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Abstract 
 

 

In this work a series of new semiconducting liquid crystals (LCs), which are applicable 

for organic light emitting diodes (OLEDs), were investigated. Semiempirical 

calculations were carried out on monomers and anti-cofacial dimers built from our 

molecules, representing molecules in solution and thin film respectively. Compared to 

the monomer a doubling of the oscillator strength in the dimer was found for 

longitudinal offsets larger than 20 Å. Smaller shifts showed a forbidden absorption 

transition from ground to the lowest excited state. Assuming that the absorption 

transition is equivalent to the emissive transition, this might explain the reduced optical 

quantum efficiency observed for all of our materials in the solid state. 

OLEDs made from blends of three different blue/green emitters with a red component 

showed white light emission with voltage independent CIE coordinates close to the 

ideal white. With polarised microscopy nematic phases frozen in a glassy state at room 

temperature were observed for all blends. Thus the blends were homogeneous and no 

phase separation occurred. This is important for homogeneous white emission and the 

alignment of the LCs due to a rubbed alignment layer below. Polarised white 

electroluminescence with an average polarisation ratio of 8:1 was shown from an OLED 

made with a blend deposited onto an alignment layer. Polarised background light for LC 

displays is desirable as this minimises the losses at the polarisers in the display and thus 

increases its brightness or lowers the power consumption. The low efficiency of the red 

emitter however limited the OLED performance.  

Surface relief gratings (SRGs) with periods of a few hundred nm and a maximum depth 

of 66 nm and periods in the �m-range with a depth of 140 nm were spontaneously 

induced on our films. They were formed through molecular mass transport from the 

dark to bright regions during crosslinking by irradiation with a sinusoidal light pattern 

created by a phase mask. The anisotropic properties of LCs are shown to enhance 

transport. SRGs were formed at room temperature and an elevated sample temperature 

of 65°. They are suitable feedback structures for optically pumped organic lasers and 

can also be employed to enhance the outcoupling of OLEDs.  
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1 Introduction 

Organic semiconductors have become a matter of great interest over the last years as 

they offer several advantages to conventional semiconductors. They are first of all 

cheaper to synthesize, can be applied to flexible substrates, are extremely thin with film 

thicknesses of less than 1 �m, have low power consumption and offer band gap tailoring. 

This makes them highly suitable for portable devices. Two types of organic 

semiconductors are mainly investigated, polymers and small molecules. The latter is 

applied by vacuum deposition, which allows only a limited substrate size and is also 

much more expensive than solution processing.1 Polymers are solution processable so 

that the coating of large substrates with cheap application techniques like ink-jet 

printing and spin coating is realisable.2 The cathode however still needs to be applied by 

vacuum deposition so that the substrate size is still limited and flexible substrates might 

get damaged due to the high temperatures. Organic semiconductors have found their 

first application as OLEDs in commercial devices like mobile phones and MP3 player 

displays. The field of application for organic semiconductors is large, for example they 

also can be used for transistor and solar cells. This work deals with liquid crystals for 

light emitting diodes. 

LEDs made from inorganic semiconductors are now available for the most important 

colours red, green and blue, so that even white light for room lighting and background 

sources in LC displays (LCDs) is realisable through colour mixing. Inorganic 

semiconductors however are expensive in production compared to e.g. fluorescence 

tubes so that their low power consumption does not make up for the higher price.3 

White OLEDs (WOLEDs) are a cheap potential alternative. They also offer the 

possibility to create polarised emission, which is especially useful for the background 

light in LCDs since the loss at the polarisers is minimised and thus the power 

consumption reduced. Organic layers are also patternable for example by 

photolithography or corrugated layers below. Patterned structures can be used as 

feedback structures for laser emission or to enhance the outcoupling efficiency.4 

Through extensive research for example on the device layout OLED performance has 
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improved over the last years, but the best device structure is useless if charge transport 

in the organic material is low. It has therefore become more and more of interest to 

investigate the intra- and intermolecular interactions by quantum mechanical means.  

The University of Hull is well known for its research in liquid crystals (LCs). Our 

approach to organic semiconductors is to incorporate a semiconducting and emissive 

core in the liquid crystal molecules. Typical liquid crystal properties like parallel 

alignment of the molecules in the nematic phase are maintained so that polarised 

emission is obtainable when the films are deposited on an alignment layer. 

Crosslinkable end groups are attached to the LCs so that a LC polymer network is 

formed when irradiated with ultra violet light. This renders the films insoluble so that 

multilayered devices are realisable. Using lasers as crosslinking sources also allows 

small feature pixelation. The alignment properties also ensure a higher order in the 

molecular arrangement, which can improve carrier mobility.5  

In this work we model some of our semiconducting LCs in terms of their transition 

dipole densities between HOMO (highest occupied molecular orbital) and LUMO 

(lowest unoccupied molecular orbital), transition energies and oscillator strengths in a 

monomer. Semiempirical calculations using ZINDO (Zerner’s intermediate neglect of 

differential overlap) coupled to a single configuration interaction (S.C.I.) scheme 

involving singly excited configurations, was performed on AM1 (Austin Model 1) 

optimised geometries. Two compounds are also modelled in a dimer configuration with 

longitudinal shift along the long axis to simulate the interaction of the molecules in 

nematic thin films and investigate the effect on the transition dipoles and energies as 

well as oscillator strengths. For the dimers the strength of different coupling interactions 

are computed with varying offset. The modelled results are placed into context with 

experimental results. The simulations were carried out under the supervision of David 

Beljonne, Bernard Van Averbeke and Jérôme Cornil at the Materia Nova research group 

from the the University of Mons-Hainaut, in Mons, Belgium. An introduction to the 

modelling of molecules and the experimental description are given in section 2.4 and 

3.4 respectively. The results are presented and discussed in Chapter 4. 

LCs form homogenous blends when mixed. This makes them suitable candidates to 

create white light by blending emitters of different colours with each other. We 

investigate three different blue/green emitters mixed with a red emitter to achieve white 

light emission. The blends are examined with respect to their transition temperatures 

and LC phases at room temperature with differential scanning calorimetry (DSC) and 

polarisation microscopy to ensure that a nematic order is maintained and no phase 
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separation occurs. OLEDs built from these blends are characterised in terms of their 

brightness, efficiency, CIE coordinates and I-V response. The blend with the best 

performance is then investigated for polarised electroluminescence through molecular 

alignment from a rubbed PEDOT layer below. An introduction to OLEDs and LCs is 

given in sections 2.1 and 2.2 respectively. The experimental description for DSC, 

polarisation microscopy and OLEDs production are given in Chapter 3. The results on 

the white OLEDs are presented and discussed in Chapter 5. 

We also investigate whether surface relief gratings (SRGs) can be introduced on our LC 

films by exposing them with a sinusoidal light pattern created with an ultraviolet laser 

and a phase mask. Two phase masks of different periods are used and different film 

concentrations and sample temperatures are examined to optimise the gratings. The 

surface is scanned with an atomic force microscope (AFM) to measure the period and 

depth of the corrugation. The sinusoidal intensity patterns behind the mask are also 

modelled numerically and put into context with the experimental results. An 

introduction to grating applications and phase masks and information on exposure 

conditions and mask alignment can be found in section 2.6 and 3.5 respectively. The 

obtained SRG results are presented and discussed in Chapter 6. 

Chapter 7 concludes with the most important results of this work as well as an outlook 

of possible future investigation. 

The publications obtained during this work can be found in Chapter 8.6, 7, 8, 9 
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2 Background Theory 

In this chapter an introduction to organic light emitting diodes and liquid crystals as 

well as the basic principles in molecular modelling, the origin of absorption and 

emission spectra, the techniques to create sinusoidal intensity patterns and the 

calculation of their grating periods is given.  

2.1 Organic Light Emitting Diodes 

An organic light emitting diode (OLED) is a light emitting device analogous to an 

inorganic semiconductor light emitting diode (LED) but made out of an organic 

material. The ability of organic materials to emit light was discovered in 1963 by Martin 

Pope et al.10 but was not further pursued until 1987 when C.W. Tang and S.A. 

VanSlyke achieved a brightness of over 1000 cd/m2 from an OLED.11 Organic 

semiconductors are much cheaper and lighter than inorganic semiconductors (like 

gallium arsenide and germanium) and they offer the opportunity to be incorporated in 

flat panel or flexible displays as well as ambient light sources. The most researched 

organic materials are small molecules and polymers. Displays using the former are 

already commercially available e.g. in mobile phones like the BenQ-Siemens S88, the 

Nokia BH-902 and the Sony Ericsson Z610. Although the development of small 

molecules is beyond the development of polymers it is estimated that the latter will 

overtake the small molecules in the future. Small molecules are more expensive to work 

with since they have to be applied by vapour deposition under vacuum. This limits the 

display size and the possibility to use them for flexible displays since a flexible polymer 

substrate might be damaged during the deposition process due to the high temperatures 

occuring. Polymers can be dissolved in organic solvents like chloroform or toluene so 

that they are solution processable and can be applied to substrates by spin coating or 

ink-jet printing. This reduces fabrication costs and is a great advantage for the 

production of large area displays and also flexible displays.  
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Displays made out of OLEDs would have the advantage that they are active emissive 

displays. Conventional liquid crystal displays (LCDs) are passive and work with a 

background light source whose emission is either transmitted or blocked, see Chapter 

2.2.4. The background light is always on so the power consumption is much higher than 

in active displays, where pixels can be switched on and off separately. 

The development of OLEDs has now reached the stage, that they can be regarded as a 

real alternative to inorganic LEDs. A typical device structure is shown in Figure 2.1. 

 

Figure 2.1: Typical OLED device structure.12 

In most cases a glass slab coated with a transparent anode (typically indium tin oxide, 

ITO) is used as the substrate to begin with. The next layer is a hole (positive charge) 

transporting layer. Usually poly(3,4-ethylene-dioxythiophenene) also known as PEDOT 

is used. This layer protects the organic layer from the rough surface of the ITO, since 

spikes in the ITO surface can lead to short circuits. The hole transporting layer can also 

be used to balance the energy difference between the work function of the anode and the 

energy levels of the emissive layer (see Figure 2.2) to reduce the barriers for charge 

injection. The work function specifies the energy, which is needed to remove an 

electron from its atom to the vacuum level. Since ITO has a relatively low work 

function compared to the ionisation potential (IP) of many organics, the additional layer 

can reduce this barrier and therefore reduce the operational current. PEDOT can also 

work as an alignment layer, if it is rubbed before the organic layer is applied.13 Different 

types of molecules can be used as emissive layer. Small molecules, main chain 

polymers or light emitting liquid crystals are available, although the latter class is still 

under development. The next layer is the electron (negative charge) transporting layer, 

which has the same function as the hole transporting layer; protection and reduction of 

the barriers to inject charges. In our case 1,3,5-tri(phenyl-2-benzimidazolyl)benzene 

(TPBI) is used for this application. A very thin layer of lithium fluoride (LiF) with a 

thicker layer of aluminium on top is used for the cathode. The presence of LiF lowers 

the workfunction of the cathode, which enhances charge injection on the cathode side.14, 
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15 The barrier Ee (Figure 2.2) that the electrons have to overcome is small if the 

workfunction �cathode is low. The aluminium layer protects the organic materials below 

from air and also acts as a mirror to reflect the organic emission to enhance the amount 

of light coupled out. Where a voltage is applied an electric field builds up and positive 

and negative charges are injected. Due to the electric field the injected charges move 

from molecule to molecule by hopping conduction. If a positive and a negative charge 

meet they can form an exciton (bound electron-hole pair), which if it recombines can 

emit a photon. 

 

Figure 2.2: Energy level diagram for a simple OLED structure.16 Eh and Ee refer to the barriers for 

electron and hole injection respectively. IP stands for the ionisation potential, which gives the 

necessary energy to separate an electron from its atom. EA stands for electron affinity, which states 

how capable a material is to bind an electron.16 

The figure above shows the energy level diagram of the simplest OLED that can be 

made, where an emitting layer is sandwiched between cathode and anode. The symbols 

�anode and �cathode stand for the workfunctions of the electrodes, LUMO for the lowest 

unoccupied molecular orbital and HOMO for to the highest occupied molecular orbital. 

Emission occurs if an exciton recombines in the emitter zone. 

For displays the colours red, green and blue are required, but there is also an interest in 

the other colours of the visible spectrum and especially in white light OLEDs 

(WOLEDs). In inorganic semiconductors the bandgap is fixed so that only a few 

wavelengths (most efficiently in the UV, blue, red and infrared region) are available. 

Blue LEDs are now available but still with high prices.3 An advantage of OLED 

materials is their broad emission spectrum. By changing the device structure e.g. by the 

incorporation of a grating structure the emission spectrum can be narrowed. This way 

emission can be produced over the whole range of the visible region. 
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2.2 Liquid Crystals 

Liquid crystals (LCs) are mostly known for their application in digital watches and flat 

panel displays. There they are used as a passive material, blocking the back light or 

letting it through. In this work active LCs, which are able to emit light will be 

investigated. In this section an introduction to LC and their properties is given. 

2.2.1 Basics 

A liquid crystal (LC) is a state of matter between a crystal (solid) and a liquid 

(isotropic). There exist several types of liquid crystal phases, which are determined by 

the LC molecular shape, its angular orientation and the degree of order between the 

individual molecules.  

The different LC molecular shapes available include the calamitic (rod-like) molecule 

and the phasmidic (disc-shaped) molecule. The preferred orientation of a LC molecule 

is indicated through the director, n, see Figure 2.3. This is a unit vector representing an 

average over all symmetry axes of the LC molecules. The degree of order between the 

molecules is defined by the order parameter S, which can be represented by 17  

1cos3
2
1

S 2 −Θ=  

Equation 2.1 

Here � is the angle between the director n and the long axis of the molecule, see Figure 

2.3. The angular brackets denote a statistical average over all molecules.17 

 

Figure 2.3: Definition of the angle � between the director n and a LC molecule.18 

If all molecules are parallel to n the order parameter is S = 1 which denotes the highest 

possible order. S = 0 states no order at all, hence the material is isotropic. Calamitic 
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molecules are highly birefringent as a light wave travelling along the long axis of the 

molecule sees a different refractive index as a wave propagating perpendicular to it. 

2.2.2 Structures and Phases 

There are two principal liquid crystalline phases for the calamitic (rod-shaped) LC, 

which are called nematic and smectic.19 Nematic LCs have an orientational order. They 

tend to orient in the same direction, whilst smectic LCs have orientational and 

positional order and they arrange themselves in layers and point roughly in the same 

direction. Examples for the molecular arrangement of nematics and smectics are 

depicted in Figure 2.4. For the smectic LCs there are many subcategories including the 

smectic A and smectic C corresponding to cases b) and c) respectively. 

a)      b)      c) 

Figure 2.4: Schemes of the phases of calamitic liquid crystals. a) nematic order, b) smectic A order 

and c) smectic C order.20  

Chiral molecules in the cholesteric or chiral nematic phase are arranged in a helix as 

shown in Figure 2.5. The pitch corresponds to the length over which the helix makes a 

360° turn. 

 

Figure 2.5: The liquid crystal arrangement in a cholesteric phase.21 
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The orientation of LCs with respect to the substrate surface can vary as well and two 

common configurations are shown in Figure 2.6. Homogenous (or planar) orientation 

means that the LC molecules align parallel to the substrate surface. Homeotropic means 

they are oriented perpendicular to the surface. 

a)  b) 

Figure 2.6: a) homogeneous and b) homeotropic liquid crystal orientation.20 

Figure 2.7 a) shows the homogeneous and b) the homeotropic orientation for the 

phasmidic molecules in the discotic (columnar) phase.  

a)  b) 

Figure 2.7: Columnar phases of disc-shaped LCs. a) Homogeneous orientation, b) Homeotropic 

orientation.16 

2.2.3 Nematic Textures 

In this thesis nematic LCs and blends of them are used for the OLED applications. 

When mixing two different LCs one has to make sure that no phase separation occurs 

and that a nematic phase is obtained at room temperature to avoid charge trapping at 

grain boundaries. Therefore the blends have to be observed under a polarising 

microscope, see Chapter 3.1.4. Figure 2.8 shows a few typical examples for nematic 

textures. 
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Figure 2.8: On the left a typical nematic texture shows the characteristic 2- and 4-point brushes, 

labelled A and B respectively. On the right nematic droplets, which appear near the clearing point 

are shown. Both pictures were obtained from the compound SPK146 and viewed using the oculars 

of a polarising microscope. 

A nematic compound should show a typical Schlieren texture with the so called 2-point 

and 4- point brushes like in the left picture in Figure 2.8 and droplets on cooling from 

the clearing point, picture on the right. The origin of the brushes is due to the molecular 

arrangement around point defects, see Figure 2.9. 

 

Figure 2.9: Possible arrangements of nematic molecules around point defects.22 The blackened 

molecules indicate that they are either parallel or perpendicular to one of the polarisers. 
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The nematic material has to be positioned between crossed polarisers to be able to 

observe the Schlieren texture; see Chapter 3.1.4 for more information on polarising 

microscopy. Regarding for example case a) one can see that some molecules 

(highlighted in black) around the point defect align parallel or perpendicular to the 

crossed polarisers, which are indicated by the black arrows. These areas appear dark 

under the microscope. The light is polarised by the first polariser. Molecules parallel or 

perpendicular to the polarisation direction behave not birefringent as only one refractive 

index interacts with polarisation direction of the polariser. The initial polarisation 

direction of the light passing through the nematic film is therefore not altered and 

blocked by the second polariser so that the area appears dark. 

2.2.4 Liquid Crystal Displays 

Commercial liquid crystals, e.g. in flat panel displays, do not emit light. Depending on 

their orientation they block or transmit light coming from a backlight source. This 

ability is the main feature used in all LC displays. In the simplest device e.g. a two tone 

display in a digital watch as shown in Figure 2.10, the black digits are created due to 

blocking of the backlight. These watches however do not use a constantly running 

background light source but employ a mirror which reflects the incoming daylight. 

 

Figure 2.10: Digital watch with LC display from Nike.  

This ensures a low power consumption but can cause problems in very bright conditions. 

Figure 2.11 shows one example of the many different types of available larger, colour 

LC flat panel displays, in this case an active matrix thin film transistor LC display. 

Going from left to right, light from an unpolarised constantly running background light 

source is passing through polariser 1 thus changing the light to be horizontally, linearly 

polarised. The polarised light then enters a cell, which is filled with LCs. The surfaces 

inside the cell are treated so that the LCs adopt a certain orientation, in this case parallel 

to the surface (homogeneous orientation, see Figure 2.6). The two cell walls are 
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positioned in such a way that they align perpendicular to each other. The LCs close to 

wall A align horizontally and the molecules near wall B vertically. The LCs in the 

middle then twist slightly molecule by molecule as illustrated for the upper beam in 

Figure 2.11. If now (horizontally) polarised light enters the cell its polarisation direction 

will be turned by the LCs so that it is vertically aligned when it arrives at wall B. The 

white light then passes through a colour filter and through polariser 2. The latter is 

oriented perpendicular to polariser 1. So only light whose orientation is turned through 

the LCs would then be able to pass polariser 2. 

Screen 

Bright Red 
Pixel 

 

Dim Green  
Pixel 

Dark Blue 
Pixel 

Polariser 1 

V 

Polariser 2 
Liquid 

Crystals 

A B 

Colour 
Filter Cell 

Unpolarised 
White Light  

 

Figure 2.11: Simplified layer structure of an active matrix thin film transistor liquid crystal display. 

Note that the cell walls are simplified and in reality would contain a grid of transistors, which can 

be addressed separately. Each pixel is associated with one transistor and can hence be controlled 

independently. 

An array of thin film transistors (TFTs) is incorporated in cell wall A. Each TFT is 

associated with one pixel. In this case three different pixels (red, green and blue) are 

regarded. Each transistor controls the voltage across the cell for its corresponding pixel. 

If no voltage is applied (off state) like in the red pixel case the polarised light 

experiences a 90° turn when passing through the cell and then can exit through polariser 

2 to display a pixel on the screen. In the case of the blue pixel a voltage is applied (on 

state) across the cell for that particular pixel, which causes all LCs, except those bound 

at the surface, to align homeotropically. Because of that the polarisation direction of the 

light is not turned and the light hence not transmitted through polariser 2. The blue pixel 

remains dark. In the third possible case (green pixel) a voltage is applied to the cell but 

it is different to the blue pixel case so that the twisted LC orientation is only slightly 
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changed. This ensures that some light can pass through polariser 2. The green pixel is 

then visible but is not as bright as the red pixel. Different colours are created by mixing 

the three main colours red, green and blue by addressing three different pixels that are 

very close together. This multilayered structure causes a lot of losses as every time the 

light passes through a polariser or filter some part of it is absorbed. The background 

light source emits unpolarised light. Only a small fraction of the light, about 42 %, is 

transmitted through the first polariser.23 Here therefore the loss is the greatest. A white 

light source that emits polarised light would overcome this problem, which provides the 

motivation for section 5 of this thesis. 

2.2.5 Light Emitting Liquid Crystals 

Figure 2.12 shows a typical structure of a light emitting liquid crystal. These molecules 

can be different in their spacer, side chain and in their end group size. The chemical 

structure of the aromatic core (chromophore) can be tailored to control the colour of 

emission and the energy of the highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO). 

 

Figure 2.12: Example of the chemical structure of a light emitting liquid crystal. 

Side chains and spacers can be added to influence the transition temperatures, solubility 

and to increase the intermolecular separation.24, 25 This could prevent possible 

quenching of the luminescence due to overlapping of the energy levels of the molecules 

and hence to a reduction of the efficiency. The photopolymerisable end group is 

required if the molecules need to be crosslinkable, see section 2.2.6. 

2.2.6 Crosslinking of Liquid Crystals 

For display applications OLEDs need to be able to emit different colours from closely 

packed pixels. Multilayered devices incorporating charge transporting multi layer films 

improve the efficiency as with each layer energy level matching can be improved so that 
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barriers for charge injection can be reduced, which improves the charge transport. The 

layers are easily prepared by sequential deposition of thermally evaporated small 

molecules, which can be pixelated by shadow masking. For solution processing the 

pixelation is mostly done through ink-jet printing. Spin coating or printing would lead 

to the dissolution of the organic layers below and hence to the destruction of the device. 

Incompatible solvents have been used to overcome this problem. 

Our approach is to crosslink the layers or more precisely the molecules to form a 

permanent network to render the films insoluble.26, 27 This is done photolithographically 

with a laser, which irradiates the film through a mask to pixelate the layer. After 

crosslinking the uncrosslinked parts are removed by washing the device in toluene or 

chloroform for several seconds. The next organic layer of another colour is then spin 

coated over the pixelated layer and crosslinked in a different region. The procedure is 

repeated until all desired colours are applied. This way our OLEDs can be 

photopatterned with small pixels and a full colour OLED on a single substrate has been 

reported.27 Multilayered devices can also be obtained by crosslinking the entire film. 

Photochemical crosslinking has been also reported for main chain polymers to form an 

OLED with red, blue and green emission.28  

Crosslinking of molecules means the combination of smaller molecules to large chains 

or networks through polymerisation. Crosslinking can be induced chemically, thermally 

or through irradiation with light (most commonly from the ultra violet region). In Figure 

2.13 the formation of a polymer network is shown. Several molecules are linked by 

polymerisation of the end groups. The term crosslinking is used if each end of the 

molecules has a crosslinkable group. 

 

Figure 2.13: Schematic of a crosslinkable single molecule and the resulting molecular network. 
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A wavelength, which is not close to the emission wavelength, should be used to induce 

photopolymerisation. Otherwise the network formed might undergo further changes if 

the OLED is in operation. For OLEDs working in the visible region this can be done by 

using an end group, which is sensitive to ultraviolet emission. Figure 2.12 shows a diene 

polymerisable group. This undergoes a free radical cyclopolymerisation reaction (the 

two end groups form a ring), which is slower than the polymerisation of acrylate or 

methacrylate end groups. However dienes do not undergo thermal polymerisation so the 

materials can be thermally cycled during processing.25 An advantage of the self 

alignment properties of the nematic LCs is that the emission from uniaxially aligned 

chromophores is polarised.26 Crosslinking with polarised emission enhances the 

polarisation ratio since molecules lying parallel to the polarisation crosslink faster, and 

their position is fixed. Polarised EL with a maximum polarisation ration of 11:1 was 

obtained through photoalignment (selective crosslinking).26 Furthermore patterned 

polarisation is realisable by crosslinking different spots on a LC film with differently 

polarised beams. The nematic order was also found to improve charge transport and a 

hole mobility > 10-3 cm2 V-1 s-1 was reported for a nematic small molecule.29 Our 

semiconducting LCs proved also to be useable for photovoltaics.30 

2.3 Optical Quantum Efficiency 

The external optical (photoluminescence) quantum efficiency (QE) of organic materials 

(e.g. polymers) is used to evaluate compounds for organic semiconductor devices. A 

high quantum yield is necessary for efficient light emitting organic devices. The 

external optical quantum efficiency is defined as 31 

absorbedphotonsofnumber

emittedphotonsofnumber
=η  

Equation 2.2 

If the efficiency of a solution is measured you can assume an uniform angular 

distribution of the emission whereas for a film this is not applicable. Wave guiding and 

anisotropic distributions of the polymer chains or molecules within the film cause an 

unequal distribution of the emission (see section 2.6.2). To ensure that this does not 

affect the QE results, different compounds in solution or thin film are measured with the 

use of an integrating sphere. Additionally a laser and a spectrometer, connected to the 
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sphere with an optical fibre, are needed for the measurement setup. The integrating 

sphere is a hollow sphere, the inside of which is completely coated with a diffusely 

reflecting material. The reflectivity should be equal over a large wavelength region. For 

non-uniform reflectivity a throughput curve of the sphere is needed to correct for the 

deviation as well as the spectral response of fiber and spectrometer. Barium sulphate is 

mostly used as coating material but for certain experiments, for example when the 

emission is near to the infrared region other materials like gold are more suitable. The 

sphere has two openings; one where the laser beam enters and one where an optical 

fibre, which is connected to the spectrometer, is attached to. A baffle inside the sphere, 

which is also coated, screens the fibre from direct illumination coming from the sample 

and the laser. Figure 2.14 shows the setup for the three measurements which are needed 

to determine the QE of solutions and films after the method of de Mello and Friend.31 

 

Figure 2.14: The three experimental configurations for the measurement of the optical quantum 

efficiency with an integrating sphere.31 

When adjusting the laser beam it is important that the beam does not exit the sphere 

again after it reflected at the back of the sphere. In experiment (a) only the laser beam is 

measured. In experiment (b) the sample is placed in the sphere, but not in the direct 

beam, so that it is excited by scattered light from the laser. In Experiment (c) the sample 

is directly hit by the beam and its reflection from the sample should not leave the sphere. 

Figure 2.15 shows typical spectra for these three measurements. For presentational 

reasons the emission curves were multiplied by a factor of 100 to make them clearly 

visible against the amplitude of the laser spectrum. 
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Figure 2.15: Spectra taken for the three different measurements required to obtain for the optical 

quantum efficiency. Measurement sample was the laser dye Coumarin 30 dissolved in 

acetonenitrile. 

The area under the curve represents the intensity of either laser or sample emission. A 

measure of the number of photons emitted and absorbed by the sample is required to 

determine �. The emission intensity x the wavelength is proportional to the number of 

photons and so is integrated over an appropriate wavelength range. Li is the integrated 

signal from the laser for experiment i = (a), (b) or (c). Ei stands for the integrated area of 

the emission spectrum of the sample. With the equations below the optical quantum 

efficiency � can then be determined. 
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Equation 2.4 

Here A is the absorption coefficient of the sample at the wavelength of the laser. 

2.4 Molecular Modelling 

With the invention of computers computational modelling has become more and more 

important in organic chemistry. The development of fast processors made it possible to 
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study even more complex molecules like polymers. Nowadays different software 

packages are available employing different theoretical approaches and theories in 

quantum chemistry. It is not the aim of this work to explain these in great detail or to 

compare the different methods. Computational modelling is regarded as another 

“experimental” tool to examine our light emitting liquid crystals. The simulations on 

five of our molecules regarding their energy transfer abilities in dimer configurations 

were carried out under the supervision of experienced researchers (David Beljonne, 

Bernard Vanbeque and Jerome Cornil) at the Materia Nova research centre from the 

Polytechnic Faculty of Mons and the University of Mons-Hainaut in Mons, Belgium. 

Here we give an introduction to molecular orbital theory and the computational 

terminology and methods employed. 

