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“It is the theory that decides what we can observe.
If the facts don’t fit the theory, change the facts.”

- Albert Einstein



Abstract

The preferred method of assessing the risk of an osteoporosis related fracture

is currently a measure of bone mineral density (BMD) by dual energy X-ray

absorptiometry (DXA). However, other factors contribute to the overall risk of

fracture, including anatomical geometry and the spatial distribution of bone. Finite

element analysis can be performed in both two and three dimensions, and predicts

the deformation or induced stress when a load is applied to a structure (such as a

bone) of defined material composition and shape. The simulation of a mechanical

compression test provides a measure of whole bone stiffness (N mm−1).

A simulation system was developed to study the sensitivity of BMD, 3D and 2D finite

element analysis to variations in geometric parameters of a virtual proximal femur

model. This study demonstrated that 3D FE and 2D FE (FEXI) were significantly

more sensitive to the anatomical shape and composition of the proximal femur than

conventional BMD. The simulation approach helped to analyse and understand how

variations in geometric parameters affect the stiffness and hence strength of a bone

susceptible to osteoporotic fracture.

Originally, the FEXI technique modelled the femur as a thin plate model of an

assumed constant depth for finite element analysis (FEA). A better prediction of

tissue depth across the bone, based on its geometry, was required to provide a more

accurate model for FEA. A shape template was developed for the proximal femur
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to provide this information for the 3D FE analysis.

Geometric morphometric techniques were used to procure and analyse shape

information from a set of CT scans of excised human femora. Generalized Procrustes

Analysis and Thin Plate Splines were employed to analyse the data and generate a

shape template for the proximal femur. 2D Offset and Depth maps generated from

the training set data were then combined to model the three-dimensional shape of

the bone. The template was used to predict the three-dimensional bone shape from

a 2D image of the proximal femur procured through a DXA scan. The error in the

predicted 3D shape was measured as the difference in predicted and actual depths

at each pixel. The mean error in predicted depths was found to be 1.7mm compared

to an average bone depth of 34mm.

3D FEXI analysis on the predicted 3D bone along with 2D FEXI for a stance

loading condition and BMD measurement were performed based on 2D radiographic

projections of the CT scans and compared to bone stiffness results obtained from

finite element analysis of the original 3D CT scans. 3D FEXI provided a significantly

higher correlation (R2 = 0.85) with conventional CT derived 3D finite element

analysis than achieved with both BMD (R2 = 0.52) and 2D FEXI (R2 = 0.44).
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Chapter 1

Introduction

Osteoporosis is a wide-spread medical condition that mostly affects the elderly and

is characterized by bone fragility. It affects the quality of life for the patient as

well as being a major financial burden for national health authorities (National

Institute of Health, 2003). According to the International Osteoporosis Foundation

(International Osteoporosis Foundation, 2006), osteoporosis-related fractures affect

up to one in three women and one in five men over the age of 50 worldwide. The

costs for the health services in the EU were estimated to total up to approximately

3 billion euros annually.

Bone mineral density (BMD) assessment by dual-energy x-ray absorptiometry

(DXA) scans is currently the most widely used technique for osteoporosis assessment.

The bone density value quantifies the bone mass at the particular measurement

site. However, osteoporosis is, primarily, a decrease in bone strength. Bone mass

is the most significant component in bone strength, but not the only one. It does

not reflect the distribution of bone trabeculae, which represent the internal bone
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architecture. Various studies have shown the importance of trabecular architecture

on bone strength (Kleerekoper et al., 1985; Siffert et al., 1996). As the WHO

definition of osteoporosis states (Consensus Development Conference, 1991),

Osteoporosis is a systemic skeletal disease characterized by low bone

mass and micro architectural deterioration of bone tissue, with a

consequent increase in bone fragility and susceptibility to fracture.

Thus, the assessment of bone quality, and hence structure, along with bone density

is required to better predict a risk of osteoporotic fracture.

1.1 Hypothesis

The finite element method is a widely used engineering technique used for analysing

complex structural problems. It was first used in the study of bone structural

mechanics by Brekelmans et al. back in 1972. Finite element analysis can predict

the deformation or induced stress when a load is applied to a structure (such as

a bone) of defined shape and material composition (Pao, 1986). A finite element

approach to assess bone stiffness will provide a measure of the structural quality of

the bone.

Computed Tomography (CT) scans have been used to build 3D models of bones for

finite element analysis (Cody et al., 1999; Keyak, 2001; Lotz et al., 1991). However,

because of the high costs and high doses of radiation exposure, CT scans are not

routinely used in clinical assessment. 2D radiographic imaging such as DXA, on
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the other hand, are more readily available. Finite Element analysis of X-ray Images

(FEXI) (Langton et al., 2004, 2005) uses a radiographic image for simulation of a

mechanical compression test to provide a measure of whole bone stiffness (N mm−1).

The FEXI technique models the femur as a thin plate finite element model of an

assumed constant depth. A better prediction of tissue depth across the bone, based

on its 2D geometry, should provide a more accurate 3D model for FEA, and hence

a better estimation of bone strength. This thesis proposes that a shape atlas for

the proximal femur can be used to provide 3D shape information for a bone from a

simple 2D radiograph.

A shape atlas may be considered as a set of rules and relationships defining the

spatial characteristics of an object. The shape atlas for the proximal femur may be

defined by studying a set of real bones and identifying relationships between various

landmarks identified along the surface of the bone. These relationships will make it

possible to represent the shape of a bone in 3D based upon its 2D planar projection

(radiograph). A predicted 3D model of the femur will be reconstructed from a single

2D radiograph using a shape atlas for the proximal femur.

1.2 Context & Scope

The research described in this thesis addresses questions regarding performance

of FEXI with two- and three-dimensional bone images as well as techniques

for reconstruction of the three-dimensional shape of a bone given a single two-

dimensional projection (such as a radiograph). It also looks at the performance of

FEXI with these reconstructed predicted 3D femur models.
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The sensitivity of the FEXI approach for measuring bone stiffness to variations in

the femur geometry was studied using a simulated bone model. This tested the

FEXI hypothesis of being significantly sensitive to overall bone architecture as well

as bone mineral density. The measure of FEXI-derived stiffness was compared to

bone strength results from bone mineral density (BMD) analysis using DXA scans.

BMD analysis is currently considered the gold-standard for bone strength estimation

and any new technique for bone strength assessment must be at least as accurate

as BMD. The performance of FEXI with 2D radiograph images was also compared

to finite element analysis using 3D bone models.

Techniques (described in Chapter 5) for reconstruction of 3D shape from 2D images

were studied to assess their advantages and drawbacks with respect to the current

research problem, i.e., reconstruction of bone shape from a single radiograph.

1.3 Aims & Objectives

1.3.1 Aims

1. To investigate the sensitivity of Finite Element analysis of X-ray Images

(FEXI) to variations in the anatomical parameters of the proximal femur.

2. To investigate the use of a shape atlas for improving prediction of bone stiffness

using FEXI.
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1.3.2 Objectives

1. Analyse the sensitivity of FEXI and BMD to changes in anatomical parameters

using simulated femur models.

2. Analyse changes in the 3D shape of the proximal femur and identify the main

sites of variation.

3. Study available techniques for 3D reconstruction of shape from 2D projections.

Analyse advantages and drawbacks of the techniques with respect to current

research problem and identify the technique most suited for the current

research problem.

4. Use chosen shape analysis method to build a Shape Atlas for femora using

shape information gathered from CT scan images. Validate the Shape Atlas

using radiographic images to obtain predicted 3D femur models.

5. Analyse performance of FEXI with predicted 3D femora with respect to BMD,

2D FEXI on radiographs and mechanical bone strength analysis.

1.4 Overview of thesis content

The relevant background for the research is discussed in Chapter 2. This chapter

discusses various osteoporosis assessment techniques and describes the FEXI concept

and methodology.

The research hypothesis and justification are submitted in Chapter 3. This chapter

attempts to provide an overall picture of the various components of this research
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and how they tie in with each other.

Chapter 4 gives a detailed description of the simulation system used to test the

sensitivity of FEXI to femur geometry. It discusses the development of a virtual

femur with variable geometric and bone density parameters as well as the sensitivity

analysis for BMD and FEXI-derived stiffness with these varying parameters.

The various approaches for shape analysis are considered in Chapter 5, with details

of the options tested for the development of the femoral shape template.

The concept of a shape atlas for bones and the application of shape analysis

techniques for building a shape template for the human proximal femur is examined

in Chapter 6. This chapter also examines the choice of methodology for building a

shape model for the proximal femur and takes a closer look at the use of geometric

morphometrics for shape reconstruction.

Chapter 7 describes the application of the shape atlas for FEXI analysis with results

from these analysis for a CT dataset for which strength had been computed both

mechanically and using finite element analysis.

An analysis and discussion of these results along with limitations of the proposed

technique are presented in Chapter 8. This chapter concludes this thesis by giving

an overview of the research findings and the direction of future work.



Chapter 2

Background

2.1 Osteoporosis

Osteoporosis literally means ‘porous bones’ and is a skeletal disease characterised

by a progressive weakening of bone. Continuous loss of bone during life is the

main causes of osteoporosis. Lower peak bone mass, gender, nutrition, lifestyle,

medications and physical characteristics of the bone are among other risk factors

contributing towards osteoporosis (Cowin, 2001).

Bone is a living tissue made up of a thick outer shell called the cortex and an inner

mesh-like structure called the cancellous bone (see Figure 2.1). The cancellous

bone is made up of a network of collagen fibres, calcium salts and other minerals

interspersed with bone marrow (Cowin, 2001). The shaft of a long bone, such as the

femur, typically consists of a thick cylinder of cortical bone, known as the diaphysis.

The head and the trochanter on the other hand, have a thin cortical outer shell

enclosing a region of cancellous bone.

7
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Figure 2.1: Cross-section of the proximal end of a femur model showing cortical and
cancellous bone and the main sections of the bone - the shaft (diaphysis), trochanter
(metaphysis) and the head (epiphysis)

Bones undergo continual remodelling to maintain the geometry and internal

structure of the bone. Two distinct bone cell types, osteoblasts and osteoclasts,

govern the bone remodelling process (Gray, 2000). The osteoclasts are bone-

resorbing agents which excavate a resorption cavity on the bone surface. The

osteoblasts are bone-building agents which balance this deterioration process by

filling the resorbed cavities with new bone. This remodelling process is responsible

for maintaining the bone geometry and inner architecture. Osteoclast activity

exceeds bone resorption by osteoblasts during growth, peaks in young adult life and

starts to decline after about 30.5 years and by the age of 70, bone mass dwindles to

less than 70% of the young adult mass (Cowin, 2001).
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A negative balance between the bone rebuilding and bone resorption processes causes

a gradual thinning of the internal bone architecture, thereby leading to a loss of bone

strength. Figures 2.2 and 2.3 show the difference in the trabecular architecture in

case of a normal and osteoporotic subject respectively.

Figure 2.2: Low-power scanning electron microscope image of normal bone
architecture in the 3rd lumbar vertebra of a 30 year old woman marrow and other
cells have been removed to reveal thick, interconnected plates of bone. By kind
permission of Tim Arnett, University College London, UK

Figure 2.3: Low-power scanning electron microscope image of osteoporotic bone
architecture in the 3rd lumbar vertebra of a 71 year old woman marrow and other
cells have been removed to reveal eroded, fragile rods of bone. By kind permission
of Tim Arnett, University College London, UK

Both cortical and cancellous bone are affected by osteoporosis. Trabecular bone

is found in high percentages in the hip, spine and wrist and is more vulnerable

because it is more metabolically active and has a higher turnover rate. Men as

well as women suffer from osteoporosis. Early detection of bone loss is critical in

preventing osteoporotic fractures.
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2.2 Osteoporosis assessment

The gold standard measurement of bone strength and hence fracture risk is a

destructive test, such as a mechanical compressive testing of either a sample of

the bone or the whole bone. Bone mineral content (BMC) and density (BMD)

measurements for a defined volume (volumetric, gcm−3) or projected area (areal,

gcm−2) are often considered as surrogate physical measurement techniques for

predicting mechanical integrity. Bone densitometry measurements are generally

accepted as accounting for approximately 60-70% of bone strength with ‘bone

quality’, typically bone geometry and cancellous structure, explaining the remainder

(Langton and Njeh, 2004).

2.3 Measuring Bone Quantity

Currently, there is no accurate non-invasive measure of overall bone strength.

However, the most commonly used measurement to diagnose osteoporosis is based

on assessment of Bone Mineral Density (BMD). Various researchers have observed

significant correlations for bone mineral density with fracture-risk (Hui et al., 1988;

Wasnich et al., 1989; Cummings et al., 1993) and with failure load (Beck et al.,

1998; Bouxsein et al., 1999). Cummings et al. (2002) gives a detailed review of the

clinical use of bone densitometry using the various techniques available and finds

bone mineral density to be a good indicator of bone strength for routine clinical use.

Some common BMD measurement methods are described below.
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2.3.1 Direct measurement of bone density

One of the earliest methods for measuring bone density was based on Archimedes’

law of buoyancy (Robinson and Elliott, 1957; Dickerson, 1962; Gong et al., 1964;

Keenan et al., 1997). Using this principle, the density of a bone sample was

computed from the weights of the bone in dry and submerged states as (Cowin,

2001):

ρbone = ρfluid

W

W − S
(2.1)

where W and S are the dry and submerged weights respectively and ρfluid is the

density of the fluid in which the bone is submerged. Distilled water or pure ethyl

alcohol may be used as the fluid for submerging the bone sample. The density

value as measured by this technique falls in the range of 1.8 - 2.3 gcm−3 and is

the mineralized bone tissue (i.e. material) density, calculated as dry weight of the

specimen divided by the volume of bone matrix excluding marrow space (Ding,

2000).

