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Abstract

Fault Tree Analysis (FTA) is a valuable systemshais techniqgue widely used in safety
analysis and reliability engineering, but it is mathout its faults; in particular, it struggles to
analyse systems in which time plays an importal#, reecause fault trees use only Boolean
logic and so there is no simple way of representimg or sequences of events in a fault tree.
Although there have been attempts to extend FTénable analysis of such systems, most have
focused on probabilistic analysis and there remaimged for a technique that allows logical

analysis of dynamic systems.

Pandora is a technique that aims to provide aisaluid this problem. It is based around three
logical gates capable of representing sequences: Rtiority-AND (PAND) gate, the
Simultaneous-AND gate (SAND), and the Priority-ORteg (POR). These three "temporal”
gates are more expressive, allowing analysts toelrgetjuences as part of a fault tree and thus

enabling fault trees to analyse more complex dynaystems.

In addition, Pandora provides a set of logical sulkat can be used to reduce fault trees
incorporating the three new gates in much the saayethat existing Boolean laws can be used
to reduce ordinary fault trees. This makes it gaesio perform logical analysis of fault trees
using Pandora, the results of which provide thdyahavith information about the weak points

of the system by showing what combinations or sege® of event can cause the system to fail.

This thesis presents the evolution of Pandora tliysexplaining the background that led to its
inception and the choices made during its developras well as detailed explanations of how
Pandora is applied. Pandora has been created os#igte automation in mind, so there is also
a description of some preliminary algorithms thgport Pandora-based FTA. Pandora is then
applied to a case study to demonstrate how it gaation in practice. Finally, the success of
Pandora is evaluated by contrasting it with otleengoral FTA approaches as well as standard
non-dynamic analysis and from this conclusions allea potential benefits of using Pandora

are drawn.
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1 Introduction

"The only people who find what they are lookingifolife are the fault finders."

- Foster's Law

1.1 Setting the scene

We live in an age of ever more sophisticated mazhimachines designed to work for us,
relieve us of our burdens, and thereby improveligas. The price we pay for this convenience
is an increasing dependence on those machines amtespondingly, increasingly dire
consequences should any of those machines go wéadrequently entrust our lives to these
creations, relying upon the hope that those whdt tuem did not make any mistakes. This
dependence does not go unrecognised, howeverystenss on which we depend the most —
those with the worst consequences should they-fare known asafety critical systems and

it is vital to ensure they do not fail catastropttiz. Safety critical systems include things as far
apart as propulsion systems on spacecraft to a@rbagars, but they all have one thing in

common — the potential to cause great harm to pabgiey fail.

This imperative has led to the field idliability engineering, a discipline devoted entirely to
making systems as safe and as reliable as posshmeprinciple of reliability engineering is to
build systems with a certain level of minimum rbllay in their design; the more reliable or
robust a system is, the less likely it is to faidaherefore cause harm. However, in order to
create reliable systems, we also need to be ahladerstand how they work and how they can

fail, and to do that we need to study them: a peémown asystems analysis

Systems analysis allows reliability engineers tm @ insight into how a system can fail and
therefore determine what measures should be usquei@nt that failure. There are many
systems analysis techniques in use, but one dbthenost isfault tree analysis(FTA). FTA is
used to discover the relationship between a sy&eihand its root causes. By illustrating the
connections between combinations of relatively mifadures and their effects on the whole
system, FTA makes it easier to design the systemittstand such failures by preventing those
combinations of failures. FTA itself is not newdiates back to the 1960s and has been put to
good use in many industries, including the aerospazitomobile, nuclear, and defence

industries (Ericson, 1999).



FTA is not without its own faults, however. In padlar, FTA struggles with the representation
and analysis dime, or at least system behaviour that depends onitimeme way. Fault trees
model the static causal relationships between iddal components in a system and the effect
their failure has on the system as a whole, eisirggly or in combination with other failures.
For many systems this is sufficient, but for soime tmodel is too simplistic to capture the full
failure behaviour. For example, some systems gpahta of reacting to and recovering from
certain failures, perhaps by activating a standbymonent or some other corrective measure; in
other systems, the potential failure behaviouresaccording to what state the system is in.
These ara@lynamic systemsand this dynamic behaviour is difficult to modeicurately using
FTA. As systems become increasingly dynamic andespondingly more complex, it becomes

ever more important to find ways of overcoming tédiciency in FTA.

As a simple example of a dynamic system, considergeneric standby redundant system in

Figure 1 (originally used in Walker & Papadopoul®306).

3
m
—
¥

Figure 1 - Simple example of a triple-module recamtdsystem

This system is generic in the sense that comporferiBand C could be any input, control or
actuating device. A is the primary component ta&es input from outside the system (labelled
"I}, performs some function on it, and feeds tlesult to the system output (D). S1 is a
monitoring sensor that detects any omission of wiufppm A and activates the first standby
component, B. Similarly, S2 is another sensor tedects a failure of B and actives the second
backup, C. In theory, all three components A, B} @nmust fail for the whole system to fail —
the failure of one or two of the three can be ttled. Performing a classical fault tree analysis

on this system seems to confirm this, showing theaystem only fails if:

There is no input at I.
All of A, B, and C falil.
Both A and S1 fail.

All of A, B, and S2 fail.

A\



Each of these four events or combinations of evisnssifficient to cause the whole system to

fail. This behaviour can be seen in the followitate diagram, with cases 2-4 shown:

kL

—» Usinga }@ » UsingC
j S1 detects failure of A 52 detects failure of B &
52 does not detect failure of B
(Case d)

531 does not detect failure of A Failure of &
(Case 3 iCase 2)

Figure 2 - State diagram showing the behaviouheféxample system

However, this is a rather naive view of thingstdality the situation is more complex. Consider
cases 3 and 4: what if one of the sensors #diits the other components? For example, in case
3, a failure of A and S1 will cause system failu¥et if S1 failsafter A, then it does not lead to

a system failure because S1 has already perfortaefdiriction (to detect failure of A) and
activated standby component B. Once B has beevagat, failure of S1 is irrelevant - it can no
longer have any effect on the functioning of thetesn. Similarly, in case 4, if S2 fails after
both A and B have failed, then the second backuppoment C will have been activated, and
there is no system failure. Again, S2 will havevedrits purpose, and any subsequent failure
has no effect on the rest of the system, whichoi nperating on component C alone. Both
cases 3 and 4 are therefore unnecessarily pegsintisty suggest that a failure of the sensor
will alwayscause the system to fail, when in fact this isydnlie in certain situations and is

dependent upon the order in which the componeitis fa

Conversely, since the sensors work by detectingrarssion of output, if the first standby
component B fails before A, then S2 would neveedia cessation in output from B, because it
would never be activated; C therefore remains whuBkis means that the second case, failure
of all of A, B, and C, is then a dangerously opstiai result, since B failing before A is

sufficient to cause the system to fail, regardtdgte status of component C.

This more in-depth view of the system failure bebaris shown in Figure 3:

10



Afails

B active, 52 failed

A active, 51 failed

E fails
51 fails 52 fails ¥
—
Afails B fails C fails .>
B fails C fails .
A active, B failed B active, C failed
E fails

Afails

Figure 3 - A more detailed look at the failure beioarr of the system

Here it is easy to see how a premature failure s#resor or of a backup component can lead to
system failure without later backups being acti#at€lassical fault tree analysis is unable to
model this type of dynamic behaviour and would ¢f@re fail to accurately capture the full
failure behaviour of this system. FTA models onhe teffects of the occurrence of faults
without also taking into account the effect that sequencedf those faults can have. Instead,

the results obtained are either unnecessarily et or excessively optimistic.

This raises an important question: if a system witht five components can have such
pronounced inaccuracies, how far can we trust aysis of a system with hundreds of

thousands of components, such as a nuclear poami?pl

2 There are even more possible sequences not sho®igune 3, but these are omitted for the sake of
clarity since most of them are redundant (for eXemghe sequence "failure of S1 followed by C
followed by A" is effectively equivalent to "failarof S1 followed by A", which is shown in the diagr,
since the failure of C has no effect in this case).
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1.2 Pandora: a potential solution

Clearly, there is a deficiency in FTA, and the gofadhis thesis is to present a potential solution
called Pandora, which aims to solve the problem by extending Fiigh new capabilities.
Pandora was first introduced Rroject Pandora: Temporal Fault Tree Analy§&alker, 2005)
and is based on the principles embodied by thaiBHAND gate, a relatively obscure and oft
overlooked member of the fault tree vocabulary. Phierity-AND gate introduces the concept
of event sequencdse a fault tree, so that a failure may depend emam contributing events
occurring in a specific order. Unfortunately, adlwie explained in Chapter 2, the original
Priority-AND gate suffers from several problemsgeg from an ambiguous definition to a

lack of information on how to use it in an analysis

Pandora aims to overcome these issues. It buildseofoundations laid by the original Priority-

AND gate but takes the idea further, introducing taew temporal gates to enable a more
complete expression of event sequences and intrgglacset of rules and algorithms to allow
for these temporally-augmented fault trees to ladyaed in ways similar to ordinary fault trees.
The result is a more powerful and more expressiuét free methodology that can be applied to

a greater range of systems and obtain more acaesi#s.

In summary:

Classical Fault Tree Analysis is insufficient for he analysis of complex
dynamic systems in which the failure behaviour is ependent upon the order
of events; Pandora solves this by extending FTA wit new temporal
capabilities to enable the analysis of sequences agll as combinations of

failures.

The subsequent chapters will explain why Pandorzgeeded, what it contains, how it works,

and finally whether it manages to achieve this aim.
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1.3 Objectives

"A bad ending follows a bad beginning."

- Euripides Melanippe the Wise

During the original development of Pandora, a numidiekey objectives were identified that
any solution to the problem of FTA of dynamic syssewould ideally fulfil. Before these are

introduced, however, it is first necessary to detime scope of the problem.

FTA covers two complementary types of analysis #ratusually used in tandem but may be
used separately. The two types qualitative analysisandquantitative analysis The former

is a purely logical form of analysis that involvegamining and manipulating the Boolean
structure of the fault tree to obtain a setmifiimal cut sets the smallest possible combinations
of events that can cause the system to fail. The @i each of these minimal cut sets can be
used as a crude approximation of how likely ibi®tcur (going by the assumption that it is less
common for two events to occur in conjunction thian either to occur on its own) and is
known as therder of the cut set. The other form of analysis is@bpbilistic analysis designed
to elicit more information about the likelihood f#ilures occurring. This involves assigning
additional data such as failure rates or repaiesrdb component failure events and then
calculating the probability of system failures frahe failures of their constituent events. It is
usually performed after qualitative analysis, siitaan take advantage of the minimal cut sets,

and its output is a probability for the top evesystem failure) of the fault tree.

Each type of analysis has disadvantages and adwemtavhich is why they are usually
conducted together. Quantitative analysis has divardage of providing mathematical data and
therefore being more precise, but it typicallyeslon a prior qualitative analysis (though there
are other methods) and requires a considerable ranebadditional data. Qualitative analysis
may be more abstract, but that means it is poswltenduct an analysis on a system for which
no failure data is available, or even for whichfature data is possible, such as an abstract
functional model of a system. Both forms of anaysan be used during a system design
process. In an iterative process, for example, @itative analysis can be applied to early
models where the choice of components has not bresle and thus exact failure data is not
available, and then a more detailed quantitativadyais can be conducted later, once the design
has been developed further and actual components ieen chosen for which failure data

exists.
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As will be seen in the next chapter, there has Ismene research directed at the problem of
quantitative analysis of dynamic or temporal fardes, including quantification of the Priority-
AND gate, but much less attention has been paithéo problem of temporal qualitative
analysis. This limits temporal FTA to systems fdrieh failure data is available, which is not
always the case. Since qualitative analysis isiplesehenever quantitative analysis is possible,
but not vice versa, it seems that the area of teahppalitative analysis is underdeveloped and

thus Pandora was created to help correct that amiss

Therefore, this thesis focuses primarily on thebfgm on temporal qualitative analysis in FTA
and the issues and requirements associated witfotina of analysis. Quantitative analysis will

be discussed later as a possible avenue for fusttporation.

Any temporal qualitative analysis technique mu#filfoertain key requirements. Firstly, it must
be possible to represent temporal or sequentiarrimdtion in the fault tree in some way.
Secondly, there must be some logic or semanticerlyiolg that information for it to make
sense and be useful in an analysis. Finally, ittrbespossible to make use of that data in an
analysis in order to be able to draw accurate caimhs about the system failure behaviour. To
these key requirements, other, more subjectivajiregents can be added. FTA is a well-
established and popular technique and so any eatems it should attempt to remain in
keeping with the spirit of FTA, retaining the feads that make FTA successful. Additionally,
qualitative analysis provides results in the forhmonimal cut sets, so a temporal qualitative

analysis technique should aim to remain compatilifle them.

It is from these observations that the objectivieBamdora are defined:

1. Retain, as far as possible, the simplicity of FTA ¥ requiring only a minimum of

additional, temporal data.

This objective relates heavily to the notion ofdiitself and how it can be represented in a fault
tree. The relevant issues will be covered in thet mhapter, but this is the foundation that
determines the nature of whatever methodology iét hupon it. The goal is not to

overcomplicate FTA by burdening the analyst witle ttequirement for an abundance of
additional information. Fault trees are simple dlledible and any extensions to them should

therefore ideally be simple and flexible also.
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2. Remain compatible with the existing fault tree streture by minimising the impact of

any extensions.

Fault trees have a clear logical structure: a ¢ag@aining intermediate Boolean gates and leaf
nodes typically representing failure events in stey. The goal is to extend this structure, not
replace it; any additions should remain faithfuthe Boolean nature and aesthetic of fault trees
as far as possible. This means that the extensiomsd ideally take the form of leaf nodes or
intermediate gates so that they can form part ctamdard fault tree, and it is therefore
important that the temporal extensions can be migid normal Boolean gates too. Temporal
extensions ought to be another tool the analystdcaw upon when necessary, not something

they are forced to use all the time.

3. Allow gualitative analysis of the extended fault tees, producing results similar to

those already provided by FTA.

As mentioned above, qualitative analysis is the emfbexible form of FTA as it can be
performed even in the absence of probabilisticufaildata. Although existing qualitative
analysis techniques are unlikely to be able toyemaah fault tree that has been augmented with
temporal information, it may be possible to extemte or more techniques or alternatively
produce a new temporal qualitative analysis tealidhe goal of qualitative analysis is to find
out which combinations of events can cause theesy$ilure at the root of the fault tree, so in
the case of temporal fault trees, it should be iptesso determine what effect the sequences or

timings of events also have on the occurrenceesyistem failure.

Furthermore, the output of normal qualitative aselys a list of minimal cut sets. These can be
ranked according to size and used to draw concelasabout the failure behaviour of the system
and thus how best to improve the reliability andesaof that system. For any temporal
extensions to FTA, it should be possible to prodagtputs with a similar form and similar
function, showing the analyst how the sequencevehts in the system can lead to a system
failure — because by preventing that sequence ehtsy it becomes possible to prevent the

system from failing in that manner.

4. Provide a temporal logic that underlies the extensins to support qualitative analysis.

Existing qualitative analysis techniques are tyihjchased on Boolean logic. Since Boolean
logic is insufficient to represent dynamic or temglanformation in fault trees, for temporal
gualitative analysis to be possible, there haetedme form of temporal logic that underlies the

extensions to the fault tree and enables qual@atnalysis.
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5. Define a simple, unambiguous definition of the meang of the temporal relationships

between events to resolve the issue of contradiats

The Priority-AND gate can potentially introduce tawlictions to a fault tree, e.g. (X PAND Y)
AND (Y PAND X). Any temporal fault tree methodologhat allows the representation of
sequences in this way should therefore be ablest with such contradictions. The precise
definitions of the gates and events is also impotaensure that other ambiguities do not arise,

e.g. the possibility of events occurring simultamnsg.

These objectives provide a metric with which togedhe success of Pandora and also provide
some form of benchmark to compare other technigqgeénst (though it is important to note
that not all temporal FTA technigues were necelgsareated with these goals in mind). They
also shape the development of Pandora and helmiexphy certain choices were made in

Pandora.

1.4 Thesis Structure

This thesis is structured in a specific sequensggded to introduce the various components of

Pandora in the appropriate order:

1. Introduction

This Introduction explains therhy of the thesis by introducing the key problem tosbéred:
the inability of FTA to represent time or event seqces in fault trees. It also introduces the
goals and objectives of Pandora and sets out thetsite of this thesis, starting with a brief
overview of the Introduction, which contains a gelferential section describing the structure of

this thesis.

2. Background Information

The Background chapter provides a foundation fateustanding the rest of the thesis. It begins
with an introduction to Fault Tree Analysis itsalfid explains in further detail why it cannot
analyse dynamic systems adequately. It then lagnoite a brief discussion of time before
going on to describe some of the other solutionthi® problem and their various advantages
and disadvantages. The conclusions gained fromb#tdkground study have shaped the course

of the development of Pandora.
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3. Pandora

This chapter is thevhat of the thesis: it introduces Pandora itself, eixitg the basic concepts
underlying it and describing the various componeént®Ived, including the three temporal
gates and the temporal laws that connect them. Trifrmation is necessary for full

understanding of the subsequent chapter.

4. Temporal Analysis

This chapter covers theow of the thesis: the process of temporal qualitatinalysis using
Pandora. It introduces the ideas of minimal cutuseges and doublets and also introduces
Euripides and Archimedes, which are algorithmstifier reduction of Pandora-augmented fault
trees using the various temporal laws. The proiegkistrated on the simple example system
from Figure 1. In addition it discusses the poss#ulitomation of this process with reference to

the obstacles posed by the formidable Fubini number

5. Case Study

Having provided algorithms for the production ofnimial cut sequences, this section illustrates
how Pandora can be used in practice by applyitggan automotive brake-by-wire system. The
analysis is explained step-by-step and the redidtsissed. These results are contrasted against
the results obtained from a standard, non-temgoralysis, showing how Pandora can provide

a greater degree of accuracy when analysing dynsystems.

6. Evaluation

The penultimate chapter evaluates the achievensér®eindora. It analyses the successes and
failures of Pandora with reference to the objestiset out above, as well contrasting it with
some of the other alternatives mentioned in Chghtéralso includes a section on the potential

for further research into Pandora.

7. Conclusions

This final chapter summarises what has been aathieveandora.

References

A list of references used in this thesis.
Appendix I: Glossary

An explanation of some of the commonly used ternts @breviations found in this document

(usually those terms which first appear in bold).
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Appendix II: Temporal Laws

This appendix contains a list of all the tempoaald in Pandora.

Appendix Ill: The Adventures of Martin in Pandorand

A brief glimpse of what the development procesBafdora looked like.

1.5 A Note on Publications

Some of the material in this thesis has already Ipeblished (in condensed form) in a number
of conference and journal papers. This thesisiis lppon the work begun in Walker (2005) and
the material in Chapter 3 and to a lesser exterap@hn 4 forms the basis for Walker &

Papadopoulos (2006), Walker & Papadopoulos (200/8lker & Papadopoulos (2008) and

Walker & Papadopoulos (2009). A simplified versiohthe automotive braking system case
study from Chapter 5 is used as the basis for Wadkal. (2009). Formalisations of Pandora

can be found in Walker, Bottaci, & Papadopoulo9{Gand Merle & Rousseau (2007).
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2 Background

"If we had no faults, we should not take so muelglre in noting those of others."

- Francois de La Rochefoucauld

2.1 Brief Introduction to Reliability Engineering

"Forgive, son; men are men; they needs must err."

- Euripides

Before delving into the inner depths of fault treesl temporal analysis, it is helpful to explain
the process of reliability engineering and to dghldefinitions for some of the common terms
used. First, what is€liability *? Generally, something is reliable if it is unlikeo fail, and it is
defined more precisely by the IEC as "the abilityao item to perform a required function
under stated conditions for a stated period of tirfiEC 271, 1974). Here, 'item' is used to refer
to any piece of equipment, component, system, bsyaiem that can be considered as an
individual unit and subjected to tests and analyRisliability is usually represented as the
probability that an item is in its normal (i.e. riailed) state from a starting time to time
assuming that the item was new or as good as néve atarting time (Sundararajan, 1991, pg.
51):

R(t) = P(item does not fail during period ),

Note that reliability is defined as the ability perform a function; therefore, if an item has
multiple functions, it may also have multiple réiiities associated with those functions. The
complement of reliability is unreliability, whicls itherefore the probability that an item will be

unable to perform its function(s) and is equal teR().

Another two widely used terms, especially in FTAge availability and its complement
unavailability . Availability is defined as "the probability th#ie component is in its normal
state at timé, given that it was new or as good as new at tiere.z (Sundararajan, 1991, pg.
51). Thus while reliability is the probability thah item will be functional over a period of time,
availability is the probability that an item willebable to perform its functional at any given
point in time. Its complement, unavailability, isually represented by Q (to distinguish it from

unreliability U) and is defined as 1 —th{vhere A represents availability.
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Note that the precise meaning of these definitidifiters for repairable and non-repairable
items: if an item is non-repairable, then its aaaility and reliability will be the same, but if an
item can be repaired, then its reliability and kkility may differ, as once an item fails it can
then later be repaired. This results in an improaedilability (since a repaired item can still

perform its function) but does not improve theatility (since the item still fails).

Thefailure rate A of an entity is the "rate at which failure occdiging a specified interval”
(Sundararajan, 1991, pg. 51), generally expressedrmumber of failures per time period (e.g.
failures per hour). Theepair rate p is "the probability density (that is, probabiliper unit
time) that the component is repaired at tinggven that the component failed at time zero and
had been in a failed state (that is, the compoisenbt yet restored to service) to timé A
common assumption made is that failure rate andiregte are independent of time, i.e. they
are constant. Many components are assumed to hewestant failure rate once they are in the
prime of their lives, i.e. a state of steady opemtthis follows a 'break-in' period of higher
failure rates (due to undetected design defectsufaaturing problems, or installation errors
etc) and precedes an end-of-life ‘wear-out' peoioligher failure rates due to the deterioration
of components as they age and near the end ofdbsigned life spans. This is the so-called
‘bathtub curve'. Systems are also often assumbdv® a constant failure rate as if a system or
subsystem contains multiple subcomponents, eat¢hdifferent failure rates, the overall failure
rate of the system is approximately constant (Stamdgn, 1991, pg. 62). Similarly, it is valid
to assume a constant repair rate if the Mean Tim&@&pair (see below) is much smaller than

the Mean Time To Failure.

MTTF is the Mean Time To Failure. It represents the average lifetime of a component
(assuming it is non-repairable) or the average tifere first failure (if it is repairable) and is
"the expected value of the time at which the congpbffails, given that it was new or as good
as new at time zero" (Sundararajan, 1991, pg. MIBF or Mean Time Between Failures is
also used in the case of repairable components. fMiElthe Mean Time To Repair, the
average duration of time between the moment a casamgofails and the moment it becomes
operational again after repair (including time fdetection and testing of the repaired
component). MTBR is the Mean Time Between Repaitsch is the average time between the
start of one repair and the start of the next. Wiadlare rate and repair rate are constant, then
MTTF and MTTR are inversely related to them:

MTTF = MTTR==

In which case, unavailability can also be calculdiiee so:
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A MTTR
A+u MTTRMTTF

Unavailablity =

There is one other concept that deserves particodartion: safety. Safety is defined as "the
ability of an entity not to cause, under given abads, critical or catastrophic events"
(Villemeur, 1992a). By improving the reliability @ entity, we reduce the chance of it failing;
in doing so, we also reduce the chance of a criieant occurring as a result of that failuresit i
however possible for a system to be safe but waileli(if it causes no critical or catastrophic

events) or unsafe but reliable (if it can causeastabphic events, but only infrequently).

This concept is represented ftisk, a combination of reliability and safety. Riskli® potential

harm an entity may cause and is usually represemsethe product of the severity of the
consequences of each failure (i.e. a measure ofsadsvit is) and the probability of that failure
occurring (a measure of reliability). Risk can bmimised by either reducing the likelihood of

failure or improving the safety by lessening theesity of the potential effects of a failure.

Reliability engineering is therefore the procesdartaken to try and improve the reliability of
an entity, either in order to minimise the riskpiises or simply to reduce cost and improve
efficiency. Through analysis, it is possible diseowhere the main flaws lie and therefore take
steps to improve the design by amending those fl&ws example, after identifying which
components are the weak points of the systemtfiose most likely to cause system failure),
they can be replicated to provide redundancy, oeplawith better quality components, or
simply omitted during a subsequent revision ofdesign. There are many different techniques
available to perform these analyses, often knowsysems analysisechniques, each of which
works in different ways. However, they generallyarsh a common goal: to discover how
reliable an entity is so that it can be improvedhécessary. According to tHeault Tree

Handbook systems analysis is:

"a directed process for the orderly and timely dsdion and investigation of

specific system information pertinent to a giveoigien." (Veselyet al, 1981,
p-2)

Ultimately, systems analysis is a process by whietcan discover information about a system
that we can then use to make a decision. If thisrimation we obtain happens to be an
assessment of system reliability, we can use tifatration to decide how to improve that

system. This is the basis of most reliability as@ytechniques, including Fault Tree Analysis.
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Before we consider this further, however, it is essary to understand what we mean by a
system in this context. A system implies some fofmorganised group of elements that work
together in some way, and tf@ult Tree Handbookindly provides us with another formal

definition:

"A system is a deterministic entity comprising ateracting collection of

discrete elements(Veselyet al, 1981, p I-4)

Therefore, the primary role of systems analysid, mnextension FTA, is to gather information
on such a system. Furthermore, in the context sfegys analysis, the definition of a system

given above can be further qualified:

e asystem should be identifiable so it can be pigearalysed;

e in addition, the discrete elements in the systeoulkshbe identifiable;

* those discrete elements may in themselves be system

e asystem should also have some purpose;

« finally, a system should have a defined externaindary between the system

itself and the environment in which it functions.

These extra definitions have important consequefi@esystem analysis. For instance, the
principle of an external boundary is vital in liimi the scope of the analysis; a telephone, for
example, is connected to a telephone network alitbmsi of other telephones, and an analysis
of that one telephone would most likely not incluale analysis of the whole network. In
addition, if the system or its components are detfifiable, directed analysis of such abstract
entities is largely futile. Also, the idea that @mponent may in itself be a system leads to the
necessity of analysing in a recursive fashion deddefinition of a 'limit of resolution’, i.e. the
level of depth sufficient for the analysis; anatgsia telephone at the molecular level, whilst no
doubt fascinating, is almost certainly excessiviealfy, the fact that a system should have a
purpose is intrinsic to system analysis, becaupeowides a means of measuring the system:

how well does it fulfil its purpose?

There are two generic forms of analysis: inductwepottom-up, analysis; and deductive, or
top-down, analysis. In relation to reliability engering, the inductive approach constitutes
proposing a certain event or condition and theimdryo assess the effects of that initial event
on the rest of the system. There are several induatethods of system analysis, including
Preliminary Hazard Analysis (PHA), Failure Modegl difects Analysis (FMEA), and Event

Tree Analysis. Deductive analysis, by contrast,ke#dn the opposite direction. In deductive

analysis, rather than postulating an initial evéme, assumption is made that a final state has
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already been reached and then the analyst attémpetermine the course of events that led to
that final state. A murder investigation, for exaeps a deductive technique, because the
detective starts off with the victim and tries teddce the culprit from the evidence; similarly,
Fault Tree Analysis, a deductive technique, bewiitls a fault and tries to determine its cause.
The Fault Tree Handbookas a concise summary: "Inductive methods are egpppdi determine
what system states (usually failed states) areilgessdeductive methods are applied to

determine how a given state (usually a failed ytzda occur." (Veselgt al, 1981, p I-8)
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2.2 Fault Tree Analysis

"Judge a tree from its fruit, not from its leaves."

- Euripides

2.2.1 Introduction & Definitions

Fault Tree Analysis (FTA) was first conceived ir619It was invented by H.A. Watson of Bell
Laboratories, with the assistance of M. A. Meatosaid in the design of a new US Air Force
weapon system, the Minuteman missile. David Haafsthe Boeing Company, used the new
technique to analyse the entire system. It wasessfal, and at the first System Safety

Conference in 1965, several papers on FTA wereepted (Ericson, 1999).

FTA is a deductive system analysis technique tisssua graphical model with a logical
structure (the tree) to represent events (faulaflihg to a certain undesired outcome (system
failure). It works by first considering an undebieevent, such as a system failure, and placing
it at the top of the tree. This is called variousig 'top event' or the 'undesired event'. FTA then
works backwards to determine the causes of theevept in terms of logical combinations of

basic fault events (the leaf nodes of the tree).

As the purpose of FTA is to obtain information td e the making of decisions, it is useful to
describe briefly some of the ways in which FTA ddleis. Fault Tree Analysis is a versatile
tool, and the information it obtains is useful fovariety of tasks, not just improving reliability.
The Fault Tree Handbookvith Aerospace Applicationshe updated handbook, lists a number

of uses of Fault Tree Analysis in decision makirgjed below:

To understand the logic leading to the top event
To prioritise the contributors leading to the toeet
As a proactive tool to prevent the top event

To monitor the performance of the system

To minimise and optimise resources

To assist the designing of the system

N o o bk~ w0 DdPE

As a diagnostic tool to identify and correct causithe top event
(Veselyet al, 2002)

FTA can be used at different times during the spstdifecycle. It can be used during design, as

numbers #3, #5, and #6 would indicate; it couldused to improve an existing system's
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reliability, by identifying weakness and improvitlgem, as #2 and #4 show; or it can be used
after a top event has actually occurred in orddryt@nd find out why, as #1 and #7 indicate.
There are a number of software packages availableelp automate FTA and new ones are
continually being developed. Some of the earli@stsbftware was created in the early 1970s,
when FTA was first becoming popular; amongst thetnf@mous are W.E. Vesely's PREP and
KITT (Vesely & Narum, 1970) programs. Isograph'silEEree+ is an example of more modern

FT software, capable of drawing and analysing ftna#s (Isograph, 2002).

But before it is possible to properly use faulesgit is important to understand what a fault tree
actually represents and what is meant precisely fgult'. For such a simple word, the fault' in
fault tree has a remarkable number of semantic cesaand different meanings can lead to
different interpretations of the fault tree. Furthere, there are different types of faults and

failures, which are represented in different waya fault tree.

A fault is defined by Villemeur to be the:

"Inability of an entity to perform a required fuia." (Villemeur, 1992, p27)

but it is defined by Sundararajan as follows:

"A fault is a noncompliance with specificationéSundararajan, 1991, p48)

As for exactly what is meant byfailure, Villemeur tells us it is:

"The termination of the ability of an entity to fjmm a required function.”
(Villemeur, 1992, p22)

and Sundararajan states that:

"Failureis the inability of a component to perform itsimded function as
specified."
(Sundararajan, 1991, p49)

You would be forgiven for thinking that this is nmgally very helpful as the differences in
meaning between the various definitions are rathdstle. TheFault Tree Handbookwith
Aerospace Applicationsheds some light on the matter by explaining thlate a failure is
always a fault, a fault is not always a failure, that there can be other causes of a fault meside

the failure of the entity itself. One possibility that of an entity being produced incorrectly,
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such that it is never able to perform its functiand this would appear to fit both of the above

definitions of a fault.

Although the occurrence of a design flaw going uiweal is one possibility, th€ault Tree
Handbookprovides us with another possible situation: aibacapable of raising and lowering
to block an entrance. If the barrier's motor failedvould no longer be able to open or close.
This would be both a fault and a failure, sinceaih no longer fulfil its purpose. However, if the
mechanism raised the barrier when there was nareggent for it to allow entry, then though
the barrier suffered a fault (because it was ngdorblocking the entrance) it would not have
suffered a failure, because the barrier is stilivorking order and is still capable of closing

again.

The notion of time, then, is an important componeinta fault. A failure is more narrowly
defined than a fault and occurs when an entityisonger able to function; it is the opposite of
a success. A fault, by contrast, is more inclusisdét also includes situations in which the entity

operates successfully, but at the wrong time arepla

"The proper definition of a fault requires the siiieation of not only what the
undesirable component state is but also when iugccThese 'what' and
‘when' specifications should be part of the evesstdptions which are entered
into the fault tree.”

(Veselyet al, 2002, p26)

Crucially, the notion of a fault also allows usdmnsider human input into a system, and more
importantly, human error. If a human operator hefl the barrier up, thereby unwittingly

admitting unauthorised access, it would be a fsalised by human error, but not a failure of the
entity itself. This important distinction betweeaufts and failures therefore also allows the

analyst to consider the impact of other factorsughe entity.

This distinction is frequently represented by tHassification of faults into one of three

categories, known as primary, secondary and command

« A primary fault occurs when a component suffersaaltf during normal
operation, i.e. the component is operating undeditions for which it was
designed, but it still fails. This could be duethe component simply wearing
out, for example.

* A secondary fault occurs when a component suffefieuli during abnormal

operation, i.e. the component fails when it is afiag in conditions for which
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it was not designed. An example would be a compotecessor operating in
higher temperatures than it was designed to copfeamd thus overheating.

« A command fault is when the component operates aldyrbut it does so in
the wrong circumstances, due to an incorrect condnsggnal. An example of
this kind of fault would be a bomb whose triggemuses it to explode
prematurely. The bomb was always meant to explade,t fulfilled its

function correctly — just at the wrong time.

Here it can be readily seen that both primary awbidary faults will normally be failures, and
are often called primary and secondary failurestifiat reason, but a command fault is not a
failure. Both faults and failures can also be dfesbaccording to different criteria, such as how
suddenly they occur (e.g. gradual vs. sudden):; tregjree (e.g. partial vs. complete), when they
occur during the lifetime of the entity, and masipbrtantly, according to the severity of their

effects (e.g. minor, critical, or catastrophic).

This issue of time is not consistent, however. ttmdard fault trees, no distinction is made
between theexistenceof a fault and theoccurrenceof a fault (an issue that will become
important in section 2.4). Once a fault has ocalriteis considered to be ‘true’ by the fault tree;
that is, it is presumed to exist from then on. Heevein a system that can be repaired, a fault
may occur, then cease to exist once it has beaireelp the fault still occurred, but it is no
longer ‘'true’. Standard fault trees do not makes thstinction. There are many efforts in
progress to attempt a solution to this problem, esofwhich will be discussed shortly later in

this chapter.

Figure 4 shows a simple example of a fault treee Tour circular leaf nodes represent
contributory faults. The AND (left) and OR (righgjates above them show how these basic
events can combine to produce the system failuguastion (also an OR gate in this tree). In
each case, the result at each stage is a simpdeyhiesult: either the event occurs, or it does
not. All events in the figure have descriptions\abthem in rectangular boxes, but these are

sometimes omitted in simplified fault tree diagrams

The various types of node in the fault tree willdoglored in greater detail in secti@r.3but
there is a simple division in fault trees betweéstermediate events— events or faults with
causes of their own and usually represented bydbgjates — anfasic eventsthe leaf nodes
representing faults that do not need developinthét Thetop event represents the system

fault being investigated and is usually represebted logical gate.

% Basic events may have causes of their own, bigettage disregarded as being out of scope or not
relevant to the system. For example, a motor failmay be caused by wear and tear which is in turn
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protection
system

PROTECTION FAIL

Fire detectian Fire
system fails suppression
system fails

DETECTION FAIL
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Failure of Failure of heat Mo water to sprinkler
smoke detector detection sprinkler nozzles
sensor system blocked

PN NI NN

|SMOKE FaIL | | HEAT FAIL | | PUMP FAIL | [NOZZLE FAIL |

Figure 4 - Example of a fault tree (from tutoriat B.D. Andrews, www.fault-tree.net)

2.2.2 Coherency of fault trees

Fundamentally, fault trees are simply Boolean lofiach event either occurs or does not occur
and this is represented logically as either truefatse respectively. The events are then
combined through logical gates (most of which cgpmnd to Boolean operators like AND and

OR), which creates the logical structure of the.tfehe Boolean nature of fault trees facilitates
their easy evaluation, either by a computer or d&ydh The simple underlying logic also means
that many fault trees can readily be converted itteer representations more suitable for

automated analysis.

One such representation is known as skreicture function of the fault tree. A structure

function is a function representing the undesiraent in terms of the basic events. Firstly, a

caused by friction between moving parts, but thesyrbe an unnecessary level of detail; as another
example, an alarm system may fail due to lack efgronvhich in turn is caused by a mains power dé, t
causes of which could be an electrical storm affgcthe substation or bringing down power lines etc
but this is out of the scope of the system beirajysed.
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Boolean variable (i.e. one that can have only twssfble values, true or false) is assigned to
each of the basic events in a fault tree. Usingetteemple from Figure 4, for each of SMOKE
FAIL, HEAT FAIL, PUMP FAIL, and NOZZLE FAIL, we camse the variables, x,, X3, and

X4 10 represent whether or not that event has oadurre

1 - the event has occurred (= true)

0 - the event has not occurred (= false)

P
I

By usingz to represent the undesirable event, the struétmetion is:

Z=q@(x) wherex = (Xi, X, X3, X4)

For an OR gate, the structure function resultsifraby input is true and 0 otherwise, i.e.

O:x =1-¢(x)=1
Oi:x =0 - ¢(x) =0

Similarly, for an AND gate, the structure functioesults in 1 if all inputs are true and O

otherwise, i.e.

Oiix =1 ¢(x)=1
O:x =0-¢@x)=0

In the case of the fault tree from Figure 4, theacdtire function is 1 iks is 1, if X4 is 1, or if

bothx; andx;are 1, and O otherwise. This can be representedBmnpoleartruth table:
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Table 1 — A Boolean truth table

A truth table can be used to determine the Boolsne of a structure function (or more
generally, any Boolean expression) from the Boolesues of its constituent parts. In Table 1,
each row lists the values of every input (represenby the first four columns) and the
corresponding output value of the structure fumc(ihe fifth column). Any Boolean fault tree
containing only AND and OR gatesan be represented in this way by a truth tahieab the
table must contain"2rows wheren is the number of inputs, truth tables are impcattfor

expressions with large numbers of inputs.

Structure functions are important for another raabowever. Although the most common fault
tree gates are the standard Boolean AND and ORsgdiiere are others, including NOT and
XOR gates, both of which introduce the idea thatibn-occurrencef an event can contribute
to the system failure at the top of the fault tfeealternatively that the occurrence of an event
can preventthe system failure). A fault tree with only AND ciitDR gates will always be a
coherenttree, whereas a tree containing NOT gatemiscoherent A tree can be proved to be

coherent if its structure function obeys the foliogvrestrictions:

* And optionally NOT and XOR gates, but these cad keanon-coherent fault trees.
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« Each element in the structure function is relevaet, all elements in the

function must affect the output:

@ (1,%) #9(0,%)

e The structure function must Ip@n-decreasingn each x

exX)ze(y) ifxzy

If an element xbecomes true (i.e. it suffers a fault) then thetey either stays
the same or deteriorates — in other words, if apmrant in a system fails, it

will not lead to an improvement in the functioniogthe system.

A non-coherent fault tree, by contrast, means thamponents NOT failing, i.e. working,

contribute to the system failing," (Andrews, 2000hus in a non-coherent tree, a failing
component can lead to overall system success. Téemimg of the second restriction for
coherent trees should now be more clear: to bedeoreasing, a component failure must either

cause system failure or no change in system status.

The distinction between coherent and non-cohereestis important due to the fact that they
need to be handled in slightly different ways. Thhus presence of gates other than just AND
and OR may alter the logical structure of the farde and require a different (and normally

more complex) form ofjualitative analysis

Qualitative analysis of fault trees relies on theol®an properties of the fault tree to obtain
simplified logical equivalents that yield more régdisable information. Generally, this means
obtaining theminimal cut sets(MCS) of the fault tree. Aut setis simply a combination of
basic events that can cause the top event, andhienaticut set is a cut set with no redundant
basic events, i.e. all of the basic events in @amahcut set are required to cause the top event.
Theorder of a minimal cut set is the number of basic evérntentains: a % order MCS would
contain just one event, whilst & 6rder MCS would contain five basic events, albich need

to occur to cause the top event. Minimal cut segsuaeful because low order MCS, such%s 1
and 2° order, indicate areas of particular vulnerabilityd help the analyst to identify those
‘critical' components that the operation of thaeysrelies upon. For & brder minimal cut set,

a single event is all that is necessary to caused event (known assingle point of failurg
and the component in question would therefore lgoed candidate for replication and/or

replacement with a more reliable component.
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However, the use of non-coherent fault trees caraps qualitative analysis, because minimal
cut sets no longer apply; it is no longer suffitiemindicate only which events have occurred —
it is also necessary to indicate which events mt@ccurred. Thereforenplicants (analogous

to cut sets) and more importanflyime implicants (analogous to minimal cut sets) are used.
Whilst a cut set is a set of events that must ottwgause the top event, an implicant is a set of
events or their complements necessary to causdofheevent, e.g. A and B and not C.
Implicants generally contain more events than ets $ecause of the need to account for the
non-occurrence of events too. A prime implicarthes equivalent of the minimal cut set: it is an
implicant that contains no other implicants. Whatethe differences, however, they are used in

the same way: to identify weak points in the system

Although a fault tree is purely a qualitative mqdahd primarily conveys the logical
combination of events leading to a system faultisitalso a convenient model to use for
quantitative analysis which allows the analyst to obtain numbers aralistics about the
system. By including extra information in the mdihg process, a fault tree can be quantified
to calculate the probability of the top event ocingy, as well as the relative importance of the
contributing events. Quantitative analysis is usuglerformed after qualitative analysis,
because it is more efficient to apply probabilisti@alysis to a set of minimal cut sets or prime
implicants than it is to apply it tall the cut sets in a fault tree (and there may be tdn
thousands for larger trees). In this way, the astatpt only discovers what the weak points in
the system are, but also discovdrew weak they are. Both forms of analysis provide
information that could potentially be very usefutem making decisions about the development

of any system, but only qualitative analysis isldeéh in this thesis.

2.2.3 Fault Tree Symbology

There have been several attempts to extend faads twith additional gates and symbols in
order to represent further types of informationhmtthe fault tree (e.g. the DFT approach in
Vesely et al. (2002) or the TFT approach in Palshikar (2001))l #mere are many minor
variations in the appearance and layout of fawedr However, the core set of symbols is
common to all fault trees and these symbols, ametkfin theFault Tree Handbogkcan be
divided into three categories: event, gate andstemrsymbols, as shown below. There are also

NOT gates but these are not shown inHlaadbook
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Figure 5 — Fault Tree event symbols

Basic Event

A basic event is a basic fault that requires neher development or expansion. Basic events
form the leaf nodes of the tree and combine toe@amisrmediate events and (ultimately) the top
event. In qualitative analysis, cut sets are compad basic events, and in quantitative analysis,
basic events will usually be assigned failure redaes repair rates so that the top event

unavailability can be calculated.

Intermediate Event

An intermediate event is a fault that occurs beeafscombinations of other events occurring
further down the tree; for this reason an intermgxevent is almost always a type of logical

gate. The top event is a special event of this atpbke top of the tree.

Conditioning Event

A conditioning event is an event that serves gseaial condition or constraint for certain types
of gates (e.g. Priority-AND gates and INHIBIT ggteSor example, the INHIBIT gate is only
true if both all of its inputs are true and if @snditioning event is true. A conditioning event

does not necessarily have to be a fault; it coelthlat the system is in a certain state.

Undeveloped Event

An undeveloped event is an intermediate event whosg&ibuting events are not considered in
the analysis. This may be because of insufficiafdrimation about this event or it may be
because the event is considered inconsequentiahalt, for example, have such a low

probability of occurrence that to analyse it intfigr detail would be unnecessary.

External Event
An external event is an event that is not a fdidt,an event that could be expected to occur
during the normal operation of a system. It is useckpresent events that ordinarily would not

cause any problems, but in combination with otlvenés, may lead to an undesired event.
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Figure 6 — Fault Tree gate symbols

OR Gate

The OR gate is true if any of its input events awe. The OR gate does not necessarily
represent a causal relationship between its inpoth outputs; each of the inputs are often
restatements of the output. For example, the outmive is failed open' could be further
described as 'valve left open during maintenanc&/atve fails open due to mechanical fault',
but both descriptions refer to the same resultviiee is open, and the inputs did not cause the

output. OR is represented in this thesis by aymlml in text or in expressions.

AND Gate

The AND gate is true if all of its input events drae. Unlike an OR gate, an AND gate

typically represents a causal relationship betwieeimputs and its outputs; that is to say, the
combination of input faults causes the output fadtr example, 'No power to system' could be
caused by both 'battery failure' and 'generatturfalj but not by just one. AND is represented in

this thesis by a '." (full stop) symbol in textexpressions.

Priority AND (PAND) Gate

The PAND gate is only true if all of its input etsrare true and they occur in a certain order.

The order can be specified by a separate conditjp@vent, but it is often omitted. The PAND

gate will be covered in greater depth later in thapter (see secti@d4.]).

Exclusive OR (XOR) Gate

The XOR gate is true if one and only one of itsuingvents is tru@.

INHIBIT Gate
The INHIBIT gate is a special case of the AND gatevhich the output of the gate is only true
when the input event is true whilst a conditionengnt is also true. For example, an explosive

reaction may only take place if above a certainperature or a catalyst is present, even if the

> Note that theFault Tree Handboolalso shows a strange diagram with a standard QR with a
conditioning event attached; this will be mentiorsghin later in the context of the Priority-OR. @&ls
note that the XOR gate symbol in tHeandbookdiffers from XOR gate symbols found in other figld
e.g. electronics.
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constituent ingredients are present. It is alsowkn@s an IF gate but in logical terms it

functions as a normal AND gate.

/X

Transfer Ot Transfer In

Figure 7 — Transfer gates

Transfer In
This indicates that this particular branch of theetis displayed at the corresponding Transfer

Out symbol. It is used to save space or to indiaatkared branch.

Transfer Out
This signifies that this branch connects to the oéthe tree at the corresponding Transfer In.
Transfer Out symbols can be used to representahamches (i.e. multiple Transfer In gates

linking to a single Transfer Out).

X ®

NOT Gate Complement Event

Figure 8 — NOT gate & Complement Events

Although NOT gates are not present in Baailt Tree Handbogkwhen used, they usually have
the symbol shown in Figure 8, though other symlaots also used. They flip the value of an
event, i.e. if we have an event X, then NOT(X)rigetonly if X did not occur, and false if it did
occur. NOT gates can also be represented impliagtlthe complement of a basic event. NOT is

represented in this thesis by the '=' symbol.

2.2.4 Relevant Fault Tree Algorithms

There are many important fault tree algorithms laléé with a number of different purposes

(e.g. qualitative analysis, quantitative analysissitivity analysis, importance measures etc).
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For this thesis, the most relevant algorithms awelitative analysis algorithms. A good
summary can be found in Wolforth (2005) but a ceupl important algorithms that will be

referred to later are briefly described below.

MOCUS — Method of Obtaining Cut Sets
MOCUS (Fussel & Vesely, 1972) is one of the maimssical fault tree reduction algorithms

and one upon which many other solutions are baléed. a top-down approach (a similar
bottom-up approach, MICSUP, followed three yeargerjathat consists of recursively
expanding intermediate events into basic evenisthete are no more basic events remaining.

The basic algorithm is as follows:

1. Make a table with rows and columns. Each row reprissa cut set and each
column is an element in the cut set.
Put the top event in the first column of the fisiy.

3. Scan through the table, and for each gate:
a) If the gate is an AND gate, put each of its akitdin a new column.
b) If the gate is an OR gate, put each of its chitdn a new row.

4. Repeat Step 3 until there are no gates in the.tdbhis means the fault tree has
been fully expanded, and the MOCUS table contaihg lmasic events.

5. Search for and remove all redundancies within abéet according to the usual
Boolean laws (Absorption, Distributive, Idempotesit; seeAppendix Il

Boolean & Temporal Laws).

The resulting table then contains a minimal cutisetach row. MOCUS is accurate and quite
fast for smaller trees. However, as the table groavs much larger depending on the number
and placement of OR gates in the fault tree, MOGIt8ggles to store all of the necessary
information for large fault trees. For example, t®&® gates, each with four inputs, ANDed
together, will result in 4 x 4 = 16 different cgts. To see how the process works, consider the

simple fault tree in Figure 9:
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Figure 9 — Example fault tree for MOCUS

The first step is to make a table to store thestamt, which in this case is the AND gate, G1:

Gl

Then this is expanded, according to step 3. Becdusean AND gate, we put each of its

children in a new column:

G2 G3

Next, these are expanded as well. They are OR ,gsdetheir children are put in a new row,

starting with G2:

G3

And then G3:

W W > >
> O > O

Now that all of the gates have been expanded, Boolaws can be applied to check for
redundancies. According to the Idempotent law, tslemtical events in the same row can be
reduced to just one, i.e. X AND % X, thus:
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W @ > >

And finally, according to the Absorption law, ifl &if the events in a row also occur in another

row, then the larger row is redundant, so:

A
B C

Which gives the result: two minimal cut sets, opataining just A and the other containing B
and C.

Despite its problems, however, MOCUS is both onghef simplest and the most popular of
FTA techniques, as evidenced by its 30 year lifsasfBecause it is accurate and easy to
understand, it is a good technique to analyse em#dlult trees; furthermore, it makes an
excellent foundation for further expansion — oreasion — with new techniques. However, it is

not the most efficient technique and newer algorithike MICSUP tend to be faster.

ELRAFT — Efficient Logic Reduction Analysis of Fadlrees
ELRAFT is a mathematical reduction algorithm progbsby S. N. Semanderes in 1971
(Semanderes, 1971). Unlike the simple, logical methsed in MOCUS, ELRAFT attempts to

improve the performance of the reduction processxploiting a property of prime numbers.

Although it still applies the Boolean laws of Abption and Idempotence to reduce the fault
tree to its minimal cut sets, rather than checl@agh event against every other event to
determine whether or not it can be reduced (as@CMS), ELRAFT can check entire cut sets

at once.

Semanderes makes use of a mathematical featuerfarm the analysis. It is a property of all
positive integers greater than 1 that they areeiaet product of only one set of prime numbers.
ELRAFT exploits this fact by assigning each unitpasic event a different prime number. The
gates then obtain values derived from the childieml For example, using the fault tree in
Figure 9, we might assign values such as A = 2, B, € = 5. Expansion (in the style of
MOCUS) will produce four cut sets and the valueaofut set is equal to the product of the

prime values of its constituent events:
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AA =2x2=4
AC =2x5=10
BA =3x2=6
BC =3x5=15

It then becomes possible to check whether or moit et contains a given event by performing
a modulo operation on the cut set using the primmaber of the event: if there is a remainder,
then it does not contain that event; if there igemainder, then it does. For example, B.C is 15
and Cis 5, so B.C modulo Cis 0. Ais 2, so B.Gaito A is 1. Thus B.C contains C, but does
not contain A.

This applies also to entire cut sets; if there wast set A.B.C, it would have the value 2 x 3 x5
= 30, and so to check whether it contained B.C ¢viig 15), 30 modulo 15 gives us the answer
0, thus A.B.C contains B.C. Of course, before ihigossible, it is first necessary to ensure that
there are no duplicates in the cut set, e.g. byréng through and checking for repeated events.
Then, by dividing the product of each cut set agfaine product of every other cut set, we can

determine whether or not it is redundant.

This method is purely mathematical and does natire@ny searching through pairs of cut sets
to test each event against every other event;adsta simple mathematical calculation is
performed for each cut set, which is much fasteshbuld be noted, however, that in practice
there are often problems with storing the prodottgrime numbers in computer programs, as
they can grow very large very quickly and often eed the ranges of most numeric
representations.

Linear Time Modularisation Algorithm

The linear time modularisation algorithm (DutuitRRauzy, 1996) is not a traditional qualitative
or quantitative analysis technique: instead, iised to find independent modules in fault trees.
An independent module is a sub-tree in which ndrnibeobasic events are repeated elsewhere in
the tree. This independent sub-tree can then blysmuhseparately as part of qualitative or
gquantitative analysis, making the process moreiefit by avoiding repeatedly analysing the
same branches of the tree. The division of thetisdes to simplify the analysis process, and in
the case of certain techniques, allows for differalgorithms to be used depending on the

nature of the sub-tree in question.

The modularisation algorithm itself consists of tdepth-first left-most traversals through the

fault tree and a set of three variables for eacten®he first pass sets a countgindicating the
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first visit, i.e. the number of nodes visited so fauring the same pass, on the way back up the
tree, moving from the right-most child to its parahsets a second counterwith the number

of itsfirst return visit. Any subsequent visits to the sameensetv;, which stores the number of
the most recent visit. A second traversal of the is then made to determine whether each node
IS @ module. A node is then head of an indepenaedule if none of its children havevaless
than its ownv; and none have & greater than its oww,. By contrast, if the most recent visit
counterv; of a child is higher than the first return vistunterv, of the node, it contains a
shared branch. The name of the algorithm comes fittenfact that performance is linear
because each link in the fault tree is only visiteite and so the algorithm has a performance
of O(n).

To see how this process works, consider the sifigpik tree in Figure 9, which consists of (A
OR B) AND (A OR C). For each event, the 'visitealues are as follows:

Event vl (T visit) | v2 ('] v3 (last
return) Visit)
Gl 0 9 9
G2 1 4 4
2 2 7
B 3 3 4
G3 5 8 8
C 6 6 6

Table 2 — Linear Time Modularisation Algorithm

The numbers represent the number of nodes visgddrs so G1 has the first visit counter 0
because no other nodes have been visited yet.i$ta@tion of nodes is GP G2> A > (G2)
2> B> G2-> (G1l)> G3> C—> (G3)> A > G3-> G1. Notice that because A occurs
beneath both G2 and G3, they are not independentnaximum of G2's childreng values is
7, which is greater than its own counter of 4; similarly for G3, the minimum of ithildrens’
v, values is 2, which is before its own first visgunter of 5. Only G1 is an independent tree,

but in this case it always would be since therenarligher nodes.

Modularisation is useful for many reasons, nottldsesause it can break the tree down into
parts that can then be more readily analysed. Thisery useful with Boolean analysis

techniques such as MOCUS, because it means thatlaigaan deal with several smaller trees
of reduced complexity rather than one big tree.ddse of the combinatorial explosion effect of

lots of OR gates high up in a fault tree, analysimgdules can result in much reduced demands
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on memory for MOCUS-style techniques. However, afethe more subtle benefits of
modularisation is that different modules can be lyseal independently with different

techniques, as exploited by Dynamic Fault TreesZsk2).
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2.3 Time

"What then is time? If no one asks me, | know whst If | wish to explain it to him who asks, |
do not know."

- Saint Augustine

"Time is an illusion. Lunchtime doubly so."

- Douglas Adams

2.3.1 Representing Time

Time is a tricky thing. We take it for granted imeeyday life, but the more closely you think
about it, the more intricate and complicated itdmes. That this is true is evident from the
many different schools of thought on how to motietlé' in a mathematical or philosophical
way (e.g. Cleugh, 1937). The first point of divarge is the distinction made betwesrsolute
time, where time is measured from a fixed starpogt (as in a calendar), amelative time,
where any one point in time is measured relativany other. Relative time allows imprecision
in that it is not necessary to know the exact tahavhich an event occurred, just whether it
occurred before or after another event. Absoluteetiby contrast, is necessarily much more

precise: it describes exactly when an event ocdurre

This is not to say that relative time cannot hakecision — it is possible to say, for example,
that one event occurred 3.142 seconds after anathethich case it igjuantitative and has a
metric for time (i.e. time is measurable). Absoltitee always has a metric, since it measures
time since a common starting point, whereas raddiime just means it is not necessary to have

a common frame of reference to relate all eveneath other.

Absolute Time
| | | | | | | |
| A ]  * |
0 10 20 a0 40 a0 (=1 o
= Y z
Relstive Time o pod pe

Figure 10 — Absolute versus relative time

Figure 10 shows the difference between absoluteaatlve time. Absolute time has a starting

point and all events are measured from that psiX may occur at time 15, Y at time 33, and

42



Z at time 57, for example. In relative time, itasly possible to know that Y occurred after X
(or X occurred before Y) and similarly Z occurreitea Y. If a metric exists, we can also say

that Y occurred 18 time units after X, for example.

A second division between different models of tirmevhether or not time is represented as
beingcontinuous (also known aslensetime) ordiscrete In a continuous model of time, there
are no gaps between moments — there is infiniteigom. In a discrete model of time, time is
represented by a series of moments or states thatiearly delineated. The common analogy
used in this case is the difference between reabeus and natural numbers; in the former case,

there is always another number between any two etsnin the latter case, there is not.

Continuous Time

Dizcrete Time

Figure 11 — Continuous versus Discrete time

Figure 11 shows the difference between continuodlsdiscrete time. In the former case, it is
possible for events to occur at any point alongsttae, e.g. at 1.5, 2.222, 7.123 etc. In discrete
time, events can only occur at discrete moments,imdetween, e.g. only at 1, 2, or 7.
Continuous time is more frequently used in absdinte models whereas discrete time is often

used in relative models of time (e.g. in which edidtrete time value is a separate state).

Yet another variation, more philosophical this tjieebetweerlinear time andbranching (or
non-linear) time. With linear time, time is represented bsirggle time line, but with branching
time, there can be multiple paths in the futured(aptionally in the past), and events cause
different timelines to split from the original lirfe.g. in one path the event was true, in the other
the event was false). These two options are alswkrasdeterministic andnon-deterministic
time, because branching time allows the possibilitgvents occurring in some future time lines
but not others. One further point to note heréhésriotion ofbounds A linear time model can
be bound in the past (i.e. it has a fixed stangaont) and in the future (it has an end point), one
or the other, or neither. Similarly, branching tioan branch only in the future, only in the past,
or both.
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Figure 12 — Linear vs. Branching time

There is one more common distinction in time modetise choice of the unit of time itself. The
first option is the notion of point-basedtime, where essentially time is represented bgrigs

of moments in time (either continuous or discrebafervals are represented as a collection of
time points. For example, looking at the lineardifime in Figure 12, we could define an
interval as {1, 2, 3} containing three moments dinerefore lasting three units of time, or we
could simply define it as [1,3] by giving a staridaend point. The other option is to use
interval-basedtime, in which the interval is assumed to be tfoenéc unit of time. Again using
Figure 12, the base interval unit would be the timedween 0 and 1. Whichever interval is
chosen is assumed to be atomic, i.e. indivisibtethss obviously has implications for the

granularity of time the model can represent.

A good analogy to these two ideas is the notioa afieasurement of length. We can define a
distance using a standard unit of measurementiregnetre. This is the interval-based method.
The problem with this is that we must make sure unit is sufficiently small to be able to

achieve the level of precision we require, otheevéismething may need to take a fraction of an
interval, which the model does not allow. The al&ive is the point-based method, which is
analogous to measuring distance using a serieguars, like milestones. Every time you pass
a milestone, you have travelled further. The obsiflaw with this approach is that there are
mile-long "gaps" between milestones, i.e. in otherds, potentially minute periods of time

between the points. This can pose problems: fomelg if one period of time starts when

another ends, do they overlap at the same poititni (so that both are true at that point) or is
there a minute amount of time between the firsirenmend the second starting? This problem is

illustrated in Figure 13:
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Figure 13 — The Point-Based Time Problem

In the first possibility, we define the durationefent X as [0,10] and Y as [10,15] — but in that
case, is point 10 included in both events? Thersbpossibility is to make sure the events do
not overlap, e.g. X =[0,9] and Y = [10,15]. Butthmt case there appears to be a "gap" between

points 9 and 10 that the events do not cover.

In Allen (1983), the author categorises the différapproaches to representing time into four

general groups:

» State space approaches

State space approaches work by modelling the systena database of
information. Each state is a database represetitengystem at one time; when
an event occurs, it causes a transition from oagée sio another, thereby
representing a progression through time. The it@snformation in the

database may be true for one state but false fotheanand so simulate the
changes to the system over time. Events are pamgist that once an event
causes a change in one facet of the system, thegetiafacet of that state
persists unless another event changes it agaite-§tace approaches are
necessarily discrete, point-based, and relativechn be either branching or

linear.

» Date-base/Date-line systems
In these systems, information is stored in a datlzand indexed with a date.
By comparing the dates of two items of informatidnis possible to discern
the temporal order in which they occurred. Unfoetiahy, it is often difficult to
assign the necessary precision or imprecision tesganaking it difficult say
that two events did not occur or did occur at theme time, for example. This
scheme relies on the use of linear, absolute thmeall items of information,
but the model of time can be continuous or discagig either point-based or

interval-based.
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Before/After chaining

Before and after chaining is a way of explicitly dedling relative times of
events by linking them according to the order inckiithey occur. However,
for large numbers of events there are problemsooage and overly-expensive
searching, since searching is typically linearislialso difficult to represent
durations (since each 'event' is a link in the mhaBefore/after chaining is
usually independent of whether time is point-basedinterval-based, or

continuous or discrete.

Formal Models

Formal models apply to a range of disciplines, frphillosophy to artificial
intelligence. One such formal model stuation calculus which is the
principle behind state-space approaches; in stwattalculus, time is
represented as a series of states, each of wipobsents a system at a point in
time. Transitions between the states are actiorvents. The main drawback
with situation calculus is that only one staterisetat a time — there is no

notion of overlap.

Allen also suggests that the formal concept of fpoased time is unhelpful, because even a

seemingly instantaneous event can usually be fudeeomposed (Allen, 1983), and if the

original event occurs at one point, then it is deiar when the sub-events occur. Instead, he

suggests the use of an 'interval' unit insteade-sthallest relevant period of time. We use this

concept all the time — rather than measuring timedconds all the time, we measure it in

minutes, hours, or days etc according to our ndedsffect, we treat a period of time (a time

interval) as if it were indivisible. Allen's timetervals, unlike points, are consecutive — there

are no gaps between them, however small. Furthernmallow conclusions to be drawn about

the relative time of these time-intervals, Alleroydes 13 temporal relations to cover all

possible relations between two intervals in time:
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Figure 14 — Allen's 13 Temporal Relations

The choice of time model (or lack thereof) can hamportant repercussions when looking at
different approaches to modelling time, whethefault trees or elsewhere. In particular, the
choices of relative vs. absolute and linear vsndinang time have significant impacts on how
any logic underlying any such model would work. Hwer, it is often the case that certain
models of time suit certain type of applicationgtérethan others, and in such cases it is

possible to see that some choices are better thanso

2.3.2 General Temporal Logics

In any model of time, there also has to be somesrtb govern its structure and provide
semantics. These rules are generally knowteagporal logicsand allow us to represent and

reason about time in a more structured fashion.

