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Abstract

The CAMAL architecture (Computational Architectures for Motiva-

tion, Affect and Learning) provides an excellent framework within

which to explore and investigate issues relevant to cognitive science

and artificial intelligence. This thesis describes a small sub element

of the CAMAL architecture that has been implemented on a mobile

robot. The first area of investigation within this research relates to

the anchoring problem. Can the robotic agent generate symbols based

on responses within its perceptual systems and can it reason about its

environment based on those symbols? Given that the agent can iden-

tify changes within its environment, can it then adapt its behaviour

and alter its goals to mirror the change in its environment? The sec-

ond area of interest involves agent learning. The agent has a domain

model that details its goals, the actions it can perform and some of

the possible environmental states it may encounter. The agent is not

provided with the belief-goal-action combinations in order to achieve

its goals. The agent is also unaware of the effect its actions have upon

its environment. Can the agent experiment with its behaviour to gen-

erate its own belief-goal-action combinations that allow it to achieve

its goals? A second related problem involves the case where the belief-

goal-action combination is pre-programmed. This is when the agent is

provided with several different methods with which to achieve a spe-

cific goal. Can the agent learn which combination is the best? This

thesis will describe the sub-element of the CAMAL architecture that

was developed for a robot (robo-CAMAL). It will also demonstrate

how robo-CAMAL solves the anchoring problem, and learns how to

act and adapt in its environment.



Chapter 1

Introduction

1.1 Introduction

Mobile robots provide an essential tool when investigating the interac-

tion of cognitive architectures and the physical environment. Robots

have been used to investigate many different aspects of artificial in-

telligence such as mapping and localization techniques (Stachniss and

Burgard, 2005; Wolf and Sukhatme, 2005), robot perception and navi-

gation (Fiala and Basu, 2004; Marques et al., 2002) and robot learning

(Hougen et al., 1996). This thesis seeks to use a mobile robot to in-

vestigate a specific area of cognitive science known as the anchoring

problem. The anchoring problem describes the problem of generat-

ing and maintaining links between symbols and perceptual data (see

section 1.2.1).

This thesis will attempt to achieve two main goals. The first is to

develop a robotic agent that can learn how to achieve its goals with no

understanding of the effect of its actions. To do this the agent must

be able to identify the focus of its goal, i.e. if the goal is to eat, it

must recognise when an object is edible. The agent must also be able

to recognise when the objective of its goal has been achieved.

The second goal is to develop a robotic agent that can use the

learned actions from the first goal in order to adapt its behaviour

1
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within a variable environment. If the agent can achieve these two goals

it will have demonstrated several things. The first is that the agent can

link, or anchor, perceptual data to objects representing the focus of its

goals. The second is that the agent can anchor symbols representing

events and actions to perceived changes within its environment.

To achieve these goals a hybrid reactive/deliberative architecture

has been implemented upon a mobile robot (see section 1.3). The

architecture consists of several different elements including a reactive

component, consisting of many different reactive behaviours; a mo-

tivational blackboard; a belief-desire-intention (BDI) schema; a dis-

tributed model of affect; an association construct and a domain model.

All these components implemented on a robotic platform combine to

make robo-CAMAL.

The remainder of this chapter will consider some of the issues that

need to be addressed in answering the questions under investigation. It

will then briefly introduce the main components of the robo-CAMAL

architecture. Finally it will provide an outline for the rest of this

thesis.

1.2 Objectives and Context

This thesis presents a cognitive architecture that attempts to provide

a positive answer to the two following questions. The first is can the

agent developed here modify its goals and behaviour in response to

changes in its environment?

The second question is can the agent learn which actions to use to

achieve its goals? The agent has a set of beliefs it can hold, actions

it can perform, and goals it wishes to achieve. To achieve its goal

the agent needs to instigate the correct action based on its current

belief. Given that the agent is given no explicit knowledge of the
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correct belief-goal-action combination, can it determine the correct

combination on its own? A related point is the case where the agent

is provided with several possible belief-goal-action combinations that

achieve a specific goal. Can the agent determine which is the best

combination? For a robotic agent to provide a positive answer to

these questions its architecture needs to address several key issues

within cognitive science and robotics.

1.2.1 The Anchoring Problem

The symbol grounding problem concerns the difficulties of generating

symbols using perceptual systems, and the meaning of those symbols

(Harnad, 1990). The anchoring problem is a subset of the ground-

ing problem. It investigates how links are generated and maintained

between symbols used within an agent’s cognitive architecture, and

the data obtained via the agents perceptual system (Coradeschi and

Saffiotti, 2003). In the past within robotics, this linking of symbols

to perceptual data has been buried in the code of the agent’s archi-

tecture. Recently there has been a push to formalise the problem in

order to identify the difficulties in linking symbols to objects, and to

either separate the anchoring process from the rest of the architecture,

or to specify when and where anchoring occurs. This approach pro-

vides insight into the specific problems that surround the anchoring

process. If an agent is to reason about symbolic representations of its

environment, it must be able to perceive its environment. It must also

be able to link those perceptions to the relevant symbols.

1.2.2 Situated and Embodied Cognition

Situated and embodied cognition refers to the role the environment

plays in the development of cognitive processes within the agent (Pfeifer
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and Scheier, 1999; Clark, 1998; Clancey, 1997). The cognitive pro-

cesses of an agent that is situated (is present within its environment)

are determined to a large extent by its environment. The cognitive

processes of an agent that is embodied (has a physical body within

its environment) are determined by its interactions with its environ-

ment. In other words, cognitive processes develop from real-time, goal-

directed interactions between the agent and its environment (Thelen

et al., 2001). From this viewpoint the agent can learn to achieve its

goals by interacting with its environment. If this is the case then

information about its environment and its physical body must be in-

corporated into the agent’s architecture.

1.2.3 Machine Learning

One of the questions posed in section 1.1 is whether the agent can learn

the correct behaviour required to achieve its goal. It is therefore clear

that the agent needs some form of learning mechanism (Alpaydin,

2004). There are various different mechanisms possible (see section

8.5.1) but the one implemented here uses a reinforcement learning

technique (Sutton and Barto, 1998). This is where an agent learns by

interacting with, and receiving feedback from, its environment.

1.3 Robo-CAMAL Components

The cognitive architecture developed here is a combination of a re-

active and a deliberative component, implemented on a mobile robot

and a desktop computer. Perceptual data and control commands are

passed between the robot and the computer via a radio modem and a

USB cable (see section 4.2.1). This section will briefly introduce some

of the main components of the architecture.
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1.3.1 Reactive Component

A reactive robot is one where the perceptual input is directly con-

nected to the motor output (Braitenberg, 1984; Brooks, 1991). There

can be various different definitions of what constitutes a reactive com-

ponent. For example the system may have no changeable internal

state so that the current input determines the current output. In this

case the output is always the same given the same input. The defi-

nition of a reactive system taken here is that the systems output is

determined not only by its input, but also by its internal state. This

is akin to a simple finite state machine. The system’s output and new

state is based on its input and its current state.

1.3.1.1 Reactive Behaviours

The reactive component consists of a number of several different re-

active behaviours. These behaviours are modelled using software

written on the desktop computer, and the robot circuit board, as

opposed to being hard-wired into the robot. The lowest level con-

sists of simple micro-behaviours that turn the robot left, or move it

forward etc. These micro-behaviors are programed directly on the

robot. The micro-behaviours are combined to generate task specific

macro-behaviours e.g. hit a specific object, or avoid objects etc. The

micro-behaviours are combined using one of four arbitration methods.

The macro-behaviours can use one of three different sensor modalities.

This provides twelve different methods of performing any specific task

based behaviour. The specific behaviours that make up a task depen-

dent behaviour group are determined prior to runtime. The specific

behaviour grouping, combination method, and sensor mode, is chosen

at runtime by the deliberative component. The deliberative compo-

nent that directs the reactive level is run on a desktop computer.
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1.3.2 Deliberative Component

Trying to define what is meant by the term deliberative component is

difficult as there are many different possible deliberative systems. One

such definition states that a deliberative component generates global

solutions to complex tasks using planning (Russell and Norvig, 1995).

A second definition may be that a deliberative system is one that can

choose the most appropriate output of a non-deterministic finite state

machine. This is where the input and current state lead to a num-

ber of possible outputs. In other words a system that uses heuristic

techniques to choose the best output from a number of possible solu-

tions (Newell and Simon, 1972; Newell, 1980). Another definition is

that a deliberative component makes use of symbols about its current

state and/or environment to reason about and determine its output

(Genesereth and Nilsson, 1987). With so many different possible def-

initions and interpretations, a more concrete definition needs to be

made to clarify the situation. Within this thesis the word deliberative

will refer to any system whose output is not only determined by its

input and current state, but also by its previous states and/or the

current/previous states of other systems. In other words a delibera-

tive system is one whose output is based upon an extended memory

beyond that of its own current state. That is not to say that a de-

liberative system can not use symbolic reasoning or heuristic problem

solving techniques, only that for this definition it is not absolutely

necessary.

One argument may be that this definition does not go far enough,

and should include planning, symbolic reasoning etc. This is a valid

point. However, there are many ways to implement the various el-

ements considered to be deliberative, i.e. planning, problem solving

etc. As these elements can not be standardised from one architecture
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to the next, it is difficult to identify elements that can be considered

fundamental to a deliberative system. In addition, the symbol ground-

ing problem and the use of symbols within cognitive architectures can

be understood in a number of different ways. For example, there are a

number of different ways in which symbolic representations can be im-

plemented within a neural network (see section 2.4). This poses the

same problem as before. Symbol use can not be standardised from

one architecture to the next. These points aside, it is clear that the

definition used here goes beyond a reactive system. It states that the

system’s output is more than just its input and current state. Al-

though the definition may not go far enough in defining a deliberative

system, it provides a solid starting point.

1.3.2.1 a-CRIBB

The CRIBB (Children’s Reasoning about Intentions, Beliefs and Be-

haviour) model was developed to investigate reasoning in young chil-

dren (Bartsch and Wellman, 1989). This schema was implemented as

a computer model to simulate knowledge and the inference processes

of a child solving problems (Wahl and Spada, 2000). However, the

computer model did not incorporate basic emotions that are present

in the original schema.

The a-CRIBB model (Lewis, 2004) was developed to investigate

the use of affective computing within the CRIBB schema. a-CRIBB

added several new elements to the original CRIBB computer model.

The two most relevant to the robo-CAMAL architecture are the dis-

tributed model of affect and the use of associations. The affect model

distributes affect values across the entire architecture rather than have

a centralised emotion module (see section 1.3.2.4). Associations are

belief-goal-action combinations. These combinations detail the cor-

rect action required to achieve a specific goal given a specific belief
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(see section 1.3.2.3).

1.3.2.2 The Belief-Desire-Intention Model

The belief-desire-intention (BDI) model (Georgeff et al., 1999) is a

schema that calculates the actions of an agent based on its beliefs

and its desires. A belief is a statement about the confidence of a

proposition. The confidence the agent can have in a belief can vary. In

the BDI model beliefs are based on input from the agent’s perceptual

system, and its previously held beliefs. The agent’s desires are a set of

goals which the agent wishes to achieve. The agent’s current desires

are based on its internal state, possibly its emotional state, and its

previously held desires. Coupling the agent’s beliefs and its desires

generate a set of intentions or plans to achieve its goals. For example

the agent has a goal to hit a ball. Its perceptual system generates the

belief that there is a ball to the right. The agent can implement a set

of plans to turn the agent right and move forward.

1.3.2.3 Associations

Associations are a construct that consist of a belief, a desire, an in-

tention, and an association value (Davis, 2007). The associations pro-

vide an indication of the success of a specific set of plans given the

agents current beliefs and desires. This allows the agent to quickly

determine the most appropriate set of plans based on its beliefs and

desires. The associations work in the following way. From a large list

of associations the agent extracts only those that have a belief desire

combination that correspond to the agent’s current belief and desire

set. Of the remaining associations the one with the highest association

value is chosen. This represents the corresponding set of plans that

are the most likely to achieve the agent’s goal. The association value

is then modified depending on the outcome of the agent’s actions. If



CHAPTER 1. INTRODUCTION 9

it fails to achieve its goal the value is reduced. If the plans succeed in

achieving the goal then the value is increased.

1.3.2.4 Distributed Model of Affect

Affective computing refers to the use of computers to explore emo-

tion within cognitive architectures (Picard, 1998). There are many

different models of affect, such as the use of discrete basic emotions or

modal emotion. Rather than use a centralised model of affect, robo-

CAMAL uses a distributed model of affect. This means that various

elements within the architecture have an associated magnitude that

can fluctuate. For example, each belief has a confidence value which

reflects the reliability of that belief. Furthermore each goal has an

importance value that determines the level of relevance of that goal to

the agent at that time. Also, as described in section 1.3.2.3, the asso-

ciation value indicates the likelihood of success of a specific plan given

a specific belief desire combination. All these values fluctuate and are

often highly dependent on other systems within the architecture.

1.3.2.5 Motivational Blackboard

The use of motivation is pervasive throughout the architecture (Davis,

2002) (see chapter 9). The most important aspect here is the use of a

motivational blackboard. It is this blackboard that provides the back-

bone of the deliberative component. A blackboard system (Corkill,

1991) uses three components. The first is the blackboard, which is

a global structure and holds all the relevant information such as the

agent’s beliefs, goals etc. This structure is accessible to the whole

deliberative agent. The second component consists of various knowl-

edge sources which access the blackboard. These extract the relevant

information, manipulate it in some way, then post the result back

to the blackboard. This could be a belief or goal update mechanism
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for example. The final element is a control component, in this in-

stance a motivational construct. The motivational construct consists

of two elements. A motivator which contains several parameters in-

cluding the agent’s current goal and the association chosen to achieve

that goal, and a method for evaluating that motivator (see chapter

9). This evaluation allows the various knowledge sources, such as the

belief revision mechanism, access to the blackboard. This enables the

motivator’s success or failure to be determined. At this point the

motivational construct allows the current motivator to be modified

depending on the success of the goal.

1.3.2.6 The Domain Model

Robo-CAMAL operates within a controlled environment consisting of

various objects. Its actions are also confined by what its physical body

can perceive and do. It is therefore vital that information about the

agent’s environment and its physical body be incorporated into its ar-

chitecture. This encoding is achieved with the use of a domain model.

The domain model first defines the type of objects to be found within

the agent’s environment. There is also an abstract belief schema that

details the structure and constituents of all possible beliefs the agent

can have about its environment. The domain model defines the pos-

sible beliefs that are most relevant to the agent. It also defines the

relationships between the stated beliefs. These belief definitions and

relationships incorporate the situated nature of the agent into the

architecture.

The domain model then goes on to define the goals the agent can

have. These goals are dictated by the possible objects and beliefs de-

fined by the model. They are also dictated by the possible actions the

robot can perform. It also provides a list of all the possible actions

the agent can undertake. In relation to robo-CAMAL, this refers to
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the macro-behaviours (see section 1.3.1.1). These two elements incor-

porate some of the embodied nature of the agent into the architecture

(see chapter 7).

Finally the domain model provides the object profiles, i.e. the

information required to recognise an object. This incorporates both

the situated and embodied nature of the agent into the architecture.

It is situated in that it provides some of the physical attributes of the

environments objects. It is embodied in that it provides information

on how the agents sensors should process the perceptual data.

The use of the domain model provides two key advantages. The first

is that the model allows the situated and embodied nature of the agent

to be separated from the deliberative component. This means that,

as is the case with robo-CAMAL, the deliberative component can be

generic and non domain/environment specific. The second advantage

is that the model makes it easy to pinpoint when and where within

the architecture the anchoring of symbols occurs.

1.4 Summary

This chapter introduced the main aims of this thesis and briefly pre-

sented some of the areas within cognitive science that are relevant to

these aims. It then went on to describe some of the key elements of

robo-CAMAL, the architecture designed to investigate the proposed

aims of the thesis. The remainder of this thesis is divided as follows.

Chapter 2 gives a general discussion on some of the different cogni-

tive architectures that can be used to investigate the issues surround-

ing cognitive science. Chapter 3 will look at the previous research

undertaken that directly contributes towards the robo-CAMAL ar-

chitecture. Chapter 4 will give a general overview on how the robo-

CAMAL architecture will run. Chapter 5 will give an overview of the
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agent’s vision system. Chapter 6 will describe the reactive component

of Robo-CAMAL, and how it passes information to and from the de-

liberative component. Chapter 7 then goes on to describe the domain

model in some detail. It describes what is contained within the model,

how this relates to both the anchoring problem and the situated and

embodied nature of robo-CAMAL. Chapter 8 describes the associa-

tion construct and how this is used to allow the agent to learn about

and adapt its behaviour. Chapter 9 will discuss motivation within

robo-CAMAL. Chapter 10 will describe the various experiments that

have been carried out and provide the results of these experiments.

Chapter 11 will discuss the results of the various experiments under-

taken, and show how they relate to the aims of the thesis. It will also

consider some of the flaws in the model and provide some suggestions

on how to improve it. Finally chapter 12 will summarise the thesis

and provide the final conclusions.



Chapter 2

Cognitive Architectures

2.1 Introduction

Cognitive architecture refers to the design and organization of the

mind (Sloman, 1999). This chapter will first look briefly at cogni-

tive science and the possible designs for mind. It will then describe

some of the various cognitive architectures that have been suggested

and investigated over the years. This will include a description of

symbolic artificial intelligence (symbolic A.I.) with reference to the

physical symbol system. Connectionism is then described using neu-

ral networks as an example. The chapter will then go on to describe

reactive or behavioural systems. These are systems that link a robot’s

perceptual system directly to its actuators. This enables autonomous

robots to operate in dynamic physical environments. Finally, hybrid

architectures, which are a combination of several different architecture

types, are explained.

2.2 Cognitive Science

Cognitive science is the study of cognitive processes and how they are

integrated to form a mind. The term cognitive in this context is used

for any kind of mental operation (Lakoff and Johnson, 1999). Cogni-

13
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tive processes include systems such as memory, perception, learning

etc. What then is the purpose of a mind? One important approach

states that mind is used to decide the next action of an agent (Franklin,

1995; Newell, 1990; Sloman, 1993).

It has been argued that there are twelve issues for cognitive sci-

ence to address (Norman, 1980). These are belief systems; conscious-

ness; development; emotion; interaction; language; perception; learn-

ing; memory; performance; skill and thought. By defining a blueprint

for how various cognitive mechanisms that address these issues are

integrated, it should be possible to describe how mind works.

What is the correct way to integrate such systems? Is there some

common principle with which a mind is built? The Unified Theory of

Cognition (Newell, 1990) argues the need for a set of general assump-

tions for cognitive models. This includes how cognitive mechanisms

should be integrated. Any unified theory of cognition must explain

how agents react to their environment, exhibit goal directed behaviour,

generate goals, how they represent knowledge, and how they learn.

Another important aspect is that any theory needs to be able to ex-

plain observed behaviour. This places constraints on any theory. If

it can not explain experimental results or specific phenomena, then

it may be incorrect. By using such constraints and assumptions in

developing a cognitive architecture, it should be possible to create an

artificial mind. This artificial mind could then be used to control a

simulated agent or a physical robot.

There are various views on the form which a mind can take. One

prevalent view is that mind can be decomposed into task specific mod-

ules. For example, mind can be made of distinct processing units. One

unit may handle memory, another may process visual data. This is

often referred to as the modularity of mind view (Fodor, 1983). An

alternative view suggests domain-general processing. This is where
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mental activity is distributed across the entire mind, and can not be

decomposed into independent units (Uttal, 2003).

As robo-CAMAL claims no similarity with biological intelligence,

the modular view point is taken due to the ease with which it can be

implemented.

2.3 Symbolic A.I.

A symbol is a token that represents something with an independent

existence. This makes them an incredibly powerful tool for conveying

information and knowledge. Symbols are most commonly used in

language where their form is generally arbitrary. They can also be

iconic where their form is often visually related to the object they

represent. Much of the work done in regard to symbolic A.I. is based

on the physical symbol system hypothesis. The hypothesis states that

a physical symbol system has the necessary components for general

intelligence (Newell and Simon, 1976).

A physical symbol system is a set of symbols that relate to each

other in some way. This symbol structure must be realised in a phys-

ical system such as a computer. A good example of a physical symbol

system is a production system (Post, 1934). A production system

consists of a collection of rules, a set of conditions or facts that reside

in a working memory, and a series of actions that produce new facts

based on the stored facts (Simon, 1999). A production system takes

the form

IF (conditions) THEN (actions)

If the conditions or facts in the working memory are true, then

the actions are carried out or new facts are generated. However, a

production system alone is not intelligent.
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To demonstrate general intelligence the production system must

be used to achieve goals. For symbolic A.I., goals are achieved by

solving problems using production rules. The production rules oper-

ate within problem space, which is a representation of the problem

including initial, final, and possible intermediate states. The strategy

used to search the problem space is highly dependent on the problem,

the goal, and the capability of the symbol processing system. For ex-

ample a chess player will spend the majority of their time considering

the consequences of a particular move. This search is highly selective,

only considering a few possible moves (Newell and Simon, 1972). This

is known as a depth first search, as the problem space is considered

a long way into any possible move. As unpromising moves are disre-

garded almost immediately this type of search is heuristic. That is,

the problem space is greatly reduced in width. This concept takes the

view that intelligent agents use problem space to achieve goals. It is

summed up by the problem space hypothesis that states

“the fundamental organizational unit of all human goal-oriented

symbolic activity is the problem space” (Newell, 1980).

It is clear that the use of physical symbol systems to investigate

problem space is beneficial. It is also clear from the previous chess

example that humans utilise symbol systems to search problem space.

If much of human knowledge is symbolic then encoding a symbolic

architecture should be comparatively simple. This is because symbol

systems are far easier to relate to human intelligence. This provides a

major advantage for symbol systems as they are easier for humans to

understand, and therefore implement.

One system that uses a symbolic architecture to solve problems

is SOAR (Rosenbloom et al., 1993). SOAR uses production rules to

search through the problem space of a particular problem to achieve
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a specific goal state. Each move through problem space consists of

an elaboration phase, where any information relevant to the problem

in the current state is brought to the working memory. Then a deci-

sion procedure is then executed. This considers information from the

previous elaboration phase, and assigns preferences to the possible ac-

tions that can be taken. If an impasse is reached where two possible

actions are equally preferable, or if there is not enough information to

make a decision, then a sub-goal is created.

Various methods are used to acquire more knowledge that enable

SOAR to reach a state that satisfies the sub-goal. One such method

is a means end analysis. This calculates the difference between each

available action and the eventual goal state. The action chosen is

the action that shows the least difference from the goal state. Once

SOAR achieves the sub-goal it uses a method called chunking in order

to learn about what to do if the impasse ever arises again. This is

done by creating a production rule that describes the situation of the

state leading up to the impasse. It also creates an action that uses a

single step to achieve the state required to satisfy the sub-goal.

Another system that uses a symbolic architecture is Shakey the

robot (Nilsson, 1984). Shakey uses a camera to observe its environ-

ment. It also uses an off board computer to process the information

and control the robot’s motion. The robot uses the camera and vision

processing routines to build a representation of its environment. This

is generated and manipulated using predicate calculus statements.

The robot was designed to perform simple tasks, provided by user

input, in an office environment.

The system has various low level action predicates that are used

to provide information about the robot’s current state and location.

For example, at and theta give the position and bearing of the robot.

There are also predicates to control the robot’s actuators, such as
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turn(deg), which turns the robot by the said number of degrees.

The intermediate level actions are responsible for seeing that the

pre-conditions for the designated action are satisfied. This is done by

using the low level actions. One such intermediate action is gotoad-

jroom which uses various low level actions to pass through an open

doorway.

An example of how this action is used is the case where the agent

has a goal to push a block. If the block is not present in the robot’s

current room this intermediate action may be called. This is done in an

attempt to satisfy the pre-condition of finding a block. Intermediate

actions that affect the environment such as push are also responsible

for changing the robot’s current world model.

To achieve a goal the system uses a planning system called the

Stanford Research Institute Problem Solver (STRIPS). STRIPS at-

tempts to find a sequence of intermediate level actions that change the

environment such that the input goal is true. To do this STRIPS

needs to know about the effects of those actions on the environment,

i.e. a model of each action.

The systems mentioned above work in environments that have been

specifically designed for them. They either perceive the environment

and create an internal model, or have a model of the environment

pre-programmed. This is so that a planner can operate. The plan-

ner tries to achieve the goals it has been given. For Shakey this is

often to get the robot from point A to point B. Despite using simple

constructed environments Shakey often operates slowly. Most of the

computational time is taken up generating and updating the internal

environment model.

Like the previous two systems described, robo-CAMAL will make

use of symbolic processing. This occurs at the deliberative level within

the architecture. However, the use of a reactive system will allow the
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agent to operate without a complicated internal model of its envi-

ronment. This means that very little computational time is used in

updating that model.

2.4 Connectionism

The connectionist approach takes the idea that intelligence arises from

the interactions of large numbers of highly interconnected simple pro-

cessing units (Rumelhart and McClelland, 1986; Lloyd, 1989). This

idea models cognitive architecture on the brain. In this case the sim-

ple processing unit is the equivalent of a neuron. All neurons have an

input component (dendrite), a trigger component (cell body), and an

output component (axon), (figure 2.1). The dendrites receive signals

Figure 2.1: A neuron.

from other neurons and pass this signal as a voltage to the cell body.

The cell body combines the input voltage with its current voltage.

When this voltage exceeds a threshold, the cell body fires an output

voltage down the axon to other neurons. This can be described in a

more formal way with a threshold logic unit (figure 2.2). The inputs
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xi can take positive (excitatory) values or negative (inhibitory) val-

ues. The weights of the system wi (again the values can be positive

or negative) determine the strength of the signal passed to the cell

body. The cell fires an output signal, y, once the input value reaches

a threshold value h. The value y is then passed to the next threshold

logic unit. This unit can be used to produce logic gates. For example

the cell body has two inputs x1 and x2, each are binary. The associ-

Figure 2.2: Threshold logic unit.

ated weight values w1 and w2 are both 1. If the threshold is also 1, the

unit fires if either x1 or x2 are 1. However, if the threshold is 2, then

the unit fires only if both x1 and x2 are 1. This defines an OR and

AND gate. It is clear that if a large number of threshold logic units

are interconnected they manipulate input values in a logical way.

There are some important advantages to the connectionist ap-

proach. The use of many simple processing units in parallel means

there is no central processing unit. Each unit receives an input and

decides on its output alone. This means that the system does not

need to waste time collecting all the relevent information to make a

decision. Another advantage is that a connectionist model is robust.

The failure of a small number of units results in a minor reduction in

performance, not a complete break down of the system.

There are however challenges in developing a connectionist archi-

tecture. One such problem is the question of how objects are repre-

sented. There are several styles of representation for the connectionist

approach. One such method is known as local representation. In this



CHAPTER 2. COGNITIVE ARCHITECTURES 21

type of representation individual units represent specific properties or

features of the environment. When the connection strength from one

such unit to another is strongly positive, if the first representation

is true, so is the second (Ramsey et al., 1990). A second method is

distributed representation. For this type of representation it is the

pattern of activity over many units, not the meaning of any individ-

ual unit, which is important (Rumelhart and McClelland, 1986). An

example of this form of representation is the perceptual symbol sys-

tem (Barsalou, 1999). This method states that a perceptual symbol is

a record of the neural activation that occurs during the perception of

an event. A third method of representation is featural representation.

This approach is an amalgamation of the two previous approaches.

Similar to a distributed representation, the pattern of activation over

many units is significant. However, each unit represents a feature of

the distributed representation. This means that individual units can

be thought of as representing a small part of the overall object or

concept (Lloyd, 1989). These are just some of the possible ways in

which objects can be represented. It is a major technical challenge to

develop a connectionist system that can use symbolic representations.

It is therefore a major challenge to develop connectionist systems that

can reason about high level problems that are trivial to a symbolic

A.I. system.

A connectionist approach was not adopted in the development of

robo-CAMAL. Though connectionist systems are considered to be

good at learning (Franklin, 1995), the challenges in developing one

that can reason symbolically go beyond this thesis.
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2.5 Reactive Architecture

In general terms, intelligent agents operate in a perception-action cy-

cle (Holyoak, 1999). Mind is therefore often split into three separate

components, sensory systems, central processing systems and motor

systems. Information from the agent’s sensors is processed by the

sensory systems. This information is then passed to the central pro-

cessing system. The central processing system uses this information

to decide the next action. This instruction is passed to the motor

system which then carries out the required action.

The central processing system is traditionally decomposed into

functional modules (Stillings et al., 1995). These modules can in-

clude elements such as memory, learning etc. This approach means

that generating an object avoidance behaviour, for example, requires

the implementation of a sensor processing module, a planner or deci-

sion making module, as well as a module to control the agents motion

to avoid the detected object. This is because the whole architecture

needs to be implemented before any behaviour can be observed.

However, a simple coupling of sensor to a motor can produce the

same results. For example, consider two photosensitive plates each

connected to a motor (figure 2.3). The charge on the photosensitive

plate inhibits the speed of the motor. The more photons hit the plate,

the slower the motor operates. This simple coupling of sensor to motor

in this way produces an agent that avoids, light sources (Braitenberg,

1984).

The classical approach to A.I. decomposes intelligence into func-

tional information processing modules (Brooks, 1991) e.g. planning,

learning, memory etc. Each individual module does not produce any

behaviour. Only when all the various modules are combined will an

agent produce any behaviour (figure 2.4). By contrast the reactive ap-
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Figure 2.3: Light sensitive agents (Braitenberg, 1984).

proach decomposes the agent into behaviour producing modules (fig-

ure 2.5). Each module produces a distinct behaviour independent of

all the other modules. In this case the agents behaviour is determined

by the combined effect of the individual modules acting independently.

Figure 2.4: Decomposition by function.

The reactive approach is more robust than the classical approach.

Consider the flow of information through the two different architec-

tures in figures 2.4 and 2.5. In the classical approach each module

is placed in series with information flowing from one module to the

next. If one module breaks down or is removed, the flow of informa-

tion stops. This means that the agent stops working. The modules
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Figure 2.5: Decomposition by action.

in a reactive system are placed in parallel, with information from the

sensors passed to all. If a module breaks or is removed, information is

still passed to the others, and they can still operate (Brooks, 1986).

An important aspect to the reactive approach is that there are

no internal representations (Brooks, 1991). In a reactive agent each

module is in essence a finite state machine (FSM). The inputs to the

FSM come from the agent’s sensors. Depending on the FSM’s input

and current state, the system can either remain unchanged, or alter

its current state. The output of the FSM is connected to the agent’s

actuators and is determined by the FSM’s current state.

Another aspect to reactive architectures is that the behaviour pro-

ducing FSMs have the ability to inhibit other FSMs. Consider an

agent architecture that has two simple actions, move forward and

avoid object. If there are no objects present the agent will perform

the move forward action. If however the agent’s sensors detect an

object in front of it, the information passed to the avoid object action

causes it to inhibit the move forward action. The avoid object action

then changes the agent’s trajectory. Once the object is no longer in

front of the agent the move forward action continues (figure 2.6).

Behaviours such as object avoidance, that are difficult to achieve

using symbolic methods, become trivial if the reactive approach is

used. The fact that the agent does not need to create an internal model
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Figure 2.6: Simple reactive architecture.

of its environment removes many of the problems attached to symbolic

A.I. For example, there is no need to anchor symbols to sensor data.

The removal of the need for an internal model of the environment

also saves time, and allows a reactive system to react quickly in a

complex dynamic environment. Though reactive architectures provide

an excellent way of generating simple behaviours for agents, those

behaviours often need to be defined in advanced.

Some reactive agents also have the ability to learn (Mahadevan

and Connell, 1991). However, such agents require pre-defined goals

(Mahadevan and Connell, 1991). This means that a reactive agent’s

goals must be defined by the system’s designer. Goals can not emerge

from any reasoning ability the agent has. As the agent’s behaviours

are fixed it will respond in the same way to a specific stimulus. This

means the agent is unable to learn without direct intervention from

the agent’s designer to provide it with new goals.

Reactive agents have often been considered capable of simple be-

haviours only. This however is not true as there are reactive systems

capable of planning (Langer et al., 1994; Stenz, 1995). One such ex-

ample uses Trulla, an algorithm that determines a path for a reactive

agent to follow (Murphy et al., 1999). Trulla has an inbuilt a-priori
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map. Its goal is a location on that map. Trulla calculates every pos-

sible path from every possible location to that goal on the map. This

calculation produces a vector field that provides the optimal direction

for the agent at every point within the map. The agent then fires

a move to goal behaviour and follows the vector field. If an unex-

pected object is encountered, the avoid object behaviour fires. At the

same time the move to goal behaviour continues to follow the vector

field along its new path. However if a major discrepancy between the

a-priori map and the agent’s sensors occurs, Trulla recalculates the

vector field with the new map information.

The use of a reactive system is important to robo-CAMAL. It en-

ables robo-CAMAL to operate in a dynamic environment without a

complex internal model of that environment. It also filters out unnec-

essary information about the agent’s environment that has the poten-

tial to slow the deliberative components processing speed.