Such a measurement of bone density, however, cannot be performed in-vivo. Imaging

modalities such as X-ray absorptiometry, computed tomography and ultrasound

have hence been proposed to estimate bone density values. A point to be noted here

is that the bone density as measured from these imaging modalities is the apparent

(i.e. structural) density (Ding, 2000), i.e. the density of the mineralized bone matrix

and is calculated as dry weight of the specimen divided by the volume of specimen,

including the marrow space.
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2.3.2 Dual energy X-ray Absorptiometry (DXA)

Dual energy X-ray Absorptiometry (DXA) is the most commonly used technique

for BMD measurement. Routine X-ray images can only verify advanced bone loss

and bone fractures. DXA scans produce high-resolution images of the targeted site,

such as the hip, spine, or wrist. The fundamental principle behind DXA is the

measurement of the transmission of X-rays of two different photon energies through

the body (Genant et al., 1996). Since the attenuation coefficient depends on atomic

number and photon energy, measurement of the transmission factors at two energies

enables the ‘areal’ densities (i.e. the mass (g) per unit projected area (cm2)) of

two different types of tissue to be inferred. In DXA scans these are taken to be

bone mineral and soft tissue respectively. The BMD measurements are used by

the physician to assess osteoporotic fracture risk. The radiation levels for DXA are

low and the scan takes less than 5 minutes. This testing also helps to monitor the

effectiveness of treatment.

Figure 2.4: A DXA system
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2.3.3 Quantitative Computed Tomography (QCT)

Computed Tomography (CT) scanning uses X-rays to generate cross-sectional slice-

by-slice views of body parts. For this, a large series of X-ray slice data is obtained

about a single axis of rotation around the object. Data scans are progressively

generated using X-ray sensors positioned opposite to the X-ray source. The

numerical value assigned to each pixel in a CT slice is based on the differential

absorption of ionizing radiation by calcified tissue and is expressed in Hounsfield

Units (HU) (Jackson, 2004).

Quantitative computed tomography (QCT) utilises a calibration phantom to convert

Hounsfield number into a measure of volumetric bone density (gcm−3) of the hip and

spine. The potential advantage of QCT is that it measures volumetric rather than

areal density. Also, the bone density of cancellous bone alone may be measured,

separate from the cortical shell, by selecting a region of interest (ROI). Clinical QCT

offers quite high spatial resolution of typically 0.15 mm compared to approximately

1mm for DXA. However, the radiation dose to a patient subjected to QCT is

significantly higher (25 - 360 µSv) than in DXA (0.08 - 4.6 µSv) (Njeh et al.,

1999).

2.3.4 Quantitative Ultrasound (QUS)

Ultrasound velocity is related to the elasticity and density of cancellous bone,

whereas BUA is related to the density and structure of cancellous bone. As

the structural variability decreases, the relationship between BUA and density

increases. Clinical studies have shown that QUS parameters are sensitive to age-
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related changes, may discriminate osteoporotic subjects and exhibit a prospective

fracture risk prediction comparable to axial DXA. QUS offers the potential to

serve 2 major clinical roles, viz., to predict fracture risk independent of established

bone densitometry or to be a case-finding referral tool for subsequent conventional

densitometry.

The clinical application of Quantitative ultrasound (QUS) for the assessment of os-

teoporosis was first demonstrated in Hull by Dr Chris Langton via the measurement

of broadband ultrasound attenuation (BUA) at the calcaneus (Langton, 1984). QUS

has been scientifically validated both in terms of fundamental in-vitro and clinical

in-vivo studies. Figure 2.5 is an image of a portable BUA measurement device. Due

Figure 2.5: The McCue CUBAclinical QUS device for measuring BUA at the human
calcaneous (heel)

to technical difficulties, Quantitative Ultrasound measurements cannot routinely be

performed at the common anatomical sites affected by osteoporosis (spine, hip and

wrist). However, it has been clinically demonstrated that ultrasound measurement

of the calcaneous (heel) provides an accurate indication of osteoporosis fracture risk,

particularly for hip fracture (Njeh et al., 1997b; He et al., 2000; Damilakis et al.,

2004).
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2.3.5 Clinical interpretation of Bone Mineral Density

In 1994, the World Health Organization (WHO) selected BMD measurements to

establish criteria for the diagnosis of osteoporosis. BMD measurements are specified

in terms of T-score and Z-score (Fogelman et al., 2002):

• T-score: standard deviation compared to average BMD value for young healthy

adults.

• Z-score: standard deviation compared to average BMD value for age- and

gender-matched young healthy adults.

The T-score is calculated by taking the relative standard deviation of the patient’s

measured BMD from the mean BMD of healthy young adults at the age of peak bone

mass, matched for gender and ethnic group, with respect to the standard deviation

for young adult population:

T − score =
(Measured BMD − Y oung adult mean BMD)

(Y oung adult standard deviation)
(2.2)

A T-score result indicates the difference between the patient’s BMD and the ideal

peak bone mass achieved by a young adult. Changes in T-score reflect in fracture-

risk. The WHO defined criteria for diagnosis of osteoporosis (WHO Study Group,

1994) is summarized in Table 2.1.

Category T-score Risk of fracture
Normal T − score ≥ −1 Low

Osteopenic −1 > T − score > −2.5 Intermediate
Osteoporotic T − score ≤ −2.5 High

Table 2.1: WHO-defined criteria for diagnosis of Osteoporosis
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A patient is considered osteoporotic if the areal Bone Mineral Density (aBMD) or

areal Bone Mineral Content (aBMC) is over 2.5 standard deviations below the mean.

Osteopenia indicates increased fracture-risk and risk of developing osteoporosis in

the future. Presence of fractures lead to a classification of ‘severe osteoporosis’. The

T-score is a linear transformation of the bone density, and depends on the mean and

standard deviation at peak bone mass.

An alternative BMD measurement index to the T-score is the Z-score which is also

expressed in units of the population standard deviation (SD) and is calculated by

comparing the standard deviation of the patient’s BMD from the mean BMD for

a healthy normal adult matched for age, gender and ethnic origin, to the standard

deviation for a similarly matched healthy normal adult.

Z − score =
(Measured BMD − Reference mean BMD)

(Reference standard deviation)
(2.3)

Z-scores are not as widely used as T-scores, but they provide a useful means of

expressing a patient’s osteoporotic fracture-risk with respect to their peers. The

Z-score may be computed from a T-score by subtracting the T-score of an age-,

gender-, race- and skeletal site-matched reference from the T-score of the patient.

A point to note is that these bone densitometry measures reflect the status of the

scanned bone at a particular time. Repeat BMD measurements at regular intervals

of one or two years may be required to assess the changes in bone density over time.
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2.4 Measuring Bone Quality

Put simply, the bone density value is the ratio of bone mass to bone volume. The

bone density value, therefore, does not reflect the condition of the bone structure

in terms of the distribution of bone trabeculae. However, primarily, osteoporosis is

a problem of the bone strength which in turn depends on its structural integrity.

Hence along with quantitative measurements of bone density, qualitative measures

of bone structure are required for an accurate assessment of osteoporotic fragility

fracture risk.

2.4.1 Histomorphometry

Histomorphometry is a quantitative study of the shape and structure of body tissue,

in this case of bone. It is used to assess the condition of the bone structure by

measuring its porosity and trabecular connectivity. Stereological point-counting

techniques on cross-sections of bone under a microscope have been used to express

porosity in terms of percentage of total area or volume of bone (Vesterby, 1993).

This however, is an in-vitro approach.

The node-strut analysis technique (Ohkubo, 2002) proposed a means of analysing

the continuity of trabecular structure in a sample of bone tissue in-vivo using

morphological operations performed on a radiographic image of the bone. The

condition of the bone tissue structure is expressed as a quantitative index value for

osteoporosis assessment.
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2.4.2 Markers

Parfitt (1993); Reeve et al. (1993) have found independent effects of bone turnover

on fracture risk based on the loss of trabecular integrity due to increase in bone

resorption. Bone remodelling can be assessed by the measurement of surrogate

markers of bone turnover in the blood or urine. The level of these markers may

identify changes in bone remodelling within a relatively short time interval (several

days to months) before changes in BMD can be detected.

Levels of biochemical markers of bone metabolism have been found to correlate with

rates of bone remodelling as measured by histomorphometry and also with lower and

accelerated bone loss (Chesnut et al., 1997; Bauer et al., 2001). Higher levels of bone

markers have been associated with increased risk of fracture after adjustment for

bone mass (Garnero et al., 1996, 2000; Akesson et al., 1995). Typically the main use

of biochemical markers is in assessing response to treatments in osteoporosis rather

than diagnosis of osteoporosis (Looker et al., 2000).

2.4.3 Mechanical Testing

Seeman (2003) referred to bone fragility as a ‘problem in biomechanics ’. He

described the contrasting features of the bone’s material and structural properties

requiring the bone to resist bending during load bearing and to deform during impact

to avoid fracture. Bone strength may thus be computed using the biomechanical

characteristics of the bone, typically by studying the relationship between an applied

load and the resulting structural displacement. Stiffness is determined from the slope

of the elastic region of the load-displacement curve (Sato et al., 1999).
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The basic mechanical test setup consists of a mechanical testing machine and strain/

displacement measurement transducers. Tensile or compressive testing may be used

to measure bone properties. Tensile tests are typically used for relatively large

bone specimens and strain is measured across the midsection of the specimen.

Compressive tests, however, better simulate in-vivo loading conditions for some

skeletal regions such as the hip joint and the vertebrae.

Femoral neck fractures constitute up to 50% of osteoporosis-related fractures

(Hosiet et al., 1987). Biomechanics at the femoral neck site are, hence, useful in

assessing osteoporotic fracture-risk among patients. There are two loading scenarios

commonly used to measure femoral neck strength. The first referred to as ‘stance

condition’, simulates the loading of the bone for a person in the standing position.

The other loading scenario, referred to as ‘fall condition’ simulates a person falling

sideways on their hip.

Keyak et al. (2005) used a stance loading scenario with the femoral shaft axis aligned

at 20o to the coronal plane with an axial load applied at the top of the femoral

head. In the fall loading case, the femur was rotated so as to rest on its greater

trochanter with the shaft oriented at an angle of 30o to the ground. A femoral head

anteversion of 15o was also applied to simulate realistic loading conditions of a fall.

The orientation angles used in these loading scenarios have varied. Dalen et al.

(1976) applied the load parallel to the shaft axis in the stance configuration in his

study to test correlation of bone mineral levels with fracture risk. Bouxsein et al.

(1995) used a shaft orientation of 10o for mechanical testing in the fall configuration

for their test of correlation among femoral bone properties and fracture risk. The

shaft was fixed distally but free to rotate and slide.



Background 20

Mechanical testing, however, is a strictly ex-vivo technique for estimating bone

strength. Finite element models provide a way of simulating mechanical testing

using models generated using scans of the bone in-vivo.

2.4.4 Finite Element Analysis

Finite element analysis (FEA) is an effective and widely used computer-based

simulation technique for modelling mechanical loading of various engineering

structures, providing predictions of displacement and induced stress distribution

due to the applied load.

In this technique, the object or system is represented by a geometrically similar

model consisting of multiple, linked, simplified representations of discrete regions,

i.e., finite elements (Pao, 1986). The behaviour of an individual element can be

described with a relatively simple set of equations. These elements are joined

together at nodes along edges. Complex models can be created as an assembly

of elements to which loads and restraints may be applied. The equations describing

the behaviours of the individual elements are joined into an extremely large set

of simultaneous equations that describe the behaviour of the whole structure.

The deformation of the nodes is calculated by solving inter-related simultaneous

equations. Computer analysis of the model gives nodal displacements corresponding

to the applied load. The strength of a bone depends on its material composition and

structural integrity (Currey, 2002). Finite element analysis of a bone would therefore

be dependent on the Young’s modulus (a function of density) of each element, the

overall shape of the bone (length and angle of neck, size and anteversion of head)

and the internal structure of the bone.
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Finite element analysis (FEA) of 3D femur models obtained from quantitative CT

(QCT) has been utilised to assess the strength of the femur (Lotz et al., 1991; Cody

et al., 1999; Keyak, 2001; Keyak et al., 2005), being inherently dependent upon

both density and geometric parameters. By applying random uncertainties in the

geometry, density and mechanical properties of the femur within a Monte Carlo

method sensitivity analysis, Taddei have validated the robustness of mechanical

behaviour prediction based upon finite element analysis models derived from

computed tomography data (Taddei et al., 2006). However, because of the high costs

and high doses of radiation exposure, CT scans are not routinely used in clinical

assessment. DXA, on the other hand, is relatively easier to obtain and hence a finite

element analysis technique using 2D radiographic images as input might prove more

feasible and practical for routine analysis.

Finite Element Analysis of X-ray Images (FEXI)

Using a methodology fundamentally similar to Testi et al. (2004), 2D-FEXI (Finite

Element Analysis of X-ray Images) (Langton et al., 2004, 2005) is a recently

developed technique which uses a radiographic image of a bone to create a 2D plane

stress model for finite element analysis. Simulation of a compressive mechanical

loading resulting from a sideways fall to the ground is used to compute the stiffness

of the bone. Stiffness (Nmm−1) describes the resistance to deformation, being a

standard and reliable experimental mechanical compression parameter, derived prior

to the yield point and fracture of a sample under test. On the basis that stiffness is

widely accepted to be a reliable surrogate for bone strength (Lochmuller et al., 1998),

it was assumed that FEXI derived stiffness could serve as a reliable non-destructive,

non-invasive surrogate for bone strength. Conventional bone densitometry by DXA
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is similarly performed on the assumption that BMD is a reliable surrogate for

bone strength. It should be noted however that the risk of a subject suffering

an osteoporotic fracture, such as of the hip, is determined by factors in addition to

material and geometric parameters of the proximal femur, these include the risk of

falling along with the weight and soft-tissue protection of the subject.

FEXI Methodology

1. A DXA hip scan is performed, from which the image is exported as an 8-bit

greyscale image. A previous DXA scan of an aluminium step-wedge is used to

convert each pixel grey level into BMD via a derived regression equation.