The field of temporal logics began with the Tehsmic' introduced by Prior (1957, 1967,
1968; also summarised in McArthur, 1976). Tenséclegas based omodal logic(Rescher &
Urquhart, 1971) which is an extension to proposdidogic that adds two additional operators
— a 'necessarily' operator, indicateddbgr by L, and a ‘possibly' operator, indicatedOlyr by

M. Modal logic is designed to allow reasoning abmatdalitiesand these operators allow us to
say things like: "It is necessarily true that jeligans taste nice,” and "It is possibly true that

some people don't like jelly beans." Modal logicagnises that there are many possibilities and
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that sometimes a proposition may be true and ardiimes false, while in other cases a

proposition will always be true (or always false).

Tense Logic takes this idea and applies it to tithedefines fourtemporal operators as

follows:
Ford Sometime in the future ("It will at some time be tase that...")
Goro Always in the future ("It will always be the casmt...")
Horm Always in the past ("It has always been the chae.t")
P ore Sometime in the past ("It has at some time beerdke that...")

The first two refer to the future tense and theosdcpair to the past tense. G and H are the
'strong tense' or 'always' operators, correspongitige 'necessarily' in modal logic, while F and
P are the ‘weak tense' or 'sometimes' operatorespamding to the 'possibly’ modal operator.

They are also inter-definable, e.g.:

Px = =H-x (Ifx has at some time been true, tixdras not always been false.)
Fx = 2G-x (Ifx some time becomes true, thewill not always be false.)

(where - represents negation)

Extensions to Tense Logic have been proposed miugatimes, but amongst the most popular
additions are the 'Until'l) and 'Since'$) operators introduced by Kamp in 1968. (Galton,

2003) These are binary operators since they ta@@perands, e.g.:

Sxy "y has been true since a time whenas true"

Uxy "y will be true until a time wheris true"

Prior himself added another operator, the 'megtisé’ operatorrp. This allowed specification
of time intervals in both future (positive and past (negative). Fnp means thatg will be true

after intervaln”. If nis 0, then it refers to the present moment.

Other additions include the 'next time' operatar0P means thap is true in the next moment
(but not at the present moment); this implies tkistence of a discrete time model as otherwise

the definition of the next 'moment’ could pose |ois.

There have been other approaches; for examplen Allggested a predicate-based temporal
logic with a 'holds' operator for use in modellitggnporal knowledge, e.g. Holds(Open(Shop),

(8.30am, 5.30pm)). However, Tense Logic proved weflyential and many of the subsequent
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temporal logics reuse elements of it; in particuthe futuresometimeand always operators

usually feature in other temporal logics anduhgl andnextoperators are also quite common.

One of the foremost temporal logics Bsopositional Temporal Logic (PTL), which was
proposed by Pnueli (1977) for reasoning about coeot programs. It was based on Tense
Logic and used thalways sometimesnext and until operators to describe the relationships
between states in a system. It represented tingesasies of instants corresponding with states
(i.e. each state was an instant of time), mearing$ both point-based and discrete. It has also
been extended with other operators, e.g. past wmpsrdike previously, once, so-far, since
(Lichtenstein & Pnueli, 2000; Kestaat al, 1993). There is also a variation of PTL known as

'Choppy Logic' as it adds a 'chop' operator to ftetiva concatenation of states.

Other variations of PTL include Branching Time Tewad Logic (BTTL), which is a variation
of PTL that uses branching time rather than lingae, and Interval Temporal Logic (ITL),
which, as the name suggests, uses intervals insfgaaints as the basic unit of time (Bellti
al., 2000). BTTL is better suited to non-deterministystems and it provides quantifiers for this
purpose: thél quantifier means that something is true in allssgfuent time branches whereas
Omeans it is true in at least one branch. By cettfdL is a linear logic, making it suitable for
tasks like modelling digital signals where thereidy one timeline. ITL replaces PTLsntil
operator with achop as in Choppy Logic, which means it can only iatkc order by
concatenation. Yet more variants include CARET,chtis designed to represent nested calls
and returns in concurrent programming (Aktr al, 2004), and another that addswihin
operator to represent nested intervals (Aturl, 1997). Both ITL and PTL are examples of
linear temporal logics (LTLS); although others exist, e.g. Linear Logic (Girek@87), PTL (or

a variation thereof) is usually considered the mRifL and is consequently sometimes

described as PLTL or even just referred to as LTL.

The main alternative to the PTL family @omputation Tree Logic (CTL) (Emerson, 1990).
As the name suggests, it is a branching-time lagjiilar to BTTL. CTL offers capabilities for
modelling non-deterministic systems and is freqyensed in model-checking and formal
verification contexts, e.g. DCCA (Ortmeiet al, 2005). It also has a number of its own
variations, one of the most important of which iBLE, a superset of CTL and LTL. Like PTL,
however, it has its roots in the original Tense icognd so CTL* features familiar operators
such as G (always), F (eventually), U (until), >exXt), together with two quantifying operators
(as in BTTL): A meaning true in all branches andrmEaning true in at least one branch.
Another combination of linear and branching timdTik+ (Ortmeieret al, 2008), which is a
combination of ITL and CTL/CTL*. Other extensiomgiude RTCTL (Real-Time CTL), which
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provides a metric for time and is better suitedrniodelling real-time systems (which require

more precision than normal CTL can provide).

Another family of temporal logics is tHaterval Logic (IL) family. These are interval-based
logics where the intervals are bounded by evenhfspiides bounded operators to reason about
these intervals, e.g. to suggest that somethiadwiays true inside a given interval or that it is
true sometime in that interval. Extensions incldle (Extended IL), which allows quantitative

constraints, and RTIL (Real-Time IL), which provéde metric of time.

Yet another major contributor to the field of temglologics in concurrent programming is
Leslie Lamport, who developed themporal Logic of Actions (TLA) (Lamport, 1983; 1994a;
1994b). TLA uses three main operatabvays, eventually/sometimendleads tQ, which can

also apply to each other (exgwill always lead toy, y sometimes leads t) etc).

The majority of these temporal logics are intenfladformal specification and verification,
particularly in concurrent programming, but everthwihis one field, they all have different
advantages and disadvantages. Vardi (2001) sugtedtspecification is easier in a LTL like
PTL but verification is easier in a branching logie CTL; this is because model checking is
linear in CTL but exponential in LTL. However, CTd more complex and less intuitive to use
compared to LTL. Nevertheless, CTL forms the badi: number of model checkers, e.g.
SMV. Lamport also compared linear and branchingclggamport, 1980) and he observed that
the ubiquitousalwaysandsometimeoperators can mean different things in linear larahching
logics; in linear logicsometiméas equivalent tanot never(i.e. p = -G-p meaning p will be
true sometime" is equivalent tp fs not always false") whereas in branching lotliey are not
equivalent. This is because in branching tismmetimeefers toeverypossible future, whereas
not nevemeans there is at least one possible future, dutecessarily all; i.e.g-means p) is
true at some point in every possible future", whereG means p is not false in every

possible future".

Another common use of temporal logics is for madglreal-time systems. However, most of
the general temporal logics described thus far maveetric for time and are thus ill-equipped
to model real-time systems. Instead, a number oifpteal logics exist that are designed
specifically for this purpose, e.g. RTTL (Real-TimEemporal Logic), TPTL (Timed
Propositional Temporal Logic), RTL (Real-Time LogicTRIO (Tempo Reale ImplicitO /
Implicit Real Time), MTL (Metric Temporal Logic),nal TILCO (Time Interval Logic with
Compositional Operators) (Belliet al, 2000).
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Several of these are also extensions of PTL; RTAA. BPTL, for example. RTTL is linear and

discrete but allows quantification of time and esmnts time directly as a variable. TPTL
makes a direct association between time and natwmrabers. TPTL also provides a 'freeze
quantifier' that, when used, binds a time variabléhe present, making it possible to specify
constraints relative to the current context, ey.frleezingx, we can say thay must occur

betweerx andx + 5, meaning it must occur in the next 5 time unitiu(A& Henzinger, 1992).

There are typically three approaches to introdueingetric of time and creating a quantitative
temporal logic. Some logics allow their operatoos e bound to a time interval, e.qg.
sometime[2,4] means sometime in the next 2 — 4 timits; MTL (a variant of PTL) uses this
approach, as does IL. MTL also has a variant knassMTLp, which adds past time operators
(Alur & Henzinger, 1993). Other logics provide adre operator, like TPTL. Still other logics
use an explicit clock to represent the actual valuéme at the moment of any evaluation, e.g.
RTTL and XCTL (Explicit Clock Temporal Logic). Altugh these are all linear, discrete
logics, MITL (Metric Interval Temporal Logic) allesvcontinuous time with non-negative real
numbers and RTCTL (Real-Time CTL, mentioned abam) TCTL (Timed CTL) both use
branching time (Alur & Henzinger, 1991).

Not all temporal logics are used for modelling ré@le systems or concurrent programming,
however. Some are used, or even designed for mgeyiporal databases — databases which
allow querying based on time (Chomicki & Toman, TR9Temporal query languages like
TQUEL and TSQL2 exist (Toman, 1996) and it is polesfor queries to be expressed in point-
based representations and then converted intosattbased logic. However, it can be difficult
to get the precision correct, e.g. to determinethdretwo events occurred at the same time or
not, one must define what 'at the same time' mdansight mean on the same day or on the
same year; it is complicated further if the evehtsmselves have a duration as then this must

also be taken into account.

Clearly, there are many temporal logics for marffedent applications, as few temporal logics
are flexible enough to be applied in multiple donsaiThe choice of temporal logic depends
therefore on what is being modelled; since diffetmporal logics fit some models of time
better than others, it is important to find a tengbdogic that offers the right features, e.g. a
metric of time for real-time systems or branchingautifiers for non-deterministic models.
Bellini et al. (2000) suggest that for modelling real-time systethe most suitable temporal
logics are first-order, interval-based logics thHer a metric of relative time and that employ

only a small number of basic temporal operators.
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Some of these recommendations are specific tatiralsystems (e.g. the need for a metric of
time) but others are true in a wider context: reéatime, for example, is generally more flexible
than absolute time because it does not requirarng point or a metric for time; relative time
is also more suitable in future tense logics wheee exact time of an event is not known
because it has not necessarily happened yet. Byrasbnabsolute time is potentially more
valuable in a past tense logic because it can eefeurately to events that have occurred at
known points in time. Furthermore, interval-basegids tend to be favoured over point-based
as intervals can be seen as a generalisation ofspand they do not suffer the problem of 'gaps'
between points. Using a limited number of operatongotentially beneficial because it makes
the logic easier to remember and simpler to uggeasally if those operators can be combined

to form new compound operators.

Where fault trees are concerned, both linear aaddbhing time have their uses. Taken as a
whole, a fault tree can be thought of as a cobbectif possible sequences of events that all lead
to the same point (the top event); this can be asentype of branching timeline. Alternatively,
it is possible to view individual sequences of dgefor cut sets) separately, each as a linear
timeline that leads to the top event. The choicentdrval-based or point-based, or relative or
absolute, depends more on the nature of the basiteand the way they interact; if a real-time
system was being modelled with a fault tree, themegic of time would be more valuable, or if
the fault tree was being used for fault diagnasian operational system, then an absolute time

model could be used, with the starting point befregstart time of the system.
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2.4 Temporal FTA

None of the various temporal logics mentioned ttansvere designed for use with fault trees
(though they may well be of use in specifying tloenmal behaviour of the system). However,
there are some approaches that have been designear fadapted for use with, fault trees.
These approaches tend to fall into one of two cates: event-basedapproaches, which add

temporal information to the events of the faultefrandgate-basedapproaches, which add

temporal information via new logical or temporaltegm The scope and goals of these
approaches also vary: some are complex, all-encesimgasolutions whilst others only make a
few alterations; some are intended only for quatiié analysis and others for qualitative

analysis, while yet others are intended for thgpses of requirements specification instead.

2.4.1 The Original Priority-AND gate

Before going through some of the more modern swistito the problem, it is worth taking a
brief look at FTA's original solution to the issoétemporal analysis: the venerable Priority-
AND (PAND) gate, as mentioned in secti@®?.3 The PAND gate allows the analyst to
introduce an order to a set of events, putting theim a sequence and thus expressing some
amount of time-dependent information within thelfdatee. This sequence is typically defined

explicitly as a conditioning event. UnfortunateBAND gates are generally overlooked in FTA.

The problem with the PAND gate is that it was neberoughly defined, meaning it is difficult

to use it in qualitative analysis. Thiandbookstates that:

"The PRIORITY AND-gate is a special case of the Alle in which the
output event occurs only if all input events ocdara specified ordered
sequence. The sequence is usually shown insiddipsisedrawn to the right
of the gate." (Veselgt al, 1981, p IV-11)

This definition gives no indication of what sequerto use if none is given in a conditioning
event, nor does it indicate whether the gate It tstie if one or more of its inputs occurs
simultaneously. Furthermore, it fails to addresg ahthe issues raised by the possibility of
events occurring in sequence, e.g. whether it ssipte for contradictions to arise, whether
events must be consecutive or not, or what happé¢ins same event occurs more than once in

the same sequence.
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Part of the problem is the precise meaning of aenevFor example, the question of what
happens if the same event is used more than oraeiaput to the same PAND gate depends to
a large extent on whether it is possible for thmesaevent to occur more than once. The
Handbookseems to suggest not, because it states firsity'thinder conditions of no repair, a
fault that occurs will continue to exist", and ghorthereafter, "From the standpoint of
constructing a fault tree we need only concernelues with the phenomenon of occurrence.
This is tantamount to considering all systems asemmairable." (Veselgt al, 1981, p V-1) But

it says nothing about whether events occur insteatasly or whether they can have a duration

(in which case, they may overlap).

Furthermore, thédandbooksimply defines an AND gate as being true "if &k tinput events
occur." (p IV-3) But several of the temporal FTApapaches discussed later in this chapter raise
the gquestion of whether or not these input evehtsuls have to occur simultaneously or
whether it is sufficient for them to occur in angler. TheHandbookdoes seem to suggest the

latter interpretation, as on pages IV-7 and IVt8liscusses the problems of dependencies:

"When describing the event input to an AND-gate; dapendencies must be
incorporated in the event definitions if the depamdes affect the system
logic." (p IV-7)

The example given separates the possible sequehagsuts into two AND gates and an OR
gate, such that one AND gate has the inputs "X" ‘ahgiven that X has occurred" and the
other has the inputs "Y" and "X given that Y haswced". Clearly neither of these pairs of
events can occur simultaneously as the event tlefisi themselves preclude that possibility.

What is not clear is why a Priority-AND was not dse these situations instead.

Clearly, there are a lot of unanswered questionsgnding theHandboolks definition of the

PAND gate, in particular:

* What sequence of events is used if none is spdeiedefault left-to-right sequence?

« Do events occur instantaneously or do they haveration? (And if they have a duration,
what happens if they overlap?)

* What happens if inputs to the PAND gate occur atstime time?

« What happens if the same event is used more thamaman input to the same PAND gate?

« What happens if the logic introduces a contradi@ibor example, if we have an expression
like (X PAND Y) AND (Y PAND X), assuming that X PAD Y means that X occurs
before Y, the situation is impossible — how cancw before Y and Y also occur before
X?
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With all this confusion, it is no wonder that maoyt set analysis algorithms, ranging from
older tools such as SETS (Worrell & Stack, 1978ntwre modern software packages like older
version§ of FaultTree+ (Isograph Ltd, 2002)mply treat the PAND gate as a normal AND
gate for the purposes of logical reduction. Itfie argued that the replacement of a PAND by
an AND simply leads only to a conservative predittof the failure behaviour of the system,
but this claim is not necessarily true. Considerdimple example of a standby recovery system

in Figure 15.
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Figure 15 — An example system where a PAND mighsbtul

Normally the system performs its function using poment A. Component A is monitored by a
switch which starts standby component B when tlier@n omission of output from A. In a
classical fault tree, the following expression tedathe top event to logical combinations of

causes:

System Fails = A.B + A.Switch

i.e. if both A and B fail, so will the system, d&rA fails and the switch fails, the system will @als
fail. However, the above is not only pessimisticquantitative terms, but it is also logically
wrong: the system does not fail if the switch faifter A. It is necessary to be able to specify
the order of events more precisely to be ablettdjuish between sequences that cause failure

and sequences that do not:

System Fails = A.B + Switch fails before

or at the same time as A
The Priority-AND gate is intended to do this, bu difficulties with the gate stem from its lack

of a rigorous definition. The PAND gate is truét$f inputs occur in a set order, but what if two

of the events occur at the same time, e.g. whhkifswitch fails at the same time as A? It will
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still cause a failure, but it might not strictly bensidered part of the PAND's defined sequence.
For that matter, it is not clear how to define wieetone event occurs before another as they

may overlap if they have durations.

It is these problems that have resulted in therB#édND gate being so often ignored, at least
during qualitative analysis. However, the storyiste different when it comes to quantitative
analysis, and over the years there has been adeoable body of work focused on finding
methods of quantifying PAND gates. The quantificatof sequential failures in fault trees (as
modelled by PAND gates) is often termed 'Sequetit#lure Logic', or SFL. SFL has been
used in the quantitative analysis of a number fiedint types of dynamic systems, including
space satellites, human-robot systems, produciitjalprevention, and so on (Longt al,
1999).

There are several methods of solving SFL as padquahtitative FTA. One method is to use
Markov chains, as in the Dynamic Fault Tree apgunadescribed in the next section. However,
the Markov approach suffers from a number of drakbain particular, it is computationally
expensive and struggles to cope with shared inpents. Another method is the Priority-AND
Quantification (PAQ) method, originally proposed Bysselet al. (1976). The PAQ method is
an approximation but it is much simpler and appliego a wider range of systems; it involves
treating the Priority-AND as an INHIBIT gate, i@ AND gate with an additional conditioning
event which specifies the order in which the evshtsuld occur. Fussel al. also described an
exact solution but stated that it "cannot readily bsed in existing methodologies for
quantitative system logic model evaluation, suchfaadt tree analysis techniques.” (p 325).
However, both methods are only suitable for noraigle systems. Long & Sato (1998)
conducted a comparison between PAND quantificatimthods and concluded that the PAQ
method had the advantage in simplicity and, foA&IP gate with three inputs, the results were
the same as the Markov method. Also, while the Markpproach grows increasingly difficult
as more input events are added, the PAQ methocbeamsed with an arbitrary number of
inputs. Longet al. (1999) also provide methods of solving the analydiPriority-AND gates

with many inputs, since multiple integration forga numbers of inputs can be difficult.

Yuge and Yagani (2008) present an additional metbiodquantifying PAND gates without
resorting exclusively to the use of Markov chaiBscause Markov models have a nhumber of
disadvantages when created from fault trees, espedi the dynamic gates of the fault trees
have shared events (i.e. the same event is antmpubre than one gate, in which case the gates

are no longer independent), Yuge and Yagani progesase of the inclusion-exclusion method

® Version 10 of FaultTree+ did not detect contrddit; Version 11 (the current version at the tirfie o
writing) detects simple contradictions like (X PAND AND (Y PAND X) but cannot analyse them —
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to calculate the probability of the top event. Thwethod can handle the presence of
repeated/shared inputs to PAND gates, but it rediegshe minimal ordered cut sets already
being known; thus for a complex dynamic fault tre@hout a clear method of obtaining its cut

sets, this approach is not as suitable. The cortipatame also strongly depends on the number

of cut sets.

Regardless of which approach is chosen, the probmains that performing quantitative
analysis on PAND gates without prior qualitativealgsis can lead to anomalies and errors in
the calculations. Most importantly, quantitativeaysis has no way of detecting contradictions,

which — being impossible — have a probability of 0.

Unfortunately, whilst there are several examplegeghniques of quantifying PAND gates,
there are far less examples of qualitative techesqiihere are some approaches (described later
in this chapter) which mention the generation afeved cut sets or minimal cut sequences etc,
such as the work of Glidemaen al. (2008) and the CSSA approach (ldti al., 2007), but
usually only as a step towards quantitative ansly$ihe effect of PAND gates on the
identification of minimal cut sets is rarely considd, and methods of reducing them in certain
situations (e.g. when the output is a tautologya arontradiction) are completely absent. The
implications of including a PAND gate in qualitsgianalysis are not taken into account at all;
for example, not all of the Boolean rules that ggplan AND gate apply to a PAND gate. Most

obviously (using '<' to represent PAND):

Non-Temporal Temporal
Commutative: X.Y =Y.X X<Y#Y<X
ldempotent:  X.X = X X<X =0

The Idempotent law is one of the main laws usestatic qualitative analysis, since it removes
redundancies from cut sets; it is doubtful thatRgXND X) could be reduced in the same way if

PAND does not account for the simultaneous occuog@fi its inputs.

Thorough qualitative analysis of PAND gates needset able to detect such situations and deal
with them appropriately, particularly when thos¢éuaiions — like contradictions — have a
bearing on any subsequent quantitative analysthoAgh, for certain levels of detail, replacing
PAND gates with AND or even INHIBITed AND gatesdssufficient approximation, in many

cases this can lead to pronounced inaccuraciegarlegical errors.

the user is forced to change the fault tree.
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2.4.2 Dynamic Fault Trees

Of all the various modern approaches, perhaps et prominent is th®ynamic Fault Tree
(DFT)® methodology (Maniaret al, 1998), a gate-based temporal fault tree methggolo
designed for quantitative analysis of dynamic syste DFTs make it possible to analyse fault
tolerant computer systems using Markov chains (&lof997). Markov models are capable of
modelling the sequence-dependent behaviour typiéalind in such systems, but they are large
and cumbersome, and the production of Markov chairgften tedious; by generating them
automatically from fault trees, it becomes possitdeavoid many of the disadvantages of
manually producing Markov models while also gramtifault trees the ability to analyse
sequence-dependent failure behaviour in system3.sDhRerefore allow for the analysis of
systems with more complex interrelationships betweevents, including functional

dependencies, standby components, and event s&guenc

DFTs are a comprehensive attempt at a solutioevaenced by their inclusion in the newer
Fault Tree Handbook for Aerospace Applicatiof\sesely et al, 2002). They have been
incorporated into automatic safety analysis toolsnethodologies such as DIFTree (Dugsdn
al., 1997) and its successor, Galileo (Sullivtral, 1999; Dugaret al, 1999; Maniaret al,
1999); they have also been put to a variety of ,usech as dependability analysis (Meshddat
al., 2002), formal models (Copgét al, 2000), expert systems (Assaf & Dugan, 2003), el
of software (Dugan & Assaf, 2001), sensitivity aiséd (Ou & Dugan, 2000), phased-mission
systems (Xing & Dugan, 2002), common-cause analyisasmg & Dugan, 2004), and linked
with event trees (Xu & Dugan, 2004). A formal compienal semantics using Markov chains
can also be found in (Boudai al, 2007a & b).

DFTs represent temporal information by defining tmain special purpose 'temporal' gates,

described below.

" Assumes that PAND is not inclusive of simultaneoasurrence of events. If X PAND Y includes the
possibility of X and Y occurring at the same tirttign X < X = X and the Idempotent law holds.

® The capitalised term 'Dynamic Fault Tree' and mgmo'DFT' are used exclusively in this thesis tere
to the dynamic fault tree methodology of Dugsatnal and should not be confused with other dynamic
FTA approaches or 'dynamic'/temporal fault treeganeral, which are referred to only in lower case.
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Figure 16 — Functional Dependency (FDEP) gate

Functional Dependency (FDEP) gates allow DFTs tdeheituations where one component A
is dependent on another component B for operaticcomponent B fails, then component A
will also fail; the failure of component B is théme trigger event for the failure of component
A. FDEP gates have a single trigger event and pleltdependent children events; the
occurrence of the trigger event will cause the oemnce of all the children. If any of the
children occur by themselves, this does not affieetother children or the trigger event. This
type of gate is very useful for modelling networl@mmponents or components connected by a
central bus where the failure of the interconnectwall cause the failure of the individual
components. They also allow fault trees to modirdependencies that would otherwise cause

loops in the fault tree.

SPARE gate is true when
all itypats have failed

SPARE

OO0

Primary  Secondaty

Figure 17 — Generic Spare Gate

Spare gates allow DFTs to model secondary backuogpopents that are not activated until
needed. These are difficult to model in ordinanyitférees because they do not fail until being

activated, i.e. after the primary has failed. Tiyauits to spare gates are all basic events. The firs
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(left-most) is the primary component, and any fertmputs are secondary components, which
are activated in order (so if there are three sgmoes, each will be activated when the previous
one fails). The SPARE gate itself is only true witee primary and all the secondaries have
failed. There are usually three varieties of SPAJEes: hot spares, which are always on but
only provide function when the primary fails; wagpares, which are kept in a state of reduced
readiness until needed; and cold spares which epé deactivated until required. Hot spares
will have higher failure rates than cold sparesabse they are always active, and failure rates
of warm spares will fall in between hot and coldgs. This is modelled bydormancy factor
which affects the failure rate; a hot spare wilvdnaa factor close to I\) a cold spare
somewhere close to 0, and a warm spare somewheetween, e.g. 0\5 Spare gates can also
share secondary backup components, i.e. one segaratabe the backup for two primaries. In

this way, spare gates can also model a commongbdsaickup components.

DFTs also make use of a version of the Priority-Agide (which as mentioned earlier, is true if
its inputs all occur in a specific order) and sames also include separate sequence or SEQ
gates which impose a left-to-right sequence on tirguents (and can thus be viewed as a
specialised version of a PAND gate). The potemtiabiguities of the PAND gate are not often
addressed in the DFT methodology, though a momadbdefinition of the DFT gates is given

in Coppitet al. (2000) (and discussed in Sect@®2.1]).

A DFT using any of these gates can then be analysied Markov chains; any fault tree model
with exponential-like distributions can be solvaeghqgtitatively as a Markov chain, though in
practice the computational complexity may be pritivid for large models. Markov chains are
constructed by considering the effects of all gaesicomponent failures in all possible
operational states in turn. These child stategheme considered in turn until all possible states,
both failed and operational, are taken into accobrim these, and the failure rates of each

component, quantitative analysis is possible.

Markov chains, and by extension DFTs, have varamsantages and disadvantages. It is easier
to use a fault tree than to use Markov chains threand DFT tools like Galileo handle this
automatically, converting to and from Markov cha&ssnecessary. Obviously, DFTs also allow
the analysis of dynamic system elements, like rddoh components and functional
dependencies. However, Markov chains are slowaHarge tree with lots of dynamic modules,
this could become a significant problem. The redsorthis poor performance is that Markov
chains have a near exponential state space; Wrteakry basic event must be considered
against every other basic event. Even for modéraés, the state space could be massive. The
problem becomes much worse in cases where dynaabés ghare common events, i.e. the

same event is an input to more than one gatehisrréason, tools like Galileo often disallow
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repeated/shared events. It is also difficult tofgren other types of analysis (i.e. qualitative)
using Markov chains. Identifying the weak pointghie system, rather than just determining an

overall reliability, is even more expensive with fidav chains.

To help solve this problem, DFTs use the modulageanethod by Rauzy & Dutuit, explained

in section2.2.4 to break up the fault tree into independent meslithat can be analysed
separately (Gulati & Dugan, 1997; another technicge be found in Huang & Chang, 2006).
This has two benefits. Firstly, it reduces the claxipy of the fault tree as a whole; three sub-
trees each with 1000 states are more manageabieotfeawhole tree with 1000x1000x1000
states. Secondly, it enables separate analysidffefetht modules using different methods.
Therefore, a module containing only static elemeats be analysed with the much faster BDD
approach (Sinnamon & Andrews, 1996), whereas a feodantaining dynamic/temporal

elements can be analysed with Markov chains. Is wWay, DFTs combine the speed of static
methods with the added expressive power of dynameithods. However, this approach is only
effective in fault trees containing several indegmm modules; if there are none, or if dynamic

gates occur near the top of the tree, then thersagas of modularisation are lost.

Another solution to this problem has been put fadvAy Amari et al. (2003), who use
conditional probabilities to perform quantitativeasysis of a DFT without first converting it
into a Markov chain. This is particularly usefultife top node of the tree is a dynamic gate
(which would render the modularisation ineffectivbyt it is potentially not as effective in
cases where the tree is mostly static, as in thsg traditional methods may be more efficient

for most modules.

There has also been some work on performing qtiaétanalysis using DFTs (Tang and
Dugan, 2004). The goal of the method is to obth@ninimal cut sequencedrom the DFT,
which are ordered minimal cut sets, i.e. the evanist occur in a specific order. Although the
minimal cut sequences can be extracted from thdtireg Markov model, this is an expensive
operation. The proposed alternative uses a vamiatiothe BDD method instead. The method
consists of first separating the timing constraiatge. the temporal information — from the
logical constraints. For example, a PAND has thggckl constraint that all of its inputs must
occur and the timing constraint that all of itsutgpmust occur in a specific sequence. Once this
has been done, the dynamic gates can all be replaitle static equivalents (e.g. PANDs are
replaced by ANDSs). The resulting tree can then s$eduo produce a ZBDD (Zero-suppressed
BDD - a minimised version of the BDD), which canrbmimised to produce minimal cut sets
in the normal way; BDDs are much quicker than Markbains for this purpose. Once the
minimal cut sets have been obtained, they are @quhio include the timing constraints

removed earlier to form the minimal cut sequendesppropriate).
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The problem with this method is that it explicidgparates the temporal information from the
fault tree during the reduction process. The reslthat any possible redundancies or
contradictions can only be identified and removedoadingly once the temporal information
has been restored at the end, potentially missiagpportunity to do so earlier in the process.
Furthermore, it is not clear whether or not anyhsiedluction is done even at the final stage; in
which case, possible logical reductions or conttmhs could be missed, resulting in

inaccuracies in the quantitative analysis.

Liu et al. (2007) propose another method of combined quiaktatnd quantitative analysis of
DFTs called CSSA (Cut Sequence Set Algorithm). 888, the DFT is broken down into a set
of 'cut sequences' callsgquential failure expressiofiSFES), which are ordered lists of events
separated by the sequential failure symb»l,For example, X2 Y is a SFE in which X fails
first and then Y fails. The CSS (Cut Sequence Setfhe collection of all SFEs that represent
the fault tree. AND gates are converted into SFHE®mumerating all possible sequences, of
which there aren! for a gate withn inputs; thus an AND gate with three inputs, e.gY X,
would yield 6 SFEs: Y>Z, X2>Z2Y, Y>X2>Z, Y2Z>X, Z2>Y>X, and Z2X-Y.
PAND gates indicate a single SFE directly, e.g.ANP Y is the same as %Y. FDEP gates
are represented as;(END E;) OR K, where k, E,, and k& are SFEs representing the trigger
event, the triggered events, and any non-triggevedits respectively. Finally, SPARE gates are
represented by specific SFEs that link the failfréne primary to the failure of the secondary.
Once the CSS has been generated, it can be gadrniging conditional probability formulae.
Therefore, the CSSA method avoids the use of Mackains entirely.

2.4.3 Dynamic fault trees (again)

The DFTs created by Dugat al. are not the only typeCepin and Mavko (2001) propose a
different type of dynamic fault tree of their ownstead of the gate-based approach of Dugan's
DFT methodology, this approach is an event-based lbnses a 'house events matrix' and time-
dependent probabilistic models for basic event® atrix shows the state of all events at
discrete points of time in the system lifetime asulthe state of the overall system can be
determined at any point in time by examining thdrimaThe probabilistic models associated

with each event then allow analysis and even option to take place.

There are several drawbacks to this approach wloempared to the better known DFT
methodology discussed above. Firstly, the sizenefrhatrix is determined by the number of
events in the system and the number of discret@$oi time that need to be modelled; clearly,
for larger and more complex systems, this matrilk griow to a considerable size. Secondly,

qualitative analysis is not included, meaning tthat technique is dependent upon appropriate
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probabilistic failure data being assigned to ea@ng if this is not available or not appropriate,
then the approach offers no advantage. Finalig, mecessary to know what the status of each
event is at each moment in time. However, theseloiaks are a consequence of the intended
use of this approach, which is aimed at the evalmatnd monitoring of active, operating
systems — in which case, the disadvantages arfigtllhs data can be obtained directly from

monitoring of the system itself.

2.4.4 Temporal Fault Trees

Temporal Fault Trees (TFT) are another kind of terapfault tre€, taking a slightly different
direction to DFTs (Palshikar, 2001). Although TF€entinue the theme of representing
temporal information using new temporal gates, &va is to improve the specification of
general temporal information in fault trees to éeteflect the temporal relationships between
events, rather than concentrating on extendingt fseés to account for different states of
operation and specific dynamic situations. TFTs aiseore traditional style of temporal logic,
based on modal logic, to enable a more accuratenaré formal specification of temporal

information in fault trees.
TFTs largely retain the standard fault tree stmgctout add many new gates to represent the
various temporal relations represented by a variabn LTL known as PLTLP (Propositional

Linear Temporal Logic (Past)). The gates are deva!:

Instance-oriented past temporal operators:

« PREV X is true at the previous instant

e« PREVnN X is true at the instaf, in the past (ik = n); false ifk <
n

e ALLPAST X is true now and for all the previous instsiin the
past

e FORPASTn X is true now and for the lashstants in the past

e SOMETIME-PAST X is either true now or at some imstia the past

¢« WITHIN n X is either true now or at some instanthiit the last n
instants

e UNTIL-PAST Sometime in the past, Y holds and X hadderywhere before
that

Pseudo-temporal "chop" operators:

® As with DFTSs, the use of the capitalised term TerapBault Tree and its acronym TFT relate only to
the approach by Palshikar and not to temporal faedis in general (which uses lower case).

63



¢« mMCHOPN X is true now and at the previoufmstants and Y is
true forn instants before that

* mSTRONG-CHOP n X is true now and at the previouastants and Y is
true for the strictly earliem instants before that

¢ m CHOP-FAIL n Xis true now and at the previgusgnstants but Y is
not true at all the earlierinstants before that

¢ m FAIL-CHOP n X is not true either now or at somdtwd earliem
earlier and Y is always true for all the previous

instants before the m instants from now

The past-oriented nature of the operators is dubdaoal of the TFT methodology, which is
designed for fault diagnosis (i.e. determining ¢hase of a fault in an operational system based
on sensors and a diagnostic model of the systanthi$ context, the deductive nature of the
fault tree — which starts with an event and workskwards to determine what caused it —
means that the operators must be past-orientedibedhey refer to events that have already
happened. The operators with subscripts (i.e. anthor anm) arecounting connectivesvhich
actually represent a series of non-counting comvesctfor each specific value of the
subscript(s). PLTLP also provides additional Boolegerators such as - (Not), (Implies),

and - (If and Only If). It is interesting to compare arample timeline for TFTs, which is

point-based, against the interval-style timelinegigy earlier in Figure 14:
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Figure 18 — TFT timelines

Notice how these timelines use specific instardgpr@sented by dots on the line; the right-most
dot, t, is the current instant) and how some events apeoh points (in CHOP and CHOP-
FAIL). The actual instants are not defined; they d@e minutes, seconds, hours, days, or
whatever is appropriate to the system being modellthese operators must be used with
caution, however, as they are not designed to septerepetitions, e.g. 10 cyclespiCHOR;

g. Instead, the chop operators can be used to nsddations such as a train unable to brake in
time, e.gHighSpeed,CHOP-FAIL,, Braking which means that the condititighSpeedolds

for the first 30 seconds, and then the condiBoaking holds for the past 20 seconds.

A technique is also provided for the analysis off$fand PLTLP, which consists of a depth-
first traversal of the TFT once the top event hasuored. At each gate, temporal or logical, the
expression represented by the gate is checkedsaghasystem log to see whether or not it is
true, which will locate the path that caused the éwent to occur. The path to the top event
essentially gives the cut set(s) that caused fhevent. An alternative is to generate all cut sets
first, ranking them in order of probability or tabtlity, and then ascertaining which of them is
true to determine what caused the top event (knasvaconfirmed diagnos)s This is done in
one of two ways: by replacing all temporal gateshwa basic event containing a temporal
formula, or by replacing the temporal gates withgical gate and the adding one or more basic

events containing the temporal information (essdigticonverting it to an INHIBIT gate with
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the temporal constraints as the conditioning evelte latter method results in much larger

fault trees, but can more easily handle recursimelted temporal gates.

Although the TFT notation is very powerful and exgsive, and well-suited to the task of more
formally specifying the temporal constraints on rggein fault trees, TFTs are ultimately
intended to be used in a diagnostic fashifiar a system has failed, relying on a log containing
periodic samples of the system state to determinat waused the top event. In this respect,
TFTs are better suited to maintenance and reptaerdhan initial design work (where fault
trees are also widely used). They are meant telaéwely simple to use, and thus the extent of
the temporal logic was deliberately kept limite@rfbe the use of linear point-based time), but
even so, it is felt that the gates introduced imperal Fault Trees are not particularly intuitive
unless the user has at least a passing familiaiitytemporal logics. The author does propose a
wide range of further work, including research itiie possibility of TFTs being used alongside
other techniques, such as Durational Calculus ii&t®w) and Interval Temporal Logic, and

also research into the possible automatic syntloéSigTs.

2.4.5 CSDM & Durational Calculus

Both DFTs and TFTs are gate-based approaches dechpatto represent the temporal
information as part of the fault tree structureibgorporating new, temporal gates with fixed
meanings into the fault tree. The alternative & dlhent-based approach, as exemplified by the
work of Gorski & Wardzinski and Hansen al, which incorporates the temporal information
in the definitions of the events (whether internagelior basic) instead. These approaches are
meant to allow for a more precise and more formak#ication of the temporal constraints on

the events of a fault tree.

Gorski and Wardzinski accomplish this through tse of anenabling conditionwhich is an
intermediate event that represents the temporat@nts. This is then included in the analysis
as a kind of conditioning event and thus can bevédérfrom the minimal cut sets at the end, in
the same way TFTs can convert their temporal gatesform of INHIBIT gate. The enabling
conditions are subject to a formal specificatiomkn as CSDM (Common Safety Description
Model), i.e. they are not written in natural langedike normal basic events and instead use a
form of predicate logic. For example, for two ewsgit ande2in a cut set, there may also be an

enabling condition, e.g.:

occur(el)Joccur(e2)denabling condition(el,e2)
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The basic notion of CSDM is the event, which isimkd as "a distinguished state of a system
which can last for some time." (Gorski & Wardzinski996) An event is therefore not
instantaneous and can occur more than once (i@antrepeat), so to distinguish between
multiple occurrences of an event, the notion o&etionis introduced — an action is an instance
of an event. The definition of an event is impottendetermining the formal semantics of the
technique; as such, the approach also takes intouat the temporal dependencies of
intermediate events (i.e. logic gates), e.g. an Addile implies a causal relationship between
input and output and thus there is a temporal plEroee — causes must come before effects
(Gorski, 1994). However, the formal semantics asemeant to be excessively restrictive and
can even be added to a fault tree post-constryatioce the relationships between events have

already been established.

Each action has a start time and an end time, krastnansitions and represented for actian

by start(a) and enda) respectively. Thus the duration of an action d¢en calculated by
subtracting the start time from the end time. Thesence of transitions also makes it possible
for actions to overlap in time. The model of timeged is linear and continuous, meaning that
transitions can be mapped into real numbergibye functions, each of which represents one
'scenario’ of system behaviour. This system makeasssible to define very precise events, e.g.
checking that the duration of an event was more thaertain value, or that two events had
overlapped for at least a certain amount of tinee.dxample, an overlap between a gas leak and
a naked flame — once a sufficient amount of gaslémeed out (at timés), the flame would

ignite it:

explosion = occur(gas_leak) occur(fire) [ overlap(gas_leak, fird)l duration(gas_leak, fire)

>tG

Transitions themselves are instantaneous and acéilovays end, so events are not persistent:
any given occurrence of an event (an action) wittrdéually cease. There are two types of
temporal relations between actions — temporal arddf.e. one action occurred before or after
another) or temporal equality (both occurred atdhme time, e.g. because they were triggered

by the same causes).

Qualitative analysis is then carried out as in amab fault tree, but at each stage, the enabling
condition of any gate or event has to be takenactount. Once the MCS have been obtained,
real-time requirements are then generated fromtehgporal aspects of the MCS, i.e. the
enabling conditions. The system can then be spec#ccording to these requirements, e.g. that
it should not be possible for a gas leak to exastrhore thartg seconds. By preventing the

enabling condition from being fulfilled, it is paBke to prevent a given minimal cut set from
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becoming true and thereby preventing it from legdmthe top event and causing a hazard. The
enabling condition is not necessarily present erhinimal cut sets; it can also be derived by
examining the MCS and determining what conditiaresreecessary for those events to cause the

top event.

It is important to point out that the CSDM approaamply augmentdault trees: it is meant to

be possible to add the formal specifications tce=risting fault tree as well as build a formal
fault tree from nothing. In effect, the formalisimids a second layer — a temporal layer — on top
of the existing Boolean layer of semantics. Thithis reason for the two-stage analysis where
temporal relationships between events in a minimal set are determined after standard
qualitative analysis has taken place. The resiilisi® second stage can then be used to produce
the timing requirements for the system specifigatidotably, other techniques can be used to
perform a second, more detailed ‘temporal' phasanafysis, e.g. time Petri nets (Gorski &
Wardzinski, 1997). Petri nets are a widely used fimoanalysing complex systems and can be

used as a visual aid similar to flow charts. Is ttlse, the general algorithm is as follows:

1. Produce a conventional fault tree.

2. Formalise it using CSDM, removing ambiguities arstiablishing temporal relationships
between events.

3. Calculate MCS and, for each MCS, the enabling damdi necessary for it to cause the top
event.

4. Perform a time Petri net (TPN) analysis to establiazard reachability. The fault tree is
transformed into a TPN and analysed to see wheligetop event is reachable given the

time dependencies present in the enabling condition

This second, separate analysis can check the sesuktage 3 and can potentially identify

anomalies caused by hitherto unidentified relatijps between events.

The approach taken by Hansenh al. (1998) is similar in that it establishes more gec
semantics for events in fault trees, but instea DM it uses Duration Calculus, which is
based on Interval Temporal Logic (ITL) and in pautar employs the ‘chop’ operator (written ;'
in Duration Calculus). Other operators include 'samere’ or¢ (i.e. an event occurs
somewhere within a given interval) and 'everywhere'l (i.e. an event is true throughout a

given interval). These can then be used to prodafiy requirements, e.qg.

safety_commitment = -function(paraml, paramz2...)
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which meandunction (which may in turn be composed of other functiomg)st not be true

within a given interval. Functions are system-spechs in CSDM, these statements are treated
as basic or intermediate events and can be combisewrmal by using normal logical gates.
Based on the results of the fault tree analysisnéb safety requirements can be derived using
the formalised events and more formal semantigheflogic gates. For example, if a system
failure could be caused by X AND Y, the design@yrmadd a safety requirement to the system
to prevent this combination from becoming true, e-gX LI [1=Y. If either X or Y can never be

true, then X AND Y can never be true either.

The main disadvantage to event-based approachethldse is that the temporal information is
entirely encapsulated within the descriptions of #vents, not the logic of the fault tree
structure itself, and so cannot take part in thaitaiive analysis of the system. Instead, the cut
sets are derived in the usual fashion and the temhpoformation dealt with separately.
Unfortunately, this means that the potential fondification and reduction due to the temporal

information is lost, because the temporal datatdring analysed directly.

The advantage, of course, is that it allows forwclmmore precise specification of the failure
behaviour of the system. In both of these appraadins is done for the purposes of defining
the safety requirements for a system, particuladitware-based systems, and as such the
precision is necessary to ensure that the systestsnthose requirements. The formalised
semantics of CSDM and Duration Calculus help toaesnany ambiguities in the meaning of
the fault tree and ensure that the fault tree sgmies a more accurate model of the system

failure behaviour.

2.4.6  TAND temporal logical connective

The TAND, or AND-THEN gate, is a gate-based apphotat follows in the footsteps of the
TFT and DFT approaches by attempting to represegnporal information by using a new type
of gate. Unlike those two methodologies, howeves, TAND is characterised by simplicity — it
IS just a single gate. Wijayarathea al. (1997) deemed the Priority-AND to be insufficigntl
defined and instead proposed the AND-THEN gate (DAND replace it. By more strictly
defining the semantics of the TAND gate, and byefmihg the AND gate, they are able to
precisely represent all 13 of Allen's different teral relations (see Figure 14). The TAND gate
is meant to be a useful replacement for the ti@udi Priority-AND gate as it is designed to be
much more specific; in particular, it allows theulfatree to distinguish between a situation
where one event occurs some time after another aamsituation where one event occurs
immediately after another — something the origlPBAND gate cannot do. Furthermore, it can

be used as a building block to create more comgmporal expressions, and since it can be

69



built up to represent all 13 temporal relationghi@ory it can be used to represent just about any

kind of interaction between two or more events.

The TAND gate is denoted by tiie symbol and it represents the situation in Alldaimporal
relations known as 'P meets Q', where one inteimahediately follows another with no
overlap; this is similar to the 'next' or 'chop'eggtors found in many temporal logics. The
normal AND gate is also redefined to mean 'P eqQalse. the two events begin and end at the
same time. However, the creators of the TAND abtognise the requirement for a more
general AND, in addition to the re-defined AND. TRAND gate is not necessarily the only
way to solve the problems with the traditional PAN&Xe, but it overcomes one of the central
problems: namely, its ambiguous definition. Theatwes attempt to define the semantics for the
TAND gate more precisely than those of the PANDegatd try to show how it may be used in
qualitative analysis, enabling a fault tree analgstmore precisely define temporal safety
requirements and more accurately specify the faihehaviour of dynamic systems. Presently,
the TAND gate is only capable of qualitative ansybut as further work, the creators propose

investigation into how the TAND gate may be quaedif

The TAND is designed around the idea of statesngtpoint in time, for two eventsandq,
either one is true, both are true, or both areefalse redefined AND gate (represented @y '
facilitates this because ] g now means that they are both true at the same ame#p U -q
meangp is true at this point bug is not. Expressions like these represent the sfatee system

at any given point in time. The TAND gate can thenused to string these states together to
introduce a kind of sequence; for exampl€] g - or more explicitlyp [0 -q N -p [0q— means
that firstp is true andy is not, and then immediately afterwardss true bufp is not. This could
represent some kind of switch from a primarjo a secondary, for example. More complex
expressions are possible by combining more statésrere TAND gates. Notably, the TAND
does not obey several Boolean laws; e.g. the Bodea X (=X < falsedoes not apply, as
pM -p instead means that firgt is true, and then it becomes false, and though the
Commutative Law states that ¥ = Y[IX, for the TAND, p I g# q I p. It does, however,

obey the Associative and Distributive Laws.

The philosophy behind the AND-THEN gate is thaattempts to be usable with any particular
formalisation of time, whether point-based or iagdtbased. This is meant to match the flexible

philosophy underlying FTA itself.

"Both point based and interval based temporal nwofilest describe a model to
represent time, and subsequently use a predefimedniodel to define events

and activities. This is the main reason for thebf@ms in these models.
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However our approach is different. We do not usetane model; instead we
use the logical truth status of two events at aiwergtime and ascertain
whether they occur simultaneously or not. If theynibt occur simultaneously,

an event should follow the other event." (Wijayaratet al, 1997, pg. 2)

By attempting to be compatible with any represémtadf time, the TAND gate aims to cater
for general applications where the exact time obaent occurrence may not be known whilst
retaining a precise definition and therefore thasgulity of rigorous analysis. In practice,

though, the TAND gate is not as independent ofediffit time models as it is intended to be,

and it is worth looking at it in more detail to sekere its particular failings lie.

The foundation upon which this all rests is thaémigbn of an event in the TAND framework:

"In our approach to represent temporal relations,de not consider whether
an event is a state transition or state occurretet we consider is whether
an event occurs or not. In that way, we treat stedesitions and state
occurrences on the equal footing. In other words,dew not consider whether
an event occurs in a point in time line or in adimterval." (Wijayarathna and
Maekawa, 2000, pg. 2)

This is a laudable goal, but it inevitably leadsat@ertain amount of ambiguity. Firstly, the

Fault Tree Handbooklearly states that:

"From the standpoint of constructing fault trees me=d concern ourselves

only with the phenomenon of occurrence.” (Vesslgl, 1981, p V-1)

In other words, only theccurrenceof a fault is important, not thexistenceof a fault. For that
reason, fault tree events are normally a kind afestransition — they change the state of the

system into a degraded state and ultimately iritdled state.

However, whether or not the TAND's events are mgming state transitions or state
occurrences, in practice they behave very muchdikées: they can become true, stay true for
some period of time, and then become false againjce versa. The example tree given in
Wijayarathna & Maekawa (2000) models the scenahiera a car passenger is injured when the
air bags are not deployed when an accident ocamc,the sequence of events is described
using a PAND gate as follows: "Accident detectedNP "NOT Airbags released". Later in
the same paper, a supposedly equivalent faulinithea TAND is shown:
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Paszenger
Desth

@ TAMD

Accident = Airbags
Detected Released

Figure 19 - Example TAND fault tree (from Wijaytimaa & Maekawa, 2000)

There are two things to note here. The first i$ tha fault tree in Figure 19 is not necessarily
equivalent to the PAND version. Although the sentanbf the PAND gate are not well
defined, as explained in sectiam.l a PAND gate does not always mean that two evantt

be immediately consecutive, i.e. that in X PAND Y must immediately follow X. It is also
possible for two events to occur in sequence bth wbme interval of time between them.
Although the PAND can include this possibility, tR&ND cannot.

To represent this situation — ‘after’, in Allerésnporal relations — using the TAND, a more

complex solution is needed, as shown in Figure 20:

E2 AFTERE1

TAND

Y
2.
ONO

Figure 20 — The AFTER relation, using a TAND (fidfijayarathna& Maekawa, 2000)

The second thing to note is that, from their dggdian, the child events of the TAND are meant
to represent instant occurrences of events — ttextien of the accident and the release of the
airbags respectively. However, the semantics offthD gate mean that the expressiphl g

is equivalent tg [J-q M =p [ q, and thus in this case, the fault tree repregbptfollowing:

(Accident Detected/Airbags Releasedy (Accident Not DetecteNot Airbags Released)
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which is clearly nonsensical. Here, not only is #oeident first detected and then undetected,
the airbags are initially released and then naastd. The reason for this confusion is that,
although the event descriptions indicate that thents are meant to represent instant
occurrences, the TAND gate treats them as thoug were states which can go from true to

false and false to true.

The event inputs to a TAND gate therefore only nadese if they represent the truth value of a
state variable, such as the existence of a faulstaius of a component. If TAND events
represent the values of states, then expressika9lil g make sense (e.g could mean
"Primary component operating" andould mean "Secondary backup operating"; whéails,

g is activated in its place), whereas if the eveats also represent the state transitions or event
occurrences, themll g becomes nonsensical: an event representing atistagition is then not
only able to 'un-occur', i.e. go from true to faleey. the ‘accident detected' event above), ut it
use with the TAND also necessarily implies thahdts a finite duration, and since a state
transition simply moves a state from true to fals&ice versa, the value of the stdiging the

transition is undetermined.

But if, as seems to be the case, TAND events chnmeaningfully represent states, then they
are no longer fully independent of the time modein used. A state-based system is often
represented using a discrete point-based modehef but such a model is difficult to use with
this interpretation of the TAND because of the e — the expressiom fl pis false at one
point and true the next, but as shown in Figuretd8,consecutive states must either overlap on
the same point (which is impossible in this casdf avould mean bothp andp are true at the
same time) or leave a gap between the points iohwihie value op and-p are undetermined.

Therefore only an interval-based time model islyegadmpatible with the TAND gate.

Unfortunately, this is not the end of the probleigen if TAND events represent the existence
of a fault rather than the occurrence of a fablntit is still possible for a fault to cease tosex
this implies that the fault is either repairabletemporary. However, theandbookstates that

faults are persistent:

"Under conditions of no repair, a fault that occwilt continue to exist.”
(Veselyet al, 1981, p V-1)

Lastly, while the TAND gate may be useful as a dasiilding block to represent sequences of

states (particularly system or component operattates), it is a littleoo basic for general use

in fault trees, as most of the temporal relatidra tvould be used by an analyst require them to
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build more complex compound gates. For example'after' operator given earlier in Figure 20

is defined as follows:

E1RE2M -EIRE2M -E1E2

which strictly means "E2 occurs some time after I, not immediately after". To generalise
this further, so that E2 could either occur immealiaafter E1 or after some amount of time, it

would be necessary to say:

E1MN E2 + EIRE2M -EXRE21M -EXE2

which now simply means "E2 occurs after E1". Altgbuthese sorts of compounds could be
stored as ready-made combinations, or even madesj@cific gates, they are rather unwieldy
and would require some sort of library of compogades to be set up (e.g. to represent the 13
relations, or combinations thereof). To use theneally would result in colossal and quite

unmanageable fault trees.

Generally, although the TAND gate has some laudgb#ts and certain advantages (e.g. it can
represent recurring events, something which mahgroapproaches cannot do, and it is well
suited to describing sequences of states), intyeglisuffers from a number of ambiguities
relating to its definition as a kind of state-basetnective, making it difficult to use with any

degree of confidence as part of a temporal fagét amalysis.

2.4.7 Formalising FTA with Temporal Logics

There are a number of other approaches that seérrt@lise the semantics of FTA using
temporal logics and focus less on extending FTAamalyse dynamic systems. Bruns and
Anderson (1993) attempt to formalise FTA to enahke verification of safety-critical systems
by comparing the results of a fault tree againstiiehaviour of the system model. They point
towards a number of ambiguous definitions in Haalt Tree Handbooland attempt to find a
more robust definition. One issue raised is theuneabf events — a recurring theme, as the
discussion on the TAND gate above illustrates. Aaptis the nature of the AND gate and
whether or not it implies temporal simultaneity.ifBity is the issue of causality and immediacy

in gates, i.e. whether the inputs of logical gaggsesent immediate causes or not.
Bruns and Anderson treat events as conditions paairduration rather than instantaneous
occurrences, in effect modelling events as stdleis. is also reminiscent of the approach taken

by the TAND gate. Bruns and Anderson further sugtied the AND gate should represent the
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simultaneous occurrence of inputs (again, like TBAND gate approach). They then usei

calculus(a type of modal temporal logic) to present thpessible semantics of fault trees.

The first is a propositional semantics in whichsality is immediate and which is described as
being closest to the informal description in fault Tree Handbookin which events provide
"immediate, necessary, and sufficient causes" (Yesteal, 1981, pV-6) for the occurrence of
each intermediate event or top event). In this aggn, when the inputs of a gate occurs, the
output of the gate is immediately true, i.e. thpuits are necessary and sufficient to cause the
immediate occurrence of the gate output. This tsegarded as a temporal semantics by Bruns

and Anderson.

The other two possible semantics are temporal inreaThe first defines aevenoperator to
represent eventuality (i.e. equivalent to sbenetimeor eventuallyF operator in CTL and PTL).
This operator is then used to indicate that, ohedriputs of a gate are satisfied, the output will
eventually become true, thus including a potemtiddy between cause and effect. However, the
inputs to an AND gate are still simultaneous. Theosid temporal semantics instead defines a
prev (previous) operator to indicate that, at some tpinirihe past, the inputs to the gates were

true. Thus the first approach is future-oriented #re second approach past-oriented.

This type of temporal redefinition of existing gais designed to enable fault trees to be used
for verification purposes rather than analysis pegs; Bruns and Anderson recognise that once
either of the two temporal semantics are introdudeid no longer possible to manipulate the

tree using propositional laws to obtain minimal sets.

Schellhornet al. (2002) similarly attempt to formalise the semantif fault trees — particularly
fault tree events — but use ITL rather than mu uwak The ITL used is extended with
continuous semantics based on Duration Calculusoriter to allow the possibility of
representing continuous changes with durations, arg acceleration of 1 ni/sfor 10s.
Conditions expressed in this continuous ITL arenthssigned to each gate in the fault tree and
verification of these conditions confirms that thesic events will indeed cause the top event.
This approach makes a clear distinction betweensgttat merelydecomposédntermediate
events (terming them "D-gates") and gates thatesémvseparate causes from consequences

(cause-consequence gates or "C-gates").

Schellhornet al. argue that the decompositional Boolean approashir{athe Fault Tree
Handboolk does not accurately represent the fact that samsest occur strictly before
consequences and that the simple equivalence Hgromsgd (i.e. consequence = cause OR

cause, consequence = cause AND cause) is inacamdteannot be formalised as a result. In
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the particular case of the AND C-gate, Schellh@tnal. further distinguish between a
synchronousC-AND gate (i.e. all causes occur simultaneoushd anasynchronouC-AND
gate (i.e. causes do not need to occur simultahgoushe result is a set of seven
logical/temporal gates (D-OR, D-AND, C-OR, syncloaa C-AND, asynchronous AC-AND,
plus a C-INHIBIT gate and a D-INHIBIT gate) thatrfiealise the semantics of the fault tree
whilst retaining the meaning of minimal cut sete.(if none of the minimal cut sets can ever be
true, then the top event can never be true eithlEnvever, it is not clear how the minimal cut
sets are to be calculated given the new semantitheoexpanded set of fault tree gates;
although the D-OR and D-AND gates would presumaily obey Boolean laws, the C-gates

presumably do not.

Xiang (2005) follows a similar approach in trying formalise fault trees. Unlike Bruns &
Anderson, Xiang takes the position that fault trees based on occurrence and creates a
discrete, linear temporal logic with real time dgstions that includes both past and future
operatorsnext previous eventually once henceforth and has-always-beenThese operators
can also be augmented with real time constraintaduing a deadline, e.gsdme time in the
future before deadlind”. Time units are converted into the smallestvate unit, such as a
second, and these are the units used byeReandpreviousoperators, e.g. the next second or
the previous second. Unlike the previous approgclsdhellhorn, Xiang's approach is event-
based rather than gate-based; existing gateshé&kéeéNHIBIT gate are given conditioning events

in temporal logic and basic events are also asdigescriptions containing temporal logic.

As with the other approaches, however, it is neachow the new temporal semantics affects
analysis of fault trees, whether quantitative oaldative. All three of these approaches are
intended to formalise fault trees to better enalplecification or verification of systems using

fault trees. Since analysis of those systems wititt trees is not the primary aim, the details of

how to conduct an analysis are omitted.

One exception to this trend is the work of Gidemanal. (2008) into computing "ordered
minimal critical sets" (analogous to minimal cuts3eusing DCCA. This approach presents a
method of automatically synthesising temporal farde results containing two of Pandora's
temporal gates (see chapter 3), a Priority-AND (BANINd a Simultaneous-AND (SAND).
The approach uses DCCA (Deductive Cause Consequemalgsis; see Ortmeier, 2005) to
obtain unordered minimal critical sets and thenliappa partial ordering to them using a
temporal semantics formed from CTL* and LTL. Theuk is a set of ordered (or partially
ordered) minimal critical sets that can define &ith sequence of events (using PAND) or a
simultaneous occurrence of events (using SAND)s Tgiocess is calleBeductive Failure

Order Analysis.
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However, while this approach is capable of autoradlyi analysing temporal failure ordering in
a system, it uses model-checking to determine ¢neporal relations between eversfer
minimal cut sets/critical sets have been generagder than being able to analyse an existing
fault tree containing temporal gates; in this wagdrves more as an alternative to a temporal

fault tree analysis (although producing the sanmedaesults).

2.4.8 Other related approaches

There are other approaches aimed at solving thélgmo of modelling dynamic failure
behaviour without using fault trees. Although these not directly relevant, since the goal of
this thesis is to extend FTA and not to replacd is worthwhile summarising some of them

and how they overcome the same problems faced Byldaged approaches.

Boolean-Driven Markov Processes (BDMPs) take alamapproach to DFTs by combining
Boolean logic with Markov modelling for the reprasstion of dynamic elements of the system
(Bouissou & Bon, 2003). BDMPs are modified versiaidault trees that include additional
links to represents dynamic dependencies in theemedy. standby components, and in fact a
BDMP with no such dependencies appears almostitdémnd a fault tree. The BDMP approach
can also make use of Petri nets for particularsdesea BDMP, a Markov process is associated
with every basic event in a fault tree or Booleamction and additional 'triggers' can be defined
between gates or events, which move a Markov psotem one mode to another. The fact that
BDMPs are based on fault trees means it is stikjide to calculate minimal cut sets; however,
these do not take into account the additional dyonatependencies modelled by the Markov
side of the BDMP. The creators also attempt toagsihe problem of combinatorial explosion
in Markov chains by exploiting mathematical propestof BDMPs and enabling the basic event
Markov processes to be trimmed; however, althohghdan help minimise the problem, it does

not avoid it entirely.

Another Markov-based approach is the work of Betal. (2008), which automatically creates
dynamic event trees (DETs) and dynamic fault trées the same as the DFTs described
earlier) from Markov models combined with the delleell mapping technique (CCMT); this
contrasts with DFTs, which produce Markov chairsrfrfault trees instead. As with DFTSs, it
enables a separation of dynamic and static elementthe system so that non-dynamic
subsystems can be analysed using traditional tgalsi This helps minimise the combinatorial
explosion problem by requiring Markov modelling pfdr a subset of the system. The dynamic
fault trees are generated from dynamic event tapesare event-based in nature; the fault tree

structure is purely Boolean, but the events arerga 'time stamp'. When combined with AND

77



gates, this enables the fault tree to represenitgthat must occur at certain times or within
certain intervals etc. In practice, this is simitarthe CSDM-style event-based systems, where

the temporal information is included as a separatelition.

Several other approaches use Petri nets as aosolBetri nets are graphs that represent events;
each event is a transition that leads from oneepleo another ‘place’. Places can represent
preconditions for events and consequences of eastsan store 'tokens', which simulate the
operation of the system: the movement of a tokeoutfh a Petri net represents the changing
state of the system being modelled. Like fault drethey can be used as a graphical
representation of the relationships between eveatiswing an analyst to see the effects of
events (e.g. failures) on the system. They alstudac capabilities for explicitly representing
concurrency and asynchronicity, by having multipdeallel transitions between the same places
and allowing multiple tokens to pass through th&teay, enabling the modelling of parallel and

concurrent systems.

Adamyan and He (2002) propose the use of Petritnedlow the quantification of sequential

failures. Instead of using fault trees to represkatsequential or dynamic failure behaviour of
the system, a Petri net is used. An approximatiethod is used to calculate the probabilities of
system failure and, by using a reachability treevdd from the Petri net, it is also possible to
calculate the equivalent of minimal cut sets. Pegis offer an advantage over Markov

modelling in this scenario because they do noeimse exponentially as Markov chains do.

