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Abstract

This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as

such involves the joint problem of on-line estimation within an adaptive control system.

The faults that are considered are significant uncertainties affecting the control variables

of the process and their estimates are used in an adaptive control compensation

mechanism. The approach taken involves the active FTC, as the faults can be

considered as uncertainties affecting the control system. The engineering (application

domain) challenges that are addressed are:

(1) On-line model-based fault estimation and compensation as an FTC problem, for

systems with large but bounded fault magnitudes and for which the faults can be

considered as a special form of dynamic uncertainty.

(2) Fault-tolerance in the distributed control of uncertain inter-connected systems

The thesis also describes how challenge (1) can be used in the distributed control

problem of challenge (2). The basic principle adopted throughout the work is that the

controller has two components, one involving the nominal control action and the second

acting as an adaptive compensation for significant uncertainties and fault effects. The

fault effects are a form of uncertainty which is considered too large for the application

of passive FTC methods. The thesis considers several approaches to robust control and

estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode

fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV)

control; two-level distributed control with learning coordination.
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Chapter 1.
Introduction

1.1 Introduction

As modern technological systems increase in complexity, their corresponding control

systems become more and more sophisticated. Control system methodologies have

evolved from simple mechanical feedback structures, into advanced electronic devices

for controlling high performance and highly unstable systems which optimize the cost

and control effort (Franklin et al., 2002). Some of the control methods that have

received good attention in the last two decades are predictive control (Pachter et al.,

1995, Monaco et al. 1997; Huzmezan and Maciejowski, 1998; Kale and Chipperfield,

2005), robust control (Morari et al., 1989; Grimble, 2001) and adaptive control

(Ahmed-Zaid et al. 1991; Bodson and Groszkiewicz, 1997; Wise et al., 1999; Tao et al.,

2001; Tao, Chen, and Joshi, 2002; Kim et al., 2003). So far only predictive control has

been well applied to industry problems (e.g. process industry). However, very few

applied or theory-based control systems methods involve fault signal estimation of fault

detection in their designs.

The performance of many control systems and especially for safety-critical applications

e.g. aircraft, chemical and nuclear power plants must be optimised to handle wide

changes in system operation and still maintain reliability, dependability and integrity in

terms of stability, robustness and performance.
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Some unexpected scenarios or unusual system events mean the performance and even

the stability of the designed closed-loop system can be degraded. These unexpected

scenarios may be faults, failures or system damage, which are usually not considered in

the controller design process. The need to account for faults in a closed-loop system has

been the main motivation for this research, providing some new concepts in fault-

tolerant control (FTC) of uncertain systems.

1.2 Faults, Failures and Fault Diagnosis Terminology

In order to develop this subject further the terms fault and failure need to be defined in

the context of uncertain systems. A ‘Fault’ is an unexpected change in the system

function. Isermann (1984) defined a fault as ‘… a non-permitted deviation of a

characteristic property, which leads to the inability to fulfill the intended purpose…’

Faults in the components of controlled systems may lead to total system failure,

depending on the precise conditions, the criticality of the fault, etc and if appropriate

action is not taken [Definitions established by the Technical Committee for IFAC

(International Federation of Automatic Control) Symposium SAFEPROCESS (Fault

Detection Supervision and Safety for Technical Processes), Isermann and Ballé, 1997].

On the other hand, a ‘Failure’ describes the condition when the system is no longer

performing the required function i.e. the system function involving the faulty

component may have failed.

A wide range of different process control variables, e.g. temperatures, flow-rates, liquid

levels, pressures, voltages, currents, etc., can be constantly monitored on-line and the

required control effort may be calculated on the basis of any or all of these

measurements, either directly or via transformation. In general, faults in the control

system may be seen to arise in input/output signals from: (i), actuators, (ii) sensors, (iii)

the controller or within the system being controlled (see Figure 1-1).

Figure 1-1: Types of faults in a control system

Controller PlantActuator Sensor

Reference
inputs

Actuator
faults

Process component
faults

Sensor
faults

Output

System
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Faults within the system itself (i.e. arising from the system components) are often

termed component faults, arising as variations from the structure or parameters used

during system modelling, and as such cover a wide class of possible faults e.g. dirty

water having a different heat transfer coefficient compared to when it is clean, changes

in a liquids viscosity or components slowly degrading over time through wear and tear,

aging or environmental effects, etc.

Structural changes, due to hard failures of equipment or external obstacles, can include

anything from leaks due to fractures or cracks in pipes, stuck valves, short circuits, or

simply from parts which become loose. These lead to changes in the interaction between

variables and can sometimes result in what may be considered a new process operating

as the physical laws of the system, such as conservation of mass or flow, may be

fundamentally altered. These types of faults may be simple to detect but can be difficult

or expensive to locate, estimate and compensate for through an active FTC system

(Zhang and Jiang, 2006; Isermann, 2006).

Actuator faults: In equipment such as motors, valves, solenoids, relays, etc., faults may

be the result of a jam, the actuator may become ‘stuck’ at a constant level, damage to

bearings or gears, changes from the design characteristics or complete failure. For

example this may occur due to increased resistance through friction and, as actuators

usually require a separate power source, a fall in a supply voltage or current.

Sensor faults: The sensors are any equipment that takes a measurement or observation

from the system, e.g. potentiometers, ammeters, voltmeters, accelerometers,

tachometers, thermocouples, pressure gauges, strain gauges, etc., and faults are often

due to poor calibration or bias, scaling errors or a change in the sensors dynamic

characteristics however many signals also need a power source and some conditioning

or amplification and these too can raise potential faults.

‘Fault Diagnosis’ (FD) is the name given that used to determine the presence and

characteristics of faults. FD also comprises ‘Fault Detection’, ‘Isolation’ and

‘Identification’ of faults. Fault Detection is the determination of the presence of faults

in a system and the time of detection. Fault Isolation is used to discriminate the location

of fault and the time of detection while Fault Identification gives information of size

and the nature of the fault (Chen and Patton, 1999).

The subject Fault detection and isolation (FDI) has developed as a field of research and

application in control systems, that is particularly important when dependability is

required, especially since faults in sensors, actuators and components are associated
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with increasing operating costs, off-specification production and can even lead to

system failure or shut-down. In the FDI problem, faults are detected and isolated,

principally using model-based methods although data-driven FDI methods are also

important in real applications, especially when system models are ill-defined.

The procedures of Fault Detection and Identification (FDD) offer an extension to those

of FDI by providing an additional “diagnosis” of faults in terms of fault identification or

fault estimation and sometimes an assessment of the degree of severity of the fault(s)

(Blanke et al., 2003).

This thesis describes methods for Fault-Tolerant Control (FTC) that are based on the

fault estimation and fault accommodation aspects arising from FDD. As a consequence,

issues concerning residual generation and fault isolation of FDI are not central to the

theme. However, there are similarities between fault estimation and the residual

generation problem and these are discussed in Chapter 2.

From a practical point of view, the topics of FDI and FDD raise very interesting and

challenging directions for applied research. For example: the detection of faults, to be

useful in practice, should be achieved early by detecting “incipient” effects associated

with the fault before its effect becomes serious.

Incipiency in this context means that the fault is difficult to detect because of its small

effect on the system. The detection and isolation of incipient faults leads to a robustness

problem as the effects of the faults become comparable with the effects of modelling

uncertainties (Patton et al, 1989). It is important to detect and isolate incipient faults

with high reliability in terms of low false-alarm and missed-alarm rates, in order to

avoid the consequences of (a) system breakdown (b) mission abortion and (c)

catastrophes (Beard 1971; Willsky 1976; Patton et al., 1989).

1.3 Practical Requirements for Fault Tolerant Control

The context of FD includes the terms monitoring and supervision. ‘Monitoring’ is an

on-line task for determining the “condition” or “health” of a system, by recording

necessary information, recognising and indicating anomalies in the behaviour, whereas

‘Supervision’ can be classified as on-line monitoring a physical system and taking

suitable actions to maintain the operation and system performance in the presence of a

fault (Blanke et al., 2003). These challenges have motivated a control strategy widely
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known in the literature as Fault Tolerant Control (FTC) (Patton, 1997; Blanke et al.,

2003).

As the complexity of modern systems increases, the high numbers of variables that are

involved in the dynamical system structure of these systems make it difficult for even

the most experienced human operator to notice that a fault has occurred. S/he may not

understand the fault development and its possible propagation through the system and

may not be able to respond correctly and promptly. This is particularly the case for fast

modern systems, requiring fast decision speeds (Blanke et al., 2003; Zhang and Jiang,

2003). The authorities of roles that the human operator can perform have therefore

decreased in many complex applications with a noticeable trend towards full

automation.

Even in aircraft flight systems, modern pilots have limited authority surrounded by

complex avionics systems with quadruplex fly-by-wire redundancy. The dissimilar

redundancy flight computer hardware and software systems are able to maintain the

safety and integrity of the flight for many fault scenarios. However, when there are

structural faults, the pilot’s experience and decisions are required. It is well known that

the majority of accidents that correspond to these flight systems faults are caused by

pilot error (Burcham and Burken, 1997; Burcham et al., 1998 and 1999; Jones, 2005).

It is a valid generalisation that in all safety-critical systems, e.g. for those found on

aircraft, spacecraft and automobiles or within the nuclear, petro-chemical and chemical

process industries, etc. a small malfunction or fault that is uncompensated by the control

system or redundancy (involving reconfiguration etc) may lead to serious failure and

even catastrophe. An example of this is the military aircraft which is designed to be

unstable without the control system (referred to as static instability), to enhance the

agility and manoeuvrability of the aircraft. The flight control system not only makes the

aircraft stable but also provides important handling qualities for flight. If the control

system malfunctions there is a real danger that the controllability and stability of the

aircraft will be lost and an accident will follow. The robustness and integrity of the

flight control system are thus of high importance and a very large percentage of the cost

of the development of a modern aircraft reflects the cost of the high integrity avionics

and flight systems (Ganguli et al., 2002; Alwi and Edwards, 2005, 2006; Boskovic,

Bergström, and Mehra, 2005; Boskovic, Prasanth, and Mehra 2007). The quadruplex

level of redundancy of a fly-by-wire aircraft can, under certain circumstances, be

reduced to a triplex level of redundancy by using FDI or FDD systems, by replacing the



6

hardware redundancy by analytical redundancy using system model information (Patton

et al., 2000a).

The detection, isolation and diagnosis of faults in a safety-critical system can be used in

several ways to enhance the system integrity. Once the faults are detected and isolated

the unhealthy part(s) of the system can be replaced by using either analytical estimation

methods (soft redundancy) or by using control system reconfiguration. Alternatively,

the fault can be estimated on-line and compensated by an adaptive control scheme.

Figure 1-2: Accidents show that fault information is important

Figure 1-2 shows some examples that faults can lead to serious accidents: (a) an

actuator fault caused an airplane to crash, (b) a sensor fault caused a rollercoaster to stop

in mid-air, and (c) a component fault caused another aircraft to crash (www.cnn.com).

In case of the aviation accidents, e.g. ELAL Flight 1862 Bijlmermeer Incident, on 4

October 1992, a Boeing 747, ELAL Flight 1862, cargo plane of the Israeli airline

ELAL, crashed into an apartment building in Bijlmermeer, Amsterdam, Netherlands

(see Figure 1-3). 43 people were killed, plus 39 persons on the ground. Many more were

injured. [Nederland Aviation Safety Board: (NASB)].

Figure 1-3: ELAL flight 1862: the aircraft the and the Bijlmermeer apartment building

NASB indicated that: ‘…the plane had only managed to maintain level flight at first

due to its high air speed (280 knots). The damage to the right wing, resulting in reduced

lift, had made it much more difficult to keep the plane level. At 280 knots (520 km/h),

(a) (b) (c)
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there was nevertheless sufficient lift on the right wing to keep the plane aloft. Once the

plane had to reduce speed for landing, however, it was doomed; there was too little lift

on the right wing to enable stable flight, and the plane banked sharply to the right

without any chance of recovery…’

However, according to many incidents, where pilots successfully landed crippled

aircraft, Burcham et al (2004) and Gero (2006) show that in many cases, the

damaged/faulty aircraft is still flyable, controllable and some level of performance can

still be achieved, to allow the pilot to safely land the aircraft. An independent

investigation by Smaili and Mulder (2000) on the ELAL flight 1862, suggested that

there was still some control and flying capability associated with the crippled aircraft,

where pilots successfully landed crippled aircraft. Maciejowski and Jones (2003)

demonstrated in simulation, using a model-based predictive control approach that the

ELAL 1862 disaster could have been avoided and it may have been possible to control

the crippled aircraft using a form of FTC in the flight control system to maintain the

required controllability for the purpose of a quick landing back at Schiphol airport,

Amsterdam.

In 2004, the Group for Aeronautical Research and Technology in Europe (GARTEUR)

organization initiated the Flight Mechanics Action Group 16 to study this accident

further. The AG16 group developed further research on fault-tolerant flight control and

demonstrated the value of using FTC methods to reduce the probability of accident for

cases such as the ELAL 1862 Amsterdam flight disaster. The goal was to apply a

number of FDD and FTC algorithms within a realistic failure scenario, based on the

earlier study provided by Smaili and Mulder (2000).

Although the aircraft of the ELAL 1862 flight was a Boeing 747 some modern aircraft

(e.g. Boeing 777 and Airbus 320, 330, 340, 350, 360, 370, and 380) are equipped with

fly-by-wire flight control computers which can increase the safety of aircraft operations

by guarding the safe flight envelope and easing manual flight control. With a forward-

looking interest the AG16 study developed and tested several types of fault-tolerant

flight control systems that could be used not only for systems such as the Boeing 747

but mainly for modern fly by wire aircraft systems. The controllers employed

techniques ranging from H (Cieslak et al., 2009), sliding mode control allocation

(Alwi and Edwards, 2009), and model-predictive control (Joosten et al., 2009) to

parameter estimation and nonlinear dynamic inversion (Lombaerts et al., 2009). The use
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of these FTC algorithms in a high fidelity flight simulator can further increase safety in

the case of actuator, aerodynamic or even structural failures in the aircraft.

Amongst industrial accidents, the Bhopal disaster in December 1984 shows an

important example. The release of toxic methyl isocyanate (MIC) gas from the Union

Carbide chemical plant in Bhopal, India, has been referred to as the worst industrial

accident in history i.e. 2000 fatalities, 10,000 permanent disabilities, and 200,000

injuries (Chisti, 1986). [see Figure 1-4 (a)]

Leveson (2002) states ‘…The Indian government said the accident on human error the

improper cleaning of a pipe at the plant. A relatively new worker was assigned to wash

out some pipes and filters, which were clogged [i.e. worker ignored the early warning

signs which were available on temperature measurement gauges]. MIC produces large

amounts of heat when in contact with water, and the worker properly closed the valves

to isolate the MIC tanks from the pipes and filters being washed. However, without

inserting a required safety disk (a slip blind) to back up the valves in case they leaked...’

Figure 1-4: Some serious industrial accidents

In March 23, 2005, at the BP oil refinery in Texas City, the second-largest oil refinery

in the state and the third-largest in the United States, a major explosion occurred in an

isomerization unit at the site, killing 15 workers and injuring more than 170 others.

According to a report issued after the accident, the disaster was caused by aging process

control techniques and the liquid level in the tower being 20 times normal [see Figure

1-4 (b)].

At the Buncefield oil refinery, the fifth largest oil depot in the UK, in December 2005, a

combination of a faulty sensor indicating that fuel had stopped being pumped and

human error resulted in the largest fire in Europe since World War 2 [see Figure 1-4

(c)]. An ongoing 10 billion pound compensation claim and prosecutions for 5

companies, including those responsible for the control system design. The poor

(a) (b) (c)
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maintenance procedures and incorrect results arising from the FDI procedure were also

of major significance (Buncefield Major Incident Investigation Board, 2006.

http://www.buncefieldinvestigation.gov.uk/reports/initialreport.pdf).

Recently, improvements in production and quality control techniques have greatly

improved reliability however this has been offset by higher performance specifications

and increasing complexity in both control algorithms and the hardware used. These

mean that such systems strongly require some coordination of supervision for both

control and diagnosis for possible faults, with the level of FTC dependent on the

probability of a fault occurring, how critical it is within the overall process and the

possible consequences of missing a problem or not identifying a problem in a timely

manner (Patton, 1997; Sharif and Grosvenor, 1998).

1.4 Classification and Review of FTC Methods

Modern technological systems rely heavily on sophisticated control systems to meet

increased safety and performance requirements. This is particularly true in safety critical

applications e.g. aircraft, spacecraft, power plants, and chemical plants processing

hazardous materials, where a minor fault could potentially develop into catastrophic

events if left unattended or incorrectly responded to. To prevent fault induced losses and

to minimize the potential risks, new control techniques and design approaches need to

be developed to handle system component malfunctions whilst maintaining the

desirable degree of overall system stability and performance levels. A control system

that possesses such a capability is often known as an FTC system (Patton, 1997; Blanke

et al., 2003). Historically, from the point of view of practical application, a significant

amount of research on FTC systems has been motivated by aircraft flight control system

designs (Steinberg, 2005).

Patton (1997) stated in his survey that, ‘. . . Research into fault tolerant control is

largely motivated by the control problems encountered in aircraft system design. The

goal is to provide a self-repairing capability to enable the pilots to land the aircraft

safely in the event of serious fault …. ’

During the last two decades, there have been various approaches to active FTC. Most of

these belong to the following categories: pseudo-inverse modelling (Gao and Antsaklis,

1991), adaptive control systems (Bodson and Groszkiewicz, 1997; Diao and Passino,

2001; Tao et al., 2002), eigenstructure assignment (Jiang, 1994), multiple-model
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methods (Maybeck and Stevens 1991; Rauch, 1995; Maybeck, 1999; Boskovic and

Mehra, 2000, 2002; Yen and Ho 2003; Jiang and Zhang, 2006), reliable control

(Veillette et al., 1992; Veillette, 1995) H control (Yang and Stoustrup, 2000; Yang et

al., 2001), model-matching (Huang and Stengel, 1990; Gao and Antsaklis, 1992),

compensation via additive input design (Noura et al., 2000; Theilliol et al., 2000 and

2002), sliding mode control (Utkin 1992; Edwards and Spurgeon, 1998; Hess and

Wells; 2003; Vetter et al., 2003; Edwards, 2004; Alwi and Edwards, 2005, 2006, 2007,

2009).

During the last two decades there has been a substantial literature on the subject of FTC

according to reviews, survey papers and books (Patton et al., 1997; Blanke et al., 2001,

2003, 2006; Zhang and Jiang, 2003, 2006), which give the state of the art and

perspectives in the field of control reconfiguration in FTC. As discussed above,

approaches to FTC are motivated only by a particular application. For example, safety

in flight control, efficiency and quality improvements in industrial processes, etc.

The main challenges to be faced in the design of FTC systems are:

(1) It is difficult to compensate a number of possible faults acting within or on the

system.

(2) The control system or control system parameters must be changed in some way

using available redundancy (hardware or analytical forms), either by

accommodating the fault(s) (e.g. using fault estimation methods) or by a

reconfiguration mechanism (either based on the use of FDI/FDD procedures or

fault estimation).

(3) The stability of the FTC system must be maintained. The occurrence of a fault

can make the system deviate far from its normal operation and can lead to a

severe change in system behaviour. Even bounded faults can cause the closed-

loop system to deviate rapidly from its required operation and hence the fault

accommodation time is a critical parameter. The requirement for rapid reaction

to faults can mean that the FDI or FDD procedure, if used, may slow down the

accommodation process. The accommodation ability of a control system

depends on several factors, for instance, the magnitude of the fault, the

robustness of the system, etc. Therefore, to overcome such problems, new

controllers must be developed with accommodation capabilities and tolerance to

faults.
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Generally, there exist two approaches to FTC: (a) passive fault tolerant control systems

(PFTCS) and (b) active fault tolerant control systems (AFTCS) (Beard, 1971; Patton,

1997; Chen and Patton, 1999).

Figure 1-5: Fault-tolerant control methods (adapted from Patton, 1997)

Figure 1-5 shows the generally accepted taxonomy of active and passive FTC methods.

(a) In the passive approach, robust control techniques are used to make sure that the

control loop system remains insensitive to faults. The effectiveness of this

strategy, that usually assumes a very restrictive repertory of faults, depends upon

the robustness of the nominal closed-loop system. It is interesting to note that

PFTCS does not require FDI and controller reconfiguration/adaptation (Patton,

1997).

(b) In the active approach, a new control system is re-designed according to the

estimation of the fault performed by the FDI unit and according to the

specification to be met for the faulty system. The control law(s) is/are

reconfigured/restructured to achieve performance requirements, subsequent to

faults. Therefore most AFTCS require FDI to provide the fault or failure

information so that reconfiguration can be achieved (Patton, 1997).

Active approaches are divided into two main types of methods: (1) projection-based

methods and (2) on-line automatic controller redesign methods. In projection-based

methods, a new pre-computed control law is selected according to the required
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controller structure (i.e. depending upon the type of malfunction which has been

isolated). The latter calculates for new controller parameters in response to control

impairment. This is often referred to as reconfigurable control (Patton, 1997 and 2007;

Chen and Patton, 1999).

Figure 1-6 shows the architecture of FTC consisting of two blocks: (1) fault diagnosis

and (2) controller re-design, these tasks will carry out the two steps of FTC:

(1) The diagnosis block uses the measured inputs and outputs and tests their

consistency with the plant model. Its result is a characterisation of the fault with

sufficient accuracy for the controller re-designs.

(2) The re-design block uses the fault information and adjusts the controller to the

faulty situation.

Figure 1-6: The architecture of FTC (Blanke et al., 2003)

Figure 1-6 illustrates that FTC extends the usual feedback controller by a supervisor,

which includes the diagnostic function and the controller re-design blocks. In the

absence of a fault, the system works as before, i.e. on the execution level. The nominal

controller (sometimes referred to as the “baseline” controller, see Patton, 1997), which

is designed for the fault-free system, attenuates the disturbance )(td and ensures good

set-point/reference following and other requirements on the closed-loop system. In this

situation, the diagnostic block recognizes that the closed-loop system is faultless (fault-

free) and no change of the control law is necessary.

If a fault )(tf occurs, the supervision level makes the control loop fault-tolerant. The

diagnostic block identifies the fault and the controller re-design block adjusts the

controller to the new situation. Following this, the execution level alone continues to

satisfy the control target.
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However, fault tolerance can also be achieved without the structure given in Figure 1-6

by means of well established control methods. As this is possible only for a restricted

class of faults, these methods will not be described in more detail in this Chapter.

However, they require brief outline as follows:

(i) Robust control: a fixed controller is designed that tolerates changes of the

plant dynamics. The controlled system satisfies its goals under all faulty

conditions. Fault tolerance is obtained without changing the controller

parameters. It is, therefore relates closely to passive fault tolerance. However,

the theory of robust control has shown that robust controllers exist only for a

restricted class of changes that may be caused by faults. Further, a robust control

works suboptimally for a given nominal plant because its parameters are

obtained as a trade-off between performance and robustness; this is the classical

Pareto-optimal optimization result. The controller is not adjusted to the nominal

process behaviour but is chosen to satisfy the performance specifications for the

plant subject to all faults, and

(ii) Adaptive control: the controller parameters are adapted to changes of the

plant parameters. If these changes are caused by some fault, the adaptive control

may provide active fault tolerance. However, the theory of adaptive control

shows that this principle is particularly efficient only for plants that are

described by linear models with slowly varying parameters. These restrictions

are usually not met by systems under the influence of faults, which typically

have a nonlinear behaviour with sudden parameter changes. The faults cause

nonlinear effects as the system moves away from its known equilibrium point.

Patton (1997) proposed the complex combination of three major research fields in FTC;

i.e. FDI/FDD, robust control, and reconfigurable control (see Figure 2.2).

Figure 1-7: The three disciplines of FTC (Patton, 1997)

FDI/FDD

Robust
Control

Reconfigurable
Control
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Patton (1997) also discussed the relationship between these fields of research. For a

typical FTC scheme, when a fault occurs, the FDI/FDD scheme will detect and locate

the source of the fault. It is important to note that FDI is concerned with the decision

problem (fault detection and isolation), whist FDD is concerned with a little more than

FDI in the sense of possible fault causes, including fault estimation and diagnosis of the

fault severity etc. This information is then passed to the mechanism unit to initiate

reconfiguration. The Reconfigurable Controller will try to adapt to the fault, and

provide stability and some level of performance. Both the FDI/FDD and reconfigurable

controller also need to be robust against uncertainty and disturbance. Robust control is

designed to be robust against disturbances and uncertainty during the design stage. This

enables the controller to counteract the effect of a fault without requiring

reconfiguration or FDI/FDD. For some robust methodologies, its fault tolerant

capability is limited, i.e. total actuator failure cannot be handled directly.

Some widely referred to survey materials on FTC and FDI are: (Patton, 1997; Blanke et

al., 1997, 2000, 2001; Zhang and Jiang, 2003, 2006), and (Isermann and Ballé, 1997;

Chen and Patton, 1999) and more recent publications (books and edited monographs)

such as (Blanke et al. 2001, 2003, 2006; Caccavale and Villani, 2003; Mahmoud et al.,

2003; Tao et al., 2004) in the field of FTC and (Chen and Patton, 1999; Patton et al.,

2000a; Isermann, 2006; Simani et al., 2003) for FDI.

Some studies describe the integration and combination of FDI and FTC schemes

(Polycarpou and Vemuri, 1995; Demetriou and Polycarpou, 1998; Wu, 2000). Some

papers discuss the fault accommodation problem based on the integration of control and

FDI (Napolitano et al. 1995; Niemann and Stoustrup, 1997; Belcastro, 2001; Theilliol et

al., 2002; Yen and Ho, 2003). Zhang and Jiang (2003, 2006) give a good

bibliographical review of reconfigurable FTC systems. Their work proposes a

classification of reconfiguration methods which is based on the mathematical tools

used, the design methodologies used, the way of achieving reconfiguration, etc. They

also address a bibliographical classification based on the design methods with emphasis

on the different practical applications, discussing open problems, an overall picture of

historical, current, and future development in this area.

The combination of both FDI/FDD and reconfigurable controllers within the overall

system structure is the main feature distinguishing active from passive FTC. Therefore

the main issues in active FTC are how to design; (i) a controller which can be easily

reconfigured, (ii) a FDI/FDD unit with high sensitivity to faults and robustness to model
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uncertainties and external disturbances, and (iii) a reconfiguration mechanism which is

able to recover the pre-fault system performance within the constraints of control inputs

and system states.

It should be noted that for some FTC schemes, the detection and isolation of faults is

not sufficient. Some FTC schemes require further information about the nature and

behaviour of each fault. In active FTC, the information obtained from the diagnostic

algorithm should be used in the controller re-design. Hence, process diagnosis should

not only indicate that some fault has occurred but it has to identify the fault location and

fault magnitude with sufficient precision. This information will make it possible to set

up a model of the fault system, which can be used in the controller re-design. Therefore,

FDI and FDD (including fault estimation/identification) are essential features of an

active FTC system (Blanke et al., 2003).

1.5 The Fault Estimation Approach to FTC

This research focuses on the development of methods to estimate the magnitude

variations of the fault rather than to detect the presence of a fault via the use of a

residual signal. The residual signal is suitable for the combined problem of fault

detection and isolation, when the structure of the fault effect on the system is not

completely known. Whenever it is necessary to isolate a fault, beyond the use of one

residual signal, a bank of dissimilar residual signals can be used to indicate the location

of the fault in the system (Patton et al, 1989; Chen and Patton, 1999; Edwards et al.,

1998, 2000).

In other words, fault estimation is a direct way to provide fault information e.g. the fault

estimation technique provides an estimate of the size and severity of the fault. This can

be important in many on-line applications. Furthermore, when compared with other

fault estimation signals within the same system, these can be used to isolate all faults in

the same system.

This thesis is thus concerned with the active approach to FTC and in particular the use

of on-line fault estimation embedded within an adaptive control problem. In this

approach the fault isolation decision process is obviated, as the accommodation to the

fault(s) is automatic within the adaptive scheme. Hence, in this work the residual

generation problem of fault detection is replaced by one of fault estimation. It is

important to note, as pointed out by Chen and Patton (1999) that an ideal residual signal
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for FDI, even in an uncertain system application, can be defined as a robust estimator of

the fault to be detected. If this ideal residual generator remains insensitive to uncertainty

and modelling errors it can be further defined to be robust ‘…The fault estimator and

ideal residual signal are thus equivalent when true robustness is achieved...’ It is

important to note that the fault estimation algorithms developed in this research are

essentially ideal residual generators corresponding to the particular fault. The link

between fault estimation and residual generation has interesting potential for future

research and is not pursued further in this thesis.

The challenges for fault estimation in FTC that are investigated by this thesis can be

summarised as follows:

(i) The need to develop new methods for rapid and accurate estimation of

actuator faults. The work focuses on the estimation of actuator faults as a

specific part of an adaptive control system within FTC.

(ii) The challenge to develop adaptive/autonomous control schemes for FTC

based on fault estimation that is simple to implement in real applications.

(iii) The need to consider robustness in the active FTC designs. This is achieved

as the disturbance and uncertainty signals are considered implicitly in the

fault estimation and accommodation, once again making the proposed

general approach attractive for real application studies.

1.6 Thesis Structure and Contributions

The remainder of the thesis is arranged in the following manner:

Chapter 2 introduces the definition of the terms fault and failure and briefly discusses

the different types of faults and failures which can occur on actuators and sensors

examples, a description of the residual generator structure in model-based FDI is

presented and an example mathematical model of a general faulty system is also given.

Chapter 2 also reviews the robust FDI methods that can be achieved using disturbance-

decoupling techniques via the Unknown Input Observer (UIO). The main issue of the

FDI based on analytical redundancy is the sensitivity of the FDI algorithm to modelling

uncertainties, parameter variation, and disturbance. Chapter 2 also introduces the

background concepts of quantitative model-based FDI and FDD as well as an outline of

the taxonomy of FTC methods, based on either active or passive methods. The main
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concepts and strategies behind some of the FTC and FDD schemes in the literature, as

well as their advantages and drawbacks, are also discussed.

Chapter 3 proposes a new approach to fault compensation for FTC using fault

estimation by which the faults acting in a dynamical system are estimated and

compensated within an adaptive control scheme with required stability and performance

robustness. The proposed FTC scheme includes an augmented state observer (ASO) in

the control system, which has an intrinsic robustness in terms of the stability and

performance of the estimation error. The ASO includes a compensation gain matrix

which is designed using a Lyapunov LMI-pole-placement approach, based on

knowledge of the fault bounds. This stability concept is developed via a theorem and a

corresponding proof. Additionally, the novel adaptive compensation FTC concept is

illustrated by considering friction force as a special type of input or actuator fault in a

mechatronic system. The example given is an illustration based on the friction

compensation problem via a nonlinear inverted pendulum with Stribeck friction. It is

very reasonable to consider the friction as a fault in the system as it is a bounded but

unwanted effect which causes the performance of the system to change.

This Chapter also shows that the friction (fault) estimation and compensation is handled

and the results demonstrate excellent performance of the adaptive controller in

removing the effect of the friction force to yield very precise positioning control. It is

also important to note that combined fault estimation and fault compensation control

problem provides a powerful method of loop-transfer recovery, enabling the Separation

Principle to be reached as the bounded faults and/or uncertainties are estimated and

compensated in the observer feedback control system. The theory and approach have

wide application to more complex problems in which actuator, sensor faults as well as

multiplicative faults and unknown input signals can all be compensated together using

the system description and proposed stability conditions.

Chapter 4 focuses on an alternative approach to the one described in Chapter 3, using

sliding mode theory for estimation and control. The bounded estimation problem is

defined along with the stability and control performance requirements for the FTC

system, corresponding to a combination of the well known sliding mode observer

(SMO) and sliding mode control (SMC) structures. Chapter 4 also develops a design

method for on-line FTC, based on fault estimation. The interconnection of the SMO and



18

SMC structures is made via a bounded fault estimate signal is illustrated using the

friction compensation example discussed in Chapter 3.

As discussed in Chapter 3, the key idea behind this example is that the friction force can

be considered as an actuator fault acting on the system. The estimates of the friction

force generated via the SMO theory are then directly used in an adaptive SMC scheme.

The main contribution of this Chapter is the development of an adaptive gain for the

nonlinear unit vector term which ‘compensates’ for the effects of friction force. The

approach is illustrated using a nonlinear inverted pendulum with Stribeck friction.

Necessary and sufficient conditions for SMO estimation (as a matched uncertainty) and

SMC stability are from (Edwards et al., 1998 and 2000). The new ideas and

contributions are thus two-fold; (a) the concept of viewing friction as a fault-effect and

(b) the combined use of the sliding mode friction estimation and sliding mode control.

The friction compensation problem is merely one example of an adaptive FTC system

and the principles are applicable to a wide range of application systems.

Chapter 5 addresses the robust fault estimation problem of linear parameter-varying

(LPV) systems where the state-space equation depends on the time-varying system

parameters as an alternative to robust residual generation for FDD as discussed in

Chapter 2. This Chapter describes the development of a robust fault estimator which can

be characterized via a set of linear matrix inequalities (LMIs) with the robustness

property to exogenous disturbance. First, the LPV feedback controller for the fault-free

case is designed. To demonstrate the proposed method, an illustrative example of a two-

link manipulator is provided and the polytopic LPV model of this system is also

presented. Finally, the active FTC mechanism is illustrated by an on-line combination

of the polytopic feedback controller and polytopic LPV estimator [using the introduced

fault-effect factor estimation] for achieving actuator fault estimation and compensation.

Chapter 6 provides a novel approach associated with a distributed control system that

is designed to be tolerant to faults. The key to the formulation of the basic control

problem is one of being able to decompose the global level task and associate each

subsystem with its own goals and performance requirements. Chapter 6 focuses on the

development of the global controller, its structure and optimisation under the action of

the Autonomous Coordination and Supervision Scheme (ACSS). The global controller

is developed as an intelligent learning coordinator from the knowledge base of the

ACSS. This Chapter also proposes learning control systems methods which can be used
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together with on-line constrained optimisation strategies. The solutions are achieved

using two different combinations of neural networks and learning paradigms: (i) at a

local level, a Recurrent Neural Network (RNN) is used to identify the subsystem

dynamics in a suitable structure for the purpose of FDI, and (ii) at the higher, global

level, a feed-forward network is used along with Hebbian learning to learn the

coordinating function. The first illustration of these concepts is made in Chapter 6 using

a simple example of two interconnected sub-systems. Chapter 6 forms the basis for

further work on FTC of distributed control systems in Chapter 7.

Chapter 7 provides the estimation strategies for both fault(s) and interconnection

disturbance. The work is linked with the use of compensation via the design of a

distributed system two-level control scheme. The estimation methods are based on the

use of the ASO approach described in Chapter 3. This new adaptive approach to

compensating control in FTC is computed using the fault/interconnection estimation. A

tutorial study is given of estimation and compensating control in the presence of faults

within an example of a nonlinear Three-Tank interconnected system. The system

comprises both faults and interconnection disturbances. Finally, the proposed FTC

concept is applied via the ASO approach dealing with the problem of

interconnection/local fault estimation and compensation, whereas the two-level control

approach (as described in Chapter 6) is used to handle the interconnection disturbances

acting on each subsystem, via the Interaction Prediction Principle.

Chapter 8: summarises and concludes the overall work described by the thesis and

makes suggestions and recommendations as to how the research can be further

developed in the future.
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Chapter 2.
Outline Review of Model-based FDI
and FDD Methods

2.1 Introduction

This Chapter provides an overview of the main research topics and published work on

quantitative model-based FDI and FDD. Section 2.2 provides a classification of

FDI/FDD methods and Section 2.3 and 2.4 discuss is some detail the main mathematical

properties of residual generation approaches for FDI and FDD, respectively. Section

2.5 provides a specific study of the literature and the main concepts involved in the use

of fault estimation for different forms of control reconfiguration in active FTC. This

Section also discusses a potential correspondence between residual generation and fault

estimation concepts and their importance in robust FTC.