2. The volumetric density for each pixel is computed by dividing the BMD by

an assumed constant tissue depth of 25 mm. A Young’s modulus is then

attributed to each pixel using published regression data (Keyak et al. (2005)).

3. The proximal femur is segmented using a semi-automatic contour detection

program thereby deleting adjacent surrounding tissue and other bones. It

should be noted however that the acetabulum will still be present overlying

the femoral head. The image is then rotated such that the femoral shaft is

aligned at a defined angle.

4. Simulated support and loading platens to facilitate even loading across the

bone surfaces are added to the bone image at the greater trochanter and

femoral head respectively. The lower support platen is restrained in both

vertical and horizontal directions; the upper loading platen is restrained in the

horizontal direction only, thereby allowing vertical displacement. A known

load is applied along the top of the loading platen.
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5. A thin-plate FE analysis model is generated for the platened bone image thus

simulating a mechanical compression test, shown in Figure 2.6. The stiffness

(Nmm−1) of the bone is calculated by dividing the applied load by the recorded

displacement of the upper loading platen.

Figure 2.6: Mechanical test setup showing a compressive loading of a porcine femur

There are however, a number of fundamental limitations associated with the original

2D FEXI approach; no account is made for the variable thickness across the proximal

femur, and it is not possible to simulate anteversion of the femoral neck as occurs

when a subject falls on their hip.

The hypothesis behind this thesis was that the development and application of a

Shape Model of the proximal femur would overcome these limitations, whereby the

size and shape of a 2D DXA image of the proximal femur would be converted into

a subject-specific and versatile 3D finite element model (3D FEXI) that is more

realistic and could serve as a more accurate surrogate of bone strength than either

BMD or 2D FEXI. This hypothesis is developed further in the following chapter.



Chapter 3

The Hypothesis

3.1 Background

As mentioned in the previous chapter, the most common clinical measurement for

assessing bone strength associated with osteoporosis is a measure of bone mineral

density by dual energy X-ray absorptiometry (DXA). Areal bone mineral density

(aBMD) is utilised as a surrogate for bone strength, explaining between 70% and

85% of its variance (Dalen et al., 1976). We know however that other factors

contribute to the overall risk of fracture including anatomical geometry and the

spatial distribution of bone. Recent osteoporosis fracture-risk studies have been

looking at methods to quantify bone quality along with bone quantity. Bone quality

describes factors such as the anatomical geometry, rate of bone remodelling and the

spatial distribution of bone.

Muller et al. (2003) compared DXA of the radius and phalanges, peripheralQCT

of the 4% and 20% distal sites of the radius, radiogrammetry of the forearm and

24
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quantitative ultrasound of the radius techniques to assess which would best predict

failure load of the distal radius. It was seen that bone mineral content measures were

generally better predictors of failure load (r2 = 0.53− 0.85) than the corresponding

bone mineral density values (r2 = 0.22 − 0.69) measured by either pQCT or DXA.

QUS and radiogrammetry were found to be moderate predictors of fracture load

(r2=0.49 and 0.54 respectively). Measures of radial geometry at the 20% site by

pQCT improved failure load prediction using bone mineral content by DXA and

pQCT by up to 9%. Addition of porosity and trabecular connectivity indices were

not found to significantly add to the prediction by the BMC- geometry combination.

Several studies have investigated the effects of femur geometry on bone strength and

fracture risk. In 2003, 3D dual-energy x-ray absorptiometry (DXA) scan images

were used by Armand et al. (2003) to study the geometry of the proximal femur

and its effects on femoral neck strength. Hip axis length has been suggested to be a

predictor of fracture risk by some (Bergot et al., 2002; Faulkner et al., 1993; Gnudi

et al., 1999; Peacock et al., 1995) while others (Alonso et al., 2000; Calis et al.,

2004; Michelotti and Clark, 1999; Partanen et al., 2001) have found no significant

relationship. For femoral neck-shaft angle, there is both positive (Alonso et al., 2000;

Calis et al., 2004; Gnudi et al., 1999; Partanen et al., 2001; Pulkkinen et al., 2004)

and negative (Bergot et al., 2002; Faulkner et al., 1993) evidence for its predictive

value. Cortical thickness (Calis et al., 2004; Partanen et al., 2001; Pulkkinen

et al., 2004), femoral head diameter (Calis et al., 2004; Michelotti and Clark, 1999;

Partanen et al., 2001), and anteversion (Cheng et al., 1997) are among the various

other femoral geometric parameters measured and studied to identify associations

with fracture risk. Pulkkinen et al. (2004) has suggested using a combination of

several of these factors within a multiple linear regression model to predict fracture

risk. The clinical fracture prediction performance of geometric parameters has also
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been studied (Gluer et al., 1994; Karlsson et al., 1996). El-Kaissi et al. (2005)

found alteration in hip geometry associated with fracture risk, with geometric

characteristics like femoral neck width, shaft width, neck axis length and hip axis

length to be significantly greater in hip fracture patients compared to healthy

controls. Testi et al. (2004) used a statistical classifier on a combination of factors

including BMD, femoral neck strain from a finite element analysis and patient-

specific information, to be used as a predictor of fracture-risk. Other approaches

have also been developed to supplement aBMD for the accurate prediction of bone

strength including hip strength analysis-derived compressive stress values for falls on

the greater trochanter (Crabtree et al., 2002) and active shape modelling to quantify

femoral shape and discriminate between healthy and fracture-prone bones (Gregory

et al., 2004).

3.2 The justifications

The basis for this research was that three-dimensional finite element analysis of

a bone would provide a better prediction of bone stiffness compared to the finite

element compressive stress analysis of a bone modelled as a 2D thin plate. Also, the

bone for this 3D analysis would be predicted from a two-dimensional radiographic

image under the assumption that the shape of the proximal human femur can be

templated. This shape template would then be used to reconstruct the missing

dimension in the input image and hence obtain a 3D bone model for finite element

analysis.

The above described arguments were validated to ensure a good foundation for the

research. The following subsections describe the methods used for the tests along
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with their outcomes.

3.2.1 Bone geometry variations

The idea behind this study was to obtain a statistical analysis of the variations in

the femoral geometry. There were two components to this analysis. The first,

to determine the sites of geometric variation and the second, to determine the

covariance between variations in bone length and breadth and variations in bone

depth.

The sites of variation

Geometric variation was studied in a set of 11 excised human proximal femora

using Principal Components Analysis (PCA). The geometric parameters considered

were: shaft width, shaft depth, greater-trochanter width, greater-trochanter depth,

shaft-head distance, head diameter, neck-axis length, neck width, neck depth and

the neck-shaft angle. All measurements were performed using 0.05mm precision

callipers. The variables were standardized to zero-mean and unit variance before

the analysis.

Principal Component Analysis (PCA) is a way of identifying patterns in a given

set of data and highlighting the similarities and differences within that set. For a

given shape space where each shape is represented by a series of points, there exists

some degree of inter-point correlation between shapes. If not, either the set does

not contain any variations, or the points are totally random and do not represent
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any landmarks. Principal Components Analysis uses this correlation between points

to generate a shape representation with a reduced dimensionality. PCA transforms

the data expressing the patterns between the original variables using a new set of

variables called Principal Components (PCs). These principal components are linear

combinations of the original variables but orthogonal to each other. Since there are

typically fewer PCs than variables, it is easier to analyse a dataset using these PCs.
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Figure 3.1: PCA scree plot

A scree plot is used to show the sorted eigenvalues, from large to small, as a

function of the eigenvalue index. The above figure (Figure 3.1) shows a scree plot

of the proportion of variance described by each PC for the dataset of 11 femora.

From the scree plot and the cumulative percentage variances in Table 3.1, it was

observed that the first three PCs together accounted for about 88% of the total
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variance in geometry and hence considered to be the components with any biological

significance. The scatter plot of the first 2 PCs for the above considered example

(Figure 3.2) shows the difference in the range of variation described by these. PC1

describes a much larger proportion of variance between shapes compared to PC2.
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Figure 3.2: PCA scatter plot showing that the variability explained by PC1 is much
higher than that explained by PC2.

Varimax rotation with Kaiser normalization (Kaiser, 1958) was applied to the prin-

cipal components (PCs) to identify the key sites of variation in geometry. Varimax

rotation is an orthogonal factor rotation method which is based on maximizing the

variance of the squared factor loadings to improve the interpretability of each factor.

The normalization step scales the rows of loadings to have norm 1 before rotation

and then scales them back after rotation. For this study, the varimax rotation with

Kaiser normalization was accomplished using MATLAB’s built-in function for factor
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rotation.

The contribution of each of the geometric parameters to the variations described

by the PCs was depicted graphically using a biplot (see Figure 3.3). The variations

in femur geometry were found to be due to: the greater-trochanter depth (GD),

shaft-head distance (SH), neck axis length (NAL) and shaft width (SW) described

by PC1; shaft depth (SD), greater-trochanter width (GW) and neck depth (ND)

described by PC2; neck-shaft angle (NSA), neck width (NW) and head diameter

(HD) described by PC3.

PC # Eigenvalue Unrotated components Rotated components
% variance Cum. Variance % variance Cum. Variance

1 5.9421 59.4215 59.4215 48.0433 48.0433
2 2.2637 22.6368 82.0583 34.2851 82.3284
3 0.6146 6.1463 88.2046 17.6716 100
4 0.5075 5.0746 93.2792
5 0.2994 2.9942 96.2734
6 0.1577 1.5771 97.8505
7 0.1193 1.1926 99.0431
8 0.0592 0.5916 99.6347
9 0.0297 0.2973 99.932
10 0.0068 0.0681 100.0001

Table 3.1: Eigenvalues and % variances for the PCs

These results helped understand the geometric variations that needed to be

considered for a bone quality analysis technique based on femoral shape. These

variations may also be used with bone strength analysis to determine the extent to

which bone strength has been affected by geometry.
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Figure 3.3: Biplot to visualize magnitude and sign of contribution of each variable to
the first 3 PCs. The axes in the biplot represent the principal components, and the
observed variables are represented as vectors. The points represent the PC scores
for the observed variables.

The covariance between 2D and 3D geometry

Partial least squares (PLS) is used to study and analyse covariation between multiple

blocks of variables. It generalizes and combines features from principal component

analysis and multiple regression. It is particularly useful when we need to predict a

set of dependent variables from a (very) large set of independent variables (i.e.,
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predictors). Bookstein (1982) proposed a concept of partial least squares that

centres around the interpretation of the singular values of a cross-block covariance

matrix as the covariances of the linear combinations that use the singular vectors as

coefficients. Bastir et al. (2005) used PLS morphological integration studies using

covariation between two blocks of variables while Rohlf and Corti (2000) used it to

study relationships between three-dimensional morphologies and their corresponding

two-dimensional views.

Partial Least Squares (PLS) was applied to examine the pattern of covariance

between the parameters that could be measured from a 2D image and those that

were related to the 3rd dimension of bone geometry. The variables were split into

two blocks accordingly with block X consisting of measurements in the X-Y plane

such as shaft width, neck width, greater-trochanter width, shaft-head distance, neck

axis length and neck-shaft angle, and block Y consisting of measurements along the

Z-axis such as shaft depth, neck depth and greater-trochanter depth. The variance-

covariance matrix R was computed as:

R =

[
RX RXY

R′

XY RY

]
(3.1)

Singular value decomposition (SVD) was used to extract the pairs of mutually

orthogonal singular axes (SA) and associated singular values (SV) from this

interblock variance-covariance matrix, RXY .

RXY = USV ′ (3.2)

where the values along the diagonal of S gave the singular values and the columns of

U and V formed the pairs of singular axes. The fraction of total variance described

by each pair of singular axes was calculated (Table 3.2) and the first singular value

(9.8079) was found to explain 91.52% of the total covariance between the blocks. The

first 3 pairs of singular axes describing correlation between shaft width and depth
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(SA1: r=0.9294,p=0), neck width and depth (SA2: r=0.7686,p=0.0057) and greater

trochanter width and depth (SA3: r=0.7992,p=0.0032) were found to be significantly

correlated (p < 0.01). It was hence argued that the missing dimension could be

reconstructed to a reasonable degree from the known two-dimensional information.

The correlation between the X-block SA1 and Y-block SA1 is plotted in Figure

3.4. No significant (p < 0.1) correlation was found for these two singular axes with

centroid size indicating that size was not responsible for this covariance between

width and depth.

R² = 0.8638

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3 4 5

Y
-b

lo
c

k
 S

A
1

 s
c

o
re

s

X-block SA1 scores

Figure 3.4: Plot of X-block SA1 vs Y-block SA1 scores for the human femur

SA # Singular value % variance Cum. Variance
1 9.8079 91.5213 91.5213
2 0.8071 7.5312 99.0525
3 0.0985 0.919 99.9715
4 0.0031 0.0286 100.0001

Table 3.2: Singular values and % variances for the SAs
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3.2.2 FEXI Validation

Finite element analysis (FEA) is an effective and widely used computer-based

simulation technique for modelling mechanical loading of various engineering

structures. In this technique, a series of linked discrete regions called finite elements

are used to model the object (Pao, 1986). These elements are joined together at

nodes along edges. Loads and restraints are applied to the assembly of elements.

Specified loads and restraints are applied to the model and an array of simultaneous

equations is constructed to describe the behaviour of the whole structure. Analysis

of the model provides nodal displacements and induced stress distribution due to

the applied load. Finite element analysis of a bone would therefore be dependent on

the density of each element (cortical and cancellous), the overall shape of the bone

(length and angle of neck, size and anteversion of head) and the internal structure

of the bone.

As described in the previous chapter, Finite Element Analysis of X-ray Images

(FEXI) (see section 2.4.4) is a recently developed technique which uses a radio-

graphic image of a bone to create a 2D plane stress model for finite element analysis.

This technique uses simulation of a compressive mechanical loading resulting from

a sideways fall to the ground to compute the stiffness of the bone.

