-1) = P(k-1|k-1) Matrix notation 
% 
% Calculate innovation V(:,k) 
V(:,k)=Z(:,k)-(X_old*S(:,k)); 
% V(k) = z(k)- (X(k|k-1) * h(k)) Matrix notation 
% 
% Update Kalman gain 
if UpdateG==1 

G(:,k) = (P_old * S(:,k)) * inv((S_trans(k,:) ... 
*P_old*S(:,k))+R); 

% k(k)=[P(k|k-1)*h(k)]*[(h(k)'*P(k|k-1)*h(k))+ R)]-1  
end 
% 
% State estimate update 
g=G(:,k); 
X=X_old + (V(:,k)*g');  
% X(k|k)= X(k|k-1) + (INV(k)* k(k)') Matrix notation 
% 
% Error covariance update, numerically stable solution  
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if UpdateP==1 
P=(eye(N)-(g * S_trans(k,:))) * P_old * ... 

(eye(N)-(g * S_trans(k,:)))' + (g * R * g'); 
% P(k|k) = [I - k(k).S(k)'].P(k|k-1). 
%  [I-k(k).S(k)']' + k(k).R.k(k)' 

else 
P=P_old; 

end 
end % end k 
UpdateP=0;  % After first pass, turn off updating of P 
UpdateG=0;  % After first pass, turn off updating of G 
Pf=P;   % After first pass, Pf = P 
% 
close(hw) 
SecondPass=SecondPass+1; 
Pin=Pf; 

end % end while 
% 
% ANALYSE INNOVATIONS SEQUENCE 
% 
% The innovations sequence contains the difference between the predicted 
% measurement value at variable k and the actual measured value. If the 
% Kalman filter is operating correctly, the innovations sequence for each 
% observation should be white noise with zero mean. The square-root, 
% sum-of-squares of each samples' innovations sequence should decrease as 
% Kalman filtering improves. 
VSSQ=sum((V.^2),2)/(K); 
DATASSQ=sum((Z.^2),2)/(K); 
LOF = (sqrt(VSSQ ./ DATASSQ))*100; 
% 
% This LOF statistic gives the average lack-of-fit per spectral data point 
% as a percentage of the average data point in original data. 
% 
toc  
%************************************************************************** 
% End of Vectorised Kalman Filter Calculations, update final outputs          * 
%************************************************************************** 
% 
% OUTPUT RESULTS 
KF_output.X=X; 
KF_output.G=G; 
KF_output.V=V; 
KF_output.Pf=Pf; 
KF_output.LOF=LOF; 
KF_output.KF_options=KF_options; 
% 
if Plotting ==1 

if J>1 
figure() 
subplot(3,1,1) 
plot(1:J,X); axis tight 
title( 'State parameters' , 'fontweight' , 'bold' ); 
xlabel( 'Sample number' ); 
ylabel( 'State parameter' ); 
% 
subplot(3,1,2) 



Appendix II – Matlab Functions: VecLinearKF.m 

 - A63 - 

plot(1:K,V); axis tight 
title( 'Innovations' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Innovations' ); 
% 
subplot(3,1,3) 
plot(1:J,LOF); axis tight 
title( 'Average LOF per variable point (%)' , 'fontweight' , 'bold' ); 
xlabel( 'Sample number' ); 
ylabel( 'LOF (%)' ); 

else 
figure() 
plot(1:K,V); axis tight 
title( 'Innovations' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Innovations' ); 

end 
end % END OF FUNCTION 
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VecAdaptiveKF.m 