2.6 Hybrid Architecture

Hybrid architectures are architectures that combine two or more dif-

ferent types of cognitive architecture. For example, a connectionist-

deliberative system or a reactive-deliberative system (Arkin, 1990;

Pfeifer, 1995). Hybrid architectures seek to avoid the disadvantages

of their component architectures, whilst retaining all their benefits.

A common hybrid architecture is the reactive-deliberative architec-

ture. This architecture uses a reactive component to interact with

its environment. This filters out unnecessary information. Relevant

information is then passed to a deliberative component. Constraining

the information from the environment allows the deliberative compo-

nent to reason about its environment in a more efficient manner.

One important example of a hybrid system involves the use of event
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calculus. In this example the robot has a set of reactive behaviors,

and uses event calculus to reason about its environment in a delib-

erative manner (Shanahan and Witkowski, 2001). Event calculus is

a formalism for representing events and their effects (Kowalski and

Sergot, 1986). The event calculus contains three types of elements,

events or actions, fluents, and time points. A fluent is a value that

has the capacity to change over time. These elements can be reasoned

about using various statements, some of which can be seen in table

10.1. A goal within this framework is a predicate containing a fluent

Predicate Meaning
Initiates (a,b,t) Fluent b starts to hold after action a at time t

Terminates (a,b,t) Fluent b ceases to hold after action a at time t
Initially (b) Fluent b holds from time 0

ti < tj Time point ti is before time point tj
Happens (a,t) Action a occurs at time t
HoldsAt (b,t) Fluent b holds at time t

Clipped (ti,b,tj) Fluent b is terminated between times ti and tj

Table 2.1: Event calculus predicates (Shanahan, 1999).

with a specific value. For example, if an agent’s goal is to hold a fork,

the goal is stated as HoldsAt (is holding fork(true),t). A planner can

then search the problem space to determine the correct sequence of

events to achieve the goal predicates (Shanahan, 2000). The plan-

ner can then calculate the correct sequence of reactive behaviours to

achieve the desired goal.

The Guardian intensive-care monitoring system (Larsson and Hayes-

Roth, 1998) monitors patients in intensive-care, and takes appropriate

action when necessary. It is also based on a hybrid architecture. The

BB1 architecture (Hayes-Roth, 1995) shown in figure 2.7 uses a reac-

tive component that has reflexes and perception-action responses. The

deliberative component uses a blackboard system in order to reason

about and act on its environment (see section 3.6).

The blackboard system uses a set of data structures in the global
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Figure 2.7: The BB1 agent architecture (Hayes-Roth, 1995).

memory (inside the circle in figure 2.7) and a three step execution

cycle. The triggering step triggers all the possible actions in relation

to the current events. A scheduling step rates all possible actions

against the current control plan. It then chooses the action with the

highest rating to be executed. The execution step executes the next

action and updates the current events.

The control plan is central to rating the possible actions. It is a

data structure containing various component plans. Each step in a

plan specifies

• a set of intended actions in terms of their desirable attributes,

e.g. resources they consume, what kind of knowledge they apply

to etc.

• a condition under which the plan should be activated.

• a condition under which the plan should be deactivated.

• a rating function that evaluates how closely the outcome of the
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possible action compares to the desired outcome.

Robo-CAMAL is also a reactive-deliberative hybrid system. This

approach has been taken in order to exploit the advantages of both

approaches.

2.7 Summary

This chapter described various cognitive architectures. It started by

briefly discussing cognitive science. It looked at some of the possible

views that can be adopted on the design of mind. The rest of the

chapter then looked at some of the possible architectures that can be

used to develop an agent. This included symbolic A.I., connectionism,

reactive and hybrid architectures. It also gave some examples of the

various types of architectures.



Chapter 3

The Robo-CAMAL Framework

3.1 Introduction

This chapter will review the previous work that has directly influenced

the design of Robo-CAMAL. This work takes the reductionist’s view

point (Fodor, 1983; Minsky, 1986) and will introduce the view of mind

as a control system for an agent. It will then look at the CogAff archi-

tecture that adopts this view. Next the belief, desire, intention (BDI)

model is introduced, and the CRIBB and a-CRIBB architectures that

make use of this model are then described. Following this, blackboard

systems are then introduced, and use of motivation from the view of

mind as a control system is then discussed. Finally all these elements

are brought together in the CAMAL architecture.

3.2 Mind as a Control System

Mind can be viewed as a collection of cognitive processes. These

processes are integrated in a way that enables an agent to decide its

next action (see section 2.2). One approach that takes this view is the

use of mind as a control system (Sloman, 1993). This takes the view

that mind is a collection of many different control processes passing

data between them asynchronously. This is an alternative to the view

30
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of mind as a single computation that can be reduced to a single state

at any given time (Sloman, 1993). Control processes can be a number

of different things such as beliefs, desires, reflexes, motivators etc.

In essence control processes are general behaviours within the agent.

Each control process can be modified or updated at any time by any

other control process. Control processes do not need to exhibit ex-

ternal behaviour in that they can also be used to control the agent’s

internal state. One important element is how the control processes

interact with each other.

There are a number of different possible interactions that must be

considered. These are (Sloman, 1990, 1993)

• How a control process modifies and is modified by other control

processes.

• The type and amount of information passed between the control

processes.

• Whether the information transferred between control processes

is direct or filtered.

• If control processes generate behaviour directly, or if they modify

other control states in order to achieve a goal.

This approach is fully consistent with the concept that the organisa-

tion of the mind is modular as discussed in section 2.2.

The advantage of this approach to mind is that each of the con-

trol processes can be isolated and investigated. Each control process

can be tested on quantifiable qualities such as speed and accuracy.

This makes assessment of any artificial mind developed far simpler

than if notions such as consciousness and reasoning ability are used

to describe mind.
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One important aspect of this approach to mind is that the number

of possible designs for each control process is potentially infinite. By

placing constraints on the design space of a control process, different

designs for that control process can be compared. This can be ex-

tended to the whole agent in a specific environmental niche (Sloman,

1993; Davis, 2001). By designing two complete agents of different de-

signs to compete in a constrained environmental niche space, the two

agents can be compared in a quantifiable way. This is analogous to

two different species inhabiting the same environment. This could be

a predator-prey relationship, or each agent competing for the same

resources.

The use of design and niche space constrains the design of the con-

trol processes. This allows more emphasis to be placed on quantifiable

aspects, such as speed or efficiency, when assessing the agents perfor-

mance.

3.3 CogAff Architecture

The view of mind as a control system requires that the many control

processes be combined into a coherent structure. From the interaction

of this structure and its environment, intelligent behaviour should

emerge. One such architecture is CogAff (see figure 3.1) (Sloman,

2001).

This is a three tier, three column architecture. The various control

processes are positioned within the 3×3 grid depending on their func-

tion. The columns from left to right consist of perception processes

such as vision processing systems; central processing units that make

decisions based on perceptual input and the agent’s current internal

state; finally, the action processes that control the architectures out-

put, e.g. control of a robot’s motors to achieve a desired movement.
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Figure 3.1: CogAff architecture (Sloman, 2001).

The three tiers from bottom to top consist of reactive mechanisms,

deliberative processes and meta-management. Reactive mechanisms

are very simple systems where input is directly connected to the output

using a pre-determined association. For example a mobile robot may

have a mechanism that states

IF(sensor 1 value < x) THEN(increase speed of motor 1)

where x is a predetermined value. More on reactive systems can be

found in section 2.5.

Deliberative mechanisms are more complex and are used to anal-

yse and reason about their input. Though the design of a deliberative

process is dependent on what the agent is designed to do, there are

a few common themes. Deliberative mechanisms generally use struc-

tured representations of their environment or internal state in their

operations. They often have a memory of previous occurrences that

can be factored into the decision making process. However the term

deliberative has a more constrained meaning within this thesis (see

section 1.3.2).
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The meta-management level monitors and controls the interaction

of the reactive and deliberative levels. By overseeing the entire ar-

chitecture, the reflective level looks to suppress unwanted behaviour,

and promote useful behaviour. An example of this is to note when an

important goal has not been achieved, and to find out why. Another

example is to notice circular behaviour. This is when goal A requires

the completion of goal B, but goal B requires the completion of goal

A.

The final component in the CogAff architecture are alarms. Alarms

are emergency responses to situations that the agent is otherwise un-

able to deal with. They are purely reactive in nature. Alarms enable

an agent to deal with emergency scenarios. If the agent’s environment

is changing too quickly for its internal processing systems to keep up,

an alarm may be triggered. This alarm may redirect the whole sys-

tem by deactivating non-essential processes, and focusing the system

on essential ones.

3.4 Belief Desire Intention Model

The belief desire intention (BDI) model (Bratman, 1987; Georgeff and

Rao, 1995; Georgeff et al., 1999) provides a method to control the

flow of information through a deliberative architecture. Beliefs are

a way of representing the state of the environment. Desires or goals

represent some desired end state. One way of achieving a goal is to

simply execute an action based on the beliefs the agent has at that

time. Unfortunately if the environment changes the agent’s beliefs

are modified accordingly. This means the previous action is no longer

valid. As the action has no access to the new beliefs, it will still act

and may fail to achieve its goal.

It is for this reason that intentions are required. Intentions are
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Figure 3.2: Belief-Desire reasoning scheme (Bartsch and Wellman, 1989).

plans that are based on the agent’s desires. They also have access

to the agent’s beliefs. If the environment changes and the agent’s

beliefs are updated then the agent’s intentions can be modified. This

prevents the agent from failing to achieve its goals. The BDI schema

of the CRIBB cognitive model can be seen in figure 3.2

The inputs into this model are perception, basic emotions and phys-

iology. The agent’s beliefs are determined by its perception of the

environment and its previously held beliefs. The agent’s desires are

determined by its emotions, physiology and its previous desires. The

coupling of an agent’s belief and desire manifests itself as an action.

This action leads to a reaction such as a change in the agent’s envi-

ronment or emotional state. This reaction in turn can alter what the

agent perceives, its basic emotions or its physiology.

3.5 CRIBB and a-CRIBB

The CRIBB (Children’s Reasoning about Intentions, Beliefs and Be-

haviour) model was designed to investigate the belief-desire reasoning

model in young children(Bartsch and Wellman, 1989). The model

states that a person’s actions can be explained by their beliefs and
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desires. It is based on the BDI schema shown in figure 3.2.

CRIBB is a computer model that simulates knowledge and the in-

ference processes of a child solving problems (Wahl and Spada, 2000).

The types of problems it is designed to solve consist of various ques-

tions in the form of stories. Neutral stories:

“Jane is looking for her cat under the piano. Why is Jane

doing that?”

Anomalous desire stories:

“Jane hates frogs. Jane is looking for a frog under the piano.

Why is Jane doing that?”

Finally, anomalous belief stories:

“Janes’ cat is hiding under a chair. Jane is looking for her

cat under the piano. Why is Jane doing that?”

Figure 3.3: CRIBB architecture (Wahl and Spada, 2000).
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The CRIBB architecture can be seen in figure 3.3. The two main

bodies in this architecture are primary and secondary representations.

Primary representations describe the agent’s simulated environment.

Within the primary representation there are statements about the

simulated environment, and the behaviour of other agents within that

environment.

Secondary representations describe the agent’s internal state. They

include statements about the agent’s beliefs, intentions and what it

perceives. Within this framework are a set of inference schemata (el-

lipses in figure 3.3). These are based on the belief desire model in

figure 3.2. Perception-belief inferences represent knowledge about the

relationship between perceptions and beliefs. If the agent perceives X

then agent believes X. Fact-time and belief-time inferences deal with

facts and beliefs along a time line. If an environmental statement or

belief is true at time ti then it is true at time ti+j, unless there is

information to the contrary.

Practical syllogisms represent the relation between intentions, be-

liefs and the behaviour of another agent. There are four types of prac-

tical syllogism implemented. The first is used to predict behaviour. If

an agent desires something and believes a specific action will achieve

that desire, the agent will perform that action. The second infers the

intention of an agent given its behaviour and beliefs. The third in-

fers an agent’s belief from its intention and behaviour. The fourth

is the attribution of the first practical syllogism to another agent i.e.

assumes other agents use the same practical syllogisms. CRIBB is a

competence model and always answers correctly. It is used to study

what knowledge is required and what inference schemas are used to

solve a problem.

The affective CRIBB (a-CRIBB) model is an extension of the BDI

schema used in the CRIBB model (Lewis, 2004). This can be seen
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in equation 3.1. A represents the affect values that order the vari-

ous propositions. P represents the agent’s perceptions. B, G, and I

represent the agents beliefs, goals, and intentions respectively.

A⊗ P ⊗ B → B′ Belief updates

A⊗ B′ ⊗G→ G′ Goal set selection

A⊗ B′ ⊗G′ ⊗ I → I ′ Intention mechanism

(3.1)

The first major change is the environment in which the framework

is implemented. Rather than a child that is asked questions, a-CRIBB

is a simulated fungus eater (Toda, 1982). The agent’s motivation is to

collect minerals and fungus rather than answer questions. The original

CRIBB architecture shown in figure 3.3 did not include the emotional

and physiological input seen in figure 3.2. The second extension there-

fore is the inclusion of an emotion-like element. The various extensions

to the CRIBB model are,

• A distributed model of affect.

• The inclusion of affective affordances applied to the perceptions

of the system.

• A revision of the consistency mechanism to include affective cor-

respondences.

• A description of a goal base including goal maintenance, goal

importance and goal achieved mechanisms.

• A central monitoring system.

A distributed model of affect means that rather than having a sep-

arate emotion module that interacts with other sub-systems, affect

is distributed across all the sub-systems. This distribution of affect

can cause communication and synchronisation problems between the
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agents various sub-systems. This problem is controlled by the central

monitoring system (CMS). The CMS communicates with all the sub-

systems via the exchange of semantic and control messages. Control

messages are simple messages that turn sub-systems on and off. This

depends on internal or external events. The use of control messages

allows the CMS to control the whole cognitive system.

Events are evaluated with respect to a goal base. Goals in a-CRIBB

have five elements (Lewis, 2004). The first two elements represent the

name and the type of the event under evaluation. The third element

represents the required state of the event. The fourth element of the

goal describes its importance value. The importance value is dynamic

and is affected by internal and external events. The goal importance

is also determined to some extent by the agent’s drives. Each drive

value is determined by internal and external events. When a drive

value exceeds its threshold level, the relevant goal importance value

is increased. Alternatively if the drive value falls below a particular

threshold, the goal’s importance decreases.

The final element of a goal is its threat value. This value keeps

track of the number of threats to a goal. It is determined by the

goal maintenance mechanism. Goals are associated with the belief

of an event. However, new information may enter the system that

contradicts the current belief. If the goal importance is high then the

goal maintenance mechanism rejects the new information. This is to

maintain the goal. Doing this also raises the goal’s threat level. If the

threat level exceeds a specific value then the goal is rejected.

If several goals are present the one with the highest importance

is chosen. Sub-systems are then activated to achieve it. This in turn

could create new goals in order to achieve the preceding goal. Once the

action has been performed, the goal achievement mechanism examines

the environment. This is to determine whether or not the goal has
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been achieved. The achievement or failure of a goal has an affect on

the importance value of that goal. It can also affect other goals present

in the system, as well as create or remove goals.

Depending on whether or not a goal is achieved, the affective cor-

respondence of the belief attached to that goal is altered. Affective

correspondence is a value that is associated with each source of in-

formation to the agent (Lewis, 2004). The value is an indication of

the reliability of the information source. If a belief is found to be in-

correct then the affective correspondence value for the source of that

belief is reduced. Conversely if a belief is found to be correct, then

the affective correspondence value for the source of that belief is in-

creased. The more reliable a source of information, the higher its

affective correspondence.

Within a-CRIBB each element in the agent’s environment has an

affective affordance value that can vary (Lewis, 2004). Affective affor-

dances are an extension to the theory of affordances (Gibson, 1986).

Affordances are properties offered to an agent by elements within its

environment. Fire affords warmth (positive affordance) and also burns

(negative affordance). This example demonstrates that affordances

are both objective and subjective. Fire exists, it does provide warmth,

it does burn, and therefore these are objective observations. The af-

fordances are subjective in the sense that an agent will only perceive

the properties relevant to it. An energy source appears more attrac-

tive to an agent if it is hungry than if it is not. In a-CRIBB the

affordance value allows the agent to direct its perceptual system. The

more significant an object in the environment, the higher its affective

affordance. Objects within the environment can be ordered in terms

of this value. This means that things with a high affective affordance

can be attended to first. This has the affect of directing the agent’s

perception to the most important object in its field of vision. Affective
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affordances can be altered by the experiences and requirements of the

agent. For example if the fungus eater is low on energy then fungus

has a higher affective affordance. The affective affordance can also be

affected by the outcome of goals.

3.6 Blackboard Systems

A blackboard system (as used by the BB1/Guardian discussed in sec-

tion 2.6) provides a method for solving problems, and consists of three

elements (figure 3.4). These elements are knowledge sources, a black-

board, and a control component (Corkill, 1991).

Figure 3.4: Blackboard system (Corkill, 1991).

The blackboard is a global structure and is available to all the

components of the system. It contains information on the problems

being solved such as, partial solutions, alternative solutions, previ-

ous solutions etc. It also contains a method of communicating that

information with the rest of the system. Finally it has a knowledge

source trigger. The trigger mechanism simply informs a knowledge

source that there is information relevant to it. This in turn prompts

the knowledge source into action.
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A knowledge source is a process that manipulates or performs a cal-

culation with information from the blackboard. Once the knowledge

source has performed its operation, the information is posted back to

the blackboard. Each knowledge source is separate and independent

of the other knowledge sources.

The final component of a blackboard system is the control com-

ponent. At any one time there may be several knowledge sources

wishing to access the blackboard. The control component decides

which knowledge source is allowed to access the blackboard at any

one time. The control component also has access to the blackboard.

It can therefore determine if the current problem is similar to a previ-

ous problem that has already been solved. In this way it can allow the

most appropriate knowledge source access to the blackboard. This can

hopefully provide the solution in the most efficient manner possible.

Some blackboard systems use a distributed method of control (Craig,

1989) as opposed to a control component. This approach has not been

adopted and so will not be discussed in any detail here.

3.7 Motivational Control Process

In psychology, motivation is the driving force behind all actions of

an organism (Beck, 2000). If an agent is to control its actions it

must have some form of desire or motivation in order to act (Dennett,

1984b; McFarland and Bösser, 1993). If it is taken that actions are

performed to achieve a positive internal state, then motivation is the

search for positive internal states, and the avoidance of negative ones.

Positive internal states can be taught, learnt or pre-programmed into

the agent.

There are many different ways in which to incorporate motiva-

tion into an agent (see chapter 9). Robo-CAMAL takes the approach
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that mind is a control system. From this viewpoint motivation can

be thought of as a control process (Sloman, 1993; Davis, 2001). A

motivation control process, or motivator, often includes the following

components (Sloman et al., 1994).

• Semantic content, a proposition P that represents a possible state

that might be true or false.

• A motivational attitude to P e.g. make true, make false etc.

• A rational if the motivator arose from explicit reasoning.

• An indicator of the current belief about P e.g. true, false etc.

• An importance value such as high, low etc.

• At the deliberative level, a plan or set of plans for achieving a

motivator.

• A commitment status such as adopted, rejected, undecided.

• A dynamic state e.g. being considered, nearing completion etc.

Figure 3.5 shows several of the motivational control states that have

been proposed so far (Davis, 2001, 2007). A more detailed discussion

on these control states can be found in section 9.5.

Figure 3.5: Motivational control states (Davis, 2001).

Much of the previous work done on motivation as a control process

involved agents in simulated environments (Davis, 1996, 2001; Nunes,

2001; Bourgne, 2003). It is therefore important to see whether this
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concept of motivation can translate from a simulated agent to a situ-

ated and embedded robot. A more detailed discussion on motivation

can be found in chapter 9.

3.8 CAMAL Architecture

The various issues explored in the previous sections are brought to-

gether in the CAMAL architecture. This architecture can be seen in

figure 3.1 (Davis, 2004).

Figure 3.6: CAMAL architecture (Davis, 2004).

The basic structure is that of CogAff (see section 3.3). This in-

cludes the perception, central processing, and action columns. It also

includes the reactive, deliberative, and meta-cognitive tiers. The vari-

ous control processes are contained within this matrix. Their location

within the matrix is dependent on there function.

CAMAL has been developed to investigate the use of affect and

motivation within a cognitive architecture. For this reason the central

processing column is divided into three sections.

The affect column contains the various affect models. For example



CHAPTER 3. THE ROBO-CAMAL FRAMEWORK 45

this could include the distributed affect model as used in a-CRIBB

(see section 3.5). The cognition column makes use of various cogni-

tive processes. This can include planning mechanisms such as the BDI

model (see section 3.4). The motivation column contains the archi-

tectures motivational constructs (see section 3.7). It also contains the

motivational blackboard which is at the heart of the architecture.

The motivation blackboard controls the flow of information through

the architecture. It also coordinates the various different control pro-

cesses. It is this blackboard that allows the various affect models to

update their values. It also allows the cognitive processes access to

the information they require to carry out their task.

Robo-CAMAL is a subset of the CAMAL architecture. Robo-

CAMAL differs in that it does not contain the meta-cognitive tier.

Also the affect model is a simplified version of the one found in a-

CRIBB. However, the BDI model central to CRIBB and a-CRIBB

remains. The motivational blackboard contained in CAMAL is also

at the heart of robo-CAMAL.

3.9 Summary

This chapter covered previous work that has a direct impact on the

design of robo-CAMAL. It described the framework within which the

architecture was designed. It then went on to discuss the CogAff ar-

chitecture, the belief desire intention model, the CRIBB and a-CRIBB

models, blackboard systems, and motivational constructs. Finally the

CAMAL architecture was discussed. This also included how robo-

CAMAL fits in to the CAMAL framework.



Chapter 4

Robot Architecture Overview

4.1 Introduction

This chapter describes the robo-CAMAL architecture that has been

developed to investigate the anchoring problem. It looks at the plat-

form on which robo-CAMAL has been developed i.e. its environment

and the robot. It then gives a brief overview on how the cognitive ar-

chitecture controls the robot. Finally, it details the specific technical

issues that need to be addressed in order to achieve the aims of the

thesis.

4.2 Architecture Platform

Robo-CAMAL is a situated and embodied agent. This means that

the agent’s environment and its physical body play an important role

in its cognitive processes. This section will describe the environment

in which robo-CAMAL operates, and its physical body.

4.2.1 The Robot

The robot used is an amigobot (Activemedia, 2000) and can be seen

in figure 4.1. It has a two wheel drive with a rear stabilising wheel. It

senses the environment through an array of eight sonar sensors. Four
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facing forward, one placed on either side, and two at the rear. In addi-

tion to this an omnidirectional vision system has been attached. This

allows the robot a 360◦ field of vision (see chapter 5). The amigobot

can pass all internal readings such as sonar readings, battery level

etc. to a desktop computer via a radio modem. All the vision data is

passed via a USB cable (figure 4.2).

Figure 4.1: The Amigobot (Activemedia, 2000).

The user can control the amigobot using the ARIA software suite

(Activemedia, 2003). ARIA consists of a number of algorithms im-

plemented in C++. They allow a user direct access to the robot’s

internal values such as sonar readings, robot heading etc. This allows

routines to be written that use the information to control the robot’s

actions. The control messages are sent to the robot via the radio mo-

dem. As well as the algorithms already present, various new ones have

been developed. These algorithms integrate new behaviours and the

vision system into the software package (see chapters 5 and 6).
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Figure 4.2: Amigobot with onmidirectional vision system added.

4.2.2 The Environment

The robot’s environment is an enclosed area approximately two metres

square. It has a one metre partition wall roughly halfway along one

side (see figure 4.3). The environment consists of various possible

objects; a blueball ; a redrobot ; or a blackrobot (see figure 4.3). The

black tape at the base of the walls is to aid the vision system. This

increases the contrast between the walls and the floor.

Figure 4.3: The robot’s environment.
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4.3 The Architecture

The architecture consists of two main components, the reactive level

and the deliberative level. A schematic of the architecture can be seen

in figure 4.4.

Figure 4.4: The robo-CAMAL architecture.

The reactive level consists of multiple micro-behaviours. A number

of micro-behaviours have been designed to achieve the same goal using

different methods. For example, one micro-behaviour uses sonar to

avoid objects on the right, where as a second uses the vision system

to achieve the same goal.

The micro-behaviours can be grouped in specific ways to produce
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macro-behaviours. For example hit(ball) or avoid(objects). The micro-

behaviours can be combined using four different arbitration meth-

ods. The four arbitration methods, plus the three possible perceptual

modes (sonar, vision, sonar and vision), means each macro-behaviour

has twelve different ways of achieving its goal.

Each macro-behaviour and its different possible methods are re-

ferred to as individual reactive architectures. This is not strictly true

as they are all part of a larger architecture. This method of labelling

has been done for clarity. For more details on the reactive component

see chapter 6.

The specific reactive architecture used is determined by the delib-

erative component. The deliberative component is implemented in

prolog. The reactive system is modified by the deliberative compo-

nent using parameters sent via the control messages (shown in figure

4.4).

The deliberative component is a blackboard system (see section

3.6). It has a motivational blackboard that contains the relevant in-

formation. The reasoning module represents the control component.

The various update modules and the affect model are the knowledge

sources.

The deliberative component works as follows. At the reactive level

sensor data is passed into the perception module. The perceptual

module uses a rule table (see table 6.2) to determine the appropriate

feedback message. The feedback message is passed to the reasoning

module which posts it on the motivational blackboard.

The reasoning module then allows the various knowledge sources

access to the blackboard in a specific order. First the belief update

uses the new information to modify its belief set. Then the goal up-

date uses the new belief set to determine if the current goal has been

achieved, and what the new goal is. The association update then uses
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the new belief and goal set to determine the relevant associations.

This follows the BDI schema as used in a-CRIBB (see section 3.5).

The belief set, goal set, and associations can all be constructed

using predicates defined by the domain model. These predicates are

contained on the motivational blackboard. At each step the affect

model is used to update the relevant affect values. The affect model

used is similar to that of a-CRIBB (see section 3.5). The affect values

are distributed across the motivational blackboard. The affect module

box in figure 4.4 is the knowledge source that manipulates the affect

values. Each goal, belief, and association have their own affect value.

Finally, the motivator update is called to determine the new motivator.

The appropriate control messages are then constructed from the new

motivator. The reasoning module then returns control to the reactive

component with these messages.

The following example provides a walkthrough of the architecture

performing a simple task. The reactive architecture is initially set-up

to avoid(objects) and find(blueball). The vision system uses the object

profiles to determine if an object it has detected is the blueball. If the

blueball is found a feedback message is sent to the reasoning module.

This states that a blueball has been found. It also states after how

many processing cycles success came. The reasoning module updates

the motivational blackboard. The reasoning module then causes the

belief set to update its self i.e. there is a blueball present and it has

been found. The beliefs are then ranked in terms of their reliability.

The reliability of a belief is determined by the source of that belief. It

is ranked according to the affect model.

Once the belief set has been updated, the reasoning module allows

the goal update to use the new belief set and the current goal state

to chose a new goal. That is: ”it was looking for a blueball and has

now found it”. Goals are chosen based on their importance value. As
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the current focus of the system is on the blueball, all goals associated

with the blueball have high importance values. As the blueball has

just been found the importance value of that specific goal is reduced.

This means that the goal hit(blueball) now has the highest importance

value and is promoted. The goal importance is calculated using the

affect model.

Once the goal has been chosen, the reasoning module allows the

association update to chose the appropriate associations. This is cho-

sen based on the current current belief and goal set. That is the belief

the ball has been found, and the goal is to hit the ball. At this point

the new association values are determined by the affect model.

Finally the motivator update uses the current goal and the relevant

associations to update the motivator. The association with the high-

est rank is used to update the motivator. The association’s rank is

determined by its goal, its belief, and its value (see section 8.6). This

is because it contains the plan most likely to achieve its goal given the

current belief.

The control message is constructed from the new motivator and

contains the specific reactive architecture most likely to achieve the

agent’s goal. The control message also contains the number of cycles

the reactive component should run for.

It should be noted that the deliberative component becomes dor-

mant while the reactive component is operating. Though the deliber-

ative component only becomes active when triggered by the feedback

message, it still retains the values of its previous state before becoming

dormant. At the reactive level the deliberative component is called

in much the same way as a micro-behaviour. This method of im-

plementation proves less time consuming than having a deliberative

component constantly monitoring the reactive level.
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4.4 Objectives and Problems

This thesis looks to answer several questions (see section 1.2). How-

ever, in order to answer these questions several technical problems

need to be overcome.

• The integration of a vision system into the architecture (chapter

5).

• The development of the reactive component (chapter 6).

• The adaptation and integration of previous work into robo-CAMAL

(chapters 8 and 9).

• The development of an interface between the reactive component

(C++) and the deliberative component (prolog).

• The development of a domain model with sufficient information

to achieve the aims of the thesis (chapter 7).

• The development of experiments to test robo-CAMAL (chapter

10).

These issues are addressed in the subsequent chapters.

4.5 Summary

This chapter gives an overview of the robo-CAMAL architecture. It

provides a basic summary of the robo-CAMAL architecture, which

shows how the reactive and deliberative components can work together

to achieve goals, without competing for computational resources, or

control of the robots final actions. It describes the environment in

which robo-CAMAL operates, and the physical body of robo-CAMAL.

It then goes on to give a description of how the architecture is con-

structed. It shows how the deliberative blackboard system is used to
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control the BDI schema, and how the affect model is integrated. It

finally looks at some of the technical problems that need to be over-

come.



Chapter 5

Vision System

5.1 Introduction

For any autonomous agent to interact with, or react to, its environ-

ment, it must first perceive that environment. In addition to the sonar

array robo-CAMAL has been fitted with an omnidirectional vision sys-

tem.

Autonomous robot navigation using omnidirectional vision is an

area that has attracted a great deal of attention (Adorni et al., 2002;

Okamoto and Grassi, 2002) as it provides a simple way to obtain a

360◦ field of view.

This chapter will describe the onnidirectional vision system used by

robo-CAMAL, and how it works. It will then go on to describe some

basic image processing techniques that can be used to analyse the

image provided by the image system. It will also describe the method

used by robo-CAMAL to detect an object using its vision system.

Finally, it will describe the technique used to identify an object found

by the object detection algorithm.
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5.2 Omnidirectional Vision

Omnidirectional vision systems are optical systems that provide a 360◦

field of view. The first omnidirectional vision system was conceived

in 1843 (McBride, 2005) and consisted of a rotating camera. Since

then, omnidirectional cameras have been redesigned and successfully

used for systems that require a large field of view such as surveillance

(Sogo et al., 2000) and 3D reconstruction (Gaspar et al., 2001; Sturm,

2000).

Figure 5.1: Omnidirectional vision system.

The single camera - single mirror system (see figure 5.1) is the

option implemented here. This has been chosen for its simplicity, and

its low cost. The mirror used is a spherical mirror, and was chosen

again for reasons of simplicity and cost.

Figure 5.2 shows an image taken using the vision system installed

on robo-CAMAL, and allows robo-CAMAL to view the area surround-

ing it.
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Figure 5.2: Image from robo-CAMALs’ vision system.

5.3 Basic Image Segmentation

Once an omnidirectional image has been captured by the camera it

needs to be interpreted. One important tool used in image interpre-

tation is image segmentation. The main goal of image segmentation

is to define regions within the image that correlate with objects in

the physical environment. This section will introduce a few basic

techniques for image segmentation. It will then go on to describe in

more detail the Sobel edge detection method which is the basis of the

segmentation model chosen for robo-CAMAL.

Thresholding is a very simple segmentation method that uses the

greyscale image intensity to determine if an object is present (Sonka

et al., 1993).

g(i, j) =







1 if f(i, j) ≥ T

0 if f(i, j) < T
(5.1)

A threshold T is defined. If the value of an image pixel f(i, j)

is less than T , the resulting pixel value of the segmented image is

set to 0. If the value is greater than T the segmented image pixel

value is set to 1 (see Equation 5.1). This is a very heavy handed
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approach to segmentation that has problems if the intensity values of

the objects in an image are similar to the background. This method

can be advanced to use a threshold for each of the three RGB values

of a colour image. Though this adds an extra feature with which to

segment the image, it still suffers from the same problem; this time

with an inability to identify objects of similar colours. The use of

more sophisticated threshold parameters can aid the segmentation, for

example, by ensuring the standard deviation of the pixels surrounding

the target pixel is below a specific threshold; the false alarm rate can

then be reduced.

Region based segmentation algorithms construct regions directly

as opposed to finding the border between two regions (Sonka et al.,

1993). Each pixel starts as a region. Criteria for merging two regions

are defined, for example if the two regions have a similar standard

deviation or mean intensity then they will merge. If two regions meet

the criteria for merging, they do so. This method has difficulty finding

an accurate boundary between two regions. This is primarily because

the features measured across boundaries often vary which can lead to

incorrect decisions made on the merging of two regions.