An initial experimental validation (Langton et al., 2004) was conducted to assess

the performance of the FEXI technique with DXA and radiograph images compared

with BMD to predict experimentally derived mechanical stiffness and yield load of

the proximal porcine femur. A set of 23 porcine femora was used in this study as

these were more easily available and also suitable since pig femurs are similar in

shape and structure to the human femora in all except the femoral neck region - the
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porcine femoral neck is shorter and thicker than the human one.

The head and shaft of the femora were platened with resin blocks. DXA and digital

X-ray scans were performed for all of these femora. These were then subjected

to mechanical compressive testing to determine yield loads. BMD was computed

for each femur from the DXA scans. FEXI was performed for the DXA and

radiograph images with the applied load being the same as the yield load obtained

from mechanical testing. The stiffness values obtained from mechanical testing were

taken as the gold standard for this study. The BMD and FEXI-derived stiffness

values from the DXA and radiograph images were compared with this mechanical

stiffness to assess the performance and accuracy of FEXI.

A good correlation was observed between FEXI-derived stiffness from DXA images

with the experimentally derived mechanical stiffness and yield load (R2 = 0.56 and

R2 = 0.68 respectively). This was better than the correlation of FEXI-derived

stiffness from plain radiograph images with mechanical stiffness (R2 = 0.51) and

yield load (R2 = 0.61).

The good correlation of FEXI (DXA)-derived stiffness with the yield load and the

mechanical stiffness proves that FEXI provides a good estimate of bone strength,

comparable to the results from BMD (R2 = 0.65 for BMD with mechanical stiffness

and R2 = 0.71 for BMD with yield load ). The poorer performance of FEXI with

the radiograph images was attributed to the variability in exposure.

Graphs comparing the performance of FEXI and BMD for both the DXA and

radiograph images with mechanical stiffness and yield load are shown in figure 3.5.
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Figure 3.5: FEXI-derived stiffness compared with BMD, mechanical stiffness and
yield load
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3.3 Summarising the hypothesis

The observations from the above described case studies formed the basis for the

research described in this thesis. The first study looked at determining the major

sites of variation in the femoral geometry. It was found that over 60% of the

variations in femoral geometry could be explained by characteristics that were

measurable from a two-dimensional image. The Partial Least Squares analysis

showed a high covariance between bone width and depth, thus lending weight to

the hypothesis that the three-dimensional geometry of the bone may be predicted

from corresponding information in two dimensions.

The porcine femur study was conducted to compare the bone stiffness prediction

of 2D FEXI to bone mineral density analysis which is the current gold-standard

for osteoporosis assessment. It was found that the correlation of 2D FEXI-derived

stiffness with both mechanical stiffness and yield load was found to be comparable

to BMD in this case.

In the above described study using 2D FEXI, the bone is considered as a thin plate of

constant thickness. As described in the FEXI methodology, the material properties

assigned to the finite element model are dependent on the computed volumetric

density at each pixel of the input radiographic image. Assumption of a constant

thickness across the bone introduces an inherent error in the stiffness calculation.

It was argued that an improved estimation of bone depth would reduce the

error in volumetric density estimation and hence improve the accuracy of bone

stiffness results. Also, three-dimensional shape information would allow the
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spatial orientation of the bone to be considered under different loading conditions

particularly anteversion of the femoral neck. This would, hypothetically, provide

bone stiffness results comparable to stiffness analysis from CT scans and hence avoid

the need for expensive CT scans as a possible means of bone quality assessments.

Carrying on with the development of the hypothesis, the following chapter looks at

determining the sensitivity of FEXI to changes in the anatomical parameters using

a simulated bone.



Chapter 4

Simulation Study

4.1 Introduction

The previous chapter looked at the main sites of variation in femoral geometry and

also found that 2D FEXI derived bone stiffness was comparable to bone strength

estimated by aBMD. In this chapter, the effect of the geometry variations on FEXI-

derived stiffness and aBMD are analysed with a view to establishing the validity

of the hypothesis that FEXI with shape information will provide a more accurate

assessment of bone stiffness than either aBMD or 2D FEXI. This was accomplished

using a simulation study using virtual models of the proximal femur as it would

be difficult to create a compilation of clinical cases with such a specified range of

variabilities.

The aim of this computer simulation study was to utilise a virtual proximal femur

to examine whether 2D FEA (FEXI, finite element analysis of X-ray images) and

3D FEA computed stiffness of the proximal femur were more sensitive (defined

39
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as relative change) than aBMD to changes in trabecular bone density and femur

geometry. It is assumed that increased sensitivity will be indicative of an improved

prediction of bone strength.

A virtual system was created to test the effects of the variations of the anatomical

parameters of the proximal femur on the FEXI-derived stiffness. This knowledge

will be useful when validating the 3D bone recreated from a radiograph.

4.2 System description

The virtual world component consisted of a virtual anatomy generator and a

radiograph simulator. The FEXI technique was applied to the simulated radiograph

to compute bone stiffness. ANSYS Finite Element solver was used to perform the

FE analysis for all tests.

The FEXI computations were divided into two basic categories - 2D and 3D. 2D

FEXI was performed on the radiograph using constant tissue depth to compute

volumetric density. 3D FEXI was performed on the 3D femur models constructed

from the virtual bone.

Multi Parametric Sensitivity Analysis (Choi et al., 1999) was used to study the

relative importance of each parameter on the overall stiffness of the bone. In this

technique, a range of variations is assigned to each input parameter to determine the

relative importance of each parameter and analyse the sensitivity of the simulation

results to these input parameters.
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Figure 4.1: Virtual System Overview

Virtual World

A simplified virtual proximal femur was constructed as a voxel map using basic

geometric shapes as shown in Figure 4.2; for example, the femoral head and

diaphysis were represented by a sphere and a hollow tube respectively. This approach

enabled the geometric parameters of the virtual proximal femur to be readily and

independently varied.

Volume graphics techniques were used to model and manipulate the voxel data.

The ‘vxt’ volume graphics class library written by Sramek and Kaufman (1999) was

customized to build the voxel map for the proximal femur model, having a size of

192x192x192 voxels with each voxel being a cube with sides 1.3mm. Constructive

Solid Geometry (CSG) operations and visualization techniques were applied to these
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Figure 4.2: Virtual Femur Design

voxel-maps to achieve the desired femur model and visualize the results. The bone

was modelled to have a cortical shell with density and thickness as given in Table

1 and the interior of the bone was simplified to have uniform density representing

cancellous bone perfused with marrow. The relative dimensions of the geometric

components of the virtual bone model were kept as close as possible to those for a

typical femur (Gray, 2000). The reference values used for bone density and geometric

parameters and parameter value ranges considered for the virtual bone model are

described in Table 4.1.

The virtual femur was created and simulated support platens (with material

properties of resin) were added to the femoral head and greater trochanter as shown

in Figure 4.3.
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Table 4.1: Proximal femur model parameters - reference values and parameter range
considered for the simulation

Parameter Reference Value Parameter Range
Cortical bone density 2gm/cm3 N/A

Trabecular bone density 25% 5 - 35%
Resin for support platen 255 (greyscale value) N/A
Cortical shell thickness 1.45mm 0.725mm - 5.075mm

Radius of shaft 14.5mm Not varied
Length of shaft 50.0mm Not varied

Radius of greater trochanter 14.0mm Not varied
Radius of neck 12.5mm 21.25 - 28.75mm
Length of neck 40.0mm 34 - 46mm

Neck-shaft angle 120o 95o - 125o

Neck Anteversion 15o 0o - 15o

Radius of head 24.0mm 20.4 - 27.6mm

Figure 4.3: Virtual femur before and after platening

3D Finite Element Analysis

The three-dimensional femur model was stored as a discrete regular grid called a

volume buffer or a voxel map, which is a large 3D array of volume elements known

as voxels. A voxel is a cubic unit of volume centred at the integral grid-point and

can be considered as the 3D equivalent of the 2D pixel that represents a unit of area.
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Each voxel in the voxel-map contains a scalar value representing some property of

the object occupying that unit of volume in the dataset. In the case of the femur

model, each voxel contained the material density value for the bone at that position.

A finite element model is built up of discrete ‘elements’ formed by joining ‘nodes’

in a particular order. The material properties of the elements are defined in terms

of the Young’s modulus and the Poisson’s ratio for the material. In 3D FEA, each

element is made up of 8 nodes as seen in Figure 4.4.

I J

KL

x

z

M
O

N

y

P

Figure 4.4: 3D ANSYS FEA element with nodes numbered from I to P as modelled
for ANSYS

For 3D-FEA, each voxel in the voxel map of the virtual bone was considered to be a

finite element. The material properties of the element were derived from the density

at each voxel and the corresponding Young’s modulus calculated using published

regression data (Langton et al., 1996) for cancellous bone, noting that the portion

of the proximal femur being loaded, between the femoral head and greater trochanter

is predominantly cancellous with a thin cortical shell.

For the finite element analysis, a compressive mechanical loading was simulated,

equivalent to a subject falling on their hip as described in the FEXI approach. Figure
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2.6 shows the experimental arrangement that was being simulated. By applying

a load between the femoral head and greater trochanter via support platens, the

stiffness of the bone may be computed. The base support platen was restrained

in both horizontal and vertical directions, with the load platen restrained in the

horizontal direction. A vertical load of 2N was applied to the loading platen and its

vertical displacement recorded. Dividing the applied load by the resultant platen

displacement yielded the stiffness of the bone (Nmm−1). A commercially available

finite element analysis package, ANSYS (ANSYS Inc., PA), was used for solving the

finite element models.

Radiographic Projection Simulation

Virtual radiographic images were generated using a ray-casting-based 2D projection

algorithm. This algorithm used the number of bone voxels that a ray passes through

divided by the voxel map depth in order to calculate the intensity (grey level) of

each pixel on the image. Figure 3 shows a simulated radiograph for the virtual

proximal femur detailing the cortical shell and medullary cavity and incorporating

the support platens at the head and shaft.

Figure 4.5: Simulated radiographic image for the virtual femur with support platens
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2D FEXI and BMD

The 2D-FEXI technique (Langton et al., 2004, 2005) converts a conventional

radiographic image, such as a DXA scan of a bone into a 2D plane stress model

for finite element analysis. The finite element model was created using a bespoke

software module (written in MATLAB (MATLAB Inc., MA)). In 2D finite element

analysis, a plane element is used for modelling solid structures. Each plane element

is made up of four nodes ordered from I to L.

I J

KL

x

y

Figure 4.6: 2D FEA element

Each pixel in the image was considered to be a finite element. The grey level at

each pixel was mapped directly to BMD using a regression equation derived from a

DXA scan of a step wedge. The volumetric density at each pixel was then computed

by dividing the areal density (BMD) by an assumed constant tissue thickness of

25mm (Langton et al., 2004). As for 3D FEA, Young’s modulus for each element

was derived from published regression data (Langton et al., 1996) and a compressive

mechanical test was again simulated.

Apparent total hip BMD (aBMD) was calculated as the areal BMD for each 2D
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projection image based upon the average grey level of the bone within the image.

Figure 4.7: FE models generated from a 2D projection and the 3D model of the
virtual femur

Figure 4.8: Displacement plots for 2D FEXI & 3D FEA
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Anatomical Parameter Sensitivity

The sensitivities of stiffness derived from 3D-FEA and 2D-FEXI along with aBMD

to variations in each anatomical parameter considered were plotted and trends set

to best fit the data. The term sensitivity as used here was defined as the change

in FEXI stiffness and aBMD from its baseline value for each value in the range

assigned to each varied parameter (viz., trabecular density and the bone geometry

parameters). For example, in the case of trabecular density, the sensitivity was

computed as the change in FEXI stiffness and aBMD results for each change of

0.1gcm−3 in trabecular density from the reference of 0.5gcm−3 in the range 0.1 to

0.7gcm−3.

Multi Parametric Sensitivity Analysis (Choi et al., 1999) was used to study the

relative importance of each parameter on the overall stiffness of the bone. In this

technique, a range of variations is assigned to each input parameter to determine the

relative importance of each parameter and analyse the sensitivity of the simulation

results to these input parameters. Table 1 describes the range of variation considered

for each parameter in this study. For the MPSA analysis, an ‘objective function’ as

defined by Choi et al. was computed using the equation

fh,m =

√∑
h(xo,h − xi,h)2

k
(4.1)

which was the value of the function for a parameter h using a mode m, where we

considered aBMD, 2D FEXI and 3D FEA as the 3 different modes of analysis. In the

above equation, the term xo,h referred to the baseline stiffness and aBMD value and

xi,h to the stiffness and aBMD values for the range (k) of values of parameter h. The

baseline values were considered to be the stiffness and aBMD values obtained with

the femur model parameters set to the references defined in Table 1. The relative
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importance of each parameter for each mode, δh,m was then computed as

δh,m = fh,m/xo,h. (4.2)

Parameter sensitivity index value across all modes was computed as

γh =
∑

m

δh,m (4.3)

(where m = aBMD, 2D FEXI, 3D FEA). Conversely, the sensitivity index of a mode

to variations in parameters was computed as

γm =
∑

h

δh,m (4.4)

(where h = trabecular bone density, cortical shell thickness, neck width, neck

length, neck-shaft angle, femoral head radius, femoral neck anteversion). A ‘relative

sensitivity’ index (S) was defined as the ratio of the relative importance of a

parameter h for a mode m, δh,m, to the sensitivity index γ. The relative sensitivity

was computed both for individual parameters in each mode (Sm = δh,m/γm) as well

as for each parameter pooled across all modes (Sh = δh,m/γh).

4.3 Results & Discussion

Both 3D-FEA and 2D-FEXI derived stiffness increased non-linearly with increasing

trabecular density (Figure 4.9) with 2D-FEXI more sensitive (higher regression

slope) than 3D-FEA; aBMD increased linearly and with low sensitivity (low

regression slope).