2.2 Classification of Fault Diagnosis Approaches

Research developments in the field of analytical redundancy methods for FD started in

the 1970’s (Beard, 1971; Willsky, 1976). Many approaches in the context of robust

model-based fault diagnosis have been proposed (Clark, 1978; Himmelblau, 1978;
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Chow and Willsky, 1984; Isermann, 1984; Gertler, 1988; Patton et al, 1989, 1994; Chen

and Patton, 1999; Patton et al., 2000a; Simani et al, 2003; Blanke et al, 2003; Isermann,

2006; Ding, 2007).

Since the 1970s many monitoring methods and procedures have become available

through developments in computer technology. Fault diagnosis techniques have also

gained interest and have been engineered into many practical and industrial systems.

Fault diagnosis requirements followed the trend in increased automation in science and

engineering applications (e.g. industry, medicine, defence, transportation) [ref???].

In the field of flight systems, aircraft dynamics are well studied and hence model-based

FDI methods can be quite easily applied in flight control systems (Deckert et al., 1977;

Chandler 1984; Ioannou et al 1989; Patton 1991a, 1991b; Rauch et al., 1995;

Polycarpou and Heilmicki, 1995; Smaili and Mulder, 2000; Alwi and Edwards, 2005,

2006; Cieslak et al., 2009). The challenges here are mainly of reliability of FDI methods

(for safety-critical application) and verification and certification for flight air

worthiness.

The development of real time/on-line FDI systems is becoming an issue of primary

significance in the design of intelligent and autonomous control systems. However, the

imprecise measurements and uncertain dynamical behaviour of the process, together

with unknown disturbances, make the ‘early fault detection’ problem difficult to

achieve (Patton, 1997; Chen and Patton, 1999; Simani et al, 2003).

On-line monitoring tools not only provide early warning of plant malfunction (including

loss of safety, environmental degradation, poor economy, etc.) but also information as

to how to minimize maintenance schedule costs. Precise diagnostic information must be

generated quickly to protect the plant/system from shut down and provide human

operators with appropriate process status information to help them take correct decisive

actions not only when faults become serious but also when faults are developing and

difficult to detect (also called incipient faults). It is clear that the application of

supervised on-line diagnosis schemes can be profitable in terms of a decrease in service

costs (Patton, 1997; Chen and Patton, 1999, Isermann, 2006).

The main idea of the model-based approach to FDI/FDD is to generate signals that

reflect inconsistencies between nominal and faulty system operation. Such signals,

termed “residuals”, are usually generated using analytical approaches, such as observers

(Chen and Patton, 1999; Patton et al., 2000a), parameter estimation (Isermann, 1994) or

parity equations (Gertler, 1998) based on analytical (or functional) redundancy.
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Considerable attention has been given to both research and application studies of real

processes, using analytical redundancy as this is a powerful alternative to the use of

repeated hardware (hardware redundancy).

As discussed in Chapter 1 the terms monitoring and supervision are sometimes used in

FDI. Many mathematical model-based methods for FDI have been developed (See,

e.g., Willsky, 1976; Isermann, 1984; Gertler, 1988; Patton and Frank, 1989; Chen and

Patton, 1999).

However, a fault diagnosis system should have the same following characteristics:

 Low detection delay

 Low rate of false alarms

 Fault isolability (the ability to find the correct location of the fault)

 Robustness to noise, uncertainty and parameter variation

One of the main challenges lies in finding the fault when it is just developing. This may

give more time to take the necessary measures to avoid breakdown or malfunction of

the system.

Figure 2-1: Fault diagnosis (FD) classification (from Chen and Patton, 1999)

Non Model-basedModel-based

Parity equation Observer-basedParameter estimation

FD

Residual Generation

Fault detection and identification

(FDD)

Fault detection and isolation

(FDI)

Observer-based
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There are many classifications of FD in the literature (Chen and Patton, 1999; Isermann

and Ballé, 1997). The obvious classification is model and non-model-based fault

diagnosis. However, in this thesis the emphasis will be only on model-based fault

diagnosis. In view of the overall fault tolerant strategy, model-based schemes are

grouped based on their capabilities into two major categories; (i) FD using residual

schemes (residual generation) and, (ii) FD which has the capability to estimate the faults

(fault estimation) [see Figure 2-1]

The following Sections, review the basic theoretical concepts of model-based fault

detection and isolation first, followed by a classification based on residual generation

and fault estimation.

2.3 Residual Generation Approaches to FDI

2.3.1 The idea behind model-based FDI

The main idea behind model-based FDI is to compare the system’s available

measurements, with a priori information represented by the system’s mathematical

model as illustrated in Figure 2-2.

The main advantage of the model-based approach is that no redundant hardware

components are required to implement the FDI scheme. The model-based information is

used to create a form of analytical or functional redundancy, rather than hardware

redundancy. In this work only the quantitative form of mathematical model is used.

Other model forms can be qualitative or a combination of qualitative and quantitative,

based for example on fuzzy reasoning, neural networks or neuro-fuzzy modelling

strategies (Patton et al., 2000b; Calado et al., 2001; Uppal and Patton, 2005).

A model-based FDI algorithm can be achieved in software on the process control

computer and in many cases the measurements needed for control are sufficient for the

FDI algorithm so that no additional hardware is required (Chen and Patton, 1999).

Figure 2-2 shows the conceptual structure model-based fault diagnosis comprising

residual generation and decision making: (i) the residual generation providing a

residual signal that carries information on the time and location of the faults. The

residual signal should be close to zero in the fault-free case and deviate from zero when

a fault has occurred, whereas (ii) the decision making evaluates the residuals and
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monitors if and where a fault has occurred. This two-stage structure was first suggested

by Chow and Willsky (1980) and is now widely accepted by the fault diagnosis

community.

Figure 2-2: Conceptual structure of model-based fault diagnosis

(Chen and Patton, 1999)

The most important issue in model-based fault diagnosis is robustness against modelling

uncertainty which arises from incomplete or inaccurate modelling of the monitored

process. Robust fault diagnosis has become an interesting research issue over recent

years (Chen and Patton, 1999).

FDI used the measured outputs )(ty from sensors {normally needed in the feedback

control} and the control inputs )(tu as the control actuation generated by the controller

and demanded reference signals. Model-based FDI is mainly concerned with on-line

fault diagnosis, which is carried out during system operation. This is because the system

inputs and outputs required by model-based FDI are only available when the system is

in operation.

The relationship between the FDI role and the control loop is shown in Figure 2-3. It

can be seen that the system model needed in the model-based FDI is an ideal replica of

the open-loop system dynamics, although the system is considered to be operating in

closed-loop. This is because both the inputs and outputs needed for the FDI algorithm

are related to the open-loop system. ‘…Therefore, it is not necessary to consider the

controller in the design of a fault diagnosis scheme. Once the inputs to the actuators are

available, the fault diagnosis problem is the same no matter how the system is working

in open-loop or in the closed-loop…’ (Chen and Patton, 1999)

Input
System

Output

Model-based FDI

Residual signal

Residual Generation

Decision Making

Fault information



25

Figure 2-3: Fault diagnosis and control-loop

However, in cases when the inputs )(tu to the actuator are not available, the reference

command )(tuc is used in FDI. Therefore, the model depends on the relationship

between the reference command )(tuc and the measured output )(ty . In this case the

controller plays an important role in the design of the FDI scheme.

In the presence of modelling uncertainty the controller may desensitise the residual

signals to the fault effects and possibly weaken the robustness of the FDI system with

the potential for lower reliability in both fault detection and fault isolation. To attempt

to overcome this problem the controller and FDI system can be designed simultaneously

(Jacobson and Nett, 1991; Wu, 1992; Stoustrup et al., 1997; Chen and Patton, 1999;

Weng et al., 2008). The connection between fault diagnosis and robust control design is

an on-going topic of research and is not considered further in this thesis.

The first step in the model-based approach to FDI is to make a mathematical model of

the system to be monitored. In the case of a nonlinear system, this implies a model

linearization around an operating point.

Figure 2-4: The open-loop system

We can consider the open-loop system to be represented in Figure 2-4 by a time-

invariant, linear dynamic system in state-space form as follows:

)()(
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
( 2 - 1 )
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where nx  is the system state vector, m
Ru  is the real actuator input vector to the

actuator and p
Ry  is the real system output vector. BA, and C are the system

matrices with appropriate dimensions.

2.3.2 Modeling of system with faults

Consider when the component faults )(tfc occurring in the system of Figure 2-4 the

dynamic model of the faulty system can then be presented as: (see Figure 2-5)

)()()()( tftButAxtx cR  ( 2 - 2 )

The component fault represents some change in the system, for example, a leak in a

water tank in the three tank system, etc. In some circumstances, the fault could be

described as a parameter change in a system e.g. in thi row and thj column element of

the system matrix A , the open-loop dynamics of the system can then be described as:

)()()()( txaItButAxtx jijiR  ( 2 - 3 )

where: jx is the thj element of the vector x , n
iI  is the vector with all zero

elements except ‘1’ in the thi element and ija the parameter change.

However, the actual “output states” Ry of the system are not accessible and sensors

must be used to measure the system output that also introduce additional dynamics.

Ignoring the sensor dynamics, the measured outputs )(ty can be described as:

)()()( tftyty sR  ( 2 - 4 )

where: p
sf  is a vector of additive output sensor faults. When there is a variation in

the sensor scalar factors (multiplicative faults), a particular system measurement

becomes )()1()( tyty R and the fault vector can then be written

as )()( tytf Rs  . Figure 2-5 illustrates the open-loop system with actuator,

component and sensor faults, respectively.
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Figure 2-5: Open-loop system with faults

Consider the case when the actuator control input vector mu  is a known control

command. The input sensors are not considered in this case and the actuator response

)(tuR is not directly accessible. For a controlled system (if the actuator dynamics can

be neglecting) )(tuR can be described as:

)()()( tftutu aR  ( 2 - 5 )

where: m
a tf )( is the actuator fault vector.

The open-loop linear system model with all actuator, component and sensor faults can

be described as:

)()()(

)()()()()(

tftCxty

tftBftButAxtx

s

ca




( 2 - 6 )

Considering the general case with all faults, the system may be described as:

)()()(

)()()()(

2

1

tfFtCxty

tfFtButAxtx




( 2 - 7 )

The system is strictly proper (for )02 F with respect to the fault vector gtf )( .

Each element ],2,1[)( gitfi  of )(tf corresponds to a specific fault. 1F and 2F

are matrices with appropriate dimensions and represent the signal effect of faults on the

system. These are called ‘the fault entry matrices’. Vectors )(tu and )(ty are the

measured input and output vectors called ‘the input-output vectors of the monitored

system’ and are assumed to be known for the FDI purpose (Chen and Patton, 1999).

The system with faults (Figure 2-5) can also be represented by an input-output transfer

matrix representation:

)()()()()( sfsGsusGsy fu  ( 2 - 8 )
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where:

BAsICsGu
1)()(  ( 2 - 9 )

21
1)()( FFAsICsG f   ( 2 - 1 0 )

Eqs.( 2 - 7 ) or Eq. ( 2 - 8 ) are a generalised and widely accepted framework for linear

model-based FDI in either the time-domain or the frequency domain (see more details

in Patton and Chen, 1999; Ding, 2007).

The FDI methods use prior knowledge about some signal characteristics e.g. the

dynamic range of the signal, the frequency spectrum etc, that is not always available.

Moreover, these characteristics strongly depend on the operating point of the system.

Indeed, the introduction of “residuals” is one of the most significant contributions in

model-based FDI methodology. These residuals can be designed to be sensitive to faults

and insensitive to model uncertainties and operating point changes (Chen and Patton,

1999).

‘…Residuals are quantities that represent the inconsistency between the actual system

variables and the mathematical model. Based on the mathematical model, many

invariant relations (dynamic or static) among different system variables can be derived,

and any violation of these relations can be used as residuals…’ (Chen and Patton,

1999).

A general structure of the residual generator (Patton and Chen, 1991a, 1991b) shown in

Figure 2-6 can be expressed as:

)()()()(

)(

)(
)]()([)(

sysHsusH

sy

su
sHsHsr

yu

yu













( 2 - 1 1 )

In fault-free conditions the residual should be zero therefore from Eq. ( 2 - 1 1 ) it is

clear that the transfer matrices )(sHu and )(sH y must satisfy the condition:

0)()()(  sGsHsH uyu ( 2 - 1 2 )

The fault detection is performed by the comparing the residual evaluation function with

a threshold function )(tT as follows:









0)(for)())((

0)(for)())((

tftTtrJ

tftTtrJ

ev

ev
( 2 - 1 3 )



29

A simple and most frequently used method is to compare the residual with a fixed

threshold.

Figure 2-6: General structure of a residual generator (from Chen and Patton, 1999)

This method works well if the system is in steady state and either the faults to be

diagnosed are not very small or the model used for the residual generator is a faithful

replica of the process dynamic behaviour. In order to make the fixed threshold approach

work well many investigations use robust systems principles to ensure that the residual

is robust to model mismatch (modelling uncertainty, unknown disturbances, etc). This

strategy is known as 'active robustness' in FDI. In this approach there is an active

attempt to make the residual robust.

The alternative strategy of scheduling the threshold in a dynamic way (perhaps as a

function of the controls signal variation) is known as 'passive robustness'. Here there is

little or no attempt to make the residual robust to uncertainty but the effect of robustness

is taken up in the adaptive behaviour of the threshold (Chen and Patton 1999 and the

references therein).

2.3.3 Fault detectability and isolability

The concept of fault detectability and isolability are introduced here as they are used in

Section 7.3. By using the transfer matrix representation of the system with faults in Eq.

( 2 - 8 ) and the general residual structure Eq. ( 2 - 1 1 ) the residual in the presence of

faults can be described as:

)(sr

Residual generator

)(sf

+
)(sG f
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System
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)()()()(

"0"

)]()()([)( sfsGsHsusGsHsHsr fyuyu 
   ( 2 - 1 4 )

From the constraint condition of the residual ( 2 - 1 2 ) , now have:

)()]([

)()(

)()()()(

1

sfsG

sfsG

sfsGsHsr

i

g

i

irf

rf

fy











( 2 - 1 5 )

where )()()( sGsHsG fyrf  is the fault transfer matrix representing the relationship

between the residuals and faults (see Figure 2-7), irf sG )]([ is the thi column of the

transfer matrix )(sGrf and )(sf i is the thi element of )(sf (Chen and Patton 1999).

Figure 2-7: The relationship between fault and the residual

In order to detect the thi fault )(sf i , irf sG )]([ should be (designed to be) non-zero:

0)]([ irf sG ( 2 - 1 6 )

If the condition in Eq. ( 2 - 1 6 ) is satisfied, the thi fault if is detectable in the

residual )(sr . ‘…This can be defined as ‘Fault Detectability Condition’ for the residual

)(sr to the thi fault if …’ (Chen and Patton, 1999).

The condition:

0)]0([ irfG

follows by application of the final value theorem, as a ‘Strong Fault Detectability

Condition’, which holds as time t .


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For fault isolation a residual set is needed. If the residual set can isolate all the faults, it

can be said that it has the required ‘isolability’ property. There are two main approaches

to achieve the fault isolation task:

 Structured residual approach

In the structured residual approach, each residual must be designed to be

sensitive to a subset of faults. In a ‘Structured residual set’ each residual in the

set of residuals has a required sensitivity to specific faults whilst insensitivity to

others (Gertler, 1991), so that individual faults can easily be isolated. To

generate a structured set of residuals:

(i). The first step is to specify the sensitivity and insensitivity

relationship between residuals and faults.

(ii). The second step is to design a set of residual generators, based on

the relationships specified in step one.

There are various kinds of structured residuals. The ‘Dedicated Residual Set’ is

a set of residuals where each one is sensitive to only one fault [inspired by the

Dedicated Observer Scheme proposed by Clark (1978)]. The ‘Generalized

Residual Set’ is a set of residuals, with each residual sensitive to all but one fault

[based on the Generalized Observer Scheme by Frank, (1990)].

 Directional residual approach

Another approach for fault isolation is to design a directional residual vector,

which lies in a fixed and fault-specified direction in the residual space (Chen and

Patton, 1999). The generated residual vector is compared with known fault

signature directions. However, for reliable fault isolation, each fault signature

has to be uniquely related to one fault (See more details in Section 2.7 of Chen

and Patton, 1999).

2.3.4 Residual generation methodologies

It is clear that the generation of residual signals is the main issue in model-based FDI.

There are a variety of methods available for residual generation both for continuous and

discrete system models. This Section outlines the commonly used model-based residual

generation techniques. If robust residual generation is achieved then the residual

evaluation is easily achievable, e.g. through the use of any well-developed statistical
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approaches of ‘Generalised Likelihood Ratio’ (GLR) testing (Willsky and Jones, 1974;

Tanaka and Müller, 1993; Peng et al., 1997) and the ‘Sequential Probability Ratio’

(SPR) test (Willsky, 1976; Basseville, 1988), can be utilised.

However, it is well known that model-reality mismatches always exist in practice.

Disturbances as well as model uncertainty are inevitable in real application problems,

which imply the need for robustness in the FDI design. Consider the following FDI

approaches:

 Parameter estimation approach

In this approach, the parameters of the model of the system are estimated using

the input-output measurements of the system (Isermann, 1984, 2006). The main

idea is that by detecting a change in the system parameters residuals can be

generated. These residuals can then be used to detect and isolate faults. The

main drawback of this approach is that the model parameters should have a

physical meaning and they should correspond to the actual physical parameters

of the system (FDI is straightforward if this is true). If this condition is not true it

is difficult to distinguish fault effects on the residual from causal effects of

parametric variation, uncertainty or other time-varying system properties (e.g.

changing disturbance or even system structure changes). As a result, the fault

isolation task becomes difficult. Moreover, if the model structure is nonlinear in

its parameters, non-linear modelling methods or non-linear feedback structures

should be applied and these may cause serious difficulties in the case of complex

(difficult to model) systems. Robust parameter estimation techniques may be

applied to account for system-model mismatch. However, Patton et al (2000)

pointed out that the detection of faults in sensors and actuators is possible but

complicated using the parameter estimation.

 Parity relation approach

Parity relations (equations) can be used in a systematic approach, based on

analytical redundancy, to design structured residuals for fault isolation. The

basic idea of this approach is to provide a check of consistency of the

measurements. However, this approach is more suitable for linear systems as

discussed in more detail in (Chen and Patton, 1999). Patton and Chen showed

that the parity equation approach has a strict mathematical equivalence with the

observer –based approach, under certain conditions (Patton and Chen, 1991).
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 Observer approach

The observer approach to FDI can be used to generate residuals via the

difference between the estimated actual system outputs. The main advantage of

this approach over the parity equation approach is more suitable for tolerating

some degree of nonlinearity and uncertainty. For this reason the observer

approach is given more attention in the literature (Patton and Chen, 1997). The

observer-based approach, particularly the unknown input observer or UIO, is

described in Section 2.3.5 and applied to a distributed and interconnected system

example in Section 7.3.

Clark et al. (1975) first applied the Luenberger observer to the problem of fault

detection. The main concept of observer-based FDI is that the estimates of certain

measured or unmeasured signals can be obtained via a state estimator in either

Luenberger observer or Kalman filter forms. The estimates of measured signals can then

be compared with the original signals to generate the residuals. Another focus on

observer-based FDI arises from the popularity of using state space models and the wide

applicability of observers (especially for linear systems) in control. A brief history of

observer-based FDI can be found in Patton (1994), Patton and Chen (1997) and Chen

and Patton, (1999). The problem of model mismatch is usually addressed by using the

concept of “the unknown input”. Using the observer-based approach the residuals are

generated as the difference between the estimated and the actual output. Consider a state

observer (see Figure 2-8) for the system described by Eq. ( 2 - 7 ) .

Figure 2-8: State observer for FDI (from Chen and Patton, 1999)

The observer shown in Figure (2-10) can be described by the following equations:
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( 2 - 1 7 )

where nxnL  is a designed observer gain, )(ˆ tx is the estimated state, )(ˆ ty is the

estimated output and )(te is the output estimation error. The state estimation error can

be expressed as: )(ˆ)()( txtxtex  , thus:

)()(

)()(

)()](ˆ)([)(

teLCA

tLCetAe

tLetxtxAte
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


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( 2 - 1 8 )

Applying this observer to the system in Eq. ( 2 - 7 ) with actuator, component and

sensor faults, and the output estimation error )(te can be expressed as:

)()(

)(ˆ)()(

2 tfFtCe

tytyte

x 


( 2 - 1 9 )

The state estimation error can be written as:

)()()()(

)()()(ˆ)()()()(
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x




( 2 - 2 0 )

The residual can then be generated as:

)()( teWtr r ( 2 - 2 1 )

The matrices pxn
rW  can be designed to generate residuals with desired

characteristics e.g. time response and directional property, e.g. using eigenstructure

assignment (Patton and Chen, 1991b; Patton and Chen, 2000) or via multi-objective

optimisation (Chen, Patton and Liu, 1996; Liu and Patton, 1996).

2.3.5 The unknown input observer (UIO)

The Unknown Input Observer (UIO) has been known in the control literature since 1975

(Wang, Davison and Dorato, 1975). However, the concept was introduced to FDI

applications to achieve robust FDI by Watanabe and Himmelblau (1982). Since that

work many studies have proposed a wide range of robust FDI design tools (Patton,

Frank and Clark, 1989; Frank and Ding, 1997; Chen and Patton, 1999; Patton et al.,
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2000; Ding, 2007). The UIO can tolerate some extent of model uncertainty and hence

increase the degree of fault diagnosis reliability. The UIO can be represented by the

linear time-invariant state space model [the following continuous-time deterministic

description has been adopted from (Chen and Patton, 1999; Patton et al., 2000)]:

)()(

)()()()(

tCxty

tEdtButAxtx




( 2 - 2 2 )

where qtd )( is the unknown input or disturbance and nxqE  is disturbance

distribution direction. Consider the UIO shown in (Figure 2-9). The effect of unknown

disturbance )(td is de-coupled using:

)()()(ˆ

)()()()(

tyHtztx

tyKtBuTtzFtz

uiouio

uiouiouiouio




( 2 - 2 3 )

where )(tzuio is the state of the observer, uiouiouio KTF ,, and uioH are the matrices to

be designed to achieve disturbance decoupling and )(ˆ tx is the estimated state vector

(Chen and Patton, 1999).

Figure 2-9: The Unknown Input Observer [Chen and Patton, 1999]

The state estimation error )(ˆ)()( txtxtex  can be described by the following equation

(Chen and Patton, 1999):
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21
uiouiouio KKK  ( 2 - 2 5 )

Along with the UIO observer design the decoupling of the effects of the unknown input

signals acting on the estimation error system dynamics is achieved if the following

conditions are satisfied:
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( 2 - 2 6 )

The matrix 1
uioK contains free design parameters that should be chosen to stabilise the

observer dynamics matrix uioF (e.g. the design can be achieved using multivariable pole

placement). The choice of matrix 1
uioK is not unique due to the multivariable degrees

of design freedom. The remaining design freedom could, in principle be used e.g. to

structure the design of the residual equation. The gain matrix 2
uioK is used to de-couple

the unknown input signal in the observer feedback. Once the unknown input distribution

matrix E is known, then the matrix uioH is determined from Eq. ( 2 - 2 6 ) . Note that

for 0E , the observer design is identical to that of the standard Luenberger Observer

with 1
uiouio KK  and with 02 uioK .

Hence, the state estimation error )(tex becomes:

)()( teFte xuiox  ( 2 - 2 7 )

It can be seen that the state estimate )(tex will approach zero asymptotically, i.e.

)()(ˆ txtx  if all eigenvalues of the matrix uioF are stable. The necessary and sufficient

conditions of UIO are given by: (Chen and Patton, 1999)

(i) )()( ErankCErank 

This means that the number of disturbances to de-couple cannot be greater

than the number of measurements.

(ii) ),( 1AC is a detectable pair

where CACEEAA  )(1 and TT CECECECE )(])[()( 1  denotes the

pseudo-inverse of (CE).
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If the condition (i) holds true the first relation in Eq. ( 2 - 2 6 ) is solvable and

 )(* CEEHuio is a special solution for the matrix uioH . If there are no unknown

inputs in the system i.e. ,,0 ITE uio  and 0uioH , the UIO becomes a simple full-

order Identity Observer.

2.3.6 Robust FDI scheme based on UIO

The system in Eq. ( 2 - 2 2 ) with the presence of sensor and actuator faults can be

described as:

)()()(

)()()()()(

tftCxty

tBftEdtButAxtx

s

a




( 2 - 2 8 )

where m
af  and p

sf  are sensor and actuator faults respectively. When state

estimation is available, the UIO residual signal can be generated as:

)()()(

)(ˆ)()(

tCztyCHI

txCtytr

uiouio 


( 2 - 2 9 )

When this UIO is applied to the system of Eq. ( 2 - 2 8 ) , the state estimation and

residual signal become:

)()()()()()( 11
1 tfHtfKtBfTteKAte suiosuioauioxuiox

  ( 2 - 3 0 )

)()()( tftCetr sx  ( 2 - 3 1 )

It should be noted that in the above equation that the disturbance effects are de-coupled.

To detect actuator faults, it is necessary that 0BTuio . A fault in the thi actuator will

affect the residual if we make, 0iuiobT where ib is the thi column of input matrix B .

However, the sensor faults have a direct effect on the residual.

To achieve fault isolation, a structured residual set can be used, as mentioned in Section

2.3.3.

For sensor fault isolation the Generalized Observer Scheme (Chen and Patton, 1999) is

as shown in Figure 2-10. Each Observerj, pj ,,2,1  , is driven by all inputs and all

outputs except the thj output. Hence, the fault appearing on the thj sensor will have no

effect on Observerj. In this scheme it is assumed that all actuators are fault-free.
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Figure 2-10: Sensor fault isolation scheme using UIO

(Chen and Patton, 1999)

The system can be described by (Chen and Patton, 1999):

)()()(

)()()(

)()()()(

tftxcty

tftxCty

tEdtButAxtx

sj
j

j

j
s

jj







( 2 - 3 2 )

where n
jc  1 is thj row of matrix C , npjC  )1( is thj row deleted from

matrixC , jy is thj component of )(ty and 1)(  pj ty is the component deleted from

the vector )(ty . A set of m UIOs can be constructed as:

pjtyKtBuTtzFtz jj
uio

j
uio

j
uio

j
uio

j
uio ,,2,1for)()()()(   ( 2 - 3 3 )

and a set of residuals can be generated as:

)()()()( tzCtyHCItr j
uio

jjj
uio

jj  ( 2 - 3 4 )

The parameter vectors must satisfy the following:
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j
uioF is designed to have stable eigenvalues and:

j
uio

j
uio

j
uio HFK 2 ( 2 - 3 6 )

j
uio

j
uio

j
uio KKK 21  ( 2 - 3 7 )
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If the above conditions hold true, each residual jr is driven by all inputs and all outputs

but the thj output, and it is insensitive to thj sensor fault.

Figure 2-11: Actuator fault isolation scheme using UIO

[Chen and Patton, 1999]

For actuator fault isolation, the Generalized Observer Scheme (Chen and Patton, 1999)

is as shown in (Figure 2-11).

As shown in the Figure 2-11, each Observeri, mi ,,2,1  , is driven by all outputs and

all the inputs but the thi input. All sensors are supposed to be fault-free and the system

can be represented by the following equations:

)()(

)()(

)()]([)()(

tCxty

tdEfBuBtAx

tEdtfubfBuBtAxtx

iii
a

iii

aiii
i

a
iii


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

( 2 - 3 8 )

where mi ,,2,1  , iu and )(tfai and are the thi components of control input u and

actuator faults, respectively. 1 miu is obtained from control input u by deleting

the thi component of iu , and )1(  mnxiB is obtained by deleting the thi column of B

and taking n
ib  as the thi column of B .

The disturbance terms can be written as:

System
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For the above system, a set of m unknown input observers can be constructed as:

mityKtuBTtzFtz i
uio

iii
uio

i
uio

i
uio

i
uio ,,2,1for)()()()(   ( 2 - 4 0 )

and residuals can be generated as:

)()()()( tCztyCHItr i
uio

i
uio

i  ( 2 - 4 1 )

The parameter vectors must satisfy the following:
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The matrix i
uioF is designed to have stable eigenvalues and:

i
uio

i
uio

i
uio HFK 2 ( 2 - 4 3 )

i
uio

i
uio

i
uio KKK 21  ( 2 - 4 4 )

If the above conditions hold true, each residual ir is driven by all outputs and all inputs

but the thi input, and it is insensitive to thi actuator fault. Other fault information e.g.

frequency response data may be used to isolate such faults (Bogh, 1995).

Many good research studies have been done on residual based FDI using different

methods for various applications. In particular, Chen and Patton (1999) provide a

discussion on model-based residual FDI schemes, covering all aspects including basic

principles and robustness issues. Note that in the residual generation problem, a fault is

detected and its location identified, but there is no further information on the fault (e.g.

its magnitude, fault type or characteristics, or the fault severity in the system).

2.4 Residual Generation Approaches to Fault Estimation

Figure 2-12 seeks to illustrate an idea from Blanke et al (2003) showing that the

residual signal )(tr can be processed further to develop an estimator of the fault )(ˆ tf .

Blanke et al (2003) refer to this operation as “residual evaluation” but the term Residual

Post-Processor is preferred here as the term residual evaluation is usually reserved for
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the decision-making process applied to detect that a fault has occurred (i.e. using a

constant or variable threshold evaluation function).

Figure 2-12: The structure of fault estimation (adapted from Blanke et al, 2003)

In the ideal case i.e. when the residual generator model is a perfect replica of the system

dynamics, and when there are no exogenous disturbances acting on the system of Figure

2-12, [i.e. 0)( td ] the generalized residual is expressed as [see Eq. ( 2 - 1 2 ) ]:
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( 2 - 4 5 )

A “post-processing” operation may be applied to Eq. ( 2 - 4 5 ) to generate an estimate

of )(ˆ tf , corresponding to the ideal case.

The non-ideal case, when the term 0)]()()([  sGsHsH uyu , corresponds to the fact

that the residual )(sr is also a function of a control-induced uncertainty

0)()]()()([  susGssH uuy term and an exogenous disturbance term

0)()]()()([  sdsGssH ddy , where )}({)( tdsd L and {}L denotes the Laplace

Transform of the continuous-time signal {.} as follows (modified from Section 8.3.4 in

Chen and Patton, 1999):
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Following the above, the fault estimation problem then becomes one of de-convolution

to remove from )(sr the effects of: (a) the control signal-induced uncertainty and (b)

the exogenous disturbances )(sd . These effects act together on the state estimation

error )(sex .

This is, in principle, a starting point for generating a robust estimate )(ˆ tf of )(tf .

Chen and Patton (1999) provide a detailed discussion of the significance of this

potential approach in their Chapter 8 which is a development of using the residual

generation of FDI.

2.5 Overview of Fault Estimation in Reconfigurable FTC

FDI approaches have an intrinsic capability to detect the presence or occurrence of fault

(i.e. select one among two hypotheses of “normal system” or “faulty operation”) and to

distinguish the faulty component (i.e. select one among several hypotheses). This

facilitates the development of the concept of reconfiguration in FTC e.g. to turn off the

faulty component(s), and turn on some redundant non-faulty ones, so that the system

can continue with acceptable operation. However, in some cases, fault accommodation

mechanisms (based on fault estimation) are necessary, i.e. the control function is

adapted based on the FDI in order to recover acceptable control of the system subject to

bounded faults (Patton 1997, Blanke et al. 2000, Staroswiecki and Gehin 2000; Blanke

et al, 2003).

When fault estimation is used, it is important to consider the FDD rather than the FDI

problem (see definitions in Section 1.2) since the FDD problem includes fault

estimation as a sub-task. However, it is still interesting to bear in mind the approach to

fault estimation based on residual generation as described in Section 2.4.

Research on ‘reconfigurable FTC systems’ has increased progressively since the initial

research on restructurable control and self-repairing flight control systems of the early

1980s (Chandler, 1984; Eterno et al., 1985; Montoya, 1983). Reconfigurable FTC has

attracted more and more attention in both industry and academic communities due to

increased demands for safety, high system performance, productivity and operating

efficiency in a wider engineering application, not limited to traditional safety-critical

systems.
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2.5.1 Linear Parameter Varying (LPV) approaches to fault estimation

and control reconfiguration

In recent years, LPV modelling methods have become popular in the FDI and FTC

community, especially for applications related to vehicle and aerospace control (Bokor

and Balas, 2004).This approach is very valuable whenever nonlinear plants can be

modelled as LPV systems with on-line measurable state-dependent parameters. The

resulting system is known as “quasi-LPV” because the time-varying parameters are not

exogenous independent variables but depend on the state space system see (Packard and

Kantner, 1992; Rugh, 1991; Shamma and Athans, 1992); and surveys (Rugh and

Shamma 2000; Leith and Leithead, 2000) for more details.

The first solution to the FDI design problem based on LPV systems was given in

(Bokor, Szabó and Stikkel, 2002) and (Bokor and Balas, 2004). Recently, FDI and FTC

for LPV systems have attracted many investigators (Bokor and Balas, 2004; Henry and

Zolghadri, 2004; Casavola et al., 2005a, 2005ab, 2007; Weng et al., 2008; Zolghadri et

al ., 2008; Issury and Henry, 2009; Henry et al., 2009; Cieslak et al., 2009).

Casavola et al (2007, 2008) in their work on LPV filter-design methods for FDI showed

that the fault detection filter of Beard (1971) is essentially an H Luenberger observer

synthesized by minimizing frequency conditions that ensure guaranteed levels of

disturbance rejection and fault detection. They used the bounded real lemma (BRL) of

Apkarian (1995) and the Separation Principle to formulate the fault detection filter

problem as a convex LMI obtimization problem.

In another research direction, time-delay problems have received attention for more than

two decades. It is well known that time delays are sometimes present in systems due to

measurement or state variable transport delays, computational delays, or transmission

lags, etc. Although the stability and control analysis of such systems has been

investigated extensively in the control literature, there have also been several important

studies on the application of robust FDI methods to systems with time-delay (Wu and

Grigoriadis, 2001; Zhang P et al., 2002; Zhong et al., 2003, 2005; Mahmoud, 2004,

Mohammadpour and Grigoriadis, 2006; Sun et al., 2007). Recent work by Weng et al

(2008) considers the robust fault detection of LPV time-delay systems where the time-

delay is unknown but with bounded variation rates. An LPV residual generator is
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generated in terms of LMIs which can be obtained via efficient interior-point

algorithms.

Returning to the active FTC problem posed in terms of sensor faults, the availability of

a fault reconstruction signal means that if the sensor faults can be

estimated/reconstructed, this information can be used directly to correct the sensor faults

before they are used by the controller. The system can be tolerant to sensor faults

without the need for controller reconfiguration or restructure. The severity of an

actuator fault (actuator effectiveness) can be estimated, which is beneficial for controller

reconfiguration (Zhang and Jiang, 1999 and 2002; Wu et al., 2000). This is one step

further than the use of the residual-generation based FDI, but is applicable only to

specific types of reconfigurable/FTC controllers. Some FTC controllers such as the

methods proposed in (Wu et al., 2000; Zhang and Jiang, 1999, 2002) require estimates

of the actuator efficiency to allow the FTC controller to tolerate the faults/failures.

Rodrigues et al., (2005) proposed the design of an active FTC and polytopic UIO for

system represented by a multi-model representation in which a polytopic UIO is

synthesized for providing actuator fault estimation, and this estimation is used in a FTC

strategy which schedule some predefined state feedback gains. The design of a static

output feedback is later synthesized and developed through LMIs (Rodrigures et al.,

2007).