Edge-based segmentation processes images using edge detection op-

erators (see 5.4 for description of several edge operators) on a greyscale

image (Sonka et al., 1993). Edge detectors work by measuring the rate

of change in the intensity of the image in a local neighbourhood. The

direction of the edge θ is simply at a 90◦ angle from the direction of

the maximum intensity gradient (Equation 5.2).

|grad| =

√

(

∂f

∂x

)2

+

(

∂f

∂y

)2

θ = arg

(

∂f

∂x
,
∂f

∂y

)

(5.2)
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As images are digital, the gradient must be approximated by the

difference between the pixel values (Equation 5.3) where n can be any

integer small enough to approximate to the derivative.

gradx = f(x, y)− f(x + n, y)

grady = f(x, y)− f(x, y + n)
(5.3)

The edges then need to be joined to produce a linked edge chain

that separate the two distinct regions.

5.4 Detecting Objects Within Robo-CAMAL

One of the key constraints in developing robo-CAMAL’s vision sys-

tem is that it must be fast. For this reason the method proposed

for analysing the omnidirectional image makes use of a simple thresh-

old technique to construct a linked node chain. The edge detection

algorithm used by robo-CAMAL is the Sobel operator. Other edge

detection methods were tested, but the Sobel operator proved to be

the most appropriate for robo-CAMAL. It proved to be very fast as

well as accurate in determining an object edge.

The Sobel operator uses a 3× 3 convolution mask about the pixel

(Equation 5.4).

C1 =









1 2 1

0 0 0

−1 −2 −1









C2 =









0 1 2

−1 0 1

−2 −1 0









C3 =









−1 0 1

−2 0 2

−1 0 1









(5.4)

By using the convolution masks C1 and C3, a measure of the pixel

gradient in the horizontal and vertical plane can be found. If the

image response to C1 is i, and its response to C3 is j then the edge
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magnitude and direction are calculated using equation 5.5

g =
√

i2 + j2

θ = tan−1(i/j)
(5.5)

Once the image has been transformed using the Sobel operator, the

various edges need to be linked to form a continuous node chain. This

chain is then used to separate one area from the next. The algorithm

developed here examines an area of interest within an omnidirectional

image. The area of interest (AOI) is defined as an area around the

robot. In the case of robo-CAMAL, the area is defined by the radius

Rmax such that the maximum amount of the agent’s environment is

captured within the image. The AOI is extracted with a mask over the

robot’s position in the image to eliminate it from the image analysis.

An example of the AOI extraction performed on a test image can be

seen in figure 5.3.

Figure 5.3: Extraction of an area of interest from robo-CAMAL image.

The first issue that needs addressing is the segmentation routine

that is to be used on the image. The geometry of the image lends

itself to a spherical based node placement algorithm.

The first step is to generate an edge image from the extracted AOI

image. This is done using the methods described in the previous
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section (see figure 5.4).

Figure 5.4: Edge image generated using Sobel operator on figure 5.3.

The edge image is then searched in arcs through 360◦ through a

step angle θ. θ is determined purely by the number of segments, n,

searched through (Equation 5.6) The greater the value of n, the better

the vision systems resolution. This is because there are a greater

number of segments analysed for node detection, and therefore better

delineation of an objects leading edge..

θ = n
360◦

(5.6)

For each segment a decision is made on whether a node is present. This

decision is made based on a threshold technique. If there is an edge

magnitude above an experimentally determined threshold, then a node

is present. The position of the node is determined by its proximity

to the centre of the AOI. The closest point to the AOI’s centre that

has a value greater than the edge threshold is considered to be the

node’s position. This is assumed to correspond to the leading edge of

any object within the AOI. If a node is found to exist in the adjacent

arc then it is linked to the previous node to form a continuous node

chain. Figure 5.5 shows the result of the node chain generation.

The use of a proximity threshold is used to determine the leading
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Figure 5.5: Node chain generation using 5.4.

Figure 5.6: Node chain generation using a proximity threshold.

Figure 5.7: Node chain generated using only gradient threshold.
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edge of an object and to keep the node chain as continuous as possible.

If this is not done and the position is determined simply on the location

of the largest edge gradient the node chain becomes discontinuous and

jagged. Figures 5.6 and 5.7 show this effect on a test image. Figure

5.6 shows the result of the node placement algorithm if the proximity

threshold is used, Figure 5.7 shows the result without a proximity

threshold. It can clearly be seen that the proximity threshold produces

a more continuous node chain.

The value for the edge threshold was determined experimentally,

and the value that appeared to give the best results was chosen. Figure

5.8 shows three test images that use three different edge thresholds.

The first is too low and generates nodes that do not correspond to any

edge. The second provides a good result for node location whereas the

third has the threshold set too high, resulting in several edges being

missed.

Figure 5.8: Node chain generated using low, good and high edge threshold respec-
tively.

5.5 Node Placement Algorithm Limitations

Although the algorithm described in the previous section can find

the leading edge of an object, it does have some limitations. There

are various situations that the algorithm fails to provide the correct

information. One problem discovered is that objects on the same
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radial line can obscure each other (see figure 5.9). This becomes a

problem if the node chain is to be used for identification purposes.

However, as other properties are to be used for object identification,

this problem is not an issue here.

Figure 5.9: Mug obscuring book on right hand side.

A second problem occurs when the vision system is on a patterned

background. Figure 5.10 shows the effect of a tiled floor on the algo-

rithm. This problem is a severe limitation for the vision system and

prevents it being used for object avoidance in such an environment.

Figure 5.10: Effect of a patterned background on edge detection algorithm.
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The limitations of the vision system must therefore be taken into

consideration when developing the domain model for robo-CAMAL.

The assumption made is that the agent will operate in an environment

with an un-patterned floor, and any node chain found will correspond

to the leading edge of an object (this assumption makes up part of

the domain model which is discussed in chapter 7).

5.6 Object Detection

The second task of the vision system is to differentiate between the

different objects within the agent’s environment. The algorithm uses

colour to differentiate between objects. It was for this reason that

the objects used within the agent’s environment were chosen based on

their colour.

The objects that the vision system can detect are a blueball, a

redrobot, and a blackrobot. A colour profile was generated for each

object, and was calculated as follows. An image of each object was

taken from three different angles. For each image of the object, a

sample of 1000 pixels was taken. This gave a sample of 3000 pixels

for each object. Each pixel consisted of an RGB value giving three

variables. The average value and standard deviation of the pixel values

was calculated for each object. The results can be seen in table 5.1.

This table represents the colour profile of each of the three objects

present within the agent’s environment.

RGB value
Object Red Green Blue

mean σ mean σ mean σ
blackrobot 78.0 3.8 77.5 3.6 75.9 3.1
blueball 79.6 6.0 83.2 6.9 102.9 8.0
redrobot 103.5 4.2 89.7 5.1 79.9 3.9

Table 5.1: The calculated colour profile for the three objects.
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The figures 5.11 to 5.13 show the effect of using each colour profile

in table 5.1 as a filter on an image containing the three objects. If a

pixel value was found to be within 1 standard deviation of the aver-

age value for that particular colour profile, it was retained. All other

pixels were discarded. Figures 5.11 and 5.13 clearly show the pixels

corresponding to the redrobot and blueball respectively. However, fig-

ure 5.12 shows that when the black colour profile is used, a number

of pixels corresponding to the blueball are retained.

Figure 5.11: Effect of red colour profile mask on robo-CAMAL image.

The actual identification of an object made use of the edge detection

algorithm to provide an object area of interest. It is this area of

interest that is analysed to identify the object. Equation 5.7 and figure
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Figure 5.12: Effect of black colour profile mask on robo-CAMAL image.
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Figure 5.13: Effect of blue colour profile mask on robo-CAMAL image.
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5.14 show how the object area of interest (Object-AOI) is defined.

Object − AOI =
θ

2
(r2

2 − r2
1) (5.7)

Figure 5.14: The Object-AOI as defined by 5.7.

Here r2
1 is the radial distance to the node closest to robo-CAMAL.

r2
2 is the radial distance to the edge of the segment and has a value of

r2
1 + x where x is a pre-determined value (for robo-CAMAL x was set

to a value of 100 pixels). θ is the angle, in radians, between the first

and last nodes in the linked node chain. A graphical representation

of the area of interest can be seen in figure 5.15.

Figure 5.15: The AOI of an image that is used to extract the Object-AOI.

Once the Object-AOI has been extracted, all the pixels contained

within it are examined. A pixel is considered to conform to a profile if
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its value is within one standard deviation of the average pixel element

values seen in table 5.1. This analysis of the Object-AOI produces

three values:

• number of pixels conforming to blueball.

• number of pixels conforming to redrobot.

• number of pixels conforming to blackrobot.

The identity of the object within the area of interest is determined

by these three values.

• if(blueball pixels > blueball threshold) then (object = blueball)

• if(redrobot pixels > redrobot threshold) then (object = redrobot)

• if(blackrobot pixels > blackrobot threshold) then (object = black-

robot).

The threshold for each object is based on the size of that object. As

the blueball is smaller than the other objects, and therefore contains

less blue pixels, it has a lower threshold value. If the area of interest

conformed to two object profiles then the greatest object pixels to

object threshold ratio is chosen. If an area of interest did not conform

to an object profile then the object is classed as unknown.

5.7 Summary

This chapter has described what an omnidirectional systems is, ex-

plaining why the particular system used here was chosen. It then

went on to describe the different ways in which an image can be ex-

amined making the case for the use of single linked chain of nodes. It

then described the Sobel operator used in determining the node place-

ment of node chain. Finally, the chapter described how the leading
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edges were used to identify the various objects within the image with

the use of a colour profile.

The results of the image processing described here provide the basis

for descriptors used to link the low-level vision system to the cogni-

tive architecture controlling the robot. The assumptions made, and

thresholds used, make up part of the lower level domain model (see

section 7.2.1).



Chapter 6

Reactive Robo-CAMAL

6.1 Introduction

A reactive robot consists of a coupling between the system’s sensors

and actuators. A more detailed description of a reactive system can

be found in section 2.5.

This chapter will discuss the specific reactive components utilised

by robo-CAMAL. It will start off by describing the client/server ap-

proach that is used to control the robot. This includes the client soft-

ware package ARIA. It will then describe the robot’s sensor system.

This includes a sonar array and an omnidirectional vision system.

The chapter will then introduce the micro-behaviours that have

been developed to control the robot’s actions. The micro-behaviours

each provide a possible action that can be carried out. Therefore a

method of determining the correct action from the various possibilities

is required. It is at this point that the four possible micro-behaviour

arbitration methods are introduced. The chapter then describes how

the micro-behaviours can be grouped in different combinations to pro-

duce macro-behaviours.

Next the deliberative interface is described. This includes how

the perceptual module creates feedback messages for the deliberative

component. It also describes how the configuration module uses the

72
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control messages from the deliberative component to alter the reactive

architecture. Finally the chapter gives an overview of reactive robo-

CAMAL, and how it operates.

6.2 The Client/Server System

The robot uses a client/server control architecture. The robot acts

as the server. The client application is implemented on a desktop

computer. Information is sent between the client and server using

a either a radio modem or a cable leash. The client application is

written using the ARIA software suite (Activemedia, 2003). The client

processes the information sent by the server and sends the appropriate

control messages back to the robot. This process can be seen in figure

6.1.

Figure 6.1: The client/server structure for the amigobot.
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The robot specific functions collect and process all the information

about the robot’s state. These include battery level, all the various

sonar readings, and the current left and right wheel motor speeds.

These values can then be used to calculate several quantities such as

the robot’s current velocity, the distance to an obstacle, or the robots

position relative to its starting point. These values are then passed

via the radio modem to the client application.

The client application is written using the ARIA software suite.

ARIA consists of a set of functions that access information sent by

the server robot platform. The user then defines a set of actions,

or micro-behaviours. These micro-behaviours are added to the main

robot connection loop. They are fired once every processing cycle.

Each micro-behaviour uses the sensor information to produce an ac-

tion. Each action consists of a desired heading (a value between ±π)

and speed.

Once the micro-behaviours have produced an action list the re-

solver module determines the specific action to be sent to the robot.

For reactive robo-CAMAL, the original resolver has been modified to

include four arbitration methods. The desired action is then sent to

the robot via the radio modem in the form of a control message.

Control messages include the desired heading and speed. This in-

formation is then used by the robot specific functions to control the

left and right motor speeds. The cycle then repeats with the server

passing the robot’s current state to the client.

6.3 Sensor System

Robo-CAMAL’s perceptual system consists of a sonar array and a

vision system. The sonar array consists of eight sonar sensors. Four

facing forwards, two rear facing, and one on each side of the robot.
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The sonar ranging module on the server (see figure 6.1) takes the

response from each sonar sensor and converts the value into a distance

measurement. This information is sent to the client application via

the radio modem. The sonar data is then placed in a memory buffer.

The buffer can be accessed by the micro-behaviours. For example the

function getSonarReading(X) returns the distance value in mm of the

closest object to sonar X.

In addition to the sonar array, an omnidirectional vision system has

been developed (see chapter 5). The vision system allows the robot a

360◦ field of vision. The image is sent to the client via a USB cable.

The image is then processed and the results are placed in the vision

buffer. The vision buffer consists of three main components. The

node locations, the object parameter, and the object location. This

provides information on the objects type and location.

Figure 6.2: Omnidirectional image processing.

The object parameter contains the colour profile of the specific

object of interest. This is set using the control message from the

deliberative component. The system examines the area behind the

closest node from the initial image processing. The colour profile of

this area is compared to that of the object parameters. The object

location is updated based on this comparison. If the profiles do not

match then the object location is set to NULL. If the profiles do

match then the value is set to the object’s location. For a more detailed
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discussion of the vision system see chapter 5.

6.4 Micro-Behaviours

Micro-behaviours are actions that can be added to the main robot

connection loop. They are defined by the user. The micro-behaviours

have access to the sensor buffers. Each micro-behaviour accesses the

relevant sensor data once each cycle. It then produces an action based

on that data. The micro-behaviours are all reactive in nature. The

following is a list of all the micro-behaviours and their function.

• ConstVel. Drives the robot in a straight line at a constant speed.

• VisionAvoidFrontNear. Stops the robot and turns it away from

close objects in front. Object distance determined by the vision

system.

• VisionAvoidFrontFar. Turns the robot away with a constant lin-

ear speed from more distant objects in front. Object distance

determined by the vision system.

• VisionAvoidSide. Turns the robot away with a constant linear

speed from objects to the side. Object distance determined by

the vision system.

• SonarAvoidFrontNear. Stops the robot and turns it away from

close objects in front. Object distance determined by the sonar

array.

• SonarAvoidFrontFar. Turns the robot away with a constant lin-

ear speed from more distant objects in front. Object distance

determined by the sonar array.
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• SonarAvoidSide. Turns the robot away with a constant linear

speed from objects to the side. Object distance determined by

the sonar array.

• SonarAvoidRear. Speeds the robot up if an object is detected to

the rear. Object distance determined by the sonar array.

• IdentifyObject. Used to determine the identity of an object. Pro-

duces no directly observable action.

• TrackObject. Turns the robot in the direction of the object present

in the vision buffer.

• HitObject. Speeds the robot up if the object present in the vision

buffer is in front.

The avoid micro-behaviours make use of a proximity threshold to

determine their desired action. This is in the form

IF(sensor data < threshold) THEN(action = desired)

ELSE(action = NULL)

The proximity threshold is simply a predefined value determined by

the domain model (see chapter 7). It represents a physical distance

within the agent’s environment. Any object within that distance trig-

gers the micro-behaviour.

The object based micro-behaviours use data from the vision buffer

to interact with the various objects.

Once each micro-behaviour has been fired, it produces a set of

actions that it wishes to carry out. The desired actions from each

micro-behaviour are placed into an action list. The next step is to

choose the appropriate action from the list, and attempt to achieve it.
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6.5 Arbitration Methods

Once a list of actions has been created a method of determining the

desired action is required. To this end four arbitration methods have

been developed. These are the priority, aggregate, winner, and sup-

pression methods.

6.5.1 Priority Method

The priority method requires that each micro-behaviour be assigned

a priority when it is initialised. The code

avoid front(20);

avoid side(19);

constant velocity(18);

initialises each behaviour with a priority equal to the parenthesised

argument. The higher the number the higher the priority. This value

can vary between 1 and 100. A micro-behaviours priority is relative

to the other micro-behaviours. Therefore the code

avoid front(99);

avoid side(19);

constant velocity(7);

would produce the same result as the previous example.

6.5.2 Aggregate Method

The aggregate method uses a weighting system to determine the ap-

propriate action. Each behaviour is assigned a weight depending on

the response in the perceptual system. This weight value is based on

a weighting function. The weighting function for the avoid front and

constant velocity behaviours can be seen in figure 6.3.
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Figure 6.3: Behaviour weighting functions.

This shows that the behaviour’s weight is a function of an object’s

proximity to the robot. For example, in the constant velocity be-

haviour, the more distant an object from the robot, the greater the

weight is. The value of the weights can only vary between 0 and 1.

The weighting functions have been designed such that there is always

a micro-behaviour with a weight value. This means that there is al-

ways at least one active micro-behaviour. The resolver module then

examines the weights of all the behaviours. It combines their desired

actions based on these weights. This can be summed up by equation

6.1.
∑n

i=1
θiΛi

n
= θd

∑n
i=1

SiΛi

n
= Sd (6.1)

First the individual micro-behaviour headings, θi, multiplied by the

active micro-behaviours weight, Λi, is summed. The desired heading,

θd, is this sum divided by the total number of active behaviours, n.

The desired speed, Sd, is calculated in the same manner.

6.5.3 Winner Method

The winner method uses the same weighting system as the aggregate

method. The difference between the two methods is that the desired

action is the behaviour with the largest weight. This is also similar to
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the priority method with each priority calculated at runtime at each

processing cycle. The priority method differs in that it assigns these

values prior to the robot’s activation.

6.5.4 Behaviour Suppression Method

The final arbitration method uses a behaviour suppression technique.

In this method each micro-behaviour has a predefined set of micro-

behaviours that it can deactivate. This deactivation occurs when

its own conditions are met. For example if the avoid front micro-

behaviour is active it deactivates the constant velocity, avoid rear and

the avoid side micro-behaviours. The behaviour suppression hierar-

chy is determined prior to runtime. This method may seem similar

to the priority method. However, each micro-behaviour needs to re-

activate all the relevant suppressed micro-behaviours once it becomes

inactive. This means the robot’s reactions to events tend to be slower

and far less responsive.

6.6 Macro-Behaviours

Each of the micro-behaviours can be turned on and off individually.

This means that different combinations of micro-behaviours can be

active. For example, the only active micro-behaviours may be the

avoid actions. In this case the robot will remain stationary until an

object moves close to it. A grouping of micro-behaviours in this way is

referred to here as a macro-behaviour. A macro-behaviour is therefore

a specific grouping of micro-behaviours to produce an general overall

behaviour. The various macro-behaviours can be seen in table 6.1.

By activating the appropriate micro-behaviours the robot exhibits

the corresponding macro-behaviour. As the micro-behaviours can be

combined in four different ways (see section 6.5) each macro behaviour
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Avoid objects Identify object Track object Hit object

ConstVel ConstVel ConstVel ConstVel

V isionAvoidFrontNear V isionAvoidFrontNear V isionAvoidFrontNear V isionAvoidFrontFar

V isionAvoidFrontFar V isionAvoidFrontFar V isionAvoidSide SonarAvoidFrontFar

V isionAvoidSide V isionAvoidSide SonarAvoidFrontNear T rackObject

SonarAvoidFrontNear SonarAvoidFrontNear SonarAvoidSide H itObject

SonarAvoidFrontFar SonarAvoidFrontFar SonarAvoidRear IdentifyObject

SonarAvoidSide SonarAvoidSide T rackObject

SonarAvoidRear SonarAvoidRear IdentifyObject

IdentifyObject

Table 6.1: Macro-Behaviours.

has four possible configurations. In addition, the micro-behaviours in

each macro-behaviour use different sensor data. This means, for ex-

ample, that all the micro-behaviours using sonar can be deactivated.

This leaves the macro-behaviour using vision only. Therefore each

macro-behaviour has three different sensor modes. Sonar, vision, and

both sonar and vision. The three sensor modes and four combina-

tion methods means that each macro-behaviour has twelve different

configurations. As there are four macro-behaviours there are a total

of forty-eight different reactive configurations. For clarity, each such

reactive configuration is labelled as an individual reactive architecture.

6.7 Deliberative Interface

This project involves the use of a deliberative component to control a

set of reactive architectures. It is therefore important that the reactive

component can receive instructions from, and pass information to, the

deliberative component. To this end a configuration and perception

modules have been developed.

The perception module uses the reactive components internal state

to construct a message describing the agents current environment.

This message is then passed to the deliberative component. From

the reactive component’s perspective, the deliberative element can be
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thought of as another micro-behaviour. The only difference is that

the module does not produce a list of actions as it is not the job of the

deliberative component to directly control the robot’s actions, only

to guide its behaviour. Information is sent to and received from the

deliberative component depending on the current state of the robot.

The information received from the deliberative component consists

of five elements.

• Sensor type.

• Arbitration method.

• Macro-behavior.

• Object of interest.

• Cycle number.

The configuration module is used to activate the appropriate re-

active architecture. It uses the the information provided by the de-

liberative component to trigger the appropriate reactive architecture.

The sensor type and arbitration method are straight forward. They

indicate which sensor type and arbitration method should be used; for

example, use sonar and suppression, or use vision and priority. The

macro-behaviour details which micro-behaviour combination should

be active. The object of interest configures the vision buffer’s object

parameter to reflect the desired object. The final element represents

the number of cycles the reactive component should operate for. The

reactive element will run for X cycles before calling the deliberative

component, unless an event occurs. This means that once the infor-

mation from the deliberative call has been received, the robot will run

with the given architecture until the number of processing cycles is

complete, or an event occurs.
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It is the perception module that passes feedback to the deliberative

component. The perception module checks the sensor buffer every

cycle to determine if the robot has encountered an event. It checks to

see if the robot has hit anything, if there is an object in the buffer,

and if the current cycle value has been reduced to zero. If any of these

events occurred, the deliberative component is called and passed two

elements of information, the event that caused it to be called, and

the object currently in the object buffer. Table 6.2 shows the events

that cause a deliberative call and the corresponding messages. Here

the current object refers to the object currently in the agents vision

buffer. The unknown object refers to an object that has broken the

proximity threshold, but does not conform to one of the known object

profiles.

Event Event message Object message
Lower proximity threshold violated hit current object

and object in buffer
Lower proximity threshold violated hit unknown object

and no object in buffer
Upper proximity threshold violated near current object

and object in buffer
Upper proximity threshold violated near unknown object

and no object in buffer
object in buffer found current object

Process cycles = 0 avoid unknown object

Table 6.2: Deliberative message rule table.

Essentially the reactive component will run until one of several

things happen. If nothing happens then the number of cycles is decre-

mented by one. When this value reaches zero the deliberative com-

ponent is called and passed the statements avoid and object. This

indicates that the robot has avoided all objects. If however there is

an object present in the object buffer, then the statement found with

the object value is passed.

There are also two proximity thresholds defined. The lower proxim-



CHAPTER 6. REACTIVE ROBO-CAMAL 84

ity threshold defines a distance from the robot within which an object

is considered to have collided with the agent. If the lower proximity

threshold has been breached then the statement hit is passed.

The upper proximity threshold defines a distance from the robot

within which an object is considered to be near the agent. If the upper

proximity threshold is breached then the statement near is passed.

Although this is not an ideal solution for determining if the robot has

collided with something, it is the most convenient as touch sensors

are beyond the resources of this project. If a proximity threshold has

been breached, the object message is then dependent on the current

state of the vision buffer.

6.8 Reactive Robo-CAMAL Overview

Figure 6.4 shows a more detailed picture of reactive robo-CAMAL.

The robot’s sensors gathers information which is passed to the sensor

buffer via the radio modem and the USB cable. The perception mod-

ule uses information in the sensor buffer to determine whether an event

has occurred. If so, feedback messages are sent to the deliberative

component. The deliberative component processes this information

and returns a control message. The configuration module uses the

control message to determine the appropriate reactive architecture.

It configures the sensor buffer to the appropriate object profile. It

also configures the resolver module to use the appropriate arbitration

method.

After this, the active micro-behaviours fire to produce a desired

action list. This list is used by the resolver module to determine the

appropriate action. This action command is sent to the robot via the

radio modem. The robot then carries out that action.
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Figure 6.4: Reactive robo-CAMAL.
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6.9 Summary

This chapter described the reactive component of robo-CAMAL. It

started by describing the client/server system used to control the

robot. It then looked at the sensors used by the robot to observe

its environment. It then discussed the various micro-behaviours that

have been developed, and how those micro-behaviours can be com-

bined. The method of generating more general macro-behaviours was

then introduced, followed by how the reactive component interacts

with the deliberative component. Finally the chapter gave a brief

overview of robo-CAMAL’s reactive component.



Chapter 7

The Domain Model

7.1 Introduction

The BDI schema and the motivational blackboard used by robo-CAMAL

are generic. It can be implemented upon any agent in any environ-

ment. All that is required is a method of instantiating the relevant

information about the agent and its environment into the architec-

ture. This is achieved using the domain model. The domain model is

distributed across the entire architecture. It provides information on

the agent’s physical attributes and its environment.

The first part of this chapter will detail the specific information

built into Robo-CAMAL using the domain model. It will then discuss

some of the issues surrounding the design of a situated and embodied

agent, and how the domain model addresses these issues. Finally it

will describe the anchoring problem and how the domain model is used

to anchor symbols to sensor data within robo-CAMAL.

7.2 The Domain Model

The domain model provides Robo-CAMAL with information about its

environment and its physical form. The model is distributed across the

architecture at both the reactive and deliberative level. The domain

87
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model can be divided into two main elements.

• Statements about the agent’s environment

• Statements about the agent’s physical body.

7.2.1 Environment Domain Model

There are several components of the environment domain model present

at the reactive level. The first is an assumption made when processing

the images provided by the vision system. The use of an edge image

to place nodes that represent the leading edge of an object (see sec-

tion 6.3) assumes the agent operates on an unpatterned floor with no

shadows.

The second component provides information on the objects within

the environment. There are three distinct objects that can be present

in the environment (see section 4.2.2). Each object produces a distinc-

tive set of pixel values at the relative location in the vision system’s

image (see chapter 5). The response of the vision system to each ob-

ject can be seen in table 7.1. These values have been hard coded into

the agents vision processing module. This allows the agent to compare

what is sees with the object profiles. In 7.1 Vo,c,1 and Vo,c,2 represent

the lower and upper pixel colour channel values, c, within which a

pixel is considered to conform to that object profile, o.

Object R channel G channel B channel
blueball Vb,r,1 < x < Vb,r,2 Vb,g,1 < x < Vb,g,2 Vb,b,1 < x < Vb,b,2

redrobot Vr,r,1 < x < Vr,r,2 Vr,g,1 < x < Vr,g,2 Vr,b,1 < x < Vr,b,2

blackrobot Vbl,r,1 < x < Vbl,r,2 Vbl,g,1 < x < Vbl,g,2 Vbl,b,1 < x < Vbl,b,2

Table 7.1: Object profiles.

The third component present at the reactive level can be found

in the micro-behaviours. For example, the avoid micro-behaviours

contains the reactive control rule
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IF(sensor data < threshold) THEN(turn)

As the threshold represents a physical distance in the agent’s environ-

ment it can be thought of as part of the domain model.

Finally there is a perceptual module that passes the appropriate

feedback messages to the deliberative level (see section 6.7). The

messages are determined by the current state of the agent’s perceptual

systems, and the rules from table 6.2 that are defined by the domain

model.

Statements about the agent’s environment at the deliberative level

pertain to the possible beliefs the agent can have. These constitute

the possible beliefs used in the BDI schema. These statements are

present on the motivational blackboard. The environment statements

are

environment descriptor list([sparse, cluttered, dynamic, static])

clutter threshold(2)

object list([object, blueball, redrobot, blackrobot])

object predicate list([lost, found, near, hit])

The environment descriptor list details all the possible states the en-

vironment can be in. The clutter threshold determines the minimum

number of objects that must be present for the environment to be con-

sidered cluttered. The object list provides information on the possible

objects present within the environment. The term object is used when

an unidentified object is detected. The object predicate list details the

possible states the various objects can be in.

These statements allow the agent to construct beliefs about its

environment. These take the form

environment(item, source, time)

where item ∈ environment descriptor list
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object list(object, source, time)

where object ∈ object predicate list

The source and time terms detail the source of the belief (i.e. assumed,

deduced, or perceived) and the time it was formed.

The final statements on the blackboard relating to the environment

detail how the various beliefs relate to each other. These are

domain synonym([X, Y])

negation(X, Y)

The domain synonym states that if the second statement about an

object is true, then so is the first. For example, the agent can deduce

the belief found(blueball) if the belief near(blueball) is present. The

negation statements details which beliefs are mutually exclusive. For

example, The agent should not hold the beliefs environment(cluttered)

and environment(sparse) at the same time. Details on the domain

synonyms and the negation model can be found in appendix A.

The final element of the environment domain model to be found at

the deliberative level is the value for which beliefs are retained.

belief retain time(25)

This represents the number of deliberative processing cycles a belief

is held for. This value is related to the length of time a belief is

considered valid. For example, the deliberative component may trigger

the reactive component to run for 50 cycles. This means that for every

one deliberative cycle, the reactive component runs for 50 cycles. Each

reactive cycle takes approximately 0.2 seconds to run. If the agent is

in a sparse and unchanging environment, the reactive component may

run through the complete 50 cycles. This means that a deliberative

processing cycle will occur once every 10 seconds. If a belief is removed

after 25 deliberative processing cycles then the lifetime of the belief
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will be approximately 4 minutes 10 seconds. However, in a rapidly

changing environment the deliberative component may be called after

only 10 reactive cycles. Under these conditions a belief would be

removed after one minute and 40 seconds.

This means that the amount of time a belief about the agent’s envi-

ronment is retained is dependent on the nature of that environment. A

rapidly changing environment means beliefs are short lived. A sparse

and unchanging environment means that beliefs are long lived.

One interesting point to note is that if the belief retain time is set

to 0, the whole system becomes in essence a reactive system. This

is because a belief is disregarded as soon as it is formed, which has

the effect preventing the association mechanism from forming relevant

associations. Once this happens, the agent is unable to couple the cor-

rect belief, desire, intention combinations, and is therefore prevented

form learning the best course of action given its current belief set.

7.2.2 Physical Form Domain Model

All statements pertaining to the agent’s physical body are present at

the deliberative level. They are on the motivational blackboard. They

provide information on the actions the agent can take and the goals

the agent can have. These constitute the intentions and desires used

in the BDI schema.

The possible actions refer to the different possible reactive archi-

tectures that can be activated. This statement takes the form

architecture(sensor mode, arbitration method, macro behaviour)

The sensor mode represents the three possible sensor modalities. The

arbitration method details one of the four possible micro-behaviour

combination methods. The macro-behaviour is one of the four general

behaviours possible (see chapter 6).
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The desire list details all the possible desires the agent can have in

relation to the various objects. It takes the form

desire list([track, hit, avoid])

This can be combined with the object list to give the possible desires

the agent can have and takes the form

desire(object)

where desire ∈ desire list

and object ∈ object list

The final component of the physical domain model relates to the

goals the agent has. For example, the desire track(blueball) has been

achieved if the belief near(blueball) is present. The goal importance

and goal threat are the goal affect values(see section 8.6). They are

determined by the predicates

goal minmax(0.1, 0.9)

goal threat max(10)

The goal minmax statement determines the clipping values for the

goal importance value. This means the goal importance value will al-

ways remain between the values 0.1 and 0.9. The goal threat max(10)

determines the maximum goal threat. This value represents the num-

ber of times a goal can fail before its goal importance is drastically

reduced. See section 8.6 for more details on the goal affect mecha-

nism.

The final element of the domain model relates to the number of cy-

cles the reactive component is triggered for. This value is determined

by the predicates

reactive cycles(50)
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This shows that the reactive component is triggered for 50 cycles.

Each reactive cycle takes approximately 0.2 seconds. This means that

the agent has 10 seconds to achieve its goal. This value was determined

by the size of the agent’s environment.

The agent’s environment is approximately 4 m2. The agent’s speed

is approximately 0.5 m/s. This means that the agent can cover its

environment in around 6 seconds. Given this 10 seconds was approx-

imately found to be a reasonable time limit within which the agent

can achieve its goal.

7.3 Situated and Embodied Cognition: A Domain

Model Perspective

From section 7.2 it can be seen that there are two distinct elements

to the domain model. Statements about the agent’s environment, and

statements about the agent’s physical form. These statements reflect

the situated and embodied nature of robo-CAMAL. It is situated in

that it has sensors that directly detect its environment. It is embodied

because it has a physical presence in its environment. This means that

robo-CAMAL has to address some of the issues raised by the situated

and embodied cognition perspective.

7.3.1 The Situated and Embodied Approach

The situated and embodied approach takes the view that an agent’s

behaviour and cognitive processes are context dependent. That is

an agent’s behaviour and cognitive processes are dependent on its

environment and physical form (Smith, 1999).

An ant’s path across a pebbled beach is complex due to the com-

plexity of the environment, not necessarily the complexity of the ant.

This shows that an agent’s behaviour is determined to a large extent,
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by its environment (Simon, 1996). A bird’s ability to jump from a roof

and fly is due to the design of its wings. This shows that an agent’s

behaviour is determined to a large extent, by its physical form.