There was a linear proportional increase with cortical shell thickness (Figure 4.10)

for both 3D-FEA and aBMD; the sensitivity of 2D-FEXI was non-linear and slightly

lower than 3D-FEA, both being significantly greater than aBMD.
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Figure 4.9: Plot of aBMD & FE analysis with varying trabecular density
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Figure 4.10: Plot of aBMD & FE analysis with varying cortical shell thickness
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2D-FEXI demonstrated a slightly non-linear decrease with increasing neck length

(Figure 4.11), being more sensitive than the linear sensitivity of 3D-FEA and aBMD.

This agrees well with the findings of Faulkner (1995).
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Figure 4.11: Plot of aBMD & FE analysis with varying neck length

All three measurement parameters demonstrated a linear sensitivity with both neck

width (Figure 4.12) and neck-shaft angle (Figure 4.13). For neck width, 2D and

3D FE were similar and of higher sensitivity than aBMD. All three measurement

parameters were insensitive to neck-shaft angle.

All three measurement parameters varied non-linearly with head radius (Figure

4.14); 3D FE demonstrated a positive trend whereas 2D FE and aBMD demon-

strated a negative trend.

All three measurement parameters demonstrated non-linear behaviour with neck
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Figure 4.12: Plot of aBMD & FE analysis with varying neck width
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Figure 4.13: Plot of aBMD & FE analysis with varying neck-shaft angle
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Figure 4.14: Plot of aBMD & FE analysis with varying head radius

anteversion angle (Figure 4.15), decreasing with increasing deviation either side of

the reference value of 15o; 3D FE was the most sensitive, followed by 2D FE and

aBMD.

When trabecular density and all geometric parameters were considered simultane-

ously for each mode, 3D-FEA and 2D-FEXI had statistically equal (γm = 0.41±0.20

and γm = 0.42±0.16 respectively, p = ns) but significantly higher sensitivity indices

than aBMD (γm = 0.24±0.07). The statistical significance level for 2D-FEXI against

aBMD (p = 0.002) was higher than for 3D-FEA against aBMD (p = 0.014).

When the relative sensitivity of the three modes (aBMD, 3D-FEA and 2D-FEXI)

was analysed separately against variation in trabecular density and the geometric

parameters (Sh) (Figure 4.17), cortical thickness was found to have the most impact

on derived bone strength among all three modes. As expected, trabecular density
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Figure 4.15: Plot of aBMD & FE analysis with varying neck anteversion angle

follows aBMD. Surprisingly, 2D-FEXI shows a significantly higher sensitivity to

trabecular density and neck length than 3D-FEA. No scientific explanation could

be found for this and was accepted for the time being as an anomaly to be analysed

later if such a case arose with future clinical studies.

When all modes and anatomical parameters were pooled into a single analysis (Sp =

δh,m/
∑

h γh) (Figure 4.18), the highest sensitivity was achieved for cortical thickness

variation using 3D-FEA (Sp = 1.04), closely followed by 2D-FEXI (Sp = 0.84) of this

geometric parameter. Surprisingly, the next highest sensitivity was for trabecular

density variation using 2D-FEXI (Sp = 0.48), with aBMD and 3D-FEA having

significantly lower, and equal, sensitivities (Sp = 0.19).

Using relative sensitivity classification thresholds of High >= 0.5, 0.2 <=

Moderate < 0.5, and Low < 0.2, the results of the MPSA sensitivity analysis
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Figure 4.16: Mean and standard deviations in sensitivity of each measurement
parameter with all parameters considered simultaneously for each mode

were summarized in Table 4.2. These results showed that both 3D FE and 2D FE

were more sensitive to several geometrical parameters than aBMD.

This simulation study helped to analyse and understand how variations in geometric

parameters affect the stiffness and hence strength of a bone susceptible to

osteoporotic fracture. It suggested that finite element analysis of 2D radiographic

images could provide an improvement in osteoporotic fracture risk assessment than

currently provided by aBMD.

A simulation approach was useful for validating the performance of a computer based
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Table 4.2: Relative sensitivity of the various geometric parameters - Analysed
separately

Parameter aBMD 2D 3D
Trabecular density Moderate High Moderate
Cortical shell thickness High High High
Neck length Low Moderate Moderate
Neck width Low Moderate Moderate
Neck-shaft angle Low Low Low
Head radius Low Low Low
Neck anteversion Moderate Moderate Moderate

analysis technique such as 3D and 2D finite element analysis, whereby geometric

parameters could be readily varied, an onerous task if the study was performed ex
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Figure 4.18: Relative sensitivity to parameter variations, analysed with all
measurement and geometric parameters pooled together

Table 4.3: Relative sensitivity of the various geometric parameters - Pooled Analysis

Parameter aBMD 2D 3D
Trabecular density Low Moderate Low
Cortical shell thickness Moderate High High
Neck length Low Moderate Low
Neck width Low Low Moderate
Neck-shaft angle Low Low Low
Head radius Low Low Low
Neck anteversion Low Moderate Moderate

vivo. However, as this approach relied on simulated data from a simplified virtual

bone model, the sensitivity results with actual data could be different due to the

inherent complexity in the structure of bones. In order to minimise the effect of

the model simplification, the basic dimensions and range of variations in parameters
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of the virtual bone were set based on typical bone dimensions (Gray, 2000). Also,

the basic shape and the ratio of cortical and cancellous bone of the model were

modelled to correspond to those of real femurs. However, the actual inner trabecular

architecture of the bone was not modelled and the interior was instead assumed to

have uniform density. The incorporation of the internal structure modelled as a

mesh structure is planned as a future enhancement to the simulation study. It is

expected that a more detailed model would corroborate these results that show a

better sensitivity to femoral geometry for the FEXI-derived stiffness compared to

BMD.

As found ex vivo, the mechanical integrity of the proximal femur is most dependent

upon cortical thickness (Calis et al., 2004; Partanen et al., 2001; Pulkkinen et al.,

2004). The study demonstrated that 3D FE and 2D FE (FEXI) were significantly

more sensitive to the anatomical shape and composition of the proximal femur than

conventional BMD and may improve upon the prediction of bone strength and

fracture-risk currently provided by conventional BMD assessment.

It was somewhat surprising to note that 2D FEXI provided a higher sensitivity than

3D FEA, as shown in Figure 4.18, for trabecular density and neck length. Although

a scientifically based explanation cannot be offered at this stage, this may be related

to the fact that in the derivation of volumetric density within 2D FEXI, a constant

bone thickness of 25 mm was incorporated.
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4.4 Conclusions

This simulation study indicated that FEXI-derived stiffness was indeed responsive

to variations in bone geometry as well as changes in bone density. As bone strength

depends on the physical characteristics of bone among other factors along with bone

density, it was argued that FEXI with incorporated bone shape information would

yield a better prediction of bone strength compared to aBMD alone. The case for

this research was thus deemed to be established.

The following chapter looks at the various techniques for shape reconstruction from

two-dimensional images and lays the foundation for the development of a shape

template for the proximal femur.



Chapter 5

Shape Analysis and
Reconstruction

As seen from the simulation study in the previous chapter, response of FEXI to

variations in bone geometry correspond to results from clinical studies analysing

effects of geometric parameters of the bone on fracture-risk. The basic objective of

the shape analysis component of this research was to build a shape model to provide

tissue depth information across the proximal femoral bone for use with FEXI with

a view to prove the hypothesis that FEXI with shape information would provide a

more accurate assessment of bone strength than 2D FEXI and also aBMD.

The first section of this chapter lists various reconstruction techniques developed

and used by researchers for some common medical imaging modalities such as

X-ray, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI).

These techniques have been grouped broadly into those that use multiple slices or

projections for the reconstruction and those that use some combination of statistical

analysis on a set of images and use this statistical information along with the input

60
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image data to reconstruct the three-dimensional shape. The second section focuses

entirely on the core concepts within the realm of geometric morphometrics and how

they are relevant to the research described in this document. The final section

describes the process of selecting the appropriate techniques for the application and

how they fit together in this case.

5.1 3D Reconstruction Techniques

5.1.1 Using Multiple Projections

Three-dimensional modelling of anatomical features from medical images is not

a new concept. A review of three-dimensional medical imaging algorithms and

computer systems is given by Stytz et al. (1991). Computed Tomography (CT) and

Magnetic Resonance Imaging (MRI) are two of the most common imaging modalities

used to generate three dimensional views of an object, typically an anatomical

structure.

Computed Tomography (CT)

CT scanning uses X-rays to generate cross-sectional slice-by-slice views of body

parts. For this, a large series of X-ray slice data is obtained about a single axis

of rotation around the object. Data scans are progressively generated using X-ray

sensors positioned opposite to the X-ray source. The numerical value assigned to

each pixel in a CT slice is expressed in Hounsfield Units (HU) and is computed as the

average attenuation value of the tissues relative to the attenuation of water. Water
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is assigned an attenuation value of 0HU, cancellous bone is typically displayed as

+400HU and attenuation value for cortical bone is around +600HU (Jackson, 2004).

The scanned CT slices are segmented using the appropriate HU range to isolate the

anatomy under consideration.

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging uses radio frequency signals applied to an object in

a magnetic field and hence avoids the side-effects of radiation exposure. When a

body, which is approximately 70% water, is placed in a magnetic field, the hydrogen

atoms in the water molecules align with or against the magnetic field depending

on their energy state. Radio frequency signals are used to change the excitation

state of these hydrogen atoms causing a change in the net magnetisation vector of

the object (Puddephat, 2002). The image is created based on measuring the return

of the atoms to their original alignment. As the RF pulses target the hydrogen

atoms in the water molecules in tissues, this technique is better suited to studying

soft tissues such as muscles and blood vessels rather than calcified tissues such as

bone. Both MRI and CT are expensive procedures compared to two-dimensional

imaging modalities such as X-ray and DXA scans and are not prescribed for routine

assessment.

Reconstructing the slices

One of the simplest methods of 3D reconstruction from CT or MR slices is using

multiplanar reconstruction. The series of contiguous axial slices are stacked to create

the volume which can then be sliced through different planes (typically orthogonal)
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to obtain different views of the object. Interpolation of identical rows from each

transaxial image creates a coronal view and interpolation of identical columns creates

a sagittal view.

Lorensen and Cline (1987) proposed the marching cubes algorithm for 3D surface

reconstruction from multiple 2D slices of medical images. Ray-casting algorithms

along with a combination of surface-rendering algorithms were used by Hohne

et al. (1989) for visualization of 3D reconstructed surfaces from multiple 2D slices

obtained from CT and MR scans. Subsol et al. (1994) proposed the development

of an anatomical atlas for the human skull using data obtained from CT images

by extracting and registering features along the surface of the object to be

reconstructed. The deformations were explained with reference to a ‘feature average’

constructed after registration of all the specimens in the training set. Active contour

models were employed by Safont and Marroqun (1999); Zhao et al. (2000) for

reconstruction of the proximal femur from slices obtained from Computed Axial

Tomography (CAT) and MRI scans respectively.

Another popular 3D surface reconstruction approach involves back projecting

multiple 2D projections of an object. Sun et al. (1994) compared the performance

of Lagrange-multiplier (LMA), conjugate gradient (CGA) and minimum voxel

representation (MRA) algorithms for a ‘3-view reconstruction’ of the coronary

arteries. The surface error rate (SER) was computed as a measure of the percent

difference of object voxels between the original shell structure and the reconstructed

shell structure and found to be 5%, 4% and 8% for the three techniques respectively.

The MRA was however concluded to be the most practical for clinical applications

because of its fast convergence. Reconstruction of the spine, rib cage and pelvis was

studied by Delorme et al. (1999) using three x-ray images taken at specific angles
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to the object. A combination of Direct linear transformation (DLT) and free-form

deformation using dual-kriging algorithms were used to generate the patient-specific

3D models from the x-rays. Overall accuracy of 3.5 ± 4.1mm were reported for an

in-vivo validation study of 40 scoliotic vertebrae.

Caponetti and Fanelli (1990) developed a 3D reconstruction algorithm from two

mutually orthogonal X-ray views of the femur, which was later improved upon by

(Nikkhade-Dehkordi et al., 1996). In both these cases, the femur was considered

in sub-parts, each having a smooth, round surface. The 3D shape was estimated

by median filtering and contour finding on different parts of the X-ray images and

generating each sub-part using Hermite surface patches. Hermite surfaces are cubic

parametric surface patches defined by four corner points and the tangent vectors to

the surface at the corner points (Foley et al., 1990). The reconstructed femurs were

compared to CT-scan models and 80% of the femur shaft was found to have less

than 2mm error and 93% less than 4mm.

Mitton et al. (2000) and Mitulescu et al. (2002) developed a technique based

on non-stereo corresponding points (NSCP) from two orthogonal radiographs for

reconstruction of the 3D geometry of upper cervical vertebrae. Direct linear

transformations along with NSCP and a kriging algorithm (Trochu, 1993) were used

in the latter study. The accuracy of the technique was evaluated using point-to-

surface distances and found mean errors of around 1.4mm and root mean square

errors of nearly 4mm between the models obtained from this reconstruction and

those modelled from CT scans for 58 scoliotic vertebrae in 14 patients. Laporte et al.

(2003) later introduced the concept of non-stereo corresponding contours (NSCC)

based on contours identification from biplanar radiographs for 3D reconstruction

of the distal femur. These were used by Kolta et al. (2004) for reconstruction



Shape Analysis and Reconstruction 65

of the proximal femur from orthogonal biplanar DXA scans. The reconstructed

models showed good accuracy as compared with high-resolution (0.25mm pixel size,

1.25mm slice thickness) personalized CT-scan models for 25 cadaveric femurs (mean

error= 0.8mm and 95% of errors ≤ 2.1mm). Maximum errors of up to 7.8mm were

obtained on the greater and lesser trochanters.

5.1.2 Statistical Shape Analysis

In the clinical setting, two shapes may be similar but are rarely identical. Moreover,

there are various rotational and positional variations inherent to medical imaging

modalities. The distance of the scanner from the object being scanned also has an

effect on the size of the image obtained. Statistical shape analysis consider shapes

invariant of its translational, rotational and scaling effects and hence would be able

to model these variations better than traditional reconstruction techniques.