Weng, Patton and Cui (2007) proposed an active FTC scheme based on a gain-

scheduled form of H design under the assumption that the effects of faults on the

system can be of affine parameter dependence. They developed a reconfigurable robust

H controller using this approach and demonstrated the concepts on an interesting

component fault in the double inverted pendulum. The controller is a function of the

“fault effect factors” (as defined in Chen et al 1999 and Chen and Patton 2001). The

fault effect factors are estimated on-line from the FDI residual vector. The effectiveness

of the proposed method is demonstrated through the nonlinear double inverted

pendulum system with a fault in the motor tachometer loop (Weng, Patton and Cui,

2007).

Later, a joint design of robust controller and fault estimator for LPV systems is

presented which relates to earlier work by Jacobson and Nett (1991) [see also discussion

in Section 2.3]. An LPV controller is also developed to generate both control signals

and fault estimates. The proposed method is illustrated through an uncertain system

with actuator faults (Weng, Patton and Cui, 2008).
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2.5.2 Sliding mode approaches to fault estimation and control

reconfiguration

Based on sliding mode theory there have been some interesting threads of development

on the use of SMO designs for reconfigurable FTC systems. The first sliding mode

observer designs used typical residual-based FDI ideas (Sreedhar et al., 1993; Yang and

Saif, 1995; Hermans and Zarrop, 1996). The idea is to ensure that the sliding motion is

broken when faults/failures occur in the system and a residual is generated containing

information about the fault.

Edwards et al (1998, 2000) provided an alternative way of using variable structure and

sliding mode theory to eliminate some of the restrictions in the design methods of fault

estimation that found in the literature. Their work considered the application of a special

SMO to the problem of FDI. Edwards and Spurgeon (1998) proposed the so-called

equivalent output injection concept to reconstruct fault signals. However, in their early

work they did not include and analysis of modelling uncertainty. The effects of

uncertainty were taken account in Tan and Edwards (2003) and Jiang et al. (2004)

demonstrating good capability for reconstructing/identifying faults. Not only do these

design approaches have the ability to detect and isolate the source of the fault they also

provide further information about the fault which can be used especially for controller

reconfiguration.

The fault detection and identification based sliding mode approaches are developed later

and several studies by Yan, Edwards and Spurgeon in the field of interconnected large-

scale system are published [see the references therein e.g. Yan et al., 2003, 2004, 2006,

and 2008]. Furthermore, the interesting papers in the field of fault tolerant flight control

can be found in work by Alwi and Edwards (2005, 2006, and 2007) and Alwi et al

(2009).

2.5.3 Alternative approaches to fault estimation and control

reconfiguration

Although extensive individual research studies on FTC have been carried out,

systematic concepts, design methods, and even terminology are still not yet

standardized. During the last decade efforts have been made to unify some terminology

(Isermann and Ballé, 1997; Blanke et al., 2000, 2001, 2003, 2006; Staroswiecki and
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Gehin, 2001; Isermann, 2006; Mahmoud et al., 2003; Simani et al., 2003). However, in

some cases further confusion has been caused by even introducing redundant

terminology!

For historical reasons and problem complexity, most research studies on FDD and

reconfigurable control have been carried out as two separate entities. These two

subjects are investigated mostly by separate fields or groups of researchers. More

specifically, most of the FDI/FDD techniques are developed as a diagnostic or

monitoring tool, rather than as an integral part of FTC. As a result, some existing FDD

methods may not satisfy the requirement for controller reconfiguration.

On the other hand, most of the research on reconfigurable control is carried out

assuming the availability of a perfect FDD. Little attention has been paid to the analysis

and design with the overall system structure and interaction between FDD and

reconfigurable control. For example, from the viewpoint of reconfigurable controls

design (Zhang, 2003, 2006); “… (a) What are the needs and requirements for FDD? (b)

What information can be provided by the existing FDD techniques for overall FTC

designs? (c) How to analyze systematically the interaction between FDD and

reconfigurable controls? (d) How to design the FDD and reconfigurable controls in an

integrated manner for on-line and real-time applications? ...”

Many other challenging issues concerning the integration of FDD and reconfigurable

control still remain open for further research and development and some of these are

considered in later chapters of this thesis.

2.6 Conclusion

This Chapter summarises briefly the types of faults and failures acting on actuators and

sensors and its importance to FTC and FDI and reviews the model-based FDI

approaches that rely on the concept of analytical redundancy. The main advantage of

analytical redundancy based FDI as compared with the use of hardware redundancy is

that extra hardware components are not required. However, there is always a model-

reality mismatch between the process and the assumed model of the system dynamics.

The Chapter also reviews the robust FDI methods that can be achieved using

disturbance-decoupling techniques. The Chapter outlines the main issues of FDI based

on analytical redundancy are the sensitivity of the FDI algorithm to model uncertainties

and exogenous disturbance and the resulting robustness problem.
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The Chapter focuses on the UIO as a special form of traditional state observer for FDI,

applicable to uncertain systems. The treatment of this subject is useful in Chapter 7

which deals with the problem of FTC for nonlinear distributed systems.

The Chapter ends by outlining different methods of FTC and the mechanisms of

achieving fault tolerance, ranging from robust control to control signal redistribution.

The existing approaches to FDD and reconfigurable control are outlined.
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Chapter 3.
Fault Estimation and Compensation
based on Augmented State Approach

3.1 Introduction

With reference to the classification of FTC systems given in Figure 1-5 of Chapter 1,

this Chapter is concerned with the active approach to FTC, involving fault estimation,

fault compensation and adaptive control. The work of this Chapter only considers

actuator faults since if the sensor fault can be estimated, this information can be used

directly to correct the fault from sensor measurements before using by the controller.

This avoids reconfiguring or restructuring the controller to be tolerant to sensor faults.

As stated in Chapter 2, there have been a number of studies on FTC based on fault

estimation methods [see Wang and Daley, 1996; Wang et al., 1997; Wu et al., 2000;

Zhang and Jiang, 1999 and 2002; Rodrigues et al., 2005, 2007]. Some of these studies

deal with tolerance to sensor faults and others deal with the FTC problem for actuator

faults (Jiang and Staroswiecki, 2002; Zhang, Jiang and Cocquempot, 2002).

Of these studies, the most relevant to the work of this thesis and which fit to the scheme

of Figure 1-6 is that of Wang and Daley (1996, 1997). Wang et al (1997) proposed an

FDD algorithm where an observer is constructed to diagnose the faults via the

augmented error technique from Model Reference Adaptive Control (MRAC) in which
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an observation error model is set up and used to compute the gains required in the fault

estimation for actuator and sensor faults. The Wang et al (1997) approach has several

weaknesses. The method requires a priori knowledge of the norms of the unknown

inputs representing model uncertainties and/or the statistics of the process noise of the

system, which are used to achieve stable fault estimation. Furthermore, the diagnostic

strategy depends strongly on some a priori knowledge of spectral components of the

unknown inputs in the frequency domain (Wang et al., 1997). It is unrealistic to need to

depend on this information for real applications.

With this background in mind, the main contribution of this Chapter is to investigate the

properties of an augmented state observer (ASO) approach for fault estimation in

adaptive control for FTC, providing tolerance to actuator faults. The FTC controller is

included within the structure of an augmented state system incorporating a full order

state observer in which the actuator faults are estimated via additional state variables.

The observer system for each case forms a part of the controller-compensator structure.

A useful topic outlined in Section 3.5 is the concept of the robustness of the ASO to

modelling uncertainty. It is found that the adaptive mechanism compensates not only for

the fault effect acting on the estimation error but also compensates for any unknown

input signals. The consequence is that if the unknown input signals are decoupled from

the ASO estimation error, the fault estimation will be improved but the control system is

still affected by the uncertainty. It is demonstrated via the tutorial in Section 3.5 that a

robust baseline controller is necessary for the FTC system to remain robust to

uncertainty. It is also shown that by decoupling the uncertainty via the UIO approach,

the fault estimates are very much improved but the sensitivity of the control loop to the

modelling uncertainty still remains. Methods to achieve this robustness are not

considered further for the ASO approach described in this Chapter.

It is important to note that the FTC schemes proposed in this Chapter are adaptive

systems as the on-line fault estimates are updated continuously and the estimates are

used to compensate the faults acting within the control channels. The compensation is

achieved within the observer estimation error system with the consequence that the

control signal has a time-varying component, the adaptive part of the control. This

adaptive system cancels or reduces bounded uncertainty effects due to either faults or

unknown input signals (or both together, for more discussion of this see Section 3.5)

acting on the observer state estimation error. The use of on-line compensation means

that the fault isolation task of FDI is not strictly required, although this function can be
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useful. The possible value of including the full FDI function is discussed in the

concluding statement of this Chapter. In this work the ideal residual generation

problem of FDI, as described in Chapter 2, is replaced by fault estimation. In this

Chapter the use of the residual generation process is obviated and attention is turned

directly to the use of fault estimation embedded within the adaptive control scheme, to

achieve good fault-tolerance.

There is no loss of generality in considering the process to be nonlinear. The

procedures that are developed in this Chapter have the property of tolerance to faults.

However, modelling uncertainties, for example as a consequence of applying the

schemes to a nonlinear process will also be considered as “faults” in the adaptive

process. Hence, both fault(s) and modelling uncertainties (unknown inputs) are

estimated and compensated using an augmented state space structure with additional

states corresponding to estimates of both faults and uncertainties. This property is

discussed in Sections 3.4 and 3.5 using linear and nonlinear inverted pendulum

example.

3.2 Augmented State Observer (ASO)

This approach is motivated by the work on estimation of unknown input directions for

robust observer-based FDI by Chen and Patton (1999). In their work Chen and Patton

used an augmented state observer to estimate the unknown input directions in a UIO

observer description for robust unknown input de-coupling in FDI, based on both state

observer and Kalman filter descriptions (Chen and Patton, 1996). The original idea was

to estimate the unknown input direction parameters. Later Patton et al (2008a, 2009)

extended this idea to the problem of fault(s) estimation to enhance the discrimination of

some faults against other faults for the purpose of robust fault isolation applied to robust

FDI of the Mars Express satellite system.

The work described below constitutes an original development of the use of an extended

observer for unknown input estimation within the framework of an adaptive control

scheme for fault compensation, the ASO. The approach has wide application to fault

compensation, although this study focuses on the friction compensation control

problem.



51

Hence, in this work the ASO forms an intrinsic part of an estimator-controller

compensation mechanism which is quite different from the earlier studies based on

Chen and Patton (1996, 1999). The details involved in the development of the ASO

approach to actuator fault estimation are given prior to developing the mathematical

description and stability of the complete ASO FTC compensator in Section 3.3.

The ideas of the ASO for fault estimation are now developed, based on the starting

concept of actuator faults applied within a linear system.

Consider a state space representation of a linear system with actuator faults (Chen and

Patton, 1999):

)()(

)()()()(

tCxty

tfFtButAxtx aa




( 3 - 1 )

where: ntx )( is the state vector, pty )( the output observation vector, mtu )(

the input control vector and aF is the fault distribution matrix. ),( BA is a controllable

pair with appropriate dimensions. Likewise ),( AC is an observable pair.

A full-order state observer for the system of Eq. ( 3 - 1 ) , driven by the outputs )(ty can

be designed with the following structure:

)](ˆ)([)(ˆ)(

)](ˆ)([)(ˆ)(ˆ)(ˆ

txtxCLtxBKA

txCtyLtxBKtxAtx

xx

xx




( 3 - 2 )

where: nm
x RK  is the feedback gain matrix obtained by a linear multivariable pole-

placement state feedback design and pn
x RL  are the observer gains to be designed

[see Proposition 3.1 and Theorem 3.1].

Defining the state estimation error as )(ˆ)()( txtxtex  so that:

)()()()( tfFteCLAte aaxxx  ( 3 - 3 )

This error state system is corrupted by the fault term )(tfF aa .

In this new contribution, the goal of a compensating observer-controller mechanism is

to compensate for the term )(tfF aa . An ideal solution would be to combine the state

feedback controller for the system of Eq. ( 3 - 1 ) with the state observer using a

“actuator fault accommodating” controller of the form:
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
a

aa

x

x

u

tfK

u

txKtu )(ˆ)(ˆ)( 
( 3 - 4 )

where mm
a RK  is the actuator fault compensation gain to be designed.

The control signal )(tu is sought to stabilise the fault-corrupted system Eq. ( 3 - 1 )

around the system equilibrium in the presence of unwanted actuator fault signals, where

)(tu x is the control of the nominal system (fault-free case), and )(tua is the

compensating control to be added to compensate for the actuator fault )(tfa effect on

the closed-loop system. The signals )(ˆ tx and af̂ are state and actuator fault

estimations, respectively.

3.3 ASO Strategy for Actuator Fault Estimation

The fault compensating observer-controller for the system of Eq. ( 3 - 1 ) can be

achieved by replacing )(tu in Eq. ( 3 - 1 ) with Eq. ( 3 - 4 ) . Hence, the new state

estimate feedback closed-loop system becomes:

)()()()(

)()]()([)(

)()](ˆ)(ˆ[)()(

tfFtButButAx

tfFtutuBtAx

tfFtfKtxKBtAxtx

aaax

aaax

aaax







( 3 - 5 )

In order to compensate the actuator fault in Eq. ( 3 - 1 ) , the control )(tua must satisfy:

0)()(  tfFtBu aaa ( 3 - 6 )

The solution of Eq. ( 3 - 6 ) can be obtained by:

)(ˆ)( tf

K

FBtu a

a

aa 


( 3 - 7 )

where B is the pseudo-inverse of the matrix B . However, since )(tfa is an actuator

fault, it is of interest here to let BFa  [i.e. BBK a
 ]. This assumption is retained

throughout this Chapter.

It is hypothesized here that a suitable estimator )(ˆ tfa for the actuator fault )(tfa can now

be determined from the integral of the observer estimation error )(tex as follows:
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)](ˆ)([)(ˆ txCtyLtf aa 
 ( 3 - 8 )

where: pm
a RL  are the observer gains to be designed [see Proposition 3.1 and

Theorem 3.1].

The adaptive compensation control signal is calculated from Eq. ( 3 - 4 ) based on the

estimates x̂ and af̂ and hence the solution must now be posed in terms of an

Augmented State Observer (ASO) as follows:

Proposition 3.1

Following the new closed-loop system in Eq. ( 3 - 5 ) and the observer in Eq. ( 3 - 2 ) ,

here the new error state )(ˆ)()( txtxtex  in Eq. ( 3 - 3 ) can be written as:

)()(ˆ)()()(

)()(ˆ)](ˆ)([)](ˆ)([)(ˆ)(

tfFtfBKteCLAte

tfFtfBKtytyLtxtxAtxtx

aaaaxxx

aaaax








( 3 - 9 )

In order to estimate the magnitude of the fault it is necessary to combine the two

estimators of Eqs.( 3 - 9 ) and ( 3 - 8 ) into one augmented system structure as follows:
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( 3 - 1 0 )

Eq. ( 3 - 1 0 ) can be re-arranged as:
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Eq. ( 3 - 1 1 ) can be written in compact notation as:

)()(~)()(~
0000 tfFteCLAte a ( 3 - 1 2 )

Since the actuator faults )(tfa are bounded, one can always find a positive

number  such that )(tfa .

Let n be a bounded set, and then the following definition can be made.

Definition 3.1
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The solution of )(~ te to the uncertainty system Eq. ( 3 - 1 2 ) is said to be ultimately

bounded with respect to the set of  if:

 On any finite interval the solution remains bounded, i.e. if )(~
0te then

)()(~ dte  for any ],[ 10 ttt

 In finite time the solution )(~ te enters the bounded set  and remains there for

all subsequent time.

The set  is usually an acceptably small neighborhood of the origin and the concept is

often termed practical stability (Edwards and Spurgeon, 1998).

Theorem 3.1

Consider the closed-loop system described by Eqs. ( 3 - 2 ) and ( 3 - 1 2 ) and assume

that the pair ),( BA is controllable and the pair ),( 00 AC is observable. If the observer

gains 0L in ( 3 - 1 2 ) are chosen such that there exists a S.P.D. matrix )()( pmxpmRP 

satisfying:

IPCLACLAP aso
T  )()( 000000 ( 3 - 1 3 )

where 0aso and af then )(~ te will be contained in a bounded region around

the equilibrium independent of )0(ˆ),0( xex and )0(af . Furthermore, if the controller

gains xK are chosen such that the matrix xBKA is Hurwitz then )(ˆ tx will also be

contained in a bounded region around the equilibrium independent of )0(ˆ),0( xex

and )0(af , meaning that the closed-loop system Eqs. ( 3 - 2 ) and ( 3 - 1 2 ) is practically

stable.

Proof of Theorem 3.1

Consider a candidate Lyapunov function ePeV T ~~ with its time derivative along

trajectories of Eq. ( 3 - 1 2 ) as:

a
T
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TT

a
TTTT

fPFee

I
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fPFeePLCAeeLCAPeV

00000

00000

~2~])()([~

~2~)(~~)(~
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





  





( 3 - 1 4 )

Substitution of Eq. ( 3 - 1 3 ) and af into Eq. ( 3 - 1 4 ) results in:
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)~2~(
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T
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

( 3 - 1 5 )

Using the Cauchy-Schwarz inequality (Steele, 2004):

ePFPFePFPFePFe TTTT ~)(~~~
00max000  ( 3 - 1 6 )

where )(max  denotes the largest eigenvalue of the matrix defined in ( ).

Define:

)(
2

00max PFPF T

aso




  ( 3 - 1 7 )

Then from Eqs ( 3 - 1 6 ) and ( 3 - 1 7 ) it follows that:
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T
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T
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T
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

( 3 - 1 8 )

Define a region    eeD ~:~ . Following Eq. ( 3 - 1 8 ) it can be concluded

that DeV  ~0 . Therefore, there exists a time 00 t such that

0,)(~ ttDte   independent of )0(ˆ),0( xex and )0(af , hence proving the first part

of Theorem 3.1. In other words, e~ is ultimately bounded with respect to D .

Since the matrix xBKA  is Hurwitz, the subsystem Eq. ( 3 - 2 ) is a stable linear

system subject to inputs )(tex that are bounded by D around the origin. Therefore,

)(ˆ tx will also be bounded around the origin and hence the last part of Theorem 3.1 is

proven. ■

Note that the controllability and observability conditions guarantee the existence of the

controller gain xK and observer gains 0L satisfying the conditions in Theorem 3.1.

The magnitude of the steady state errors are defined by the region D , which can be

decreased by enlarging the design parameter aso as shown in Eq. ( 3 - 1 7 ) .
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Theorem 3.1 is also applicable for linear systems subject to unknown but bounded input

disturbances/faults, i.e. it provides a bound for the input disturbances/faults.

3.4 Combine On-Line Fault Estimation and Compensation

Section 3.3 derives the condition for stability for the ASO used for actuator fault

estimation in terms of a bound on the fault signal, in terms of the observer gain

matrix 0L of Eq. ( 3 - 1 2 ). This has been obtained from the use of Theorem 3.1 and its

proof. It is necessary now to consider the problem of joint fault and state estimation.

Consider again the Eqs ( 3 - 2 ) and ( 3 - 8 ) , these must be combined into one system

as follows: [i.e on-line actuator fault estimation and compensation can be implemented

as the closed-loop system depicted in Figure 3-1].
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( 3 - 1 9 )

Eq. ( 3 - 1 9 ) can be re-written in simplified as:

yLxCLAx xx  ~)(~ ( 3 - 2 0 )

The solution of Eq. ( 3 - 2 0 ) provides an estimate )(ˆ tfa of the fault magnitude )(tfa ,

which is the last component of the augmented state vector )(~ tx , and a new control law

as described in Eq. ( 3 - 4 ) is added to the nominal system in order to remove or reduce

the actuator fault effects on the system [see Figure 3-1]
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Figure 3-1: The ASO fault estimation and compensation scheme

Figure 3-1 shows the concept of the on-line observer-based adaptive controller strategy

for on-line estimation and compensation in which the matrix parameters:

axxx KKCA ,,, and L are determined and the stability of both the observer and control

elements of this adaptive system as derived in Section 3.3.

3.4.1 Friction compensation case study

The control of systems that involve friction in the movement of mechanical components

presents interesting challenges (Armstrong-Hélouvry et al., 1994; Olsson et al, 1998;

Armstrong and Chen, 2008). The tendency in recent years has been to go down a road

of more and more detailed modelling of the friction phenomena in order to evoke an on-

line friction compensation procedure, thereby attempting to cancel out the effect of the

friction in the feedback loop (Bona and Indri, 2005).

This is a natural development of the modelling requirements in robust and nonlinear

control and estimation. Despite several important studies, the friction modelling

problem remains a very difficult challenge, mainly because of the uncertain dynamic

characteristics involved and that friction characteristics change over time due to, for

example wear, temperature and humidity (Bona and Indri, 2005). From a control point

of view, friction compensation strategies that require a detailed model of the friction
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characteristics have limitations arising from non-smooth nonlinearity and the fact that

friction modelling remains an imprecise subject, thereby resulting in a robustness

problem. The new contributions are summarised as:

(1) The friction forces acting in a mechanical system can be viewed as “specific

type of fault signals”, facilitating the use of methods of fault estimation

arising from FDI theory (Chen and Patton, 1999), thereby obviating

completely the use of complex friction modelling.

(2) Estimates of friction forces can be used within an FTC structure to provide

on-line friction compensation. The friction estimates provide important

robustness indicators for the friction compensator design.

(3) FTC schemes for friction compensation can be developed which are adaptive

in the sense of depending on bounded estimates of the friction forces.

These requirements are satisfied when the friction force itself is considered as a specific

type of fault. The friction force may be tolerable in the feedback system, allowing

acceptable performance. However, if the system performance is degraded to a

significant extent, exhibiting limit cycle oscillation, action needs to be taken either to

remove the “faulty” component (e.g. replace it or giving lubricated bearing) or to invoke

an automatic fault-tolerant strategy in the control system. It is reasonable to consider

the friction force as a fault as the friction in a mechanical system is an unwanted

phenomenon in the majority of real systems (Patton et al., 2008b).

According to Eq. ( 3 - 1 ) when the system subject to friction forces acting in up to m

of the input channels independently. For example, if this approach is extended to a

multiple-joint actuated robot system, more than one friction signal would then be

estimated and compensated so that for this general case:

)()(

)]()([)()(

tCxty

tftuBtAxtx fric




( 3 - 2 1 )

where: Tm
fricfricfric fff ],,[ 1  represents the friction forces acting on the system.

Hence, the nonlinear friction force that reduces the effective force for a given control

input can be represented as an actuator fault. The proposed friction compensation

methods do not require a model of the nonlinear friction forces )(tf fric . The methods

only require that the friction forces should be bounded, which is a valid assumption
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since the nonlinear friction force is bounded by its static friction level (Armstrong-

Hélouvry et al., 1994; Olsson et al, 1998).

3.4.2 Inverted pendulum example

To illustrate the above discussion a tutorial example of the inverted pendulum with a

cart is used here as friction compensation problem in the absence of friction model (see

Figure 3-2). The cart is linked by a transmission belt which is used to drive the wheel

via a DC motor to rotate the pendulum into vertical position in the vertical plane by

force control )(tu on the cart. The nonlinear equations of motion including friction on

the cart are:

0cossin

),()()sincos()( 2





ppppp

pfricpppppxp

xmlgmlFJ

xftumxFxmM





 


( 3 - 2 2 )

where: px , p are the cart position and the pendulum angle, respectively. The system

parameters are given in Table 3-1.

Figure 3-2: Inverted pendulum system

Constants M m J l xF F g

Values 3.2 0.535 0.062 0.365 6.2 0.009 9.807

Units Kg Kg Kg*m2 m Kg/s Kg*m2 m/s2

Table 3-1: The inverted pendulum parameters

)(tu

mg

p

l

)(tx p

x

y

0

M
)(tf fric
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For simulation purposes the friction force acting on the cart is described by the

discontinuous Stribeck friction model (Putra et al, 2004):





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
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0if}1{
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x

xsignxsignxgf







 ( 3 - 2 3 )

s
spcscp vxFFFxg )/exp()()(   is the Stribeck friction function with cF and sF

are the Coulomb and Static friction levels, respectively and 0, ssv  are the Stribeck

velocity and shaping parameters, respectively. In the friction simulation, the following

parameter values are used:

NFc 5 , 1ms15.0 sv and 22.1s

A linearization of the left hand side of Eq. ( 3 - 2 2 ) has been made around the

equilibrium point: 0 pppx  . These results in the system triple corresponding

to single input )(tu and measurements 3)( ty . The three measurements (cart

position, pendulum angular position and cart velocity) replicate the measurements of the

laboratory system.
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It should be noted that in this study, it is assumed that only the position measurement of

the cart ( px ) and the angle of the pendulum ( p ) are available for the feedback loop,

i.e. 









0010

0001
C . The state feedback controller gain xK is designed by placing the

closed-loop pole at: -4.2,-4.4, -4.6 and -4.8, and given by:

63.86]123.66365.71184.10[xK

The friction compensation gain is set to 1aK , which is appropriate for this example if

BFa  and 1)( 1 
a

TT FBBB [see Eq. ( 3 - 7 ) ].

It can be verified that the pair ),( 00 AC as in Eq. ( 3 - 1 2 ) is observable:
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The observer gains 0L which correspond to eigenvalues of )( 00 CLA 0 placed at -12,

-16, -13, -15 and -14 [satisfying condition Eq. ( 3 - 1 3 ) ], are given by:
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Simulation results for given initial values: )001.11.1()0(  colx are shown in

Figure 3-3 and Figure 3-4.
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Figure 3-3: Nonlinear inverted pendulum system output responses

(without friction force)
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Figure 3-4: Nonlinear inverted pendulum system output responses

(with friction force Fs = 2.50 N)

Figure 3-5 shows the friction force and its estimate with the static friction level

NFs 25.1 and with low estimation errors. Figure 3-6 demonstrates the on-line

friction force estimation and compensation described in Section 3.4. It can be seen that

before t = 40s (i.e the compensator is switched ‘OFF’) the inverted pendulum system

exhibits limit cycle oscillation around the vertical equilibrium point (the origin). This is

because the cart, which is affected by the friction, exhibits stick-slip (see Definition 3.1)

motion of dynamic friction. However, after t = 40s, the limit cycle oscillation is

reduced to a very small neighbourhood around the equilibrium point as described in

Theorem 3.1. In this case the amplitude of the pendulum angle is less than 5mrad and

the amplitude of the cart stick-slip motion is less than 2.5 mm. The limit cycle arises as

a consequence of the friction phenomena and static and kinetic friction forces that tax or

oppose the control force friction force, causing sudden change in position motion of the

cart and pendulum. The control signal (force) on the cart increases to overcome the

stick-slip and static friction force, causing a sudden jerk of the cart in one direction. As

the cart moves beyond the reference position the feedback error changes sign causing

the cart bearing to stick once again, the force from the control builds up causing a

sudden jerk in the opposite direction. The process repeats giving a stable limit cycle

oscillation.

Definition 3.1: Stick-slip phenomenon

Patek, 2001 defined a stick-slip motion as ‘… Stick-slip (or "slip-stick") refers to the

phenomenon of a spontaneous jerking motion that can occur while two objects are

sliding over each other. Stick-slip is caused by the surfaces alternating between sticking
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to each other and sliding over each other, with a corresponding change in the force of

friction. Typically, the static friction coefficient between two surfaces is larger than the

kinetic friction coefficient. If an applied force is large enough to overcome the static

friction, then the reduction of the friction to the kinetic friction can cause a sudden jump

in the velocity of the movement …’
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Figure 3-5: Comparison of the friction force ( fricf ) and its estimate ( fricf̂ )

(with Fs = 1.25 N)

0 10 20 30 40 50 60 70 80
-0.1

-0.05

0

0.05

0.1

Time [s]

C
a
rt

P
o
s
.

[m
]

0 10 20 30 40 50 60 70 80
-0.1

-0.05

0

0.05

0.1

Time [s]

P
e
n
d
u
lu

m
P

o
s
.

[r
a
d
]

Figure 3-6: ASO simulation results (with Fs = 1.25 N) for friction compensation

activated at time t = 40s.
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Figure 3-7: Comparison of the friction force ( fricf ) and its estimate ( fricf̂ )

(with Fs = 2.50 N)
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Figure 3-8: ASO simulation results (with Fs = 2.50 N) for friction compensation

activated at time t = 40s.

Figure 3-7 and Figure 3-8 show the case when the static friction level is increased

to NFs 50.2 , the simulation results show that friction force estimation and

compensation are still working very well with the increase of static friction magnitude.

As discussed in Section 3.3 as long as the friction force is bounded the friction

Compensator OFF Compensator ON

(a)

(b)



65

estimation and compensation will work well. This leads to adaptive control in the sense

of fault estimation and compensation in nonlinear system as an active FTC property.

Section 3.5 investigates the robustness of the ASO method based on the notion that

modeling uncertainty and friction fault effects can compete in the compensation

mechanism, since they may act at the same point in the system. The accuracy of the

fault estimation can also be affected by the presence of modeling uncertainty or

additional disturbance. The most obvious way to illustrate the robustness and FTC

aspects of the ASO is to apply the ASO to a linear system with added nonlinear Stribeck

friction. The separate and combined effects of the friction and modeling uncertainty are

thus applied through the model example to illustrate the difference between the FTC

action and the effect of modeling uncertainty and need for improved robustness of the

controller.

3.5 Actuator Fault Estimation with Disturbance Decoupling

The aim here is to investigate the issue of designing fault estimation systems that are

robust in the sense of decoupling the unknown input in the models. The main

contribution is to incorporate the concept of unknown input decoupling described by

Chen and Patton (1999) for diagnostic observers and outlined in Section 2.3.6, to

achieve robustness in FDI. This is different from the work of Wang et al (1997), in

which the norm of the unknown input vector is not required in the design of the

proposed diagnostic algorithm. That is, the observation error, which is used to construct

the diagnostic algorithm, does not depend on the effect of the unknown input.

Consider the system with actuator faults in Eq. ( 3 - 1 ) with the presence of an

unknown input term )(tEd :

)()(

)()()()()(

tCxty

tEdtfFtButAxtx aa




( 3 - 2 4 )

where: nxqE  is a full rank constant matrix, qtd )( is the unknown input signal

vector representing model uncertainties or/and input noise acting in the state space

system. It is assumed that the pair ),( AC is observable and that the output vector

pty )( is output controllable from the unknown input )(tEd [a control system is

said to be (completely) output controllable if the output vector can be driven to the
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origin in finite time and if the output is not everywhere zero-valued after application of

the control input (MacFarlance and Karcanias, 1976; Katsuhiko O, 1997)]

A necessary condition for decoupling the unknown input )(td is

that )(,)( pqqCErank  , and it is assumed that )()( ErankCErank  (Chen and

Patton, 1999).

From Eqs ( 3 - 2 4 ) , )(ty is obtained as:

)()()()()( tCEdtfCFtCButCAxty aa  ( 3 - 2 5 )

And the Moore-Penrose generalised inverse matrix )(CE can be obtained as (see

discussion in Chen and Patton, 1999):

pxqTT CECECECE   ,)()]()[()( 1 ( 3 - 2 6 )

Thus, using Eq. ( 3 - 2 5 ) the unknown input signal )(td (assumed continuous) can be

estimated by the following:

)]()()()([)()( tfCFtCButCAxtyCEtd aa   ( 3 - 2 7 )

Substituting Eq. ( 3 - 2 7 ) into Eq. ( 3 - 2 4 ) , the state equation which is independent of

the unknown input term )(tEd is derived as:

)()(
~

)(
~

)(
~

)()()(
~

])([

)(
~

])([)(
~

])([)(

tyCEEfFtuBtxA

tyCEEtf

F

FCCEEI

tu

B

BCCEEItx

A

ACCEEItx

aa

a

a

an

nn




  

    














( 3 - 2 8 )

The following derivation constitutes an original contribution in this research.