The situated/embodied approach is often taken one step further

and used to simplify the agent’s cognitive processes. The view can

be taken that an agent’s environment is its own best model (Brooks,

1991). This means that the environment can be used to do the agent’s

computing. For example, an individual riding a push bike does not

use the laws of motion to calculate how to shift their weight in order

to maintain their balance. They simply shift their weight and use

the feedback provided by the environment to determine if they have

altered their position correctly. This approach promotes a shift of

focus from abstract deduction within an agent’s cognitive system, to

a behaviour based act and observe system.

This shift in focus works well for reactive agents. The use of the

environment as its own model allows a reactive agent to use perceived

states of its environment to avoid explicit symbolic representation and

reasoning (Brooks, 1997; Agre and Chapman, 1987; Rosenschein and

Kaelbling, 1996). If however the agent wishes to make use of sym-

bolic representation and reasoning in order to decide its next action,

problems arise. How, for example, is knowledge about the agents en-

vironment and physical form instantiated into the agent’s cognitive

architecture? Also, how do the symbolic representations attain their

meaning?

7.3.2 The Frame Problem

The difficulties with incorporating information about the agent’s en-

vironment and physical form are encapsulated by the frame problem.

The frame problem was initially conceived as the problem of how an

agent keeps the model of its environment consistent and up to date
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(McCarthy and Hayes, 1969; Pylyshyn, 1987).

One example often used to demonstrate the frame problem is as

follows (Franklin, 1995). A system is tracking an individual with a

key in their hand. The system notes that the individual has moved

from room A to room B. How does the system know the key is now

in room B.

One solution is the use of a frame axiom that informs the system

about what happens to keys that are being held. Now the individual

places the key on a table, and moves to room C. Unless a second frame

axiom is created that deals with the dropping of keys, the system will

assume the key is in room C. A second individual may then pick up

the key and throw it out the window. This would require a third frame

axiom.

The problem results in a combinatorial explosion for all but the

simplest environments. This is because almost any aspect of a situ-

ation, under some circumstance, can change. This requires a frame

axiom for all possible circumstances in order to handle that change

(Dennett, 1984a).

A second solution would be to check the state of the key after every

observed change in the environment. This solution has problems if the

environment is complex and contains a large number of objects. In

this situation it becomes computationally expensive, and impractical,

to monitor the state of every object at every moment in time.

The frame problem leads some to believe that there is a deep prob-

lem within symbolic A.I. (Pylyshyn, 1987). How does an agent ignore

information that is obviously irrelevant to its goals (Dennett, 1987)?

For example, an individual attempting to cross a road may know there

is a possibility of being struck by a meteorite. However, this informa-

tion is not used when calculating the risk of crossing the road at a

particular point. A second question is how an agent keeps track of
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noticeable side effects, without constantly checking its environment

(Haugeland, 1987).

There have been many different approaches to find a solution to

the frame problem (Shanahan, 1997). However, Robo-CAMAL does

not solve the frame problem, it simply circumnavigates it. It does this

with the use of the domain model.

For a reactive agent, the frame problem does not exist as there are

no symbolic representations. This means that at the reactive level of

robo-CAMAL, there is no frame problem. The domain model filters

the information that is passed from the reactive to the deliberative

level (see section 6.7). This enables robo-CAMAL to ignore informa-

tion that is irrelevant to its goals.

For example, the agent’s goal may be hit(blueball). The vision

system is configured accordingly. As the vision system is configured

to detect only the blueball, the hit micro-behaviour will only react to

that object. The reactive architecture will not react to a red robot

because of its colour. This means that information concerning the

robot’s colour will not be passed to the deliberative level. If however,

the agent accidentally hits the redrobot, then the appropriate event

message is constructed and passed to the deliberative component.

In fact, only information relevant to the agent’s goal is passed to

the deliberative level. This includes the achievement, or failure of

its goal due to unforeseen events. This means the agent never uses

irrelevant information when reasoning about its goals. This is because

it only ever receives relevant information.

The domain filter has an important effect. The reactive component

can cope with complex dynamic environments. The domain model

filters the relevant information to pass to the deliberative level. This

allows the model of the environment at the deliberative level to be a

simple one. This means that only a small number of frame axioms are
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required.

A second point to note is how robo-CAMAL keeps track of changes

within its environment. Robo-CAMAL approaches this difficulty from

two different angles. The first is through the use of the domain model.

Robo-CAMAL will only check for changes that are relevant to its

current goal. These are defined as the success condition within the

goal predicate

goal(desire, success condition, importance, threat)

The agent simply checks for the success conditions.

The second approach concerns the frequency with which robo-

CAMAL checks the environment. This is determined by the inter-

action between the reactive and deliberative components. The delib-

erative component triggers a reactive architecture for X number of

cycles, then becomes dormant. The reactive component will only pass

information to the deliberative level when a relevant event occurs, or

after X cycles have passed.

This means that from the deliberative component’s perspective, it

checks the environment after every processing cycle. In reality how-

ever, due to the nature of the reactive component, the agent checks

the environment after a predetermined time period has elapsed, or

once a specific event has occurred.

Although the domain model enables robo-CAMAL to cope with the

frame problem, it creates other technical difficulties. As the domain

model instantiates all the information required about the agent’s envi-

ronment and physical form, very careful consideration must be taken

when constructing it. Any inaccuracy or instability in the domain

model will have a major effect on the agent’s ability and behaviour.

A fixed domain model will mean that the agent’s ability in an alien

environment will be severely limited. If the agent is able to modify its
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domain model, the problem of its construction is shifted up a level.

What domain model elements can be changed, and how should they

be changed? Finally, the agent could construct its own domain model.

This is when the agent runs into the symbol grounding problem (see

section 7.3.3).

The problems of the domain model, and their ramifications for

robo-CAMAL, are discussed in chapter 11.

7.3.3 The Symbol Grounding Problem

If a cognitive agent uses symbols to reason, how are those symbols

generated, and how do they attain their meaning? This problem is

known as the symbol grounding problem (Harnad, 1990). A common

problem used to highlight the problem is the Chinese room argument

(Searle, 1980). An individual that has no understanding of the Chinese

language, is isolated in a room. They are given a set of instructions on

how to correctly respond to Chinese text. The only form of commu-

nication available is by passing them notes written in Chinese. The

individual uses the instructions in order to respond, and passes a note

back. An observer with no knowledge of the instructions may believe

the individual in the room understands Chinese. This however is not

the case.

A second more practical example involves MYCIN (Buchanan and

Shortcliff, 1984). MYCIN is an expert system designed to diagnose

certain infectious diseases. It uses a knowledge base and production

rules to determine the most likely cause of a disease. A rule in the

MYCIN program may take the form (Clancey, 1997)

IF (AND (SAME CNTXT TREATINF MENINGITIS)

(SAME CNTXT TYPE BACTERIAL)

(SAME CNTXT SURGERY
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(SAME CNTXT NEUROSURGERY))

THEN(CONCLUDE* CNTXT COVERFOR TALLY

((STAPHYLOCOCCUS 400)

(STREPTOCOCCUS 200)

(E.COLI 300)))

If a patient has BACTERIAL MENINGITIS and has under-

gone NEUROSURGERY, then the most likely causes of the infec-

tion are either STAPHYLOCOCCUS, STREPTOCOCCUS, or

E.COLI. However if these symbols were replaced with gibberish such

as A75F or B16Y, MYCIN would still operate in the same way.

The symbols were pre-programmed by the systems designer, and the

results are interpreted by a human user.

The previous examples show the need for an agent to attribute

meaning to its symbols. If the agent can not attribute meaning to

its symbols, then it becomes a mindless symbol manipulator. It also

asks the question about how symbols are created. Can an agent be

considered to be autonomous if an external system is required to create

its symbols?

Robo-CAMAL does not need to solve the whole grounding problem.

Within robo-CAMAL, the domain model has been pre-programmed.

This means that any symbols used are also pre-programmed. The

question of symbol generation goes beyond the scope of this project.

Although robo-CAMAL does not need to generate its own symbols,

it does need to attribute meaning to those symbols present. This

is achieved through the use of the domain model, and the system’s

solution to the anchoring problem.



CHAPTER 7. THE DOMAIN MODEL 100

7.3.4 The Anchoring Problem

Symbolic manipulation performed by a cognitive agent should be about

something. This means that the symbols need to be coupled to objects

or events, to which the agent can attach meaning. For a situated and

embodied agent, this means coupling those symbols to information

received from its perceptual system (Clancey, 1997; Maturana and

Varela, 1992; Harnad, 1990; Wittgenstein, 1953). What is required

is a process that connects the symbol system to the sensor data in

the correct way (Fodor, 1980, 1985). This process is known as the

anchoring problem.

Anchoring is the process of creating and maintaining the correspon-

dence between a system’s symbols and its sensor data. The anchoring

problem is the problem of how to perform anchoring in an artificial

system (Coradeschi and Saffiotti, 2003).

The way in which a symbol is anchored is dependent on the agent’s

perceptual system. Different perceptual systems generate different

types of data. This means that the way an agent analyses its per-

ceptual data is highly dependent on its physical form. For example

robo-CAMAL’s vision system produces a two dimensional pixel array,

where as its sonar sensors produce eight separate sonar values. This

data has to be processed in the correct way if links are to be created

with the appropriate symbol.

There are many different ways in which symbols can be anchored to

perceptual data. One such example uses fuzzy logic (Coradeschi and

Saffiotti, 1999). Consider an agent with the task of finding a small red

ball. The properties small and red can be represented by two fuzzy

sets (see figure 7.1).

The agent’s vision system measures the hue and area of objects

currently within its sight. Due to the uncertainty and imprecision
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Figure 7.1: Two fuzzy sets representing red and small.

inherent in all perceptual systems, the various properties measured

by the vision system can also be represented by a fuzzy set.

By comparing the perceived fuzzy set, A, with the fuzzy set of

the required property, B, the degree to which they match can be

calculated. For example, let the agent’s perceived hue of an object

be fuzzy set A. The fuzzy set that represents the colour red is B.

The degree to which the two sets match can be calculated using fuzzy

set operations. An example of two such operations can be seen in

equations 7.1 and 7.2.

match1(A, B) = sup
x∈X

min{A(x), B(x)} (7.1)

match2(A, B) =

∫

x∈X min{A(x), B(x)}dx
∫

x∈X B(x)dx
(7.2)

Equation 7.1 gives the value at which the two sets intersect. Equation

7.2 calculates the area to which the two sets overlap. This can be seen

in figure 7.2.

The degree of matching for each feature can then be combined. This

gives an overall degree of matching between the object’s perceptual

profile, and the desired object’s profile. The object with the highest

matching value is then linked to the symbol small red ball.

The way in which robo-CAMAL anchors is similar to, but some-

what simpler than, the fuzzy logic method described above. The first
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Figure 7.2: Two methods to match fuzzy sets A and B.

point to note is that almost all of the anchoring process within robo-

CAMAL is controlled and maintained by the domain model. The

symbols that represent the objects are pre-programmed via the do-

main model. The response of the vision system to the objects is pre-

programmed and instantiated via the domain model. Finally, the

coupling of the perceptual data to the symbol is controlled by a rule

table defined by the domain model.

The way in which robo-CAMAL performs anchoring is as follows.

At the deliberative level the agent has a goal that concerns an object,

for example hit(blueball). Contained within the control message used

to trigger the reactive component is the symbol blueball. This symbol

is used to configure the agent’s vision system.

Different objects generate a specific response in the agent’s vision

system. The vision system produces a two dimensional pixel array.

Each pixel has three values, R, G, and B. Each object has a specific

RGB profile. As with the fuzzy logic anchoring example, each object

can have a fuzzy set that represents its possible R, G, and B values.

An object profile then contains three fuzzy sets. One representing

each of the RGB pixel values.

Once the symbol blueball has been received by the reactive compo-

nent, the vision system is configured to search for objects that conform
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to the appropriate object profile. However, unlike the previous fuzzy

logic example, robo-CAMAL does not generate a fuzzy set from the

perceptual data. The vision system examines the pixels of the desired

object. If a pixel’s RGB values conform to the object profile, the

pixel is counted. If the number of counted pixels is above a predefined

threshold, then the object is said to conform to the object profile. At

this point the object buffer is updated with the comparison success

information, and the object’s location. For more details on how the

vision system identifies objects, see chapter 5.

Once a successful comparison has been made, a feedback message is

sent to the deliberative component. The message states that an object

has been found that conforms to the desired object’s profile. In this

example that means the blueball. Once the deliberative component

receives this message, it creates a belief about the blueball. Once

this belief has been create, the symbol blueball is considered to be

anchored.

The other important aspect to anchoring symbols is maintaining

the anchor. Within robo-CAMAL this is done with the use of the

belief management system. The deliberative component creates a be-

lief about the blueball when the reactive component’s vision system

responds in a specific manner. If the vision system looses sight of the

blueball, the belief about the blueball still remains. This is akin to

saying that even though the agent can not see the blueball, it knows

that it is present within the environment.

The way in which robo-CAMAL anchors is in a top-down, bottom-

up direction. Information must be passed from the deliberative to the

reactive level (top-down), and from the reactive to the deliberative

level (bottom-up). Only once the relevant information has been passed

both ways is the object considered to be anchored.

The anchor to blueball can be broken in two ways. The first is
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if robo-CAMAL attempts a task involving blueball. If robo-CAMAL

fails the task then all beliefs about blueball are removed. This has the

affect of saying the blueball has been lost. The second involves the

age of the belief. If a belief is older than the predefined threshold be-

lief retain time, then it is removed. Once all the beliefs about blueball

are removed, the anchor is broken.

One drawback in the anchoring process used by robo-CAMAL is

that its anchors lack persistence. An anchor has persistence if the

agent loses sight of the anchored object, and still knows its location

from internally stored position data (Coradeschi and Saffiotti, 2003).

Although information is recorded on the object’s location, this is

done locally at the reactive level. Location data is not passed to

the deliberative component. This means that although the agent may

know that an object is present, it only knows its location when looking

at it.

Anchoring can also be applied to correspondences between sym-

bols and sensor data that refer to events and actions (Chella et al.,

2003; Steels and Baillie, 2003). Again, the anchoring of symbols that

represent events and actions are controlled by the domain model.

If robo-CAMAL’s perceptual system detects an event that is rele-

vant to the agent’s goals, a feedback message is sent to the deliberative

component. The deliberative component then generates a belief about

that event. For example, if an object is detected within a specific dis-

tance, then the appropriate feedback message is sent to the delibera-

tive component. The belief hit(object) is then generated. This shows

the event hit has been anchored to a specific perceptual response. The

anchoring of events is in a bottom up direction.

At the deliberative level robo-CAMAL has symbols that represent

its actions. These symbols are passed to the reactive level via the

control message. The action symbol is used to configure the reactive
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architecture. The agent’s actions are determined by the reactive ar-

chitecture’s configuration. The agent’s environment responds to the

agent’s actions. This response is perceived by the agent, and the rele-

vant information is passed to the deliberative component. The agent

anchors action symbols by observing the consequences of those actions

on the environment. This process continues in an ongoing feedback

loop. This process is controlled by the learning process described in

section 8.5.3. These anchors are generated in both a top down and

bottom up direction.

7.4 Summary

This chapter looked at some of the issues associated with situated

and embodied cognition. It started by introducing the domain model.

This is used to instantiate information about the agent’s environment

and physical form into the cognitive architecture. It then went on

to discuss some of the specific problems associated with situated and

embodied cognition. First the frame problem was described, as well as

how robo-CAMAL circumnavigates the problem with the use of the

domain model. It then went on the describe the symbol grounding

problem, and the related anchoring problem. The chapter finished by

describing how the anchoring problem is resolved with the use of the

domain model.



Chapter 8

Associations

8.1 Introduction

Within robo-CAMAL associations are at the core of the BDI schema.

Each association contains a belief, desire, and intention combination,

as well as an associated affect value. Associations are one of the main

factors in deciding the agent’s next action at the deliberative level.

This chapter will first describe the association construct. This will

include how it relates to the BDI schema and how it is used to decide

the agent’s next action. It will then describe the association value

in more detail. It will then introduce the two applications for the

association construct investigated within this thesis. These are how

associations can be used to enable the agent to learn about its own

behaviour, and how the agent can adapt to its changing environment.

8.2 Association Construct

One of the main components within robo-CAMAL is the BDI schema

(see section 3.4). This is where an agent has a belief and a desire that

combine to provide an intention or set of plans. The intention is then

acted upon to achieve the agent’s goal. For example, an agent may be

hungry. It may also believe that food is most likely found close to a

106
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tree. The agent’s intention would then be to find a tree and look for

food. The agent would then act upon this set of plans.

Robo-CAMAL maintains a set of beliefs about its environment. It

also has several possible goals that relate to that environment. It also

has a number of different plans or intentions that it can act upon. As-

sociations provide a method for robo-CAMAL to keep track of all the

possible belief, desire, and intention combinations. They also contain

a value that indicates their relevance to the agent at that time.

Each association takes the form

association(belief,goal,architecture,value)

The belief element is simply one of the beliefs the agent can hold.

The goal element is one of the possible goals the agent can have. The

architecture refers to one of the possible reactive architectures that

can be activated. This is the equivalent of the agent’s intention. The

value is a measure of how likely the architecture is to achieve the goal

given the belief. For example the association

association(found(blueball),

hit(blueball),

architecture(hit blueball),

value)

should have a higher value than the association

association(found(blueball),

hit(blueball),

architecture(avoid blueball),

value)

The various associations can be pre-programmed prior to runtime.

However, as there are so many possible BDI combinations it is imprac-

tical to pre-program all possible associations. A method has therefore
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been built in to robo-CAMAL to generate associations during run

time. If the agent comes across a belief-goal combination it has never

encountered it generates all the possible belief-goal-intention combi-

nations relevant to the agent at that time. All new associations are

initialised with the value set at 0.5.

Associations are chosen on based on the current goals and beliefs of

the agent. For example, if the agent’s current goal is to hit(redrobot)

then all associations that do not contain the goal hit(redrobot) are

disregarded. The same is also true for the agent’s current belief set.

If the belief environment(sparse) is not present then all associations

containing the belief environment(sparse) are disregarded. Finally the

most appropriate association is chosen based on the agent’s current af-

fect values that relate to its beliefs, goals, and associations (see section

8.6).

8.3 Association Value

As mentioned previously the association value is a measure of the

likelihood that a specific architecture will achieve the agent’s goal

based on its belief. The association value can fluctuate, and is based

on feedback from the agent’s previous actions.

The feedback mechanism works as follows. The most relevant as-

sociation is chosen based on the agent’s current beliefs, goal set, and

affect values. This choice is based on the association value, the time

the belief was formed, and the goal importance value. The associations

are ranked according to equation 8.11 in section 8.6. The association

with the highest rank is chosen. If the two highest ranked associations

have the same association value, the first in the list is chosen. The

reactive architecture of this association is then activated. Once the

reactive architecture has run its course the robot’s sensors provide in-
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formation on the state of the environment. This information is used

to determine if the goal’s conditions have been met. If the goal has

been achieved the association value is increased. This reinforces the

association and increases the chance that it will be chosen again if the

same conditions arise. If however the goal has not been achieved, the

association value is reduced. This means that it it is less likely to be

chosen, given the same conditions.

The association value is increased or reduced according to the equa-

tions 8.1 and 8.2 respectively.

vi+1 = vi + ((0.95− vi) ∗ 0.1) (8.1)

vi+1 = vi − ((vi − 0.15) ∗ 0.1) (8.2)

Here vi is the current association value, and vi+1 is the new association

value. The variation in the association value can be seen in figure 8.1.

Figure 8.1: Association value functions.
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The values have been clipped at 0.95 and 0.15. This prevents the

associations from becoming too high or too low. If the environment

changes then a specific association may become inappropriate. For

example, whilst a blueball is present in the environment, an association

with the intention architecture(hit(blueball)) will continue to succeed.

However, if the blueball is removed the association will fail. If the

association value is too high, this association will continue to be chosen

long after the ball has been removed. As a consequence the agent will

fail to adapt quickly to a changing environment. For this reason the

association values have been clipped.

8.4 Association Creation

Associations can be pre-programmed prior to run time. However, this

has the effect of controlling which actions are to be used for each

belief/goal combination. For example, programming the association

association(found(blueball),

hit(blueball),

architecture(hit (blueball)),

0.8)

links the goal hit(blueball) to the specific architecture(hit blueball).

If the associations are not pre-programmed then robo-CAMAL has

a set of actions with no indication of their purpose. In this case robo-

CAMAL needs to generate its own associations. It then needs to test

the new associations to determine which is the most appropriate for

each situation.

New associations are created as follows. First, all the agent’s goals

are placed in a list. Each goal is paired with each belief the agent has

at that time. Each belief/goal pair is combined with every possible

reactive architecture. Each new association has its association value
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set to 0.5. This means that for each belief/goal pair 48 new associa-

tions are created. For example if the agent has the goal hit(ball), the

beliefs environment(sparse) and found(ball), the associations created

are:

association(environment(sparse),

hit(blueball),

architecture(1...48),

0.5)

association(found(blueball),

hit(blueball),

architecture(1...48),

0.5)

giving a total of 96 new associations.

The following experiment gives a practical example of association

creation. The system was set up as follows. First all the micro-

behaviours were deactivated. The reactive component of robo-CAMAL

was reduced to nothing more than a vision system. The deliberative

component was initialised with the goal find(redrobot), and the belief

environment(sparse). The reactive cycle number was set to 20. The

vision system was initialised to detect an object corresponding to the

object profile produced by the redrobot. A stationary redrobot was

placed in front of robo-CAMAL within its lower proximity threshold.

Once the experiment was started, the reactive component provided

feedback that the redrobot had been found. After one minute the

redrobot was replaced by the blackrobot. At this point associations in-

volving the beliefs found(blackrobot) and environment(cluttered) were

created. After a minute the blackrobot was replaced with the redrobot.

Some of the relevant associations can be seen in figure 8.2.

Figure 8.2 shows several associations with the same goal and in-

tention. Each line represents an alternative belief. Initially associ-
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Figure 8.2: Association generation process.

ations with the beliefs environment(sparse), environment(dynamic),

and found(redrobot) are created. The belief environment(dynamic)

comes from the domain model assumption that if a robot is present,

then the environment is dynamic. Initially the association with the

belief found(redrobot) increases as it achieves its goal. Once the re-

drobot is removed then the association fails and its association value

is reduced.

Once the blackrobot is introduced then new associations involv-

ing the beliefs found(blackrobot) and environment(cluttered) are cre-

ated. The belief environment(cluttered) is generated due to the do-

main model assumption that more than two objects means a clut-

tered environment. This appears in figure 8.2 as the association val-

ues that jump from 0 to 0.5. The gap between the reduction of the

found(redrobot) association and the creation of the new association is

due to the finite time required to swap the two robots. As the reac-
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tive cycle number was set at a low value, the time taken to change

the robots over is significant. Once the redrobot was reintroduced the

association with the belief environment(dynamic) increases.

This experiment appears to show that robo-CAMAL is successfully

learning the appropriate behaviour to achieve its goal. However no

hard conclusions can be drawn from this as the experimental set up

was so contrived. These results are given purely as an example of

association generation.

8.5 Machine Learning Through Associations

Robo-CAMAL makes use of associations in order to learn about the

effect of its actions on its environment. This section will briefly look at

machine learning, in particular reinforcement and Q learning. It will

then go on to describe how robo-CAMAL uses associations to learn.

8.5.1 Machine Learning

Machine learning involves building systems that can use example data

or past experience to optimise their performance (Alpaydin, 2004).

There are many possible methods from supervised learning, where

the system is provided with controlled training data, to unsupervised

learning, where the system is given no labelled data and learns by its

own means.

There are also many types of algorithms that can be used. One

example makes use of neural networks (see section 2.4). The system

is given a desired output. Then given a specific input, the weights

of the neural network fluctuate until the desired output is achieved

(Franklin, 1995). A second involves classification. This is often used

in image analysis (Sonka et al., 1993). The system may have various

objects to identify within an image. Different objects will have differ-
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ent features. The system can be given training images of each object.

The system can take a statistical measure of the various features of

the object. For example it could measure the intensity values of the

pixels corresponding to the object. White objects will have a higher

average intensity than black objects. Therefore a distinction can be

made between black and white objects based on their average inten-

sity. This demonstrates how a simple law can then be instantiated to

classify objects based on their average intensity.

There are many more possible algorithms. However the most rel-

evant to robo-CAMAL is reinforcement learning, and in particular Q

learning.

8.5.2 Reinforcement Learning

Reinforcement learning involves an agent performing an action within

its environment. It then receives a reward or penalty based on the

result of that action. By trying several different actions and using the

feedback provided, the agent attempts to learn how to maximise the

total reward (Alpaydin, 2004).

A more formal description of reinforcement learning is as follows

(Mitchell, 1997). The agent can perceive a set of S states of its en-

vironment. The agent can perform a set of A actions. At time t,

the agent senses the environment in state st. It then chooses action

at. The environment responds giving the agent a reward rt = r(st, at).

The environment is then in state st+1. The task of the agent is to learn

a policy π for selecting the next action based on the observed state st.

That is π(st) = at. The aim of this policy is to maximise the reward

provided by the environment over time. The cumulative reward is de-

fined as V π(st). This is the cumulative reward generated by following

policy π from the initial state st. This value can be calculated using
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equation 8.3.

V π(st) ≡ rt + γrt+1 + γ2rt+2 + . . .

≡
∑∞

i=0
γirt+i

(8.3)

Here γ is a constant between 0 and 1. It controls the weight between

immediate and future reward. The higher the value for γ, the greater

the weight given to future reward.

From this the agent’s task is to find the optimum policy π∗ by max-

imising V π(st) over all possible states. This can be seen in equation

8.4.

π∗ ≡ argmax
π

V π(s) (8.4)

The cumulative reward from following the optimum policy π∗ is V ∗(s).

That is the value reached by using the best policy π∗, starting from

state s. The agent needs to learn the function V ∗. The agent should

prefer s1 over s2 when V ∗(s1) > V ∗(s2). However the agent must

choose between actions and not states. In certain circumstances V ∗

can be used to choose among actions (see equation 8.5)

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))] (8.5)

Here δ(s, a) is the resulting state s′ of action a in state s.

From equation 8.5 it can be seen that the optimal action in state

s is the action that maximises the sum of the immediate reward and

the value V ∗ of the immediate successor state.

However this equation can only be solved if the agent has perfect

knowledge of the immediate reward function r, and the state transition

function δ. In practice it is impossible for the agent to predict the

outcome of every possible state-action transition.

This problem can be overcome by defining an evaluation function

Q(s, a). The value of Q is the reward received immediately after
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executing action a from state s, plus the value of following the optimal

policy from that point on (see equation 8.6).

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a)) (8.6)

Rewriting equation 8.4 in terms of Q gives

π∗ ≡ argmax
a

Q(s, a) (8.7)

This shows that if an agent learns the Q function, it can choose the

optimum action with no knowledge of the r and δ functions. Equation

8.7 shows that the agent only needs to consider each available action

a in its current state, and choose the action that maximises Q(s, a).

If the Q function corresponds to learning the optimal policy then

combining equations 8.4 and 8.7 gives equation 8.8

V ∗(s) = max
a

Q(s, a) (8.8)

This can be used in equation 8.6 to give

Q(s, a) = r(s, a) + γ max
a′

Q(δ(s, a), a′) (8.9)

This demonstrates that Q can be approximated iteratively (Watkins,

1989) If Q̂ is the approximation, then equation 8.9 becomes

Q̂(s, a)← r + γ max
a′

Q̂(s′, a′) (8.10)

This rule uses the current Q̂ values for the new state s′ to refine its

value of Q̂(s, a) for the previous state.

The Q learning algorithm is defined as follows.

The Q learning algorithm

For each s, a pair, initialise the table entry Q̂(s, a)
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Observe the current state s

Repeat

• Select an action a and execute

• Receive an immediate reward r

• Observe new state s′

• Update the table entry for Q̂(s, a) using equation

8.10

• s← s′

With this algorithm the agent’s estimated Q̂ converges in the limit

to Q if the reward function is bounded, and actions are chosen so that

each state-action pair is visited infinitely often.

8.5.3 Learning Using Associations

The method with which robo-CAMAL learns is very similar to the Q

learning approach seen in section 8.5.2. The association value can be

written as A(s, g, a), where s is the state, g is the goal, and a is the

action. Given a constant goal g, the algorithm for determining the

association values is as follows.

Robo-CAMAL learning algorithm

For each s,a pair initialise the table entry A(s, g, a)

Observe the current state s

Repeat

• Select an action a and execute

• Observe new state s′

• Use s′ to determine if r is positive or negative
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• Use r to update the table entry for A(s, g, a) using

equations 8.1 and 8.2

• s← s′

There are however some important differences between the robo-

CAMAL and Q learning algorithm. The first is that the reward func-

tion is known to the agent. This means the agent can calculate its

reward based on the observed new state. The second important dif-

ference is that robo-CAMAL is opportunistic. As the goal is constant,

the action chosen is the relevant action-state pair with the highest as-

sociation value. This means if the agent finds an action that provides

a positive reward, it continues to execute that action. This is because

only the immediate reward is considered. In the robo-CAMAL learn-

ing algorithm, the association update equation is the same as the Q

update equation with γ equal to 0.

There are several different ways of initialising robo-CAMAL to

achieve different levels of supervision when learning. The maximum

level of supervision involves pre-programming the associations for a

specific goal. For each macro-behaviour there are twelve possible ar-

chitectures. Given all the associations are pre-programmed and the

goal is constant, the agent only has to learn which architecture is

the most successful. This is in essence telling robo-CAMAL which

architectures should achieve its goal, and asking it to determine the

best.

The next step down in the level of supervision is to allow robo-

CAMAL to generate its own associations, but control the environment.

In this scenario the agent has no indication of what effect each action

will have on its environment. However, as the environment contains

the correct object with which it can achieve its goal, it should learn
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the most appropriate action. This method provides robo-CAMAL

with training data in order to learn the best policy.

The minimum level of supervision allows robo-CAMAL to generate

its own associations in an uncontrolled environment.

8.6 Adaptation Using Associations

One important requirement for any agent is that it has the ability to

adapt to a changing environment. There are several ways in which an

agent can adapt, evolutionary adaptation, physiological adaptation,

sensory adaptation and adaptation by learning (McFarland, 1991).

Evolutionary adaptation occurs when agents adapt to their environ-

ment over many generations via natural selection. Physiological adap-

tation refers to the physiological changes that occur in response to

changes in the environment. For example, sweating is a response to

an increase in temperature in the environment. Sensory adaptation

is when the perceptual systems adjust to the strength of the stimulus

that ther are sensitive to; for example, when the pupil dilates due to

a change in light intensity. Adaptation by learning is a very general

adaptation. It can refer to many kinds of things such as learning the

quickest way to a specific location, or how best to avoid a predator.

The way in which robo-CAMAL adapts is through the use of as-

sociations. As shown in section 8.2, each association contains four

elements, a belief, a goal, an action, and a measure of the likelihood

of success of the action given the belief and goal. For robo-CAMAL

to adapt, it needs to choose the appropriate association. That is, the

association that corresponds to its current environment and internal

state. This is done using a two stage process.

The first stage involves the agent learning which associations are

most relevant for a given action-state pair. For example the associa-
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tion

association(found(blueball),

hit(blueball),

avoid(blueball),

value)

will fail to achieve its goal more often than not. It therefore makes

senses to remove this association in order to reduce computation time.

However the association

association(found(blueball),

hit(blueball),

hit(blueball),

value)

should achieve its goal most of the time. It is the job of the learning

process described in section 8.5.3 to determine the relevant associa-

tions.

In second stage of adaptation after the training phase, robo-CAMAL

has multiple goals in a variable environment. The task then becomes

to choose the appropriate association with which to achieve one of its

goals. This choice is based on robo-CAMAL’s internal state, and its

environment.

In order for robo-CAMAL to choose an association, it needs to rank

associations in order of their relevance. This ranking is calculated in

terms of the agent’s belief, goal, and association values. The value of

each associations rank is calculated using equation 8.11.

Rank =
√

avgv

1

ba + 1
(8.11)

Here av is the associations value, gv is the association’s goal impor-

tance value, ba is the age of the association’s belief. Figure 8.3 shows
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how the association rank value varies with each of the three affect

values av, gv, and ba. For each line on figure 8.3, two of the terms in

equation 8.11 were kept constant, whilst the stated one was varied.
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Figure 8.3: Association rank value.

It is clear from figure 8.3 that the rank of an association is based

on the distributed model of affect. The rank value increases as av and

gv increase. It is also clear that the association rank decreases as the

belief gets older. This means that for each association the higher its

goal importance, the more recent its belief was formed, and the more

likely the action is to achieve is goal, then the higher its rank value.

The association value varies according to equations 8.1 and 8.2. As

described in section 8.3, if the agent achieves its goal, the relevant

association value is increased using equation 8.1. If the agent fails its

goal the relevant association value is decreased using equation 8.2.

The goal importance affect value is initialised at 0.5 for each goal.