Buckhacker (2000) also proposes the use of Petsiinethe form of an "extended Fault Tree
(eFT)" notation, which combines Petri nets andtftreles. The principle is to be able to model
multi-state systems. eFTs allow an analyst to bailéault tree with extra components that
represent states, allowing the modelling of botlurfe and repair dependencies. The eFT is then
automatically converted into an equivalent stodha3étri net that can be solved to determine
the probabilities of the failure events in questids with DFTs, the eFT approach can also
make use of modularisation to improve the efficien€the conversion process; however, this

can be problematic in fault trees with lots of stastic dependencies across branches.

Another extended fault tree approach is propose@dmetta-Raiteri (2005). Because it is more
efficient to analyse a Petri net using Markov ckaiman a DFT using Markov chains, Codetta-
Raiteri suggests a method of converting DFTs intgeaeralised stochastic Petri net and then
analysing it with continuous-time Markov chains. dldarisation once again appears by

allowing only dynamic modules of the DFT to undetige conversion process.
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State/Event Fault Trees (SEFTs) are a hybrid apprbatween state diagrams and fault trees,
proposed by Kaisest al. (2007). SEFTs make an explicit distinction betwstates (e.g. "safety
valve is defective") and events (e.g. "pressureceas critical level”). They can both be
combined by logical gates and can result in moenev(e.g. "boiler explodes"). Gates include
not just AND and OR gates, but also NOT gates,ry#dND gates, and History-AND gates
(which remembers past events), as well as non-Boolmsed gates like ENTER, UNTIL,
LEAVE, UPON, DELAY, DURATION, COND (i.e. condition)and FLIP-FLOP gates. Gates
can also be given timed parameters to indicatedhants must occur within a certain time of
each other. SEFTs can then be quantitatively aedligyg means of timed Petri nets, but it is not
clear if qualitative analysis is possible. In atdif the SEFT approach suffers from the same

state-space explosion problem experienced by dlagkov and Petri net based approaches.

2.4.9 Conclusions

By looking at the different approaches taken byitsmhs proposed thus far, it is clear that there
are a number of difficulties still to overcome gpldnty of scope left for further investigation;
no single solution has offered a way around athefdifficulties, and not all of them are meant
for the same purpose. Very few approaches haveséacparticularly on qualitative analysis and
none have taken into account the possibility oftiamlictions occurring during logical reduction

of the fault tree.

Dynamic Fault Trees are probably the most compratierand well established of the different
approaches. However, they are specifically designednable the quantification of dynamic
models using Markov models and qualitative analg§iBDFTs is a secondary priority that has
received far less attention. As a result, DFTsmaneh less useful if failure and repair rate data
is not present for the model. Neither the ZBDD gatile analysis approach nor the CSSA
approach take into account the potential for calitteons and redundancies due to temporal
constraints; the ZBDD method explicitly removes @aemporal information during the logical
reduction of the fault tree, while the CSSA applogenerates a cut sequence set but apparently
does not check the set for any contradictions N¢e. does either method seem to distinguish
between simultaneity and sequence, despite theHatan FDEP gate specifically triggers the
occurrence of multiple events (presumably all atgame time). The main reason for this is the
lack of a temporal logic underlying the DFT gatekjch makes it difficult to interpret them in
terms of a logical rather than probabilistic anisly&lthough it is possible to extract qualitative
data from the Markov models, this is much more dwaaped and considerably more

computationally expensive.
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On the plus side, DFTs do not require a great déaixtra information and introduce only a
small number of new gates that fit relatively wialio the fault tree structure; this means it is
comparatively easy to learn and to use, and theotisee modularisation algorithm together
with the combined Markov/BDD approach helps overe@mome of the issues involved in using
Markov chains. Furthermore, as already mentionethesapproaches that eschew the use of
Markov chains altogether have been proposed. Tberéamains, however, that DFTs were

simply not designed for qualitative FTA.

Temporal Fault Trees are more complex than DFTstHair goal is different; TFTs are meant
to be used to diagnose faults in an operationdkBysto aid maintenance and repair, and to
achieve this, it is necessary to specify the tempbehaviour of dynamic systems more
precisely by using a more formal temporal logicTER. TFTs also introduce a lot of new gates
with relatively complex semantics, at least comgaie the PAND gate and the gates of the
DFT approach, and it is not entirely clear how éhedate to ordinary Boolean gates or whether
it is possible for contradictions to emerge; howevieFTs can in theory be converted into
normal fault trees by converting the temporal gate$NHIBITs/ANDs and representing the
temporal information as a conditioning event indteln that case, however, it becomes
impossible to use the temporal information during gualitative analysis. Although TFTan

be analysed both quantitatively and qualitativelg, analysis is a retrospective one, meant to be
done by comparing a trace or log of the systemaimer against the modelled failure behaviour

of the system (as represented by the TFTs).

The TAND gate is simpler than both the TFT and pproaches, but it suffers from a number
of serious problems relating to its definition: maaportantly, it treats events as states. This
means that the semantics of a fault tree contaiA@Ds is no longer entirely clear.

Furthermore, although the TAND gate is very flegilsind designed to be used as a building
block in larger compound expressions, such expyesgian easily grow very large, which leads
to more complicated fault trees which will oftertlide NOT gates. It is not clear whether or
not the presence of NOT gates under TAND gates aeilise a fault tree to become non-
coherent, mainly because it is not particularlyaclerhat a TAND gate really means. Despite
these difficulties, the TAND gate does offer a nembf good ideas and it does at least attempt
to remain independent of any one form of tempoegdresentation. It also allows for the

representation of repeating events, although sorigy limited qualitative analysis is possible

and there is ho mention of logical contradictiofts e

The event-based approaches, e.g. CSDM, the Dur@adculus, and the matrix-style dynamic
fault trees, are designed to be able to formalyyegent the temporal constraints on events in a

fault tree. To this end, they represent the tenipofarmation as part of an event, and not as a
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new type of temporal gate in the fault tree its€He advantage of this type of approach is that
existing analysis algorithms can continue to arealy® fault tree, but it also means that those
algorithms cannot take advantage of the tempofafnmtion to perform additional checks for
redundancies or contradictions. These approackesesigned more to improve the precision of
the fault tree event semantics rather than exteedault tree algorithms to be able to analyse
more dynamic systems. In theory, this approachdcbel combined with one of the temporal
gate approaches, and indeed the creator of the T€Rdions this as a possibility for future

investigation.

Other formal approaches, such as those of BrurtglliBorn, and Xiang, have similar goals —

the formal specification and verification of fakurmehaviour by assigning temporal logic

semantics to fault trees. Some use new gates iopthpose and others simply add additional
semantics to events and existing gates, but notteeadpproaches explain how the resultant tree
is meant to be analysed. In event-based approgofessimably existing techniques can be used
(as long as the semantics of the gates have natditmed), but in gate-based approaches like
Schellhorn's, it is not clear how a qualitativeesen quantitative analysis could be conducted

on a temporal fault tree, as the logical structfrine fault tree has been radically altered.

Finally, there is the traditional Priority-AND gat&éhe PAND gate is included unaltered in the

DFT approach and the TAND gate is an attempt tdacepit; there are also a number of

different ways to perform quantitative analysistbem. But nobody has hitherto suggested a
better, more thorough definition for the gate, m@ve they considered the potential for

redundancies and contradictions it presents. Quiakt analysis on PAND gates is consistently
either ignored or overlooked. Despite this, the PAbate still remains useful as a way of

specifying sequences of events and, as evidencéd imclusion in the DFT framework, it still

has an important role to play if its deficiencies ®e overcome.

Table 3 provides a more concise summary of thersafeatures of the various temporal FTA

approaches described above.

Approach | Scope Complexity | Logic Qualitative | Contradiction
Analysis handling etc

Priority- Very general; | Very simple, | Undefined. No. No.

AND can be applied| but ill-defined.
to any event
sequence .

TAND General; can | Simple in State-based in| Using Boolean| No, but given the
also be used to theory, but practice. Uses| laws, no state-based
construct ambiguous in | only Boolean | mention of nature, it is not
compound practice. laws for temporal clear how they
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expressions. reduction. reduction may occur.
Uses interval- | possibilities.
based time in
practice.

DFT with Fairly general | Moderate; Sequential Yes, but the No.

ZBBD in application; | limited logic — one Markov Simultaneous
can represent | number of event causes | method is very| occurrence is
dependencies | gates, easy to | another to expensive and| also not
and standby | understand, occur; events | the ZBDD mentioned.
components. | but analysis is| represent method

potentially occurrences. | extracts
complex. temporal info.

DFT with As DFT. Simpler than | As with DFTs.| Yes. No.

CSSA standard DFTSg Furthermore,
as it avoids simultaneous
use of Markov occurrence is
chains. apparently not

handled either.

House Designed for | Relative State-based | No. N/A.

matrix fault simple but using a point- Contradictions

dynamic monitoring requires a based discrete should not arise.

FTs and great deal of | timeline.
diagnostics. information.

TFTs Designed for | Quite PLTLP - Yes, but only | N/A.
fault complex; lots | Propositional | by converting | Contradictions
monitoring & | of new gates | linear TFT into should not arise
diagnostics, and a formal | temporal normal (as TFTs are
detecting temporal logic; point- Boolean fault | usedafter
faults after logic. based time. tree. failures occur).
they have
occurred.

Duration Designed to | Moderate; Duration No — although | Not mentioned,

Calculus improve expressions | Calculus (a standard but any
specification | are contained | form of ITL). | methods can | contradictions
of temporal in basic Continuous be used to would be
constraints. events, but linear time. produce cut contained in the

expressions sets containing event
have a specific temporal info. | descriptions.
semantics.

CSDM Designed for | Quite CSDM, a form| No — although | Not mentioned,
improved complex; of temporal standard but
specification | formal predicate methods can | contradictions
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of fault language used logic. be used to would probably
tolerance. to describe Continuous produce cut be accounted for
temporal linear time. sets containing when identifying
relations temporal info. | enabling
between conditions.
events.
Bruns / Aimed at Moderate; two| Mu calculus. | No. No, but logic
Anderson formal temporal Events have may prevent
verification. semantics. duration. them.
Schellhorn | Formal Complex; ITL + No. No, but logic
et al. verification. many new Duration may prevent
gates. calculus. them.
Xiang Formal Quite Linear, No. No, but logic
verification. complex, discrete logic. may prevent
event-based. them.
DCCA with | Formal Quite CTL*+ LTL Yes, in Not mentioned.
DFOA verification. complex, separate
model stages.
checking.

Table 3 — Comparison of dynamic/temporal fault taperoaches

The precise qualities of any solution will depemdtioe goal it is intended to fulfil. Both PAND
and TAND gates are meant as simple additions tdathie tree and, in the case of the TAND at
least, designed to fit in with existing Booleanuetion methods. Both are also very simple to
use and consist of only one new gate. At the oppamnd of the spectrum are the formal
specification and verification approaches and THREgse use more complex, higher order
temporal logics and introduce a lot of new opesateither in the form of gates or in the form of
functions in temporal expressions. However, theydesigned to increase the expressiveness of
fault trees by more precisely specifying tempomaistraints and so are not designed to improve
the analysis of fault trees; instead, they are maamake the results of any standard analysis
more informative. In the middle is the DFT apprgashich adds a small number of relatively
simple new gates and can represent a fairly withgeeaof situations with them. It is also
relatively simple but is designed for quantitatie@alysis; although qualitative analysis
techniques have been proposed, they are not atedetad do not cover all of the implications

of incorporating temporal information into the fatiee.

It would seem, therefore, that there is still scapthe general, simple end of the spectrum for a
solution that allows the representation of simplaporal relationships between events in fault

trees without introducing complex new semanticsedasn higher-order temporal logics or
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altering the structure of the fault tree. Most @ailg, noneof the approaches mentioned above
offer the ability to deal appropriately with thervaus contradictions and redundancies that may
arise as a result of introducing temporal relationis the tree. In general, this is because the
qualitative analysis elements of these techniqifegrésent at all) are generally weaker than
their quantitative analysis algorithms; this aleduces their utility if sufficient quantitative dat

is not available.

From a comparison of existing solutions, any sotuthat intends to fulfil the objectives set out

in thelntroduction ideally need to be:

e General in application, like the DFT, TAND, and PBMNapproaches; this
allows it to be applied to a wide range of diffdrsituations and systems while
still allowing the flexibility to allow it to perfon more specific tasks in the
future, like verification or specification.

« Simple to use; ideally, a simple Boolean-style sejal logic, one that avoids
the pitfalls of the TAND's state-like approach khat provides more thorough
semantics than the vague DFT gates without regpttrfull temporal logics
like PLTLP.

e A full qualitative analysis method that accounts fthne potential for
contradictions and simultaneous occurrences thatacise as a result of the

temporal information in the fault tree.

In terms of problems to avoid, any solution should:

* Avoid committing to a single representation of timgossible, e.g. a more
general, relative time approach like DFTs compaedhe absolute, point-
based timelines used in TFTs.

 Represent events as occurrences and not as stategoid the problems
inherent in the TAND.

« Define the gates such that it is clear whetherobrewents can overlap or occur
at the same time.

* Try to avoid a complex logic based on existing teraplogics like ITL etc, as
these may complicate qualitative analysis and doaiwsays fit well with the
Boolean-based fault tree structure.

e Use a small number of temporal gates, rather thesndf complex temporal
gates with specific uses or encapsulating the teahgoformation entirely

within events.
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The next chapter presents an attempt at creatisgudion that takes these recommendations

into account.
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3 Pandora

"If all else fails, immortality can always be assdrby spectacular error."
- John Kenneth Galbraith

3.1 Introduction: The Birth of Pandora

The previous chapter describes several existindintqunes of incorporating temporal
information in fault trees. This chapter present:yew method:Pandora. As explained
previously, there are few general solutions to grisblem, especially ones which can perform
true qualitative analysis on temporal fault trebi is significant because, as stated byRaelt
Tree Handbook;a fault tree is not in itself a quantitative mbdeis a qualitative model that
can be evaluated quantitatively and often is." @kest al, 1981, p IV-1). Pandora aims to
correct this deficiency by allowing the creatiomamalysis of temporal fault trees, fulfilling the
objectives set out in tHatroduction and taking into account the lessons learnt inptie®ious
chapter. It is therefore intended to be general sintble with an emphasis on qualitative
analysis, which is so often treated as secondamthgr approaches. It is also meant to remain

as close as possible to the spirit of FTA by ptiging flexibility and ease-of-use.

To that end, Pandora is based on extending theitr&ND gate'® — FTA's original solution to
the problem. The PAND gate suffers from severat$labut in principle it is a useful and valid
addition to fault tree analysis, as evidenced byitginal inclusion in FTA. The PAND is also
used in the DFT methodology and the TAND was imgdapart an attempt to redefine the
PAND; taken together with the large number of gussijuantitative analysis methods available
for the PAND, although the PAND is often overlookdad is far from forgotten. If the
difficulties in using PAND gates can be overcomeregefining and extending it, then it may
become a more useful tool that can be succesafséig as part of a new form of temporal fault
trees. Furthermore, by starting from this roots ihoped that the resulting methodology will be

in keeping with the spirit of FTA.

The main problem with the Priority-AND gate is thiatvas never thoroughly defined — it was
never clear exactly how it worked or what it medpdéndora grew out of a simple question:
what happens if you have (X PAND Y) AND (Y PAND X{Mce the box was opened, many

other questions emerged, and the first goal fodBiamis to answer them.
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3.2 Opening the box: The Fundaments of Pandora

As can be seen from the earlier examination of sofitee other alternative temporal fault tree
approaches, there are many potential problems daaavhe best way to do this is to build

Pandora up from a firm foundation, defining at eatéige what the various components of
Pandora mean and how they behave, thus prevemiintype of ambiguities that plague both

the original PAND gate and some other approaciiestie TAND gate.

In fault trees, there are a number of constituantsp as described in Chapter 2; broadly, these
can be divided into two categoriesvents and gates Before the gates are introduced,
representing combinations of events, it is usafubbk at what the events themselves actually

mean in Pandora.

3.2.1 Events

There are five types of events in normal faultdrees described earlier. The most important is
the basic event which represents a basic initiating fault everdne that is not developed any
further, and so has no contributory causes of ws.orhis is usually because the limit of
resolution has been reached, i.e. there is no ibémédoking at what might have caused a basic
event. Basic events are similar to undeveloped teyesxcept that undeveloped events are
typically not further developed either becausedts causes are unimportant or because there is

not enough information to develop it further.

These two types of events both repredaulis and therefore indicate that something has gone
wrong somewhere in the system. This could be a ooemt failure or a command fault or an
environmental factor or something else, but ultehat fault. Furthermore, we know from the
Handbookthat we should deal only with theccurrenceof faults, not theexistenceof faults
(Veselyet al, 1981, p V-1). Therefore, a basic or undevelopasherepresents the occurrence
of a fault: it becomes true if that fault occurslatays false if it does not occur. Because faults
in a fault tree are often assumed to be non-refglaie@nd have a permanent effect, once an event
becomes true, it stays true — thus it is not ptesgdr an event to "un-occur”. Thus events are
considered to bpersistent Persistence is the principle that if an evenucethat changes the
state of the system, then the system will remaithat state until a further event changes the

system state once more.

19 Although Pandora is not an acronym and was namethé myth, the Greek etymology of the word
can be interpreted as the "time of PANDta ([opa] in Greek) means hour or "time", hence ORA of
PAND.
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External and conditioning events are slightly dif& in that they do not necessarily represent
faults. External events signify an event that ipested to occur as part of normal system
operation, e.g. a certain input or command beirgrgio the system, for instance. Conditioning
events are used to represent conditions or congrehat apply to a gate, and can be almost
anything, from environmental conditions (e.g. terapare, pressure) to temporal conditions
(e.g. for a certain amount of time) to the systexim@p in a certain state. In the case of external
events, they still represent the occurrence of rtaiceevent, but conditional events can also
represent a state. For the purposes of Pandorditicoral events that represent states are
assumed to become true at the state transition,ifeay conditioning event states that the
temperature must be above 50 degrees, it will bectsoe if the temperature rises above 50
degrees. To model the possibility of the tempeeathen dropping, Pandora requires the use of
a second event ("temperature drops below 50 degremshat if the first is true and the second
is false, the temperature is still above 50 degrébass means that conditional events can be

treated the same as the other types of event.

Note that in all these cases, the event is notrsgmous with the fault. A fault could possibly
be repaired or be intermittent, or for externalrégean input to the system can be processed,
and then the fault or the input ceases to existyever, it would still have occurred, and
therefore the event will still be true. As a resuwithen we speak of aavent occurring in
Pandora, it refers only to the first occurrencevbétever the event refers to, not the existence of
whatever it represents. This means that an evamtocdy occur at most once. Modelling
repeated or repairable faults would require a sesfeevents to represent the initial occurrence
and then cessation of those faults. Thus there =oncept of aactionrepresenting an instance
of an event, like there is in CSDM, and it is nosgible for events to go from true to false as in

the TAND approach.

To summarise, then:

Event

An event in Pandora represents the occurrencenoéting, whether a fault or a state
transition. If the fault/state transition has net gccurred, the event is false. When the
fault/state transition occurs, the event instarigcomes true and remains true
thereafter. Events are monotonic, i.e. they camaofrom true to false, only fro
false to true.

Note that an event is considered tdrstantaneousi.e. it takes no time to go from false to true.
For events that would ordinarily have durationg, &brake failure due to brake fluid leakage”,

or that grow worse over time, e.g. "overheatingg event is considered to become true either
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on demand (e.g. "brake failure when pedal is ptE¥s# when the effect becomes significant

enough to affect the rest of the system (e.g. "258p in performance due to overheating").

There is also one last type of event: intermed@atents. However, these typically represent
combinations of two or more of the other types\#régs subject to certain conditions indicated
by a logical (or temporal) gate, e.g. an OR gatpiires at least one of its inputs to be true
before the intermediate event is true and an ANi2 gequires all of its inputs to be true. In

Pandora, intermediate events are treated synonyynwith gates, therefore, for the purposes of
this thesis, the first four types of events areemefd to simply as "events" and intermediate
events referred to as "gates". Anonymous eventd aseexamples in this and future chapters
are represented by capitals for brevity, e.g. ACBX, Y, Z, or E1, E2, E3 etc. Real events in

fault trees can have any name.

3.2.2 Gates

Gates are the other major component of fault tesekrepresent intermediate events — events
caused by or composed of combinations of othertsv&ates can also be inputs to other gates.
As with events, gates are considered in Pandoramssenting occurrences: an intermediate
event occurs when one or more of its input eventsiig subject to the conditions imposed by

the logical gate (obviously dependent on the tyfpgate), at which point it becomes tthe

Gate
A gate in Pandora is an intermediate event andesepits the occurrence of [a
combination of input events subject to conditiompased by the type of gate. Gates
begin as false and become instantly true when t@ditions are fulfilled. Gate
cannot go from true to false once they have ocdurre

1°Z}

In ordinary 'static' fault trees (SFTs), theretare main gates: OR gates and AND gates.

OR Gates

OR gates represent the Boolean OR operation: tteeyr@e when at least one of their inputs is

true. There can be any number of inputs to an QR. @irictly speaking, an OR gate does not
always represent a causal relationship: the intdiate event is not necessaridgusedby one

or more input events occurring. Instead, an OR gatdften a restatement or refinement; for

example, the intermediate event "valve fails stuatlild be represented as an OR gate with a
number of inputs representing different specificysvéhe valve could fail shut, e.g. through

human error (e.g. someone mistakenly shut it agdoto open it) or through a mechanical fault
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(e.g. corrosion, damage etc). In this case, thetinfp the OR are different restatements of the

event, not different events that can cause it.

AND Gates

AND gates represent the Boolean AND operation: treytrue when all of their inputs are true.
Like OR gates, there can be any number of inpuetdND gate, but unlike OR gates, AND

gates do usually represent a causal relationship: the nméeiate event is caused by a
combination of all input events, as a subset of¢hevents is not sufficient on its own to cause
the intermediate event. In this way, the AND gaia be thought of as a compound event with

two or more sub-events.

Other gates

There is also the rare INHIBIT gate, which in pieetis a type of AND gate. INHIBIT gates
only have one normal input (e.g. a basic or undmed event), but also have a conditioning
event attached. In Pandora they can be treateshinal terms as AND gates with two events,
one basic and one conditioning, because the conitj event still represents an occurrence of
the condition becoming true rather than the stétth@® condition. NOT gates are sometimes

included in fault trees but these are dealt wittasately (see sectidh4).

Some other approaches (e.g. Schellhorn's formaligatas described in the previous chapter,
choose to divide these gates into two versions € warsion explicitly describing a
decompositional relationship and the other expyidescribing a causal relationship. Part of the
reason for doing this is to formalise the tempoethtionship between the inputs of a gate and
its outputs; in a decompositional gate, the in@nd output are the same thing (e.g. "valve
rusted shut" is a type of "valve stuck closed"uia), whereas in causal gates, the inputs are
causes and the outputs represent their consequencef$ects, and thus inputs must occur

before outputs.

In Pandora, this sort of distinction is deemed @esesary due to the fact that all events and
gates represent occurrences and are instantan®mae becomes true at the same instant its
conditions are fulfilled, and this is true whetlierepresents decomposition (in which case it
would be instantaneous anyway) or causality (incWwhtase, the causes are modelled as
instantly causing their effects). Thus an AND g&ed by extension, an INHIBIT) becomes

true at the moment when all of its input eventsehbgcome true, i.e. the moment at which the
last event to occur becomes true, and an OR gataries true at the moment when the first of

its input events occur. If a gate's conditions hawet yet been met, then they are false.

1 Note that NOT gates are an exception to thisiruldat they can begin as true and then become.fals
However, the introduction of NOT gates complica®esdora immensely and are thus best avoided; the
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Furthermore, because events remain true once ey dccurred, OR and AND gates do so
too, since none of their inputs will become falsee they have occurred. This also helps to
ensure consistency, because gates are a typerdfteveand so should have the same persistent

behaviour.

This approach does not necessarily preclude thsilplity of having delayed effects. For
example, the CSDM approach assigns temporal sersaitti existing gates. The event "gas
explosion" can be modelled in CSDM as the conjamctf two events ("naked flame" and "gas
leak™) and the fulfilment of the enabling conditiiduration of gas leak exceeds time need to
attain explosive concentration"). Thus even if biojut events of the AND have occurred (i.e.
there is both a gas leak and a flame), the AND aovilly be true once the condition is fulfilled —
necessitating a delay. This same behaviour canepeesented in Pandora by explicitly
representing the condition as an event, i.e. hagiggparate conditioning event to represent the
explosive concentration. Once the condition becotngs, a certain time after the other two

events occur, the AND gate will become true as.well

3.2.3 Time

As explained in sectio®.3, there are many different possible ways of modgltime, each with
different advantages and disadvantages. The cladidtene model can also have important
repercussions on how time is represented in a feadt Some approaches specify a particular
model of time, e.g. continuous linear time for CSDdint-based linear time for TFTs etc. In
these cases, the time model is referenced dirbgtine temporal logic — using predicates like
durationin CSDM, or the PREV gate in TFTs. For a PREVN&XT) operator to make sense,
it must be possible to determine what the previmusext 'moment' in time actually is. For
continuous time models this is not possible, andisarete time models, the answer depends on
whether time is modelled with points or with intels. Notably, virtually all temporal/dynamic
fault tree approaches seem to use a linear systémerather than branching time; although a
fault tree can be interpreted as a time line bremggchnto the past from the top event,
representing the present moment, it is more comtoahink of the fault tree as representing

lots of different possible linear time lines, eatlwhich ends with the top event.

In any case, the more general temporal FTA appesaFTs, TAND, PAND) all attempt to
avoid specifying a particular model of time (thowgjhassume linear time models). The idea is
that these approaches can then be used regarflles® time is modelled, because any explicit
references to time — particularly quantitative refeees to a time metric, e.g. 4 seconds — are

encapsulated in the events, not in the logic offéiodt tree structure. This is a good choice in a

reasons for this are discussed in more detailea¢tid of this chapter, in secti8rk.
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general solution, because it is more flexible aodsdnot force the analyst into certain modes of
thinking. Unfortunately, as the experience of tHeND gate shows, this is not always a simple

task.

Pandora is based on the Priority-AND gate, whichpdy introduces the concept of a sequence
of events to the fault tree — perhaps the mostemeany representation of time possible. For this
purpose, it is not necessary to know exactly wheesent occurred or how long it lasts, only
when it occurs in relation to the other eventshm group. This is relative time in its most broad
sense, because there is no indication of how muouh passes between events. In theory, this
requirement also fits both a quantitative relatbystem of time (where the periods between
events are of a known duration) and also an alesaystem of time (in which it is always
possible to know whether one event came beforehantly comparing the times at which they

occur).

From the definitions of the events, we also knoat #vents occur at most once and that it is the
occurrence rather than the existence of a fautt rigtters. This means that the choice of a
point-based or interval-based system, whether eliscor continuous, is largely irrelevant,

because we only ever need to refer to a singlannstithout a duration. In Pandora, only the

moment of occurrence is important. Furthermoreabse events and gates are all persistent —
they remain true once they have occurred — theieklgaps' between intervals in a point-based
system is not important, because intervals areneeted: in a point-based system, we only use
and compare the two start points, and in an intdrased system, we compare only the start of

the intervals in question.
All of this is shown in Figure 21:

Sequence of two events, L and ¥

Ahazolute Time +||X'||||||||||||||||||I|
(poitt-based) v

fbsolute Time L, !X: : ﬂl
(interval-based) | Y

Felative Titme | 1: : '|
(point-hased) | i

Relative Time | e |
(itterval-based) [ —Y

Figure 21 — Pandora in different systems of time
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Figure 21 shows how a sequence of X and then Yoeamodelled in all four of these systems
of time; initially both are false, then X occursdathen Y occurs. They remain true thereafter. It
does not matter whether an event occurs at a poi an interval, or whether there is a
timeline of events or merely a relative sequenceewnts: what matters is the ability to
determine whether one event preceded another.igpisssible in all of these systems of time,
because we use only the initial occurrence of tenkeas the moment of time in question,
whether that moment is modelled as an interval poiat or anything else. This is assumed to

be the 'rising edge' as seen in the figure.

The one thing Pandora does assume — in common wiitiially all other temporal FTA
approaches — is a linear system of time rather thalbranching one. A PAND gate is
deterministic in that if it is true, then its ingualways occurred in that sequence; there is no
concept of events 'sometimes' occurring in somaiplestime lines but not all. This fits with
the general concept of a fault tree, which is audéde model workingobackwardsfrom a
system failure to determine what caused it. If ateay failure has already occurred, then a

deterministic sequence of events must have catised i

There is still one outstanding issue, however. Ohthe ambiguities that affected the PAND
gate was the question of whether or not two evemsurring simultaneously could be
considered to be part of a sequence. Again, thiglependent of whether time is point-based or
interval-based; if two events both occur at thetsiththe same interval, or both occur at the
same point, then they occur simultaneously. Thissiiality was also considered by the TAND
gate, which redefined the normal logical AND gadentean that its inputs also have to occur

(and end) at exactly the same time — it represehlled’s ‘equals’ relation.

In Pandora, there is no concept of an event 'ehdiegause all events and gates are persistent.
Only the moment of occurrence is important. Thaeef@ither two events occur at the same
moment or at different moments, and so there ale tbree basic temporal relations between

two events X and Y:

« Before X occurs before Y.
«  After X occurs after Y.
e Atthe same time Both X and Y occur simultaneously.

These three temporal relations are independenbyfspecific model of time, with the caveat
that time is linear (if it was branching, it wouleichnically be possible for an event precede
another event in one timeline and precede it intter. These three temporal relations also

avoid one of the problems that affected the TANBegaamely that the TAND was true only if
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the second event immediately followed #re of the first event. In Pandora, the period of time
between the occurrence of two events is simplyeeiero (if they are simultaneous) or non-

zero (if they are not).

As a result of this, exactly one of the three refet will be true, assuming both events have
occurred. It is not possible for more than oneddroe at once (an event cannot occur both at
the same time as and not at the same time as arevbet, because we assume linear time). If
one or both of the events have not yet occurresh ttone of the three relations will be true until
they do both occur. Note that in Pandora, all theeeporal relations generally assume that both
events occur, but there is a possible exceptiombtiore relation can also be interpreted as
being true if the first event occurs regardleswioéther or not the second event occurs, whereas
after can only be true when all events have occurredalse it is impossible to state, for

example, that "Y has occurred after X" unless bodnd X have occurred).

The time model in Pandora can thus be summaristallaws:

Time
Pandora assumes a linear model of time in whiclmtevare persistent but does not
specify whether the model used is to be discretetimuous, point-based, or interval-
based. There are only three possible temporal ioetat before, after, and
simultaneous.

3.2.4 Temporal Gates — Bringing Order to the Fault Tree

Temporal gates are the means by which Pandoralintes temporal information to the fault
tree, by establishing the sequence or order oftev&here are three such gates, all described
below.

3.2.4.1 Priority-AND Gates

Having decided on a model of time and settled dsebaviour for events, it is possible to
introduce the temporal gates themselves. Firstfamanost is the Priority-AND or PAND gate
— the gate upon which Pandora is built. The basfiniion remains the same as the original — it
is true if its inputs all occur in a specific seqoe. Thus the PAND gate models theforeand
after temporal relations mentioned above and the questizat surround the original gate can

now be answered:

« The sequence of events is always left-to-right ehesubsequent event after the first must

occur after the one to its left.
« The PAND is considered to be 'exclusive' and sat&ymust occur strictly in sequence, and

not at the same time. Inputs occurring simultanlyaesult in the gate being false.
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e Because inputs to a PAND must not occur at the ¢amee the same event used more than
once as an input to the PAND results in a conttaxiige.g. X PAND X would mean 'X
occurs before X').

« Temporal relations are mutually exclusive; (X PAND AND (Y PAND X) represents a
conjunction of two different temporal relations @€fore Y and X after Y) and so is

impossible — and hence always false.

Note the exclusive nature of the PAND gate in Pamdmeaning that it is not true if any inputs
occur simultaneously; the alternative is an inslegiefinition, which would be true if either the
inputs occurred in sequence if they occurred simultaneously. An exclusive d#ion was
chosen to ensure that the PAND gate does not eagresore than one temporal relation at a
time; under an inclusive interpretation, X PAND &utd mean that either X occurred before Y
or that X and Y occurred at the same time, andetheuld be no way of knowing which was

the case.

The Priority-AND gate is defined informally as flis:

Name: Priority-AND gate

Abbreviation: PAND

Symbol: <

Meaning: The PAND gate specifies a sequence. It is trueliinput

events occur and they occur in order from leftight It is
false if any of the events occur out of sequencié amy occur

simultaneously.

Z oocouts
hefore ¥

Figure 22 — Pandora's PAND gate

The '<' symbol was chosen because it indicatetave order — X <Y intuitively means "X is
less than Y", i.e. the time at which X occurred&fore the time at which Y occurred. It also

helps indicate the exclusive nature of the PANDgkelas an inclusive PAND would be better
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represented as). The gate symbol given in tl&ult Tree Handbooks retained for the PAND
gate in Pandora, but notice the lack of a conditigrevent; the order is always left to right for

however many inputs the PAND gate has.

The PAND gate with this definition is very similer the SEQ or SEQUENCE gate from the
DFT methodology and generally similar in purposénet in function — to the TAND gate. It is
also important to remember that the PAND gateilisfghdamentally an AND gate — a PAND

can never be true unless all inputs are truegisigh the normal AND gate.

3.2.4.2 Simultaneous-AND Gates

The exclusive nature of the Priority-AND gate mattes PAND less ambiguous because it only
represents one temporal relation at a time — elibére or after, depending on your point of
view (though if read from left to right, it is moretural to read X PAND Y as "X before Y").
However, this means that there is a need for areifit gate to represent the third temporal

relation —simultaneous

In the TAND approach, the AND gate was redefinedtfds purpose: it would be true if its
input events were temporally equal, i.e. they #itsand end at the same time. However, the
creators of the TAND gate still recognised the né@rda more general AND as well. Other
approaches have also redefined the AND gate inwlaig, e.g. in Bruns and Anderson's
approach. In the work of Schellhogt al, the (causal) AND gate was split into two further
variants — a synchronous AND to represent the samabus case and an asynchronous AND to
represent the case where the inputs occur at eifféeimes. Notably, the DFT approach does not
specify a simultaneous version of the AND, buRBEP gates model a functional dependency
in which a trigger can cause the (presumably itateous) occurrence of multiple events.
However, it may be that the DFT's version of theNBPAgate is inclusive rather than exclusive

(though this does not appear to be firmly defineghere).

In Pandora, the solution is to introduce anothée ¢g@ model this temporal relation rather than
to redefine the existing AND gate (which alreadg hell-understood semantics). The new gate
is unimaginatively named the "Simultaneous-AND" AND gate. It is true if all its input
events occur at the same time, while a normal ANiDeds true if all of its inputs occur,

regardless of the order.

The SAND gate is summarised as follows:
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Name: Simultaneous-AND gate

Abbreviation: SAND

Symbol: &

Meaning: The SAND gate specifies that all of its inputs mostur and
furthermore that they all occur simultaneouslys Halse if any

do not occur or if any occur at a different time.

& ocours at the
same time as ¥

Figure 23 — Pandora's SAND gate

The SAND gate has the symbol '&', i.e. an ampershliotl only does an ampersand itself mean
"and" in general usage, which the SAND gate alsssdo many ways, it also literally contains
the word SAND. Because the PAND is exclusive, therso overlap in meaning between the
PAND and the SAND gates: they can never both be atithe same time. This is because they
each represent different temporal relations in Beamdhe PAND can represent bdt&éforeand
after (which are interdefinable in that MeforeY =Y after X), and the SAND represents the
simultaneouselation. As already explained, only one of thégee temporal relations can be
true at once, and thus the PAND and SAND are miyteatlusive.

It is also important to note that both the SAND &A&ND gates fulfil the definition of gates set
out in sectior3.2.2 they represent the occurrence of certain comisinsitof events subject to
certain (temporal) conditions; if those conditi@re not yet met, the gates are false, and when
they are met, the gate instantly becomes true amdains true thereafter. There is no
combination or sequence of events that can cal’E\D or SAND gate to become false after

it has become true — they are monotonic.

Also, PAND and SAND are both types of AND gate; wieer a PAND or SAND gate is true,

an AND gate with the same inputs would also be.tAseexplained earlier, an AND gate only
becomes true when its last input to become trueirscand this behaviour is also true of the
PAND and SAND gates (which are together known aseimporal conjunction gates. This is

easy to see of the PAND gate: because it requsesputs to occur in sequence from left to
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right, it becomes true when its right-most everduss, assuming that occurs after all the events
to the left. The SAND gate requires all of its itgto occur simultaneously, so there is no 'last'
input event per se, but until they all occur, tlaegis false. Because an event cannot become
false after it has occurred, and because both ANDPand the SAND require all their inputs to
occur before they become true, the gates too cévewmime false after they occur. This is true

regardless of whether their inputs are eventsimraates.

It has been said that the probability of two evertisurring simultaneously is vanishingly small
and thus there is no need for a SAND gate, butahéslooks certain assumptions that may not
always be true. Although the need for the SANDeisslobvious than the need for the PAND
gate, the probability of two (or more) events ocay simultaneously is only small if those
events are independent. For example, the DFT's R in practice models a simultaneous
occurrence of multiple events caused by the saiggetr event. If the events can have a
common cause, then they may well occur simultarigoudso, the effective meaning of
'simultaneous' depends on the system involved;ay imvolve a interval of time that, while
short compared to the total lifetime of the syst@mot strictly 'instantaneous'. For example, a
system may have a safety measure that can comeefigct within seconds of a particular
component failure, such as a fire extinguisher Hettvates to put out a fire caused by an
overheating component. Failure of that extinguishathin the few seconds it takes to
extinguish the fire might be considered a 'simdtars' failure because it would still result in an
inability to prevent the consequences of the oalgoomponent failure (i.e. the fire would still

be burning).
Of course, in cases where the events are indepeaddrihe probability of the SAND occurring

is thus extremely small, it may be reasonable twiig the SAND gate, at least during any

future quantitative analysis. But this does not mat the SAND gate cawaysbe ignored.

3.2.4.3 Priority-OR Gates

There is one type of possibility that has not yegr considered. So far, only conjunctions of
events have been considered — but what about digus of events? It is sometimes desirable
to be able to specify a sequence without also §pegithat all events must occur; in these
cases it is enough to say that one event must destirand then the occurrence of the other
events does not matter. Pandora also provideseafgathis situation too: the Priority-OR (or
POR) gate.
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Name: Priority-OR gate

Abbreviation: POR

Symbol: |

Meaning: The POR gate specifies priority, and is true if l#f-most
input occurs before any of its other inputs or @éiha of the
subsequent inputs occur. It is false if any of ttleer input
events occur before or at the same time as thenlest input,

or if the left-most event does not occur at all.

|
& must ooour

hefore Vif 7
ooours at all

Figure 24 — Pandora's POR gate

The POR gate uses the same graphical symbol aBaihié Tree Handboolgives the XOR
(Exclusive Or) gate. This is justified for two reas. Firstly, theFault Tree Handbook
mysteriously shows the XOR gate as being equivdtean OR gate with a conditioning event
attached specifying an order, i.e. A XOR B is eqoaA OR B assuming A occurs before B
(Veselyet al, 1981, p IV-10). This conflicts with the traditiaindefinition of the XOR gate as
an Exclusive-OR in which only one input event mbettrue, a definition also given in the
Handbookon the same page. However, the traditional Exed4€iR gate implicitly uses NOT
gates to achieve this: A XOR B is traditionally aglent to -A.B + -B.A. ThéHandbookdoes
not include NOT gates, and using this definitionuldoresult in a non-coherent fault tree,
because the occurrence of A and then B would réstlie XOR first becoming true and then
becoming false again. This also conflicts with tledinition of a gate in Pandora, which states
that a gate (and an event) can only go from bafggfto being true, whereas a traditional XOR
gate becomes true when one event occurs and them fehen the second occurs. The
Handbools definition avoids this problem by specifyingejgence, i.e. it allows both events to
occur as long as they occur in a certain orders @efinition is more like the Priority-OR gate

than the traditional XOR gate.

The second reason for the use of the symbol isatb&@R gate usually has a different symbol,

an OR gate with a curved line beneath it. The twesl inside the OR symbol are more like the

99



two lines inside the AND symbol used to signify ®ority-AND gate. Therefore, it is felt that
to keep these two lines makes it easier to idenitié Priority-OR as a temporal gate like the
Priority-AND.

Since the POR uses tlitandbooks symbol for an XOR gate, one might reasonably thek
guestion about the possibility of a temporal XOReg@ar PXOR gate (Priority Exclusive Or
gate). This would be a gate that is true when only input is true — like the traditional XOR
gate — except, as in tiandbooks version, one event has priority over the otimer must occur
first. However, the full semantics of the PXOR aoenewhat more problematic as they relate to
the non-occurrence of events and the possibilityharfi-coherent fault trees; as a result, the
possibility of a PXOR gate is discussed furthecdamnection with NOT gates in Secti@¥

later in this chapter.

The Priority-OR by contrast is simply a temporaisien of the OR gate. The OR gate becomes
true when at least one of its input events becomes The POR is similar, but places the
highest priority on its first (left-most) input. Fthe POR to be true, this input must also be true.
Furthermore, this input must precede all of theeotihputs, and thus that input has 'priority’
over the others. In this it is very similar to tRAND gate. However, the PAND gate is not true
until thelast of its input events is true — and all inputs mostur. The POR becomes true as
soon as itdirst input (i.e. its left-most input) becomes true J@sy as none of the other inputs
have occurred yet. In this respect, like the ORp#s not matter whether any of the other input
events occur or not once it is true. As with theNPA it does not include theimultaneous
relation: a simultaneous occurrence of its prioimgyut and any other input will cause it to stay

false.

It is also important to note that the POR gate aldfines a temporal relation between its first
input and all of the other inputs; unlike the PANDdoes not impose any order on subsequent
inputs (e.g. between its"2and & input). In fact, PORs with more than two input® ar
equivalent to PORY, OR(,i3, ... b)), €.9. X|Y|Z is equivalent to X|(Y+Z).

Because the POR is a type of OR gate, ittengporal disjunction gate In the same way that
if a PAND or SAND gate is true an AND gate with g@me inputs would also be true, if a POR
gate is true, an OR gate with the same inputs waldd be true. In Boolean logic, this can be

expressed using implication, i.e.:

XPANDY - XAND Y
XSANDY - XAND Y
XPORY - XORY
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The same is not true in reverse, of course, becANE and OR do not define any temporal

relationships on their inputs.

As well as being able to distinguish between tmepi@ral conjunction gates and the temporal
disjunction gates, we can also distinguish betwtentwo priority gates PAND and POR,
which both define sequences of events, and theltsinaous gate SAND, which says that inputs

must all occur at the same time.

3.2.4.4 Behaviour of the three Temporal Gates

The normal precedence of the five gates in Pangoes follows: OR, AND, POR, PAND,
SAND, meaning OR has the lowest precedence and SAiNDhighest; thus X+Y&Z is
equivalent to X+(Y&Z), not (X+Y)&Z. The temporal epators all have higher precedence than
the non-temporal ones, and the temporal conjundaias have a higher precedence than the
POR.

Note also that all gates are left associative, ¥ <Z is evaluated as (X<Y)<Z not X<(Y<Z).
This includes the POR gate; however, the semanfitse POR gate are a little different and

any subsequent POR operators are equivalent toaf¥R,g.e.:

A|BIC] ... IN = A|(((B+C)...)*N)
Thus X|Y|Z , which is evaluated agX|Y)|Z , is equivalent toX|(Y+Z) . The left
associativity of the five operators is important émsuring that all temporal fault trees can be

converted to binary fault trees in which each dwse at most two inputs. This can be seen in
Figure 25:
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Figure 25 — A normal fault tree and its binary ecalent

The semantics of the gates are best understood Vunéed to only two inputs, and the
behaviour of the three temporal gates in Pandangeshaps best be expressed visually. Figure
26 shows a series of timelines illustrating how arn the temporal gates become true. Note

that for the POR gates, there are two possible Waygate can be true.

IV /]

Vi — e}

TEYV —=—=————

Iy /e

T|Y —— >

VN — e}

] —

Figure 26 — Behaviour of the three temporal gates

Time is represented in the figure as going from tefright, with X above the timeline and Y
below it. It can also be seen from the diagram ifhdkY is true, then so is X|Y (and similarly
for Y<X and Y|X). In other words, X PAND Y- X POR Y. However, the POR gates are also
true if their subsequent input events do not ogasrseen in the last and the antepenultimate
cases).

Because Pandora is a gate-based temporal faultsyttem, it is the gates that impose an
ordering on events; basic events themselves ampatral' in the sense that without a gate, they

have no intrinsic temporal properties. It is onlyem used as an input to a gate that they take on
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a temporal meaning and when this happens, theynietemporally significant. Temporal
significance is conferred by the temporal gatesiarglies that those events have to occur in a
certain sequence; this imposes certain constraimthose events (because the order in which

they occur — indicated by the gate — must be pveségr

Note that all gates are monotonic — once true ttey never become false again. This is
important for several reasons. Firstly, it keesdhtes consistent with events (i.e. they are both
persistent). Secondly, it avoids the troublesorsedsof recurring events (events that become
true, then false, then true again). Finally, it ne#hat the structure function of the fault tree
also remains monotonic and therefore ensures twattamporal fault trees in Pandora are

coherent fault trees.

This information can also be seen in a Booleat traible:

X Y X+Y XY X<Y X&Y X|Y

never never false false false false false

occurs occurs

occurs never true false false false true
occurs

never occurs| occurs true false false false false

occurs occurs true true true false true

first second

occurs occurs true true false false false

second first

occurs sim- occurs sim— true true false true false

ultaneously | ultaneously

The two logical gates, OR and AND, are true regesllof the order of events, assuming their
conditions are met; the three temporal gates dgetare in specific temporal circumstances. It
can be seen from the table, however, that the AdNfbue when the temporal conjunction gates
are true, that the OR is true when the temporgaiesion gate is true, and that the POR is true
when the PAND is true.

However, this truth table method of describing Hedaviour of the gates has two significant
disadvantages: firstly, it requires an explanatibrwhen an event occurs in relation to other
events; and secondly it does not indicate what élappvhen a gate is an input to another gate

because it does not indicate when the gates betrameelative to their input events.
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To solve this, a new type of truth table is needed.
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3.2.5 Temporal Truth Tables, Sequence Values, and Precedence Trees

Temporal truth tables are extensions of normal Boolean truth tableshan game way that
Pandora is a temporal extension to normal Boolaah frees. Just as Pandora makes it possible
to specify the sequence of events as well as thernce of events, temporal truth tables (or
TTTs) make it possible to specify the order in whiglerdgs occur as well as whether or not

they occur.

This is done usingsequence valuedn Pandora, the exact time at which an event rgcsunot
important — the only thing that matters is wheaodturs relative to the other events, i.e. which
comes first, which comes second, which comes lastNor is it necessary to say exactly how
long the interval between these events lasts (and & quantitative metric of time is not
required). Sequence values are used instead ag afwepresenting this ordering information:
they are abstractions of the time at which an ewsaurs. Furthermore, because Pandora

models only instantaneous occurrences, sequengesvein also be used for gates too.

To indicate a sequence value, the notafX) is used, where X is an event (or a gate). The
sequence value is not the same as the truth vale event, although they are closely linked. If
an event or gate is false, it means it has nobgetirred. Because it has not yet occurred, it is
given a sequence value of 0 (i.e. no sequencah #vent is true, it has occurred, and therefore
has a sequence value greater than 0 to indicate whaecurred relative to the other events
under consideration, e.g. 1 means it occurred, frsheans second and so on. Two events can
have the same sequence value, in which case itarteag both occurred simultaneously. In
this, sequence values can be likened to a racdirsh@erson to cross the finishing line gets 1
place, the second get¥ place, and so on; if two or more people crossfitfishing line, they

get a joint position, e.g. joint®place. Someone who did not finish the race wodtiget a

place, i.e. 0.

This notation also allows us to distinguish ead&tween events that have occurred and are
true, which will have non-zero sequence values,emahts that have not occurred and are false,
which have sequence values of zero. This is venylai to the customary notation for Boolean
logic of using O for false and 1 for true, exceptvany non-zero positive integer represents
true. Because it is possible in this way to represeth bhe temporal and logical values of
events with just the sequence values,3hgnotation is often omitted in temporal truth I
(although it is possible to create truth tableswinich the temporal and logical values are

separate, in which cat€ ) gives the logical value whil§( ) gives the temporal value).
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Below is the TTT equivalent to the standard Booleaa given earlier, showing the behaviour

of the five gates:

X Y X+Y XY X<Y X&Y XY
0 0 0 0 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 1
1 1 1 1 0 1 0
1 2 1 2 2 0 1
2 1 1 2 0 0 0

A temporal truth table is constructed by enumegaéih the possible sequences of all events in
an expression, typically ordered so that rows witther sequence values in them go further
down the table. Then the expressions can be eealuar each row by substituting those

sequence values into the expression (this is engailain more detail shortly).

Notice that when one of the two events is false,dtiher only needs the sequence value 1 (e.g.
there is no row in which X is 0 and Y is 2), anohigarly there is no entry in the table where X
and Y both have the sequence value 2. This is Becsuch values are unnecessary. Going back
to the race analogy, assume the winner of the mats f' position and the next two racers
came joint . If the winner was then disqualified for cheatitigen all the subsequent racers
are promoted, so the two who came joifft @®ow come joint ¥ In the same way, sequence
values represented in a row of a truth table mestdmtiguous — there must be no gaps; it is not
possible to hav&(X)=1, YY)=3 and §Z)=3, for instance (they would instead be 1, 2 and

respectively).

This pattern of numbers is closely related to aosetumbers known as the 'Fubini numbers' or
the ‘ordered Bell numbers'. These represent thebieu of asymmetric generalised weak orders
on n points" or the number of wayscompetitors can rank in a competition, allowing fies
(Online Encyclopaedia of Integer Sequences - AOOpP&¢cessed Jan 2009). In fact, the total
number of rows required in a TTT farevents is actually twice the equivalent Fubini bem
for n, because the truth tables must also allow forpbssibility of events being false (or,
alternatively, the possibility that some or alltbé competitors fail to reach the finishing line).
The Fubini numbers grow rapidly with increasimg for n = 3, there are 13 possible
combinations (and thus 26 rows in a TTT for 3 esgnbut forn = 18, there are
3,385,534,663,256,845,323 possible combinatiors famn = 100, the Fubini number has 174

121t is not a coincidence that this is also the custo many programming languages, e.g. in C/C++, any
non-zero value is true while 0 is false.
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digits. Nor is there an easy way of calculatingFlaeini number for a given, although there is

an approximation which is exact for valuemndéss than 17: the nearest integer to:

nl
2log(2)™*

Or in other words, n!/(2*log(2)*(n+1)) rounded thet nearest whole number (Online
Encyclopaedia of Integer Sequences - A034172, aede¥an 2009). Obviously this figure must

be doubled to estimate the size of the equivald@iit T

In any case, the size of these numbers means dratatty creating TTT for large numbers of
events is prohibitively expensive; the table fourf@vents is about as large as is manageable,
consisting of 150 rows. By comparison, the siza abrmal Boolean truth table for four events
is 2%, i.e. 16 rows. However, a computer can calculaf@sTfor higher numbers of events
(though it still becomes very expensive for higHuea of n; indeed, beyondh = 11, the

numbers involved exceed a 32 bit integer).

Another benefit of the use of sequence valuesaisttiey allow a more precise definition of how
the temporal gates function. Because sequencesvategust integer numbers, a gate becomes a
function that operates on its inputs and providesimerical output. The behaviour of the five
gates in Pandora are shown below in this mannequeS®e value inputs to a gate are

represented; , X, ... X, Wheren is the number of inputs.

OR Gate
Ox :x=0 then x3+x+..+x,=0
Ox:x =1 then X +x + ... +X,=min(all x, = 0)

where I<i<n

In other words, if all inputs to an OR gate have ¥alue 0, so will the OR gate; otherwise, the
OR gate has the minimum value of all true inputrésgi.e. inputs with non-zero sequence
values). This can be seen in the TTT above, in fvtlie OR gate always takes on the minimum

non-zero value of X or Y if at least one of thentrige.

AND Gate
Ox:x=1 then X1 .%X . ... X, =maxx)
x:x =0 then x;.%....%=0

where I<i<n
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This is the opposite behaviour to the OR gaten¥f af its inputs have the value 0, then so will
the AND gate; if all of them have non-zero valubgn the AND gate has the maximum value.
Again, this can be seen in the above TTT, whereAtiP always takes the maximum value of

X and Y when both are true, and 0 otherwise.

PAND Gate
Ox % <X%+10x%>0 then X <X <...<X3=X,
Ok :x=2%+10%x=0 then X;<x<..<x=0

where I<i<n-1

For the PAND gate, each input must be non-zerolessl than the input to its right, in which
case the PAND gate has the value of its right-nmgstit. Otherwise, it has the value 0. In
practice, this means its inputs must all be in agicey order and the left-most must be at least 1,
e.g. forn = 3, the values must be 1, 2, and 3. The sequesices need not be contiguous,
however, e.g. A <B < D will have the value 4 if A=B=2, D=4, assuming there is also an

event with the value 3 which is not in the expressi

SAND Gate
Ox % =%+10%>0 then X & X & ... & X, =X,
Ok :x #X%+10%=0 then X &% &..&x=0

where I<i<n-1

For the SAND, all of its inputs must have the same-zero value, in which case the SAND
also has that value. Otherwise, the SAND has theev@&

POR Gate

X1 > 0,0% :x;<x Ox=0 then  Xg X | ... X=X
X1 > 0,0X : X4 = X then X |%|...[x,=0
X1=0 then X [X|... %, =0

where 2<i<n

The POR is similar to the PAND, except rather teach input being less than the one to its
right, the first input must be greater than O alsth &e less than all of the other inputs that are
greater than 0. If true, the POR always has theesaatue as its first input, otherwise it has the

value 0.

These definitions allow us to mathematically obthia value of a gate for the TTTs, given the

appropriate inputs. They also allow one gate taménput into another, e.g. (X&Y)<Z, where
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the value of X&Y is first calculated and used as itput into the PAND gate. For expressions
which only include AND-based gates (like X&Y<Z), is possible to omit those rows
containing false events, thereby cutting the sizetable in half:

X&Y (X&Y)<Z

W W NN NN N R R R R R R X
N R W N R R R W N NN R R <K
Rl N R R W] N R N w N R N | N
o ol ol M| ol o] o o] o] o O] R K
ol o o] o] ol o ol o] o] o] o N ©

This is known as &onjunctive Temporal Truth Table (or CTTT) and is only possible when

the expressions only contain AND-based gates, Isec#uany event is false, then all the
expressions will also be false. OR-based gatesewery may still be true, and so require the
full table.

Another way of representing the information corgdirwithin TTTs is to use precedence
tree, first introduced in Walker, Bottaci, & Papadopas(2007). A precedence tree is a kind of
branching timeline that shows all possible sequefiaea set of events. Each node represents a
row from the equivalent TTT and each leaf nodeas@nts a row in the equivalent CTTT. The
number of leaf nodes is a Fubini number. Considerprecedence tree equivalent to the CTTT

shown above:
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<r—1—— E|T|Z ——— E<T|Z — HE<T<Z

- X<Z|T —— E<Z<Y
L X<Y&Z

—— Y|E|E ——— Y<X|I — T<E<Z
——— T<I|E — T<I<X
L Y<XsZ

— Z|T|E ——— Z<E|T ZeH<T
- Z<Y| X |: TCVCX
L Z<Xs&Y

- XET|Z TET<Z

—— X&I|Y TEI<Y

—— T&Z|X TEZ<X

L XETEZ

Figure 27 - Precedence Tree for X, Y, and Z

This precedence tree shows all possible sequencelsrée events, X, Y, and Z. It has 13 leaf
nodes (the same number of rows in the CTTT abave)2& nodes in total (the same number as
the equivalent TTT would have). <> is the root amdicates that no events have occurred yet;
this is the 'start' of the branching timeline. Aftais the tree branches to represent the seven
possibilities for what may happen next: X occurs,o¥curs, Z occurs, two events occur
simultaneously, or all three events occur simulbaise/. The tree continues branching until all
events have occurred and each time the tree brgnaheew sequence value is used; thus for
each of the first possibilities, the sequence vdluie used, and for each of the second tier
possibilities, the sequence value 2 is used etthdrcase of X|Y|Z, X takes the value 1 and Y
and Z do not yet have known sequence values. Ingkebranch, X<Y|Z, X still has the value 1
while Y assumes the value 2. Finally, in the leafley X<Y<Z, Z assumes the value 3 and all

three events now have sequence values (becaukecallhave now occurred).
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However, although precedence trees like this aedul$or showing how different sequence
values are assigned to each event in differenteses, the TTT is a more compact form to
represent all the possible sequences for a seteoft® More importantly, the main use of TTTs
IS to allow us to prove equivalence between exprasscontaining temporal gates, in the same
way Boolean truth tables can be used to prove atpnece between Boolean expressions
(something not possible with precedence treesj.akisith Boolean truth tables, if the values
for two expressions are the same in every row, therexpressions are equivalent. The values

have to be exactly the same totbmporally equivalent.

To demonstrate this concept, let us look agairhatariginal three temporal relations for two

events X and Y:

« X<Y
e Y<X
« X&Y

It was stated earlier that each of these implyetipgivalent AND gate, X.Y, is also true. This is
because each of these three statements comprisadmependent part of the AND gate: if X.Y
is true, then one and only one of these three sgpmas will also be true. This can be stated as
X.Y = X<Y + X&Y + Y<X, and can be seen inthe TTT below:

X Y XY X<Y X&Y Y<X X<Y +
X&Y +
Y<X

0 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

1 1 1 0 1 0 1

1 2 2 2 0 0 2

2 1 2 0 0 2 2

The two relevant columns have been highlighteddld,band as can be seen, the values are
identical. This process — of using TTTs to proe thvo expressions are equivalent — is the way
Pandora is able to create a setemhporal laws analogous to Boolean laws that can be used to

simplify, reduce, or otherwise manipulate exprassicontaining temporal gates.
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3.3 Temporal Laws: The Rules of Pandora

3.3.1 Boolean Laws

Qualitative analysis of normal fault trees considtseducing a fault tree to its minimal cut sets.
There are many methods of accomplishing this, soimghich were mentioned in Chapter 2,
but almost all of them rely on a set of Booleandaw function. The key to this is that a fault
tree can also be represented as a logical expne$sdo example, the fault tree in Figure 28 can
also be represented as the Boolean expression ((GBY). The parentheses indicate the depth
of the events and gates contained within them -atbie brackets that enclose a sub-expression,

the further down the tree it is.

P
-

AN AN

p— p—

|/:\\\||//_BL\\||/(;\\\|/:\|

Figure 28 — A simple fault tree

Boolean laws express equivalence between two diffezxpressions that nevertheless have the
same logical values at all time. For example, tben@utative Law states that X.Y is equivalent
to Y.X — in other words, although these expressionk different, they mean the same thing.
Boolean laws can therefore be used to manipulgiedbexpressions, and more importantly, to
simplify them. This is the principle behind qualitative Igae: the minimal cut sets are the

result of a simplification of the fault tree.

The Boolean laws most relevant to qualitative FTA explained below, but a full list can be

found inAppendix II: Boolean & Temporal Laws.
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Commutative Laws
XY oYX
X+Y o Y+X

The Commutative Law is one of the most fundameBtadlean laws and states that (in fault
tree terms) the order of inputs to AND and OR gadeisrelevant. This makes it possible to
reorder inputs of gates, e.g. to order events alpzally for the sake of clarity, or more
importantly to allow an expression to match another. This would not be possible without the

Commutative Law.

Associative Laws
X.(Y.2) = (X.Y).Z = X.Y.Z
X+(Y+Z) < (X+Y)+Z = X+Y+Z

The Associative Law, like the Commutative Law, reoof the fundamental Boolean laws. In
this case it enables us to reorder and remove tremses. This is useful if there is a gate acting
as an input to another gate of the same typepregOR gate being an input to another OR gate.
The Associative Law means all of the second OR'gateldren can simply be added to the first
and the second gate removed altogether, as shofiguine 29. This process is often known as

contraction in fault tree terms.

CNOIOIO.
010

Figure 29 — Fault tree contraction

Distributive Laws
X(Y+Z2) < (Y+2).X = XY +XZ
X+(Y.2) <= (Y.2)+X < (X+Y).(X+2)
(A.B)+(C.D) = (A+C).(A+D).(B+C).(B+D)
(A+B).(C+D) = (A.C)+(A.D)+(B.C)+(B.D)
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The Distributive Laws are the most important laasdbtaining cut sets in FTA. They make it

possible to move gates up or down the fault tredomit changing the meaning. Because OR
gates distribute over AND gates and AND gates distiibute over OR gates, it is possible to
move gates up or down as needed, but in practegdhl of standard qualitative analysis is to
end up with one OR gate at the top of the tree @ra or more AND gates beneath it, each
containing only events and no other gates. Thithescut set format, also known as sum-of-
products or disjunctive normal form. By applying tDistributive Laws and contracting, it is

possible to convert a fault tree or equivalentdabexpression into cut set format. For example:

1 ((X.Y) +(Y.2) . (W + (X.2)

2 (Y + (X.2)) . (W + (X.2))

3. Y.W +VY.(X.Z2) + (X.Z2).W + (X.2).(X.2)
4 YW+ YXZ+XZW + X.ZX.Z

To get from step 1 to step 2, we apply the rule X.Z = (Y.X) + (Y.2); if the events are not

in the correct order, we can apply the Commutatiae first. To get from step 2 to step 3, we
use the rule (A+B) . (C+D} (A.C) + (A.D) + (B.C) + (B.D). Then for step 4, vean contract
the parentheses. The resulting expression is isatuformat; the ANDs are the cut sets, and the

ORs connect them, so there are four cut sets:

Y.W
XY.Z
W.X.Z
X.ZX.Z

To minimise it, however, two more laws are needed:

Idempotent Laws
XX < X
X+X = X

The Idempotent Laws are very useful for minimisatas they make it possible to remove
redundant events. If an event occurs, it only nemestioning once. The ldempotent Laws are

therefore used to simplify cut sets by removingldapes. Continuing the previous example:

XZXZ < XZ

114



Both X and Z are mentioned twice, and by applyimg lIdempotent Law, we can simplify it so
they only occur once. An event need only appeae @m@ given cut set (though it may appear

again in another cut set).