In a similar manner to Eqs ( 3 - 4 ) -( 3 - 7 ) , an observer-based adaptive controller is

obtained by:


a

aax

u

tfK

u

txKtu )(ˆ~
)(ˆ

~
)( 

x

( 3 - 2 9 )

where nm
x RK 

~
and mm

a RK 
~

are the feedback and actuator fault compensation

gain obtained from the new system triple )
~

,
~

,
~

( aFBA . Hence, Eq. ( 3 - 2 8 ) yields:

)()(
~

)(ˆ~~
)(ˆ

~~
)(

~
)( tyCEEfFtfKBtxKBtxAtx aaaax   ( 3 - 3 0 )
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Thus, the state estimate x̂ is given by the solution to [see Eq. ( 3 - 2 ) ]:

)()()](ˆ)([)(ˆ)
~~~

(

)()()](ˆ)([)(ˆ
~~

)(ˆ
~

)(ˆ

tyCEEtxCtyLtxKBA

tyCEEtxCtyLtxKBtxAtx

xx

xx












( 3 - 3 1 )

)(ˆ)(ˆ txCty  ( 3 - 3 2 )

Now, be defining a new state vector:

)()()(ˆ)( tyCEEtxt newx ( 3 - 3 3 )

It can easily be seen that Eq. ( 3 - 3 3 ) removes the time derivative of the measurement

output vector in Eq.( 3 - 3 1 ) and leads to the following:
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txCtyLtxKBtxA

tyCEEtxt
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( 3 - 3 4 )

Re-forming Eq. ( 3 - 3 4 ) as:
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Eq. ( 3 - 3 5 ) can now be rewritten as:

)()(
~

)()( tytuBtt oxo EA  newnew xx ( 3 - 3 6 )

From this it follows that the state estimation without involving the time derivative of the

measurement output )(ty is now given by:

)()()()(ˆ tyCEEttx  newx ( 3 - 3 7 )

and
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)](ˆ)([)(ˆ txCtyLtf aa  ( 3 - 3 8 )

where pn
x RL  and pm

a RL  are the linear observer gains to be designed.

The system in Eq. ( 3 - 3 0 ) with the observer in Eq. ( 3 - 3 1 ) , and the estimate )(ˆ tfa in

Eq. ( 3 - 3 8 ) can be arranged in the following closed-loop system:
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where )(ˆ)()( txtxtex  is the state estimation error, and )(ˆ)()( tytytey  given by:

)()( tCete xy  ( 3 - 4 1 )

Eqs. ( 3 - 3 9 ) and ( 3 - 4 1 ) show that the unknown input disturbance term )(tEd does

not affect the output error, i.e. the fault estimation given in Eq. ( 3 - 3 8 ) is robust against

unknown disturbances.

Re-arranging Eq. ( 3 - 4 0 ) as:
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( 3 - 4 2 )

Eq. ( 3 - 4 2 ) can be re-written in the form:

)()(~)()(~
0000 tfFteCLAte a ( 3 - 4 3 )

This means that the compensation gain aK
~

must design such that the pair )( 000 CLA 

is observable. Again, since the actuator faults represented by the elements of ( af ) are

bounded, one can always find a positive number  such that af [see also

Proposition 3.1 and Theorem 3.1].
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3.5.1 Tutorial example of linear inverted pendulum system with

friction

According to Eq. ( 3 - 2 4 ) , when the system is subject to friction forces acting in up to

m of the input channels independently together with the presence of an unknown input

term )(tEd can be re-written as:

)()(

)()]()([)()(

tCxty

tEdtftuBtAxtx fric




( 3 - 4 4 )

Consider as a simple tutorial example the linearised pendulum system

with )2,5.1,1,5.0(colE  (chosen arbitrarily) and )(td is a zero-mean random noise

signal with normal distribution and with variance 0.05. The parameters of the friction

model used to generate )(tf fric and the matrices ),,( CBA of the linearised pendulum

model (corresponding to the vertical equilibrium) are given in Section 3.4.1 .

For the purpose of this tutorial, in contrast to the nonlinear system simulation results as

given in Section 3.4, here the ASO is applied to the linear system. Eq. ( 3 - 2 4 ) is used

to investigate the trade-off and comparison of the fault compensation designs with and

without robustness to uncertainty. The uncertainty here is defined to arise from the

term )(tEd only and the friction signal )(tf fric is considered only as a fault signal.

The solution for the observer gain 0L in Eq. ( 3 - 4 3 ) is used to investigate the

combined effect of the friction )(tf fric and unknown input )(tEd signals, respectively.

The simulation experiments are conducted as follows:

Simulation 1: As described in Section 3.3, consider the case that E is not taken into

account for the design of on-line ASO fault estimation and compensation (i.e. robust

estimation is not considered).

Figure 3-9 shows that before t = 40s without the augmented state fricf̂ to compensate the

friction force, the inverted pendulum system exhibits limit cycle oscillation around the

vertical equilibrium point (the origin). This is because the cart, which is affected by the

friction, exhibits stick-slip motion.
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Figure 3-9: ASO simulation results (with NFs 50.2 ) for friction compensation

activated at time t = 40s.

Figure 3-9 also shows that the activation of the friction compensation term after t = 40s.

The limit cycle oscillation is significantly reduced. In this case the amplitude of the

pendulum angle is less than 15mrad and the amplitude of the cart stick-slip motion is

less than 10mm.

These results can be achieved because the friction force is estimated by the ASO

estimator [see Figure 3-10]. Once again as the on-line friction force estimate is updated

continuously and used to compensate the friction force acting within the control channel

using an observer-based adaptive controller in Eq. ( 3 - 4 ) .

Compensator OFF Compensator ON

(a)

(b)



71

50 55 60 65 70 75 80
-5

0

5

Time [s]
F

ri
c
ti
o
n

F
o
rc

e
s

[N
]

50 55 60 65 70 75 80
-5

0

5

Time [s]

F
ri
c
ti
o
n

C
o
m

p
e
n
s
a
ti
o
n

E
rr

o
r

[N
]

Friction f
fric

Estimate

Figure 3-10: Comparison of the friction force ( fricf ) and its estimate ( fricf̂ )

(with NFs 50.2 )

Simulation 2: As described in Section 3.5, consider the case when the unknown input

distribution E is taken into account for the design of on-line ASO fault estimation and

compensation (i.e. robust estimation is considered).

Again, it can be verified that the pair ),( 00 AC as in Eq. ( 3 - 4 3 ) is observable. The

observer gains 0L are designed such that the eigenvalues of )( 000 CLA  are placed at -

-4.5, -8.5, -5.5, -6.5 and -7.5 [satisfying condition Eq. ( 3 - 4 3 ) ], is given by:

























3142.3899-2403.7797-

299.7198-303.6056-

264.4323234.7925

4.3088-12.6867-

22.710232.4478

0L

Similar to Figure 3-9, Figure 3-11 with same initial condition value,

)001.11.1()0(  colx also shows that when friction compensation mechanism is

turned ‘ON’ at time t = 40s, the limit cycle oscillation is reduced. In this case the

amplitude of pendulum oscillation is less than 20mrad and the amplitude of the cart

stick-slip motion is less than 18mm.

(a)

(b)
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Figure 3-11: ASO simulation results ( NFs 50.2 ) for friction compensation

activated at time t = 40s.
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Figure 3-12: Comparison of the friction force ( fricf ) and its estimate ( fricf̂ ) with

( NFs 50.2 )

Figure 3-12 demonstrates clearly the robust property of the friction force estimation

using the ASO estimator when the unknown input disturbance decoupling described in

Section 3.5 is utilised. Whilst the friction estimation error is very small, the

(a)

(b)

Compensator OFF Compensator ON

(a)

(b)
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compensation performance has been compromised by the inclusion of the unknown

input de-coupling.

Hence, Figure 3-11 shows clearly that after the compensation mechanism is switched

‘ON’ the compensation result is not as good as that in Figure 3-9, even if the friction

estimate in Figure 3-12 is very accurate with a small estimation error when compared

with Figure 3-10.

It is very important to note here that for good FTC performance robust compensation is

essential and robust fault estimation is not the main goal. On the other hand for robust

control the effects of uncertainties must be compensated or minimised within the

feedback control design. Small and bounded fault effects could be considered as

uncertainty signals in this context but not through an FTC analysis (involving control

adaption/fault compensation etc). This alternative robust control subject is essentially

the passive approach to FTC.

When the joint estimation and compensation approach is used as illustrated in the above

tutorial example the robustness problem is then not an issue as the compensation

mechanism seeks to compensate for both bounded fault effects and uncertainties.

If one were to consider instead an FDI problem for detection and isolation of the friction

fault using residual generation, the robustness of the residual with respect to the

unknown input signal would have to be taken into account. This thesis does not pursue

the FDI problem since the goal of the work of this Chapter is to develop adaptive

strategies for fault compensation, based on fault estimation via a linear observer and

adaptive control. This form of FTC employs adaptive control as the new control law

given by Eq. ( 3 - 4 ) is a direct function of the bounded on-line fault estimate )(ˆ tfa .

This is in keeping with the standard definition of adaptive control. For example, as

given in the Wikipedia entry on Adaptive Control: ‘…Adaptive control involves

modifying the control law used by a controller to cope with the fact that the parameters

of the system being controlled are slowly time-varying or uncertain. Adaptive control is

different from robust control in the sense that it does not need a priori information

about the bounds on these uncertain or time-varying parameters; robust control

guarantees that if the changes are within given bounds the control law need not be

changed, while adaptive control is precisely concerned with control law changes...’.

See also the definition of adaptive control given by Aström and Wittenmark (1994):

‘…An adaptive controller is a controller that can modify its behavior in response to

changes in the dynamics of the processes and the character of the disturbances. In other
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words, an adaptive controller is a control with adjustable parameters and a mechanism

for adjusting the parameters i.e. an adaptive control system can be thought of as having

two loops. One loop is a nominal feedback control with the process and controller. The

other loop is the parameter adjustment loop. The parameter adjustment loop is often

slower than the nominal loop…’

3.6 Conclusion

This Chapter provides the strategy of fault estimation and compensation via the design

of an augmented state approach, the augmented state observer, in which the new

adaptive compensating control is designed based on the estimation error system. The

idea of tutorial applications of uncertain systems is illustrated through the examples of

friction compensation in an inverted pendulum (without any requirements of a friction

force model). The simulation results show, based on a practical example, that the ASO

has very good potential in fault estimation and compensation, with a simple design.

From a practical standpoint, this method can be implemented well on real-time

application systems, even when there are multiple faults.

Although this Chapter does not deal with systems with multiple faults, in Chapter 7 the

ASO is further developed and applied to systems with multiple faults, focussed on a

distributed system example.

The Chapter has discussed briefly the concepts of control robustness and robust

estimation and robust fault compensation using a linear system example. An example of

on-line friction estimation/compensation is provided, after defining the friction force

acting in a mechatronic system as a fault to be compensated within the control loop.

This is an important example as the work has shown clearly the potential of this

approach to obviate the complexity problem that can arise when model-based friction

compensation methods are used in which detailed models of friction phenomena are

used. As friction phenomena are so difficult to model, these approaches may not yield

better robustness and improved friction compensation, when compared with the ASO

approach. It is clear, due to the adaptive nature of the ASO-based compensation FTC

system that good robustness with respect to the friction model parameters is achieved.

However, it is important to note that if the fault effect is small, the ASO fault

compensator mechanism may not be necessary or may introduce an unwanted but small

disturbance (residual error). For this case it would be of interest to use a robust FDI
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scheme to detect the presence of a fault and isolate its location within a system, prior to

switching on the estimation and compensation scheme.

This Chapter makes a strong case for the use of fault estimation in the problem of active

FTC in which the faults acting on the system being controlled are estimated and

compensated on-line, under well derived stability constraints on the feedback gains.

For friction compensation this stability problem is very well posed since the dynamic

friction forces are always bounded by their static levels and these are well know or can

be well estimated for a give mechatronic system. The friction compensation problem is

a nice example to illustrate the power and potential of this approach. However, it is

now clear that the approach can be generalised to FTC problems in which the faults

have different significance in terms of multi-faults and also in terms of actuator.

Chapter 7 takes up some of these aspects as an extension to the work of this Chapter.
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Chapter 4.
Fault Estimation and Compensation
based on Sliding Mode Approach

4.1 Introduction

Variable structure control (VSC) was first developed in the USSR in the 50’s as a

control method applicable to uncertain dynamical systems (Zinober, 1990). Sliding

mode control (SMC) is a special case of a VSC system and has received significant

attention during the last two decades. Survey and tutorial papers, with numerous

references, have been written on SMC by Utkin (1971, 1977, and 1978), Ryan and

Corless (1984), Dorling and Zinober (1986), DeCarlo (1988) and books have been

published by Zinober (1990), Utkin (1992) and Edwards and Spurgeon (1998).

The background material in this Chapter follows closely the presentation in (Edwards

and Spurgeon1998) and Alwi (2008). In SMC, the controller performance depends on a

sliding surface design. The state variables in state space are driven to the sliding surface

and are forced to remain there by discontinuous (non-linear) feedback action. Once the

state motion reaches the sliding surface (manifold) the motion remains within or near

the manifold in what is effectively a reduced or system with strong insensitivity to

parametric variations occurring in the space outside the sliding manifold. Hence, once

the sliding surface or sliding manifold is reached, the system has a strong robustness
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property to so-called “matched” disturbances. This robustness property of SMC is a

strong motivation for the work described in this Chapter.

The main contribution of this Chapter is to combine, for on-line use in a practical

system, the Sliding Mode Observer (SMO) for fault estimation with the SMC, to

provide an effective and robust active FTC strategy (the detailed discussions describe in

Section 4.4). The approach is illustrated using a nonlinear inverted pendulum with

Stribeck friction (Putra et al., 2004). Necessary and sufficient conditions for estimation

(as a matched uncertainty) are taken and modified from Edwards and Spurgeon (1998)

and Alwi (2008).

As described in Chapter 3, the new ideas are two-fold (a) the concept of viewing friction

as a fault-effect, and (b) the combined use of sliding mode fault estimation and control.

This work develops and evaluates a powerful approach to on-line FTC for the friction

compensation problem. The estimates of the friction force generated via the SMO

theory of Edwards and Spurgeon are directly used in an adaptive SMC scheme. All the

required mathematical conditions are given, including stability proofs underlying the

SMC and SMO.

4.2 Sliding Mode Control

The objective of this Section is to summarise the SMC concept as described in (Dorling

and Zinober, 1988; Zinober, 1990; Edwards and Spurgeon, 1998) including its basic

properties as a mechanism for achieving good control performance via on-line fault

estimation and compensation or FTC. An analysis and the tutorial example are based on

a simple nonlinear inverted pendulum with cart system to illustrate the concept of SMC.

Generally, the design approaches for SMC controllers comprise two stages: (i) design

the sliding surface, (ii) the switching control law can be designed so that sliding is

attained and maintained on the surface. When perfect sliding occurs, there are two main

advantages of SMC; there is a reduction in order, and the system has low sensitivity to

some certain disturbances so-called matched uncertainty (Edwards and Spurgeon,

1998).

The SMC system can be viewed as partitioned into two subspaces, the so-called “range

space” and the “null space” (the significance of these terms are explained in Section

4.2.1). The state motion corresponding to the range space dynamics is affected by
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uncertainties and perturbations. On the other hand, once the state motion is driven into

the sliding regime (or null space subsystem) the controlled system remains insensitive

or with low sensitivity to the matched uncertainty and behaves as a “free” system in the

ideal case, following an intersection of eigenvector directions into the equilibrium.

State motion occurring precisely within the sliding manifold has zero sensitivity to the

matched uncertainty, whereas motion close to the switching boundary of the sliding

manifold takes on a finite but small sensitivity to uncertainty [Zinober, 1990].

Hence, the SMC have two feedback control components; (i) a linear component to

stabilise the nominal linear system, and (ii) a nonlinear or discontinuous component.

The linear control component brings about or ensures the reachability of the sliding

regime of the system and the discontinuous controller component is used to cause the

sliding motion (through switching action) and thereby cancel or reduce the effects of

non-linearities and/or uncertainties in the system, as outlined above. Therefore the

SMC is applicable for both non-linear and uncertain systems because of the use of the

discontinuous component to induce sliding motion. These properties are discussed

further in the Section 4.2.3.

4.2.1 Regular form for sliding hyperplane design

Consider the following linear time invariant (LTI) system:

)()()( tButAxtx  ( 4 - 1 )

where nx  is the system state vector and mu  are the system inputs, and the

system matrices are nxmnxn BA  , . The matrix B is assumed to have full rank and

the pair ),( BA is controllable.

Let mns : be a switching function represented as:

)()( tSxts  ( 4 - 2 )

where: mxnS  is full rank and so-called the hyperplane, and defined by:

 0)(:  xsxS n ( 4 - 3 )
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In the design procedure for SMC, it is well known that for the controllable system

described in Eq. ( 4 - 1 ) [with mBrank )( ], there exists an invertible transformation,

nxn
rT  defined as:

)(
)(

)(

2

1 txT
tx

tx
r








( 4 - 4 )

This transformation brings the system in Eq. ( 4 - 1 ) into the regular form as follows:

(Edwards and Spurgeon, 1998).

)()()( 2121111 txAtxAtx  ( 4 - 5 )

)()()()( 22221212 tuBtxAtxAtx  ( 4 - 6 )

where: mntx )(1 and mtx )(2 . mxmB 2 is non-singular and given by:











2

0

B
BTr ( 4 - 7 )

The purpose of the regular form above is to partition the transformed system into a

suitable structure so that the null space [see Eq. ( 4 - 5 ) ] and range space dynamics [see

Eq. ( 4 - 6 ) ] can be designed.

In the new coordinates the switching function in Eq.( 4 - 2 ) becomes:

)()()( 2211 txStxSts  ( 4 - 8 )

where: )(
1

mnmxS  and mxmS 2 . The matrices 1S and 2S are the design parameters

such that 0)det( 2 S , and there exists a finite time st that satisfies:

sttts  allfor0)( ( 4 - 9 )

Therefore, an ideal sliding motion takes place for all stt  , and during sliding, the

motion is given by:

0])()([)()()( 212211  txtxStxStxSts ( 4 - 1 0 )

Re-arranging Eq.( 4 - 1 0 ) yields:

)()( 11
1

22 txSStx  ( 4 - 1 1 )

For simplicity, let 1
1

2 SSM  . Substituting Eq. ( 4 - 1 1 ) into Eq. ( 4 - 5 ) gives:

)()()( 112111 txMAAtx  ( 4 - 1 2 )
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In can be seen that Eq.( 4 - 1 2 ) presents the dynamics of the closed-loop system in the

sliding mode, which is equivalent to a classical state feedback problem i.e. the problem

of finding a matrix M [ )()( 12 tMxtx  ] in Eq.( 4 - 1 1 ) is equivalent to finding the

gain matrix K in a state feedback problem [i.e. for )()( tKxtu  ] in Eq. ( 4 - 1 ) .

The stability of the closed-loop system in Eq. ( 4 - 1 2 ) depends on the mn reduced

order pair ( 1211, AA ) and the design matrix M which also based on pair ( 1211, AA ) [e.g.

the matrix MAA 1211  is Hurwitz]. It is straightforward to prove that the matrix pair

( 1211, AA ) is controllable, if and only if the pair ( BA, ) is controllable (Edwards and

Spurgeon, 1998; Alwi, 2008). Once the matrix M has been obtained, the sliding

surface S can also be calculated as follows:

 22 SMSS  ( 4 - 1 3 )

where 2S can be chosen arbitrarily as long as it is invertible, in this study, it is designed

as mIS 2 .

Three main approaches have appeared in the literature for designing the state feedback

matrix M .

(i). Robust pole-placement (Ryan and Corless, 1984)

(ii). Quadratic minimisation (Utkin and Young, 1978), and

(iii). Eigenstructure assignment (Zinober, 1990)

For this study approach (ii) has been used, and will be discussed in Section 4.2.5.

Approach (iii) is an extension to (i) in which the multivariable design freedom in the

design of M is used more fully to achieve an assignment of the eigenvectors of the

reduced order null space dynamics as well as the assignment of the eigenvalues. The

pole-placement problem is equivalent to only the eigenvalue part of the eigenstructure

assignment problem (Zinober, 1990).

4.2.2 The reachability problem

Once the surface S is obtained, the next step of the procedure is the design of the

control to ensure that the designed sliding mode is attained. Therefore, the problem of

determining the control structure, which ensure that sliding surface is reached and

motion on S is maintained, is called the ‘reachability problem’.



81

In other words, the reachability condition means that ‘… the trajectory of the switching

function )(ts must be directed towards it…’ (Edwards and Spurgeon, 1998). Therefore

need to design in order to satisfy the reachability condition (Utkin, 1977; Zinober,

1990). This can be expressed as: [see following Eqs ( 4 - 1 4 ) and ( 4 - 1 5 ) ]

0lim
0




s
s

 and 0lim
0




s
s

 ( 4 - 1 4 )

or equivalent to

0ss ( 4 - 1 5 )

Edwards and Spurgeon (1998), propose a strong condition to guarantee that the sliding

surface is reached even in the presence of uncertainty and in finite time. This is given

by:

sss reach ( 4 - 1 6 )

where: reach is a positive design scalar and so-called the reach -reachability condition’

4.2.3 Sliding properties under conditions of model uncertainty and

disturbance

When the reachability condition Eq. ( 4 - 1 6 ) is satisfied the motion of the system

moves to the sliding hyperplane subsystem. In general, the motion will remain within

or close to the hyperplane switching boundary unless the system is disturbed. However,

some disturbances and uncertainty will enable the motion to remain close to the sliding

surface even in the presence of uncertainty. This invariance property of sliding mode

control was first investigated by Draženović (1969) for the wider context of variable 

structure systems and holds for certain disturbance and parametric variations that lie

within a bounded range and satisfy a given structural property defined in the state space.

This property is well known in the literature as the sliding motion matching condition

and is referred as matched uncertainty. Utkin (1971) dealt with this problem for single

input systems and Utkin (1977, 1978) deals with the multivariable control case. In fact,

as the matching conditions (see below) are sometimes rather restrictive most of the

work in the literature on this subject has been concerned with the problem of

“mismatching”, i.e. solutions for dealing with cases when the matching conditions do

not hold.
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To understand the matching conditions, consider the system in Eq.( 4 - 1 ) with the

presence of the uncertainty as follows:

),()()()( xtDtButAxtx  ( 4 - 1 7 )

where: qnx   is unknown function representing an uncertainty or

exogenous disturbance acting on the system. nxmnxn BA  , and nxqD  are

known matrices with appropriate dimensions.

At time st , if the system states lie on the sliding surface and remain there, that is:

0)(and0)(  tsts  ( 4 - 1 8 )

Eqs. ( 4 - 2 ) , ( 4 - 1 7 ) , and ( 4 - 1 8 ) can be re-written in terms of the time derivative of

)(ts as:

0

)],()()([

)()(







xtDtButAxS

txSts





( 4 - 1 9 )

Thus, the control action for sliding motion can be obtained by:

seq ttxtSDtSAxSBtu   allfor)],()([)()( 1  ( 4 - 2 0 )

where: )(tueq is the so–called equivalent control.

The equivalent control is basically the control that maintains the sliding motion without

the high frequency (discontinuous component) (Utkin, 1977; El-Ghezawi, Zinober and

Billings, 1983; Dorling and Zibober, 1986; Edwards and Spurgeon, 1998) and is clearly

an idealised concept.

It can be seen that the equivalent control in Eq.( 4 - 2 0 ) depends on the unknown

uncertain signal ),( xt . However, this uncertainty will still enable the sliding motion

to remain close to the sliding surface [i.e. the sliding motion is insensitive to ),( xt ], if

the following condition is satisfied (Edwards and Spurgeon, 1998).

Replacing the control input )(tu in Eq. ( 4 - 1 7 ) with equivalent control action )(tueq in

Eq.( 4 - 2 0 ) gives:

),(])([)(])([

),(),()()()()()(
11

11

xtDSSBBItAxSSBBI

xtDxtSDSBBtSAxSBBtAxtx

nn 









( 4 - 2 1 )

Define:
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SSBBIP ns
1)(  ( 4 - 2 2 )

where sP is a projection operator, thus Eq. ( 2 - 1 9 ) can be rewritten as:

),()()( xtDPtAxPtx ss  ( 4 - 2 3 )

There exists a matrix mxqR  such that BRD  , if )()( BD RR  , and it follows that:

0

))((

])([

1

1











SSBSBS

SSBBISSP

mI

ns

 ( 4 - 2 4 )

and

0

)()(

])([

1

1












mI

ns

SBSBBB

BSSBBIBP

( 4 - 2 5 )

In the following the Eq. ( 4 - 2 5 ) , thus Eq. ( 4 - 2 3 ) can be rewritten as:



)(

),()(

),()()(

0

tAxP

xtRBPtAxP

xtDPtAxPtx

s

ss

ss











( 4 - 2 6 )

It can be seen that during the sliding motion, Eq. ( 4 - 2 6 ) is not depend on the uncertain

signal ),( xt . This leads to the property that the ideal sliding motion is totally

insensitive to the uncertain function in ( 4 - 1 7 ) if )()( BD RR  (Ryan and Corless,

1984; Dorling and Zinober, 1986; DeCarlo, 1988; Zinober, 1990; Edwards and

Spurgeon, 1998).

Edwards and Spurgeon (1998) state that, ‘…any uncertainty which can be expressed in

the form of or as in Eq. ( 4 - 1 7 ) where )()( BD RR  is described as matched

uncertainty. Any uncertainty which does not lie within the range space of the input

distribution matrix is described as unmatched uncertainty . . .’

If this matching condition is not satisfied the uncertainty does not lie within the range

space of B , i.e. )()( BD RR  and several studies have proposed sliding control design

methods that can preserve invariance for sliding under extended conditions (DeCarlo,

1988; Spurgeon, 1991; Spurgeon and Davies, 1993). The property which is probably
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the most important for FTC in terms of handling actuator faults will be outlined in

Section 4.4

4.2.4 Unit vector approach

The control structure for multivariable systems described in this Section is based on that

of Ryan and Corless (1984), which is so-called the ‘unit vector’. Consider a system

which has only matched uncertainty (Edwards and Spurgeon, 1998):

),,()()()( uxtftButAxtx m ( 4 - 2 7 )

where )(:),,( Bxxuxtf mn
m R is unknown but bounded and satisfies:

),()(),,( xttukuxtf mm  ( 4 - 2 8 )

where mk is a known positive constant with )(min BBk T
m  and )( is a known

function.

Without any loss of generality, the system in Eq. ( 4 - 2 7 ) can be transformed into

regular form as follows [see Section 4.2.1]:

)()()( 2121111 txAtxAtx  ( 4 - 2 9 )

),,()()()()( 22221212 uxtftuBtxAtxAtx m ( 4 - 3 0 )

where: mf represent a projection of mf into the subspace )(BR , then the following

Euclidean norm is preserved and satisfied:

),()(),,( xttukuxtf mm  ( 4 - 3 1 )

As described in Section 4.2.1, the switching function )(ts can be presented as:

)()(

)()()(

2212

2211

txStxMS

txStxSts




( 4 - 3 2 )

where: )( mnmxM  , and mxmS 2 is designed matrix, a common choice here, is to

let 1
22
 BS for a non-singular diagonal design matrix mxm , which implies that:

22BS ( 4 - 3 3 )

Define a second coordinate transformation by:
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









21

0

SS

I
Ts ( 4 - 3 4 )

Therefore, the system can be transformed into new partition as follows:









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







)(

)(

)(

)(

2

11

tx

tx
T

ts

tx
s ( 4 - 3 5 )

In the following Eq.( 4 - 3 5 ) , the system in Eq. ( 4 - 2 9 ) can be re-arranged as:

),,(
)(

0
)(

0

)(

)(

)(

)(

2

1

2221

12111 uxtf
tS

tu
ts

tx
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AA

ts

tx
m




































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










( 4 - 3 6 )

where: MAAAMAMAAA 22211121121111 ,  and 221222 AMAA  . The

proposed control law consists of two components (Ryan and Coreless, 1984); a linear

component and nonlinear or discontinuous component as follows:

)()()( tututu nl  ( 4 - 3 7 )

The linear control component is given by:

)]()()([)( 1
2222212

1 tsSAStxAStul   ( 4 - 3 8 )

where: mxm is any stable design matrix.

The nonlinear component is given by:

0)(for
)(

)(
),()(

2

21   ts
tsP

tsP
xttu cn  ( 4 - 3 9 )

where: mxmP 2 is a S.P.D matrix satisfying the Lyapunov equation:

m
T IPP  22 ( 4 - 4 0 )

and ),( xtc is any scalar function, which depends only on the magnitude of uncertainty,

and satisfies:

)1(

)),()((
),(

1
2

2






Bk

xttukS
xt

m

clm
c


 ( 4 - 4 1 )

In other words ),( xtc must be greater than the magnitude of the uncertainty, and c

is a positive scalar design parameter.
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Edwards and Spurgeon (1998), working in the original coordinates, show that Eq.

( 4 - 3 8 ) can be rewritten as:

)()()( 1 tx

L

SSAtu

sm

l   
 

( 4 - 4 2 )

It should be noted here that following the above analysis, the uncertainty is assumed to

be matched. For the case when unmatched uncertainty terms can be included in the

above analysis can be found in Edwards and Spurgeon (1998).

Sections 4.2.1 to 4.2.4 discuss the conditions required to achieve the design of the

control law of Eq. ( 4 - 3 7 ) . In Section 4.2.5, the design of the switching surface, namely

the matrix S in the switching function of Eq. ( 4 - 2 ) is outlined.

4.2.5 Design of sliding surface using quadratic minimization

The section describes a design method for the switching hyperplane S . In this thesis,

only the quadratic minimisation method is chosen (based on Section 4.2.2 in Edwards

and Spurgeon, 1998). This method was proposed by Utkin and Young (1978) using a

modified classical linear quadratic regulator (LQR) problem. In designing the sliding

surface, the control inputs are not considered explicitly. This design problem involves

the minimization of the quadratic cost:






st

T dtQxxJ )( ( 4 - 4 3 )

Subject to Eq. ( 4 - 1 ) where Q is S.P.D and st indicates the start of sliding.

First, it is necessary to transform the system in Eq. ( 4 - 1 ) into regular form (see

Section 4.2.1) using a coordinate transformation )()( txTt rz . Therefore, in regular

form, the matrix Q in Eq. ( 4 - 4 3 ) can be partitioned as:











2221

1211

QQ

QQ
QTT T

rr ( 4 - 4 4 )

where: TQQ 1221  .

In the LQR problem, Eq. ( 4 - 4 3 ) can be represented in the )(tz coordinate system as:
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 




st

TTT dttQttQttQtJJ )()()()(2)()(
2

1
222221211111 zzzzzz ( 4 - 4 5 )

It can be seen that Eq. ( 4 - 4 5 ) does not satisfy the standard form of the LQR problem.

To overcome this problem, it is necessary to remove the cross term )()(2 2121 tQtT zz in

Eq. ( 4 - 4 5 ) . Utkin and Young (1978) proposed factorizing the last two terms of Eq.

( 4 - 4 5 ) yielding:

121
1

221121
1

22222121
1

22222222121 )()(2 zzzzzzzzzz QQQQQQQQQ TTTT   ( 4 - 4 6 )

Using Eq. ( 4 - 4 6 ) , hence Eq. ( 4 - 4 5 ) can be written as:
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( 4 - 4 7 )

By defining:

21
1

221211
ˆ QQQQQ  ( 4 - 4 8 )

and

121
1

222 zz QQvq
 ( 4 - 4 9 )

Hence, Eq.( 4 - 4 7 ) can be written as:

 




st

q
T
q

T dtvQvQJ 2211
ˆ

2

1
zz ( 4 - 5 0 )

Recall that the transformed dynamical system in Eq. ( 4 - 5 ) is here given by:

)()()( 2121111 tAtAt zzz  ( 4 - 5 1 )

The )(2 tz term in Eq. ( 4 - 5 1 ) can be eliminated by using Eq. ( 4 - 4 9 ) , so that the

modified constraint equation in Eq. ( 4 - 5 1 ) becomes:
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ˆ
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221212111
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1

22121111

tvAtA
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QQAvAtA

QQvAtAt
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













z

z]

zz

zzz

  



( 4 - 5 2 )

where 21
1

221211
ˆ QQAAA  . The optimal )(tvq minimising Eq. ( 4 - 5 0 ) is given by:

)()( 1112
1

22 tPAQtv T
q z ( 4 - 5 3 )

where 1P satisfies:

0ˆˆˆ
112

1
2212111   QPAQAPPAAP TT ( 4 - 5 4 )

During sliding i.e. 0)( ts [see also Eq. ( 4 - 1 8 ) ] and hence:

)()( 11
1

22 tSSt

M

zz



( 4 - 5 5 )

The solution for qv in Eqs. ( 4 - 4 9 ) and ( 4 - 5 3 ) leads to:

)(1112
1

22121
1

222 tPAQQQ T zzz   ( 4 - 5 6 )

or

)()()( 121112
1

222 tQPAQt T zz   ( 4 - 5 7 )

In the following Eq. ( 4 - 5 5 ) , the matrix M can be represented by:

)( 21112
1

22

1
1

2

QPAQ

SSM

T 







( 4 - 5 8 )

Therefore, when the matrix M is obtained, matrix S can also be determined (see Eq.

( 4 - 1 3 ) ].

Whilst Section 4.2 outlines the main features and the potential of SMC, Section 4.3

describes the benefits of using the Sliding Mode Observer (SMO) for FDI, specifically

for fault estimation.

4.3 Sliding Mode Observer for FDI and Fault Estimation
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The SMO of Edwards and Spurgeon (1998) and Edwards et al (2000) has proved to be a

powerful approach for nonlinear FDI methods. The idea of the SMO is to ‘…design the

observer gains such that the sliding surface is reached and maintained and so that the

error between the plant and the observer states is equal to or converges to zero…’

(Alwi, 2008). Prior to the advent of the Edwards and Spurgeon SMO approach sliding

mode observers have been used earlier for fault detection. For example, Sreedhar et al

(1993) provide a sliding mode design procedure in which it is assumed that the states of

the system are available (e.g. which is not practical in many real applications). Further

approaches were developed by Yang et al (1995) and by Hermans and Zarrop (1996).

The common idea was to ensure that the sliding motion is broken or destroyed when

faults/failures occur and a residual is generated providing information about the fault.

The development of FDI in terms of the estimation/reconstruction of faults using SMO

is provided by Edwards et al. (2000), with the concept of the ‘equivalent output error

injection signal’ to estimate/reconstruct faults. However, uncertainty was not considered

in their early papers. This work was further developed by Tan and Edwards (2002) who

considered the case of sensor faults. The work on robust estimation/reconstruction of

sensor and actuator faults is developed further by Tan and Edwards (2003 and 2006).

The advantage of these methods compared with some well known non-sliding observer

based FDI approaches is that the sliding motion is not broken even in the event of

faults/failures. This Section includes an introduction to a typical SMO and shows how

the SMO can be used for fault estimation as suggested by Edwards and Spurgeon

(1998).

4.3.1 A typical SMO

This Section introduces briefly one class of SMO which is used in Section 4.4 within an

active FTC system. The SMO structure presented here evolved from the Walcott and

Zak observer (1987 and 1988) and the Utkin observer (1992), and is well known as the

Edwards and Spurgeon SMO (1998), described as follows:

Consider the nominal linear system with a class of uncertainty described by:

),,()()()( uxtDtButAxtx  ( 4 - 5 9 )

)()( tCxty  ( 4 - 6 0 )
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where: nxqpxnnxmnxn DCBA  ,,, with npq  , and the matrices CB,

and D are of full rank, the function   px p: is assumed to be unknown

but bounded so that:

),()(),,( 1 ytturuxt   ( 4 - 6 1 )

where: qpxyt :),( is a known function, and 1r is a known scalar.

The general idea of the SMO design is to generate a state estimate )(ˆ tx such that the

state error of the system )()(ˆ)( txtxtesm
x  approaches zero asymptotically even the

presence of the uncertainty.

The sliding surface is the hyperplane represented by:

}0:{  sm
x

nsm
xo CeeS ( 4 - 6 2 )

The observer structure of the system in Eqs. ( 4 - 5 9 ) and ( 4 - 6 0 ) can be written in the

form (Edwards and Spurgeon 1998):

)()()()(ˆ)(ˆ tvGteGtButxAtx on
sm
yl  ( 4 - 6 3 )

where: nxp
nl GG , are the design linear and nonlinear gain matrices,

)()(ˆ)( tytytesm
y  is the output estimation error, and )(tvo is a discontinuous switched

component to induce a sliding motion on sliding surface oS .

Edwards and Spurgeon (1998) state ‘…A sliding mode observer in Eq. ( 4 - 6 1 ) which

rejects the uncertainty class in Eq. ( 4 - 5 9 ) exists if and only if the nominal linear

system satisfies…’

 qCDrank )(

 invariant zeros of ),,( CDA are stable.

[Proof of the necessity is given in Proposition 6.2 in Edwards and Spurgeon (1998)]

Edwards and Spurgeon (1998) proposed the design of system which is transformed into

observer canonical form via a transformation matrix oT , so that xTx o , and the

output distribution matrix becomes:

 po ICT 01  ( 4 - 6 4 )

Therefore, the new coordinate system can be presented by:
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)()()()()(

)()()()(

2222121

1121111

ttutytxty

tutytxtx

DBAA

BAA








( 4 - 6 5 )

where: ppn tytx   )(,)( )(
1 and 11A has stable eigenvalues (Edward and

Spurgeon, 1998).

Consider an observer of the form:

)()()()()(ˆ)(ˆ)(ˆ

)()()(ˆ)(ˆ)(ˆ

22222121

121121111

tvtetutytxty

tetutytxtx

o
sm
y

sm
y





s
22AABAA

ABAA




( 4 - 6 6 )

where: s
22A is stable design matrix, and ov is defined as:












otherwise0

0)(if
)(

)(
),,(

)(
2

2
2 te

teP

teP
uyt

tv
sm
ysm

y

sm
y

o
o

D
( 4 - 6 7 )

where: 2P is a S.P.D. matrix and satisfies Lyapunov equation as follows:

IPP
T

 s
22

s
22 AA 22

( 4 - 6 8 )

and the scalar function ),( yto in Eq. ( 4 - 6 7 ) is chosen so that:

oo ytturyt   ),()(),( 1 ( 4 - 6 9 )

where: o is a positive scalar.

The system state estimation error )()(ˆ)( 111
txtxte sm

x  and )(te sm
y are associated as

follows:

)()(
1111

tete sm
x

sm
x A ( 4 - 7 0 )

)()()()()( 2121 ttvtetete o
sm
y

sm
x

sm
y DAA s

22  ( 4 - 7 1 )

In the following Eqs.( 4 - 6 6 ) to ( 4 - 7 1 ) , the observer gains and the discontinuous

vector )(tvo for the observer structure described in Eq. ( 4 - 6 3 ) are given by (Edwards

and Spurgeon 1998):

The linear gain











 

s
22AA

A

22

121
ol TG ( 4 - 7 2 )

and the non-linear gain
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







 

p
on I

TG
0

1
2D ( 4 - 7 3 )

and












otherwise0

0if
)(

)(
),,(

)(
2

2 sm
xsm

x

sm
x

o
o

Ce
tCeP

tCeP
uyt

tv


( 4 - 7 4 )

4.3.2 The Edwards-Spurgeon observer for fault estimation

The SMO properties of interest that are important for fault reconstruction/estimation

were based on the concept of the equivalent ‘output error injection signals’ proposed in

(Edwards and Spurgeon, 1998; Edwards et al, 2000). Their work forms the basis for the

development of an active approach to FTC based on actuator faults, described in Section

4.4. Consider a nominal linear system with faults given by:

)()()()( tDftButAxtx a ( 4 - 7 5 )

)()()( tftCxty s ( 4 - 7 6 )

where: nxqpxnnxmnxn DCBA  ,,, satisfying npq  , and the

matrices CB, and D are full rank. )(tfa and )(tf s are the functions that represent

actuator and sensor faults, respectively. However, it is assumed that only )(ty and )(tu

are measurable, whereas the states of the system are unknown.