At each time step the importance value is increased by 0.02, up to a

maximum value of 0.95. The only occasion in which the goal impor-

tance value is not increased is if the agent has failed to achieve that

goal, or if the agent attempted to achieve the goal in the previous
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deliberative cycle. If a goal is achieved its importance value is set to

0.5. If a goal consecutively fails X times, where X is determined by

the domain model threshold goal threat max, its importance is then

set to 0.1. The goal importance variation can be seen in figure 8.4.

Figure 8.4: Goal importance value.

Figure 8.4 shows a goal with its importance value set at 0.1. Its

value increases over time. At this point the goal is achieved, and its

importance value is set to 0.5. The importance value then increases

again, until the goal consecutively fails X times. At this point the

importance value is reduced to 0.1.

The goal importance function has several effects. The first effect

to notice is the goal failure strategy. if a goal fails once its value is

not automatically reduced. This is because the failure may be due to

something simple beyond the agent’s control. For example, if the goal

is hit(blueball), the agent may simply miss, or a second robot may get

in the way. However if robo-CAMAL consecutively fails on a number
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of occasions, then it is likely that there is something preventing it

from achieving that goal. For example the blueball may no longer be

present in the environment. If this is the case then the goal importance

is greatly reduced to prevent its selection.

The goal’s success has two effects on the goal importance depending

on its previous value. If the goal importance value was initially low

due to a previous failure, its value is increased to 0.5. This reflects

that the goal is now achievable. If the goal importance value was

initially high, the value is reduced to 0.5. This reflects that the goal

has been achieved and is no longer as important. This prevents goals

with a high importance value being selected repeatedly.

The increase in the importance value over time reflects the variable

nature of the environment. A goal that is unachievable at time t may

become achievable at time t+x. For example, if there is no blueball in

the environment, the goal hit(blueball) will fail. Its goal importance

value will be reduced to 0.1. If a blueball is then introduced to the

environment, the goal then becomes achievable. Unless the impor-

tance value increases then the goal hit(blueball) will not be selected.

By increasing the goal importance values over time ensures that it is

more likely to be chosen as time passes.

The time the belief was formed also effects the association’s rank

value. The older the belief, the lower the association’s rank. This is

to reflect the fact that older beliefs may not be as reliable or accurate

as more recent beliefs. Beliefs that are older than X cycles, where

X is determined by the belief retain time domain value, are removed.

This means they are no longer relevant to the association selection.

This section has shown that agent adaptation within robo-CAMAL

can be divided into two components. The first is a training phase.

First robo-CAMAL uses the method described in section 8.5.3 to learn

the most appropriate associations for each goal. The most successful
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associations can then be retained by the agent.

Once the training phase is over, the agent’s environment becomes

variable, and it is given multiple goals. At this point robo-CAMAL

uses its current beliefs, and the various affect values, to choose the

most relevant association. The changing beliefs and affect values

should mirror changes in the agent’s environment.

8.7 Summary

This chapter looked in detail at the association construct. It first

gave details on the associations and how they work. It showed how

associations are at the core of the BDI schema within robo-CAMAL.

It then went on to show how associations enable robo-CAMAL to

learn about the effect of its actions upon its environment. The form of

reinforcement learning used by robo-CAMAL was shown to be similar

to the Q learning algorithm.

It finally went on to show how robo-CAMAL uses associations to

adapt to its environment. It showed that this adaptation is done with

a two step process. First a training phase is used to learn the ap-

propriate associations. Then the affect model and the agent’s belief

mechanism enables robo-CAMAL to adapt to changes in its environ-

ment.



Chapter 9

Motivation Within Robo-CAMAL

9.1 Introduction

Motivation is considered to be the driving force behind all the actions

of an agent (Beck, 2000). Motivation can not be observed directly, but

it can be inferred from the observable behaviour of an agent (Westen,

1996). If motivation is the driving force behind the actions of an agent

then it must be incorporated into Robo-CAMAL in some way.

This chapter will first look as some of the perspectives that can

be taken when trying to define motivation. It then goes on to give

some examples of how motivation can be incorporated into a synthetic

agent. The chapter then discusses the view of motivation as a con-

trol state, and how this applies to robo-CAMAL. Finally, the use of

the motivational blackboard that is used to control robo-CAMAL is

described.

9.2 Motivation

The word motivation is derived from the Latin word movere, to move.

It refers to the moving force that energises behaviour. Motivation can

therefore be considered the driving force behind all the actions of an

agent (Beck, 2000). There are several issues that any theory of moti-

125
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vation must consider (Westen, 1996). One issue is whether motivation

is based primarily on the internal needs of an agent. This can include

things such as hunger. Alternatively, is motivation based mainly on

external stimuli, such as the presence of food? This essentially asks

the extent to which an agent’s motivation is based on its physical

form, or its environment. Another issue is the relevance of thoughts

and feelings to motivation. Can a thought or goal motivate an agent,

or does that goal need to be associated with a sense of arousal?

There are several perspectives on motivation that are relevant to

this thesis. The evolutionary perspective takes the view that some

motivational systems are behaviours that have been selected via nat-

ural selection. These inherited behaviours maximise the likelihood of

survival of the agent. One example of such a system is instinct. In

biological agents instincts are inherited patterns of behaviour, or re-

sponses to certain kinds of stimuli (Tinbergen, 1951). With respect

to robots this could refer to pre-programmed responses to perceptual

data, or internal states.

The behavioural perspective makes use of the concept of drives.

All agents have needs such as food, water, energy etc. Unfulfilled

needs lead to drives which are states of arousal. It is these states of

arousal that motivate behaviour (Hull, 1943). Drive reduction theo-

ries propose that motivation stems from a combination of drive and

reinforcement (Carlson et al., 2003). Deprivation of need leads to

tension in the agent. The agent exhibits behaviour in an attempt

to reduce that tension. If the behaviour reduces that tension then

it becomes associated with that particular drive. The behaviour is

therefore reinforced.

There are two types of drives, primary and secondary drives (Westen,

1996). Primary drives are innate and built in to the agent. Secondary

drives are learned. An originally neutral stimulus becomes associated
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with a specific drive reduction behaviour and thus becomes a motiva-

tor. If this behaviour leads to a situation that allows the reduction of

other drives then that behaviour becomes reinforced. For example, an

agent may learn to associate trees with food. If the behaviour to look

for a tree leads to a situation that reduces its hunger, then the drive

to find a tree becomes a secondary drive. However, drive reduction

theory may not be able to explain all behaviour. For example, the

presence of food can cause a dog to eat, regardless of whether it is

hungry or not.

The cognitive perspective focuses on conscious goals. Goal setting

theory (Locke, 1996) states that conscious goals regulate an agent’s

behaviour. Agents have goals that specify desired outcomes that differ

in some way from the agent’s current situation. Expectancy value

theory (Fishbein and Ajzen, 1974) views motivation as a joint function

of the value the agent places on a goal, and the extent to which that

goal is achievable.

These different perspectives on motivation demonstrate just a few

of the ways in which the observable behaviour of an agent can be

explained.

9.3 Grounding Motivation

In most cases an artificial agent’s motivations are imposed upon it by

the designer. However, the agent still has to adapt to its environment,

and choose the correct motivation, independently of the designer. If

an agent is to show independent motivated behaviour, it must be able

to set its own goals . If an agent is to choose its own goals, then it must

understand the context of those goals in relation to its environment.

In essence this means that an agent’s motives must be grounded in

its environment. This problem can be viewed as part of the wider
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grounding problem on how to integrate an agent with its environment

(Savage, 2003).

One way of grounding motivation in an agent is the use of reac-

tive systems. For example, a motor powered by a photosensitive plate

may be motivated to seek light. There is an argument that evidence of

motivation within reactive systems lies with the observer and is there-

fore not objective (Sharkey and Heemskerk, 1997). However, if this

argument is left to one side then the system’s motivation is embod-

ied in the control architecture of the sensing and acting mechanisms

(Sharkey and Ziemke, 2001).

If an agent’s motivation is based on internal representations, the

issue of grounding is no longer as straight forward as for a reactive

system. These representations, and therefore the relevant motives,

must be connected to the appropriate events/activities in the agent’s

environment (Savage, 2003). In essence an agent’s motivation must

be grounded to its environment and actions.

Section 9.2 described some possible sources of motivations such

as goals and drives. However, these descriptions seek to explain be-

haviour rather than focus on the situated and embodied nature of

motivation. One example that can be used to explain the situated

and embodied nature of motivation is the fungus eater thought exper-

iment (Toda, 1982).

In addition to the agent’s drive to eat fungus, its actions are also

determined by its previous interactions with its environment. For ex-

ample, if the agent has been active and not eaten, the drive to eat

fungus should increase. On the other hand if the agent has just fed

then the drive to eat fungus should diminish. This line of reasoning

shows motivation to be an interactive process. That is, motivational

grounding is derived from the interaction of an agent with the appro-

priate aspects of its environment (Savage, 2003).
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This section has discussed how motivation can be integrated with

the agent’s environment using a reactive system, or an interactive

process in the case of symbolic motivational states. It has not, how-

ever, provided a way of determining whether a motivation is a simple

reactive behaviour, or a symbolic representation. The model that de-

scribes the indices of motivation looks to provide a way of making

such a distinction (Epstein, 1982; Savage, 2003).

This model provides three features that may distinguish between

reactive and deliberative motivations. The first is individuation which

describes an agent’s ability to achieve the relevant goal using a number

of different strategies. That is, the agent’s ability to achieve a goal

using an alternative method if its preferred response is blocked.

The second characteristic is the formation of expectancies relating

to its goal object. This relates to cognitive representations reflecting

aspects of the goal object, such as how it will react under certain

conditions.

The third characteristic relates to the presence of an affective re-

sponse towards the goal object. For example, the agent has an affect

value associated with an object. The agent’s affect value changes de-

pending on the agent’s interaction with that object.

9.4 Implementing Motivation

There are numerous ways in which motivation can be incorporated

into an artificial agent. This section will give an example of two of

them. The first is the use of a motivational vector. The combina-

tion of an agent’s physiological/internal state, the perceived state of

the environment and the consequence of the agents current action is

considered its motivational state (McFarland and Bösser, 1993; Mc-

Farland, 1993). For example, some biological agents have a hunger
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drive. Hunger is not based purely on the level of nutrients within the

agent. It can also be based on the presence of food in the environment,

or the time of day if the agent has a routine. It is therefore possible

to represent the agent’s motivational state as a vector in a multidi-

mensional space. Each axis within that space corresponds to an event

or internal state that is relevant to the drive in question. An agent

can be programmed with several motivational vectors. The agent’s

actions are based on the values of the various motivational vectors.

Another agent that incorporates motivation into its architecture

can be seen in figure 9.1 (Stoytchev and Arkin, 2001, 2004). This is a

hybrid reactive/deliberative architecture. The deliberative component

is used as a navigational planner. The deliberative subsystem plans a

route around an office. The architecture has three components that

link up to a robot (figure 9.1).

Figure 9.1: Hybrid agent architecture (Stoytchev and Arkin, 2004).

At the centre of the deliberative system is a path planner that takes

user defined goals, and a predefined map of its environment. The out-

put of the planner is a set of checkpoints that when followed take the

robot to the goal. The sequence of points is used to configure a reac-

tive controller. Within the behaviour controller there is a process that

monitors the progress of the active reactive behaviours. By comparing

the current progress of the agent to the required goal, the behaviour
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controller can determine if good progress is being made. Alternatively

it can determine if a new plan needs to be generated. The motiva-

tional subsystem is used to monitor the internal state of the agent.

This modulates its behaviours using the behavioural controller.

The motivational subsystem contains several motivational variables.

These are real numbers that can vary in the range from 0 to 1. The

variables are organised in a motivational vector. Each element of the

vector can be read or written to independently of the other elements.

Perceptual triggers and behaviours can also read or modify the moti-

vational vector.

Perceptual triggers fire a particular behaviour in response to an

external event that is perceived by the agent (Arkin, 1998). Within

the motivational subsystem, the motivational vector and perceptual

stimuli fires the appropriate trigger. The motivational vector can also

fire the trigger on its own, allowing behaviours to be fired directly

by motivations. For example hunger fires the behaviour to search

for food. Behaviour can also alter motivational variables, allowing

internal and external events to alter the agent’s motivational vector.

9.5 Motivational Control States

The use of control states to develop the robo-CAMAL architecture (see

section 3.7) leads to the use of motivational control states. Figure 9.2

shows five motivational control states that have been proposed so far

(Davis, 2001, 2007).

Drives are low level mechanisms and refer to the same types of

systems as seen from the behaviourist perspective of motivation (see

section 9.2). The onset of drives are dependent on variables that

fluctuate in response to internal and external processes. If the variable

crosses a specific threshold then the drive activates a pre-set behaviour
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Figure 9.2: Proposed motivational control states (Davis, 2007).

or response. Instincts are highly constrained drives. Instincts and

drives are present in robo-CAMAL at the reactive level. Each micro-

behaviour can be considered an instinct. For example the reactive

control rule

IF(left sonar value < threshold) THEN(turn right)

is a pre-set response to a sensor variable. The combination of micro-

behaviours to form macro-behaviours can be considered the agent’s

drives. For example, the drive to hit or avoid an object.

Goals come in two types, quantitative and qualitative. Quantita-

tive goals are the same as goals used within control theory (Sontag,

1998). Within control theory the system has a specific output that

it needs to achieve or maintain. The system uses feedback from its

environment to modify its actions to achieve or maintain that state.

Quantitative goals are present within Robo-CAMAL at the reactive

level. For example, the macro-behaviours can be considered implicit

quantitative goals.

Qualitative goals describe some desired end state for an agent. For

example when an agent searches through problem space to find a so-

lution or goal state. Qualitative goals are present in Robo-CAMAL

at the deliberative level and take the form hit(blueball). However, it is
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more appropriate to think of these goals as the end states associated

with desires.

Desires are symbolic statements that define a specific preferred en-

vironmental state. Desires here are the same as those used within the

BDI schema (see section 3.4). Desires within Robo-CAMAL describe

the specific goal, the belief required for the goal’s success, and the de-

sire’s importance. Desires are present at the deliberative level within

robo-CAMAL. These take the form goal(Desire, Success condition,

Goal importance, Threat value).

Intentions are also the same as those used within the BDI schema.

They are strategies and plans that are used to achieve desires. Inten-

tions are found within robo-CAMAL at the deliberative level. They

take the form of predicates detailing the various possible reactive ar-

chitectures.

Finally attitudes are pre-dispositions to respond in certain ways

to certain perceptual or internal triggers. For example, consider an

agent developed to play five aside football. The agent may choose

to attack or defend. This can depend on team orders or the specific

environmental situation (Bourgne, 2003). These attitudes affect which

goals are chosen. If the attitude is to attack then the goal may be to

hit the ball. If the attitude is to defend then the goal may be to get

between the ball and the scoring zone. Attitudes are present within

robo-CAMAL, but are pre-programmed prior to run time. An attitude

in robo-CAMAL refers to the pre-defined goal set. Different attitudes

or goal sets must be changed by the user off-line.

In summary, motivational control states are distributed throughout

the robo-CAMAL architecture. Instincts, desires, and quantitative

goals are present at the reactive level. Qualitative goals, desires, in-

tentions, and attitudes are all managed at the deliberative level using

a motivational blackboard system.
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9.6 Motivational Blackboard

The motivational control states within robo-CAMAL at the deliber-

ative level are managed by the motivational blackboard. The black-

board system can also trigger the appropriate instincts and drives at

the reactive level.

The motivational blackboard system has three components.

• The blackboard.

• Knowledge sources.

• A control component (see section 3.6).

The blackboard holds the various motivational control states, as well

as other relevant structures such as beliefs etc. The knowledge sources

manipulate the structures present on the blackboard. This includes

methods to update the various affect values and the processes within

the BDI schema.

The control component has three main tasks. The first is to place

the feedback messages received from the reactive level on the black-

board. It then controls the order in which the knowledge sources ac-

cess the blackboard. Its last task in a processing cycle is to send the

appropriate control message to the reactive level, and thereby trigger

the appropriate drive.

From the deliberative level’s point of view, the reactive component

can be thought of as a knowledge source. The control component

provides the reactive component with information on the blackboard.

It then processes the information based on external input, and its

internal state. The results of that processing is then placed back on

the blackboard.
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9.6.1 The Blackboard

The blackboard holds all the information relevant to the agent at any

one time. This includes a description of the agent and its environment.

It also contains information on its current and previous state. Many

of the components of the domain model used at the deliberative are

held on the blackboard.

The information held on the blackboard can be divided into several

distinct areas:

• Beliefs the agent can have about its environment.

• Desires the agent can have about the objects in its environment.

• Intentions or plans the agent has to achieve its desires.

• Associations that are used to manage the BDI schema.

• A motivator that contains the result of the knowledge sources

operations.

The first main component on the blackboard relates to the beliefs

the agent can have. The elements from the domain model are (see

appendix B)

environment descriptor list

clutter threshold

object list

object predicate

domain synonym

negation

There are also three other elements that allow the agent to construct

and maintain its beliefs. These are
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reactive feedback messages

belief preference(X,Y)

agent time(X)

belief retain time(25)

The reactive feedback messages allow new beliefs to be constructed us-

ing information from the robot’s sensors. The belief preference states

which source for a belief is more reliable. For example, a belief drawn

from the agent’s sensors is considered more reliable than a deduced

belief. The agent time is a value to reflect the temporal nature of

events. For example a belief with a high agent time value will have

been constructed more recently than one with a lower value. The

belief retain time determines the number of deliberative processing

cycles a belief is retained for.

The belief construct takes the form

belief(description, source, time)

where description ∈ belief descriptor

and source ∈ belief source

and time ∈ agent time

The belief descriptor can be constructed from the reactive feedback

messages and the various domain model statements. It can take the

form

environment(description)

where description ∈ environment descriptor list

object list(object)

where object ∈ object predicate

failed(architecture)

The belief source details how the belief was constructed. The val-

ues this can take, in order of their reliability, are sensor, deduction,

assumption.
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The agent time details when the belief was constructed. This value

does not refer to the agent’s physical time. This value is the num-

ber of deliberative processing cycles completed. Beliefs can be pre-

programmed or constructed at run time by the agent.

The next main element on the blackboard is the intention list. This

relates to the possible plans the agent can have. It is also part of the

domain model and takes the form

architecture(sensor, resolver, behaviour)

where resolver ∈ arbitration method

where behaviour ∈ macro-behaviour

The sensor represents one of the three possible sensor modalities.

It can take the values sonar, vision, or both. The arbitration method

details one of the four micro-behaviour combination methods. It can

take one of four possible values which are priority, aggregate, winner,

or suppression. The macro-behaviour details the specific general be-

haviours and can take one of the values, avoid, find, track, or hit. This

list details all the possible reactive architectures that can be activated.

They are all pre-programmed prior to run time.

The goal element on the blackboard takes the form

goal(desire, state, goal importance, threat value)

where state ∈ success condition

The desire relates to the possible desires the agent can have about

objects in its environment. It takes the form

desire(object) where desire ∈ desire list and object ∈
object list

where the desire list is

desire list([track, hit, avoid, find])
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The success condition is the belief descriptor required for the desire

to be achieved. The goal importance is an affect value that controls

how important the goal is to the agent. The threat value is an affect

value that details the number of times the agent has failed to achieve

its goal. They are maintained by the predicates

goal minmax(0.1, 0.9)

goal threat max(10)

The goal minmax statement determines the clipping values for the

goal importance value. The goal threat max(10) determines the max-

imum goal threat. This value represents the number of times a goal

can fail before its goal importance is drasticaly reduced.

The desires and their associated success beliefs are a component of

the domain model. All goals are pre-programmed prior to run time.

The next element held on the blackboard are the associations (see

chapter 8). They take the form:

association(belief, desire, intention, value)

The associations are at the core of the BDI schema.

The association value determines how likely the intention is to

achieve the desire given the belief. Associations can be pre-programmed

or constructed at run time by the agent. For a more detailed discus-

sion on associations see chapter 8.

The final element on the blackboard is the motivator. It takes the

form:

motivator(goal, association, cycles, value)

The motivator is a result of the knowledge source operations. It con-

tains the agent’s chosen goal. The appropriate association with the

chosen reactive architecture to be activated. It also gives the number

of cycles the reactive component should run for. The value of the cycle
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number is dependent on the agent’s goal and is a component of the

domain model. This value is defined by the predicates

reactive cycles(50)

find reactive cycles(100)

The motivator value gives the importance of the motivator to the

agent. This value is relevant only if there is more than one motivator

present. However, robo-CAMAL contains only one motivator at any

one time. This value is a remnant of previous work done with the

model (Lewis, 2004; Davis, 2007). It has been retained for any possible

future work done using the robo-CAMAL architecture.

9.6.2 The Knowledge Sources

This section will give an overview of the various knowledge sources

(KS) that access the blackboard. There are several general KS which

access the blackboard in the following order:

time update

belief construction

belief update

desire update

choose motivator

intention update

reactive component

The first and most simple KS is the time update. This increments the

agent time value by 1 for every complete deliberative cycle.

The second KS is belief construction. This KS uses the information

provided by the reactive component to construct a belief about its

environment. It also accesses the motivator to determine if any new

belief satisfies the agent’s goal. If not then the belief
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failed(intention, perception, agent time)

is constructed.

The next KS is the belief update. Firstly all old beliefs about failed

intentions and hit objects are removed. This is because they are no

longer relevant to the agent’s operation. Next the differences are re-

solved between the new and existing beliefs.

The first resolution is that if two beliefs have the same proposition,

then the older of the two is removed. The second checks the source

of two beliefs of the same proposition. The belief from the preferred

source is retained.

Next the negation model is used to resolve any conflicting beliefs. If

two beliefs are found to conflict, then the older of the two is removed.

Next the domain synonym is used to deduce any beliefs that arise

from an existing belief. At this point any belief that is older than X

cycles, where X is determined by belief retain time, is removed. This

is based on the assumption that beliefs older than X deliberative

cycles are unreliable. This step also prevents the belief set becoming

too large and unmanageable.

Finally beliefs about the agent’s environment are evaluated. Firstly

the number of objects in the environment is checked. This determines

if the environment is cluttered. It then checks the type of objects

present to determine if the environment is static or dynamic. The as-

sumption is that if a robot is present then the environment is dynamic.

These environment updates are determined by the domain model.

The next KS is the desire update. Firstly the motivator is evaluated

to determine if the agent’s goal has been achieved. If the agent has

failed its goal, the relevant association value is reduced. The relevant

goal threat value is increased by one. If the goal threat value reaches

X, where X is determined by goal threat max, then the goal importance

value is reduced to the lower clipped value determined by the predi-



CHAPTER 9. MOTIVATION WITHIN ROBO-CAMAL 141

cate goal minmax(0.1, 0.9). This ensures that it is a repeated failure,

and not a single failure, that affects a goals’s goal importance value.

For example if the agent fails to hit the ball once, it may simply have

missed its target. If however the agent fails ten times in a row it is

likely that the agent is unable to achieve the goal for some reason.

If the agent achieves its goal then the relevant association value

is increased. The relevant goal threat value is reduced to 0, and the

importance value is set to 0.5. This is done to ensure that goals with a

high importance value are not repeated over and over again. All other

goal importance values are increased by the default goal importance

increment (0.02 here), up to a maximum goal importance (0.9 in the

current work). This ensures goals with lower importance values will

become more important over time.

The next KS is choose motivator. This determines the motivator

the agent wishes to instantiate. Firstly a list containing all the agent’s

goals is created. Any goal that has just been achieved is removed.

Next all the relevant associations are chosen. This is based on the

goal list and the agent’s belief set. If no relevant associations exist

then new ones are created.

The new associations are based on the agent’s current belief and

goal set. Each belief and goal pairing is combined with all the possible

reactive architectures. This creates 48 new associations per belief/goal

combination. Each new association value is set to the default value

of 0.5.

At this point each goal has a number of associations that are rele-

vant. Each goal and association pair are ranked according to equation

8.11. For a more detailed description of the association ranking pro-

cess see section 8.6.

The goal association pair with the highest rank is used to construct

the motivator. The number of cycles contained within the motivator
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is dependent on the goal. If the goal is to find an object then the cycle

number is set to 100. This is to give the agent time to look for the

object. All other goals have a cycle number of 50. These values are

set by the predicates

reactive cycles(50)

find reactive cycles(100)

The next KS is the intention update. This extracts the relevant

information from the motivator to configure the reactive architecture.

The final KS is the reactive component. This retrieves the chosen

intention, and posts the results of its perceptual module upon the

blackboard.

9.6.3 The Control Component

The control component has three tasks. The first is to place the

feedback from the reactive component on the blackboard. It then

calls the KS in the appropriate order. This order is as follows

time update

belief construction

belief update

desire update

choose motivator

intention update

reactive component

The control component’s final job is to pass control, with the relevant

configuration messages, back to the reactive component.
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9.7 Summary

This chapter looked at motivation within robo-CAMAL. It first gave

a brief overview on some of the different perspectives of motivation. It

then gave some examples of how motivation can be used by a robotic

agent. Next it looked at motivation as a control state, and its rel-

evance to robo-CAMAL. It finally described the motivational black-

board. The blackboard is used to control the motivational control

states at the deliberative level. A more detailed look at the motiva-

tional blackboard can be found in appendix A.



Chapter 10

Experimental Results

10.1 Introduction

This chapter will present a series of experiments with robo-CAMAL,

and with their results. It will start by presenting the control experi-

ments. These were designed to ensure the architecture performed as

expected, as well as providing performance data with which to com-

pare the subsequent experiments.

Section 10.3 details the learning experiments. In the first learning

experiment robo-CAMAL was provided with the correct environmen-

tal beliefs, and all the possible actions it could take. Robo-CAMAL

then attempted to learn the correct action with which to achieve its

goal.

In the second learning experiment robo-CAMAL was given the cor-

rect actions with which to achieve its goal. Robo-CAMAL then at-

tempted to learn the optimal action to take in order to achieve that

goal.

The final experiment investigates robo-CAMAL’s ability to adapt

in a changing environment. Here robo-CAMAL was provided with the

correct actions in order to achieve a set of goals. Robo-CAMAL was

then required to observe its environment and alter its goals according

to changes in that environment.

144
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10.2 Control Experiments

Several control experiments were performed to test robo-CAMAL’s re-

active and deliberative components. The first two experiments tested

the vision system, and the various micro-behaviours. They also pro-

vided data with which to compare the various learning experiments.

The final two control experiments tested the deliberative component.

This involved testing the association generation and the goal selection

mechanisms.

10.2.1 The hit(Object) Control Experiment

The hit(Object) experiment was designed to test all the object based

micro-behaviours. It also tested how well the vision system was inte-

grated with the reactive architecture.

In this experiment the deliberative component was disconnected.

The reactive component was pre-configured to hit a specific object.

The reactive component was then allowed to operate in a number

of different environments. Each experiment was run for five minutes.

The number of times the robot collided with each object was recorded.

Figures 10.1 to 10.3 show the number of times each of the three possi-

ble objects were hit by reactive robo-CAMAL in each of the possible

environments..

Figure 10.1: The hit(redrobot) control experiment.
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Figure 10.2: The hit(blueball) control experiment.

Figure 10.3: The hit(blackrobot) control experiment.
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Figure 10.1 shows the results from the hit(redrobot) configuration.

It can clearly be seen that there are a significant number of collisions

with the redrobot. This clearly demonstrates that the various object

based micro-behaviours are working as expected. It also shows that

the vision system is correctly identifying the redrobot.

Figure 10.2 shows the results from the hit(blueball) configuration. It

can clearly be seen that there are a significant number of collisions with

the blueball. This shows that the vision system is correctly identifying

the blueball.

Figure 10.3 shows the results from the hit(blackrobot) configura-

tion. Although there are a significant number of collisions with the

blackrobot, there are also a number of collisions with the blueball. This

seems to indicate that although the vision system is correctly identi-

fying the blackrobot, it may also be misclassifying the blueball as the

blackrobot. This is due to the large number of black pixels generated

by the vision system in response to the blueball (see section 5.6).

10.2.2 The avoid(Object) Control Experiment

The avoid(Object) control experiment was designed to test the avoid

object micro-behaviours. It was also designed to provide control data

with which to compare the results from the second learning experi-

ment.

For this experiment the deliberative component was disconnected.

The reactive component was configured to avoid objects. Reactive

robo-CAMAL was run three times in each possible environment. Each

run lasted five minutes. The number of objects within the environment

was varied between zero and three. The dynamic objects were the

redrobot and the blackrobot. The number of collisions was recorded

for each run. The results can be seen in figures 10.4 to 10.9.

From the graphs it is clear that the suppression combination method
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Figure 10.4: Mean collisions vs number of objects.

Figure 10.5: Mean collisions vs number of objects.

Figure 10.6: Mean collisions vs number of objects.
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Figure 10.7: Mean collisions vs number of dynamic objects.

Figure 10.8: Mean collisions vs number of dynamic objects.

Figure 10.9: Mean collisions vs number of dynamic objects.
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shows the poorest performance. This result is due to the nature of

the algorithm. As the suppression method has to deactivate, then

reactivate the various micro-behaviours, it takes longer to react. This

results in a slower reaction time, and there by reducing reactive robo-

CAMAL’s ability to act quickly within its environment.

A second point to note is that the sonar sensor shows the poorest

performance. This is due to the poor resolution of the sonar sensors.

As the vision system can delineate the objects in the environment to

a greater extent, it is better at avoiding/interacting with them.

Finally, the results seem to suggest that the aggregate combination

method shows the best performance within a cluttered environment.

This is followed closely by the winner combination method. However,

as the results are so close, it is unclear whether this result is a true

indication of the differences between the two methods. Due to the

statistical nature of the data, more experiments are required to deter-

mine if there is a major difference between the aggregate and winner

combination methods. For this reason, no definitive distinction can

be made between the two best performing combination methods.

10.2.3 Association Generation Control Experiment

This experiment was designed to test the mechanism with which robo-

CAMAL generates associations. For this experiment virtually all of

the reactive component was disabled. The only element that remained

was the vision system. The agent was given the goal find(redrobot) and

the belief environment(sparse). The agent’s associations were not pre-

programmed. The robot was stationary as only the vision system was

enabled at the reactive level.

Once the experiment started the redrobot was placed in front of the

agent. After 30 seconds the redrobot was replaced with the blackrobot.

After a further 30 seconds the blackrobot was replaced by the redrobot.
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The results can be seen in figure 10.10.

Figure 10.10: Association generation process.

Figure 10.10 shows several associations with the same goal and

intention. Each line represents an alternative belief. Initially asso-

ciations with the beliefs environment(sparse), environment(dynamic),

and found(redrobot) are created. The belief environment(dynamic)

comes from the domain model assumption that if a robot is present,

then the environment is dynamic. Initially the association with the

belief found(redrobot) increases as it achieves its goal. Once the re-

drobot is removed then the association fails, and therefore has its value

reduced.

Once the blackrobot is introduced, new associations involving the

beliefs found(blackrobot) and environment(cluttered) are created. The

belief environment(cluttered) is generated due to the domain model

assumption that more than two objects represents a cluttered envi-

ronment. This appears in figure 10.10 as the association values that
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jump from 0 to 0.5. Once the redrobot was reintroduced the associa-

tion with the belief environment(dynamic) increases.

The results in figure 10.10 demonstrate that the deliberative com-

ponent is working as expected. The agent is constructing the correct

beliefs based on feedback from the vision system. This shows that the

belief mechanism is operating as expected. The generation of new as-

sociations based on new beliefs shows that the association generation

mechanism is working as expected. The association values increase

in the presence of the redrobot, and decrease in its absence. This

shows that the goal achievement and association update mechanisms

are operating as expected.

10.2.4 Goal Selection Control Experiment

This experiment was designed to test the goal selection mechanism.

For this experiment, the only active component of the reactive level

was the vision system. The deliberative component was pre-programmed

with the three goals

• hit(redrobot)

• hit(blackrobot)

• hit(blueball)

Beliefs that represent the state of the environment were pre-programmed

into the agent. In addition associations were pre-programmed that

link the agents current environment, and goals, to the actions specif-

ically designed to achieve those goals in that environment. Once the

experiment started the redrobot was placed in front of robo-CAMAL.

This was then replaced by the blackrobot, which was in turn replaced

by the blueball. The experiment was run for five minutes. The results

can be seen in figure 10.11.
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Initially, deliberative robo-CAMAL attempts to hit the blueball

and the blackrobot. However, the agent fails as these objects are not

present. This failure reduces the importance value of the respective

goals. The agent then attempts to hit the redrobot, at which point it

achieves its goal. Robo-CAMAL continues to attempt, and achieve

the goal hit(redrobot). At this point the importance value of the other

goals starts to increase.

Figure 10.11: hit(object) control experiment.

After some time the redrobot is removed. At this point the hit(redrobot)

goal fails and its importance is reduced. The blackrobot was then

placed in front of robo-CAMAL and the hit(blackrobot) goal was achieved.

During this period, robo-CAMAL continues to achieve the hit(blackrobot)

goal. This can be seen as the goal importance value remains unaltered.

The goal importance value of the other goals increase.
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The blackrobot was then replaced by the blueball. This causes the

hit(blackrobot) goal to fail, and the hit(blueball) goal to succeed. As the

importance value of the other goals increases, robo-CAMAL attempts

to achieve them. As the object of the goal is not present, the goal fails

and the importance value is reduced. This process continues until the

environment changes.