function KF_output=VecAdaptiveKF(S, Z, W, KF_options) 
% KF_output=VecAdaptiveKF(S, Z, W, KF_options); 
%  
% This is a vectorised implementation of the adaptive Kalman filter and is 
% based upon the description of the linear and adaptive Kalman filter 
% published by Sarah C. Rutan et al. in Analytica Chemica Acta, 160 
% (1984) 99-119.  
% The Kalman filter calculations have been vectorised so if the user 
% specifies a matrix of measurement data, the entire matrix of state 
% parameter estimates will be updated during each iteration (variable k). 
% The vectorised adaptive Kalman filter will produce identical results to 
% the original Kalman filter for the same data set [Z], reference measurement 
% functions [S] and measurement noise variance [R]. However the script 
% will run much faster as a consequence of vectorisation.  
% The script will run through the data twice; the state parameters are 
% propagated from the first pass and the Kalman filter will run through a 
% second time to recalculate the innovations. This will provide a better 
% estimate of the final spectral lack-of-fit calculated using optimised 
% state parameters. 
% Unlike the original adaptive Kalman filter 'AdaptiveKF.m', the user is 
% not given the option to augment the matrix of reference measurement 
% functions with a new component, or update an existing reference 
% measurement for one of the components.  
% 
% INPUT ARGUMENTS 
% 
% [S] is an (N x K) row matrix of reference measurement functions, such as 
% pure component spectra. N is the number of individual components and K 
% is the number of measurement variables. 
% 
% [Z] is a (J x K) matrix or (1 x K) vector of process measurement data where 
% J is the number of observations (spectra) and K is the number of 
% measurement variables. 
% 
% [W] is window size to be used for adapting the measurement variance 
% estimates, Rk. W must be even-numbered 
% 
% [KF_options] is a structured array that can be used to provide 
% additional optional input arguments. If the user does not provide any 
% additional input arguments, the script will call the default values 
% described below. 
% 
% [.Rmin] is the minimum measurement noise variance permitted. 
% The actual measurement noise variance will be calculated adaptively 
% during the Kalman filtering but the value of R is not permitted to drop 
% below Rmin. This value should be two or three orders of magnitude lower 
% than the expected measurement noise variance.  
% The default value is 1.0E-6  
%  
% [.Xin] is a (J x N) matrix of initial estimates of the state parameters. 
% Enter a row vector for a single measurement vector or a row orientated  
% matrix (J rows) if a number of measurement vectors (spectra) are 
% used.  
% The default value is [] (empty field). 
% 
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% [.Plotting] allows the user to specify whether results are plotted after 
% Kalman filtering has been performed. 
% The default value is 1 ([.Plotting] is on). 
%  
% OUTPUT ARGUMENTS 
%  
% KF_output is a structured array generated by this script to store the 
% various outputs listed below. 
% 
% [.X] is a (J x N) matrix or (1 x N) row vector of the calculated state 
% parameters, where J is the number of observations (spectra) and N is the 
% number of state parameters (e.g. chemical components). 
%  
% [.G] is an (N x K) matrix of Kalman gains calculated during Kalman 
% filtering. 
% 
% [.V] is a (J x K) matrix or (1 x K) row vector of innovation values for 
% each iteration k of the Kalman filter.  
% 
% [.Pf] is an (N x N) matrix that stores the final error variance (the 
% diagonal elements of the error covariance matrix P) at the K-th iteration. 
% 
% [.Rk] is a (J x K) matrix or (1 x K) vector of adaptive measurement error  
% values calculated at each variable index k.  
% 
% [.LOF] is the average measurement lack-of-fit with respect to the original 
% data for each measurement j. This produces a (J x 1) column vector. A 
% large value indicates that the Kalman filter has fitted the original 
% measurement vector with less accuracy and is a good indication of the 
% presence of an un-modelled component. 
% 
% Nicholas I. Pedge 
% Department of Chemistry, University of Hull, Cottingham Road, Hull, 
% HU6 7RX  
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough,  
% Leicestershire, LE11 5RH 
% 
% function KF_output=VecAdaptiveKF(S, Z, W, KF_options); 
  
% CHECK INPUT ARGUMENTS 
% Check that an options structure array, KF_options has been provided 
if nargin < 4 

fprintf( 'No options structure provided. Default values will be used \n' ) 
fprintf( 'This default options structure will be stored in the output structure \n' ) 
KF_options.Rmin=1E-6; 
KF_options.Xin=[ ]; 
KF_options.Plotting=1; 

end 
% Check that the user provided KF_options is a structured array 
if isstruct(KF_options)==0 

error( 'The input argument [KF_options] should be a structured array' ) 
end 
% Check user has provided at least two input arguments 
if nargin < 3 

error( 'Please provide [S], [Z] and [W]' ) 
end 
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% 
% Check the dimensions of [S] and [Z].  
[N,K]=size(S); 
S_trans=S'; 
% N is the number of components in reference data 
% K is the number of measurement variables in reference data 
% 
[J, K2]=size(Z); 
% J is the number of observations or spectra (number of row vectors) 
% K2 is the number of variables 
% 
if K ~= K2 

error( 'The number of variables in [S] and [Z] are not equal' ) 
end 
% 
% EXTRACT VALUES FROM [KF_options] OR INITIALISE AS REQUIRED. 
Rmin=KF_options.Rmin; 
fprintf( 'Minimum permitted measurement error variance has been set to: %E \n' , Rmin) 
% 
% If the user has not entered a vector or matrix [Xin] of initial estimates 
% for the state parameters (e.g. component concentrations), [X] is set to a 
% matrix of ones with dimensions (J,K). 
if isempty(KF_options.Xin)==1 

X = ones(J,N); 
fprintf( 'No initial estimates of X were provided by user \n' ) 

else 
X=KF_options.Xin; 
fprintf( 'A matrix of initial estimates of X were provided by user \n' ) 

end 
% 
Plotting=KF_options.Plotting; 
if Plotting==0 

fprintf( 'Display plots is set to off \n' ) 
else 

fprintf( 'Display plots is set to on \n' ) 
end 
% 
% PRE-ALLOCATE STORAGE VECTORS AND MATRICES 
V = zeros(J, K);  
% 
% Matrix to store final state paramater estimate variance values. 
Pf=zeros(N, N); 
% 
% Vector to store the innovations square-root, sum-of-squares 
LOF=zeros(J,1); 
% 
% Set up output matrix for the adaptive measurement variance values. 
% Rk=R*ones(J,K); 
Rk=zeros(J,K); Rk(:,1)=Rmin; 
%  
% Set up output matrix for the Kalman gains 
G=zeros(N, K); 
% 
%************************************************************************** 
% Vectorised Adaptive Kalman Filter Calculations                                                  * 
%************************************************************************** 
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tic 
% 
SecondPass=-1; % Counter so filter will make second pass through the data 
% 
while SecondPass < 1 