Since an observer has been designed using Eq. ( 4 - 6 3 ) , a sliding motion can be

obtained, thus estimates of )(tfa and )(tf s can be determined from approximating the

equivalent control (Edwards and Spurgeon, 1998; Edwards et al., 2000).

4.3.3 Actuator fault estimation
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Following the work of Edwards and Spurgeon (1998), consider the case when 0)( tf s

but 0)( tfa . This implies that during the sliding motion, the output estimation error

is equal to zero i.e. 0)( te sm
y and then 0)( te sm

y . Therefore, Eq. ( 4 - 7 1 ) becomes:

)()()(0
1

tvtfte oeqa
sm
x  221 DA ( 4 - 7 7 )

where oeqv is the equivalent output error injection signal necessary to maintain sliding.

From Eq. ( 4 - 7 0 ) it follows that: 0)(
1

te sm
x and hence that:

)()( tftv aoeq 2D ( 4 - 7 8 )

As )(tvoeq is a discontinuous signal, an appropriate approximation must be used in

order to recover the equivalent output injection. The discontinuous component in Eq.

( 4 - 6 7 ) is now replaced by a continuous approximation:

sm
sm
y

sm
y

oo
teP

teP
tv







)(

)(
)(

2

2
2D ( 4 - 7 9 )

where sm is a small positive scalar.

It is important to note that the equivalent feedback can be approximated, to any degree

of accuracy, which depends on the choice of sm (Edwards and Spurgeon 1998). Since

qrank )( 2D it follows from Eq. ( 4 - 7 8 ) that:

sm
sm
y

sm
yTT

oa
teP

teP
tf





 

)(

)(
)()(

2

2
2

1
222 DDDD ( 4 - 8 0 )

From Eq. ( 4 - 8 0 ) , it can be seen that the )(tfa term can be computed online, and

depends only on the output estimation error )(te sm
y . ‘…Therefore, )(tfa can be

approximated to any degree of accuracy…’ (Edwards and Spurgeon, 1998).

4.3.4 Sensor fault estimation
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Edwards and Spurgeon (1998) and Edwards et al, (2000) also consider the case when

0)( tfa but 0)( tf s . Since the output of the system is represented by Eq. ( 4 - 7 6 ) , it

follows that:

)()()( tftCete s
sm
x

sm
y  ( 4 - 8 1 )

The state estimation error in the observer as described in Section 4.3.1, is now given by:

)()()( 121111
tftete s

sm
x

sm
x AA  ( 4 - 8 2 )

)()()()()()( 22121 tvtftftetete oss
sm
y

sm
x

sm
y  AAA s

22
 ( 4 - 8 3 )

It can be seen that the functions sf and sf appear as output disturbances, and thus the

nonlinear gain ),,( uyto in Eq. (4 - 7 4 ) must be chosen sufficiently large in order to

maintain the sliding and overcome the disturbance effect (Edwards and Spurgeon,

1998). As discussed in Section 4.3.3, during sliding 0)( te sm
y and then 0)( te sm

y ,

provided that a sliding motion in Eq. ( 4 - 8 3 ) can be obtained by:

)()()()(0 22121 tvtftfte oeqss
sm
x  AA  ( 4 - 8 4 )

If it now be assumed that the sliding motion dynamics are fast 0)(
1

te sm
x , then Eq.

( 4 - 8 2 ) can be rewritten as:

)()( 12
1

111
tfte s

sm
x AA  ( 4 - 8 5 )

For a slowly-varying fault i.e. 0)( tf s
 , the dynamics of the sliding motion are

sufficiently fast, so that by replacing )(
1

tesm
x in Eq. ( 4 - 8 4 ) with Eq. ( 4 - 8 5 ) gives:

)()(

)()(

)()]([)(

12
1

112122

2212
1

1121

2212
1

1121

tf

tf

tftftv

s

s

ssoeq

AAAA

AAAA

AAAA













( 4 - 8 6 )

As described in Section 4.3.3, the equivalent control signal oeqv can be calculated

approximately from Eq. ( 4 - 7 9 ) . If )( 12
1

112122 AAA-A  is non-singular, then the

sensor fault signal can be obtained from:

)()()( 1
12

1
112122 tvtf os 

 AAA-A ( 4 - 8 7 )
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Edwards and Spurgeon (1998) and Edwards et al (2000) suggest that ‘…even if

)( 12
1

112122 AAA-A  singular, it may still be possible to estimate some of the sensor

faults depending on the structure of the rank-deficiency...’

However, this method was later improved for robust application in the presence of

model uncertainty by Tan and Edwards (2003) using an LMI formulation. From

Sections 4.2 and 4.3, it is clear that there are some inherent benefits of SMC and SMO

for FTC. Section 4.4 highlights some of these advantages in terms of FTC via friction

compensation example.

4.4 FTC Approach based on Sliding Mode

As discussed in the Section 4.2, once perfect sliding occurs, a reduced-order order

motion is completely insensitive to matched and bounded uncertainty [i.e. any matched

uncertainty does not have an effect on the sliding motion and the system performance].

This makes the SMC a powerful tool for controlling the system with the presence of

uncertainty and has interesting potential for future research in the area (Edwards and

Spurgeon, 1998; Alwi, 2008). The alternative idea used here is to consider actuator fault

signals acting in the system as matched uncertainty terms and thereby use the well-

known matching conditions summarised in Section 4.2.3.

Considering the dynamic system with actuator faults:



),,()()(

),,(

)()()()()(

)()()()(

uxtftButAx

xut

tu

D

BtButAx

tuIBtAxtx

m

a

a

















( 4 - 8 8 )

This is equivalent to Eqs. ( 4 - 1 7 ) and ( 4 - 2 7 ) .

where: a is the so called fault-effect factor of Chen et al, (1999) and Chen and Patton

(2001), and ),,( 1
a
m

aa diag   , such that 10  a
i represents a fault of the

thi actuator i.e. when 0a
i implies that the actuator operates normally. 0a

i means

that some degree of fault effect occurs in the actuator. It can be seen that the system

with the presence of an actuator fault in Eq. ( 4 - 8 8 ) fits very well to the definition for
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matched uncertainty (Jones, 2005; Alwi, 2006, 2007, 2008). This is true as BD  [i.e.

)()( BD RR  ].

As described in Section 4.2.4, the effect of matched uncertainty (considered here as an

actuator fault) can be removed or compensated depending only on the nonlinear

gain ),( xtc . This means the system stability and sliding will always be guaranteed as

long as the magnitude of ),( xtc is chosen large enough to overcome the matched

uncertainty or fault i.e. it must be greater than the magnitude of the actuator fault [see

Section 4.4.1]. This adaptive property makes the SMC a powerful method for active

FTC (Hess and Wells, 2003; Alwi, 2006, 2007, 2008). This is one motivation for work

in this Chapter.

For the case when there are modelling uncertainties which are matched, the nonlinear

gain must be large enough to encompass both the actuator fault effect factors and the

uncertainty terms. This scenario is similar to the problem discussed in Section 3.5 for

which the robustness of the fault estimator is not required for achieving fault

compensation (within the context of the adaptive ASO scheme).

The equivalent problem in the sliding mode context is that the SMO does not take into

account the model uncertainty but is assumed to be an estimator of the fault signal(s)

which can be associated with the model uncertainty. Since the fault and uncertainty

terms are assumed to be added, the fault estimation in the presence of modeling

uncertainty will be compromised. The concept that is important is that the SMO

estimation takes into account automatically the combination of both the actuator faults

and matched uncertainty. In fact, the pure quality of the fault estimation is not the major

issue, although the quality of the compensation of this signal is important. Hence, as

stated in Section 3.5 there is a trade-off between estimation and compensation. Since

the goal is to use the SMO and SMC schemes together to achieve good FTC

performance good quality compensation will lead to good active FTC performance.

It is for this reason that the work of Tan and Edwards (2003) on robust estimation via

SMO is not appropriate here. In fact it can be argued, in a similar manner to that shown

(via an example) in Section 3.5, that the robust SMO estimator will not lead to good

compensation performance when combined with an SMC in an adaptive FTC structure.
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4.4.1 The stability of SMC with the presence of an actuator fault

The Section demonstrates that the two component controller of Eq. ( 4 - 3 7 ) will still

induce sliding in the presence of actuator faults. As described in Eq. ( 4 - 8 8 ) the

actuator faults acting in the system can be represented as uncertainty. Recall that the

actuator faults [i.e. DB  ] in Eq. ( 4 - 8 8 ) satisfy the matching condition. Hence, the

problem of the stability of the closed–loop system under the effect of this actuator fault

(i.e. matched uncertainty) becomes one of ensuring that sliding occurs, despite the

presence of actuator faults. This is in fact a modification of the work described by

Edwards and Spurgeon (1998) [Section 3.5 in Chapter 3] for the SMC stability

condition in the matched uncertainty case [the unmatched case does not apply in this

work as a consequence of the fault estimation bounds described in Eq. ( 4 - 8 8 ) ].

Substituting the linear and nonlinear control components in Eq. ( 4 - 3 7 ) to ( 4 - 3 9 ) into

Eq. ( 4 - 3 6 ) produces the following system:

)()()( 1
2121111 tsSAtxAtx  ( 4 - 8 9 )

),,(
)(

)(
),()()( 2

2

2 uxtfS
tsP

tsP
xttsts mc   ( 4 - 9 0 )

On applying the Lyapunov function sPssV T
2)(  and its time derivative )(sV , it can

be verified that:
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( 4 - 9 1 )

where
2

222 sPsPPsT  and mm
T fSsPfSPs 2222  from the Cauchy–Schwarz

inequality:

)),((2

2),(2
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2

222
2
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fSxtsPs

fSsPsPxtsV
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





( 4 - 9 2 )
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By re-arranging ),( xtc in ( 4 - 9 2 ) in terms of the uncertainty mf using the definition

of ),( xtc given in Eq. ( 4 - 4 1 ) . From Eqs ( 4 - 3 7 ) and ( 4 - 3 9 ) and using the triangle

inequality property of norms:

1),(

)(





xtu

uutu

cl

nl


( 4 - 9 3 )

where 22BS , then Eq. ( 4 - 4 1 ) can be written as:

clmmc xtukSBkxt    )),(()1)(,( 2
1

2 ( 4 - 9 4 )

Rearranging this inequality yields:
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( 4 - 9 5 )

Using Eqs ( 4 - 9 3 ) and ( 4 - 2 8 ) , the Eq. ( 4 - 9 5 ) can be written as:

cm

c

mf
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fS

xtukSxt









2

2 )),((),(
  

( 4 - 9 6 )

Substituting ),( xtc in Eq. ( 4 - 9 6 ) into Eq. ( 4 - 9 2 ) yields:

sPs

fSsPfSsPsPs

fSsPfSsPstV

c
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mcm

2

2

22222
2

2222
2

2

222

2)(2)(













( 4 - 9 7 )

This inequality shows that the controller in the form Eq. ( 4 - 3 7 ) induces ideal sliding

on S in finite time, despite the presence of the actuator fault(s) [the matched

uncertainty in this context]. ■ 

4.5 Friction Compensation Case Study

To illustrate the above discussion a tutorial example of the nonlinear inverted pendulum

simulation with a cart (as described in Section 3.4.2) is used here as a friction
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compensation problem invoking the combined sliding estimator and VSC controller in

on-line FTC system. In Sections 4.2 and 4.3, some ideas and benefits of using sliding

mode schemes for FTC were discussed. In this Section the benefit of using SMC,

especially when handling actuator faults is demonstrated using a realistic inverted

pendulum model with the development of an online adaptive scheme for the nonlinear

gain ),( xtc .

An on-line (.)c gain is used in the nonlinear component of the control law of Eq.

( 4 - 3 9 ) . The nonlinear adaptive gain reacts to the occurrence of the friction force

(subject to the bounded magnitude of the online estimate of the friction force fricf̂ ) and

attempts to maintain the sliding motion and nominal tracking performance (i.e. try to

keep the switching function close to zero), however the linear control remains

unchanged.

4.5.1 Friction estimation using SMO

This Section describes the properties of the SMO which can be used for friction

estimation, based on the equivalent output injection concept (Edwards and Spurgeon,

1998). In Edwards et al (2000) the estimation problem (sensor and/or actuator faults)

for the purpose of FDI is considered, whilst in this Chapter the actuator fault estimation

problem is studied specifically as a basis for using the FTC Approach to the Friction

Compensation (Patton et al., 2008b). Note that the isolation problem of FDI is not

relevant as the type of fault and its action on the system is understood a priori.

Assume that an observer with the structure given in Eq. ( 4 - 6 3 ) has been designed and

that a sliding motion has been established. Thus, the friction force ( fricf̂ ) as presented

in Eq. ( 3 - 2 1 ) can be computed via the so-called equivalent output injection (see Figure

4-1).
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Figure 4-1: SMO and fault estimation

(adapted from Alwi, 2008)

The solution to Eq. ( 4 -8 0 ) generates the estimates of the friction force, which are

computed online so that an approximation for )(ˆ tf fric can be obtained in real time (see

Figure 4-1).
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Using canonical from of Eq. ( 4 - 6 5 ) the system Eq. ( 3 - 2 1 ) becomes:
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The SMO design parameters are given as follows: the design of 1011 A , and

]5.13,5.12,5.11[
22

 diagAs , with 50.25o , 045.0sm , ]3205.0,0,0[2 colD 

and ]0370.0,0400.0,0435.0[2 diagP  (see Section 4.3.3).

The associated gains from the observer representation in Eq. ( 4 - 6 3 ) are obtained by

the modified scheme proposed in (Edwards et al, 2000) as:
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




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The transformation matrix oT is:





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







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





0.00001.00000.00000.0000

0.00000.00001.00000.0000

0.00000.00000.00001.0000

1.00003.14969.8548-0.0000

oT

The nonlinear inverted pendulum system is simulated in Matlab/Simulink and the

Stribeck friction force fricf is implemented as in (Putra et al, 2004).
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Figure 4-2: Simulation results of: (a) friction force, and its estimate, (b) friction force

estimation error (with NFs 5.0 )
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Figure 4-3: Simulation results of: (a) friction force, and its estimate, (b) friction force

estimation error (with NFs 5.1 )

Figure 4-2 and Figure 4-3 show a comparison of the simulated friction force fricf with

the simulated friction force estimate fricf̂ [see (a)]. Note that the estimates lag the

simulated force due to the discontinuity of the friction force during reversed motion.

The lower plot in (b) is the estimation error signal which reflects this discontinuous

behaviour.

The following Section 4.5.2 , the friction force estimate )(ˆ tf fric is used to achieve the

FTC by compensating for the uncertain element of the control signal arising from the

friction force.

4.5.2 Friction compensation sliding SMO/SMC system

The friction force estimate arises in the SMO analysis as an equivalent feedback signal

as described in Section 4.5.1 and Figure 4-1 is used as the matched uncertainty in the

SMC design for FTC. The approach describes the SMC as an adaptive control scheme

designed to meet the FTC requirements, based on the friction force estimation. A bound

derived from this estimation is used in the nonlinear component of the SMC.

Figure 4-4 illustrates the mechanism for combining the SMC and SMO/fault estimator

structures together. The link is shown by the shaded box with continuous line edge,
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giving the point at which the friction force estimate signal )(ˆ tf fric enters the SMC

structure from the SMO/estimator in term of )(ˆ tfric (so called friction fault-effect

factor) (Chen et al.,1999).

Figure 4-4: FTC strategy for friction compensation using SMC and SMO

Re-called Eq. ( 3 - 2 1 ) as follows:

)()(

)]()([)(

tBftBuAx

tftuBAxtx
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( 4 - 9 9 )

The online estimate of friction force )(tf fric in Eq. ( 4 - 99 ) is obtained from the SMO

(as discussed in Section 4.4), and hence Eq. ( 4 - 9 9 ) can now be re-written into the term

of )(ˆ tfric [i.e. since )(ˆ tf fric is obtained] as follows:
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It can be seen that the friction force acting on the system [see the last term in the right-

hand side of Eq. ( 4 - 1 0 0 ) ] can be represented in the same way as the uncertainty acting

on the system [similar to Eq. ( 4 - 8 8 ) ] , i.e.

)()ˆ(),,( tuuxt fric  (4-101)
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It can be seen that the relationship between the Eq. (4-102) and Eq. ( 4 - 9 9 ) is

equivalent to:

)()ˆ()( tuBtBf fric
fric  (4-103)

Thus, the matched uncertainty (considered here as a friction force) in Eq. (4-102) can

be given by:

)(),,( tBfuxtf fricm  (4-104)

As discussed in Section 4.2.4 and Eqs. ( 4 - 2 8 ) and ( 4 - 4 1 ) , for the matched

uncertainty condition, and the scalar function ),( xtc depends on the magnitude of the

matched uncertainty. This can be any function satisfying:

Recall ),( xtc from Eq. ( 4 - 9 6 ) as follows:

cmc uxtfSxt   ),,(),( 2 (4-105)

From Eqs. (4-105) and (4-106), it can be seen that ),( xtc becomes a function of

friction estimation )(ˆ tf fric only as follows:

cfricc tfBSt   )(ˆ)( 2
(4-106)

This is shown in Figure 4-4, and for this design 065.0c , so that )(tc must be

greater than the magnitude of ttfBS cfric  ,)(ˆ
2  (i.e. considered here as the

matched uncertainty signal). In other words Eq. (4-106) forms an adaptive control

mechanism in the SMC in term of )(tc via the on-line generated friction

estimates )(ˆ tf fric .

In the following Section 4.2, the parameters for the design of the SMC are given as

follows:

]7326.2,3020.5,9867.14,4040.7[S

]2265.29,2255.43,6191.170,9427.41[smL

Giving a design matrices 0833.02 P , -1.0592 and ]10.0,00.1,00.1,00.10[diagQ  .
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Simulation results for given initial values Tx ]001.11.1[)0(  , and from Eqs

( 4 - 3 7 ) to ( 4 - 4 2 ) , )(tul and )(tun can be obtained by:

  )(29.226543.2255170.619141.9427)( tx

L

tu

sm

l   


(4-107)
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)()(

2

21

tsP

tsP
ttu cn

  (4-108)

where )(t
c

 is obtained from Eq. (4-106).

Simulation results will now be presented to illustrate the system operation with and

without friction compensation.
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Figure 4-5: The simulation result of friction, its estimation ( fricf̂ ), and estimation error

(with NFs 5.2 )

Figure 4-5 shows the Stribeck friction force (Putra et al, 2004), its estimate and

estimation error implemented by the on-line SMO, as designed in Section 4.5.1.

Figure 4-6(a), Figure 4-7(a) and Figure 4-8(a) show that the dynamic sliding mode

controller works well in the absence of friction force on the cart.

However, the controlled pendulum exhibits limit cycling in the presence of friction with

NFs 5.2 as shown in the first 40s of Figure 4-6(b), Figure 4-7(b) and Figure 4-8(b),

respectively.
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The Figure 4-6(c), Figure 4-7(c) and Figure 4-8(c) also shows that when the frictions

force is compensated using )(ˆ tf fric provided by the SMO in Eq. ( 4 - 9 8 ) and SMC

mechanism in Eqs. (4-107) and (4-108), starting at t=40s the limit cycling is

significantly suppressed.
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Figure 4-6: The output response of cart position: (a) without friction force, (b) with

friction force and (c) with friction compensation mechanism activated at t = 40s
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Figure 4-7: The output response of pendulum position: (a) without friction force, (b)

with friction force and (c) with friction compensation mechanism activated at t = 40s
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Figure 4-8: The output response of cart velocity: (a) without friction force, (b) with

friction force and (c) with friction compensation mechanism activated at t = 40s

4.6 Conclusion

The purpose of this Chapter is to develop a framework for adaptive and active FTC,

based on the sliding mode concept. The proposed FTC architecture uses a combination

of SMO and SMC structures which jointly satisfy important stability bounds in terms of

matched uncertainty via estimates of fault effect factors. To develop the required

conditions for this new FTC architecture the Chapter examines carefully the design

processes and concepts that accompany the individual SMO and SMC problems.

Although much of the material is taken from well know research papers or books the

description is important in order to develop the new FTC subject and outline some

important new developments in this work.

The work proposed in this Chapter is an alternative approach to the scheme and

architecture proposed in Chapter 3, with considerable new material presented in both

cases. The main thrust of this Chapter is to replace the ASO/compensating adaptive

controller scheme of Chapter 3 with the combination of the SMO and SMC. In this

context this combination is a new contribution to the field of active and adaptive FTC.

Whilst, the adaptive FTC approach described is applicable to a wide range of uncertain

systems with faults, the example chosen formulates a new problem in its own right. This

is the problem of considering the friction forces acting in mechatronic systems as



108

actuator-related faults which can be compensated with an adaptive control mechanism.

In common with the material presented in Chapter 3, it is argued that this is a special

case of an FTC problem with important potential application possibilities. The

simulation results demonstrate the friction force compensation applied to a nonlinear

inverted pendulum simulation including Stribeck friction. Another main advantage of

the adaptive FTC approach to friction compensation is that it obviates the use of any

form of mathematical model of the friction force phenomena. This is important since the

friction phenomena are very difficult to model and it is difficult or almost impossible to

develop control strategies based on inadequate friction modelling that have sufficient

robustness to the friction modelling uncertainty

It is interesting to note that the sliding mode approach described in this Chapter offers

some advantage over the equivalent FTC architecture described in Chapter 3. In this

(sliding) approach the fault estimates are taken into account in the stability of the SMC,

whilst in the ASO scheme of Chapter 3 the fault estimation is used within the control

law and immediately affect the control performance.

Finally, all the ideas proposed in this Chapter can be immediately extended to cases of

more general faults, for on-line FTC fault compensation and are not restricted to the

friction case.
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Chapter 5.
Fault Estimation and Compensation
based on LPV Approach

5.1 Introduction

There has been significant interest in the control of time-varying systems over many

years (Leith and Leithead, 2000; Balas, 2002). In recent years, Linear Parameter

Varying (LPV) modelling methods have gained a great deal of interest, especially for

applications related to vehicle, robust and aerospace control (Wu, 2001; Ganguli et al,

2002). The LPV approach is particularly appealing whenever nonlinear plants can be

modelled as time-varying systems with on-line measurable state depending parameters.

Bokor and Balas (2004) introduced the concept of the use of fault detection filters for

LPV systems and many other investigators have followed different aspects of this

approach (Casavola et al, 2005a, 2005b, 2007, 2008; Henry et al, 2004; Marcos et al.,

2005; Zolghadri et al, 2008; Weng et al, 2008; Henry, 2008).

For FTC, Chen et al (1999) tackled an FTC flight control design study using a Linear

Fractional Transformation (LFT) approach via the LMI framework. Active FTC

controllers are either based on on-line fault estimation (fault compensation) or FDI/FDD

and control system reconfiguration. The fault estimate approaches require the

generation of estimates of possible faults to allow the FTC controller to tolerate the
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faults. Generally speaking the FDI problem is not relevant within this framework unless

the more general problem of FDD is considered as this includes fault estimation. As

discussed in Chapters 3 and 4, FTC via fault estimation is one powerful approach to on-

line controller reconfiguration within the framework of adaptive control.

More recently, the idea of extending the control approach using LPV to encompass FTC

schemes has been the subject of a number of studies (Shin and Belcastro, 2006;

Rodrigues et al., 2005, 2007; Weng et al, 2007, 2008). Ganguli, Marcos and Balas

(2002) use LPV ideas for the FTC problem based on actuator faults in aircraft. Their

approach is immediately useful as a background to the work of this Chapter, although a

different application subject is used.

This Chapter proposes a new design of an active FTC and polytopic LPV estimator for

systems which can be characterized via a set of Linear Matrix Inequalities (LMIs) and

can be obtained using efficient interior-point algorithms (Apkarian et al., 1995). In the

work of this Chapter a polytopic LPV estimator is synthesized for providing actuator

fault estimation which is used in an FTC scheme to schedule the state feedback gain.

This gain is also calculated using LMIs in the fault-free case in order to maintain the

system performance over a wide operating range within a proposed polytopic model.

The resulting active FTC controller is a function of the fault effect factors as defined by

Chen et al (1999) and Chen and Patton (2001) which can be derived on-line (in this

case) from the residual vector of a polytopic LPV estimator mechanism.

Whilst the work uses well know results from Apkarian et al (1995) and several other

investigators it has been motivated by:

(a) The research of Weng et al (2008) on fault estimation for rate

bounded time-delay systems using LPV.

(b) The use of fault effect factors as described by Chen et al (1999) and

Chen and Patton (2001)

The Weng et al (2008) work is limited only to fault estimation and does not include the

full FTC problem, whilst the work of Chen et al (1999) and Chen and Patton (2001)

pre-dates the development of the LPV approach to control and FTC in particular.

Hence, the novelty of this work lies in the combined use of fault estimation and fault

compensation for FTC within an LPV framework. The effectiveness of the proposed

method is demonstrated through a nonlinear two-link manipulator system with a fault in
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the torque inputs at each manipulator joint. This is a nonlinear system that can be

represented well by a polytopic model and this is also proposed in this Chapter.

5.2 General overview of the LPV approach

An LPV system is a mathematical realization/description of the linear parameter-

varying nature of a system. LPV systems have state-space matrices that are fixed with

some vector of varying parameters (Leith and Leithead, 2000; Wu 2001). From a

practical point of view, the nonlinear systems can be reduced to an LPV representation

by using the linearization along trajectories of the parameters. In other words, the idea

in LPV is to obtain smooth semi–linear models that can vary or be scheduled using a

parameter, for example an altitude and/or speed of an aircraft, so that the LPV model

will mimic the actual nonlinear plant (Packard and Kantner, 1992; Shamma and Athans,

1992). Here, instead of choosing a combination of predefined linear models, the models

change parametrically. The LPV model has the structure of a time-varying linear system

with the parameter-dependent matrix quadruple )](),(),(),([  DCBA .

where: nxnA )( , nxmB )( , pxnC )( and pxmD  as follows:

)()()()()(

)()()()()(

tuDtxCty

tuBtxAtx








( 5 - 1 )

where:  is a vector of smoothly changing system parameters.

An LPV system can also reduced to a Linear Time-Varying (LTV) system with a given

parameter trajectory and it can be reformed into a Linear Time-Invariant (LTI) system

with a given a constant trajectory [i.e.  is a constant]. From the control point of view,

LPV control design is closely related to gain-scheduling (Apkarian at el., 1995; Leith

and Leithead, 2000). It is motivated by the problem of obtaining and designing multiple

models and controllers and the lack of performance and stability proofs for classical

gain-scheduling (Balas, 2002; Ganguli at el., 2002). In comparison with the classical

gain-scheduling methods where the gains arise from interpolations of predesigned

controller gains, the LPV controllers are dependent on the parametric changes in the

system.

The advantage of this LPV approach to nonlinear systems, compared with the multiple

model switching and tuning (MMST) and interactive multiple model (IMM) methods is
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that the LPV controllers do not need to be designed for all linearization points (Leith

and Leithead, 2000; Wu, 2001).

5.3 Problem Statement

Consider the LPV system described by state-space equation as follows:

)()()()()()()()()(

)()()()()()()()()(

tfHtdGtuDtxCty

tfFtdEtuBtxAtx

pppppp

pppppp








( 5 - 2 )

where n
p tx )( , ptu )( , m

p ty )( , and qtd )( are the states, control inputs,

outputs, and disturbances. gtf )( is the fault vector where each element

gi ,2,1 corresponds to a specific fault, respectively. s is a time-varying

parameter vector, and )(pA , )(pB , )(pC , )(pD , )(pE , )(pF , )(pG and

)(pH are the appropriate matrices with appropriate dimensions.

The assumptions that apply to system Eq. ( 5 - 2 ) are (Apkarian et al, 1995):

(A. 5-1) The system Eq. ( 5 - 2 ) is stable.

(A. 5-2) The vector )(t varies in a polytope  with

vertices r ,,, 21  ( sr 2 ), i.e.:
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(A. 5-3) The state-space matrices depend affinely on )(t , the Eq. ( 5 - 2 )

is assumed to be polytopic, i.e.
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(A. 5-4) )(),(),(  ppp GDC , and )(pH are parameter independent, i.e.
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The LPV systems encompass many relevant applications such as aircraft, missiles,

multi-link robots, etc., particularly systems for which the time-varying state space

parameters can be determined. The assumption (A. 5-4) can be removed by introducing

some pre- and/or post-filtering and more details of this can be found in (Apkarian at el,

1995). This pre-and/or post-filtering is not necessary here the assumption (A. 5-4) is

considered in its entirety.

5.4 The Polytopic LPV Estimator

Following from the motivation defined at the end of the Section 5.1, this Section

proposes a structure [see Figure 5-1] which fits the objective of finding a estimator in

order that the 2L -induced norm of the operator mapping )](),(),([ tftdtu into the

estimation error )(te f is bounded by a scalar number  , for all parameter trajectories

(see the detailed discussion in Definition 5.1 and Section 5.4.1).

Definition 5.1 (Garces et al., 2003)

The matrix A with n rows and m columns and real elements, niaij ,,1,  and

mj ,,1 , defines a linear mapping zx A from m to n for the given vectors

nx  and mz  . The ‘induced p-norm’ of matrix A is defined as follows:

pz
p

p

x
p

z
z

z
A

A
A

10

maxsup




where sup stands for supremum or least upper bound.
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Figure 5-1: The polytopic LPV estimator structure

The design of a polytopic LPV estimator is given by:
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such that the estimated error vector )()(ˆ)( tftfte f  gR is minimized.

Here )(tu and )(ty p are defined by Eq.( 5 - 1 ) , and n
f Rtx )( is the state vector of the

estimator, )(ˆ tf is the estimation of the fault )(tf . )(),(),(  fff CBA , and )(fD

are matrices with appropriate dimensions, to be designed. Therefore, the LPV estimator

in Eq. ( 5 - 5 ) can be rewritten by:
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The following system can be obtained from the combination of the LPV system of Eq.

( 5 - 2 ) with the fault estimator Eqs ( 5 - 5 ) and ( 5 - 6 ) :

Fault

Polytopic
LPV

Estimator

Disturbance

Control

Output

Fault estimation

Estimation
error

Polytopic LPV
System

)(td

)(tf
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+
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Eqs ( 5 - 6 ) to ( 5 - 1 2 ) can be rewritten in the form:
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In order to solve the estimation problem of Eq. ( 5 - 5 ) the Problem 5.1 must be

defined:

Problem 5.1

For the LPV system Eq. ( 5 - 2 ) with assumptions (A. 5-1)-(A. 5-4), design a polytopic

LPV estimator Eq. ( 5 - 5 ) , such that the 2L -induced norm of the operator mapping

)(twudf into )(te f [see Eq. ( 5 - 1 3 ) ] is bounded by a scalar number  for all parameter

trajectories )(t  in the polytope Θ [see Lemma 5.1].
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5.4.1 LPV approach to robust fault estimation

Considering the structure of Eq. ( 5 - 1 3 ) and according to the assumptions (A. 5-2)-(A.

5-4), it can be verified that the system Eq. ( 5 - 1 3 ) is a polytopic system, and the

Lemma 5.1 can be used as an adaptation of the results from (Apkarian at el, 1995).

Lemma 5.1

For LPV system Eq. ( 5 - 1 3 ) , the following statements are equivalent:

(1) 2L -induced norm of the operator mapping )(twudf into )(te f [see Eq.

( 5 - 1 3 ) ] is bounded by a scalar number  for all parameter trajectories

)(t  in the polytope Θ, 

(2) There exists 0 TXX satisfying the system of LMIs:
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The main results of this Chapter can be stated through Theorem 5.1 which provides the

conditions leading to the solution of the Problem 5.1.

Theorem 5.1 (Apkarian at el, 1995)

Consider the LPV system in Eq. ( 5 - 2 ) with assumptions (A. 5-1)-(A. 5-4). There

exists a polytopic LPV estimator in Eq. ( 5 - 5 ) that can determine the solution of

Problem 5.1 if there exist matrices nnT
oo RRR 0 , nnT

oo RSS 0 such that:
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Proof of Theorem 5.1

By Lemma 5.1 [see Eq. ( 5 - 6 ) ] and considering the notations in Eq. ( 5 - 1 4 ) , there

exists a polytopic LPV fault estimator Eq. ( 5 - 5 ) which solves the Problem 5.1 if:
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where:
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Based on the projection lemma (Gahinet and Apkarian, 1994), the LMIs of Eq. ( 5 - 2 0 )

hold for some )( iF if and only if:
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where
xUW and VW denote any bases of the null spaces of xU and V , respectively.

Observing that:
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A basis for the null space of xU is given by:
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where UW denotes any basis of the null space of U . Hence, the inequality Eq. ( 5 - 2 4 )

can be rewritten as:
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X and 1X can be partitioned as:
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where nn
oooo RNMRS ,,, and 0,, ooo MRS , and * stands for the matrix entries

that we are not interested in.

These partitions of X and 1X can now be substituted into Eq. ( 5 - 2 1 ) and Eq.

( 5 - 3 0 ) , yielding )( i and )( i as:
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the bases for the null spaces of U and V are given by:
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Observing that the second row is identically zero in the matrices of Eq. (5 - 3 5 ) , thus

the conditions Eqs. ( 5 - 2 9 ) and ( 5 - 2 5 ) can be reduced to the following LMIs:

ri

W

U

I

U

i

ID

DIB

BARRA

W

U

I

U

U

T
i

T
ii

T
pooip

T
U

T

,,1

0

0

0

0

)(

0

)(

0)()()(

0

0

0

2

1

11

111

1

2

1



  




































































( 5 - 3 6 )

ri

W

I

V

V

i

ID

DISB

BSSAAS

W

I

V

V

V

T
oi

T
iooi

T
pipo

T
V

T

,,1

0

0

0

0

)(

0

)(

0)()()(

0

0

0

2

1

11

111

1

2

1



  




































































( 5 - 3 7 )

Inequalities Eq. ( 5 - 3 6 ) and ( 5 - 3 7 ) resulting from the derivation of the bases of the

null spaces of U and V have been modified in this thesis since the pair ),( 122
TT DB does

not appear in the derivation of Eq. ( 5 - 4 ) . The standard formulation by Apkarian et al

(1995) can now be used based on the bases of
U

W and
V

W determined in inequalities

Eq. ( 5 - 3 6 ) and ( 5 - 3 7 ) as follows:
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Based on the matrix completion result (Zhou and Doyle, 1997), the condition 0X is

equivalent to:
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which completes the proof of Theorem 5.1 ▄                                                                                       

Once the matrices oR and oS are obtained, the LPV estimator described in Eq. ( 5 - 5 )

can be constructed as following algorithm:

Algorithm 5.1 (Apkarian, et at, 1995)

Step1. Computing the full rank matrices oo NM , using SVD such that:
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T
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Step 2. Computing X as the unique solution of the linear matrix equation:
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Step 3. Compute )( iF by solving the Eq. ( 5 - 2 0 ) .

Step 4. Solve the polytopic LPV estimator:
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where i
p is any solution of the convex decomposition problem:
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5.5 Two-link Robot Case Study Example

To illustrate the mathematical discussion above, a tutorial example of the actuator fault

compensation problem is considered using a nonlinear simulation of the two-link

manipulator/robot. The field of robotics is concerned with the principle, design,

manufacture, and application of robots, and is a broad application area involving many

areas such as physics, mechanical design, motion analysis and planning, actuators and
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drivers, control design, sensors, signal and image processing, computer algorithms, and

study of behaviour of machines, animals, and even human beings (McKerrow, 1991;

Slotine and Li, 1991; Hassen, et al., 2000).

The robot manipulators are familiar examples of position-controllable mechanical

systems (Hassen, et al, 2000). However, their nonlinear dynamics present a challenging

control problem, since traditional linear control approaches do not easily apply. The

objective of this Section is to model the complete nonlinear dynamics of an example of

a two-joint manipulator, so that the movement control, e.g. from one point to another in

two-dimensional space, is facilitated.

5.5.1 Two-link manipulator dynamics

Basically, there are three types of dynamic torques that arise from the motion of the

manipulator: Inertial, Centripetal, and Coriolis torques (McKerrow, 1991; Slotine and

Li, 1991; Hassen, et al., 2000). Inertial torques are proportional to acceleration of each

joint in accordance with Newton’s second law. Centripetal torques arise from the

centripetal forces which constrain a body to rotate about a point. They are directed

towards the centre of the uniform circular motion, and are proportional to the square of

the velocity. Coriolis torques result from vertical forces derived from the interaction of

two rotating links and are proportional to the product of the joint velocities of those

links.

For simplicity, the two-link robotic manipulator is considered to rotate in the vertical

plane, and the equilibrium point is considered to be the upper vertical position, whose

position can be described by a 2-vector T),( 21   of joint angles, and whose

actuator inputs consist of a 2-vector Tuuu ),( 21 of torques applied at the manipulator

joints as shown in Figure 5-2.

Using the vectors  and  to denote the joint velocities and accelerations, respectively

the dynamics of this simple manipulator can be written in the more general form

(McKerrow, 1991; Slotine and Li, 1991; Hassen, et al, 2000) as:

uO  )(),()(  g ( 5 - 4 5 )
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where: 22)( x  is the manipulator inertia tensor matrix (which is S.P.D.),

2),(  O is the vector function containing the Centripetal and Coriolis torques,

i.e. 22),( xO   and 2)( g are the gravitational torques.

Consider the following numerical example taken from (Kim 1997; Hassen, et al, 2000)

and modified here as a demonstration for the proposed design strategy in Section 5.4. In

this work a polytope representation of this model is given.

Figure 5-2: Two-link manipulator structure

The equations of motion are described by:

111211
2
221212

22121211
2
12

2
11

)sin(][)sin(

)cos([][

uglmlcmlclm

lclmIlmlcm












( 5 - 4 6 )

2222
2
121212

22
2
22121212

)sin()sin([

][)cos([

uglcmlclm

Ilcmlclm












( 5 - 4 7 )

where:

1I : Inertia of arm-1 and load

2I : Inertia of arm-2

