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Abstract 
 

 

The essence of stochastic filtering is to compute the time-varying probability density 

function (pdf) for the measurements of the observed system. In this thesis, a filter is 

designed based on the principles of quantum mechanics where the Schrödinger wave 

equation (SWE) plays the key part. This equation is transformed to fit into the neural 

network architecture. Each neuron in the network mediates a spatio-temporal field with 

a unified quantum activation function that aggregates the pdf information of the 

observed signals. The activation function is the result of the solution of the SWE. The 

incorporation of SWE into the field of neural network provides a framework which is so 

called the Quantum Recurrent Neural Network (QRNN). A filter based on this approach 

is categorized as intelligent filter, as the underlying formulation is based on the analogy 

to real neuron. 

In a QRNN filter, the interaction between the observed signal and the wave dynamics 

are governed by the SWE. A key issue, therefore, is achieving a solution of the SWE 

that ensures the stability of the numerical scheme. Another important aspect in 

designing this filter is in the way the wave function transforms the observed signal 

through the network. This research has shown that there are two different ways (a 

normal wave and a calm wave, Chapter-5) this transformation can be achieved and these 

wave packets play a critical role in the evolution of the pdf. In this context, this thesis 

have investigated the following issues: existing filtering approach in the evolution of the 

pdf, architecture of the QRNN, the method of solving SWE, numerical stability of the 

solution, and propagation of the waves in the well. The methods developed in this thesis 

have been tested with relevant simulations. The filter has also been tested with some 

benchmark chaotic series along with applications to real world situation. Suggestions 

are made for the scope of further developments. 
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Chapter 1 

Introduction 

1.1 Introduction  

A common problem in modelling, and control of dynamical system is to estimate the 

true value of a system state where the measurements or signals of the system are noisy. 

Filtering is a mathematical algorithm or device through which the true value of a system 

state is extracted or estimated from these noisy measurements. With model based 

methods, the key to designing a filter is the availability of the model that represents the 

dynamics of the system and the relationship between the system state and the 

measurement processes. These dynamics of the system are often time-varying and 

nonlinear while their mathematical representations are often linear and at times time-

invariant. Designing a filter becomes complex when an accurate description of the 

system is not available and thus based on the nature of the available model, stochastic 

filters are formulated using probabilistic measures. The key feature of filtering is in the 

manner in which the probability density function (pdf) evolves over time. 

1.2 Model based approach 

In order to analyse and estimate the state of a dynamic system, it requires two important 

models: First, a model describing the evolution of the state with time (called the state 

process), and, second, a model describing the noisy measurements to the state (called 

the measurement process). These models may be linear or nonlinear. Filtering algorithm 
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is designed combining these two processes to estimate the current state of the system. 

The Kalman Filter (KF) is a popular algorithm and is based on a linear model (Kalman 

1960; Kailath 1968; Andrew 1970; Rhodes 1971; Julier & Uhlmann 1997; Haykin 

2001; Mohinder & Angus 2001, Arulampalam et al. 2002). This filter performs a 

conditional probability density propagation in which the system and measurement 

noises are white and Gaussian (Maybeck 1979, 1982). The performance of the filter is 

measured by a criterion (e.g., cost function) and is optimal with respect to this criterion. 

One of the key features of the Kalman filter, which enables it to be optimal, is that it 

incorporates all the available information to estimate the current state of the system. The 

information incorporated includes 

� knowledge of the system and measurement dynamics, 

� statistical description of the system noises, measurement errors, uncertainties 

in the model dynamics, and 

� information on the initial conditions of the states or variables of interests. 

If the system dynamics and measurement processes are linear, and the Gaussian 

assumption is relaxed then the Kalman filter can be shown to be the best (minimum 

error variance) optimal filter out of the class of linear unbiased filters (Maybeck 1979). 

In most practical applications, the system dynamics and measurement equations are not 

linear. In such cases, nonlinear representations of the models (e.g., Extended Kalman 

Filters (or EKF)) are used. The optimal solutions to these filters require that the model 

be linearized and a complete description of the conditional probability density function 

(or pdf) is maintained (Maybeck 1979; Merwe et al. 2000). Unfortunately, this complete 

description requires a potentially unbounded number of parameters, such as moments, 

to be evaluated (Maybeck 1982; Julier & Uhlmann 2000). Despite these difficulties, the 

EKFs have been widely accepted and are used as standard tools for the nonlinear 
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filtering techniques. Details of these two filters (KF and EKF) are presented in Chapter-

3 of this thesis. 

Apart from the above, a number of other filtering methods have been proposed e.g., the 

Particle Filter (PF), and the Unscented Kalman Filter (UKF). The Particle Filter is based 

on the Monte Carlo method which uses a sequential importance sampling (SIM) and re-

sampling approach (Carpenter et al. 1999; Liu et al. 2001; Haykin 2001, Arulampalam 

et al. 2002). Objective of this filter is to track a variable of interest as it evolves over 

time. The basis of this approach is to construct a sample (also known as particle) based 

representation of the entire pdf which represents the posterior distribution of the state 

variables by a system of particles (or samples) that evolves and adapts recursively as 

new information becomes available. In practice, a large number of particles (or samples) 

are required to provide an adequate approximation to the conditional pdf. This is why in 

high-dimensional applications this filter is rarely used. A problem that arises in the use 

of particle filter is the depletion of the particle (or sample) population after a few 

iterations and the resultant updating parameters. This problem can be overcome by a re-

sampling method (Liu et al. 2001; Rekleitis 2003). However, for a particular 

application, in a particle filter the decision on the number of particles is crucial. 

In the extended Kalman filter, the distribution of the state variable is approximated by a 

set of Gaussian random variables which are then propagated analytically through a 

linear system. Often, this introduces a large error in the evolution of the pdf causing 

suboptimal performance or even divergence of the filter (Julier & Uhlmann 2000; 

Haykin 2001). The UKF addresses this issue by using a deterministic sampling 

approach called the “unscented transformation”. In the EKF, the state process consists 

of two terms; a nonlinear deterministic term and an uncertainty term. The UKF filter 

considers a set of points that are deterministically selected from the Gaussian 
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approximation to the initial pdf. These points are then propagated through the true 

nonlinear function and the parameters of the Gaussian density are re-evaluated. It has 

been found that, for some cases (Orderud 2005), this filter gives better results than the 

EKF. At a superficial level, the computational requirements of the UKF and EKF 

appear to be the same. However, the UKF is computationally more accurate in that the 

derivatives need not be evaluated in order to construct the Jacobian or Hessian matrices. 

These two matrices are, however, required for the EKF (Maybeck 1979; Wan et al. 

2000; Haykin 2001). 

1.3 Data driven approach 

In contrast to the model based approach (mentioned above), filtering algorithms have 

also been designed where the nominal representations of the state and measurement 

processes are not required. For example, algorithms based on neural networks and 

neuro-fuzzy networks (Lee et al. 1997; Mandic & Chambers 2000; Haykin 2001; Lin et 

al. 2004). The advantage of these methods is that they are purely data-driven, generic, 

and can be applied with little or no a priori knowledge of the observed system. 

Filters based on neural approaches are categorised as Intelligent Filters, since the 

underlying formulation is based on the analogy to a real neuron and neuronal networks. 

In neuroscience literature, it has been suggested that real neurons are fired in a 

distributed manner, and that these are then aggregated to provide a coherent 

representation of the true state (Koch & Segev 1989; Haykin 1994; Dorffner 1997, 

Husmeier 1999a, 199b). It is argued that although filters based on neural networks work 

along similar lines there is an underlying mechanistic feature in the neural network itself 

that make them not sufficiently intelligent (Penrose 1994, Dorffner 1997). 
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In this thesis, a filtering algorithm is devised based on the properties of the Schrödinger 

wave equation (SWE). This equation plays an important role in quantum mechanics and 

has a number of built-in properties which are being used in physics, electronics, and 

chemistry, as described in Figure-1.1 (Nave 2006), in a microscopic level in finding out 

the location of a quantum object or ionic movement at certain time references. 

 

Figure-1.1: Schrödinger equation in various fields of Quantum mechanics 

 

As can be seen from Figure-1.1, SWE has the ability of predicting the behaviour of a 

dynamical system in a way that this equation works as a wave equation in terms of the 

wave function which predicts analytically and precisely the probability of events or 

outcomes (Schiff 1968; Feynman 1986). In this thesis, the filtering algorithm is 

developed based on this property of SWE. It is argued that an integration of quantum 

principles in a neural network paradigm would provide a better framework in 

developing the filtering algorithm. Some important advantages of this filter, as will be 

shown in later chapters, are that 

� It does not require a priori information on the nature of noises present in 

the measurement processes 

� It has a simple single layer network architecture 
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As a result of these features, a recurrent neural network has been designed incorporating 

the quantum principles of the Schrödinger wave equation (SWE). For this purpose, the 

equation has been transformed to fit into the recurrent neural network framework with a 

nonlinear term (Dawes 1989a, 1989b, 1989c, 1992, 1993; Behera et al. 2004, 2005a, 

2005b). It has been suggested that an extended nonlinear form of the SWE would 

provide a framework for approximating the pdf of the observed system. The resulting 

network is then referred as the Quantum Recurrent Neural Network (QRNN). Due to the 

transformation of the SWE, it becomes important to examine the properties of the 

equation so that an accurate description of the measurements can be found. Indeed this 

thesis along with Dawes (1989a, 1989b, 1989c, 1992, and 1993) and Behera et al. 

(2004, 2005a, and 2005b) is an attempt to this. 

Although filters based on the SWE have been developed, their full analysis, especially 

the solution technique of the SWE, architecture of the network, learning algorithm and 

design parameters, are still limited. These issues can be analysed by examining the 

network dynamics in terms of the differential structure of the SWE and its associated 

parameters. A schematic diagram depicting the filter mechanism is shown in Figure-1.2. 

 

 

 

 

Figure-1.2: A schematic diagram of the QRNN filter 

1.4 Objectives 

A nonlinear filtering algorithm based on the Schrödinger wave equation (SWE) under a 

neural network paradigm has been proposed by Dawes (1989a, 1989b, 1989c, 1992, and 

Signals or 

Measurements 

pdf through 

SWE 

Process 

Noise 

Measurement Estimate 

)(tx  )(ˆ tx  )(ty  



Quantum recurrent neural networks for filtering Chapter-1 

 7 

1993) where SWE has been transformed into a set of equations which can represent a 

recurrent neural network. However, to solve the SWE an explicit method was 

introduced. Although the performance of the filter with this method is good, the stability 

of the solution has not been ensured. Another important aspect that has not been 

addressed is the way the wave packets propagate in the well. In this context, the aim of 

this research is to investigate key issues regarding the development of the QRNN filter 

based on the SWE. For this reason, this thesis looks into the following issues: the 

construction of the quantum recurrent neural network, solution techniques of the SWE, 

connection and contribution of the parameters of the SWE itself on the evolution of the 

pdf, dynamics of propagating wave packets in the well, learning algorithm and 

convergence of error.  

1.4.1 Solution of SWE 

The SWE can be solved in many different ways that mainly depend on the requirements 

of the application and the problem formulation. It can be seen from Figure-1.1 that each 

of these problems results in different forms of the solution. In the case of application of 

SWE within a neural network framework, this equation must be solved in such a way 

that the resultant architecture represents a neural network with its activation functions 

and connections. It is also important that an appropriate numerical procedure is selected 

to solve the SWE so that the filter is robust and also maintains the essential 

functionality of a neural network (see Chapter–4). It is well known that partial 

differential equations have a better class of solutions, in terms of stability and 

boundedness of the solutions, if a numerical method based on implicit scheme is used. 

However, in the case of filtering applications, the numerical procedure is not 

straightforward in that these are essentially multi-loop schemes. Here, an inner loop is 

concerned with the discretisation of the state space in-order to obtain the Hamiltonian 
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whilst the outer loop deals with the dynamics of the observed system (Ahamed & 

Kambhampati 2008). The discretisation carried out in the inner loop is crucial in that 

this process enables the incorporation of localization of the wave and decides on the 

nature of the potential field. These determine the bound on some of the parameters of 

the filter. The outer loop deals with the integration of the dynamics of the real process 

with that of the quantum filter in order to establish the prediction error and learning 

mechanisms. The integration of these two loops will provide the basis for the evolution 

of the pdf (Ahamed & Kambhampati 2008). 

In the first instance the solution of the SWE depends on the choice of some constants. In 

physics such parameters have a well defined meaning. In filtering applications, these 

parameters have to be scaled as well as appropriately tuned. However, tuning of these 

values heuristically may lead to an unacceptable solution. On the other hand, a detailed 

study/analysis has to be undertaken to observe their affect on the solution space. Here, 

the localization techniques have been used to determine the precise magnitude of the 

parameters, or at the very least to determine the bounds from within which a value can 

be picked up (see Chapter-4). 

1.4.2 Network architecture and issues 

A neural network consists of a set of interconnected nodes called neurons. These 

neurons when interconnected by a well-defined topology can be trained to perform 

certain tasks. Often, the number of such neurons in the network and the topology are 

decided a priori and this decision is based on the experience of the designer. Indeed, no 

satisfactory solution has been found as yet, as too few neurons can cause under-fitting, 

and too many causes over fitting. QRNN is a single layer network, the connectivity of 

the neuron is dependent on the nature of the potential field (a term in the SWE which 

will be apparent in Chapter-4) – this eliminates the necessity of making a decision on 
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the topology. It is suggested that a single layer quantum recurrent neural network in a 

spatio-temporal field will be able to learn the pdf information coherently, where each 

neuron act as a simple computational unit and will be able to transfer the observed 

stochastic variable to the wave function of the SWE in a unsupervised manner (Behera 

et al. 2005b). In fact, the potential field of the SWE is transformed (see Chapter-4) so 

that the network can receive input via the potential field. This potential field is added to 

the Hamiltonian which acts upon the wave function for the evolution of the wave in 

time and space (see Chapter–4). 

The neural network is trained using training rules or learning methods. For the QRNN 

filter, the Hebbian learning rule is preferred as with this rule the network can be trained 

in an unsupervised manner. 

1.4.3 Propagation of waves 

Numerical solution of SWE is implemented in a grid system called well (or box). Each 

node in the grid acts as a neuron and the solution of SWE in this grid represents the 

wave function whose modulus-squared is defined as the probability density function 

(pdf) for the observed signal. The solution of SWE requires initial conditions through 

which the wave packet initiates the propagation. However, discretisation of SWE in the 

grid system introduces limitations on the choice of values for the parameters of the 

SWE, especially on the propagation of the wave packet. Practically, these issues dictate 

the ability of the filter to extract the signal and to be able to understand the underlying 

properties of the signal. 

1.5 Aim and objectives of this research 

It was mentioned earlier that the QRNN filter is developed based on the properties of 

the SWE.  Concept of this filtering algorithm is relatively new and was first developed 
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by Dawes (Dawes 1989, 1992) where each neuron in the network mediates a spatio-

temporal field with a unified quantum activation function that aggregates the pdf 

information of the observed signal. Although there have been works in the application 

of this filter (e.g., Behera and Sundaram 2004) a number of key issues and questions 

have not been explored. Thus, the objective of this thesis is to investigate the 

construction of the quantum recurrent neural network, solution techniques of the SWE, 

connection and contribution of the parameters of the SWE itself on the evolution of the 

pdf, dynamics of propagating wave packets in the well, learning algorithm and 

convergence of error. Moreover, as a result of these investigations, a new method for 

the propagation of the wave packets in the well is developed. To achieve this, focus is 

given on the following specific issues: 

� Investigation of the SWE and filter development 

� Numerical procedure for the solution of the SWE 

� Design issues of the filter and wave packet propagation 

� Training the neural network and the learning process 

� Evolution of the pdf under quantum mechanical properties, and 

� Sensitivity of the parameters involved 

In the next few chapters the development of the quantum recurrent neural network will 

be discussed along with a brief description of the existing filter constructions. The 

general framework for the QRNN filter along with procedures for the numerical 

solution of the SWE is presented. Framework for implementing the QRNN filter is 

discussed in the subsequent sections of Chapter-4. Design issues of the filter and 

propagation of the wave packets in the potential well are discussed in Chapter-5. 

Simulation results are presented in Chapter-6. Applications of the QRNN filter are 
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shown in Chapter-7. Conclusion and future development of the filter is discussed in 

Chapter-8. It is expected that tuning the parameters and their sensitivities to solution of 

the SWE, methods of propagating waves in the well would help see further insight to 

the QRNN filter. 
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Chapter 2 

Preliminaries: Filtering and Neural Networks 

2.1 Introduction 

Filtering (or estimation), is closely connected to control, information, and 

communication theory. A common problem in dynamical system is to filter the 

stochastic process. Filter refers to an algorithm that can estimate the state of a system 

from its observations (or signals). There are number of applications that require 

estimation of current state such as localization of an object in space using radar, spotting 

underground or underwater object using sonar, screening and diagnosis of 

cardiovascular diseases using sensory data from medical devices. In order to control a 

stochastic plant (a plant could mean a dynamic system that is time varying, such as 

mobile platform, haptic devices) with incomplete and noisy state information, to 

compute the joint information between a random variable and stochastic process, all 

these require the solution of a related filtering problem. 

Generally, the filtering problem is defined as follows: at a certain period of time T , a 

measurement ),(ky  Tk ∈  is observed form a system. Filtering is concerned with the 

recovery of the current system state )(kx  or an approximation to )(kx  from this 

measurement )(ky . To estimate the system state, there are three important points to 

consider. First, filter is concerned with obtaining the information about )(kx  at time k . 

Second, the information is available at time k , not at some later time and third, 
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measurement right up to, but not after, time k  is used. An example of such filter could 

be the voice signal which is modulated to a high frequency carrier and then transmitted 

to the receiver. This received signal when demodulated, it is filtered to recover the 

signal as well as possible. 

In this chapter, definitions of the stochastic process along with a brief exposition of 

neural network and their components, structures and mechanisms will be presented. In 

the next few sections preliminaries, those are relevant and necessary for the design and 

development of a filter is presented. At the outset, definition of a dynamic system and 

relationship between the state and measurement processes are discussed. 

2.1 Dynamical system 

Often dynamical systems are presented by difference equations (for discrete time) or 

differential equations (for continuous time). The difference equation 

)),(),(()1( 1 kkvkxfkx =+  with nk ,...,1,0= ,    (2.1) 

where f  is may be nonlinear −n dimensional continuously differentiable function, is 

known as nonlinear stochastic vector difference equation. If the noise )(1 kv  is absent in 

the equation (2.1) then it turns into a difference equation in deterministic nature and in 

such a case )(kx  represents the solution. The measurement process )(ky  and the state 

process )(kx  are related by the equation 

)),(),(()( 2 kkvkxgky = .        (2.2) 

where )(2 kv  is known as measurement noise. The state process )(kx  is not directly 

observed but information concerning )(kx  is obtained from the observation )(ky . 