if Plotting==1 
hw=waitbar(0, 'Please wait...' ); 

end 
% 
if SecondPass==-1 

P = cov(S'); 
P = eye(N)*P*100; 

else 
P = Pf; 

end 
% 
for k = 2:K; 

if Plotting ==1 
waitbar(k/K, hw) 

end 
%  
% State estimate extrapolation 
 X_old = X; 
% X(k|k-1) = X(k-1:k-1) Matrix notation 
% 
% Error covariance extrapolation 
P_old = P; 
% P(k|k-1) = P(k-1|k-1) Matrix notation 
% 
% Calculate innovation INV(:,k) 
V(:,k)=Z(:,k)-(X_old*S(:,k)); 

   % V(k) = z(k)- (X(k|k-1) * h(k)) Matrix notation 
% 
% Calculate adaptive measurement variance Rk 
% Only use available data if k < m 
% 
m = W; 
if m >= k  % If m is greater than or equal to the current 

m = k-1; % iteration k, use k-1 
end 
% 
% Initialise V_sum matrix to zeros 
% 
V_sum=zeros(J, m); 

   % 
for i=1:m; 

V_sum(:,i)=(V(:,k-i).*V(:,k-i)); % square each element 
end 
% 
V_sum2=sum(V_sum,2); 
% 
% Update estimate of R, measurement error. 
% Rk is a vector containing measurement error R for each row of the 
% original data matrix. 
% 
Rk(:,k)=(inv(m).*V_sum2') - (S_trans(k,:)*P_old*S(:,k)); 
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% R(k) = 1/m [ j=1 Sigma m v(k-j).v(k-j)] - S(k)'.P(k|k-1).S(k)  
% Find maximum value of R for use in update of Kalman gain 
Rnew=max(Rk(:,k)); 
% 
% Limit variance to prevent R approaching zero as that can result 
% in a singular error covariance matrix P. 
if Rnew<Rmin 

Rnew=Rmin; 
end 
% 
% Update Kalman gain 
G(:,k) = (P_old * S(:,k)) * inv((S_trans(k,:) ... 

*P_old*S(:,k))+Rnew); 
% k(k)=[P(k|k-1)*h(k)]*[(h(k)'*P(k|k-1)*h(k))+ R)]-1 
% 
% State estimate update 
g=G(:,k); 
X=X_old + (V(:,k)*g');  
% X(k|k)= X(k|k-1) + (INV(k)* k(k)') Matrix notation 
% 
% Error covariance update, numerically stable solution  
P=(eye(N)-(g*S_trans(k,:))) * P_old * ... 

(eye(N)-(g*S_trans(k,:)))'+(g * Rnew * g'); 
% P(k|k) = [I - k(k).S(k)'].P(k|k-1). 
%  [I-k(k).S(k)']' + k(k).R.k(k)' 

end % end k 
Pf=P;  
% 
if Plotting==1 

close(hw) 
end 
SecondPass=SecondPass+1; 

end % end while 
% 
% ANALYSE INNOVATIONS SEQUENCE 
% 
% The innovations sequence contains the difference between the predicted 
% measurement value at variable k and the actual measured value. If the 
% Kalman filter is operating correctly, the innovations sequence for each 
% observation should be white noise with zero mean. The square-root, 
% sum-of-squares of each samples' innovations sequence should decrease as 
% Kalman filtering improves. 
VSSQ=sum((V.^2),2)./(K); 
DATASSQ=sum((Z.^2),2)./(K); 
LOF = (sqrt(VSSQ ./ DATASSQ))*100; 
% 
% This LOF statistic gives the average lack-of-fit per spectral data point 
% as a percentage of the average data point in original data. 
% 
[LOF_Max, LOF_Index]=max(LOF); 
% 
toc  
%************************************************************************** 
% End of Vectorised Adaptive Kalman Filter Calculations            * 
%************************************************************************** 
% 
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% OUTPUT RESULTS 
KF_output.X=X; 
KF_output.G=G; 
KF_output.V=V; 
KF_output.Rk=Rk; 
KF_output.LOF=LOF; 
KF_output.LOF_Index=LOF_Index; 
KF_output.Pf=Pf; 
KF_output.KF_options=KF_options; 
% 
if Plotting ==1 

if J>1 
figure() 
subplot(3,1,1) 
plot(1:J,X); axis tight 
title( 'State parameters' , 'fontweight' , 'bold' ); 
xlabel( 'Sample number' ); 
ylabel( 'State parameter' ); 
% 
subplot(3,1,2) 
plot(1:K,V); axis tight 
title( 'Innovations' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Innovations' ); 
% 
subplot(3,1,3) 
plot(1:J,LOF); axis tight 
title( 'Average LOF per variable point (%)' , 'fontweight' , 'bold' ); 
xlabel( 'Sample number' ); 
ylabel( 'LOF (%)' ); 
% 
figure() 
subplot(2,1,1) 
plot(1:K,Rk'); hold on ; plot(Rk(LOF_Index,:)', 'linewidth' ,2) 
title( 'Adaptive variance (R)' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Variance' ); 
subplot(2,1,2) 
plot(1:J,mean(Rk,2), 'linewidth' ,2) 
title( 'Adaptive variance (R)' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Variance' ); 