To minimise cut sets themselves, one last lawgsired.

Absorption Laws
X.(X+Y) = X
X+(X.Y) = X

This is the most useful type of law in minimisatias it allows us to remove entire cut sets if
they are redundant (by using the second form ofai. If all the events in a cut set are also
contained within a larger cut set (i.e. one withrenevents), then the larger cut set is redundant
because the smaller one is sufficient to causeoghevent. Returning to the example, two of the

cut sets are redundant;

XY.Z+XZ = XZ
W.X.Z+X.Z = XZ

Both of these contain the last cut set, X.Z, andreoredundant. This leaves us with just two cut

sets, which are now minimal:

Y.W
XZ

And this process, of first transforming the faulet into an expression in cut set form (i.e.
disjunctive normal form) and then simplifying rediamt events using the Idempotent and

Absorption laws, is the basis of qualitative FTA.

There is also one other set of Boolean laws thitpnave useful shortly, even though they are

not regularly used in normal qualitative analysis:

0.X -
0+X -
1X =

R X X O

1I+X =
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In these laws, 0 and 1 represent contradictiongaudlogies respectively; in other words, O is
"always false" and 1 is "always true". Unless aend\also happens to be a contradiction or
tautology, these should never occur in a normatjcstault tree, but they can occur in temporal

fault trees.
The various laws described above are sufficienttferanalysis of standard Boolean fault trees,

but Pandora also has PAND, SAND, and POR gatesgefdre, we also need more logical laws

that we can apply to these temporal gatsporal laws.

3.3.2 Temporal laws derived from Boolean laws

Temporal laws can be divided into two categoriBssé laws that are based on Boolean laws
and those laws that are not. In the first categimg/ temporal versions of the Distributive,
Commutative, Associative, Absorption and Idempotanis, i.e. versions of those laws which
also feature PANDs, SANDs and PORs as well as AND@R gates. All of these laws can be
proved using TTTs.

Temporal Commutative Laws
X<Y #Y<X
X&Y < Y&X
XY #Y|X

The Commutative Law, as already explained, alloegauchange the order of the inputs to a
gate. However, the two priority gates, PAND and P@&pendon the order of their inputs for
their meaning: X<Y means "X occurred before Y", artthnging the order also changes the
meaning to "Y occurred before X." As a result, @@mmutative Law does not apply to these
gates, and it is not possible to reorder their igpluring qualitative analysis. The SAND gate is
the exception, however — because it requires @&hvto occur at the same time, the order of
the inputs to the gate does not matter. Therefibre, Commutative Law does apply to the

SAND gate as normal.

Temporal Associative Laws
X<(Y<Z) # (X<Y)<Z
X<Y)<Zz = X<Y<Z
X&(Y&Z) = (X&Y)&Z = X&Y&Z
X|(Y]2) £ (X)|Z
XNz = X|Y|Z
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The Associative Laws ordinarily make it possibleréanove and reorder parentheses in an
expression. Once again, however, the priority gatesent some difficulty while the SAND
gate behaves normally. To look at why the gateswzelthis way, it is necessary to look at their

sequence values.

Firstly, the PAND gate. When a PAND gate is evadatt takes on the value of its right-most
event when true. If the sequence values are X=2, ¥nad Z=3, then the innermost PAND in
X<(Y<Z) means (2 < 3) which results in the PAND Imgv a sequence value of 3. The
outermost PAND is then also evaluated as (1 < 33liesults in a sequence value of 3 as well.
This is what we would expect; however, there ifatt no temporal relatiorspecified between
the values of X and Y by this expression. Assunseisd that X=2, Y=1, and Z=3. The
innermost PAND now means (1 < 3) which still resiilt a value of 3, and the outermost now
means (2 < 3), which again still results in a vadfi8, but the sequence in which X and Y occur
is reversed. The sequence value of the outermolsiDPi& therefore not affected by the relative
order of X and Y, only by the orders of Y and Z d@hen X and Z.

By contrast, (X<Y)<Z means the same as X<Y<Z, bseawhen the innermost PAND is
evaluated, it gets the value 2 in the first caskef® X=1 and Y=2) and O in the second case
(where Y=1 and X=2). This can then be comparednsgai in the usual way, and the first case

would be true but the second case would be falsis.can be seen in the TTT below:

X Y |Z [(XY)<Z|XY Y<Z X<Y<Z X<(Y<Z) | (X<Y)<Z
1 1 1 0 0 0 0 0 0
1 |1 |2 2 0 2 0 2 0
1 |2 |1 |0 2 0 0 0 0
2 |1 |1 |O 0 0 0 0 0
1 |2 |2 |0 2 0 0 0 0
2 |1 |2 |0 0 2 0 0 0
2 |2 |1 |0 0 0 0 0 0
1 (2 |3 3 2 3 3 3 3
1 |3 |2 |0 3 0 0 0 0
2 |1 |3 3 0 3 0 3 0
2 |3 |1 |0 3 0 0 0

3 (1 (2 |0 0 2 0 0

3 (2 |1 |O 0 0 0 0
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As can be seen, while the columns for X<Y<Z and\()&Z match, the column for X<(Y<2)
does not. In fact, X<(Y<Z) is equivalent to (X.Y)<d#stead, as shown in the table; this is also

the same as saying (X<Z).(Y<Z). In other words:

X<(Y<Z) < (XY)<Z = (X<2).(Y<2)

This is not the case for the SAND gate, which bekawvormally (due to its input sequence
values all being the same). However, like the PANi® POR also differs in its behaviour.
X|(Y|Z) means we evaluate (Y|Z) first and then XH)Y Because of the way the POR works,
the outermost POR can be tesmen if the innermost is false other words, Z can occur before
Y, or even before X, and the outermost POR is stik as long as X occurs. In these cases,

there is no direct temporal relation between X #rahd Z. Again, this can be shown by a TTT:
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X Y |z X|(Y+2) [X]Y Y|Z XYz KX|(Y[2) [XY)Z
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0
0 1 2 0 0 1 0 0 0
0 2 1 0 0 0 0 0 0
1 0 0 1 1 0 1 1 1
1 0 1 0 1 0 0 1 0
1 0 2 1 1 0 1 1 1
1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 1 0
1 1 2 0 0 1 0 0
1 2 0 1 1 2 1 1 1
1 2 1 0 1 0 0 1 0
1 2 2 1 1 0 1 1 1
1 2 3 1 1 2 1 1 1
1 3 2 1 1 0 1 1 1
2 0 1 0 0 0 0 2 0
2 1 0 0 0 1 0 0 0
2 1 1 0 0 0 0 2 0
2 1 2 0 0 1 0 0 0
2 1 3 0 0 1 0 0 0
2 2 1 0 0 0 0 0 0
2 3 1 0 2 0 0 0 0
3 1 2 0 0 1 0 0 0
3 2 1 0 0 0 0 0 0

As you can see, X|(Y|Z) differs from the other tWhere is also another equivalence shown in
the table: X|(Y+2Z) is the same as X|Y|Z. It is d@lse same as saying X|Y.X|Z, i.e.:

XINIZ = X|Y|Z = X|(Y+Z) = X|Y.X|Z

This is more of a distributive relationship, andl we explained next.
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Temporal Distributive Laws
X<(Y.Z) o Y.(X<Z)+ Z.(X<Y)
X<(Y+2) = (X|2).(X]Y).(Y+2)
X < (Y<2) = (X<2).(Y<2)
X< (Y&Z) = (X<Y).(X<2).(Y&Z)
X<(Y|2) = (X<Y).(Y|2)
X<(Y|2) = (X|Y).(Y|2)
X & (Y+Z) = (X&Y).(Y&Z) + (X&Y).(Y|Z) + (X&Z).(Z|Y)
X&(Y.Z) = (X&Y).(Y&Z) + (X&Y).(Z<Y) + (X&Z).(Y<Z)
X&(Y¥Y<Z2) = (Y<2)&(Y<X)
X&(Y<Z) = (X&Z).(Y<Z).(Y<X)
X & (Y&Z) = X&Y&Z
X & (Y|Z) = (X&Y).(Y]2).(X|2)
X&(Y]Z) < (X|2)&(Y]2)
X[ (Y+2) < (X|Y).(X|2)
X|(Y.2) = X|Y + X|Z
X|(Y<Z) = (X|2) + (X]Y) + X.(Z<Y) + X.(Y&Z)
X1 (Y&Z) = X.(Y]|2) + X.(Z]Y) + (X|Y) + (X|2)
X | (Y|2) = (X]Y) + (X.Z<Y) + (X.Y&Z)

(Y+2) < X = (Y<X) + (Z<X)

(Y.2) <X = (Y<X).(Z<X)

(Y<2z)< X = (Y<2).(Z<X)

(Y&Z) <X = (Z<X).(Y<X).(Y&Z)

(Y|Z2) <X = (Y<X).(Y|2)

(Y+Z) & X = (X&Y).(Y&Z) + (X&Y).(Y|Z) + (X&2).(Z|Y)
(YZ)&X = (Y<X).(Z&X) + (Z<X).(Y&X) + X&Y&Z
(Y<Z) & X = (Y<Z).(Z&X).(Y<X)

(Y&Z) & X = Y&Z&X

Y|2) & X = (X&Y).(Y|2)

Y+ [ X = (Y|X) + (Z]X)

(Y.2) | X = (Y1X).(Z|X)

Y<)) | X = (Y]2).(ZIX)

(Y&z) | X = (YIX)&(Z|X)

(Y&Z) | X = (Y[X).(Z]X).(Y&2)
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(¥|2) 1 X = (Y[2)-(YIX)

(A+B) & (C+D) - A&B&C&D + A&C|B|D + A&D|B|C + B&C|A|D
+ B&D|A|C + A&B&C|D + A&B&D|C + A&C&D|B
+ B&C&DIA

(A.B) & (C.D) ~ A&B&C&D + A<B&C&D + B<A&C&D + C<A&B&D
+ D<A&B&C + (A.C)<B&D + (A.D)<B&C +
+ (B.C)<A&D + (B.D)<A&C

(A<B) & (C<D) = (A<B).(C<D).(B&D)

(AlB) & (C|D) = (A&C).(A|B).(C|D)

(A+B) < (C+D) = (A|C).(A|D).(C+D) + (B|C).(B|D).(C+D)

(A.B) < (C.D) = (A<D).(B<D).(C<D) + (A<C).(B<C).(D<C)
+ (A<C).(A<D).(B<C).(B<D).(C&D)

(A&B) < (C&D) = (A<C).(B<C).(A<D).(B<D).(A&B).(C&D)

(AB) < (CID) = (A<C).(AB).(CID)
(A+B) | (C+D) = (AIC).(AID) + (BIC).(BID)
(AB)| (C.D) - (AIC).(B|C) + (AID).(BID)

(A<B) | (C<D) = (A<B).(B|C) + (A<B).(B|D) + (A<B).(D<C)
+ (A<B).(C&D)

(A&B) | (C&D) = (A&B).(C|D) + (A&B).(D|C) + (A&B).(B|C)
+ (A&B).(B|D)

As you can see, there are a lot of temporal Distive Laws, and very few of them behave
exactly as the normal Boolean Distributive versidos A full explanation of the derivation of
these laws could take half a thesis in itself teecpbut for now it suffices to say that all these
laws can be proved using TTTs and they enable usatsform parts of the fault tree into a
more useful form (a process which will be explaimednore detail in the next chapter). The
important laws are the ones with three events, lwban be used to construct more complicated

forms (like the four event versions listed last).

Temporal Idempotent Laws
X<X #X
X&X = X
XX #X

The Idempotent Law only holds for the SAND gate;, fioo the priority gates. This is only to be

expected; both priority gates require their leftstnimput to occur earlier than the inputs to the
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right, but if those inputs are the same, then thepur at the same time. On the other hand, this
is exactly what the SAND gate expects. For examipl€,= 1, then X<X = 1<1 = 0, X&X =

1&1 =1, and X|X = 1|1 = 0. In the case of the P@fhe left input happens, then so does the
right (because they are the same), and so in &sis it behaves exactly like a PAND gate. As a

result, X<X and X|X are both contradictions, andl a& covered in more detail shortly.

Temporal Absorption Laws

X.(X<Y) = X<Y Y.(X<Y) = X<Y
X.(X&Y) - X&Y Y.(X&Y) - X&Y

X . (X]Y) - X|Y Y. (X|Y) o X<Y
X<(X.Y) = X<Y Y <(X.Y) = Y<X

X & (X.Y) = X&Y + Y<X Y &(X.Y) = X&Y + X<Y
X (X.Y) - X|Y Y| (X.Y) = Y|X

X< (X+Y) =0 Y <(X+Y) =0

X & (X +Y) = X&Y + X|Y Y & (X+Y) = X&Y + Y|X
X | (X +Y) =0 Y| (X+Y) =0
X.Y)<X =0 X.Y)<Y =0
(X.Y)&X = X&Y + Y<X X.Y)&Y = X&Y + X<Y
X.Y)|X =0 X.Y)|Y =0
X+Y)<X = Y<X X+Y)<Y = X<Y

(X +Y)&X = X&Y + X|Y X+Y)&Y = X&Y + Y|X
(X+Y)|X = Y|X X+Y)|Y - X|Y

X+ (X<Y) = X Y +(X<Y) =Y

X+ (X&Y) - X Y +(X&Y) =Y

X+ (X]Y) - X Y+ (X|Y) o X+Y

The temporal Absorption Laws play a large rolehie teduction and simplification of temporal

fault trees in Pandora. While the Distributive, dagative, and Commutative laws rearrange and

transform fault tree expressions, these laws camskd to shrink them. The last six in this list

are particularly important because they allow fbe telimination of redundant cut sets.

However, it is important to note that some of thébksorption Laws result in contradictions;

this marks the single biggest difference in thelitatave analysis of temporal versus normal

Boolean fault trees: in normal fault trees, theydithe a contradiction might be encountered is

when NOT gates are being used, but in temporat teegs, it is a lot more common (and not

necessarily indicative of any error in the modglliof the system). To deal with these

contradictions, a new set of laws specific to Paad®needed.
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3.3.3  New Temporal Laws

Whereas the laws given so far have been derivex Boolean laws, the laws in this section are
not. Many of them are instead drawn from the defing of Pandora's events and gates, or
provided to be able to deal with the possibilitycohtradictions in the temporal fault tree. Like
the other laws, these can be proved using TTTs,mady of them are used in qualitative
analysis to reduce and simplify the temporal fande. The first set of these new laws stems

directly from the definitions used in Pandora.

The Completion Laws
1% Completion Law: X.Y < X<Y + X&Y + Y<X
2" Completion Law: X+Y < X|Y + X&Y + Y|X
39 Completion Law: X = Y<X+ X&Y + X|Y

There are three versions of the Completion Law. fiise one is theConjunctive Completion
Law (or CCL) and relates the PAND and SAND gates #® Boolean AND gate. This law
derives from Pandora's definitions of time and évehe. that there are only three possible
temporal relations between two events and exaciyal them must be true if both events have
occurred. The law works in both directions, so that.Y is true, then one of X<Y, X&Y or
Y<X must be true, and if any of X<Y, X&Y, or Y<X artrue, then so is X.Y. This law can also
be used for reduction, e.g. if we have three ctg X&Y, X&Y, and Y<X, we can replace all

three with a single cut set X.Y.

The second is thBisjunctive Completion Law (or DCL), which relates POR and SAND gates
to the Boolean OR gate. In the same way that th® ANmprises three independent parts, the

OR also comprises three independent parts. Thibedest illustrated with an illustration:

K+Y|JE|][.Y|Y|

Figure 30 — AND is the overlap of X and Y

First, the relationship between AND and OR. FigB®eshows that X.Y is true when both X and
Y are true. X+Y is the area contained within thedmand is true when both X and Y are true
(i.,e. when X.Y is true), when X alone is true, ohem Y alone is true. The shaded area

represents X.Y and can be further divided up adogrib the Conjunctive Completion Law:
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Y | xax | xey [ vex |

Figure 31 — Conjunctive Completion Law

Each of the three areas inside X.Y do not ovettlagy are distinct, and only one of them can be
true at any time. But from Figure 30, we know tKafY consists of X alone, Y alone, and the
X.Y, which in itself consists of these three pafiteerefore, X+Y consists of five independent

parts, as seen in Figure 32:

XY
x+v¢ | X |%¥ [xev|vax| v |
XIT YIX

Figure 32 — Disjunctive Completion Law

The shaded area again represents X.Y, but it isilpeso see the five distinct areas: X alone, X
occurs before Y, X occurs at the same time as ¥calrs before X, and Y alone. According to
the definition of the POR gate, X POR Y is truifalone occurs or if X occurs before Y, so
this is the same as saying X+Y consists of X|Y, ,Y§®d X&Y, which is also illustrated in the

figure.

These two laws are useful for two reasons: not caly they be used for reduction, they also
allow an expression containing only logical gaebé expanded into one containing temporal

gates.

The third and final version of the Completion Lasvthe Reductive Completion Law?. It
differs from the other two because it does notteeleamporal gates to a Boolean gate; instead, it
demonstrates how an event can be entirely redundssthas already been repeatedly
established, Pandora's definitions state that taerehree possible temporal relations: before,
after, and simultaneous. These combine to make BD,Aas seen in the Conjunctive
Completion Law. If we also include the possibilitat the second of the events may or may not
occur, then there are four possibilities: X befyreX after Y, X at the same time as Y, and X
alone. Given a disjunction of these four optionsjsYentirely redundant; it does not matter
whether it occurs before X, after X, at the sameetas X, or not at all, because the expression
depends solely on the value of X — whenever X isefaall four options are also false, and
whenever X is true, at least one of the four wilbabe true. Hence, Y<X + X&Y + X|Y¥= X.

The second event Y is irrelevant, because its poesaloes not affect the result of the

expression.

3 Much credit should go to Guillaume Merle for helpito discover this third and most elusive
Completion Law.
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The Reductive Completion Law (RCL) can also be gmé=d in another form, i.e.:

X = XY+XY

In this case, the other parts of the RCL are coathiwithin the AND gate: if we expand the

AND using the CCL, this becomes clear:

X = (XY + X&Y + Y<X) + X|Y

The first PAND is redundant according to the Ptjoriaws (discussed shortly) as X|Y

‘overrides' the PAND (i.e. whenever X<Y is trueYX$ also true).

This second form of the RCL is particularly usefuhen multiple events are involved. For

example, if there are three events X, Y, and Z) the RCL is as follows:

X o Y<ZX + Z&Y<X + Z<Y<X + X&Y&Z + Z<Y&X + Y<Z&X +
X&Z|Y + X&Y|Z + X|Y|Z + Z<X|Y + Y<X|Z

This is obviously quite complex, but it is much pler in its second form:

X o XY+XZ+X|Y+XZ

This form of the RCL will prove valuable in the tehapter.

Finally, the TTT below shows how all of the ComjaetLaws can be proved.
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X TY [x+y [XY [X)y [X<y [X&¥ ¥<x Y|x X<Y+ | X[Y+ [ Y<X+
X&Y | X&Y | X&Y
+Y<X | +YIX | +X|Y

0 0 |0 0 0 0 0 0 0 0 0 0

0 1 |1 0 0 0 0 0 1 0 1 0

1 [0 |1 0 1 0 0 0 0 0 1 1

1 (1 |1 1 0 0 1 0 0 1 1 1

1 (2 |1 2 1 2 0 0 0 2 1 1

2 |1 |1 2 0 0 0 2 1 2 1 2

The Completion Laws show how the temporal relationBandora relate to each other and to
the original Boolean gates. However, one of thénitedns in Pandora is that only one of the
three temporal relations, as embodied by the Catijegn Completion Law, can be true at any

point. This central tenet of Pandora is embodidtkiown set of laws:

Laws of Mutual Exclusion
X<Y.Y¥Y<X <0
X<Y . X&Y <0

Y<X.X&Y <0
X[Y.Y<X <0
YIX.X<Y <0
X[Y.X&Y <=0
YIX.X&Y =0

The Laws of Mutual Exclusion prevent two differéamporal relations from being true at the
same time. Taken together with the Completion Latvey enforce the relative ordering of
events in Pandora fault trees. If any of the Mutatlusion laws are violated, they result in a

contradiction, which must be dealt with appropiiate
There is also another way to cause contradictions:

Laws of Simultaneity
X<X <« 0
XX =0
X&X = X
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As mentioned earlier, the Idempotent laws do n@lyaf the two priority gates. Instead, they
are subject to the Laws of Simultaneity — if thensaevent is used as an input to the same
priority gate more than once, it causes a conttiadic This applies even if the events are
separated, e.g. X<Y<Z<X will still result in a caadiction. The SAND gate, however, behaves

according to the Idempotent Law.

Using the Mutual Exclusion and Simultaneity Lawssipossible to detect most contradictions
straight away. Unfortunately, there is one typecanitradiction that is harder to detecyclic
contradictions. These are caused by a series of temporal gdtesradected by ANDs which
do not immediately violate Simultaneity or Mutuakdiision, but when followed to their
logical conclusions, result in contradictions. EExample: (X<Y) . (Y<Z) . (Z<X). None of
these immediately violate Mutual Exclusion, becatimwge is no pair of PAND gates in which
the same events occur in different orders, but #reyclearly impossible: X has to occur before
Y, which occurs before Z, which occurs before X,ickhoccurs before Y... and so forth.
Similarly, (X<Y) . (Y<2Z) . (Z&X) is equally impos&ile, but still does not violate Mutual

Exclusion.

The solution is to first apply the Law of Extension

Law of Extension
XY .Y<Z o XY .Y<Z.X<Z = X<Y<Z
X&Y . Y&Z = X&Y .Y&Z .X&Z = X&Y&Z
X[Y.Y|Z = X|Y.Y|Z.X|Z

The Law of Extension is used to explicitly reveaydemporal relationships which are implied
by the temporal gates. If X occurs before Y andcéurs before Z, thehy extensionX must
also occur before Z. In this case, it is equivatentaying X<Y<Z. The law also applies to the
other two gates, though in the case of the POR, gatdoes not result in an expression
equivalent to X|Y|Z, because Y must occur (instéad equivalent to X<Y|Z). Generally
speaking, if a temporal relation holds between ¥ &n and the same temporal relation also
holds between Y and Z, then that relation will aetd between X and Z. Applying this law to

an expression containing a cyclic contradictior veieal the violations of Mutual Exclusion:

X<Y . Y<Z.Z<X e XY .Y<Z.Z<X LOX<Z . Y<X . Z<Y

The additions are in bold. As can be seen, we rwe Imany contradictions, e.g. a conjunction

of both Z<X and X<Z, which violates Mutual ExclusidBecause they are part of a conjunction,
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the entire expression is a contradiction, i.es iimpossible and can never occur. This can also

be seen froma TTT:

X Y Z X<Y Y<z Z<X X<Y
Y<Z
Z<X

1 1 1 0 0 0 0

1 1 2 0 2 0 0

1 2 1 2 0 0 0

1 2 2 2 0 0 0

1 2 3 2 3 0 0

1 3 2 3 0 0 0

2 1 1 0 0 2 0

2 1 2 0 2 0 0

2 1 3 0 3 0 0

2 2 1 0 0 2 0

2 3 1 3 0 2 0

3 1 2 0 2 3 0

3 2 1 0 0 3 0

As can be seen, no more than two of X<Y, Y<Z anXX Afe ever true at once, and so the AND
IS never true. There is also an extended set aérisidn Laws that apply when the temporal
gates involved are not homogeneous or when theedharents are not adjacent (the additions

are again highlighted in bold):

Extended Laws of Extension

X&Z . Y&Z = X&Z .Y&Z . X&Y
Y&X.Y&Z = Y&X.Y&Z. X&Z
Z<X.Y<Z = Z<X.Y<Z. Y<X
Z&X . Y&Z = Z&X .Y&Z. X&Y
ZIX.Y|]Z = ZX.Y|Z. Y| X
XpY.YgZ

X&Y .Y<Z < X&Y .Y<Z. X<Z
X&Y .Y|Z = X&Y.Y|Z. X Z
X<Y.Y&&Z = X<Y.Y&Z. X<Z
X<Y.Y|Z = X<Y.Y|Z. X Z
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X|Y.Y& = X|Y.Y&Z. X| z
X|Y .Y<Z = X|Y.Y<Z. X<Z
XpZ.YqZ

X&Z .Y<Z = X&Z .Y<Z. Y<X
X&Z .Y|Z = X&Z.Y|Z. Y| X
X<Z.Y&Z = X<Z.Y&Z. X<Y
X|Z.Y&Z = X|Z.Y&Z. XY
YpX.YqgZ

Y&X.Y<Z = Y&X.Y<Z. X<Z
Y&X.Y|Z = Y&X.Y|Z. X| z
Y<X.Y&Z = Y<X.Y&Z. Z<X
YIX.Y& = Y|X.Y&Z. Z| X
ZpX.YqZ

Z&X . Y<Z = Z&X.Y<Z. Y<X
Z&X .Y|Z = Z&X.Y|Z. Y| X
Z<X . Y&Z = Z<X.Y&Z. Y<X
Z<X.Y|Z = Z<X.Y|Z. Y<X
ZIX.Y&Z = Z|X.Y&Z. Y| X
ZIX.Y<Z = Z|X.Y<Z. Y| X

These Extended versions also help to locate imgamntradictions in complex expressions. As
a general rule of thumb, if a temporal relationleggpto one input of a SAND gate, it will apply
to the other input too; e.g. ff is some temporal operatorpX . Y&Z will yield X pZ. This
applies regardless of the order of events involvédth the priority gates, it is more

complicated, as the rules above demonstrate. Ti@leo another, related law:

The Law of SAND Substitution
X&Y . X<Z = X&Y .Y<Z
X&Y . X|Z = X&Y.Y|Z
X&Y . Z<X = X&Y .Z<Y
X&Y .ZIX = X&Y.Z|Y
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or generally, where ? is another temporal operdia. either PAND or POR):
X&Y . X?Z = X&Y.Y?Z

This law embodies the principle just stated, f.@ temporal operator applies to one member of

a SAND gate, it will also apply to the others;sitai special form of the Law of Extension.

There is also another interesting type of situatlmat arises in the Extended Extension Laws:
when the right-most input of a POR also appeara PAND or a SAND, or on the left of
another POR, the POR is equivalent to a PAND @dies. is another law:

The Laws of POR Transformation
X|Y.y = X<Y
XY +Y o X+Y

The Laws of POR Transformation are technically gpecases of the Absorption Law that
apply only to the POR gates. As shown earlier k& Atbsorption Law, for both PAND and
SAND, if an event occurs separately connected byAdD, the PAND and SAND remain,
whereas if connected by an OR, the PAND or SANBedundant. This applies regardless of

which input is chosen, i.e.:

XY . X < XY
XYY < XY
X&Y . X = X&Y
X&Y .Y = X&Y

XX¥+X <X
XX¥+Y <Y
X&Y +X < X
X&Y +Y <Y

However, the POR gate is different because onligftamost inputhasto occur; the gate is still
true if none of the other events occur. This |lgaddifferent behaviour; if we know that one of
the right-most events also occurs, e.qg. if it isrexted by an AND somehow, then the POR is
equivalent to a PAND, because the other event itlelfiroccurs and so the left-most must occur

first. This also applies if the other event is figit down the tree, e.g.

X|Y . (W&(Y|2)) - X<Y.Y&W.Y|Z
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When dealing with cut sets, this means that if @inthe other input events to a POR also occurs
elsewhere in the cut set (other than as anothet-mgst input to a POR), then there ibedore

relationship between those events, i.e. a PANDerdtran a POR applies.

When the other event is connected by an OR gatebehaviour is slightly different; because
the right-most event on its own is sufficient taisa the top event, the temporal relationship
between it and the left-most event becomes irralievastead, the occurrence of either (or both,
in any order) will cause the top event. Hence, X|Y < X + Y. When the POR in question
appears as part of a larger cut set, the POR isvetnand only its left-most event remains, e.g.
X|Y.Z+Y < X.Z + Y. Obviously, if the POR has other eventglyothe one that occurs

elsewhere is removed, and the POR remains, e.gZX4¥ < X[|Z + Y.

PANDs and PORs are also linked by another sethapdeal laws:

The Laws of Priority
X<Y + XY < X|Y
X<Y . XY < X<Y

X<Y + XY < XY
X&Y + XY = XY
X[Y +XY =X

In the first form X<Y + X|Y < X|Y , the PAND gate is overridden by the POR gate, whic

has 'priority’ over it. The PAND gate is a subsktle POR gate, as shown in Figure 32;
therefore, whenever the PAND is true, the POR &b be true, although the converse is not
necessarily the case. Thus, when these two areectath by an OR (e.g. by occurring in

separate cut sets), the PAND is overridden by B& Rnd is redundant. Note that this still

applies even if the PAND is part of a larger cut sey.

A<B.C&D +A|B - AlB

but not if the POR is part of a larger cut setesalthe other parts of that cut set also appear in
the PAND's cut set, e.g.

A<B.C&D + A|B.E  — A<B.C&D + A|B.E
A<B.C&D + AIB.C - A|B.C
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The second version listed heksY . X|Y = X<Y, is effectively a special case of the Law
of POR Transformation, because the second inpttetd®OR (i.e. Y) occurs in the PAND gate

and must occur, meaning the POR is equal to a PANDBther words:

X<Y . X|Y
X<Y . X<Y (from POR Transformation)
X<Y (from Idempotent: X.X = X)

The last three forms of this law apply to the AN&ewhen in a disjunction. Just as the POR
has priority over the PAND, so the AND has priorityer the PAND and SAND gates; if the
AND is true, then the PAND and SAND are redundaetause the AND states that its input
events can occur in any order, only one of whicrefmesented by the PAND or SAND. With
the POR, this is slightly different: the AND statbat the events can occur in any order, but the
POR states that only the left-most inpotistoccur; the end result is that the other events are
redundant and only the left-most remains. This ipaler case is due to the Reductive

Completion Law:

XY + X.Y

XY + X<Y + X&Y + Y<X (apply Conjunctive Completion Law)
X+ X<Y (apply Reductive Completion Law)

X (apply Absorption Law)

One thing that has not yet been discussed is hal@dbwith contradictions once they arise. The
Extension Laws, the Laws of Simultaneity, and thetdal Exclusion help to manipulate the
expressions into a simpler form that is easier dade, where the contradictions are more
readily apparent, but what then? Back in secBdhl, a set of Boolean laws that apply to
tautologies and contradictions were given. Thesaepeated here, and extended to account for

the temporal gates:

The Laws of Tautologies and Contradictions
X0 <0
X+0 < X
X1l =X
X+1 =1

Temporal versions
X<0 =0
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0<X =
X<l =
1<X =
X&0 =
X&1 =
X0 =
oX -
X1 -

r O O X O O X o o
=
~

1UX =

The first four (or more specifically, the first tyvare used to eliminate contradictions when they
arise during qualitative analysis. If a contradintbccurs in a cut set, then by the law %.00,

the whole cut set is a contradiction too. Thenth®y/law X+0 < X, that entire cut set can be
removed. This provides the primary means of rengpeiontradictions from temporal fault trees

during qualitative analysis and will be explainadnore detail in the following chapter.

The other versions show the behaviour of the temlp@ates when confronted with
contradictions and tautologies as inputs. For thejunctive temporal gates, a contradiction
always means they are false; as subsets of the ANB behaviour is effectively inherited.
Conjunctive gates always require all of their irgpit be true, and if one is a contradiction, that
will never be possible. This is also true of theRP® its left-most input is a contradiction,
otherwise the contradiction is irrelevant, since BHOR allows for the possibility that one of its

other inputs might not occur at all.

All of this behaviour is best illustrated by a TTT:

1 [ X | X<0 [0<X | X<1 | 1<X | X&0 [X&L [X|0 [0|X [X|]T |1X

The cases where tautologies are involved (i.e.,nwdmee of the inputs is a 1) are interesting
because they have a unique effect on all eventautdlogy, by definition, is always true; it is
therefore true beforany event. This means that a tautology always has #heevl, and any
other events will receive sequence values flbamwards, not from 1 onwards as usual; this is

because even the first event to occur is actualtpisd after the tautology. Therefore, no event
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can ever occur before a tautology; to attempt teal to cause a contradiction, hence %<1
0 and X|1= 0. The other way around, howevés,possible; the tautology wikllwaysoccur
first, and so all other events will occur laters@sing they occur. Thus 1<X X (since it
relies on X occurring) and 1% 1 (since the POR is true when its left-most injsutrue,

which in this case it always is).
Having tautologies as inputs to a temporal gatnlg possible if a basic event is a tautology,

though it is occasionally possible to see conttaahis as inputs to temporal gates without a

basic event being a contradiction (for instances\X' <Z) & Z).

3.3.4 Conclusion

The temporal laws, taken together with the definisi used in Pandora, allow for a great deal of
manipulation, simplification, and reduction to tgkace on temporal fault trees, including the
facility to detect and remove contradictions whieaytarise. The temporal laws can be proven
using temporal truth tables, which demonstrate \edeince between two (or more) temporal
expressions. If the number of events involved rentlee use of TTTs impractical, it should be
possible to use the temporal laws to prove otheptgal expressions to be true or false; if it is
possible to reach one expression from the othexpgpying a succession of temporal laws that

havebeen proved using TTTSs, then the expressionscarigaent.

The temporal laws will be discussed further in Gbag, where their use in qualitative analysis

of temporal fault trees will be explained in greatepth.

1 Technically, if X is also a tautology, then thesut is a tautology; i.e. if X = 1, then X&1 = In |
practice this can only occur if a tautology is eedt input to a gate somewhere, because no gatesalt
in a tautology as a result of any sequence or coatibin of normal (non-tautological) inputs.
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3.4 A Note on NOTs: The Scourge of Pandora

"The language of truth is simple.”

- Euripides

3.4.1 The Question

There is one type of gate which has not yet beegriteed in connection with Pandora — the
NOT gate. While not found in théault Tree Handbogkthe NOT is not wholly uncommon in
fault trees and it is not unreasonable to briefplain the reasons why NOT is not currently

included within the Pandora framework.

It has already been mentioned in Chapter 2 thatnitiasion of NOT gates in fault trees will
normally lead to non-coherent fault trees, i.e.-nm@mnotonic fault trees in which a failure can
prevent or ‘correct’ a system failure. This ne¢ates a more complicated form of analysis (both
quantitatively and qualitatively), typically invohg the use oimplicants, which are analogous

to cut sets except that they also include the cemehts of events (e.g. where a cut set may
contain "X.Y", the equivalent implicant may contdX.Y.-Z"). Implicants are then reduced in

a similar way to cut sets to obtaprime implicants (analogous to minimal cut sets); this
involves applying extra laws, such as the Consehaus(X.Y + -X.Z = X.Y + =X.Z + Y.Z),

to ensure that all necessary prime implicants agsgmt (Sharvia & Papadopoulos, 2008). The
analysis must therefore take into account eveiiisate false as well as events that are true and

this results in a larger state space — meanindiaddi complexity and decreased performance.

However, despite the additional complexity theyngriNOT gates are useful in fault trees for
describing situations with mutually exclusive cdiatis, e.g. where one failure prevents another
from occurring, or phased mission systems in wiietain failures can only occur in certain
modes of operation (Sharvia & Papadopoulos, 20@8)rews (2000) gives an example of a
situation requiring NOT gates to model correctlydlving traffic lights at a crossroads and

three cars.
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B

Figure 33 - NOT gate example from Andrews (2000)

I

(][]

Cars A and B are at a red light. Failures ‘A" @idate the failure of those cars to stop. Car C
has right of way and thus failure 'C' is the fadlwf C to continue moving forward (since C

continuing to move is normal behaviour). Collistoetween two cars therefore takes place if:

« Afails to stop and C continues (A.-C)
e A stops but B fails to stop (-A.B)

« B fails to stop and C continues (B.-C)

This situation is difficult to model without a NOgate. Another example, from Sharvia &
Papadopoulos (2008), involves a leaking oil pipeerghoil leaks (OilLeak) only if the pipe is
ruptured (PipeRupture) and there is no omissiooildupply (-OmissionOfOiIl), i.e. OilLeak =

PipeRupture . =OmissionOfQil. Since an earlier @mis of oil (a failure in itself, e.g. caused
by a jammed valve elsewhere in the system) woutggnt this failure, the NOT is required to

ensure mutual exclusion.

Thus although the use of NOT results in a non-gatitefault tree and complicates analysis, in
some situations it is necessary to fully captueedbrrect failure behaviour of the system. This
is not unlike the case for temporal gates: thewltes more complex semantics, but are
necessary to correctly model sequences of failltds.to be expected that any inclusion of
NOT gates in the Pandora framework would similagiguire more complicated algorithms that

can deal with both the complements of events akagdghe sequences of events.

However, there are a number of fundamental obstaclde overcome before the mixing of
NOT gates and temporal gates is possible. Thedirdtforemost is a semantic problem: what
does a NOT actually mean in a temporal setting@ purely Boolean system, the NOT gate
simply negates a Boolean value, so NOT(X) meansXhdid not happen. By this definition,

the occurrence of a NOT gate representsitireoccurrenceof a fault or other gate. In Pandora,

however, although an event or gate still represr@ccurrence of something, whether it be a
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fault or a combination of other events subjecteédain conditions, it also hastemporalvalue

as well as a Boolean one — if an event occursugtrhave occurred at some point in time. This
also applies to compound events, i.e. gates: thest imecome true at a certain point in time.
The NOT gate thus poses a problem: it represeatadh-occurrence of some input event, and
it must have a temporal value. But at what momeie does an event "non-occur"? How can

there be sequences of non-occurring events?

It is hard not to understate the effect a NOT daie on Pandora's definition of events. In
Pandora, events and gates are defined such tlyaatlenitially false until they occur and then
they remain true thereafter, i.e. they are monatahie order in which they move from false to
true is then represented by their sequence vaByesontrast, the NOT gate is not monotonic;
when introduced to static fault trees, it leadado-coherent fault trees, and when introduced to
Pandora's temporal fault trees, it leads to vilyualcoherent fault trees. The reason for this is
simple: a NOT gate makes it possible to go frone tiaufalse, as well as from false to true. In
normal circumstances, a NOT gate is true whemjiatiis false and false when its input is true;
from a temporal point of view, before the input mveccurs it would initiallytrue, and if its
input event occurs, it would later becoifiadse But if the sequence value of a gate or event
indicates the order in which it became true, hoautthwe represent the order in which an event

or gate becomes false?

3.4.2 Some Specious Solutions

There are several options, but all are highly motatic. One option is to assume that the NOT
gate has the same sequence value as its input, eiresd the logical value of the gate changes
when the input event occurs. This is not an unmsle assumption and is also consistent with
the other gates (e.g. an OR gate has the samenseguaue as the first of its inputs to occur).

The problem with this approach is that the NOT gateild then have a non-zero sequence
value when it is logically false (i.e. after thgut occurs) and a zero sequence value when it is
logically true (i.e. before the input event occus¥y explained earlier, a non-zero sequence

value represents true, so this results in an ulva@sie anomaly.

Another option is to give the NOT gate a sequerataevof O when it becomes false and a non-
zero sequence value before then. This makes the b&d logically consistent with the
meaning of sequence values. However, the problem ighone of exactly what sequence value
to give the NOT gate before its input occurs —f¢he input never occurs at all. It cannot be 0,
because 0 represents false, and the NOT gatesicdke is true. Indeed, the NOT gatalwgays
true if its input does not occur, and so therefmebaves like a tautology. Therefore we could

give it the sequence value of 1 in this case, ancefall other events to start from 2, as with
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tautologies. Then the NOT gate starts off with slegquence value of 1 and changes this to a
sequence value of 0 when its input becomes trueeMer, in this case, the NOT gate removes
any temporal significance from its input event garglless of the time the input event occurs (or

if it does not occur at all), the output sequenaleie will either be 1 or 0.

A third option is to keep the 1 sequence value figefloe NOT gate has occurred but then use a
higher sequence value after it occurs, matchingsdwience value of the input. This is more
consistent from a temporal point of view, but tigtahconsistent from a logical point of view,

because the NOT gate would never have the sequaha=0, which ordinarily represents false.

These three options can be summarised as follows:

Option 1

Before occurrence: NOT gate has the value 0.

After occurrence: NOT gate has the sequence valiie imiput.
Option 2

Before occurrence: NOT gate has the value 1.

After occurrence: NOT gate has the value 0.

Option 3

Before occurrence: NOT gate has the value 1.

After occurrence: NOT gate has the sequence valiie wiput.

Unfortunately, all of these solutions are equalhpalatable. In the first case, the NOT gate
performs no negation; in the second case, whenretbrl values of 0 and 1 are used, all NOT
gates would then seem to 'occur' at the same tiraking it impossible to distinguish between a
NOT gate that becomes false early on and a NOTthatdbecomes false later. And in the final
case, the NOT gate never appears to be ‘'fals#h; beaause it always has a non-zero sequence

value.

These problems are compounded by the possibilityesfed NOTSs, e.g. an expression such as
NOT(NOT(X)). From a purely Boolean standpoint, NOI(T(X)) is equivalent to just X.
Because Pandora is intended to extend, not oveBioigean logic, NOT(NOT(X)) should also
be equivalent to X in Pandora. However, none ofttiree options considered so far achieve
this.
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Option 1

NOT(X) NOT(NOT(X))
0 0 0
1 1 1

In the first option, both NOTs will have the sanegsence value as X and thus they will appear
to be both temporally and logically equivalent. Hmer, any sequence of nested NOTs will
give the same result, because no negation is tgkaae — NOT(X) is itself equivalent to X.
The NOT has no effect.

Option 2
NOT(X) NOT(NOT(X))
0 1 0
2 0 1

The second option is more subtle but no less iecariThe innermost NOT would have the
value 1 before X occurs and the value O afterwaddsvever, the behaviour of the outermost
NOT is not so clear. If a NOT has the value 1 befts input occurs, i.e. when its inpuffédse

then it is logically true and can be said to hageurred'. In which case, the outermost NOT
would have the value 0 at first, because its irfag occurred, and then when X occurs, the
inner NOT becomes 0 and the outermost NOT becoméhi$ interpretation is somewhat
counter-intuitive, because it seems as though timeri NOT is 'un-occurring’, i.e. first it
occurred and then later it did not. Either way, feguence value of the outer NOT is not
temporally equivalent with the value of X, and acf the sequence values themselves suggest

that the outer NOT becomes trioeforeX occurs — which is clearly nonsensical.

Option 3
X NOT(X) NOT(NOT(X))
0 1 1
2 2

In the third option, the innermost and outermostTNgates both have the same values, but
neither matches the values of X. Before occurraricé, the inner NOT is 1, i.e. it is true from

the beginning of time. But under this interpretatii the input to a NOT gate is true (i.e. it has
occurred), then the NOT gate has the same sequahee as the input — thus the outermost
NOT gate has the value 1 as well. Thus it appesath@ugh neither NOT gate is ever false at

all.
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3.4.3 A Better Solution

The problem ultimately reduces to one simple isguenherent fault trees, it is only necessary
to look at the sequence in which events occur,the.sequence in which they become true.
Once NOT gates are introduced and fault trees becam-coherent, then it is also necessary to
take into account the sequence in which eventsrbetalse Consider the timelines in Figure
34:

o

4 B ¢

HOT(D)

o

Figure 34 — NOT Timelines

Here, the shaded part indicates 'truth’, so Xitgally false and then becomes true at time 'B',
while NOT(X) is the opposite. If an event Y occuatspoint 'A’, then we can safety say that Y
occurs before X, i.e. Y<X would be true. But it i®t so clear whether we can say that
Y<NOT(X) is true. Similarly, if an event Y occur$ point 'C', then X<Y would be true, but it is
not clear that NOT(X) < Y would also be true. Tteange problem arises at point 'B' with the
SAND gate.

One way of clarifying this is to change the defonit of the sequence value of an event to
separate it from the logical value. TheX) would only indicate the order in which X occurs
and not whether X is true or not. The temporal gateuld then operate only on the order in
which an event changes its logical value, not resmdg only the order in which it changes from
false to true. In which case, it would now seemdvab say that if Y occurs at 'A’, then
Y<NOT(X) would be true, since Y's logical value olgas (from false to true) before the logical
value of NOT(X) changes (from true to false). It important to note that under this
interpretation, an event can still only occur atsmonce, i.e. the logical value of an event or

gate can change from false to true or true to félsenot both.

In this re-interpretation, NOT(NOT(X)) gives a marasonable result. UsirgjX) to represent

sequence valuek(X) to represent logical values, and - to repres&dT:

L(X) S(X) L(=X) S(=X) L(==X) S(==X)
0 0 1 0 0 0
1 1 0 1 1 1
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Note that if X has the logical value 0 (i.e. falstijen it has the sequence value 0O (i.e. never
occurred); if it has the logical value 1 (i.e. fruhen it has a sequence value indicating therorde
in which it changed value, in this case 1 (sinadhs only one event, X). =X has the opposite
logical values to X, and -—=X has the opposite labmMalues to -X, as we would expect from
Boolean logic; however, both =X and --X have thenesasequence values as X, which we
would expect from Pandora's temporal logic (sindéGiI' gate changes value when its input

changes value).

The behaviour of a NOT gate can therefore be destras follows:

NOT Gate

Exactly one inputx

Logical value:

If L(X) = true: L(x) = false
If L(X) = false: L(x) = true
Thus L(=%) = L(X)

Sequence value:
S=x) =S¥
ThusY—x) = §x) andS—-x) = x)

Although this re-interpretation of sequence valappears to result in the correct logical and
temporal semantics for a NOT gate under Pandoeaséparated logical and sequence values
results in a more cumbersome representation, phatig in TTTs. A simpler way of
representing the combined logical and sequenceesalfian event is to use signed integers: the
absolute value of the integer indicates the ordewlich the value changed, while the sign
indicates the direction of the change. Thus —1cigis an event went from true to false first,
and +2 indicates an event went from false to tegmsd, and so forth. -0 indicates that an event
never occurs at all (and is always false) whildik@wise indicates than an event never occurs,

but that it is always true. Thus +0 and —0 represriologies and contradictions respectively

The behaviour of all five Pandora gates and the @ can then be described in this system

using a normal Temporal Truth Table:

5_1 and +1 could also be used for the same puripdise thought of having a positive and negative 0
seems too strange. However, O better representstdre of the period of observation, as usingl +/-
implies that something that is — by definition ways the case (like a tautology or contradictioml o
‘occur' at some point.
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X Y X+Y XY X<Y X&Y XY =X

-0 -0 -0 -0 -0 -0 -0 +0
+1 -0 +1 -0 -0 -0 +1 -1
-0 +1 +1 -0 -0 -0 -0 +0
+1 +1 +1 +1 -0 +1 -0 -1
+1 +2 +1 +2 +2 -0 +1 -1
+2 +1 +1 +2 -0 -0 -0 -2

Although this re-interpretation solves many proldent involves radically changing the
meaning of sequence values and would necessita@ew of all the definitions and temporal

laws of Pandora.

3.4.4 Alternatives to NOT gates
Since it has been established that introducing I&€s to Pandora is not a trivial exercise, it is

worth questioning whether or not there is reallyeed for NOT gates; can situations normally

modelled using NOT gates be modelled in other ways?

One option is the Priority Exclusive Or (PXOR) gateentioned earlier in this chapter. The
PXOR would be true only if its first input is trnd its other inputs are not. It can therefore
model similar situations to the NOT gate, e.g. @ik = PipeRuptured PXOR OmissionOfQil.

Here the oil leak only occurs if the pipe is ruptiand there is no omission of oil.

The following TTT compares the behaviour of the AX®ith the Pandora temporal gates, with

@ representing the PXOR:

X Y X<Y X&Y XY X @Y
0 0 0 0 0 0
1 0 0 0 1 1
0 1 0 0 0 0
1 1 0 1 0 0
1 2 2 0 1 0
2 1 0 0 0 0

In some respects the PXOR fills a niche in Pandorat it represents the other part of the
POR gate, i.e. the POR gate is true if its inputsuo in sequence (PAND) or if only its left-
most input occurs (PXOR). However, it is not valdsay that X|Y is equivalent to X<Y +

X@Y, since — as can be seen from the TTT — the segueslues are not equivalent. This also
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means that a potential new Completion Law thatasgmts all five areas of X+Y individually is

invalid, i.e.:

XY + X<Y + X&Y + Y<X + Y X = X+Y

is not true because X<Y and Y<X have different sampe values when compared to the

corresponding rows for X+Y.

Thus the PXOR - although at first glance a poténtidose fit with Pandora — is not as
compatible as it appears. Furthermore, the mostaionental argument against the PXOR is that
— like the NOT gate — it introduces non-coheremcthé fault tree. The NOT gate, as explained
above, means that an event can also go from trdalde as well as from false to true. The
PXOR gate in fact goes a step further: a single RXf@te can go from false to traadtrue to

false — it can change value twice, not just once.

This can be seen by looking more closely at theisece value of the PXOR gate. The PAND
gate is true only once all input events have oeclrecause this is the only time at which we
can be certain that all events have occurred irctineect order. The POR gate is true whenever
its first event occurs, because we can safely salah point that it has occurred before any
other input events. However, is it safe to say thdXOR gate is true when its first input
occurs? What happens if its second event subsdyguweaurs? In order to maintain the correct
semantics of the PXOR gate, it must become faldbatpoint, meaning that it was initially

false, became true, and then became false once agai

e AssumeS(X) =1 andyY) = 2.
« At moment 0, X PXOR Y is initially false (neitherixor Y are true).
 Atmoment 1, X occurs. X PXOR Y becomes true (si¥as true but Y is not).

« At moment 2, Y occurs. X PXOR Y becomes false agsiimce X is true and Y is true).

This is completely inconsistent with the semant€$andora’'s events and may require even

more re-interpretation than the NOT gate befooeitld be used with Pandora.

Fortunately, many of the situations in which a N@dte or PXOR gate might be used can
instead be modelled using the existing POR gate.N@T gate is often used in fault trees to
indicate a case of mutual exclusion, e.g. "X cauwsesystem failure as long as Y does not
happen." With a slight modification, this situatican also be modelled by a POR, i.e. "X
causes a system failure as long ash&s not happened yetFor example, OilLeak =

PipeRupture POR OmissionOfOil. This would mean thidtwould leak as long as the pipe
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ruptures before the supply of oil is lost. The setiea are slightly different (in that an omission

of oil in the future is not precluded) but the etfes much the same: oil will leak from the pipe.

In this respect, X.=Y (and similarly ¢¢) can be modelled as X|Y. This also means that
monotonicity is retained and therefore the fawdetwould remain coherent. If, however, the
model of the system required than¥veroccur, then only the NOT gate would be suitabhe, a

in such cases a non-coherent fault tree is indeitab

In summary then, although the incorporation of N@étes into the Pandora framework is

possible, it might not be necessary and is by nanmi@ simple task.
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3.5 Example

To show how the gates and logic of Pandora are mspthctice, consider the simple example

system first introduced in Figure 1 and reproduucesct:

¥
m
—
¥

Figure 35 — The trusty triple redundant example

To describe the failure behaviour of the system,need to be able to explain that B is only
activated after a failure of A —assuming S1 hasyerbfailed — and that C is only activated after
a failure of B — again, assuming that the sensgj f@s not yet failed. To do this properly we

need to represent the sequence of events. Inwtirels, we need to use Pandora.

Each component can be annotated with Pandora toglescribe how it fails and how it reacts
to failure at its inputs. A can fail either as auk of internal failuref@ilureA ) or due to a
lack of input from | (Omission of input, -1 )'°. Either failure will result in an omission of

output. Thus the failure behaviour of A can be dbed as:
O-A = failureA + O-I

The failure behaviour of B is somewhat more congtéd because it is dependent on A. We can
use a special evergfartB , to represent the trigger for B to be activats@drtB  occurs
when O-A occurs, i.e. when A fails. TistartB  event is generated by sensor S1, which
detects O-A. S1 can itself fail due to an intefadure, failureS1 . Thus the behaviour of S1

would seem to be:

0O-S1 = failureS1
startB-S1 = O-A

16 Omission of input is a common cause failure forghére system.
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StartB-S1 and O-S1 are mutually exclusive in tha®Xrepresents an omission of the start
signal when it is required. However, this is a digtg view, because as already explained, if
the sensor failgfter an omission of output from A has been detecteel) th has no effect.
Thus:

0O-S1 = failureS1 < O-A + failureS1 & O-A
startB-S1 = O-A

Here the temporal gates have been used for thdifite. An omission of S1's signal is caused
by its failure before or at the same time as arssion of output from A. In these cases, no start

signal will be sent (and B will not be activated).

Now we can also represent the failure behaviouB.oB will omit its output if it does not
receive the start signal when A fails (e.g. dueatsensor failure) or if loses input or it fails

internally once it has been activated. Thus:

0O-B = O-S1 + startB-S1 < (failureB + O-I)

However, again the situation is not so simple. Tikifecause if B does not receive its start
signal, or fails dormant before the signal is reedj then it will never activate. This actually
causes anndetectablemission, whereas the failure of B once it hadetiecauses detectable
omission, i.e. because the output of B starts aed stops, its cessation can be detected. A

revised version would be:

Odet-B = startB-S1 < (failureB + O-I)
Ound-B = O-S1
+ (failureB + O-l) < startB-S1
+ (failureB + O-l) & startB-S1

This is now a more accurate reflection of the failbehaviour. A detectable omission happens
once the component has been activated whereas detestable omission arises if the

component fails before activation or never receitgeactivation signal.
Finally we can look at C and its activation sen8#, As with S1, S2 detects an omission of

output from B (i.eOdet-B ) and activates C. It can only do this if it has pet failed, and a

failure of S2 after it has done this has no eftecthe system. Thus:
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0O-S2 = failureS2 < Odet-B + failureS2 & Odet-B
startC-S2 = Odet-B

The failure behaviour of S2 therefore closely eshibat of S1. Next, C. C will omit output if it

is never activated (due to O-S2) or if it failsdref, during, or after activation:

O-C = O-S2 + (failureC + O-l).startC-S2

In this case, a dormant failure of C and an adtilere of C are treated the same and the order
of events does not matter. If C fails at any tiroe if loses input), then it will result in an

omission of output — assuming C has receivedats signal.

Component D is the system output and simply takestifrom A, B, or C:

O-D =0und-B + O-C

Note that it use®und-B becauséOdet-B will lead to either an activation of C @-C. We

also assume here that D does not fail (if it dishauld also be a single point of failure).

These expressions representing the failure behagfdhe system can be combined into a fault
tree by means of substitution, e.g. substitufitg + failureA) for all instances oD-A.

The resultant expression is:

O-D = failureS1 < (failureA + O-I)
+ failureS1 & (failureA + O-I)

+ (failureB + O-l) < (failureA + O-l)
+ (failureB + O-l) & (failureA + O-l)

+ (failureS2 < ((failureA + O-I) < (failureB + O-I) )
+ (failureS2 & ((failureA + O-I) < (failureB + O-I) )
+ (failureC + O-I).((failureA + O-l)<(failureB + O- 1))

The fault tree for this expression is shown in Fég86 overleaf:

To obtain the results for this fault tree, howewsg must first find a way of performing a

temporal qualitative analysis on it.
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Figure 36 — Fault tree for the example system
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4 Temporal Qualitative Analysis

"I have not failed. I've just found 10,000 wayst tvan't work."

- Thomas Edison

4.1 Basics of Qualitative Analysis

Qualitative fault tree analysis, as explained iraftbr 2, allows an analyst to draw conclusions
about a system by looking at which combinationewants can cause the top event. Because the
fault tree itself can contain many gates and maaypndhes, often too many to be able to draw
any conclusions from, qualitative analysis firshgiifies and transforms the fault tree into a set
of cut sets Each cut set is a conjunction of a number of &/eand the occurrence of all the
events in a cut set will cause the top event taocsome cut sets will be redundant, and these
will be removed to leave only thainimal cut sets(MCS); minimising the number of cut sets
makes it easier to see which of the remainder la@emost important. Qualitative analysis
therefore consists of two broad phases. Firstfdb# tree has to be transformed into cut set

format, i.e. disjunctive normal form. Secondly, the sets have to be minimised.

Once this is done, it is possible to look at th@imal cut sets and draw conclusions about the
system being analysed. In general, the smallectieset, the more important it is, because it
means that fewer events must occur in conjunctaratise the top event. Toeder of a cut set
is how many events it contains, and so lower ocdieisets tend to be more critical than higher
order ones. Minimal cut sets of order 1 mean thét a single event is needed to cause the top
event; these argingle points of failureand generally indicate vulnerable points in theigle of

the system.

Chapter 2 mentions some methods of performing tgtiae analysis (e.g. MOCUS), but all of
them apply to normal Boolean fault trees. Theresamme methods of performing qualitative
analysis on more complex trees, e.g. non-coherees tontaining NOT gates or Dynamic Fault
Trees, but each of these methods has to be taitortn type of fault trees they are intended to
work on. Pandora is no exception: it requires a gewalitative analysis approach that can deal
not only with the presence of AND and OR gateshm fault tree, but also PAND, SAND and
POR gates too. Because there is no existing afgorfor performing qualitative analysis on

PANDS", a new one must be created from the beginning.

o Although the DFT approach includes a qualitativalgsis algorithm, as described in Chapter 2, it
avoids dealing with PANDs directly, treating themstead as ANDs and then re-introducing the
sequential information at the end.
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4.2 Cut Sequences

4.2.1 Introducing Cut Sequences

The essential difference between Pandora and ndiandl trees is that Pandora fault trees
contain temporal gates that impose a sequencesenha events: the order in which the events
occur is important in Pandora. In the cut setsrdinary static FTs, this is not the case; the
events can occur in any order and still causedhesvent. To distinguish between ordinary cut
sets and cut sets in which the order of events lmeagignificant, the terraut sequencgCSQ)

is used; thus a cut sequence is a cut set in vdunte events occur in a certain order (i.e. some
events have temporal significance). Similarly, asgguence in which every event must occur —
and occur in the given order — to cause the topteeeoccur is termed minimal cut sequence

or MCSQ, analogous to a minimal cut set. A cut sege takes the form of a conjunction of
basic events or temporal gates (each containing either further temporal gates or basic

events).

Note that for a normal cut set to be minimal, itstncontain no redundant basic events, i.e. if the
occurrence of a subset of the events is suffideicause system failure, then that cut set is not
minimal. With cut sequences, the meaning of "midima not so straightforward. A cut
sequence can be minimal if it contains no redundaehts and no unnecessary sequences, i.e. if
the occurrence of all events in any order is sigffit to cause system failure, then the cut
sequence is redundant (since the ordering is nportant). Thus, as will be seen shortly, a cut
sequence like X<Y.Z is redundant if X.Y.Z is alsowt sequence/cut set. However, the issue of
minimality is complicated further by the issue obrpletion, i.e. that some operators are
subsets of others (particularly PAND and SAND besugpsets of AND). Thus an expression
such as X.Y + (X<Y).Z is non-minimal because X.¥Xlindes (X<Y).Z. This type of problem —
where a temporal redundancy is hidden within awuttjon (or disjunction) — is known as a
Completion Problem, because the best way to dittisco first apply the Completion Law, e.g.
expand X.Y into X<Y + X&Y + Y<X. In this case, thedundancy between X<Y and (X<Y).Z

then becomes immediately apparent.

The definition of minimality is further complicatdwy the fact that there is often more than one
way of representing a cut sequence — typicallykbda the Completion Laws. For example, is
"X.Y" more minimal than "X<Y + X&Y +Y<X"? The latteis perhaps more explicit and more
detailed, whilst the former is more concise, bt two representations are equivalent and both
are 'minimal' in the sense that they contain namedncies or unnecessary sequences. This
point will be discussed again later but the redsomroducing minimal cut sets or sequences in

the first place is to allow the analyst to draw dasions about the behaviour of the system; in
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most cases, the fewer cut sequences there areadier it is for the analyst to understand the

results, so the more concise form is generallygoreél over the expanded form.

Figure 37 — Transformation of a fault tree (lefijo its cut sets (right)

Regardless of their form, the goal of qualitativalgisis in Pandora is to obtain the MCSQs for
a temporal fault tree. Unfortunately, the procesaadt as simple as it is for non-temporal fault
trees because there are nibove gates to deal with, instead of just two. The fpsiblem to be
overcome is how to prioritise these gates in cqtisaces — what is the equivalent of disjunctive
normal form in Pandora? In normal cut set form, AN&> a higher precedence than OR, so that
groups of events are connected by AND gates wimic¢hrin are connected by a single OR gate.
This can be seen in Figure 37; note that the dsta® not minimised here (they minimise to
just A + B.C.D). But in a cut sequence, we may dlase PANDs, SANDs and PORs — so

where should they appear?

One of the objectives of Pandora is to produceltess similar to existing qualitative FTA as
possible. Therefore, in Pandora, CSQs are consttstich that OR and AND gates still appear
at the top, in that order (i.e. one OR gate with onmore AND gates beneath it). This is still a
disjunctive normal form. However, CSQs contain terap gates, which indicate that part or all
of the CSQ has to occur in a certain sequencén(¢ine case of the SAND, must occur all at the
same time). In cut sequence form, therefore, thass then appear beneath the AND gate, i.e.

as part of the conjunction.

This is achieved by using the precedence of theatpes (OR < AND < POR < PAND <
SAND) to construct a hierarchy amongst the tempgasés such that SAND gates contain only
basic events, PAND gates contain SANDs, and eveiitite PORs contain any event, PAND,
or SAND, but not ANDs/ORs. For example, A.(B<(C&D3)in the correct hierarchical order,

but A.(B&(C|D)) is not. The resulting cut sequerfieem is calledhierarchical temporal form
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or HTF; it can be thought of as a temporal disjivechormal form in which each AND gate

represents a different cut sequence.

Note that not all of a cut sequence has to be edjdris entirely possible for some events to be
temporally significant and others not to be, i.elyahe temporally significant events need to

come in a certain order, though all the events autasequence still need to occur to cause the
top event. The only potential exception to thithie POR gate, because its non-priority inputs
(all except its left-most) do not necessarily needccur. In this chapter, the term cut sequence
(or minimal cut sequence) is often used inclusivedferring both to cut sequences proper and

non-temporal cut sets collectively.