2.4.1 Atomic Orbital Theory 

In 1913 Niels Bohr introduced his concept that electrons can only move in orbits around 

an atomic nucleus. With the help of this model the spectral lines of the hydrogen atom 

could be explained completely. For many-electron atoms however the model failed and 

another approach was needed.32 But the general idea of a confined space in which 

electrons move around the nucleus is still used today in the form of orbitals. Louis de 

Broglie then introduced the wave-particle dualism suggesting that high energy particles 

like photons and electrons show both wave and particle characteristics. This is 

expressed in the de Broglie relation 33 

λ
=

h
p  

Equation 2.5 

where p is the particle momentum, h Planck’s constant and � the wavelength. Bearing 

this relationship in mind and employing a quantum mechanical approach, in 1926 Erwin 

Schrödinger introduced an equation, the so called Schrödinger equation, with which it is 

possible to find the wavefunction of a particle.34 This wavefunction � describes the 

behaviour of a particle. For a three-dimensional systems the time-independent 

Schrödinger equation is written as follows 

E�V��
2m

2
2

=+∇−
�

 

Equation 2.6 
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with 
π

=
2
h

� , m the mass of the particle, V the potential energy, E the total energy and 

∇2 as  Laplacian operator.33  
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Equation 2.7 

In general the Schrödinger equation can be written as  

E�H� =  

Equation 2.8 

where H is called the Hamiltonian operator, which represents the left part of the 

Schrödinger equation. The Hamiltonian is associated with the total energy of the system, 

which is the sum of the kinetic and potential energy.34, 33 The square modulus of the 

wavefunction ���2 of a particle at a certain position is proportional to the probability of 

finding the particle in that position.34  

The wavefuntion for one electron of an atom is called an atomic orbital (AO). An 

electron that is described by this particular wavefunction is said to “occupy“ that orbital. 

The simplest orbitals for the lowest energetic states can be easily visualised. Figure 2.16 

shows the boundary surface of an s orbital, e.g. the 1s orbital of a hydrogen atom in its 

ground state. 

 

Figure 2.16: The boundary surface of an s orbital, within which there is a 90 % probability of 

finding the electron.34 

If an electron is promoted into a higher lying energy level (orbital) e.g. via the 

absorption of a photon, it may occupy a p orbital. There are three different potential p 

orbitals as shown in Figure 2.17. 
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Figure 2.17: The boundary surfaces of p orbitals. A nodal plane passes through the nucleus and 

separates the two lobes of each orbital. The dark and light areas denote the regions of opposite sign 

of the wavefunctions.34  

The higher the energy levels the higher the number of available orbitals and the more 

complicated the orbital shapes. The energy level of the p orbital is degenerate as all p 

orbitals are of the same energy.  

The occupation of the orbitals in many electron atoms or molecules is built up 

according to Pauli Principle, which states that at most two electrons may occupy an 

orbital and that if two electrons occupy the same orbital their spins must be paired. The 

spin of an electron describes its intrinsic angular momentum, which can be imagined as 

its movement around its own axis.35 This however is just a classical interpretation to 

imagine the motion of the electron. In quantum chemistry the spin is quantised and can 

take the values 
2
1

+  and 
2
1

− , which is also denoted as spin up � and spin down 	 

respectively. The spins of two electrons in the same orbital must be paired (�	), which 

means that they are not of the same value. In the classical model one can visualise this 

as two electrons having the same rotational axis, but rotating in opposite directions 

around this axis. This corresponds to one electron having a spin of 
2
1

+  and the other a 

spin of 
2
1

−  with the total angular momentum of a paired spin being zero. Furthermore 

if an orbital is split into several suborbitals like in the px,y,z orbitals first all suborbitals 

have to be occupied by one electron before one can be filled up with a second. This is 

summarised in Hund’s rule, which states that an atom in its ground state adopts a 

configuration with the greatest number of unpaired electrons having the same spin if 

occupying degenerate orbitals. 
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2.4.2 Molecular Orbital Theory 

In the molecular orbital theory (MO theory) it is generally assumed that electrons do 

not belong to a single atom or bond, but that they can move freely over the whole 

molecule. The wavefunction for one electron is then called molecular orbital (MO) 

instead of atomic orbital. The Pauli Principle for AOs is also valid for MOs, so never 

more that two electrons, whose spins are paired, may occupy a MO.36 Furthermore the 

number of MOs created is always equal to the number of AOs that combine.36 An 

example is shown in Figure 2.18, where two equal atoms (A and B) e.g. hydrogen atoms 

combine and two new orbitals here depicted as energy levels are formed. They are 

called bonding and antibonding orbitals (energy levels).  

 

Figure 2.18: Energy level splitting when two identical atoms A and B get close together and form a 

bond. � is the bonding and �* the antibonding molecular orbital.36 

In the bonding orbital of a hydrogen molecule, the wavefunctions � of the electrons are 

of the same sign and overlap constructively in the region between the two nuclei so that 

the possibility of finding an electron in that area is therefore very high, see left part of 

Figure 2.19. The presence of the electrons between the nuclei reduces the repulsion of 

the latter and the total energy decreases. 

    

Figure 2.19: Pictorial representation of the formation of orbitals, bonding (left) and antibonding 

(right).  

In the antibonding case the signs of the two wavefunctions are opposite and they add up 

destructively. Therefore the possibility of finding an electron between the two nuclei is 
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very low and their repulsion is high. This bond is very unstable giving the term 

antibonding orbital. Also the total energy is much higher due to the coulombic repulsion, 

as indicated in the energy level diagram above. The molecule is in its ground state with 

the two electrons in the bonding orbital. An electron can be transferred to the 

antibonding orbital, e.g. by the absorption of a photon and then the molecule would be 

in an excited state. This state is shortlived (�s to ns) and the electron quickly returns to 

the bonding energy level. In the case of two helium atoms both orbitals are fully 

occupied, but as the antibonding energy 2E∆ , see Figure 2.18, is always greater than 

the bonding energy 1E∆  the bond is not permanent. Therefore helium molecules are 

called metastable and cannot exist for a long time.34  

2.4.3 Simplifications in Molecular Models 

It is not trivial to determine the MOs mathematically. As in the case of many electron 

atoms an assumption has to be made to get an approximate solution for the MOs. One 

assumes that each electron gets assigned its own wavefunction. In a hydrogen molecule 

for example this would be a 1s orbital. Now the electron can be found either in the 

orbital associated with the first H-atom �1 or in the orbital of the second atom �2. Its 

overall wavefunction 
 is then a superposition of both atomic orbitals 

2211 �c�c
 +=  

Equation 2.9 

where c1 and c2 are coefficients, which are adjusted until the total energy is minimised.32 

In general one can write for a molecule with i atoms 

�=+⋅⋅⋅+++=
i

iinn332211 �c�c�c�c�c
  

Equation 2.10 

where � is the wavefunction of a single atom and 
 the trial wavefunction for one 

electron on the molecular orbital. This method is called the linear combination of 

atomic orbitals (LCAO). This method deals with wavefunctions on molecules made 

from single electron atoms 

Further assumptions have to be made to determine the wavefunctions from many-

electron atoms. One of the most important ones is the Born-Oppenheimer 

approximation, which supposes that the nucleus of an atom is stationary and its 

associated electrons are moving relatively to it. This assumption can be made as a 
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nucleus is much heavier than an electron and hence much slower than the latter. This 

aids solving Schrödinger equations for atoms and molecules as only the wavefunctions 

for the electrons need to be determined.34 For one-electron atoms the Schrödinger 

equation can be solved completely. In the case of many-electron atoms however this is 

not possible as the electrons interact with each other, which renders a complete 

mathematical expression impossible. It is therefore necessary to make an approximation, 

the so called “orbital approximation” or one-electron approximation.33 Here the 

electron-electron interaction is neglected and each electron is described by its own 

wavefunction. For a helium atom with its two electrons one would assign each electron 

its own wavefunction in the form of a hydrogenic 1s orbital. The overall wavefuntion 
 

for electrons 1 and 2 then would be written as:33 

( ) ( ) ( )2�1�1,2
 1s1s=  

Equation 2.11 

Although it is only an approximation, this model proved to be very useful and is the 

starting point for the description of the more complicated many-electron atoms. 

Nevertheless electrons repell each other and this fact needs to be considered. The 

problem is that a wavefunction of an electron can only be determined when the 

wavefunctions of the other electrons being present are known. As they all depend on 

each other a solution is impossible. In 1927 D. R. Hartree introduced a technique which 

later was modified by V. Fock to acquire numerical solutions for many-electron atoms. 

As a starting point the wavefunctions for all electrons belonging to a molecule are 

assumed independently from each other and then the total energy is determined. On the 

basis of these results a new set of wavefunctions, again for each electron separately, is 

determined as well the corresponding total energy. This process is repeated so long until 

the solutions for orbitals and energies differ only slightly from each other and a 

minimum total energy is reached. The solutions are then self-consistent, that is why this 

method is also called the Hartree-Fock self-consistent field (SCF) procedure.34,33 For  

closed shell systems this procedure is also called the restricted Hartree-Fock (RHF) 

method. In general this type of mathematical approximation is called the variation 

principle. Here the most important condition is, that the calculated energy is always 

equal or higher than the ground state energy, but never lower. With the use of further 

approximations and semi-empirical methods, which employ also experimental results, 

very good numerical solutions for all atoms were obtained. For molecules even further 
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simplifications are necessary to get approximate solutions for the MOs. One approach 

was introduced by Erich Hückel in 1930.37, 38 

The energy for the trial wavefunction can be determined by a combination of integrals, 

which are grouped together in a matrix. These integrals are called the Coulombic, 

resonance and overlap integrals. Imagine a hydrogen molecule consisting of atoms A 

and B with two electrons (1 and 2) being present. If the two nuclei are sufficient far 

apart from each other the two atoms are treated as two independent atoms, though still 

being a molecule. The energy of electron 1 is then mainly described by the Coulomb 

integral, which considers only one wavefunction. Electron 1 is described by �A and 

electron 2 by �B.32,33 If the two nuclei are closer together the electrons are also 

described by the resonance integral, which describes an electron’s movement under the 

influence of both nuclei. If the two wavefunctions of atom A and B overlap to a great 

extent see Figure 2.20, the overlap integral has to be taken into account.  

 

Figure 2.20: The overlap of two 1s atomic orbitals. The shaded area indicates the part that 

contributes to the overlap integral.33 

The LCAO method does not suffice to describe larger molecules, as the integrals would 

be too complicated to solve. That is why further approximations were introduced by 

Erich Hückel. In the so called Hückel approximation all overlap integrals atoms are 

set to zero. Hence the energies �E1 and �E2 in Figure 2.18 become equal.33 Furthermore 

all Coulomb integrals are given the same value. Lastly resonance integrals between non 

neighbouring carbon atoms are either set to the same value or to zero as well.33 These 

restrictions were very severe but they delivered very interesting results at that time.32 

They are also still a good example for the assumption and simplifications that are 

required if molecules are modelled. 

2.4.4 Modelling of Conjugated Systems  

Hückel’s method applies to planar conjugated systems as for example conjugated 

hydrocarbon chains. It assumes that electrons in �- and 
- bonds act independently from 
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each other.32 A typical example for these two types of bonds is shown in Figure 2.21 

and Figure 2.22. 

 

Figure 2.21: Top: Two collinear p orbitals are shown. Below: Their overlap forms a σσσσ-bond. If 

viewed along the axis from the side the bond looks like a s orbital, hence the name σσσσ-bond.34 

In general all single bonds are sigma bonds.36 

 

Figure 2.22: On the left are two separate p orbitals  that form a ππππ-bond (right). If viewed along the 

axis from the side the bond looks like a p orbital, hence the name ππππ-bond.34 

In a conjugated hydrocarbon chain single and double bonds alternate, giving the 

arrangement presented in Figure 2.23. The 
-bonds are delocalised so that the two 

structures are resonant. 

 

Figure 2.23: Conjugated hydrocarbon chain. 

The backbone of the chain is built out of �-bonds. The electrons contributing to these 

bonds are very confined in their movement as they are closely bound between two 

carbon atoms. Therefore Hückel was able to make the assumption to neglect σ- and 
-

bond electrons interacting with each other. In cases like the conjugated carbon chain or 

an aromatic ring one can go a step further and assume that the electrons from σ-bonds 

do not contribute to the MOs due to their confinement and they can therefore be 

neglected in the MO calculation. Hückel’s method was developed before computers 
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were invented and there are more advanced techniques available nowadays, but in many 

cases this approach is still applicable. 

2.4.5 Energy Level Splitting 

The bandwidth or splitting of the highest occupied molecular orbital (HOMO) or lowest 

unoccupied molecular orbital (LUMO) level is an indication of the conducting ability of 

these levels. In Figure 2.24 bonding and antibonding interactions of the π orbitals in 

ethylene (C2H4) are shown when going from a single isolated molecule to a dimer and 

then to a stack of a large number of molecules, which results in the formation of bands. 

 

Figure 2.24: Bonding and antibonding � orbitals in HOMO and LUMO levels when going from a 

ethylene molecule (left) to a cofacial dimer and then to a large number of stacked molecules (right), 

which leads to conduction and valence band formation.39 The white and dark lobes indicate 

wavefunctions of opposite sign. 

The HOMO level in the single molecule displays a bonding situation as the 

wavefunctions of the adjacent orbitals are of the same sign. In the LUMO level the 

signs are opposite to each other and the total energy is much higher. In the dimer the 

two interacting HOMO levels of the two single molecules form two new HOMO levels 

H and H-1, the same happens in the LUMO level, where L and L+1 are formed. The 

separation of HOMO (H) and HOMO-1 (H-1) is much larger as between LUMO (L) 

and LUMO+1 (L+1). This can be explained by a closer look at the sign (indicated by 

the same shading) of the orbitals interacting with each other. In the H-1 case only 
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orbitals of the same sign are interacting, so the state is fully bonding and lies even lower 

in energy than the HOMO level of the monomer. In the H level these interacting orbitals 

are of opposite sign, hence are antibonding and of much higher energy because of the 

strong repulsion. In the L level the lobes next to each other are antibonding but the 

repulsion is somewhat compensated as the lobes from dimer neighbours are bonding. In 

the L+1 level the lobes next to each other are also of different sign as well as the lobes 

opposite to each other. However the lobes diagonal to each other are of the same sign so 

that a weak bonding interaction is ensured between neighbours. This difference in the 

level splitting is being considered as the main reason why holes are sometimes faster 

than electrons in organic crystalline structures as, in general, one can say that the larger 

the bandwidth the higher the mobility.39 However the model in Figure 2.24 is a perfect 

cofacial arrangement, which is not the usual molecular alignment. Simulations of the 

HOMO and LUMO splitting due to molecule displacement along the long axis shows 

that the splitting can vary strongly when a dimer is not in a perfect cofacial arrangement. 

Cases where the LUMO splitting is two times larger than the HOMO splitting are found; 

then the electrons are faster than holes.39 

2.4.6 Electronic Coupling in Dimers 

For efficient energy or charge transfer between two molecules a strong interaction 

(coupling) between these two is required. The transfer rate of an exciton between two 

adjacent molecules A and D depends on the electronic coupling VDA between A and 

D.40 In the Förster theory VDA is usually calculated on the basis of point dipole models. 

This means that the coupling is determined by the interaction between dipole moments 

on A (�A) and dipole moments on D (�D). If �A and �D are of opposite sign both 

compensate each other and the coupling is low. Strong coupling takes place for dipole 

moments of the same sign. This approach is applicable for small molecules but not for 

larger conjugated molecules, where long range interactions need to be considered. To 

overcome this problem transition dipole densities instead of point dipole moments are 

employed to determine the excitonic coupling, which then can be written as follows 40 

��
πε

=
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1

V  

Equation 2.12 
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with �0 being the permittivity of vacuum. Here qD(m) is the transition density on site m 

calculated for the lowest optical transition from ground to the lowest excited state on D. 

The equivalent for molecule A is the transition density qA on site n and rmn is the 

distance between sites m and n.41 This shows that the larger the distance the lower the 

coupling between A and D. The interaction is dipole-dipole, hence the term through 

space is often used.42 The excitonic coupling model considers only transitions on one 

molecule and dipole interaction between D and A, but in reality there are also 

transitions between different molecules. To account for this additional charge transfer 

the supermolecular coupling model can be used. It adds to the excitonic coupling a) 

and b) the possible transfer from one molecule to another, cases c) and d) in Figure 2.25.  

 

Figure 2.25: Excited state configurations for a dimer made out of the molecules A and B. a) exciton 

formed in molecule A, b) exciton formed in molecule B, c) electron transfer from the HOMO level 

of molecule A to the LUMO of molecule B, d) electron transfer from the HOMO of molecule B to 

the LUMO of molecule A.43  

For the latter approach the term “through bond” is often used, which indicates that the 

transfer from one orbital to another, which is further away, takes place over other (bond) 

orbitals.42 Hence the supermolecular coupling takes both through bond and through 

space contributions into account. The coupling values in a dimer are determined by half 

the splitting of the two lowest optically allowed excited states.43  

After excitation holes can transfer between the HOMO levels or electrons can transfer 

between the LUMO levels, see Figure 2.26. This can be considered with a charge 

transfer integral, which represents the coupling between the two states involved.44 

Note that the terms for the different coupling mechanisms are not standardised and vary 

from publication to publication considering the states involved during transfer and 

algorithms used. In this work we will use the three expressions; excitonic coupling, 

supermolecular coupling and charge transfer integral. 
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Figure 2.26: Diagram of the HOMO (H) and LUMO (L) levels of a host-guest dimer and a 

representation of charge transfer after the excitation of either the host followed by electron transfer 

(a) or guest followed by hole transfer (b). 44  

When considering transfer mechanisms between states one often talks about the 

coupling between these two states. The transition is allowed and likely to take place if 

their coupling is strong. Going from a monomer to a dimer can influence the 

arrangement of the energy levels (orbitals) see section 2.4.5. In Figure 2.24 the case of a 

perfect cofacial dimer is shown. This is not the most common configuration. A slight 

displacement along the long axis is not unusual like for the nematic liquid crystals 

investigated in this work. These shifts and a varying distance between the molecules can 

also influence on the energetic configuration and hence the coupling. 

2.4.7 Molecular Modelling Packages 

In Chapter 2.4.2 an introduction into MO theory was given to introduce the kind of 

assumptions and approximations, which can be made to obtain result for molecular 

orbitals. With the help of computers it is now possible to get more and more accurate 

solutions and different approaches are possible. The so called ab initio method, which 

only employs theoretical means, delivers very accurate results but is also very time 

consuming. Computation times of several months are not unusual. Faster results can be 

produced with semi-empirical methods. They employ experimentally obtained 

parameters in their calculations. The results are less accurate than those obtained with 

the ab initio method but are usually close enough to be useful. In this work only semi 

empirical methods are used. 

There are many computer programs available, which consist of different calculation 

packages. These “packages” contain algorithms based on the different possible 

approaches to determine the orbitals. Also different accuracies can be chosen, e.g. the 

number of orbitals or energetic states to be considered. These factors as well as the 
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speed of the computer processor strongly influence the computational time. Here a brief 

introduction to the most important packages used is given. 

Two very popular simulation software programs are AMPAC (Atomic Orbital 

PACkage) and MOPAC (Molecular Orbital PACkage). Both contain different 

Hamiltonians (algorithms) from which the user can choose.32 Hamiltonians are for 

example AM1 (Austen Model 1)45 and PM3 (Parametric Method 3)46, 47. 

Parameterisation means that parameters, which were obtained experimentally, were 

incorporated into the algorithm. Hamiltonians are not parameterised for all elements. 

One has to check if the chosen Hamiltonian covers all the elements in the molecule to 

be calculated. The AM1 is very good when it comes to calculations of hydrogen 

bonds.32 An algorithm developed by Zerner is called ZINDO (Zerner’s Intermediate 

Neglect of Differential Overlap).48 It is based on the approximation that certain overlap 

integrals between electrons are neglected, see Chapter 2.4.3. Different versions of 

ZINDO, where the parameterisation is specialised e.g. for the calculation of excited 

states have been developed.  

As discussed before the energy of a molecule determined via the Hartree-Fock method 

is always higher or equal to the real energy value. This is because the electron-electron 

interaction (e.g. Coulombic repulsion) is not included and the electron is assumed to 

experience an average electric field. In the configuration interaction (C.I.) method the 

electron correlation is included. So a wavefunction of an electron also depends on the 

wavefuntion of another electron. The C.I. method is important for excited states 

simulations. The term single C.I. (S.C.I.) states that only singly excited states are 

considered during the calculations. For dimer configurations one usually uses optimised 

monomer configurations to build a dimer. Koopmanns’ approximation can be employed, 

which assumes that the orbital energies of both molecules are the same, which is not 

always the case, the energy levels might have an offset due to their interaction.5 

2.5 Absorption and Emission 

For optical devices like light emitting diodes or solar cells it is essential to know the 

absorption and emission spectra of the semiconductor from which the device is made. 

For solar cells a broad absorption spectrum between 300 - 1000 nm with a peak around 

555 nm, as this is the sun’s emission maximum, is desirable. For emitters the required 

spectral width and location of the maximum depends on the application. For displays 
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the three colours red, green and blue defined according to television standards are 

required. Therefore a specific emission maximum with a small peak width is necessary. 

For interior lighting or background light sources in flat panel displays a broad emissive 

spectrum is needed over almost the entire visible spectrum. These are just a few 

examples but it shows that spectra are very important when it comes to the 

characterisation of materials employed in optical devices. Apart from the emissive 

colour the emission spectra can give information about the structural arrangement of the 

molecule, its energy levels and transitions between them. In the following paragraph an 

introduction to absorption and emission spectra and the transitions involved is given. 

Absorption and emission spectra are generated via the absorption or emission of 

electromagnetic radiation. These spectra are specific to every molecule. When a 

molecule absorbs a photon an electron is promoted from the ground state (GS) to the 

excited state (ES), which is higher in energy. The missing electron creates a hole in the 

GS, see Figure 2.27. The minimum photon energy h�min, where h is Planck’s constant (h 

= 6.62608 x 10-34 Js) and � the photon frequency for absorption is less than the energy 

difference between the excited and the ground state (= EES – EGS). This is because the 

electron and the hole are correlated by a Coulombic interaction. An exciton, a bound 

electron-hole pair is formed.49 The minimum photon energy is equal to the exciton 

energy EEX with h�min = EEX = (EES – EGS) – EBE, where EBE is the binding energy of the 

exciton. In organic materials the binding energy is large because the electron-hole 

separation is small. Wannier excitons, excitons with a larger separation and thus a large 

EBE, are found in inorganic semiconductors.50 The exciton recombines after a 

characteristic time with the emission of a photon.  

 

Figure 2.27: Schematic of the absorption and emission of a photon. Through absorption of a photon 

an electron is promoted from the ground state (GS) to an excited state (ES). Its return to the GS 

can result in the emission of a photon of the energy Ephoton.  

The transition however can also be radiationless. The schematic in Figure 2.27 shows 

the minimum absorbed and maximum emitted photon, which are of the same energy. In 

practice the emitted photon is of lower energy (lower frequency, longer wavelength). 
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This can be explained by the Franck-Condon principle, which not only considers the 

electronic states but also their associated vibrational states. Vibrational transitions, 

which are involved with electronic transitions are called vibronic transitions.51 

2.5.1 Transition Intensities and Overlap Integrals 

Since an electron moves much faster than a nucleus it is assumed that the nuclei 

geometry of a molecule does not change during the absorption of an electron.52 Hence 

only vertical transitions between a GS and an ES are considered, which is stated in the 

Franck-Condon Principle.34 In Figure 2.28 the potential energy surfaces for the energies 

EGS and EES of a diatomic molecule are shown, where V is the potential energy and r the 

internuclear distance. The promotion of an electron from the GS to the ES leads to a 

change in the electronic distribution around the nuclei. Hence the equilibrium separation 

re is different in excited, re’ and ground state, re’’. The movement of the electron also 

causes a change in the surrounding electric field and the molecule starts to vibrate. This 

gives rise to vibrational states, which are called �’’ and �’ for GS and ES respectively. 
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Figure 2.28: Franck-Condon principle for a diatomic molecule. The potential energy surfaces of the 

ground (EGS) and excited (EES) state are plotted, where V is the potential energy and r the 

internuclear distance. Here re’>re’’, with re being the equilibrium internuclear distance at the 

potential minimum. The wavefunctions for the vibrational states � are also plotted. The most likely 

transition is from �’’ = 0 to �’ = 3, as both wavefunctions have a maximum at the same re. The 

dashed lines indicate the region in which transitions might occur, but with a lower possibility. 51 

The absorption occurs from the lowest vibrational state �’’ = 0 in the GS to the 

vibrational states �’ in the ES. The vertical transition is strongest where the overlap of 

the wavefunctions is largest, in this case the 0-3 transition as indicated by the green 

arrow. In Figure 2.29 the intensities of absorption transitions for two different nuclear 

configurations re’ > re’’ and re’ = re’’ are shown, where ν~  is the wavenumber, which is 

the reciprocal of the wavelength �.  
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Figure 2.29: Intensity distribution for absorption transitions from �’’ = 0 to various �’ states.. Left: 

Absorption intensities according to the example from Figure 2.28, where the 0 – 3 transition is the 

strongest. Right: Absorption intensities for a molecule where the equilibrium distance is the same 

in ES and GS. Here the 0 – 0 transition is the strongest.51 

The picture on the left corresponds to the case in Figure 2.28. In the rarer case where the 

nuclear conformation does not change on excitation the 0-0 transition is the strongest as 

both wavefunctions are of the same shape and their overlap is therefore very large. Thus 

the other transitions are very weak. In practical conditions, due to additional influences 

like solvent polarity, the rotational movements of molecules the spectra do not show 

single lines but are much broader and often cannot be singly resolved as they are 

merged together. 

 

Figure 2.30: Transition steps involved in the absorption and emission process.34 
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The absorption process transfers electrons mostly to higher vibrational levels of ES, the 

electron is transferred to �’ = 0 via fast radiationless decay. The emission transition, 

shown in Figure 2.30 is therefore most likely to take place from �’ = 0. From there the 

electron makes a vertical transition to the GS. Since the equilibrium nuclear 

configurations from ES and GS are different it is much more likely that the electron is 

transferred to a vibrational state higher than �’’ = 0. From there it returns to the lowest 

level via fast radiationless decay. The two bold arrows indicating the strongest 

absorption and emission transitions show that during the absorption process a much 

larger energy difference is overcome compared with the emission. Remembering the 

relationship E = h�, this means that the frequency of the absorbed photon is higher than 

the energy of the emitted. This explains the often observed shift between emission and 

absorption spectra shown in Figure 2.31.  

 

Figure 2.31: Absorption (�’’ = 0 to �’) and emission (�’ = 0 to �’’) spectrum with the strongest 

transition at 0-2 for both cases. The absorption spectrum shows the vibrational structure 

characteristic of the ES and the emission spectrum the characteristic of the GS. The emission 

spectrum is also displaced to lower frequencies, but the 0-0 transitions are coincident.34  

In the case above the maxima lie at the 0-2 transitions for both emission and absorption. 

A clear separation is visible, only the 0-0 transition coincides. Sometimes the 0-0 

transitions do not coincide, since the energy of the ES can change on occupation. 

The so called Stokes shift is a measure for the difference in energy (frequency, 

wavelength) between absorption and emission. The larger the Stokes shift, the greater 

the difference in internuclear distance (nuclear conformation) for GS and ES and the 

larger the loss of energy to radiationless transitions.  

In the literature one can find several definitions how the shift can be determined. The 

general definition for the Stokes shift is the difference in energy between the 0-0 peaks 

of absorption and emission, but especially in absorption these peaks are often not 

clearly detectable.53 Often therefore the difference between the absorption and emission 

maximum is taken. This however is only valid if the peaks correspond to the same 
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transition e.g. 0-1 for absorption and emission.54 In Figure 2.32 a typical example for an 

absorption and emission spectrum from one of our materials is shown.  

300 350 400 450 500 550 600
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0-2

0-2

0-1

0-1 0-0

 N
o

rm
a

lis
e

d
 P

L
  (a

.u
.)

N
o
rm

a
lis

e
d

 A
b

s
o

rp
ti
o

n
 (

a
.u

.)

Wavelength (nm)

0-0

 

Figure 2.32: Typical example of an absorption and emission spectrum from a light emitting LC in 

toluene solution. 

The 0-0 peak in absorption is hardly distinguishable and we therefore take the 0-1 peak 

to determine the Stokes shift in this work. It is noted that the corresponding 0-1 peak in 

emission is not the emission maximum, which was found for most of our materials.  