Equations (2.1) and (2.2) are known as the state and the measurement processes of a 

system respectively. These two equations together form a filtering model. The state of 
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the system is estimated from the measured variables. For example, a filtering model 

may be defined as: 

)()()sin()1( 1 kvkcxkbakx +++=+ π  (State process)   (2.3) 

)()()( 2

2 kvklxky +=  (Measurement process)    (2.4) 

where a , b , c , and l  are scalar parameters. Random variables )(1 kv and )(2 kv  are 

drawn from some specified distributions. Given only the measurement )(ky , the 

objective here would be to combine state and measurement information to estimate (or 

extract) the underlying system state )(kx . It can be seen that equations (2.1) and (2.2) 

are both stochastic processes as they are governed under the influence of time varying 

random noises. 

The equivalent continuous time filtering model can be written as follows 

),( 1vxfx =&  (State process)       (2.3a) 

),( 2vxgy =  (Measurement process)      (2.4b) 

2.3 Definitions 

2.3.1 Stochastic process 

A stochastic process )(kx  is a family of random variables indexed with parameter set 

Tk ∈  which is, in general, referred to time. If { },...2,1=T  then the random variable  

)(kx  is called a stochastic process in discrete time (that is, a sequence of random 

variables). If [ )∞= ,0T  then the random variable )(kx  is called a stochastic process in 

continuous time. 

For example, a stochastic process 0),( ≥kkx  in continuous time may be defined by the 

equation bkakx += )2sin()( π , where a  or b , or both of them are random variables. 
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2.3.2: Density function  

The word probability refers to a basic entity associated with any random variable. The 

relationship between the probability density function )(xXρ  of a random variable X  

and the distribution function )(xFX  is given by 

dx

xdF
x X

X

)(
)( =ρ          (2.5) 

The density function exists if the distribution function is differentiable or the number of 

points at which the distribution function is not differentiable is countable (or defined). 

Equation (2.5) can also be written as 

∫
∞−

=
x

XX dxF ξξρ )()(        (2.6) 

The distribution function, )(xFX , is interpreted as a mapping from the real line to the 

interval [0, 1] and so )()( xXPxFX ≤= . The quantity ξξρ dX )(  is interpreted as the 

probability that the random variable falls between ξ  and ξξ d+ . 

2.3.3: Characteristic function  

A random variable X  may be specified in terms of its characteristic function which is 

defined by 

{ })exp()( iuXEuX ∆ϕ , where 12 −=i .    (2.7) 

One important property of this function is that it is just the Fourier transform of its 

density function 

∫
+∞

∞−
= dxxiuxu XX )()exp()( ρϕ .     (2.8) 
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Therefore, if the characteristic function is absolutely integrable, the inverse Fourier 

transformation 

∫
∞+

∞−
−= duuiuxx XX )()exp(

2

1
)( ϕ

π
ρ      (2.9) 

gives the density function. 

2.3.4: Gaussian random variables  

A random variable X  is said to be Gaussian (or normally distributed) if its density 

function is given by 



















 −
−=

2

2 2

1
exp

2

1
)(

σπσ
ρ

mx
xX  ,    (2.10) 

where mean ( )XEm = , and variance σ
2
 = variance (X). 

2.3.5: Finite dimensional distribution 

The joint distribution function of the random variables )(),...,( 1 nkxkx  for any finite set 

{ } Tki ∈  is called a finite dimensional distribution of the process. A stochastic process 

can be characterised by specifying the finite dimensional distribution: 

 ))(),...,(( 1 nkxkxF  for all finite set { } Tki ∈ .     (2.11) 

The meaning of (2.11) is that with this distribution function it is possible to answer 

many probabilistic questions such as the expectation, variance, covariance, conditional 

density, and correlations about the random variables { })(),( τxkx  where Tk ∈τ, . A 

stochastic process can be characterised by specifying the joint density function 

))(),...,(( 1 nkxkxρ  for all finite set { } Tki ∈     (2.12) 

or the joint characteristic function 
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),...,( 1)(),...,( 1 nkxkx uu
n

ϕ        (2.13) 

for all finite set { } Tki ∈ . 

2.3.6: Expectation 

The expectation (or probability-weighted average) of a continuous random variable X  is 

defined by 

∫
+∞

∞−

= dxxxXE X )()( ρ ,       (2.14) 

where )(xXρ  is the probability density function. 

2.3.7: Conditional density  

The conditional density )|(| yxYXρ  of X  given that Y , where x is a realization of the 

random variable X and y  is a realization of random variable Y , is defined by 

)(

),(
)|(

,

|
y

yx
yx

Y

YX

YX ρ

ρ
ρ =       (2.15) 

If random variable X and Y  are independent then  

)()|(| xyx XYX ρρ =        (2.16) 

2.3.8: Conditional expectation 

The conditional expectation of a random variable X  given the random variable Y  is 

defined by 

∫= dxyxxYXE YX )|()|( |ρ       (2.17) 

Properties of the conditional densities and conditional expectation are as follows: If the 

random variables X  and Y  are jointly distributed then 

i. 0)|(| ≥yxYXρ        (2.18) 
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ii. 1)|(| =∫ dxyxYXρ        (2.19) 

iii. { } ∫= dyyyxyxE YYXYX )()|()|( || ρρρ     (2.20) 

2.3.9: Markov process 

A stochastic process { }Tkkx ∈),(  is called Markov process if the probability law of the 

next state depends only on the current state and not on all the previous states. The 

conditional density function of the Markov process can be written as 

))(|)(())(),...,(|)(( 111 −− = nnnn kxkxkxkxkx ρρ     (2.21) 

2.3.10: Optimal filter 

An optimal filter (or an optimal estimator) is a computational algorithm that provides an 

estimate of a variable of interest, by optimising a given cost function. The cost function 

is often defined as the mean-squared-error (MSE). For example, a criterion may be that 

the MSE should be as small as possible. The word optimal is subjective in the sense that 

it is the best possible results among any other results that can be obtained or achieved.  

2.3.11: sigma-filed 

Let Ω  be a non-empty set. A σ - field ℑ  on Ω  is a family of subsets of Ω  such that 

i) the empty set φ  belongs to ℑ ; 

ii) if A  belongs to ℑ , so does the complement A\Ω ; 

iii) if 1A , 2A , … is a sequence of sets in ℑ , then their union ...21 ∪∪ AA   also 

belongs to ℑ  

2.3.12: Filtration 

A sequence of σ - fields Tℑℑℑ ,...,, 21  on Ω  such that kℑ⊂⊂ℑ⊂ℑ ...21  is called 

filtration, where Tℑ  represents the knowledge at time k  and contains all events A  such 
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that at time k  it is possible to decide whether or not A  has occurred. As k  increases, 

there will be more such events A  and the knowledge about the system will be richer. 

2.3.13: Wiener Process 

The Wiener process (or Brownian motion) is a stochastic process ℜ∈)(kX  defined for 

),0[ ∞∈k  such that 

i) 0)0( =X  almost sure; 

ii) the sample paths )(kXk →  are almost sure continuous; 

iii) for any finite sequence of times nkk <<< ...0 1   and Borel sets 1A , 2A , …, 

nA ⊂  ℜ  

{ }

nnnnnAA

nn

dxdxxxkkxxkkxk

AkXAkXP

n
LLL 111211211

11

),,(),,(),0,(

)(,...,)(

1 −−−−=

∈∈

∫ ∫ ρρρ
, 

where 






 −
−=

k

yx

k
yxk

2

)(
exp

2

1
),,(

2

π
ρ     (2.22) 

defined for any x , y ℜ∈  and 0>k  is called the transition density. 

2.4 Stochastic filtering 

The essence of stochastic filtering is the computation of time-varying probability 

density function for the state of the observed system (Bucy & Joseph 1968; Bucy 1970; 

Andrew 1970; Julier & Uhlmann 1997). This is because the conditional probability 

embodies all the statistical information of the state and in the initial conditions. A 

method, called the innovation method (or approach), for stochastic filtering is described 

by Kailath (Kailath 1968, 1970, 1998). It is a loop where the corrections for the 

estimates are made based on prediction errors. In this approach all information, which is 

currently available, are represented by the error (that is the difference between the 

observed signal and the estimated signal). This error, called the prediction error and its 
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statistical history provide the means to reduce the error both in the immediate future and 

in the statistical future. In the immediate future, the error is then used to control the 

evolution of the computational model so that the probability density function flows into 

a distribution that minimizes the discrepancy between the expectation (estimated value) 

and the observation (Dawes 1993). Figure-2.1 shows such a predictor-error-corrector 

loop.  

 

 

 

Figure-2.1: Predictor-error-corrector loop 

 

Earlier researchers have evaluated the conditional density function considering the 

measurement as Markov process (Bucy & Joseph 1968; Stratonovich 1959). However, 

often signals presented by sensors are not Markov processes but they are Martingale 

Processes. Martingale Process has a complex structure which is linked to the 

specification of filtration. Filtration describes the information available from knowledge 

of the process as it evolves over time. This increasing structure provides a home in the 

present time for all the probabilistic information which is contained in the past history 

of the observations and thus making the past history accessible for the operation in the 

present. 

A loop similar to the predictor-error-corrector is developed using the Schrödinger wave 

equation (SWE) within a neural network framework that incorporate σ -field of 

increasing structure in the evolution of the conditional probability density function 

(Dawes 1989a, 1989b, 1989c, 1992). The difference between the innovation approach 

for Kalman filter and the QRNN filter is that in the Kalman filter the probability density 

is assumed to be Gaussian and so it can completely be characterized by mean and 

Error Corrector Predictor 
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covariance matrix. In QRNN filter, the probability density is not assumed to be 

Gaussian. Given a wave packet, modulus-squared of this wave is defined as the 

probability density function. The dynamics of the wave is governed by the SWE. The 

density is used to compute the conditional expectation of the current measurement. The 

difference between the expectation and the measurement is fed forward where it is used 

to control the flow of the wave function and hence the evolutions of the probability 

density function. 

2.5 Neural network and its elements 

Artificial neural networks are computational algorithms whose development has taken 

inspiration from some aspects of the way it is understood that the biological nervous 

system functions. It resembles the biological nervous system in two respects: 

� Knowledge is acquired by the network through learning process, 

� Interneuron connection strengths known as synaptic weights are used to 

store the knowledge. 

Cells in the biological neuron receive incoming impulses via dendrites (receiver) by 

means of chemical processes. If the number of incoming impulses exceeds certain 

threshold value the neuron discharges it off to other neurons through its synapses which 

determine the impulse frequency to be fired off. Analogous to this biological process, 

the processing unit or neuron of an artificial neural network consists of three main 

components 

� Synaptic weights connecting the neurons 

� Summation function within the neurons and 

� Activation (or transfer) function that produce output for the neuron 

Synaptic weights characterize themselves with their strength (a numerical value) which 

corresponds to the importance of the information coming from each neuron. In other 
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words, the information is encoded in these strength-weights. The summation function is 

used to calculate a total input signal by multiplying their synaptic weights and summing 

up all the products. Figure-2.2 below shows a typical neuron and its output, where ix  

and iw  with ni ≤≤1  are input data and synaptic weights respectively, u  represents 

summation within the node and )(uf  is the activation function (or transfer function). 

The activation function transforms the summed up input signal received from the 

summation function into an output. 
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Figure-2.2: A typical neural network 

 

 The activation function can be either linear or non-linear. A particular activation 

function is chosen to satisfy some specification of the problem that the neuron is 

attempting to solve. There are varieties of activation functions such as sigmoid function 

as shown in equation (2.23). 

ue
uf

−+
=

1

1
)(         (2.23) 

In the last decade, artificial neural networks have been applied in many real world 

situations and found to be effective in solving complex, large-scale problems arising in 

the fields of engineering, business, medical and biological sciences. The design of a 

complete neural network to solve a particular problem requires various considerations 

such as: 
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� Problem identification, that is, whether the problem can be solved under 

neural network paradigm 

� Nature of input-output space, that is, defining input-output space and their 

structures 

� Network architecture, that is, the number of neurons and layers, connections 

and weight vectors in the network 

� Learning algorithms, that is, whether the learning algorithm would be feed-

forward, back-propagation or recurrent 

� Activation (or transfer) function consideration (e.g., sigmoid or tangent 

function) in order to get the output of the neurons. 

Appropriate combination of all these factors leads to the development of the artificial 

neural network that would be able to solve a problem under consideration. It is 

important to note that the adaptability, reliability and robustness of a neural network 

depend on the source, range, quantity, and quality of the signal or data. 

2.5.1 Recurrent neural network 

A recurrent neural network is an artificial neural network which has feedback loop, that 

is, some of its outputs are connected back to its inputs. The feedback connections, as 

shown in Figure-2.3, originate from its hidden neurons as well as output neurons. The 

presence of the feedback loops has a profound impact on the learning capability of the 

network and its performance. Moreover, the feedback loops involve in particular 

branches composed of unit-delay (denoted by 1−z ) which results in a nonlinear dynamic 

behaviour by virtue of the nonlinear nature of the neuron. In fact, nonlinear dynamics 

plays an important role in the storage function of a recurrent network. The basic 

principle of recurrent structure is inspired by various ideas in statistical physics and they 

share the distinctive features such as nonlinear computing units, symmetric synaptic 
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connections and abundant use of feedback (Haykin 1994, 2001). All these 

characteristics are exemplified by the Hopfield network – a recurrent neural network 

that embodies a profound physical principle namely that of storing information in a 

dynamically stable configuration. Mathematical representation of this network is as 

follows: 

)())(()()1( kukxWkxkx Γ++−=+ σβ      (2.23) 

)()( kCxty =         (2.24) 

where nx ℜ∈ is a state vector, W  is the weight matrix, β  is the feedback matrix 

(usually a diagonal matrix), Γ  is a vector describing the weighting on the input, 

))(( kxσ  is a transfer function, and )(ky  is the output of the network where C  is a 

transformation operator. Goal of this network is to minimize the error function 

∑
−

=

+−=
1

1

)]1()([
n

i

iyixerror       (2.25) 

where )(ix  is the −i th state and )1( +iy  is the observation at 1+i . 
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Figure-2.3: A typical recurrent neural network structure 

 

2.6 Conclusion 

In this chapter the basic ideas of stochastic process and relevant definitions, stochastic 

filtering, neural network along with its structure and recurrent neural network have been 
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discussed. The fundamental concept of the neural network is that neurons are 

interconnected to form a purposeful network that can gain ability to mimic a system if 

the network is trained by examples under certain roles or algorithms. Since recurrent 

neural network has the ability to learn the nonlinear dynamics, therefore, applying the 

training method based on the extended Kalman filter can solve the nonlinear filtering 

problem (Haykin 2001). However, in this thesis the nonlinear stochastic filtering 

problem is devised through the evolution of the probability density function using the 

algorithm based on the quantum recurrent neural network (discussed in Chapter-4). In 

recent years, numbers of papers have been contributed in the evolution of the pdf (or the 

covariance matrix) using the concepts of neural networks (Singhal & Wu 1989; 

Puskorius & Feldkamp 1991; MacKay 1992; Husmeier & Taylor 1999a; Husmeier 

1999b; Haykin 2001; Leung & Chan 2003). 

A major problem with neural network in practical applications is the impact on the 

generalization performance caused by over fitting, especially when the input dimension 

is large and the available training data set is sparse. That is, although a network might 

be able to learn the underlying dynamics of a given training set, may be incapable of 

generalising to a new set of data which has not been exposed during training. In fact, 

many recent developments in neural network have focused on this problem (e.g., Bishop 

1995). However, with an appropriate combination of neurons and their interconnections, 

and with an appropriate set of learning rules it may be possible to develop an efficient 

computational algorithm for the problem under consideration.  

Neural network which is considered in this thesis will broadly be single layer where the 

entire bunch of neurons will be treated in a spatial coordinate on the real line where the 

SWE acts as a mediator on the evolution of the pdf maintaining the characteristic of the 

recurrent neural network structure. 
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In Kalman filter, the dynamical system is described by a model in which the system and 

measurement noises are white and Gaussian. The word whiteness implies that the noise 

values are uncorrelated in time. That is, if the value of the noises is known now this 

knowledge does not help anyway in predicting the noise values at any other future time. 

Under these three restrictions (linearity, whiteness, and Gaussianity), the Kalman filter 

is a recursive algorithm through which the conditional expectation of the input signal is 

evaluated. In the next chapter, two general filters common in the literature such as linear 

(Kalman filter) and nonlinear (extended Kalman filter) filters will be discussed. 
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Chapter 3 

Linear and Nonlinear Filters 

3.1 Introduction 

In Chapter-2 (Section–2.4) it was stated that the solution to the stochastic filtering 

problem is to compute the conditional probability density function (or pdf) based on the 

past and current measurements of the observed system. Thus, along with the state 

process )(tx  and the measurement process )(ty  the conditional probability density 

function, denoted by ( ))(|)( tytxρ , forms the basis for the solution of the stochastic 

filtering problem. This is because given an initial condition )( 0tx , the pdf evolves in 

such a way that it embodies all the statistical information about )(tx  which is contained 

in the available measurements. Using this density along with a minimization procedure, 

such as mean-square-error, the expected mean of the state provides the estimate of the 

system state. 

In this chapter, both linear and nonlinear models are considered for the filtering 

problem. If the dynamics of the model are linear then the state of the system is 

estimated based on the evolution of the conditional density function. It is assumed that 

the state process )(tx  and the measurement process )(ty  are jointly Gaussian and 

statistical properties of the noise processes are known. For nonlinear dynamics, a 

linearization technique is applied to transform the nonlinear model into a linear model. 
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In the next section, linear filter and its structure along with its extension to nonlinear 

filtering algorithms are discussed. 

3.2 Linear filter (The Kalman filter)  

In the last chapter a general model for filtering problem was presented (see Section-2.2, 

equations (2.1) and (2.2)) from which a linear stochastic differential equation that 

describes the state process with a discrete time measurement process can be written as 

follows (Kalman 1960; Kailath 1968; Bucy 1970; Rhodes 1971; Maybeck 1979, 1982): 

)()()()()( kwkGkxkFkx +=&   (State equation)    (3.1) 

)()()()( iiii kvkxkHky +=   (Measurement process)     (3.2) 

where 

),( ⋅⋅x is an n -vector state process of which one sample would generate a state 

time history, 

)(⋅F  is an nn×  system dynamic matrix, 

)(⋅G  is an sn×  noise matrix, 

),( ⋅⋅y  is an m -vector discrete time measurement process of which one sample 

provides a particular measurement time history, 

)(⋅H  is an nm×  measurement matrix, 

),( ⋅⋅w  is an s -vector white Gaussian process noise, and 

),( ⋅⋅v  is an m -vector white Gaussian measurement noise. 