1l : Distance between joint-1 and joint-2

1lc : Distance of joint-1 from centre of mass arm-1

2lc : Distance of joint-2 from centre of mass arm-2

1m : Mass of arm-1 and load

2m : Mass of arm-2

1

2

1lc

2lc

2u

Load

gm2

gm1

g

1u

1l
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Parameters 1I 2I 1l 1lc 2lc 1m 2m g

Values 0.833 0.417 1.0 0.5 0.5 10.0 5.0 9.80

Units Kg*m2 Kg*m2 m m m Kg Kg m/s2

Table 5.1: Parameter values for the Two-link manipulator system

5.5.2 Polytopic model of two-link manipulator

Introduce intermediate variables to replace the constants as:
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It is important to note that in this study the quadratic terms ),(  O are not considered

because they are not bounded. This is different from the work by Adams et al (1996) as

in their work, the ),(  O term is taken into account in the design of robust control

approaches for a two-link flexible manipulator. However, it turns out that the two-link

manipulator still works well (see the later results in Section 5.6.1), even if these bounds

are not known a priori. Considering this limitation Eq. ( 5 - 4 5 ) becomes:

u )()(  g ( 5 - 5 0 )

where:
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The nonlinear term in )( is clearly a bounded function:

)cos()( 211   ( 5 - 5 2 )

where: 11 1   , [see Figure 5-3 (a)]

Hence, )( can be represented by a polytope whose vertices are defined by:
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 21,)(  Co ( 5 - 5 3 )
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To facilitate a state-space formulation, the vector field )(g with 2 can be

arranged in the form of )(gG and function )(2  can now be defined which is

bounded, as shown in Figure 5-3 (b).
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where 1)(2.0 2   [see Figure 5-3 (b)]
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Figure 5-3: Variation of parameters used for the simulation

From the boundedness of functions )(2  in terms of the angle , )(gG is considered

as a polytope as follows:
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To define the state space representation of the two-link system, let:

1)(1 1   1)]([2.0 2  

(a) (b)
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The LMI constraints with state feedback according to the nonlinear equations in Eqs

( 5 - 4 6 ) and ( 5 - 4 7 ) are then given by the following descriptor system:
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or the state space equation is presented as follows:

)()()()()( tuBtxAtx   ( 5 - 5 8 )

Let the matrix  be a non-singular matrix given by:
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The proof that  is non-singular follows form the )( in the polytope of Eqs ( 5 - 5 3 )

and ( 5 - 5 4 ) . As  is block diagonal, its determinant is given by )( . It is thus only

required to show that 21122211 mmmm  . But 2112 mm  (by symmetry) and

2211 mm  since 21 II  and 21 mm  and hence  is non-singular. ■

It thus follows that:
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5.5.3 Actuator fault estimation

Consider a nominal time-varying model [depending smoothly on the angle ] of the

nonlinear dynamical system of Eq. ( 5 - 5 8 ) , subject to actuator faults )(tfF aa , as

follows:
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4,,2,12,1

)()()(

)()()()()()(











ji

tfFtuBtxA

tfFtuBtxAtx

aaiij

aa

( 5 - 6 0 )

where aF fault distribution matrix and the vectored signal af represents actuator faults.

These gives rise to a polytopic controller with 8-vertex systems as follows:

Vertex system 1:


























0000.00000.07184.263861.29

0000.00000.00159.85947.19

0000.10000.00000.00000.0

0000.00000.00000.00000.0

11A ,


























0905.13272.0

3272.02182.0

0000.00000.0

0000.00000.0

1B

Vertex system 2:

























0000.00000.03437.53861.29

0000.00000.06032.15947.19

0000.10000.00000.00000.0

0000.00000.00000.10000.0

12A ,


























0905.13272.0

3272.02182.0

0000.00000.0

0000.00000.0

1B

Vertex system 3:
























0000.00000.07184.268772.5

0000.00000.00159.89189.3

0000.10000.00000.00000.0

0000.00000.00000.10000.0

13A ,


























0905.13272.0

3272.02182.0

0000.00000.0

0000.00000.0

1B

Vertex system 4:


























0000.00000.03437.58772.5

0000.00000.06032.19189.3

0000.10000.00000.00000.0

0000.00000.00000.10000.0

14A ,


























0905.13272.0

3272.02182.0

0000.00000.0

0000.00000.0

1B

Vertex system 5:























0000.00000.07184.263861.29

0000.00000.00159.85947.19

0000.10000.00000.00000.0

0000.00000.00000.10000.0

21A ,























0905.13272.0

3272.02182.0

0000.00000.0

0000.00000.0

2B

Vertex system 6:


























0000.00000.03437.53861.29

0000.00000.06032.15947.19

0000.10000.00000.00000.0

0000.00000.00000.10000.0

22A ,























0905.13272.0

3272.02182.0

0000.00000.0

0000.00000.0

2B
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Vertex system 7:


























0000.00000.07184.268772.5

0000.00000.00159.89189.3

0000.10000.00000.00000.0

0000.00000.00000.10000.0

23A ,























0905.13272.0

3272.02182.0

0000.00000.0

0000.00000.0

2B

Vertex system 8:


























0000.00000.03437.58772.5

0000.00000.06032.19189.3

0000.10000.00000.00000.0

0000.00000.00000.10000.0

24A ,























0905.13272.0

3272.02182.0

0000.00000.0

0000.00000.0

2B

Therefore, the actuator fault estimate )(ˆ tfa in system Eq. ( 5 - 6 0 ) can be implemented

by using Algorithm 5.1 and solved using the MATLAB© LMI toolbox in Eqs ( 5 - 4 1 ) -

( 5 - 4 4 ) . The solution for 7550.2 , after 39 iterations. The matrices oo SR , and oM

are given by:































0333.3488E024.5642E011.9536E-027.3705E-

024.5642E033.3488E011.9536E-027.3705E-

011.9536E-011.9536E-032.6290E028.0233E-

027.3705E-027.3705E-028.0233E-032.2245E

oR

032.8955E014.1605E-01-7.5925E011.9468E

014.1605E-032.8955E01-7.5925E011.9468E

01-7.5925E01-7.5925E032.9309E013.1291E

011.9468E011.9468E013.1291E032.9682E





























oS































059.4147E066.0069E062.5404E-067.4692E-

059.4147E066.0069E-062.5404E-067.4692E-

061.8940E03-2.3657E-067.3022E062.7157E-

063.0969E04-9.5678E062.9214E-066.2022E

oM
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















































04-3.350E000.000E07-5.660E-06-2.988E-

000.000E04-3.405E15-1.000E-000.000E

07-5.660E-15-1.000E-04-3.435E06-1.969E

06-2.988E-000.000E06-1.969E04-3.501E

01-2.464E-01-7.071E-01-2.943E01-5.939E

01-2.464E-01-7.071E01-2.943E01-5.939E

01-4.903E-10-2.785E01-8.446E-01-2.151E

01-7.989E-01-1.126E-01-3.369E01-4.983E-

01-2.464E-01-2.464E-01-4.903E-01-7.989E-

01-7.071E-01-7.071E10-2.785E10-1.126E-

01-2.943E01-2.943E01-8.446E-01-3.369E

01-5.939E01-5.939E01-2.151E01-4.983E-

032.895E014.160E-01-7.593E011.947E

014.160E-032.895E01-7.593E011.947E

01-7.593E01-7.593E032.931E013.129E

011.947E011.947E013.129E032.968E

X

An estimator in Eq. ( 5 - 5 ) can be constructed by the Algorithm 5.1. The polytopic

LPV estimator in Eq. ( 5 - 4 3 ) are:

























02+-3.438E02+1.193E01+9.297E01+7.742E
06+1.827E05+-9.783E05+4.078E05+3.342E

06+4.979E05+-9.206E05+-5.788E05+5.748E-

05+6.172E06+-1.323E06+1.018E05+8.665E

05+-1.667E06+-1.463E06+1.359E06+1.171E

02--1.721E01-1.115E02--4.086E02-5.344E-
02+-2.271E02+-6.757E01+1.170E02+1.479E

02+-1.098E03+-1.420E02+5.495E02+8.814E

02+-3.387E02+-4.662E02+-2.727E02+2.174E-

02+-3.982E02+-3.126E02+-4.365E02+4.347E-

)(F

Figure 5-4 and Figure 5-5 show the result of the fault estimation, with a Gaussian

random disturbance )(td of zero-mean and variance 0.015 and disturbance distribution

matrix as follows:























03-7.8598E02-1.1667E03-5.1494E03-8.0437E

02-1.0490E03-5.4991E03-9.0829E03-2.6745E

03-2.6570E03-3.3493E02-1.2001E03-6.2289E

03-8.5417E03-9.3071E03-4.0004E03-5.4832E

E
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The polytopic system is simulated with scalar faults acting on the control input )(1 tu

[i.e. torque input at the manipulator joint-1], with: the parameter trajectories of )(1  ,

and )(2  [as defined by Eqs. ( 5 - 5 2 ) and ( 5 - 5 5 ) ], and the actuator fault signals [i.e.

)](),([)( 21 tftfcoltf aaa  as shown in Figure 5-4 and Figure 5-5 are:

]00.0),5.0sin(1050.2[)( 2 tecoltfa
 and ]00.0),2sin(1025.1[)( 2 tecoltfa

 ,

Simulation results show that the designed polytopic LPV fault estimators provide very

good estimation performance.
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Figure 5-4: Fault estimation provided by the polytopic LPV estimator

[ )5.0sin(1050.2)( 2
1 tetfa

 ]
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Figure 5-5: Fault estimation provided by the polytopic LPV estimator

[ )2sin(1025.1)( 2
1 tetfa

 ]

In this Section the design and performance of the fault estimator for the manipulator

system have been given. After verifying the fault estimation performance the fault-free

LPV controller design can now be described as a basis for the development of the active

FTC system.
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5.6 The Polytopic LPV Controller Design

In this Section, the case study robot manipulator as described in Section 5.5.2 is used to

illustrate various control polytopic modelling issues and FTC design. The feedback

control is developed for the nominal (fault-free) system of Eq. ( 5 - 5 0 ) . The control

objective is to compute the required actuator inputs to perform desired tasks (e.g. move

the manipulated load to a desired position), given the measured system states, namely

the vector  of joint angles, and the vector  of joint velocities.

5.6.1 Design of controller for nominal/fault-free case

Let a nominal state feedback control vector be )()( txKtu lpvnom  [i.e. for the fault-free

case], where lpvK 42x is controller gain matrix of the polytopic system to be

designed. Before the nominal controller design can be completed it is first necessary to

develop a stability condition that will be satisfied by all the LPV vertices.

The closed-loop nominal (fault-free) control system can be developed from the open-

loop system of Eq. ( 5 - 5 8 ) as:

4,,2,12,1

)(][

)(])()([)(











ji

txKBA

txKBAtx

lpviij

lpv

( 5 - 6 1 )

where;

























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







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lpvlpv

lpvlpvlpvlpvlpv
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WK
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4

11

1

1

224221114111
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0
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0

0

},,,,,{)()(

gg 
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




















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




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21 0

0
,

0

0 II
Co

The following quadratic stability conditions are now defined at each vertex for the

S.P.D. Lyapunov matrix cS :

0)()(  T
lpviijcclpviij KBASSKBA ( 5 - 6 2 )

or
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4,,2,12,1

0
0

0

0

0
1111
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




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
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










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












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










 

ji

WK
G

I
SSWK

G

I
T

lpvi
j

icclpvi
j

i gg ( 5 - 6 3 )

Let clpvc SKL  , and then 1 cclpv SLK and the inequality is linear in the term of cL

and lpvK :

4,2,12,1

0





ji

BLASLBSA T
i

T
c

T
ijccicij

( 5 - 6 4 )

As discussed in Section 5.5.2, these LMIs lead to a polytopic controller with 8 vertex

systems, with each system having 4 states, 2 inputs, and 2 outputs as follows:

ISS

BLASLBSA

BLASLBSA

BLASLBSA

BLASLBSA

BLASLBSA

BLASLBSA

BLASLBSA

BLASLBSA

T
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TT
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T
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TT
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T
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TT
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T
ccc

TT
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T
ccc

TT
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T
ccc

TT
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T
ccc

TT
c

T
ccc

TT
c

T
ccc
















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0

0

0

0

0

0

0

224224

223223

222222

221221

114114

113113

112112

111111

( 5 - 6 5 )

The following matrices cS and cL in inequalities of Eq. ( 5 - 6 5 ) are computed using

the MATLAB©LMI toolbox after 24 iterations:























8.77380.0000-2.2422-0.0000

0.0000-1.27560.00000.2577-

2.2422-0.00000.71190.0000

0.00000.2577-0.00000.0741

cS











40.7558-0.00008.3692-0.0000-

0.0000-23.9273-0.00007.2820-
cL

And the controller can be constructed as:











39.2184-0.0000135.2864-0.0000

0.0000129.8775-0.0000550.0309-
lpvK

The simulation results in Figure 5-6 and Figure 5-7 with polytopic LPV controller

design as described in Section 5.6.1 show that the two-link manipulator remains stable
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although the quadratic terms, ),(  O are neglected in the design of the polytopic model

[see Eq. ( 5 - 5 0 ) in Section 5.5.2].

Figure 5-6 shows that the two-link robot arm is commanded to move from the initial

condition with joint angles (0, 0) to the joint angles (10, 20). Figure 5-7 demonstrates

the movement of the two-link manipulator from the larger initial condition (20, 40) back

to (0, 0).
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Figure 5-6: The control/output responses of the nonlinear system moving

from (0, 0) to (10, 20)

1 2

1signalControl u
2signalControl u
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Figure 5-7: The control/output responses of the nonlinear system moving

from (20, 40) to (0, 0)

5.6.2 Design of controller for active FTC

As described in Section 5.5.3, the dynamic system of in Eq. ( 5 - 6 0 ) includes an

additive description of the actuator faults. However, the faults can have a multiplicative

effect in the system representation. A multiplicative actuator fault representation can be

defined as:

4,2,12,1

)()]([)()(









ji

tutIBtxAtx a
miij 

( 5 - 6 6 )

where a is the so-called fault-effect factor, and ],,,[ 21
a
m

aaa diag   , and

10  a
i represents a fault in the thi actuator and 0a

i means that thi actuator

operates normally (fault-free), whist 0a
i means that some degree of fault effect

1 2

1signalControl u
2signalControl u
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occurs in the actuator. The state space equations in ( 5 - 6 0 ) and ( 5 - 6 6 ) is equivalent

to:

)()()( tutBtfF a
aa  ( 5 - 6 7 )

where the distribution matrix aF is equal to the matrix B in an actuator fault case. The

estimation of fault-effect factor )(ˆ ta is determined from the fault estimation )(ˆ tfa

provided by the fault estimator as described in Section 5.4.

The adaptive (time-varying) active FTC scheme can be developed by considering the

system with the actuator fault vector )(tfa described in Eq. ( 5 - 6 6 ) in terms of )(ˆ ta

and based on the nominal controller synthesized in Section 5.6.1. This is achieved under

the assumption that the fault occurrence and fault effect factors a are known, i.e. they

are provided by the polytopic LPV estimator described Section 5.4.

Theorem 5.2

From a design consideration consider the system in Eq. ( 5 - 6 6 ) with mi ,,2,1 

actuator faults ( 0a ) acting independently within each of the m vertex control

systems with identical gain matrix lpvK The new control action (assuming non-zero

fault effects) is given as:

)()ˆ(

)()](ˆ[)(

txK

tx

K

KtItu

a
FTC

FTC

lpv
a

FTC







 

  
( 5 - 6 8 )

where  )ˆ( aI  is the Pseudo-Inverse of )ˆ( aI  [see Figure 5-8], and )ˆ( a
FTCK  is

the adaptive controller gain for the FTC mechanism, depending on the on-line

estimation a̂ .

Figure 5-8 shows a design structure of the active FTC system, where )(P is the

polytopic LPV closed-loop system with exogenous disturbances and actuator faults as

defined in Eq. ( 5 - 2 ) . )ˆ( a
FTCK  is the on-line adaptive controller gain matrix for the

active FTC system as in Eq. ( 5 - 6 8 ) , and the a̂ is an estimate of a , which can be

estimated on-line using a suitable polytopic LPV estimator as in Eq. ( 5 - 5 ) .
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Figure 5-8: Active fault-tolerant control scheme

Proof of Theorem 5.2

Consider Eq. ( 5 - 6 6 ) When an actuator fault occurs in a given vertex system, the

controller of the complete polytope system is given by:

)()]([)()( tutIBtAxtx a ( 5 - 6 9 )

The new closed-loop LPV system is determined by substituting the new control law

from Eq. ( 5 - 6 8 ) into the fault-corrupted system of Eq. ( 5 - 6 9 ) , yielding:

)()(

)()(

)()](ˆ)][(([()(

)()ˆ()]([)(

)]([)()(

tButAx

txBKtAx

txK

I

tItIBtAx

txKtIBtAx

utIBtAxtx

nom

lpv

lpv

m

aa

a
FTC

a

FTC
a















  









( 5 - 7 0 )

It can be seen that the term )( aI  acting on the system of Eq. ( 5 - 6 6 ) can be

removed by replacing u with FTCu in Eq. ( 5 - 6 8 ) , which completes the proof. ▄

Figure 5-9 shows the system simulation, with a fault acting on the torque input at the

manipulator joint [i.e. control input ( 1u ) is interrupted by )(1 tfa in fault

vector )](),([)( 21 tftfcoltf aaa  ] with ]00.0),sin(1025.1[)( 2 tecoltfa
 at st 1 . It

can be seen that the control and output performances are very poor and an oscillation is

clearly visible as the robot aim moves from joint angle coordinates (5, 10) to

)ˆ( a
FTCK 

Polytopic System

LPV estimator

)(ˆ ta

)(tuFTC )(ty
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coordinates (0, 0). The closed-loop LPV system becomes unstable when the magnitude

of the actuator fault increases to )sin(1050.5)( 2
1 tetfa

 at st 10 [see Figure 5-10].
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Figure 5-9: The control/output responses of the system without FTC, when the

actuator fault [ )sin(1025.1 2
1 tefa

 ] occurred at st 1
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Figure 5-10: Control/output responses of the unstable system without FTC, when the

actuator fault [ )sin(1050.5 2
1 tefa

 ] occurred at st 10
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Figure 5-11: The control/output responses of the system with FTC activated

at st 10 , when the actuator fault [ )sin(1025.1 2
1 tefa

 ] occurred at st 1
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Figure 5-12: The control/output responses of the system with FTC activated

at st 30 , when the actuator fault [ )5.1sin(1050.2 2
1 tefa

 ] occurred at st 1

Figure 5-11 shows that if the polytopic LPV controller is employed under the

assumption that the )(ˆ ta can be estimated perfectly by the polytopic LPV estimator in

Eq. ( 5 - 5 ) , then the actuator fault can be compensated using new LPV control law in

Eq. ( 5 - 6 8 ) . It can be seen that the control and output performances soon return to

their nominal/reference values with a very small amount of oscillation.

Figure 5-12 shows that even if the actuator fault increases to )5.1sin(1050.2 2
1 tefa



[twice the previous magnitude], the system is still stable and provides a very good

control performance after the polytopic LPV controller mechanism is activated

at st 30 . This demonstrates very well the fault-tolerance of the LPV active FTC

system. However, when the actuator fault magnitude increases to )sin(1050.5 2
1 tefa

 ,

the system becomes unstable and the FTC performance is very poor.
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Figure 5-13: The control/output responses of the system with FTC activated

at st 20 , when the actuator fault [ )sin(1050.5 2
1 tefa

 ] occurred at st 10
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5.7 Conclusion

This Chapter proposes a new strategy of an active FTC and polytopic LPV estimator for

systems which can be implemented via a set of LMIs using efficient interior-point

algorithms (Apkarian et al., 1995).

In the work of this Chapter an on-line polytopic LPV estimator is synthesized for

providing the estimate of actuator fault which is used in an active FTC strategy to

schedule predefined state feedback gains. These gains are also calculated using LMIs

for nominal and faulty cases in order to maintain the system performances over a wide

operating range within a proposed polytopic model. This can be implemented easily via

the MATLAB©LMI toolbox.

The active FTC controller is a function of the fault effect factors as defined by Chen et

al (1999) and Chen and Patton (2001) which can be derived on-line (in this case) from

the residual vector of a polytopic LPV estimator mechanism. The proposed active FTC

scheme is investigated using the two-link manipulator with an actuator fault acting on

the torque input of the first manipulator joint.

Simulation results show that the design of polytopic LPV estimator can follow the fault

rapidly and effectively with robustness to disturbance signal. This gives the system

continue operating safely via on-line active FTC controller mechanism.
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Chapter 6.

Fault-tolerance in Distributed Control
Systems

6.1 Introduction

The concept of control of distributed systems is becoming an important subject in

control systems, bringing with it challenges to the control of inter-connected and

complex processes. It turns out that the requirements for control of an inter-connected

system are quite different from the classical view of control. Classical control is built

around the idea of point-to-point control, whereas the distributed control problem

necessarily has a many-to-many connection structure with some closeness to the

concept of “control of a network” (Patton et al, 2006). The distributed network system

has special requirements focused on the importance of re-configurability and the need

for control of an uncertain inter-connected system, leading to powerful robustness in

control. The uncertainly arises from the inter-connected dynamic system structure and

can also be a consequence of complexity from uncertain dynamic behaviour. The

uncertain behaviour can also arise as the inter-connected dynamical subsystems must

have some degree of automatic reconfiguration, i.e. avoiding such behaviour and

providing reliable FTC is a currently a subject of research interest (Brennan et al., 2002;

Maturana et al., 2003).
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This Chapter proposes modifications to the architecture and framework for FTC for

distributed control systems proposed by Patton et al (2007). The Patton et al (2007)

work does not describe or consider methods for FDI as it is assumed in that work that

the global control action provides a degree of fault compensation (fault accommodating

control) for certain bounded faults. The new work considers the dynamic behaviour of

the overall inter-connected system and includes fault-tolerance using the integration of

FDI and control functions at the local as well as reconfiguration task at global levels

(Patton et al, 2007; Kambhampati et al., 2007; Klinkhieo et al, 2008).

6.2 Challenges of FTC in Distributed Systems

In a classical point-to-point architecture, control loops are considered one at a time with

the system components and inter-connections (sensors and physical networked links)

being permanently linked/wired (Patton et al, 2006). The control of complex and

uncertain systems such as the distributed/inter-connected network cannot simply

involve the analysis of one or more control loops as the complexity is dependent upon

dynamic (i.e. changing) interactions between system (perhaps embedded) components.

The presence of uncertain components (e.g. affected by disturbances or faults) means

that the control of the inter-connected system requires an architecture that can provide

fault-tolerant properties. In other words it must able to reconfigure autonomously

subject to faults (or due to other anomalies defined as faults), and self-repair or

accommodate to anomalies e.g. uncertain behaviour and faults, as stated in (Patton et al,

2007) “It becomes clear that point-to-point control architectures do not easily support

system reconfiguration, subsequent to fault events”.

However, an FTC system is essentially a connection of embedded systems with the

complexity arising from a number of factors:

 The number of components in the overall system,

 Interactions between the various components that could result in a

priori un-modelled behaviour,

 Faults which cannot be taken into account a priori, and

 Effect of propagation of faults from one sub-system to another.

Classical FDI procedures for single-point control structures e.g. use either signal-based

or model-based approaches. Both approaches use the concept of local modelling and are

only applicable to the single-point control structure system (Patton et al., 2007). In the
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quantitative model-based approach the local models are explicit, whilst in the signal-

based (or data-driven) approaches implicit models are used. It becomes clear that

distributed/inter-connected systems need a different form of modelling philosophy as

the classical methods of FDI are no longer applicable (Patton et al., 2007).

From the above discussion, the complexity/uncertainty in the control of distributed

system implies that ‘…we must move away from the use of point-to-point classical

control strategies as they do not offer an efficient way of achieving reliable FTC…’

(Patton et al, 2007). Therefore, the analytical tools and design methods for handling

with such complexities/uncertainties of the distributed and inter-connected systems are

mainly required. For example, the reconfiguration and accommodation require

mechanisms for monitoring, detecting unusual system changes or faults in order to

achieve fault tolerance.

In a classical sense the FDI is based on redundant analytical relationships between the

various inputs and outputs of the process using local system modelling (as described in

Chapter 2). When many such local components are inter-connected together the

challenges of FDI and even control become much greater as the system is difficult to

model using classical modelling concepts. Currently, FTC studies only include the

effects of faults at either component or local controller levels. One can see very clearly

that ‘…the autonomous FTC system has a distributed nature involving fault diagnosis

and control at various local to global levels of system embedding…’ (Patton et al,

2007).

The key challenge at a global level of a distributed or inter-connected system is to make

sure that the system functions safely, and reliably. This requires that the system has a

strong and reliable capability to detect and accommodate faults via a reconfiguration of

the design system architecture. The simplified structure of a distributed system can be

represented as different inter-connected levels with: (i) a coordinating level, (ii) local

levels, and (iii) subsystem (or component) level (Patton et al., 2006). Thus the

framework required would involve the following:

1. Architectures for the design of systems with learning, fault tolerance and self-

repairing features.

2. Computational strategies for modelling complex systems

3. New control strategies for complex embedded systems

4. Optimal decision-support systems for enhanced autonomy and fault-tolerance
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Each subsystem is capable of control, identifying and locating faults and/or changes in

system behaviour and inter-communication with other subsystems in the overall system,

ensuring the maintenance of the required local and global objectives. Re-configurability

is dependent on the connectivity (and hence redundancy) in the multi-subsystem

structure.

It is clear that a deep interaction must take place between these levels, and the

information and decisions taken one effect the system as a whole. This leads to the

proposed concept of the Autonomous Coordination and Supervision Scheme (ACSS)

whose goal is to take into account the uncertainty in the system (e.g. state of the system,

faults and the effect of the environment) using a on-line adaptive learning strategy

(Patton et al., 2007; Kambhampati et al., 2007; Klinkhieo et al, 2008).

6.3 Integrated FTC and FDI in Distributed Control

Generally, in a distributed or even de-centralise FTC structure each subsystem would

have both a FDI and a control function tasks. The tasks use localised knowledge,

supplemented by information received from other tasks, for decision-making (see

Figure 6-1).

Figure 6-1 : The structure of the control and FDI tasks in distributed system

The drawback of this structure is that all the tasks need to be communicated with each

other. In other words every task has information regarding all other tasks whether it is

required or not. The problem is involved with “bottle-necks” in the communication

network which could induce additional uncertainty in terms of un-modelled time-delays,

System-i

FDI-i

Control-i

Other Systems
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etc. (Patton et al., 2006). This adds a further complexity to the robustness requirements

of distributed control over the network. Furthermore, the various tasks cause multiple-

time scales, having an additional level where a coordinator task must coordinate the all

activities of the overall tasks.

The two main features of the control strategy of distributed system are re-configurability

and plug and play. The latter refers to the property that the system might have to add or

remove subsystems or other elements of the system. A desirable plug and play feature

will mean that the overall system performance can be taken into account in a flexible

way when such system elements are added/removed. This implies that sub-systems

could be plugged and un-plugged from the distributed system whilst at the same time

maintaining the performance. This imposes a constraint on the ability to both analyze

and design suitable architectures. This is reflected by an additively separable

performance criterion property defined as follows:

An additively separable performance criterion is one in which the overall performance

of combined systems (subsystems) is combined additively so that if any one subsystem

is excluded from the system the performance of the remaining subsystems are obtained

collectively by simply removing the local performance criterion of the removed

subsystem.

Tutorial Example of additively separable concept:

Consider a system consisting of two sub-systems and the index of performance is given

by:   dtuuxxxxJ ][ 2
2

2
1

2
2

2
121 . This is not separable into two separate indices

representing each of the two sub-systems.

On the other hand   dtuuxxxxJ ][ 2
2

2
1

2
2

2
121 is separable, in that

  dtuxxJ ][ 2
1

2
111 and similarly   dtuxxJ ][ 2

2
2
222 .                                      ▄ 

The examples show the performance indices corresponding to the two subsystems are

independent of each other. It can be seen that when there are cross-products within one

performance index these are only associated with the given index and are not reflected

in the global performance of the system. For the above examples the global performance

is given as: 21 JJJ  .
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6.3.1 Development of a two-level architecture

Figure 6-2 shows the architecture for implementing a task-based solution to the problem

of FTC in distributed systems. This demonstrates the coordination of N inter-connected

systems, each having local FDI and control tasks. The diagram has been adapted from

Patton et al (2007) by incorporating an important link between the local FDI and

Reconfiguration Tasks.

The ACSS use the indicators of faults (e.g. residual signals), set-point changes,

disturbances, and unusual plant operation to monitor the performance of each subsystem

and compare their performances against global requirements used to co-ordinate the

overall inter-connected system performance, stability and fault-tolerance (Patton et al.,

2007; Kambhampati et al., 2007).

Figure 6-2: Autonomous Coordination & Supervision Scheme (ACSS)

[adapted from Patton et al, 2007]

The ACSS architecture must satisfy the requirements as follows:

(i) A dynamic representation of the system for detecting and diagnosing faults,

(ii) A predictive approach for the design of FTC (Bemporad et al., 1997; Camacho

and Bordons, 2004; Casavola et al., 2005a; Casavola et al., 2005b), and

(iii) Re-configurability enabling criteria
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There are four types of tasks within the ACSS architecture (Figure 6-2). These are

shown in Figure 6-3:

Figure 6-3: The four tasks of two-level ACSS architecture

6.4 FDI and Control Intelligence at Local Levels

6.4.1 Formulation of the inter-connected system structure

The system structure at a local level can be represented by the following:

)()(

)(),(

),,()(

iii

iiiii

iiiii

xty

zhuxf

uzxFtx







( 6 - 1 )

where: inimilin
iiiiiii uzxFuzx  :),,(),,( , )(),( tztx ii and )(tui are the

states, interconnections and the control signals of the thi subsystem, for Ni ,2,1 ,

respectively. Furthermore, inimin
iiiii uxfux  :),(),( is a local model of

the ith subsystem, and ilil
iii zhz  :)()( is the inter-connection mappings

affecting the local system (Patton et al, 2007; Kambhampati et al., 2007).

The inter-connection states are given by:

)()(

1

txHtz

N

ji
j

jiji 



 ( 6 - 2 )

where: the ijH are inter-connection matrices of appropriate dimensions as shown in

Figure 6-4.
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Figure 6-4: A set of interconnected nonlinear systems

On combining Eqs ( 6 - 1 ) and ( 6 - 2 ) , the overall inter-connected system is given

by:

)(~)(

),(
~

)(

xty

uxftx




( 6 - 3 )

where nmnuxfux  :),(
~

),( satisfies 0)0,0(
~

f

As discussed in Section 6.2, in this inter-connected system un-modelled or unpredicted

system behaviour is something which the system should be capable of dealing with.

However, in a complex inter-connected system (e.g. arising from a nonlinear dynamical

structure), all possible behaviours cannot be modelled as the effects of interconnections

are not fully known or modelled. This is the case as the individual subsystems are

considered as isolated systems with time-varying inter-connections between them. The

isolated system is a special case of the subsystem defined in Eq. ( 6 - 3 ) in which the

interconnection terms are assumed absent or ignored, according to the following general

definition:

Definition 6.1: The following system (Kambhampati et al., 2007):

local
iiiii

iiii

uxgtxf

uxftx

)(),(

),()(




( 6 - 4 )

is called an isolated system of Eq.( 6 - 1 ), and inimin
iiiii uxfux  :),(),(

Section 6.4.2 discusses in some detail the strategy used for the identification of all the

individual (isolated) subsystems using a recurrent neural network (RNN) approach. The

Sub-system1

Sub-system2

Sub-systemN

Sub-systemi

Sub-system3

33xHi

iixH3

iixH1

11xHi
iixH2

22xHi NN xH2

22xHN



149

work is a development of the work of Delgado et al (1996) and Garces et al (2003)

which was based only on the identification of a single system.

6.4.2 RNN for subsystem identification

The identification of the individual local level subsystems (isolated systems) of the

inter-connected and distributed system defined above can be solved using a neural

network approach if the neural network is capable of representing/identifying a

dynamical system. It is well known that a Recurrent Neural Network (RNN) can model

a dynamical system as a consequence of its recurrent (recursive) structure (Nelles,

2001). Alternatively, other soft-computing paradigms (e.g. genetic algorithms) can be

used. Here, an RNN procedure is used as an extension of the work of Delgado et al

(1996) and Garces et al (2003). The strategy is one of identifying a RNN for the local

systems, and then using the resulting “isolated systems” in the FDI and local control

strategies. The advantages of using this RNN identification procedure are that:

(a) precise knowledge of the plant is not required

(b) the neural network will pick up the relevant structural information

regarding the plant dynamics, e.g. the structure of the weight matrices,

and the relative plant dynamic order.

The artificial NN consists of several interconnections of simple nonlinear systems or so-

called neurons (Delgado et al., 1995). A dynamic RNN is a network of dynamic

neurons with forward and backward connections i.e. the introduction of feedback into

feedforward NN architecture provides a state space dynamic model.

Therefore, a dynamic RNN is a collection of dynamic neurons partially interconnected

to a function of their own output which is represented by a differential equation (Garces

et al., 2003). This dynamic structure is illustrated in Figure 6-5.

Consider the generalised nonlinear inter-connected system of Eq. ( 6 - 3 ) , the network

can be described by a state space neural system of the form (Garces et al., 2003;

Kambhampati et al., 2007):

Cxy

uxwστxx



 Γ)(
( 6 - 5 )
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where nx  , mu  , nxn
n wdiag  ],,...,,[ 21  , nxm , mxnIC  , and with

the smooth and differentiable nonlinear functions; T
nxσxσxσ )](,),([)( 1  ,

respectively (See also the proof in Delgado et al., 1995).

Figure 6-5: The dynamic structure of RNN (from Garces et al., 2003)

The identification scheme assumes that the plant is “black box” and the only available

information is input )(tu -output )(ty data (see Figure 6-6).

Figure 6-6: The system identification using RNN

Figure 6-6 shows the nonlinear plant and the dynamic RNN during the identification

process, where )(ˆ)()( tytytey  is the output estimation error. The training is carried

out repetitively over the fixed time interval ],0[ ft to minimize the Mean-Squared-Error

(MSE) performance index:
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As an extension of the work of Delgado et al (1996) and Garces et al (2003) and in

order to model the thi subsystem which is inter-connected within the overall system

described by Eq. ( 6 - 3 ) , the dynamic RNN structure of Eq. ( 6 - 5 ) must be modified

as:

)(~Γ)( iiiiiiiii zσwuxσwxτx  ( 6 - 7 )

where in
ix  , im

iu  , ixnin
i

i

in
ii

i wdiag  ],,...,,[ 21  , ixmin
i  ,

ixnimi IC  .

The smooth nonlinear functions are given by T

ini xσxσxσ )](,),([)( 1 

and T

ini zσzσzσ )](,),([)( 1  , respectively, where the )σ(zw ii
~ represent the

interconnections between the subsystems.

If the functions )( izσ from )σ(zw ii
~ can be considered approximately linear (subject to

some assumed equilibrium condition, e.g. resulting from control action), then Eq.

( 6 - 7 ) becomes (Kambhampati et al., 2007):







N

ji
j

jijiiiiiii xHu)σ(xwxτx

1

Γ
( 6 - 8 )

It is important to note that the structural properties of the RNN of Figure 6-5 are

dependent on the identified plant. The overall identified system matrices , w and  in

Eq. ( 6 - 5 ) are obtained using the Neural Network MATLAB© toolbox, together with

the modified procedure of Garces et al (2003). For this interconnected/distributed

system this is based on the concept of linearization for each subsystem [ i , iw and i ].

The identified interconnected system has the structure of Eqs ( 6 - 9 ) -( 6 - 1 1 ) in terms

of the subsystem states ix :

 iii
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x
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wx xH Γ)(
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( 6 - 9 )

The terms iixH for Ni ,2,1 , represent the identified interconnection signals

between the subsystems, where ),,,,( )1)(()1)((1 iNiiiiii HHHH  H and
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),,,,( 111 Niii xxxxcol  x . The block-partitioned matrices )( iii wA   ,

iiB Γ and iH are also determined through the partition of the overall inter-

connected system ( overalloverall BA , ) as follows:

( 6 - 1 0 )

( 6 - 1 1 )

where:
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The identified system structure given by Eqs ( 6 - 9 ) -( 6 - 1 1 ) is applied within a

strategy for detecting and isolating faults in each of the N local subsystems. It will be

shown in Section 6.4.5 that the identified system structure can also be used for the

development and design of the local control functions in the distributed system.

However, for the local control of each subsystem the term iixH is considered as a

disturbance term. This concept is described in Section 6.4.4. Section 6.4.3 now deals

with definition and design problem for the local FDI task.

6.4.3 The local FDI problem

Section 6.3 states that a suitable FDI method must have a very specific role to play in

enabling fault-tolerance in the distributed control system (see Figure 6-2). The FDI

algorithms must distinguish between local and neighboring subsystem faults, inform the