2.5.2 Absorption and Emission in Simulations 

In this work absorption and emission spectra will be simulated with semi-empirical 

methods. In that case the vibrations of a molecule are not taken into account; hence no 

transitions from vibrational states are calculated. It is however still possible to compare 

experimental with simulated Stokes shifts since the simulation takes the energy, which 

is necessary to reorganise the molecule after a transition, into account. In Figure 2.33 a 

representative sketch of potential energy surfaces of ground state (GS) and excited state 

(ES) obtainable with semi-empirical methods is shown.  
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Figure 2.33: Representative sketch of simulated potential energy surfaces in GS and ES and the 

absorption (green) and emission (red) transitions. The energy lost due to radiationless decay is here 

indicated by the relaxation (reorganisation) energy �rel. 
40 

The green arrow indicates the absorption and the red arrow the emission transition. 

Position and size of the arrows are similar to the transitions depicted in Figure 2.30. 

This is because the simulation does take the relaxation or reorganisation energy into 

account. The relaxation energies for GS and ES are often the same but in general one 

can say that the Stokes shift corresponds closely to twice the relaxation energy of the 

excited state. 

Beside the vibrations of a molecule the spin properties of electrons influence the shape 

of a spectrum, as discussed in the following section. 

2.5.3 Singlet and Triplet States 

The spin characteristic of an electron has already been introduced in section 2.4.1. If an 

organic molecule absorbs a photon an electron is promoted from a lower energy level 

(orbital) to a higher lying level. The transition is spin-allowed if there is no spin 

inversion as shown in the upper part of Figure 2.34.52 In this case the net spin angular 

moment is zero as the moments of the paired spins cancel each other out. 
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Figure 2.34: The orbital energy level description of absorption. The arrows intersected by the levels 

represent the electrons and their direction the spin orientation of the electrons.52  

The lower part shows a spin forbidden transition, where a spin flip takes place. In the 

excited configuration the spins are then parallel. The net spin angular moment is larger 

than zero. There are three possible spin configurations (see Figure 2.35) for the parallel 

case therefore the name “triplet state”, which is denoted with “T”. In the paired case 

there is only one configuration possible hence the expression “singlet state” denoted as 

“S”. 

 

Figure 2.35: Vectorised spin configurations for two electrons with paired spins (singlet) and parallel 

spins (triplet). For the singlet case only one arrangement is possible and the spins cancel each other 

out so that there is zero total spin angular momentum. For the triplet case the net spin is nonzero, 

which can be achieved with three different configurations a), b) and c).34 

The GS is a singlet state and is therefore called S0. The lowest excited singlet state is 

denoted as S1. The triplet states lie lower in energy than S1. To depict transfer between 

S and T states the lowest triplet state T1 is commonly used to represent the triplets. As 

in the case of absorption from S0 to T1 the emissive transition from T1 to S0 is also 

forbidden due to the required spin flip. Spin flip can occur due the interaction of the 
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electrons magnetic moment created by its spin and the magnetic moment created by its 

movement on an orbital, see Figure 2.36. 

 

Figure 2.36: The magnetic moments (�) associated with the orbital and spin angular moments. Left: 

Motions are in the same direction. Right: Motions are in opposite directions.51 

The movement of the electron on the orbital creates a magnetic field which for example 

can cause the lower spin vector in the singlet case in Figure 2.35 to flip to the other side 

to create the triplet c) configuration. This interaction is called spin-orbit coupling. Its 

strength determines the intersystem crossing between singlet and triplet states. For 

heavier atoms like sulphur spin-orbit coupling is large and intersystem crossing can be 

expected.34  

So far only the excitation via a photon, where S0 – S1 and S1 – S0 transitions are the 

main processes (which is why photoluminescence mainly gives information about the 

singlet states) has been considered. Upon electrical excitation the triplet states also 

become occupied. This has the consequence that e.g. in organic LEDs only 25 % of the 

generated charges are in the singlet and 75 % in the triplet state although there are 

reports that a higher singlet generation rate is found in polymers.55, 56 This is a great loss 

as emissive transfer from T1 to S0 is forbidden. To overcome this problem host materials 

e.g. polymers are doped with guest materials containing heavy atoms, which support 

spin flips due to strong spin-orbit coupling. In Figure 2.37 the involved transfer 

processes between host and guest are depicted. Light emission arising from a transition 

from T1 to S0 is called phosphorescence and is much slower (10-6 – 10 s) than 

fluorescence (10 -12 – 10-6 s) due to the required intersystem crossing.52  
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Figure 2.37: Schematic diagram of the transfer processes between singlet and triplet states of host 

and guest.56 

For a guest host system the desired emission is the phosphorescence from the guest. To 

avoid fluorescence it is essential that most of the charges and excitons are transferred 

from host to guest. The transfer of an exciton from S1 of the host to S1 of the guest 

happens via Förster energy transfer (FET) named after Theodor Förster.57 He considered 

a configuration where the energy difference from the fluorescent transitions in the host 

matches the energy difference of an absorption transition in the guest. This transfer of 

energy is nonradiative since the dipole-dipole coupling of the transition dipoles on the 

two molecules results in the simultaneous de-excitation of host and excitation of the 

guest.57, 58 To avoid back-transfer, S1 of the host has to be energetically higher than S1 

of the guest. A good indication for efficient transfer is the overlap of the host’s emission 

and the guest’s absorption spectrum when designing a guest-host system.55  

The FET only occurs between singlet states (allowed transitions) and can take place on 

a relatively long range. The FET theory was extended by Dexter to include also energy 

transfer to and from forbidden transitions (triplets). The so called Dexter transfer 

involves an overlap of the triplet wavefunctions and is therefore confined to very short 

distances.59 

2.5.4 General Solvent Effects 

The dielectric constant �r of the solvent used for the solution can influence the measured 

spectrum of fluorescent materials. The potential energy V of a system consisting of two 

charges q1 and q2 separated by a distance r is described by 

r4

qq
V

0r

21

επε
=  

Equation 2.13 
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where �0 is the permittivity of vacuum.34 A large �r (also called the relative permittivity) 

corresponds to a high polarity or high polarisability of a medium. Thus the energy of a 

state decreases with increasing solvent polarity.60 This means that the higher the polarity 

of the solvent the larger the bathochromic shift (shift to longer wavelengths). In general 

only molecules, which are polar themselves, show a large sensitivity to solvent polarity. 

Nonpolar molecules, like unsubstituted aromatic hydrocarbons, are much less sensitive 

to solvent polarity”.60 Therefore no general assumption on the ability of a solvent to 

shift a spectrum can be made on the basis only because of its polarity.60 The absorption 

of light occurs within 10 fs and fluorescence needs about 1-10 ns to take place. Solvent 

effects take about 10-100 ps. The absorption transition is much faster than the solvent 

effect so that the solvent does not affect the absorption spectrum greatly. Solvent effects 

however are much faster than the fluorescent transition so that the emission spectrum 

can be greatly influenced by the solvent. The sample temperature can influence the 

spectra as well. At lower temperatures solvents become more viscous and solvent 

effects are therefore much slower. In general one can say that the higher the temperature 

the larger the shift.60 

2.5.5 Transition Dipole Moment 

The transition dipole moment is a measure of the strength of a transition involving the 

absorption or emission of a photon. A molecule can only absorb or emit a photon if it at 

least temporarily possesses a dipole oscillating at the photon frequency. The transition 

dipole moment, �if between the initial state i  and the final state f , where � is the 

wavefunction for the corresponding state, is defined as:34 

	== d����i�f� i
*
ffi  

Equation 2.14 

Here � is the electric dipole operator, with � = � qi x ri and qi being the charge and ri the 

position vector.34, 51 So a particular transition can only contribute to the spectrum if the 

corresponding transition dipole moment is non zero. The transition is forbidden when 

the integral is equal to zero. The transition dipole moment is also directly related to the 

Einstein coefficient of absorption B, which is a measure of the probability of absorption. 
34, 61  
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Equation 2.15 

The parameter �0 is the permittivity in vacuum (�0 = 8.85419 x 10-12 C2/J m) and � = 

h/2
 with h being Planck’s constant.34 The oscillator strength f is often used to quantify 

the intensity of an electronic transition at a certain frequency �.34 

2

2
fie

2

eh3

m8 µνπ
=f  

Equation 2.16 

Here me is the mass of an electron (me = 9.10930 x 10-31 kg). A large oscillator strength 

means that the probability for that transition is high.  

2.6 Surface Relief Gratings 

Gratings with very small periods of about few hundred nanometers are used in many 

different applications, but especially in small integrated optical devices. They can be 

incorporated in light emitting diodes (LEDs) or laser diodes (LDs). There a grating can 

be used to provide a feedback structure, to control the polarisation and the emission 

spectrum and to enhance the outcoupling of the emission. This work will concentrate on 

surface relief gratings (SRGs) and their applications in organic emissive devices. In this 

section a theoretical introduction into grating periods, waveguiding in thin films, phase 

masks and interference setups is given. 

2.6.1 Light Diffraction on a Transmission Grating 

Gratings are used in optics to change the directions of electromagnetic waves. Here the 

waves are not reflected but diffracted. In Figure 2.38 a sketch shows the diffraction of 

light beam by a transmission a grating.  
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Figure 2.38: Diffraction of light on a transmission grating with the grating period a.62 

If the grating period “a” is of similar size to the wavelength of the light the rules of ray 

optics are not valid any more. The light behind the grating is diffracted at angles mψ  

obeying the following relationship 35, 63 

a
m

sin m
λ

=ψ  

Equation 2.17 

where � is the wavelength in the medium on the right of the grating and m is the 

diffraction order. The latter can take values of 0, ± 1, ± 2 and so on. For a fixed period 

and order one can see that the diffraction angle is wavelength dependent. That is why 

gratings can be used to select single wavelengths from a broader spectrum.  

2.6.2 Waveguiding in Thin Films 

One of the main limitations of the external efficiency of organic light emitting diodes is 

that modes are waveguided in the organic film due to its high refractive index n. Figure 

2.39 shows some of the possible propagation modes of light generated in an organic 

layer.56 Most of the light is reflected at the layer boundaries and is lost by edge emission 

or by absorption.  
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Figure 2.39: Waveguiding in a typical organic light emitting diode.56 

With Snell’s law (Equation 2.18) one can calculate the critical angle Θc for total 

reflection at two layers with two different refractive indexes n1 and n2. 

2

1
C n

n
sin =Θ  

Equation 2.18 

Total reflection occurs only if light is transmitted from an optically more dense to a less 

dense medium, see Figure 2.40.56 For the passage from the organic layer with a 

refractive index n of about 2 to air (n = 1) the critical angle would be 30 º. That means 

only beams with an angle smaller than 30 º with respect to the normal would leave the 

device. 

 

Figure 2.40: Transmittance of a beam from a dense to a less dense medium, n1 < n2. 

The out-coupling efficiency for an isotropic emitting layer, e.g. for small molecules, is 

given as 56 

2goutcouplin n

75.0
~η  

Equation 2.19 

For an emitting dipole like a LC film, where the molecules tend to lie in the plane of the 

substrate the efficiency increases to 56 
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2goutcouplin n

2.1
~η  

Equation 2.20 

This however is still not very satisfying. For an organic dipole layer with a refractive 

index of 2 only 30 % of the light generated would be coupled out. There have been 

demonstrations that this is just a rough approximation and that a higher percentage can 

be extracted, it is still a good indication of how much emission is lost due to 

waveguiding.56 There have been several approaches to overcome this problem, e.g. the 

roughening of the glass substrate surface or attachment of lenses to the substrate.56 

Another method is the use of grating structures in the devices to enhance out-coupling 

by Bragg reflection.4, 64 Often a corrugated layer underneath the emitting film is used to 

vary its film thickness and thus its refractive index to create a grating structure.4, 64  

Our intention is to induce a surface relief grating through photopatterning of an organic 

light emitting liquid crystal film. Our LCs have crosslinkable end groups, which 

combine permanently if they are irradiated by UV light, see section 2.2.6. The technique 

to photopattern the film involves the use of a phase mask. For organic LC films periods 

in the region of 200 - 300 nm are needed since the refractive index is very high. For 

example the refractive indices (n) at a wavelength of 633 nm for the commercial 

materials PPV and MEH-PPV are 2.19 ± 0.02 and 1.7639 ± 0.002 respectively.65 For 

two of our LCs refractive indices of 2 and 2.2 with a n∆  of 0.5 and 0.7 due to their 

anisotropic properties were measured for the same wavelength.6 In the following section 

the calculation of the required grating periods will be addressed. 

2.6.3 Calculation of Grating Periods 

The angle � of the outcoupled emission with respect to the normal on a film with a 

surface relief grating is given by the Bragg equation 66 

�
�

�
�
�

�

Λ

π
±β=Θ

m2
sink 0  

Equation 2.21 

where k0 is the free-space vector of the scattered light, � the in-plane propagation vector, 

� the grating period and m the scattering order. The effective index of the waveguide 

can be written as 
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=  

Equation 2.22 

with 

λ

π
=

2
k 0  

Equation 2.23 

So for first-order out-coupled modes in normal direction (m = 1, � = 0º) the equation 

becomes 

��
�

�
��
�

�

Λ

π
±=

0
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2
n0  

Equation 2.24 

Solving for the grating period one gets 

effn
λ

=Λ  

Equation 2.25 

With an effective index of 2 grating periods of 200 - 400 nm are required for a 

wavelength region of 400 - 800 nm. For a laser feedback structure, with light 

propagating within the film as used in distributed feedback (DFB) lasers the required 

period �DFB is determined as follows: 67  

eff
DFB n2

λ
=Λ  

Equation 2.26 

This would require even smaller periods between 100 - 200 nm. In practice neff can be 

significantly less than the thin film refractive index, so the required periods may not be 

so small. After the necessary grating period is determined a method is needed to 

produce a light pattern of that periodicity. Two possible methods are introduced in the 

following chapters. 
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2.6.4 Introduction to Phase Masks 

Phase masks (PMs) use the diffraction of light to get destructive and constructive 

interference to create a sinusoidal irradiance pattern. A sketch of a PM with the 

diffraction orders m = 0, ± 1 is shown in Figure 2.41. 

 

Figure 2.41: Diffraction of a laser beam through a phase mask. ΛΛΛΛpm is the mask period, m is the 

diffraction order and ΘΘΘΘm is the diffraction angle of the corresponding diffraction order.68 

The mask looks like a comb. Depending on the wavelength � of the laser and the 

distance between the lobes, which is the PM period �pm, the light is diffracted into 

several orders. Each order is diffracted at a specific angle �m/2, which is determined by 
62 

pm

m m
2

sin
Λ

λ
=

Θ
 

Equation 2.27 

If light from a coherent light source passes through the mask, some rays travel through 

the lobes of the mask and so experience a different refractive index and are retarded 

with respect to the other rays. The rays are in phase and interfere and the length �  is 

ideally chosen so that there is complete destructive interference for the 0th order. Behind 

the mask interference occurs between the ± 1 orders giving a pattern of peaks and 

troughs. Since �  determines the phase shift, a mask only can be optimized for one 

irradiation wavelength. Good phase masks have a zero order suppression of 97 %. The 

second orders should also be suppressed but since their power is a lot weaker than of the 

first orders their influence is not strongly damaging. For the writing of the grating only 

the first orders are used. 

The period of the irradiance pattern behind the phase PM is 
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2
pm

g

Λ
=Λ  

Equation 2.28 

Since grating periods between 200 and 400 nm are needed the phase mask should have 

a period between 400 and 800 nm. The polarisation of the radiation source plays also an 

important role in a phase mask set-up. In Figure 2.42 two possible settings are shown. 

Only the electric component E  of the beam needs to be considered when setting up the 

masks. The magnetic component M , which is perpendicular to the former, can be 

neglected. 

 

Figure 2.42: Definitions of transverse electric (TE) and transverse magnetic modes (TM) with 

respect to the groves of a phase mask.  

In the transverse electric mode (TE) the electric component is parallel to the grooves of 

the grating and perpendicular to the grating vector. For the transverse magnetic mode 

(TM) it is the opposite case. In Figure 2.43 the polarisation directions of the two 

interfering beams for the two different modes are shown. 

 

Figure 2.43: Polarisation directions of two interfering beams after passing through a phase mask. 

In the TE setup the beams are still parallel polarised. In the TM setup the polarisation vectors are 

no longer parallel but an angle to each other.  

For the TE setup the polarisation vectors are still parallel after passing through the mask. 

In the TM setup however the vectors are at an angle to each other, which leads to an 

imperfect interference pattern behind the mask. For a neat interference pattern therefore 
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a laser with a high polarisation ratio is required whose polarisation is aligned 

perpendicular to the grating vector. 

Phase masks have the advantage that they don’t need a lot of adjustment and are easily 

setup. Their period and irradiation wavelength however is fixed. PMs are also expensive, 

especially when made for small periods and wavelength in the UV region. It can 

become quite costly if different periods are required. Furthermore they require the mask 

and substrate to be very close together. Holographic setups offer variable periods over a 

larger range and no risk of damaging the substrate. They are however not as easy to 

setup as the PMs and are also more sensitive to environmental influences like vibrations, 

which will be explained further in the next chapter. 

2.6.5 Introduction to Holographic Setups 

A typical holographic setup to create an interference pattern is shown in Figure 2.44. 

 

Figure 2.44: A two-beam holographic setup to create an interference pattern in or on top of a thin 

film.68 

A coherent light source, usually a laser, is divided by a beam splitter into two beams. 

An additional plate is placed into one of the beam paths to compensate for the 

retardation of the other beam, which is travelling through the beam splitter. This way 

the two beams arrive in phase at the film. Depending on the alignment of the mirrors the 

two beams hit the film at a different angle. This angle determines the period of the 

sinusoidal interference pattern that is created on the film. Here this period will be 

referred to as �h (h = holographic) and can be calculated with 69, 70  
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2
sin2 h

uv
h Θ

λ
=Λ  

Equation 2.29 

where �uv is the wavelength of the laser and �h is the angle between the two beams. For 

a laser operating at 325 nm one would need an angle of about 48 º for �h = 400 nm and 

an angle of about 24 º for �h = 800 nm. This shows that the availability of the periods 

created is also limited. For 1 and 179° one obtains the period of about 19 �m and 162.5 

nm respectively. In-between these values any desired period can be created. For very 

small and large angles however the setup might be difficult. This method is non-contact, 

which is desirable when working with organic layers for electrical devices. Also large 

scale exposures are realisable, as only a xyz-stage for the substrate would be required to 

scan it and adjust its height so that the two beams meet on the surface or in the film. 

Holographic setups are often used to expose photoresist films, to create a periodic 

pattern on them.71 After the film development, where the exposed regions are removed, 

the substrates are etched so that the areas without photoresist are removed. The layer 

below e.g. indium tin oxide or silica therefore adopts the pattern. This method is called 

holographic photolithography and periodicities down to a few hundred nanometers can 

be produced.72 These are much smaller those achievable with shadow masks. See 

section 3.2.2 for further information on photolithography. 

The SRGs created are of nanometer scale and can not be checked with common 

laboratory equipment like a microscope. In this work an atomic force microscope (AFM) 

was employed to investigate the organic film surfaces. More information on AFMs can 

be found in the following section. 

2.6.6 Atomic Force Microscopy 

Atomic force microscopes (AFMs) are used if very small surface variations in the range 

of Angstroms need to be measured. They are called AFMs because they use the change 

in force between single atoms as a reference for the change in height on a surface. A 

sketch of the working principle of an AFM is shown in Figure 2.45. 
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Figure 2.45: Sketch of the working principle of an AFM.  

A beam from a laser diode is reflected from the surface of a cantilever to a photo 

detector. A very small tip of the size of a few atoms is attached below the cantilever. 

The cantilever vibrates with a specific frequency and scans along the sample surface. If 

the tip gets close to the atoms on the substrate surface the attractive force between both 

changes as well as the resonance frequency and amplitude of the cantilever. This 

changes the position of the reflected laser on the detector. The positional change on the 

detector can then be translated into a change in substrate height. The mode described is 

called the non-contact mode. It is non-destructive, as the tip does not touch the surface. 

It has very high resolution as the weak forces between atoms are strong enough to cause 

a change in frequency.73 For soft surfaces, like liquid crystalline films, the tapping mode 

or also called magnetic AC (MAC) mode is preferable. This mode is similar to the non-

contact mode but the tip is much closer to the substrate and therefore shortly touches 

(taps) the surface with each oscillation.74 
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3 Experimental 

Procedures 

In this section detailed information of the preparation of thin films with our liquid 

crystals (LCs) is given. The methods required to characterise our materials as well as 

the techniques used to make an organic light emitting diode (OLED) based on these are 

explained. 

3.1 Compound Characterisation 

The light emissive organic materials used in this work are made at the University of 

Hull, hence their properties are unknown. It is therefore essential to characterise them in 

terms of their LC transition temperatures, nematic phases, optical quantum efficiency 

and absorption and emission spectra. In the following subchapters the necessary 

procedures for the characterisation of our materials are described. 

3.1.1 Differential Scanning Calorimetry 

Before being able to process the newly developed LCs, a differential scanning 

calorimeter (DSC) scan was carried out to determine the transition temperatures. 

Information on these temperatures is essential for thin film preparation; for this work a 

nematic arrangement of the LC, frozen in a glassy state is desired. Not all compounds 

are in their LC state at room temperature (RT) and need to be cured at higher 

temperatures to get a nematic film. For nematics the most important temperatures are 

the transition from crystalline to LC state denoted as “N” for nematic and also called 

melting point. Further the clearing point, which is the transition from LC to liquid state 

and denoted as “I” is of interest, as this sets the limit of the operating device 
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temperature, e.g. for an OLED. If the material stays in a nematic arrangement on 

cooling it possesses a glassy phase. The glass transition temperature from LC to glassy 

phase is denoted as “Tg”. A LC is described as monotropic when the nematic phase is 

only observed on decreasing temperature. Depending on the material it might 

recrystallise on cooling or another heating cycle. This is denoted as crystallisation 

temperature “Cr”. 

About 5 mg of the material to be investigated is required for a DSC scan. It is placed in 

a small aluminium container, which has a lid pressed onto it to seal the container 

permanently. This ensures that no material gets lost during the scan due to possible 

evaporation at high temperatures. The aluminium container is placed in a sealed 

chamber with a known reference sample close by. Before each scan the machine (DSC 

7) from Perkin/Elmer is calibrated against a known indium sample. Scans are usually 

carried out with a scan speed of 10°/min. Two full heating and cooling cycles are 

recorded to ensure reproducibility of the transition temperatures. One cycle e.g. starts at 

RT, goes up to 150°C, then down to -30°C and then back to RT. The machine measures 

the heat flow to and from the sample and reference and compares them with each other. 

If a material makes a transition from one phase to another it will require more or less 

thermal energy than the reference source to maintain the same temperature. This 

difference is detected by the DSC and depicted as either a peak or a valley in the 

background scan line, where the heat flow is plotted in dependence of temperature. In 

Figure 3.1 a typical temperature scan of a LC is shown.  
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Figure 3.1: Typical DSC graph with two measurement cycles (1st cycle; red, full line, 2nd cycle; blue 

dashed line). Note that the slight upwards curvature is due to the DSC machine used. 
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The first measurement cycle starts at 0°C. The Cr-N transition is indicated by the peak 

at about 60°C, the N-I by the peak at about 236°C and its reverse transition by the 

trough at 232°C. The glass transition Tg is more difficult to depict as it is indicated by a 

shallow valley, hence not much energy is required for this transition. The transitions are 

identical in the second cycle apart from the Cr-N transition, which is now much flatter. 

This is due to the fact that the material is not crystalline but a nematic glass. The 

transition to the nematic liquid crystal phase thus requires only a small change in energy. 

Measuring a blend of two different LCs requires three scans, where the first scan goes at 

least 20°C above the highest clearing point of the two. This ensures that they both mix 

homogeneously. On the first cycle one obtains transition temperatures for both 

compounds individually. On the second cycle they are both mixed and one obtains only 

one single transition points for the blend. 

3.1.2 Absorption and Emission Spectra 

When developing new materials for emissive devices it is most important to measure 

their emission spectra. One here distinguishes between electroluminescence (EL) and 

photoluminescence (PL). The former stands for the conversion of electric charges into 

photons the latter for the emission of a photon after a photon of higher or equal energy 

has been absorbed. It is therefore also of interest to know around which wavelength the 

material absorbs. The absorption spectra of our LCs in solution and as films are of great 

interest. In Figure 3.2 a simplified set up for the measurement of an absorption spectrum 

of a molecule in solution is shown. 

 

Figure 3.2: Simplified sketch of the measurement of the absorbance of molecules in solution. Here c 

stands for the concentration of the solution.  

First a blank measurement is carried out with only the solvent in the container. The 

lamp emits light of a wide spectrum, which the grating scans through sequentially. The 

detector measures the intensity of each wavelength after passing through the blank 

sample and saves this as the initial intensity I0. Then the solution prepared with the 
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same solvent that was used for the blank measurement and the desired molecule to be 

measured is placed between lamp and detector. The scan is repeated and the intensity I 

that reaches the detector is compared to I0 which gives the transmittance T = I / I0 of the 

sample. The transmittance of a solution depends on the molar absorption coefficient �, 

the concentration c and the length l of the sample. 

cl
010II ε−=  

Equation 3.1 

Equation 3.1 shows the so called Lambert-Beer law. It is more convenient to talk about 

the absorbance A of a molecule with A = log I0/I. The Lambert-Beer law becomes 

( ) ( )clA λε=λ  

Equation 3.2 

where � is wavelength (�) dependent and indicates the strength of a transition. 

Absorption spectra however are most often broad so that it makes sense to integrate � to 

obtain the absorption ABand over the whole band.34 To measure the absorption spectrum 

of films the same procedure can be used as for solutions. Here the blank substrate is a 

clean glass or quartz plate. An identical substrate is then measured with the liquid 

crystal layer on top.  

To record the absorption spectra of our materials in solution and in the solid state as a 

thin film a dual beam UV/VIS spectrometer Lambda40 from PerkinElmer was 

employed. The wavelength region was set to 200 – 900 nm. All thin films were 

deposited on quartz samples of 10 x 10 mm2 size. The blank measurement, which the 

spectrometer software subtracts automatically from all measurements, was a clean 

quartz sample. For the solutions fused silica cuvettes were used as a container, which 

limited the measurable wavelength region to 385 nm. In this case the blank was a 

cuvette filled with solvent. In most cases this was toluene. 

The EL spectra were recoded during the test of the OLEDs. Device production and 

testing are described in section 3.2 and 3.3 respectively. After recording, the EL spectra 

were corrected for the non-uniform spectral response of the spectrometer. The PL 

spectra in this work are those recorded during the optical quantum efficiency 

measurements, see Chapter 3.1.3. Samples and solutions were the same as used for the 

absorbance measurements. The PL measurements were also corrected for the non-

uniform response of the spectrometer.  
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3.1.3 Optical Quantum Efficiency 

The photoluminescence (optical) quantum efficiency (QE) measurements were carried 

out in a barium sulphate coated integrating sphere after the method discussed in section 

2.3. The set-up is shown in Figure 3.3. A computer controlled Ocean Optics 

Spectrometer (S2000) was connected through an optical fibre to the sphere to detect the 

emission from the sample and the laser. A baffle inside the sphere protected the fibre 

from direct illumination. Nitrogen gas was introduced through a gas nozzle into the 

sphere to prevent sample degradation during measurements. A GaN laser diode with an 

emission wavelength of 406 nm was used as excitation source for the sample. 

 

Figure 3.3: Optical quantum efficiency measurement setup. 

The spectrometer consisted of a grating, which diffracted the incoming light under 

different angles, depending on the incoming wavelength, and a line of photodiodes 

(CCD) measuring the intensity of each wavelength. The spectral response of the CCD 

within the spectrometer as well as the reflectivity curve of the sphere is not uniform 

over the whole wavelength measurement range. The measured data was therefore 

treated with a correction curve to compensate for this error. 

It was also checked whether the response of the CCD was linear for different integration 

times. Therefore the laser was directed into the empty sphere with the laser intensity 

being reduced, so that the laser peak was just visible in the background noise of the 

recorded spectrum at an integration time of 5 ms. Measurements for 10 ms, 20 ms etc. 

were taken. The area below the peak was then integrated and divided by a 

corresponding factor to be able to compare it to the integral from the 5 ms measurement. 