The state noise process ),( ⋅⋅w  has the following statistics 
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and the measurement noise process ),( ⋅⋅v  has the following statistics 
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     (3.4) 

for all Tkk ji ∈, , where )(kQ  is an ss×  symmetric positive semi-definite matrix for 

all Tk ∈ , and )(kR  is an mm×  symmetric and positive definite matrix for all Tk i ∈ . 

In the above equations (3.4) and (3.5), ( )′⋅  denotes the transposition of the matrix or 

vector )(⋅ .  

In order to initialize the filter, the initial conditions )( 0kx  are required (Kailath 1968; 

Bucy 1970; Rhodes 1971; Maybeck 1979, 1982). Generally, it is modelled as an n -

vector random variable which is normally distributed and is completely described by its 

mean )(ˆ
0kx  and covariance )( 0kP  as: 

[ ]

[ ] )()ˆ)()(ˆ)((

)(ˆ)(

00000

00

kPxkxxkxE

kxkxE

=′−−

=

      (3.5) 

The initial state process )( 0kx , the noise process ),( ⋅⋅w , and the measurement noise 

process ),( ⋅⋅v  are all assumed to be uncorrelated and independent of each other. 

In order to develop this filtering algorithm to estimate the system state, it is required to 

combine the measurement data taken from the system and the information provided by 

the state process along with the statistical information of the uncertainties together so 

that an optimal filter can be evolved. This would be done here by adopting the Bayesian 
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measure to find the conditional probability density of the system state conditioned on 

the entire history of the measurements. Once this is accomplished then the optimal 

estimate will be defined as the mean (or mode, median) under certain criterion such as 

minimum mean-square-error so that conditional estimate converges to that estimated 

value. 

 

 

 

 

3.2.1 Derivation of the Kalman Filter (KF) 

Assume that the measurement data is taken and processed at time 1−ik  and is denoted by 

11 ),( −− = iji yky ω . With a Bayesian measure, it is now required to propagate the 

probability density of the state )( 1−ikx  conditioned on the entire history up to time 1−ik , 

that is ( )1)()|( |
11 −−− ikykx y

ii
ξρ  to the next measurement time ik  (see Figure-3.1) to generate 

( )ikykx y
ii

|)()|( ξρ . To do this it is assumed that the conditional probability density 

( )1)()|( |
11 −−− ikykx y

ii
ξρ  is Gaussian and is defined by 
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The conditional mean )(ˆ
1

+
−ikx  and the conditional covariance )( 1

+
−ikP  are defined as 

[ ]1111 )(|)()(ˆ −−−

∆
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− == iiii ykykxEkx  and      (3.7) 
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Figure-3.1: Time reference for the density propagation 
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It can be observed that the conditional covariance defined in (3.8) is equal to the 

unconditional covariance. This is because the covariance recursion does not depend on 

the actual values of the measurement taken, and thus can be computed without 

knowledge of the realised measurement iy . For this reason it is possible to precompute 

the time history of the covariance by using )(ˆ +
ikx  as the optimal estimate of the system 

state at time ik . 

The solution )( ikx  of the model presented in equation (3.1) can be written as 

)()(),()( 111 −−− +Φ= idiiii kwkxkkkx  with      (3.9) 

∫
−

Φ=−

i

i

k

k
iid dGkkw

1

)()(),()( 1 τβττ ,      (3.10) 

where Φ  is an nn×  state transitional matrix. 

Since (3.9) describes the state )( ikx  as a linear combination of )( 1−ikx  and )( 1−id kw  

then the conditional probability density for )( ikx , written as ( )1)()|( |
1 −− ikykx ii

ζξρ  will be 

Gaussian provided the conditional probability density for )( 1−ikx  and )( 1−id kw , written 

as  ( )1)()|(),( |,
111 −−−− ikykwkx iidi

ζηξρ  is Gaussian. It is in fact Gaussian because )( 1−id kw  is 

independent of )( 1−ikx  and )( 1−iky  according to the description of the model (3.1). 

For the state )( ikx , the time propagation from +
−1ik  to −

ik  (see Figure-3.1) can be 

computed as follows. The conditional mean for the relation (3.9) can be expressed as: 

[ ] [ ]1111111 )(|)()(),(()(|)( −−−−−−− =+Φ== iiidiiiiii ykykwkxkkEykykxE  

 [ ]1111 )(|)(),( −−−− =Φ= iiiii ykykxEkk    
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[ ]111 )(|)( −−− =+ iiid ykykwE    (3.11) 

In (3.11), since )( 1−id kw  is independent of )( 1−iky , therefore, the conditional mean 

turns into unconditional mean and this mean is zero as of the description of the model 

(3.1). Thus the conditional mean stands at 

[ ] [ ]111111 )(|)(),()(|)( −−−−−− =Φ== iiiiiiii ykykxEkkykykxE .  (3.12) 

If the conditional mean in (3.12) is denoted by )(ˆ −
ikx  before the measurement 

ii yky =)(  is taken, that is 

[ ]11)(|)()(ˆ −−

∆
− == iiii ykykxEkx ,      (3.13) 

then combining the notation presented in (3.7) and the term in (3.13), the time 

propagation for the conditional mean can be written as 

)(ˆ),()(ˆ
11

+
−−

− Φ= iiii kxkkkx .       (3.14) 

Similarly, defining )( −
ikP  as a conditional covariance for the state )( ikx  before the 

measurement ii yky =)(  is taken, the conditional covariance can be written as 

{ }{ } 



 =

′
−−= −−

−−
∆

−
11)(|)(ˆ)()(ˆ)()( iiiiiii ykykxkxkxkxEkP ,   (3.15) 

and the conditional covariance propagation from time +
−1ik  to −

ik  (see Figure-3.1) is 

written as 

),()(),()( 111 −
+
−−

− Φ′Φ= iiiiii kkkPkkkP  

ττττττ dkGQGk i

k

k
i

i

i

),()()()(),(
1

Φ′′Φ+ ∫
−

   (3.16) 

It can be observed from (3.14) that if )(ˆ −
ikx  is used as an estimate of )(ˆ

ikx  before the 

new measurement )( iky  is taken, then the difference { })(ˆ)( −− ii kxkx  is simply the error 
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for a particular set of measurement history 1)( −= ii yky  and so )( −
ikP  is the conditional 

covariance of the state as well as the error. Using above definitions (given in (3.14) and 

(3.16)), the propagation of density function from time +
−1ik  to time −

ik  (see Figure-3.1) 

with current measurement available at a time ik , that is iji yky =),( ω ,  the new density 

function written as ( )ikykx y
ii

|)()|( ξρ  can be defined. 

Table-3.1: Algorithmic structure of the Kalman filter 

The optimal state estimate is propagated from the measurement time 1−ik  

to ik . The entire algorithm can be describe as follows: 

Initialization: For 0=i , 

)]([)(ˆ
00 kxEkx =       

{ }{ } 



 ′−−= )(ˆ)()(ˆ)()( 00000 kxkxkxkxEkP    

Computation: For ,...,2,1=i  

State estimate propagation 

)(ˆ),()(ˆ
11 −−

− = iiii kxkkkx φ      

Error covariance propagation 

),()(),()( 111 −
+
−−

− Φ′Φ= iiiiii kkkPkkkP  

ττττττ dkGQGk i

k

k
i

i

i

),()()()(),(
1

Φ′′Φ+ ∫
−

 

Kalman gain Matrix 

1)]()()()()[()()( −−− +′′= iiiiiii kRkHkPkHkHkPkM   

State estimate update 

)](ˆ)()()[()(ˆ)(ˆ −−+ −+= iiiiii kxkHkykMkxkx    

Error covariance update 

)()()()()( −−+ −= iiiii kPkHkMkPkP  

where )(kM is called the Kalman Gain matrix and )(kP  is called a 

posterior covariance matrix. The negative/positive sign in the superscript 

indicates the prior/posterior information for the respective notations.   
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Using Bayes’ rule repeatedly and the same analogy as described above for the 

propagation of the density function from one time reference to the next, the final 

conditional mean )(ˆ +
ikx  at time +

ik  (see Figure-3.1) can be rewritten as (Maybeck 

1979, 1982)  

[ ] [ ])(ˆ)()()()()()()()(ˆ)(ˆ
1 −−−−−+ −+′′+= iiiiiiiiiii kxkHykRkHkPkHkHkPkxkx  , (3.17) 

and the covariance update as 

[ ] )()()()()()()()()()(
1 −−−−−+ +′′−= iiiiiiiiii kPkHkRkHkPkHkHkPkPkP . (3.18) 

With the definition of Kalman gain matrix, the algorithm is summarised in Table-3.1. 

3.2.2 The KF algorithmic structure 

The filter discussed above is based on the linear stochastic model with discrete time 

measurement process. There are number of assumptions have been made in developing 

this filter such as the noise processes are Gaussian, uncorrelated and that the state )(kx  

and the measurement process )(ky  are jointly Gaussian. As a result, the state of the 

system is completely determined by its mean and covariance matrices. Conditional 

probabilities are propagated together from the same initial time by assuming that they 

are Gaussian and because of this, the algorithm maintains the conditional density of the 

state conditioned on the measurement taken. The state estimate )(ˆ +
ikx  is optimal. This 

is because this estimate is not only the conditional mean but also the conditional mode 

as it maximizes the conditional density of the state )(kx  conditioned on the entire 

history of measurements. This is also a recursive algorithm. Because the optimal state 

estimate )(ˆ −
ikx  is propagated from measurement time 1−ik  to measurement time ik  and 

once the measurement is taken at time ik  then the estimate is updated by defining the 
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Kalman gain )( ikM  and employing it in both the mean )(ˆ +
ikx  and covariance relation 

)( +
ikP . Moreover, the algorithm acts like a predictor-error-corrector loop as mentioned 

earlier (see Section-2.4). This is because from the best estimate )(ˆ −
ikx  it is possible to 

compute )](ˆ)([ −
ii kxkH , which is the best prediction of what the measurement at the 

time ik  would be before the actual measurement is taken. The measurement error, 

difference between predicted estimate and the current measurement, )](ˆ)([ −− iii kxkHy , 

is then computed. This error, known as innovation process, is then multiplied by the 

Kalman gain to obtain the correction term which is then added to )(ˆ −
ikx  to compute 

)(ˆ +
ikx .  

In summary, the Kalman filter algorithm requires defining both the structure of the 

model for the system and description of the uncertainty. The structure of the model is 

established by F , Φ , and G  while the uncertainties are specified by the initial 

conditions )(ˆ
0kx , )( 0kP  , Q , and R . 

Given all these advantages, however, this filter (if implemented as shown in Table-1) 

has number of well documented numerical difficulties (Robert 1971). In updating the 

conditional mean )(ˆ +
ikx  it requires the inversion of nn×  matrix (see equations 3.17 

and 3.18). This is possible only when matrices P  and R  are positive definite so that 

inverses of theses two matrices exists. This computation can be reduced if the 

measurement vector is significantly smaller than the state vector, that is if nm << . 

Moreover, if the measurements are very accurate that is the eigenvalues of R  are very 

small compared to those of )( −
ikP  then the error covariance matrix can have negative 

eigenvalues and because of this the filter may diverge. To overcome this difficulty, an 

alternative formulation has been developed. This method is called the square root 
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Kalman filter (Mehra 1971; Maybeck 1979, 1982; McGee & Schmidt 1985). This filter 

is capable of propagating and updating the state estimate and error covariance matrix 

through square root matrix or inverse square root matrix. This formulation has helped 

increase the numerical accuracy and thus reduced the numerical difficulties in 

implementations of the Kalman filter.  

3.3 Nonlinear filter (The Extended Kalman Filter) 

In the last section, filter is developed based on the linear stochastic differential equation 

that represented the dynamics of the system state and the measurement relation. It has 

been shown that under the assumption that the state and measurement noise processes 

are Gaussian and uncorrelated, the filter is able to estimate the state optimally. 

However, linear models are not always useful, especially when the dynamics of the 

system are strongly nonlinear. In such a case development of a nonlinear filter is 

essentially important. For this, a nonlinear stochastic differential equation that describes 

the state and measurement relation is defined by 

( ) )()(),()( kwkGkkxfkx +=&   (State equation)    (3.19) 

( ) )(),()( iiii kvkkxhky +=   (Measurement process)  (3.20) 

where 

),( ⋅⋅x  is an n -vector state process, 

),( ⋅⋅f is an n -vector function, which is assumed to be Lipschitz in its state 

variable and piecewise continuous in its time domain 

)(⋅G  is an sn×  noise matrix, 

),( ⋅⋅h  is an m -vector of functions, 

),( ⋅⋅w  is an s -vector zero mean white Gaussian noise, and 
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),( ⋅⋅v  is an m -vector zero mean white Gaussian measurement noise. 

It is assumed that the state noise process ),( ⋅⋅w  and the measurement noise process ),( ⋅⋅v  

have the same statistics as defined in relations (3.3) and (3.4). 

Given the above nonlinear model, the objective here is to develop an algorithm to 

estimate the system state. The idea for the development of this filter is to linearize the 

nonlinear part of the model about a nominal state trajectory at each instant of time and 

then apply the linear filtering technique discussed in the previous section (Section-

3.2.1). This filter is known as the Extended Kalman Filter (EKF) (Smith and Schmidt 

1961; Andrew 1970; Schmidt 1981; Maybeck 1982; McGee and Schmidt 1985; Julier 

and Uhlmann 1997). 

3.3.1 Derivation of the EKF 

Let )(kxnom  be the nominal state trajectory at time Tk ∈  that start at an initial 

condition )0()( 0 nomnom xkx =  and satisfy the deterministic equation 

( )kkxfkx nomnom ),()( =& .      (3.21) 

Similarly, the nominal measurement sequence, associated with the nominal state 

trajectory, would be 

( )iinominom kkxhky ),()( =       (3.22) 

The deviation of the state from the assumed nominal trajectory can be written as 

)]()([ kxkx nom−  for all Tk ∈  which is also a stochastic process and satisfy the 

perturbed equation defined by 

)()()),(()),(()]()([ kwkGkkxftkxfkxkx nomnom +−=− && .  (3.23) 

This equation can be expanded about the nominal state )(kxnom  using Taylor series as 
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 )()(..)]()([
),(

)]()([
)(

kwkGtohkxkx
x

kxf
kxkx nom

kxx

nom

nom

++−
∂

∂
=−

=

&&  (3.24) 

which in turn can be written as a first order approximation of the form 

)()()()](;[)( kwkGkxkxkFkx nom += δδ&     (3.25) 

where )(kxδ  represents the first order approximation of the process )]()([ kxkx nom− , 

and )](;[ kxkF nom  is the nn×  matrix consists of the partial derivatives of )(⋅f  with 

respect to its state variable evaluated along the nominal state as defined by 

)(

),(
)](;[

kxx

nom

nom
x

kxf
kxkF

=∂
∂

=  or     (3.26) 
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1

1

1
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     (3.26a)  

 

Now comparing equations (3.23) and (3.25), it can be observed that the solution to the 

equation (3.25) is a viable approximation to the solution of the equation (3.23) provided 

that the deviations from the nominal state trajectory are small enough for the higher 

order terms in (3.24) to be negligible. 

In a similar manner, the measurement deviation at each time ik  can also be established 

using equations (3.20) and (3.22) as 

)()),(()),(()]()([ iiinomiiinomi kvkkxhkkxhkyky +−=−   (3.27) 
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Table-3.2: Algorithmic structure of the Extended Kalman filter 

Given the nonlinear system described by (3.19) and (3.20), the following 

steps are required to develop the EKF   

Step1:  Construction of matrices 

       
)/(ˆ

),(
)/(ˆ;(

ikkxx

i
x

kxf
kkxkF

=∂
∂

=  , 

)(ˆ

),(
)](ˆ;[

−=

−

∂

∂
=

ikxx

i
ii

x

kxf
kxkH  

which are Jacobians of the form (3.26a) and (3.29a) described earlier. 

Step 2: The measurement update incorporates the measurement iji yky =),( ω  

by means of 

      [ ] 1
)()](ˆ;[)()](ˆ;[)](ˆ;[)()(

−−−−−− +′′= iiiiiiiiii kRkxkHkPkxkHkxkHkPkM  

 

           [ ]]),(ˆ[)()(ˆ)(ˆ
iiiiii kkxhykMkxkx −−+ −+=  

           )()](ˆ;[)()()( −−−+ −= iiiiii kPkxkHkMkPkP  

This estimate is propagated to the next sample time 1+ik  by integrating 

]),/(ˆ[)/(ˆ kkkxfkkx ii =
⋅

 

)()()()]/(ˆ;[)/()/()]/(ˆ;[)/( kGkQkGkkxkFkkPkkPkkxkFkkP iiiii
′+′+=&  

 from time ik  to 1+ik  with initial condition 

          )(ˆ)/(ˆ += iii kxkkx  

          )()/( += iii kPkkP . 

After integrating, )(ˆ
1

−
+ikx and )( 1

−
+ikP  are defined as 

          )/(ˆ)(ˆ
11 iii kkxkx +

−
+ =  

          )/()( 11 iii kkPkP +
−
+ =  

to use in the next measurement update. For the first interval from 0k  to 1k , the 

value )(ˆ
0kx  and )( 0kP  is considered as the initial value. The time propagation 

relations are  expressed as follows 

∫
+

+= +−
+

1

]),/(ˆ[)(ˆ)(ˆ
1

i

i

k

k
iii dkkkkxfkxkx  

          )]/(ˆ;,[)()]/(ˆ;,[)( 111 iiiiiiii kxkkkPkxkkkP ττ +
+

+
−
+ Φ′Φ=  

                       dkkxkkkGkQkGkxkk iii

k

k
iii

i

i

)]/(ˆ;,[)()()()]/(ˆ;,[ 11

1 ττ ++ Φ′′Φ+ ∫
+

 

where )]/(ˆ;,[ 1 iii kxkk τ+Φ  denotes the state transition matrix which is associated 

with )]/(ˆ;[ ikxF ττ  for all ),[ 1+∈ ii kkτ . 
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Linearization of this relation gives the measurement perturbation model as 

 )()()](;[)( iiinomii kvkxkxkHky += δδ     (3.28) 

where )( ikyδ  represents an approximation of the process )]()([ inomi kyky − , and 

)](;[ inomi kxkH  is the nm×  matrix consists of the partial derivatives of )(⋅h  with 

respect to its state variable evaluated along the nominal state as defined by 
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=   or    (3.29) 
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    (3.29a) 

 

Having these two equations (3.25) and (3.28) as a linearized model for the nonlinear 

dynamics described by (3.19) and (3.20), the nonlinear filter can be developed using 

liner filtering technique about a priori nominal state )(⋅nomx  evaluating )](;[ kxkF nom  

and )](;[ inomi kxkH . It is assumed that these derivatives are exists. The input 

measurement for this filter at time ik  would be the difference )]()([ inomi kyky −  and 

output of such a filter would be the optimal estimate of )(kxδ  for all Tk ∈ . With this 

linearization, the Extended Kalman filter is summarised in Table-3.2. 