Cootes and Taylor (2004) presented the concept of Active Shape Models (ASM) to

describe locations of features in a target shape with respect to a reference shape.

Active Appearance Models (AAM) then synthesized images of new shapes using

the ASM. Procrustes Analysis (see section 6.3.3) was used to align the shapes in a

training set and Principal Components Analysis (PCA) (see section 3.2.1) employed

to model the variation among the shapes. A probability density function of the

principal components was defined to fit new images to the model shape. Statistical

appearance models using texture maps then generated ‘photo-realistic synthetic

images’.
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Blanz et al. (2004) used a training set generated using high resolution laser scans

of 100 faces to reconstruct faces from photographs. They used a combination of

probability density functions and regularized least squares fit for the reconstruction

and obtained results with reconstruction errors ranging from 3.16mm (using 17

landmarks) to 2.24mm (using 1000 landmarks).

5.2 Preliminary analysis

5.2.1 Depth prediction using grey levels

Several techniques were considered for the prediction of the missing dimension in

the input data. The simplest was the direct approach using a regression from the

grey value at each pixel of the DXA image to the actual depth of the bone at that

pixel. Figure 5.1 shows a typical pelvic radiograph image.

As can be seen from the figure, the interior of the bone is not solid and the projected

grey value of a radiograph pixel depends on the trabecular structure at that point.

This made it extremely difficult to generalize the relationship between the grey level

and bone depth. Another problem with this approach was the presence of overlying

features such as the pelvic bone, in the procured radiograph image. This affected

the grey level and hence the predicted depth in the overlapping regions. Yet another

drawback of this approach was its inability to identify protruding features such as

the inter-trochanteric crest and the anteversion of the head with respect to the shaft.
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Figure 5.1: Pelvic radiograph

5.2.2 Regression techniques

The term ‘regression’ is used to describe methods that attempt to quantify the

relationship between two sets of variables by fitting one set to the other. Regression

methods may be used to explain and estimate relationships between the two blocks

of data or to predict one from the other. These two blocks of data are often referred

to as ‘predictor’ and ‘response’ variables (Manly, 2000).

The measure of similarity

The measure of similarity between any two shapes was defined as a function of

Euclidean distance (Manly, 2000). Considering dik, the Euclidean distance between
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shapes i & k:

d2

ik =
∑

xij − xkj
2 = sii + skk − 2sik (5.1)

where j = 1:p , p is the number of variables.

Similarity matrix was computed as: S = XX ′

where sik, the element in the ith row and kth column of XX ′, gave the measure of the

similarity between shapes i & k. As the distance between the shapes dik decreases,

sik increases.

%similarity =
observed sik

max sik

(5.2)

max sik = sii+skk

2
when dik = 0

Using multivariate regression

The simplest case of regression, known as univariate regression, involves only one

predictor variable. Multivariate regression uses an entire set of predictor variables

to explain or predict a response variable. When the multivariate regression involves

multiple response variables, the analysis is known as multiple multivariate regression.

Multiple multivariate regression may be defined using the formula (Rohlf and Corti,

2000):

B = inv(X ′X) ∗ (X ′Y ) (5.3)

Y 1 = X1 ∗ B (5.4)

Multiple multivariate regression was used to predict a set of 3D landmarks defining

key points on the bone surface from a set of 2D landmarks on the input DXA image.
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The plan was to use a training set to define the co-efficients of regression between

the 2D and 3D co-ordinates for these key points. If the 3D co-ordinates could be

predicted with a significant level of accuracy, the bone surface was to be built by

warping a template shape using these as control points.

A training set Xt of 3D landmarks was generated using a MicroScribe G2 digitizer

(Immersion Corporation, CA) for 7 cadaveric femora. The landmarks were aligned

using the Generalised Procrustes Analysis (see section 6.3.3) to get a mean landmark

configuration meanX3D. The regression was executed in two stages.

In the first stage, a subset of the 3D landmark configuration, X3D−sub, was extracted

based on the ease and reliability of their definition in a 2D projection. These formed

the set of 2D landmarks, X2D. For this subset, a regression from the known (x,y)

to the unknown (z) dimension was computed using equation 5.4.

X2D → X3D−sub (5.5)

% get the z-coordinates for the subset of 2D landmarks

Z = Xt(size(X2D,1),3);

% find the regression co-efficients from (x,y) to z for the subset

B = inv(X2D’ * X2D) * X2D’ * Z;

for specimen = 1:samples

% For each specimen, the z co-ordinates for its 2D landmarks are computed

Z2D = [I X(specimen)] * B;

% The subset 3D landmarks for the specimen
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X3(specimen) = [X(specimen) Z2D];

end

The similarity of this subset of 3D landmarks from their corresponding 2D co-

ordinates was an impressive 99%.
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Figure 5.2: Similarity measure for regression model stage 1 - from 2D to 3D subset
- for the entire specimen set

The full set of 3D landmarks was then regressed from this subset of 3D points using

a similar multiple multivariate regression equation.

X3D−sub → X3D−full (5.6)

I = ones(size(Xt,1),1);

X_rem = ones(size(Xt,1)-size(X3D_sub,1),3);



Shape Analysis and Reconstruction 71

% pad the 3D subset matrix with 1’s for regression

Z1 = [X3;X_rem];

% pad the mean 3D subset matrix with 1’s for regression

X1 = [Xt(1:size(X3,1),:);X_rem];

X1 = [I X1];

% get the regression co-efficents from 3D subset to full set

B = inv(X1’ * X1) * X1’ * X3D;

for specimen = 1:samples

% Apply to each specimen

X3_full(:,:,specimen) = [I Z1(:,:,specimen)] * B;

end

Using the above measure of similarity, the multivariate regression approach provided

results of approximately 40% similarity between the actual and predicted shapes for

the full set of 3D landmarks.

Using Partial Least Squares regression

Partial Least Squares (PLS) regression is a technique that combines features of

Principal Components analysis (PCA) and multivariate regression. It is typically

used in studies where the number of predictors is much larger than the number of

response variables. While PCA finds a set of components that minimize correlations

within a given block of variables, PLS searches for components that maximize the
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Figure 5.3: Similarity measure between full set of actual and predicted 3D landmarks
for all the specimens using multivariate multiple regression at stage 2.

covariance between the predictor (X) and response (Y) blocks. In the context of PLS

regression, these components are known as ‘latent vectors’ (Wold et al., 2004). This

is achieved by a simultaneous decomposition of X and Y as a product of a common

set of orthogonal factors and factor loadings. This decomposition is followed by a

regression step to predict the Y block from the decomposition of X.

The predictor block X is decomposed as X = TP ′ where T is the matrix of scores

such that TT ′ = I and P gives the loadings. Y is then estimated as Ŷ = TBC ′

where B is a diagonal matrix of regression weights and C is the weights matrix for

the response variables. The columns of T represent the latent vectors. The NIPALS

(Non-linear Iterative Partial Least Squares) algorithm was first proposed by Wold

(1966). The NIPALS algorithm was applied to the subset 3D landmarks (X3D−sub)

to predict the full set of 3D landmarks X3D−full as given in the code snippet below.
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% Initialise u to a random vector

u = Y(:,1);

% Error checking initialisations

t_old = 1;tol = 1e-3; err = 1;

E = X; F = Y;

while (err > tol)

% Estimate the X weights

w = (X’ * u) / (u’ * u);

w = w / norm(w);

% Estimate the X scores

t = X * w;

% Estimate the Y weights

c = (Y’ * t) / (t’ * t);

% Estimate the Y weights

u = (Y * c) / (c’ * c);

% regression weights to predict Y from t

b = t’ * u;

%compute factor loadings for X

p = (X’ * t) / (t’ * t);

% Partial out the effect of t from X & Y

E = E - (t * p’)

F = F - (b * t * c’);

% update the corresponding vectors

W = [W w];

P = [P p];

C = [C c];

% compute error
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err = norm(t_old - t) / norm(t)

t_old = t;

end

% matrix of coefficients for multivariate regression

B = W * inv(P’ * W) * C’;

% Estimate value of Y

Y = X3D_sub * B + F;

This approach yielded similarity measures of about 39% for the predicted landmarks.
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Figure 5.4: Similarity measure between full set of actual and predicted 3D landmarks
for all the specimens using NIPALS regression at stage 2.

The large difference in the number of input and output variables in the second

step of this method affected the predictive performance of both of these regression
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techniques.

5.2.3 Morphometrics

Morphometrics is a branch of mathematical shape analysis that provides a quantita-

tive representation of shape characteristics. Bookstein (1991); Dryden and Mardia

(1998) defined morphometrics as the study of shape variation and its covariation

with other variables. Traditional morphometrics (Marcus, 1990) was concerned with

application of multivariate statistical analysis techniques to morphological datasets

consisting of linear distance measurements such as length, width, height, etc. The

analysis provided a quantitative measure of shape variation, typically as tables with

lists of numbers that had to be analysed by domain specialists.

Geometric Morphometrics

Kendall (1977) defined shape as

all the geometrical information that remains when location, scale and

rotational effects are filtered out from an object.

The set of shapes, which differ only by one or more of these Euclidean transforma-

tions, are said to belong to a ‘shape space’. A shape may be described by a set of

landmark points that correspond to some identifiable features of the object. These

landmark points match between and within populations for that object. A frame
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of reference can be generated for comparison of objects within a shape space, by

filtering out the translations, scaling and rotations for the objects.

Morphometric studies that focus on the geometry of a structure and the geometric

properties of the co-ordinates of landmarks for quantifying and analysing shape are

categorized as ‘geometric morphometrics’ (Rohlf and Marcus, 1993). Geometric

morphometrics combine the use of multivariate statistics with visualization of the

results from these analysis. These methods consider morphological data aligned to

Kendall’s shape space (Kendall et al., 1999) for multivariate analysis.

5.3 Summary

This chapter has looked at various concepts and methodologies involved in the

estimation of the three-dimensional shape of an object given its 2-D projection.

As discussed in the introduction of this chapter, several studies have used two or

more projections either orthogonal or as slices, to reconstruct such a 3-D shape. The

novelty of this research was to attempt the 3-D reconstruction using a single 2-D

projection.

The following chapter discusses the use of geometric morphometrics as the chosen

technique for the current research objective and the application of the same for

building a shape template for the proximal human femur.



Chapter 6

3D reconstruction from a
radiographic image: In search of
the missing dimension

6.1 Overview

As discussed in the previous chapter (section 5.1), several studies have looked at

reconstruction of anatomical structures from multiple CT slices as well as from

multiple radiographic images. However, CT scans are expensive and involve high

doses of radiation as compared to x-ray scans. The challenge for this research was

the creation of a 3D shape model from a single 2D radiographic image.

It was hypothesised that a shape template could be generated for the bone, which

could then be applied to a radiographic image in order to predict an approximation

of its actual three-dimensional shape.

77
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In 2006, Zheng et al. described a technique of 2D/3D reconstruction using a

combination of statistical extrapolation and regularized shape deformation with

an iterative non-rigid 2D point matching algorithm from input fluoroscopic images

to the reconstructed model. The point matching algorithm involved symmetric

nearest-neighbour mapping and 2D thin plate splines-based deformation to find

best-matched pairs between the images and the model. 11 cadaveric femurs were

used in the study and average reconstruction errors of 1.2mm and 1mm were

obtained using 2 and 3 input fluoroscopic images respectively. Novosad et al. (2004)

had used calibrated x-rays and a template 3D geometric model of the vertebrae

for individual patients to reconstruct 3D models of the spine from a single x-ray

image for quantitative testing of the lateral bending motion of the spine in scoliotic

patients. Average root mean square errors of approximately 2.89mm were achieved

using a case study of 15 patients and this error was deemed acceptable for their

particular application.

6.2 Shape Template: The Concept

Consider a simple example of a cylindrical bone shaft as shown in figure 6.1:

A shape template provides the relationship between the measured dimension ‘x’ and

the unknown depth dimension ‘z’ at a given slice ‘i’. A set of statistical algorithms

define the mapping from the 2D domain of the radiograph to the 3D domain of the

bone (Figure 6.2). This makes it possible to describe the 2D projected image into a

3D voxel map using a predicted tissue depth ‘z’.
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Figure 6.1: The shape template concept

6.3 Methodology

6.3.1 Building the bone database

Three sets of femora, each scanned by computed tomography (CT) on different

machines (because of a change in location and equipment upgrade), were studied:

one was examined as part of a previous study (Keyak et al., 2005) at the University

of California, San Francisco (UCSF set: 18 femora from 8 males and 10 females;

age, 52 - 92 years); and two were examined at the University of California, Irvine
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Figure 6.2: Overview of shape template application

(UCI1 set: 14 femora from 8 males and 4 females; age, 53 - 88 years; and UCI2 set:

11 femora from 11 female donors; age, 45 - 94 years).

Of these, UCI1 and UCI2 datasets had CT voxel resolutions of 0.67mm and

the UCSF dataset had a voxel resolution of 1.06mm. The CT scans had 3mm

slice thickness. For each femur, a virtual radiograph was generated as a simple

axial projection of the object reconstructed from the CT slices. Two-dimensional

projections describing ‘offset’ and ‘depth’ were also generated such that they

described the 3D spatial arrangement of the bone surface voxels.
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CT scanning (Keyak et al., 2005)

Preparation of femora for CT scanning was identical, regardless of data set. Each

femur was immersed in water and placed atop a calibration phantom for CT

scanning. Each set of femora was scanned on a different CT scanner and used

slightly different scanning parameters.

The UCSF femora were scanned on a GE 9800 Research Scanner (GE Healthcare

Technologies, Waukesha, WI) with a K2HPO4 (KHP) calibration phantom (Lang

et al., 1991), 320 320 matrix, and 1.08mm pixels. The UCI1 femora were scanned on

a GE HiSpeed Advantage CT scanner (GE Healthcare Technologies, Waukesha, WI)

with a calcium hydroxyapatite (CHA) phantom (Image Analysis, Inc., Columbia,

KY), 512 512 matrix, and 0.674mm pixels. The UCI2 femora were scanned on a GE

CTI scanner (GE Healthcare Technologies, Waukesha, WI) with a CHA phantom,

512 512 matrix, and 0.674mm pixels. All scans were obtained using 80 kVp, 280

mAs, 3mm slices and standard reconstruction.