This result demonstrates that the goal selection mechanism works

as expected. In general, the agent attempts the goal that it considers

to be the most achievable. However, periodically robo-CAMAL at-

tempts other goals to determine if they have become achievable. The

goal is attempted when its importance value significantly outbalances

the association value.

10.3 Learning Experiments

Two learning experiments were designed to test the learning ability

of robo-CAMAL. The first experiment was developed to test whether

robo-CAMAL can learn the correct action to achieve its goal. The sec-

ond learning experiment was designed to test whether robo-CAMAL

can learn the optimal action to achieve its goal i.e. given a list of

actions that achieve the same thing, can robo-CAMAL determine the

best one.

10.3.1 First Learning Experiment

The first learning experiment was designed to test robo-CAMAL’s

ability to learn the correct action to achieve a goal. To do this robo-

CAMAL needs to be able to generate a list of associations, and select

the correct association to achieve that goal.

For this experiment robo-CAMAL was instantiated with a single

object based goal. It was also pre-programmed with the correct beliefs.



CHAPTER 10. EXPERIMENTAL RESULTS 155

No associations were pre-programmed. Robo-CAMAL was run in one

of a number of possible environments for five minutes. The experiment

was repeated three times for each environment.

Robo-CAMAL was pre-programmed with goal(X). The six environ-

ments used for the experiment can be seen in table 10.1. Here X is

the object of the goal, with Y and Z representing the other possible

objects. The experiment was run for every object based goal (i.e. find,

Environment Objects
1 X
2 Y
3 Z
4 X,Y
5 X,Z
6 X,Y ,Z

Table 10.1: The possible environment combinations.

track, and hit), with every possible object as the focus of that goal.

Given three possible goals, three possible objects, with three exper-

iments in six environments, the total number of experiments was 162.

Each experiment produced a number of associations. The value of

each association was recorded at every deliberative processing cycle.

The results presented here are the most relevant ones used to highlight

the main points. All of the results can be found in appendix C.

Figure 10.12 shows some of the association values recorded for the

hit(redrobot) experiment. The environment contained a redrobot. The

experiment can be tracked as follows. Initially robo-CAMAL has no

associations. However it does have the goal hit(redrobot), a set of pre-

programmed beliefs, and a list of the possible actions it can perform.

From this robo-CAMAL can produce a list of associations.

Figure 10.12 only shows the key associations that varied. This is

because robo-CAMAL produces anywhere in the region of 50 associ-

ations per run. Some of these associations have low values, are never
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Figure 10.12: Associations in the hit(redrobot) learning experiment.
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chosen, and so their value never changes.

Initially robo-CAMAL tries various associations in order to hit

the redrobot, all of which fail. However, at point a, the associa-

tion(environment(dynamic), hit(redrobot), architecture(sonar, prior-

ity, hit)) succeeds. This can be seen in figure 10.12 as the green line

with the increasing association value. After some time robo-CAMAL

fails to hit the redrobot. This can be seen by the fall in association

value of the green line at point b.

At this point robo-CAMAL stops using this association. This can

be seen by the unchanging association value of the green line. As the

agent only has one goal, the only factors influencing the choice in asso-

ciation is the associations value, and the agent’s beliefs. At this point

the association value is high, therefore the only reason the association

is not chosen must be because the relevant belief is no longer present.

This makes sense due to robo-CAMAL failing to hit the redrobot. This

means the belief lost(redrobot) is constructed. If the redrobot has not

been found within 25 deliberative processing cycles, then all beliefs

regarding the redrobot are removed. With no object beliefs present,

robo-CAMAL will deduce that the environment is static and sparse.

This pattern of behaviour continues until point c. At this point the

association(environment(sparse), hit(redrobot), architecture(vision, win-

ner, hit)) succeeds. This is represented in figure 10.12 as the increase

in association value of the blue line.

It can be seen in figure 10.12 that the blue and green lines closely

mirror each other, and have almost have identical shapes. This can

clearly be seen at point d in figure 10.12. This occurs because robo-

CAMAL is switching between the two associations on each deliberative

processing cycle, due to the way the belief update mechanism works.

Initially the association with the belief environment(sparse) suc-

ceeds. The belief is considered true so is left unmodified. However,
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as the belief found(redrobot) is held, the belief environment(dynamic)

is deduced. This belief is updated with the current time value. This

means that the environment(dynamic) belief is more recent than the

environment(sparse) belief. One of the factors affecting the choice

of associations is the age of the belief. In this case, as the envi-

ronment(dynamic) belief is more recent, the association containing

this belief is therefore chosen. This cycle repeats for the environ-

ment(sparse) belief, thereby causing the chosen association to swap

every deliberative processing cycle.

Not all the experiments showed the same level of success as seen

in figure 10.12. Figure 10.13 shows the results for the find(blueball)

goal, when the environment contained only a blackrobot. This failed

in two ways. The first is that several associations appeared to find the

blueball when it was not present. The second is that the associations

themselves are wrong. The environment only contained one object and

should therefore be considered sparse. However, figure 10.13 shows

that the belief environment(cluttered) is present in the associations.

This result highlights the difficulty when using real sensors. The

only way robo-CAMAL can construct the belief found(blueball) is if

the vision system identifies a blueball. This means that for 10.13 the

vision system incorrectly identified an object as a blueball. This also

explains the presence of the belief environment(cluttered). If robo-

CAMAL believes it has found the blueball and the blackrobot, then

it will deduce that the environment is cluttered (as more than one

object is present). It is clear that the cause of this failure is the vision

system incorrectly identifying a blackrobot as a blueball.

How can the effectiveness of robo-CAMAL’s learning ability be as-

sessed? For this two criteria were set for each association to meet.

The first is the association value. If this value goes above a specific

threshold, then the association is recorded. The thresholds chosen
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Figure 10.13: Associations in the find(blueball) learning experiment.
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were 0.65 and 0.75. These values were chosen as the association value

is considered to be the likelihood of success of that association. For

example, an association with a value of 1 should have a 100% success

rate, where as a value of 0 would always fail. The association values

of 0.65 and 0.75 therefore represent likelihood values of 65% and 75%.

These are considered reasonable likelihood values to consider an asso-

ciation as being an accurate reflection of a specific belief-goal-action

mapping.

The second criteria relates to the amount of time the association

spends above the value threshold. Five time thresholds were chosen.

These were one deliberative processing cycle, 30 seconds, 1 minute,

1 minute 30 seconds and 2 minutes 30 seconds. The number of pro-

cessing cycles spent above the association threshold divided by the

total number of deliberative processing cycles gives a percentage of

the time the association spent above its threshold. This can easily be

converted into a real time value as each experiment ran for five min-

utes. If an association persisted longer than the persistence threshold

it was recorded.

Associations above
Time above value threshold
threshold 0.65 0.75

correct incorrect ratio correct incorrect ratio
One processing cycle 210 159 1.32 181 106 1.71

30 sec 135 36 3.75 114 22 5.18
1 min 106 22 4.81 98 18 5.44

1 min 30 sec 91 16 5.69 81 8 10.13
2 min 30 sec 68 3 22.6 52 0 N/A

Table 10.2: Total number of correct and incorrect associations found.

Table 10.2 shows the number of correct and incorrect associations

found during the first learning experiment. It also shows the ratio of
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correct to incorrect associations as shown in equation 10.1.

correct associations

incorrect associations
= ratio (10.1)

Any ratio value above 1 indicates that robo-CAMAL has success-

fully found more correct associations than incorrect ones. The higher

this ratio, the more accurate the learning mechanism.

The results show that overall robo-CAMAL correctly identifies the

appropriate association to achieve its goal more often than not. How-

ever, if the shortest time constraint is chosen, robo-CAMAL’s perfor-

mance is only slightly better than a random process. As the ratio for

this constraint is only just above 1, robo-CAMAL is identifying the

correct association only slightly more than 50% of the time.

If an association is required to persist for more than 30 seconds,

then the accuracy of the learning mechanism increases almost three

fold. It is clear from the results that the longer the association is

required to persist, the greater robo-CAMAL’s learning accuracy.

This increased accuracy comes at a price. It is also clear that the

longer the association is required to persist, the fewer the number of

associations to be found. This can be seen in table 10.3, which shows

the average number of associations found in a ten minute period. The

total time of all the experiments was 810 minutes. This means the

total number of accurate associations found divided by 81 gives the

average number of associations found over a 10 minute period.

It is clear that increasing the time an association is required to per-

sist for increases the time it takes for robo-CAMAL to learn the correct

associations. For example, even though an association persistence of

2 minutes and 30 seconds provides a very accurate learning thresh-

old, it takes robo-CAMAL over 10 minutes to learn a new association.

This behaviour is expected. The longer an association is required to

persist, the less time is available to try alternative associations.
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Correct associations
Time above found per 10 min
threshold Value threshold Value threshold

0.65 0.75
One cycle 2.59 2.23

30 sec 1.67 1.40
1 min 1.31 1.21

1 min 30 sec 1.12 1.00
2 min 30 sec 0.84 0.64

Table 10.3: Total number of correct associations found in 10 minutes.

From table 10.2 and 10.3 it can be seen that increasing the associ-

ation threshold value has the same effect on robo-CAMAL’s learning

accuracy and speed, as increasing the associations persistence thresh-

old.

These results can also inform us about goal based learning. Ta-

ble 10.4 to 10.6 show the learning results for the specific goals used

in the learning experiments. Each table shows the correct/incorrect

association ratio, and the average number of associations found in 10

minutes.

Association found
Association rate and ratio
persistence 0.65 0.75

ratio rate ratio rate
One cycle 0.96 2.59 1.27 2.41

30 sec 3.11 2.07 4.55 1.85
1 min 3.90 1.59 4.22 1.42

1 min 30 sec 4.88 1.44 11.00 1.22

Table 10.4: Find learning experiment results.

From tables 10.4 to 10.6 it is clear that robo-CAMAL is able to

learn the correct association to hit objects far more accurately than

the other goals. For each value and persistence threshold, the ratio is

significantly higher than for the other goal based learning experiments.

This is due to the nature of the hit macro-behaviour.

The hit macro-behaviour actively tries to achieve its goal. In
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Association found
Association rate and ratio
persistence 0.65 0.75

ratio rate ratio rate
One cycle 1.91 3.03 2.48 2.48

30 sec 5.18 2.11 6.29 1.63
1 min 6.86 1.78 9.75 1.44

1 min 30 sec 9.75 1.44 36.00 1.33

Table 10.5: Hit learning experiment results.

Association found
Association rate and ratio
persistence 0.65 0.75

ratio rate ratio rate
One cycle 1.35 2.15 1.53 1.82

30 sec 3.57 0.93 5.00 0.74
1 min 4.25 0.63 3.75 0.56

1 min 30 sec 3.25 0.48 3.00 0.44

Table 10.6: Track learning experiment results.

the case of the find macro-behaviour, robo-CAMAL simply wanders

around its environment. It passively observes the objects within its

environment and does not attempt to go and look for them. There-

fore if robo-CAMAL finds the blueball, it will not continue to look at

it. This means it will lose the blueball after it has moved on and 25

deliberative processing cycles have passed. This will then cause the

goal find(blueball) to fail.

Although the track macro-behaviour also actively attempts to fol-

low an object, the line between being close to, and hitting the object is

a fine one. For example, robo-CAMAL might be close to the redrobot.

The redrobot might unexpectedly turn and hit robo-CAMAL. This

would then cause the association to fail the track(redrobot) goal. This

effect causes robo-CAMAL to fail more often when trying to track an

object than any other goal. This can be seen in the amount of time

robo-CAMAL takes to learn the track behaviour. Robo-CAMAL takes

twice as long to learn the correct association to track an object. In
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some cases it takes over 20 minutes to learn the correct association.

Figure 10.14 shows this. Here the goal is to track(blackrobot) in an

environment containing only a blackrobot. The correct association is

found and succeeds for some time. Then the association value plum-

mets as robo-CAMAL hits the blackrobot and fails its goal. This can

be seen at points a and b in figure 10.14. This behaviour also tells us

that the current BDI and domain model interaction is very sensitive

to the pre-programmed definitions. It also implies that under certain

circumstances it is somewhat brittle.

Figure 10.14: Associations in the track(redrobot) learning experiment.

The same analysis can be performed for the specific object based

goals. Table 10.7 to 10.9 show the learning results for the specific

object based goals used in the learning experiments. Each table shows
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the correct/incorrect association ratio, and the average number of

associations found in 10 minutes.

Association found
Association rate and ratio
persistence 0.65 0.75

ratio rate ratio rate
One cycle 2.03 2.26 2.50 2.03

30 sec 5.44 1.81 6.43 1.67
1 min 7.17 1.59 10.50 1.56

1 min 30 sec 10.25 1.52 38.00 1.41

Table 10.7: redrobot learning experiment results.

Association found
Association rate and ratio
persistence 0.65 0.75

ratio rate ratio rate
One cycle 1.50 2.78 1.91 2.48

30 sec 4.17 1.85 7.00 1.56
1 min 6.67 1.48 6.40 1.19

1 min 30 sec 5.33 1.19 10.33 1.15

Table 10.8: blackrobot learning experiment results.

Association found
Association rate and ratio
persistence 0.65 0.75

ratio rate ratio rate
One cycle 0.90 2.63 1.20 2.19

30 sec 2.60 1.44 3.00 1.00
1 min 2.50 0.93 2.25 0.67

1 min 30 sec 3.17 0.70 3.00 0.44

Table 10.9: blueball learning experiment results.

Tables 10.7 and 10.8 show that robo-CAMAL learns the correct

associations for redrobot based goals with slightly more accuracy, and

marginally faster, than for blackrobot based goals. This is because

robo-CAMAL finds it easier to identify the redrobot than the black-

robot, because the two corresponding colour profiles differ greatly.
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From table 10.9, it can clearly be seen that robo-CAMAL has dif-

ficulty learning the correct associations for blueball based goals. This

is due to the difficulty robo-CAMAL has in identifying the blueball.

Firstly the blueball is smaller than the other objects in the environ-

ment. This means it produces a smaller response in the vision system.

The blueball also produces a number of black pixel responses in the

vision system. This means that robo-CAMAL may correctly identify

the blueball, then misclassify it as it attempts to achieve its goal.

For example, robo-CAMAL may have the goal hit(blueball). Once

the blueball has been identified, robo-CAMAL will attempt to run into

it. As robo-CAMAL manoeuvres into position to strike the blueball,

the angle, and therefore its response in the vision system, changes.

From a different angle the blueball may look pre-dominantly black

and robo-CAMAL will incorrectly identify it as the blackrobot. The

association chosen to hit the blueball will then fail. This result clearly

highlights the difficulties in using real sensors in real environments,

or the inadequacies of the simple vision system used within the robo-

CAMAL architecture.

This can be seen in figure 10.15. Here the goal is to find(blueball)

in an environment containing a blueball. Robo-CAMAL uses the track

association to try and find the blueball. It successfully identifies the

blueball and turns towards it. This changes the angle from which robo-

CAMAL views the blueball. As it can no longer identify the object,

the association fails. A second example of this can be found in figure

10.13.

10.3.2 Second Learning Experiment

The Second learning experiment was designed to investigate robo-

CAMAL’s fine learning ability. That is robo-CAMAL’s ability to

differentiate between actions that achieve the same goal. For this
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experiment the avoid(object) goal was chosen. This was to allow the

result to be compared with data obtained from the avoid(object) con-

trol experiment (see section 10.2.2).

Robo-CAMAL was pre-programmed with the goal avoid(object).

It was pre-programmed with the correct environment beliefs and the

associations with which to achieve its goal. There are twelve reactive

architectures designed to achieve the goal, and two possible environ-

ment beliefs for each experiment. The possible environment beliefs

are either dynamic or static, and sparse or cluttered. This gives 24

associations for each experiment.

Robo-CAMAL was run three times for three minutes in each possi-

ble environment. Each environment contained up to four objects. The

environment could also be either static or dynamic. This provided a

total of nine possible environments.

The value of each association was recorded at each deliberative

processing cycle. An association was considered to be an accurate

belief-desire-intention mapping if its value rose above a threshold of

0.75 for a total time of one minute during an experimental run. These

values were chosen based on the results of the first learning experi-

ment. This set up allows robo-CAMAL to learn a reasonable number

of correct associations to the required accuracy. The results can be

seen in table 10.10.

In terms of overall results, table 10.10 shows that in general the

priority and aggregate behaviour combination methods perform the

best. It also seems to indicate that the reactive architectures that

use the sonar sensors exclusively, out perform those that use vision

and the combination of vision plus sonar. These results are surprising

as the control experiments indicated that the priority combination

method using just the sonar sensor, did not perform as well as the

other possible architectures.



CHAPTER 10. EXPERIMENTAL RESULTS 169

Reactive architecture Success
Sensor Arbitration count

Priority 0
Vision Aggregate 14
only Winner 2

Suppression 3
Priority 15

Sonar Aggregate 5
only Winner 2

Suppression 0
Priority 4

Sonar and Aggregate 12
Vision Winner 3

Suppression 0

Table 10.10: Success count for each reactive architecture.

The reason for this is the nature of robo-CAMAL’s learning mech-

anism, and the way in which the associations are pre-programmed.

Robo-CAMAL learns in an opportunistic way. If an association is

successful, it continues to use that association. This means that the

first association to succeed will be used until it fails. The first associ-

ation used by robo-CAMAL in all the experiments always contained

the intention architecture(sonar, priority, avoid). This can be seen in

figures 10.16 to 10.18.

The results show that robo-CAMAL initially uses the association

containing the intention architecture(sonar, priority, avoid). This is

because it is the first on the list. If this association is successful, robo-

CAMAL will continue to use it to the exclusion of all other associa-

tions. Only when robo-CAMAL fails enough times for the association

value to fall, will it try an alternative association. This effect skews

the results in favour of associations containing the intention architec-

ture(sonar, priority, avoid).

Table 10.11 shows the results for the behaviour combination meth-

ods.

Again, the results contradict the control experiments. Where the
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Figure 10.16: Environment 1 static object, association belief environment(sparse).

Figure 10.17: Environment 2 static objects, association belief environ-
ment(cluttered).
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Figure 10.18: Environment 3 dynamic objects, association belief environ-
ment(dynamic).

Arbitration Success
method count
Priority 19

Aggregate 31
Winner 7

Suppression 3

Table 10.11: Success count for each arbitration method.

control experiments show the best combination methods are aggregate

and winner, this experiment shows that priority and aggregate perform

the best. This result is again due to the nature of robo-CAMAL’s

learning mechanism.

10.4 Adaptation Experiments

The adaptation results were designed to determine if robo-CAMAL

has the ability to modify its goals to reflect the changes in its envi-

ronment.

The robo-CAMAL architecture was instantiated with the three
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goals hit(blueball), hit(redrobot), and hit(blackrobot). The correct as-

sociations were also pre-programmed into the architecture. Robo-

CAMAL was then allowed to run for three minutes in a variable en-

vironment. The environment contained any combination of the three

possible objects blueball, redrobot, and blackrobot. The object combi-

nation was changed at intervals of one minute.

At each deliberative cycle, the agent’s internal deliberative state

was recorded. This included the agent’s current beliefs, the association

values, and the goal importance values. In addition, the number of

actual collisions with the objects present was recorded. Some of the

results of this experiment can be seen in figures 10.19 to 10.24.

Figure 10.19: Periods when the belief found(X) was present.

Figure 10.19 shows the various found(X) beliefs present during one

of the experimental runs. Each line represents one of the possible

found beliefs. If a belief is present, it was given an arbitrary value used
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for display purposes only, this value has no effect on the architecture.

If the found(X) belief is not present, the value is zero. Figure 10.19

shows that initially robo-CAMAL holds the beliefs found(redrobot)

and found(blackrobot) at various times. Then at point a, the belief

found(blueball) is present. It is around this point that the found(redrobot)

belief is no longer present. At point b the belief found(blueball) is no

longer held.

This coincides with the way the objects were varied within the

environment. At first the redrobot and the blackball were present in

the environment. After one minute the redrobot was replaced with

the blueball. After the second minute the blueball was removed. This

mirrors figure 10.19 in that the redrobot was found at the start of the

run, the blueball was found during the middle of the run, and the

blackrobot was present thought the whole of the run.

One point to note is the spacing of the found beliefs. The total num-

ber of deliberative processing cycles for this three minute experiment

is around 250. As the environment was changed after each minute, it

would be expected that the beliefs would alter to reflect that change

at around 80 and 160 deliberative processing cycles. This however is

not the case. The found(X) belief alters its profile at around 50 and

150 deliberative processing cycles. This is due to the way in which

the deliberative and reactive levels of the architecture interact.

The deliberative component sets the reactive component to run for

a number of reactive cycles. The reactivate level returns control when

an event occurs, or when it completes the required number of reac-

tive cycles. This means that when there are few events occurring in

the agent’s local vicinity, the deliberative component is not as active.

Therefore at the deliberative level, the number of processing cycles

per minute is dependent on the number of events that occur within

that minute.
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Figure 10.20: Periods when the belief hit(X) was present.

This can be seen in figure 10.20. This shows when robo-CAMAL

believes that it has hit an object. This figure shows little activity for

the first 100 processing cycles. After this point, the agent believes that

it keeps hitting objects. In the first 100 processing cycles the agent

fails its goals more often than it succeeds. In reality, during the first

minute the agent hit the redrobot once and the blackrobot twice. In the

second minute the agent hit the blueball twice and the blackrobot three

times. In the final minute, robo-CAMAL hit the blackrobot twice.

The reason the agent appears to believe that it has hit the various

objects more often then the actual hit count is due to the collision pro-

cess. During a single collision event the object remains close to robo-

CAMAL. The reactive level continues to register a hit event which

is communicated to the deliberative level. This means the hit event

is registered a number of times in quick succession. This means that
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control is passed between the two levels in quick succession. Hence the

variability with which the deliberative component registers the flow of

time. The more events registered by the reactive level, the greater the

number of deliberative processing cycles per minute. The addition of

a touch sensor would rectify this.

Figure 10.21 shows the importance value for each goal over time.

Initially robo-CAMAL achieves the hit blackrobot and redrobot goals.

This can be seen at points a and b. At these points the importance

value for each goal jumps to a value of 0.52. Section 8.6 states that

once a goal has been achieved, its importance value is set to 0.5. The

step increase for the goal importance value is 0.02. The goal impor-

tance value does not get recorded until after it has been incremented.

This means that when the importance value jumps to, or remains at

0.52, the relevant goal has been achieved. In addition, if a goal fails,

its importance value is reduced to 0.1. Therefore, in figure 10.21 if the

goal importance value drops to 0.12 that goal has failed. This failure

can be seen at points c, d, and e where each of the three goals fail.

Point f shows the success of the goal hit(blueball). This corresponds

well with figure 10.20 as the redrobot was removed and the blueball

added.

An important point to note can be seen at point g. Here the

importance value of the goal hit(blueball) increases beyond 0.7. One

question is why has robo-CAMAL not attempted to achieve this goal

when its importance value is so high in comparison to the others? The

answer can be found by examining the association values. These can

be seen in figures 10.22 to 10.24.

Section 8.6 states that the motivator is chosen based on not only

the goal importance, but the likelihood of successfully achieving the

goal (i.e. the association with the highest value and the corresponding

goal and current belief). Figures 10.22 and 10.23 clearly show that
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Figure 10.21: Goal importance value.
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Figure 10.22: hit(blackrobot) association value.
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Figure 10.23: hit(blueball) association value.
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Figure 10.24: hit(redrobot) association value.

the association value related to the goal hit(blackrobot) is significantly

higher than the one related to the goal hit(blueball). This means that

when combining the two values, the motivation to hit the blackrobot

is greater than the one to hit the blueball. Therefore robo-CAMAL

continues to attempt the goal hit(blackrobot).

This result is as expected. Even though robo-CAMAL believes,

correctly, that the blueball is present in the environment, it also be-

lieves that it is more likely to achieve the goal hit(blackrobot). This

was the reason for including the association value in the mechanism

to decide robo-CAMAL’s current motivation.

The same reasoning can be applied to robo-CAMAL’s behaviour

after 150 processing cycles. It is clear from 10.21 that at points h,

i, and j, robo-CAMAL attempts the other goals. At these points the

goal importance value becomes so great that it outbalances the low
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association values. This result is again expected and was the reason

for incrementing the goal importance value. This ensures that robo-

CAMAL periodically attempts a previously failed goal to see if it has

become achievable.

These result show that robo-CAMAL has the ability to adapt to a

variable environment, and attempt the goals it believes achievable at

the right time. However, not every result shows this kind of excellent

performance. This can be seen in figures 10.25 to 10.30.

Figure 10.25: Periods when the belief found(X) was present.

Figures 10.27 to 10.30 show the goal importance values and the var-

ious hit(object) associations for another experimental run. These re-

sults seem to show a similar behaviour to the experimental run shown

in figures 10.21 to 10.24. As robo-CAMAL continues to believe it

has hit the blackrobot, the appropriate association value remains high

so the belief that a blackrobot is present is reinforced. The problem



CHAPTER 10. EXPERIMENTAL RESULTS 180

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Deliberative process cycle

Be
lie

f p
re

se
nt

Belief hit(X)

hit(blackrobot)
hit(blueball)
hit(redrobot)
fail(architecture)

Figure 10.26: Periods when the belief hit(X) was present.

however is highlighted when the agent’s beliefs are examined with ref-

erence to the actual objects present. These beliefs are shown in figures

10.25 and 10.26.

In this experiment the objects present were the redrobot and the

blackrobot in the first minute, the blueball in the second and third

minute. However, it can clearly be seen that at point a in figure 10.27

that robo-CAMAL believes it has hit the blackrobot, even though it is

not present at that time.

This result shows two things. The first is that robo-CAMAL has

difficulty distinguishing between the blueball and the blackrobot. This

reinforces the findings shown in section 10.2.1. The second is more

fundamental to robo-CAMAL’s architecture as a whole.

Figures 10.27 to 10.30 show that robo-CAMAL is successfully adapt-

ing its goals in a variable environment. However, figures 10.25 and
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Figure 10.27: Goal importance value.
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Figure 10.28: hit(blackrobot) association value.
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Figure 10.29: hit(blueball) association value.
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Figure 10.30: hit(redrobot) association value.

10.26 show that it is attempting to adapt to the wrong environment.

This shows that robo-CAMAL has difficulty recovering from a false

belief.

In figures 10.19 to 10.24, robo-CAMAL holds the correct beliefs

about its environment. As it adapts correctly to this variable envi-

ronment it achieves its goals. This in turn reinforces its original belief

about its environment. In figures 10.25 to 10.30, robo-CAMAL holds

incorrect beliefs about its environment. As robo-CAMAL adapts to

the wrong environment, and believes it has successfully achieved its

goals, these incorrect beliefs become reinforced.

Table 10.12 shows the number of times robo-CAMAL held the cor-

rect and incorrect beliefs during the adaptation experiments.

A false belief was registered if the agent believed that it had hit an

object that was not present in the environment at that time. Only
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Object Correct hit belief Incorrect hit belief
all 27 8

redrobot 5 1
blackrobot 10 5
blueball 12 2

Table 10.12: Correct and incorrect hit belief.

the first hit was recorded as it is this belief that triggers the cycle of

robo-CAMAL’s false belief reinforcement.

These results show that in general robo-CAMAL holds the correct

beliefs, and therefore is adapting correctly to its environment. How-

ever, it often mistakenly believes it has hit the blackrobot on a number

of occasions.

This table does not however give the full picture of the experiment.

Of the six experiments performed, two showed that robo-CAMAL

failed to adapt correctly to the actual environment. On only two

occasions did robo-CAMAL hold the correct beliefs for the duration

of the experiment.

The adaptation results can only be considered a partial success.

Although robo-CAMAL can successfully adapt to its environment if

it is maintaining the correct beliefs, it has great difficulty in recovering

from incorrect beliefs. This result demonstrates just how important

an agent’s anchoring mechanism is to its ability to adapt to its envi-

ronment. If the agent can not correctly identify, or miss-classifies, the

object of its goals, then it will be unable to adapt to changes within

its environment.

10.5 Conclusion

This chapter described the various experiments performed with robo-

CAMAL, and their results. It started by describing the control exper-

iments. These were designed to ensure that robo-CAMAL operated
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as designed, and to provide performance data with which to compare

the other experiments.

The various control experiments showed that at the deliberative

level the association value, generation, and choice mechanisms worked

as expected. It also showed that the belief and goal mechanisms

worked as expected. This included the belief creation and removal

process, and the goal importance and threat mechanism.

At the reactive level the control experiments showed that the var-

ious macro and micro behaviours worked as designed. It also showed

that the vision system could differentiate between the various objects

in the environment. However, the experiments also showed that on

occasion the blueball gets mistaken for the blackrobot.

In addition the control experiments provided data with which to

investigate robo-CAMAL’s learning capability. This showed that in

general the architecture making use of the vision system and the ag-

gregate and winner combination methods were the best at avoiding

objects. It also showed the architecture that makes use of sonar and

the suppression combination method performed poorly.

The second set of experiments investigated the learning capabil-

ity of robo-CAMAL. The first experiment demonstrated that robo-

CAMAL is capable of learning general behaviours. That is, with no

understanding about the nature of its actions, robo-CAMAL can suc-

cessfully learn which action to perform in order to achieve a specific

goal. This is accomplished by performing and observing the effect of

its actions on the environment.

The second learning experiment was designed to determine if robo-

CAMAL can optimise its behaviour. That is, given a list of actions

that attempt to achieve the same thing, can robo-CAMAL learn which

is the best. This experiment showed that robo-CAMAL was unable

to learn the optimal action with which to achieve its goal. This is due
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to the opportunistic way in which robo-CAMAL learns.

The final experiments were designed to test robo-CAMAL’s ability

to adapt to a variable environment. This experiment showed lim-

ited success. Robo-CAMAL successfully adapted to its environment

when it held the correct beliefs. However, when the agent formed the

incorrect beliefs it failed to correctly modify its goals to reflect the

actual environment. Instead it modified its goals to coincide with its

incorrect beliefs.

In general the results showed that robo-CAMAL performed as ex-

pected. However, robo-CAMAL failed in two ways. The first was due

to the opportunistic learning mechanism implemented. This meant

that robo-CAMAL was unable to optimise its behaviour. The second

failure was due to the limitations of robo-CAMAL’s anchoring mech-

anism. In some instances, robo-CAMAL mistook the blueball for the

blackrobot. When this occurred the agent failed to modify its goals to

reflect the actual environment.



Chapter 11

Analysis and Discussion

11.1 Introduction

This chapter will analyse the results shown in chapter 10, and describe

their impact on the robo-CAMAL architecture. It will start by looking

at robo-CAMAL’s anchoring mechanism. It will relate this mechanism

to various other proposed theories regarding the anchoring of events

and objects.

Section 11.3 will look at robo-CAMAL’s learning mechanism. This

will look at how robo-CAMAL’s opportunistic method of learning ef-

fected its performance. It will then compare robo-CAMAL’s learning

performance with an alternative system that makes use of the same

learning algorithm.

Section 11.4 will relate how robo-CAMAL uses the adaptation

mechanisms described in section 8.6. It will then show why this model

on its own shows only limited success within robo-CAMAL.

The next section discusses the nature of robo-CAMAL’s motiva-

tion. Section 9.3 described how motivation is grounded through its

interactions with its environment. It also discussed the criteria for de-

termining if a motivation is purposeful and deliberative. Section 11.5

will therefore judge robo-CAMAL’s motivation in relation to these

criteria.

187
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Finally section 11.6 will describe some possible additions to the

robo-CAMAL architecture to improve its overall performance and

functionality. This will include a more sophisticated and variable do-

main model, as well as a meta cognitive layer.

11.2 Robo-CAMAL’s Anchoring Mechanism

The key component that allows robo-CAMAL to operate within its

environment is its anchoring mechanism. Section 1.2.1 states that

anchoring is the process of creating and maintaining a link between

an internal symbol and a perceptual response due to an object or event

(Coradeschi and Saffiotti, 2003). Within robo-CAMAL this process is

achieved through the domain model.

The domain model is a set of statements that allow specific char-

acteristics of the agent’s environment to be instantiated within the

agent’s architecture. Within robo-CAMAL the domain model is present

throughout the architecture. For example at the reactive level the

colour profiles are considered part of the domain model. At the de-

liberative level the specific beliefs the agent can hold are a compo-

nent of the domain model (see appendix B for more details on which

components are part of the domain model). As all the symbols are

instantiated a-priori, there is no symbol grounding performed within

robo-CAMAL.

11.2.1 Anchoring Objects with Robo-CAMAL

The anchoring mechanism within robo-CAMAL is reviewed here, and

explained by describing the process with which an object is linked to

the appropriate symbol. Initially an object produces a response in the

agent’s vision system. The vision system runs a Sobel operator over

the image to produce an edge image. The edge image is used to detect
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the location of the object.

The leading edge of the object is determined by placing an edge

node in each radial segment surrounding the agent. It is placed at

the pixel that is closest to the agent, and that exceeds a predefined

threshold value. The radial segment size, the edge pixel threshold, and

the assumption that the closest edge node is the objects leading edge

are all part of the domain model. This process detects the location of

an area of interest to the agent.