The results varied by about 1 %. This is quite small and thus the comparison of 

measurements obtained with different integration times was acceptable. 
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Most of the compounds were tested in solution and in a thin film. Toluene or 

tetrahydrofuran (THF) were used as solvents. Before the measurement the laser diode 

was warmed up for about 5 - 10 minutes. The use of a filter ensured that the emission of 

the laser did not saturate the CCD. If a solution was measured it was ensured that not 

more than a third of the laser power was absorbed. Since the concentration of the 

compound within the films could not be changed after device production not all films 

maintained this rule. All films were prepared after the method described in 3.2.6 with 

spin speeds of 3000 rpm and a compound solvent ratio of 1 mg / 100 �l. As described 

elsewhere in section 2.3 only three measurements were necessary to determine the 

efficiency. For measurement (a) an integration time of 5 ms was chosen, so that the 

laser was in the upper third of the intensity region on the graph displayed by the 

software. The emission of the sample was much weaker than the laser emission so that 

the integration time of the spectrometer had to be increased to detect a signal. It is not 

possible to use only the results of the higher integration times, because then the laser is 

“overexposing” the spectrometer. So for the three settings (a), (b) and (c), spectra with 

different integration times were taken. The results of the higher integration time were 

then divided by the corresponding factor to match a time of 5 ms. The optical quantum 

efficiency is the ratio of photons emitted/photons absorbed. The CCD within the 

spectrometers does measure the intensity of the light, but for the QE the number of 

photons and not the intensity is relevant. A blue photon is of higher energy than a red 

one; hence the intensity measured in the blue region is higher than in the red for the 

same number of photons. To correct for this the measured intensity (counts) was 

multiplied with the corresponding wavelength value (nm). As an example the already 

corrected spectra from a PV316 film are plotted in Figure 3.4. The laser emission, 

measured with an integration time of 5 ms, is integrated over 402 – 408 nm for the three 

different set ups (a), (b) and (c). The recorded PL spectra (300 ms) from the PV316 film 

are integrated from 500 – 700 nm for set ups (b) and (c). The PL result is then divided 

by 60 to match the values obtained with 5 ms. With Equation 2.3 and Equation 2.4 from 

section 2.3 the values for the quantum efficiency corresponding to an integration time of 

300 ms were determined. 
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Figure 3.4: Spectra of an exemplary quantum efficiency measurement for a PV316 tetrahydrofuran 

film.  

Two separate measurements were made on two different areas of each film to check for 

the homogeneity of the film and the reproducibility of the results. Each spot was 

measured with three different integration times. After treating the results with the 

correction curve the quantum efficiencies for the different integration times as well as 

the different spots were calculated. The final value was the mean value of all of them. 

The error stated corresponds to half the difference of maximum and minimum value 

measured. For solutions, a homogenous distribution of molecules can be assumed hence 

only one spot was measured for three different integration times. As a reference the 

laser dye Coumarin 30 dissolved in acetonitrile was measured. Literature states a optical 

quantum yield of 67 % in acetonitrile.75 For a solution of similar concentration we 

obtained 69 ± 3 % and which agrees with the literature value. 

3.1.4 Polarisation Microscopy 

In this work mainly nematic LCs were investigated. Apart from DSC measurements 

(section 3.1.1) a polarised microscope can be used to determine transition temperatures. 

The temperatures however can not be measured as accurately as the environmental 

temperature is not as well controlled as in a DSC chamber. The textures of liquid 

crystals however are best determined optically with the microscope. The anisotropic 

properties of LCs make it possible to observe phase transitions e.g. from crystal to 

nematic state when heating a thin nematic film.  
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A polarisation microscope is quite similar to commonly used microscopes in 

laboratories except that two polarising plates called the polariser and the analyser are 

incorporated. A simplified sketch of a polarising microscope is shown in Figure 3.5. 

 

Figure 3.5: Simplified sketch of the path of light and its polarisation direction in a polarising 

microscope.  

Randomly polarised light passes through a polariser to create linear polarised light. This 

passes through the transparent substrate, which has a thin LC film on top. LCs are 

highly birefringent and influence the polarisation direction so that a part of the light can 

pass through the analyser, which is aligned perpendicular to the polariser. An isotropic 

medium does not affect the polarisation and the light is blocked at the analyser so that 

the observer sees only darkness. In Figure 3.6 three typical textures observed through a 

polarising microscope are shown.  

   

Figure 3.6: Textures of a nematic LC observed with a polarised microscope; crystalline (left), 

nematic (middle) and nematic to liquid (right) phase. 

In this work mainly nematic LCs are investigated, which show the characteristic four- 

and two-point brushes in the picture in the middle or the droplets on the right. For our 
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OLED applications that employ LC blends it is important that both mix well and no 

phase separation occurs. An example for a phase separation is shown in Figure 3.7 

 

Figure 3.7: Phase separation in a blend of two different liquid crystals. The red area at the bottom 

is a patch of neat material, which is has not blended with the surround material. 

Before the blends were tested in OLEDs their miscibility was investigated under the 

microscope. Therefore about 1 mg of the mixed (see section 3.2.7 for blend preparation) 

and in most cases crystalline material was deposited onto a clean microscope slide and a 

glass cover slip was pressed on top. The slide was then shortly heated with a fan to melt 

the crystalline material. Now being slightly viscous it was mixed by carefully pressing 

down and rotating the cover slide on top. After the microscope slide was cooled down 

to room temperature it was placed onto the hot stage, which is incorporated in the 

microscope. The sample was heated at 10°/min to about 5°C above its clearing point. 

When determining exact transition temperatures a slower heating rate is necessary but 

they were obtained with a DSC. The cleared material was mixed again with the cover 

slide and cooled down with 0.2°C/min to ensure nematic alignment. When a nematic 

texture could be observed the cooling rate was set to 5°C/min. After reaching room 

temperature it was ensured that no phase separation had taken place and that the nematic 

phase was maintained. If this was the case the blend was applicable for further 

investigation in OLED devices.  

3.2 OLED Preparation 

In this section the steps carried out to build an organic light emitting diode (OLED) in 

our facilities are presented. An OLED is a multilayer device, which ideally would be 

made out of organic materials only, but so far a better performance is achieved if 
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inorganic materials and metals are used as well. Figure 3.8 shows the OLED structure 

used in this work to test different emissive compounds and mixtures in terms of 

brightness, efficiency, polarisation and colour coordinates. 

 

Figure 3.8: Typical OLED structure for the testing of our compounds. 

Each device production step is described separately in the following subchapters. 

During the substrate preparation, powder free gloves were worn and as much handling 

as possible was carried out with tweezers, to prevent contamination of the substrates 

and the layers on top. Due to the sensitivity of the emissive compounds their treatment 

was carried out in a glove box under nitrogen atmosphere with an oxygen content of 

about 15 ± 15 ppm and a humidity between 0.1 and 3 ppm. 

3.2.1 Substrate Cleaning 

A glass slide of size 25 mm x 45 mm and precoated with indium tin oxide (ITO) with 

on top was used as substrate. The ITO, being transparent to visible light, acted as an 

anode. First the substrates were sonicated for 30 minutes in a 3:1 mixture of a 

conventional resist stripper SVC175 (Chestech Ltd) and deionised (DI) water to get rid 

of any grease on the substrates. The solution was heated previously to above 65°C for 

optimal cleaning efficiency. Afterwards the substrates were rinsed with DI water and 

then sonicated in (warm) DI water for 15 minutes. This was done twice to get rid of any 

possible stripper residue. Then the substrates were sonicated for 10 min in acetone to 

get rid of the water. The last sonication (10 min) was done in methanol or isopropanol 

to minimise the Schlieren on the substrates when they were blown dry with nitrogen 

afterwards. To get rid of any possible water residue the substrates were placed in an 

oven at 100°C for 2 hours and afterwards stored in a new dust free petri dish. 
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3.2.2 Photopatterning of the ITO Anode 

Before the hole transporting layer could be spin coated on top, the ITO anode had to be 

patterned by photolithography and plasma etched. For the former the following steps 

were carried out.  

First the cleaned substrate was baked at 100°C for 30 minutes to ensure that no moisture 

was left on its surface. Once cooled down about 10 substrates were then lined up in 2 

rows in a fume cupboard. A small film of S1813SP15 photoresist was sprayed on top 

using sweeping stripes from side to side for about 3 to 4 times. The substrates were 

covered directly afterwards to prevent any dust deposition on them. After a few minutes 

they were placed in Petri dishes to let the photoresist film dry for several hours.  

The patterning of the photoresist followed. The substrate was placed on a mask, which 

had the shape of the desired electrode layout. The photoresist was then exposed for 20 

minutes with ultraviolet light (UV, 350 - 450 nm) see sketch in Figure 3.9. 

 

Figure 3.9: Patterning of the photoresist. 

The mask used for all devices was the same size as the substrate and is shown in Figure 

3.10. The transparent (white) parts let the UV light through so that the photoresist 

properties were altered. The colour of the photoresist then changed from green to brown. 

The grey areas of the mask blocked the UV light. The blue dashed line indicates the 

four OLED test areas, which can be controlled separately with the anode contacts. 
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Figure 3.10: Electrode layout of the OLED substrates. The four numbered squares indicate the four 

different test areas which could be addressed separately through the anode contacts. 



69 

After the exposure the substrate was placed in a lukewarm mixed solution of one part 

351 photoresist developer and five parts DI water for about 30 seconds so that the 

exposed regions of the photoresist were completely removed. The substrate was the 

rinsed in DI water and blown dry with nitrogen gas. 

Meanwhile a recrystallisation dish with an etching solution was heated up to 70°C. The 

substrate was then bathed in the acid for 20 - 30 minutes to remove the ITO. The 

photoresist protected the substrate from the acid so that only the regions without 

photoresist on top were removed. Thus the ITO took the shape of the mask used during 

the UV exposure. The substrate was sonicated in acetone for 15 minutes to remove the 

residual photoresist and then cleaned again as described in section 3.2.1. 

3.2.3 Oxygen Plasma Etching 

Oxygen plasma etching was used to smooth and clean the ITO surface as well as to 

lower its work function to enhance carrier injection.76 During the etching process spikes 

in the ITO layer were removed, which could cause shorts between the electrodes of the 

OLED. This treatment was always carried out shortly before the substrates were 

intended to be used for a device, because if stored for longer than a month, the ITO 

layer could oxidise and would need to be plasma etched again. 

For the plasma etching the already patterned ITO substrate was mounted in a holder 

with the ITO side facing down in a vacuum chamber so that only about 2 mm along 

both the long edges were covered. The chamber was evacuated down to 1.3 x 10-9 bar 

and flushed with pure oxygen sequentially for about 5 times to ensure a pure oxygen 

environment. After the last evacuation step oxygen was admitted so that a constant 

pressure of 0.26 mbar was maintained. An electrical field (200 - 300 V) was applied 

transversely to the substrate, which ionised the oxygen. The oxygen plasma was 

maintained for 10 - 12 minutes. Afterwards the substrates were sonicated again for 10 

min in acetone and 10 min in isopropanol. Then they were blown dry with nitrogen and 

stored in an oven at 100°C for about an hour and afterwards stored in a new Petri dish. 

3.2.4 Spin Coating of the PEDOT Layer 

After the plasma etching and cleaning a few substrates were transferred into a nitrogen 

filled glove box. Each substrate was spin coated with poly(3,4-ethylene-dioxythiophene) 

also known as PEDOT, which would form the hole transporting layer. The PEDOT was 
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purchased at H.C. Starck Ltd under the trade name Baytron®P VP AI 4083. The spin 

coater held the substrate by vacuum, was set to 4000 revolutions per minute (rpm) for 

30 seconds. The PEDOT was applied onto the substrate with a syringe through an 

attached filter (pore size: 0.45 µm). When the substrate was completely covered it was 

directly turned by the spin coater. Afterwards the substrate was placed on a hotplate to 

heat it from room temperature to 50 ºC where it was baked for 5 minutes. Then the 

hotplate was turned up to 165 ºC to bake the substrate for another 10 minutes. Then the 

heater was turned of, so that the substrate could cool down slowly (about 10°C/min). 

The substrate was stored in a nitrogen gas environment if not used directly for further 

processing. 

3.2.5 Rubbing of the PEDOT 

To obtain polarised emission from the OLED the liquid crystal molecules of the 

emissive layer had to be aligned. Therefore the PEDOT layer below the LC layer had to 

be rubbed, see set up in Figure 3.11.  

 

Figure 3.11: Mechanical rubbing of a PEDOT covered substrate. 

This was done by moving a PEDOT covered substrate below a rotating velvet cloth. 

The rotation of the cloth as well as the movement of the sample stage was controlled by 

a motor and was the same for all rubbed samples in this work. The distance between 

cloth and sample was adjusted with micrometer screws so that the cloth just touched the 

sample surface. The samples were translated five times below the rotating cylinder to 

even out possible irregularities in the cloth. 

3.2.6 Spin Coating of the Organic EL Layer 

Before a substrate could be coated with an organic layer a solution with the desired LC 

was prepared. The necessary quantity depended on substrate size and number. For a 1 

cm2 large substrate about 100 �l were required. In this work solutions with compound - 
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solvent ratios of 1 mg organic compound in 100 �l of solvent were used. For the 

standard substrate 25 mm x 40 mm, 400 �l and hence 4 mg of compound were mixed. 

For the weighing procedure a cleaned sample tube was needed. It was rinsed with DI 

water, submerged in acetone and then blown dry with nitrogen and put for 1 hour in the 

oven at 100°C. This was always done for several sample tubes at once, which then were 

stored in the glove box. Prior to the weighing, to ensure that no residual water had 

settled on the sample tube, it was put on a hot plate at 105 ºC for 5 minutes. It was then 

placed in a balance. The inside of the balance was treated with an anti-static gun to get 

rid of any electrostatic charges before the balance was zeroed. The sample tube was 

then taken out and put back in the balance again. The inside was treated again with the 

anti-static gun. If the balance did not display zero weight the whole zeroing procedure 

had to be repeated. With the help of a clean spatula a small amount of the organic 

compound was then placed in the sample tube. Before any reading was taken the inside 

of the balance was treated with the gun again. The last step had to be repeated until the 

desired amount of compound was found. During the whole weighing procedure the 

pressure in the glove box was kept constant since the smallest pressure increase or 

decrease could cause deviations in the weighing result.  

The right amount of solvent corresponding to the measured weight was then added to 

the compound in the sample tube to form a solution. The solvent could be chloroform, 

toluene, tetrahydrofuran or dichloromethane. These were purchased at Sigma-Aldrich 

Co. and were the purest version available (anhydrous 99%, packed under nitrogen). In 

almost all cases toluene was used. It proved to dissolve our compounds best and due to 

its high boiling point of 110 - 111°C did not evaporate during spinning and hence 

formed an even film. Before the spin coating the ITO/PEDOT coated substrate was 

heated up to 105 ºC for 5 minutes to get rid of any possible water residue. Once the 

substrate was cooled down it was covered with the previously prepared organic solution. 

This was done with a syringe to which a 0.02 µm pore size filter was attached to get rid 

of any possible dust particles in the solution. The substrate was turned for 30 seconds at 

3000 rpm. Afterwards the sample was carefully placed onto a hotplate and heated up 

from room temperature close to its particular transition temperature, where it would 

become a liquid. The substrate stayed on the hotplate for 10 min (20 min if the 

temperature was below 100°C and toluene was used) and afterwards cooled down to 

room temperature at 10°C/min. The next processing step was carried out immediately 

afterwards to prevent any degradation of the LC layer due to traces of water and oxygen 

in the glove box. 
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3.2.7 Blend Preparation 

The blend ratios discussed in this work are based on the molecular weight of the 

compounds. The required amounts were weighed in separate sample tubes. Then about 

1000 �l of solvent was added into one sample tube and stirred until it was fully 

dissolved. The solution was then transferred to the other sample tube and carefully 

shaken to ensure a homogeneous blend. The tube was then placed under vacuum for 12 

h to get rid of the solvent. The dried specimen was also used when blends were 

investigated under the polarising microscope. 

3.2.8 Crosslinking of the Organic Layer 

To permanently join (crosslink) the liquid crystal molecules together the emissive layer 

was exposed to ultraviolet light from a 325 nm laser. The laser model was a IK3552R-G 

HeCd from KIMMON Koha Co, Ltd, which had a linear polarised emission with a 

measured polarisation ratio of 5.5:1. Since not all organic compounds were 

crosslinkable this step was not always necessary. Crosslinking made the organic layer 

insoluble so that if desired another organic layer could be spin coated on top. The 

required crosslinking fluence depended on the compound. As a rule of thumb it was 

found that blue emitters needed a fluence of about 400 J/cm2, green emitters about 600 

J/cm2 and red emitters about 800 J/cm2. The total laser output power varied between 35 

to 53 mW and was checked previous to the crosslinking process to calculate the 

exposure time needed to achieve the desired fluence.  

The beam spot profile was doughnut shaped so to avoid non-uniform irradiation the 

laser scanned over the substrate so that each part saw the same amount of fluence on 

average. The laser had a spot size of 4 mm in diameter. The four test areas (area size: 8 

mm x 8 mm) were scanned as shown in Figure 3.12 to completely crosslink the organic 

layer.  

 

Figure 3.12: Scan of the substrate with a HeCd laser to crosslink the organic layer. 
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The laser itself was fixed so the sample was moved up and down and sidewards by a 

computer controlled x-y stage. Several scan cycles were required depending on the 

desired crosslinking dose and travelling speed. 

3.2.9 Physical Vapour Deposition 

Physical vapour deposition was used to apply the electron-transporting layer and the top 

electrode to the substrate. Before the deposition the organic layer was wiped away from 

the edges of the substrate with a dust free lens paper soaked in toluene. Then the 

substrate was put into the vacuum dome, which was situated in the glove box. The 

substrate was placed with the organic layer facing down into a holder. Under the holder 

there were different heating sources; a tungsten heating helix and two heating boats. 

Depending on the form of the material that should be deposited it was placed into a 

helix (wire) or in a boat (granules), see Figure 3.13.  

 

Figure 3.13: The set up for physical vapour deposition in a vacuumed dome. The desired compound 

for deposition is placed either in a boat or a helix, which is then heated to a high temperature. The 

material inside then evaporates and is deposited onto the substrate, which is lying face down in the 

substrate holder. Until the desired deposition rate is reached a shutter is placed between substrate 

and heating elements. 

Under vacuum a helix or boat was then heated up until the material inside evaporated. A 

shutter was placed between substrates and heating elements to shield the substrate from 

any unwanted deposition. When the desired deposition rate, which was measured with a 

detector, was achieved the shutter was opened. Because of the heat the evaporated 

material moved towards the sample and condensed on the organic layer, building up a 
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new layer. This process could take from several seconds to some minutes, depending on 

the required layer thickness and the deposited material. As electron-transporting 

material 1,3,5-tri(phenyl-2-benzimidazolyl)benzene (TPBI) was used, which was made 

in-house, see Figure 3.14. 

 

Figure 3.14: The chemical structure of the electron-transporting material TPBi.77 

For TPBi a layer thickness between 100 - 150 Å and a deposition rate between 5 - 10 

Å/s was used. A thin layer of lithium fluoride of 6 Å (0.2 Å/s) and a thicker aluminium 

layer of about 800 Å (30-50 Å/ s) were deposited sequentially as electrode. Between the 

depositions of the electrode layers the substrate was moved once for about 1 to 2 mm in 

its holder so that on one edge the aluminium directly contacted the ITO (see also Figure 

3.8). 

3.3 Device Testing 

The devices were then tested in terms of luminance, CIE (1931) colour coordinates, 

emission spectrum, efficiency and current voltage characteristics. The set up is 

illustrated in Figure 3.15. The characterisation process was controlled by Labview. The 

OLED was connected to a power supply from Agilent (model E3631A), which applied 

an increasing voltage in 0.5 or 1 V steps. The voltage range differed for each 

experiment but lay usually between 1 and 14 V. For each step then the 

electroluminescence (EL) spectrum, current density and brightness were recorded. 
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Figure 3.15: Set-up used to measure the current density, brightness and EL spectrum of an OLED 

for different voltages.  

As fibre optic spectrometer the model AvaSpec-2048 (resolution: 2.4 nm, range: 200-

1100 nm) from Avantes was used. The luminance was measured with a Minolta LS100 

Luminance Meter, which measured over a circular area of 1.63 cm2 (∅ = 14.4 mm) and 

had an acceptance angle of 1°. The meter was calibrated at the Minolta Company 

according to CIE standards. The device efficiency (cd A-1) was obtained by dividing the 

measured luminance through the current density given from the power supply. 

3.4 Simulation Parameters 

Simulations on our light emitting liquid crystals LCs were carried out in cooperation 

with the Materia Nova research group from the Polytechnic Faculty of Mons and the 

University of Mons-Hainaut, in Mons, Belgium. Special thanks go to David Beljonne, 

Bernard Van Averbeke and Jérôme Cornil who supervised and supported this work. The 

work was split into two parts. The first was to consider single molecules and to 

determine their typical characteristics e.g. the absorption spectra. The second part 

concerns dimers built from these molecules and their different possible configurations. 

Further the interactions between the molecules in terms of their coupling strengths were 

investigated. 
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3.4.1 Modelling of Monomers 

From the available Hull molecular structures, five were chosen to be modelled in the 

gas phase in terms of their highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) energies, oscillator strengths and transition 

dipole densities as well as their absorption and emission spectra for vertical transitions. 

The five structures (MPA157, PV237, PV316, PV353, SPK382) were drawn with the 

AGUITM software.78 The corresponding chemical structures are depicted in Chapter 4.1. 

For all five molecules the side and end chains were set to CH3 and -OCH3 respectively 

in the simulations.  

First the molecular arrangement for each molecule in its ground state (GS) had to be 

modelled. Therefore each structure was plotted with different arrangements of fluorene 

and thiophene. The torsion angles were pre-optimised by the plotting tool of AGUITM. 

For the geometry optimisation the semiempirical Hartree-Fock Austin Model 1 (AM1) 

model was used to find the configuration with the lowest total energy.45 The 

configuration that showed the lowest energy was then used to simulate transitions from 

GS to excited state (ES). It has to be considered that the model took only vertical 

transitions for one electron at a time into account. The movement of two electrons at the 

same time is too complicated to simulate in a short time. For the transitions 

semiempirical Hartree-Fock ZINDO/S.C.I. calculations were carried out on the 

optimised structure.79, 80 With the help of the Zoa software (developed by J.P Calbert) 81 

the outputs of the ZINDO simulations were processed to obtain values for the HOMO, 

LUMO energies, the absorption peak and the oscillator strengths for the GS. 

For the transition from ES to GS first the ES had to be determined. Therefore the five 

GS files were taken and AM1 optimisations were carried out, but this time with varying 

values for the S.C.I. (single configuration interaction) parameters. After the calculation 

the simulated wavelength (nm) for the first transition (in Zoa referred to as E.S.#1) was 

noted. Afterwards the S.C.I. value was increased by 2 and the simulation run again. This 

loop was continued until the calculated wavelength varied by less than 1 nm. The 

corresponding S.C.I. value was then used for the ES simulation. Like for the GS, 

ZINDO/S.C.I. calculations were carried out to get the characteristics, e.g. emission 

spectra, for the ES of the molecules.  

Note that for the calculations of the orbital energies simplified Hartree-Fock 

calculations were used, which do not take into account that an excitation does have an 

influence on the electron distribution (Koopman’s Theorem). This assumption is very 
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severe and the energies for HOMO and LUMO are therefore highly overestimated, in 

general by a factor of two. The Zoa software takes this automatically into account so 

that absorption and emission energies are corrected accordingly. However the values for 

HOMO and LUMO levels presented later in the results section are the original 

overestimated ones obtained with ZINDO. 

Optimised GS structures usually are slightly twisted in the gas phase. In thin films it is 

more likely that they twist less as they are confined in their movement by neighbouring 

molecules. To get a measure for the influence of the torsion angles (see Figure 3.16) on 

the energetic behaviour of our molecules the structures PV316 and PV353 were plotted 

with AGUITM with all torsion angles set to zero. On these straightened molecules AM1 

optimisations followed by ZINDO/S.C.I calculations for the GS were then carried out. 

 

Figure 3.16: Torsion between two molecule units with a) no torsion b) torsion between the units. 

The obtained absorption spectra, transition dipole densities and OSs were compared to 

those obtained with the twisted molecules. All simulations were carried out at a 

temperature of absolute zero and in the gas phase.  

3.4.2 Modelling of Dimers 

For the second part of this work the compounds PV316 and PV353 were chosen to 

determine the electronic coupling between two molecules in a dimer configuration. 

Three different types of interactions between the molecules were investigated; excitonic 

and the supermolecular coupling and the charge transfer integral. See Chapter 2.4.6 for 

further background information on coupling. To enable proper stacking, all torsional 

angles of the molecules were set to 0°. Thiophene and fluorene side chain 

conformations were arranged as is depicted in Figure 3.17 and Figure 3.18. The 

rearranged monomers were optimised with AM1 calculations and then stacked to build 

a dimer. On the dimers no further optimisations were carried out to avoid the distortion 

of the structures.  
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Figure 3.17: PV316 anti-cofacial dimer arrangement when shifted along another PV316 molecule. 

The side and end chains were replaced with CH3 and -OCH3 respectively. 

The molecules were rotated by 180° along their long axis (anti-cofacial configuration) 

when stacked to avoid the fluorene side chains combining with each other. The two 

molecules were separated by 4.5 Å. This value was obtained earlier through X-Ray 

measurements on a PV316 film.82 One of the molecules was then shifted along the long 

axis of the other one in 5 Å steps. For each position ZINDO/S.C.I. calculations for the 

GS were carried out. ES state calculations were not considered as the GS results are 

already a good indication for the interaction strength between the two molecules. 

 

Figure 3.18: PV353 dimer arrangement. The side and end chains were replaced with CH3 and -

OCH3 respectively. 

The PV353 was studied in the same arrangement. For the two dimers the OSs, transition 

wavelengths and energies as well as excitonic and supermolecular coupling and charge 

transfer integrals were simulated and plotted as function of longitudinal displacement. 

For the excitonic coupling a special ZINDO calculation was carried out, where the 

coupling value is directly obtained with Equation 2.12. For the supermolecular coupling 

ZINDO/S.C.I. calculations on the GS for the dimers were carried out. The GS 

simulation results were processed and visualised with the Zoa software. In Figure 3.19 a 

typical result window from Zoa is presented. In the right box different transitions 

(depicted as excited states E.S.#) consisting of several transitions from different HOMO 

to LUMO levels and their percental contribution to this state are shown. In theory the 

absorption spectrum is supposed to be a transition from HOMO to higher lying LUMO 
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levels, but because orbitals computed in ZINDO are close in energy, the simulated 

states HOMO-1, HOMO-2 etc contributions are introduced. The OS of each E.S. as well 

as the maximum absorption wavelength is listed behind the E.S. number. 

 

Figure 3.19: Exemplary result window in Zoa for a dimer in its GS. On the left maximum and 

minimum values for the scale of the absorption spectrum in the middle could be adjusted. 

Furthermore the x-axis units, linewitdh and shape like Gaussian or Lorentian could be changed. 

The right box shows the calculated OSs for the different excited states (E.S.) and their transition 

maxima in (nm). For each E.S. the HOMO to LUMO transitions and their percental contribution to 

that E.S. transition are listed. 

To obtain a value for the coupling strengths, the energy values between two excited 

states (in general the two lowest) are subtracted from each other and then divided by 

two.43 The two lowest optically allowed excited states have to be considered for this.83 

In the case illustrated in Figure 3.19, E.S.#1 is optically forbidden, because of the OS = 

0.0002 so that half the energy difference between E.S.#2 and E.S.#3 is taken to obtain a 

value for the supermolecular coupling. The coupling values of the charge transfer 

integral were found using the method described by Van Vooren et al.44 All obtained 

coupling values were then plotted against longitudinal shift in the PV316 and PV353 

dimers. 

A lateral shift of 1 and 2 Å was simulated with ZINDO/S.C.I. but no significant change 

in energy could be observed and hence was not further pursued. All simulations were 

carried out at temperature of absolute zero in the gas phase. 
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3.5 Surface Relief Grating Preparations 

To find out whether the surface of our liquid crystal (LC) films is photopatternable they 

were crosslinked through a phase mask. Their surface was then investigated with an 

atomic force microscope (AFM) and an optical beam profiler. Furthermore polarised 

absorption spectra were recorded. The substrate preparation and measurement 

conditions will be presented in the following subchapters.  