6.3.2 2D Mappings

A ray casting technique was applied to the CT scan data for each proximal femur

thereby creating 2D mappings of ‘BMD’, ‘offset’ and ‘depth’. The mappings express

the data as 256 level grey-scale bitmaps, shown in Figure 6.3.

For a column in a slice of the CT scan, ‘offset’ was defined as the number of voxels

from the edge of the slice to the first bone voxel in that column. ‘Depth’ was defined

as the number of voxels from the edge of the slice to the last bone voxel along the



3D reconstruction from a radiographic image 82

Figure 6.3: 2D ray casting mappings of offset and depth expressed as 256 level
greyscale images. Note that the femoral head and greater trochanter correspond to
minimum offset but maximum depth.

particular column (see Figure 6.4). The depth map provided information about

bone thickness at each pixel of a projected 2D radiograph image and the offset map

provided the relative position of each part of the bone in the 3rd dimension, hence

accounting for the protruding trochanteric section as well as the head anteversion.

Offset

Depth

Bone

voxel

Reference Plane

Depth

Offset

Figure 6.4: Offset and depth mapping
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6.3.3 Input Registration

As discussed in the previous chapter, geometric morphometrics attempts to quantify

the structure and geometric properties of a shape using a set of co-ordinates of

landmarks on the shape. Hence the first step in geometric morphometrics is the

acquisition of landmarks for the shapes being analysed. Landmarks have been

defined (Zelditch et al., 2004) as

discrete homologous anatomical loci that do not alter their topological

positions relative to other landmarks, provide adequate coverage of the

morphology, can be found repeatedly and reliably, and lie within the

same plane.

Landmarks are typically chosen to quantify at least all the visible shape features

required for analysis.

The figure 6.5 shows landmarks digitized along the outline of a radiograph image of

the human proximal femur.

The landmarks in this case were chosen to provide an optimal number of visually

recognizable points to describe the overall shape of the femur. Homology had

to be ensured while selecting these landmarks for the various specimens and

hence the landmarks had to be clearly distinguishable along the image outline.

Each radiographic projection in the input dataset was described by a ‘landmark

configuration’.
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Figure 6.5: Landmarks on a femur radiograph

A ‘landmark configuration’ is a set of landmark co-ordinates for a particular

specimen with ‘K’ landmarks and ‘M’ dimensions for each landmark.

Xi =





x11 x12 ... x1M

x21 x22 ... x2M

... ... ... ...
xK1 xK2 ... xKM



 (6.1)

The set of all landmark configuration matrices having the same number of landmarks

and co-ordinates (KxM) form the ‘configuration space’.

Generalised Procrustes Analysis (GPA) was employed to filter out the Euclidean

variations among the samples in the dataset and consider each projection invariant

of its translational, rotational and scaling effects. This procedure was applied
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simultaneously to the virtual radiographs as well as the offset and depth maps.

Generalised Procrustes Analysis (GPA)

In order to compare and study the variation in shape among various specimens,

it is necessary to consider them in an aligned framework. Zelditch et al. (2004)

discusses the various registrations techniques proposed and their limitations. The

current widely accepted method for superimposition of landmarks is the Procrustes

superimposition. Procrustes analysis is the name for the process of performing

a shape-preserving Euclidean transformation to a set of shapes. This removes

variations in translation, rotation and scaling across the data set in order to move

them into a common frame of reference.

The name of the method comes from the story of Procrustes in Greek Mythology.

Procrustes, a name that literally means ‘one who stretches’, was a bandit who invited

passers-by to rest on a magical iron bed that would fit any guest. He then either

stretched the guests or cut off their limbs to make them fit perfectly into the bed.

Theseus, a traveller to Athens, cut off the evil-doer’s head to make him fit into the

bed in which many ‘guests’ had died (Encyclopdia Britannica, 2007).

The Procrustes superimposition in geometric morphometrics is based on alignment

using simple operations such as translation, scaling and rotation, to minimize

the partial Procrustes distance between corresponding landmarks. The partial

Procrustes distance is calculated as the sum of the squared distances between

corresponding landmarks after these operations have been performed. By definition

(Kendall et al., 1999), this is the minimum distance between the shapes in the shape
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space.

The steps for generalised Procrustes superimposition as proposed by Rohlf (1990)

are summarized below:

1. Translation: First of all, the centroid for each landmark configuration is

calculated as the mean of its co-ordinates.

Cj =
1

K

K∑

i=1

xij, j = 1 : M (6.2)

where Cj is the jth component of the centroid. Each configuration of landmarks

is then centred by subtracting the co-ordinates of its centroid from the

corresponding co-ordinates of each landmark.

Centred shape,Xc =





(x11 − C1) (x12 − C2) ... (x1M − CM)
(x21 − C1) (x22 − C2) ... (x2M − CM)

... ... ... ...
(xK1 − C1) (xK2 − C2) ... (xKM − CM)



 (6.3)

2. Scaling: Centroid size is calculated as the square root of the sum of the

squared distances of the landmarks from the centroid.

CS(X) =

√√√√
K∑

i=1

M∑

j=1

(xij − Cj)2 (6.4)

Each landmark configuration is scaled to unit centroid size. These new

configurations are called centred pre-shapes (Dryden and Mardia, 1998).

Centred pre − shape =
1

CS(X)
[Xc] (6.5)

3. Rotation: To start with, one of the centred pre-shapes is chosen at random

(generally the first one in the set) as the reference configuration. All other
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configurations are rotated to minimize their individual partial Procrustes

distance with the reference configuration. The rotation matrix is computed

using singular value decomposition (Rohlf, 1990):

SV D(X t
RXT ) (6.6)

where XR is the reference shape and XT is the target shape, i.e., the shape

that is being rotated. The superscript t denotes transpose of the matrix.

Once all the configurations had been rotated to the reference shape, the

average shape is calculated and designated as the new reference shape. All

configurations are then rotated to optimal alignment with this new reference

shape.

Figure 6.6 illustrates this process - the input landmarks as shown on the left are

scaled, translated and rotated to produce the GPA-registered landmarks shown on

the right. The scatter of points at each landmark denotes the variability among the

samples.
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Figure 6.6: Input and GPA-aligned landmarks
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6.3.4 Thin Plate Splines

Thin Plate Splines (TPS) help to visualize shape changes over the entire form instead

of just the relative changes at landmark positions, as obtained from GPA. The

deformation is expressed as a continuous function that maps corresponding points

between shapes.

Bookstein (1989) proposed the concept of visualizing the deformation from one

shape to another using a uniform and infinitely thin idealized steel plate. The

displacements of the landmarks in a two-dimensional plane are visualized as if they

were transferred to the third dimension. Thus, the steel plate is bent to conform to

the relative displacements at each landmark and the distance between the landmarks

in the plane. The bending energy is defined (Bookstein, 1989) as a function of the

rate of change in the slope of the bent plate. Large changes in displacements between

closely-spaced points lead to an increase in slope, thereby requiring more energy to

bend the plate. Hence, minimizing the bending energy minimizes localized variations

among the shapes. The D’Arcy Thompson grid (Thompson, 1942) is often used to

visualize thin-plate splines (6.7).

The thin-plate spline approximates the deformation between shapes using a smooth

interpolating function of a linear combination of components that describe the

patterns of relative landmark displacement. The components that describe the

non-uniform deformation are called ‘partial warps’ (Slice et al., 1996). The kernel

function used for the thin-plate spline interpolation is given as (Bookstein, 1989;

Zelditch et al., 2004):

z(x, y) = U(r) = r2 ln r2 (6.7)
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Figure 6.7: Thin Plate Spline sample

for two-dimensions and

U(r) = |r| (6.8)

for three-dimensional shape analysis; where r is the distance between a pair of

landmarks between the reference and target configurations and U is said to be the

fundamental solution of the biharmonic equation for the shape of a thin steel plate

lifted to a height z(x,y) above the (x,y)-plane.

For a two-dimensional case, the deformation at any point (x, y) in the plane is given

by the following linear combination (Bookstein, 1989):

f(x, y) = a1 + axx + ayy +
K∑

i=1

wiU(|Pi − (x, y)|) (6.9)
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where f is the spline function describing the deformation in the target shape with

respect to the reference form, the Pi terms denote the landmarks in the reference

configuration, the wi are weights for the U function and the a terms describe the

uniform components in the deformation.

The computation of the bending energy matrix and the partial warps and partial

warp scores has been described in detail by Bookstein (1989) and Zelditch et al.

(2004).

Prediction of three-dimensional shape using thin plate splines for deformation of an

average shape grid is described in detail in the next section.

Creating the template using Thin Plate Splines

Generalised Procrustes Analysis (GPA) and Thin Plate Splines (TPS) were com-

bined into a single technique to create the shape template for the proximal femur.

GPA was utilised to create an average 3D ‘Proximal Femur Training Template’ that

could be expanded or contracted to suit the size and shape of an individual 2D ‘Test’

radiographic image. TPS deformation was applied to warp the 2D contour to match

the radiographic projection of each input bone. This approach assumes that there

is a proportional change in bone depth (z) corresponding to a proportional change

in overall size of the bone.

First of all, 3D grids to describe the shape of the bone (see Figure 6.8) were built

by merging the offset and depth maps generated as explained in section 6.3.2.
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Figure 6.8: 3D grid formed by merging offset and depth maps

The TPS deformation was carried out in two stages. In the first stage, Thin Plate

Splines were used to compute the deformation from the landmark configuration for

each individual bone to the mean configuration. As discussed above, the thin plate

spline approximates the deformation between shapes using a smooth interpolating

function of a linear combination of components that describe the patterns of relative

landmark displacement. The transformation matrix obtained in the first stage was

applied to the offset and depth map for each femur, thus warping it to the mean

shape. The resulting images were then averaged to create the average offset and

depth maps.

The input dataset was randomly split into a ‘Training’ and ‘Test’ set. The shape

template was derived from the Training set of CT scans of 23 excised human proximal

femora. For each of these, 2D projection maps describing depth and offset from

a reference plane, were derived. Defined anatomical landmarks were applied to

each projected 2D shape and the mean landmark configuration computed using
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Figure 6.9: Template offset and depth maps

Generalized Procrustes Analysis. 3D grids were derived for each femur by combining

the corresponding depth and offset maps. Each 3D grid was then transformed to

the mean landmark configuration using Thin Plate Spline deformation. The 3D

shape template was calculated as the mean of these transformations. This process

of constructing the shape template for the training set is shown in Figure 6.10.

6.3.5 Applying the template

The Test population consisted of 21 femoral CT scans, from which 2D shape

projection images were derived and landmarked. For each Test case, the mean

landmark configuration was first aligned to the landmark configuration for the Test

2D radiographic image using GPA. The 3D ‘Proximal Femur Training Template’

was then warped using TPS to reflect the 2D contour deformation from the mean

to the Test case, resulting in the creation of 3D model for each Test image. This

process is described by Figure 6.11.
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Figure 6.10: Overview of training template creation

6.4 Results & Discussion

Utilising the 2D similarity measure described in section 5.2.2, the shape-template

technique was found to have an accuracy of 99.75%. Thus the 2D profile of the

reconstructed shape was found to be a near-perfect match to the input radiograph.

(See Figure 6.12.)
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Figure 6.11: Transformation of the 3D Shape Template to an individual 2D
radiographic projection to create an individual 3D model.

2D error maps for depth and offset were computed as the per-vertex average of

distances in 3D space between the predicted and original maps.

E =
1

p

∣∣∣∣∣∣




xi,predicted

yi,predicted

zi,predicted



 −




xi,original

yi,original

zi,original





∣∣∣∣∣∣
(6.10)

The average depth and offset errors and their respective standard deviations are

listed in Table 6.1.
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Figure 6.12: Superimposition of 2D landmarks of original and predicted shapes.
Dotted line shows the contour of the template shape which was warped to fit the
test case.

As seen from the error maps (see Figure 6.13), most of the depth error seems to

be along the contour and these edge artefacts in the transformation of the 2D

radiographic image to 3D were consistent across all Test cases.

Also, the errors in depth prediction were found to be directly proportional to a

change in the ratio of bone length and width to bone depth; however no definite

relation could be formulated to compensate for this discrepancy. The errors in offset

prediction were attributed to the possible differences in the spatial orientations of the

original and predicted shapes. The orientation of the predicted shape was dependent

on the averaged grids generated using GPA and TPS on the grids in the Training

set.
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Table 6.1: Mean and standard deviation values for depth and offset errors for N=25
proximal femurs

Datasets
UCI1 + UCI2 UCSF

Matrix size 512 x 512 320 x 320
Pixel resolution (mm) 0.674 1.08
Mean Depth (mm) 33.84 22.35
SD Depth (mm) 6.37 1.74
Mean Offset error (mm) 1.33 2.97
SD Offset error (mm) 0.53 1.30
Mean Depth error (mm) 1.73 3.40
SD Depth error (mm) 0.51 1.45
Mean Depth error (pixels) 2.56 3.15
SD Depth error (pixels) 0.79 1.34

Figure 6.13: Offset and depth error maps - darker shades indicate higher error and
vice versa

Figure 6.14 shows a superposition of the 3D shapes from the original CT slices and

the one predicted using the shape template.
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Figure 6.14: Original (light) and Predicted (dark) bones

The advantage of this technique was that the 2D projected contour of the predicted

shape was nearly identical to the contour of the input test image. The assumption

here was that the change in bone depth corresponds to a proportional change in

bone length and breadth. This proved a drawback in the case of small stocky bones

and long slender bones at opposite ends of the spectrum. However, for a majority

of the cases, the assumption that the bone depth could be predicted from its length

and breadth proved reasonable.

This project has demonstrated the potential for creation of a 3D shape model for

the proximal femur from a single 2D radiographic image such as a DXA scan image.