else 
figure() 
plot(1:K,V); axis tight 
title( 'Innovations' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Innovations' ); 

end 
end 
end % END OF FUNCTION 
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Create_Spectra.m 

function  S_hat=Create_Spectra(Z,N,p_norm) 
% This simple function can be used to create as set of random spectral 
% estimates using a (N x N) transformation matrix of random numbers.  The 
% spectral profiles are normalised using the p-normalisation specified by 
% the user. 
% INPUT ARGUMENTS 
% [Z] is a (J x K) matrix of process measurement data where J is the number 
% of observations (spectra) and K is the number of measurement variables. 
% 
% [N] is the number of initial pure spectral profiles to create. 
% 
% [p_norm] is the type of spectral normalisation to apply. 
% Commonly used values are: 
% [p_norm] = 2.  Normalise to unit length 
% [p_norm] = inf Normalise to maximum value = 1 (normalise height) 
% [p_norm] may also have values of 3, 4, 5 but this is uncommon. 
% 
% OUTPUT ARGUMENTS 
% S_hat is a (K x N) matrix of random spectra created from the eigenvectors 
% obtained by apply SVD to a data set spanning the same spectral space. 
% 
% Perform SVD on original data matrix 
[U,S,V]=svd(Z,  'econ' ); 
% 
% Truncate the matrix of right eigenvectors 
V_bar=V(:,1:N); 
% 
% Create matrix of random numbers 
T=randn(N,N); 
% 
% Create initial spectral estimates 
S_hat=V_bar*T; 
% 
% Normalised the spectral profiles 
for  n=1:N 

S_hat(:,n)=S_hat(:,n)/norm(S_hat(:,n),p_norm); 
end 
% 
end % END OF FUNCTION 
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VAKFISO.m 