4.2.2 Obtaining Cut Sequences

The first phase of qualitative analysis, as alreamytioned, is to obtain the cut sets from the
fault tree — or in Pandora, to obtain the cut sages. In traditional fault trees, this is done by
manipulating the fault tree in some way, eitheroadmg to Boolean laws (in the style of
MOCUS and its derivatives) or by representing iaimdifferent format (e.g. Binary Decision

Diagrams). Pandora uses the first method — thecgpipin of laws to manipulate the fault tree.

In Chapter 3, several Boolean laws were descritteele of which play a major role in obtaining

cut sets: the Distributive Law, the Associative L.aamd the Commutative Law. These three
laws, and the temporal versions of them, likewisg/ @ major role in obtaining cut sequences.
The key is the Distributive Law, because this lam be used to alter the depth of a gate in the
fault tree. By pushing all the OR gates to thedad all the temporal gates to the bottom, it is

possible to transform the fault tree into HTF.

This is where the temporal laws provided in the ¢daspter come in useful, because they make
it possible to apply the Distributive, Associatiamd (where possible) Commutative laws to the
three temporal gates as well as to AND and OR. Wewdhe temporal versions of these laws
are, on the whole, more complicated than their mbBoolean equivalents; even with just three
events, the laws can result in quite large expoessiThe key to managing this additional
complexity is to keep things simple wherever pdssitherefore, the first phase of qualitative
analysis using Pandora is to transform the faek into abinary fault tree. The principle
behind this is that no matter how complex the tse@r how many children a gate has, once it
has been transformed into a binary tree, we onldna finite set of laws to be able to

manipulate it: those involving only three events.
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First we need to convert a normal Pandora faudt itnéo a binary fault tree. This is a relatively
simple process: any gate with more than two childseconverted into an equivalent gate or set
of gates which only have two children each. Aakrators are left-associative, this should not
be problematic. Only the POR gate requires spéeiatiling, as any subsequent inputs to a POR
gate are equivalent to a simple disjunction, el |Xis equivalent to X|(Y+Z). This is because
the POR gate is true if its left-most input ocdoe$ore any of its other inputs or if none of those
other inputs occur, and so there is no temporatiogl specified amongst the other inputs, only

between the left-most and the rest.

4.2.3 Transforming Binary Fault Trees into Cut Sequences

Once the fault tree is in binary form, we can bewminconvert it into HTF. This is usually
performed in a bottom-up fashion, i.e. by startaigthe leaf nodes and working upwards
through the tree towards the top node. The genglals to move OR and AND gates upwards
while pushing temporal gates downwards. This isarily achieved by applying the following

Distributive Laws:

X<(Y.2) = Y.(X<Z) + Z.(X<Y)

X<(Y+Z) = (X|2).(X]Y).(Y+2)

X < (Y<2) = (X<2).(Y<2)

X< (Y&Z) = (X<Y).(X<2).(Y&Z)

X<(Y|Z) = (X<Y).(Y|2)

X<(Y|2) = (X|Y).(Y]2)

X & (Y+Z) = (X&Y).(Y&Z) + (X&Y).(Y|2) + (X&Z).(Z|Y)
X&(Y.Z) = (X&Y).(Y&Z) + (X&Y).(Z<Y) + (X&Z).(Y<Z)
X&(Y<Z) = (Y<2)&(Y<X)

X &(Y<Z) = (X&Z).(Y<Z).(Y<X)

X & (Y&Z) = X&Y&Z

X & (Y|Z) = (X&Y).(Y]2).(X|Z)

X&(Y|2) < (X|2)&(Y|2)

X[(¥+2) < (X]Y).(X|2)

X1 (Y.2) = X|Y + X|Z

X | (Y<2) = (X|Z) + (X]Y) + X.(Z<Y) + X.(Y&2Z)

X[ (Y&Z) = X.(Y|Z) + X.Z]Y) + (X|Y) + (X|2)

X | (Y]2) = (X]Y) + (X.Z<Y) + (X.Y&Z)

(Y+2) < X = (Y<X) + (Z<X)
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(Y.Z) <X = (Y<X).(Z<X)

(Y<z) <X = (Y<2).(Z<X)

(Y&Z) <X = (Z<X).(Y<X).(Y&Z)

Y|2) <X = (Y<X).(Y]2)

(Y+Z) & X = (X&Y).(Y&Z) + (X&Y).(Y|Z) + (X&Z).(Z|Y)

(Y2)&X = (Y<X).(Z&X) + (Z<X).(Y&X) + X&Y&Z

(Y<Z) & X = (Y<2Z).(Z&X).(Y<X)

(Y&Z) & X = Y&Z&X

Y|2) &X = (X&Y).(Y|2)

Y+2) | X = (YIX) + (ZIX)

(r.2) | X = (YIX).(ZIX)

Y<1xX = (Y129).ZIX)

(Y&z) [ X = (YIX)&(Z]X)

(Y&Z) | X = (Y|X).(Z|X).(Y&Z)

Y12 [ X = (Y12).(YIX)

X . (Y+2) = XY +XZ (traditional Boolean Distributive Law)
X+ (Y.2) = (X+Y).(X+2) (traditional Boolean Distributive Law)

Notice how, in each of these laws, there are twantsson one side of the outermost operator
and one event on the other — this is perfectlyeduio the binary tree. If a gate has two gates as
its inputs, then one can be treated as it if ilgls event. For example, an expression such as
(A.B)<(C+D) is in binary form, but the top level R® contains two gates, rather than one gate
and one event. Nevertheless, we can still apphpik&ibutive laws; we simply need to use two

or three of them instead:

(A.B)<(C+D)

A<(C+D).B<(C+D) from (Y.Z) < X = (Y<X).(Z<X)
A|C.A|D.(C+D) . B<(C+D) from X<(Y+2) = X|Z.X|Y.(Y+2)
A|C.A|D.(C+D) . B|C.B|D.(C+D)  from X<(Y+2) = X|Z.X|Y.(Y+2)

The last step in this example is to apply the norBw@olean Distributive Law, X.(Y+Z)=
(X.Y)+(X.2):
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A|C.A|D.(C+D).B|C.B|D.(C+D) -~ A|C.A|D.C.B|C.B|D.(C+D) +
A|C.A|D.D.B|C.B|D.(C+D)
-~ A|C.AD.C.BIC.BID.C +
A|C.A|D.C.B|C.B|D.D +
A|C.A|D.D.B|C.B|D.C +
A|C.A|D.D.B|C.B|D.D

which is now in HTF (i.e. cut sequence format),jigivus four cut sequences. This particular set
of cut sequences is far from minimised, howevertrdditional Boolean fault trees, there are
two types of minimisation possible: Idempotence akubkorption. Idempotence eliminates

redundant duplicate events within a cut set andoidimn eliminates redundant cut sets that

contain other, smaller cut sets. In this case, aveapply Idempotence twice:

A|C.AID.C—BJ|C.B[D.C = A|C.A|D.B|C.BID.C
A|C.A|D.C.B|C.B|D.D -~ AIC.AD.B|C.BID.C.D
A|C.A|D.D.B|C.B|D.C -~ AIC.AD.B|C.BD.D.C
A|C.AID.D—BJ|C.B[D.D = A|C.A|D.B|C.B|D.D

In two of the cut sets, an event is repeated: Ghanfirst one and D in the last one. The

Idempotent law says that X.% X, so these reduce to a single event.

Next, we can apply Absorption. The Absorption laaysthat X + X.Y is equivalent to just X;
in other words, if a subset of a cut set or segaénsufficient to cause the top event, then that
cut set or cut sequence is redundant and can bevesinin this case, we have two redundant

cut sequences:

AIC.AD.B|C.BD.C

AlC.AD.B|C.BID.D

This leaves us with just two. However, becausedlage cusequencesot cut sets, there is an

additional stage of minimisation that we can do/dmking at the temporal gates. In this case,

the Law of POR Transformation, X|Y . ¥ X<Y, can be applied:

AlC.AD.B|C.BD.C - A<C.A|D.B<C.B|D
AlC.AD.B|C.BD.D = AIC.A<D.B|C.B<D
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And now, finally, we have the two resulting minin@lt sequences. The POR Transformation
law is only one of many possible methods of redythre temporal gates, however; there are
many possible ways in which temporal gates canederndant or otherwise superfluous. The

process of minimisation is much more complicatednttihe relatively simple process of
obtaining the initial cut sequences.
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4.3 Minimising Cut Sequences

There are many different ways that cut sequencesbea minimised, besides the normal
Boolean Idempotence and Absorption already disciidsé generally they fall into one of three
categories: redundancy, contradiction, and conmpieflhese three categories will be described
next. Normally, the possibility for minimisation maxist both within cut sequences and also

between cut sequences.

4.3.1 Redundancy and Cut Sequences

Redundancy is the most obvious form of minimisatam it is closest to the way normal
Boolean trees are minimised. We already know thdumdancy may occur when the same
event (or gate) occurs more than once in a cutesemgu (Idempotence) or when one cut
sequence contains another (Absorption). Howeveenwdealing with temporal gates, further

forms of redundancy are possible too.

Firstly, events can be redundant if they occuniddially in a cut sequence as well as inside a
temporal gate in the cut sequence; for exampley<Xj. In these cases, the temporal versions
of the Absorption Laws can be applied, which irstbase yields just (Y<X). In general, if an
event outside a temporal gate also occurs withi timen the event outside is redundant and
can be removed from the cut sequence, i.e. thedsaiy significant event has priority. The
relevant Absorption Laws are listed below; we ombed five due to the way the cut sequences

are constructed with AND gates above temporal gatesn HTF).

X . (X<Y) o X<Y
Y. (X<Y) e X<Y
X . (X&Y) - X&Y
Y. (X&Y) - X&Y
X . (X]Y) = X|Y

The exception to the pattern is the POR gategfabent occurs as one of the POR's right-most

children, then a different rule applies:

Y. (X]Y) - X<Y
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This, as mentioned previously, is one of the PO&$tormation Laws: if Y must occur, then
the POR is equivalent to a PAND instead. PORs tamlze absorbed into PANDs by the Law

of Priority, for much the same reason:

X<Y. XY = X<Y

This is essentially a form of Idempotence. X<Y neé#mat both X and Y must occur (and that
they must occur in that order). If Y must occueritX|Y is equivalent to X<Y, as we have just
seen. Thus, X<Y . X|Y is equivalent to X<Y . X<Y igh, due to Idempotence, reduces to just
X<Y.

This form of Idempotence, the removal of duplicagates, applies to all gates in a cut
sequence, whether PAND, POR or SAND: if two gates equivalent, then one can be
removed. However, a more subtle form of this appedren gates are equivalent but do not
look equivalent, and this can be caused by the SANDBt8ution rule. If events occur together
in a SAND gate inside a cut sequence, immediatelpvb the AND, then those events are

interchangeable throughout the rest of the cutesscpl Therefore, a CSQ like this:

X&Y . X<Z.Y<Z

can be reduced to:

X&Y . X<Z

because the Y and the X are interchangeable lfieg. tave the same sequence values), and so
X<Z and Y<Z are equivalent in this case. This is tipposite of the Law of Extension, which,
when applied, would add Y<Z to the cut sequenawifalready present. As a result, although
the SAND Substitution can shorten the cut sequeihds,generally not applied at this stage
since any gates removed would be added by the Ufaxiension again when checking for
contradictions (see below). Idempotence also appliectly to the SAND, so that X&% X.

In this way, duplicate events in a SAND can be rezdgust as they can in AND gates.

The other type of redundancy applies across cwiesems. This is, generally speaking, one of
the hardest forms of minimisation to perform, besgait requires a great deal of checking. In
Boolean fault trees, if a cut set contains all ékents in another cut set, then it is redundant.
This is not necessarily the case in Pandora ikeguiences are involved, because the events in

the cut sequences may not necessarily occur isaime order. For example:
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XY.Z+ZYX = XY.Z
X<Y<Z + X<Y<Z = X<Y<Z
Z<Y<X + X<Y<Z # X<¥Y<Z

In the latter case, the events in the two cut secpseare in a different order, and so there is no
redundancy. Only if all the events occur in anottwr sequencand they occur in the same

order is a cut sequence redundant. This is notyalivamediately apparent, e.qg.

X&Y . X<Z + X&Y.Y<Z = X&Y.X<Z

In this case, the X and Y are interchangeable dubd SAND Substitution rule. This can be

seen explicitly by first applying the Law of Extéms:.

X&Y . X<Z = X&Y .X<Z.Y<Z
X&Y .Y<Z < X&Y .Y<Z.X<Z

Then by rearranging according to the Commutativev L(for AND), the two are clearly

identical and thus one is redundant.

Cut sequences can also be subject to Absorptiamelisthough again the order has to be the

same:

X<Y<Z + X<Y = X<Y
Z<Y<X + X<Y # X<Y

There are other, more subtle forms of Absorptiochsas when the POR is involved. One of the
Priority Laws states that X<Y + X|Y= X]Y, because POR has priority over PAND in a
disjunction. Therefore, if we have two cut sets achhare otherwise equivalent except one
contains a POR and one contains a PAND (with theeszhildren), then the one containing the

PAND is redundant. For instance:
X<Y.W&Z.Z<X + X|[Y. W&Z<X = X|Y.W&Z<X
In this case, the two cut sequences are othervdeatical (W&Z.Z<X is equivalent to

W&Z<X) and so, because the POR version overridesP#ND version, the PAND version can

be removed. This goes back to the basic principlsbsorption and redundancy in cut sets: if
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one cut set is always true when another cut deties then the latter cut set is redundant. This

obviously only applies if the events are in the sarder.

In a wider sense, the Law of Priority also appliesall temporal gates; the AND gate has

priority over the two conjunctive temporal gatesidisjunction, and so cut sequences like:

X<Y.Z+XY.Z = XY.Z
X&Y.Z + X.Y.Z = XY.Z

can be minimised accordingly. The POR, once agaslightly different:

X|Y.Z+X.Y.Z = X.Z
This is a more sophisticated form of reduction: doghe Law of Priority, Y is irrelevant,
because no matter what order it occurs in or whettwecurs at all, the cut sequences will still
be true, and so it reduces to just the first ewdérithe POR (and whatever else was in the cut
sequence). A similar phenomenon occurs when thg-nigst events of a POR are found in
other cut sequences, e.g.

X|Y.Z+Y.Z - XZ+Y.Z

This is due to the other POR Transformation lawjcivstates that X|Y + Yo X + Y.
Essentially, the other possibility of the POR —ttWaoccurs after X — is overridden by the

second cut sequence, leaving only the first pditgibif the POR, that X occurs and Y does not.

4.3.2 Contradiction and Cut Sequences

One of the biggest changes in Pandora is that rigation is now possible due tontradiction
as well as due to redundancy. Contradiction caseatiue to a number of causes, but notably it
only ever occursvithin a cut sequence, never outside of it — an OR ga#s dot cause a

contradiction.

The main cause of contradictions in cut sequerstsei Law of Mutual Exclusion, which states
that only one temporal relation can be true betwaeegiven pair of events; in other words, one
must occur before the other, or they both occuhatsame time. A cut sequence containing
more than one temporal relation between the saroestx@nts will be a contradiction in itself.

The classic example is:
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XY Y<X <« 0

A cut sequence containing a contradiction is itsaffossible, according to the law "X 0"
However, as explained in the last chapter, detgctiantradictions is not always trivial;

sometimes the Law of Extension must first be applir example:

X<Y.X&Z.Z&Y

This cut sequence looks quite harmless at firsiagabut a closer examination after application

of the Law of Extension reveals otherwise:

X<Y.X&Z.Z&Y. Z<Y. X&Y. X<Z

Now we have three violations of the Law of Mutuaktkision: X<Y and X&Y, X&Z and X<Z,
and finally Z&Y and Z<Y. It is usual to apply thealv of Extension to a cut sequence first,
before any checking for redundancy or contradictitiecause otherwise more subtle

contradictions like this could be missed.

The other way a contradiction can arise is dueitauBaneity, and this only applies to the two
priority gates. If the same event occurs more thrage as an input to a priority gate, then it is a
contradiction, no matter whether it is a POR or AP gate. There is only one situation in
which Simultaneity does not result in a contradigtout sequence, and that is when the

contradiction is one of the right-most childreraim otherwise valid POR, i.e.

X|(Y<Y) = X0 - X

In this case, that contradictory child of the PGRemoved, because the right-most children of a
POR are 'optional’ as long as they occur aftetdftenost input. If the contradiction is the only
other child of the POR, then the left-most inputhed POR is all that remains.

In any case, once a cut sequence is found to coataontradiction, it is removed. Due to the
Law X+0 = X, any contradictory cut sequence is removed fithin set of cut sequences
entirely, because it is impossible. In practicés tan mean removing entire branches from the
fault tree. Ifall cut sequences are found to be impossible, theedins that the top event is also
impossible — in other wordap combination of basic events is sufficient to catleetop event.
This is, however, rather unlikely unless the farde contains a mistake or the system is simply

incapable of failing.
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To aid the user in this type of scenario, wherarentut sequences (and possilaly cut
sequences are removed), it is possible to provideuser with information about which cut
sequences are contradictory and why they were rech¢e.g. mutual exclusion, simultaneity),
so that they are able to see the contradictionthiamselves and ideally determine the causes of
those contradictions in the fault tree (and presiyndne system model on which the fault tree
is based). This is potentially valuable if the ecadtctions arose from some modelling error, as

the user can then try to fix the error.

4.3.3 Completion and Cut Sequences

Completion is the final type of minimisation podsiin cut sequences. However, completion is
also by far the hardest to detect and to deal v@impletion only ever occurs across cut
sequences, never within them, and stems from cakese it is possible to apply one of the

three Completion laws. The simplest example ofGbepletion Law is:

A<B + B&A + B<A

which reduces to just A.B according to the ConjiuecCompletion Law. As a slightly more

difficult example:

C.BJA+B&A.C + AIB.C

This is equivalent to C.A + C.B, according to thsjinctive Completion Law. The law applies
in this case because the three cut sequences arsathe apart from the common term
containing A and B. The law doemt apply if one of the cut sequences contains a reiffie

event, for example:

C.BJA+B&A.C.D + AB.C

does not reduce any further. Lastly, the Redudfieenpletion Law can also be used to great

effect:

ZY<X + ZX&Y + Z.X|Y

reduces to Z.X. These are merely the simplest cate€ompletion, however — direct
applications of the three laws. In theory, these ba identified by checking for the three
relevant components in otherwise identical cut saqas, though such a check would not be

simple.
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Another type of reduction that is possible duehi €Completion Laws involves situations like
this:
XY.Z + X<Y + X&Y + Y<X

At first glance, these four cut sequences lookegbi#rmless. On closer inspection, we find that

we can apply the Conjunctive Completion Law to ¢hoéthem, leaving us with:

XY.Z+ XY = XY

The converse of this situation — where the conjonatenders the temporal sequence redundant

can also be found, e.g.:

XY + X<Y.Z

reduces to just

XY

because X.Y includes the sequence X<Y, as canlydaeliseen if the Conjunctive Completion

Law is applied first, i.e.:

X<Y + X&Y + Y<X + X<¥-ZL— (X<Y.Z is made redundant by X<Y)

Now we can see that the Absorption Law comes ifay ps well, because the cut sequence
(X<Y.Z) is redundant because it contains X<Y. legb cases, applying the Completion Law
actually allows for further reduction to take plamecording to the other laws. Unfortunately,

this sort of situation is not easy to detect. lpaentially a lot more complicated than just

spotting the three components of a Completion Lahigh can in itself be quite difficult). The

difficulties of solving Completion Problems aredalissed further in sectigh4.4
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4.4 Doublets

" 'When_| use a word," Humpty Dumpty said in ratlescornful tone, 'it means just what |

choose it to mean — neither more nor less.

- Lewis Carroll,Through the Looking-Glass

4.4.1 What are doublets?

The last section explained how it is possible toimise and reduce a temporal fault tree by
using the temporal laws described in Chapter 3.|&\Vthiis is quite possible (if often time
consuming) to do manually, it is not always as essit looks, and it can be significantly more
difficult to achieve automatically. Some problemavé already been mentioned, such as the
Law of Extension — if it is not applied first, sorreamporal relations can be missed, e.g. because
the Law of SAND Substitution is not being taken athage of or because it is not immediately
clear that two events are contradictory. The sheemnber of temporal laws also makes it more
difficult to automatically reduce a temporal exies (i.e. an expression containing temporal

operators) than a purely Boolean expression, whielsea handful of laws are needed.

Fortunately, there is a way of making this proaessier:doublets'®. Doublets are very useful
for two main reasons. Firstly, one of the diffioedt with cut sequences is that they can contain
several different types of gates: as well as ANi2r¢ may also be PANDs, PORs, and SANDs,
and even when in HTF, these may in turn contaierogfates (e.g. PANDs can contain SANDs,
and PORs can contain PANDs and SANDs). So somd®iug@ cut sequence can be as many
as three gates deep. Doublets help to overcomerblidem by reducing the maximum possible
depth to just one gate, so that at most therebailbne gate between the AND containing the cut
sequence and an event. Secondly, as mentioned, ¢harbe problems in ascertaining all the
temporal relations between all the events in asaguence, mainly because they are often
contained within several different gates. Doub&zts also help solve this problem by making it

much clearer whatll the temporal relations are.

In essence, a doublet is a single temporal relabaublets are simply a way of clarifying the
temporal relations between all events in a cutbestuse they show each temporal relation
separately. A doublet contairexactly two eventspackaged together with a single temporal

operator to describe the relationship between thesesvents. Once a temporal expression has

'8 The name Doublets" comes from a word puzzle invented by lse@arroll, which first appeared in
1879 inVanity. The aim is to transform one word into anotherdvoras few steps as possible, changing
one letter at a time, forming a sequence of newdwdhat links the two. For example: "Show that
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been converted to use doublets, the doublets caedrdered, removed, and checked against
other doublets with ease, because doublets areicatomd can be treated just like any other
event. The idea is that doublets abstract the temhjrmformation away from the cut sequence
by encapsulating it inside the doublet itself, Batton the cut sequence level, there are only
doublets and non-temporal events. A doublet isesgrted by square brackets; for example,
[X<Y] is a doublet containing one PAND and the egeX and Y. Similarly, [Y&X] is a
doublet and [Z|W] is a doublet. The difference lew X<Y and [X<Y] is that X<Y is a PAND
gate that can have other events in it too, or @tkar gates; a doublet always has exactly two

basic events, no more, no less:

* Adoublet is an encapsulation of the temporal i@habetween exactly two events.
e ltis represented using square brackets, e.g. [X<Y]
« It always contains two basic events and one tenhppexator.

« A doubletis atomic and can be moved around ardaddike a normal basic event.

Doublets are designed to be able to show the teahpelations between any number of events
by explicitly representing the temporal relatiomsbietween each pair of those events. So, an
expression like (X&Y)|Z results in three doubletgXx&Y].[X|Z].[Y|Z] — once the Law of
Extension has been applied. These three doublets alh the temporal relations between the
events in this cut sequence, and that is the mtatfeature of doublets: once they have been
created, all possible temporal relations are exppasel can thus be checked more easily. A cut
sequence in which all temporal operators are entafes! in doublets is ihase temporal form
(BTF) and is much easier to manipulate, becauseem@poral relations in the cut sequence are

visible.

Doublets also have substantial benefits in anyraated process, as will be explained in more
detail in section4.5 primarily they make it much easier to identify nt@dictions and
redundancies because now it is only necessarynipace two doublets at a time rather than two
gates which may contain any number of inputs (saevhich may be other gates). For
example, checking for Simultaneity in an expres$oBTF is just a matter of searching for any
doublets which contain two identical events andriarity gate e.g. [X<X] or [Y]Y]. Mutual
Exclusion is also much simpler: if any two doubletsitain the same events in a different order
(e.g. [X<Y].[Y<X]), or the same events in the sameer but with different operators (e.g.
[X<Y].[X&Y]), there is a strong likelihood that dier they violate Mutual Exclusion or one is

redundant in some other way:

GRASS is GREEN in 8 steps" would result in GrassCrass> Cress> Tress> Trees> Frees>
Freed> Greed-> Green.
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[X]Y] [YIX] [X<Y] [Y<X] [X&Y] Y&X]

[X|Y] Idempotent: | Mut. Excl.: | Priority: Mut. Excl.: | Mut. Excl.: | Mut. Excl.
[X|Y] 0 [X<Y] 0 0 0

[Y[X] Mut. Excl.: | Idempotent:| Mut. Excl.: | Priority: Mut. Excl.: | Mut. Excl.:
0 [YIX] 0 [Y<X] 0 0

[X<Y] Priority: Mut. Excl.: | Idempotent:| Mut. Excl.: | Mut. Excl.: | Mut. Excl.:
[X<Y] 0 [X<Y] 0 0 0

[Y<X] Mut. Excl.: | Priority: Mut. Excl.: | Idempotent:| Mut. Excl.: | Mut. Excl.;
0 [Y<X] 0 [Y<X] 0 0

[X&Y] Mut. Excl.: | Mut. Excl.: | Mut. Excl.: | Mut. Excl.: | Idempotent:| Idempotent:
0 0 0 0 [X&Y] [X&Y]

[Y&X] Mut. Excl.: | Mut. Excl.: | Mut. Excl.: | Mut. Excl.: | Idempotent:| Idempotent:
0 0 0 0 [X&Y] [Y&X]

Table 4 — Detecting contradictions using doublets

As this table shows, whenever two doublets cortarsame events, some reduction is possible,
whether it is a simple application of the Idempotesw, an application of the Priority Law, or
Mutual Exclusion (which results in a contradictamyt sequence that can then be removed).
Testing every doublet against every other doubldt khelp to remove most temporal
redundancies from a cut sequence and identify antradictions arising from mutual exclusion
or simultaneity (at which point checking can stbgcause the entire cut sequence is redundant).
By then comparing the doublets against any remgiunitaffiliated events i.e. events that are
not members of doublets, further redundancies tsmlze removed; the Absorption Law and
the POR Transformation Law apply here, i.e. [X<Y}XX and [X|Y].Y = [X<Y].

So, the next question is: how does one obtain sirtieese wonderful doublets?

4.4.2 Encapsulation

Encapsulation (or "doubletisation") is the procekssonverting a cut sequence into doublets by
identifying and encapsulating each temporal refatiMuch of the process is similar to
converting an expression to HTF, since encapsulatansists mostly of applying Distributive
laws to an expression. However, some of the lavesl te be modified because the goal is to
obtain one OR containing multiple ANDs each of wh@ontain only doublets and unaffiliated

events. The initial fault tree still needs to béinary form first.

Here is the list of modified Distributive Laws, whiproduce doublets and unaffiliated events in

cut sequence format:
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X<(Y.Z) o Y.X<Z] + Z.[X<Y]

X< (Y+2) = [X|Z].[X<Y] + [X<Z].[X]Y]

X < (Y<2) = [X<Z].[Y<Z]

X< (Y&Z) = [X<Y][X<Z].[Y&Z]

X<(Y|Z) = [X<Y][Y|ZL.IX|Z]

X&(Y+Z) = [X&Y][Y&Z].[X&Z] + [X&Y].[Y|Z].[X|Z]

+ [X&Z].[Z]Y].[X|Y]
X&(Y.2) o [X&Y][Y&Z].[X&Z] + [X&Y].[Z<Y].[Z<X]
+ [X&Z].[Y<Z].[Y<X]

X&(Y<Z) o [X&Z].[Y<Z].[Y<X]

X&(Y&Z) = [X&Y].[Y&Z].[X&Z]

X & (Y|2Z) = [X&Y].[Y|Z].[X|Z]

X & (Y|2Z) = [X|Z].[Y|Z].[X&Y]

X | (Y+2) = [X|YL.[X]|Z]

X | (Y.2) = [X|]Y] + [X|Z]

X | (Y<2) = [X|Z] + [X|Y] + X.[Z<Y] + X.[Y&Z]

X | (Y&Z) = X.[Y|Z] + X.[Z|Y] + [X|Y] + [X|Z]

X (Y|2) = [X]Y] + X.[Z<Y] + X.[Y&Z]

(Y+2) < X = [Y<X] + [Z<X]

(Y.2) <X = [Y<X].[Z<X]

(Y<2z) < X = [Y<Z].[Z2<X].[Y<X]

(Y&Z) < X = [Z<X].[Y<X].[Y&Z]

(Y|Z2) < X = [Y<X]L[Y|Z]

(Y+2) & X = [X&Y][Y&Z].[X&Z] + [X&Y].[Y|Z].[X|Z]
+ [X&Z].[Z|Y].[X]|Y]

(Y.2) & X o [Y<X].[Z&X].[Y<Z] + [Z<X].[Y&X].[Z<Y]
+ [X&Y].[Y&Z].[X&Z]

(Y<Z) & X = [Y<Z].[Z&X].[Y<X]

(Y&Z) & X = [X&Y].[Y&Z].[X&Z]

(Y|Z2) & X = [X&Y1.[Y|Z].[X|Z]

Y+2) [ X = [YIX] + [Z|X]

(Y.2) | X = [YIX].IZIX]

(Y<2)| X = [Y<Z].[Z|X].[YIX]

(Y&Z) | X <= [Y|X].[Z|X].[Y&Z]

(Y12) | X = [YIZL.[YIX]
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This list of laws produces doublets that have dyelaad the Laws of Extension and Priority
applied, thus reducing the amount of minimisatieeassary by doing some early. These laws
are normally applied to the temporal gates foundunsequences once the cut sequences have
already been produced, but equally these laws eaapplied to an expression not already in
HTF, although technically this means that somehef'tioublets' produced are not real doublets
since they may contain other gates and therefoed f@ther encapsulation themselves. As a
result, encapsulation is best performed only orresgions in binary HTF, because then the

number of laws needed are reduced to just these:

X < (Y<2) = [X<Z].[Y<Z]

X< (Y&Z) - [X<Y][X<Z].[Y&Z]

X | (Y<2) = [X|Z] + [X|Y] + X.[Z<Y] + X.[Y&Z]
X|(Y&Z) = X.[Y|Z] + X.[Z]Y] + [X]Y] + [X|Z]
X1 (Y|2) = [X]Y] + X.[Z<Y] + X.[Y&Z]
(Y<2z) < X = [Y<Z].[Z2<X].[Y<X]

(Y&Z) <X o [Z<X].[Y<X].[Y&Z]

(Y&Z) & X = [X&Y].[Y&Z].[X&Z]

(Y<Z)| X < [Y<Z][ZIX].[YIX]

(Y&Z) | X < [YIXL[ZIX].[Y&Z]

(Y12) [ X = [Y|Z).IYIX]

As an example, consider the fault tree from FigdeFigure 38 shows what that tree looks like

when converted into doublets:
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Figure 38 — Conversion of a fault tree into doublet

The tree on the left is the binary fault tree dmel tather larger tree on the right is the same tree
converted into doubletised cut sequences (theresiareut sequences, two on either side on
three levels). The doublets are drawn with a baumd them for clarity, but this is just for
illustrative purposes and there is no requirementafdoublet to be shown with a box around it.
Nevertheless, Figure 38 illustrates base temporai ¥ery clearly: the maximum depth of such
a tree is 3 gates: an OR, an AND, and a tempotal gacapsulated within a doublet. In this
particular tree, there is no further reduction ¢operformed — it is already minimised, due to the

fact that none of the events occur more than amdled original tree.

4.4.3 Comparison of Doublets using the Temporal Product

Frequently, the main use of doublets is to detedumdancies and contradictions with other
doublets, and for this we need to be able to coefiam efficiently. One method for doing this
is a numerical approach inspired by Semanderes'AEORalgorithm (which was briefly
described in Chapter 2). The principle is that ebakic event is assigned a unique prime
number as its identifier. In ELRAFT, these are thaultiplied together to find a humber that
represents a whole cut set. Similarly, in Pandaidgublet multiplies both its constituent events'
prime numbers together to get a number that repteske events in the doublet. For example,
if X=2and Y =3, then [X<Y] would have the idém@r 6. Any other doublet that contains the

same events will then have this same identifyirggpct.

However, ELRAFT is a Boolean approach without tleaaept of sequence; Pandora is not.

Therefore, each doublet also has a sign to représerrder of its events. This is produced by
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subtracting the second event's prime from the &vent's prime, which for [X<Y] would give
-1. The sign of this value is then applied to theniifier, e.g. in this case, [X<Y] has the value
-6. [Y<X], when subtracted, would give +1 instead, [Y<X] has the value 6. This value is
known as thetemporal product of the doubléf. This method of calculating the temporal
product makes it very easy to detect Simultaneigyfipotence because the subtraction would
yield a value of 0, e.g. [X<X] = 2 — 2 = 0. In thease the doublet is either a contradiction (for
PAND and POR) or reduces to just a single evemtSfND).

It is then a simple matter to compare two doublesause we only need to compare their
temporal products, instead of checking each evgainat every other event. Dividing one
doublet's temporal product by another will show thibe or not they each contain the same
events and, if so, whether they are in the samerpadvalue of 1 means the doublets contain the
same events in the same order, while a value ohedns the doublets contain the same events
in different orders. To determine the precise reatfrthe minimisation possible, however, the
operators must still be compared directly (becdbeetemporal product does not differentiate
between a PAND and a POR, or a SAND and a PANDgxample). The temporal product of a
doublet also makes it easy to check whether itainatan unaffiliated event: simply divide the
temporal product by the event's prime ID, and éréhis no remainder, the doublet contains the
event. For example, [X<Y].X: -6 MOD 2 = 0, so [X<¥pntains X.

The temporal product is also useful for comparintye cut sequences. Just as cut sets can have
prime products in ELRAFT, cut sequences can hageg twn products too, composed of the
product of all unaffiliated events or doublets I tcut sequence. For example, if A=2, B=3,
C=5, and D=7:

A.[B<C].[C&D].[B<D]
A =2
[B<C]=3x5=15
[C&D] =5x7 =35
[B<D] =3x7 =21
Product =2x15x35x 21 =22050

This number is very useful when comparing cut segeg against each other. If we divide one

cut sequence by another, and have no remainderptieemay contain the other. For example:

[B<C].[B<D] = 3x5 x 3x7 =15 x 21 = 315
22050 MOD 315=0 so first CSQ may contain second

1930 called because it consists of two parts: thelymbof the prime numbers and a sign indicatingtéreporal
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However, because it is not possible to use thessafithe temporal products at the cut sequence
level (because a cut sequence may contain mutiélets), to be sure that one CSQ contains
another, it is necessary to go through and make that all doublets that appear in both also

occur in the same order by comparing every doubleach cut sequence.

The process of automatic minimisation using dosgtketlescribed further in sectidrb.

4.4.4 Detecting Completion-based reductions using Doublets

As mentioned earlier in this chapter, there aredtoroad categories of reduction possible when
performing minimisation in Pandora: redundancy éeggly absorption), contradiction, and
completion. The first is relatively easy to detedth or without doublets, though doublets do
make this process easier by breaking up the expresmto smaller units. Contradiction is a lot
easier with doublets, because detecting them bexansenple numerical process of comparing
temporal products. Completion, in all of its prohkgic diversity, is the hardest type of possible
reduction to detect. Fortunately, doublets can Iselpe this problem, though the Completion

reduction problem in general is better solved hreotways (see Secti@h6).

The principle behind the introduction of doublets that by encapsulating the temporal
information inside the doublets, and therefore oguy the contents of a cut sequence to just
events and doublets connected by an AND gate, mpli§y the situation and make it easier to
identify potential areas for reduction and minintiza. We can take this principle one step

further: what if a cut sequence contaimedy doublets?

By representin@ll temporal relations, even those implicitly containgithin the AND gates,
we can also detect some of the elusive Completduations that would otherwise evade us.

The key to this is the Completion Law itself. Sttaas like:

XY.Z+ X<Y + X&Y + Y<X = XY

are hard to detect because they require the Campleaw to be applied first; it would have to
be a very sophisticated algorithm to be able togeise the latter three cut sequences as X.Y
without this intermediate step. But rather thaemfiting to apply the Completion law to every
combination of three (or even more) cut sequengbih would obviously be time consuming
and grossly inefficient, it is possible to apphet@ompletion Lawbefore minimisation, even

before the doublets have been constructed.

order the events occur in (positive means the fargembered event occurs first, minus means it acsacond).
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The Conjunctive Completion Law can be applied terg\AND gate in an expression in HTF
(or binary HTF). The result will be the eliminatiaf all AND gates and the production of a
larger number of cut sequences (albeit no longéruiem HTF). Each cut sequence will contain

only temporal gates. For example:

X< (Y.2) e Y. X<Z + ZX<Y (Now in HTF)
- Y<(X<Z) + Y&(X<Z) + (X<2Z)<Y + (Completion)
Z<(X<Y) + Z&(X<Y) + (X<Y)<Z

The resulting list of AND-less cut sequences camthe converted into doublets, e.g.:

Y<(X<2) > [Y<Z].[X<Z]
Y&(X<Z) > 4 [Y&Z].[X<Z].[X<Y]

Although this will introduce more AND gates, thesuét will be a collection of cut sequences in
BTF containing only either doublets or single basients — there will be no 'mixed' cut
sequences containing both, e.g. X.[Y<Z]. All temgdaelations in the original expression will
now be represented by doublets, even those tempelations originally represented only
implicitly by AND gates. This means that the minsatiion algorithm can also be used to detect

many possible Completion reductions by simply usirgnormal Absorption and Priority laws.

Take the example Completion problem given abo(#.Z + X<Y + X&Y + Y<X . We

know that this reduces to just X.Y, and we can@ghihis using doublets as follows:

1. First, the original expression is converted intoRdT

XY.Z+ X<Y + X&Y + Y<X

2. Next, any AND gates are removed by replacing thdepth-first) with the Conjunctive

Completion Law:

= (X<Y + X&Y + Y<X).Z
+ X<Y + X&Y + Y<X

= (XY + X&Y + Y<X)<Z
+ (X<Y + X&Y + Y<X)&Z
+ Z<(X<Y + X&Y + Y<X)
+ X<Y + X&Y + Y<X
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3. This is then converted into HTF again:

((X<Y + X&Y) + Y<X)<Z e (XY)<Z + (X&Y)<Z + (Y<X)<Z

((X<Y + X&Y) + Y<X)&Z = Z&(X<Y + X&Y) . Z&(Y<X) +
Z&(Y<X) . Z|(X<Y + X&Y) +
Z&(X<Y + X&Y) . Z|(Y<X)

o Z&(X<Y) . Z&(X&Y) . Z&(Y<X)+
Z&(X<Y)|(X&Y) . Z&(Y<X)+
Z&(X&Y)|(X<Y) . Z&(Y<X)+

Z&(Y<X) . Z|(X<Y + X&Y)+

Z&(X<Y) . Z&(X&Y) . Z|(Y<X)+
Z&(X<Y)|(X&Y) . Z|(Y<X)+
Z&(X&Y)|(X<Y) . Z|(Y<X)

= Z&(X<Y) . Z&(Y<X)+

Z&(X&Y) . Z&(Y<X)+
Z&(Y<X) . Z|(X<Y + X&Y)+

Z&(X<Y) . Z|(Y<X)+

Z&(X&Y) . Z|(Y<X)

= Z&(Y<X).Z +
Z&(X<Y).Z +
Z&(X&Y) . Z

= Z&(Y<X) +
Z&(X<Y) +
Z&(X&Y)

= Z&(Y<X) +
Z&(X<Y) +
Z&(X&Y)

Z<((X<Y + X&Y) + Y<X) = Z|(X<Y + X&Y) . Z|(Y<X) .
(X<Y + X&Y + Y<X)

o Z|(X<Y + X&Y) . Z|(Y<X) . (X<Y) +
Z|(X<Y + X&Y) . Z|(Y<X) . (X&Y) +
Z|(X<Y + X&Y) . Z|(Y<X) . (Y<X)

o Z|(X<Y + X&Y) . Z . (X<Y) +
Z|(X<Y + X&Y) . Z . (X&Y) +
Z|(X<Y + X&Y) . Z<(Y<X)

= Z<(X<Y) +
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Z<(X&Y) +
Z<(Y<X)
o Z<X<Y + X<Z<Y + Z&X<Y +
Z<(X&Y) +
Z<Y<X + Y<Z<X + Z&Y<X

4. And then this is converted into BTF:

(X<Y)<z > [X<Y].[Y<Z] . [X<Z]
(X&Y)<Z > [X&Y] . [Y<Z] . [X<Z]
(Y<X)<zZ > [Y<X].[X<Z].[Y<Z]
Z2&(Y<X) > [Z&X] . [Y<X] . [Y<Z]
Z&(X<Y) > [Z&Y] . [X<Y] . [X<Z]
Z&(X&Y) >  [2&Y].[X&Y].[X&Z]
Z<X<Y > 4 [Z<X] . [X<Y]. [Z<Y]
X<Z<Y > [X<Z] . [X<Y] . [2<Y]
Z&X<Y > [Z&X].[X<Y].[Z<Y]
Z<(X&Y) > [z<X].[X&Y].[Z<Y]
Z<Y<X > 4 [Z<Y].[Y<X] . [Z<X]
Y<Z<X > [Y<Z].[Y<X] . [Z<X]
Z&Y<X > [Z&Y] . [Y<X] . [Z<X]
X<Y > [X<Y]

X&Y > [X&Y]

Y<X > [Y<X]

5. Finally, we scan through the cut sequences, chgdkinany cases of Absorption. In this
example, each of the longer order 2 or order 3eqtiences contain one of the three order 1

cut sets at the end, leaving us with just thoseethr

[X<Y]
[X&Y]
[Y<X]

At this stage, we may choose to reapply the Congpletaws to simplify the doublets and
obtain X.Y, though strictly speaking the cut sequemnare already minimal now. Presenting the
MCSQs in this form ensures that all temporal relai are immediately apparent, but does

involve more cut sequences.
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Note that for AND gates which contain only basiemg (or that reduce to a form containing
only basic events), particularly for AND gates witlore than two events, it is possible to
generate the cut sequences directly without applyime Completion Law by using the leaf
nodes of a precedence tree instead. The AND prsvidevith a set of unordered events (in this
case, X, Y, and Z). We also know that there willthieteen different sequences of these three
events (from the Fubini number for= 3). These sequences can therefore be genetafetys
step by following the branches of the precedenee for {X, Y, Z}. These are the 13 cut

sequences given above for X.Y.Z.

To ensure that all of these sequences are repeglsemiore comprehensive versions of the

encapsulation laws are necessary; in this case:

X<(Y<Z) < [X<Z].[Y<Z]

becomes:

X<(Y<Z) < [X<Y][Y<Z].[X<Z] +
[Y<X].[Y<Z].[X<Z] +
[X&Y].[Y<Z].[X<Z]

A list of these complete Encapsulation Laws canfduend in Appendix Il: Boolean &

Temporal Laws.

However, the fundamental problem with the doubbetdnl approach to Completion reduction is
that it is unable to 'reassemble’ the resultant RERIthough it is a simple matter to apply the
Completion Law in reverse to X<Y + X&Y + Y<X, it inot so simple when more than two

events are present.

4.4.5 Disadvantage of Doublets

The primary advantage of doublets — that they slaiwiemporal relations — is also their
primary disadvantage, because for any non-trivemhporal fault tree, a large number of
doublets will be required. A temporal gate witlinputs (assuming the inputs are basic events)
will result in n-1 doublets without the Law of Extension and(b:1) doublets once Extension
has been applied. Expanding AND gates to detectpBsian reductions as described above
means that even more doublets are required to seprall the possible cut sequences: the
number of cut sequences produced is determinetiébizuibini numbers and each cut sequence

would require multiple doublets (for> 2).
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Furthermore, although the numerical ELRAFT-styleprapch described above makes
comparing doublets very simple, it is still necegta compare every doublet in a cut sequence
against every other doublet. The result can beyalaege number of comparisons that increases
quickly with the number of doublets involved (fordoublets, a(n-1) comparisons may be
needed in the worst case). This problem only gnvawse when comparing entire cut sequences
against each other; once again, in the worst cas®aso, every cut sequence must be compared
against every other cut sequence, which can mesokicty every doublet and event in each pair

of cut sequences.

However, the benefits of doublets outweigh thisadisntage: the comparisons would be
necessary in any case, and the use of doublets telminimise the cost of performing these
comparisons. Without doublets and the conversionteafiporal expressions into BTF, to
minimise the cut sequences would require many niane that can be applied to larger
numbers of events (not just the limited numbehoéé event laws used to minimise doublets) —

something which is simply not practical.
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4.5 Temporal Qualitative Analysis: Euripides

"Whom the gods would destroy, they first make mad."

- Euripides

4.5.1 The Four Corners of Euripides

The first of the two temporal qualitative analyalgorithms in Pandora is called the Euripides
Algorithm® and consists of four stages. The first stagedsBinarboreal stage, which converts
any fault tree into a binary fault tree. This ig thimplest of the four components and can be
employed more than once during the overall prodegsdescribed in sectioh5.2 The second
component is the Flattening stage, which is redptan$or converting the tree into HTF. It is
described i4.5.3 The third component is the Encapsulation stadeclwis responsible for
converting the HTF fault tree into doublets; icmvered id4.5.4 The fourth and most complex
component is the Minimisation stage, which (as yoight expect) is responsible for the
minimisation of the doublets. It is explained markly in section4.5.5 Finally, in sectiort.5.6

the current limitations of the Euripides algoritiane discussed.

4.5.2 The Binarboreal Stage

The Binarboreal stage is easily the simplest of fthe stages of Euripides and was mostly
covered earlier in the chapter. It consists of fises, one for each of the gates, which are

applied in a depth-first fashion:

The Binary Laws
AB.C.....N = ((((A.B).C)...).N)
A+B+C+ ... +N = ((((A+B)+C)...)+N)
A<B<C<...<N = ((((A<B)<C)...)<N)
A&B&C& ... &N = ((((A&B)&C)...)&N)
A[BIC]| ... N = AJ(((B+C)...)+N)

These laws convert a gate with an arbitrary nunadfenputs greater than two into a nested
series of the same type of gate, each with onlyitgwats. If a gate has only one or two inputs, it
is not changed (a gate with only one input is g@ats a simple intermediate event, i.e. one that

imposes no constraints on its inputs).

2050 named for the way Euripides's quotation acclyradflects the algorithm's effect on the mind loé t
author.
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The process is very easy to follow, and consistmaking a new gate of the same type, adding

all but one child of the gate to it, and then asisig the new gate as a new child:

1. The process is depth-first, so first recurse forchildren (this has no effect on basic
events).

2. If the current gate has more than two childrerst fareate a new gate of the same type
(unless the gate is a POR, in which case an OR&ted), otherwise finish.

3. If the current gate is not a POR: remove all betldst child from the current gate and
add - in the same order — to the new gate. It j@itant that théast child, and not the
first child, remains in the current gate, otherwise BRAND gates will be incorrect. Add
the new gate as tHiest child of the current gate.

4. If the current gatés a POR: remove all but tHest child from the current gate and add
—in the same order — to a new OR gate. Add this@R gate as theecondchild of the
POR gate.

5. Repeat the process for the new gate.

Note the special handling for the POR gate; thizeisause it has a different Binary Law, can be
seen from the list above. The Binarboreal stagmatiged out first, before the Distributive Laws
are to be applied, because this limits the numb&igributive Laws needed to just those with

three events; however, it can also be carried ®pist of later stages if needed.

4.5.3 The Flattening Stage

The Flattening stage (or 'Flattener’) is more carapd than the Binarboreal stage, but still
relatively simple to understand. This second stagesists of a repeated, depth-first application
of Distributive and/or Associative Laws to flattéime fault tree into Hierarchical Temporal
Form, i.e. one in which OR gates are highest, hBID gates, then POR, PAND and finally
SAND gates. This algorithm sets a flag for eachedat indicate that it has already been
flattened; this prevents it from being re-flattenat@r if the branch is shared or if the algorithm

causes one of its parent gates to be flattened.agai

It consists of two phases. In the first phase,Distributive Laws are applied to rearrange the
gates. The precise action taken depends on tharggteestion, but in all cases begins the gate
must be binary (and is converted if this is not¢hee). At most one law will be applied, as this

will create a replacement gate which undergoests flattening.
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OR Gates

Only the Associative Law is applied to the OR gékecause they have the lowest precedence
(i.e. they come highest in the tree — they arenhtégt" and rise to the top). If any of the OR
gate's children are also OR gates, then their renldre added to the current gate and the child

OR gate is removed.

AND Gates
AND gates have second-lowest precedence; the teingates all have higher precedence. This
means that AND gates will tend to "rise" abovetethporal gates but not above OR gates. The

only Distributive Laws applied to AND gates are tiasic Boolean ones:

X.(Y+Z) = XY +X.Z
(Y+Z).X = XY +X.Z

The end result is that the AND gate is replacedabyOR gate which has two children, both
AND gates. Both these new children undergo the Bior@al process (if necessary) and are

flattened once created.

POR Gates

POR gates have middle precedence; higher thanotyieal gates, but lower than the two
conjunctive temporal gates. Ten Distributive Laws applied to POR gates, four to let the
logical gates rise above it, two to deal with PQiReg having more POR gates as children, and

four to let the other temporal gates sink below it.

X|(Y+Z) = X|Y.X|Z

(Y+2)IX = Y|X+Z|X

X|(Y.Z) = X|Y+X|Z

(Y.2)IX = Y|X.ZIX

X|[(Y|Z) = X]Y + X.(Z<Y) + X.(Z&Y)
YIDIX = Y|Z.YIX

X[(Y&Z) = X.(Y]|2) + X.Z|Y) + X|Y + X|Z
(Y&Z)|X = Y|X.Z|X.Y&Z

X|(Y<Z) < X|Z+ X]|Y + X.(Z<Y) + X.(Y&Z)
(Y<2)IX = Y<Z.Z|X

Again, all children are made binary and flattenadeocreated.
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PAND Gates
As with the POR gate, ten laws are applied to tABI[P gate, depending on what its children

are; four for the logical gates, two more for otR&NDs, and four for the other temporal gates:

8

X<(Y+2) X|Z . X<Y + X]Y . X<Z
(Y+2)<X = Y<X +Z<X

X<(Y.Z) = Y.(X<2Z) + Z.(X<Y)
(Y.2)<X = Y<X.Z<X

X<(Y|2) < X|Y.Y|Z

(Y|2)<X = Y<X.Y|Z

X<(Y<Z) < X<Z.Y<Z

(Y<Z2)<X = Y<Z.Z<X

X<(Y&Z) = X<Y.X<Z.Y&Z

(Y&Z)<X « Z<X.Y<X.Y&Z

As before, all new children are re-flattened andiétessary converted to binary gates. This
means that the newly created children can use dlgirrules, rather than having to do the work
here in the PAND.

SAND Gates

Like the other two temporal gates, SAND gates hamdaws applied to them:

X & (Y+Z) = (X&Y).(Y&Z) + (X&Y).(Y|Z) + (X&2Z).(Z|Y)
(Y+Z) & X = (X&Y).(Y&Z) + (X&Y).(Y|Z) + (X&Z).(Z|Y)
X&(Y.Z) = (X&Y).(Y&Z) + (X&Y).(Z<Y) + (X&Z).(Y<Z)
Yz & X o (YX)(Z&X)  +  (Z<X).(Y&X)  +
((X&Y).(X&2)).(Y&Z)

X & (Y|2) = ((X&Y) . (Y]2)) . (X|Z)

(Y|2) &X = X&Y.(Y|2)

X&(Y¥Y<Z) = (X&Z.Y<Z).Y<X

(Y<Z) & X = (Y<Z.Z&X).Y<X

X & (Y&Z) = ((X&Y).(X&2)).(Y&Z)

(Y&Z) & X = ((X&Y) . (X&Z2)) . (Y&Z)
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In this case, there are some laws with more thanvamiation that can be used; the versions
shown here are the ones chosen, because theyirestitdren with the right precedence. For
example, for X&(Y<2):

X & (Y<Z) = X&Z.Y<Z.Y<X
X &(Y<Z) = (Y<Z2)&(Y<X)

The second version is not in precedence orderHil€), because the SAND is higher than the
PANDs; therefore, the first is chosen, even thoitglesults in three children rather than two

(and will therefore need to be made binary).

Once the first phase of the Flattening stage isptei®, and all gates have been shifted to their
correct positions, the second phase begins: thal Fihattening. This phase, despite its
magnificent-sounding name, is a depth-first traaketisat applies only to AND and OR gates,
and consists of an application of the Associatiag/Lso that any ANDs that are input to ANDs
are merged and similarly any ORs that are inpu@Rs are merged, e.g. X + (Y+& X + Y+

Z.

After the Flattener has completed its work, thdtfaae should be in binary HTF and is ripe for

encapsulation.

4.5.4 The Encapsulation Stage

The Encapsulation stage (or 'Doubletiser’) is ndymaery simple, because most of the hard
work has already been done during the FlatteniagestAlthough it is often possible to create
doublets during the previous stage, sometimes atregbneeds flattening without being
encapsulated, and in the case of temporal hieesd@.g. (X<Y)|Z), encapsulation must be

done separately.

The laws necessary for encapsulation were preseatdidr and are as follows:

X < (Y<2) = [X<Z].[Y<Z]

X< (Y&Z) = [X<Y][X<Z].[Y&Z]

X1 (Y<Z) = [X[Z] + [X|Y] + X.[Z<Y] + X.[Y&Z]
X|(Y&Z) = X.[Y|Z]+ X.[Z|Y] + [X|Y] + [X|Z]
X | (Y]2) o [X|Y] + X.[Z<Y] + X.[Y&Z]
(Y<z)< X = [Y<Z].[Z2<X].[Y<X]
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(Y&Z) <X = [Z<X].[Y<X].[Y&Z]
(Y&Z) & X = [X&Y].[Y&Z].[X&Z]
(Y<Z) | X = [Y<ZLIZIXLIYIX]
(Y&Z) | X = [YIXL[ZIX].[Y&Z]
(Y12) | X = [Y|Z].[Y[X]

Because the tree should already be in binary Higésd are the only laws required. If the top
node is an OR, then we search its children; ifidhs an AND gate, then we search the AND's
children; either way, when a temporal gate is disced, the appropriate laws are applied to
convert it into doublets. The most complex casetisre all three temporal gates are involved,
e.g. (A<(B&Q))|D. In this case, the deepest gatemlt with first:

A<(B&C) =  [A<B].[A<C].[B&C]

and then each of these doublets is applied sepatatde POR:

[A<B]|D -~ [A<B][BID].[A|D]
[A<C]|D -~ [A<C].[CID][A|D]
[B&C]|D -~ [B&C].[B|D].[C|D]

yielding nine doublets (in this case, includingga fduplicates):

(A<(B&C)ID =
[A<B].[B|D].[A|D].[A<C].[C|D].[A|D].[B&C].[B|D].[C] D]

In cases where two temporal gates are involved,lahes can be used directly, and single

temporal gates are converted directly to doublets.

4.5.5 The Minimisation Stage

The Minimiser is the most difficult stage. Like tR&attener, it consists of more than one phase.
The first part is the intra-CSQ minimisation, whildoks for possible reductions within a cut
sequence and minimises it as far as possible. &bend part, which is iterative, is the inter-
CSQ minimisation part, which looks for possibleuetibns by comparing whole cut sequences.
It repeats until it can find no more minimisatiomfie inter-CSQ part can change the contents of
the CSQ so intra-CSQ minimisation is normally dbwoth before and after; changes can occur

as a result of using Priority or POR Transformati@ws or — ultimately — even Completion,
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which creates entirely new CSQs. As an examplelenthiecking [X&Z].[X|Y].[Z|Y] + Y,
intra-CSQ minimisation would initially take no amti, but then inter-CSQ minimisation would
convert the first CSQ to [X&Z].X.Z as a result ¢fet POR Transformation Law, X|Y + ¥
X+Y. This CSQ would then be reduced to just [X&Z a result of Absorption during the

second application of intra-CSQ minimisation.

Intra-CSQ Minimisation

This consists of first applying the Laws of Extemsiwhere appropriate, then checking for
violations of Simultaneity or Idempotence in SANDand then a doublet vs. doublet
comparison. The application of the Laws of Extensg®ofairly straightforward: every doublet is
checked against every other doublet in the cutesszpi If there is a common event in both
doublets, then it is likely that a Law of Extensicam be applied. The exact behaviour depends
on the location of the events and the operatorshied, as can be seen from the table below.
The highlighted events are the common events ih Qotblets, and the new doublet produced
is shown after the arrow. There are less entriesniszed POR/PANDs as these do not lead to

additional temporal relations, e.g. [X<Y].[Z<Y] @8 no relation for X and Z.

compare POR PAND SAND

[X&YL[ XZ] -[Y|Z]
[X&YL[ Y] Z] - [X|Z]
[ X&Y]L[Z]  X] -[Y|Z]
[X&Y1Z| Y] - [X|Z]

POR X Y.L Y12 ~[X|Z]
X1zl X -[ZIY]

[X<Y].[ YIZ] -[X|Z]
[X<Y][Z] X] -[z<Y]

[X&Y][ X<Z] —[Y<Z]

XI YI.I Y<Z] -[X<Z]

[X<VY][ Y<Z] -[X<Z]

PAND [X&Y][ Y<Z] -[X<Z]
[XYL[Z< X =[2]Y] | [X<Y]L[Z< X] -[Z<Y] | [X&Y][Z< X] -[Z<Y]

[X&Y].[Z< VY] =[Z<X]

[XIYL[ X&Z] -[ZIY] | [X<Y][ X&Z] -[Z<Y] | [X&Y][ X&Z] -[Y&Z]

SAND XI YLI Y&Z] -[X<Z] | [X<Y][ Y&Z] -[X<Z] | [X&YL[ Y&Z] -[X&Z]

[XY][Z2&  X] -[Z]Y]
X| Y1.[Z2& Y] -[X<Z]

[ X<Y].[Z& X] —[Z<Y]
[X< Y.[Z& Y] —[X<Z]

[ X&Y].[Z& X] —[Y&Z]
[X& Y].[Z& Y] —[X&Z]

Table 5 — Application of the Extension Law on Detsl

Once the Law of Extension has been applied, théstep is to check for any violations of the
Law of Simultaneity, or alternatively any placesemh ldempotence can be applied to a SAND.

This is just a simple matter of checking each deuinl the cut sequence to see if it has the same
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event on both sides; if it does, and the doublet iIPAND or a POR, then we have a
contradiction and can stop the minimisation sirtus tut sequence is impossible; if it is a

SAND, then we can just replace it with the eventtsrown. In other words:

[X<X] =0
[YIY] =0
[z&Z] - Z

As described in the last section, this is easy dteat because these doublets will all have

temporal products of 0, since the prime numbeesagh event in the doublet will be the same.

The final step in intra-CSQ minimisation is alse timost complicated, but again consists of a
number of different parts. This last step companesy event or doublet against every other

event or doublet in the cut sequence. There areftire three different possibilities:

Event vs. Event
Event vs. Doublet

Doublet vs. Doublet

Event vs. Event is easy to handle — if they aresthime, then one is redundant and can be
removed from the cut sequence according to the pdéent law, i.e. X.X = X. Event vs.
Doublet is easy too: if the doublet contains thentyremove the event — unless the doublet is a
POR and the event occurs on the right hand sidethioh case the POR Transformation Law

applies.

Doublet vs. Doublet, however, is a little more cdemp There are several forms of reduction
possible here. First, the POR Transformation lawhecked for; if the right-most event of a

POR occurs in another doublet in the cut sequeexeefpt as another right-most event of a
POR), then it is replaced with an equivalent PANiDIglet instead. Next, we look for redundant
doublets and contradictions. If the temporal prodiidhe two doublets is the same, then more

than likely there is a contradiction or a redundanc be sure, we must check the operators:
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Same temporal POR PAND SAND

product

POR Idempotence: Priority: Contradiction:
[XIYT.IX]Y] < | X<YLIX]Y] < | X&YLIX]Y] <
[X|Y] [X<Y] 0

PAND Priority: Idempotence: Contradiction:
[X|Y].[X<Y] = | [X<Y]L[X<Y] = | [X&Y].[X<Y] -
[X<Y] [X<Y] 0

SAND Contradiction: Contradiction: Idempotence:
[X|Y].[X&Y] = | [X<Y].[X&Y] o | [X&Y].[X&Y] -
0 0 [X&Y]

If the temporal product differs only in sign, thiems almost certainly a contradiction; the only
case where it is not is if two SAND gates are imedl Any other combination of gates in which

the same events are in different orders resukiscontradiction.

Absolute  tempora) POR PAND SAND

product is the same

but the signs differ

POR Mutual Exclusion: Mutual Exclusion: Mutual Exclusion:
[XIYILIYIX] = | [X<YL[YIX] = | X&YL[YIX] <=~
0 0 0

PAND Mutual Exclusion: Mutual Exclusion: Mutual Exclusion:
X]YL.[Y<X] = | [X<Y].[Y<X] = | [X&Y].[Y<X] e
0 0 0

SAND Mutual Exclusion: Mutual Exclusion: Idempotence:
[X|Y].[Y&X] = | [X<Y][Y&X] = |[X&Y][Y&X] =
0 0 [X&Y]

If there is a contradiction in the cut sequencentthe whole cut sequence can be discarded.

Inter-CSQ Minimisation
Inter-CSQ Minimisation is much more complex thatrddCSQ, and requires a great deal more
checking before we can know for sure whether oranGSQ is redundant or not. In this phase,

every CSQ is compared with every other CSQ to deetlver or not any reduction is possible.
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As with Intra-CSQ minimisation, however, the exlehaviour depends on the cut sequences in

guestion.

If neither cut sequence contains any doublets, theg are really only cut sets and can be
reduced as such. This can be done in the ELRAHE,styg., if there are two cut sets with

prime products CS1 and CS2 respectively:

If CS1 MOD CS2 =0, CS1 is redundant.
If CS2 MOD CS1 =0, CS2 is redundant.
If CS1 = CS2, they are identical and one can bevexh

The prime product is calculated simply by multiplyithe prime identifiers of all constituent

basic events together, e.g.:

X=2, Y=3, Z=5
XY.Z=2x3x5=30
XY =2x3 =6

30 MOD 6 =0 so X.Y.Z contains X.Y

However, this is the simplest case. If one cut saga contains doublets, we need some
additional information. For a cut sequence contgjmo POR doublets, the prime products can
be compared as normal, but if POR doublets areliedp then two numbers are necessary: a
prime product with right-hand POR events (the ‘fimtime product) and a prime product
without them (the 'true prime product’). For exapK|Y].Z (using the above values) would
have a normal prime product of 2 x 3 x 5, i.e. Bbwever, the second prime product would be
just 2 x 5 as the right hand side of the POR igttexhi

These numbers are both compared against the otlhesequence. Take the following two

examples:

#1-Y #2 - [X|Y].Z #2 MOD #1
Full Prime Product 3 30 0
True Prime Product 3 10 1

In this case, the doublet CSQ contains Y on thet#tigind side of the POR, as evidenced by the

fact that the second product yields a remainderthis case the POR Transformation is
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applicable (since the result of the first modul®jghe doublet CSQ contains all events

non-temporal CSQ) and the result would be Y + X.Z.

in the

#1-X #2 - [X|Y].Z #2 MOD #1
Full Prime Product 2 30 0
True Prime Product 2 10 0

In this case, the modulo comparison succeeds botbst meaning that the doublet CSQ

contains X properly, i.e. not on the right-handesal a POR. In this case, the doublet CSQ is

redundant and can be removed.