3.3.2 The EKF algorithmic structure 

The filter developed above is based on the model that describes the system state through 

a nonlinear stochastic differential equation and a discrete time nonlinear measurement 

function. Noise processes were assumed to be zero mean white Gaussian processes. The 
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key is that the state equations are repeatedly linearized about each estimate once it has 

been computed. As soon as a new state estimate is made, a new and better state 

trajectory is incorporated into the estimation process and this is how the assumption is 

validated that deviation from the nominal trajectory are small enough to allow the linear 

technique to be employed. 

It can be observed that with the introduction of two Jacobian matrices, the linearization 

process is achieved through the first order approximation of the Taylor series expansion. 

These approximations, however, introduce a large error in the true posterior mean and 

covariance of the transformed state variable which leads to sub-optimal performance 

and sometimes divergence of the filter (Schlee et al. 1967; Sorenson 1970; Robert 1971; 

McGee and Schmidt 1985; Bair 1993; Magnus et al. 2000; Bar-Shalom et al. 2001; 

Haykin 2001; Mohinder & Angus 2001). This is because of the truncation in Taylor 

series expansion or nontrivial representation of the covariance matrices about the noise. 

In practice, the use of extended Kalman filter has well known drawbacks (Julier & 

Uhlmann 1995). First, linearization can produce highly unstable filter if the time step 

for the integration is not sufficiently small. Secondly, the derivation of the Jacobian 

matrices is nontrivial in most applications and often leads to significant implementation 

difficulties. And thirdly, a small time step interval implies a high computational 

overhead as the number of calculations increases for the generation of the Jacobian, 

updates of state estimate, and covariance matrices. 

To overcome numerical difficulties of the EKF, the immediate approach was the square-

root filter. This filter gives better numerical stability and update of the covariance 

matrix at the expense of added computational complexities (Andrews 1968, Thornton 

1976) some of which were finally refined (Kailath 1984). The other notable 

developments for the nonlinear filtering were the Unscented Kalman Filter (UKF) 
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(Julier & Uhlmann 1995) and the Particle Filter (Carpenter et al. 1999; Merwe et al. 

2000; Arulampalam et al. 2005). The UKF addresses the linearization issues of the EKF 

by using a minimal set of carefully chosen sample points that capture the posterior mean 

and covariance up to second order accurately. However, the computational burden of 

the UKF remains same as that of the EKF (Haykin 2001). 

The Particle Filter (also known as Sequential Monte Carlo Methods) is a simulation 

technique. The objective of this filter is to track a variable of interests as it evolves over 

time by constructing a sample-based representation of the entire pdf. The filter 

represents the posterior distribution of the state variables by a system of particles that 

evolves and adapts recursively as new information becomes available (Carpenter et al. 

1999). The advantage of the filter is that with sufficient particles the filter approaches 

optimal estimate accurately. But a large numbers of particles are required to provide 

adequate approximation for which an expensive computational procedure becomes 

inevitable. 

3.4 Conclusion 

In this chapter two filtering algorithms; one based on the linear model (Kalman filter) 

and the other based on the nonlinear model (extended Kalman filter) have been 

discussed. These filters are optimal in the sense that they incorporate all available 

information, regardless of their precision, to estimate the current state of the system. It 

has been observed that in either case the evolution of the conditional probability density 

function (and consequently the conditional mean and conditional covariance) combines 

all measurement information and a priori knowledge about the system to produce 

optimal estimate in such a way that the error is minimized (Maybeck 1979, 1982). 

The linear filter estimates the system state through computing the conditional mean and 

covariance matrix in a recursive manner. Estimation of the state by this filter is not only 
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the conditional mean but also the conditional mode as it maximises the conditional 

density of the state conditioned on the entire history of measurements. The covariance 

matrix measures the uncertainty in the estimates. Since the state estimate )(ˆ +
ikx  is an 

optimal estimate, therefore, )( +
ikP  represents not only the state covariance but also the 

covariance of the error committed by the estimate. 

Filtering algorithm for the nonlinear model is developed based on the assumption that 

the deterministic part of the nonlinear state process can be linearized about a nominal 

state trajectory. Computationally this filter has an advantage that the linear filtering 

method can be applied after the model is linearized. The disadvantage is that the filter 

may cause large magnitude of error if the true value of the state differs significantly 

from the nominal state trajectory. Assumptions in developing this filter are fairly tight 

and the computational efforts associated with matrices increases exponentially as the 

number of state increases. 

In this thesis, a filter has been proposed which is based on the principles of quantum 

mechanics under neural network paradigm where the Schrödinger wave equation plays 

the key parts. This filter, called the QRNN filter, is outlined in the next chapter. 



Quantum recurrent neural networks for filtering Chapter-4 

 44 

 

Chapter 4 

Quantum Recurrent Neural Network and its 

construction 
 

4.1 Introduction 

An artificial neural network consists of a set of interconnected neurons which are 

trained to learn the behaviour of a given system or process. Information regarding the 

process (or system) is stored in the weights associated with the interconnections. The 

number of neurons, learning rules, number of layers and nature of interconnections, 

results in a number of different possible neural network architectures for a given 

problem. Of these, an architecture which is suitable for stochastic filtering was 

discussed in references (Dawes 1989a, 1989b, 1989c, 1992, 1993, Sanjay and Zia 2001, 

Behera et al. 2005b). This architecture requires a neural lattice which is confined to a 

single dimensional structure. The idea is that each neuron in the network mediates a 

spatio-temporal field with a unified quantum activation function that aggregates the pdf 

information of the observed signal. The activation function is the result of the 

Schrödinger wave equation (SWE). This equation has manifold applications in quantum 

mechanics and particle physics (see Chapter-1, Figure-1.1). Transformation of this 

equation into a neural network results in the Quantum Recurrent Neural Network 

(QRNN). The architecture of this network and how this network is used for filtering are 

outlined in this chapter along with examining the following features: 
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� numerical procedures for solving the Schrödinger wave equation, 

� numerical stability of the solution, 

� training, and learning schemes for the QRNN, 

� evolution of the pdf with the QRNN filter. 

4.2 The Schrödinger wave equation 

The use of the Schrödinger wave equation is well established in quantum mechanics 

(Schiff 1968; Peleg et al. 1998). The time-dependent form of this equation in vector 

notation is given by 

),(),(),(
2

),( 2
2

trtrVtr
mt

tr
i

rrrh
r

h ψψ
ψ

+∇−=
∂

∂
     (4.1) 

where h  is the universal constant (i.e., the Planck's constant divided by π2 ), i  is the 

imaginary unit, 2∇  is the Laplace operator, ),( tr
r

ψ  is the wave function at space-time 

point );,,( tzyx , m  is the mass of the quantum particle, and ),( trV
r

 is called the 

potential function (or field). The constant h  is related to wave length λ , and 

momentum (or velocity) κ  by πκλ 2=h . Equation (4.1) is a homogenous complex-

valued partial differential equation. The solutions of this equation have the following 

three properties: 

� ),( tr
r

ψ  can interfere with itself so that it can account for the results of 

diffraction, 

� ),( tr
r

ψ  is large in magnitude where the quantum particle is likely to be and 

small elsewhere, and  

� ),( tr
r

ψ  to be considered as describing the behaviour of a single particle of 

mass m . 
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The key with these properties is that the wave packet )(⋅ψ  is regarded as a measure of 

probability of finding a particle of mass m  at a particular position r
v

 with respect to the 

origin of its region. Since the probability must be real and nonnegative, therefore, the 

product of  )(⋅ψ  and its complex conjugate is defined as the probability density function 

(pdf) (Schiff 1968; Bialynicki-Birula & Mycielski 1976; Feynman 1986; Peleg et al. 

1998). Interpretation of this pdf is that it localizes the position of a particle in that this 

product itself represents a pdf for the location of the particle in the region. This pdf is 

given by   

 
2

),(),(),(),( trtrtrtrP
vrrv ψψψ =×=       (4.2) 

where )(⋅ψ  denotes complex conjugate of )(⋅ψ . 

Equation (4.1) is integrable over an interval of interest and this integration can be 

carried out on a discrete lattice set out in a well such as the one shown in Figure-4.1 

(details of this figure will be apparent in Section-4.4 below, Chapter-5 and Chapter-6). 

 

 

 

 

 

Figure-4.1: A well (box) for the solution of the SWE 

It is mentioned earlier that the Schrödinger wave equation has a wave-like solution. As 

the solutions of SWE evolve over time, their wave-like envelopes (the modulus-

squared) disperse and finally diminish which can be seen as a rippling effect of the 

wave. This causes the particles to lose their identity. Thus the utility of time-dependent 
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Schrödinger wave equation as a model of coherent particle motion only holds over short 

time intervals (Dawes 1989a, 1989b, 1989c, 1992, 1993). To offset this, equation (4.1) 

is transformed by modifying the potential function. The potential function ),( trV
r

 

explains the force field in which particles defined by the wave function are constrained 

to move. Equation (4.1) is transformed by adding a nonlinear component with the 

potential function to obtain an extended nonlinear form of the Schrödinger wave 

equation (Dawes 1989a, 1989b, 1989c, 1992, 1993) which is given by 

 ( )[ ] ),(),(),(
2

),( 22
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trGtrUtr
mt

tr
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rrrh
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h ψψψ
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++∇−=
∂

∂
    (4.3) 

where ),( trU
r

, and ( )2
ψG  are defined in equations (4.6) and (4.7) respectively. Effect 

of the nonlinear component (i.e., ( )2
ψG ) is that it positions the dispersion in the 

potential field that acts like a shadow of the envelope of )(⋅ψ . Therefore, whereas the 

dispersion tends to make the particle spread outwards this nonlinear potential shadow 

tends to make the particle collapse inward. 

The position of wave particle in the wave function is defined by r
v

 with );,,( tzyxψ . 

For a single dimensional space the resulting equation is written as 

( )[ ] ),(),(),(
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),( 22
2
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++∇−=

∂
∂ h

h ,    (4.4) 

Based on this equation the single layer Quantum Recurrent Neural Network (QRNN) is 

designed. The equation (4.4) is simply referred as the SWE. This equation has an 

important property which is known as soliton (Schiff 1968; Dawes 1989a, 1989b, 

1989c, 1992, 1993). That is, the wave packets propagate in the well in a way that the 

wave particles collide with each other without changing their shapes, velocity and 

remain localized. This property is important for the QRNN filter in that it would 
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preserve the shape of the wave in the well. For two or more dimensions, the form of 

nonlinearity that will produce true soliton solutions is not known. However, many 

important properties of wave mechanics are known to hold by the resulting SWE 

described by equation (4.3) (Schiff 1968; Bialynicki-Birula & Mycielski 1976; Boyd 

1992). 
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Figure-4.2: Neural lattice of the QRNN 

4.3 Neural dynamics and architecture of the filter 

Let the input signal be represented by a stochastic variable y  and let a single 

dimensional neural lattice be defined in which each node of the lattice acts like a 

processing element or neuron. Suppose the nodes of this lattice are initialized by an 

initial wave function )0,(xψ  whose group momentum is κ . Now, if the dynamics of 

the wave function are derived by the SWE then by definition the modulus-squared of 

this wave function would localize the particle in the vicinity of the node at 0xx =  at 

time 0=t  with a group momentum of κ . Suppose a controlled-input is given to SWE 

through ),( txU  of the potential function then SWE drives the wave particles around the 

trajectory of the input. Suppose that each neuron of the lattice represents some state of 

the measured (or observed) signal and let each of these neurons receive signals through 

synaptic connections that represents observations being in state x . By doing so, the 
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modulus-squared 
2

),( txψ  would represents an estimate of probability of occurrence 

which is associated with the observation coded into the neuron located at x  at time t . 

Figure-4.2 shows one such neural lattice whose neurons are excited by controlled-input 

that reaches each neuron through the synaptic connections. 

 

 

 

Figure-4.3: Control diagram of the QRNN filter 

Thus far, the estimate of the probability density is based solely on the initial condition. 

This process can be generalized for a continuing series of observations and is done by 

transforming the estimation error (that is, difference between the estimate and the 

current measurement) in such a way that the resulting controlled-input drives the SWE 

toward the neurons whose codes are in the best agreement in the sense that the mean-

squared-error is the least. In this way, the error is fed back through the potential field as 

a new measurement becomes available. This is what known as the innovation approach 

mentioned in Chapter-2 (Section-2.4). To transform the estimation errors and to 

accomplish other computational requirements such as updating the network weights, the 

following architecture (Figure-4.3) is developed. This architecture will later be referred 

to as the QRNN filter which is associated with the SWE described in equation (4.4). 
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The architecture of the filter shows a double loop procedure. In the outer loop the filter 

receives a signal )(ty  that excites an array of one-dimensional neural field (see Figure-

4.1) through a set of synaptic weights which are represented by the time varying 

synaptic weights ),( txw . The key is in the manner in which the error (difference 

between the current estimate and current observation) is transformed into the wave 

function. This is done in the inner loop by the activation of the spatial field of the 

neurons where the state of the quantum object evolves according to SWE. The unified 

dynamics of the neural field consisting of N  neurons is described by the nonlinear 

Schrödinger wave equation 
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mt

tx
i ψψξ

ψ








++∇−=

∂
∂ h

h     (4.5) 

where the parameter ξ  provides an additional excitation to the quantum object and has 

to be appropriately selected. The potential field consists of two terms, they are defined 

as follows 

)(),(),( tytxwtxU −=        (4.6) 

where ),( txw  is the synaptic weight and  

( ) ∫
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22
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Thus equation (4.5) can be rewritten as 
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The equation (4.8) is recurrent because of the term ( )2
ψG  and the neural field that 

consists of N  neurons is described by the state function ),( txψ , which is in turn the 
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solution of the SWE. Since 
2

),( txψ  represents the density, this value is used to 

compute the expectation (in the sense of statistical mean) of the state x  at time t . 

4.4 The Crank-Nicholson scheme 

The partial differential equation (PDE) is represented by a set of difference equations 

which in turn allows a numerical solution to the PDE. The idea of doing so is that the 

partial derivatives are replaced by a relationship between functional values and mash (or 

lattice) points of some grid system (shown in Figure-4.4) using Taylor series expansion 

and hence the PDE can be approximated by a set of algebraic equations. This process is 

known as the discretisation process. If there are no rounding errors in solving the 

algebraic equations then their exact solution is obtained at each of the mash points. The 

essential concept of defining stability is that the numerical process should not cause any 

small perturbations introduced through rounding at any stage to grow and ultimately 

dominate and distort the solution. There are variety of differencing schemes such as 

explicit scheme which includes backward, forward, central difference, and the Crank-

Nicolson schemes. Numerical solution of a PDE requires a correct choice of 

differencing schemes since the structure of the PDE itself and the differencing scheme 

of the PDE may impose restrictions on the choice of parameter values and/or on the 

region of variables of interest. A particular differencing scheme can be analysed to 

check if the scheme will produce a stable solution for the problem at hand (Press et al. 

1992; Evans et al. 2000). 

From the mathematical point of view, the time-dependent single dimensional 

Schrödinger wave equation is a partial differential equation describing the dynamics of 

the wave packet in the presence of a potential field which is given by 
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Figure-4.4: A grid (or mesh) system 

 

Equation (4.9) can also be written as   
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where 

 ( )( )2
),(),( ψξ GtxUtxV +=        (4.11) 

is called the potential field in the Schrödinger wave equation. Because of the complex 

structure of this equation, it is intended that the numerical solution meet the following 

two requirements 

� stability of the recursive numerical scheme, 

� an accuracy of up to second order in both space and time. 

The initial wave function )0,(xψ  satisfies the boundary conditions 0→ψ  as ±∞→x . 

Discretizing equation (4.10) at the spatial point jx , where Nj ,...,2,1,0= , and at the 

time instant 1+nt , where Tn ,...,2,1,0= , the Implicit Scheme (using central differences) 

results in the following 
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This difference equation is required to solve the coupling of 1+n

jψ  for various j  and the 

values at time level n  have to be stored to find the values at time level 1+n . 

Rearranging the terms, the scheme (4.12) can be written as 
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or in simplified form 

nnA ψψ =+1         (4.14) 

where A  is a tri-diagonal matrix which forms with the coefficients of 1

1

+
−

n

jψ ,  1+n

jψ , and 

1

1

+
+

n

jψ . To study the numerical stability of the solution of the differencing scheme it is 

required to analyze the eigenvalues of the matrix A . Using Von Neumann stability 

(Press et al. 1992) analysis, assume that 

)sin( jnn

j ωγψ =        (4.16) 

where xl∆=ω  with l  is a real spatial wave number and )(lγγ =  is a complex number 

that depends on l . The key feature of (4.16) is that separating the temporal from the 

spatial dependence, time dependence of a single eigen-mode is the successive integer 

powers of the complex number γ . Thus, the difference scheme is unstable (i.e., 

exponentially growing modes) if 1)( >lγ  for some l . The number γ  is called the 

amplification factor. To find the value of γ , substituting (4.16) into (4.12)  gives 
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Thus the discretized scheme (4.12 or 4.13) of the Schrödinger wave equation is 

unconditionally stable if the absolute value of γ  is less than or equal to one and hence 

the stability condition is 

1

2
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2
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It is clear from (4.18) that the absolute value of γ  is always less than or equal to one 

regardless the values of h , m , t∆ , and x∆  and hence the implicit scheme is 

unconditionally stable. However, the scheme is not unitary (Press et al. 1992; Evans et 

al. 2000; Sun et al. 2006) – a property that requires that inverse of a matrix is equal to 

its conjugate transpose. Thus, underlying physical problem is solved if the total 

probability of finding the quantum object somewhere is unity. This can formally be 

represented by the modulus-squared norm of the wave function ψ  as 

∫
∞

∞−
= 1

2
dxψ          (4.19) 

The initial wave function )0,(xψ  is normalized to satisfy this equation (see Section- 

4.6). The Schrödinger wave equation (4.10) then guarantees that this condition is 

satisfied at all times. Writing equation (4.10) in operator form, we have 
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is known as Hamiltonian operator. The closed form solution of (4.20) is given by 
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)0,(),( xetx ti ψψ H−=        (4.22) 

where )0,(xψ  is the initial wave packet and the exponential operator is defined by its 

power series expansion. Applying the Cayley’s form (Seborg et al. 1989; Press et al. 