 
function VAKFISO_output=VAKFISO(Z, N, S, VAKFISO_options) 
% VAKFISO_output=VAKFISO(Z, N, S, VAKFISO_options); 
% 
% The function of VAKFISO is to find a matrix of reference measurement  
% functions (pure spectral profiles) that minimise a weighted residual 
% matrix when used to calculate the corresponding state parameters using 
% the vectorised adaptive Kalman filter. The diagonal elements of the 
% state-parameter error covariance matrix, corresponding to the variance of 
% the state estimates will be minimised when the matrix of reference 
% measurement functions accurately model the measurement data. To find the 
% set of reference measurement functions that minimise the diagonal 
% elements of the error covariance matrix, the elements of a transformation 
% matrix are optimised using Newton-Gauss-Levenberg / Marquardt non-linear 
% optimisation. During each iterative cycle, a new estimate of the 
% optimised transformation matrix is calculated. Each spectrum in the 
% matrix of test reference measurement functions is a linear combination of 
% the primary eigenvectors spanning the spectral space. The transformation 
% matrix is used to transform the eigenvectors into test reference 
% functions and he vectorised adaptive Kalman filter then allows the 
% state-parameters of all components for all available measurement vectors 
% to be calculated simultaneously. As the matrix of test reference 
% measurement functions approaches a feasible solution, the diagonal 
% elements of the state-parameter error covariance matrix will be 
% minimised. Without invoking any penalties, minimisation of the diagonal 
% elements of the error covariance matrix or the residual matrix could 
% correspond to negative spectra and / or negative state parameters. To 
% prevent this, a weighted residual matrix is constructed from the initial 
% innovations matrix but also includes additional terms to penalise large 
% state-estimate variances as well negativity in the test spectra and 
% estimated state-parameters. 
% 
% INPUT ARGUMENTS 
% [Z] is a (J x K) matrix of process measurement data where J is the number 
% of observations (spectra) and K is the number of measurement variables. 
% 
% [N] is the number of reference measurement functions (pure spectral 
% profiles) to locate and optimise. 
%  
% [S] is a (K x N) matrix of initial estimates of the reference 
% measurement functions. If [S] is not provided, initial estimates would be 
% obtained by applying VVSP to the data 
% 
% [VAKFISO_options] is a structured array that can be used to provide 
% additional optional input arguments. If the user does not provide any 
% additional input arguments, the script will call the default values 
% described below. The script 'VAKFISO_SetOptions' may be run to create an 
% options structure with the default values. 
% 
% [.W] is window size to be used for adapting the measurement variance 
% estimates, Rk during adaptive Kalman filtering. W must be even-numbered 
% 
% [.Rmin] is the minimum measurement noise variance permitted. 
% The actual measurement noise variance will be calculated adaptively 
% during the Kalman filtering but the value of R is not permitted to drop 
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% below Rmin. This value should be two or three orders of magnitude lower 
% than the expected measurement noise variance.  
% The default value is 1.0E-6  
% 
% [.p_norm] is the type of spectral normalisation to apply during VVSP 
% analysis or when calculating the state parameters using the final 
% estimates of the reference measurement functions. Acceptable values are 
% [p_norm] = 2. Normalise to unit length 
% [p_norm] = inf Normalise to maximum value = 1 (normalise height) 
% [p_norm] may also have values of 3, 4, 5 but this is uncommon. 
% 
% [.alpha1] is a weighting coefficient applied to the original matrix of 
% innovations (spectral residuals) V. 
% 
% [.alpha2] is a weighting coefficient applied to penalty term PI. 
% PI corresponds to the sum of the diagonal elements of the state estimate 
% error covariance matrix P. The default value is 1. Set this value to 0 
% if PI should not contribute to the residual matrix used during NGL/M 
% optimisation. 
% 
% [.alpha3] is a weighting coefficient applied to spectral negativity 
% penalty term SIGMA. SIGMA will have a value of 0 if none of the 
% reference measurement functions have any negative regions; and a value of 
% 1 if all of the reference measurement functions are completely negative. 
% The weighting coefficient [.alpha3] allows the weighting of the SIGMA term 
% to be customised. The default value is 1. Set this value to 0 if SIGMA 
% should not contribute to the residual matrix used during NGL/M 
% optimisation. 
% 
% [.alpha4] is a weighting coefficient applied to state-estimate negativity 
% penalty term XI. SI will have a value of 0 if none of the 
% state parameter estimates have any negative regions; and a value of 
% 1 if all of the state parameter estimates are completely negative. 
% The weighting coefficient [alpha4] allows the weighting of the XI term 
% to be customised. The default value is 1. Set this value to 0 if XI 
% should not contribute to the residual matrix used during NGL/M 
% optimisation. 
% 
% [.delta] is the shift to be added to the elements of the transformation 
% matrix T during NGL/M optimisation. A suitable value would be in the 
% range 1E-4 to 1E-6. 
% 
% [.mp] is the Marquardt parameter used to prevent divergence during the 
% NGL/M optimisation step. This value is typically set to 1 or a similiar 
% value to [.delta] 
% 
% [.mu] is the convergence tolerance limit calculated from the total 
% sum-of-squares of the weighted residual matrix re, defined as 
% (ssq_old-ssq_new)/ssq_old. 
%  
% [.MaxIterations] is the maximum number of iterations permitted. The 
% NGL/M optimisation will terminate if the convergence tolerance value has 
% not been reached and the number of iterations performed = MaxIterations. 
% 
% OUTPUT ARGUMENTS 
% [VAKFISO_output] is a structured array generated by this script to store 
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% the various outputs listed below. 
% 
% [.S0] is a (K x N) matrix containing the initial estimates of the reference 
% measurement functions. These will either be provided by the user or 
% estimated by performing VVSP analysis 
% 
% [.Sf] is a (K x N) matrix containing the final, optimised estimates of the 
% reference measurement functions. 
% 
% [.X] is a (J x N) matrix of state parameters calculated using the 
% vectorised adaptive Kalman filter using the final, normalised estimates 
% of the reference measurement functions [.Sf]. 
% 
% [.Pf] is an (N x N) state parameter error variance-covariance matrix for 
% the state parameters stores in [.X]. 
% 
% [.G] is an (N x K) matrix of Kalman gains obtained by applying the 
% vectorised adaptive Kalman filter to Z using the optimised reference 
% measurement functions [.Sf]. 
% 
% [.V] is a (J x K) innovations matrix obtained by applying the 
% vectorised adaptive Kalman filter to Z using the optimised reference 
% measurement functions [.Sf]. 
% 
% [.Rk] is a (J x K) matrix of adaptive measurement noise variances obtained 
% by applying the vectorised adaptive Kalman filter to Z using the 
% optimised reference measurement functions [.Sf]. 
% 
% [.LOF] is the average measurement lack-of-fit with respect to the original 
% data for each measurement j. This produces a (J x 1) column vector. A 
% large value indicates that the Kalman filter has fitted the original 
% measurement vector with less accuracy and is a good indication of the 
% presence of an un-modelled component. 
% 
% [.T] is the final optimised (N x N) transformation matrix used to create [.Sf].  
% 
% [.counter] is the number of iterations reached before the optimisation 
% step was terminated. Termination may have occurred because the 
% convergence tolerance was achieved or because the maximum number of 
% iterations was reached. 
% 
% [.convergence] is the final convergence value when the optimisation step 
% was terminated. 
% 
% [.sigma_t] is column vector containing the standard error for each of the 
% elements in the final transformation matrix T 
% 
% [.VVSP_fw], [.VVSP_fwNorm], [.VVSP_SI], [.VVSP_DW] and [.VVSP_PR] are the 
% outputs from the initial VVSP analysis of Z and are described in the 
% VVSP.m help. 
% 
% Nicholas I. Pedge 
% Department of Chemistry, University of Hull, Cottingham Road, Hull, 
% HU6 7RX  
% Process R&D, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough,  
% Leicestershire, LE11 5RH 
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% 
% VAKFISO_output=VAKFISO(Z, N, S, VAKFISO_options) 
  