It is also possible for the non-doublet CSQ todxundant if its prime product is larger and the

modulo results in O:

#1 -X.Y.Z.AB #2 - [X|Y].Z #1 MOD #2
Full Prime Product 2x3x5x7x11 = 2310 30 0
True Prime Product 2x3x5x7x11 = 2310 10 0

In this case, the non-temporal CSQ is removed. Mewdf the full and true modulos differ:

#1 -X.Z.A.B #2 - [X|Y].Z #1 MOD #2
Full Prime Product 2x5x7x11 =770 30 20
True Prime Product 2X5x7x11 =770 10 0

Here neither CSQ is redundant because the moduledtill primes is not 0.

In cases where the primes are shee

#1 -XY.Z #2 - [X<Y].Z #2 MOD #1
Full Prime Product 30 30 0
True Prime Product 30 30 0

If both full and true primes are the same as thetemporal prime product, then the temporal

CSQ is redundant according to the Law of PriotyY(+ X<Y = X.Y).

187



#1-X.Y.Z #2 - [X|Y].Z #2 MOD #1

Full Prime Product 30 30 0

True Prime Product 30 10 0

However, if a POR is involved, the Reductive Cortiple Law may apply, and in this case the

result is simply X.Z.

The most complicated case, however, is comparingpéeal CSQs against other temporal
CSQs. The table below illustrates what type of ctida is indicated by the comparison of

prime products. TPP means true prime product afia@ans full prime product.

Comparison Reduction?

FPP1 % FPP2 = 0, TPP1 %TPP2 €SQ1 may contain CSQ2, further checking required.
0

FPP1 % FPP2 = 0, TPP1 %TP#2 CSQ1 may contain CSQ2, further checking required.
0

FPP2 % FPP1 =0, TPP2 %TPP1 €SQ2 may contain CSQ1, further checking required.
0

FPP2 % FPP1 = 0, TPP2 %TP#1 CSQ2 may contain CSQ1, further checking required.
0

FPP1 = FPP2, TPP1 = TPP2 Both CSQs contain sameéseveifurther checking
required.
FPP1 = FPP2, TPEATPP2 Both CSQs contain the same events, but some are in

PORs; further checking required.

FPP1 % FPP2 0, FPP2 % FPP# | No further checking necessary.
0

Table 6 — Results of comparisons between temp@&Q<C

In this scenario, the modulo check can only indicahether further checking is necessary or
not. If the comparison of the full primes is negatithen no further checking is necessary, e.g.
[X]Y] and [X|Z] have FPPs 6 and 10 respectively.oiher cases, more detailed checks are
required to ensure that doublets are in the samer.oifo be sure, we need to check every
doublet or event in CSQ1 against every doublevenein CSQ2. For each doublet comparison,
we check their temporal products; if these alwagécim and the operators always match, then

reduction is possible. For example:
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[X<Y].[Y<Z].[X<Z].[X|B] against [X<Y].[X|B]

Check [X<Y] and [X<Y]: -6 = -6, < = <» match

Check [Y<Z] and [X|B]: -15¢ -22=» no match

Check [X<Z] and [X]|B]: -1G¢ -22=>» no match

Check [X|B] and [X|B]: -22 = -22, | =P match

All doublets in the smaller CSQ match: CSQ1 cost&i$Q2, so CSQ1 is redundant.

ok 0N PE

There are some complications here, however. Fjirftyy CSQs may contain some unaffiliated
events; the events in the smaller CSQ must matehatyer CSQ, either in a doublet or as
another unaffiliated event. Also, when comparing tloublets, the operator makes a difference:
if the two doublets have the same temporal produgt,the one from the smaller CSQ is a
PAND while the other is a POR, then it still couatsa match (but not vice versa); if the two
doublets are both SAND but the temporal producterdonly in sign, this still counts as a

match.

As a more complex example:

[X&Y].[Y<Z].[X<Z].[X<B]  against [Y&X].[X|B]

Check [X&Y] and [Y&X]: ABS(-6) = ABS(6), & = &=» match

Check [Y<Z] and [X]|B]: -15£ -22=» no match

Check [X<Z] and [X]|B]: -1G¢ -22=>» no match

Check [X<B] and [X|B]: -22 = -22, « | but PAND subsumed by POR match

All doublets in the smaller CSQ match: CSQ1 cos&isQ2, so CSQ1 is redundant.

ok w0 DN PRE

Obviously, this temporal CSQ vs temporal CSQ chaghks more time consuming, but it is
necessary to ensure that the Absorption Law doply aqorrectly. If the doublets contained
events in different orders, e.g. if CSQ2 in thet lasample contained [B|X] instead, then

Absorption would not be possible.
Note the benefit of using the temporal products jariche products in this approach, however;

otherwise, a complete check of every doublet's tsyawder, and operator versus every other

doublet would be necessary all the time.
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4.5.6  Summary and limitations of the Euripides Algorithm

A concise summary of the Euripides algorithm i$alisws:

1 Binarboreal Stage Conversion of fault tree into binary form.

2 Flattening Stage Flattening of binary fault tree into HTF.

3 Encapsulation Stage Encapsulation and conversion of temporal gates datoblets.
4  Minimisation Stage Minimisation of cut sequences to obtain MCSQs.

4.1 Intra-CSQ Minimisation Reduction within cut sequences.

4.2 Inter-CSQ Minimisation Reduction between cut sequences

The Euripides algorithm can cope with the majodfypossible reductions and contradictions
that you might expect to find in a temporal fatdiet However, as explained earlier, there is also
the possibility of Completion-based reductions, éimese are much harder to detect. Section
4.4 .4 described one possible way of improving the deiecof Completion possibilities by
removing all AND gates from the fault tree and cenivng them into PANDs and SANDs
according to the Conjunctive Completion Law. Thelgem with this approach (other than the
complexity) is that it results in a large numbeMESQs, almost all of which will be temporal,
because it cannot recombine the results accordintheg Completion laws. Thus, although
Euripides can remove all contradictions and masgéotypes of redundancies, it still struggles

to produce results in the most concise form possibl

An alternative algorithm is presented next in sat#.6. Archimedes. Archimedes is able to
detect and solve the subtle Completion-based rimhsctout is even less efficient from a
performance standpoint than Euripides. As will kel@ned later, they are best used in concert,

as each is able to complement the strengths ankhesses of the other.

Euripides suffers from other shortcomings as wellvever. The ELRAFT-style prime number
approach, with its temporal products and full/tporeme products, offers great advantages
during comparison of doublets and especially duoagparison of CSQs, but it has a number
of disadvantages too. Firstly, it requires a sgtrohe numbers that can be assigned to all basic
events; if the number of basic events is very lattgen a large amount of prime numbers will be
required (though the penalty for this can be offsepre-generating a sufficiently large set of
prime numbers). Secondly, for large CSQs contaimimany doublets or events, the prime
product can be excessively large, sometimes exogeitie capacity of common computer
numeric representations (both normal limits foegers and accuracy limits for floating point
representations). In these cases, the prime numb@uwkl require the use arbitrary precision

numbers, but doing so would have severe performamgkcations.
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If prime numbers are not used at all, then the arnhotichecking required for minimisation is
even greater. Although doublets make it easiereted possible reductions by representing all
temporal relations, they also increase the sizéh@fcut sequences substantially and (without
primes) require full combinatorial checking. Thiashproblematic performance implications,

particularly during inter-CSQ minimisation.

However, all of these issues must be balanced stgdie capabilities Euripides offers: without
the doublets and BTF, checking for potential reidumst and minimisations would require a
virtually infinite number of temporal laws coverimgnumerable possibilities. By reducing the
scope of the problem via encapsulating and reptieseall temporal relations as doublets, only
a finite number of laws are required (though thember of applications of these laws increases
as a result). These laws make it possible to datecbntradictions and most common types of

minimisation.
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4.6 Temporal Qualitative Analysis: Archimedes

"Eurekal"

- Archimedes, in his bath

4.6.1 Introduction to Archimedes

Archimede$' is the second Temporal Qualitative Analysis alfyoni in Pandora. It serves as
both an alternative and a complement to Euripitsereas Euripides is primarily a deductive
technique based on the application of temporal lagital laws, Archimedes is an inductive
technique that enumerates all possibilities by eoting the fault tree into an alternative form

(thus analogous to the BDD-style approach rathean the MOCUS-style approach).

The starting point of Archimedes is theecedence treewhich was described in Chapter 3. A
precedence tree is a representation of a brantinnedjne that shows all possible sequences for
a set of basic events. For example, the precedemedor three events X, Y, and Z is shown in
Figure 39. The root of a precedence tree is thmtsin where no events have occurred yet; its
children represent the various possibilities of wimght happen next, e.g. in this case, the
occurrence of X, Y, or Z, the occurrence of two réggesimultaneously (represented as a
simultaneous set {X, Y}), or the occurrence of thiiee events. Any events that have not yet
occurred are represented as a POR set. Thus {X§§¥Yiepresents the situation where X has
occurred and Y and Z have yet to occur. The tregimees to branch until all events have
occurred, so {X}|{Y, Z} will branch three times: {¥Y}{Z}, {XH{Z}{Y}, and {XKY, Z}.

The latter is a leaf node because all three eveaws occurred, whilst the first two each have an
additional child — {XKYHZ} and {XH{Z}Y} respecti vely. At each stage, the events gain a
sequence value indicating which simultaneous st tltcur in; thus for {X{Y, Z}, SX) = 1
while SY) andSZ) = 2.

An enumeration of all nodes in a precedence trgesgall possible cut sequences, while an
enumeration of all leaf nodes provides all cut seges in which every event occurs. These
nodes are equivalent to the rows of a TTT and aTCiEEpectively, and so the number of nodes
is given by the Fubini numbers (i.e. foevents, there are 2*Fubin)(nodes and Fubimj leaf

nodes).

Precedence trees are useful chiefly because tlosydpra methodical process for generating all

possible sequences for a set of events. For thsorg they are often used to generate TTTs.

21 The idea came to me in the shower, much like Anelies.
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However, in Archimedes, their importance lies ia fact they can serve as a starting point for a
Dependency Tree Whereas a precedence tree is a branching timtmeinating in the cut
sequences where all events occur, a dependencisteekgical tree designed to represent the
Completion Laws. Its leaf nodes are the nodes @fptiecedence tree for the same set of events
(known as thévasic temporal node¥, and it has one top node for each of those e\&ntsvn

as thesingleton node}.

The purpose of the dependency tree is to repredlepbssible cut sequences for a given set of
events, but whilst a precedence tree shows allitdessequences of all events in a set, a
dependency tree also shows all possible sequefe®iy possible subset of those events and
also shows all possible conjunctions of those evéamd subsets of those events). It is therefore
considerably larger than the precedence tree oohwhis based. The children for a given node
are provided by applying the Conjunctive Completioaw (for conjunctions) and/or the
Reductive Completion Law (for all nodes). It is pie for nodes — particularly the basic

temporal nodes — to be shared by multiple branches.
The key to understanding dependency trees isftalitaf the children of a given node are true,
then that node is true and the children are recun@onversely, if a given node is true, then all

of its descendants are also true (and redundamils €ach node is 'dependent’ on its children.

It is easier to understand a dependency tree withxample. Consider the dependency tree for

two events {X, Y} in Figure 40:
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==
XA, E}

——{XH{THI{E}

I—{K}{Y}{Z}

——{XHEZHI{T}

I—{X} {EH{T}

— {®H{Y, 2}

T {¥, E}

——{TH{H}I{E}

I—{Y}{X}{Z}

——{THEZ} {E}

I—{Y} {2} {¥}

— {TH{¥, 2}

——{®, THI{Z}
I—{X, THE}
——{E{X, T}
{2 X} {T}
I—{E}{K}{Y}
——{EH{THI{X}
{EH{THX}

—{EZH{¥, T}

——{¥, 2} {T}
{¥, EH{T}

T, 2} {x}

I—{Y, 2} {¥}

—{¥, T, 2}

Figure 39 — Precedence Tree for {X,Y,Z}
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H
——aMD: {¥, T} Compjurction of X and F
F—{X}{T} Segueanace of XN then F
T} {x} Seguence of Fobhen N
— ¥, T} Simul baneous set of N and F
— {X}{T} POR - XF
—{X}{T} Sequence of N thenn F
— ¥} 0T X cocurs, ¥ deoes not
T
—aMD: {¥, T} Capjurnction of N qnd F
—{X}{T} Seguence of N then F
{7} {¥} Sequentce of F tlhen N
— ¥, T} Simul taneous set of N and F
—{T}{X} POR - F1X
——{T} {¥} Seguence of F othen N
— T} . X ¥ oceurs, XN doss net

Figure 40 — Dependency Tree for {X, Y}

Although the trees for X and Y seem to be sepathgy, are in fact connected, as the nodes are
shared. The top nodes — the singleton nodes —s@mtréhe occurrence of a single event. These
are expanded using the second version of the Reducompletion Law (RCL), i.e. X X.Y

+ X]|Y. If there were three events, then each stoglevould have four children, e.g. for {X, Y,
Z}, X would have the children X.Y, X.Z, X|Y, and X| In this tree, conjunctions are then
expanded according to the Conjunctive Completiow I(&CL), whilst PORs are expanded
explicitly into a sequence — e.g. X<Y — and a niegat e.g. X.-Y. The reason for this use of

the dangerous NOT gate will be explained shortly.

In larger dependency trees, conjunctions and PO&®expanded further. In general, there are

five types of node in a dependency tree:

e Singletons

e Pure Conjunctions

e Hybrid Conjunctions

e Partial Temporal Nodes

e Basic Temporal Nodes
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Singletons, as explained above, represent the imrme of a single event. These are equivalent
to a cut set/CSQ containing one event. Pure cohpmgcontain a number of basic events but
no temporal relations; these are equivalent todstahcut sets. Hybrid conjunctions contain one
or more unaffiliated events in addition to somegenal relations and are equivalent to a normal
CSQ with unaffiliated events in it. Partial and iba@mporal nodes are equivalent to normal
CSQs with no unaffiliated events; partial tempanabdes contain only a subset of the total
number of events, whereas basic temporal nodes ichwdlways form the leaves of a

dependency tree and which are obtained from thévaleut precedence tree — use all the

events.

4.6.2 Evaluating a Dependency Tree

Dependency trees are used by evaluating them dorem expression. All nodes which are true
for that expression are flagged, and these flaggetes can then be collected to obtain the
results — a fully reduced temporal expression. déy@endency tree must contain each event that

occurs in the expression.

The first step in this process is to evaluate tgrassion for each of the basic temporal nodes
(BTNs). Because the BTNs are obtained from the vedgmt precedence tree, they are
guaranteed to represent every possible sequertbe avents in question. Therefore, they also
represenevery unique combination of sequence vallégs is evident from the fact that the
nodes of a precedence tree correspond to the rbasTdT. By using these sequence values,
any expression can be evaluated to determine itssmguence value, because every gate has a
function that returns its sequence value for givgnits (e.g. an AND gate returns the maximum
of its inputs, as long as all inputs are greatantB). This is effectively the same process as

building a TTT for the expression.

The difference comes from the way these valuesusee in the tree. For the purposes of the
dependency tree, the actual sequence value ievamd and only the truth value is required. For
each basic temporal node, if the expression is(iraenon-zero), then a flag is set, and if the

expression is false, then the flag is unset.

At this point it is necessary to explain the usahef NOT gates in the basic temporal nodes.
Because each BTN must represent a unique comhinatisequence values, equivalent to a
single row of a TTT, it is necessary to differetgidetween a POR that is true because its
events occurred in a given sequence and a PORsthaie because only its priority event

occurred. For example, X|Y is true for two rowstod TTT for X and Y: the row where X = 1
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and Y = 2, and the row where X =1 and Y = 0. Falependency tree to function, its BTNs
must be true in exactly one case, so the POR mufdée precedence tree (like X|Y) are treated
as if the non-priority events (i.e. the right-mastents) do not occur. The other case is
represented already by the PAND. Thus for the mepm®f the leaf nodes of the dependency
tre€?, XY means X =1 and Y = 0 and X<Y means X =1 and 2. These NOT-based basic

temporal nodes do not appear in the final resinistéead they are converted back to PB&Rs

Then a depth-first traversal of the dependency isgeerformed. At each step, the number of
child nodes with the truth flag set is countedallf children of a node have their flag set, then
the parent node has its flag set too. For exanifpdd, of X<Y, X&Y, and Y<X are true, then

X.Y is also true. The truth value thus propagateshe dependency tree until it either reaches

the singletons or until not all children are true.

At this point we can collect the results, eitherpast of the same traversal (remembering, for
every false node, every child node with its flag) s& by performing a second depth-first
traversal, by collecting the top-most flagged nodHsis process is known ampturing the

flags When we select a node, we flag its children (r&igely) as being redundant. If nodes are
properly shared then there should be no duplicatibgrwise any duplicates will have to be

separately removed.

As an example of this process, consider the exjore3gY + X&Y + Y<X — the constituents of
the RCL. First, we check the BTNSs:

2tis important to note that PORs may occur elsewlire a dependency tree besides the leaf nodes, and
in those cases they behave normally and do nohievdOT gates.

% This is not strictly necessary because in this &ohisituation the NOT does not introduce non-
coherence. However, a NOT can never occur in aralpey tree without its corresponding PAND (e.g.
X.=Y cannot occur unless X<Y also occurs) becaudg @ NOT-based expression could cause this (e.g.
X.=Y as an input). Thus it makes sense to combirentboth as a POR instead.
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X Y BTN X[Y + X&Y + Flag
Y<X

0 0 =X.AY 0 False
0 1 {Y}.=X 0 False
1 0 {X}.=Y 1 True
1 1 {X, Y} 1 True
1 2 {XKY} 1 True

2 1 {YKX} 2 True

As can be seen, four of the BTNs are true (anditib@tion where no events occur is ignored).
Of the three second-level nodes in the {X, Y} degemcy tree, two are true:

« AND:{X, Y} - all three children are true: {X}{Y}, {Y X}, and {X, Y}
e POR:AX}{Y} - both children are true: {X}¥Y} and {X} .=Y
e PORAY}{X} - only one child is true: {YH{X}

Of the singletons, both children of {X} are truamely AND:{X, Y} and POR:{X}|{Y}. Thus
{X} is true also and has its flag set. The statfigsh® dependency tree can be seen better in

Figure 41.:

x b

ZAVA

=Y oY Y%

AVAY

Figure 41 — Dependency tree for {X, Y} with flags s

The grey node (i.e. {X}) has its flag set, whileetpartially shaded nodes have flags set but are

also redundant (because they are descendants df TK¢ hexagonal shaped nodes are BTNs.
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A depth-first traversal immediately gives us {X} asgrue node, so we flag all of its descendants
as redundant. Moving to {Y}, which is not true, weove down to its children, AND:{X, Y}
(which has been flagged as redundant) and POR:}§}{{vhich was not true). Moving down
POR:{Y}|{X} reveals one true child ({YHX}) but tha is also set as redundant. Thus only one

node is selected for the results list: {X}. This@lgives us the fully reduced result.

Note that there is an implicit disjunction betweshnodes in the dependency tree, as each
represents a different possible cut sequence,maltfple nodes are selected, they are separated
by ORs. For example, if we were to feed the exjwass|Y + X&Y + Y|X into the dependency
tree, all nodes would be true, including both stths. Thus the result would be X + Y (which

is the result of the Disjunctive Completion Law).

4.6.3 Creating Dependency Trees

Unfortunately, creating a dependency tree is cemallly more complex than evaluating one.
Dependency trees can be created in one of two Wdyes.crudest way (a kind of 'brute force'
method) is to generate every possible node and geenhrough and assign children by
evaluating each one as an expression and compiaraggainst every other possible node; all
true nodes are added as children. Although thigoamh is guaranteed to represent every
possible dependency, it also leads to larger te@essary dependency trees as nodes are added
repeatedly at every level of the hierarchy. Formepla, in the {X,Y} dependency tree, rather
than having just two nodes, each singleton woulatlsx nodes, e.g.:

X

I

+---AND:{X, Y} Conjunction of X and Y

I

+-- {XH{Y} X before Y

I

+--{YHX} Y before X

I

+---{X, Y} X and Y occur simultaneously

I

+--{X}{Y} X occurs before Y or Y does not occur
I

+---{X}.=Y X occurs and Y does not occur
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The four BTNs here would also be repeated underAN® and the POR too, leading to
unnecessary duplication. This simplistic approachlso massively inefficient as every single
possible node must be evaluated for every possduieence (i.e. twice the Fubini number). For

x nodes ana events, the worst case i€ Fubini(n) — a very large number for largeandn.

A far superior approach is to build the tree toprddoy applying temporal laws at each stage as
necessary. As already mentioned, this process $eagith the singletons by applying the
Reductive Completion Law: for every other eventhia tree set, a conjunction and a disjunction
are created, thus for {X, Y}, the singleton {X} hasvo children AND:{X, Y} and
AND:{X}[{Y}. For a tree set of n nodes, there will be A(- 1) children for the singletons; half

of these will be order 2 pure conjunctions and bater 2 PORs.

Pure conjunctions are expanded according to bahCQbnjunctive Completion Law and the
Reductive Completion Law. The RCL part is easy fmlldws the same procedure used for the
singletons; namely, for every remaining event natt pf the conjunction, add a new pure
conjunction child and a new POR child. For examftle,RCL children for AND:{X, Y} out of
a total set of {X, Y, Z} would be AND:{X, Y, Z} andAND:{X, Y}|{Z}. The CCL children are,
however, somewhat more complex. Although generatiagchildren for an order 2 conjunction

is simply an application of the basic CCL, for reglorders, the process is more complex.

To generate the CCL contributors for a pure corjoncof sizen, we need to represent every
possible sequence of allevents that can lead to that conjunction. Althotiag could be done
by generating the precedence tree for thosgents and taking the leaf nodes, this would skip
any intermediate hybrid conjunctions, e.g. X.(Y<4d) AND:{X,Y,Z}. Generating hybrids can
be done mechanically by taking each of thevents individually and inserting it in every

possible position, e.g. for AND:{X, Y, Z}, using &s the first ‘temporal' event:

Y.(Z<X) X.(Z<Y)
Y.(Z&X) X.(Z&Y)
Y.(X<2) X.(Y<2)

This would then be repeated with X and then Y a&s'tbmporal' event. Fortunately there is
some overlap, e.g. when using X as the ‘temporafite (Z<X).Y for instance has already been
generated. Hybrids are further expanded until afi-temporal events are removed. The same
sort of process is used if more than one una#fitladvent remains, taking one unaffiliated event

at a time and inserting it into every possible posj e.g. for A.B.(C<D):
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A.(B<C<D)  B.(A<C<D)
A.(B&C<D) B.(A&C<D)
A.(C<B<D)  B.(C<A<D)
A.(C<B&D) B.(C<A&D)
A.(C<D<B)  B.(C<D<A)

When only one unaffiliated event remains, the spreess is applied, but this time the result is
a set of partial or basic temporal nodes; for examior X.(Y<Z) out of {X, Y, Z}, the five
BTNs are:

X<Y<Z
X&Y<Z
Y<X<Z
Y<X&Z
Y<Z<X

But if the tree set was {W, X, Y, Z} these wouldlpibe partial temporal nodes.

Note that every hybrid contains only one tempoegjugence; while it is technically possible for
multiple temporal sequences to exist in the santithyconjunction, e.g. (A<B).(C<D), the
single sequence form simplifies the results by Bnguhat only one set of temporal relations is
given at a time; multiple sequences can be corgusatause the temporal relations between the
individual events is not always clear, e.g. theraa relation between B and C in (A<B).(C<D),

unlike a simple sequence such as B<C<D.

Hybrids are also expanded according to the RCInyf anused events remain. For example, if

we have A.(B<C) and the event D remains unused;amealso create two additional children:

A.D.(B<C)
A.(B<C|D)

Hybrid PORs like this are treated as hybrid confiams during CCL expansion. Pure PORs like
those generated as children of the singletons »grangled according to the RCL too, e.g. the
children of {X}|{Y} out of {X, Y, Z} are:

Z.(X]Y)

X|Y|z
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The former is treated as a hybrid conjunction wkile latter is either a BTN or is expanded
further according to the RCL. Any other partial foral nodes are expanded according to the
RCL into a hybrid conjunction and a POR form, éog.(A<B) out of {A, B, C}:

C.(A<B)
A<B|C

Thus, by following these processes, all types afeso— pure and hybrid conjunctions, partial
and basic temporal nodes — can be generated medifigdiUltimately, this process always
culminates in the BTNs, which should be shared stoed separately in a list. This is to
facilitate the evaluation processes, where theesgion has to be evaluated for every BTN. The

progression of nodes is as follows:

Singletons

Partial Temporal

Pure Conjunction

v

Basic Tempaoral [« Hyhbrid Conjunction Hyhbrid Conjunction
Partial Temporal | Basic Tempaoral

Figure 42 — Progression of nodes when creating Depacy trees

4.6.4 Summary and limitations of the Archimedes algorithm

The Archimedes algorithm can be concisely summarisefollows:

1 Generate a precedence tree for the events in tifteriee expression.

2 Using the nodes of the precedence tree as the Bjedgrate a dependency tree.

2.1 Starting with the singletons, generate two childf@ne POR, one AND) per additional
event.

2.2 For each POR, generate a larger POR and a hybpdradRCL.

2.3 For each hybrid, generate children according to @@d, if any unused events remain, as
per RCL.

2.4 For each pure conjunction, generate hybrid childzecording to CCL and larger pure
conjunctions and PORs as per RCL (if unused eventsin).

2.5 For each partial temporal node, apply RCL to obksibrid conjunction and POR.
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2.6 Repeat until BTNs are reached.

3 Evaluate expression for each BTN, setting trutp ffahe sequence value of the expression
IS non-zero.

4 Perform a depth-first traversal of the tree; if @iildren of a node are flagged, flag the
node and set children (recursively) as redundant.

5 Perform a depth-first traversal to find top-mosgfjed (but non-redundant) nodes.

5.1 Remove duplicates if necessary.

The Archimedes algorithm is capable of producingotly minimised cut sequences, including
application of the Completion Law to reduce thaltetumber of MCSQs where necessary. If
the tree is created correctly using shared noteg, o duplicates should be added to the results

and thus no explicit law-based reduction (as irifidees) is necessaty

However, the disadvantage of Archimedes' induciiymroach is massive computational
expense. Because a dependency tree represents(evatynost every) possible cut sequence,
including subsets of the original set of eventds itnevitably very large, especially for large
numbers of events. The number of nodes createdemtay than the double Fubini number
required to generate a TTT or precedence treadditian, evaluation of the tree uses TTT-style
sequence values, which can be time consuming fge laxpressions (such as those used to
represent large fault trees). Although Archimedestill very fast for small numbers of events
(e.g. 3 or 4), for larger numbers of events, théikiunumbers involved rapidly reduce

performance to unacceptable levels.

Despite the performance problems, Archimedes oweesothe limitations inherent in the
Euripides algorithm: namely, its inability to haadiCompletion reduction satisfactorily.
Furthermore, most of its conceptual complexitynshe construction of the dependency tree

and, unlike Euripides, evaluation is merely a reddy simple tree traversal.

There are ways to overcome the limitations of @dtjorithms, however — in particular, they can

be used together to maximise their strengths andmise their weaknesses.

4 The exception to this is the case where both PERRAND BTNs are flagged, e.g. {X}|{Y} and
{XHY}. In this case the PAND BTN can be discardelduyt this is easily accomplished by linking these
types of BTNs together — if {X}|{Y} is flagged thefX}{Y} is redundant. Note that this can only occur
with BTNs.
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4.7 Archipides/Euripemedes — Using both algorithms together

Euripides and Archimedes are two very differenthods of solving the same basic problem:
the reduction of Pandora fault trees to obtain maticut sequences. Euripides is a law-based
deductive method that manipulates the expressibat represent the fault tree to remove
contradictions and redundancies, whilst Archimedes tree-based inductive method that
evaluates all possible cut sequences and ignoose that are redundant. Although both are
capable of producing minimal cut sequences (wittiage caveats for Euripides), both also

suffer from performance issues and stumble atioetitaes.

Fortunately, when used together in concert, mangheif disadvantages can be alleviated to a

degree.

4.7.1 Obtaining the initial cut sequences with Euripides

Euripides is very effective at obtaining cut sequeen By converting a fault tree into Binary
Hierarchical Temporal Form using a small numbeBoblean and temporal laws, it effectively
produces the complete set of cut sequences repedsey the fault tree. By then creating
doublets and checking for contradictions and aliswrpreductions, it can also reduce the
number of cut sequences quite dramatically. Euvefgl main problems stem from the

difficulties of inter-CSQ minimisation, particulsgrCompletion-based minimisation.

By creating the set of cut sequences, removing aowtradictions and redundant
doublets/events from within the cut sequences, @artbrming a simple check for absorption
redundancies amongst the cut sequences, Euripalesetatively simply produce a set of
minimised or partially minimised cut sequencesslIhot necessary to check for Completion-
based reduction at this point as the main goab isstluce the size of the cut sequences and

number of events in them.

The base temporal form expression representingligjenction of those MCSQs can then be

used as the input expression to Archimedes.

4.7.2 Analysing the cut sequences separately with Archimedes

Archimedes' main problem is that its performancerekeses dramatically with each extra event.
A tree for 3 or 4 events is mucmuchsmaller than a tree for 6 or 8 events, as therfubi
numbers indicate. Therefore, it is imperative toitithe number of events needed to create the

dependency trees. This can be achieved by examihendICSQs produced by Euripides and
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grouping those that share events together. Eaaipgeothen analysed separately. Euripides's
prime product technique also makes it very easghieck to see which events are present in

which other cut sequences.

For example, consider the following MCSQs:

X<Y + X&Y + Y<X + A|B

The first three all share two events, X and Y. Thath uses two more events, A and B, which
are not used elsewhere. Thus the first three C8@s dne group with the event set {X, Y} and
the other forms a second group (albeit of one C8i()) the event set {A, B}. Archimedes can
then be employed twice: first with a dependence fiex {X, Y} and then with a dependency
tree for {A, B}. The total nodes created for bothds is still far less than the number of nodes
necessary to create a single dependency tree docdmbined event set {X, Y, A, B}. The

Fubini number fon = 2is just 4, whilst the Fubini number far= 4 is 75.

Once Archimedes has produced its results for eamhpgof MCSQs, the results can simply be

combined.

4.7.3 Modularisation

The principle involved in combining Euripides ancchimedes is similar to the idea inherent in
the modularisation algorithms used in standard BR4 in temporal FTA approaches like the
DFT methodology. By limiting the scope of the pebl we make it easier for the algorithms to
solve it. Euripides relies on Archimedes' supermapabilities for detecting and reducing
instances of Completion whilst Archimedes reliesomipides to reduce the problem space to a

manageable size.

Modularisation can, however, be employed direatlyPandora in a similar way to how it is
used in DFTs. In the Dynamic Fault Tree approacbdutarisation is used to detect modules
that contain temporal gates and those that do@olkafi & Dugan, 1997). Temporal modules
are then subjected to Markov analysis while stat@dules are analysed by traditional FTA

methods (in DFTs, the BDD approach is normally yised

The linear time modularisation algorithm (LTMA) @utuit & Rauzy (1996) described in
section2.2.4 can be used for the same purpose in Pandora. TMALdoes not distinguish
between different types of gates, only whetheratrtiney have been visited yet. Thus it can still

be used to determine the modules of Pandora faas.t Even before the fault tree is converted
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into HTF by Euripides, independent sub-trees caiéatified and it is a simple matter to check
whether or not they contain any temporal gatethdy do not, these can be analysed separately
according to traditional algorithms (e.g. MOCUSMICSUP) or even by Euripides (since it
includes standard Boolean analysis capabilitieaddition to its temporal capabilities). The
results for those modules can then be used direstlynputs for any higher modules or, if
necessary, as inputs for temporal modules. Any ¢teaipmodules can then be analysed by

Euripides & Archimedes.

As a very simple example, consider the fault teggasented by the following expression:
A&(B|D + B.D) + (C|(E.(F+E)))

This fault tree would produce four modules (notuding the top OR):

A&(B|D + B.D)

(B|D + B.D)

C|(E.(F+E))
(E.(F+E))

A WO DN PP

The fourth module is static and can be analysatgusormal FTA techniques. It would produce
two cut sets (E.F + E.E) which would minimise tetjopne MCS: E. This can then be fed as an
input to the third module, which is a top-level oral module. In this case Euripides would
quickly determine that the only MCSQ is C|E. Beeatlgere is only one, Archimedes would be
unnecessary. (Alternatively, since there is onlg emall CSQ, Archimedes could also be used
instead of Euripides). This MCSQ is final, since third module is a top-level one and we

know — because it is a module — that neither Cehare used elsewhere in the fault tree.

The first module, however, is a more complex toldemporal module containing another
temporal module, the second one. Euripides couldids®l to determine the initial CSQs of
module #2 but in this case the MCSQs are alreadgemt. Archimedes would preferably be
used to determine that these two MCSQs can be eddarcording to the RCL to obtain a single
MCSQ: B. When fed into the first module, this woplebduce a larger MCSQ: A&B. As this is

already minimal, it would not require any analysjsEuripides or Archimedes.

Thus the final results would simply be A&B + C|Esiblg modules to analyse this tree has
meant that Archimedes only had to analyse a twateset (B and D) and Euripides only had to
determine one CSQ (i.e. C|E). If both techniques een used to analyse the entire tree, it

would have been much more expensive. Euripidesdiinst have to generate the CSQs:
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[A&B].[A|D].[B|D].[A&B].[B&D].[B&B].[B&D].[B|D].[B|
[A&B].[A|D].[B|D].[A&B].[B&D].[D<B].[B&B].[B|D].[B|
[A&B].[A|D].[B|D].[A&B].[B&D].[B<B].[B&D].[B|D].[B|
[A&B].[A|D].[B|D].[A&B].[D<B].[B&B].[B&D].[B|D].[B|
[A&B].[A|D].[B|D].[A&B].[D<B].[D<B].[B&B].[B|D].[B|
[A&B].[A|D].[B|D].[A&B].[D<B].[B<B].[B&D].[B|D].[B|
[A&B].[A|D].[B|D].[A&D].[B<D].[B&B].[B&D].[B|D].[B]
[A&B].[A|D].[B|D].[A&D].[B<D].[D<B].[B&B].[B|D].[B|
[A&B].[A|D].[B|D].[A&D].[B<D].[B<B].[B&D].[B|D].[B|
[A&B].[A|D].[B|D].[B|D]

+ [A&B].[B&D].[D<B]

+ [A&B].[D<B].[D<B]

+ [A&D].[B<D].[D<B]

+ [A&B].[B&D].[B&D]

+ [A&B].[D<B].[B&D]

+ [A&D].[B<D].[B&D]

+ [C|E].[CIE]

+ [C|E].[CIE]

+ [C|F].[C|E]

+ [C|F].[C|E]

And then minimise them as much as possible:

After intra-CSQ reduction:
[A&B].[A|D].[B|D]

+ [A&B].[D<B]

+ [A&B].[B&D]

+ [C|E]

+ [C|E]

+ [C|F].[C|E]

+ [C|F].[C|E]

After inter-CSQ reduction:
[A&B].[A|D].[B|D]

+ [A&B].[D<B]

+ [A&B].[B&D]

+ [C|E]

D].[D|D]
D].[D|D]
D].[D|D]
D].[D|D]
D].[D|D]
D].[D|D]
D].[D|D]
D].[D|D]
D].[D|D]

+ + + 4+ + + 4+ o+ o+
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These would then be fed to Archimedes in two gratips first three and the last one), which
would create two dependency trees (or one, if thgls MCSQ at the end was ignored).
Archimedes would produce a three-event dependeaeyfdr {A,B,D} and give the only result:
{A,B} (i.e. A&B).

Thus the final result would be the same (namely,BA& C|E), but the process required to
achieve it would be much more costly without modul@volving the reduction of 20 CSQs
(some of order 10) and the generation of a threstedependency tree. Clearly, modularisation

can provide significant benefits in Pandora, jgsit @an in other techniques.
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4.8 Example

As a larger example of how a temporal fault tree ba qualitatively analysed, consider the

simple example system used throughout the thesis:

¥
m
—
¥

Figure 43 — The example system... again

At the end of Chapter 3, we annotated this systeimguPandora’'s temporal gates to obtain the
following temporal expression, representing thdtfaee for the system. O-D is the top event

and represents an omission of output from the syste

O-D = failureS1 < (failureA + O-I)
+ failureS1 & (failureA + O-I)

+ (failureB + O-l) < (failureA + O-)
+ (failureB + O-l) & (failureA + O-l)

+ (failureS2 < ((failureA + O-I) < (failureB + O-I) )
+ (failureS2 & ((failureA + O-I) < (failureB + O-I) )
+ (failureC + O-I).((failureA + O-l)<(failureB + O- 1))

We can now attempt to perform a temporal qualigatimalysis on this expression to obtain the
minimal cut sequences. For the purposes of illtisttamodularisation will not be used so that

the full scope of minimisation using Euripides akrdhimedes can be observed.

4.8.1 Applying Euripides

The first thing we have to do is to apply Euripid&ke first stage of that is the Binarboreal
Stage, i.e. converting the fault tree into binaygnd. Fortunately, it is almost already in binary
form; only the top level OR is not in binary, afdstcan be omitted in this case (since it is an

OR already in the top position).
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failureS1 < (failureA + O-I)
+ failureS1 & (failureA + O-I)
+ (failureB + O-l) < (failureA + O-I)
+ (failureB + O-l) & (failureA + O-l)

+ (failureS2 < ((failureA + O-I) < (failureB + O-I) )
+ (failureS2 & ((failureA + O-I) < (failureB + O-I) )
+ (failureC + O-I).((failureA + O-l)<(failureB + O- 1))

Next is the Flattening Stage, which flattens theltfa&ree into Binary Hierarchical Temporal

Form. For this stage we need a number of lawsawaage the gates properly.

AND Laws
X(Y+Z2) < XY +XZ
(Y+2).X = XY +X.Z

POR Laws

X|(Y+Z) = X|Y.X|Z

(Y+Z)[X = Y|X+2Z|X

X|(Y.2) = X|Y+X|Z

(Y.2)IX = Y|X.Z|X

X|[(Y|Z) = X]Y + X.(Z<Y) + X.(Z&Y)
YIDIX = Y|Z.YIX

X|[(Y&Z) = X.(Y|Z) + X.(Z|Y) + X|Y + X|Z
(Y&Z)IX = Y|X.Z|X.Y&Z

X|(Y<Z) < X|Z+ X]|Y + X.(Z<Y) + X.(Y&Z)
(Y<Z)IX = Y<Z.Z|X

PAND Laws

X<(Y+Z) = X|Z.X<Y + X|Y . X<Z
(Y+2)<X = Y<X + Z<X

X<(Y.2) = Y.(X<Z)+ Z.(X<Y)
(Y.2)<X = Y<X.Z<X

X<(Y|Z) = X|Y.Y|Z

(Y|2)<X = Y<X.Y|Z

X<(Y<Z) < X<Z.Y<Z

(Y<Z2)<X = Y<Z.Z<X
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X<(Y&Z) = X<Y.X<Z.Y&Z
(Y&Z)<X « Z<X.Y<X.Y&Z

SAND Laws

X & (Y+Z) = (X&Y).(Y&Z) + (X&Y).(Y|Z) + (X&Z).(Z|Y)
(Y+Z) & X = (X&Y).(Y&Z) + (X&Y).(Y|Z) + (X&Z).(Z|Y)
X&(Y.Z) = (X&Y).(Y&Z) + (X&Y).(Z<Y) + (X&Z).(Y<Z)
Yz & X o (YX)(Z&X)  +  (Z<X).(Y&X)  +
((X&Y).(X&Z)).(Y&Z)

X&(Y[Z) = ((X&Y) . (Y]2)) . (X|2)

(Y|Z) &X = X&Y.(Y|2)

X&(Y¥Y<Z) = (X&Z.Y<Z).Y<X

(Y<Z) & X = (Y<Z.Z&X).Y<X

X & (Y&Z) = ((X&Y).(X&2)).(Y&Z)

(Y&Z) & X = ((X&Y) . (X&2)) . (Y&Z)

In the first branch, we need to rearrange it so e OR is uppermost. For this we can use the
law X<(Y+2Z) = X|Z . X<Y + X|Y . X<Z:

failureS1 < (failureA + O-I)

= failureS1|failureA . failureS1<O-| +

failureS1|O-I . failureS1<failureA

The second branch can be rearranged using a SANMD.&a X & (Y+2Z) = (X&Y).(Y&Z) +
(X&Y).(Y|2) + (X&2).(Z]Y):

failureS1 & (failureA + O-I)

o failureS1 & failureA . failureA & O-1 +
failureS1 & failureA . failureA | O-l +
failureS1 & O-I . O-1 | failure A

Next, the third branch uses two PAND laws, inclgdiff+Z)<X = Y<X + Z<X:
(failureB + O-I) < (failureA + O-I)

= failureB < (failureA + O-I) +
O-1 < (failureA + O-)
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= failureB|failureA . failureB<O-I +
failureB|O-I . failureB<failureA +
O-l|failureA . O-I<O-I +
O-1|O-I . O-I<failureA

The next branch is similar but makes use of andd#&D law, (Y+Z) & X = (X&Y).(Y&Z)
+ (X&Y).(Y|2) + (X&2Z).(Z]Y):

(failureB + O-l) & (failureA + O-1)

= (failureA + O-l) & O-1 . O-I & failureB +
(failureA + O-l) & O-1 . O-I | failureB +
(failureA + O-l) & failureB . failureB | O-I

o O-1 & O-l . O-1 & failureA . O-1 & failureB +
O-1 & O-1. O-l | failureA . O-1 & failureB +
O-1 & failureA . failureA | O-1. O-I & failureB +
O-1 & O-1 . O-l & failureA . O-I | failureB +
O-1 & O-1. O-l | failureA . O-I | failureB +
O-1 & failureA . failureA . O-1 | failureB +
failureA & O-I . O-l & failureB . failureB | O-1 +
failureA & O-I . O-I | failureB . failureB | O-I +
failureA & failureB . failureB | O-I . failureB | O -l

The fifth branch makes use of the PAND rules agaisluding some new ones, such as
X<(Y.Z2) = Y.(X<Z) + Z.(X<Y), X<(Y|Z2) = X|Y .Y|Z, and X<(Y<Z)= X<Z.Y<Z:

(failureS2 < ((failureA + O-1) < (failureB + O-l)))

= failureS2 < (failureA < (failureB + O-1)) +
failureS2 < (O-1 < (failureB + O-l))

= failureS2 < (failureA|O-I1 . failureA<failureB) +
failureS2 < (failureA|failureB . failureA<O-I) +
failureS2 < (O-l|failureB . O-1<O-Il) +
failureS2 < (O-1|O-I . O-I<failureB)

= failureA|O-I . failureS2 < (failureA<failureB) +
failureA<failureB . failureS2 < (failureA|O-I) +
failureA|failureB . failureS2 < (failureA<O-I) +
failureA<O-I . failureS2 < (failureA|failureB) +
O-l|failureB . failureS2 < (O-I<O-I) +
O-1<O-l . failureS2 < (O-l|failureB) +
O-1|O-1 . failureS2 < (O-I<failureB) +
O-I<failureB . failureS2 < (O-1|O-I)
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The sixth branch is somewhat larger and expanéislas/s:

failureA|O-I . failureS2<failureB . failureA<failur
failureA<failureB . failureS2|failureA . failureA|O
failureA|failureB . failureS2<0O-I . failureA<O-I| +
failureA<O-I . failureS2|failureA . failureA|failur
O-l|failureB . failureS2<0O-1 . O-I<O-I +

O-1<0O-1 . failureS2|O-I . failureA|failureB +
O-1|O-I . failureS2<failureB . O-I<failureB +
O-I<failureB . failureS2|O-I . failureA|O-I

(failureS2 & ((failureA + O-I) < (failureB + O-l)))

<

failureS2 & (failureB + O-I) .

(failureA + O-l) < (failureB + O-I) .
(failureA + O-I) < failureS2

failureS2 & failureB . failureS2 & O-I .
(failureA + O-I) < (failureB + O-I) .
(failureA + O-l) < failureS2 +
failureS2 & failureB . failureB | O-I .
(failureA + O-I) < (failureB + O-I) .
(failureA + O-l) < failureS2 +
failureS2 & O-I . O-1 | failureB .
(failureA + O-I) < (failureB + O-I) .
(failureA + O-l) < failureS2

failureS2 & failureB . failureS2 & O-I .
failureA < (failureB + O-I) .

failureA < failureS2 +

failureS2 & failureB . failureS2 & O-I .
O-1 < (failureB + O-I) .

failureA < failureS2 +

failureS2 & failureB . failureS2 & O-I .
failureA < (failureB + O-I) .

O-I < failureS2 +

failureS2 & failureB . failureS2 & O-I .
O-1 < (failureB + O-I) .

O-l < failureS2 +

failureS2 & failureB . failureB | O-I .
failureA < (failureB + O-I) .

failureA < failureS2 +

failureS2 & failureB . failureB | O-I .
O-1 < (failureB + O-I) .

failureA < failureS2 +

eB +

-l +

eB +
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failureS2 & failureB . failureB | O-I .
failureA < (failureB + O-I) .

O-I < failureS2 +

failureS2 & failureB . failureB | O-I .
O-1 < (failureB + O-1) .

O-l < failureS2 +

failureS2 & O-I . O-I | failureB .
failureA < (failureB + O-I) .

failureA < failureS2 +

failureS2 & O-I . O-1 | failureB .

O-1 < (failureB + O-I) .

failureA < failureS2 +

failureS2 & O-I . O-1 | failureB .
failureA < (failureB + O-I) .

O-I < failureS2 +

failureS2 & O-I . O-I | failureB .

O-1 < (failureB + O-I) .

O-| < failureS2

failureS2 & failureB . failureS2 & O-| .

failureA | failureB . failureA < O-I .

failureA < failureS2 +

failureS2 & failureB . failureS2 & O-I1 .

failureA | O-1 . failureA < failureB .

failureA < failureS2 +

failureS2 & failureB . failureS2 & O-| .

O-1 | failureB . O-I < O-I .
failureA < failureS2 +

failureS2 & failureB . failureS2 & O-I .

O-1] O-l . O-l < failureB .

failureA < failureS2 +

failureS2 & failureB . failureS2 & O-I .

failureA | failureB . failureA < O-I .
O-l < failureS2 +

failureS2 & failureB . failureS2 & O-| .

failureA | O-1 . failureA < failureB .
O-l < failureS2 +

failureS2 & failureB . failureS2 & O-1 .

O-1 | failureB . O-I < O-I .
O-| < failureS2 +

failureS2 & failureB . failureS2 & O-| .

O-1 | O-I . O-l < failureB .
O-l < failureS2 +
failureS2 & failureB . failureB | O-I .
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failureA | failureB . failureA<O-I .
failureA < failureS2 +

failureS2 & failureB . failureB | O-I .

failureA | O-1 . failureA < failureB .

failureA < failureS2 +

failureS2 & failureB . failureB | O-I .

O-1 | failureB . O-I < O-I .

failureA < failureS2 +

failureS2 & failureB . failureB | O-I .

O-1] O-l . O-l < failureB .
failureA < failureS2 +

failureS2 & failureB . failureB | O-I .

failureA | failureB . failureA < O-I .
O-l < failureS2 +

failureS2 & failureB . failureB | O-I .

failureA | O-1 . failureA < failureB .
O-l < failureS2 +

failureS2 & failureB . failureB | O-I .

O-1 | failureB . O- < O-I .
O-| < failureS2 +

failureS2 & failureB . failureB | O-I .

O-1 | O-l . O-l < failureB .

O-l < failureS2 +

failureS2 & O-I . O-1 | failureB .
failureA | failureB . failureA < O-I .
failureA < failureS2 +

failureS2 & O-I . O-1 | failureB .
failureA | O-1 . failureA < failureB .
failureA < failureS2 +

failureS2 & O-I . O-1 | failureB .
O-1 | failureB . O-I < O-I .

failureA < failureS2 +

failureS2 & O-I . O-1 | failureB .
O-1] O-l . O-l < failureB .

failureA < failureS2 +

failureS2 & O-I . O-1 | failureB .
failureA | failureB . failureA < O-I .
O-I < failureS2 +

failureS2 & O-I . O-1 | failureB .
failureA | O-1 . failureA < failureB .
O-l < failureS2 +

failureS2 & O-I . O-I | failureB .
O-1 | failureB . O- < O-I .
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O-I < failureS2

failureS2 & O-I . O-I | failureB .
O-1] O-I . O-l < failureB .

O-I < failureS2

The seventh branch is fortunately somewhat simpler:

(failureC + O-I).((failureA + O-l)<(failureB + O-I) )
= failureC . ((failureA + O-l)<(failureB + O-))) +
O-1 . ((failureA + O-l)<(failureB + O-I)))

= failureC . failureA < (failureB + O-I) +
failureC . O-1 < (failureB + O-I) +
O-1 . failureA < (failureB + O-I) +
O-1. O-l < (failureB + O-I)

= failureC . failureA | failureB . failureA < O-1 +
failureC . failureA | O-I . failureA < failureB +
failureC . O-1| failureB . O-1 < O-l +
failureC . O-1| O-1 . O-I < failureB +
O-1 . failureA | failureB . failureA < O-1 +
O-1 . failureA | O-I . failureA < failureB +
O-1. O-l | failureB . O-1 < O-I +
O-1. O-1] O-1. O-I < failureB

The next step is to convert these CSQs into dasiblettunately, thanks to the flattening laws
used, they are already prepared and in most casebe converted directly into doublets. In

some cases, additional doublets are generateddatgdo the Law of Extension, e.g.:

failureS1 & failureA . failureA & O-I +
failureS1 & failureA . failureA | O-l +
failureS1 & O-I . O-I | failure A

>

[failureS1 & failureA] . [failureA & O-I] . [failur eS1&0O-] +
[failureS1 & failureA] . [failureA | O-I] . [failur eS1|0O-]+
[failureS1 & O-1] . [O-I | failureA] . [failureS1 | failureA] +

Finally, we can begin the Minimisation Stage, stgrivith intra-CSQ minimisation.

The first branch has no redundancies so remains:

[failureS1|failureA] . [failureS1<O-I]
[failureS1]|O-I] . [failureS1|failureA]
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The second branch also has no redundancies yet:

[failureS1 & failureA] . [failureA & O-I] . [failur eS1 & O-]
[failureS1 & failureA] . [failureA | O-I] . [failur eS1| O-]
[failureS1 & O-1] . [O-I | failureA] . [failureS1 | failureA]

The third branch allows us to detect a contradichecause two of its CSQs contain violations

of Simultaneity:

[failureBlfailureA] . [failureB<O-I]
[failureB|O-I] . [failureB<failureA]
[O-Hfallure A [O-I<O-}————
[o-HOo-H-{O-I<failureAl———

The fourth branch provides great scope for Absornpéind, in some cases, Contradiction:

[0-&O-l— [O-1 & failureA] . [O-1 & failureB] . [failureA &
failureB]

[O0-&O-l— [O-1 | failureA] . [O-l & failureB] . [failureB |
failureA]

[O0-&O-l— [O-1 & failureA] . [O-1 | failureB] . [failureA |
failureB]

[©4+&0O-H——[O-1| failureA] . [O-I | failureB]

[ tail 1 ftail 1 o |
ffai 1 o 1 ftai | |
f£ail 11011 fal 1 ttad |

[failureA & failureB] . [failureB | O-1] . [failure B1-O-

For example, [O-1&0-I] reduces to just O-l accomlito Simultaneity, and this unaffiliated
event is then absorbed into the other doubletthdrcase of the third, sixth, seventh, and eighth
CSQs, Mutual Exclusion is violated, e.g. in tHev@ have both [O-I[failureB] and [failureB|O-

[] — so all four of these CSQs can be discarded.

The other branches minimise in a similar way uwel are left with thirty doubletised CSQs.
Note that the four long CSQs (#23 - #26) are @t temains of the huge number of CSQs from
the sixth branch once reduced. A certain amounitef-CSQ minimisation can now take place,

checking for obvious cases of Absorption, Prioritgd POR Transformation:
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[failureBlfailureA] . [failureB<O-I]
[failureB|O-I] . [failureB<failureA]
[ ol L ol 1 ttai : | |
absor bed, #13
absorbed, #14
absor bed, #15
11. [O-1 | failureA] . [O-I | failureB]
12. [failureA & failureB] . [failureB | O-I]
13. [O-1 & failureA] . [O-l & failureB]
14. [O-1 | failureA] . [O-I & failureB]
15. [O-1 & failureA] . [O-I | failureB]
16— [O-HHfailureAl[O-FHHallureB}——————— duplicate #11
duplicate #12

1. [failureS1|failureA] . [failureS1<O-I]

2. [failureS1]|O-1] . [failureS1<failureA]

3. [failureS1 & failureA] . [failureA & O-I] . [failur eS1 & O-]
4. [failureS1 & failureA] . [failureA | O-I] . [failur eS1|0-1]
5. [failureS1 & O-I] . [O-1 | failureA] . [failureS1 | failureA]
6.

7.

8.

18. [failureA|O-1] . [failureS2<failureB] . [failure A<f ailureB]

19. [failureA<failureB] . [failureS2<failureA] . [failu reA|O-1]

20. [failureA|failureB] . [failureS2<O-I1] . [failureA<O -1

21. [failureA<O-I] . [failureS2|failureA] . [failureA|f ailureB]

22. [O-I<failureB] . [failureS2|O-I] . [failureA|O-I]

23. [failureS2 & failureB] . [failureS2 & O-1] . [failu reA < O-] .
[failureA < failureB] . [failureA < failureS2] . [f ailureB & O-I]

24. [failureS2 & failureB] . [failureB | O-1] . [failur eS2 | O] .
[failureA | O-I] . [failureA < failureB] . [failure A < failureS2]

25. [failureS2 & O-1] . [O-I | failureB] . [failureS2 | failureB] .
[failureA | failureB] . [failureA < O-1] . [failure A < failureS2]

26. [failureS2 & O-1] . [O-I < failureB] . [failureS2 < failureB] .
[failureA < O-1] . [failureA < failureB] . [failure A < failureS2]

27. failureC . [failureA | failureB] . [failureA < O-I]
28. failureC . [failureA | O-1] . [failureA < failureB]
29. [failureA | failureB] . [failureA < O-I]
30. [failureA < O-1] . [failureA < failureB]

It is not clear how else these remaining 'mostlgimal' cut sequences can be reduced, so now

it is time to organise these 25 remaining CSQsgavelthem to Archimedes.
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4.8.2 Applying Archimedes

The first step is to organise the results into geoaf cut sequenced with shared events. In this
case all the events are shared, so all 25 have tiven to Archimedes. As there are six events,
Archimedes will then build a six-event dependeneg t{(withn = 6, there are 9367 nodes in the

equivalent precedence tree, so this will be a lage dependency tree).

Since it is impossible to show how Archimedes asedya dependency tree this large, we can
look at an interesting subset of the CSQs to ses Wihd of results they produce. The CSQs in
question are below and consist of those cut segsertibat contain onlfailureA,
failureB, and O-I

[failureBifailureA] . [failureB<O-I]
[failureB|O-I] . [failureB<failureA]
[failureA & failureB] . [failureB | O-I]
[O-1 | failureA] . [O-I | failureB]

[O-1 & failureA] . [O-] & failureB]
[O-1 | failureA] . [O-I & failureB]

[O-1 & failureA] . [O-I | failureB]
[failureA | failureB] . [failureA < O-I]
[failureA < O-1] . [failureA < failureB]

When these nine CSQs are fed into Archimedes, litprdduce a much smaller dependency
tree. If we look at a particular part of this treee can see how the results are formed. For
example, the subtree for the pure conjuncialureA . failureB is shown below, with
basic temporal nodes in italics and the node nabbeeviated (i.e. A = failureA, B = failureB,

O = O-l). Nodes that are true for the above cutisages are bold, whilst nodes which are true
andnot redundant are underlined. Thus the nodes that@deand underlined are the top-most

nodes that will be used to form the results.

A.B

+--- A.B|O

| +--- A<B|O

[ | +--- A<B.-0O
[ | +--- A<B<O
| +---  A&B| O

| | +--- A&B.-O
| | +--- A&B<O
[ +--- B<A| O

[ +---  B<A.-0O
| +---  B<A<O
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A<B. O

+--- A<B<O
+--- A<B&O
+--- A<O<B
+--- A&O<B
+--- O<A<B
A&B. O

+--- A&B<O
+--- A&B&O
+--- O<A&B
B<A. O

+--- B<A<O
+--- B<A&O
+--- B<O<A
+--- B&O<A
+--- O<B<A
A<Q. B

+--- A<O<B
+--- A<O&B
+--- A<B<O
+--- A&B<O
+--- B<A<O
A&O. B

+--- A&O<B
+--- A&B&O
+--- B<A&O
O<A. B

+--- O<A<B
+--- O<A&B
+--- O<B<A
+--- O&B<A
+--- B<O<A
B<O A

+--- B<O<A
+--- B<A&O
+--- B<A<O
+--- A&B<O
+--- A<B<O
B&O. A

+--- B&O<A
+--- A&B&O
+--- A<B&O
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+- O<B. A

I
| +---  O<A<B
[ +---  O<A&B
[ +--- O<B<A
[ +---  0O&B<A
| +-- B<O<A
+--- A<B
| +--  A<B.O
[ | +--- O<A<B
[ | +--- 0&A<B
| | +--- A<O<B
[ | +--- A<B&O
[ | +--- A<B<O
| +--- A<B|O
| +---  A<B.-0O
| +---  A<B<O
+-- ASB
[ +-- A&B. O
[ | +--- O<A&B
| | +--- 0&A&B
| | +--- A&B<O
| +---  A&B| O
| +---  A&B.-O
[ +---  A&B<O
+-  B<A
+-- B<A O
| +---  O<B<A
[ +---  0O&B<A
[ +--- B<O<A
[ +---  B<A&O
| +---  B<A<O
+---  B<Al O
+---  B<A.-O
+--- B<A<O

Of all the nodes here, only two are true and nalndant: A&B and B<A. The other top 'true’
nodes (e.g. A<B.O) are made redundant by the $oml@, which is also true for this set of cut
sequences. Thus Archimedes tells us that the MG8Q#he nine CSQs presented above are

simply:
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A&B
B<A
o

If we so wished, in this case we could use thesmethut sequences to minimise the other cut

sequences (though we would not normally do so). éd@ the results are quite illustrative:

1. failureA & failureB

2. failureB < failureA

3. Ol

4——HalureSI{ailureAl-fHalureSi<0-4}—————— (from #3)

5. [ailureSHO-}—————[failureSi<failureA] (POR Transformation, from
#3)

6—[failureS1-&-failureAl—[fallureA-& O-}-{failur—————————————eS81 & O-}— (from
#3)

7. [failureS1 & failureA] . [failureA}O-H—ffailbb——————— S} O-H— (POR-
T, #3)

8—ffailureS1-& O--{O-HfallureAl {fallureSt- |+ failureAl—— (from
#3)

9. [HallureAlO-}——[failureS2<failureB] . [failureA<failureB] (POR-T,
#3)

10. [failureA<failureB] . [failureS2<failureA] . [failu reAlO-1]
(POR-T, #3)

11— fHallureAfallureBl-ffalureS2<O-H-ffalureA<O——————————————— -} (from #3)
(from #3)

13— |O-I<failureB} {failureS2{O-}H{failtreAJO-}————————————— (from #3)
(from #3)

15. [failureS2 & failureB] . [failureB+O-H—failr—————————— S22 | O-H——
HailureA}O-———. [failureA < failureB] . [failureA < failureS2]
(POR-T from #3)
(from #3)
(from #3)

18— HallureC—failureA-HailureBl-ffailureA<O-}————————————————— (from #3)

19. failureC . [failureA}-O-- [failureA < failureB] (POR-Trans.,

from #3)
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Thus minimising using these three cut sequencemlhciprovides us with the full MCSQs for

the example fault tree:

O-l

failureA & failureB

failureB < failureA

failureS2 < failureB . failureA < failureB
failureS2 < failureA < failureB

failureA < failureS2 & failureB

N o g bk~ wbd e

failureC . failureA < failureB

Archimedes will also provide the same results, @lth because it does not allow multiple

sequences in the same conjunction, #4 will be edgaio:

failureS2 < failureA < failureB
failureS2 & failureA < failureB

failureA < failureS2 < failureB

according to the Completion Law. Thus there arellBMCSQs for the example system:

* an omission of input, which is a common cause ffaias all of A, B, and C will fail;

« a failure of A and B at the same time, meaning B méver activate and will cause an
undetectable omission of output;

* a dormant failure of B before A, meaning B will eevactivate and will cause an
undetectable omission of output;

» afailure of sensor 2 before component A beforailare of B, meaning that C will never be
activated;

« afailure of A before sensor 2 before a failur&@pfmeaning that C will never be activated;

* a simultaneous failure of sensor 2 and componebefare a failure of B, meaning that C
will never be activated:;

« afailure of A before a simultaneous failure ofs@n2 and B, meaning that C will never be
activated;

« afailure of all three components, assuming A fadfore B (and thus B gets activated).

These results are considerably more accurate dodrniative than the purely static minimal cut

sets produced in tHatroduction .
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5 Case Study

"The goal of all inanimate objects is to resist naana ultimately defeat him."

- Russell Baker

To see how Pandora might be used to analyse aalestsact system, Figure 44 shows a
simplified version of an automotive braking systgr&lectronic braking systems such as ESC
(Electronic Stability Control) and ABS (Anti-lockr8king System) are increasingly used in
vehicles due to the safety advantages they offeweyver, due to the increasing complexity that

such systems introduce, a more detailed safetysinas often required.