1992; Garcia 1994) for the finite-difference representation of tie H− , equation (4.22) can 

be written as 
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Replacing H  by its finite-difference approximation, a complex-valued tri-diagonal 

system is obtained and is required to be solved. This method is stable, unitary, and 

second order accurate in space and time. Equation (4.23) is solved iteratively using the 

initial wave packet at jx , where j  represents the number of space interval and at the 

time instant 1+nt , where n  represents the number of time intervals in the well.  

Implementation of the QRNN filter in this way requires that the numerical scheme 

(defined in equation 4.23) be implemented with an initial wave packet which will act as 

an initial condition for the solution of the SWE and the wave packet is required to be 

normalised. This is sharp contrast to the procedure outlined by the earlier authors (see 

Behera et al. 2005a, Dawes 1989b). In their procedure, it requires that the Hamiltonian 

be normalised at every time instant (see Behera et al. 2005a). It is well known fact that 

the solution of a partial differential equation requires understanding the dynamics of its 

variables. In the case of SWE, these variables are the space step size x∆ , and the time 

step size t∆ . It is to be noted that the space step size is linked to the size of the 

Hamiltonian and time step size is linked to time interval of the incoming measurements. 

The disadvantage of their procedure is that if the space step size decreases then the 

number of neurons will increase consequently the size of the Hamiltonian will increase 
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causing a significant numerical difficulty in implementing the filter. This may also lead 

to potentially instability of the filter. The procedure outlined in this thesis has overcome 

these difficulties (see Ahamed and Kambhampati 2008). 

4.5 Implementation of the filter 

Since 
2

ψ  is interpreted as probability density function, this pdf is the estimate of the 

pdf of the input signal )(ty  as defined by  

)()()( ttyty a µ+=         (4.24) 

where )(tya  is the actual signal, and )(tµ  is the noise. This stochastic signal excites an 

array of N  neurons spatially located along the axisx −  after being pre-processed by the 

synapses. Let the signal )(ty  be represented by the Gaussian probability density 

function ),( txf  with mean yλ  and variance 2σ  and let the initial condition for solving 

the equation (4.23) be represented by the Gaussian probability density function ),(ˆ txf  

with mean yλ̂  and variance σ̂ . As the dynamics of the wave evolves, the pdf ),(ˆ txf  

moves toward the pdf ),( txf  of the signal )(ty  through the updated synaptic weights 

),( txw  and hence the transformation of the input signal to the wave packet takes place. 

The time varying synaptic weights ),( txw  are updated using Hebbian learning rule: 

2
),()(),( txttxw

t
ψηε=

∂
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         (4.25) 

where )(ˆ)()( tytyt −=ε , with )(ˆ ty  being the filter estimate of the actual signal )(tya . 

This estimate is defined by 

∫
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Given the wave packets in discretised form the above expectation is computed using the 

Riemann integral (Capiński and Kopp 2004). From the filter formulation it can be 

observed that there are a number of important parameters, which need to be tuned. 

These are ξη ,,,,, mtx h∆∆ . Of these x∆  and t∆  are from the 

discretization process used for the numerical procedure to solve the SWE. The others 

are for the filter itself, and the learning process. Of these there are two important 

parameters which play an important role in the SWE namely the universal constant, h  

and the mass of the quantum object, m . However, considering the constant h  as unit 

value, the mass of the quantum object is required to be tuned. It is possible to use a 

variety of algorithms to tune the values of ,m  ξ , and η  (Behera et al. 2005b). The 

advantage of using the proposed scheme is that the solution becomes independent of the 

mass, m, of the quantum object (see equation (4.21)). This in turn reduces the number of 

independent design parameters to a choice of ξ  and η , since the others are either set to 

unity or the scheme is independent of their values. Another advantage of the scheme is 

that the potential function is always bounded and hence the normalization property is 

maintained throughout the process for all time. However, all of these are dependent on 

the ability to normalize the initial wave function. 

4.6 Normalization of the initial wave function 

For the evolution of the wave packet and at the same time keeping the solution stable it 

is required to normalize the initial wave packet. However, to be a valid wave function it 

must have the following properties  

� The wave function must be a solution of the Schrödinger wave equation 

� It is continuous and differentiable everywhere  
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� It is a single valued function i.e., the function is either one-to-one or many-

to-one 

� 0→ψ  as ±∞→x . 

Any equation of the form θie  would satisfy the SWE so long as the potential function 

remains bounded over time (Schiff 1968). The general form of the plane wave is given 

by: 

∫
+∞

∞−
−= κωκκψ 3)].(exp[)(),( dtriatr

rrrr
     (4.27) 

where ω  is a function of the propagation number κ
r

. This equation has all the 

properties mentioned above. The dispersion relation )(κω
r

 determines all physical 

properties such as phase and group velocities (that is, velocity of the centre of the wave 

packet) of the wave. Considering the wave propagating along axisx − , the normalized 

single dimensional wave function with mean zero and standard deviation of xσ  is given 

by (see Appendix-A) 
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Considering equation (4.28) as an initial wave packet (which is known as the Gaussian 

wave packet), question may arise whether, under QRNN, the solution of SWE can be 

explained as probability amplitude. Interestingly, the answer is yes. The reason is that 

the potential field is defined to accommodate the neural lattice (see equations (4.6) and 

(4.7)). This potential field produces a numerical value (see equation (4.11)) and is 

transformed into the Hamiltonian (e.g., equation 4.21) which acts upon the wave 

function for the evolution of the wave packet in space and time. In QRNN filter, 

modulus-squared of this evolutionary wave is evaluated as probability density function. 
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Table-4.1: Algorithmic structure of the QRNN filter 

Step-1: 

Initialization: 

Hamiltonian Matrix 
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          and setting up the initial value for the wave function  

       

Step-2: 

Computation: 

Wave function ψ  using Crank-Nicholson scheme 
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 Wave packet as pdf 

2
ψ=pdf  

 Updating the weights using Hebbian learning rule 
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4.7 Algorithmic structure for the QRNN filter 

The quantum recurrent neural network is developed exploiting the dynamics of the 

Schrödinger wave equation of the form 
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and the filtering problem is solved by identifying the time varying pdf of the observed 

stochastic variable )(ty  which is transformed into )(⋅ψ , the wave function of the 

Schrödinger wave equation, in an unsupervised manner without a prior information 

about the noise. The algorithmic structure of the filter is shown in Table-4.1. 
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4.8 Conclusion 

In this chapter the formulation of the quantum recurrent neural network has been 

discussed along with its mathematical construction. Schrödinger wave equation has a 

complex structure. Therefore, in developing the numerical scheme attention is given to 

maintain stability of the solution so that the iterative scheme does not propagate any 

rounding error that can dominate the solution space producing undesirable results. The 

differencing scheme stated in equation (4.12) is called implicit rather than explicit 

(Press et al. 1992; Garcia 1994). The meaning is that the term 1+nψ  is not given directly 

in terms of nψ  but some algebraic techniques are required in order to obtain the wave 

function at the time step 1+n  from that at n . However, this equation is avoided in 

computing the wave function on the subsequent state on the ground that it is not unitary. 

Unitary is the characteristic of the SWE which ensures that the normalization of the 

wave function does not change over time. For this reason a relatively simple unitary 

approximation is developed which is provided by the Cayley’s form described in 

equation (4.23). The solution of the SWE is carried out using this equation with initial 

conditions and initial wave packet. The Gaussian wave packet is selected as an initial 

wave packet and is normalized. However, initial conditions together with the boundary 

conditions impose limitations on the choice of values of the parameters that arise due to 

the differencing scheme and propagation of the wave in the well. This will be discussed 

in the next chapter. 
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Chapter 5 

Design Issues of the QRNN Filter 

5.1 Introduction 

An algorithm for the implementation of the QRNN filter has been outlined in Chapter-4 

in which the solution of the Schrödinger wave equation (SWE) plays the important part.  

This equation was discretised for the numerical scheme to be implemented. However, 

this discretisation introduces limitations on the choice of values for the parameters of 

the SWE and there remains certain design issues which need to be emphasized. These 

deal with: 

� Initialization of the wave packet, 

� Selection of values for the parameters in order to solve the SWE and to satisfy 

the constraints imposed in the numerical strategy, and 

� The size of the potential well in order to localize and propagate the wave packet. 

These issues dictate the ability of the filter to extract the signal and to be able to 

understand the underlying properties of the wave propagation. As will be shown, there 

are specific situations, depending on the length of the well, the discretisation (number of 

neurons) and the window size, when a so called calm wave (see Section-5.4.2) can be 

defined. Presence of this calm wave in the well indicates that the filter has enough 

knowledge about the signal and hence provides better results. Essentially, the presence 
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of the calm wave indicates that the ends of the wave packet are fixed to the extremity of 

the well (see Section-5.4). 

Real 

Imaginary

 

Figure-5.1: The initial wave packet 

 

5.2 Initialization of the filter 

Initial conditions are important for the solution of the differential equations. However, 

in the case of the partial differential equation, this becomes ever more critical as these 

would define which variables are dynamic (in this case, time-dependent). In QRNN 

filter, the initial wave function at time 0=t  is given by (see Section-4.6) 
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There are two features with this initialization. The first is to govern the speed, this is 

done by the term ikxe , where k  is the average momentum of the initial wave. The 

second deals with the size of the spread. The wave is centered at 0xx =  with a spread in 

x  governed by 0σ . The initial wave is normalized in order to satisfy the constraints 

given by equation 4.19 (see also Section-4.6). 
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Initialization of the wave in this way ensures that the wave function is finite everywhere 

and that the probabilities are bounded and confined to the closed interval [0, 1] and is 

single valued. As a result, there will not be any multiple values of the probability. The 

wave function, 0→ψ  as ∞→x . In QRNN filter, the wave function )(⋅ψ  is required 

to be zero at the boundary of the well and this will form the boundary condition for the 

wave to propagate. With these boundary conditions for the solution of the SWE, Figure-

5.1 shows the graph for the initial wave packet. 

5.3 Parameters in the QRNN filter 

There are various parameters which are required to be tuned for the implementation of 

the QRNN filter. This is essential since the wave packet must contain and propagate in 

the well. These parameters will ultimately dictate the wave to produce desired results 

and they are categorised as follows 

a) SWE parameters: The parameters of the SWE itself, i.e., mass of the quantum 

particle m  and the universal constant h , 

b) Discretisation parameters: Parameters due to the discretisation of the SWE, i.e., 

length of the well L , number of mash points N , length of the mesh x∆ , and 

time interval in the grid t∆ , and  

c) Neural parameters: Parameters due to neural network, i.e., number of neurons, 

connection weights ),( txw  in the network, potential field excitation term ξ , and 

learning rate η .  

Selection of values for these parameters and their internal relations are discussed below. 

Values for the parameters of the second and third categories (discretisation parameters 

and neural parameters) will be discussed under the localization of the wave packet. 
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5.3.1 Values for the SWE parameters 

For simplicity and numerical efficiency, values for the SWE parameters are set as 

follows. The universal constant h  is set to unity and the value of m  is set to 
2
1  so as to 

get the coefficient of the first term in the Hamiltonian (equation 4.21) as unity. The 

physical meaning of m  is the mass of the signal which does not exists in a practical 

sense, thus it can take other values as well. However, a very large value of m would 

cause the Hamiltonian matrix to become very small. This in turn means, if the value of 

m approaches infinity the Hamiltonian matrix would be trivial resulting in the incorrect 

solutions of the SWE. A very small value of m  will cause the Hamiltonian matrix to 

explode causing the potential field (equation 4.11) to have no effect on the solution of 

the SWE and thus the evolution of the pdf. The value of m  cannot be negative or zero 

as it results in a Hamiltonian matrix which is undefined. 

5.3.2 Localization of the wave packet 

At first it is required to decide the length of the well where the wave packet is 

generated. If the length of the well is L, then the number of grid points N  and length of 

the grid x∆  is related as follows: 

N

L
x =∆          (5.2) 

This relation gives the number of neurons in the network, which is represented by N . It 

is important to note from equation (5.2) that parameters in the second set are related to 

the parameters in the third set especially the number of neurons which is critical in 

designing the neural network. The length of the well is chosen in a manner such that it 

is possible to generate a smooth wave packet inside the well which can move forward or 

backward meeting boundary conditions yet remaining completely within the walls. 
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The wave packet is generated in a well of length L  and the wave packet must vanish at 

the edge of this well. As a result, values of 0x  and 0σ  (equation 5.1) must be chosen so 

that they meet the boundary conditions of )(⋅ψ  (i.e., )0,0(ψ  and )0,(Lψ  are to be 

essentially zero) and at the same time the wave remains within the well. Let, 
20
Lx = , 

then the initial wave packet (5.1) becomes  
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Now let, 0=x  and 
200
L=σ  (that is, let 5% of the total length of the well) then the 

initial wave packet (5.3) becomes 
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which is close zero and thus clearly vanishes at the edge of the well. It can also be 

shown that when Lx =  and 
200
L=σ  then the initial wave packet (5.3) becomes 

25
1

20/

1
)0,(

−××= e
L

L
π

ψ ,      (5.3b) 

which is close zero and thus clearly vanishes at the other edge of the well. However, 

there are two more restriction that must be imposed on the wave. The first one is how 

far the wave would travel and the second one is what would be the spread of the wave 

over the course of time as it is time dependent. 

The wave packet must not travel so far that it hits the wall of the well. This can be 

ensured by letting the centre of the packet, which starts at 
2
Lx = , move no further to the 

right than Lx = . This is, in turn, accomplished by the requirement that the average 

velocity of the wave packet be 
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T

mL

2
≈κ           

where T  is the total time required for the wave packet to move from 
2
Lx =  to Lx = , 

which gives 

T

xmN

2

∆×
≈κ          (5.4) 

This relates the value of the momentum in terms of the length and number of grid points 

in the well. The second one is concerned with the fact that the wave packet spreads in 

the course of time. Therefore, the spread of the wave must be arranged in a way that the 

reflected and transmitted wave packets continue to be completely within the well. The 

spread of the wave packet at time t  is given by (Goldberg 1967; Schiff 1968) 

4

0

2

22

0
4

1)(
σ

σσ
m

t
t

h
+=        (5.5) 

where 0σ  is the initial spread (can be selected as described earlier, see equation 5.3a) of 

the wave packet. Since the second term under squared root is reasonably small therefore 

the spread at certain moment will not be significantly greater than the initial value. 

Equation (5.4) and (5.5) provide guidelines for the choice of values for the parameters.  

However, for the implementation of QRNN filter, the value for the momentum is 

selected to be one as this choice would provide a constant speed of the wave. The 

spread of the wave is evaluated from the error (difference between the input signal and 

the estimate of the past measurement) which varies from time to time. Thus, the relation 

in (5.5) provides an approximation rule for the spread of the wave. The time varying 

spread of the wave depends on the spread of the error. These two parameters (i.e., κ , 

0σ ) play the critical part in the design of the filter. 
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Other parameters required to be tuned are the weights for the neural network which is 

selected as a vector values of a set of random variables within a certain range such as 

Gaussian random variables between [-1 1], the learning rate which usually within the 

interval of [0 1] and the values for the potential field excitation is set to one.   

It can be realized from the above discussion that the conditions that arise due to 

localisation of the wave impinge on the magnitude of the potential and also to the size 

of the well. Indeed the bounds on the size of the potential well are also taken into 

account by ensuring that the spread of the signals are such that they are well within the 

well size, i.e., 2σ>L ; where L is the length of the well, in some sense represents the 

upper limit of the incoming signal. This is similar to the situation in neural networks, 

where the normalization is done to ensure that trained network is able to generalize. 

5.4 Propagation of wave in the well 

In quantum processes, the propagation of the wave packet in the well is important. In 

QRNN filter it takes on added significance since the wave packet dictates the evolution 

of the pdf. If the wave packet is completely reflected (i.e., bounces) of the wall of the 

well (see Figure-5.2) it implies either that due to lack of sufficient information to the 

initialization has resulted in the wave packet having an inappropriate movement with a 

spread, or that the network has not learnt the signal well. As more information comes in, 

this is resolved and it can be seen that the wave settles down in that the ends are fixed to 

the walls (see Figure-5.3). Such a wave is termed as a calm wave in this thesis. Indeed if 

there was sufficient a priori knowledge the filtering process could have initialized into a 

calm wave. 
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Figure-5.2: A snapshoot of the transmitted (or reflected) wave packet  

The wave packet can also be propagated in the well without this calm wave. This wave 

will be referred as the normal wave in this thesis. In both cases, the wave can be treated 

in two different ways. One by allowing the wave to spread in the well with immediate 

past estimated value as a mean and absolute value of the error as a current spread, and 

the other by switching the spread of the wave off but maintaining the initial spread as a 

spread and the immediate past estimate as a mean for the next wave packet. Logical 

issues behind these are that once the localization of the wave (see Section-5.3.2) is done 

then it is possible to control the wave packet by selecting the various parameters within 

the constraints to propagate the wave packet in the localized well to achieve the 

expected or desired results. Details of propagating these waves are discussed in the next 

sections. 

5.4.1 Normal wave 

The initial wave is propagated in the well by considering the initial estimate and initial 

spread as a centre and spread of the wave packet respectively. Once the initial wave 

packet is launched then an estimate is made for the input signal and this estimate is used 

as a centre of the wave for the next input signal. The error is calculated by subtracting 

the current estimate from the new measurement and absolute value of the error is taken 

2
L  

2
L−  
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as a spread of the wave to measure the next input signal. Evolution of the pdf in this 

way has similarity, in some sense, with the Kalman gain matrix (see Table-3.1). In the 

Kalman filter, the optimal estimate at certain time 2t  is equal to the best prediction of its 

value at time −
2t  (that is, just before the measurement is actually taken) plus a correction 

term of an optimal weighting value times the difference between the actual 

measurement taken at 2t  and the best prediction. 

 

Figure-5.3: Snapshots of the normal wave 

In the QRNN filter, the estimation emerges almost in the same way where the initial 

estimate is set to zero and then with the first input measurement the absolute value of 

the difference between the estimate and the input measurement is taken to update the 

initial estimate by combining the pdf information from the initial wave packet. This 

process continues until all measurements are exposed to the network. The pseudo-code 

for this wave is summarised in Table-5.1. 

A complication that may arise in propagating this wave is that the coefficient of the 

initial wave packet (see Equation 5.1). Since the time varying error is taken as spread 

(σ ) of the wave packet, therefore, the term 
πσ

1
 may explode when σ  is very 

2
L  

2
L−  
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small or approaches zero. This problem can be overcome by resetting or switching off 

the term for the subsequent development (see Section-6.4.1). 