The area of interest (AOI) to the agent is taken from the edge

node closest to the agent. This AOI can then be extracted for further

analysis. This extraction process can be seen in figure 5.15 (see section

5.6 for more details). The size of the AOI is determined by the domain

model.

Once the AOI extraction has taken place, the RGB value of every

pixel is compared to the pre-defined RGB profile of the various objects.

If a pixel value is contained within a particular profile, then the profile

pixel count is incremented by one. If the pixel count of a particular

profile exceeds a pre-defined threshold, then the appropriate profile

flag is activated. The various object profiles, and the pixel count

threshold for each profile, are a part of the domain model.

At every reactive processing cycle the agent’s perceptual module

checks the profile flags. The perceptual module then constructs the

appropriate statements based on the state of the profile flags, and the

proximity of the AOI. This statement construction is based on a set

of predefined rules. For example if the redrobot flag is checked, and

the AOI is closer than a pre-defined threshold value, then part of the

constructed statement contains the event and object values hit and

redrobot. The rules that govern the construction of the statement are

pre-defined, and are a component of the domain model. Although

these values make sense to a human reader, they are still just values
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to robo-CAMAL at this point. This means that one more step is

required before an object can be considered anchored. This final step

is achieved within the deliberative level.

The deliberative level receives the constructed statement and uses

its content, and a number of pre-defined symbols, to generate be-

liefs that reflect the state of the environment. For example, if the

received statement contains the values hit and redrobot, then the be-

liefs hit(redrobot) and found(redrobot) are constructed. The belief

hit(redrobot) is removed after one deliberative processing cycle. The

belief found(redrobot) is removed after 25 deliberative processing cy-

cles. These pre-defined event and object symbols are a component of

the domain model. Once the appropriate beliefs have been constructed

at the deliberative level, the object can be considered anchored.

Another example of how the anchoring of an object can be achieved

was given in section 7.3.4. This made use of fuzzy logic to identify

an object (Coradeschi and Saffiotti, 1999). In essence, each object

has a specific set of features. The degree of matching between the

perceptual systems response to an object and the feature set gives

a measure of the likelihood that an object belongs to that feature

set. In this sense robo-CAMAL’s anchoring mechanism is similar to

other proposed anchoring mechanisms. Only the specific details of the

object identification really differ.

One thing the robo-CAMAL architecture highlights, and in par-

ticular the adaptation experiment, is the importance of the initial

identification. This means that choosing the correct features with

which to identify an object, and extracting those features from the

perceptual system, is crucial to the anchoring process. The adapta-

tion results in section 10.4 clearly show that the hardest part of the

anchoring process is this initial object identification. For example,

robo-CAMAL only used colour to identify objects. However, colour is
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subject to lighting conditions, with shadows and bright spots affecting

the objects colour profile significantly. For this reason robo-CAMAL

was not always successful in correctly identifying an object.

The results clearly show that if robo-CAMAL correctly identifies

the objects in its environment, it can adapt its goals and form the

correct beliefs. This demonstrates that robo-CAMAL can success-

fully anchor objects to predefined symbols. However, if robo-CAMAL

incorrectly classifies an object, it attempts to achieve inappropriate

goals and forms the wrong beliefs. This shows that if a deliberative

agent can not successfully anchor objects to the appropriate symbols,

it can not function correctly in that environment.

This demonstrates how reliant the deliberative component is on the

information provided by the perceptual system. In robo-CAMAL the

fault of unsuccessful anchoring lies not with the deliberative level, but

with the initial identification process. This means the features used

to identify an object are crucial. This also includes the way in which

those features are extracted. Both these elements are a key component

of an agent’s domain model.

11.2.2 Anchoring Events with Robo-CAMAL

In addition to anchoring objects, robo-CAMAL also has the ability

to anchor events. This is done via a two step process. Initially robo-

CAMAL’s environment is in state S1. The agent performs an ac-

tion A1 with known consequences. This changes the environment to

state S2. As the agent can predict the consequences of the action,

if it observes the environment changing from S1 to S2, it knows that

event E1 occurred. For example, S1 = environment(sparse) and A1

= find(redrobot). If after A1 the environment is observed to be S2 =

near(redrobot) then the event E1 = found(redrobot) occurred. In this

way the event found can said to be anchored.
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Another system that has the ability to anchor events and actions

makes use of situation/event calculus to observe a robotic finger that

strikes a ball (Steels and Baillie, 2003). Section 2.6 stated that event

calculus is a formalism for representing events and their effects (Kowal-

ski and Sergot, 1986). The event calculus contains three types of ele-

ments, events or actions, fluents, and time points. A fluent is a value

that has the capacity to change over time. These elements can be

reasoned about using various statements.

In this system the finger has three moving components. Each com-

ponent can be represented by the three vectors, ka, kb, and kc. The

ball can be represented by vector kd.

Initially the camera observes the environment with the finger sta-

tionary in state S0 = (ka, kb, kc, kd). When the camera observes the fin-

ger starting to move the environment state becomes S1 = (k′a, k
′
b, k
′
c, kd).

This transition corresponds to the action start move finger. That is

S1 = do(start move finger, S0).

At some time the finger strikes the ball. This gives rise to the state

S2 = (k′a, k
′
b, k
′
c, k
′
d). This corresponds to the event hit ball, i.e. S2 =

do(hit ball, S1). This clearly shows that the system anchors actions

and events by observing the initial and new state of the environment.

The way robo-CAMAL anchors events is completely different to

the event calculus method. However, both systems are required to

observe the initial and subsequent state of the environment arising

from an event in order to anchor that event.

11.3 Robo-CAMAL’s Learning Mechanism

If an agent is to achieve its goal, it needs to learn, plan, and execute

the appropriate set of actions to do so. Execution deals with the

instigation of an action, and observing the results on the environment
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(Mart́ınez and Borrajo, 2000). Learning is an agent’s ability to use

past experience and percepts to improve its performance in the future

(Zimmerman and Kambhampati, 2003). Planning is the process of

generating representations of future actions, prior to the use of such

actions, to control behaviour (Tate, 1999). That is, an agent couples

a set of known actions in a specific order in such a way that it achieves

its goal.

Robo-CAMAL makes no use of a planning mechanism (This state-

ment relates to robo-CAMAL only. The CAMAL architecture does

include a planning mechanism. See section 11.6.2 for more details).

It does, however, make use of execution and learning mechanisms in

order to achieve its goals.

In terms of robo-CAMAL’s learning ability, it uses its anchoring

mechanism to identify the objectives of its goal, and the association

model to understand the consequences of its actions. As mentioned

in section 8.2, an association is a coupling between a belief, a desire,

an intention, and a magnitude value (i.e. the association value).

At a high level view of the learning mechanism, robo-CAMAL goes

through a number of phases. These are:

• observe the environment (using the anchoring mechanism).

• initiate an association (using the affect model)

• perform the action described by the association (using the domain

model details of the link between the intention symbol and the

reactive control system)

• observe the environment once the action has been performed (us-

ing the anchoring mechanism)

• feed the consequences of the action on the environment into the

association value (using the association model)
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If the observed state of the environment after the action conforms to

the required desire state, then the association mechanism increases

the association value. However, if the environmental state after the

action is not the required goal state, the association value is decreased.

This process ensures that successful associations will develop higher

association values, whilst unsuccessful associations will develop lower

values.

11.3.1 Reinforcement Learning

Robo-CAMAL makes use of a reinforcement mechanism. It uses the

association model to choose an action. It then executes that action

and observes the the results on the environment. These observations

get fed back into the association model and the cycle continues. There

are a number of agents that use a similar approach. One such system

makes use of a Q-learning algorithm (as described in section 8.5.1) to

enable a robot to hit a ball into a goal (Asada et al., 1994).

This system’s algorithm was trained within a computer simulation.

Two experiments were conducted. The first simulated a two video

frame (1/15 sec) delay. This was done to simulate the physical agent’s

image processing routine. The second experiment simulated no delay.

Each training phase was run for 1000 processing steps. Once the

algorithm was trained the simulated agent was able to score a goal

with a success rate of 60% for the video delay policy, and 70% for the

no delay policy. This result clearly shows that a delayed response in

the vision system of an agent has a noticeable effect on its learning

ability.

The algorithm trained using the no delay policy was then trans-

ferred to a physical agent attempting to hit a red ball into a goal.

The shooting rate of the physical agent was 40%, which is significantly

lower than the simulated results. This clearly shows the difficulties of
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operating in a physical environment as opposed to a simulated one.

It is hard to fully compare this system with robo-CAMAL for two

reasons. The first is that robo-CAMAL’s actions were specifically de-

signed to achieve its goal, where as the system described above had to

learn how to combine basic actions (the equivalent of robo-CAMAL’s

micro-behaviours) to achieve its goal. In addition, the goal of hit-

ting a ball into a goal is more complex than simply hitting an object.

However, the control experiments for robo-CAMAL show that the

hit(object) has a success rate of 80% (see figures 10.1 to 10.3), and the

first learning experiment showed that robo-CAMAL is between 5 and

7 times more likely to learn the correct macro-behaviour to hit an ob-

ject than the incorrect macro-behaviour (see table 10.5). This success

comes despite robo-CAMAL having to operate in a physical environ-

ment, and cope with the omni-directionals video systems processing

delay.

It was mentioned above that all robo-CAMAL’s macro-behaviours

are a pre-programmed combination of its micro-behaviours. However,

this does not mean that robo-CAMAL is unable to learn how to com-

bine micro-behaviours. In principle the learning of micro-behaviours,

and how they can be combined, can be achieved using the existing

mechanism. All that would be required is a modification of the do-

main model.

The initial step would be to set a hierarchy of goals. The lower goal

set would contain basic goals such as move(forward), avoid(objectright),

avoid(objectleft) etc. The higher set would contain more complex goals

such as hit(object) etc. In addition, symbols linked to the micro-

behaviours would be entered into the domain model. For example,

spatial symbols such as right, front etc. may be necessary to deter-

mine the type of motion the agent has performed. Finally the percep-

tual systems would need to be enabled to determine if the goal state
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has been achieved for simple goals, e.g. routines that would allow

the perceptual system to determine forward motion. Once this has

been achieved then robo-CAMAL could learn the effect of its micro-

behaviours in the same way as it does for its macro-behaviours.

The second step would be to learn to link different micro-behaviours

together to achieve more complex goals. Figure 11.1 shows a suggested

goal hierarchy. In this hierarchy level 1 goals would represent basic

functionality such as movement. Level 2 goals represent more complex

behaviour based goals. A simple distinction could be that level 1 goals

are considered reflexes, and level 2 goals are considered desires. In this

hierarchy a level 2 goal could be any combination of the level 1 goals.

Figure 11.1: Goal hierarchy.

Currently robo-CAMAL makes use of symbols that relate to macro-

behaviours. Robo-CAMAL then attempts to determine the most

likely symbol to achieve its goal. The alternative approach is to use

symbols that relate to the individual micro-behaviours. The agent

then tries different combinations of micro-behaviours in order to achieve

a goal. This process would, however, take considerably more time as

there are a greater number possible combinations of micro-behaviours

to test. This is because the possible number of micro-behaviours for

each macro-behaviour is variable.

Section 10.3.2 mentioned that robo-CAMAL’s opportunistic learn-
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ing mechanism can have a detrimental effect on its learning capability.

This refers to the agent’s ability to choose the best action from a list

of similar actions. The agent does not consider future success, nor

does it attempt all associations in equal proportion. Instead, if it

finds an association that works, it sticks with it. This means that

robo-CAMAL shows a bias for the first successful association. As the

first association generated is also the first attempted, robo-CAMAL

will show an overall bias as it will try this association more often than

the rest.

One proposed solution might be to randomise the association order.

This would only hide the problem, not solve it. All this would do is

shift the bias from the first generated association, to the first randomly

generated association. The only way to overcome this deficiency would

be to attempt each association for a set period of time. Once the time

period has elapsed, the results are recorded and the next association

is attempted.

11.4 Adaptation with robo-CAMAL

For an agent to operate successfully it must be able to adapt to its en-

vironment. Section 8.6 described a number of different ways in which

a biological agent can adapt. These include learning, evolutionary,

physiological, and sensory adaptation (McFarland, 1991).

Robo-CAMAL adapts to its environment in two ways. The first is

that it learns the most appropriate associations for a given environ-

mental situation and desire. The second is similar to the physiological

mechanism employed by biological agents. That is, the internal state

of an agent reflects its environment and its drives.

For example the hunger drive in a dog may be considered anal-

ogous to the goal importance level in robo-CAMAL. Also the pres-
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ence of food may cause a dog to eat regardless of whether it is hun-

gry. Likewise in robo-CAMAL, a high association value and the belief

near(redrobot) causes it to hit the redrobot despite a low goal impor-

tance.

Parallels may exist between the physiological and robo-CAMAL’s

adaptation mechanisms. However, the distributed model of affect that

represents the agent’s internal state, is a gross oversimplification of

similar systems found in biological agents.

One point to note is that robo-CAMAL’s adaptation techniques are

not linked together into one process. That is, robo-CAMAL can not

switch between learning the appropriate actions, and then utilising

them in a variable environment. The agent requires its learning and

free roam attitudes to be set, off line, by a human user. The full

process requires the user to set the agent’s learning attitude with a

single goal. Once the associations for various goals have been learned,

they can then be used in a free roam attitude in which the agent has

several goals set by the human user.

11.4.1 The Domain Model and Adaptation

Once robo-CAMAL has learned the correct associations, it has to

use them to adapt in a variable environment. For robo-CAMAL to

adapt in a free environment, it needs to achieve three things. It must

observe the environment and form the correct beliefs, it must choose

the appropriate action based on those beliefs and its internal state,

and it must then execute that action.

Robo-CAMAL’s anchoring mechanism deals with the formation of

correct environmental beliefs. The BDI schema and the affect model

are then responsible for choosing the appropriate action. Finally the

reactive level is responsible for interpreting the control messages from

the deliberative level, and executing that action.
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It is clear from the results presented in section 10.4 that robo-

CAMAL is not always successful in adapting to its environment. The

control experiments in section 10.2.4 and 10.2.3 show that the delib-

erative component is operating as expected. This is backed up by the

adaptation experiment which shows that robo-CAMAL is adapting to

the environment that it believes it is in.

The execution of an action is a simple reactive process i.e. the

reactive level de-constructs the deliberative control message according

to a set of predefined rules. These rules are defined by the domain

model. The only place in which the adaptation process falls down is

in the forming of correct beliefs.

In the first learning experiment, robo-CAMAL was pre-programmed

with the correct beliefs a-priori. In addition, the objects within the

environment were never changed. With pre-programmed beliefs and

a controlled environment, the difficulties of forming the correct beliefs

are removed from the process of learning. This explains the success

of the learning experiment, and the partial failure of the adaptation

experiment.

This result also highlights the difficulties in moving an agent from

a controlled to an uncontrolled environment. Though the jump is not

as vast as moving from a simulated to an uncontrolled environment,

it is still significant.

There are two reasons for robo-CAMAL’s failure to form the correct

beliefs in a variable environment. The first is its perceptual system.

However, this point will always be true as sensors can always be im-

proved. The main problem relates to the perceptual elements of the

domain model. The image processing routines used were designed

to be simple to increase their processing speed. As a consequence

only one feature, colour, was used to identify objects. In addition,

the method of object identification was very basic. This impeded
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robo-CAMALs’ ability to correctly identify objects in complex envi-

ronments. In essence, the reason robo-CAMAL often forms incorrect

beliefs is due to deficiencies in the perceptual domain model. That

is, the perceptual domain model components do not capture the full

nature of the agent’s environment.

11.5 Grounding Motivation with Robo-CAMAL

Section 9.3 described how an agent’s motivation is grounded through

its interaction with its environment. It also provided a number of

characteristics that can be used to determine if an agent’s motivation

is reactive or deliberative.

It is clear from the learning and adaptation results that robo-

CAMAL’s interaction with its environment provides it with the ability

to choose its own goals. Robo-CAMAL uses its perceptual systems to

form beliefs about its environment. Robo-CAMAL’s internal state is

determined by its current and previous beliefs. Robo-CAMAL then

chooses its motivation based on its beliefs and its internal state. The

chosen motivation triggers the appropriate action which is executed.

Robo-CAMAL then observes the consequences of that action on the

environment, and forms new beliefs based on those consequences. The

cycle then repeats. This shows that robo-CAMAL’s motivation is cho-

sen through its continual interaction with its environment.

The nature of robo-CAMAL’s motivation can be determined by us-

ing the indices of motivation model (Epstein, 1982). The first feature

is the ability of an agent to achieve its goals using alternative strate-

gies. This ability is inherent in the association model. The way in

which robo-CAMAL learns allows it to develop different strategies to

achieve its goal based on its beliefs. For example, the agent can have

the associations
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association(environment(cluttered), avoid(X), intention(1..n),

values(1..n))

association(environment(sparse), avoid(X), intention(1..n),

values(1..n))

Here the same goal is the focus of the two associations, but each

has a unique belief. The agent has the ability to learn the most likely

intention to achieve its goal. This means that robo-CAMAL has the

ability to learn different intentions, or strategies, that achieve the same

goal under different circumstances.

The second characteristic is the formation of expectancies relating

to the goal object. This is reflected in robo-CAMAL by the possi-

ble object beliefs. For example, the belief hit(redrobot) is a cognitive

representation of the state of a goal object after an action has been

performed.

The final characteristic is the presence of an affective response to

the goal object. In robo-CAMAL this is represented by the distributed

model of affect. This includes the confidance the agent has in a belief

regarding the goal object, the association values of the associations

relating to the goal object, and the importance and threat values of

goals involving the object.

From these arguments it can be claimed that robo-CAMAL’s mo-

tivation is grounded and deliberative. The only possible doubt is

robo-CAMAL’s formation of expectancies. It could be argued that

as the agent requires these expectancies to be pre-programmed via

the domain model, its motivation is not fully deliberative. However,

even if aspects of the domain model are pre-programmed, that does

not make them non-deliberative. If the deliberative component sets

the reactive architecture to hit the blueball, it expects the declarative

hit(blueball) belief to be formed.

However, it is clear from the way in which robo-CAMAL adheres
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to the individuation and affective response criteria, that its behaviour

is far more deliberative than reactive.

11.6 Improving Robo-CAMAL

This section will describe the two main ways which could improve

robo-CAMAL’s ability to learn and adapt. The first suggestion relates

to the improvement of the current anchoring mechanism employed.

This can be done by improving the agent’s object and event detection,

and making use of a variable domain model.

The addition of a variable domain model introduces additional val-

ues that will fluctuate to reflect the agent’s internal state. The fluctu-

ation of these values must be controlled and monitored in some way.

For this reason the second suggested improvement is a meta-cognitive

level to monitor the internal state of the agent, and to modify the

domain model accordingly.

11.6.1 Improving the Domain Model

The first major improvement that can be made to the perceptual

component of the domain model is by improving the criteria for dis-

tinguishing an event. This can be achieved with better sensors and

more accurate event descriptions.

The first key improvement looks at robo-CAMAL’s collision detec-

tion mechanism. If an object is detected within a predefined proximity

threshold, a collision event is recorded. This assumption allows the

possibility that robo-CAMAL misclassify an object within this dis-

tance as being hit, when in fact no physical contact has been made.

This misclassification can easily be solved by the addition of pres-

sure sensors or whiskers. The addition of such sensors means that

a collision is only recorded at the point of contact. The one possible
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drawback is the potential difficulty of ensuring that an object detected

via the touch sensor corresponds to the object identified by the vision

system. This would need to be done by comparing the location of

the activated touch sensor to the area in the image of the identified

object.

The second issue surrounding collision detection is slightly more

ambiguous. This involves the registering of a single collision event

multiple times. Figure 10.22 in section 10.4 shows that robo-CAMAL

believes it has hit the blackrobot on a number of occasions. However,

in reality the number of collisions with the blackrobot was only 7, far

less than robo-CAMAL registered.

This is due to the fact that collisions take a finite amount of time,

or that robo-CAMAL may trap the object in a corner. As the object

is always within the collision distance threshold, the belief hit(object)

is continually registered. Touch sensors would negate this problem to

a large degree.

What should the definition of a collision be? For example, consider

the track(object) goal. If the object is in close proximity to the agent,

the belief near(object) is registered. As long as the agent is close to the

object the near(object) will continue to be generated, which is exactly

the requirement of the track(object) goal. This definition could also

be implemented at the deliberative level in the belief formation. If

Time = tn and hit(object, tn) and hit(object, tn−1) then touch(object,

tn)

However, the hit(object) goal could mean one of two things.

• Continuous contact with an object

• Single contact with an object

The first definition is what is currently implemented within robo-

CAMAL. That is, contact is continually registered as a hit event.
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The second definition would require some additional processing at the

reactive level. This would be simple to implement as a finite state

machine with the form

IF newPressure = off AND previousPressure = on

THEN REGISTER hit(object))

A temporal element may also be introduced. This would record

the number of reactive processing cycles the pressure variable is on.

All these possible rules provide a number of possible definitions for

what constitutes a collision. It would also be possible to implement

a number of possible definitions as separate events. For example

touch(object) and hit(object) events could be added to the domain

model if both the above definitions were implemented.

However, such additions are more of a design decision to expand,

rather than improve, the architecture. This is because the definition

of what constitutes a collision is imposed on the agent by an external

observer in much the same way behaviour can be imposed on a reactive

system.

To improve robo-CAMAL’s ability to identify objects, the most

obvious way would be to improve its vision system. Currently the

agent makes use of a simple colour analysis mechanism. However,

section 11.4.1 highlights the limitations of this method.

Robo-CAMAL uses the RGB value of an object to determine its

colour. The colour of an object is highly dependent on the context

in which it is viewed (Brainard, 1999). For example, due to lighting

effects the blueball is often in shadow and produces a colour profile

similar to that of the blackrobot. This often leads robo-CAMAL to

misclassify the blueball as a blackrobot. This means that it is important

to recognise the possible variations in an object’s brightness (Gilchrist

et al., 1999).
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Robo-CAMAL currently has no way to modify the colour profile

of an object in response to the lighting conditions. This shows that

one of the major drawbacks of the architecture is the rigidity of the

perceptual domain model. If robo-CAMAL could make use of a num-

ber of different object profiles to identify an object, it could learn the

most appropriate one for a given environment in much the same way

as it learns the correct macro-behaviour.

One method to achieve this would be to hard code multiple colour

profiles for each lighting condition. This, however, would prove im-

practical as there are so many different possible lighting conditions un-

der which an object could be viewed. A second method would be the

use of a perspective camera and the use of shape to augment colour.

However, this would require additional computational processing and

possibly increase the vision system lag.

An alternative method would be to allow robo-CAMAL to learn

how to differentiate between different colours for itself. For exam-

ple, the use of a neural network could allow robo-CAMAL to identify

colours under a number of different lighting conditions.

A neural network designed to identify colour could work as follows.

The neural net has three input neurons, each relating to one of the

possible RGB values of the colour. The neural net makes use of a

number of output neurons whose outputs can be combined to produce

a multi-dimensional vector. In between the input and output neurons

there are a number of hidden neurons.

Once the neural net has been trained, it produces a number of dif-

ferent dimensional vectors representing each colour and lighting con-

dition possible. This means that an object would produce a number of

output vectors that can be grouped into an object set. Such a system

has been shown to have a 97% success rate at recognising different

colours (Stoksik et al., 1991).
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The way this could be integrated into robo-CAMAL is as follows.

The neural net would be trained on a number of objects under different

lighting conditions. This training would produce a number of sets

containing the output vector of the neural net. Each set would become

part of the domain model.

When robo-CAMAL’s attitude is set as free roam, the vision sys-

tem would produce an output neural vector in response to an object.

This vector could be compared with the object sets deduced during

the neural net’s training. This mechanism would also allow a more

rigorous confidence value to be associated with the belief.

Currently robo-CAMAL only makes use of three confidence ratings

with the logical preference of perceived > deduced > assumed. The

use of fuzzy logic would be able to associate a confidence in the belief

as a percentage. For example, the degree of matching between output

vector A and fuzzy set B is 0.9, giving a 90% likelihood that the object

in the field of vision is B.

In addition, the case where two sets overlap can be taken into con-

sideration. The set for a blueball in poor lighting conditions would be

very similar to the blackrobot set. The reactive level would then trigger

two beliefs of high confidence, i.e. found(blueball) and found(blackrobot).

It could then be left to the deliberative level to decide which belief

is the most likely based on previous beliefs, in addition to the two

confidence levels.

Another aspect of this addition is that robo-CAMAL would be

able to learn to identify new objects that have been introduced into

its environment. Currently if robo-CAMAL encounters an object that

does not conform to its predefined colour profiles, it simply classifies

it as a generic object and moves on.

However, if robo-CAMAL had the ability to switch attitudes, when

it encountered a new object it could switch to a learning attitude. The
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agent could then run the neural training routine to produce a new set

that represents the new object. This set could then be added to the

domain model for future reference. From this point of view the agents

perceptual systems have the ability to alter the agents attitudes i.e.

if the agent perceives an unknown object, and the deliberative system

knows it can learn using its perceptual system, it may switch attitudes

from free roam to object learning. It also suggests that specific abilities

of an agents perceptual system, e.g. the ability of a neural network

to identify objects based on colour, can be used to drive cognitive

systems that take advantage of those abilities, e.g. the ability to learn

about and identify new objects. This means that the nature of an

agents perceptual system can drive the design of its cognitive systems

(Barsalou, 1999).

The ability to learn new object profiles would also require robo-

CAMAL to generate brand new beliefs and goals. For example, if the

agent found a new object, and added the appropriate object profile

to its domain model, it would also need to generate new beliefs and

goals relating to the object. The generation of such beliefs is already

implemented within robo-CAMAL. The reactive level would simply

register the same beliefs as before, with the new object as the focus

of the belief. Similarly, if a new object symbol is encountered at the

deliberative level, it would be trivial to generate new goals by simply

taking existing ones, and making the new object symbol the focus. As

robo-CAMAL already has the ability to generate new associations,

learning how to interact with the new object should not prove too

difficult for the agent.

This sub-section has shown that by providing a more detailed and

variable domain model, the robo-CAMAL architecture would be sig-

nificantly enhanced. However, adding such functionality would require

far more effort on the part of an external controller to manage the
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agent’s attitudes. For example, every time the agent encountered a

new object, the external controller would have to swap the free roam

attitude to a learn object attitude, then a learn association attitude,

then finally back to the free roam attitude. For this reason the next

sub-section details a possible solution that could be used to manage

robo-CAMAL’s attitudes.

11.6.2 Meta-Cognitive Layer

Currently robo-CAMAL requires an external control source to manage

its attitudes. That is, for robo-CAMAL to switch between a learning

and free roam attitude, it must be taken off line, reconfigured, and

restarted. It is clear that robo-CAMAL would be better equipped to

adapt to its environment if it could manage its attitudes without an

external influence. For this reason the final suggested improvement

to the robo-CAMAL architecture is the addition of a meta-cognitive

layer.

Meta-cognition can be defined as knowledge that takes as its object,

or regulates any aspect of, any cognitive endeavour (Flavell, 1978).

This statement details two types of process. The first is an agent’s

knowledge about its own cognitive resources, and how they relate to

its environment. The second activity regards the agent’s ability to

self regulate its cognitive mechanisms in an ongoing attempt to solve

problems (Baker and Brown, 1984).

This description states that a meta-cognitive layer should have

knowledge about how its cognitive processes relate to its environment,

and with this knowledge be able to manage and control such processes.

The full CAMAL architecture consists of a meta-cognitive compo-

nent (Venkatamuni, 2008). However, this was not implemented as a

part of the robo-CAMAL project. This section suggests how such a

layer may be integrated, and function within the robo-CAMAL archi-
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tecture.

The first point regards the agent’s knowledge about its own cog-

nitive processes, and their relationship with the environment. Any

knowledge the agent has about its self would be instantiated as a do-

main model component. Any variation in the domain model would

be managed by the meta-cognitive layer. This is where the agent’s

ability to manage its own cognitive processes becomes important.

The first and most obvious cognitive process that requires man-

agement is the agent’s attitudes. One example could be to change

the agent’s goal set. If the environment was cluttered and the agent

continually failed to avoid objects, it could swap its goal set from

avoid(object) to hit(object). This is the simplest mechanism to em-

ploy. A more complex task would be to enable the agent to switch

between a free roam and a learning attitude.

In a free roam attitude robo-CAMAL has a set of goals and a num-

ber of known good associations. In a learning attitude the agent has a

single goal and a confined belief set that reflects its environment. For

robo-CAMAL to have the ability to switch between the two attitudes,

several additional mechanisms and affect values must be introduced.

The first and most obvious mechanism is the ability to recognise

when to switch attitudes. This could be done by monitoring the as-

sociation values. If one falls below a given threshold, it could mean

that the association is no longer valid.

However, an association’s failure may not be due to the fact that

it is no longer valid. It may also be that the focus of the association’s

goal is no longer present in the environment. Therefore, an association

should be relearned if it continues to fail whilst beliefs about the ob-

ject of its focus persist e.g. if the found(redrobot) belief is constantly

formed over a period of time, and the association used to achieve the

hit(redrobot) goal continues to fail.
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It can also be seen from section 10.3 that the association values

fluctuate a great deal within a five minute period. This could adversely

affect the agent’s ability to switch attitudes. With such fluctuations

robo-CAMAL could be switching between its learning and free roam

attitude very rapidly.

One solution would be to have two association values. This would

mean a learning and a known good value. The learning association

value would vary as currently implemented. The known good associ-

ation value would show a much smaller variation due to the agent’s

success or failure. This would mean that known good associations

would persist for a greater period of time. Only continued failure over

time would trigger the learning attitude.

The second important aspect in switching to a learning attitude is

recognising that the environment is appropriate to learn from. That

is, the environment is consistent so that the agent’s beliefs can be con-

strained at the reactive level. This involves better object recognition

and has been described previously in this chapter.

At the deliberative level, the agent must recognise when the envi-

ronment is unchanging. This can be done by monitoring the belief set

over a period of time. If no beliefs about a new object are introduced,

or beliefs about a current object do not disappear, over a prolonged

period of time, then the environment can be considered consistent.

A point to note is the situation where the environment changes

whilst the agent is in a learning attitude. In this situation the agent

has two choices. It can either exit the learning attitude, or risk learn-

ing in a variable environment. This decision is a balance between the

importance of the goal the agent is trying to learn to achieve, and the

success rate of associations learned in a variable environment.

The difficulty here is enabling robo-CAMAL to determine the reli-

ability of its own learning mechanism. This would require the agent
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to monitor the length of time an association learned in a variable en-

vironment took to decay. If this decay was rapid, robo-CAMAL could

deduce that learning in a variable environment showed poor results.

An additional affect value would be required to detail the number of

processing cycles a known good association took to decay.

A second use for a meta-cognitive layer would be to enable robo-

CAMAL to learn how to plan. Section 11.3.1 mentioned that this

is something the agent is currently unable to do. However, this is a

deficiency with robo-CAMAL, not the CAMAL architecture.

The CAMAL architecture allows for intentions to be strung to-

gether in a single association. For example, if the ultimate end goal

is to hit(X), and the current belief is lost(X), the associations

associations(lost(X), find(X), lookFor(X))

associations(found(X), follow(X), stayCloseTo(X))

associations(near(X), hit(X), runInTo(X))

can be combined to given

associations(lost(X), hit(X), lookFor(X) + stayCloseTo(X)

+ runInTo(X))

There is no reason this could not be implemented within robo-CAMAL.

This would simply require the agent to string a set of intentions to-

gether, and use the learning mechanism to decide which intention set,

or plan, is the most successful. All the meta-cognitive layer would

have to do is ensure that each intention in the set is triggered in the

correct order.

11.7 Summary

This chapter took the results presented in chapter 10, and discussed

their implications for the robo-CAMAL architecture. It also used
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these results to compare robo-CAMAL with a number of similar sys-

tems, and its overall relation to some of the fields within A.I. research.

It initially looked at robo-CAMAL’s anchoring mechanism. It de-

scribed how the domain model is used to control the anchoring mech-

anism. It also looked at the anchoring mechanism employed by other

systems and highlighted their similarities. This included the anchoring

of events as well as objects.

The chapter then went on to look at the learning results. It high-

lighted the importance of learning in order to achieve goals, and gave

a basic overview of robo-CAMAL’s learning mechanism. It then com-

pared the agent’s learning mechanism to a system that makes use of

a similar algorithm. This comparison highlighted the effect of learn-

ing in a physical environment. It showed that the image processing

required to interpret the environment can adversely affect an agent’s

ability to learn.

It also stated that transferring an agent trained in a simulated envi-

ronment to a physical one has a detrimental affect on its performance.

However, robo-CAMAL showed an excellent success rate for learning

in a physical environment with an imperfect vision system.

Section 11.4 discussed how robo-CAMAL adapts to its environ-

ment. It also showed the effect an inadequate perceptual domain

model has on the agent’s ability to adapt. It noted that robo-CAMAL

adapts correctly to an environment. However, as the agent will some-

times form false beliefs about its environment, due to deficiencies in

the domain model, it will adapt to the wrong environment.