» “ehicle Dynamics [+
FL Actuator (= > FR Actuator
Sensor—» €— Sensor
»>  ECU1
Bus [ Comparator
»> ECU2
Sensor—» M— Sensor
RL Actuator (€ » RR Actuator

Figure 44 — Case Study: Automotive brake-by-wistesy
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The model consists of four separate brake actyatore at each wheel, and each with a
connected rotation sensor. The actuators are dlmutraa a central bus, which also carries the
signals from the sensors. These signals are fedaipair of electronic control units (ECUs) that
control the brakes. The output of both ECUs must@gas determined by a comparator) for the
braking commands to be sent to the actuators. i$hcs prevent inadvertent braking caused by
an error in one ECU. Finally, the 'vehicle dynarhicemponent is a virtual component

representing the effect the brakes have on thelingnaf the vehicle. This can be thought of as

the output of the braking system.

For the purposes of this case study, the modebban highly simplified in order to limit the
number and complexity of results produced. The pseps to show how Pandora can be used to
model situations that may arise in a real-life sggtnot to demonstrate its capability to produce
vast amounts of information. To that end, theredsy little complex propagation of failure
through the system, so that causes link almosttiijrevith effects, and the only type of system-
level failure that will be considered here is therpanent commission of braking pressure, i.e.
the brakes locking. This type of failure can algodeen as a pessimistic extreme of failures

involving excess braking pressure or temporaryitugkf the brakes.

% A slightly abbreviated version of this case stiglyn Walkeret al (2009), in which the results of the
FTA were presented in a form of 'temporal' FMEA.
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5.1 Local failure data

"Events will take their course, it is no good ofrigeangry at them; he is happiest who wisely
turns them to the best account.”

- Euripides Bellerophon

Before analysis can proceed, the failure behawbtine components of the system model must
be modelled with local failure data, i.e. a Pandexaression for each possible failure that
relates the failures to their causes (whether grnal failure of that component or another
failure that has propagated to the component). aiifeeviation 'C' stands for commission and
the abbreviation 'Com' is used as a generalisedoopent failure mode that can lead to a
commission of output (e.g. ECUCom is an interndlfa of an ECU causing a commission of

output).

Furthermore, since the wheels, brakes, and semserall duplicated, we need only consider

these once.

5.1.1 Actuators

Each actuator is responsible for applying brakimgspure to the wheels in response to
commands from the ECU. Actuator commission failufies. they brake when they anmt
commanded to) can occur as a result of an errahénsignal input from the bus, e.g. an
incorrect command to brake, and also as a resutttefnal failures. For example, an actuator
jamming can lead to a commission (or partial corsini¥) if the jam occurs while currently
applying brake pressure, because when the brakalgigases, the actuator will still be in the

'brake' position.

Thus the local failure expression for each of tttei@ors is as follows:

C-Actuator = ActuatorCom + C-BrakeSignal

I.e. a commission of actuator braking pressureissed by the actuator jamming in the braking

position (an internal actuator commission) or byraorrect command to brake from the bus.

5.1.2 Bus

The bus is responsible for communicating between E&Us and the brake actuators and

between the brake sensors and the ECUs. For tipogms of this case study, the only failure
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modelled as originating in the bus is a spuriogsal, e.g. caused by EMI (electromagnetic
interference) or by memory degradation in the lmagling to stuck bits. Commission failures
are also propagated from the input, e.qg. if anrme@d command to brake is sent to the bus, then

the bus will forward this command to the actuators.

The local failure expressions for the bus are foeeeas follows:

C-BusCommand = C-BrakeCommand

C-BusData = BusCom + C-SensorData

5.1.3 Sensors

The rotational speed sensors at the wheels arermsifye for measuring the turn of the wheels
and feeding this data back to the ECUs. If the dadécates that the car is out of control or
nearly so, then the ECUs may issue commands tbrHiess to attempt to regain stability. Each
sensor can experience a high or low bias leadirguvalue error in its data, and the sensors can
also fail entirely as a result of mechanical fal@inowever, this cessation of sensor data may be
filtered out by plausibility checks in the ECUsprRhe purposes of the case study, only high
value errors are considered here (which will appeahe ECUs as the wheels turning faster

than they really are).

The local failure behaviour for each sensor is giogply:

C-Sensor = SensorCom

5.14 ECUs

The two ECUs are responsible for analysing the datiarned by the four wheel sensors and
determining whether the car needs stabilising. df the ECUs will send the appropriate
commands to the four brake actuators. The ECUdw@grkicated for redundancy and must agree
for their commands to be communicated to the astsaECUs may fail as a result of both
hardware problems and software errors, but oftere lrebme degree of resilience. For the
purposes of the case study, it is assumed that E&llUsilent in response to any internal errors
(which would then be filtered out by the comparptbut that any value failures at their inputs

may lead to an incorrect braking command beingeidsu

The failure data for the ECUs is as follows:

C-ECU = C-SensorData
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5.1.5 Comparator

The comparator is necessary to compare the sigealsfrom both ECUs and ensure that both
signals are in agreement before the command istedhe brake actuators. This ensures that
spurious commands from one ECU do not cause intahtdoraking. It also means that if one
ECU fails, the comparator will assume both ECUsiamisagreement and will not forward the
braking command. Thus the comparator seems taifaiit in response to an error from either

ECU and any commission errors must be sent froiin BQUs to be propagated.

The failure behaviour is thus:

C-Comparator = C-ECU1 . C-ECU2

5.1.6  Vehicle Dynamics

The final 'component' is the Vehicle Dynamics pseadmponent, which serves as the system
output for the system. This is where the tempogatantics of Pandora are useful, because the
order of brake failures can lead to different eee with different severities — on the car. This

level of detail is not normally possible to incorate in FTA.

Because there are four wheels and four brakesfdiere of every sequence and every
combination of these should ordinarily be takem iobnsideration. However, since the brakes
are symmetrical, in practice many of these comimnatwill result in symmetrical duplicates,
and so rather than considering left and right sidesonly refer to the near-side and far-side;
thus these results are equally applicable to et of the car. 'N' is used to indicate a near-
side failure and 'O’ for opposite side failuresases where more than one brake failure is being
considered; 'F' and 'R’ represent front and respedively. Furthermore, combinations of more
than two brake failures are treated only as simehas failures; any sequence of three brake
failures will first result in a sequence of two keafailures, thus the two brake failures will

normally have the initial and most noticeable éfec
The sequences of failures, together with theiratffeare presented in the table below (using F =

Front, R = Rear, N = Near side, O = Opposite stdg dlote that the effects assume front-wheel

drive.
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FAILURE EFFECT SEVERITY

C-BrakeF Some loss of stability and control bddoderate
supporting systems and other brakes |can
mitigate effect.

C-BrakeR Minor loss of stability, which can be mitigd,| Marginal
e.g. by increasing braking in the opposite frpnt
wheel

C-BrakeFN < C-BrakeRN | Major loss of stability andhtrol, potentially| Critical
leading to a collision or going off the road.
Ability to compensate limited.

C-BrakeRN < C-BrakeFN | Loss of stability but greateossibility of | Moderate

compensating.

C-BrakeFN & C-BrakeRN

Major loss of stability and ntl; greater
surprise, less possibility of mitigation. W
likely cause car to yaw in the direction of t

near side.

Catastrophic
I
he

C-BrakeFN < C-BrakeRO

Some loss of control but lngkbf opposite
wheel helps to stabilise vehicle with ma

chance of mitigation.

Moderate

re

C-BrakeRO < C-BrakeFN

Some loss of stability, butking of opposite
wheels results increases chances of succe

compensation.

Marginal

ssful

C-BrakeFN & C-BrakeRO

Some loss of stability andtoanwith greater|
surprise, but locking of opposite wheels res

is less severe.

Critical

llts

C-BrakeFN < C-BrakeFO

Locking of both front wheetads to sharpe
braking and loss of steering; vehicle will yg

to the near side.

rCatastrophic

AW

C-BrakeFO < C-BrakeFN

Locking of both front wheedads to sharpeg
braking and loss of steering; vehicle will yg

to the far side.

rCatastrophic

A\

C-BrakeFN & C-BrakeFO

Locking of both front wheetsatls to sharpe

rCatastrophic

braking and loss of steering; less yawing due
to simultaneous failure.
C-BrakeRN < C-BrakeRO| Locking of rear wheels lesgegse than front| Critical

and more control is maintained; vehicle w

yaw to the near side.
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C-BrakeRO < C-BrakeRN

Locking of rear wheels lesgese than front
and more control is maintained; vehicle w

yaw to the far side.

Critical
|

C-BrakeRN & C-BrakeRO

Locking of rear wheels lesgese than front
and more control is maintained; reduced |

of stability due to simultaneous rear braking

Moderate

0SS

C-BrakeFN & C-BrakeFd
&
C-BrakeRN

Severe loss of both stability and control.

Catastiop

C-BrakeRN & C-BrakeR(
&
C-BrakeFN

Severe loss of stability and major loss

control.

@atastrophic

C-BrakeFN & C-BrakeFd
&
C-BrakeRN & C-BrakeRO

All brakes lock; catastrophic loss of stabil

and control.

tyCatastrophic

Table 7 —

Effects of braking commissions on théclesh
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5.2 Fault Tree Analysis

There are 17 fault trees, one for each of the plessequences of failure of the vehicle's braking

system. However, for the most part, all of thessrealsubstantial common branches: namely, the

commission of a brake actuator. The fault tree GeActuatorFN < C-ActuatorFO is shown

below, in Figure 45, while the common fault tree &m indvidual actuator is shown in Figure

46.

Loss of control due
to locking of FN
whee| befare FO

wheel, causing yaw

Lodked front near

side wheel caused

by commission of
brake actuator

D

C-FM_ACTUATOR

Commission of
brake signal from
comparator

C-COMPARE_FM

Front near side
actustor jammed in
the brake position

Commission of
brake command to
FH actuator from

Commission of
brake command to
FH actuator from

first ECU second ECU
C-ECU1_FN C-ECUZ FN
Incorrect Incorrect

sensor data
{biased high)

sensor data
{biased high)

C-BUSDATA_FM

Corrugtion of bus
memory, e.d. due
Lo Efl or stuck bits

Invalid sensar
data due to high
sensar bias

[ BUSCOM | [F_sensorcom]

=0

=0

Figure 45 - Fault tree for C-ActuatorFN < C-ActuaEO

P
C-BUSDATA_FM

Locked front offside
wheel caused by
commission of brake
actugtor

C-FO_AC

TUATOR

Commission of
brake signal fram
comparatar

C-COMPARE_FO

Commission of
brake signal ta FO
actuator from first

ECU

C-ECIM_FO

Incarrect
sensor data
(biased high)

C-BUSDATA_FO

Front offside
actustor jammed in
the brake position

Commission of
brake command to
FO actuator from

second ECU

C-ECUZ_FO

Incorrect
sensor data
(biased high)

Invalid sensor
data due to high
sensar bias

Corruption of bus
memory, e.q. due
to EMI or stuck bits

[Fo_sensorcom| [ BUSCOM |

=0

=0

P
C-BUSDATA_FO

iy
S

=0
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Locked wuheel
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Figure 46 — Generic fault tree for any C-Actuator
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The minimal cut sets for this (static) fault tree pust:
* BusCom
* SensorCom

« ActuatorCom

Note however that while BusCom is a common cauderdéai.e. it will lead to commissions at

all four actuators, SensorCom and ActuatorCom pezific to each actuator. Note that this
relies on the assumption that the ECUs submit camdsido an actuator at a wheel only in
response to data from the sensor at that same wdiaedtions where the ECU can issue a
command in response to a sensor reading at anathezl (e.g. in an attempt to mitigate a
failure elsewhere) are not considered here. Thaigtih sets for C-ActuatorFN, for example, are
BusCom, SensorComFN, and ActuatorComFN, wherea€{actuatorRO, for example, they

would be BusCom, SensorComRO, and ActuatorComRO.
These are also the minimal cut sets for the twglsiactuator failures (i.e. C-ActuatorFN and
C-ActuatorRN). However, when sequences are involtegse minimal cut sets serve as inputs

to the temporal gates, e.g. for C-ActuatorFN < GuétorRN:

(BusCom + SensorComFN + ActuatorComFN) <

(BusCom + SensorComRN + ActuatorComRN)

Applying the PAND distributive law (X + Y) < Z X<Z + Y<Z gives us:

BusCom < (BusCom + SensorComRN + ActuatorComRN)

+ SensorComFN < (BusCom + SensorComRN + ActuatorComR N)

+ ActuatorComFN < (BusCom + SensorComRN + ActuatorCo MRN)

Then applying a second PAND distributive law, X¥&f) = X<Y.X|Z + X<Z.X|Y, gives us

the following nine cut sequences:

BusCom < BusCom . BusCom | SensorComRN . BusCom |

ActuatorComRN

+ BusCom < SensorComRN . BusCom | BusCom . BusCom |
ActuatorComRN

+ BusCom < ActuatorComRN . BusCom | BusCom . BusCom
SensorComRN

+ SensorComFN < BusCom . SensorComFN | SensorComRN .

SensorComFN | ActuatorComRN
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SensorComFN < SensorComRN . SensorComFN | Actuator ComRN .
SensorComFN | BusCom

SensorComFN < ActuatorComRN . SensorComFN | BusCom

SensorComFN | ActuatorComRN

ActuatorComFN < BusCom . ActuatorComFN | SensorCom RN .
ActuatorComFN | ActuatorComRN

ActuatorComFN < SensorComRN . ActuatorComFN |

ActuatorComRN . ActuatorComFN | BusCom

ActuatorComFN < ActuatorComRN . ActuatorComFN | Bu sCom .
ActuatorComFN | ActuatorComRN

BusCom | BusCom and BusCom < BusCom are contradictaccording to the Laws of

Simultaneity, so the first three cut sequencesetandant. Removing these leaves six minimal

cut sequences:

SensorComFN < BusCom . SensorComFN | SensorComRN .
SensorComFN | ActuatorComRN

SensorComFN < SensorComRN . SensorComFN | Actuator ComRN .
SensorComFN | BusCom

SensorComFN < ActuatorComRN . SensorComFN | BusCom
SensorComFN | ActuatorComRN

ActuatorComFN < BusCom . ActuatorComFN | SensorCom RN .
ActuatorComFN | ActuatorComRN

ActuatorComFN < SensorComRN . ActuatorComFN |

ActuatorComRN . ActuatorComFN | BusCom

ActuatorComFN < ActuatorComRN . ActuatorComFN | Bu sCom .
ActuatorComFN | ActuatorComRN

These MCSQs tell us that a commission of the fraar-side brake followed by a commission

of the rear near-side brake is caused by a sea#oref or an actuator failure in the front-near

brake followed by a failure of the bus, rear nade-sactuator, or rear near-side sensor. The

BusCom CSQs are not present because a commisdime faf the Budirst will in fact lead to

a simultaneous commission of all actuators, asheaiseen if we examine the results for C-

ActuatorFN & C-ActuatorRN, for example:

(BusCom + SensorComFN + ActuatorComFN) &
(BusCom + SensorComRN + ActuatorComRN)
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Applying Euripides will yield the following 27 MCS€(shown here in a condensed format to

save space):

ActuatorComFN & ActuatorComRN & SensorComFN & Senso
BusCom +

ActuatorComFN & ActuatorComRN & SensorComFN & Senso
BusCom +

ActuatorComFN & ActuatorComRN & SensorComRN & BusCo
SensorComFN +

ActuatorComFN & ActuatorComRN & SensorComFN & BusCo
SensorComRN +

ActuatorComRN & SensorComFN & SensorComRN & BusCom
ActuatorComFN +

ActuatorComFN & SensorComFN & SensorComRN & BusCom
ActuatorComRN +

ActuatorComFN & ActuatorComRN & BusCom | SensorComF
SensorComRN +

ActuatorComFN & ActuatorComRN & SensorComFN | BusCo
SensorComRN +

ActuatorComFN & ActuatorComRN & SensorComRN | BusCo
SensorComFN +

ActuatorComFN & SensorComFN & SensorComRN | Actuato
BusCom +

ActuatorComRN & SensorComFN & SensorComRN | Actuato
BusCom +

ActuatorComFN & SensorComRN & BusCom | ActuatorComR
SensorComFN +

ActuatorComRN & SensorComFN & BusCom | ActuatorComF
SensorComRN +

SensorComFN & SensorComRN & BusCom | ActuatorComFN
ActuatorComRN +

ActuatorComFN & SensorComFN & BusCom | ActuatorComR
SensorComRN +

ActuatorComRN & SensorComRN & BusCom | ActuatorComF
SensorComFN +

ActuatorComFN & ActuatorComRN & BusCom | SensorComF
SensorComRN +

SensorComFN & SensorComRN & BusCom | ActuatorComFN
ActuatorComRN +

rComRN &

rComRN |

m |

m |

N |

rComRN |

rComFN |

N |

N |

N |

N |

N |
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ActuatorComFN & ActuatorComRN | BusCom | SensorComF N |
SensorComRN +

ActuatorComFN & SensorComRN | ActuatorComRN | BusCo m |
SensorComFN +
ActuatorComRN & SensorComFN | ActuatorComFN | BusCo m |

SensorComRN +

SensorComFN & SensorComRN | ActuatorComFN | Actuato rComRN |
BusCom +

BusCom & SensorComFN | ActuatorComFN | ActuatorComR N |
SensorComRN +

BusCom & SensorComRN | ActuatorComFN | ActuatorComR N |

SensorComFN +

BusCom & ActuatorComFN | SensorComFN | SensorComRN |
ActuatorComRN +

BusCom & ActuatorComRN | SensorComFN | SensorComRN |
ActuatorComFN +

BusCom | ActuatorComFN | ActuatorComRN | SensorComF N |
SensorComRN

These results show us that a simultaneous commiss$ibraking of the front and rear near-side
wheels is caused by a simultaneous occurrence lebst one front wheel failure and at least

one rear wheel failure, or a failure of the busobefr at the same time as any wheel failure.

This pattern of results is the same for all twokkréailures, i.e. every PAND will result in six
MCSQs and every SAND will result in 27 MCSQs.

For the three-brake failures, the number of MCStgseiases dramatically due to the increased
number of basic events (7 as opposed to 5 evertwitwo-brake failures) and there are 113
MCSQs for each three-brake failure. However, thiglfsllow the same pattern: a failure of the
bus before anything else, a simultaneous failurthiafe out of the four brakes before the bus
fails, and the combinations of both. For exampbe a simultaneous failure of FN, FO, and RN
brakes, the MCSQ describing the bus failing fisst i

BusCom | ActuatorComFN | SensorComFN | ActuatorComF o |
SensorComFO | ActuatorComRN | SensorComRN

and the MCSQ describing simultaneous failure oftatte sensors would be:
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SensorComFN & SensorComFO & SensorComRN | BusCom | ActuatorComFN
| ActuatorComFO | ActuatorComRN

The same problem applies to the simultaneous &dtiall four brake actuators, for which there

are even more basic events (nine) and thus evea M6SQs — 373, in fatt

5.3 Conclusion

The MCSQs produced by the temporal FTA show theiptesways in which all sequences of
one, two, three, or four brake failures may octwran ordinary static FTA, although it would
be possible to look at the different combinatiohdmake failures, it would not be possible to
look at the sequences in which those combinatioag atcur and thus the opportunity for a
deeper insight into the failure behaviour of thseteyn is lost. The minimal cut sets for the two

near-side brakes failing would simply be:

* ActuatorComFN . ActuatorComRN
* ActuatorComFN . SensorComRN
* SensorComFN . ActuatorComRN
e SensorComFN . SensorComRN

« BusCom

Because it is not possible to look at the sequeirtashich these failures may occur in a
traditional FTA, the analyst may not consider tifeas of those sequences on the dynamics of
the car and could thus underestimate the potesgiarity. For example, a simultaneous failure
of the rear brakes is less severe than a sequéaitiak of them, because a sequence may lead
to the car yawing and ultimately colliding with aming traffic or going off the side of the
road. By looking at only static fault trees, thesgibility of sequential failures may not be

evident and thus their potential effects not com&d.

At the same time, a static fault tree may leaddsigner to overestimate severity. For example,
Table 7 shows that in all two-brake failure case$ailure of the front brake before or at the
same time as the failure of a rear brake is morversethan a failure of the rear brake first. This
level of detail is not available in a static fatdee. If the designer wanted to improve the

reliability and safety of the braking system, thepuld have to treat all brakes equally.

% Given by the sum of all possible combinations, usin —1 (because only BusCom is a CCF). Thus:
n

!
sum= ;—k!(nn_ o (n-1)
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However, based on the results of the temporal Ré,designer could choose instead to add
extra resilience only to the front brakes (e.g.doplicating the sensors) compared to the rear
brakes. This would be a cost effective way to gam appreciable increase in safety and

reliability because it focuses on the parts ofdpstem that have the most severe effects when
they fail.

Therefore, the results of the temporal FTA on thgecstudy are interesting not so much because
of the way they represent sequences, but ratheaubecof the fact that they can represent
sequences at all. This grants the analyst (and ttieisystem designer) a much finer-grained
view of the failure behaviour of the system, pautticly with regard to the effect and severity of
the various system failures, even in a simplifigdteam such as the braking system presented
here. This can help the designer draw conclusibositahe system that would not otherwise be
possible with static FTA.
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6 Evaluation

"The greatest of faults, | should say, is to besciwus of none."

- Thomas Carlyle

6.1 Objectives achieved

"In this world second thoughts, it seems, are best.

- Euripides Hippolytus

To evaluate Pandora, it is necessary to compare kdsbeen achieved thus far against the
objectives set out in thatroduction . It is also interesting to compare the Pandoracsggh in
more detail against some of the other temporal Epproaches described in tBackground

chapter.

6.1.1 Obijective |I: Retain, as far as is possible, the simplicity of FTA by requiring only

a minimum of additional, temporal data

The intention behind this objective is to ensurattPandora does not become so over-
complicated that it makes its use as part of a tael analysis too expensive or too difficult to

undertake. Several steps were taken in an attengutieve this.

Firstly, the choice of a simple model of time me#reg Pandora only requires relative temporal
information — specifically, whether an event occaifter, before, or at the same time as another
event. There is no metric for time, nor is branghiime modelled, both of which can lead to
considerable additional complexity. Pandora theeeigsses a relative, linear system of time in
which there are only three possible temporal retetibetween two eventbefore after, and

simultaneous

Secondly, the definition of events in Pandora cargs this quest for simplicity by stating that
only theoccurrenceof an event is important, and that, for the pugsaosf relative time, only the
moment of that occurrence matters — i.e. the moraemthich the event takes place or has an
effect. By choosing only to model instants in Paatfolimited relative system of time, the issue
of point-based versus interval-based time beconmst:nf events do not have a duration, then
they cannot 'overlap’, and if events are repredessesingle instants, then the most that can be

said is that they either occur at the same mometiay do not. Thus the issue of any 'gap'
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between moments is irrelevant because it is natiblesto say that two events are meant to be

consecutive.

Thirdly, the definition of the temporal gates asiisiplicity by ensuring that each gate represents
one of the three temporal relations possible indBemm The PAND and SAND gates are
‘primitive’ gates in that they directly represdre aéfter/beforeandsimultaneouselations, while
the POR gate, although semantically a little manmplex, also represents theforerelatiort’.

The central issue that plagued the TAND connecthamely the requirement for events to
occur consecutively, is absent: because it is ossiple to define an interval — or lack thereof —
for an event, it is not possible in Pandora toesthfit two events must occur consecutively.
Because the temporal gates in Pandora are definbé exclusive, i.e. they do not represent
both before/afterandsimultaneousthere is no '‘overlap' between the priority gdtepresenting
before/aftey and the simultaneous gate. This helps to rembgeatnbiguity surrounding the

original PAND gate, which could be interpreted ither an inclusive or an exclusive manner.

The choice of the PAND gate as the foundation stdrigandora is no coincidence: by using the
original PAND gate — FTA's pre-existing solutiontte problem of representing sequences in
fault trees — as the prototype for Pandora's teaipgates, it is hoped that Pandora remains
faithful to the principles of FTA. The newly rede#id PAND gate in Pandora also solves many
of the other problems inherent in the original PANIDe sequence of events is explicitly stated
to be left to right, removing the requirement forsaparate conditioning event, and the
occurrence of multiple events at the same timé®isame event used multiple times results in a
contradiction (as stated by the Law of Simultaneifyhe issues of contradictions are also

explicitly handled by the temporal laws, as exdaitelow.

Although it has been suggested that the SAND gasnd- by extension, theimultaneous
relation — is superfluous, given the almost norstexit probability of a simultaneous occurrence
of two events under normal circumstances, the SANEs serve a useful and valuable purpose.
Firstly, although improbable, the occurrence of texents simultaneously is not impossible,
and if Pandora lacked the ability to represent ssnario, it would lead to a 'semantic hole' in
the logic. The common way of filling this hole ie thake thebefore and after relations
inclusive, i.e. before would really mean 'beforeabrthe same time as'. But this leads to an
overlap betweerbefore and after and this in turn has implications for the handling
contradictions. Secondly, in situations where aedepncy or shared trigger exists, the

simultaneous occurrence of two events is very comriais is particularly true of intermediate

21 Technically, the POR and the PAND can be said ppesent both thafter or the beforerelations,
depending on how they are read; e.g. X PAND Y carrdad as both XeforeY and as Yafter X.
However, the POR better reflects theforerelation as it only specifies that its priorityes must occur
before any other, and does not necessarily meaatlysof the subsequent events must occur aftesvard
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events (i.e. gates) in cases where the same egemtsoas an input to more than one gate, as in

these instances the gates can all become true aathe time if that shared event occurs.

Finally, because Pandora allows a very flexibleregpntation of time, the definition of
'simultaneous' is dependent more on effect thastiect time constraints; thus two events can
be said to occur simultaneously if their occurrentse together (if nogxactly at the same
moment) is sufficient to cause a different effecthe effect of their occurrence at more widely
separated times. This is possible in systems witigation devices that can cope with multiple
failures widely spaced but not two failures ocawgrclose together, e.g. an emergency pump on
a ship may be able to cope with the floodwater fmra leak while the leak is plugged, but two
leaks occurring close together may overwhelm thepuAlso, as the case study shows, a
simultaneous occurrence of two similar failures bame a more or less severe effect than the
sequential occurrence of failures. In such systdhes, SAND provides a way of representing

this distinction.

The disadvantage of such a simple, general appiedbht it becomes difficult to express more
specific scenarios, e.g. "X must occur within 10as®ls of Y". Pandora cannot represent such
scenarios easily. Extra information can be addedaassof the event itself (e.g. by specifying
the interval duration as a separate conditioningneMike in the CSDM), e.g. "(X PAND Y)
AND 'Y occurs within 10 seconds df but in this case the additional temporal infation has

no support within Pandora itself and is thus nkeétainto account during analysis.

Nevertheless, it is believed that this price istiwvgraying. Pandora was not designed to be able
to represent every possible temporal constraintdiier to be simple enough to be able to be
applied in a majority of situations. Because ityorgquires a little extra information — the
relative order of events, as indicated by the tewmpgates — it is also easy to use and to
understand. The result is that it becomes possibileclude temporal information in a fault tree

without the synthesis process becoming unwieldgxaessively time consuming.

6.1.2 Objective |l: Remain compatible with the existing fault tree structure by

minimising the impact of any extensions

Fault tree analysis has become popular for many geasons, not least its ease of use and the
readily understandable nature of its simple logsalicture. Pandora is designed to stay in
keeping with the aesthetics and semantics of tosdit fault trees to ensure that it too is as easy
to use and as understandable as possible. As I4 @dy a small number of new gates were

introduced, each with relatively simple semantiosgugment the fault tree.
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One important factor, however, is the coherentneatd the fault tree: if a fault occurs, it never
improvesthe functioning of a system, and so a system dampair itself through failure. The
logical underpinning of fault tree coherency is #teucture function of the fault tree, which

must be non-decreasing.

Pandora is meant to preserve the coherency oftlietfee, and as such it does not incorporate
NOT gates. However, the POR gate offers some ot#pabilities of the NOT gate without
compromising the coherency of the fault tree. Ibwas the fault tree to specify conditions that
are true only if one event occurs and another ev&stnot happened — yet. Because it
accommodates the potential occurrence of the nggatent later on, it does not affect

coherency.

Similarly, the PAND and SAND gates are only true®all of their inputs are true (and in the
case of the PAND, this means the right-most infBcause Pandora assumes that events are
non-repairable and that once an event or gateuss itr remains true, once all events have

occurred, it is not possible for a gate — or ametgf event — to 'unoccur'.

Although this is in keeping with the semantics atilf trees as described in tRault Tree
Handbook it does not necessarily preclude the possikiftyepresenting repairable events. It is
possible to specify the repair of a fault using epagate event (e.g. "X occurs" and "X
repaired”). However, this approach means thereitgical link between the occurrence and
repair of a fault; furthermore, it is difficult tepecify a meaningful link without breaking the
coherency of the fault tree, e.g. a failure Z os@s long as X and Y occur and X has not been
repaired — if X is repaired, then Z should becosalsd. It is possible to model failure without
repair by careful use of temporal gates, especR@R gates, but at the cost of a larger and
more complex fault tree; e.g. to specify that Zusscthe expression Z = (X.Y)Pvould mean

that Z occurs as long as X and Y both occur beXoierepaired.

Pandora also minimises the impact on the Boolegicdbstructure of the fault tree by ensuring
that the temporal gates and existing Boolean gatednterrelated; by using the Completion
Laws, it is possible to express Boolean gates rimgeof temporal gates, and there are more
temporal laws that allow both types of gates todaalily mixed and manipulated together. This
helps remove any apparent seams between the diftgpes of gates and — not unimportantly —

also makes qualitative analysis truly possible.

Finally, on a purely aesthetic level, the symbaoisthe temporal gates — both in text form (e.g.
&, <) and in diagrammatical form — are designedo# similar and familiar to the existing

Boolean gate symbols and thus blend in more sufcdlyss
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6.1.3 Obijective lll: Allow qualitative analysis of the extended fault trees, producing

results similar to those already provided by FTA

Pandora is designed to focus specifically on cathlie analysis of temporal fault trees, an area
which seems to be somewhat neglected in the fielBTA. However, it is meant to make
qualitative analysis of temporal fault trees pdssibot replace qualitative analysis with another
technique that serves a similar purpose, and uldhihherefore be possible to extract the same
type of information and conclusions from the resuit a temporal qualitative FTA as from a

normal qualitative FTA.

Temporal qualitative analysis in Pandora is madssippte through the use of the Euripides and
Archimedes algorithms. Euripides closely resembiegsting Boolean qualitative FTA
techniques like MOCUS and MICSUP in nature, alloeitsiderably more complicated, whilst
Archimedes more closely resembles BDD-style or Marghain approaches that use alternative
representations of the fault tree to perform thalyans. In both cases, the results of the analysis
are presented in the form of minimal cut sequenaralogous to the traditional minimal cut
sets. The same conclusions can be drawn from exagniCSQs, except with the addition of

the information about the sequence in which thenesveust occur to cause the top event.

Although both algorithms are capable of providirgeful results, they both have significant
drawbacks. Euripides is more efficient, as it idedluctive algorithm that manipulates the fault
trees using a limited (but still considerable) eéttemporal laws; however, although it can
remove redundancies and contradictions from thelteeg produces, it cannot fully minimise

them in terms of simple size due to its inabilibyntandle more difficult Completion problems.
Although this issue is not the case in every farde, when it occurs, it can result in an
increased number of MCSQs, making it more difficaltraw appropriate conclusions from the

results.

Archimedes is perhaps the more problematic algoriéis it offers the best results but also has
the worst performance. As an inductive algorithingenerates every possible sequence and
combination to determine the minimal cut sequend#bough it does not necessarily evaluate

every possibility, performance is still subjectttee Fubini numbers and thus does not scale
well. However, as long as the dependency treegemerated, the results produced are exactly

minimal — solving the Completion problems that piges struggles with.

At present, neither of the two algorithms is coasédl to be sufficiently mature to be applied to

non-trivial real world systems and both requiretiar research to refine and improve them.
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Nevertheless, they are sufficient to demonstrageptitential for qualitative analysis of temporal
fault trees and show how Pandora can be used Itb gigmificant benefits in terms of precision

and detail when analysing dynamic systems.

6.1.4 Obijective IV: Provide a temporal logic that underlies the extensions to support

qualitative analysis

To support its three new temporal gates, Pandma iatroduces a new temporal logic to
provide semantics for them and to link the new gatith the existing Boolean gates. As such,
it can be viewed as a kind of temporal extensioBdolean logic. In traditional terms, Pandora

logic is a form of linear, non-metricated, propmsitl temporal logic.

The significant difference between Pandora logid Boolean logic (and, indeed, other similar
propositional temporal logics) is the fact that &kama temporal expressions can be evaluated to
produce sequence values, analogous to normal Bodfeth values. The sequence values
indicate the relative order in which events (badisib and intermediate) occur. Sequence values
are a simple and useful way to represent the sérsaoft Pandora logic as temporal logical

expressions can be treated as a kind of arithrhettion.

Sequence values are also particularly valuable whbealuating temporal expressions

programmatically. Because temporal significanche-groperty of an event that means it must
occur in a particular order — is supplied by theperal gates and is not inherent to the event
itself (i.e. an event can occur in different orderdifferent parts of the fault tree), sequence
values are easily evaluated by a computer by datergwhat sequences of events are possible

for a given temporal expression; indeed, this fpleds the basis for the Archimedes algorithm.

Finally, sequence values make it possible for Pemtimic to be displayed — and proven — as
part of temporal truth tables, listing the possd®euences for a given set of events and showing
the value of a temporal expression for each segudrenporal truth tables provide another link
to traditional Boolean logic (and indeed Booleanthrtables can be thought of as a subset of
TTTs) and more importantly are readily understafeldly anyone with a familiarity with

normal truth tables.

However, such a fundamental change to Boolean lagites with a price: in particular, a large
number of new temporal laws. As with Boolean lathere are a potentially infinite number of
temporal laws, depending on how many events aentako account. Fortunately, most laws
use only two or three events and larger laws (whith possible exception of the Completion

laws) can always be represented in terms of thesdles laws. This means the number of laws
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required for qualitative analysis can be reduced toore manageable size (gggpendix II:

Boolean & Temporal Laws).

6.1.5 Obijective V: Define a simple, unambiguous definition of the meaning of the

temporal relationships between events to resolve the issue of contradictions

As mentioned earlier, the temporal logic in Panddoas not include NOT gates to ensure it
remains coherent, but it does account for the piaderccurrence of contradictions. Introducing

the concept of sequence also introduces the comdegmntradiction, because it is possible to
specify conjunctions of mutually exclusive expressi(like X <Y .Y < X). Pandora provides a

set of temporal laws to detect such contradictiamnd allows for the use of existing Boolean
laws (i.e. X.0 =0 and X + 0 = X) to remove contctidns from an expression. In particular, the
laws of Mutual Exclusion and Simultaneity identdyy contradictions inherent in a temporal
expression by detecting violations of the threeperal relations in Pandora (only one of which

can be true at any time).
This contradiction handling is a major advantagdétping to overcome the ambiguities and

dependencies inherent in dynamic systems. It ssdsething conspicuously absent from other

temporal fault tree analysis techniques.
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6.2 Comparison with other temporal FTA techniques

"In case of dissension, never dare to judge tili'ye heard the other side."

- Euripides Heraclidae

The choices made during the development of Pandava often meant that Pandora differs
quite considerably from other techniques. It is¢fme worthwhile to compare Pandora with
these other techniques to contrast their relativ@atages and disadvantages. It is important to
note that these techniques are not necessarilyathuexclusive and it may be possible to use

more than one technique to make use of the bestréssof them all.

6.2.1 Dynamic Fault Trees

Dynamic Fault Trees are primarily designed for digative analysis while Pandora is primarily
designed for qualitative analysis, so a direct cangpn is problematic. However, it is still

possible to make some interesting observations.

The three main questions regarding qualitativeyasmalsing DFTs are:
* How to represent the DFT's new dynamic gates frauaitative perspective?
* How to handle simultaneous events (if indeed agg tandled at all)?

« How are reductions performed and how are contriadisthandled?

These questions also have implications for the tipaéine analysis of DFTs.

The dynamic gates used in DFTs are the PAND gatsetbon the original form, albeit usually
with a left-to-right sequence), the SEQUENCE gatefifing a sequence of events but not
strictly speaking a gat€) the FDEP gate (which specifies a functional delpeny between one
or more events and a trigger event), and the SPg&& (which comes in COLD, WARM, and

HOT varieties). Each of these gates implies someo$sequence.

The original PAND gate, as has already been disd)ssiffers from a number of ambiguities.
These problems are frequently ignored from thepgemtive of quantitative analysis, where they
are not deemed to be as important. The issue afltsineity, for example, is often ignored in a

gquantitative situation because the probabilitywad £vents occurring at the same time is usually

% The SEQUENCE gate is frequently omitted from dedmns of the DFT approach — including the
Fault Tree Handbook with Aerospace Applicatiolhsappears that the SEQUENCE is not a true gate in
that, similar to the FDEP gate, it does not haveoatput (Coppitet al, 2000). Thus the PAND is
normally used to define sequences.
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sufficiently small to be discarded. However, thisuimes the events are independent, which is
not always the case — particularly for intermedetents. For example, (X + Y) PAND (X + Z)
features a dependency — if X occurs first, thenhbsides of the PAND will be true
simultaneously. This situation can be explicitlydatbed in DFTs using a FDEP to represent the
dependency, e.g. assume A is the trigger for bo#imdB C in an FDEP gate, and elsewhere we
have B PAND C. If A occurs, then B and C will occsimultaneously as they are both
dependent on A. Hence the probability of B and €uatng simultaneously is, at minimum, the
same as the probability of A occurring and themefdris no longer a valid assumption to

assume that the probability of simultaneous ocowaés small enough that it can be ignored.

The issue of simultaneity in the PAND gate (andelktension, the SEQUENCE gate) also has
bearing on whether the PAND is to be inclusive g&clgsive, and thus whether or not

contradictions are possible. If the PAND is takerbé exclusive, then it does not include the
simultaneous occurrence of its inputs and in th&FBcenario given above, it would be false.
If it is inclusive, then it does include simultatyednd in the FDEP scenario it would be true. In
both cases, any probabilistic evaluation of PANDuldoneed to take this into account: an
exclusive PAND would have to subtract the probgbilif input events occurring at the same

time while an inclusive PAND would have to inclutle

The quantitative situation is complicated furthgr dontradictions, e.g. if PAND is inclusive,
then (X PAND Y).(Y PAND X) is not a contradiction iastead, it defines a simultaneous

occurrence of X and Y. However, the probabilisatcalation would have to be different, i.e.:

P((X PAND Y).(Y PAND X))# P(X PAND Y) x P(Y PAND X)
P((X PAND Y).(Y PAND X)) = P(simultaneous occurreneaf X and Y)

which means that the usual probabilistic multigima used for the AND gate would be invalid
here. Similarly, if PAND is exclusive, the probatyilis 0 and definitely not the product of X
PAND Y and Y PAND X. The same questions also applgases like X PAND X where the

same event is used more than once as an input.

The semantics of the PAND gate can therefore hayeoitant implications regarding the
probabilistic calculations needed to solve a DF$.aAresult, in the DFT approach, the PAND
has sometimes been redefined to avoid these preblentCoppitet al. (2000), the PAND is
defined to be inclusive and also to ignore repeatashts. Thus the simultaneous occurrence of
events is included in the PAND, and when the sawpatiis used more than once, only its first
appearance is used, i.e. X PAND Y PAND X is equuélto X PAND Y and the second
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appearance of X is discounted. However, althoughdéfinition resolves the ambiguity, it still

complicates the probabilistic calculations, as dbed above.

The FDEP gate is used to define a 'trigger' et will simultaneously cause the occurrence
of one or more other events (Copeital, 2000). In qualitative terms, the FDEP represents
kind of logical implication, i.e. X FDEP Y meansathf X is true, then Y will also be true, but if
X is false, then Y can be either true or false. deer, the FDEP is not a true gate in that it has
no output; instead it serves purely as a horizolmél between multiple events, avoiding the
regular hierarchy of the fault tree. This meansRBEP itself does not take part in the logical
evaluation of the fault tree; instead, it simplyang that one or more basic events have a
potential antecedent cause (the trigger event)diitian to the possibility of independent
occurrence. Thus the dependency modelled by thePRBEInctionally equivalent to an OR: X
FDEP Y means that Y may occur as a result of Xirapky by its own occurrence, i.e. X FDEP
Y means X OR Y. If Y has already happened, theraX o effect (unless it also serves as the
input to another fault tree gate). In Pandora tertnis could be described as X|Y + Y, but

according to the Law of POR Transformation thiedsiivalent to X + Y anyway.

FDEP gates can also introduce circular logic, simib the way PAND gates can introduce
circular dependencies (although the FDEP doesasaoitrin contradictions). If X triggers Y and
Y triggers Z and Z also triggers X, then the re@ithat the occurrence of any one of X, Y, or Z
will trigger all of the others. Thus each of X, YidaZ would have to be equivalent X+Y+Z in

logical terms.

SPARE gates also introduce a number of complexitiethe DFT methodology, particularly
when combined with the possibility of simultane@vents. For example, if two SPARE gates
share the same standby, e.g. X SPARE Z and Y SPAREhere Z is the standby, then a
simultaneous occurrence of X and Y means that bp#res will try to activate Z. Since only
one can succeed, it leads to a non-determinidtiati#n. Secondly, if the first SPARE was a
cold SPARE and the second was a HOT spare, thenudweed two different probabilistic
values as it would simultaneously be a dormantdétarand an active standby. As a result, in
Coppit et al. (2000) the common hot/cold SPARE gates are reglacefavour of a single
SPARE gate which can only have basic events agssrgnd in which no sequence of failure is
defined (i.e. there is no difference between thimay and the standby events). The issue of

non-determinism remains, however.

In qualitative terms, the SPARE gates (in bothrtbaginal form and the constrained, redefined
form) define a type of conjunction: if at least astandby remains operational, then the SPARE

gate is false, and when all standby events fal the SPARE becomes true. It is not necessary

248



to derive a sequence (e.g. primary first) in a radrfBPARE because the order of failure does
not matter. However, if two or more SPAREs shaendly events, then the issue of non-
determinism appears and it becomes more complekiehwSPARE will fail if several try to

use the same standby at the same time?

Thus the main DFT gates can be translated intodtaretuivalents as follows:

* The DFT's redefined PAND is roughly equivalent em&ora's PAND and SAND, e.g. X
PAND Y in a DFT would be the same as (X <Y) + (XY&in Pandora. However, the DFT
PAND can have the same event occurring as multplets, which means the conversion is
not direct (the repeated inputs would have to beoxed first).

« The FDEP gate is effectively equivalent to an OR.tggered events would be replaced
by an OR containing the trigger and the triggereenés. However, circular logic would
have to be resolved first.

» The SPARE gate is effectively equivalent to an AMl.standby events and the primary
must fail for a SPARE gate to fail. However, thensteterminism problem for shared
standby events means that this scenario — andhtméng of standby events — should be

avoided in favour of more explicit modelling usiRgNDs, SANDs and PORs.

With these conversions it is possible to conversioFTs into a Pandora-like fault tree and
thus apply a form of qualitative analysis on it.isTlnalysis would be able to deal with the
issues of simultaneity more explicitly (due to gresence of the SAND) and would be able to

produce equivalent MCSQs.

However, the various problems with the DFT gatescdbed above show that it is difficult to
develop methods for quantitative analysis in theseabe of consideration for qualitative
analysis, because doing so can lead to a numblegiail ambiguities. By defining gates for
use with a quantitative methodology first, the D&fiproach has had to later define or redefine
its gates to resolve the ambiguities and overcdmeerésultant problems. Pandora does not
suffer the same problems as these ambiguities ddeessed initially, potentially providing a

sounder foundation for any future quantitative gsialmethodology.

6.2.2 CSDM-style approach

CSDM and similar approaches like the DurationalcGlais represent temporal information as
part of an event rather part of a gate. This da¢snean that they do not use a temporal logic —
they do — but simply that the temporal logic is tkkepparate from the Boolean logic that
comprises the structure of the fault tree. As alteany qualitative analysis methodology is

complicated by the fact that it must take into actdwo forms of logic in two separate places.
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It is not even clear that such an analysis is nmedini, however. The temporal logics used in
CSDM and Durational Calculus, for example, are prity designed to represenbnstraints
Both approaches are mainly used to describe thefigadions and requirements of real-time
systems, in which the exact timing of events becomtical. As a result, both feature a
metricated, quantifiable form of time. Furthermopayrticularly in CSDM, the notion of an
event is different to the definition of an eventdandora: in Pandora, events are persistent and
instantaneous, whereas in CSDM, events are fimtk gan occur more than once. Pandora's
events are closer in definition to the actions 8D®, which represent individual instances of
events, but even actions have start and end tsoesething which is difficult to represent with

Pandora.

Pandora can be used to represent durations byirgBrents to represent start and end times. It
is also possible to represent multiple duratiorssgame way. Then the temporal gates can be
used to specify that an event occurred within diqdar interval, e.g. if START is the start

event of the interval and END the end event, thesteurs within the interval if:

(START < X + START & X).(X | END + X & END)

However, the most important difference between@i&®M-style approaches and Pandora is
that those approaches careasurdntervals. It is not possible in Pandora to sat #n interval

(or an event) lasts a certain amount of time. Téw that can be done is to embed a time in the
end event of an interval, e.g. if START is the tstaran interval, then END would be "10
seconds elapsed since START", but this is separatethe temporal logic.

Thus performing a qualitative analysis using CSCiieslogic is difficult because it was not
designed to be used in that way; similarly, tryingpecify real-time constraints using Pandora

is difficult and inexact because Pandora does setaumeasurable system of time.

This does not mean that both types of approachesot@omplement each other. It is possible
to use CSDM-style logic inside the basic event®ahdora to represent a finer-grained, real-
time view of events that can be used in validatdod verification, whilst Pandora can be used
as the logic that joins those events, which wouldbdée some form of preliminary qualitative
analysis to take place. However, any conclusioasvdrmust take into account both types of
information if a true understanding of the systesrtd take place; e.g. the failure of a fire-
suppression system might be modelled using Panidarpresent the sequence of events (e.g.
alarm fails before fire occurs) but CSDM to repreésihe occurrence of the fire (e.g. gas leak
AND naked flame AND overlap for 10s).
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An alternative approach would be to extend Pandetia quantifiable operators, i.e. to allow
PAND, SAND, and optionally POR gates to be givemations. Thus X PAND10 Y might
mean that X must occur 10 time units before Y, snBAND30 Y might mean that X and Y
must occur together for 30 seconds. This type aisumble interval would still not be part of

the qualitative temporal logic, however, and waoddpurely descriptive.

6.2.3 TFT approach

The Temporal Fault Tree (TFT) approach is desidgioedault diagnosis, and as such uses a
more precise temporal logic than Pandora. TFT'sLPLIE a past-orientated logic that allows
for the quantification of time (e.g. the WITHIN aj¢or allows the analyst to specify that two
events much occur within instants). Pandora's temporal gates can be crudphgsented by
PLTLP, e.g. the PAND gate can be expressed by @GMESTIME-PAST operator: if the current
time is the time at which the PAND became true. {i® sequence value), then X PAND Y
means that X occurred SOMETIME-PAST before Y. TRND can be represented by giving
two events the same starting point, e.g. X occurredstants previously and Y occurred
instants previously too. However, it is difficutt express the POR because it is inherently a
future-oriented operator and can only really beduisea TFT context to describe situations

where one event has occurred but another evemdtgget).

Qualitative and quantitative analysis are both bssvith TFTs, but these analyses are meant
to be carried out on a trace of a system operatiatetermine the cause of failure. The nature of
the time model used is point-based, because ih@ssthat observations of the system are taken
at regular times. This means that intervals carddiined as collections of points and that

measuring the time between events is possiblejgimst possible using Pandora.

Both techniques are developed in very different vy very different purposes and it is
difficult to see how they could be used togethemddra does not offer the exact precision or
the model of time needed to represent the traem aperational system (just as it cannot easily
express real-time constraints), whereas TFTs dio] Blis do not offer the flexibility necessary

to model more general sequences of events withawkrimes of occurrence.

6.2.4 TAND connective

The TAND is a single logical connective designeddresent the situation where one event (or
state) immediately follows another, i.e. it defireesequence. In purpose it is similar to the
PAND, but in practice it is very different. The TANS meant to show how a sequence of states

can lead to a failure, and X TAND Y specifies tkatvas true at first, then it stopped at the
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same time Y occurred, and then Y ceases some #itee The only interpretation in which this
really makes sense is for X and Y to representstatot the occurrence of events. This is
fundamentally different to Pandora's approach gregenting instantaneous occurrence of

events with persistent effects.

However, the TAND-style state based approach offers significant benefit not present in
Pandora — the possibility of repeated and/or intigent events. A sequence like X TAND Y
TAND X is not impossible if X and Y are states, attdt TAND can represent repeating
sequences like this very easily. By contrast, Pendannot represent the repeated occurrence of
the same event — it is, by definition, a contradictin Pandora's logic, since it violates

Simultaneity.

Despite this advantage, the TAND is very diffictdtuse in general. Because it is intended for
use with states, it is ill-suited to the type oEmis normally found in fault trees, where events
typically represent the occurrence of faults (ro# éxistenceof faults). If events represent
states, then it has many semantic implications, figrepairable systems and in terms of
coherency and non-coherency. If an event can gm firme to false multiple times, then a

statement like X AND NOT Y can be true at some sraad not at others.

Pandora, by contrast, is much better suited toesgmting non-repairable systems in which
events represent failures with persistent effects im which the sequence of occurrence is
important. This type of scenario is something tB&ND essentially cannot represent, because if

an event cannot 'end' then the TAND is meaningless.

As a result, Pandora and the TAND are — to alints#@nd purposes — utterly incompatible.

6.2.5 Formal approaches

The other approaches described in Chabter.e. the work of Bruns & Anderson, Schellhetn
al., Xiang, and Gudemann — are based upon formalisatbthe fault tree logic. Their intention
is usually to produce a more rigorous semanticsfdatt trees for the purposes of a more
accurate representation of system failure behayvimn is not typically intended to produce a
‘temporal' fault tree, particularly not for the poses of qualitative analysis. Typically, the
formalisation process focuses on the definitiormfevent rather than the introduction of new

gates.

Bruns & Anderson attempt to solve some of the amibas in theFault Tree Handboolby

defining events as conditions having a duratioth@athan being instantaneous) — thus making
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them functionally if not semantically equivalent $tates — and then defining the AND as a
simultaneous conjunction of these events, i.es ttue if all input conditions are true. The fact
that events have durations implies that an AND gate later become false, and it also means
that the AND gate will never be true if all of itgouts are true at different times, even if thdy al
occur at least once. Temporal semantics are intextiwsing arevenoperator to represent a
kind of sequence (that an event will be eventualle in the future) or g@rev operator (to
indicate that an event was true at some pointerptst); however, these operators are semantic
operators designed to formalise the meanings ofathk tree and are not meant to be used as
explicit logical gates along the lines of AND andR @nd Pandora's temporal gates. There is
therefore no means of using these as part of alysimaThis approach is therefore only a
formalisation of existing fault tree functionalitgr the purposes of verification and validation,
and is not meant to extend fault trees with newptanal functionality; indeed, Bruns &
Anderson explicitly acknowledge that if temporaimsatics are introduced, then existing

Boolean laws are insufficient to perform analysis.

The approach of Schellhoet al. is another formalisation but one that makes eiplise of
temporal logic — in this case, a hybrid form of I&ahd Duration Calculus. Each gate is assigned
temporal semantics, and the existing gates aret spl0 decompositional gates and
consequential gates. This distinction is made pasge the notion of causality from the notion
of decomposition. Some gates — specifically the AMBte — are further divided into
synchronous (i.e. simultaneous) and asynchronaas gequential) forms. In this approach,
these advanced gates can be assigned their owmtsesnaxpressed in the ITL/Duration
Calculus logic, e.g. to specify durations. Thusséhgjates are treated in some respects as
‘temporal events' and not merely as logical opesatsince, in order to be true, additional
conditions must be fulfilled beyond the logical mes of the gates. Again, however, this
approach is not designed to support qualitativdyarsaand is meant to form a more rigorous

description of system behaviour.

Xiang's approach is similar but defines events eimghbased on occurrence instead. New
temporal operators are introduced, egxt eventuallyto describe the occurrence of events in
the discrete, linear model of time used. Again, &esv, the intention is to represent more
precisely the behaviour of dynamic systems rathan tto enable the analysis (qualitative or
quantitative) of such systems. Furthermore, in #gproach, the temporal semantics are

represented by conditioning events rather thanaigsy

In all three of these cases, the intention is twlpce a more formal fault tree methodology with
more precise semantics that can be used to vesfgi@m specification. This is a very different

goal from Pandora, which is comparatively inforraatl designed instead to extend fault trees
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to allow more advanced forms of analysis. The laicguantifiers in Pandora's gates (meaning
that precise durations cannot be expressed) argtritsly relative model of time mean that
Pandora is not suitable for this sort of task;east it is deliberately imprecise to enable the
fault tree to describe sequences of failures withawing to specify exactiywhenthose failures

occur.

The work of Gudemanmt al. on Deductive Failure Order Analysis (DFOA) is, howee
somewhat different: this approach is designed waithlysis in mind. It is meant to produce
minimal cut sequences containing Pandora's PAND SAND gates by using an inductive
analysis technique to obtain normal cut sets aad #pplying an ordering to them on the basis
of temporal semantics based on CTL* and LTL. Altjouhe result is similar to Pandora, the
process is very different. The primary differensdtiat DFOA is a two stage process — in the
first stage, the combinations of events are prodiuemd in the second stage, the temporal
semantics are added to the results. In Pandordethigoral analysis takes place as part of the

normal analysis — there is no distinction.

DFOA is still very new and the details about howvirks are not yet fully clear, but it seems
that DFOA serves as an alternative algorithm oéioiitg Pandora-style minimal cut sequences,
since DFOA uses the same gates (except curresttinipa POR). However, DFOA also makes
use of classical temporal logics like CTL* and LT& provide the full temporal semantics,

which presumably introduces a much higher levetahplexity compared to Pandora's very

limited relative temporal logic.

6.2.6 Conclusions

The above approaches can be divided into four roaiagories, depending upon the purpose

they were designed for:

e Analysis approaches - DFTs, TAND, DFOA, Pandora

* Real-Time Specification - CSDM, Duration Calculus

e Fault Diagnosis - TFTs

e Formal Verification - Schellhorn, Bruns & Andersoniakg

The category of the approach has the biggest imgamh what it contains and how it works.
The specification and verification categories bpthvide very specific, detailed, and formal
logics designed for precise representation of sydtehaviour; however, they tend not to be
designed with analysis in mind and in most cadeetis no indication of how the resultant

fault tree is to be analysed (either qualitativalygquantitatively). The TFT approach is designed
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for fault diagnosis - itself a form of analysisand falls somewhere between the formal
approaches and the analysis approaches in thHeis @ comprehensive and precise temporal
logic but that it also takes into account the gubsi of analysis (albeit based on a trace of the
system operation). The analysis approaches, byasinare designed to extend fault trees with

temporal semantics for general usage and it istiisocategory that Pandora falls.

Of these approaches, Pandora bears the strongelstrigy to the TAND approach in that it is
designed to allow fault trees to represent anditgtiaely analyse the sequence of events as part
of the fault tree structure by introducing new temgh gates. However, the method used is very
different, and thus Pandora's semantics are maniasito those of the DFT methodology in
that its events represent occurrences rather thatessand its gates impose sequential
constraints on the order of those events. The Di@groach actually uses Pandora gates in its
results, but uses a more complex and formal stiyteroporal logic during the analysis (due to

its use of DCCA — a formal model checking technigees the engine for producing the results).

Pandora's temporal gates resolve many of the attibigpresent in the TAND and DFT gates
by enabling the explicit representation of simutitynand also by directly acknowledging the
possibility of contradictions arising from the seque of events. Its focus on qualitative
analysis means that it is possible to analyse ¢ngporal information contained within the
logical structure of the fault tree, whereas otfeehniques (e.g. DFTs and to a certain degree
also DFOA) must separate the logical and tempafarination, typically performing a standard
qualitative analysis first and then restoring temporal information afterwards. On the other
hand, both DFTs and the DFOA method are betterppedi for quantitative analysis, either
through the use of Markov chains in the case of ®IBr via model checking in DFOA.

Quantitative analysis is not possible using the TAN
Pandora is unique in providing a set of new lawat tombine a temporal logic allowing

sequences of events to be represented and the InBankean logic of the fault tree. In other

approaches that introduce temporal gates, the ateg @re generally treated separately.
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6.3 Further Research

"Time will explain it all. He is a talker, and needo questioning before he speaks."

- Euripides Aeolus

Although Pandora’'s box has now been opened, thedatents have not yet been explored.
There are many possible avenues for further relseard also a number of areas that would
benefit from further development. The three maimeations for further research are
improvements to the algorithms and logic, quamiaganalysis, and further investigation into

possible applications of Pandora.

6.3.1 Improving Pandora

Pandora enables temporal qualitative analysis m parts: by introducing new gates with a
logic to support them and by suggesting algorithimas can be used to analyse them. Although
the logic is relatively mature and unlikely to beemded further (e.g. with any more gates), it is
possible that useful new laws remain to be dis@e®ne possible avenue worthy of further
investigation — though admittedly unlikely to yiedmy simple results — is the inclusion of the
NOT gate in Pandora. As explained earlier, the Nfafe is problematic, but a non-coherent

variation of Pandora may allow for the analysis @reater range of systems.

Alternatively, if Pandora's temporal logic is s@hthen the spotlight falls upon the algorithms,
which are in greater need of improvement. The temmporal qualitative FTA algorithms
presented here, Euripides and Archimedes, bothersdifbm a number of shortcomings —
particularly performance related difficulties. Gamtly, these problems mean that both
algorithms are limited to small applications; usihgm to analyse a non-trivial fault tree of
hundreds of basic events is not practical. Untilae efficient method is developed, Pandora's

applicability to real world systems is limited.

Of the two approaches, it is Euripides that hafigges the best chances of becoming a practical
algorithm. Euripides uses the manipulation of Baoleand temporal laws to determine the
minimal cut sequences and at present its main vesakis in dealing with Completion
Problems. Further research may highlight more Blgtanethods of dealing with this problem,
whether by using new or different laws or by figlia way to reduce the problem to a
manageable size (e.g. in the same way doubletsthminumber of laws needed during the rest

of the analysis). It may be possible to find somayvef recognising when elements of a
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Completion law are present in order to be ableffecesome additional reduction, e.g. in its

simplest form, to recognise that X<Y + X&Y + Y<Xeaall the constituents of X.Y.

Archimedes has less scope for improvement becausdundamentally limited by the size of
its dependency trees. As an inductive techniquapgt generate all possible cut sequences, and
the number of cut sequences increases dramat@ediygrding to the Fubini numbers. Further
research into Archimedes is likely therefore tou@n more efficient ways of applying it or
identifying situations where it can be applied, &y limiting the number of events it must deal
with.

There may of course also be entirely different atgms possible for use with Pandora. FTA
itself has seen many new algorithms developed dsehistory, from simple Boolean-based
techniques like MOCUS to modern approaches like BB method. It is not impossible,

therefore, that more radical new techniques maipbed.

6.3.2 Quantitative Analysis

Qualitative analysis is only one half of FTA: to toely useful, quantitative analysis should also
be possible. While it has proven valuable to foongjualitative analysis first, thereby dealing
with the problems and ambiguities that may arisenfintroducing time to the logical structure
of the fault tree, there is currently no methoddaantitative analysis to take advantage of this

solid foundation.

This is one area where combination with or at léaspiration from other temporal FTA
techniques like DFTs may prove useful. Other termp&iTA techniques generally focus on
quantitative analysis rather than qualitative asiahand this has yielded a number of different
methods. In particular, it may be possible to corali?andora’'s temporal gates with the Markov
chains used in DFTs; alternatively, more traditloralculation methods such as the PAQ or

SFL methods may prove more effective.
The first step in providing quantitative analysepabilities in Pandora is to find a way to

quantify each of the temporal gates. As explainadiez, quantifying simultaneous and

sequential events is not necessarily a simple maitiek can be highly dependent on context.

6.3.3 Applications of Pandora

Although Pandora is designed to be used with dyoaystems, currently only non-repairable
persistent failures are modelled, and this can sares limit the types of systems Pandora can

analyse. Extending Pandora with the capability oflelling additional types of failure could be
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a fruitful avenue. It may also be possible to uaed®ra in different ways or to analyse systems

in conjunction with other techniques.

For example, many dynamic systems are modelledgusiates and transitions — currently
something that fault trees cannot adequately repte@n their standard form, at least). In
particular, it is not sufficient to model a patimdbgh a state transition diagram as a conjunction
of states as transiting through the same statesmtaifferent order may result in a different

end state. Pandora may be one way of extendingtfaak to represent states in such systems.

However, if Pandora is to be used to model statdgransitions, then it may require changes or
at least additions to the semantics of events atesgn Pandora. Currently events are persistent
— they do not end. States are not persistent amdsybtem can transition from one state to
another. In this case, perhaps the lessons leamtthe TAND connective may prove useful in
defining a variation of Pandora that can cope witttes and non-persistent events without also
introducing the ambiguities and inconsistencieseégpmced by the TAND. It may be a
sufficient abstraction to assume that state-trexmsitvents are mutually exclusive and that the
occurrence of one event means that the previots lst& come to an end, in which case X<Y
would be more or less equivalent tofKY. The full ramifications of such alterations mupst

studied in greater detail first, however.

Another likely direction of research for Pandorangestigating how it can be combined with
automated fault tree synthesis & analysis techrsidile HiP-HOPS (Hierarchically-Performed
Hazard Origin & Propagation Studies) (Papadopoetad. 2001). This would mean enabling a
system model to be annotated with Pandora failogé land then synthesising and analysing

temporal fault trees from this data.