% CHECK INPUT ARGUMENTS 
% Check that an options structure array, VAKFISO_options has been provided 
% 
if nargin < 4 || isempty(VAKFISO_options)==1 

fprintf( 'No options structure provided. Default values will be used \n' ) 
% Call function 'VAKFISO_SetOptions' to create options structure with 
% default values 
VAKFISO_options=VAKFISO_SetOptions; 

end 
%  
if nargin < 3 || isempty(S)==1 

fprintf( 'No initial estimates of reference measurement functions provided \n' ) 
fprintf( 'Vertex Vector Sequential Projection will be used to provide [S] \n' ) 
S=[]; 

end 
%  
% Check the dimensions of [S] and [D].  
if isempty(S)==0 

[K1]=size(S,1); 
% K1 is the number of measurement variables in reference data 
% 
[K2]=size(Z,2); 
% K2 is the number of measurement variables in Z 
% 

if K1 ~= K2 
error( 'The number of variables in [S] and [D] are not equal' ) 

end 
clear K1 K2 ; 
end 
% 
[J, K]=size(Z); 
% 
if nargin < 2|| isempty(Z)==1 || isempty(N)==1 

error( 'VAKFISO requires the input arguments [Z] and [N]' ) 
end 
% 
%************************************************************************** 
% Start VAKFISO                   * 
%************************************************************************** 
% Assign function handles. This improves performance when functions are 
% called repeatedly. 
fh_VVSP=@VVSP; 
fh_VAKF=@VecAdaptiveKF; 
fh_NGLM=@NGLM; 
% 
% Extract relevant options values from options structure 'VAKFISO_options' 
p_norm=VAKFISO_options.p_norm; 
% 
%************************************************************************** 
% Call VVSP to obtain initial estimate of S or use input argument S            * 
%************************************************************************** 
if isempty(S)==1 

% Call VVSP to obtain initial estimates S0 
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VVSP_output=feval(fh_VVSP, Z, N+2, N, p_norm, 0); 
S0=VVSP_output.Sopt; 
Call_VVSP=1; 

else 
% Use initial estimates provided by user 
S0=S; 
Call_VVSP=0; 

end 
% 
%************************************************************************** 
% Perform SVD to obtain right singular vectors (V)             * 
%************************************************************************** 
[U, S, V]=svd(Z, 'econ' ); 
clear U; clear S; 
V_bar=V(:,1:N); 
clear V;  
% 
%************************************************************************** 
% Call subfunction NGLM to optimise T              * 
%************************************************************************** 
% Calculate initial transformation matrix T0 
T0 = pinv(V_bar) * S0; 
% 
% Vectorise the initial estimate of the transformation matrix 
t0 = T0(:); 
% 
% Call the Newton-Gauss-Levenberq/Marquardt optimisation function 
[T, Jn, counter, convergence]= feval(fh_NGLM, Z, t0, V_bar, VAKFISO_options); 
% 
%************************************************************************** 
% Use final estimate of T to re-estimate Sf and X using VAKF                        * 
%************************************************************************** 
% Extract relevant options values from options structure 'VAKFISO_options' 
W=VAKFISO_options.W;  
Rmin=VAKFISO_options.Rmin; 
p_norm=VAKFISO_options.p_norm; 
% 
% Create options structure for Vectorised Adaptive Kalman filter 
KF_options.Rmin=Rmin; 
KF_options.Xin=[]; 
KF_options.Plotting=1; 
% 
% Use final estimate of transformation matrix T to calculate Sf 
Sf = V_bar * T;  
% 
% Normalise the spectra 
for n=1:N 
Sf(:,n)=Sf(:,n) ./ norm(Sf(:,n), p_norm); 
end 
% 
% Perform Kalman filtering using final estimate of S 
VAKF_output=feval(fh_VAKF, Sf',Z, W, KF_options); 
% 
% Extract output variables from 'VAKF_output' 
X = VAKF_output.X; 
G = VAKF_output.G; 
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V = VAKF_output.V; 
Rk = VAKF_output.Rk; 
LOF = VAKF_output.LOF; 
Pf = VAKF_output.Pf; 
% 
% Calculate standard errors for the transformation parameters 
t=T(:); 
SSQ=trace(V'*V); 
% Degrees of freedom, nu 
nu=(J*K)-length(t)-(N*K); 
sigma_Z = SSQ ./ nu; 
% Standard error for transformation parameters in T 
sigma_t = sigma_Z * sqrt(diag(inv(Jn'*Jn))); 
% 
%************************************************************************** 
% Output variables to structured array               * 
%************************************************************************** 
VAKFISO_output.S0=S0; % Initial estimate of reference functions 
VAKFISO_output.Sf=Sf; % Final estimate of reference functions 
VAKFISO_output.X=X; % Final estimate of state-parameters 
VAKFISO_output.Pf=Pf; % Error covariance matrix for final state estimates 
VAKFISO_output.G=G; % Kalman gain matrix obtained using Sf 
VAKFISO_output.V=V; % Innovations matrix obtained using Sf 
VAKFISO_output.Rk=Rk; % Adaptive variance values obtained using Sf 
VAKFISO_output.LOF=LOF; % Spectral LOF values obtained using Sf 
VAKFISO_output.T=T; % Optimised transformation matrix T used to create Sf 
VAKFISO_output.counter=counter; 
VAKFISO_output.convergence=convergence; 
VAKFISO_output.sigma_t=sigma_t; % Standard error for elements of T  
VAKFISO_output.options=VAKFISO_options; 
if Call_VVSP==0; 