control supervisor that (a) a fault has occurred, (b) where it has occurred and (c)

information about possible either the overall control requirements or re-configuration of

the system. In the other situation when a subsystem is added or removed from the inter-

connected systems the FDI structure should recognise this situation and inform the

control coordinator which should then restructure its coordination efforts.

At a local level, the FDI task needs the presence of an estimator and the corresponding

residual generator as described in Chapter 2. The residuals represent the differences

between the observed behaviour and some nominal behaviour of the system (Chen and

Patton, 1999; Kambhampati et al., 2007; Klinkhieo et al., 2008). These can be obtained

by extending the system description given by Eq. ( 6 - 1 ) to take into account the faults

represented by the fault vector if corresponding to the thi subsystem.
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( 6 - 1 2 )

where if is the local fault vector, a
iF and s

iF are the local fault distribution matrix for

the local states and local measurements with appropriate dimensions, respectively. For

this at a local level, based on the residuals generated by the observers, the various fault

conditions can be identified. Thus the FDI observer and residual generator have the

following form:
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where: )(tei is a generalised error system, leading to a corresponding form for the

residuals )(tri . The residuals thus generated should satisfy the following conditions:
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It should be noted that the estimator can have many forms (Chen and Patton, 1999;

Kambhampati et al., 2007; Klinkhieo et al., 2008). A “fault” refers to any unwanted

internal or external changes from the nominal (expected) system behaviour which could

be a result of parametric and structural deviations and also unpredicted behaviour.

Figure 6-7: FDI structure without considering the network

It can be seen from Eqs. ( 6 - 1 3 ) and ( 6 - 1 4 ) that the FDI scheme has a highly local

function [see Figure 6-7]. Indeed, it would indicate that a local fault has occurred as a

result of getting faulty interconnection ( iz ) which may cause FDI function giving a

wrong fault indication. To take into account the interconnection faults, Eq. ( 6 - 1 2 )

should be extended as follows [see Figure 6-8]:
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The added feature with the structure given by Eq. ( 6 - 1 5 ) is that in a plug-and-play

situation if a subsystem is added or removed, all that is required is for the coordinator to

be given the relevant information for augmenting the relevant terms, )( ii zh . These

involve the effect of the new subsystem on the overall interconnection system. Once

such structural information is available (via system identification), a structural analysis
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here can be performed in order to assess the Detectability and Isolability of the faults in

the plant (Chen and Patton, 1999; Boumama et al, 2006; Klinkhieo and Patton, 2008).

Figure 6-8: FDI with interconnections for local FDI

The linearised form of Eq. ( 6 - 1 5 ) is given as follows (see Section 6.4.2):











i
s

iiii

i
a

iiiiiiiii

fFxCy

fFHuxwx xΓ)( 
( 6 - 1 6 )

Thus, the local FDI based residual generator has the simple form:
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where the iL are the observer gains designed via the UIO approach (see description of

this approach in Chapter 2). The simulation results of these robust local FDI approaches

will be discussed and demonstrated in Chapter 7.

An alternative approach to this is to use overlapping decomposition techniques to

design overlapping observers for FDI along the lines of (Singh et al., 1983; Ferrari et

al., 2007). However, this approach has not been considered in this work.

6.4.4 The local control problem

Background and Motivation

In this thesis the task of the control at a local level is defined using a receding horizon

control (RHC) problem formulation, based on the work of Keerthi and Gilbert (1988)

and Mayne and Michalska (1990). In some limited sense the RHC problem is

equivalent to the model based predictive control (MBPC) strategies which are popular
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in the “process control” domain (Camacho and Bordons, 2004). However, the MBPC

approach is usually based on input-output system information to optimize a control

objective function, whereas the RHC formulation is based entirely in the state-space and

applies to nonlinear system problems with no loss of generality (due to the local

optimization within the time horizon). At first it would appear that the RHC formulation

is therefore more general and is particularly suited to nonlinear system applications.

From the literature it is clear that RHC and MBPC have initially developed along

different lines of investigation.

The Mayne and Michalska (1990) results are limited to single level control, whereas

Singh and Titli focus on multi-level control with a special emphasis on the applicability

of the two-level special case. Focusing further on distributed and interconnected

systems, Patton et al (2007) combine the work of Singh and Titli (1978) with that of

Mayne and Michalska (1990) through the use of two-level RHC. The RHC formulation

follows very naturally from the Singh and Titli results as it provides a powerful way of

realising the two-level control goals in terms of a subsystem regulator control problem,

based on constrained Linear Quadratic Regulator (LQR) Control.

Although Goodwin and Quevedo (2004) also discuss the potential of RHC for

distributed and networked systems they focus only on single-level nonlinear

interconnected systems. It turns out that the two-level approach is a very important

development for FTC for distributed systems. This is an important emphasis in this

thesis and the main ideas will be discussed more in this Section. It appears that the

solutions for dealing with single level distributed control problems are complex and

difficult to solve, simply as the high level control function is missing. The higher level

in the two-level formulation provides some necessary information concerning the

subsystem interconnection states and this is very important in the design of local FTC.

Hence, the minimization of interconnection states is a key to achieving good FTC

action, when the interconnection states are bounded. This concept increases in

importance as the number of subsystems becomes large. Although Singh and Titli

reported their work in terms of large-scale systems, the issue of whether or not the

system is large-scale or not is irrelevant since a distributed system with a significantly

large number of interconnected subsystems becomes a large-scale system.

The main difference between the approaches of Singh and Titli (1978) and Keerthi and

Gilbert (1988) is that the earlier work considers the Lagrange multipliers in terms of

cooperation effort between the subsystems, i.e. to develop a good balance between the



157

subsystems under global control. In Keerthi and Gilbert (1988) and Mayne and

Michalska (1990) the Lagrange multipliers are considered in terms of the co-states in a

classical LQR optimization problem applied to a smooth nonlinear system.

In combining the work of Singh and Titli (1978) and Mayne and Michalska (1990),

Patton et al (2007) show that this is a convenient formulation for distributed control

problems as it facilitates the development of a control strategy for nonlinear and time-

varying systems in which the effects of subsystem interconnections on the performance

of the system can be evaluated in a transparent way. The Patton et al (2007) work on

two-level control uses as a basis the optimality analysis arising from the concept of the

isolated system in RHC of nonlinear systems, given by Mayne and Michalska (1990).

This leads to powerful FTC properties for the control of uncertain interconnected and

distributed systems.

Singh and Titli (1978) work proposes the use of the Interaction-Prediction Principle via

a gradient optimization approach to the coordination function (higher level in two-level

control). In contrast to this Patton et al (2007) include in their work the use of a learning

coordinator based on interaction-prediction together with a new development in the use

of RHC as a constrained regulator problem. This form of two-level control has been

adopted further in this research.

The appropriate intersection of these studies provides a powerful framework for FTC in

distributed and networked control systems in which robust FDI of the local subsystems

can be added to further enhance the value of the two-level control approach. This thesis

goes beyond the work of Patton et al (2007) by taking into account the effects of larger

faults arising from the subsystems in addition to the time-varying subsystem

interactions (which affect the robustness of the local FDI problem).

The development of RHC for the distributed control problem

In RHC, the current control at time t and state )(tx are obtained by determining the

predicted on-line (open-loop) optimal control û for the horizon interval ],[ Ttt  and

by setting the current control equal to )(ˆ tu (i.e. at time t) (Mayne and Michalska, 1990).

A feedback control law is then obtained by repeatedly determining this optimal control

law [since )(ˆ tu clearly depends on the current state )(tx ]. The optimal control problem

is usually posed as an on-line minimization of a quadratic function over the horizon

],[ Ttt  , subject to the terminal constraint 0)( Ttx .
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When RHC is applied to a nonlinear or time-varying distributed system with inter-

connected local subsystems, the goal of the control is to minimise some local

performance index subject to nonlinear interconnection constraints between the

subsystems. This problem is now analysed in order to determine:

(1) the set of properties which would ensure (a) a solution to the problem, and (b)

the stability of the solution provided by the control strategy, and

(2) a numerically efficient strategy which is globally suboptimal but locally optimal.

(2) above is important when dealing with either a distributed system or with a plug and

play system (see discussion in Section 6.3), for which it is more efficient to determine

locally optimal control laws together with bounds placed on the control inputs to

account for the effects of subsystem interactions.

The local (single) level control problem

The distributed system can be stated as follows Mayne and Michalska, 1990): for a

given Lagrangian multiplier n , determine a feedback control u which minimizes

),;();,( txTtxutxV T   where ),;( txTtx  is the solution of Eq. ( 6 - 3 ) .

Although  is the classical Lagrangian multiplier, it is considered here as the

coordinating effort (Singh and Titli, 1978) between the various subsystems, where

);,( utxV is the following receding horizon cost:






Tt

t

TT dtRuuQxxutxV )(
2

1
);,( ( 6 - 1 8 )

where the overall distributed system state and control performance weighting matrices

Q and R , respectively are block-diagonal partitioned according to

][],[ ii RdiagRQdiagQ  . The matrices ixnin
iQ  are positive semi-definite and the

matrices ixmim
iR  are positive definite.

Since the performance index Eq. ( 6 - 1 8 ) is additively separable (see Section 6.3 for

definition), Eq. ( 6 - 1 8 ) can be transformed into:
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where ft is the time-horizon.

The development of the two-level control strategy

The control problem for the distributed system can now be solved by decomposing the

problem into smaller sub-problems, one for each subsystem (Mesarovic et al, 1970;

Singh and Titli, 1978). The decomposition is achieved by minimizing the following

Lagrangian for the distributed system:
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where )(ti is coordination variables [e.g. interactions taking place between the ith

subsystem and the other i-1 subsystems] and in
ip  are the classical co-states of the

local system.

It can be seen that the Eq.( 6 - 2 0 ) is also additively separable for any given iz and i .

To satisfy the necessary conditions for global optimality within a two-level

computational structure, Eq. ( 6 - 2 0 ) can be re-written the Lagrangian L as:
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The additively separable property of Eq. ( 6 - 2 1 ) facilitates the design of a two-level

structure for the control of the distributed and interconnected system, as shown in

Figure 6-2. The thi local control problem is given by:
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From Eq. ( 6 - 2 2 ) the ith control function depends on both the local subsystem states

in
ix  and the subsystem interconnection states il

iz  . It thus becomes clear that

the subsystem control has two components, namely (a) a control component based on

local information and (b) a component based on the interactions, as discussed by Patton

et al (2007). Thus:

int.
i

local
ii uuu  ( 6 - 2 3 )

where local
iu is the control for the thi subsystem in isolation, and int.

iu is the

compensating control for the interactions.

Ideally, each local controller requires on-line updated values of iz and i . There is

clearly a computational requirement for iteratively improving the iz and i such that N

local optimal can be achieved. In fact some coordination rules are required which can be

derived from a consideration of the optimality conditions for solving Eq. ( 6 - 2 2 ) . The

development of the ACSS coordination rules are given in Section 6.5.

As given in the Definition 6.1 (see Section 6.4.1) the optimal control law for each

isolated subsystem with states in
ix  defined in terms of a single control component

local
ii uu  [compare with Eq. ( 6 - 2 3 ) ] which is the solution to the problem defined by:
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This Section discuses the RHC law for an isolated system, as a precursor to defining the

global control strategy, i.e. by considering just one subsystem and ignoring all the

interconnections. The term isolated system is defined in Definition 6.1. The solution to

the problem of RHC has been investigated by a number of authors (Keerthi and Gilbert,

1988; Mayne and Michalska, 1990; Kambhampati et al, 2000) and a moving horizon

approach to networked control system (NCS) design by (Goodwin and Quevedo, 2004).

It is important to note here that whilst the NCS problem is certainly a form of

distributed system, Goodwin and Quevedo, (2004) do not consider the two-level

strategy for distributed control which is important in the work of this thesis.

Therefore, the following assumptions on the interconnections are required to establish

the required pareto-optimal strategy required to balance the performance indices of the

overall system.
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Assumption 6.1:

It is assumed that the interconnection function )( ii zh is smooth and that there exists a

Lipschitz Constant 0i such that 
~

;)( xxzh iii  , where x is the global

state.

The Assumption 6.1 is the result of the continuity of the interconnection mappings, and

can be satisfied with relative ease by all inter-connection systems.

The determination of the required local distributed control is thus a three-stage process:

Stage 1: Determine the control for each isolated system )( local
iu ,

Stage 2: Determine the interconnection-control )( int.
iu and

Stage 3: Combine Stages 1 and 2 to give the ith local control int.
i

local
ii uuu  .

It should be recalled that the role of the ACSS coordinator is to update the

interconnection states iz (as an estimate) to balance the distributed system in terms of

control performance. The update of the iz {and hence the )( ii zh } is bounded as long as

the iterative learning function of the coordinator is convergent.

6.4.5 Distributed system of N interconnected linear systems

Consider once again the lower level control problem, as discussed in Section 6.4.2 we

now consider the case in which all the subsystems are linear. For this problem the

results of Mayne and Michalska (1990) can still be applied as a trivial case of their

work.

From Eq. ( 6 - 2 1 ) the Hamiltonian for the thi linear isolated subsystem problem can be

re-written as (Kambhampati et al., 2007):
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Eq. ( 6 - 2 5 ) then leads to the following:
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Where the
ix


denotes partial differentiation with respect to the ix and the initial

conditions 0)( fi tp , 00 )( ii xtx 

Consider the linear system representation of Eq. ( 6 - 2 7 ) :

iiiiiii zEuBxAx  ( 6 - 2 8 )

where ii BA , , iE are known matrices with appropriate dimensions, then Eq. (6-26) are

reduced to the following:
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The well known LQR control input to the thi system is given by:

i
T
iii pBRu 1 ( 6 - 3 0 )

Now consider:

iiii xSp  ( 6 - 3 1 )

where iS and i are the solutions to the Riccati Equations Eqs. ( 6 - 3 7 ) together with

the Interaction Compensation equations of Eq. ( 6 - 3 8 ) (Singh and Titli, 1978):

Then it follows that:

iiiiii xSxSp   ( 6 - 3 2 )

Substituting Eq. ( 6 - 3 0 ) into Eq. ( 6 - 2 8 ) gives
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Since Eq. ( 6 - 3 2 ) is equivalent to Eq. ( 6 - 2 9 ) , thus this giving:
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Substituting Eqs ( 6 - 3 1 ) and ( 6 - 3 3 ) into Eq. ( 6 - 3 4 ) , then Eq. ( 6 - 3 4 ) can be

rewritten as follows:
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Since Eq. ( 6 - 3 6 ) is valid for arbitrary ix , it follows that:
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int.
iu
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iii

local
iu
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iii BRxSBRu   11

( 6 - 3 9 )

It can be seen that the Riccati Equation Eq. ( 6 - 3 7 ) is independent from the states of

the subsystems. Conversely, Eq. ( 6 - 3 8 ) depends on all the states of the interconnected

system [i.e. iz depend on vector of the neighbouring states ),,,,( 111 Nii xxxx   ]. It

should also be noted that Eq. (6-39) has the same structure as Eq. (6-23), where

ii
T
ii

local
i xSBRu 1 and i

T
ii

int.
i BRu  1 .

6.5 The Intelligent Control Coordinator

This Section focuses on the development of the system global controller, its structure

and optimisation under the action of the ACSS. The global controller is developed as

an intelligent learning from the knowledge base of the ACSS. Methods developed in

the field of learning control systems are used together with on-line constrained
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optimisation strategies [see Eq.( 6 - 2 0 ) ] together with the two-level strategy of Singh

and Titli (1978).

The coordination problem is appropriate if the system is considered to be either

distributed or decentralised. In a centralised structure the subsystems are all being

controlled by one controller, whereas in a distributed or decentralised structure, the

local systems require information regarding the behaviour of the other systems.

As discussed in Eq.( 6 - 2 0 ) is additively separable, this implies that for any given iz

and i , the optimality with respect to the other variables can be obtained by N

independent minimisations. This leaves the problem of improving the accuracy iz

and i such that the global optimum for the ensemble of subsystems is achievable.

Considering the Lagrangian L given by Eq. ( 6 - 2 0 ) , necessary conditions are:
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Re-arranging Eqs ( 6 - 4 0 ) and ( 6 - 4 1 ) , leads to:
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for a given ip and ix , i.e. the ip and ix which are obtained from the independent

minimization in Eq. ( 6 - 2 0 ) are used in Eqs ( 6 - 4 0 ) and ( 6 - 4 1 ) to get the values of

i and iz (i.e. from the iteration t to tt  ) [Kambhampati et al., 2007].

It can be seen that if Eq. ( 6 - 4 2 ) consists of i distinct components corresponding to the

i subsystems, this would require that all the subsystems be provided information

regarding all other subsystems, whether that subsystem is physically interacting with it

or not. An architecture that allows sharing of information between subsystems only adds

to the complexity of the overall system and limits the fault-tolerance capabilities of the

FTC scheme. This of course would also have an important consequence of the

applicability of FTC for a Networked Control System (NCS), based on the “Control of

the Network” problem.
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On the other hand, by solving this problem at a higher level, as in the ACSS (see Figure

6-2), a more efficient information structure is achieved in that all the interaction

information is sent to one point for evaluation and distribution. Furthermore, the

proposed architecture shown in Figure 6-2 not only enables the coordination of the

performance but also allows for reconfiguration and fault accommodation without a

rapid increase in information traffic.

Note that this is in total contrast the normally accepted scenario in which a “consensus”

rule applies. The traditional networked control problem based on consensus may not be

so clever or efficient in terms of reliable FTC. The approach in Eq. ( 6 - 4 2 ) employed

here is the interaction prediction principle (IPP) approach of (Takahara, 1965; Sadati

and Moment, 2005). The IPP approach facilitates the interpretation of faults of a certain

magnitude as wrong interaction predictions or prediction error, and thus enables the

coordinator to accommodate these faults and ensures a smooth fault-tolerant operation

of the system (e.g. learning method).

The solution to the problem given by Eq. ( 6 - 4 2 ) has two components, (i) a

coordination variable which encapsulates the effort required for coordinating the various

subsystems and (ii) predictions of the interactions. This is in line with the concept of

coordination and reconfiguration, in that the coordinator ensures proper system

functioning/performance even in situations which are unforeseen, modelling uncertainty

or faults.

6.5.1 The learning strategy

The neural network employed to solve the global problem is a multilayered feed

forward network (see Figure 6-9) which is architecturally similar to a radial basis

function network [e.g. function approximation, time series prediction, and control].

Here the activation functions associated with the nodes can have any of the standard

forms, including the various radial basis functions (see Definitions 6.2 and 6.3)

.
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Figure 6-9: Fully Connected Feed Forward NN (taken from Haykin, 1994)

Definition 6.2

A radial basis function network: an artificial network the uses ‘radial basis functions’ as

activation functions. It is a linear combination of radial basis functions. They are used in

function approximation, time series prediction, and control (Buhmann, 2003).

Definition 6.3

Radial Basis Functions: is a real-valued function whose value depend only on the

distance from the original, so that )(
~

)(
~

xx   ; or alternatively on the distance from

some other point c , called a centre, so that )(
~

),(
~

cxcx   , Any function that

satisfies the property )(
~

)(
~

xx   is a radial function (Haykin, 1994; Buhmann, 2003)

It should be noted that the connections between the input-layer and the hidden layer are

unity-weighted. The learning algorithm provides the weights between the hidden layer

and the outputs (see Figure 6-9). For the problem defined at the coordination level Eq.

( 6 - 4 2 ) the inputs of the neural network are )](,),(),([ 21 txtxtx N

and )](),(),([ 21 ttt p  . The outputs of the system will be

)](),(),([ 21 tttttt p    and )](),(),([ 21 ttzttzttz p   , which are

the inputs of the systems at the local level. The coordination level neural network

should find the output values according to its inputs and sends them to the local levels

and adjust the weights of the neural network.

Output
layer

Hidden layer

Input
layer



167

6.5.2 The Hebbian learning method

The approach used for learning is a reinforcement strategy and has the following form

(Haykin, 1994):

1. Start with a reasonable network configuration: assign the weights and the

threshold level of each neuron.

2. Forward computation: Calculate the output of the neural network by

proceeding forward through the network. The linear combiner output or net

internal activity level )(tvo
j for neuron j is:






g

i

iji
o
j ttwtv

0

)()()( x ( 6 - 4 3 )

where gxxx ,, 21 is the input signals and jiw is the synaptic weight of

neuron. The output signal )(ty j of neuron j is:

)(~)( o
jj vty  ( 6 - 4 4 )

where )(~  is the activation function (see Figure 6-10).

3. Update the synaptic weights of the neural network according to the learning

algorithm selected.

4. If a stopping criteria reached then stop, otherwise go to step 2.

Figure 6-10: The nonlinear model of a neuron (Haykin, 1994)



2x

gx

-1= 0x

1x

Input
signals



Summing
junction

jjw 0 (threshold)

o
jv

)(~ 

Activation
function

Outputs
jy

Synaptic weights
(including threshold)

0jw

1jw

2jw

jgw
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In Step 3, adjusting the weights of the neural network may be done by using two

different ways which are: (i) Hebbian learning method and (ii) Error Backward

propagation method.

(i) The first way for the learning process or updating the synaptic weights is

Hebbian learning as a totally unsupervised learning method. The next values

for the weights in Hebbian learning are obtained by the information of the

input and output values of the related neuron or alternatively activation

degree of the two neurons at the each end of the synaptic weight. The

weight between two neurons will increase if the two neurons activate

simultaneously. Mathematically )(tw ji is calculated by the following

equation (see Chapter 9 in Haykin, 1994)


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



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x

x





( 6 - 4 5 )

where: ix is the thi input and )(ty j is the output of the thj neuron.

(ii) An alternative to this is to employ pseudo-supervised learning, where the

supervisor assumes that the previous values are the correct values, and

provides new outputs to ensure that the differences are minimised. Error

back propagation needs desired values at the output level of the system to

find the error output level (see Chapter 6 in Haykin, 1994). For the

coordination problem given by Eq. ( 6 - 4 2 ) the desired values for

pddd zzz ,,, 21  can be calculated by the following:






N

j

jijid ttxHz

1

)( ( 6 - 4 6 )

and the error can be obtained by the following:

)(tzze iidiz  ( 6 - 4 7 )

The errors related with p ,,, 21  are obtained by using the previous values

of pii ,,1,  as given below:
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)()( ttte iii
  ( 6 - 4 8 )

Using the Eqs ( 6 - 4 7 ) and ( 6 - 4 8 ) and errors are calculated and the update of

the weights is as follows:

)()( tytw ijji  ( 6 - 4 9 )

where jiw is the weight between neuron i and ,j are a constant that

determines the rate of learning; )(tyi is the output of the neuron i and )(tj is

the local gradient of neuron at time t, defined by:

))((~)()( tvtet o
jjj   ( 6 - 5 0 )

The local gradient points to required change in synaptic weight. According to

Eq. ( 6 - 5 0 ) , the local gradient for output neural j is equal to the product of the

corresponding error signal )(te j and derivative ))((~ tvo
j of the associated

actuation function.

Therefore, in Step 3, updating the synaptic weights of the neural network can be

obtained by substituting either Eq. ( 6 - 4 5 ) or ( 6 - 4 9 ) into the following Eq. ( 6 - 5 1 )

[i.e. depend on the learning methods chosen] into following equation:

)()()( twtwttw jijiji  ( 6 - 5 1 )

Remark: Both of these formulations provide the required coordination. However, a

reinforcement strategy is recommended in that the error back-propagation strategy

employs a ‘pseudo-teacher’, and as a result is a lot slower when compared to the

Hebbian learning.

6.5.3 Reconfiguration

The re-configurability implies that when a fault has occurred and the system is

diagnosable, a new set of performance constraints are identifiable which ensures the

system performance does not deteriorate.

Within the context of a control of distributed or interconnected systems, the

reconfiguration task has to perform a number of tasks, these can be summarised as: (a)

re-distribution of performance requirements, and (b) ensuring that the faulty subsystems
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which are beyond repair cannot cause a total failure of the overall system. Thus the

reconfiguration task has two-levels of operation:

(1) Decide whether reconfiguration is required [Compare the symptoms for

decision-making], e.g. reconfiguration task (see Figure 6-2) gets residual

information from the local FDI and makes a decision as to whether

reconfiguration is required or not, based on the residuals.

(2) A mechanism which reconfigures the performance criteria and sets new

constraints.

Here the decision for reconfiguration would be based on the nature and size of the fault.

If the fault is small and bounded, reconfiguration is not required. The reason for this is

that the control coordinator will compensate for this, as it would assume that an error

has occurred in the prediction of the interactions. Typically, the output sensor FDI

problem is relatively simpler when compared to that of actuator FDI. Indeed in the

distributed systems, the output sensor fault becomes an actuator fault because of the

connectivity between the subsystems. This research only deals with the actuator fault

case.

6.6 A simple Tutorial Example

Consider a simple system consisting of two interconnected subsystems as described in

Figure 6-11. Typically these could be two simple chemical processes inter-connected

and represented by an RNN.

Figure 6-11: A simple situation of two subsystems

System-1

11u 12u

12 xz 

21 xz 

11y 12y

System-2

21u 22u

21y 22y
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The independent dynamics of each of the nonlinear systems can be given by the

following set of normalised linear subsystem dynamic equations:

Nonlinear system-1

)()(

)()()()()(

11

111111111

txty

ttuxwtxtx



 xH
( 6 - 5 2 )

Nonlinear system-2

)()(

)()()()()(

22

222222222

txty

ttuxwtxtx



 xH
( 6 - 5 3 )

where ix are the normalised local states, iu the local control and the block iH

represents the possible interconnections and consists of the effect of all ijH , and )( ix

can be any smooth nonlinearity. However, for the purpose of this example

ixi
e

x



1

1
)( (which can represent chemical kinetics) for 2,1i . Without any loss of

generality consider a situation in which two subsystems each having 2-inputs, 2-output

and 5-states as follows:

,][ 15141312111
Txxxxxx  ,][ 25242322212

Txxxxxx 

1221 , xx  xx

212121 , HH  HH

]),1.0,1.0,02.0,1.0,5.0([1  diag

]),1.0,1.0,02.0,1.0,2.0([2  diag

,]0011[1
T T]1100[2 

The two 55x matrices 1w and 2w are given by:
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The two systems exhibit the following two properties: (i) 2,1,0)0,0(  ifi and (ii)

are asymptotically stable and the eigenvalues of the linearised systems around the origin

)0,0( (the only equilibrium point) of system-1 and system-2 are given as: {-0.7015, -

0.6003, -0.2200, -0.2948, -0.3034}, {-0.5206, -0.4047, -0.3005, -0.2990, -0.2953},

respectively.

6.6.1 Two isolated subsystems

The behaviour of each system in isolation can be seen from Figure 6-12.

500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1
(a). sub-system-1

Time [s]

y
4

= x
14

y
5

= x
15

500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1
(b). sub-system-2

Time [s]

y
1

= x
21

y
2

= x
22

Figure 6-12: Both systems exhibit stable behaviour

6.6.2 Two interconnected subsystems

With an appropriate choice of interconnections the system exhibits stable behaviour (see

Figure 6-13 (a). However, an inappropriate choice yields an unstable system [see

Figure 6-13 (b)]. Indeed, this is a typical situation when dealing with distributed

systems where a major constraint could be the available interconnections. It is important

to keep in mind that the resulting system could be unstable.
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Figure 6-13: The output responses of the inter-connected systems:

(a) An appropriate design of interconnection yields stable behaviour, and

(b) An inappropriate design of interconnection yields an unstable system

In the following sections will illustrate the development of the proposed controller, and

learning approach architecture for coordinating the activities and autonomous fault

tolerant control.

6.6.3 The two subsystem control strategy

As discussed in Section 6.4, a set of appropriate performance indicators are selected.

 

t

ii
T
iii

T
ii dtuRuxQxJ

0

)( ( 6 - 5 4 )

The global index is the sum of the two indices for the individual

subsystems: 21 JJJ  . As a first stage for the illustration of the requirement of a

coordinating architecture considers the case where the two systems are not connected

but are individually controlled. The results are given in the Figure 6-14. If the two

systems are now interconnected [see Figure 6-15], it can be seen that the global

performance of the system is not as desired, in that the tracking of the set-points is poor.

This illustrates the need to take into account the interactions taking place between the

two subsystems.
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Figure 6-14: The output response of the systems not connected, individually controlled

0 1000 2000 3000 4000 5000 6000

-1

0

1

Sub-system-1

y
1

y
1r

0 1000 2000 3000 4000 5000 6000

-1

0

1
y

2

y
2r

0 1000 2000 3000 4000 5000 6000

-0.5

0

0.5

Sub-system-2

y
3

y
3r

0 1000 2000 3000 4000 5000 6000
-1

0

1

Time [s]

y
4

y
4r

Figure 6-15: The output response of the systems interconnected

When the two controllers are being designed individually the interconnections, )( ii zh

are ignored. However, these come into play when the two sub-systems are inter-

connected and in this initial design the controller is unable to compensate for the effect
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of the interconnections )( ii zh . These interconnections are taken as exogenous

disturbances. The reason for this is that the effect of interconnections is being recycled

and being magnified by the interconnection of the two sub-systems. The only way to

avoid this is to take account of the interconnections )( ii zh as described in Section 6.4.

6.6.4 The Control Strategy using the learning approach

The simulation results without using a NN learning approach in the global level are

given in Sections 6.6.3. In this Section the same example is performed by the

integration of the global level control using NN learning approach.

The system is simulated initially without any faults and from Figure 6-16 it can be seen

that the outputs track the reference signal. The initial oscillations in the outputs are due

to the co-ordinator learning the co-ordination task for the two subsystems.
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Figure 6-16: Input and output of the system without fault

It can be seen in Figure 6-17 that the cost function is also minimised. It can also be

noted that the initial oscillations of the cost function corresponds to the coordinator

learning phase.
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Figure 6-17: The cost functions of the local systems 1 and 2 without faults

The following simulation results were carried out with bias faults 10% and 50% on the

1st control channel. The results of these simulations are shown in Figure 6-18 (a),

Figure 6-18 (b).
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Figure 6-18: Input/Output of the system with a bias fault at the 1st control channels:

(a) 10% and (b) 50%

In each case it can be seen that the outputs are tracked as before. However, when the

faults are introduced, the system oscillates and then settles. As the magnitude of fault is

increased, these oscillations increase in magnitude as well.

Figure 6-18 illustrates that when the faults have occurred; the control coordinator

receives information about the state of the two subsystems and compares these with its

predictions (as a prediction error) of the same states when the errors occur. The co-

ordinator then determines a new set of predictions to minimise this error and maintains

the stability on each of the two subsystems even when faults are present.

6.7 Conclusion

This Chapter describes and develops fault-tolerant architectures with a view to

demonstrating that the classical concepts of FTC, namely of active and passive FTC can

be related to equivalent (although more complex) concepts in distributed systems. The

comparison can be made according to whether or not the structure requires

Reconfiguration and/or FDI via fault estimation concept. The study confirms that the
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de-centralized approach to FTC in distributed systems suffers from a difficult challenge

as to how to compensate for fault effects occurring throughout the overall system.

On the other hand, the distributed hierarchical architecture that is described illustrates

the notion that, under a scheme of Control Co-ordination, the equivalent to the classical

active FTC is achievable. This architecture can be implemented using a Global

Coordination Task, making use of the Principle of Interaction Predictions. Methods

proposed in the field of learning control systems are used together with on-line

constrained optimisation strategies. The solutions are achieved using two tasks of neural

network: (i) at a local level, RNN is used for subsystem identification and FDI structure,

and (ii) at the higher (global) level, a feed-forward network is used along with Hebbian

learning to learn the coordinating function.

Once the system structure is set up in terms of global and local units, the performance

measures are “additively separable”, a concept coming form large-scale systems theory

(Singh and Titli, 1978). This additive separable ensures suitable flexibility for control

reconfiguration.

It has been shown that for small faults the autonomous FTC system compensates for

faults through an adaptive mechanism as the classical active (or adaptive) FTC. For

larger faults, fault estimation is required, to facilitate the Reconfiguration Task of this

distributed hierarchical structure.

This Chapter forms the basis for work to be continued in Chapter 7.
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Chapter 7.
Three Tank System Application Study

7.1 Introduction

To illustrate the discussion in previous Chapter a tutorial example of a 3-tank inter-

connected system is used here as a benchmark problem of fault estimation for FTC in

distributed system. The model represents a real 3-tank system (Figure 7-1) from the

Research Centre for Automatic Control in CRAN-UHP, Nancy, France

(http://www.strep-necst.org/). The concepts presented in Chapter 6 will be later tested

on this benchmark system. In fact the basic concepts of the distributed control design

for this example have been applied on the real three tank system at Nancy via the

collaboration with Dr Cahit Perkgoz at Hull University and this has been reported in

internal report [Reference: Integration of NeCST Concepts in OPC].

7.2 Three-Tank Benchmark Simulation

In this Chapter, the simulation of an inter-connected 3-tank level and temperature

control system is described within the Simulink/Matlab© environment (Sauter et al.,

2005).
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Figure 7-1: The schematic diagram of the Three-Tank Benchmark System

(NeCST FP6 STREP project)

It can be seen that Figure 7-1 shows: [see the abbreviations in table 7.1]

Subsystem-1 has 3 inputs ( wPQ ,01 and 12Q ) and 3 states [ ),,( 12111 VTLcolx  ] with the

following dynamics:
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( 7 - 1 )

Subsystem-2 has 2 inputs ( 02Q and 20Q ) and 3 states [ ),,( 20222 VTLcolx  ] with the

following dynamics:
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( 7 - 2 )

Subsystem-3 has 2 inputs ( 03Q and 32Q ) and 2 states [ ),( 3233 VLcolx  ] with following

dynamics:
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( 7 - 3 )

where
ileakijijiii QQVTLS ,,,,, 3,2,1,0i are the cross-sectional areas of each tank,

the level of liquid in Tank-i, the temperature of liquid at the centre of the Tank-i, the

volume of liquid passing from Tank-i to Tank-j, the liquid flow rates between Tank-i to

tank-j, and the leak from tank-i, respectively. ij =0 means the buffer tank. wP is the

power input.  and c are the density and the specific heat capacity of the liquid inside

the tank. The abbreviations used in Eqs. ( 7 - 1 ) – ( 7 - 3 ) are given are given:

Variable Definition Unit

iS Cross-sectional area of ith tank. M2

iL Level of liquid in ith tank. M

Ti Temperature of liquid in ith tank. (0 means the buffer tank) oC

Qij Flow-rate from ith tank to jth tank. M3/sec

Vij Amount of liquid passing from ith tank to jth tank. m3

wP Power input kW

 Density of the liquid kg/ m3

c Specific heat capacity of the liquid J/kg-K

Qleaki Flow-rate of the leakage from ith tank. M3/sec

Table 7.1: The tree tank system abbreviations

It should be noted that the flow-rates on the system are controlled by either pumps or

valves. The system working as follows:

 Pump_1 is kept constant at 0.75 m3/sec.

 Tank-1 is fed by Valve01 (Q01).

 Tank-2 is fed by Valve02 (Q02) and Pump_2 (Q12).

 Tank-3 is fed by Pump_3 (Q03).

The liquid inside the Tank-1 is heated by an electrical heater. The Tank-2 is taking

preheated liquid from the Tank-1 (Q12) and mixes it with a solution coming from the

Tank-3 (Q32). Valve32’, Valve_leak_1, Valve_leak_2, and Valve_leak_3 are totally

closed (Q’32 = Q10 = Qleak2 = Qleak3 = 0) and Valve30 is totally opened during the

simulation.

The performance objectives for the system are as follows:

 Maintain the levels of each tank, 1L at 0.75 m, 2L at 0.3 m, and 3L at 0.5 m.
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 Maintain the temperature of 1st and 2nd tank, T1 at 30oC and T2 at 28oC.

An alternative to using this first principles model would be to use a data-driven

approach for example, recurrent neural networks (Garces et al., 2003) in which the

states of the individual subsystems would be defined as follows:

(1) Subsystem-1 has 3 inputs ( 01Q , wP and 12Q ) and 3 states ],,[ 1211 VTL ,

(2) Subsystem-2 has 2 inputs ( 02Q and 20Q ) and 3 states ],,[ 2022 VTL , and

(3) Subsystem-3 has 2 inputs ( 03Q and 32Q ) and 2 states ],[ 323 VL

The models based on recurrent networks were trained using data collected from the

simulations over a period of 9,000s. These data were based on the open-loop system, i.e.

without application of feedback control. The RNN in Eq. ( 6 - 5 ) is trained with overall

states 8n and )tanh()( xx  to identify the nonlinear Three Tank system in Eqs.

( 7 - 1 ) -( 7 - 3 ) . The initial condition for the neuron states are: [-0.7773, -0.6199, -

0.5342, 0.0748, -0.7261, -0.4979, -0.0186, -0.4959] and the training inputs are given as

follows:
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Figure 7-2: The control inputs for RNN training
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All the trained RNNs were able to model the data well to the desired accuracy, and

some of the results are shown in Figure 7-3.
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Figure 7-3: The system modelling based on RNN

Following the discussion of RNN for system identification presented in Section 6.4.2,

and the solutions of Eqs. ( 6 - 8 ) to ( 6 - 1 1 ) obtained the linear systems of the Tank-1,

2 and 3 as given below:

( 7 - 4 )



































0.2232-0.02440.09180.01670.0070-0.07210.0018-0.0444

0.0022-0.0915-0.0049-0.01050.02580.00730.03080.0244

0.0047-0.0004-0.1337-0.0149-0.0215-0.04400.04110.0061-

0.00610.05000.0467-0.1517-0.03480.03570.03100.0230

0.0338-0.03480.0467-0.01540.1098-0.0354-0.03230.0550-

0.05570.0005-0.02440.01430.0559-0.0900-0.01630.0153

0.04390.04460.04460.04460.01150.05610.3504-0.0244-

0.04930.01920.02050.0074-0.0309-0.02980.0347-0.0581-

Aoverall
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( 7 - 5 )

Then:

Tank-1

,
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The system is simulated initially without any faults via the two-level control strategy

purposed in Chapter 6, and from Figure 7-4 it can be seen that the outputs follow the

reference signal. The desired values (references) for each control objective are shown

in the red dashed lines.
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Figure 7-4: Fault-free System Outputs

It can be seen in Figure 7-5 that the cost function is also minimized.
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Figure 7-5: Cost Function of the Tank-1, 2 and 3 without fault

The next sets of simulation results were carried out with bias faults (20%, 40%, and

60%) of the electrical heater operating points after t = 1500 seconds. The results of

these simulations are shown in Figure 7-6 to Figure 7-8, respectively.

Essentially, when the fault has occurred, the co-ordinator gets information about the

state of the three subsystems and when it compares these with its predictions of the

same states an error occurs. This results in the co-ordinator determining a new set of

predictions to minimise this error. In each case it can be seen that the outputs are

tracked as shown in Figure 7-6 and Figure 7-7.
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Figure 7-6: Outputs of the System with a Bias Fault (20% of heater operating point)
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Figure 7-7: Outputs of the System with Bias Fault (40% of heater operating point)
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Figure 7-8: Outputs of the System with Bias Fault (60% of heater operating point)

As the magnitude of the fault is increased the system can handle tracking up to a certain

level (Figure 7-7), after that the system becomes uncontrollable and the system cost

function requires reconfiguration. This can be seen in Figure 7-8 in which the cost

function reaches a new (higher) level. This is the cost that has to be paid for

reconfiguration as a result of the fault.

Fault

Fault

Fault

Fault

Fault

Fault
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Figure 7-9: Cost Function of the Subsystem 1 with 60% bias on heater operating point

However, this particular feature of tolerance to faults is limited to certain magnitudes of

faults. Beyond this magnitude, it is suggested that alternative strategies based on active

reconfiguration would have to be considered. Establishing this bound for the fault

magnitude is a design feature which could be similar to the use of a threshold employed

in model-based FDI methods (see Section 7.3). For achieving robust local FDI, the

unknown input observers (UIOs) as described in Chapter 2 is chosen here for the design

approach of robust de-coupling FDI in distributed systems.

7.3 Robust De-coupling FDI via UIO Approach

This Section focuses on the development of a suitable FDI strategy for application to a

system of inter-connected and distributed subsystems, as a basis for achieving fault-

tolerance in two-level distributed control systems. The idea is to use robust FDI

methods to facilitate the discrimination between faults acting within one subsystem and

faults acting in others, so that a powerful form of robust FTC can be implemented,

through an autonomous coordinator. The problem of unknown input de-coupling;

subject to autonomous coordination is an interesting challenge in which the interactions

between the subsystems (including modeling uncertainty, interconnection disturbance)

are considered as unknown inputs.

The essential concept is that robust FDI can be achieved within a given subsystem,

without requiring a consensus of FDI information across the ensemble of subsystems.

A set of residual generators based on the UIO concept provide robust FDI within a

given subsystem. As illustrated in Section 2.3.6, Figure 2-11 consists of a group of

decoupling UIOs for generating a number of residuals for fault detection isolation. Each

Fault
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observer in the group is designed to be sensitive to a subset of faults (that have to be

detected and isolated).

Considering the system identification in Eqs ( 7 - 4 ) and ( 7 - 5 ) , the robust FDI for

each subsystem can be obtained by Eq. ( 2 - 2 1 ) :

Tank-1
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( 7 - 8 )

where iq
i td )( is the unknown input or interconnection disturbance, ixqin

iE  is

disturbance distribution direction for 3,2,1i . The disturbance estimated this way is

also expected to take into account the un-modelled dynamics and interconnection

disturbance. Decoupling this direction from the residuals will also make the FDI design

robust against unknown inputs. An evaluation of these residuals is carried out in the

Fault Isolation Logic (see Figure 2-11) unit in order to determine the location of the

fault.

The next simulation result illustrates the ability of the thi local FDI tasks to detect faults

and also to be able to identify the subsystem where the fault is located. It is stated that

when a fault occurs the FDI structure should detect that a fault occurred and where the

fault occurred (Klinkhieo and Patton, 2008).
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Figure 7-10: Residuals for Tank-1, 2 and 3 with 60% bias on heater operating point

(a) with decoupling, (b) without decoupling
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Figure 7-10 shows the robustness of residuals to interconnection faults, based on the

levels 321 &,, LLL and Temperatures 21 & TT and inter-tank flows 322012 &,, VVV .

The fault condition is as for the faulty subsystem is the same as the last case where a

60% bias error on the electrical heater has occurred describing in Figure 7-8.

Figure 7-10 (a) correspond to the case when the 3-UIOs with the disturbance

distribution matrix ixqin
iE 0 are implemented [see Section 2.3.6], demonstrating

clearly that the 1T residual can be used to isolate the heater fault (i.e. the FDI task can

detect the fault and its location in the system)

For Figure 7-10 (b), the 3-UIOs with the disturbance distribution matrix ixqin
iE 0

used for each subsystem [see Section 2.3.6], showing clearly the inability to isolate the

heater fault via the 1T measurement in Tank-1.

As it is discussed extensively above the local control together with the control

coordinator can tolerate the faults up to a particular limit (or bound) (see Figure 7-7).

Within this limit the control coordinator assumes an error in the interaction prediction

and compensate for this error.

However, when a fault exceeds this bound (see Figure 7-8), the FTC methodologies

cannot tolerate the faults anymore and the system should be reconfigured. The

reconfiguration task acquires residual information from the local FDI tasks and makes a

decision as whether or not the reconfiguration is required, based on the comparisons of

residual signals and threshold (e.g. adaptive or fixed threshold) (see Figure 7-11).

This gives the reconfiguration task has two levels of operation; (i) a decision task,

which decides on whether reconfiguration of performance objectives is needed and (ii) a

task which reconfigures the performance criteria and sets new constraints.
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Figure 7-11: The reconfiguration based on the threshold level with a bias fault (20%,

40% and 60% of heater operating point, respectively)

Figure 7-11 (c) shows that the reconfiguration task can be declared once the thi residual

signal exceeds some predetermined threshold.

For the Three-tank application problem, the reconfiguration in task (ii) is accomplished

by the (hardware) redundant actuators included in the system. There is one heater

(Heater_R), one pump (Pump_3_R) and one valve (Valve_03_R) as redundant elements.

See Figure 7-12.

Figure 7-12: Three-Tank system with Redundant Elements

Threshold

Threshold

Threshold

(a)

(b)

(c)
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In order to illustrate the reconfiguration the experiments have been carried out. As

described above there are three hardware redundancies in the system: Heater_R, Pump-

3_R and Valve-03_R. Thus when severe faults occur on the Heater, Pump-3 or Valve-03

the FTC strategies cannot compensate the faults and the hardware redundant elements of

the system become necessary.

When the fault magnitudes are too large the control scheme cannot compensate for the

faults (see Figure 7-8). It can then be seen that the temperature ( 1T ) in Tank-1 moves

away from its set-point value, the residual signal reaches the chosen threshold level [see

Figure 7-11 (c)], therefore the Reconfiguration Task will disconnects the Heater and

activates the redundant Heater_R.

Figure 7-13 shows that after the reconfiguration 1T soon settles back to its normal value

under coordinated closed-loop control.
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Figure 7-13: Three-Tank-System with reconfiguration using redundant elements

However, in some cases the redundant elements are not available, perhaps for space

limitations, or (for military aircraft: weight and even increased operating costs, etc).

Section 7.4 provides the alternative ways for achieving FTC via adaptive control in

which the reconfiguration (i.e. hardware redundancies) is not required.

7.4 The ASO Approach to FTC of Distributed Systems

As mentioned in Chapters 6, the complexity of the distributed system is quite different

from the classical view of control, with special requirements focused on the importance

of re-configurability and the need for control of a complex inter-connected system

FaultFault
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(Patton et al., 2007). In this Section, the ASO (see Chapter 3) is employed to dealing

with these problems.

7.4.1 The ASO approach for the single-level control strategy

As described in Chapter 6, distributed and interconnected systems are difficult to

stabilise with single controllers due to computational complexity caused by large

dimensions and effects of interconnections (Singh and Titli, 1978; Patton et al., 2007).

Therefore, for designing a distributed control system, it is necessary to divide the entire

system into several interconnected subsystems, and utilise a single (local) de-centralised

controller to stabilise each subsystem.

For the problem in which the control is only single level, the coordinator is not used and

the problem becomes a special case of the one developed in Chapter 6. Hence, an

alternative and appropriate method of estimation and compensation for the subsystem

interaction states is attractive, since this role is no longer provided by the coordinator.

In this Section, the nonlinear Three-Tank interconnected system of Section 7.2 is

reconsidered without the use of the learning coordinator and ACSS. The parameters of

this system are given in Eqs. ( 7 - 4 ) and ( 7 - 5 ) . Here, the ASO method (Patton,

Klinkhieo and Putra, 2008) described in Chapter 3 is used to handle the problem of

interconnection disturbances in the local subsystem, using the assumption that the

system is in a fault-free state. In Section 7.4.2 the system is considered with faults

acting and the full system with both faults and estimation and compensation of state

interactions is demonstrated.

Consider as a special case of Section 6.4.5 an interconnected system composed of N

subsystem as follows:
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iii

iiiiii
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






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( 7 - 9 )

where in
iz  is the state/interconnection term of the thi subsystem. The isolated

control strategy for interconnection, estimation and compensation is illustrated in Figure

7-14.
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Figure 7-14: The ASO approach for interconnected disturbance compensation

Figure 7-14 shows that the interconnection terms ( iz ) acting on each subsystem are

estimated via thi subsystem local ASO units. The information about the magnitude of

estimated signals ( iẑ ) are sent to the compensation mechanism section where the

interconnected compensating control ( z
iu ) is computed.

In a similar manner to the actuator fault estimation case described in Section 3.2, here

the new compensating control is added into the nominal control signal to compensate or

reduce the interconnection effects. This estimation-controller structure is given by:
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where x
iu is the control of nominal system for the fault-free case, z

iu is the

compensating control to be added to compensate for the interconnection ( iz ) acting

upon the thi system, and the signals x̂ and iẑ are state and actuator fault estimations,

respectively. inimx
i RK  is the feedback gain matrix obtained by linear pole-

placement state feedback design. ilimz
i RK  is the actuator fault compensation gain to

be designed [see the details described in Section 3.2].

The interconnection compensation can be achieved by replacing iu in Eq. (7 - 9 ) with

the new iu in Eq. ( 7 - 1 0 ) , yielding the local closed-loop system given by:
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where thi subsystem estimated state is given by:
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and the thi subsystem interconnection state estimation is given by:

)ˆ(ˆ iii
z
ii xCyLz  ( 7 - 1 3 )

Following Eqs ( 3 - 2 ) and ( 3 - 8 ) , here Eqs ( 7 - 1 2 ) and ( 7 - 1 3 ) giving:
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and
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ii CLxCLAx  ~)(~ ( 7 - 1 5 )

where ipinx
i RL  and ipinz

i RL  are the observer gains to be designed. Hence,

solving the Eq. ( 7 - 1 5 ) gives an estimation of the magnitudes iz , which is the last

component of the augmented state vector ix~ .

Thus, the interconnected system in Eq. ( 7 - 9 ) with the observer Eq. ( 7 - 1 2 ) can be

arranged in the following closed-loop system:
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where ii
x
i xxe ˆ is the state estimation error. Re-arranging Eq. ( 7 - 1 6 ) as:
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Section 3.2 provides the stability proof for the ASO control compensating problem.

Furthermore, as the interconnected terms ( iz ) are bounded, it follows from Proposition

3.1 and Theorem 3.1, that the gains oo LL 21 , and oL3 for the thi subsystem, where

3,2,1i can result in a stable implementation of this system. To guarantee stability of
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each ASO subsystem it is necessary to ensure that the eigenvalues of the estimation

error system Eq. ( 7 - 1 8 ) are assigned with negative real values. A suitably chosen

eigenvalue placement will also ensure good tracking/estimation of the interaction states,

as required for rapid compensation.

For this example, the matrix subsystem pairs ( 0
1A , 0

1C ), ( 0
2A , 0

2C ) and ( 0
3A , 0

3C ) are

observable, and the observer gains o
iL are designed such that the eigenvalues of

)( o
i

o
i

o
i CLA  are placed as follows:
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Figure 7-15 shows the three components of the interconnected state vector for Tank-2,

given by: ),,(
3222122 zzzcolz  .

Figure 7-16 shows the level output ( 2L ) in Tank-2 with (a) the output response

including the (uncompensated) interconnection effect ( 2z ) i.e. without the ASO

compensation mechanism. It can be seen that the 2L output does not follow its

reference/set-point well and there is a considerable off-set value ( offsetd ). Case (b)

demonstrates the excellent performance of the controlled output ( 2L ) as a consequence

of the interconnection compensation mechanism employing the three ASO. Clearly, in

case (b), the off-set ( offsetd ) is reduced practically to zero by adding the new

interconnected compensating control described in Eq. ( 7 - 1 0 ) .



198

0 100 200 300 400 500 600 700 800 900 1000

-0.5

0

0.5

Time [s]

In
te

rc
o
n
n
e
c
ti
o
n

s
ta

te

0 100 200 300 400 500 600 700 800 900 1000

-0.5
0

0.5
1

1.5

Time [s]

In
te

rc
o
n
n
e
c
ti
o
n

s
ta

te

0 100 200 300 400 500 600 700 800 900 1000
-0.6

-0.4

-0.2

Time [s]

In
te

rc
o
n
n
e
c
ti
o
n

s
ta

te

z
21

Est.

z
22

Est.

z
23

Est.

Figure 7-15: The interconnected signal ( 2z ) and its estimate ( 2ẑ ) using ASO
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Figure 7-16: The level output ( 2L ) with and without interconnection compensation

7.4.2 The Combination of two-level control and ASO approach

The coordination principles for the optimization problem of distributed systems are

introduced in Chapter 6 through the application of the Principle of Interaction-

Prediction. This uses as a basis the idea that the distributed system can be decomposed

into smaller subsystems, and that there is an ability to be able to predict and coordinate

doffset

doffset
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possible interactions between these subsystems. By using this Principle the autonomous

system coordinator is able to use current state information together with interaction state

information to balance the system. The coordinator optimizes and balances the global

system performance and this gives rise to an excellent opportunity to achieve good FTC

action (Singh and Titli, 1978; Patton et al., 2007; Kambhampati et al., 2007).

This Section provides a novel strategy for extending the concept of the two-level control

architecture. This comprises a local level fault compensating control mechanism the

additive fault compensating control using ASO (see description in Section 3.2), with the

coordinated two-level control (ACSS) scheme as illustrated in Figure 7-17 . In the

manner described in Chapter 6, this two-level control approach is used to deal with the

problem of interconnection disturbances, whereas the ASO compensates for any

bounded local faults.

Figure 7-17: The interconnection and local fault compensation scheme

In contrast to the architecture shown in Figure 7-17, it is now possible to deal with the

simultaneous estimation and compensation of both subsystem interaction states and

local faults. The linearised representation for each subsystem within this structure is

given, in the presence of simultaneous actuator fault and interconnection disturbances

by:
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where a
if is the actuator fault effect on the thi subsystem. For the actuator fault case

the matrix a
iF is identical to iB . Once again the iz represent the interconnection states.

subsystems acting on thi subsystem.

By following the ASO approach presented in Section 3.2 and similar to the

interconnection estimation case described in Section 7.4.1, here again the new

compensating control is added into the nominal control signal to compensate or reduce

the actuator fault effects. This estimation-controller structure is given by:
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( 7 - 2 0 )

where x
iu is the control of nominal system for the fault-free case, and a

iu is the

compensating control to be added to compensate for the actuator fault ( a
if̂ ) acting

upon the thi system. The signals x̂ and af̂ are state and actuator fault estimations,

respectively. inimx
i RK  is the feedback gain matrix obtained by a linear multivariable

state feedback design imima
i RK  is the actuator fault compensation gain to be

designed (see Section 3.2).

The actuator fault compensation

The actuator fault compensation can be achieved by replacing iu in Eq.( 7 - 1 9 ) as an

isolated system [i.e. by not considering )(tzi here, as this term can be compensated

later by using the two level control approach] and obtaining a new local control signal

iu in Eq. ( 7 - 2 0 ) , yields the local closed-loop system given by:
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where thi subsystem estimated state is given by:

)ˆ(ˆ)(

)ˆ(ˆˆˆ

iii
x
ii

x
iii

ii
x
ii

x
iiiii

xxCLxKBA

yyLxKBxAx




( 7 - 2 2 )

and the thi actuator fault estimation is given by:
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Following Eqs ( 3 - 2 ) and ( 3 - 8 ) , here Eqs ( 7 - 2 2 ) and ( 7 - 2 3 ) giving:
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and
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where ipinx
i RL  and ipimz

i RL  are the observer gains to be designed. Hence,

solving the Eq. ( 7 - 2 5 ) gives an estimation of the actuator faults a
if , which is the last

component of the augmented state vector ix~ .

Thus, the isolated system in Eq. ( 7 - 1 9 ) and the observer Eq. ( 7 - 2 2 ) can be arranged

in the following closed-loop system:
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where ii
x
i xxe ˆ is the state estimation error. Re-arranging Eq. ( 7 - 2 6 ) as:
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Section 3.2 provides the stability proof for the ASO control compensating problem.

Furthermore, since the actuator fault terms ( a
if̂ ) are bounded, it follows from

Proposition 3.1 and Theorem 3.1

The interconnection compensation

Now following the two-level control approach described in the Eqs ( 6 - 2 3 ) and

( 6 - 3 9 ) , together with Eq. ( 7 - 2 0 ) defined with respect to the interconnected states

[i.e. using linear quadratic optimization for obtaining the feedback gain matrix], the

compensating control can be re-written as:
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where iS and i are the solutions of the appropriate modified Riccati Equations (see

Section 6.4.5) and the Interaction Compensation Equations respectively,. The first two

terms ( local
iu ) correspond to the control for the thi isolated subsystem following Eq.

( 6 - 2 3 ) , whilst the last term ( .int
iu ) is the compensating control for the interactions.

By following Eqs ( 7 - 2 0 ) and ( 7 - 2 9 ) , at this point, it can be seen that the new control

law now has three components, namely (i) a control component based on local

information, (ii) a component based on the interactions, and (iii) a component based on

the local fault [see Figure 7-17]. Therefore, the total control for thi subsystem is given

by:

a
i

int
i

local
i

a
i

x
ii

uuu

uuu





.
( 7 - 3 0 )

where local
iu is the compensator for the thi subsystem in isolation, .int

iu is the

compensating control for the interaction disturbances, and a
iu is the compensating

control to be added to compensate for the actuator fault ( a
if ) effect on the thi

subsystem.

To demonstrate the above discussion, the nonlinear distributed three-tank system is used

as a simultaneous interconnection ( iz ) and fault ( a
if ) compensation problem. The

important task here is to design the new control law in order to reduce or compensate

both interconnection and fault effecting on thi subsystem simultaneously, and then the

local FTC task can be achieved.

For this example, the matrix subsystem pairs ( 0
1A , 0

1C ), ( 0
2A , 0

2C ) and ( 0
3A , 0

3C ) are

observable, and the observer gains o
iL are designed such that the eigenvalues of

)( o
i

o
i

o
i CLA  are placed as follows:



203

Tank-1





























0.00000.00000.00000.00000.00000.0000

0.00000.00000.00000.00000.00000.0000

0.00000.00000.00000.00000.00000.0000

0.06570.0000.000000.0900-0.01630.0153

0.00000.0143-0.13290.05610.3504-0.0244-

0.0158-0.05110.00000.02980.0347-0.0581-

1
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












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1
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
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
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









1114.093342.3754-541.9950

621.361218.65352538.4626

31.6413419.2859327.2741

17.35570.3654-4.0169

0.5545-14.77271.0046

1.63250.240432.2462

1
oL

The eigenvalues of )( 111
ooo CLA  are: -11.25, -5.00, -10.00, -6.25, -7.50 and -8.75
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8.3162-37.83891.1655-

0.9703-0.615333.2218

2
oL

The eigenvalues of )( 222
ooo CLA  are: -13.75, -23.75, -21.25, -18.75 and -16.25
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The eigenvalues of )( 333
ooo CLA  are: -4.00, -2.00, -2.50 and -3.00

Figure 7-18 shows; (a) the fault signal acting on (2nd actuator) in Tank-1 with 0
11
af ,

)30.0sin(25.0
21 tf a  and 0

31 af , respectively, where actuator fault vector of Tank-1 is

given by: ],,[
3121111
aaaa fffcolf  [see Eq. ( 7 - 1 9 ) ], (b) the estimation of the fault

magnitude, and (c) the estimation error, respectively. It can be seen that the fault

estimator as presented in Eq. ( 7 - 2 4 ) , provides excellent estimation of a
if̂ , with very

small estimation error.
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Figure 7-18: The fault signal, fault estimation and estimation error acting on 2nd

actuator in Tank-1
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Figure 7-19: The interconnection and fault compensation on Tank-1 where the

compensation mechanism is activated at time t = 500s.

Figure 7-19 shows the output response of the temperature ( 1T ) in Tank-1; (a) in the

present of fault free case, (b) with fault acting on (2nd actuator) [i.e.

)00.0),30.0sin(25.0,00.0(1 tcolf a  ], and (c) with the compensating control

mechanism, activated at .s500t Figure 7-19 (c) shows that after compensating control

mechanism “ON”, 1T soon settles back to its normal value due to the interconnection

and fault effects are compensated/reduced under coordinated closed-loop control.

The next simulation considers the case when the fault is present on (the 1st actuator) in

Tank-1, where fault ( af
12 ) is a pulse signal with Magnitude: 0.25, period: 10secs and

with Pulse Width: 50% of period [MATLAB; Pulse Generator], 0
21 af and 0

31 af ,

respectively.

Figure 7-20 also demonstrates the very good estimation using ASO method following:

(a) the fault signal ( af
11

) acting on the 1st actuator in Tank-1, (b) the fault estimation

( af
11
ˆ ), and (c) the estimation error, respectively.
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Figure 7-20: The fault signal, fault estimation and estimation error acting on 1st

actuator in Tank-1

Figure 7-21 presents the simulation result of: (a) the tank level output response ( 1L ) for

fault free case, (b) the tank level ( 1L ) when fault is presented on the 1st actuator in

Tank-1, and (c) the tank level ( 1L ) settles back to its normal value after the

compensation mechanism “ON” at .s500t
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Figure 7-21: The interconnection and fault compensation on Tank-1; the compensation

mechanism is activated at time t = 500s.
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7.5 Conclusion

This Chapter show the proposed strategies described Chapter 3 and 6 to the

interconnection or/and fault estimation and compensation via the design of two-level

control and ASO method, the new compensating control design is computed using the

estimate interconnection disturbance or/and fault. The tutorial application of the

complex systems is illustrated through the examples of the interconnection disturbance

together with fault acting on the nonlinear Three-Tank interconnected systems. A new

approach to FTC of distributed/interconnected systems is proposed based on ASO and

tow-level control strategies.

The ASO is employed to deal with the local fault estimation and compensation whereas

the two-level control approach is used to handle the interconnection effecting on each

subsystem, simultaneously. This combination gives a powerful way for the on-line fault

estimation and compensation as an active FTC in the distributed systems. As discussed

in Chapter 3, if the fault effect is small the fault compensator mechanisms described

above may not be necessary or may introduce and unwanted but small disturbance

(residual error). For this case it would be of interest to use a robust FDI scheme to

detect the presence of a fault and isolate its location within a subsystem, prior to

switching on the estimation and compensation scheme.
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Chapter 8.
Conclusions

8.1. Conclusions and Summary

This thesis focuses on the well known topics of FD and FTC as well as a new concept in

the augmented state observer (ASO), the use of joint sliding mode estimation and, linear

parameter-varying (LPV) systems and some extensions of the work of Patton et al

(2007) based on Autonomous Coordination and Supervision Scheme (ACSS). The

ACSS is used in the problem of on-line fault estimation and

compensation/accommodation, within the framework of active FTC applied to an

uncertain and distributed system. The work presented has made some contribution

within each of the topics outlined above. A review of the literature shows that the joint

problem of fault estimation and fault compensation is actively studied as a topic in FTC

and the recent research has formed a good basis for the work of this thesis. The faults

are considered as significant uncertainties affecting the system control variables and

their estimates are used in an adaptive control compensation mechanism [i.e. the faults

can be considered as uncertainties affecting the control system].

The thesis deals with the active approach to FTC, based on on-line estimation and

control adaption and not the use of control system reconfiguration. This problem to be

addressed is outlined in Chapter 1 where the definitions and significance of faults,

failures and the different types of faults have been presented briefly, along with the
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industry drivers and practical requirements. Chapters 1 and 2 provide an introduction

and overview of the traditional/modern model-based FD approaches and control

reconfiguration approaches to FTC. The issues of increasing demand of reliable and

safe control systems, FD and the need for FTC solutions as well as predictive

maintenance, are discussed. The unknown input observer (UIO) approach to robust

residual design for FDI is described in Chapter 2 as this is used in Chapter 7.

In Chapter 3, the new ASO scheme for FTC fault compensation is described. The

concept of estimation of fault magnitudes is set up using an augmented state space

structure with the fault variables comprising the additional states. The faults are

estimated and compensated via an adaptive scheme in which one control signal

component is a function of the estimated fault(s). The Chapter provides a thorough

derivation of the stability conditions that apply to the ASO system, given that the

fault(s) is/are bounded. From a practical point of view this new ASO method can be

implemented well on real-time application systems using a simple design procedure.

A tutorial application study of adaptive estimation and compensation in an uncertain

system uses the concept of friction force compensation in an inverted pendulum, as an

FTC problem. It is shown that the friction compensation for a mechanical system can

indeed be viewed as an FTC problem which does not require a model of the friction

forces. The proposed approach is illustrated using a non-linear inverted pendulum with

Stribeck friction, which avoids the use of any form of mathematical model of the

friction force. Although, most studies consider the friction force to have an uncertain

effect on the system, it is more constructive in the work of Chapter 3 and later in

Chapter 4 to view the friction force as a specific fault. The proposed theory and

approach has wide application to more complex problems in which actuator, sensor as

well as multiplicative faults and unknown input signals can all be compensated together

using the system description and proposed stability conditions.

Chapter 3 has also demonstrated, through a linear tutorial example with both unknown

input disturbance and faults. It is shown that the effects of faults and unknown input

uncertainties compete in the estimation/compensation mechanism. A discussion of this

problem as a robustness issue is given using the example. The work described in

Chapter 3 forms a basis for the material presented in Chapters 4 and 5, where the

robustness issue is discussed further. It is expected that this work will stimulate further

research into this method, its robustness and comparison with other approaches.
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The sliding mode approach is investigated in Chapter 4 in which the main motivation is

to replace the ASO/compensating adaptive controller scheme of Chapter 3 with the

combination of the SMO of Edwards and Sprurgeon (1998) and SMC which is also

considered to be a new contribution to the field of active and adaptive FTC. The

contribution of this Chapter involves the adaptive term for the nonlinear unit vector gain

which compensates for the fault effects. Once again, the friction compensation problem

is used as an FTC example. The estimates of the friction force (via friction–effect

factor) generated via the SMO theory are used directly in an adaptive SMC scheme. The

results demonstrate the power of this on-line FTC approach, via the friction

compensation example. It is important to note that the approaches used in Chapters 3

and 4 can be generalised to FTC problems in which the faults have different

significance in terms of multi-faults and also in terms of actuator. Chapter 7 takes up

some of these aspects as an extension to the work of this ASO approach via the study of

distributed FTC problem.

Chapter 5 proposes a new alternative design of an active FTC for nonlinear systems that

are difficult to linearise, e.g. robotic systems. The design of a polytopic state-space

model is made using LPV theory and the polytope models are characterized via sets of

LMIs. It is recognized that, in practice, the nonlinear systems can be reduced to LPV

representations via the linearization along trajectories of the parameters. In other words,

the idea in LPV is to obtain smooth semi–linear models that can vary or be scheduled

using a parameter. A polytopic LPV estimator is synthesized for providing fault

estimate which can be used in an FTC strategy to schedule some predefined state

feedback gains (i.e. in a similar manner to the fault estimation and compensation

concept described in Chapter 3 and 4). In the fault-free case, the controller gains are

calculated using LMIs, whilst the resulting active FTC controller is a function of the

fault effect factor estimate which can be implemented on-line from the polytopic LPV

estimator mechanism. The new contribution in this work is the ccombined use of fault

estimation and fault compensation for FTC using an LPV framework. The effectiveness

of the proposed method is demonstrated through a nonlinear two-link robotic

manipulator system with a fault in the torque inputs at each manipulator joint.

The common problem considered in Chapters 3, 4 and 5 is the design strategy for an

active FTC for uncertain systems. In each of these Chapters the ideas and concepts have

been illustrated using appropriate tutorial examples.
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Chapter 6 focuses on a different application domain, namely that of the development of

FTC schemes for distributed and inter-connected system. The work uses a global

control strategy which uses constrained receding-horizon optimal control, under the

coordination of the ACSS using the two-level control concept. The global controller is

designed as an intelligent learning coordination from the knowledge base of the ACSS.

The methods proposed in the field of learning control systems are used together with

on-line constrained optimisation strategies. The system structure is set up in terms of

global and local levels, the performance measures are additively separable, a concept

coming from large-scale systems theory of Singh and Titli (1978). The additively

separable property ensures suitable flexibility for control reconfiguration. It has been

shown that for small faults the autonomous FTC system compensates for faults through

an adaptive FTC mechanism. For larger faults in this distributed hierarchical structure,

fault estimation is required to facilitate the reconfiguration task (i.e. either the use of

hardware or analytical redundancy).

The strategies described in Chapters 3 and 6 are demonstrated in Chapter 7 on the two-

level distributed system. The separate and combined designs of two-level control and

ASO approaches are described, dealing with the larger faults via new reconfigurable

control. The Patton et al (2007) work does not describe or consider methods for FDD as

it is assumed in their work that the global control action provides a degree of fault

compensation (fault accommodating control) for certain bounded faults. Hence, the new

contributions in Chapter 7 focus on the dynamic behaviour of the overall inter-

connected systems. Fault-tolerance is included using the integration of FDD and control

algorithms at the local (subsystems) levels as well as the reconfiguration task at the

global level.

The compensating control is computed using on-line estimation of the interconnection

disturbance and local fault. The tutorial application is illustrated through the example of

a non-linear Three-Tank interconnected system with the presence of the interconnection

disturbances together with actuator faults. An active FTC scheme for

distributed/interconnected systems is achieved based on the design of: (i) ASO

approach, to handle local fault estimation and compensation, and (ii) whereas the two-

level control approach is used to deal with interconnection disturbance affecting on each

subsystem. This combination gives a powerful way for the on-line interconnection

disturbance/fault estimation and compensation as an active FTC in the distributed

systems.
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