3.5.1 Substrate Preparation and Crosslinking 

Sample preparation and exposure were carried out in a glove box under nitrogen 

atmosphere with humidity of less than 1 ppm and an oxygen concentration less than 30 

ppm. Cleaned 25 x 25 mm2 glass slides, covered with an about 40 nm thick PEDOT 

layer, were used as substrates. The PEDOT layer was necessary as the LC used did not 

form a uniform film on glass. More details on substrate cleaning and PEDOT 

application can be found in sections 3.2.1 and 3.2.4. LC films made of different 

thicknesses and concentrations were applied by spin–coating onto the glass/PEDOT 

substrates. Most measurements were carried out with the LC called PV237 but the 

compounds PV318 was also investigated. Over 20 different samples were tested. They 

were numbered S01, S02, S03 etc.. Those numbers will be referred to in the results 

chapter. An “H” behind the sample number indicates that the substrate was cured for a 

certain time after crosslinking and “W” that it was washed in toluene afterwards. With 

an optical beam profiler the thickness of a film prepared with the standard settings 900 

rpm, 0.03 mg PV237 in 1 �l chlorobenzene was measured. The thickness was found to 

be 80 ± 5 nm. All other films made with 2000 rpm or an concentration of 0.02 mg/�l 

therefore were thinner as either their concentration was lower or the spin speed faster. 

After spin-coating all films were heated at 5°C/min to 65°C, where they were cured for 

15 min and then cooled down to RT again with 5°C/min. Next the samples were 

crosslinked normally or through a phase mask. For further information on crosslinking 

see sections 2.2.6 and 3.2.8. 

It has to be considered that an optical setup employing a phase mask is very delicate and 

is subject to the smallest vibrations or misalignment. Crosslinking had to be carried out 

under nitrogen atmosphere in a glove box to which pumps were connected, which 

caused a constant vibration of the box. During crosslinking the sample was moved by a 

xy-stage, which caused additional vibration. In the meantime the box was also used for 
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other purposes as the crosslinking process itself could last between 4 - 8 h depending on 

the area size to be crosslinked. This and the fact that the set up was handled wearing 

thick gloves a precise and stable optical setup was not realisable. A perfect mask 

alignment normal to beam direction was not realisable and possible reproducibility not 

ensured. The mask alignment was judged by eye with a probable error of ±  3°. The 

mask lay directly on top of the LC layer and they were additionally pressed together and 

attached to a hot stage with several screws. However it was not possible to judge by eye 

whether all screws were exactly fixed at the same height so that a wedge between 

substrate and mask might have been present. 

Each substrate was divided into 4 areas of equal size as in Figure 3.20, to be able to 

examine different crosslinking settings on the same film. For absorption measurements 

the areas needed to be at least 10 mm x 10 mm large. If only AFM measurements were 

required smaller areas of a minimum of 5 mm x 5mm were sufficient. 

 

Figure 3.20: Substrate markings and divisions for AFM and absorption measurements and 

alignment of the phase mask in respect of the polarisation of the HeCd laser beam.  

As a reference each substrate was marked with a dot in one corner and a line on the cut 

edge as indicated in Figure 3.20. The areas were either a) crosslinked, b) crosslinked 

through a phase mask of either 530 nm or 1 �m period or c) remained untreated = 

uncrosslinked. The phase masks split the initial beam into two beams of equal intensity. 

The alignment of the mask with respect to the polarisation direction of the HeCd laser 

affects the interference pattern behind the mask and was therefore noted as well. Here 

“para” refers to the splitting being parallel to the polarisation direction (or parallel to the 

grating vector, see section 2.6.4) and “perp” if the splitting was perpendicular to it, 

which occurred if the mask was turned by 90°. This definition will be used throughout 

this work.   
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A crosslinking energy of 600 J/cm2 was required to render the films insoluble. The 

speed of the travelling xy-stage was kept between 0.48 – 0.52 mm/s. The laser power of 

the doughnut shaped beam (4 mm diameter) was measured before the crosslinking was 

started and varied between 52 - 53 mW. The mask’s attenuation of the initial beam as 

well as the splitting into two beams were also considered in the fluence calculation. 

Crosslinking times were adapted accordingly so that all areas were crosslinked with at 

least 600 J/cm2 or higher. The 530 nm phase mask (by Ibsen Photonics) was fabricated 

to match the wavelength of the HeCd laser. It was made out of fused silica and split the 

beam in 5 mW for the 0th order and 22 mW for – 1 and + 1 order respectively. For the 

fluence calculations 22 mW were used. In this case no higher orders were present. 

The 1 �m mask’s working wavelength was unknown, but was in the ultraviolet region. 

Hence the 0th order suppression was low for the 1 �m mask. With 52 mW initial laser 

power about 32 - 38 mW was measured for the 0th order and 5 mW for -1 and +1 order. 

In this case the crosslinking time was calculated with 32 mW as laser power to ensure 

that the layer would be fully crosslinked. There were also higher orders observable, but 

these could not be measured singly. They could however not have been strong as the 

total power measured directly behind the mask lay between 45 – 47mW. 

The crosslinking tests were carried out at RT and 65°C with the LC PV237. The 

elevated temperature would ensure the compound being in a nematic state and gave the 

molecules more freedom to move due to the additional thermal energy. Tests with 

PV318 were carried out at the same temperature.  

3.5.2 AFM Measurements 

The surface of the films was investigated with an atomic force microscope (AFM) 

developed by Molecular Imaging now Agilent. The AFM used is a prototype so that no 

reference to type and model is possible. For general information on AFMs see Chapter 

2.6.6. The surface measurements obtained with the AFM were then processed with the 

freeware program Gwyddion to obtain cross-sections, maximum roughness values and 

period parameters. In Figure 3.21 an example of how the cross-sections were measured 

with Gwyddion is shown.  



83 

 

Figure 3.21: On the left an AFM scan viewed with Gwyddion is shown. The line indicates the cross-

section, which is plotted in the graph in the middle. The vertical lines indicate where the data 

plotted in the right window was extracted.  

The picture on the left shows the surface scan, the line across is plotted by hand. 

Therefore it could not be ensured that the cross-section was taken at exactly 90° to the 

corrugation. An error of ± 3° however has only a small influence on the period 

measured. For this deviation one obtains with trigonometry (x = 530 nm/cos 3°) 530.73 

nm instead of 530 nm as period, which means that the error due to plotting is less than a 

1 nm and is hence neglected. The cross-section indicated by the line is plotted in the 

graph in the middle. Gwyddion allows to extract data at self selected points, indicated 

by the vertical lines. The corrugation maxima were chosen to determine the periodicity. 

The distance between the lines is given as “Length [�m]” in the results window on the 

right. Since the corrugation peaks were not sharp there was a possible error, when 

determining the maximum. Moving the measurement line across the peak showed a 

deviation of ± 20 nm. This cannot be neglected but was minimised by taking the 

difference between several peaks to obtain an average. Furthermore the periods were 

taken form several cross-sections on one measurement area and then also from several 

areas on the same exposed film and the averaged again to obtain a reliable value. The ± 

error for the period (average) stated in the result section corresponds to half the 

difference between maximum and minimum period measured. The maximum amplitude 

(height difference between the highest and the lowest point on the cross-section) was 

determined by the Gwyddion program itself. When plotting the lines for the cross-

section it was therefore taken care of that an area with no defects or holes in the LC film 

was measured. The 2D and 3D pictures of the surface presented in this work were made 

with the AFM control software (Picoscan) itself. The size of the measured areas varied 

between 2 �m x 2 �m and 5 �m x 5 �m with a scan speed between 300 - 1000 nm/s. 

The surface roughness could be measured down to an Angstrom. 
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3.5.3 Polarised Absorption Spectroscopy 

Polarised absorption spectra of several crosslinked films were recorded. Therefore a 

polariser was introduced into the measurement beam of the Lambda40 spectrometer 

made by Perkin/Elmer. A clean glass substrate (25 x 25 mm2) was used as a reference 

measurement. The PEDOT layer showed no polarisation dependence in previous 

absorption measurements and hence did not influence the results. Each area measured 

on the crosslinked films was about 8 x 8 mm2. Once measured the area was turned by 

90° and then measured again. The polarised absorption ratio was obtained by dividing 

the two spectra. The two measurements were repeated on different spots of the same 

area to ensure reproducibility. 
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4 Characterisation and 

Modelling of Liquid 

Crystals 

In this chapter we report the transition temperatures and spectroscopic characterisation 

for the LCs used in this work. Further the modelled HOMO, LUMO and transition 

energies as well as the oscillator strengths in monomers and dimers are presented. 

Furthermore different coupling interactions in dimers in respect to longitudinal offsets 

are discussed. 

4.1 Structures and Transition 

Temperatures 

For reasons of convenience the compound names used within the University are also 

used in this work. The compound names are assembled from the initials of the creator 

and product numbers in chronological order. In Table 4.1 all investigated structures and 

their transition temperatures are presented in alphabetical order. The transition 

temperatures were measured with a differential scanning calorimetry (DSC) machine by 

Perkin/Elmer. See section 3.1.1 for information on the determination of the transition 

temperatures with DSC. 
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Table 4.1: Molecular structures and their transition structure. 

Name Structure Temperature (°C) 

  Tg  Cr  N  I 

AW01 

 

 5  77  112  

GJR130 

 

 39  92  108  

MPA15

7 
 

 -25  97  44  

PV237  0  52  143  

PV316  55    235  

PV318  25    187  

PV353 

 

 60  120  350  

SPK107 

 

 22  NA  30  

SPK146  76  180  246  

SPK382 

 

 26  130  231  

 

The LC called SPK107 showed no measurable crystallisation point. Its nematic phase 

was also not clearly determinable with a polarisation microscope. Its low transition 

temperatures however made it an excellent candidate for mixtures to reduce the 

transition temperatures of other compounds. All other compounds showed a nematic 

phase. 
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4.2 Optical Quantum Efficiency Results 

For most of the LCs presented in Table 4.1 the optical quantum efficiency (QE) in 

solution and solid state was measured using the methods discussed in sections 2.3 and 

3.1.3. The efficiencies as well as the solvents used are stated in Table 4.2.  

Table 4.2: Optical quantum efficiency results in solution and in the solid state (film). 

Compound Optical Quantum Efficiency (%) 

 Solution Solvent Film Solvent 

AW01 57 ± 0.7 toluene 22 ± 1.1 toluene 

GJR130 71 ± 1.7 toluene 28 ± 1.1 tetrahydrofuran 

MPA157   20 ± 0.9 tetrahydrofuran 

PV237 33 ± 0.5 toluene 15 ± 0.3 toluene 

PV316 48 ± 1.4 toluene 36 ± 2.5 tetrahydrofuran 

PV318 39 ± 1 toluene 35 ± 0.8 tetrahydrofuran 

PV353 67 ± 2.5 toluene 31 ± 3.5 toluene 

SPK107   4 ± 0.5 toluene 

SPK146 42 ± 1.3 toluene 4 ± 0.9 toluene 

SPK382 71 ± 1.2 toluene 14 ± 0.6 toluene 

 

The highest QE was observed for the GJR130 with 71 %. In the solid state however the 

efficiency decreased to 28 %. For films made with the polymer poly-(methoxy-5-(2’-

ethyl)-hexyloxy-p-phenylenevinylene) also called MEH-PPV, values of about 10 % 

were reported.31 In all cases the efficiencies in solution were greater than in solid state. 

This effect is also often observed in polymers, where aggregation leads to quenching 

due to interchain interactions.84, 85 In section 4.4.2 we investigate this aggregation effect 

for some of our molecules with the help of semiempirical simulations on LCs in 

monomer (solution) and dimer (thin film) configurations.  
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4.3 Emission and Absorption Spectra 

In this chapter all available spectra from the compounds investigated are presented. 

Absorption spectra were recorded in the solid state (film) as well as in solution using the 

methods described in 3.1.2. The emission was measured as electroluminescence (EL) 

from an OLED and as photoluminescence (PL) in solution or thin film. The PL spectra 

were recorded using an integrating sphere (see section 3.1.3) with a 406 nm laser diode 

as excitation source. Further information on the processing conditions is given in 

Chapter 3.1.2. 
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Figure 4.1: Absorption and emission spectra of toluene films and solutions made with the 

compound AW01. Absorbance in solution (blue squares) and in thin film (green stars). PL in 

solution (black circles) and in thin film (pink rhombi). EL in thin film (red triangles). 

For AW01 the absorption maximum in solution lies at 388 nm in thin film at 397 nm. 

The PL maxima lie at 428 nm in solution and 464 nm in thin film. On the first run of the 

OLED the EL maximum lies in the blue/green region at 466 nm but shifts with running 

time to 513 nm.  
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Figure 4.2: Absorption and emission spectra of toluene films and solutions made with the 

compound GJR130. Absorbance in solution (blue squares). PL in solution (black circles) and in thin 

film (pink rhombi). EL in thin film (red triangles). 

For GJR130 the absorption maximum in solution lies at 393 nm. The PL maxima lie at 

480 nm in solution and 438 nm in thin film. The EL maximum lies at 490 nm. 
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Figure 4.3: Absorption spectrum of a toluene solution (blue squares) and PL emission spectrum 

(pink rhombi) of tetrahydrofuran film and made with the compound MPA157. 

For MPA157 the absorption maximum in solution lies at 394 nm. The PL maximum in 

thin film lies at 477 nm.  



90 

300 350 400 450 500 550 600 650 700
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

 N
o

rm
a

lis
e

d
 P

L
 a

n
d

 E
L

 (a
.u

.)N
o

rm
a

lis
e

d
 A

b
s
o

rp
ti
o

n
 (

a
.u

.)

Wavelength (nm)

 

Figure 4.4: Absorption and emission spectra of toluene films and solutions made with the 

compound PV237. Absorbance in solution (blue squares) and in thin film (green stars). PL in 

solution (black circles) and in thin film (pink rhombi). EL in thin film (red triangles). 

For PV237 the absorption maximum in solution lies at 425 nm in thin film at 438 nm. 

The PL maxima lie at 475 nm in solution and 526 nm in thin film. The EL maximum 

lies at 520 nm. 
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Figure 4.5: Absorption and emission spectra of toluene films and solutions made with the 

compound PV316. Absorbance in solution (blue squares) and in thin film (green stars). PL in 

solution (black circles) and in thin film (pink rhombi). EL in thin film (red triangles). 

For PV316 the absorption maximum in solution lies at 438 nm in thin film at 453 nm. 

The PL maxima lie at 549 nm in solution and 491 nm in thin film. The EL maximum 

lies at 583 nm. 
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Figure 4.6: PL emission spectrum (pink rhombi) of a tetrahydrofuran film and of a toluene solution 

(black circles) made with the compound PV318. 

For PV318 the PL maximum in solution lies at 495 nm and at 539 nm in thin film. 
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Figure 4.7: Absorption and emission spectra of toluene films and solutions made with the 

compound PV353. Absorbance in solution (blue squares). PL in solution (black circles) and in thin 

film (pink rhombi).  

For PV353 the absorption maximum in solution lies at 432 nm. The PL maxima lie at 

491 nm in solution and about 543 nm in thin film.  
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Figure 4.8: Absorption and emission spectra of toluene films and solutions made with the 

compound SPK107. Absorbance in thin film (green stars). PL in thin film (pink rhombi). EL in thin 

film (red triangles). 

For SPK107 the absorption maximum in thin film lies at 380 nm. The PL maxima lie at 

481 nm in thin film. The two EL maxima lie at 476 and 506 nm. 
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Figure 4.9: Absorption and emission spectra of toluene films and solutions made with the 

compound SPK146. Absorbance in solution (blue squares) and in thin film (green stars). PL in 

solution (black circles) and in thin film (pink rhombi). EL in thin film (red triangles). 

For SPK146 the absorption maximum in solution lies at 381 nm in thin film at 389 nm. 

The PL maxima lie at 638 nm in solution and about 665 nm in thin film. The EL 

maximum lies at 648 nm. 
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Figure 4.10: Absorption and emission spectra of toluene films and solutions made with the 

compound SPK382. Absorbance in solution (blue squares) and in thin film (green stars). PL in 

solution (black circles) and in thin film (pink rhombi). 

For SPK382 the absorption maximum in solution lies at 408 nm in thin film at 462 nm. 

The PL maxima lie at 451 nm in solution and 500 nm in thin film. In general the 

maxima for thin films are red shifted in respect to the maxima obtained with solutions. 

This effect is well known for organic materials and might originate e.g. from the 

planarisation of the backbone or due to molecular interactions due to aggregation.86 

Also the absence of the solvent in the solid state, due to the substrate heating above the 

solvent’s boiling point during film preparation, must be considered. Solvents usually 

have higher dielectric constants. The latter influences the potential energy of a system, 

see Chapter 2.5.4 and thus the energy of the levels involved in the emission and 

absorption transitions. 

4.4 Simulation of Molecules 

In cooperation with the Materia Nova research group, which was established in 1995 by 

the Polytechnic Faculty of Mons and the University of Mons-Hainaut, in Mons, 

Belgium simulations on our light emitting liquid crystals LCs were carried out. Special 

thanks go to David Beljonne, Bernard Van Averbeke and Jérôme Cornil who supervised 

and supported this work. 

The work was split into two parts. The first was to consider single molecules and to 

determine their typical characteristics e.g. the absorption spectra to compare them to 

experimental results. The second part concerns dimers built from these molecules and 
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their different possible configurations. Here the interactions between the molecules in 

terms of their coupling strengths were investigated. 

4.4.1 Monomer Characterisation 

The molecules MPA157, PV237, PV316, PV353 and SPK382 were modelled in the gas 

phase to calculate their highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) levels, oscillator strengths (OS) and transition 

dipole densities as well as their absorption and emission spectra for vertical transitions. 

For more information on transition dipoles and OSs see section 2.5.5. The chemical 

structures of the five molecules can be found in section 4.1. Side and end chains were 

set to CH3 and -OCH3 respectively for the simulations. It has to be considered that the 

software optimised structures were not as flat as depicted in the schematic drawings. 

The molecular conformations and the corresponding torsion angles will be discussed 

later in this chapter. In Table 4.3 the obtained energies for the five structures in their 

ground state (GS) and excited state (ES) as well as their absorption and emission peaks 

and corresponding oscillator strength are summarised. From the GS configuration one 

can obtain information about the absorption transition from GS to ES, from the ES 

configuration information about emissive transitions, hence from ES to GS.  

It is stressed again that the obtained energies for HOMO and LUMO are overestimated 

by a factor of about two. The Zoa software corrected absorption and emission energies 

accordingly. However the values for HOMO and LUMO levels given in Table 4.3 are 

the original overestimated ones. 
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Table 4.3: Energies and oscillator strengths for the five compounds in the gas phase. Only vertical 

transitions were taken into account. Note that the absorption and emission energies are about half 

the difference between HOMO and LUMO. 

Compound State 
HOMO 

(eV) 

LUMO 

(eV) 

Max Energy 

in Absorption (GS) 

or Emission (ES) 

(eV) 

Max.Wavelength 

In Absorption (GS) 

or Emission (ES) 

(nm) 

Oscillator 

Strength 

GS -6.690 -0.547 3.099 400 2.4578 
MPA157 

ES -6.386 -0.876 2.652 468 2.6297 

GS -6.495 -0.753 2.770 448 3.0735 
PV237 

ES -6.149 -1.088 2.339 530 3.3018 

GS -6.407 -0.854 2.636 470 4.3155 
PV316 

ES -6.131 -1.168 2.229 556 3.9029 

GS -6.410 -0.768 2.704 459 4.0166 
PV353 

ES -6.170 -1.061 2.333 532 4.0137 

GS -6.475 -0.695 2.804 442 2.7806 
SPK382 

ES -6.216 -1.000 2.421 512 3.0005 

 

For the compound MPA157 the absorption maximum lies at 400 nm or equivalently at 

3.099 eV. The OS of the absorption is 2.4578 and the HOMO and LUMO levels in the 

GS lie at -6.690 and -0.547 respectively. The OS for the ES is larger than for the GS, 

which means that the emissive transition is stronger and more likely to take place than 

the absorption transition. OS values usually do not exceed the value of “1”.51 The larger 

values obtained therefore might also be due to the overestimation of the HOMO and 

LUMO energies or the absence of a surrounding medium. The values obtained however 

can still be compared with each other as the same algorithm was used. In Figure 4.11 

the oscillator strengths for GS and ES from Table 4.3 are plotted for better comparison.  
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Figure 4.11: Oscillator strengths for the twisted optimised molecules in a gas phase for transitions 

from the ground state (GS) and excited state (ES).  

It is interesting that the OS is increasing with molecule length as MPA157 is the 

shortest and PV316 the longest molecule. For the three shorter LCs (MPA157 < 

SPK382 < PV237) the ES oscillator strengths are as high as the values for the GS. For 

the two longer molecules (PV353 < PV316) the opposite result is observed. 

With the visualisation software Zoa we were able to plot the p-orbitals of the HOMO 

and LUMO levels in the GS and ES. The result for the GS of MPA157 is shown in 

Figure 4.12. 

 

Figure 4.12: The p-orbitals of the modelled compound MPA147 in the GS. The picture above shows 

the HOMO and the picture below the LUMO level. The colour of the spheres indicates the sign of 

the wavefunction of the orbital. 

This representation however is not very practical as the interaction between HOMO and 

LUMO level is not directly apparent. Therefore the transition dipole densities, 

corresponding to the strength of a transition between the orbitals, of the HOMO and 
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LUMO level are plotted. The transitions with the highest OS from HOMO to LUMO for 

GS and from LUMO to HOMO in the ES are plotted, see Figure 4.13 to Figure 4.22. 

The size of the spheres is representative of the strength of a transition dipole from 

HOMO to LUMO level. In the figures red represents a positive and blue a negative sign 

of the dipoles. The sphere sizes are not to be scaled when comparing different pictures.  

 

Figure 4.13: MPA157 transition dipole densities, GS. 

Figure 4.13 shows the distribution of the resultant transition dipole densities in the GS 

from the two orbital plots of the HOMO and LUMO level in Figure 4.12. In Figure 4.14 

the densities obtained for the transitions between the orbitals of the LUMO and HOMO 

plot of the ES (analogue to Figure 4.12) are shown. 

 

Figure 4.14: MPA157 transition dipole densities, ES. 

The transition dipole densities are concentrated on the thiophenes and the fluorenes. 

This is valid for both configurations GS and ES. Hence the charges involved in 

absorption and emission processes can be found mainly on these units. 

Furthermore the torsion angles on the optimised structures between benzene, thiophene 

and fluorene units were measured, see Table 4.4 to Table 4.8. The angle was measured 

between 4 atoms on the molecule. The starting point was always the sulphur on a 

thiophene and the end point a carbon atom three steps away going either clockwise or 

anti-clockwise. 
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Table 4.4: MPA157 torsion angles. 

Compound State 
Benzene-

Thiophene 

Thiophene-

Fluorene 

Fluorene-

Thiophene 

Thiophene-

Benzene 

GS 26.79° 25.59° 25.61° 26.67° 
MPA157 

ES 0.10° 0.18° 0.19° 0.09° 

 

It is striking that in the GS all torsion angles lie around 25° but in the ES they are all 

close to 0°. This is a good indication of how different the molecular conformation of 

ground and excited states can be. A large difference in nuclear conformation means also 

a large Stokes shift, see section 2.5.1. This explains the difference in the modelled 

absorption and emission peaks presented in Table 4.3. 

In Figure 4.15 and Figure 4.16 the transition dipole densities of PV237 for GS and ES 

are plotted. The measured torsion angles are listed in Table 4.5. 

 

Figure 4.15: PV237 transition dipole densities, GS. 

 

 

Figure 4.16 PV237 transition dipole densities, ES. 

As in the case of MPA157, HOMO to LUMO transitions and vice versa mainly take 

place on the thiophene and fluorene units. The torsion angles however do not all 

become close to zero in the ES. They change by about 13- 16° between the GS and ES 

for the outer rings compared to a 26° change to zero in the centre. Hence the nuclear 

conformation on the outer parts changes less than in the middle of the molecule during a 

transition. 
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Table 4.5: PV237 torsion angles. 

Compound State 
Benzene-

Thiophene 

Thiophene- 

Thiophene 

Thiophene- 

Fluorene 

Fluorene-

Thiophene 

Thiophene- 

Thiophene 

Thiophene-

Benzene 

GS 27.53° 25.63° 26.40° 26.11° 25.40° 27.37° 
PV237 

ES 14.31° 0.80° 0.07° 0.07° 0.43° 11.03° 

 

This shows that the end parts of the PV237 molecule contribute less to the charge 

transfer than the centre. 

In Figure 4.17 and Figure 4.18 the transition dipole densities for GS and ES of PV316 

are plotted. 

 

Figure 4.17: PV316 transition dipole densities, GS. 

 

 

Figure 4.18: PV316 transition dipole densities, ES. 

Unlike the MPA157 and PV237 cases the transition densities are not symmetrically 

distributed. This is probably due to slight bond variations, which favour one side of the 

molecule. This asymmetric distribution does not affect other simulated values like OS 

and transition energies and is therefore not considered any further. It is however notable 

that most of the charge transfer takes place on the thiophene units. The outer fluorenes 

show only small densities (spheres). The asymmetry is also mirrored in the asymmetric 

change of the torsion angles when going from GS to ES, see Table 4.6. 
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Table 4.6: PV316 torsion angles. 

Compound State 
Benz.-

Thio. 

Thio.-

Fluor. 

Fluor.- 

Thio. 

Thio.- 

Thio. 

Thio.-

Fluor. 

Fluor.-

Thio. 

Thio.- 

Thio. 

Thio.-

Fluor. 

Fluor.-

Thio. 

Thio.-

Benz. 

GS 27.16° 25.86° 25.39° 5.32° 26.36° 26.17° 22.10° 25.25° 25.72° 26.85° 
PV316 

ES 23.64° 19.44° 0.10° 0.15° 0.10° 0.64° 0.04° 17.82° 25.08° 24.56° 

 

The outer angles change about 4- 12° and the charge transfer in concentrated in the 

centre of the molecule In Figure 4.19 and Figure 4.20 the transition dipole densities for 

GS and ES on the PV353 molecule are plotted. 

 

Figure 4.19: PV353 transition dipole densities, GS. 

 

Figure 4.20: PV353 transition dipole densities, ES. 

The banana shape of the optimised structure is not very realistic as the side chains on 

the fluorenes would rather repell than attract each other. However this configuration 

showed the lowest potential energy in the GS and was therefore not abandoned. The 

transition densities are distributed symmetrically and like for PV316 the greatest 

transition densities are mainly found on the thiophenes. The torsion angles listed in 

Table 4.7 also show symmetric behaviour.  
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Table 4.7: PV353 torsion angles. 

Compound State 
Benzene-

Thioph. 

Thioph.-

Fluorene 

Fluorene-

Thioph. 

Thioph.-

Fluorene 

Fluorene-

Thioph. 

Thioph.-

Fluorene 

Fluorene-

Thioph. 

Thioph.-

Benzene 

GS 26.34° 24.91° 27.19° 26.17° 25.16° 27.50° 24.63° 25.83° 
PV353 

ES 22.01° 18.20° 0.99° 0.38° 0.08° 0.61° 14.09° 21.48° 

 

For the centre part between the thiophenes the angles change by about 25 – 27° when 

going from GS to ES. The outer angles change by only about 4- 10°. The transition 

dipole densities of GS and ES for SPK382 are shown in Figure 4.21 and Figure 4.22. 

 

Figure 4.21: SPK382 transition dipole densities, GS. 

 

 

Figure 4.22: SPK382 transition dipole densities, ES. 

As for the other molecules the strongest transitions can be found on the thiophenes and 

the centre fluorene. The molecule is much shorter than PV316 and PV353 so that the 

ends are closer to the fused thiophenes and hence are more involved in the charge 

transfer. This is mirrored in the change of torsion angle, see Table 4.8. 

Table 4.8: SPK382 torsion angles. 

Compound State 
Benzene-

Thiophene 

Thiophene-

Fluorene 

Fluorene-

Thiophene 

Thiophene-

Benzene 

GS 27.02° 25.80° 26.25° 28.07° 
SPK382 

ES 6.40° 0.30° 0.43° 7.64° 

 

The outer angles change about 20° compared to the angles in the centre which change 

about 25 – 26°. This difference is not very large so almost the whole molecule is in 
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involved in the transfer processes. So in general one can say that the highest transition 

dipole densities are situated on the thiophenes. Except for PV316 all densities are 

symmetric in their strength but not in their sign. For all molecules the states are fully 

delocalised as the transition densities are spread along the backbone. 

For comparison the experimental absorption and photoluminescence (PL) spectra from 

the five compounds in toluene solution as well as their simulated spectra are presented 

in Figure 4.23 and Figure 4.24. A Lorentian shape with a small half width was chosen to 

represent the simulated absorption and emission peaks, though in reality the spectra are 

much broader. Further broadening was not included to facilitate distinction between 

experimental and modelled spectra. 
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Figure 4.23: Experimental absorption spectra of the compounds in a toluene solution as well as the 

simulated absorption spectra (dashed lines). The small width of the simulated spectra is due to the 

arbitrary fit that was chosen when plotting the data. 