Table-5.1: Pseudo-code for the normal wave 

Initialize all parameters 

Launch initial wave packet in the well 

For i = 1:T 

Store previous estimate 

Estimate the current state using the wave packet 

Input new measurement 

Evaluate the error 

Update the network & Hamiltonian matrix 

Solve SWE with new Hamiltonian and generate a wave packet 

End 

 

5.4.2 The Calm wave 

Another way of propagating the wave in the well is introducing the calm wave. The 

concept of calm wave is that at the outset a wave packet is created with an initial value 

of zero and the wave remains calm and so the name. Number of wave particles in the 

calm wave is the same as the number of neurons in the network. As the wave propagates 

in the well the calm wave gets perturbed. The perturbation here refers to the situation 

that when each measurement is given as input to the network a wave packet is generated 

in the well which in turn gives the distribution of the input signal. The signal receives a 

weighted estimate and stores this value in the calm wave in an iterative manner. Thus 

the calm wave starts to have perturbation. The weighted estimate is determined using 

the equation (4.26) and the error is evaluated which constitutes the potential function. 

This error is then fed back to the network to update the network parameters thus it 

works like an ensemble of information in the evolution of the probability density 
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function. It is to be noted that the calm wave is not a wave but it is a moving window of 

measurement information. The calm wave is perturbed from the centre of the well and 

the input signal is spread through both sides of the well symmetrically as shown in 

Figure-5.4(a–c). 

 

(a)  

 

 

 

(b) 

 

 

(c) 

Figure-5.4(a–c): Signal input to the calm wave 
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The explanation of why it works is the recurrent structure of the network where the 

ensemble of wave packet enters to the network as a potential function along with the 

new measurement signal. This perturbed wave is then tilted towards the pressure 

exerted by the potential function and moves forward and backward with constant speed 

(see Figure-5.3) according to the new measurement signal. In this way the networks not 

only maintain the previous history but also pass the information for the evolution of the 

pdf in the statistical future. It is mentioned in Chapter-2 (Section-2.4) that stochastic 

signal can be treated with a process called Martingale Process which is linked to some 

specifications known as filtration. Although the exact structure of the filtration seems to 

be complicated to fit into the QRNN filter, the calm wave resembles the necessary 

structure of the sigma-algebra of Martingale Process in the sense that it acts as a moving 

window containing and carrying increasing information of the past measurements. The 

pseudo-code for this wave is summarised in Table-5.2. 

Table-5.2: Pseudo-code for the calm wave 

Initialize all parameters 

Launch calm wave 

Launch initial wave packet in the well 

For i = 1:T 

Store previous estimate 

Estimate the current state using the wave packet 

For k = 1:N 

      Perturb the calm wave 

End 

Input new measurement 

Evaluate the error 

Update the network & Hamiltonian matrix 

Solve SWE with new Hamiltonian and generate a wave packet 

End 
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A complication that may arise here is the allocation of huge amount of memory for the 

calm wave. It can be seen (see Figure-6.9), nonetheless, the propagated wave along with 

the input signal is able to generate the pdf and produces expected results. 

5.5 Conclusion 

Initialization of the various parameters of the SWE and how to tune those values to 

achieve desired results have been discussed in this chapter. Tuning of the parameters is 

important in that they dictate the propagation of the wave packet in the well. It has been 

emerged that the wave packets can be generated in two different ways in the well in 

order to get a normal wave or a calm wave. For the normal wave, a single value of the 

signal is measured while in the calm wave more than one value of the signal is used. 

These wave packets play the core part in the evolution of the pdf. In the next chapter, 

values of these parameters will be selected according to the specification developed in 

this chapter and two types of wave packets will be propagated in the well for the 

implementation of the QRNN filter. 
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Chapter 6 

Evaluating Performance by Varying Design 

Parameters 
 

6.1 Introduction 

In Chapters-4 & 5 a filter based on the quantum recurrent neural networks was 

developed. In Chapter-4, it was shown that the pdf evolves from an initial wave packet 

and is able to learn the dynamics of the signal in an unsupervised manner. Using this 

initial value of the wave the filter predicts and estimates the current value of the state 

which is then compared with the measurements to estimate the error. This error is then 

used to drive the Schrödinger wave equation (SWE) in order to evolve the pdf for the 

next time step. Essentially, the error becomes the potential function for the SWE which 

acts upon the wave function to evolve the wave in space and time. The estimate of the 

state is obtained from the wave packet as described in equation (4.26). The error is then 

used to update the weights of the network. In order to contain the wave in the well, a 

number of restrictions have been imposed on the choice of values for the parameters of 

the SWE. These, along with the way in which the wave packets are propagated in the 

well, have been discussed in Chapter-5. In this chapter, the QRNN filter is tested on a 

number of test signals. In the next section normalization of measurement signals, 

methods of assessing performance of the filter, and the framework for discussion of 

simulation results are outlined. 
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6.2 Normalization and performance criterion 

In most data driven techniques, the data is often normalized. This normalization is done 

in order to ensure that (a) there is uniformity in the data space, (b) data falls within the 

range of the values permissible for the model. In this application this normalization is 

even more critical, because there are restrictions on the nature of the wave packet (see 

Chapter-4, Section-4.6, and Chapter-5, Section-5.3) and also to ensure that the waves 

are well within the potential (in other words, the range of data must be within the 

potential well). The following formula has been used in normalizing the signal: 

Normalized signal = [signal – average(signal)]/[max(signal) – min(signal)]   (6.1) 

The performance of the filter is judged based on the value of the Root-Mean-Square-

Error (RMSE) that measures average magnitude of the error. This is done using the 

following formula 

( )∑
=

−=
T

i

a iyiy
T

RMSE
1

2
)(ˆ)(

1
      (6.2) 

where )(⋅ay  represents the actual signal and )(ˆ ⋅y  is the estimated output, T  denotes the 

total number of measurements processed. The errors (difference between the input 

signal and estimated output) are squared before they are averaged so that the RMSE 

gives a relatively higher weight to large errors (see equation (6.2)). A lower value of the 

RMSE is used (in the sense of optimality) as indicator for the better performance of the 

filter. 

6.3 Framework for discussion of the results 

Given the localization and the propagation of the wave in the well the results of the 

simulations are discussed within the following framework: 
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� How the wave packets generated in the well are able to capture the dynamics of 

the signal in terms of the evolution of the pdf? 

� How good the performance of the filter as is judged in terms of RMSE? 

� Is the QRNN filter stable and converge? 

All of these will be discussed in the simulation and results section along with the 

analysis of the tests results. 

6.4 Simulation and results 

The QRNN filter is tested using the signals sampled with sinusoidal, shifted sinusoidal, 

amplitude modulated, and mixed sinusoidal signals. They are defined as follows: 

)()2sin(2)( ttty µπ +=        (6.3) 

 )()2sin(22)( ttty µπ ++=        (6.4) 

)()2sin()()( tttfty µπ +=        (6.5) 

where )(tf  is the time varying amplitude and is defined by  





≤<−

≤≤
=

105)10(5.1

505.1
)(

tt

tt
tf   

)()10sin(2)20sin(2)( tttty µππ ++=      (6.6) 

where )(tµ  is random noise with zero mean. These signals are representative to many 

forms of physical process such as tracking eye movements. Signals are sampled at the 

rate of 10 samples per cycle, 100 samples per cycle, and 1000 samples per cycle. The 

reason for these different rates is to conform with the integration of the SWE, where 

length of the time interval is required. Noise strengths are measured in terms of the 

Signal to Noise Ratio (SNR) in decibel (dB) and taken to be 6dB, 10dB, 20dB, and 

30dB. Altogether a total of 48 tests are performed. A typical graph of the first 500 
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samples (sinusoidal signal (6.3)) with 100 samples per cycle and noise strength of 10dB 

is shown in Figure-6.1. To verify the performance of the QRNN filter, two different 

experiments are performed on these 48 sets of measurements. In these experiments, it is 

assumed that the filter has no a priori knowledge of the noise. This is one of the key 

features of the QRNN filter mentioned in Chapter-1 (Section-1.3). 

The first experiment is performed considering values for the parameters that fall within 

the constraints discussed in Chapter-5. In this thesis, these values are considered to be 

the standard values for the development of the QRNN filter. The second experiment is 

performed changing values for the length of the well (and hence the number of neurons 

in the network, spread of the wave proportionately) keeping values for other parameters 

(such as mass m , the universal constant h , wave momentum κ , neural parameters ξ , 

and η ) constant. In either of these experiments, waves are propagated in the well using 

both normal and calm waves. Details of all theses experiments are as follows. 
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Figure-6.1: Noisy sinusoidal signals (un-normalized) of SNR 10dB 
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6.4.1 Experiment-1: 

I. Normal wave 

This experiment is performed using the normal wave and values for the three different 

parameter sets are selected as follows: 

a) SWE parameters: The universal constant 1=h  and mass of the quantum 

object 
2

1
=m ,  

b) Discretisation parameters: The length of the well is taken as 2=L . The 

reason of taking this value is that the measurement is normalized (equation 

(6.1)) within the interval [-0.5 0.5] and it is necessary to have a smooth 

passage for the wave to move forward and backward to reach the peak of 

the signal within the well. The initial spread of the wave (standard 

deviation) is selected to be 6.00 =σ  which will keep the spread and 

amplitude of the wave well enough inside the well, 01.0=∆x , and 

1.0=∆t  (for the first set of measurements), 01.0=∆t  (for the second set 

of measurements) and 001.0=∆t  (for the third set of measurements), and 

c) Neural parameters: Number of neurons (which also represents the grid 

points for the implicit scheme) 200=
∆

=
x

L
N , the weight ),( tkw  vector is 

filled in with random numbers drawn from the Gaussian distribution with 

zero mean and standard deviation of one, the learning parameter 5.0=η , 

and potential function excitation 1=ξ . 

With these values of the parameters, the single layer Quantum Recurrent Neural 

Network is designed (Figure-4.2, Chapter-4) and the network is trained using the 

Hebbian learning rule (see equation (4.25)). Table below (Table-6.1) shows the 
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performance of the QRNN filter for all four different signals with different noise 

strength for the sampling frequency of 100 samples per cycle. Results for other 

sampling frequencies are shown in Appendix-B (in Table-6.1a: 10 samples per cycle, 

and in Table-6.1b: 1000 samples per cycle). The results presented in Table-6.1 are also 

been shown in Figure-6.2. 

 

 

 

 

 

Table-6.1: RMSE of various signals and noise strengths (Normal wave) 

(Sampling rate (SR): 100 samples per cycle) 

L = 2, N = 200, =∆x  0.01, =σ 0.6, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 
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Figure-6.2: Noise strengths vs. RMSE (Normal wave) 

 

Root-mean-square-error (RMSE)  

Signals/Strengths 
6 dB 10 dB 20dB 30dB 

Sinusoidal 0.13746 0.10374 0.05545 0.04012 

Shifted sinusoidal 0.13753 0.10470 0.05739 0.04146 

Amplitude modulated 0.05884 0.04343 0.02488 0.02001 

Mixed sinusoidal 0.11653 0.08820 0.04617 0.03162 
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From the above table (and Table-6.1a, Table-6.1b in the Appendix-B) it can be seen that 

as the signal-to-noise ratio (SNR) increases the performance of the filter improves. This 

is obvious because higher SNR means lower magnitude of noise and thus smaller 

RMSE. It can also be observed that the RMSE varies from signal to signal even for the 

same noise strengths. This is because of changes in the pattern (or orientation) of the 

signals. For example, in the amplitude modulated signal (signal equation (6.5)) the 

RMSE is considerably low (see Figure-6.2). The reason for this is that of the magnitude 

of errors at the tail ends are small (see Figure-6.3) and so the RMSE. 
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Figure-6.3: Noisy and estimated amplitude modulated signals (SNR: 10dB) 

L = 2, N = 200, =∆x  0.01, =σ 0.6, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 

 

To take a closer view of the table (Table-6.1) a specific case is selected for further 

analysis. This is the sinusoidal signal (signal equation (6.3)) with SNR of 10dB. The 

noisy signal along with its estimated signal is shown in Figure-6.4. The filtering error is 

shown in Figure-6.6. It can be seen from Figure-6.4 that the QRNN filter is able to learn 

the distribution of the signal; however, it has not been able to filter out the noise. By 

t  (Sec) 
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magnifying for the first second, the results are presented in Figure-6.5. It was mentioned 

earlier that the reason for not being able to remove noise from the signal is due to the 

first term in the initial wave packet (see Section-5.4.1). This term is 
πσ

1
. 
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Figure-6.4: Noisy and estimated sinusoidal signals (SNR: 10dB) 

L = 2, N = 200, =∆x  0.01, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 
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Figure-6.5: A segment of Figure-6.4 
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Figure-6.6: Time varying error with normal wave (SNR: 10dB) 
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Figure-6.7: Noisy and estimated sinusoidal signals (SNR: 10dB) 

L = 2, N = 200, =∆x  0.01, =0σ 0.6, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 

 

It should be noted that the spread of the wave σ  is time varying and its value depends 

on the magnitude of the error. If this error becomes smaller (i.e., approaches to zero) 
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then 
πσ

1
 increases (or explodes) which in turn causes the wave to exceed the 

threshold limit of one in the well. To overcome this problem this term is reset to the 

initial value if the value of σ  goes below a certain limit (e.g., 02.0<σ ) after the initial 

wave packet is launched. It has been observed that in such a case the wave packet 

remains within the threshold value of one and be able to remove the noise from the 

signal. This has been shown in Figure-6.7 as well as the first one second in Figure-6.8. 
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Figure-6.8: A segment of Figure-6.7 

 

To see further how good the estimation is and whether the estimated signal has achieved 

the actual amplitude, the un-normalized actual (noise free) signal and their estimated 

signals (first five seconds) are shown in Figure-6.9. The signal is tracked with a RMSE 

of 0.02222. It can be seen from the graph that the estimated signal has achieved the 

required amplitude of the actual signal but in some cases it failed to do so. This is 

probably because of the spread of the wave packet, weights adjustment in the network, 

and/or truncation error in the evolution of the pdf. 
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Figure-6.9: Un-normalized actual and estimated sinusoidal signals (SNR: 10dB) 

 

II. Calm wave 

Results shown above were obtained using the normal wave. Another way of removing 

noise from the signal is to use a wave packet, which remains calm at the initial stage 

(see Section-5.4.2). For this test, the same set of signals is used as in the earlier test. 

Values of the parameters are selected as follows: 

a) SWE parameters: The universal constant 1=h  and mass of the quantum 

object 
2

1
=m ,  

b) Discretisation parameters: The length of the well is taken as 20=L  with 

1.0=∆x . The reason of taking this value is that the periodic signal (in this 

case, equation (6.3)) has a period of 100 samples per cycle. For the better 

performance of the filter, it is necessary to have doubled the number of 

neurons in the network to implement this calm wave. The initial spread of 

the wave is selected to be 6.00 =σ  which will keep the spread and 

amplitude of the wave well enough inside the well, 1.0=∆t  (for the first 

t  (Sec) 
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set of measurements), 01.0=∆t  (for the second set of measurements) and 

001.0=∆t  (for the third set of measurements), and 

c) Neural parameters: Number of neurons (which also represents the grid 

points for the Crank-Nicolson scheme) 200=
∆

=
x

L
N , the weight ),( tkw  

vector is filled in with random numbers drawn from the Gaussian 

distribution with zero mean and standard deviation of one, the learning 

parameter 5.0=η , and potential function excitation 1=ξ . 

With these values for the parameters, the QRNN filter is trained. Table-6.2 below shows 

the performance of the filter for all four different signals of various noise strengths for 

the sampling frequency of 100 samples per cycle. The table is also presented through 

graphs in the Figure-6.11. Results for other sampling frequencies are shown in 

Appendix-B (in Table-6.2a: for 10 samples per cycle, and in Table-6.2b: for 1000 

samples per cycle). 

 

Table-6.2: RMSE of various signals and noise strengths (Calm wave) 

L = 20, N = 200, =∆x  0.1, =0σ 0.6, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 

 

 

Root-mean-square-error (RMSE)  

Signals/Strengths 
6 dB 10 dB 20dB 30dB 

Sinusoidal 0.13125 0.10843 0.08727 0.08594 

Shifted sinusoidal 0.13384 0.11140 0.08891 0.08633 

Amplitude modulated 0.05975 0.05397 0.05021 0.05016 

Mixed sinusoidal 0.10181 0.08100 0.05779 0.05470 
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Figure-6.10: Noise strengths vs. RMSE (Calm wave) 

 

From the above table (also from Figure-6.10) it can be seen that as the signal-to-noise 

ratio (SNR) increases the performance of the filter improves or a small decrease (in the 

case of amplitude modulated signal) in magnitudes of the RMSE. This small decrease 

may be because of the insufficient number of neurons in the network and/or weight 

adjustments in the filter. Investigation was carried out whether or not higher values of 

SNR cause the increase in RMSE. It is found that this is not the case as shown in 

Figure-6.11 with the noise strength of SNR 50dB. The signal is tracked with a RMSE of 

0.01353. 