VAKFISO_output.VVSP_fw=[]; 
VAKFISO_output.VVSP_fwNorm=[]; 
VAKFISO_output.VVSP_SI=[]; 
VAKFISO_output.VVSP_DW=[]; 
VAKFISO_output.VVSP_PR=[]; 

else 
VAKFISO_output.VVSP_fw=VVSP_output.fw; 
VAKFISO_output.VVSP_fwNorm=VVSP_output.fwNorm; 
VAKFISO_output.VVSP_SI=VVSP_output.SI; 
VAKFISO_output.VVSP_DW=VVSP_output.DW; 
VAKFISO_output.VVSP_PR=VVSP_output.PR; 

end 
end % END OF FUNCTION 'VAKFISO' 
% 
%************************************************************************** 
% Subfunction NGLM                 * 
%************************************************************************** 
function [T, Jn, counter, convergence]=NGLM(Z, t0, V_bar, VAKFISO_options) 
% Assign function handle. This improves performance when functions are 
% called repeatedly. 
fh_VAKF_opt=@VAKF_opt; 
%  
% Extract relevant options values from options structure 'VAKFISO_options' 
delta=VAKFISO_options.delta; 
mp=VAKFISO_options.mp; 
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mu=VAKFISO_options.mu; 
MaxIterations=VAKFISO_options.MaxIterations; 
% Calculate initial sum-of-squares (ssq_old) using data matrix 
ssq_old=trace(Z'*Z); 
t=t0; 
[J,K]=size(Z); 
[N]=size(V_bar, 2); 
% Pre-allocate storage array for Jacobian matrix Jn 
Jn=zeros((J*K),(N*N));  
% Initialise counter 
counter = 0; 
mpp=mp; 
% 
hw=waitbar(0, 'Performing spectral optimisation, please wait...' ); 
while 1 

% First call of VAKF to calculate vector of residuals re0 
re0 = feval(fh_VAKF_opt, Z, V_bar, t, VAKFISO_options); 
% Calculate sum-of-squares for starting estimate of t 
ssq_new=sum(re0.*re0); 
% Calculate convergence  
convergence=(ssq_old-ssq_new)/ssq_old; 
fprintf( 'Convergence %6.4f \n' , convergence) 
% 
% Determine whether convergence tolerance has been reached  
if abs(convergence) <= mu 

if mp==0 
% If Marquardt parameter is also zero, exit 'while' loop 
break  

else  
% If Marquardt parameter is not zero, set mp=0 and confirm 
% convergence by performing another iteration. 
mp=0;  
re0_old=re0; 

end 
elseif convergence > mu  

% If convergence is greater than convergence tolerance, reduce 
% value of Marquardt parameter and estimate new values of the 
% transformation vector t 
mp=mp/3; 
ssq_old=ssq_new; 
re0_old=re0; 

  % Loop to update each element of the transformation vector t. 
% This is slice-wise numerical differentiation to create the 
% Jacobian matrix Jn 
for q=1:length(t) 

% Add delta to current value of t(q) 
t(q)=(1+delta)*t(q);  
% Calculate residuals for shifted element t(q)  
re = feval(fh_VAKF_opt, Z, V_bar, t, VAKFISO_options); 
% Populate the q-th column of the Jacobian matrix Jn 
Jn(:,q) = (re - re0)/(delta*t(q)); 
% Calculate new shift value for t(q) 
t(q) = t(q)/(1 + delta);  

end 
elseif convergence < -mu  

if mp==0 
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% If divergence is observed and the Marquardt parameter is set to 
% 0, set the parameter back to 1. 
mp=mpp; 

else 
% If divergence is observed but the Marquardt parameter is not 
% set to 0, increase the value of the parameter.1. 
mp=mp*5; 

end 
% If divergence is observed, take back the shifts added previously. 
t=t-delta_t;  

end 
% Augment Jacobian matrix with diagonal matrix of Marquardt parameters 
Jn_mp=[Jn; mp*eye(length(t))];  
% Augment residual vector with a vector of zeros 
re0_mp=[re0_old; zeros(size(t))]; 
% Calculate transformation vector parameter shifts 
delta_t=-Jn_mp \ re0_mp; 
% Add the transformation vector parameter shifts to current t 
t=t+delta_t;  
% Increment counter 
counter = counter + 1; 
if counter >= MaxIterations 