In general one can say that the absorption spectra of organic molecules experience a 

bathocromic shift (bandgap decreases) with increasing chain length.87 This trend was 

also observed for both experimental and simulated data for our LCs. Apart from the 

results for MPA157, experimental and simulated absorption peaks differ by about 40 

nm from each other. This is not surprising as already mentioned; simplified HF was 

used, which overestimates the HOMO and LUMO energies. Furthermore the molecules 

were simulated in a gas phase at 0 K, hence thermal vibrations and solvent influences 

were not considered. The spectra however are still a good indication that the simulated 
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results are not very far off so that further investigations like dimer configurations can be 

made on the basis of this first optimisation. The simulated and experimental 

photoluminescence (PL) emission spectra are shown in Figure 4.24. 
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Figure 4.24 Experimental photoluminescence (PL) emission spectra of the compounds in a toluene 

solution compared to the simulated and later broadened emission spectra of the five compounds in 

a gas phase (dashed lines). For MPA157 no experimental PL spectrum in solution was available and 

a spectrum of GJR130, which has the same chromophore core, was plotted instead. 

As was observed in absorption, the emission peak moves to longer wavelengths with 

increasing chain length. The experimental and simulated Stokes shift was calculated for 

each molecule; see Table 4.9. From the absorption the maximum peak and from the 

emission the central peak, both corresponding to the 0-1 transition, are used to calculate 

the Stokes shift. For further information on the Stokes shift and the comparability of 

simulated and experimental values see Chapters 2.5.1 and 2.5.2. 
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Table 4.9: Experimental and simulated absorption and emission peaks and the calculated Stoke 

shifts for the compounds in solution (exp.) or in gas phase (sim.). Note that for the experimental PL 

peaks the centre peak and not the PL maximum was considered. 

Compound 

Experimental  

Central Peak 

(nm) 

Simulated Peak 

(nm) 

Experimental 

Stokes Shift 

(nm) 

Simulated 

Stokes Shift 

(nm) 

 Absorption Emission Absorption Emission   

MPA157 394 464 400 467 70 67 

PV237 425 509 447 530 84 83 

PV316 439 526 470 556 87 86 

PV353 432 507 458 531 75 73 

SPK382 409 481 442 512 72 70 

 

The experimental and simulated Stokes shifts agree with each other within 3 nm. In 

Figure 4.25 the simulated absorption spectra of the PV316 and PV353 molecules in the 

twisted and the straightened configuration are shown.  
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Figure 4.25: Comparison of the absorption spectra of PV316 and PV353 for the optimised twisted 

and the straight molecule, where all torsion angles were set to 0°. 

The absorption spectra of the straightened molecules are red shifted; 28 nm for PV316 

and 26 nm for PV353. In the straightened molecules the interaction of the atoms with 

each other is different as in the twisted configuration; hence the orbital overlap is not 

the same. This affects the HOMO and LUMO energies (similar as when going from 

monomer to dimer, see Figure 2.24) and thus the absorption wavelength. For 

comparison the simulated characteristics values for both twisted and straightened 

PV316 and PV353 molecules are listed in Table 4.10. 
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Table 4.10: Simulated values for twisted and straightened structures in their GS. 

Compound State 
HOMO 

(eV) 

LUMO 

(eV) 

Peak Absorption  

Energy 

(eV) 

Peak Absorption  

Wavelength 

(nm) 

Oscillator 

Strength 

PV316 

straight 
GS -6.314 -0.975 2.488 498 4.4753 

PV353 

straight 
GS -6.331 -0.894 2.563 483 4.5099 

PV316 

twisted 
GS -6.407 -0.854 2.636 470 4.3155 

PV353 

twisted 
GS -6.410 -0.768 2.704 459 4.0166 

 

Beside the red shift, which is mirrored in the lower energy values, a slightly higher OS 

is observed, which would mean that the flat configuration is favourable in terms of 

efficiency. The reason for these differences might also be due to the fact that the outer 

fluorene units are rotated about 180° for this simulation to correct for e.g. the banana 

shape of PV353 in Figure 4.19. The new configuration is displayed in Figure 4.26 and 

Figure 4.27 where the transition dipole densities for PV316 and PV353 respectively are 

shown. 

 

Figure 4.26: Transition dipole densities for the straightened PV316 molecule in its GS.  

 

 

Figure 4.27: Transition dipole densities for the straightened PV353 molecule in its GS. 

The highest densities are located on the thiophene units similarly to the twisted 

molecules. Hence the outer parts of the molecule do not play an important role in the 

transfer of charges. Having investigated five molecules as monomers it is now of 

interest to simulate them in a dimer configuration. Therefore the compound PV316 and 

PV353 were chosen and modelled.  
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4.4.2 Dimer Characterisation  

When going from a monomer to a dimer configuration the energetic levels change due 

to the interaction of the molecular orbitals when brought closely together like shown in 

Figure 2.24 in section 2.4.5. This influences the emission and absorption wavelengths 

and transition intensities between HOMO and LUMO levels. The OS of the transitions 

can be used to compare between monomer and dimer configurations. A large OS 

indicates a strong transition, but one still has to consider which excited state (E.S.) is 

involved. Anti-cofacial or cofacial configurations are rarely encountered in crystalline 

structures, which is why the impact of the translation of one molecule along its long 

axis is investigated to assess the influence of packing geometry on charge transport.5 

In Table 4.11 the simulated characteristic values of the PV316 dimer for all shifts along 

the long axis are summarised. 
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Table 4.11: PV316 dimer ground state characteristics. 

Excited State 

E.S.# 

Shift 

(Å) 

HOMO 

(eV) 

LUMO 

(eV) 

Peak Absorption 

Energy 

(eV) 

Peak Absorption 

Wavelength 

(nm) 

Oscillator 

Strength 

1 0 -6.307 -0.978 2.454 506 0 

1 5 -6.303 -0.985 2.457 505 0.0002 

1 10 -6.293 -0.977 2.474 501 0.0001 

1 12 -6.285 -0.987 2.469 502 0.0001 

1 18 -6.288 -0.966 2.476 501 0.0005 

1 20 -6.293 -0.969 2.487 499 0.0004 

1 25 -6.309 -0.973 2.499 494 8.6864 

1 30 -6.305 -0.972 2.491 498 8.5940 

1 35 -6.305 -0.970 2.491 498 8.8661 

1 40 -6.300 -0.965 2.491 498 9.1065 

1 45 -6.308 -0.969 2.495 497 9.2027 

1 50 -6.311 -0.972 2.499 496 9.2675 

1 55 -6.313 -0.973 2.502 496 9.2624 

1 60 -6.314 -0.974 2.503 495 9.1693 

       

2 0 -6.307 -0.978 2.557 485 9.4906 

2 5 -6.303 -0.985 2.530 490 8.8073 

2 10 -6.293 -0.977 2.524 491 8.2122 

2 12 -6.285 -0.987 2.521 492 8.0004 

2 18 -6.288 -0.966 2.515 493 8.4182 

2 20 -6.293 -0.969 2.510 494 8.6239 

 

For shifts from 0 – 20 Å the energies for E.S.#1 and #2 are given since the former is a 

dark state in this configuration with an OS = 0. Note that the HOMO and LUMO 

energies for E.S.#1 and #2 are the same, the transition energies however are not. This is 

because the absorption energies are composed from different HOMO to LUMO 

transitions. E.S.#1 might mainly be dominated by a HOMO to LUMO and E.S.#2 by a 

HOMO to LUMO+1 transition. See section 3.4.2 for a more detailed description on how 

the E.S.s transitions are composed. For shifts between 0 to 20 Å the E.S.#1 shows OSs 

close to zero and the E.S.#2 is the state mainly involved in the absorption transition. 

Most charges will be transferred to the lower E.S.#1 and since the difference in energy 

(E.S.#2 – E.S.#1) is larger than 25 meV it is very unlikely that some might are 

transferred back to E.S.#2. Emission however is most likely to take place from the 

lowest E.S. to the GS (Kasha’s rule).52 If the coupling between these two states is low 

light emission is strongly attenuated.83 This means that a displacement of 25 Å and 
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higher between the two molecules is favourable for highly emissive transitions since 

then the E.S.#1 is then optically allowed. For the straightened PV316 monomer the OS 

= 4.4753. In the dimer for shifts from 25 to 60 Å the OS is about twice as large, hence 

for this configuration transitions from HOMO to LUMO levels are twice as likely to 

take place. In a dimer there are more charges to interact with each other than in a 

monomer this result in not unreasonable. For 0 to 20 Å shifts however the OS = 0, 

which means that the monomer would be the preferable configuration opposed to the 

dimer. One therefore cannot generalise that a dimer is more efficient than a monomer or 

vice versa.  

The OSs of the four lowest E.S. against the longitudinal shift are plotted in the left 

graph in Figure 4.29. 
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Figure 4.28: Variation of the oscillator strengths of the four lowest excites states (E.S.#1 being the 

lowest) with a longitudinal shift of the two molecules in the PV316 (left) and PV353 (right) dimer. 

The switch of OS from E.S.#2 to E.S.#1 between 20 to 25 Å is also observed for the 

PV353 dimer in the right graph. So for both dimers larger shifts are favourable for 

efficient light emission as the interaction between the lowest excited state and the GS is 

not forbidden. For molecules with rod-like chromophores two different arrangements, 

called H- and J-aggregate, are often observed. In a stack (H-aggregate), which would 

correspond to our 0 – 20 Å shifts, chromophores tend to show a bathochromic shift. 

When aligned beside each other (J-aggregate), which corresponds to our 25 – 60 Å 

shifts, they display a hypsochromic shift.88 This effect is also observed with the PV316 

dimer as the absorption wavelength in the H-type is smaller than in the J-type. Similar 

results were obtained with the PV353 dimer. The simulated characteristics for the GS of 

PV353 are summarised in Table 4.12. 
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Table 4.12: PV353 dimer ground state characteristics. 

Excited State 

E.S. number 
Shift 

HOMO 

(eV) 

LUMO 

(eV) 

Peak Absorption  

Energy 

(eV) 

Peak Absorption  

Wavelength 

(nm) 

Oscillator 

Strength 

1 0 -6.314 -0.907 2.520 492 0.0002 

1 5 -6.324 -0.899 2.532 489 0.0022 

1 10 -6.304 -0.901 2.539 488 0.0003 

1 15 -6.325 -0.907 2.542 487 0.0003 

1 20 -6.337 -0.907 2.570 482 0.0337 

1 25 -6.340 -0.908 2.568 483 8.7080 

1 30 -6.340 -0.908 2.561 484 8.8378 

1 35 -6.343 -0.908 2.559 485 9.0740 

1 40 -6.342 -0.907 2.562 484 9.1792 

1 45 -6.340 -0.905 2.566 483 9.2757 

1 50 -6.339 -0.903 2.571 482 9.2697 

1 55 -6.336 -0.900 2.572 482 9.1895 

       

2 0 -6.314 -0.907 2.632 471 9.5529 

2 5 -6.324 -0.899 2.608 476 8.7124 

2 10 -6.304 -0.901 2.596 478 8.2060 

2 15 -6.325 -0.907 2.589 479 8.3518 

2 20 -6.337 -0.907 2.576 481 8.6841 

 

One can conclude that both PV316 and PV353 display stronger absorption transitions in 

an anti-cofacial dimer than in a monomer, this will also lead to a strong emission in a J-

aggregate. 

The transition dipole densities for the excited state with the largest OS are plotted for 

the 0 Å shift of the PV316 and the PV353 dimer in Figure 4.29 and Figure 4.30 

respectively. 

 

Figure 4.29: Transition dipole densities of E.S.#2 on the PV316 dimer with 0 Å shift. 
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Figure 4.30: Transition dipole densities of E.S.#2 on the PV353 dimer with 0 Å shift. 

The transition dipole densities are located on the inner thiophene units as found on the 

PV316 and PV353 monomer. This is observed for all E.S.s that were simulated. For 

larger shifts, where only the outer parts overlap, where thiophenes are absent, one hence 

can expect that the coupling is low as the thiophenes are then too far away from each 

other to interact. 

4.5 Coupling in Dimers 

Different interaction mechanisms, the excitonic and supermolecular coupling as well as 

the charge transfer integral, were calculated for longitudinal offsets in a PV316 and 

PV353 dimer 

4.5.1 Excitonic Coupling 

The excitonic coupling contribution to the intermolecular interaction in the dimer was 

calculated. As discussed in 2.4.6 excitonic coupling involves only transitions from 

HOMO to LUMO on one molecule and a dipole-dipole interaction between the two 

molecules. The results for the excitonic coupling change with shift along the long axis 

are presented in Figure 4.31 for the PV316 dimer and the PV353 dimer. The excitonic 

coupling is obtained from the interaction of the transition dipoles; hence the sign of the 

coupling value can change due to the orientation of the dipoles. For the evaluation only 

the magnitude of the coupling value and not its sign is important. 
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Figure 4.31: Excitonic coupling between two molecules in an anti-cofacial dimer configuration with 

longitudinal shift. Graph shows the PV316 dimer (triangles) and the PV353 dimer (squares).  

The excitonic coupling in the PV353 dimer is strongest at 0 Å and equal to zero at a 8 Å 

shift. Then the coupling increases again and fluctuates around zero for all larger offset 

positions above 30 Å. This is plausible as the charges, when looking at the transition 

dipole densities (Figure 4.30), are mainly concentrated in the centre of each molecule. 

After a shift of 30 Å only the end chains still overlap, so there is nothing to interact with 

each other. PV316 however does not show the same behaviour although its charges are 

also situated in the middle of the molecule. This behaviour is not explainable and needs 

further investigation. The excitonic coupling for the 0 Å shift is twice as large in the 

PV316 dimer as for the PV353 dimer. The only difference between the centres of the 

molecules is that PV316 has bithiophenes instead of the fused thiophenes of PV353. As 

on the thiophene units most of the charge transfer takes place one can conclude that 

bithiophenes are more efficient opposed to fused thiophenes. This assumption however 

only can be made for the anti-cofacial dimer. In more realistic arrangements, with 

twisted molecules and e.g. horizontal displacement the coupling might be very different. 

Considering that kT ≈  25 meV the excitonic coupling values are very low with a 

maximum of 18.6 meV and 43.9 meV at 0 Å for PV353 and PV316 respectively.  

4.5.2 Supermolecular Coupling 

To obtain a value for the supermolecular coupling the transition energies of the two 

lowest optically allowed excited states (E.S.) are subtracted from each other and then 

divided by two.43 As already shown in section 4.4.2 the lowest excited state E.S.#1 is 

optically forbidden in a H-aggregate arrangement for both the PV316 and PV353 dimer. 
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For the coupling calculation the corresponding “partner” state for either E.S.#1 or 2 had 

to be determined, since it is not automatically the next lowest E.S. In Figure 4.32 the 

supermolecular coupling results for both molecules are shown.  
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Figure 4.32: Supermolecular coupling for PV316 (squares) and PV353 (circles) dimers shifted along 

their long axis. 

The coupling values are about four times larger than those from the excitonic coupling. 

This is normal as charges are more “free” to move in the supermolecular approach and 

hence can interact more easily with the environment. The maximum coupling value of 

0.16 eV is found for PV353 at a shift of 20 Å. For comparison a co-facial dimer 

consisting of two polyene chains with 6 carbon atoms and separated by 6 Å had a 

simulated supermolecular coupling value of about 0.22 eV.83  

In both dimers the coupling is lowest for a shift of 10 Å. An explanation for this drop 

can be found from the plots of the transition dipole densities for the two E.S.s used to 

calculated the splitting these were the states E.S.#2 and E.S.#4 for the 0 Å shift in the 

PV316 dimer. Their transition dipole densities are shown in Figure 4.33 and Figure 4.34 

respectively.  

 

Figure 4.33: Transition dipole densities of E.S.#2 for the 316 SM dimer with a lateral shift of 0Å. 
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Figure 4.34: Transition dipole densities of E.S.#4 for the 316 SM dimer with a lateral shift of 0Å. 

For the 0 Å anti-cofacial PV316 dimer the highest transition densities are directly 

opposite to each other and the short range through bond interaction is strong. Looking at 

the densities for the 12 Å shift in Figure 4.35 and Figure 4.36 one can see that the 

densities are not symmetrically distributed like for the 0 Å shift. For both excited states 

the highest densities are opposite to regions with very small transition dipole densities, 

so the coupling is low.  

 

Figure 4.35: Transition dipole densities of E.S.#2 for the 316 SM dimer with a longitudinal shift of 

12 Å. 

 

Figure 4.36: Transition dipole densities of E.S.#3 for the 316 SM dimer with a longitudinal shift of 

12 Å 

A redistribution of the densities is also the reason for the increase in coupling for the 20 

Å shift. The transition densities of the two excited states involved are shown in Figure 

4.37 and Figure 4.38. In E.S.#4 the two highest densities face each other so that the 

coupling can be more efficient than for the 12 Å dimer arrangements.  

 

Figure 4.37: Transition dipole densities of E.S.#2 for the 316 SM dimer with a longitudinal shift of 

20 Å 
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Figure 4.38: Transition dipole densities of E.S.#4 for the 316 SM dimer with a longitudinal shift of 

20 Å 

It has to be considered however that not only the presence and strength of the transition 

dipole densities influence the coupling, but also the sign of the transitions. The 

supermolecular coupling of the PV353 dimer shows a similar behaviour but with 

slightly stronger coupling values. 

4.5.3 Charge Transfer Integral 

The charge transfer integral for the PV316 dimer was calculated with shifts from 0 to 60 

Å. Here one molecule represents the donor and the other the acceptor though both 

molecules are of the same structure. As shown in Figure 2.26 charge transfer involves 

the excitation of the host followed by either hole transfer between HOMO levels or 

electron transfer between LUMO levels of the donor and the acceptor. With the charge 

transfer integral one can determine the electronic coupling between two states.44 
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Figure 4.39: Charge transfer integral in the PV316 dimer for HOMO (stars) and LUMO (circles) 

level. 

The coupling rate from HOMO to HOMO is slightly higher than from LUMO to 

LUMO with a maximum at 12 Å of 0.022 eV for the HOMO and 0.017 eV for the 
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LUMO level. This is expected as for small molecules or oligomers the splitting of the 

HOMO level is higher as for the LUMO level and the transfer therefore larger.40 

For comparison for a tetracene co-facial dimer with 4.5 Å spacing a transfer integral 

value of about 0.04 eV for holes and 0.03 eV for electrons was simulated.89 It is also 

noted that the charge transfer is high when supermolecular coupling is low and becomes 

zero with a shift of 40 Å. This makes sense when we consider that with increasing offset 

the overlap of the orbitals involved decreases. It has been shown that even with small 

molecular displacements significant changes in the transfer integrals have been 

observed.89  

It is difficult to compare coupling values from different simulations and research groups 

as the same dimer configuration is seldom used. The length of the molecules 

investigated and the distance between them changes the coupling values significantly. It 

is however encouraging that our simulated coupling values are not far off from the 

published results. 

4.6 Summary Chapter 4 

We have simulated the transition energies and oscillator strengths for a number of 

nematic molecules. We find that the OS increases with molecular size. In the ground 

state the molecules have a twisted configuration with torsion angles of about 25°. A 

planar configuration is obtained in the excited state. A parallel anti-cofacial dimer 

configuration was used to simulate the optical transition in a thin film. The ground state 

OS was modelled as a function of long offset of the molecules to investigate the effect 

of nematic ordering. The OS was effectively independent of the offset. However for 

displacement ≤  20 Å the lowest energy transition is forbidden, whereas it is allowed for 

larger offsets. Assuming a similar result for emissive transitions we can conclude that 

efficient solid state PL requires a long offset. The nematic material has random offsets 

so some but not all molecules will show efficient radiative decay. This might be one of 

the reasons why the optical quantum efficiency in the solid state is significantly less 

than in solution for all of our materials, see Table 4.2. Another cause can be quenching 

due to exciton diffusion to non-radiative defects within the film. These defects can be 

induced during film preparation and are not present in solution due to the free 

movement of the molecules.1 
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5 White OLEDs 

White organic light emitting diodes (WOLEDs) are extensively researched for their 

application as backlights for liquid crystal displays (LCDs) and as solid-state lighting 

sources for room illumination.90; 91, 92 An advantage to common light sources like 

incandescent light bulbs or fluorescent lamps is their low power consumption, which is 

an important factor since the general public is becoming more energy-conscious.93 

Many different configurations have been investigated to achieve white emission from 

organic materials using either small molecules or polymers. Small molecules are 

vacuum deposited and devices with a pure single component,94 a host doped with red, 

green and blue chromophores,95, 96 a multilayered device97, 98 or stacked OLEDs were 

reported.99 Polymers offer the much cheaper solution based deposition procedures like 

ink-jet printing and spin coating.100 White light has been obtained with different 

polymer based compounds like polyaniline,101 polymer blends,102, 103 doped polymers,104 

co-polymers,105 and side-chain polymers.106 For LCDs backlights linear polarised white 

emission would be even more of advantage as then the loss due to the polariser 

incorporated is omitted (see section 2.2.4). Polarised white light has been achieved from 

mixtures of liquid crystalline oligomers in the glassy phase.107 Oligomers as well as 

polymers however have also the disadvantage of high glass transition temperatures and 

the possible mixing of layers in a multilayered structure.100 Our approach to create 

(polarised) white light is to blend two emissive LCs of different colour with each other. 

The properties of the LC allow uniaxial molecular alignment, which leads to polarised 

emission. Crosslinking of the LC layer forms a molecular network and renders the film 

insoluble.  

In this chapter the necessary preliminary tests and the production of polarised white 

light emitting diodes with in-house made materials are described. Several blue/green LC 

emitters were mixed with an orange/red LC emitter to create white emission. Polymer 

blends tend to phase separate.108 This would result in a non uniform emission of red and 

blue patches. Therefore first the miscibility of blends made from different ratios of the 

blue/green compound and red compound was tested. For our application a nematic 
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phase at room temperature was required as plane polarised emission can be obtained 

from an aligned LC phase. Therefore the phase for all blends from various compounds 

that gave white light was checked at room temperature using a microscope. 

The diodes made from these mixtures were then tested (procedure see section 3.3) in 

terms of brightness, efficiency, spectra, CIE colour coordinates and their stability and 

whether they gave polarised emission when aligned. 

5.1 Liquid Crystal Blends 

Miscibility tests with the blue/green compounds AW01 and SPK107 and the red 

compound SPK146 were carried out. Their chemical structures are given in section 4.1. 

Blends of different ratios were prepared according to the procedure described in section 

3.2.6. The clearing points from the neat compounds were found using the Differential 

Scanning Calorimetry (DSC) as described in section 3.1.1. SPK107 clears at 30°C and 

its glass transition temperature is Tg = 22°C. A crystallisation temperature was not 

measurable with the available equipment. The transition temperatures for AW01 are Cr-

N = 77°C, N-I = 111°C and Tg = 5°C and for SPK146 Cr-N = 180°C, N-I = 246°C and 

Tg = 76°C. A polarisation microscope (section 3.1.4) was used to determine whether the 

blends showed a nematic phase at room temperature. 
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Figure 5.1: Phase diagram of the clearing temperatures for blends of the blue/green compound 

SPK107 and the red compound SPK146. Complete miscibility of the nematic phases of both 

components is observed for all compositions in the phase diagram using mixtures based on mol %. 

The dashed line indicates the ideal behaviour. 

Figure 5.1 shows the clearing temperatures obtained from the blends of SPK107 and 

SPK146. By connecting the two clearing points of the neat compounds SPK107 = 30°C 

and SPK156 = 246°C through a dashed line the theoretical expected temperatures are 

indicated. The measured temperatures are all close to the ideal. This indicates that no 

phase separation occurred as one then would expect the compound with the higher 

clearing point (SPK146) to dominate the temperature curve. However this did not 

happen here, which proved a good miscibility of those two compounds. The phase 

diagram for the different blends of the blue/green emissive compound AW01 and the 

red emitter SPK146 is shown in Figure 5.2. 
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Figure 5.2: Phase diagram of the clearing temperatures for blends of the blue/green compound 

AW01 and the red compound SPK146. Complete miscibility of the nematic phases of both 

components is observed for all compositions in the phase diagram using mixtures based on mol %. 

The dashed line indicates the ideal behaviour. 

The observed clearing temperatures for the binary mixtures are in good agreement with 

the theoretical predicted curve. The blue/green emissive compound GJR130 (see Table 

4.1 for structure and transition temperatures) was also blended with the red SPK146 to 

obtain white emission. The lack of material however did not allow the investigation of 

several blend ratios. The ratio of 7:1 which corresponds to 88 % of blue/green 

compound and 12 % of red compound was found to work best to obtain white 

electroluminescence (EL). Photos of the nematic Schlieren textures at RT from blends 

of 88% AW01, GJR130 or SPK107 with 12 % SPK146 are shown in Figure 5.3. 

a)   b)   c) 

Figure 5.3: Photos from the nematic phases at room temperature from the blends of a) GJR130 and 

SPK146 R:7:1, b) SPK107 and SPK146 R:7:1, c) AW01 and SPK146 R:7:1 taken through a 

polarising microscope. 

As previously discussed in section 2.2.3 a nematic phase’s characteristics are the 2- and 

4- point brushes. These are found for all three different blends a), b) and c) at RT, which 
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proved complete miscibility of the blended compounds. Furthermore no phase 

separation despite the differences in clearing and melting point could be observed for all 

blend ratios of AW01 and SPK146 and SPK107 and SPK146. This and the formation of 

a nematic phase frozen in a glassy state at RT verify that the blends were 

homogeneously mixed.  

5.2 Spectral Overlap of Compounds 

The red emitter SPK146 itself showed a poor performance when tested in an OLED. 

The blue/green emitters apart from SPK107 performed much better. For a white 

spectrum the contributions of blue/green and red have to be relatively even. It is 

therefore essential that Förster energy transfer from the blue/green to the red molecule 

takes place to enhance the performance of the red emitter. Therefore the absorption 

spectrum of the red emissive compound should overlap with the PL emission spectrum 

of the blue/green emitter. See section 2.5.3 for more information on Förster transfer. A 

large overlap of absorption and emission most probably gives an efficient energy 

transfer. The absorption spectrum of SPK146 and the PL spectra of the blue/green 

emitters AW01, GJR130 and SPK107 are plotted in Figure 5.4. 
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Figure 5.4: Plot of the absorption spectrum of a SPK146 film and the PL emission spectra from 

films made of the blue/green emitters AW01 (turquoise triangles), GJR130 (blue squares) and 

SPK107 (green stars). An overlap for all blue/green PL spectra with the absorption of the red 

SPK146 is observed.  
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The PL spectra of all blue/green emitters overlap with the absorption spectrum of 

SPK146, so that efficient transfer can be expected. 

5.3 White OLED Devices 

The measured results for Organic Light Emitting Diodes (OLEDs) made from neat and 

blended films are now presented. The EL spectra were corrected for the nonuniform 

response of the spectrometer and smoothed afterwards (20 pts adjacent averaging). The 

spectral correction has a greater influence in the blue/green than in the red region. 

Maxima could be red shifted for about 30 nm due to this correction. The spectrometer 

used showed a pixel error at 450 and 650 nm. Dips in the spectra at these wavelengths, 

that were not smoothed out are therefore artificial. The different blue/green emitters 

were blended with a red emitter to create white EL. More background information on 

the compounds used e.g. their chemical structure and optical quantum efficiency can be 

found in Chapter 4. OLEDs were built from the blends as described in section 3.2. A 

sketch of the test rig is shown in Figure 3.15.  

5.3.1 OLED with AW01 and SPK146 

At the first run the OLED made from AW01 only (results in Figure 5.5) reached a 

brightness of nearly 800 cd cm-2 and an efficiency over 0.3 cd A-1. The spectrum had its 

maximum in the blue/green region around 450 nm, which changed at higher voltages. 

Note that actually a double peak at 440 and 463 nm was seen, which was probably due 

to the pixel error of the spectrometer. The data shown below is from the second run of 

the tested electrode. The spectrum of this compound tended to broaden and red shifted 

with time and the maximum moved from 468 to 515 nm.  
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Figure 5.5: Recorded current density, brightness and efficiency as function of voltage as well as the 

voltage dependent EL spectrum for an OLED made with the blue/green emitting compound AW01. 

The OLED’s test electrode had been running before at a voltage above 10 V so that the spectrum 

could stabilise. 