As an example of how Pandora may prove useful floerosafety analysis techniques, Pandora
has already been used as part of a temporal/cotobalaFMEA (Failure Modes and Effects
Analysis), e.g. in Walkeet al, 2009; this builds upon earlier work on combinaioFMEA
(Parkeret al, 2006) and combines it with Pandora to enabletbduction of FMEA tables that
contain not only the effects of single failures hlgo the effects of multiple failures as well as

sequences of (or simultaneous) failures.
In addition to the above, it would also be valuabtaply to apply Pandora to a greater range of

dynamic systems; the problems encountered andig$sarnt would no doubt reveal new areas

of possible further research for Pandora.
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Finally, Pandora may also have other applicationsady, in the same way Boolean logic is not
exclusive to fault trees. It could find wider agaliion in fields beyond safety analysis, e.g. in
areas where Boolean logic is used currently toasgt and solve problems but where there is a

need to move beyond a combinatorial model of arsmlgsch as electronic design.
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7 Conclusion

"Success consists of going from failure to failithout loss of enthusiasm."
- Winston Churchill

7.1 Opening Pandora's Box

Over its long history, Fault Tree Analysis has gtovo be a useful and valuable safety analysis
technique; it allows a deeper examination of thierfa behaviour of a system and the results it
produces are a vital aid in helping to ensure $lyatem failures are fully recognised and either

anticipated or prevented.

However, FTA's long history makes it all the mouepsising that one of its central deficiencies
— its inability to model the effects sequencesf failures — has gone uncorrected for so long,
particularly given the increasingly complex dynarbehaviour exhibited by modern systems.
Such systems frequently employ techniques such @sitoning, standby components, and
automated recovery to improve reliability and saatd reduce the probability and severity of
failure, but by doing so they also introduce segeetependent behaviour that cannot be

modelled accurately in a fault tree.

Although there have been other attempts to rembidyproblem, such as those described in
Chapter2, virtually all have focused solely on quantitatasealysis and have ignored or omitted
the possibility of temporal qualitative analysi$igis often because it is thought that temporal
gquantitative analysis alone is sufficient and tin&t existing qualitative analysis capabilities of
fault trees can be stretched or generalised torahugamic situations, but this is not always the
case: a prior qualitative analysis will often relviedormation that a quantitative analysis alone
cannot disclose, particularly in terms of contréidits and simultaneous events. Introducing
sequences of events also inevitably introducegtssibility of mutually exclusive sequences
and thus contradictions, which must be avoidedealtdvith appropriately, and if it is possible
for events to occur in a certain sequence thers ialso possible for events to occur
simultaneously, particularly if those events shem@ommon cause or dependency. Techniques
that cater only for quantitative analysis oftenrdi consider such possibilities at all and this

can adversely affect or even invalidate the quainte results, as pointed out in Chagger

Therefore there is a clear omission in the vocawéfault tree analysis that limits its efficacy

and applicability, and it has hitherto receivedpsisingly little attention. Fortunately, this
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omission in FTA is easily remedied by introducingeehnique for temporal qualitative analysis
of dynamic fault trees. Pandora is designed toraptish exactly that: it extends fault trees with
new temporal capabilities to represent eventsrthait occur in sequence or simultaneously in
order to cause a further fault, and it providesrapgoral logic to support these gates and allow
gualitative analysis to take place. It is this fan@ntal temporal logic underlying its gates that
makes Pandora unique amongst temporal fault tralysis techniques, whether quantitative or

qualitative.

7.2 What emerged from Pandora's Box

The first part of the solution is to represent tenap information as an integral part of the fault
tree, and the second part is to provide a methahable that information to be analysed. Both

halves of the solution depend on the formulatioarofippropriate temporal logic.

Although the idea of a temporal logic is far froraw) most classical temporal logics are
difficult to use with fault trees. Classical temablogics are designed to formally reason about
knowledge of time, and as such are able to takedntounwwvhensomething is true; however,

if the only requirement is to represent the relatiwder or sequence of a series of events, then
these logics are often overpowered and inefficierttst of their expressive power is wasted and

it is comparatively awkward to describe somethiagianple as 'X occurs before Y'.

There are some temporal logics introduced spedifiéar use with fault trees, but these often
experience problems of their own. Fault trees has@monly understood semantics (though
there seems to be no shortage of possible formslisnthose semantics) and if it is to be used
in a fault tree successfully, any temporal logiow attempt to be compatible with those
semantics. Temporal logics that introduce statesliiferentiate between decomposition and
causation complicate the semantics and force thie tiee analyst to think in particular — and

potentially unfamiliar — ways.

Pandora introduces a new logic that is designddltow the traditional semantics of the fault
tree by modelling events as occurrences of faults lzasing its gates on the staple Boolean
gates that comprise the core of standard fault lmgies. Events in Pandora do not require
durations or complex temporal relations to descoerlaps or intervals, and Pandora's gates do
not represent instances of a complicated classgraporal logic; instead, Pandora's PAND,
SAND, and POR gates represent only the simple asillyeunderstood relative temporal order

between events.
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The PAND gate itself is based on an original fande gate but updates its definition to avoid
the problems that have prevented that gate fromgbased effectively in the past. PAND

represents the 'before’ or 'after’ relation — thgpkest and most fundamental temporal relation
possible. As such, it forms the core of Pandora isnthe basis from which all else has

developed. The related POR gate is a developmahed?AND and better expresses the notion
of priority: that one event takes precedence otleers and must occur first. As such, the POR
gate can be used as a temporal version of the BodE©T gate but without the associated cost

of introducing non-coherence to the fault tree.

However, if event X does not occur after event i & does not occur before event Y, but both
X and Y occur, then another temporal relation nigstrue — that of simultaneity. The SAND
gate represents this case explicitly. Other teclesdgrequently choose to ignore simultaneity,
dismissing it as unnecessary on the basis of pilitlgabut this is a flawed decision based on
the assumption of independence of events. If tvmare events share a common cause, then
simultaneity is not only possible, it is probakigithermore, explicitly modelling simultaneity
helps create a balanced temporal logic by avoidmbiguities and ensuring that the three basic
temporal relations are consistent and mutuallywesiee — in Pandora, either two events occur at

the same time, or one must occur before the other.

Underlying these three simple gates and the basipadral relations are a system of temporal
laws — laws of logic that represent equivalencevben different logical expressions. These
temporal laws allow Pandora to manipulate and sfinpémporal expressions, highlight any

contradictions that may arise from the introductéisequences, and perhaps most importantly,
link the new temporal gates to the existing Boolgates. This latter task is accomplished by
the Completion Laws, the jewels in Pandora's cramirich demonstrate how conjunctions and

disjunctions and even single events can be exgiessa set of temporal relations.

These temporal laws are also what make temporditafisee analysis possible in Pandora. In
the same way Boolean laws can be used to redueditidnal fault tree, temporal laws can be
used to reduce a temporal fault tree by identifyingtances of the three types of logical
redundancy: absorption, contradiction, and comghetAbsorption is the removal of redundant
collections or sequences of events from the resatigtradiction involves the removal of
sequences that are impossible, and completion sllowltiple sequences of events to be

converted into a simplified equivalent form.

However, before temporal laws can be used, theg hawbe proved to be valid. Fortunately,
just as all Boolean laws can be proven by mearsstaith table expressing every combination

of truth values, all temporal laws can be provenr®ans of temporal truth tables that express
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every possible sequence of events. This introdtieesssociated concept of a sequence value,
analogous to a truth value, which describes thativel order in which events occur. All gates

and events can be evaluated in terms of their seguealues, allowing them to be used as part
of a temporal truth table. All possible sequendesvents can be efficiently generated by means
of a precedence tree, which takes the form of adhiag timeline in which time continues with

new events occurring at each node until all eventar at the leaf nodes. The contents of the
precedence tree can then be used to populatenipetal truth table, and each row is assigned a
different but unique set of sequence values. IE¢hgequence values of two expressions are
identical on every row of their temporal truth ®hthen those two expressions are proved to be

equivalent.

There are, however, many possible temporal lawstamould not be possible to use them all as
part of an analysis. To reduce the number of lageessary for a qualitative analysis, Pandora
introduces the idea of doublets — an encapsulatfaa single temporal relation between two
events, allowing temporal relations to be treateunically as with any other event. Doublets
greatly facilitate qualitative analysis by reducitite number of temporal laws needed for
reduction and manipulation, and they better repieiee many possible temporal relations

between the basic events involved in a typical mapanalysis.

The analysis of a temporal fault tree by meansooibtets and applying temporal laws is called
Euripides, but this is only one possible methods #lso possible to make use of a dependency
tree, which shows how one possible sequence cgatvef and therefore made redundant by
another sequence or combination. In one senseendepcy tree is the graphical representation
of the Completion Laws, and as such the dependémeyis an ideal way of solving the
Completion Problem — identifying all the possibkgjgences that comprise a given expression
and reducing them to their simplest form. This faxfranalysis is called Archimedes. The two
algorithms are not mutually exclusive and indeethhman successfully be used in concert to
obtain the minimal cut sequences that are capdldausing the top system failure event of the

fault tree.

These minimal cut sequences then form the basithéodecisions the analyst makes about the
system; they may highlight weak points in the ayste.g. places where only one or two events
are required to cause the system to fail, or magest strategies for preventing or mitigating
failures, e.g. if one sequence of events can lead ctritical failure, then preventing that
sequence — perhaps by ensuring that events faitifferent order or simultaneously — may lead
to a lesser failure or even no failure at all. Hifgerent criticality that can result from differen

sequences of events in particular is highlightethéncase study presented earlier.
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Pandora therefore allows fault trees to incorpotateporal information and it then allows this
information to be subjected to a temporal analyis; results of that analysis can provide a
better insight into how a dynamic system may fair@act to failure. It improves on existing
gualitative analysis because it can produce mowrate results that avoid unnecessary
optimism or pessimism and furthermore can repres@mtions that simply cannot be modelled

correctly using only traditional static techniques.

7.3 What remains in the Box

Although Pandora now makes temporal qualitativdyaigpossible, this is only the beginning.
As explained in Chaptes, the Evaluation chapter, Pandora can be improweldexpanded in
many directions. In particular, to enable a full&Tit should also be possible to conduct a
gquantitative analysis and this is one major avefoudurther research with Pandora. Another
promising avenue is the use of Pandora for modg#itates and transitions in dynamic systems.
Finally, further investigation and enhancement le# tlgorithms and laws used in Pandora
would no doubt prove to be a fruitful line of engliparticularly if Pandora is ever to be used

effectively in real-world systems.

But those are ideas for another day, and nowtitris to concentrate on the present. Temporal
qualitative analysis is a virtually unexplored fiehnd those pioneers who have ventured into it
have either given it a low priority and consequemthieved little or alternatively achieved
their goals only by altering the meaning of faulies to evade the problems they encountered.
Pandora was designed from the start to retain ay wiathe good qualities of FTA as possible
— particularly its ease of use and simple logitalcture. Pandora only requires the analyst to
consider the relative order of occurrence of evantsdoes not require any timings or intervals
or states; by adopting this simple philosophy ihimises the necessary additions and retains
the logical coherence of fault trees without compeing its ability to express dynamic
behaviour. Pandora therefore offers new capalslifr the representation and analysis of
temporal sequences of events that have hitherto &ebest difficult and at worst impossible,

and it is these capabilities that make Pandoraugniig the pantheon of FTA.

264



References

"I begin by taking. | shall find scholars later d@monstrate my perfect right."

- Euripides Suppliants

1. ADAMYAN A, HE D. 2002. "Analysis of sequential failes for assessment of reliability
and safety of manufacturing systemBRé&liability Engineering & System Safewol. 76,
227-236

2. ALLEN J.F. 1983. "Maintaining knowledge about temgdantervals® Communications of
the ACM Issue 26 Vol. 11, pages 832-843, November 1983.

3. ALUR R., HENZINGER T.A. 1991. "Logics and ModelsReal Time: A Survey.In
Real-Time: Theory in Practic&®REX Workshop, LNCS 600, pp. 74-106, 1991.

4. ALUR R., HENZINGER T.A. 1992. "A Really Temporal biz." Journal of the ACM!1,
1994, p181-204.

5. ALUR R., HENZINGER T.A. 1993. "Real-time logics: mplexity and expressiveness."
Information and Computatioh04(1):35-77, 1993

6. ALUR R., HENZINGER T.A., KUPFERMAN O. 1997. "Alteating-time Temporal
Logic." Proceedings of the 88EEE Symposium on Foundations of Computer Science
(FOCS '97). p100-109.

7. ALUR R., ETESSAMI K., MADHUSUDAN P. 2004. "A Tempak Logic of Nested Calls
and Returns.10" International Conference on Tools and Algorithmsthe Construction
and Analysis of SysteriBACAS), March 29 - April 2, 2004 Barcelona, Spain

8. ALUR R., ARENAS M., BARCELO P., ETASSAMI K., IMMERMN N., LIBKIN L.
2007. "First-order and temporal logics for nestenids" 22" IEEE Symposium on Logic in
Computer Scien¢&Vroclaw, Poland, 2007.

9. AMARI S., DILL G., HOWALD E. 2003. "A new approado solve dynamic fault trees."

In Proceedings of the Annual Reliability and Maintditdly Symposium2003. ISBN 0-
7803-7717-6, pp 374-379.

265



10.

11.

12.

13.

14.

15.

16.

17.

18.

ANDREWS J.D. 2000. "To not or not to doProceedings of the T8International System
Safety Conferencé&ort Worth, Sept 2000. pp 267-275

ASSAF T., DUGAN J.B. 2003. "Diagnostic Expert Sysgefrom Dynamic Fault Trees."
Proceedings of the Annual Reliability and Maintdidy SymposiumJan 2004. Los
Angeles, USA. pp 444-450.

BARTLETT L.M., and ANDREWS J.D. 2000. "An orderimguristic to develop the binary
decision diagram based on structural importanRelfability Engineering & System Safety
Vol 72 (2001), pages 31-38.

BELLINI P., MATTOLINI R., NESI, P. 2000. "Tempordlogics for Real-Time System
Specification."ACM Computing Survey¥ol 32, No 1, March 2000.

BOUDALI H., CROUZEN P., STOELINGA M. 2007. "Dynamkeault Tree Analysis using
Input/Output Interactive Markov Chaind?toceedings of the $7IEEE/IFIP International
Conference on Dependable Systems and Netwppk§08-717. IEEE Computer Society,
USA. ISBN: 0-7695-2855-4

BOUDALI H., CROUZEN P., STOELINGA M.L.A. 2007 "A cuopositional semantics for
Dynamic Fault Trees in terms of Interactive Mark@hains." In 5th International
Symposium on Automated Technology for Verificatind AnalysiSATVA'07), October
22-25, 2007, Tokyo, Japan. pp. 441-456. Lectureedldh Computer Science 4762.
Springer. ISSN 0302-9743 ISBN 978-3-540-75595-1

BOUISSOU M., BON J-L. 2003. "A new formalism thatnobines advantages of fault trees
and Markov models: Boolean logic driven Markov meses Reliability Engineering &
System Safety/ol 82, pp 149-163.

BRUNS G. and ANDERSON S. 1993. "Validating Safetgdéls with Fault Trees." In
Proceedings of the 12th International Conferenc&Computer SafefyReliability, and

Security, Janusz Goérski, editor, pages 21-30. §priiverlag, 1993
BUCCI P., KIRSCHENBAUM J., MANGAN L.A., ALDEMIR T.SMITH C., WOOD T.

2008. "Construction of event treef/fault tree modeten a Markov approach to dynamic

system reliability."Reliability Engineering & System Safe¥ol 93, pp 1616-1627.

266



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

BUCHACKER K. "Modeling with extended fault treesFifth IEEE International
Symposium on High Assurance Systems EnginedH#®SE’00), Nov 15-17, 2000,
Alberquerque, New Mexico, p 238.

CHOMICKI J., TOMAN D. 1997. "Temporal Logic in Infomation System$ Basic
Research In Computer Scien&RICS) Lecture Series LS-97-1, ISSN 1395-2048,
November 1997.

CLEUGH M.F. 1937Time Methuen & Co Ltd, London, UK.

CODETTA-RAITERI D. 2005 Extended Fault Trees Analysis supported by Ssiitha
Petri Nets.PhD Thesis, Dipartimento di Informatica, Univeasitegli Studi di Torino, Italy.

COPPIT D., SULLIVAN K.J, DUGAN J.B. 2000. "Formak®antics of Models of
Computational Engineering: A Case Study on Dyndraiglt Trees.Proceedings of the
11th International Symposium on Software ReligblihgineeringSan Jose, California,
USA, 8-11 Oct 2000 (ISSRE 2000). ISBN: 0-7695-080pp 270-282

COPPIT D. 2003Engineering Modeling and Analysis: Sound Method$ &fiective Tools
PhD Thesis, University of Virginia, USA.

DUGAN J.B., VENKATARAMAN B., GULATI R. 1997. "DIFTee: A software package
for the analysis of dynamic fault tree modéRroceedings of the Annual Reliability and
Maintainability Symposiunml3-16 Jan 1997, USA, pp 64-70.

DUGAN J.B., SULLIVAN K.J., COPPIT D. 2000. "Develimg a Low-Cost, High-Quality
Software Tool for Fault Tree AnalysidEEE Transactions on Reliability/ol 49 Issue 1,
Mar 2000, ISSN 0018-9529. pp 49-59.

DUGAN J.B., ASSAF T. 2001. "Dynamic Fault Tree Aysib of a Reconfigurable
Software System.19" International System Safety Confererdantsville, Alabama, USA.

Sept 2001.

DUTUIT Y., and RAUZY A. 1996. "A linear-time algalim to find modules of fault trees."
IEEE Transactions on Reliabilitysept 1996, Volume R-45/3, pp 422-425.

267



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

EMERSON E. A. 1990. "Temporal and Modal Logielandbook of Theoretical Computer
Science, Volume B: Formal Models and Semad®®0, J. van Leeuwen, ed., North-
Holland Pub. Co./MIT Press, Pages 995-1072.

ERICSON C. 1999. "Fault Tree Analysis — A HistdrnProceedings of the 17
International System Safety Confered®89.

FUSSEL J.B., VESELY W.E., 1972. "A new methodoldgy obtaining cut sets for fault
trees."Transactions of the American Nuclear Sogigtt 15, p262-263.

FUSSEL J.B., ABER E.F., RAHL R.G. 1976. "On the mjitative analysis of Priority-
AND failure logic."|IEEE Transactions on Reliabilitt 976, Volume R-25/5, pp 324-326.

GALTON A. 2003. "Temporal Logic." [Online]. StanfibrEncyclopaedia of Philosophy,
last modified 11 Dec 2003. Accessed at http://plato.stanfordemdries/logic-temporal/
in Jan 2004.

GIRARD J.Y. 1987. "Linear Logic.Theoretical Computer Sciencéol 50 Issue 1, M.
Sintzoff (ed.). North-Holland, Netherlands, 1983SN 0304-3975. p 1-102.

GORSKI J. 1994. "Extending safety analysis techesgwvith formal semantics.™n
Technology and Assessment of Safety Critical Sgstesmges 147-163, Springer-Verlag,
London, 1994. F.J Redmill and T. Anderson (eds.).

GORSKI J., WARDZINSKI A. 1996. "Deriving Real-TimRequirements for Software
from Safety Analysis."Proc. 8" Euromicro Workshop on Real-Time Systeif€E CS
Press (1996) 9-14.

GORSKI J., WARDZINSKI A. 1997. "Timing aspects odult tree analysis of safety
critical systems.Proceedings of the Safety Critical Systems Symmpsitighton, UK, Feb
1997. pp 231-244.

GULATI R., DUGAN J.B. 1997. "A Modular Approach fénalyzing Static and Dynamic

Fault Trees."Proceedings of the Annual Reliability and Maintdily Symposium
Philadelphia, Pennsylvania, 13-16 Jan 1997, pp®%7-6

268



39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

GUDEMANN M., ORTMEIER F., REIF W. 2008. "Computirf@rdered Minimal Critical
Sets."Proceedings of Formal Methods for Automation anfétyan Railway and
Automotive SystenfSORMS / FORMAT 2008) (eds. G. Tarnai & E. Scheigd

HANSEN K.M., RAVN A.P, STAVRIDOU V. 1998. "From Sefy Analysis to Software
Requirements.IEEE Transactions on Software Engineerif@l 24, No 7, July 1998 p573.

HUANG C-Y., CHANG Y-R. 2006. "An improved decompbsn scheme for assessing the
reliability of embedded systems by using dynamidtf&rees" Reliability Engineering &
System Safety/ol 92, pp 1403-1412.

ISOGRAPH SOFTWARE, 200ZFault Tree+ v10.1 Software tool fittp://www.isograph-

software.com/index.htin

KAISER B., GRAMLICH C., FORSTER M. 2007. "State/ewefault trees — A safety
analysis method for software controlled systerReliability Engineering & System Safety
vol 92, pp 1521-1537.

KESTEN Y., MANNA Z., McGUIRE H., PNUELI A. 1993. "Mecision Algorithm for
Full Propositional Temporal LogicProceedings of the 5th International Conference on
Computer Aided Verificatio(CAV '93), volume 697 of Lecture Notes in Computer
Science, Spinger-Verlag. 1993

LAMPORT L. 1980. "'Sometime' is sometimes 'Not NeVéroceedings of the"7ACM
Symposium on Principles of Programming Languag&M SIGACT-SIGPLAN, Jan

1980.

LAMPORT L. 1983. "What good is temporal logid?formation Processing3 (R.E.A
Mason, ed.). Elsevier Science, 1983. p657-668.

LAMPORT L. 1994. "The Temporal Logic of ActionsACM Transactions on
Programming Languages and Systelfis3. May 1994, p872-923.

LAMPORT L. 1994. "Introduction to TLA." SRC TechmicNote 1994-001, Dec 16, 1994.
Digital Systems Research Center, Palo Alto, CalitgrUSA, 1997.

269



49. LICHTENSTEIN O., PNUELI A. 2000. "Propositional T@oral Logics: Decidability and
Completenessrhternational Journal of the Interest Group in Puared Applied Logic
(IGPL), Vol 8 No. 1, pp 55-85, Oxford Universitydas, UK, 2000.

50. LIU D., ZHANG C., XING W., LI R., LI H. 2007. "Quaification of Cut Sequence Set for
Fault Tree Analysis.High Performance Computing Conferer(¢d?CC) 2007, LNCS
4782, pp 755-765, Springer-Verlag, Berlin, 2007.

51. LONG W, SATO Y. 1998. "A Comparison between proliatic models for quantification
of Priority-AND gates.'Proceedings of the PSAM-2, p1215-20.

52. LONG W., SATO Y., HORIGOME M. 1999. "Quantificatiaf sequential failure logic for
fault tree analysis Reliability Engineering & System Safétgl 67 (2000), pages 269-274.

53. MANIAN R., COPPIT D., SULLIVAN K.J., DUGAN J.B. 199 "Bridging the gap
between Fault Tree Analysis Modelling Tools and$lystems being Modelled."
Proceedings of the Annual Reliability and Maintdilidy Symposium1999. pp 105-111.

54. MANIAN R., DUGAN J.B., COPPIT D., SULLIVAN K.J. 198 "Combining various
solution techniques for dynamic fault tree analysiscomputer systenis Third IEEE
International High-Assurance Systems Engineeringymg®sium Nov 13-14 1998,
Washington DC, pp 21-28.

55. MCARTHUR, R.P. 1976Tense LogicReidel Publishing, Dordrecht, Holland.

56. MERLE G., ROUSSEL J-M. 2007. "Algebraic modelling temporal fault trees."
DCDS'07 1*' IFAC Workshop on Dependable Control of Discretst&ms, June 2007.

57. MESHKAT L., DUGAN J.B., ANDREWS J.D. 2002. "Deperuility analysis of safety
systems with on-demand and dynamic failure mod&&E Transactions on Reliability
Vol 51 Issue 2, Jun 2002. ISSN: 0018-9529. pp24D-25

58. NORRIS J.R.Markov ChainsCambridge University Press, 1997, reprinted 2Q&4.

59. ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCESA000670: Number of
preferential arrangements of n labeled elementspn@amber of weak orders on n labeled
elements. [online] Available at: http://www.research.att.com/~njas/sequences/A000670
[Accessed April 2007]

270



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCE®.034172 Nearest
integer to n!/(2*log(2)(n+1)). [online] Available at:
http://www.research.att.com/~njas/sequences/A034AZCessed April 2007]

ORTMEIER F., REIF W., SCHELLHORN G. 2005. "Dedue&i\Cause-Consequence
Analysis (DCCA." Proceedings of the 16th IFAC World Congrdsksevier Jun-2006
ISBN: 978-0-08-045108-4 and 0-08-045108-X

ORTMEIER F., BALSER M., DUNETS A., BAUMLER S. 200Bmbedding CTL* in an
Extension to Interval Temporal Logic (ITdjechnical Report, Institute of Computer

Science, University of Augsburg, October 2008
OU Y., DUGAN J.B. 2000. "Sensitivity Analysis of Malar Dynamic Fault Trees."
Proceedings of the Computer Performance and DeggligaSymposiuntlPDS'00), 2000,

pp 35— 43.

PALSHIKAR G.K. 2001. "Temporal Fault Treedriformation and Software Technology
#44 (2002), pages 137-150.

PAPADOPOULOS Y., McDERMID J.A., SASSE R., HEINER @001 "Analysis and
synthesis of the behaviour of complex programmadetronic systems in conditions of
failure." Reliability Engineering & System Saf&fgl 71 (2001), pp 229-247.

PARKER D., WALKER M., PAPADOPOULOS Y., GRANTE C. @6 "Component-
Based, Automated FMEA of Advanced Active Safetyt8ys." FISITA'06 31st World
Automotive Congress, Yokohama, Published by JSABN: 4-915219-83-6, 2006.
PNUELI, A. 1977. "The temporal logic of prograth$roceedings of the ¥8Annual
Symposium on Foundations of Computer ScielitfeE Computer Society Press. USA. pp
46-57.

PRIOR, A. 1957Time and ModalityClarendon Press, Oxford.

PRIOR, A. 1967Past, Present and Futur€larendon Press, Oxford.

PRIOR, A. 1969Papers on Time and Tendgélarendon Press, Oxford.

271



71.

72.

73.

74,

75.

76.

77.

78.

79.

80.

RESCHER N., URQUHART A. 197Temporal Logic Springer-Verlag/Wien, Austria.
ISBN 0-387-80995-3

SCHELLHORN G., THUMS A., REIF W. 2002. "Formal Fatlitee Semantics."
Integrated Design and Process Technold®PT-2002, USA, June 2002.

SEMANDERES S N. 1971. "ELRAFT: A computer prograer fthe Efficient Logic
Reduction Analysis of Fault TreedEEE Transactions on Nuclear Scienvel18/1 pp
481-487.

SHARVIA, S., PAPADOPOULOQOS Y.l. 2008. "Non-coheranbdelling in Compositional
Fault Tree Analysis.17th World Congress, International Federation ot@dunatic Control
(IFAC), Seoul, Korea. July 2008.

SINNAMON R.M. and ANDREWS J.D. 1996. "New approashe evaluating fault trees."
Reliability Engineering and System SafeBy(1997), pages 89-96.

SULLIVAN K., DUGAN J., COPPIT D. 1999 "The Galilebault Tree Analysis Todl
Proceedings of IEEE International Symposium of Fdoelerant ComputingFTC-29, June
1999, pp 232-235.

TANG Z., DUGAN J.B. 2004. "An Integrated Method facorporating Common Cause
Failures in System AnalysisProceedings of the Annual Reliability and Maintdoidy
SymposiuntRAMS), 26-29 Jan 2004, pp 610-614. ISBN: 0-78@3%83.

TANG Z., DUGAN J.B. 2004. "Minimal cut set/sequerganeration for dynamic fault
trees."Proceedings of the Annual Reliability and Maintdiiéy SymposiumLos Angeles,
USA, Jan 2004. pp 207-213

TOMAN D. 1996. "Point vs Interval-based Query Laages for Temporal Databases."
Proceedings of the ACM Symposium on PrinciplesatéBase Systems (PODS),'pp 58-
67.

VARDI M.Y. 2001. "Branching vs Linear Time: Finah8wdown."Proceedings of the 7th

International Conference on Tools and Algorithmsth® Construction and Analysis of
SystemsLNCS Vol 2031, Springer-Verlag, UK, 2001. ISBNo30-41865-2. ppl-22.

272



81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

VESELY W.E., NARUM R.E. 1970PREP and KITT: Computer codes for the Automatic
Evaluation of a Fault TredN-1349 (1970) pp 188.

VESELY W.E., GOLDBERG F.F., ROBERTS N.H., HAASL D.A981. Fault Tree
Handbook Washington D.C., USA. US Nuclear Regulatory Cossian

VESELY W.E., STAMATELATOS M., DUGAN J.B., FRAGOLA .J MINARICK J.,
RAILSBACK J., 2002.Fault Tree Handbook with Aerospace ApplicatioNASA Office

of Safety and Mission Assurance.

VILLEMEUR A. 1992. Reliability, Availability, Maintainability and Safig Assessment:
Volume 1 Chichester, UK. John Wiley & Sons.

VILLEMEUR A. 1992. Reliability, Availability, Maintainability and Safig Assessment:
Volume 2. Chichester, UK. John Wiley & Sons.

WALKER M.D. 2005. Project Pandora: Temporal Fault Tree Analysi8lSc Thesis,
University of Hull, UK, 2005.

WALKER M.D., PAPADOPOULOS Y.I. 2006. "Pandora: ThHéme of Priority-AND
gates." 12 IFAC Symposium on Information Control Problems irardfacturing
(INCOM'06), St Etienne, France. pp 237- 242. (Best PaperankrAward)

WALKER M.D., BOTTACI L., PAPADOPOULOS Y.l. 2007. "@npositional Temporal
Fault Tree Analysis." II€omputer Safety, Reliability, and SecuAtAFECOMP'07, (eds)
Saglietti, Oster, Norbert, Lecture Notes in Comp&eience 4680:105-119, Springer, ISBN
978-3-540-75100-7, ISSN 0302-9743.

WALKER M.D., PAPADOPOULOS Y.l. 2007. "PANDORA 2: BhTime of Priority OR
gates' DCDS'07,1st IFAC Workshop on Dependable Control of Disievent Systems
Paris, 2007, pp. 169-174. Elsevier Science

WALKER M.D, PAPADOPOULOS Y.l. 2008:Synthesis and analysis of temporal fault
trees with PANDORA: The time of Priority AND gatedNonlinear Analysis: Hybrid
Systems2(2):368-382, Elsevier Science, ISSN 1751-570X

WALKER M.D., PAPADOPOULOS Y.l. 2009. "Qualitativeemporal Analysis: Towards

a full implementation of the Fault Tree Handbookdntrol, Engineering & Practice

273



92.

93.

94.

95.

96.

97.

98.

99.

100.

Elsevier Science, DOI 10.1016/j.conengprac.2008(3). ISSN 0967-0661 [Print version

forthcoming, available online Nov 2008].

WALKER M.D., PAPADOPOULOS Y.l., PARKER D.J., LONN .HTORNGREN M.,
CHEN D., JOHANNSON R., SANDBERG A. 2009. "Semi-autttic FMEA supporting
complex systems with combinations and sequencefilofres.” SAE World Congress
Detroit, April 2009.

WIJAYARATHNA P.G., and MAEKAWA M. 2000. "Extendin§ault Trees with an AND-
THEN gate" Proceedings of the flinternational Symposium on Software Reliability
Engineering (ISSRE’0®000.

WIJAYARATHNA P.G., KAWAT, Y., SANTOSA A., ISOGAI K.1997. "Representing
relative temporal knowledge with the tand connectivEight Ireland Conference on
Artificial Intelligence (Al-97) Vol 2, pp 80-87, Sept 1997.

WOLFORTH 1.P. 2005.Extensions to a fault tree synthesis tool to enaddffécient

evaluation of synthesised fault treBtSc Thesis, University of Hull, 2005.

WORRELL R.B, and STACK D.W. 197& SETS User Manual for the Fault Tree Analyst.
NUREG CR-04651, 1978.

XIANG J. 2005.Fault Tree Analysis and Formal Methods for Requeata Engineering
PhD Thesis, Japan Advanced Institute of ScienceTactinology, Sept 1996.

XING L., DUGAN J.B. 2002. "Reliability analysis static phased mission systems with
imperfect coverage'lEEE Transactions on Reliability/ol 51, Issue 2; Jun 2002. ISSN:
0018-9529. pp 199-211

XU H., DUGAN J.B. 2004. "Combining Dynamic Faultebs and Event Trees for
Probabilistic Risk AssessmenPtoceedings of the Annual Reliability and Maintdiiidy

Symposium26-29 Jan 2004, Los Angeles, USA. pp 214-219

YUGE T., YANAGI S. 2008. "Quantitative analysis affault tree with priority AND
gates."Reliability Engineering & System Safet{ol 93, pp 1577-1583.

274



Appendix I: Glossary

"No one who lives in error is free."

- Euripides

Absolute time
A model of time in which time is measured againssirgle absolute timeline, such as a
calendar. Poses difficulty for FTA because we do kreow exactly when faults will occur.

Absolute time is almost always quantifiable.

Archimedes

Greek scientist, c. 287 — 212 BC, noted particyldor his mathematical and engineering
genius. Famous for shouting "Eureka!" while in thath. In the context of this thesis,
Archimedes is a temporal qualitative FTA technigoeolving the generation and analysis of

dependency trees.

Availability
The proportion of time that a system will be opieradl (or alternatively, the probability that the
system will be operational at any given moment)p@&xite ofunavailability, and for non-

repairable systems this is effectively the samekesbility .

Base Temporal Form (BTF)

A form of temporal expression in which all tempooglerators are encapsulated in doublets. A
refinement ofhierarchical temporal form. Maximum number of nested gates is 3, gt
[Y<Z].[X<Z] isin BTF.

Basic event
A simple contributing fault in a fault tree, usyall component failure. A basic event has no

children.

Basic temporal node

The leaf nodes of a Dependency tree; the leaf nimiesgiven Dependency tree are the same as
the nodes of the equivalent Precedence tree. Basipgoral nodes contain all the events for a
given tree and cannot be expanded further as gpgsent exactly one possible sequence. They

contain only temporal operators.
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Binary fault tree
A fault tree in which every gate has at most twauils. Adjectival form is 'binarboreal'.

Boolean law
A Boolean law expresses an equivalence betweetoiucal expressions. Boolean Laws can be
used to manipulate and reduce logical expressi@@mnmonly used laws include the

Distributive Laws and the Absorption Law.

Branching time

A system of time which branches whenever theredbaice (e.g. one branch may be "Fault A
occurred" and another may be "Fault A did not ofcdrhe timeline may branch in the future,
in the past, or both. It is also known r@en-deterministidime (since there are many possible

futures).

Coherent fault tree
A fault tree with a non-decreasirggructure function, i.e. a fault occurring will not help to

repair the system. A fault tree containing only AlBd OR gates is always coherent.

Completion Laws

The Completion Laws atemporal lawsin Pandora that relate the three temporal gatd¢iPA
SAND and POR to the two logical gates AND and OReyl can be used for a number of
purposes, including the reduction of the fault tr@&e three laws are th€onjunctive
Completion Law (or I Completion Law),Disjunctive Completion Law (or 2%, and

Reductive Completion Law(or 3%.

Completion Problems

These are a type of reduction problem where resluds only possible (or at least apparent)
after an initial application of the Completion Lawssimple example is X.Y.Z + X<Y + X&Y

+ Y<X, which reduces to just X.Y. When more tharotevents are involved it becomes very

difficult to determine whether or not a Completicaw is applicable.

Conjunctive Completion Law (CCL)
The ' Completion LawX<Y + X&Y + Y<X  « X.Y . Links theConjunctive Temporal
Gatesto the AND gate.

Conjunctive Temporal Truth Table
A form of TTT in which all events must occur (iiecontains no 0 rows). Formed by the leaf

nodes of the equivalent precedence tree and isthmlsize of the equivalent normal TTT. In
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practice it omits all POR gates and works only with conjunctive gates, i.e. AND, PAND, and
SAND.

Continuous time
A system of time in which there are no 'gaps’' betwevhatever atomic unit the time is
measured in. A good analogy is the set of real rumbs opposed to the set of integers. Also

known asdensetime.

Contradiction

A contradiction is an impossibility, e.g. X mustcoc before Y and Y must occur before X; if it
occurs under an AND gate, then the AND is also issfile. Used to help reduce temporal fault
trees. Also a type of reduction which is based mgodhe detection and removal of

contradictions.

Cut sequence (CSQ)
A conjunctive sequence of basic events, the tenhpmaogue to theut set The difference is

that two or more events in the set are in a ceddier.

Cut set
A cut set is a conjunctive set of basic events usgdalitative analysis The number of events

in a cut set is the cut setsder.

Cyclic contradiction
A cyclic contradiction is a contradiction across renothan one temporal gate which,
individually, are not contradictions themselves.afple: X<Y . Y<Z . Z<X. Detected by

means of the Laws of Extension.

Dependability
Dependability is the general term for reliability its wider sense, i.e. how trustworthy and

unlikely to fail something is.

Dependency Tree

A type of tree that models every possible sequen@®mbination for a given set of events and
arranges them hierarchically according to logichkérption and temporal Completion laws so
that if all children of a node are true, then thatle will also be true and the children are all
redundant. For example, X<Y, X&Y, and Y<X are dilildren of X.Y and if all three are true

then so is X.Y, which renders the children redumdddependency trees are used in
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Archimedes Technically Dependency trees are not trees howavehey possess more than

one top or root node.

Discrete time
Discrete time is the opposite obntinuous time it is a model of time in which there are 'gaps'
between the atomic units that time is measured\igood analogy is the set of integers as

opposed to the set of real numbers. Discrete tinodétén used ipoint-basedtime models.

Disjunctive Completion Law (DCL)
The 2° Completion LawX|Y + X&Y + Y|X = X.Y . Links the POR and SAND gates to
the OR gate.

Doublet
An encapsulation of a single temporal relation leetvexactly two basic events, e.g. [X<Y].
Distinguished using square brackets. See &lase temporal form Also a word puzzle

invented by Lewis Carroll.

Dynamic Fault Tree (DFT)
A type of fault tree augmented with temporal gatesigned to facilitate temporal quantitative

analysis using Markov chains. Pioneered by J. Bja@buK. J. Sullivan, and D. Coppit.

Dynamic systems
Systems which have behaviour that varies over timehe context of this thesis, a dynamic
system is one that has failure behaviour depermtetiie occurrence of particular sequences of

events (rather than just a combination of events).

Euripides
Greek dramatist (c. 480 BC — 406 BC) famed forthagedies. In the context of this thesis,
Euripides is a deductive temporal qualitative FTétlhod that uses temporal laws to manipulate

and reduce temporal expressions to obtain mininiadequences.
Event (Pandora)
An event in Pandora represents the occurrencdafliaor other change in the system. Before it

occurs, an event is false; once it occurs, it bexsotrue and remains true thereafter.

Event sequences

A set of events that have to occur in a certaieiord
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Event-based temporal fault tree
A type of temporal fault tree approach that modefsporal or sequential information by means
of events rather than gates. An example is the C$Mnique. Cfgate-based temporal fault

tree.

Failure
A failure occurs when a component or system isamgér capable of performing its intended

function. It is slightly different to &ault but the two are often used interchangeably.

Failure rate

The frequency with which failures occur for a givamponent or system. Represented by

Fault
A fault occurs when a component or system eithis fa perform its intended function, or
performs its intended function but at the wrongetimlso a general catch-all term for things

going wrong.

Fault tree analysis (FTA)
Fault tree analysis is a deductive systems analgstsnique used in reliability engineering to
determine the root causes of events. It uses aigadpliagram (the fault tree itself) to connect

thetop event which is a system fault, to a sethafsic eventsvia a network of logigates

Fubini numbers
The Fubini numbers are a series of numbers thatibesthe possible temporal sequences for a
given set of events in Pandora. They increase dieaiig with increasing numbers of events,

imposing performance constraints on algorithms.

Gate
A gate is the term used to describe a logical €éanporal) operator in fault trees, e.g. an OR

gate. Gates are intermediate events in a faulandemay have children.

Gate-based temporal fault tree
A type of temporal fault tree approach that modefsporal or sequential information by means
of new temporal gates. DFTs and Pandora are batibgsed approaches. @vent-based

temporal fault tree.
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Hierarchical Temporal Form (HTF)

Also known ascut sequencdorm’, this is a form of expression in which ogera are arranged
hierarchically (hence the name): ORs first, ANDsos&l, then PORs, PANDs, and SANDs. It is
a form of temporal disjunctive normal form. For exae, the expressiod<Y + Y.(X&Z) is

in HTF. An expression in HTF contains one or mane sequences (in the example, X<Y and
Y.(X&Z) are the two cut sequences). Equivalent iggushctive normal form / sum-of-products

form in normal static fault trees.

Implicants
Implicants are the non-coherent equivalentubsets Implicants include not only those events
necessary to cause the top event but also whiahteweusinot occur in order to cause the top

event.

Intermediate event
In a fault tree, an intermediate event is a gatis. &n event that can be decomposed or caused

by other events. Intermediate events will have @mmore children representing these events.

Interval-based time

Time which is measured in atomic intervals. Fornepke, we measure time in seconds, which
are intervals of time in themselves; pboint-based time.Interval-based time is often preferred
because it can be seen as a generalisation of-lpaéetd time, but it can also have more

complex semantics if intervals can overlap.

Linear Temporal Logic (LTL)
A general term for temporal logics that use a limeadel of time. The typical example is PTL
(Propositional Temporal Logic). Most common opersitocludesometime, always, untidnd

since Can include past or future temporal operatotsotin.

Linear time
Time which does not branch, i.e. there is only tmeline of events. This is also known as

deterministic time as there is only one possibtarki(and one possible past).

Logical equivalence
Logical equivalence holds for two expressions #ythare always true at the same time and
always false at the same time. This means the xpressions can be substituted for each other,

a fact put to great use in FTA.
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Mean Time Between Failures (MTBF)

The average time between/before failures occuinraysystem. Inverse of tliailure rate.

Mean Time To Repair (MTTR)
The average time a system is out of operationtheetime it takes to repair it.

Minimal cut sequence (MCSQ)
A minimal cut sequence is @it sequencein which every event must occur to cause the top

event, i.e. a cut sequence containing no redurelaamtts.

Minimal cut set (MCS)
A cut setin which every event must occur to cause the t@mk i.e. a cut set containing no

redundant events.

Non-coherent fault tree
A fault tree with a decreasirggructure function, i.e. one in which the occurrence of a fault can
improve the functioning of a system. Often the cahen NOT gates are introduced to the fault

tree.

Omniscient view
A concept in Pandora in which the analyst is presiibo have full knowledge of exactly when
events occur; cfrestricted view. An omniscient view could be applied to a systéndesign

time or after it had failed and ceased operation.

Order (cut set)

The order of acut setor cut sequenceis the number of unique events it contains. In cut
sequences the same event may occur more thanmonualtiple doublets or temporal gates but
is only counted once for purposes of defining ttaeeoof the cut sequence; e.g. [X<Y].[X<Z] is

order 3.

Pandora
Pandora is what this document is all about andatld be inefficient to repeat the entire

document in the Glossary, quite apart from thenitdiloop it would lead to.

Period of observation
The period of observation is a concept in Pandorahich the failure behaviour of a system is
observed only for a finite period of (bounded) tjrased in connection with r@stricted view

to allow for NOT gates to firmly say that an evlas not occurred within the period.
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Persistence
Persistence is a quality that is vital for a persgo has to write a thesis. It is also used to

describe events which, once true, can no longesrbedalse, i.e. they stay true forever.

Point-based time

A system of time in which the atomic unit of time a point. Typically used witdiscrete
models of time and causes semantic problems wherewent ends as another begins (do they
end on the same point, in which case, do they ap@rr do they end on different points, in

which case isn't there a gap?);inferval-basedtime.

Precedence Tree

A type of tree representing a branching timeline dogiven set of events. The nodes of the

precedence tree give every possible sequence s thwvents (including cases where events do
not occur). The leaf nodes give every possible secgl in which all those events occur. Useful

in generatingemporal truth tables.

Prime implicant
An implicant which contains no redundant events or complemehtvents; analogous to a

minimal cut set except with complements of events included.

Priority gates
The PAND and POR gates; gates which impose a sequether than a simultaneity on their

inputs.

Priority-AND gate (PAND)

The original temporal fault tree gate, it is tréi@s input events occur in a certain sequencis. It
used in a number of temporal FTA techniques indgdioth DFTs and Pandora. Can be either
inclusive (includes simultaneous events) or exekigdoes not include simultaneous events). In
Pandora, the PAND is exclusive and is true if &llt® inputs occur in sequence from left to

right. Its sequence value is then the same asghemost input event.

Priority-OR gate (POR)

The Priority-OR gate is a temporal gate in Pandsed to represent the notionpfority, i.e.
that one event has priority over a number of othes must occur first. The POR gate is true if
its priority (left-most) event occurs before anf@tinput, regardless of whether any other input

occurs or not. Its sequence value is the samesasetiuence value of its left-most input.
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Qualitative analysis

Also known as logical analysis. In FTA qualitati@ealysis is the process of reducing the fault
tree to obtain its minimal cut sets (or sequenedsgh allows the analyst to see which failures
have the biggest impact on the system by lookingeshumber of events necessary to cause the
top event. Single events are the worst and are krassingle points of failure The qualitative

analysis algorithms in Pandora &eripides andArchimedes

Quantitative analysis
Also known as numerical or probabilistic analysisEFTA quantitative analysis is the process of
calculating the probability of the top event octwgr given individual probabilities for all the

basic events. It can be used either with or witlzoptior qualitative analysis.

Quantitative time
Also known as metricated time. In these modelsirakt it is possible to measure time; in

practice this means measuring time in real unigdu&ble for modelling real-time systems.

Reductive Completion Law (RCL)
The 3° Completion LawX|Y + X&Y + Y<X = X . Allows an event to be entirely removed

if it does not matter which order it occurs in gee if it occurs at all.

Relative time
A model of time in which time is measured agairtbieo events rather than against an absolute
timeline. 'Last week' and 'tomorrow' are statemémis use a relative model of time, because

they state only when something happened relativieg@urrent moment in time.

Reliability engineering
A field of engineering dedicated to improving tlediability and safety of engineering systems.

Fault tree analysis is one technique capable ofglthiis.

Repair rate

The frequency at which a system is repaired, reptes byy'.

Restricted view

An esoteric concept in Pandora in which the anabygy has a limited view of when events
occur, so that at most it is possible to say thiaudt "has not occurreget’. A restricted view
would be the case in a monitored system, for exampf. omniscient view and period of

observation
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Risk
A product of reliability and severity, so that aky system can be reliable but cause great harm

if it breaks down or relatively unreliable but rapable of doing much damage if it breaks.

Safety critical systems
Systems in which safety is an important factorjdslby, safety critical systems are those which
have the potential to harm people or the envirorinfghey suffer a fault, hence the need for

reliability engineering to improve their reliabyliand reduce the likelihood of failure.

Sequence value

An integer indicating the order in which an eveatwred, or if 0, that an event did not occur.
For example, a sequence value of 3 means thawt was the third to occur. Often indicated
by S e.g.9X) is the sequence value of event X. Sequenceegailu temporal expressions are

analogous to truth values in Boolean expressions.

Simultaneity
The property of two or more events that occur atgame time. It is often ignored in temporal
FTA but not in Pandora.

Simultaneous-AND (SAND)
A temporal gate in Pandora which is true if alliitput events occur at the same time. The

SAND has the same sequence value (if true) ad &l mputs.

Single point of failure
A cut set or sequence containing a single eveig;etvent is sufficient to cause the top event to
occur on its own and is therefore a vulnerabilitythe reliability of the system. See also

singleton node

Singleton node
The top level nodes of a dependency tree whichesgmt the occurrence of single events.

Static fault tree (SFT)
A traditional fault tree containing only AND and QOdates, as opposed totemporal fault

tree.

Structure function
A function which describes the top event of a farde in terms of its constituent basic events

(effectively a logical expression); if it is nonaleasing, it means all faults contribute to the
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overall failure of the system, but if it is decriegs it means that some faults may prevent the

system from failing or even cause it to become aipmnal again.

Systems analysis
The process of studying a system and how it wonksrder to gain information about the
system, which can then be used to draw conclusatnmuit the system, e.g. how it can be

improved.

Temporal conjunctive gates
The PAND and SAND gates, which are subsets of tN® Ayate and part of th€onjunctive

Completion Law.

Temporal disjunction gate

The POR gate, which is part of tBésjunctive Completion Law.

Temporal fault tree / Temporal fault tree analysis

A fault tree (or FTA) that has been extended omzargted with additional features capable of
representing (or analysing) time-based or sequeinfi@mation. Pandora is a temporal fault
tree methodology. Not to be confused with TFTs (fperal Fault Trees) which are a specific

temporal fault tree analysis approach proposed.By Balshikar.

Temporal law
A logical law in the style of Boolean laws excepatt it contains temporal gates. Used in a
similar manner to Boolean laws but a temporal lawoften more complicated. Important

temporal laws include th@ompletion Laws and the Laws of Mutual Exclusion.

Temporal product

The value of a doublet based on the product oévents' unique prime numbers, the sign of
which is given by the subtraction of the secondnéWeom the first. For example, in [X<Y],
assuming X = 3 and Y =5, the product is 3 * 5 =cbibined with the sign 3 — 5 = -2, so the
temporal product is —15 (the value from the figicalation and the sign from the second). The
temporal product is a way of quickly determiningatievents a doublet contains and in what

order they occur. Further checks are still necggsacompare the different operators, however.

Temporal truth table (TTT)
A truth table which proves temporal equivalenceveein two (or more) expressions; whereas a
Booleantruth table shows only true and false values, a temporal traihe showsequence

valuesinstead, showing the order in which events oc8ee als€onjunctive TTT.
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Temporally equivalent
A condition which means that two logical expressi@ame not only true at the same time and
false at the same time, but which also have theesmguence valudi.e. they become true in

the same order).

Temporal operator

A (temporal) logical operator that performs a fumetor operation involving time or sequence.
In classical temporal logics, temporal operatoes @sually either future- or past-oriented. In
Pandora, there are three temporal operators (PANXIR, SAND), each of which can be seen as

functions that operate on sequence values.

Temporal significance
The property of a basic event or intermediate ettt means it must occur in a certain order.
Temporal significance is conferred by a tempordegaeaning that the same event can be

temporally significant in one branch of a faultetteut not in another branch.

Top event
The top event of a fault tree is its 'root' evemd asually represents a system-level fault. Ihes t
starting point of a fault tree analysis as the gesato determine what combinations (or

sequences) of events may cause the top evento. occ

Truth table
A table showing all possible truth values for aegivset of events in Boolean logic. If two

logical expressions have the same truth tablen,ttiey are logically equivalent.
Unaffiliated events
Events in a cut sequence which are not part of ubldo or temporal gate, e.g. Z in the cut

sequencgx<yY].Z

Unavailability

Equal to 1 -availability ; the proportion of time that a system is likelysfgend out of action.
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Appendix Il: Boolean & Temporal Laws

"Time is the cruellest teacher: first it gives thst, then it teaches the lesson.”

- Unknown

Commutative Law
XY < Y.X
X+Y = Y+X

Associative Law
X.(Y.2) = (X.Y).Z - XY.Z
X+(Y+Z) = (X+Y)+Z = X+Y+Z

Distributive Law
X(Y+Z2) < (Y+2).X = XY +XZ
X+(¥Y.2) <= (Y.2)+X < (X+Y).(X+2)
(A.B)+(C.D) = (A+C).(A+D).(B+C).(B+D)
(A+B).(C+D) = (A.C)+(A.D)+(B.C)+(B.D)

Idempotent Law
XX < X
X+X = X

Absorption Law
X.(X+Y) =X
X+(X.Y) =X

Temporal Commutative Laws

X&Y < Y&X

Temporal Associative Laws
(X<Y)<Z = X<Y<Z
X&(Y&Z) = (X&Y)&Z = X&Y&Z
XNz = X|Y|Z
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Temporal Distributive Laws
X<(Y.Z) o Y.(X<Z)+ Z.(X<Y)
X<(Y+2) = (X|2).(X]Y).(Y+2)
X < (Y<2) = (X<2).(Y<2)
X< (Y&Z) = (X<Y).(X<2).(Y&Z)
X<(Y|2) = (X<Y).(Y|2)
X<(Y|2) = (X|Y).(Y|2)
X & (Y+Z) = (X&Y).(Y&Z) + (X&Y).(Y|Z) + (X&Z).(Z|Y)
X&(Y.Z) = (X&Y).(Y&Z) + (X&Y).(Z<Y) + (X&Z).(Y<Z)
X&(Y¥Y<Z2) = (Y<2)&(Y<X)
X&(Y<Z) = (X&Z).(Y<Z).(Y<X)
X & (Y&Z) = X&Y&Z
X & (Y|Z) = (X&Y).(Y]2).(X|2)
X&(Y]Z) < (X|2)&(Y]2)
X[ (Y+2) < (X|Y).(X|2)
X|(Y.2) = X|Y + X|Z
X|(Y<Z) = (X|2) + (X]Y) + X.(Z<Y) + X.(Y&Z)
X1 (Y&Z) = X.(Y]|2) + X.(Z]Y) + (X|Y) + (X|2)
X | (Y|2) = (X]Y) + (X.Z<Y) + (X.Y&Z)

(Y+2) < X = (Y<X) + (Z<X)

(Y.2) <X = (Y<X).(Z<X)

(Y<2z)< X = (Y<2).(Z<X)

(Y&Z) <X = (Z<X).(Y<X).(Y&Z)

(Y|Z2) <X = (Y<X).(Y|2)

(Y+Z) & X = (X&Y).(Y&Z) + (X&Y).(Y|Z) + (X&2).(Z|Y)
(YZ)&X = (Y<X).(Z&X) + (Z<X).(Y&X) + X&Y&Z
(Y<Z) & X = (Y<Z).(Z&X).(Y<X)

(Y&Z) & X = Y&Z&X

Y|2) & X = (X&Y).(Y|2)

Y+ [ X = (Y|X) + (Z]X)

(Y.2) | X = (Y1X).(Z|X)

Y<)) | X = (Y]2).(ZIX)

(Y&z) | X = (YIX)&(Z|X)

(Y&Z) | X = (Y[X).(Z]X).(Y&2)
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(¥|2) 1 X =

(A+B) & (C+D)

(A.B) & (C.D)

(A<B) & (C<D)
(AB) & (C|D)
(A+B) < (C+D)
(A.B) < (C.D)

(A&B) < (C&D)
(AB) < (C|D)
(A+B) | (C+D)
(A.B) | (C.D)
(A<B) | (C<D)

(A&B) | (C&D)

(Y12).(YIX)

- A&B&C&D + A&C|B|D + A&D|B|C + B&C|A|D
+ B&D|A|C + A&B&C|D + A&B&D|C + A&C&D|B
+ B&C&D|A
= A&B&C&D + A<B&C&D + B<A&C&D + C<A&B&D
+ D<A&B&C + (A.C)<B&D + (A.D)<B&C +
+ (B.C)<A&D + (B.D)<A&C
- (A<B).(C<D).(B&D)
= (A&C).(A|B).(C|D)
= (A|C).(A|D).(C+D) + (B|C).(B|D).(C+D)
= (A<D).(B<D).(C<D) + (A<C).(B<C).(D<C)
+ (A<C).(A<D).(B<C).(B<D).(C&D)
= (A<C).(B<C).(A<D).(B<D).(A&B).(C&D)
= (A<C).(A|B).(C|D)
= (AIC).(AID) + (B|C).(BID)
= (AIC).(BIC) + (A|D).(B|D)
- (A<B).(B|C) + (A<B).(B|D) + (A<B).(D<C)
+ (A<B).(C&D)
- (A&B).(C|D) + (A&B).(D|C) + (A&B).(B|C)
+ (A&B).(B|D)

Temporal Absorption Laws

X.(X<Y)
X.(X&Y)
X . (X]Y)
X< (X.Y)
X & (X.Y)
X | (X.Y)
X< (X+Y)
X & (X +Y)
X|(X+Y)
(X.Y)< X
(X.Y)&X
X.Y)| X

= X<VY

- X&Y

= X|Y

= X<Y

= X&Y +Y<X
= X|Y

=0

o X&Y + X|Y
=0

=0

= X&Y + Y<X
=0
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X+Y)<X = Y<X
X+Y)&X = X&Y +X|Y
X+Y)|X = Y| X
X+(X<Y) =X

X+ (X&Y) - X
X+ (X]Y) - X
Y +(X<Y) =Y
Y +(X&Y) - Y
Y +(X]Y) o X+Y

The Completion Laws
XY = XY + X&Y + Y<X
X+Y = X|Y + X&Y + Y|X
X = Y<X + X&Y + X|Y

Laws of Mutual Exclusion
X<Y.Y¥Y<X =0
X<Y.X&Y =0

Y<X.X&Y <0
X[Y.Y<X <=0
YIX.X<Y =0
X[Y.X&Y =0
Y[X.X&Y =0
Laws of Simultaneity
X<X <« 0
XX =0
X&X < X
Law of Extension
X<Y .Y<Z o X<Y.Y<Z.X<Z = X<Y<Z

X&Y .Y&Z = X&Y .Y&Z .X&Z - X&Y&Z
XIY.YIZ = X|Y.YZ.XzZ
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X&Z . Y&Z
Y&X . Y&Z
7<X .Y<Z
78X . Y&Z
ZIX . Y|Z

XpY . YgZ

X&Y . Y<Z
X&Y . Y|Z
X<Y .Y&Z
X<Y . Y|Z
X|Y . Y&Z
X|Y . Y<Z

XpZ.YqZ

X&Z . Y<Z
X&Z . Y|Z
X<Z .Y&Z
X|Z.Y&Z

YpX.YqgZ

Y&X . Y<Z
Y&X . Y|Z
Y<X . Y&Z
Y|X . Y&Z

ZpX.YqZ

78X . Y<Z
78X . Y|Z
Z<X .Y&Z
Z<X . Y|Z
Z|IX . Y&Z
Z|X . Y<Z

=3

=3

=4

=

Extended Laws of Extension

X&Z . Y&Z .
Y&X . Y&Z .
Z<X . Y<Z.
Z&X . Y&Z .

ZIX . Y|Z.

X&Y . Y<Z.
X&Y . Y|Z .
X<Y .Y&Z .

X<Y.Y|Z.

X|Y . Y&Z .

X|Y.Y<Z.

X&Z . Y<Z .

X&Z .Y|Z .

X<Z.Y&Z.

X|Z.Y&Z .

Y&X . Y<Z.
Y&X.Y|Z.
Y<X.Y&Z .
YIX.Y&Z .

Z&X . Y<Z.

Z8X . Y|Z .

Z<X.Y&Z.

Z<X.Y|Z.
ZIX.Y&Z.
ZIX.Y<Z.

X&Y
X&Z
Y<X
X&Y
Y| X

X<Z
X| Z
X<Z
X| Z
X| Z
X<Z

Y<X
Y| X
X<Y
X| Y

X<Z
X| Z
Z<X
Z| X

Y<X
Y| X
Y<X
Y<X
Y| X
Y| X
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The Law of SAND Substitution
X&Y . X<Z = X&Y .Y<Z
X&Y . X|Z = X&Y.Y|Z
X&Y . Z<X = X&Y . Z<Y
X&Y .ZIX = X&Y.Z|Y

or generally, where ? is another temporal operator:

X&Y . X?Z - X&Y .Y?Z

The Laws of POR Transformation
X|Y.Y = X<Y
X[Y+Y < X+Y

The Laws of Priority
X<Y + X|Y < X|Y
X<Y . XY = X<Y

X<Y + XY < XY
X&Y + X.Y XY
X[Y +X.Y = X

The Binary Laws
AB.C.....N = ((((A.B).C)...).N)
A+B+C+ ... +N = ((((A+B)+C)...)+N)
A<B<C<..<N < ((((A<B)<C)...)<N)
A&B&C& ... &N = ((((A&B)&C)...)&N)
A|BIC| ... IN = Al((B+C)...)+N)

The Encapsulation Laws
X<(Y<2) = [X<Y].[Y<Z].[X<Z] +
[Y<X].[Y<Z].[X<Z] +
[X&Y] . [Y<Z] . [X<Z]
X< (Y&Z) = [X<YL[X<Z].[Y&Z]
X | (Y<2) = [X|Z] + [X|Y] + X.[Z<Y] + X.[Y&Z]
X (Y&2) = X.[Y|Z] + X.[Z|Y] + [X]Y] + [X]Z]
X (Y|2) = [X]Y] + X.[Z<Y] + X.[Y&Z]
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(Y<z) <X
(Y&Z) < X
(Y&Z) & X
(Y<2) | X
(Y&Z) | X
(Y12) [ X

~ [Y<Z][Z<X].[Y<X]
- [Z<X].[Y<X].[Y&Z]
= [X&Y].[Y&Z].[X&Z]
< [Y<Z)IZIXLIYIX]
= [YIX1[ZIX].[Y&Z]
= [Y[Z].[YIX]
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Appendix Ill: The Adventures of Martin in PandoraL  and

"This is slavery, not to speak one's thought."

- Euripides

A LONE STUPENT SLAVES

AWAY IN THE PARK...

TIME IS OF
THE ESSENCE.
HURRY!

WHEN AN OLD FRIEND FPAYS

AN UNEXFECTED VISIT!

SOO0N, FlE AND HIS FRIEND
ARRIVED AT FAULT TREE FOREST

ITS A GlaNT
FUBINI, MARTIM.
DOMNT =TARE,
1T's RUDE.

REPUCTION
JUICE, OF

=
HOW O WE
SETIN THERETD

IMSIk SELLY OF
BEA4M. ARE YOU GOINS

TO THE PaARTY ToOF
‘Pr /@l

SooL DAY TO YoU. J
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[ WE RE SOIMNG Too! T am ]

TWEEDLEY, HE'S TWEERLEY!

THEY RE POUBLETS,
DONT vOU KhNOW!

TEA PARTY - THE BEST S0OC AL

“.'vEL.CDME TO THE PERSIETENT ‘
EVENT EVER!

BUT THE STUDPENT HAD
WORK TO DO - HE HAD
TC GET BACK HOME...

I aM EURIFIDES! HOW
DARE YOU LEAVE THE
PERSISTENT FARTYE TO
THE QUEEN WITH YoU!

IA2M QUEEN
PANDORA, AND .
TEU WILL

APPRESS ME AS
ORF WITH
HI= HEAD!!

YOUR MaJESTY!

AND NOW THE STUDENT MUST STAND
TRIAL IN FRONT OF THE THREE
DPOCTORS...

THEY WILL DECIPE HIS FATE.

IT Was JusT
A TEA FARTY...

|...To BE conTINNED
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