fprintf( 'Maximum number of iterations reached \n' ) 
break 

end 
  waitbar(counter/MaxIterations, hw) 
 end 
close(hw) 
% 
% Re-matricise the final estimate of t to create transformation matrix T 
[K, N] = size(V_bar); 
T=zeros(N); 
for n=1:N 
  T(:,n) = t((n*N)-(N-1):(n*N)); 
end 
% 
end 
% END OF SUBFUNCTION 'NGLM' 
% 
%************************************************************************** 
% Subfunction VAKF_Opt                  * 
%************************************************************************** 
function re = VAKF_opt(Z, V_bar, t, VAKFISO_options) 
% Assign function handles. This improves performance when functions are 
% called repeatedly. 
% fh_VAKF=@VecAdaptiveKF; 
fh_VAKF=@VAKF; 
fh_CWRM=@CWRM; 
% 
% Extract relevant options values from options structure 'VAKFISO_options' 
W=VAKFISO_options.W;  
Rmin=VAKFISO_options.Rmin; 
p_norm=VAKFISO_options.p_norm; 
alpha1=VAKFISO_options.alpha1; 
alpha2=VAKFISO_options.alpha2; 
alpha3=VAKFISO_options.alpha3; 
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alpha4=VAKFISO_options.alpha4; 
% 
%Create options structure for Vectorised Adaptive Kalman filter 
KF_options.Rmin=Rmin; 
KF_options.Xin=[]; 
KF_options.Plotting=0; 
% 
% Need to re-matricise the vector t to create the transformation matrix T 
[K, N] = size(V_bar); 
T=zeros(N); 
for n=1:N 

T(:,n) = t((n*N)-(N-1):(n*N)); 
end 
% disp(T) 
% Use current estimate of transformation matrix to calculate S_hat 
S_hat = V_bar * T; 
% 
% Normalise S_hat 
for n=1:N 

S_hat(:,n)=S_hat(:,n) ./ norm(S_hat(:,n), p_norm); 
end 
% 
% Apply Vectorised Adaptive Kalman filtering to Z using current estimate of 
% S_hat 
VAKF_output=feval(fh_VAKF, S_hat', Z, W, KF_options); 
X=VAKF_output.X; 
V=VAKF_output.V; 
Pf=VAKF_output.Pf;  
% 
 % Call the subfunction CWRM using the function handle 'fh_CWRM' to 
% calculate the weighted residual matrix E 
re=feval(fh_CWRM, S_hat, VAKF_output, alpha1, alpha2, alpha3, alpha4); 
% 
% Plot results 
subplot(4,1,1) 
plot(X, 'linewidth' , 2); axis tight 
title( 'State parameters' , 'fontweight' , 'bold' ); 
xlabel( 'Sample number' ); 
ylabel( 'Value (Arb.)' ); 
subplot(4,1,2) 
plot(S_hat, 'linewidth' , 2); axis tight 
title( 'Estimated reference measurement functions' , 'fontweight' , 'bold' ); 
xlabel( 'Variable number' ); 
ylabel( 'Intensity (Arb.)' ); 
subplot(4,1,3) 
plot(V'); axis tight 
title( 'Innovations' , 'fontweight' , 'bold' ); 
xlabel( 'Sample number' ); 
ylabel( 'Intensity (Arb.)' ); 
subplot(4,1,4) 
bar(diag(Pf));  
title( 'State estimate variance' , 'fontweight' , 'bold' ); 
xlabel( 'Component number' ); 
ylabel( 'Intensity^2 (Arb.)' ); 
drawnow 
end 
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% END OF SUBFUNCTION 'VAKF_opt' 
% 
%************************************************************************** 
% Subfunction CWRM                   * 
%************************************************************************** 
function re = CWRM(S_hat, VAKF_output, alpha1, alpha2, alpha3, alpha4) 
% Extract relevant options values from output structure 'VAKF_output' 
X=VAKF_output.X; 
V=VAKF_output.V; 
%Rk=VAKF_output.Rk; 
Pf=VAKF_output.Pf; 
% 
[K, N]=size(S_hat); 
[J]=size(X, 1); 
% 
% Calculate PI 
PI=trace(Pf); 
% 
% Calculate SIGMA 
OMEGA=(abs(S_hat)-S_hat)./2; 
SIGMA = (trace(OMEGA'*OMEGA))./ (trace(S_hat'*S_hat)); 
SIGMA = SIGMA ./ N; 
% 
% Calculate XI 
THETA=(abs(X)-X)./2; 
XI = (trace(THETA'*THETA))./ (trace(X'*X)); 
XI = XI ./ N; 
% 
% Calculate weighted residual matrix 
E=(alpha1.*V) + (alpha2.*PI.*V) + (alpha3.*SIGMA.*V) + (alpha4.*XI.*V); 
A = (alpha1.*V); 
B = (alpha2.*PI.*V); 
C = (alpha3.*SIGMA.*V); 
D = (alpha4.*XI.*V); 
% 
RMS_A=sqrt((trace(A'*A))./ (J*K)); 
RMS_B=sqrt((trace(B'*B))./ (J*K)); 
RMS_C=sqrt((trace(C'*C))./ (J*K)); 
RMS_D=sqrt((trace(D'*D))./ (J*K)); 
% 
  
fprintf( 'RMS of (Alpha1 .* V) = %6.4E \n' , RMS_A) 
fprintf( 'RMS of (Alpha2 .* PI .* V) = %6.4E \n' , RMS_B) 
fprintf( 'RMS of (Alpha3 .* SIGMA .* V) = %6.4E \n' , RMS_C) 
fprintf( 'RMS of (Alpha4 .* XI .* V) = %6.4E \n' , RMS_D) 
fprintf( '----------------------------------\n' ) 
% Vectorise E for NGL/M calculations 
re=E(:); 
end 
% END OF SUBFUNCTION 'CWRM' 
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