Graphs in Figure 5.6 show the characteristics of an OLED made from the red emitter 

SPK146. 
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Figure 5.6: Recorded current density, brightness and efficiency as function of voltage as well as the 

voltage dependent EL spectrum for an OLED made with the red emitting compound SPK146. 

The device showed an efficiency of lower than 0.01 cd A-1 and a brightness of less than 

30 cd m-2. The peak of the spectrum is at 650 nm. The two compounds characterised 

above were then blended with a ratio of (7:1) 88 % AW01 and 12 % SPK146 and an 

OLED fabricated. The device characteristics are shown in Figure 5.7.  
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Figure 5.7: Recorded current density, brightness and efficiency as function of voltage as well as the 

voltage dependent EL spectrum for an OLED made out of a blend of 88 % of the blue/green 

emitter AW01 and 12 % of the red emitter SPK146. 

At voltages below 9 V the device showed a weak red emission. After running the device 

above 11 V for several seconds the colour of the emission changed to white. This effect 

was not reversible and white emission was maintained for different voltages. The white 

OLED had a peak efficiency of about 0.2 cd A-1 and brightness of 350 cd m-2. The two 

emission peaks were at 463 and 600 nm. Figure 5.8 shows the CIE coordinates for 

different voltages obtained from an OLED made from the same blend ratio as well as a 

photo from the running device.  
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Figure 5.8: Left; measured CIE coordinates from an OLED made out of 88% AW01 and 12% 

SPK146 for different drive voltages. Right; photo of an OLED with on electrode running at 12 V, 

showing white EL emission from a blend of 88 % AW01 and 12 % SPK146. 

The CIE coordinates for an ideal white light source are x = 0.33 and y = 0.33 but an 

artificial light source like a fluorescent lamp (warm white) shows coordinates of x = 

0.44 and y = 0.40.92 The measured coordinates for the device were x = 0.38 ± 0.01 and y 

= 0.39 ± 0.01 at 12 V. The white emission varied very little between 7 and 14 V. This 
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colour stability is an important aspect for white light sources. It is especially important 

for laptop displays, which work with colour filters and where the brightness can be 

adjusted to save power. A change in the hue of background light would result in an 

overall colour shift in the display. 

Several white devices with the two compounds were made using also the blend ratio 7:1. 

A maximum brightness of about 850 cd m-2 with an efficiency of 0.40 cd A-1 and 

satisfying CIE coordinates with values between 0.32 and 0.40 were obtained, see results 

in Table 5.1. 

Table 5.1: Results from different OLEDs made from 88 % AW01 and 12 % SPK146 (7:1). 

CIE Coordinates at 10-12 V Device 

number 

Peak Brightness 

(cd m2) 

Peak Efficiency 

(cd A-1) x y 
Crosslinked 

Al63.2 280 0.21 0.35 0.38 no 

Al64.1 850 0.40 0.40 0.40 yes 

Al65.1 470 0.42 0.36 0.40 no 

Al66.1 560 0.21 0.32 0.39 yes 

 

The emission for the brightest device achieved (Al64 1) was closer to the yellow region. 

This red shift was caused through weighing errors as the scale used had a resolution of 

0.1 mg and very small quantities of 0.5 mg (red) - 4 mg (blue/green) were weighed. 

White emission was also obtained from crosslinked films with the devices AL64.1 and 

Al66.1. Crosslinking renders the films insoluble so that multilayered structures can be 

built without any problems. In Figure 5.9 the EL spectra of the OLEDs characterised 

before are shown in the left graph. The two peaks of the spectrum of the blend don’t 

coincide with the peaks of the neat compounds. Both peaks experienced a blue/green 

shift of about 50 nm. This rearrangement of the energy levels might be due to the 

interaction of the different molecule and orbitals as discussed in section 2.4.5. 
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Figure 5.9: The left graph shows the normalised EL spectra from OLEDs made from a) AW01 and 

b) SPK146 and c) their blend with a ratio of 88 % AW01 and 12 % SPK146. The right graph shows 

the same spectra again with two additional plots. Squares presenting the resultant normalised 

graph if 88 % of the normalised AW01 graph and 12 % of the normalised SPK146 graph are added 

together mathematically. Triangles show the result when 45 % AW01 and 55 % SPK146 are added 

together. 

The right graph superimposes EL curves of pure AW01 and SPK146 added together in 

different ratios (graphs with symbols). The squares show the result for the actual 

mixture, which was 88 % AW01 with 12 % SPK146. This spectrum is not very different 

to the one obtained using the pure AW01 device. The triangles show the combined EL 

spectrum from 45 % AW01 and 55 % SPK146. This ratio was chosen to reproduce the 

relative heights of the two peaks in the actual emission spectrum. Both of these 

simulations suggest that some energy is transferred from AW01 to SPK146. The 

recorded PL and EL spectra from the OLED AL64 are shown in Figure 5.10. The EL 

spectrum was recorded when the device was switched on the first time at a low voltage 

(9 V) and after running for a few seconds at 12 V. The PL spectra were recorded before 

and after the device was switched on. 
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Figure 5.10: PL and EL spectra from the OLED Al64. For the PL the film was excited with a HeCd 

laser at 325 nm. As a reference the PL spectrum of an ITO/PEDOT/TPBi/LiF layer is included to 

show that the peak at 388 nm is due to those materials. 

The peak in the PL curves at 388 nm originates from other layers in the device. The PL 

spectrum recorded before switching and the low voltage EL spectrum are similar; 

emission is mostly from the red SPK146 following energy transfer. However the red 

OLED emission is shifted to 614 nm opposed to the 619 nm PL peak. (We cannot 

comment on the shift in the peak emission wavelength near 450 nm because of the 

overlap with emission from other layers.) After operation at 12 V the blue/green 

emission increases in both EL and PL with the same red peak wavelength of 605 nm. 

5.3.2 Results for GJR130 and SPK107 with SPK146 

In Figure 5.11 characteristics of an OLED made of 88 % GJR130 and 12 % SPK146 

taken two weeks after the OLED was fabricated are presented. Figure 5.12 shows a 

device from 88 % SPK107 and 12 % SPK146.  
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Figure 5.11: Recorded current density, brightness and efficiency as function of voltage as well as 

the voltage dependent EL spectrum for an OLED made out of a blend of 88 % of the blue/green 

emitter GJR130 and 12 % of the red emitter SPK146. 
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Figure 5.12: Recorded current density, brightness and efficiency as function of voltage as well as 

the voltage dependent EL spectrum for an OLED made out of a blend of 88 % of the blue/green 

emitter SPK107 and 12 % of the red emitter SPK146. 

The same effect took place for both devices as already observed with the 

AW01/SPK146 device (Figure 5.7). The OLEDs emitted a weak red emission at lower 

voltages and after running the device above 11V for several seconds the colour of the 

emission changed to white. This effect was also not reversible. The for all devices 

observed change in the spectrum at higher voltages might be due to the degradation of 

SPK146 and needs further investigation. The GJR130 device showed an efficiency of 

about 0.18 cd A-1 and brightness of 290 cd m-2 and the SPK107 device showed and 

efficiency of about 0.18 cd A-1 and brightness of 125 cd m-2.  
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Figure 5.13: Left; normalised EL spectra from OLEDs made from a) GJR130 and b) SPK146 and c) 

their blend with a ratio of 88 % GJR130 and 12 % SPK146. Right; normalised EL spectra from 

OLEDs made from a) SPK107 and b) SPK146 and c) their blend with a ratio of 88 % SPK107 and 

12 % SPK146. 

In Figure 5.13 the EL spectra of the before characterised OLEDs made with GJR130/ 

SPK146 (left) and SPK107/SPK146 (right) and the spectra obtained from neat devices 

are shown. The two peaks of the spectrum of the blend don’t coincide with the peaks of 

the neat compounds. The red peaks experienced a hypsochromic shift of about 30 nm 

and 50 - 60 nm for GJR130 and SPK107 respectively. 

In Figure 5.14 the measured CIE coordinates for the different OLED results discussed 

are shown within a colour triangle. For comparison two reference points are inserted; 

the coordinates for an ideal white light and from a real light source in the laboratory, a 

fluorescent tube. 
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Figure 5.14: The CIE colour coordinates of the characterised OLEDs. GJR130, AW01, SPK107 and 

AW01 + 30 % SPK146 were recorded at a device voltage of 10 V, SPK107 + 12 % SPK146 at 7 V, 

SPK146 at 8 V, AW01 + 12 % SPK146 at 12 V, AW01 + 20 % SPK146 at 14 V and GJR130 + 12 % 

SPK146 at 17 V. 

The CIE coordinates of the white devices with the 12 % SPK146 contribution lie 

between the ideal white and the measured fluorescent tube. This shows that the mixing 

of the red SPK146 with all three blue/green components delivered satisfying white 

emission. Furthermore the measured coordinates for two AW01 OLEDs with a 20 and 

30 % SPK146 contribution are shown. Their measured coordinates are close to the 

result from the neat SPK146 OLED. The orange-reddish emission was even and stayed 

stable over several test runs and at higher voltages. The CIE coordinates of the 30 % 

OLED for example were x = 0.627 ± 0.006 and y = 0.358 ± 0.008 for drive voltages of 

6 – 12 V. The device efficiency of the blend compared to the neat device increased by a 

factor of about 10 and the brightness by a factor of about 3. The measured maximum 

efficiency and brightness for 20 % SPK146 were 0.1 cd A-1 and 79 cd m-2 and for 30 % 

SPK146 0.09 cd A-1and 89 cd m-2. This shows that the blend with the more efficient 

blue/green compound AW01 increases the performance of the red emitter SPK146. 

Unfortunately the efficiency of all devices is disappointingly low compared with 

monochrome Hull OLEDs ( ≤  12 cd A-1) and more particularly with white 

phosphorescent OLEDs with 1000 cd m-2 at 3.6 V).109 This is probably due to the 

unsuitable red dopant, SPK146, which may degenerate on operation. 
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5.3.3 Polarised White Light Emission 

Having shown in sections 5.3.1 and 5.3.2 that the blend of our blue/green and a red light 

emitting LCs gives white emission in an OLED it is of interest whether the liquid 

crystalline properties can be used to produce polarised white emission. Therefore the 

PEDOT layer on which the LC is spin-coated, was rubbed with a cloth according to the 

procedure described in section 3.2.5. The deposited LC then aligns itself parallel to the 

rubbing direction. The EL was measured through a polariser, which was turned for 90° 

for a second measurement to obtain the polarisation ratio EL( ll )/EL(-). EL( ll ) 

corresponds to the polariser being parallel to the alignment direction of the LCs and 

EL(-) being perpendicular to it. 
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Figure 5.15: Left; emission spectrum from a WOLED at 10 V made from a crosslinked blend of 88 

% AW01 +12 % SPK146 with the polariser being parallel (ll) being and perpendicular (-) to the LC 

alignment direction. Right; the resultant polarisation ratio EL(ll)/EL(-) 

The average polarisation ratio between 450 – 700 nm is 8:1 with a maximum of 10.5:1 

at 545 nm. Though the polarisation ratios are not very high they are large enough to 

achieve ratios of 100:1 with an additional clean up polariser. We reached a polarisation 

ratio of 30:1 with the same alignment procedure for neat PV316 films, so that 

improvement can be expected.6 

5.4 Summary Chapter 5 

To conclude, we have shown that blending our liquid crystals does not result in phase 

separation. A nematic structure frozen in a glassy phase at room temperature was 

observed for all for all investigated blends of three different blue/greens and a red 
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compound with mixture ratios of 7:1. OLEDs built from these blends showed white EL 

with CIE coordinates close to the ideal white. Crosslinking of the emissive layer 

rendered the film insoluble. Polarised EL was obtained from one of the blends upon LC 

alignment with a rubbed PEDOT layer beneath. The ability to form homogeneous 

blends and thus homogeneous white emission over the whole electrode makes our LCs 

candidates for room lighting and backlight sources for LCDs. They are solution 

processable, which is a much cheaper production technique than those required for 

conventional semiconductors. The possibility to create linear polarised white emission 

is an important aspect for LCDs, as the loss due to the required polarisers is lower, 

when the emission is already polarised. Work is required to significantly improve the 

efficiency of the OLEDs. 



132 

6 Surface Relief 

Gratings 

Surface relief gratings (SRGs) can be used for different purposes in organic thin film 

devices, e.g. to enhance the outcoupling efficiency or to act as feedback structures for 

DFB lasers. The outcoupling efficiency in organic LEDs is limited due to the high 

refractive index of the organic materials, see section 2.6.2.110 Several approaches have 

been made to improve the outcoupling efficiency. Techniques already applied in 

common semiconductor diodes can be used to extract trapped modes; e.g. the 

roughening of the glass surface, where the light is extracted, changes the critical angle.56 

Light that is normally reflected back due to total internal reflection is scattered at 

different angles and can leave the device. With this method an increased efficiency of 

about 50 % was observed in inorganic LEDs.56 Microlenses or additional coating layers 

on top of the glass surface, are further options to enhance the outcoupling of substrate 

modes.56 These techniques however are an additional cost factor. The advantage of an 

organic thin film device is that the layers involved are easily patternable. This gives an 

opportunity to redirect modes trapped in the ITO/emissive layer. Bragg gratings are a 

common method to scatter specific modes out of a layer. Most often a grating structure 

is induced on the layer below, so that the emissive layer deposited on top adopts the 

pattern. The change in film thickness due to the corrugation below changes the effective 

refractive index, as the latter depends on the thickness. The periodic index change acts 

as a grating and the modes are diffracted out at different angles, see section 2.6.3. Using 

corrugated structures below the outcoupling efficiency of the emissive layer has been 

improoved.110,111 However, they add additional processing steps or even an extra layer 

and complicate the device structure. The incorporation of the SRG directly onto the 

emissive layer is an alternative approach and could also be used for the feedback 

structures of organic DFB lasers.  
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In early work we noted that a surface relief grating (SRG) was spontaneously induced 

on irradiation of thin films of our light-emitting nematic LC with patterned UV light.6 In 

this chapter we investigate this intriguing phenomenon in detail. The liquid crystal 

PV237 was chosen for the SRG experiments as it has a very low glass transition 

temperature of 0° and hence may be able to move at room temperature (RT). Between 

the glass transition and the melting point, the material crystallises but this may occur 

over very long timescales. Thin films were exposed with a laser through a phase mask. 

Different film thicknesses and crosslinking conditions were tested to maximise the 

grating depth and to control its period. An AFM was used to characterise the surface 

morphology. The compound PV318 was also investigated. Its molecular structure and 

transition temperatures are given in Chapter 4. The most interesting results obtained are 

presented and discussed with reference to a numerical model of the transmitted light 

through the phase mask. The origin of the SRG is also discussed.  

6.1 Unexposed and Crosslinked Surfaces 

Firstly AFM scans on an uncrosslinked area and areas crosslinked at RT and 65°C were 

conducted to ensure that the observed surface changes were not just due to the 

crosslinking process itself. 
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Figure 6.1: Surface roughness of an uncrosslinked PV237 layer (circles) and films crosslinked at 

RT (triangles) and at 65°C (squares).  
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In Figure 6.1 the surface morphology of areas crosslinked at RT and 65°C and an 

uncrosslinked area is shown. The crosslinked areas show a significant increase in 

roughness. The sample temperature during crosslinking has no great influence on the 

roughness. This increase in roughness is not typical. Other photopolymerisable LCs e.g. 

PV318 show a much smaller increase in roughness following crosslinking.112  

With the help of the optical profiling system WYKO NT1100 by Vecco, which employs 

a non-contact white light interferometry, a 3D measurement of the surface profile up to 

several mm on the films is possible. Absolute measurements with the surface profiler 

made on soft surfaces like polymer - or LC films are unreliable as the profiler is 

designed to investigate thicker films made from harder substances like ceramics. The 

machine provides however an opportunity to directly compare uncrosslinked and 

crosslinked areas on the same film visually. A PV237 layer was crosslinked through a 

small slit at 65°C. A fluence of 1200 J/cm2, which is twice the fluence required, was 

used to crosslink the stripe. Figure 6.2 shows a 3D picture of the films surface. 

  

Figure 6.2: A 3D picture from a crosslinked stripe (middle) on an otherwise uncrosslinked 

(blue/green area) PV237 film. A glass slide with a PEDOT layer on top was used. as substrate. The 

picture was recorded with the optical profiler WYKO NT1100.  

The crosslinked stripe in the middle is much rougher than the uncrosslinked area on the 

right and left. The random distribution of the peaks looks like a typical speckle pattern, 

which appears when light is reflected by a rough surface, thus is redirected in different 

directions and then interferes constructively or destructively.113 A representative cross-

section from left to right across the sample is plotted in Figure 6.3. 
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Figure 6.3: Horizontal cross-section of the surface shown in Figure 6.2. The crosslinked and much 

rougher area in the middle is about 200 �m wide. 

The crosslinked stripe is about 200 �m wide. Its troughs are about 50 nm deep and its 

peaks between 40 and 120 nm high. The measured thickness of a PV237 film, which 

was prepared with the same settings, was about 80 nm ± 5 nm. The troughs and peaks 

possibly arise from the movement of the molecules from the trough area to form the 

peaks. The measured values are not reliable but it is clear that crosslinking changes the 

surface texture of the PV237 film. Furthermore no clear periodicity was visible. The 

induced roughness was random.  

6.2 Photoinduced Surface Relief Gratings 

Having ensured that the crosslinking procedure itself does not induce a periodic 

structure in the LC films, AFM measurements on the films crosslinked by irradiation 

through the two phase masks were carried out. For simplification a few abbreviations, 

summarised in Table 6.1, are used. 
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Table 6.1: Abbreviations used in Chapter 6. 

Expression Abbreviation 

surface relief grating SRG 

revolutions per minute rpm 

room temperature RT 

phase mask PM 

PM grating vector is parallel to the  

polarisation of the crosslinking laser 
ll  PM 

PM grating vector is perpendicular to the  

polarisation of the crosslinking laser 
⊥  PM 

PM period �pm 

crosslinked X 

uncrosslinked UnX 

cross-section CS 

 

The sample preparation and crosslinking settings are described in section 3.5 and 

background information on phase masks can be found in section 2.6.4. To avoid 

repetitions of the sample preparation the sample number S01, S02 etc. are referred to 

when discussing graphs and AFM pictures. The processing conditions for each sample 

as well as the main results obtained, are summarised in Table 6.2 towards the end of the 

grating section. As described in the experimental section, “ ll  PM setting” means that the 

polarisation of the crosslinking laser was parallel to the grating vector of the phase mask. 

For the “ ⊥  PM setting”, the polarisation was perpendicular to the PM vector. The (peak 

to peak) amplitude will be stated, which is the distance from peak to valley as a measure 

for the depth of any features.  

The AFM scans are presented in two perspectives. The 2D view from the top allows a 

good judgement on the roughness of the surface structures. The 3D picture provides a 

better impression on the depth and smoothness of surface periodicities. To improve their 

presentation the 3D pictures were often rotated and hence might not match the direction 

of the 2D profile. Measured distances in graphs are normalised to �pm. Two different 

PMs were employed. One was made to fit the wavelength of the laser that was used for 

the irradiation of the films and had a period of 530 nm. The other had a period of 1000 

nm but was not designed for the irradiation wavelength and hence had a very large zero 

order contribution. For each PM two different alignments, ⊥  PM and ll  PM were 

investigated.  
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6.2.1 Surface Relief Gratings with the 530 nm Phase 

Mask 

The results obtained using the ⊥  PM setting are discussed first and then the results 

from the ll  PM setting are given. Figure 6.4 shows an AFM scan from a LC film that 

was crosslinked through the 530 nm PM with ⊥  PM setting. The periodic corrugation 

of the surface is clearly visible.  

 

Figure 6.4: The inset shows the surface scan of a PV237 layer crosslinked by irradiation through 

the 530 nm period PM with ⊥  PM setting. The larger picture shows the same measurement in 3D. 

S09 

From previous experiments it is known that the laser power is insufficient to ablate parts 

of the surface. It was therefore presumed that the LC molecules diffuse to illuminated 

regions during exposure. This presumption will be addressed again later in this section. 

The measured period was 291 ± 40 nm with a maximum amplitude of 10 nm. Including 

the error, the period corresponds to the expected value; half the period (�pm/2) of the 

PM used, see Chapter 2.6. The sinusoidal interference pattern created by the PM hence 

was directly translated onto the surface. The large uncertainty range of ± 40 nm might 

be due to environmental influences like the vibrations in the glove box. Several 

different spots on the same perpendicular exposed area were measured giving a period 

of 520 ± 12 nm and amplitude of 28 nm. We will discuss later how these full periods 

can be accounted for. To ensure that the observed periods were correct the sample (S09) 

was also scanned with a scanning electron microscope (SEM), see Figure 6.5. 
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Figure 6.5: SEM scan of the surface scan of a PV237 layer crosslinked by irradiation through the 

530 nm period PM with ⊥  PM setting. S09 

The distance over 10 periods, indicated by the two white lines, was measured to be 3703 

nm, hence 370.3 nm per period. The SEM beam hit the surface under an angle of 45° so 

with trigonometry the actual period is 370.3 nm/cos 45° = 523.68 nm. This corresponds 

to the value of 520 ± 12 nm measured with the AFM.  
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Figure 6.6: CSs of surface corrugations on PV237 layers crosslinked at 65°C by irradiation through 

the 530 nm PM with ⊥  PM setting. Both CSs were taken from sample S09. The squares show a CS 

directly taken from the AFM scan in Figure 6.4. The distance along the CS was normalised to the 

PM period. 

A CS taken from Figure 6.4 (squares) is shown in Figure 6.6. The profile shows a 

relatively uniform corrugation of half the PM period and depth of about 10 nm. The 
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circles represent a profile with a sequence of smaller and larger peaks. The difference in 

peak height of 5 – 7 nm, which is almost a third of the tallest peak, is too great to 

neglect. Although small and large peaks vary with a periodicity of �pm/2, this pattern 

overall was a period of �pm. Figure 6.7 shows another example obtained with the ⊥  PM 

set up.  
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Figure 6.7: Left, an AFM scan of a PV237 layer crosslinked by irradiation through the 530 nm 

period PM with ⊥  PM setting. Inset shows the top view. Right, a CS taken from the AFM picture 

shows that the corrugation period changed from �pm/2 to �pm. S06 

The 2D profile from a CS taken from the AFM picture is also shown. The corrugation 

period changes abruptly from �pm (values 0 – 6) to �pm/2 (values 6 – 9). This is a 

commonly known PM effect, which can occur when a tilt between PM and sample is 

present. 62 

The half period corrugation was measured to be 285 ± 15 nm with an average amplitude 

of 19 nm. The larger amplitude of 30 nm was measured on another spot, which showed 

a period of about 560 ± 30 nm. It is noticed that when the grating period doubles the 

peak height increases as well. This phenomenon was observed also with the parallel 

setting and the 1000 nm PM and will be addressed again later in this section. In Figure 

6.8 the results obtained with the ll  PM setting are presented. 
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Figure 6.8: Left; an AFM scan of a PV237 layer crosslinked using the 530 nm PM with ll PM 

setting. The inset shows the top view. Right; a CS taken from the AFM scan (circles) is plotted. For 

comparison the perpendicular CS from Figure 6.6 is shown as well (triangles). AFM scan and CSs 

are both from sample S09. 

The corrugation obtained with the ll  PM setting (circles) has a period of 591 ±  27 nm 

with an amplitude of 55 ±  5 nm. In most experiments with the parallel setting only full 

PM periods were achieved. This is due to the imperfect superposition of the two 

interfering beams (± 1st order) as their polarisation is at an angle and not parallel to each 

other. This matter will be addressed again in the simulation section of this chapter. For 

comparison the CS shown in Figure 6.6, obtained with the ⊥  PM setting, is also plotted 

(triangles). Here the observation that the larger the period the larger the peak height is 

very distinct. Both results are from the same film but the corrugation from the ll  PM set 

up is 5 times deeper than the one from the ⊥  PM setting. The deepest grating obtained 

with the parallel setting was also measured on S09 and was 70 nm. In this case the 

period was found to be 385 ± 55 nm. This value is neither close to half the period nor to 

the full period of the PM. Its possible origin will be discussed at the end of the 

simulation section. The corresponding AFM scan is the one on the left in Figure 6.9. 
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Figure 6.9: AFM scans of a PV237 layer crosslinked using the 530 nm PM with ll  setting. On the 

left sample S09 and on the right S17 is shown. 

On the right in Figure 6.9 a scan from sample S17 with a measured period of 570 ± 20 

nm and amplitude of 56 nm is shown. As observed before and taking the error into 

account the grating period is significantly larger than the 530 nm period of the PM. 

S08 was crosslinked at RT to determine whether the formation of the corrugation is 

temperature dependent. Furthermore this film was cured at 65° afterwards and then also 

washed to ensure that it was fully crosslinked by irradiation. The smallness of the AFM 

scan area (max. 10 �m x 10 �m) made it impossible to investigate the same spot twice 

after a treatment, so the grating depth before and after washing could not be compared. 

Figure 6.10 shows the results for the three different surface conditions. The slight 

curvature is most likely due to dragging of the AFM tip during the scan. This effect is 

often observed when soft surfaces are investigated and is therefore not considered 

further. The SRG was obtained with crosslinking at RT, which shows that an elevated 

temperature of 65°C is not essential to create a grating. Multiple experiments however 

show that uniformity and depth of the corrugation is improved when the film was 

heated during crosslinking. Regarding the 3D picture one can see that some of the 

corrugation peaks, almost every second row, are about 3 – 5 nm lower than the others. 

This is often observed and is due to imperfect PM alignment with respect of the laser 

polarisation as will be shown in the simulated section.  
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Figure 6.10: Left; AFM scan from the sample S08. The area was crosslinked at RT using the 530 

nm PM aligned perpendicular. Right; CSs from the same area (not the same spot) after 

crosslinking (triangles), after curing at 65°C for 5 h (squares) and thereafter washing in toluene 

(stars). 

As the CSs show no large difference in height could be found between the area 

crosslinked at RT and the area scanned after curing. A maximum amplitude of 22 and 

24 nm respectively was found overall. The washing seems to increase the grating depth 

to 33 nm. The latter scan also shows that most of the film was crosslinked and rendered 

insoluble, as the corrugation itself remained. Similar results with the 530 nm PM ( ll  and 

⊥  PM setting) were also obtained with sample S11 concerning the curing after 

crosslinking. 

6.2.2 Modelling of the 530 nm Phase Mask 

As discussed in section 2.6.4 an ideal PM produces a sinusoidal irradiance pattern of 

period �pm/2. The sinusoidal interference pattern behind the real PM was simulated 

using the software MathCad Professional 2001. In the model many different parameters 

like the distance between the mask and the substrate, the polarisation of the laser and the 

incomplete 0th order suppression have to be considered. In 1995 Dyer et al. published an 

algorithm to calculate and visualise these dependencies.62 A modified version of this 

model was produced by Dyer and by us to simulate our case concerning the laser 

polarisation direction with respect to the grating vector. The laser wavelength was set to 

be 325 nm with 1 mrad beam divergence and infinite coherence. The PM period was set 

to 530 nm. The refractive index behind the mask was equal to 1. The mask is assumed 

to be perfectly aligned so that no tilt was present. Experimental values for the power of 

the zero and ± 1 orders (5 mW and 22 mW respectively) were measured with a power 
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meter behind the PM and used in the simulation. For comparison simulations with a full 

0th order suppression were carried out as well. There the 0th order was set to 0 and the ± 

1 orders were kept equal to 22 mW. The axes were defined as displayed in Figure 6.11.  

 

Figure 6.11: Axes definition used for the simulations.   

In all presented results the values along the x and y axes were normalised to the PM 

period. The z axis represents the light intensity (in arbitrary units) behind the mask. One 

thus has to be careful when comparing experimental and simulated results as their axis 

definitions are not the same. 

In Figure 6.12 the simulation results obtained with the laser polarisation perpendicular 

to the grating vector are shown. The interference pattern on the left was achieved with 

the experimental settings, the one on the right with full 0th order suppression.  

  

Figure 6.12: Power distribution (z) of light transmitted through the 530 nm mask with ⊥  PM 

setting, where x is parallel to the PM and y is the distance from the mask. Left: Experimental 

conditions. Right: Ideal case with complete 0th order suppression. All distances are normalised to 

the PM period. 

As expected from theory the experimental model shows a corrugation along the x axis 

with intensity peaks every half period. The height of the power peaks however varies 

periodically with increased distance (y) between mask and sample surface. The period is 



144 

3 times the PM period. This periodicity is due to the large 0th order contribution as it 

disappears when the 0th order is fully suppressed, as can be seen on the right of Figure 

6.12. From the experimental model representative CSs were plotted in Figure 6.13 for 

three different y values. The CS at larger y values shows a repetition of the same pattern 

and are therefore not plotted. 
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Figure 6.13: Cross-sections along the x-axis taken from the picture on the left of Figure 6.12 for 

three different distances. Red squares: y = 0, green circles: y = 0.75, blue triangles: y = 1.50. 