It can also be observed from the table (Table-6.2, as well as Table-6.2a – 6.2b in 

Appendix-B) that the RMSE varies from signal to signal even for the same noise 

strengths. This is because of changes in pattern (or orientation) of the signals. For 

example, in the amplitude modulated signal (i.e., for signal equation (6.5)) the RMSE is 

comparably lower than others. The reason for lower RMSE is that of the magnitude of 

errors at the tail ends which is small (see Figure-6.2) and so the RMSE.  
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Figure-6.11: Noisy and estimated sinusoidal signals (SNR: 50dB) 

L = 20, N = 200, =∆x  0.1, =0σ 0.6, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 
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Figure-6.12: Noisy and estimated sinusoidal signals (SNR: 10dB) 

L = 20, N = 200, =∆x  0.1, =0σ 0.6, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 
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To have a clearer view of the consolidated results shown in Table-6.2, signal which was 

displayed in Figure-6.4 is shown again along with its estimated signal in Figure-6.12 for 

the first five seconds. Error of the signal is shown in Figure-6.13. 
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Figure-6.12a: A segment of Figure-6.12 (block-a) 

It can be seen from the graph that using calm wave the QRNN filter is able to filter out 

the noise and learnt the entire signal correctly. Two blocks of Figure-6.12 is enlarged 

and shown in Figure-6.12a (for block-a) and Figure-6.12b (for block-b). 
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Figure-6.12b: A segment of Figure-6.12 (block-b) 
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It was mentioned earlier that at the outset a wave packet is formed with value zero and 

is treated as a calm wave at the initial stage. This calm wave is perturbed when the 

signal arrives as input to the network one after another in an iterative manner and thus a 

moving (or sliding) window of information is generated (see Section-5.4.2). For each 

input to the network, a weighted estimate is calculated by using the equation (4.26). The 

error is calculated (difference between the new measurement and the estimate) which 

constitutes the potential function. This error is then fed back to the network to update 

the network parameters which facilitates the learning and the evolution of the pdf. Thus 

presence of this wave in the well helps the evolution of the pdf in a way that the 

network not only stores the past history through the pdf as it evolves over time but also 

through the calm waves and the network weights. It is to be noted that the calm wave is 

simply a moving window of information that sweeps over in picking up the dynamics of 

the signal.  
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Figure-6.13: Time varying error with calm wave (SNR: 10dB) 

 

 

t  (Sec) 



Quantum recurrent neural networks for filtering Chapter-6 

90 

An important observation for the calm wave is the apparent robust performance of the 

QRNN filter. This, in fact, indicates that with the calm wave the QRNN filter is 

independent of the amount of noise associated with the signal. To show this, further 

tests are performed on a signal with noise strength of SNR 0dB. Performance of the 

filter is shown in Figure-6.14. This signal is tracked with a RMSE of 0.17904. 
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Figure-6.14: Noisy and estimated sinusoidal signals (SNR: 0dB) 

L = 20, N = 200, =∆x  0.1, =0σ 0.6, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 

 

It is to be mentioned here that the number of neurons in the network is related to the 

length of the well as well as the length of the grid point (see equation 5.2). Therefore, 

there are two different ways the number of neurons in the network can be created. One 

fixing the length of the well (i.e., L ) changing the length of the grid (i.e., x∆ ), 

secondly, fixing the length of the grid (i.e., x∆ ) but changing the length of the well (i.e., 

L ). In all of the above experiments with calm wave, the length of the well is selected to 

be L = 20 and length of the grid point x∆ = 0.1. It has been observed that taking values 
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in this way performs better than if the length of the well would have been taken to be 

L = 2 with length of the grid point as x∆ = 0.01 (i.e., number of neurons N = 200). This 

is shown in Figure-6.15. The signal is tracked with a RMSE of 0.31042. Although the 

reason for this poor performance is not clearly understood, it should be noted that, the 

Hamiltonian, where double gradient of the wave is computed in a small interval of 

space, would be the source of the problem. Evaluating double derivatives numerically 

always introduce additional approximations, which get amplified. This means that if 

length of the grid is increased then performance would improve which has already been 

confirmed in Figure-6.12.    
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Figure-6.15: Effects of discretisation (sinusoidal signals, SNR: 10dB) 

L = 2, N = 200, =∆x  0.01, =0σ 0.6, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 

 

It is to be mentioned that in all above experiments under calm wave the value of σ  is 

reset whenever it goes below a certain limit (e.g., 02.0<σ ). A simulation is run for the 

sinusoidal signal with sampling frequency of 100 samples per cycle and the noise 

strengths of 10dB without resetting this value. The result is shown in Figure-6.16. The 
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signal is tracked with a RMSE or 0.32461. It can be seen from the graph that the filter 

overshoots because of lower values of σ . This implies that resetting the values of σ  

can become essential, and indeed critical. 
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Figure-6.16: Effects of wave spread (sinusoidal signals, SNR: 10dB) 

L = 20, N = 200, =∆x  0.1, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 

 

6.4.2 Experiment-2: 

This experiment is designed to investigate the performance of the QRNN filter due to 

change in values for the second set (that is discretisation parameters and hence the 

number of neuron in the neural parameter, see Section-5.3) keeping values for the first 

set unchanged (that is keeping values of the parameters same as in the first experiment). 

Change in the length of the well keeping 01.0=∆x  will in turn change the number of 

neurons in the network and it would be observed how this affect the QRNN filter and so 

the evolution of the pdf. The same set of signals (i.e., sampling frequency of 100 
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samples per cycle) will be used as in the first experiment with the value for the time 

interval =∆t 0.01. Wave packet is generated in the well using both normal and clam 

waves. 

I. Normal wave 

In this test, the wave packet is generated in the well using a normal wave. Since the 

length of the well will be changed, therefore, it will also be required to change the initial 

spread of the wave proportionately. Values for the parameters of the three different sets 

are taken as follows: 

a) SWE parameters: The universal constant 1=h , the mass of the quantum 

object 
2

1
=m , 

b) Discretisation parameters: The length of the well is varied on a range of 

41 ≤≤ L , the initial spread of the wave 7.03.0 0 ≤≤ σ , 01.0=∆x , 

01.0=∆t , and 

c) Neural parameters: Number of neurons (which also represents the grid 

points for the Crank-Nicolson scheme) 400100 ≤≤ N , the weight ),( tkw  

vector is again filled in with random numbers drawn from the Gaussian 

distribution with zero mean and standard deviation of one, the learning 

parameter 5.0=η , and potential field excitation 1=ξ . 
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Figure-6.17: Number of neurons versus RMSE (normal wave) for the sinusoidal signal. 

With these values of the parameters, the QRNN filter is trained on the sinusoidal signal 

(see equation 6.3) with four different noise strengths changing the number of neurons 

over a range of 400100 ≤≤ N . Figure-6.17 shows the graph on the number of neurons 

versus the RMSE. This results along with the results for the other sampling frequencies 

are presented in Appendix-B (with Table-6.17a: for 10 samples per cycle, Table-6.17b: 

for 100 samples per cycle, and Table-6.17c: for 1000 samples per cycle). It can be seen 

from these graphs that as the number of neurons in the network increases the RMSE 

decreases consequently the performance of the filter improves. It is found that a network 

with 200 neurons gives an optimal performance of the filter (that is, a small RMSE). 

However, although more neurons in the network perform better but they cause a large 

Hamiltonian which in turn slows down the solution of the SWE. It is to be mentioned 

here that for the sampling frequency of 10 samples per cycle the network did not 

perform as expected. This is because of the small number of samples available for the 

given time duration (10 seconds with 100 samples only). [This in turn an indication of 

the numerical strategy required for the implementation of the filter].   
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II. Calm wave 

Investigation is also carried out by introducing the calm wave in the well while 

changing the number of neurons (on a range of 8020 ≤≤ N  adjusting the spread, ,σ  of 

the wave appropriately) in the network taking values for the other parameters same as in 

the normal wave. First simulation is carried out for the sinusoidal signal with a sampling 

frequency of 100 samples per cycle on a well of lengths 82 ≤≤ L  and 1.0=∆x . 

Figure-6.18 shows the performance of the filter. Tables for this graph and tables for 

other sampling frequencies are presented in the Appendix-B (with Table-6.18a: for 10 

samples per cycle, Table-6.18b: for 100 samples per cycle, and Table-6.18c: for 1000 

samples per cycle). 
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Figure-6.18: Number of neurons versus RMSE (calm wave) 

(SR: 100 samples per cycle) 

82 ≤≤ L , 8020 ≤≤ N , =∆x  0.1, =σ 0.6, =ξ  1, 

=η  0.5, m = 0.5, =h  1, =κ 1, =∆t 0.01. 

 

It can be seen from the graph that as the number of neurons in the network increases 

(with varying lengths of the well) the performance of the filter remains steady for 
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respective noise strengths. One particular figure for mixed sinusoidal signal with noise 

strength of SNR 20dB is shown in Figure-6.19. The signal is tracked with a RMSE of 

0.02301. 
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Figure-6.19: Noisy and estimated mixed sinusoidal signals (SNR: 20dB) 

L = 3, N = 30, =∆x  0.1, =0σ 0.6, =ξ  1, =η  0.5, 

m = 0.5, =h  1, =κ 1, =∆t 0.01. 

 

However, one important observation from the graph (see Figure-6.18) is that the RMSE 

remains steady for the noise strength of SNR 30dB which is supposed to be lowered 

compare to the noise strength of 10dB and 20dB. Further investigation to this problem 

shows that if the sampling frequency increases then this problem resolves. This is 

confirmed in Figure-6.20 for various noise strengths with sampling frequency of 1000 

samples per cycle. 

Compare to the normal wave, the major advantage of using the calm wave is that the 

network can learn with fewer neurons (in this case only 30 neurons) and the RMSE 

remains stable as the number of neurons increases. The only disadvantage is that the 

network cannot perform with a fewer samples expectedly and remains anomalous (see 
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Figure-6.21). This is, in fact, the general case for neural network where more samples 

help the network learn better. 
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Figure-6.20: Effects of increasing sampling rate (1000 samples per cycle) 
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Figure-6.21: Effects of small sampling rate (10 samples per cycle) 

6.5 Conclusion 
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This chapter has demonstrated the implementation of the QRNN filter using two 

different experiments. These tests were designed in a way that they cover methods 

discussed in Chapter-4 and Chapter-5. Simulations are performed considering various 

aspects of the filter. Numerical solution of SWE is implemented using Crank-Nicolson 

scheme. This scheme ensures that there is no rounding error introduced in implementing 

the filter and thus the numerical solution remains stable. Values of the parameters are 

selected according to the specification discussed in Chapter-5 and impacts of changing 

values of these parameters have been verified.  

In each experiment it has been shown that the filter is able to capture the pdf 

information using both normal and calm waves. The density function is conditional in 

the sense that current state of the system is estimated based on all previous states which 

are propagated in the network through the errors defined by potential function. This in 

turn brings the essence of Sigma Algebra of the Martingale theory. 

Performance of the filter in either way is comparable in terms of RMSE. With the calm 

wave the filter performance is considerably better than the normal wave. It is observed 

that if the sampling frequency (that is, the number of samples per cycle) increases then 

performance of the filter improves in terms of the RMSE. It should be noted that giving 

a higher sampling rate means more samples per cycle. This then implies that the time 

interval, t∆ , for integrating the SWE becomes smaller. Indeed, it is well known fact 

that for nonlinear differential equations, smaller t∆  increases the accuracy of the 

numerical procedure. Hence, in this situation, performance of the filter improves. This 

indicates that performance of the filter is linked to the sampling rate which is obvious 

from the neural network point of view. The results are stable and converge as expected. 

In the following chapter application of this filter to some real world situations will be 

investigated. 
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Chapter 7 

Chaotic and Medical signals 

7.1 Introduction 

In Chapter-6, it was shown that the QRNN filter is able to a) capture the dynamics of 

the underlying signal in a noisy process, and b) evolve a density function with which it 

is able to estimate the true signal. In this chapter, the QRNN filter is tested on 

benchmarked chaotic time series such as the Lorenz map and Mackey-Glass series. 

These series (maps) have far reaching applications in the real world problems. For 

example, the Lorenz map has been used to measure the concentration of wealth in a 

population, and Mackey-Glass series has been used to model the white blood cell 

production in human body (Lorenz 1963; Hénon 1976; Mackey 1977; Flake 1998). 

Apart from these two series, situations where the noise process is a non-stationary 

process are also been considered. The QRNN filter is also considered to a practical real 

world situation where the measurement data consists of a set of blood sugar level of a 

patient, who has been monitored. 

In all of these cases, the QRNN filter is applied and tested by generating both normal 

and calm waves (see Chapter-5 and Chapter-6). The purpose of these tests is to further 

illustrate the properties of the QRNN filter on a wide verity of signals to demonstrate its 

advantages. Most of these signals have been studied extensively in the signal processing 

literature (Eric 1993; Alex 2000; Wang et al. 2005). 
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These results will show an inherent advantage of the QRNN filter. Often, depending on 

the applications domain, filters have to be modified or fine tuned by the designer. In this 

chapter, it can be seen that the QRNN filter requires very little tuning (as shown in 

Chapter-6) and can be applied to most applications with very little rejigging. 

7.2 Mackey-Glass series 

The first benchmarked series is the Mackey-Glass series (Mackey 1977). This series is a 

continuous time description for the dynamics of the white blood cell production in the 

human body (Mackey 1977; Flake 1998) and is given by the following equation: 

)(1.0
)(1

)(2.0)(
10

tx
tx

tx

dt

tdx
−

−+

−
=

τ
τ

       (7.1) 

where, τ  is a time delay that controls whether the series has a fixed point, a limit cycle, 

or exhibits chaotic behaviour.  
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Figure-7.1: Mackey Glass actual and noisy (SNR 20dB) series 
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Figure-7.2: Mackey Glass series with normal wave 

L = 5, =∆x  0.01, N = 500, =0σ 0.6, =∆t 0.01, m = 0.5 

=ξ  1, =η  0.5, =h  1, =κ 1. 
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Figure-7.3: Mackey Glass series with calm wave 

L = 5, =∆x  0.1, N = 50, =0σ 0.6, =∆t 0.01, m = 0.5 

=ξ  1, =η  0.5, =h  1, =κ 1  
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This benchmark series is used frequently for testing nonlinear predictive models such as 

in (Eric 1993; Alex 2000). A fourth order Runge-Kutta method is employed to solve the 

equation numerically. Following the convention in the literature (Mackey 1977), a time 

delay of 80=τ  is used in generating the signal which is sampled at every 0.01 units of 

time and a noise strength of SNR 20dB is added to the series. Figure-7.1 shows the 

actual and noisy signals. The QRNN filter is trained over the series. Figure-7.2 and 

Figure-7.3 show the graph of the series along with the estimated signals for normal and 

calm wave respectively. The series is tracked with a RMSE of 0.04059 for normal wave 

and 0.0727 for calm wave. 
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Figure-7.4: A segment of Figure-7.3 

 

It can be observed from Figure-7.2 that the filter could not remove the noise with the 

normal wave. However, using the calm wave the filter has performed better (Figure-

7.3). This is expected, given the manner in which the two methods are implemented (see 

Chapter-5). A segment of Figure-7.3 is enlarged and is shown in Figure-7.4. It can be 
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observed from this figure that although using the calm wave the filter performed well in 

terms of removing noise, there is a small off-set in the amplitude and also a small shift 

in tracking the signal. The problems of not achieving the actual amplitude probably 

because of the scaling factor and the shift may be because of the nature of the network 

and the number of neurons. 

7.3 Lorenz series 

Lorenz series is generated by a set of strongly coupled ordinary nonlinear differential 

equations which together exhibit chaos and is given by as follows: 

)( xyx −= ρ&           (7.3) 

yzrxy −−= )(&         (7.4) 

bzxyz −=&          (7.5) 

where x&  represents derivative with respect to time t  and similarly for the other terms, 

ρ , r , and b  are parameters. It is taken that x  is the output of the Lorenz series and is 

the variable of interest for the QRNN filter. The values of the parameters involved in the 

series is selected as ρ = 20, r = 45.92, and b = 4 following the convention in the 

literature (Haykin 2001). The series is sampled at a period of 0.01 seconds and noise 

strength of SNR 10dB is added to the series. The QRNN filter is trained using both 

normal and calm waves over the normalized state x . Figure-7.5 shows the first 600 

samples along with the estimated signal for normal wave while Figure-7.6 shows the 

graph for the same state x  with calm wave. The signal is tracked with a RMSE of 

0.0510 for normal wave and 0.0734 for calm wave. It can be seen from the graph (see 

Figure-7.5) that the estimated signals over fits using the normal wave. Although using 

calm wave (see Figure-7.6) the filter is able to remove the noise but it fails to achieve 

the required amplitude of the signals. 
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Figure-7.5: State x  of the Lorenz series with normal wave 

L = 3, =∆x  0.01, N = 300, =0σ 0.6, =∆t 0.01, m = 0.5 

=ξ  1, =η  0.5, =h  1, =κ 1  
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Figure-7.6: State x  of the Lorenz series with calm wave 

L = 4, =∆x  0.1, N = 40, =0σ 0.6, =∆t 0.01, m = 0.5 

=ξ  1, =η  0.5, =h  1, =κ 1  
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7.4 Filtering non-stationary signals 

So far in this thesis, all previous experiments (Experiments 1–2 presented in Chapter-6) 

were constructed based on the noise where the noise process were stationary white noise 

processes (i.e., Gaussian zero mean white noise). White noise refers to a signal whose 

value at time t  is statistically independent of its value at time (t + 1). In this section 

signal with a non-stationary noise process are considered. A non-stationary white noise 

sequence is generated by modulating the white noise sequence with a sinusoidal 

function as described by the amplitude modulated signal (see Chapter-6, equation (6.5)). 

The amplitude of the function is selected to be 0.2 and the noise process is normalized 

so that it falls within the range of [-1 1]. A partial graph of the non-stationary noise 

process is shown in Figure-7.7. 
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Figure-7.7: Non-stationary white noise of (1000–7000) 6000 samples  

The measurement signal is sampled at a rate of 1000 samples per cycle per second using 

the sinusoidal signal described in Chapter-6 (see equation (6.3)) with non-stationary 

noise at strength of 10dB. Figure-7.8 shows the non-stationary signals along with the 

estimated signals with normal wave. The signal is tracked with a RMSE of 0.03215. It 
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can be seen from this figure that noise strength varies over time (compare to block-a 

and block-b as shown in the figure at peak to peak) which is due to the effects of the 

non-stationary noise process. The filter did not recognize the variations of noise process 

which is one of the features mentioned in Chapter-1 (see Section-1.3). With normal 

wave the filter has not been able to filter out the noisy signals (see block-a, and block-b 

in Figure-7.9). This is probably because of the higher rate of sampling frequency (in this 

case 1000 samples/cycle) and the non-stationary noise process. 
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Figure-7.8: Noisy and estimated non-stationary signals with normal wave 

L = 3, =∆x  0.01, N = 300, =0σ 0.6, =∆t 0.001, m = 0.5 

=ξ  1, =η  0.5, =h  1, =κ 1  

 

The filtered result is shown in Figure-7.11 using calm wave. It can be seen from the 

figure that QRNN filter is able to retrieve the actual signal with a RMSE of 0.00541. 

Note that the QRNN filter does not differentiate between stationary and non-stationary 

noise processes and the two results are similar. In other words, although the effects of 

non-stationarity can not be seen in the graphs due to normalization but it can be seen 

from the entire graph that estimate of the true value of the state has not been changed 
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over time regardless of the non-stationary noise process which in turn indicates that the 

filter performance has no link to the noise process. To illustrate this, two segments of 

Figure-7.11 (block-a and block-b) is enlarged and shown in Figure-7.12 and Figure-

7.13 respectively. It can also be observed that if the density of measurement increases 

(1000 measurements per cycle compare to 100 measurements per cycle) then the 

performance of the filter improves. 
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Figure-7.9: A segment (block-a) of Figure-7.6 
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Figure-7.10: A segment (block-b) of Figure-7.6 
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Figure-7.11: Noisy and estimated non-stationary signals with calm wave 

L = 4, =∆x  0.1, N = 40, =0σ 0.6, =∆t 0.001, m = 0.5 

=ξ  1, =η  0.5, =h  1, =κ 1  
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Figure-7.12: A segment (block-a) of Figure-7.9 
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Figure-7.13: A segment (block-b) of Figure-7.9 

The reason for the better performance of the filter is because double-loop procedure and 

the fact that the Hamiltonian matrix (see Chapter-4, equation 4.21) contains second 

order derivatives which are implemented numerically using the forward time centered 

space (FTCS) scheme. This scheme provides approximations for the second derivative. 