The next section went on to discuss the nature of motivation in

robo-CAMAL. It stated that motivation in robo-CAMAL is grounded

through its interaction with the environment. It also showed, by using

the indices of motivation, that motivation in robo-CAMAL can be

considered as deliberative.
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The chapter finally went on to suggest various improvements to

robo-CAMAL. The first suggestion involved improving the agent’s

domain model. This included a better colour detection model us-

ing a neural network or the extending of the visual feature set beyond

colour (e.g. shape)., and enabling the domain model to vary. The

second suggestion looked at the inclusion of a meta-cognitive layer in

the architecture. This layer would manage the variable domain model,

and the agent’s attitudes.



Chapter 12

Summary

12.1 Introduction

This thesis set out to demonstrate a cognitive agent that can do two

things.

• Learn how to achieve pre-determined goals given no understand-

ing of the consequences of its actions.

• Adapt its goals to reflect changes in a variable environment.

This was done in order to investigate the anchoring problem. This is

the problem of linking perceptual data about objects and events, to

symbolic representations of those objects and events. For an agent to

achieve the goals of the thesis, it must have the ability to anchor. To

this end, the robo-CAMAL architecture was developed.

This thesis can be divided up into three parts.

• The previous research that influenced the design of the robo-

CAMAL architecture.

• The design of the robo-CAMAL architecture.

• The performance of the robo-CAMAL architecture.

This final chapter will summarise the three elements of this thesis,

and draw the final conclusions about the architecture developed here.

214
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12.2 Background Material

The robo-CAMAL architecture was designed from the reductionalist

view point, and the theory of mind of as a control system. This means

that the robo-CAMAL architecture can be decomposed into separate

functional components, and was designed to control the actions of a

mobile robot.

The architecture makes use of a number of different systems that

have been developed over the years. At a more general level, robo-

CAMAL makes use of a hybrid, reactive/deliberative architecture. It

uses this set up in order to make use of a reactive system’s ability

to respond and act quickly in a rapidly changing environment. It can

also use the deliberative system’s ability to reason about events within

its environment, and solve problems.

At a more specific level, robo-CAMAL’s design was based on the

CogAff architecture. This makes use of a three row, three column

structure including reactive, deliberative and meta-cognitive rows,

with a perceptual, cognitive and action execution columns.

In order to decide what to do next, robo-CAMAL makes use of the

belief desire intention (BDI) architecture found in the CRIBB model.

In addition, robo-CAMAL makes use of the distributed model of affect

found in a-CRIBB to aid its decision making process.

The driving force behind robo-CAMAL’s actions are its motiva-

tional constructs. It makes use of a motivational blackboard to priori-

tise its goals. The agent’s motivations reside on the blackboard, along

with their associated affect values. The affect values are used to order

the agents goals in terms of their priority. These affect values are then

modified by various knowledge sources, and are then used within the

BDI schema to direct the agent’s next action.
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12.3 The Robo-CAMAL Architecture

The robo-CAMAL architecture consists of a number of components

that work together to produce goal directed behaviour. A basic cycle

operates as follows. The perceptual system observes the environment.

If an event is perceived, then an event message is constructed and

passed to the deliberative level. The deliberative level constructs a

number of beliefs based on the received control message. The af-

fect values are then modified based on the new information contained

within the new beliefs. The BDI schema then chooses which action to

perform next based on the affect values attached to the agent’s beliefs

and its motivators. A control message is then passed back to the reac-

tive level that indicates which reactive architecture to activate. The

reactive component then activates the relevant architecture, which in

turn alters the environment. The change in the environment is regis-

tered by the perceptual system which constructs a new event message,

and the cycle continues.

There are a number of components that allow the agent to perform

these tasks. One is the domain model. This model is used to instan-

tiate all the domain specific properties the agent has. This includes

such things as the possible beliefs the agent can hold, the goals it

can have, or the actions it can perform. It is the domain model that

controls the anchoring process. The control messages are constructed

based on rules defined by the domain model. The domain model also

defined the various trigger thresholds. If an affect value crosses a

trigger threshold, a control process is altered to produce a different

behaviour. This can either change the agent’s behaviour directly as

in the case of a reactive system, or indirectly as in the alteration of a

specific goal’s affect values. In essence, the domain model is used to

enable the architecture’s generic components to operate in a specific
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environment.

The driving force behind robo-CAMAL’s motivation is its motiva-

tional constructs. Motivational control states come in a number of

forms. Instincts and drives are found at the reactive level. These are

pre-programmed responses to sensory input. For example the reactive

behaviour

IF (rightSensorValue < 50mm) THEN (turn left)

Goals come in two types, quantitative and qualitative. Quantita-

tive goals are present at the reactive level and refer to groupings of a

number of reactive systems that achieve a specific task. For example,

the avoid object on the right alone is a drive, where as the combination

of a number of avoid drives produces an avoid(objects) quantitative

goal.

Qualitative goals are present in robo-CAMAL at the deliberative

level and take the form hit(blueball). However it is more appropriate

to think of these goals as the end states associated with desires.

Desires within robo-CAMAL describe the specific goal, the belief

required for the goals success, and the desires importance. Desires are

present at the deliberative level within robo-CAMAL, and take the

form goal(Desire, Success Condition, Goal Importance, Threat Value).

Intentions are strategies and plans that are used to achieve desires.

Intentions are found within robo-CAMAL at the deliberative level

and take the form of predicates detailing the various possible reactive

architectures.

Attitudes are pre-dispositions to respond in certain ways to certain

perceptual or internal triggers. Attitudes are present within robo-

CAMAL, but are pre-programmed prior to run time. An attitude in

robo-CAMAL refers to the pre-defined goal set. Different attitudes or

goal sets must be changed by the user off-line.
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The component at the centre of the BDI schema is the association.

An association consists of a belief, a desire, an intention, and an affect

value that represents the likelihood that the intention will achieve its

desire based on the belief.

The BDI schema initially chooses all the associations that contain

the agent’s current beliefs. It then chooses a single association based

on the affect model. The intention is then extracted from this associ-

ation, and used to construct the relevant control message sent to the

reactive level.

Associations allow robo-CAMAL to learn how to achieve its goals

and adapt in a variable environment. When learning how to achieve its

goals, robo-CAMAL selects an association and extracts the intention.

If the intention successfully achieves it desire, the association value is

increased. This means that successful associations will develop higher

association values over time.

The final association chosen is the one holding the relevant belief,

and the highest association value. This means that robo-CAMAL’s

learning mechanism is opportunistic, and continually looks for the

quick win that will achieve its goal immediately. This is a form of

reinforcement learning in which the agent determines the success of

its actions based on the feedback it receives from its environment. In

this scenario the agent has a single goal in an unchanging environment.

Robo-CAMAL adapts in much the same way as it uses the learning

mechanism. The main differences are:

• The agent has more than one goal.

• The agent’s environment is variable.

• The agent has gone through the learning process to find the

known good associations relating to its goals.
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In this situation the importance value of a specific goal is taken into

consideration when choosing the relevant association.

The affect values vary over time, in response to events in the en-

vironment, and on previous performance. The affect values therefore

reflect changes in the agent’s environment and its internal state. The

associations are chosen based on the state of the affect model at that

time. This allows robo-CAMAL to choose its goals based on changes

in the environment and its internal state, and on its previous experi-

ence. It is the interaction of the BDI schema, the distributed model

of affect, the association model, and the motivational control mecha-

nisms that allow robo-CAMAL to adapt within its environment. The

domain model is used to enable robo-CAMAL to operate in a specific

environment, and is the only mechanism in the architecture that is

not generic.

12.4 Experiments and Results

The experiments performed fall into three main categories. Con-

trol, learning, and adaptation experiments. The control experiments

showed that the robo-CAMAL architecture performed as expected.

They also produced control data with which to compare the learning

experiments.

Two experiments were designed to analyse robo-CAMAL’s learning

mechanism. The first looked at the agent’s ability to learn general

behaviours. For this experiment the agent was pre-programmed with

the correct environmental beliefs, and instantiated with a single goal.

The agent then had to generate a number of associations and learn

which one was most likely to achieve its goal.

Robo-CAMAL learns this through trial and error. Initially it tries

the intention contained within a particular association. If this inten-
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tion succeeds, then the association value is increased. If it fails then

the association value is decreased. This means that over time, asso-

ciations with the most appropriate intention will develop the highest

association values.

The second learning experiment investigated robo-CAMAL’s abil-

ity to optimise its performance. For example, can robo-CAMAL learn

the best intention to achieve a specific goal? The agent is initially pre-

programmed with the correct environmental beliefs, and instantiated

with a single goal. It also has a number of correct associations pre-

programmed. The agent then tries to learn which association shows

the best performance.

However, the results for this experiment showed that robo-CAMAL

did not have the ability to learn the optimal intention with which

to achieve its goal. This was due to the opportunistic nature of the

agent’s learning mechanism. Robo-CAMAL initially attempts the first

association in the list. If this is successful, then the agent continues

to use this association until it fails. This means that robo-CAMAL

will favour the first successful association.

The adaptation experiments were designed to investigate robo-

CAMAL’s ability to modify its goal in response to changes in its

environment. For this experiment the agent was instantiated with

a number of goals, and the correct associations. The agent was then

allowed to roam within its environment and choose its own goals. The

environment was periodically altered, with objects being removed and

added at various intervals.

The adaptation experiments showed mixed results. They indicated

that the deliberative component adapted in a consistent way with

changes in its beliefs. However, if the agent’s beliefs were incorrect, it

attempted to adapt to the perceived environment, and not the actual

one. This highlights two things,
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• Moving from a controlled to a free environment has a detrimental

effect on an agent’s performance.

• An agent’s anchoring mechanism is crucial in allowing an agent

to adapt in a variable environment.

In the case of robo-CAMAL, although the anchoring mechanism was

sufficient to allow it to learn in a controlled environment, it was insuf-

ficient to provide a set of beliefs that consistently mirrored a variable

environment.

12.5 Conclusion

This thesis set out to demonstrate a cognitive agent that could learn,

and adapt in a physical environment. This was done to investigate

issues surrounding the anchoring problem. If a cognitive agent that

makes use of symbolic processing can learn and adapt in a physical

environment, then it must also have the ability to link sensory data

to the symbols with which it reasons.

To this end the robo-CAMAL architecture was developed. Robo-

CAMAL demonstrated the ability to learn which actions to use in

order to achieve its goal. However, it was unable to fine tune its

performance, and learn the best action given a number of actions that

achieve the same thing. This was due to the opportunistic nature of

the learning mechanism implemented.

The learning experiments demonstrate that robo-CAMAL has the

ability to anchor events and object to pre-defined symbols. It uses the

domain model to recognise an object such as a blueball, and an event

such as hit(blueball).

The adaptation experiment showed that robo-CAMAL can adapt

to its perceived environment, but that the domain model was insuffi-

cient to consistently build the correct beliefs.
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The agent’s performance can be improved in two main ways. The

first involves a more sophisticated domain model, for example, the use

of a neural network to learn about new objects in its environment.

The second improvement involves the addition of a meta-cognitive

layer to manage the agent’s goals and attitudes, as well as a variable

domain model, for example changing the agent’s attitude from a free

roam to a learning mode.

In conclusion, robo-CAMAL has demonstrated an ability to anchor

symbols to perceptual data with the use of a domain model. This

anchoring mechanism performs very well in a controlled environment,

but struggles to cope in an uncontrolled environment. This failure is

due to a lack of sophistication in the domain model. This highlights

just how important the anchoring process is to a deliberative agent if

it is to function in its environment
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Appendix A

The Motivational Blackboard

A.1 Introduction

This appendix will cover, in detail, the motivational blackboard sys-

tem used by Robo-CAMAL. Though this topic has been discussed in

chapter 9, it was covered in general terms. No real detail was given.

This appendix will cover in detail what the three components of the

blackboard system (the blackboard, the control component, and the

knowledge sources) contain. This represents the whole deliberative

component which has been written in Prolog. It will also highlight,

in bold script, any component that is considered part of the domain

model. Components of the affect model will be highlighted in red.

A.2 The Blackboard

agent time(X).

Details the number of processing cycles, X, the deliberative

component has executed.

environment descriptor list([sparse, cluttered, dynamic, static]).

236
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Details the possible states that the environment can be in.

object list([object, ball, blackrobot, redrobot]).

Details the possible types of objects to be found in the en-

vironment.

object predicate list([lost, found, near, hit]).

Details the possible states that environmental objects can

be in.

negate(environment(sparse), environment(cluttered)).

negate(environment(cluttered), environment(sparse)).

negate(environment(static), environment(moving)).

negate(environment(moving), environment(static)).

negate(found(X), lost(X)).

negate(lost(X), found(X)).

negate(near(X), lost(X)).

negate(hit(X), lost(X)).

negate(not(hit(X)), hit(X)).

negate(hit(X), not(hit(X))).

Details which beliefs conflict with one and other.

belief preference(perception, assumption).

belief preference(perception, deduction).

belief preference(deduction, assumption).

Determines which source is preferred for two conflicting be-

liefs. That is X is preferred over Y for belief preference(X,

Y). This is a component of the affect model.
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domain synonym(found, near).

Details the belief found can be deduced if the belief near is

present.

clutter threshold(2).

Determines the number of objects needed in the environment

for it to be considered cluttered.

belief(BeliefDescriptor, BeliefSource, Agent time).

Represents the agent’s beliefs. BeliefDescriptor details

the semantic context of the belief, and it can take one of the

following forms,

• environment(environment descriptor list).

• object list(object predicate list).

• failed(Intention).

Here Intention is one of the possible reactive architectures.

BeliefSource detailes how the belief was formed, and is an

affect value. It can take one of the following values, percep-

tion, deduction, assumption. Agent time details at which

deliberative processing cycle the belief was formed.

intention list([track, hit, avoid, find]).

Details the possible actions that can be performed.
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desire list([avoid(collisions), hit(object), hit(ball),

hit(blackrobot), hit(redrobot), avoid(object), avoid(ball),

avoid(blackrobot), avoid(redrobot), find(object), find(ball),

find(blackrobot), find(redrobot), track(object), track(ball),

track(blackrobot), track(redrobot)]).

Details all the possible desires with regards to the inten-

tion list and object list .

goal minmax(0.1, 0.9).

Represents the minimum and maximum values the Goal importance

value can take. It is defined by the affect model.

goal threat max(10).

Represents the maximum number of times a goal can con-

secutively fail before the Goal importance is reduced. It is

defined by the affect model.

goal(Desire, Success condition, Goal importance, Threat value).

Represents the agent’s goals.Desire states the desired end

state of the goal, and takes the form desire list . The Suc-

cess condition is the belief required for the Desire to be

true. It takes the form BeliefDescriptor . Goal importance

is an affect value, and reflects how important the goal is to

the agent. It can vary between 0.1 and 0.9. Threat value rep-

resents the number of times the goal has consecutively failed.

Due to the domain specific connection between the Desire

and Success condition , all goals are pre-programmed.
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architecture(sonar, priority, avoid).

architecture(sonar, aggregate, avoid).

architecture(sonar, winner, avoid).

architecture(sonar, suppression, avoid).

architecture(vision, priority, avoid).

architecture(vision, aggregate, avoid).

architecture(vision, winner, avoid).

architecture(vision, suppression, avoid).

architecture(both, priority, avoid).

architecture(both, aggregate, avoid).

architecture(both, winner, avoid).

architecture(both, suppression, avoid).

architecture(sonar, priority, find).

architecture(sonar, aggregate, find).

architecture(sonar, winner, find).

architecture(sonar, suppression, find).

architecture(vision, priority, find).

architecture(vision, aggregate, find).

architecture(vision, winner, find).

architecture(vision, suppression, find).

architecture(both, priority, find).

architecture(both, aggregate, find).

architecture(both, winner, find).

architecture(both, suppression, find).

architecture(sonar, priority, track).

architecture(sonar, aggregate, track).

architecture(sonar, winner, track).

architecture(sonar, suppression, track).

architecture(vision, priority, track).
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architecture(vision, aggregate, track).

architecture(vision, winner, track).

architecture(vision, suppression, track).

architecture(both, priority, track).

architecture(both, aggregate, track).

architecture(both, winner, track).

architecture(both, suppression, track).

architecture(sonar, priority, hit).

architecture(sonar, aggregate, hit).

architecture(sonar, winner, hit).

architecture(sonar, suppression, hit).

architecture(vision, priority, hit).

architecture(vision, aggregate, hit).

architecture(vision, winner, hit).

architecture(vision, suppression, hit).

architecture(both, priority, hit).

architecture(both, aggregate, hit).

architecture(both, winner, hit).

architecture(both, suppression, hit).

Details the possible reactive architectures that can be trig-

gered.

association(BeliefDescriptor, Desire, Architecture, Association value).

Used to keep track of the possible belief, desire, intention

combinations used within the BDI schema. Given the Be-

liefDescriptor , the Association value gives the likelihood

that the specific reactive architecture, Architecture , will

achieve the Desire.



APPENDIX A. THE MOTIVATIONAL BLACKBOARD 242

motivator(Goal, Association, Reactive cycles, Motivator value).

The motivator is the result of the execution of the various

knowledge sources. It contains the goal the agent wishes to

achieve, the association the agent has chosen to achieve that

goal, the number of cycles the reactive component should run

for, and the motivators importance. The Motivator value is

redundant, but has been retained for any possible future

research using the Robo-CAMAL model.

A.3 The Control Component

call deliberative(Event, Object, Sensor, Method, Task, Cycles,

ObjectOut):-

time update,

construct belief(Event, Object, Updates),

belief update(Updates),

desire update,

choose motivator,

intention update(Sensor, Method, Task, Cycles, ObjectOut),!.

The call deliberative function is the entry point to Robo-CAMAL’s

deliberative component. It is called by the reactive component in

much the same way as a micro-behaviour. The call is dependent on a

set of rules instantiated at the reactive level (see section 6.7).

The call deliberative function takes several arguments. The first

two are provided by the reactive component. The Event argument
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takes the form intention list . The Object argument takes the form

object list .

Once the call deliberative function has been triggered, the knowl-

edge sources are called in the order shown. The time update incre-

ments the agent time by one. The construct belief uses the Event

and Object arguments, provided by the reactive component, to con-

struct any new beliefs. These new beliefs are placed in the Updates

argument. The belief update uses the Updates argument to modify

the agent’s current belief set accordingly. The desire update uses the

new belief set to determine if it has achieved its current goal. It then

updates the relevant goal and association affect values accordingly.

The choose motivator uses the current goal and belief set to choose

the most appropriate goal and association for the agent at that time.

It then updates the motivator accordingly.

Finally the intention update extracts the relevant arguments from

the new motivator. These are the arguments that determine the spe-

cific reactive architecture to trigger. The Sensor argument deter-

mines which sensor combination is to be used. It can take one of

three values which are sonar , vision , or both . The Method argu-

ment determines which micro-behaviour combination method should

be used. It can take one of four values which are priority , aggregate ,

winner , or suppression . The Task argument details the specific

macro-behaviour to triggerd. It is of the form intention list . The

Cycles argument details the number of processing cycles the reac-

tive component is to run for. The ObjectOut argument details the

specific object of interest. It is used to configure the vision system

and is of the form object list . The call deliberative function then

returns control to the reactive component with the relevant arguments

updated.
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A.4 The Knowledge Sources

The knowledge sources are the various functions called by the call deliberative

routine.

time update.

Increments the agent time by 1.

construct belief(Event, Object, Updates),

Uses the Event and Object arguments to generate a list of

new beliefs, Updates, based on the robots perceptual data.

There are four possible scenarios.

• Scenario 1. The incoming Event is avoid, and the

agent’s goal was to avoid objects. In this case the Up-

dates argument is set to [[environment(sparse), deduc-

tion, agent time]]. The belief is that the environment is

sparse as no objects were encountered. The belief is

deduced as there could be objects in the environment,

the agent simply has not found them.

• Scenario 2. The incoming Event is avoid, and the

agent’s goal was to perform an action on an object.

In this case the Updates argument is set to [[environ-

ment(sparse), deduction, agent time], [failed(Intention),

perception, agent time]]. The first belief is generated for

the same reason as scenario 1. The second belief states

that the specific reactive architecture, Intention , failed

to achieve its goal.

• Scenario 3. The incoming Event is an event, and the

agent’s goal is satisfied by that event on the appropriate
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object, Object . In this case the Updates argument is

set to [[Event(Object) ,perception, agent time]]. This

time the specific event has been perceived by the agent.

• Scenario 4. The incoming Event is an event, and the

agent’s goal is not satisfied by that event on the appro-

priate object, Object . In this case the Updates argu-

ment is set to [[Event(Object) ,perception, agent time],

[failed(Intention), perception, agent time]]. Again the

second belief states that the specific reactive architec-

ture, Intention , failed to achieve its goal.

belief update(Updates),

Uses the new beliefs generated by the construct belief knowl-

edge source to update the agent’s belief set. The belief update

knowledge source has several tasks.

• Remove beliefs about hit(Object) that are older than

one deliberative process cycle.

• Remove beliefs about failed(Intention) that are older

than one deliberative process cycle.

• If two beliefs have the same BeliefDescriptor , then

retain the most recent. If two beliefs have the same

BeliefDescriptor , and were formed at the same time,

then use the belief preference(X, X) to retain the belief

with the preferred source.

• Use the negate(X,Y) predicate to determine if two be-

liefs conflict. If so then retain the most recent.

• Use the negate(X,Y) predicate to determine if two be-

liefs conflict. If they were formed at the same time, then
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use the belief preference(X, Y) to retain the belief with

the preferred source.

• Remove beliefs older than 25 deliberative processing cy-

cles.

• Use the domain synonym(X,Y) to deduce any belief

if subset belief present.

• Use the clutter threshold(2) to determine if the en-

vironment is sparse or cluttered.

• Determine if the environment is static or dynamic us-

ing the domain model assumption that if a red or

black robot is present then the environment is

dynamic.

desire update,

Uses the motivator to determine if the agent has achieved

its goal. Using this information it updates the relevant as-

sociation and goal affect values accordingly. There are two

possible scenarios

• Scenario 1. The agent has achieved its goal. The associ-

ation value of the association used to achieve the goal is

increased. The goal importance value is set to 0.5. The

goal threat value is set to 0. Finally the motivator is

removed.

• Scenario 2. The agent has failed its goal. The associ-

ation value of the association used to try and achieve

the goal is reduced. The goal importance value is in-

cremented by 0.02. If the goal threat value is set to 10,
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set the goal threat to 0 and the goal importance to 0.1.

Finally the motivator is removed.

choose motivator,

Uses the various affect values to choose the goal the agent

wishes to achieve, and the association with which to try and

achieve the goal.

• Place the agent’s current goal set in a list.

• Remove goals that have just been achieved from the goal

list.

• Find all the associations that relate to the agents current

goals and belief set. If no association exists then create

new ones based on the goal and belief set.

• Pair up each goal with the relevant associations.

• Rank each association based on its association value,

the goal importance, and the time its belief was formed

at.

• Use the association with the highest rank value to in-

stantiate the new motivator. The number of reactive

cycles is based on the domain model. If the motiva-

tor goal is to find(Object), then the cycle number

is set to 100, else the cycle number is set to 50.

intention update(Sensor, Method, Task, Cycles, ObjectOut),

Used to extract the relevant reactive configuration to be trig-

gered, from the motivator.
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• Sensor, Method, and Task arguments extracted from

the association, Intention component of the motivator.

Represents the specific reactive architecture to trigger.

• Cycles argument extracted directly from the motiva-

tor. Represents how many processing cycles the reactive

component should run for.

• ObjectOut argument extracted from the goal, Desire

component of the motivator. Represents the agent’s ob-

ject of interest and is used to configure the vision system.



Appendix B

The Domain Model

B.1 Introduction

This appendix will describe the components that make up the domain

model. The domain model consists of all the elements that describe

some part of the agent’s physical form or its environment. Table B.1

describes the domain element name, its description, the level within

the architecture it can be found at, and the nature (i.e. whether the

element relates to the agent’s environment or form) of the element.

B.2 Domain Model Description

Name Description Level Nature
Proximity
Thresholds

Distance threshold within which
an event has occurred or an action
is triggered. Found in the micro-
behaviours, the reactive rule set,
and the vision processing system.

reactive environment

Leading Edge
Assumption

Assumption that any node chain
found represents the leading edge
of an object. This is based on the
agents environment and the na-
ture of the omnidirectional vision
system.

reactive environment/
form

249
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Name Description Level Nature
Colour Profiles The RGB values that describe

each of the three objects present
in the environment.

reactive environment

Reactive Rule
Set

Set of rules that construct a state-
ment based on the internal state
of the reactive component. This
statement is then passed to the
deliberative component.

reactive environment/
form

Reactive
Processing
Cycles

The maximum number of the re-
active processing cycles the agent
should run for before constructing
a deliberative statement.

deliberative environment

Belief
Descriptor

The descriptor used do describe a
possible belief i.e. found, hit etc.

deliberative environment

Belief State Possible states the Belief Descrip-
tor can take i.e. redrobot, sparse
etc.

deliberative environment

Belief
Persistence
Threshold

The number of deliberative pro-
cessing cycles a belief exists for
before it is removed.

deliberative environment

Belief Update
Model

Describes which beliefs are mutu-
ally exclusive (i.e. lost(redrobot)
and found(redrobot)), and
which can be deduced (i.e.
found(blueball) can be deduced
from hit(blueball)).

deliberative environment

Goal Descriptor Specific goal description i.e. hit,
avoid etc.

deliberative environment

Goal Object The focus of the Goal Descriptor
i.e. redrobot, object etc.

deliberative environment

Architecture
Descriptor

One of the possible combinations
of micro-behaviours/sensor sys-
tem/arbitration method

deliberative form

Table B.1: Domain model components.



Appendix C

Results

C.1 Introduction

This appendix will detail the results gathered during the experiments

described in chapter 10.5. It will start with the first learning ex-

periment which involved robo-CAMAL in a controlled environment

attempting to achieve a single goal. Robo-CAMAL had to generate a

number of associations and learn which ones provided the most likely

to achieve its goal.

The second set of results relate to the second learning experiment.

In this experiment robo-CAMAL operated in a controlled environ-

ment and attempted to achieve a single goal. Robo-CAMAL was

provided a number of associations designed to achieve its goal. Robo-

CAMAL had learn which ones provided the most optimal performance

to achieve its goal.

The final set of results relate to the adaptation experiments. In

this experiment robo-CAMAL was placed in a changing environment

with several goals and instantiated with a number of known good

associations. Robo-CAMAL then had to adapt its goals to reflect the

changes in its environment.
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C.2 First Learning Experimental Results

The results can be read as follows. The title of each graph represents

robo-CAMAL’s goal, and the objects present in the controlled envi-

ronment. Each line is represents an association, as the associations

goal is listed in the title, only the belief and the action are listed in the

key. The y-axis represents the associations value, and the x-axis repre-

sents deliberative processing cycle the associations value was recorded

at. As robo-CAMAL can generate over 50 associations in a single run,

only the most relevant are displayed for clarity.

C.2.1 find(blackrobot)

0 100 200 300 400 500 600
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot

environment(cluttered), both suppression find
found(blackrobot), sonar aggrigate find
environment(dynamic), sonar aggrigate track
environment(dynamic), sonar priority find
found(blackrobot), sonar aggrigate hit
found(blackrobot), both aggrigate find



APPENDIX C. RESULTS 253

0 50 100 150 200 250 300 350 400
0.4

0.5

0.6

0.7

0.8

0.9

1

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot

found(blackrobot), both priority find
environment(sparse), both priority find
environment(dynamic), sonar suppression track
environment(sparse), both priority hit

0 100 200 300 400 500 600
0.4

0.5

0.6

0.7

0.8

0.9

1

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot

found(blackrobot), both priority find
found(blackrobot), both priority track
environment(sparse), sonar winner find
environment(dynamic), both winner find



APPENDIX C. RESULTS 254

0 100 200 300 400 500 600 700 800 900
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot, blueball

found(blackrobot), sonar priority find
environment(dynamic), sonar priority find
environment(cluttered), sonar priority track
found(blueball), both suppression track
found(blueball), both winner hit

0 100 200 300 400 500 600 700 800
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot, blueball

found(blackrobot), sonar aggrigate find
environment(cluttered), vision aggrigate find
environment(dynamic), sonar winner find
found(blueball), vision aggrigate find
found(blueball), both winner hit
found(blackrobot), sonar priority find



APPENDIX C. RESULTS 255

0 20 40 60 80 100 120 140 160
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot, blueball

found(blackrobot), sonar priority find
found(blueball), sonar winner hit
found(blueball), sonar aggrigate find
found(blueball), both winner hit
found(blueball), vision priority hit
found(blueball), vision winner hit

0 100 200 300 400 500 600 700

0.4

0.5

0.6

0.7

0.8

0.9

1

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot, blueball, redrobot

found(redrobot), both aggrigate track
found(blueball), vision priority hit
found(blackrobot), vision priority track
found(blackrobot), sonar priority find
found(blueball), vision priority hit



APPENDIX C. RESULTS 256

0 50 100 150 200 250
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot, blueball, redrobot

found(redrobot), both priority hit
found(blueball), both priority track
found(blackrobot), sonar priority find
environment(dynamic), sonar priority find
found(blackrobot), sonar aggrigate find
found(blackrobot), both aggrigate find

0 50 100 150 200 250 300
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot, blueball, redrobot

found(blackrobot), sonar aggrigate find
environment(dynamic), sonar winner find
found(redrobot), both priority hit
found(redrobot), vision suppression find



APPENDIX C. RESULTS 257

0 100 200 300 400 500 600 700 800
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot, redrobot

found(blackrobot), sonar suppression find
environment(cluttered), sonar priority track
found(blackrobot), vision winner track
found(redrobot), sonar priority find

0 100 200 300 400 500 600 700 800 900
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot, redrobot

found(blackrobot), sonar priority find
environment(cluttered), vision winner find
environment(cluttered), sonar priority find
found(redrobot), sonar priority hit



APPENDIX C. RESULTS 258

0 50 100 150 200 250 300 350 400
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blackrobot, redrobot

found(blackrobot), sonar priority find
environment(dynamic), vision priority find
environment(cluttered), vision winner find
found(redrobot), sonar priority hit

0 50 100 150 200 250 300 350
0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blueball

found(blueball), sonar aggrigate find
environment(dynamic), both aggrigate find
environment(cluttered), both priority hit



APPENDIX C. RESULTS 259

0 20 40 60 80 100 120
0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blueball

found(blueball), sonar winner hit
found(blueball), both aggrigate track
environment(cluttered), both priority hit
environment(dynamic), sonar priority find

0 50 100 150 200 250 300 350
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment blueball

found(blueball), vision priority find
found(blueball), vision priority hit
environment(cluttered), sonar priority hit
environment(dynamic), vision aggrigate track



APPENDIX C. RESULTS 260

0 50 100 150 200 250 300 350 400 450
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment redrobot

environment(sparse), both winner hit
environment(sparse), both aggrigate hit
found(redrobot), sonar aggrigate find
found(redrobot), both winner hit

0 100 200 300 400 500 600

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment redrobot

environment(sparse), both winner hit
environment(dynamic), both winner find
found(redrobot), both priority hit
environment(sparse), vision suppression track



APPENDIX C. RESULTS 261

0 50 100 150 200 250 300

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Deliberative process cycle

As
so

cia
tio

n 
va

lu
e

Goal find(blackrobot), Environment redrobot

hit(redrobot), both winner track
environment(dynamic), vision winner hit
environment(dynamic), both suppression hit
environment(cluttered), both priority track



APPENDIX C. RESULTS 262

C.2.2 find(redrobot)
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C.2.3 find(blueball)
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C.3 Second Learning Experimental Results

The results can be read as follows. All results refer to the goal

avoid(object). the results are broken down in to the number of ob-

jects present in the environment, and the nature of the environment,

i.e. static or dynamic.

C.3.1 Zero Objects, Static Environment
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C.3.2 One Object, Static Environment
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C.3.3 One Object, Dynamic Environment
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C.3.4 Two Objects, Static Environment
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C.3.5 Two Objects, Dynamic Environment
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C.3.6 Three Objects, Static Environment
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C.3.7 Three Objects, Dynamic Environment
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C.3.8 Four Objects, Static Environment
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C.3.9 Four Objects, Dynamic Environment
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C.4 Adaptation Results

This section presents the results gathered during the adaptation exper-

iment. This is where robo-CAMAL was allowed to roam in a variable

environment with multiple goals and know good associations. The

results can be read as follows. The graphs representing the agent’s

beliefs shows when a particular belief is present. If the line represent-

ing a belief has a value, then the belief is present at that deliberative

processing cycle. The value chosen is arbitrary and has no mean-

ing other than to differentiate between beliefs. The goal importance

graphs represent how each goal importance value varied over time, like

wise with the association value graphs. The initial paragraph of each

subsection details the nature of the environment for that particular

experiment.

C.4.1 Adaptation Experiment 1

Environment sequence

redrobot and blackrobot

blueball

blueball
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C.4.2 Adaptation Experiment 2

Environment sequence

redrobot and blackrobot

blueball and blackrobot

blackrobot
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C.4.3 Adaptation Experiment 3

Environment sequence
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C.4.4 Adaptation Experiment 4

Environment sequence
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C.4.5 Adaptation Experiment 5
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C.4.6 Adaptation Experiment 6

Environment sequence
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