The plots showed that a periodicity of half the PM period is maintained even with 

increasing sample – mask distance, but the relative peak heights change. For y = 0 every 

second peak is almost 3 times larger than the peaks in-between. For y = 0.75 the peaks 

heights were almost equal and for y = 1.5 the inverse case to y = 0 is observed. This 

explains the various gratings depths and periods obtained within the experiments, 

assuming that the grating profile reflects that of the laser power distribution. Depending 

on how close the sample was to the mask surface different power patterns were present. 

Great changes in the interference pattern are possible over a relative small change in 

distance. For example only 397.5 nm lie between y = 0 and y = 0.75. Considering that 

the LC films were not perfectly even and tilts between sample and mask, e.g. in Figure 

6.7, were likely to be present the variations in grating amplitude found across the same 

crosslinked area also can be accounted for. Next the same simulations were carried out 

but with the ll  PM setting. The results are displayed in Figure 6.14. 
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Figure 6.14:. Power distribution (z) of light transmitted through the 530 nm mask surface with ll  

PM setting, where x is parallel to the PM and y is the distance from the mask. Left: Experimental 

conditions. Right: Ideal case with complete 0th order suppression. All distances are normalised to 

the PM period. 

The contrast between the peaks and troughs of the power pattern is lower than for the 

perpendicular case. This makes sense as the two beams were not parallel polarised and 

partly cancelled each other out. The periodicity in the y direction is the same as for the 

perpendicular case but not in the x direction. From the experimental model 

representative CSs for three different y values are plotted in Figure 6.15.  
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Figure 6.15: Cross-sections along the x-axis taken from the picture on the left of Figure 6.14 for 

three different distances. Red squares: y = 0, green circles: y = 0.75, blue triangles: y = 1.50. 

Here the period is equal to �pm for y values equal to 0 and 1.5. In-between these values 

the period halved, but the corresponding peaks are not very high. This explains why in 

most experiments with the ll  PM setting only a full phase period could be measured 

with the AFM as it was much more likely that this pattern was present. The difference 

in peak height for the half period might also not have been big enough to create a 

distinctive surface corrugation. 
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The simulations give a good explanation why the AFM pictures often show a sequence 

of smaller and taller corrugation grooves for the ⊥  PM setting. Two out of the three 

CSs showed a distinctive height difference between alternate peaks; this corresponds to 

a spot behind the PM where the power distribution has the same profile. For the ll  PM 

setting two out of three CSs showed a similar peak height with a period equal to �pm, so 

it is much more likely to obtain an even corrugation of the same height with this setting. 

The simulations however cannot explain why deeper SRG are always obtained with the 

ll  PM setting. This is unexpected as there is a smaller contrast between the peaks and 

troughs of the power distribution for the ll  PM setting. Diffusion of monomer from 

troughs to peaks would reduce as the material viscosity is increased by crosslinking. We 

will discuss this issue in section 6.4. With the simulation the half and full periods 

observed could be accounted for. A number of possibilities were considered to explain 

the other periodicities, e.g. the 385 nm period from Figure 6.9, but the resultant change 

in the period was too small to explain the observed changes. For example an angular 

deviation when defining the cross-section perpendicular to the corrugation gives an 

error of less than a nm. An unintended tilt between sample and mask can cause jumps 

from full to half periods.62 It may also give very small changes of about 1 - 3 nm in the 

period.114 A 0th order contribution creates a periodicity along the corrugation as shown 

above. The laser coherence only affects the aspect ratio of the sinusoidal power pattern 

behind the mask.62 A false calibration of the AFM can be ruled out as well as then the 

periods observed would be consistently smaller or larger those predicted by the theory. 

Our results however showed both larger and smaller periods of different deviations. 

Based on this the experimental deviations from �pm/2 or �pm are more likely to be due 

to the LC material.  

6.2.3 Surface Relief Gratings with the 1 �m Phase Mask 

Similar experiments and simulations were carried out with a 1 �m PM as with the 530 

nm PM. When evaluating the results one needs to consider that the PM was not made 

for the 325 nm laser wavelength and that the 0th order was more than 6 times stronger 

than the ± 1st orders. Furthermore weak ± 2nd orders were also present. The 

perpendicular PM alignment did not deliver surface corrugations as promising as the 

parallel PM setting and was therefore not investigated further. For completeness one of 

the AFM measurements for the ⊥  PM configuration is shown in Figure 6.16. 
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Figure 6.16: Left; AFM scan from a PV237 film crosslinked using a 1 �m PM at RT with the ⊥  

PM setting. The inset shows the top view. Right; CS from the AFM scan. S11. 

The average period measured was 1155 ± 45 nm with a maximum depth of 37 nm. The 

grating morphology is not very even in both directions along and perpendicular to the 

corrugation. The experiment was carried out at RT, so that high viscosity may explain 

the unevenness and the flatness of the peaks. A period of �pm/2 is not clearly 

measurable, but a few smaller peaks in-between the larger peaks were visible. As 

reported for the 530 nm PM work the period was always slightly larger than theory 

predicted. Very even and deep corrugations were achieved with the PM grating vector 

aligned parallel to the laser polarisation. One example is shown in Figure 6.17. 
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Figure 6.17: Left; AFM scan from a PV237 film crosslinked using a 1 �m PM with ll  PM setting. 

The inset shows the top view. Right; CS from the AFM scan. S03. 

This double peak, where a small peak is very close to a large peak, was observed in 

most of the experiments. The average period measured over several areas was 1190 ± 

45 with a maximum peak to peak amplitude of 140 nm. It is interesting that the height 
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of the corrugation is 60 nm larger than the approximate film thickness of 80 nm. This is 

further proof that the corrugation definitely is not formed due to ablation. There must be 

mass transport of LCs from trough regions to the peaks. 

Figure 6.18 shows another corrugation obtained with the 1 �m PM and ll  setting. 
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Figure 6.18: Left; AFM scan from a PV237 film crosslinked using a 1 �m PM with ll  PM setting. 

The inset shows the top view. Right: CS from the AFM scan. S09 

Again the period is larger than 1 �m. The average measured is 1216 ± 54 nm with a 

maximum amplitude of 140 nm. Here the double peak is not present but a small peak is 

still visible between the heights. In general the corrugations obtained with the 1 �m PM 

were deeper and much more even and smoother than the ones from the 530 nm PM. 

Looking at all results presented in Table 6.2 and despite the variation in amplitude, we 

can conclude that the larger the period the deeper the corrugation. The film thickness 

itself, which is determined by concentration, solvent and spin speed, also influenced the 

grating amplitude. Concentrations of 0.03 mg/�l seemed to deliver the best results. 

Lower concentrations produced gratings of lower amplitude probably because the layer 

was too thin. Higher concentrations were tried but caused problems during film 

preparation, since the low glass transition temperature of PV237 results in 

recrystallisation. The solvent did not significantly influence the formation of the 

corrugation. Sample S03 was prepared with chloroform and showed similar results to 

sample S09, which was prepared with chlorobenzene. The latter was chosen as the 

solvent mainly used as it evaporates at a much higher temperature. Residual solvent 

present after the first heating cycle might increase the mobility of the LCs and so form 

higher gratings. This would be especially important for film exposures carried out at RT.  



149 

So far the grating formation seemed to be very insensitive to precise set up and 

imperfect phase masks since the 1 �m PM was not designed for the laser wavelength. A 

PV237 film was crosslinked using the 1 �m PM and a circularly polarised laser beam to 

check the influence of the polarisation.  
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Figure 6.19: Left; AFM scan of a PV237 film crosslinked with a circularly polarised laser using a 1 

�m PM. Right: CS across the AFM scan. S24 

The periods measured varied greatly over the sample area, 1030 ± 220 nm with a 

maximum amplitude of 100 nm. It is however very promising that a linearly polarised 

laser is not necessary to pattern our liquid crystal films.  

6.2.4 Modelling of the 1 �m Phase Mask 

The interference patterns behind the mask for different substrate - mask distances were 

modelled for the 1 �m PM. One has to consider that the model does not consider that 

the 1000 nm PM was not made for the laser wavelength used. The contrast of the 

interference pattern behind the mask was therefore much lower in the experiments than 

in the model. However, the model can be used to check the influence of the large 0th 

order contribution. The PM period was set to 1000 nm. The refractive index behind the 

mask was set equal to 1 and no tilt was present. Since the PM was larger the 2nd orders 

were present and considered in the model. For the 0th order 32 mW, for the ± 1 orders 5 

mW and for the ± 2nd orders 1 mW were used. The 2nd order values were assumed as 

their exact measurement was difficult. In Figure 6.20 the simulation results for 

perpendicular and parallel PM alignment are shown. 
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Figure 6.20: Power distribution (z) of light transmitted through the 1 �m PM surface with ll  (left) 

and ⊥  (right) PM setting, where x is parallel to the PM and y is the distance from the mask. All 

distances are normalised to the PM period.  

For the 1 �m PM there is hardly any difference in the calculated power distribution for 

parallel or perpendicular alignment. The periodicity of the interference pattern is equal 

to the �pm. The position of the peaks varies with distance (y) from the PM. The same 

pattern was obtained for the circularly polarised beam. This is due to the weak 0th order 

suppression. The 0th order is about 6 times stronger than the ± 1st orders. In Figure 6.21 

CSs along the x-axis are taken from both simulations in Figure 6.20 at y = 0 are shown.  
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Figure 6.21: CSs along the x-axis from the pictures shown in Figure 6.21. Black stars (y = 0) and 

red squares (y = 3) show the parallel and orange rhombi (y = 0) and blue circles (y = 3) the 

perpendicular simulations. 

Except for a minimal variation in the peak height there is no significant difference 

between the two PM settings. It is however notable that no �pm/2 periodicity is observed, 

because of the large 0th order contribution. It is noted that the peaks are displaced by 
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�pm/2 in the x direction when y is changed, see Figure 6.20 and also CSs in Figure 6.21. 

Vibrations in the system may change the PM/surface displacement by 3 or more �m, 

which would account for double peaks seen in some surface profiles. 

In Table 6.2 the processing conditions of the samples and their measured periods and 

maximum peak to peak amplitude are summarised. 
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Table 6.2: Sample processing conditions for PV237 films with measured grating periods and 

maximum peak to peak amplitudes. 

Sample 

number 
Film 

Mask and Crosslink 

Conditions 

Max. 

Amplitude 

(Max-Min) 

[nm] 

Period of 

Surface 

Corrugation 

[nm]  

S03 
0.02 mg/�l chloroform 

2000 rpm 30 s 

1 �m PM, ll to pol., 

X 400 J/cm2 at 65°C 
140 1190 ± 45 

  

cured at 65°C for 3h then 

530 nm PM, ⊥  to pol. 

X 300 J/cm2  

11 286 ± 18 

S06 
0.02 mg/�l chlorobenzene 

2000 rpm 30 s, 

530 nm PM, ⊥  to pol. 

X 250 J/cm2 at RT, 

then cured at 65°C for 4 h  

8 305 ± 45 

  

cured at 65°C for 4 h then 

530 nm PM, ⊥  to pol. 

 X 250 J/cm2 at 65°C 

25 

30 

285 ± 15 

560 ± 30 

S08 
0.03 mg/�l chlorobenzene 

900 rpm 30 s 

530 nm PM, ll  to pol. 

 X 600 J/cm2 at RT 
38 

572 ± 15 

624 ± 26 

  
530 nm PM, ⊥  to pol. 

X 600 J/cm2 at RT 
22 

251 ± 32 

324 ± 9 

S08H cured at 65°C for 5 h 
530 nm PM, ll  to pol. 

X 600 J/cm2 at RT 
42 589 ± 9 

  
530 nm PM, ⊥  to pol. 

600 J/cm2 at RT 
24 282 ± 28 

S08HW washed after curing 
530 nm, �� to pol. 

 X 600 J/cm2 at RT 
42 

487 ± 23 

602 ± 6 

  
530 nm PM, ⊥  to pol. 

X 600 J/cm2 at RT 
33 325 ± 32 

S09 
0.03 mg/�l chlorobenzene 

900 rpm 30 s 

530 nm PM, ll  to pol. 

X 600 J/cm2 at 65°C 

66 

70 

591 ± 27 

385 ± 55 

  

cured 5 h at 65°C then 

530 nm PM, ⊥  to pol. 

X 600 J/cm2 at 65°C 

28 

10 

520 ± 12 

291 ± 40 

  

cured 10 h at 65°C then 

1 �m PM, ll to pol. 

X 600 J/cm2 at 65°C 

140 1216 ± 54 

S11 
0.02 mg/�l chlorobenzene 

900 rpm 30 s 

1 �m PM,�� to pol. 

X 600 J/cm2 at RT 
75 

861 ± 31 

1212 ± 12 
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530 nm PM, ⊥  to pol. 

X 600 J/cm2 at RT 
18 279 ± 11 

  
530 nm PM, ll  to pol. 

X 600 J/cm2 at RT 
30 292 ± 20 

  
1 �m PM, ⊥  to pol 

X 600 J/cm2 at RT 
37 1155 ± 45 

S11H cured at 65°C for 12 h 1 �m PM, ll  to pol. 50 616 ± 60 

  530 nm PM, ⊥  to pol 21 
220 ± 3 

293 ± 10 

  530 nm, ll  to pol. 27 
220 ± 10 

280 ± 10 

S12 
0.02 mg/�l chlorobenzene 

900 rpm 30 s 

1 �m PM, ll  to pol. 

X 600 J/cm2 at 65°C 
85 

606 ± 40 

1242 ± 50 

S12H cured at 65°C for 12 h 
1 �m PM, ll  to pol. 

X 600 J/cm2 at 65°C 
60 1083 ± 40 

S17 
0.03 mg/�l chlorobenzene 

900 rpm 30 s 

530 nm PM, ll  to pol. 

X 600 J/cm2 at 65°C 
56 570 ± 20 

  
1 �m PM, ll  to pol. 

X 600 J/cm2 at 65°C 
78 

633 ± 25 

1185 ± 15  

  
530 nm PM, ⊥  to pol. 

X 600 J/cm2 at 65°C 
30 290 ± 15  

  
1 �m PM, ⊥  to pol. 

X 600 J/cm2 at 65°C 
64 1252 ± 35 

S24 
0.03 mg/�l chlorobenzene 

900 rpm 30 s 

1 �m PM, circularly polarised  

X 600 J/cm2 at 65°C 
100 1030 ± 220 

 

6.3 Grating with PV318 

The compound PV237 was found to be very efficient to introduce surface relief gratings. 

Another material named PV318 was also tested. It is similar to PV237 in terms of its 

core and its green emissive colour. It is a monotropic LC with a high clearing 

temperature of 187°C and cools to a nematic glass. Its Tg is 25°C but the glassy phase is 

maintained indefinitely at RT in a thin film. The same compound/solvent ratio (0.03 

mg/�l), type of solvent (chlorobenzene) and spin speed (900 rpm, 30 s), like for most of 

the PV237 films, were used to prepare the thin film, see Table 6.3. 
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Table 6.3: Processing conditions of a PV318 film for surface corrugation test. 

Sample 

number 
Film 

Mask and Crosslink 

Conditions 

Max. 

Amplitude 

(Max-Min) 

[nm] 

Period of 

Surface 

Corrugation 

[nm]  

S19 

0.03 mg/�l, PV318 

5°C/min to 65°C for 15 

min 

530 nm PM, ⊥  to pol. 

X 750 J/cm2 at 65°C 
5 - 10 580 ± 40 

 

In Figure 6.22 the AFM scan of the PV318 film is shown. It shows a periodic structure 

although the corrugations were not very deep (average of 5 – 10 nm) or regular. 
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Figure 6.22: Left; AFM scan of a PV318 layer crosslinked using a 530 nm PM with ⊥  PM setting. 

Right; CSs of the AFM scan. (S19) 

The compound PV318 is much longer than the PV237 molecule and has much higher 

transition temperature. The latter is much more mobile and needs less energy to move 

and form a grating. The film was also investigated with the optical beam profiler. There 

was no significant difference between un- and crosslinked area unlike the PV237 layer. 

Further investigations will be necessary to determine why the compound is 

photopatternable and which processes leads to the LC aggregation. 

6.4 Absorption of Corrugated Films 

We have shown that deeper SRGs are always obtained with the ll  PM setting despite a 

low contrast in the spatial power distribution. Here we propose an explanation for this 

unexpected result. To investigate the effect of the induced surface relief grating on the 
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absorption spectrum, the polarisation ratio = (Absorbance ll / Absorbance ⊥ ) was 

measured for crosslinked and a non-crosslinked area and crosslinked corrugated areas 

with parallel and perpendicular PM settings. AFM first confirmed that a SRG was 

present. The normalised absorption spectra of these four areas are plotted in Figure 6.23. 
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Figure 6.23: Normalised absorption spectra of a PV237 film. Areas; uncrosslinked (green circle), 

crosslinked (red square), crosslinked using the 530 nm PM aligned ll  (orange triangle) and ⊥  

(blue star). 

The shape of the absorption curve changes significantly when the film was crosslinked. 

The peaks at 440 and 473 nm in the spectrum of the uncrosslinked area (circle) vanish 

and a new maximum around 418 nm arose when the film was crosslinked. The spectra 

of the crosslinked areas were very similar whether or not the PM was used, recalling the 

discussion in section 3.4.2 how dimerisation significantly changes the absorption 

spectrum. This suggests that the crosslinking process itself changes the arrangement of 

the LC molecules. Solvent effects could be another explanation, as during crosslinking 

any residual solvent could be evaporated. However this is unlikely since the films were 

cured at 65°C for a minimum of 12 h before the spectra were measured. A new 

molecular conformation is the more likely reason.  
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Figure 6.24: Absorption spectrum of a PV237 film crosslinked using a 530 nm PM with ll  PM 

setting. The spectra were measured with a polarised beam, where the beam was either parallel A(ll) 

or perpendicular A(-) set up. The resultant polarisation ratio A(ll)/A(-) is also plotted. 

Figure 6.24 shows the absorbance spectrum both parallel, denoted as A(ll), and 

perpendicular, denoted as A(-), to the polarisation direction of the incident beam for the 

area crosslinked through the PM with ll  PM setting. A small anisotropy is obtained and 

the polarisation ratio increases with wavelength. The absorbance peaks at 430 nm and at 

this wavelength the polarisation ratio is 1.25. 
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Figure 6.25: Polarised absorption ratio A(ll) / A(-) of a PV237 film. Areas; uncrosslinked (circle), 

crosslinked (square), crosslinked with the PM aligned parallel (triangle) and perpendicular (star). 

Figure 6.25 shows the polarisation ratio as a function of wavelength for the four areas. 

The ratio values at 430 nm, the absorbance peaks, are used for comparison. No 

anisotropy could be detected for the uncrosslinked area (circle). Crosslinking itself 

introduced a small anisotropy as the ratio increased to 1.1 (squares). For the ⊥  PM 
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setting the polarisation ratio slightly decreases to 1.08 and increases to 1.25 for the ll  

PM setting. We also note that the polarisation of the crosslinking laser influences the 

alignment of PV237, aligned using an underlying PEDOT layer. This effect is unique to 

PV237. 
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Figure 6.26: Polarised absorption ratio from an area that was crosslinked with the laser 

polarisation perpendicular (circles) and parallel (triangles) to the alignment direction. Both 

measurements were done on the same film (PV237/MPA153 blend ratio 1:1) on rubbed PEDOT.  

Figure 6.26 shows that when the laser polarisation is perpendicular to the rubbing 

direction, the polarisation ratio is lower than the ratio obtained with the polarisation 

parallel to the rubbing direction. Assuming that the LCs aligned parallel to the rubbing 

direction one can conclude that they also preferably align parallel to the laser 

polarisation. Our polarised absorbance results show that crosslinking through the PM 

with polarised light partially reorients the film in the direction of the incident 

polarisation. The effect is larger for the ll  PM setting, which also produces deeper 

groves, than for the ⊥  PM setting. We suggest a mechanism to explain both phenomena 

based on anisotropic photopolymerisation. No photo-initiator is present in the LC film 

suggesting that the crosslinking process is self-initiated by the chromophore. We have 

shown elsewhere that the self-initiation does not proceed by fragmentation of the 

aromatic core and suggested instead that it may occur via thermally assisted energy 

transfer from the excited state of the aromatic core to the crosslinking group.9 

Chromophores parallel to the polarisation direction of the incident beam are 

preferentially excited. Assuming a short range energy transfer to the diene group of the 

excited mesogen, their alignment will be locked in by crosslinking with neighbouring 

monomers. The alignment is enhanced by the cooperative reorientation of nearest 
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neighbours resulting from the self-assembly properties of nematics. The shear viscosity 

of nematic LCs is anisotropic and is minimised for translation parallel to the director.115 

Hence monomers aligned perpendicular to the grating grooves can flow more easily into 

the more highly crosslinked regions of the film than those oriented parallel to the 

grooves. Therefore the photoinduced polarisation is larger and the grating depth larger 

for irradiation with the ll  rather than the ⊥  PM setting. As illustrated in Figure 6.27, 

mass diffusion towards the peaks is easier for the former.  

 

Figure 6.27: Preferred LC monomer movement for a) ⊥  PM alignment, where the laser 

polarisation is parallel to the grooves and for b) ll  PM alignment, where the laser polarisation is 

perpendicular to the grooves. 

In conclusion we have demonstrated for the first time the imprinting of semiconducting 

organics by photoinduced mass transfer. This non-contact method is highly desirable as 

organic layers are very sensitive to physical contact. Photoembossed surface relief 

structures have previously been formed in non-semiconducting photopolymers used for 

holography.116, 117, 118 The photopolymer layer is irradiated with spatially modulated UV 

light, creating radicals in the illuminated areas. The free radicals are captured in the 

glassy matrix but monomer diffusion to the reactive sites is restricted. After exposure 

the sample is heated above a threshold temperature, where the sample changes from a 

solid to a more mobile, liquid-like state. The polymerisation of the monomer in the 

exposed areas changes the chemical potential and provides a driving force for the 

monomers to diffuse from the unexposed to the exposed areas. A similar effect is seen 

here but no curing step is required. The mass transport creates a volume increase and, 

consequently, a surface relief structure. The photoembossing of surface relief structures 

has also been demonstrated by polymerization of a dielectric nematic liquid crystals 

monomer blend.119 The material was locally irradiated in the nematic phase to produce a 

latent image which developed into a topological feature by annealing above the clearing 
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point. Our material moves at room temperature, which is much lower than the clearing 

point of 103°C. Surface structures can also be reversibly formed in materials containing 

azobenzene moieties or other photoisomerisable groups.120, 121 Indeed an azo-containing 

polymer was deposited on top of a dye doped organic gain media to provide feedback in 

a distributed feedback laser.122 The laser characteristics were poor because of the poor 

overlap with the grating. The azo-group has a major disadvantage in that it quenched 

luminescence and so could not be incorporated in the gain medium. 

Several approaches have been made to pattern the polymers directly to provide 

distributed feedback for organic lasers. A soft lithography technique, called hot 

embossing is one option. The polymer is spin coated on a substrate and heated above its 

glass transition temperature. Then a master with the desired periodic pattern is pressed 

onto the polymer film. The polymer flows around the master and adopts its shape and is 

then cooled down so that the structure is maintained when the master is removed 

afterwards.123 With this technique a period of 400 nm with a depth of 20 nm was 

embossed into a polymer film made of poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)1,4 

paraphenylenevilylene] (OC1C10-PPV).123 The disadvantage here is that the polymer 

film gets into contact with the master. Photolithography was used to directly pattern a 

polymer layer. P. Visconti et al. applied the photoresist directly on a thick poly(p-

phenylenevinylene) (PPV) layer and removed parts of the PPV via plasma etching. 

Depths of at least 120 nm with a period of 500 nm could be achieved.124 Again however 

the organic layer gets into contact with another material and additional processing steps 

as spin coating, photolithography, developing, etching and cleaning are involved. SRG 

can also be created via a corrugated layer beneath the actual semiconducting layer.4 

Additional layers however might affect the device performance and require additional 

processing steps. A SRG with a period of 288nm and a depth of 30 nm with the 

conducting polymer spin-coated on top was found to provide sufficient feedback for an 

optically pumped organic laser.125 The highest corrugation depth of 30 nm achieved 

with our material for the small period of 290 nm is therefore deep enough to act as a 

feedback structure. 

6.5 Summary Chapter 6 

In conclusion our semiconducting LC PV237 proved to be highly suitable for 

photopatterning. Periodic structures could be formed when the films were irradiated 
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with sinusoidal intensity pattern, which was created by a phase mask. Surface relief 

grating (SRG) depths of 140 nm for periods of about 1200 nm, 25 nm for periods 

around 280 nm and 66 nm for periods around 580 nm were achieved. The gratings were 

formed through photoinduced mass transfer of the molecules to the illuminated areas on 

the exposed LC film. The anisotropic properties of the nematic phase enhance mass 

transfer when the incident beam is polarised parallel to the direction of motions. Our 

light emitting LC PV237 crosslinks when exposed with ultraviolet light and films made 

from it are rendered insoluble. This makes our LC an excellent candidate for feedback 

structures in organic lasers and multilayered devices. 
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7 Conclusion and 

Outlook 

We have carried out semiempirical quantum mechanical simulations on monomer and 

anti-cofacial dimer configurations of our molecules. The former represents the 

molecules is solution and the latter those in a thin film. The oscillator strengths in a 

dimer increases by a factor of 2 compared to the monomer for longitudinal offsets larger 

than 20 Å. For smaller shifts the transition from ground to excited state is forbidden so 

that quenching of luminescence can be expected for this configuration. This agrees with 

the optical quantum efficiency results obtained that show a decrease in efficiency in the 

solid state, taking into account that the material is nematic with a range of offsets 

present. The dimer simulations give an insight on how molecular energies and 

transitions are affected when molecules are brought closely together. The simulations 

however only represent one of many possible dimer configurations. Further calculations 

on different dimer arrangements with e.g. a larger separation or trimer configurations 

could be carried out to get an improved perspective. 

Mixtures of our LCs showed nematic phases at room temperature frozen in a glassy 

state. Hence no phase separation occurred and a homogeneous blend was obtained. We 

have shown that white electroluminescence (EL) could be achieved from homogeneous 

blends of blue/green and red liquid crystalline (LC) emitters. Furthermore polarised 

white EL with an average polarisation ratio of 8:1 and a maximum of 12.5:1 was 

realised. The low device efficiency is probably due the poor performance of the red 

emitter. The design of new red emitters with improved efficiency is necessary before 

further investigation on the white light can be carried out. Commercial applications 

require long term stability in colour, brightness and efficiency. Our materials are 

sensitive to air and humidity, hence the purity of the materials and the encapsulation of 

OLEDs are important factors. OLED production under clean room conditions would 

deliver a much better insight in terms of the stability of the devices made from our LCs. 
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Thin films made from the semiconducting LC PV237 spontaneously formed surface 

relief gratings upon UV irradiation with a sinusoidal intensity pattern. Depths of 140 nm 

for periods in the �m-range, 25 nm for periods around 280 nm and 66 nm for periods 

around 580 nm were achieved. The corrugation was formed through photoinduced and 

anisotropic mass transport from the dark to the illuminated regions. PV237 crosslinkes 

upon exposure and is therefore rendered insoluble. The material is therefore suitable to 

form feedback structures for organic lasers and to enhance the outcoupling of trapped 

modes in OLEDs. Though another LC with a similar core could also be photopatterned 

the result showed a much lower aspect ratio. Therefore further investigations on PV237 

and on different LCs are necessary to determine why the mass transport is so efficient in 

PV237 films. A holographic set up is preferable to form the SRG to eliminate problems 

with phase mask, such as low contrast, tilt and polarisation sensitivity, contact and lack 

of control of the grating period. Derivatives of PV237 with different side and end chains 

could be synthesised to compare their ability to form corrugations. A surface 

investigation on crosslinked and non-crosslinked areas of new material with a beam 

profiler offers a quick method to determine whether mass transport takes place during 

irradiation or not. A scanning electron microscope allows larger scan areas so that the 

grating formation over a longer range can be investigated. OLEDs made from 

corrugated films can be examined for changes in the emission spectrum and an 

enhanced outcoupling efficiency can be observed. Similarly the SRG can be optically 

pumped with a laser to record photoluminescence under different angles to check its 

suitability as a distributed feedback structure in organic lasers. 
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