However, this can be improved by keeping the value of t∆  small (Press 1992). In this 

case, the data was generated with such a small t∆  (i.e., t∆ = 0.001) which can be seen 

to be small compare to the cycle-time of the signal. 

7.5 Filtering blood sugar data  

A patient’s blood sugar level is monitored over a period of time. This is done using a 

subcutaneous instrument worn around the waist of the patient. This instrument takes 

measurement at predetermined time intervals. There are 470 data points which is shown 

Figure-7.14. The problem becomes more acute due to the variation of values in the data 

set, limited number of data points, lack of information about the collection time interval, 

and the reliability of the measurement process. Given these complexities, this becomes 

an ideal test bed for the QRNN filter. 
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Figure-7.14: Actual data for blood sugar level 

The challenge here is to select the values for the parameters given the limited number of 

measurement points. Most important is to select the values for the spread (σ ) of the 

wave packet as well as the time interval of integration. These two values are taken to be 

=σ 0.5, =∆t 0.05 and then trying several different values and picking up the one that 

seems to extract as much of the underlying dynamics of the signal as possible. Although 

this trail and error method should ideally be carried out more rigorous approach, it 

produces good results after a few attempts. 

The parameters of the SWE are adjusted according to the length of the well. This 

requires increasing the number of neurons in the network for proper learning process 

and is a result of the limitations of the data set as described earlier. 

With normal wave, the estimated signals along with the normalized signals are shown in 

Figure-7.15. It can be observed from the graph that the network managed to learn the 

dynamics and estimate the signal correctly with a RMSE of 0.07214 despite relatively 

small size of measurements. 
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Figure-7.15: Blood sugar level actual and estimated data with normal wave 

L = 3, =∆x  0.01, N = 300, =0σ 0.6, =∆t 0.05hour, m = 0.5 

=ξ  1, =η  0.5, =h  1, =κ 1  
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Figure-7.16: Blood sugar level actual and estimated data with calm wave  

L = 3, =∆x  0.1, N = 30, =0σ 0.6, =∆t 0.05hour, m = 0.5 

=ξ  1, =η  0.5, =h  1, =κ 1  

 

With the calm wave the estimated signals along with the actual signals are shown in 

Figure-7.16. The signal is tracked with a RMSE of 0.0823. It can be observed from this 

t  (Hour) 

t  (Hour) 
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figure that the filter has no been able to estimate a good portion of signal using calm 

wave. 

7.6 Conclusion 

This chapter discusses the issues of application of the QRNN filter in a chaotic series. It 

has been observed from the results that the QRNN model has the ability to mimic the 

underlying dynamics of these series (or maps) and thus underscore the potential use of 

the model in a real world situation. The main issue here is the simplicity of the QRNN 

filter in terms of network architecture which consists of just one layer neurons. Values 

of the parameters involving SWE are easy to adjust in handling performance of the 

network. Mainly, two parameters (spread of the wave, and number of neuron in the 

network relating the length of the well) play the important part. It has been observed 

that if the sampling frequency increases then the performance of the filter improves in 

terms of RMSE. 



Quantum recurrent neural networks for filtering Chapter-8 

 114 

 

Chapter 8 

Overview and future work 

8.1 Introduction 

The aims and objectives of the thesis were outlined in Chapter-1. These are 

a. Investigation of the SWE and filter development 

b. Numerical procedure for the solution of the SWE 

c. Design issues of the filter 

d. Training the neural network and the learning process 

e. Evolution of the pdf under quantum mechanical properties 

f. Sensitivity of the parameters involved. 

In light of the results presented in this thesis, these objectives are reviewed and 

discussed in the following sections. 

8.2 Conclusions 

a. It can be seen, from the earlier chapters, that the QRNN filter is based on  

i. the structure of the SWE, and 

ii. the solution of the SWE. 

The original form of the SWE is transformed into a nonlinear form by the 

structure of the potential function. This transformation allows for the 
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incorporation of the learning elements associated with the neural networks. 

Thus, it is possible to obtain a recurrent form which is able to learn and adapt. 

The potential function, which is composed of the incoming signal to be filtered, 

defines the force field within which the particles move and also defines the 

propagated wave function. This wave function is the solution of the SWE, and 

dictates the expected value of the filtered signal. The expected value is 

computed from the pdf which is the squared-modulus of the wave packets. The 

nature of the waves and their properties dictate the quality of the filtering (see 

Chapters-6–7 and later sections). 

b. For the implementation of the QRNN filter, there are two issues to consider; a) 

the nature of the discretisation in both time and space (which are often coupled 

see Section-4.4), and b) the nature of the initial conditions. In this thesis, it has 

been shown that selection of an appropriate differencing scheme is required. 

This is important given that the SWE has to be discretised in both the time 

domain and the space domain. It is also important that the numerical solution be 

initiated with a set of conditions which are explicitly related to the discretisation 

scheme. Role of the initial condition was discussed in Chapter-5. The numerical 

strategy used is the implicit scheme (which is also known as the Crank-Nicolson 

scheme). This procedure has allowed the development of the 

� stable solution of the SWE and hence a stable filter 

� placement bounded on the parameters affecting the solution. 

It is to be noted that the scheme will ensure a stable solution if values of the 

relevant parameters (especially the discretisation step size both in space and 

time) are kept small. This is one of the critical issues in solving a PDE 

numerically. Moreover, this will also help maintain the Soliton and the unitary 
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properties which dictate the manner in which the wave propagates through the 

well. 

c. It has been shown (see Chapter-5) that, there are two different ways the wave 

packets can be propagated in the well. This will results in either 

i. a normal wave, and 

ii. a calm wave. 

In the case of a normal wave, the wave packet moves in the well forwards and 

backwards considering immediate past estimate as a centre and its estimated 

error as a spread. In the case of a calm wave, a moving window of measurement 

information is generated where the wave packet perturbs from the centre of the 

well and the input signal is spread through both sides of the well symmetrically. 

Wave packets are propagated in the well maintaining the Soliton properties. 

Both of these techniques have been used and the results are tested in this thesis. 

Advantage of the calm wave over the normal wave is that it requires fewer 

neurons to learn the incoming signals and its performance is better (see 

Chapters-6 (Experiment-2), and Chapter–7).  

d. Neural networks are trained to learn the behaviour of a system or process. 

Behaviour of the trained network is stored in the weights associated with the 

connections of the network. In the case of the QRNN filter, connection weights 

of the network are initialized with random numbers generated from a Gaussian 

distribution with mean zero and a standard deviation of one. The input signal 

excites an array of neurons spatially located along the axisx −  after being 

appropriately weighted. The excitation results in the evolution of a pdf and thus 
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the expected value. This in turn is used to update the weights using the Hebbian 

learning rule. 

e. The QRNN filter is initialized with an initial wave packet. This initial wave 

packet acts as the initial condition for the solution of the SWE. Initial estimate of 

the state is taken to be zero. For each input to the network, the SWE transforms 

the input and yields a wave packet maintaining the Soliton property. Solitons are 

spatially localized waves travelling with constant speed and shapes. In this 

research, it is emerged that the transformation of the wave packet can be 

accomplished in two different ways in the well, namely a normal wave and a 

calm wave. These wave packets play critical role in the evolution of the pdf. In 

normal wave, the initial wave is propagated in the well by considering the initial 

estimate and initial spread as a centre and spread of the wave packet 

respectively. With the initial wave packet an estimate is made for the input 

signal and this estimate is used as a centre of the wave for the next input signal. 

The error is calculated by subtracting the current estimate from the new 

measurement and absolute value of the error is taken as a spread of the wave to 

measure the next input signal. After processing the network weights the error is 

passed through the network for the next state to be estimated. 

The other way of propagating the wave in the well is introducing the calm wave. 

The concept of calm wave is that at the outset a wave packet is created with an 

initial value of zero and the wave remains calm and so the name. The number of 

wave particles in the calm wave is the same as the number of neurons in the 

network. As the wave propagates in the well the calm wave perturbs. The 

agitation here refers to the situation that when the pre-processed input signal 

reaches to the network, the SWE drives the dynamics of the input signal and 
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transforms it into a wave packet. Modulus-squared of this wave packet gives the 

distribution of the input signal or the pdf. The measurement signal receives a 

weighted estimate and the signal is stored in the calm wave in an iterative 

manner. The error is computed by subtracting the estimate from the current 

measurement. This error is then fed back to the network to update the network 

parameters. It is to be noted that the calm wave is not a wave, but it is a moving 

window of measurement information. The presence of this wave in the well 

indicates that the filter has enough knowledge about the signal and hence 

provides better results. 

f. The QRNN filter has a number of parameters. These are – parameters of the 

SWE itself (mass of the quantum object m , the Planck constant h ), 

discretisation parameters (length of the well L , number of neurons in the 

network N , length of the time interval t∆ , increment in space x∆ ), neural 

parameters (learning rate η , and potential field excitation ξ ) and parameters 

due to initialization of the wave (wave momentum κ ,  spread of the wave σ ). 

Discretisation parameters are related to each other and so the magnitudes of 

values of these parameters are determined by localizing the wave packet. It is 

important that the dicretisation step size is kept small since this affects the 

solution and hence the pdf. A large step size in both domains is inappropriate 

because of numerical reasons and also for poor solutions leading to an undesired 

approximation to the pdf. The SWE parameters appearing in the Hamiltonian 

matrix are selected in a way that they do not affect the solution space. 
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8.3 Scope for future development 

Performance of the filter should be further tested where there is a true randomness in the 

signal. In this thesis, motion tracking was simplified however, both in terms of 

measuring the signal and the uncertainties. In this, it would be more realistic if the filter 

is tested in a real motion tracking situation with many tracking sensors. 

 

 

 

 

 

 

Figure-8.1 Multidimensional sensors fusion 

Most modern systems these days consists of a network of sensors where sensors can be 

the same or different. For example, tracking the motion of a particle in a three-

dimensional space using multiple detectors or a set of sensors functioning autonomously 

communicating with each other or the sensors are acting individually. Both scenarios 

require different strategies for fusing the data in the first instance. However, filtering 

strategies could be an extension of the filter discussed in this thesis. Even though this 

could be a multidimensional problem however, given the structure of the wave function 

and the initialization of the wave the basic numerical complexity is not heavy but 

requires some algebraic manipulation. It should be noted that despite such manipulation 

the behaviour of the wave would not exhibit Soliton behaviour. This would then mean 

the wave function has to be modified so that so called logarithmic form of the SWE is 

Environment 
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obtained. However, in the single dimensional case discussed in this thesis, the result 

would be the same in both forms. 

8.4 Conclusion 

The QRNN filter is essentially a predictor-error-corrector loop which is similar to the 

Kalman filters. The difference here is that in the Kalman filters the probability density is 

assumed to be Gaussian so that it can completely be characterized by mean and 

covariance matrices. Computations of these quantities are accomplished from one time 

reference to the next using the Bayesian rule. In QRNN filter, the probability density is 

not assumed to be Gaussian rather it is given as the modulus-squared of the wave 

function of the SWE. The QRNN filter is data-driven, generic and can be implemented 

with or no a priori knowledge of the observed system. Solution technique developed 

using implicit scheme gives stable solution of the SWE. It has been shown that with a 

simple architecture the QRNN filter is able to capture the pdf information of the 

observed signal and produces desired results. In summary, it can be stated that 

objectives set out in the first chapter have been achieved. 
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Appendix-A 

 

I. Normalization of the plane wave 

 

Considering the wave propagating along axisx −  we have, 

∫
+∞

∞−
−= κωκκψ dtxiatx )](exp[)(),(        

where the wave number is given by 
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Completing the square and integrating we have, 
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with ,1=κσσ x  known as uncertainty relation. Using the normalization condition that 

the wave particle be somewhere at 0=t  with the probability one, that is, 1* =∫
+∞

∞−
dxψψ , 

therefore, equation (A1) can be written as 

1exp
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Thus the fully described normalized single dimensional wave function with mean zero 

and standard deviation xσ  is given by 
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Appendix-B 
 

Experiment-1 

 

I. Normal wave 

 
 

 

Table-6.1a: Sampling frequency: 10 samples per cycle ( =∆t 0.1) 

 

 

 

Table-6.1b: Sampling frequency: 1000 samples per cycle ( =∆t 0.001) 

 

For both tables: Length of the well L = 2, number of neuron N = 200, =∆x  0.01, 

=σ 0.6, Potential field excitation =ξ  1, learning rate =η  0.5, m = 0.5, 

The universal constant =h  1, wave momentum =κ 1. 

 

 

 

 

Root-mean-square-error (RMSE) Signal Equation 

6 dB 10 dB 20dB 30dB 

Sinusoidal 0.23170 0.2221 0.2156 0.2156 

Shifted sinusoidal 0.22528 0.2167 0.2130 0.2146 

Amplitude modulated 0.14754 0.1428 0.1392 0.1385 

Mixed sinusoidal 0.14812 0.1382 0.1325 0.132 

Root-mean-square-error (RMSE) Signal Equation 

6 dB 10 dB 20dB 30dB 

Sinusoidal 0.13998 0.10599 0.05539 0.03713 

Shifted sinusoidal 0.14103 0.10702 0.05595 0.03733 

Amplitude modulated 0.05930 0.04310 0.02226 0.01592 

Mixed sinusoidal 0.11865 0.08936 0.04518 0.02965 
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II. Calm wave 

 
 

Table-6.2a: Sampling frequency: 10 samples per cycle per second ( =∆t 0.1) 

 

 

 

Table-6.2b: Sampling frequency: 1000 samples per cycle per second ( =∆t 0.001) 

 

For both tables: Length of the well L = 20, number of neuron N = 200, =∆x  0.1, 

=σ 0.6, Potential field excitation =ξ  1, learning rate =η  0.5, m = 0.5, 

The universal constant =h  1, wave momentum =κ 1. 

 

 

 

 

 

 

 

Root-mean-square-error (RMSE) Signal Equation 

6 dB 10 dB 20dB 30dB 

Sinusoidal 0.11908 0.09392 0.06366 0.05750 

Shifted sinusoidal 0.12596 0.09810 0.06420 0.05735 

Amplitude modulated 0.05175 0.04025 0.02984 0.02827 

Mixed sinusoidal 0.08399 0.06009 0.03571 0.03131 

Root-mean-square-error (RMSE) Signal Equation 

6 dB 10 dB 20dB 30dB 

Sinusoidal 0.11610 0.08274 0.03131 0.01289 

Shifted sinusoidal 0.11741 0.08400 0.03204 0.01306 

Amplitude modulated 0.04050 0.02743 0.01031 0.00555 

Mixed sinusoidal 0.09485 0.06767 0.02519 0.00920 
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Experiment-2 

I. Normal wave 

Table-6.17a: Sinusoidal signal: 10 samples per cycle per second ( =∆t 0.1) 

 

 

Table-6.17b: Sinusoidal signal: 100 samples per cycle per second ( =∆t 0.01) 

 

 

Table-6.17c: Sinusoidal signal: 1000 samples per cycle per second ( =∆t 0.001) 

 

Length of the well 41 ≤≤ L , =∆x  0.01, =0σ 0.6, Potential field excitation =ξ  1, 

learning rate =η  0.5, m = 0.5, The universal constant =h  1, wave momentum =κ 1. 

Root-mean-square-error (RMSE) Noise 

Strength/

No. of 

neurons 100 150 200 250 300 350 400 

6dB 0.2455 0.2317 0.233 0.2331 0.2331 0.2331 0.2331 

10dB 0.2338 0.2223 0.2258 0.2261 0.2261 0.2261 0.2261 

20dB 0.22 0.2161 0.2247 0.2255 0.2255 0.2255 0.2255 

30dB 0.2159 0.2162 0.2274 0.2285 0.2285 0.2285 0.2285 

Root-mean-square-error (RMSE) Noise 

Strength/

No. of 

neurons 100 150 200 250 300 350 400 

6dB 0.1877 0.154 0.1374 0.1308 0.1288 0.1284 0.1283 

10dB 0.1655 0.1249 0.1037 0.0948 0.092 0.0914 0.0913 

20dB 0.1347 0.0844 0.0554 0.0426 0.0387 0.0379 0.0377 

30dB 0.1246 0.0714 0.0401 0.0273 0.0243 0.0239 0.0238 

Root-mean-square-error (RMSE) Noise 

Strength/

No. of 

neurons 100 150 200 250 300 350 400 

6dB 0.1903 0.1565 0.1398 0.1332 0.1312 0.1308 0.1308 

10dB 0.1679 0.1272 0.1057 0.0967 0.0939 0.0933 0.0932 

20dB 0.1361 0.0851 0.0548 0.0405 0.0358 0.0347 0.0345 

30dB 0.125 0.0705 0.0365 0.0193 0.0132 0.0118 0.0116 
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II. Calm wave 

 

Table-6.18a: Sinusoidal signal: 10 samples per cycle per second ( =∆t 0.1) 

 

 

Table-6.18b: Sinusoidal signal: 100 samples per cycle per second ( =∆t 0.01) 

 

 

 

Table-6.18c: Sinusoidal signal: 1000 samples per cycle per second ( =∆t 0.001) 

 

Length of the well 82 ≤≤ L , =∆x  0.1, =0σ 0.6, Potential field excitation =ξ  1, 

learning rate =η  0.5, m = 0.5, The universal constant =h  1, wave momentum =κ 1. 

 

Root-mean-square-error (RMSE) Noise 

Strength

/No. of 

neurons 20 30 40 50 60 70 80 

6dB 0.254 0.1785 0.1892 0.1939 0.1942 0.1942 0.1942 

10dB 0.2418 0.1623 0.1803 0.1869 0.1872 0.1873 0.1873 

20dB 0.2247 0.143 0.1769 0.1873 0.1879 0.188 0.1879 

30dB 0.2185 0.1375 0.1789 0.1911 0.1919 0.1919 0.1919 

Root-mean-square-error (RMSE) Noise 

Strength/

No. of 

neurons 20 30 40 50 60 70 80 

6dB 0.1376 0.1315 0.1312 0.1312 0.1312 0.1312 0.1312 

10dB 0.1147 0.1086 0.1083 0.1083 0.1083 0.1083 0.1083 

20dB 0.0881 0.0869 0.0871 0.0871 0.0871 0.0871 0.0871 

30dB 0.0821 0.0851 0.0858 0.0858 0.0858 0.0858 0.0858 

Root-mean-square-error (RMSE) Noise 

Strength

/No. of 

neurons 20 30 40 50 60 70 80 

6dB 0.1868 0.1544 0.1406 0.136 0.1349 0.1348 0.1347 

10dB 0.168 0.1326 0.1178 0.1131 0.1119 0.1118 0.1117 

20dB 0.1408 0.1032 0.0905 0.0884 0.0884 0.0885 0.0885 

30dB 0.131 0.0936 0.0838 0.0844 0.0855 0.0859 0.086 