Applications include derivation of volumetric density from areal bone mineral density



Shape Atlas Application to FEXI 98

and 3D finite element analysis for prediction of the mechanical integrity of the

proximal femur. The next chapter explains how these predicted 3D bone models

were used for bone strength assessment using FEXI.



Chapter 7

Shape Atlas Application to FEXI

7.1 Introduction

The preceding chapter discussed the reconstruction of the three-dimensional shape

of the human proximal femur from a radiograph of the same. An application of

the reconstructed shape for bone stiffness assessment is discussed in this chapter.

For this, finite element analysis to simulate compressive mechanical loading was

performed with the reconstructed bone to compute bone stiffness.

Cody et al. (1999) used quantitative computed tomography (QCT) for 3D modelling

of the femur for finite element analysis to prove that finite element analysis would

provide a better prediction of bone strength than conventional DXA. This study

used load and gait configurations causing femoral neck fractures and found that

finite element analysis provided a better prediction of fracture load and stiffness

compared to QCT and DXA.

99
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Lotz et al. (1991) used linear finite element analysis of 3D modelled bones to predict

the fracture load for the proximal femur, which was later improved upon by (Keyak,

2001) using non-linear finite element models. Lotz used three-dimensional finite

element models of the proximal femur (with geometries and material properties

based directly on quantitative computed tomography) to compare predicted stress

distributions for one-legged stance and for a fall to the lateral greater trochanter. In

Keyak’s study, the models were extended to include non-linear material properties

for the cortical and trabecular bone.

The FEXI technique (see section 2.4.4) uses finite element analysis to measure the

stiffness of bone in the presence of a compressive mechanical force. The initial version

of this technique assumed constant tissue depth across the bone and considered

the bone as a thin plane stress model. A more accurate model for the finite

element analysis, and hence bone stiffness prediction, required modelling the bone

with a better understanding of tissue depth across the plane. As described in the

previous chapter, a shape atlas was developed for the proximal femur to provide this

information about the anatomical structure of the bone.

The following sections describe the application of the FEXI technique to predicted

3D bone models to estimate bone strength and compares the results to mechanical

test results as well as computed stiffness data from 3D finite analysis of bone models

created from the original CT slices. The first section describes the methodology for

FEXI implementation and the following section look sat a comparison study of FEXI

with BMD and CT-derived finite element analysis data. The dataset used was the

same as that used in the previous chapter and aimed to examine the performance

of 3D FEXI applied to the bones constructed using the shape template.
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7.2 Methodology

Adopting a fundamentally similar methodology to 2D-FEXI, a finite element model

was created from platened x-ray image using a bespoke MATLAB program. The

grey level at each pixel was mapped to BMD using regression data from BMD values

obtained from a DXA scan of the bone.

7.2.1 Conversion of 2D Grey Level into BMD

The ray casting technique was further applied to the CT scan data in order to

provide a ‘BMD’ mapping. This was performed for each 3D voxel via two-part

regression manipulation:

1. Conversion of [KHP] into ash density:

Volumetric data from the CT scans was converted from Hounsfield Units (HU)

to bone density (gcm−3 KHP) using values from the calibration phantom (see

Section 6.3.1). This KHP density was then converted into bone ash density

(gcm−3). The bone ash density gives the mineralized bone non-organic density

(Ding, 2000), and is given by ash weight divided by volume of the specimen.

The conversion to ash density was utilized to compute the Young’s modulus

for the bone voxels. The conversion from KHP bone density to ash density

was accomplished using the relation described by Les et al. (1994).

ρash = 0.0526 + 1.22ρKHP (7.1)

2. Conversion of ash density into QCT density (gcm−3):
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The computed ash density was also converted (using the relation specified by

Kaneko et al. (2004)) into QCT density to facilitate estimation of BMD for

the bone.

ρQCT = 1.1292ρash − 83.19 (7.2)

The bone mass for each 3D voxel is the product of its QCT density and depth.

By dividing the sum of bone masses along the line of voxels normal to each 2D

pixel coordinate by the pixel cross-sectional area yields the BMD for that pixel.

Averaging the individual pixel BMD values over the corresponding region of

interest yields the ‘Total Area BMD’ for a proximal femur.

7.2.2 3D FEXI

When performing the 3D FEXI analysis, a constant volumetric density (CVD) was

allocated to each voxel along the line normal to each 2D pixel coordinate as the value

calculated by dividing the pixel BMD by the corresponding bone depth. The Young’s

modulus for each voxel was again derived via the two-part regression manipulation:

1. Conversion of constant volumetric density (CVD) into ash density: (Kaneko

et al., 2004)

ρash (gcm−3) = 69.8 + 0.839 ∗ CV D (7.3)

2. Conversion of ash density into Young’s modulus: (Keyak et al., 2005)

E (MPa) = 14900ρ1.86
ash (7.4)

noting that this equation corresponds to a sample that contains both

trabecular and cortical bone.
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A constant Poisson’s ratio of 0.4 was assumed.

The predicted three-dimensional femur model was stored as a discrete regular 3D

voxel map. A bespoke computer program was written in MATLAB (Mathworks Inc.,

MA) to convert the 3D voxel map into a finite element model that demonstrated

the chosen orientation, restraint and loading scenario to be considered. The finite

element analysis was performed using ANSYS (ANSYS Inc., PA).

7.2.3 2D FEXI and 2.5D FEXI

2D FEXI derived stiffness was derived in a similar manner to the 3D FEXI analysis,

except that a constant bone depth of 25 mm was adopted for all 2D pixel coordinates.

A modified version of 2D FEXI, named 2.5D FEXI, was defined to use bone depth

information from the predicted depth map. In this case, the volumetric density at

each pixel location (x, y) was computed using the predicted depth at that location.

Volumetric density,

ρ =
areal BMD

d

For 2D FEXI: d = 2.5cm, and

For 2.5D FEXI: d = D(x, y)cm, where D represents the depth map for the bone at

location (x,y)

The finite element analysis for 2.5D was using 2D elements rather than 3D. The

predicted depth was simply utilised to calculate a volumetric density corresponding

to each 2D pixel.
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7.3 Comparison of aBMD, 3D FEA and FEXI to

predict the experimental failure load of the

proximal femur

7.3.1 Samples

The objective of this study was to compare the ability of bone mineral density

(BMD) along with 2D, 2.5D and 3D FEXI to accurately predict the stiffness of the

proximal femur derived from conventional 3D finite element analysis (FEA).

The source data consisted of CT scans of 18 excised proximal femora from the UCSF

dataset described in section 6.3.1. Following CT scanning, they were experimentally

compression tested in a ‘stance’ loading scenario to derive mechanical stiffness and

failure load.

Stance loading scenario

The ‘stance’ loading condition represented a subject in the standing position. The

femoral head was loaded with the distal end of the shaft restrained in all directions.

The shaft axis of the proximal femur was orientated at an angle of 70o to the ground.

A resin support platen was applied to the base of the shaft portion to apply the

restraints. A resin load platen was moulded to match the shape of the femoral head

and used to provide uniform loading at the head. The stance loading configuration

is shown in figure 7.2. A vertical load of 1kN was applied to the loading platen

which was restrained to only allow vertical displacement. Dividing the applied load

by the resultant platen displacement yielded the stiffness of the bone (Nmm−1).
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7.3.2 Mechanical Test

All specimens were thawed and mechanically tested to failure using identical

procedures (see Figure 7.1). The distal end of each proximal femur was embedded

in a polymethylmethacrylate (PMMA) block that was used to restrain the femur

during mechanical testing and served as a fixed reference coordinate system for the

FE models. A custom PMMA cup was moulded, but not bonded, to the top of each

femoral head. This cup was used during mechanical testing to distribute the applied

load. Displacement was applied to the femoral head at 0.5 mm/s using a servo-

hydraulic testing machine (MTS 858 Test System; MTS, Eden Prairie, MN). The

PMMA cup that was custom moulded to each femoral head was used to distribute

the load over a 3cm-diameter circular region.

Figure 7.1: The mechanical test setup - By kind permission of Joyce Keyak,
University of California, USA
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7.3.3 3D FEA

Three-dimensional FE models with 3mm linear cube-shaped elements and non-linear

isotropic mechanical properties were generated from the CT scan data.

Ash density (ρash, gcm−3) of each element was computed from the calibrated CT

scan data using the following relationship (Les et al., 1994):

ρash = 0.0526 + 1.22ρKHP (7.5)

The elastic modulus (E, MPa) of each element was calculated using relationships

with ρash.

E (MPa) = 14900ρ1.86
ash ; for trabecular and cortical (7.6)

A constant Poissons ratio of 0.4 was assumed.

The boundary conditions for the FE models represented the conditions that would

be applied during mechanical testing, with precise loading conditions derived from

the coordinate system of the PMMA block in which the distal end of the specimen

was embedded. Displacement was incrementally applied to nodes within a 3cm-

diameter region on the femoral head and directed at 20o to the shaft in the coronal

plane; translation perpendicular to this displacement was unconstrained. Elements

containing these nodes were assigned an elastic modulus of 20 GPa and a strength

of 200 MPa to prevent severe element distortion. Nodes on the distal end of the

model were fully restrained. Finite element analysis was done with ABAQUS v6.3.1

(Abaqus, Inc., Pawtucket, RI, USA). For each incremental displacement, reaction

forces were computed at the displaced nodes on the femoral head.
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7.3.4 FEXI implementation

Finite element analysis for 3D FEXI, 2.5D FEXI and 2D FEXI were implemented

in a similar manner to the experimental mechanical test and 3D FEA, namely, the

models were orientated such that the femoral shaft was aligned at an angle of 20o to

the coronal plane without anteversion of the femoral neck. An illustration of the 3D

FEXI model is shown in Figure 7.2. A simulated steel support platen (E = 200GPa,

ν = 0.3) was incorporated at the bottom of the femoral shaft and restrained in

all three orthogonal directions. A horizontal simulated steel loading platen was

incorporated at the top of the femoral head. A resin platen (E = 7.163GPa, ν = 0.3)

was moulded to the top of the femoral head for uniform distribution of the applied

load. The loading platen was restrained such that it could only move within the

vertical direction. Within the finite element model, a vertically downwards load of

1kN was applied evenly over the upper surface of the loading platen.

The voxel sizes for the predicted bone models were computed from the CT slice

thickness and pixel resolution. Hence for the UCI1 and UCI2 datasets, the voxel sizes

were 0.674mm x 0.674mm x 3mm; and for the UCSF dataset, the voxel resolution

was 1.08mm x 1.08mm x 3mm. Finite element analysis was carried out using ANSYS

which had a finite element node limit of 127000 nodes for the academic licence that

the author’s university owns. Hence the voxel maps describing the bone models

were trimmed and resampled to half the original resolution for the UCI1 and UCI2

datasets and 0.8th of the original resolution for the UCSF dataset. The finite element

models were generated from these resampled voxel maps using a bespoke application

written in MATLAB.

Figure 7.3 shows the resultant 3D-FEXI finite element solution.



Shape Atlas Application to FEXI 108

Figure 7.2: The ‘Stance’ loading condition

Following solution of the finite element analysis of the femoral model, the 3D FEXI

derived stiffness (Nmm−1) was calculated as the applied load divided by the vertical

displacement of the loading platen.
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Figure 7.3: Displacement plot for 3D FEXI in stance loading

7.4 Results & Discussion

Regression plots for the prediction by BMD, 3D FEA, and the three FEXI formats of

the experimental mechanical failure load of the proximal femur are shown in Figure

7.4.

3D FEXI provided a significantly higher correlation (R2 = 0.85) with conventional

CT derived 3D finite element analysis than achieved with BMD (R2 = 0.52), 2D

FEXI (R2 = 0.44) and 2.5D FEXI (R2 = 0.45).
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Figure 7.4: Correlation of Stance stiffness for 3D, 2D, 2.5D FEXI, and BMD with
stiffness obtained from 3D FEA from CT

The correlation (Figure 7.5) of 3D FEXI with measured mechanical strength (R2

= 0.80) was marginally better than CT-derived FE stiffness (R2 = 0.73) but much

better than BMD (R2 = 0.55), 2D FEXI (R2 = 0.32) and 2.5D FEXI (R2 = 0.41).

It was argued that the difference in correlation of 3D FEXI-derived stiffness with

mechanical test stiffness compared with CT FE-derived stiffness may be explained

by the voxel dimensions employed in the two techniques. CT FE assumed each voxel

as a cube of size 3mm, whereas 3D FEXI used voxel dimensions derived from the CT
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Figure 7.5: Correlation of Stance mechanical strength with stiffness for 3D FEXI,
2D FEXI, 2.5D FEXI, 3D FEA from CT and BMD

scan pixel sizes and slice thickness. Another reason suggested was the difference in

shaft lengths considered. The FEXI approach used shaft lengths cut off at the lesser

trochanter while the 3D FEA study used shafts of variable length. The correlation

between the variation in shaft lengths and stiffness will be looked into as part of

future work.

The high correlation of 3D-FEXI stiffness with mechanical stiffness suggested that

it might be feasible to better predict bone strength from DXA scans with the
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introduction of a shape atlas and applying finite element analysis to a reconstructed

3D bone model.

BMD assessment by DXA is routinely performed on the assumption that it is a

reliable surrogate for the mechanical integrity of the bone being measured. Several

experimental validation studies have reported on this, with various R2 values

reported including 79% for femoral neck BMC, n=61 (Dalen et al., 1976), 42% for

femoral neck BMD, n=58 (Lochmuller et al., 1998), 89% for total hip BMD against

pelvic fracture load, n=9 (Beason et al., 2003), 76% and 72% for total femoral BMC

and BMD respectively, n = 54 (Eckstein et al., 2004). An enhancement of DXA-

derived BMD is Hip Strength Analysis based upon a combination of cross-sectional

area and cross-sectional moment of inertia, yielding an improvement in prediction

of proximal femur strength from 62% for femoral neck BMD to 79% for HSA in an

experimental study of 20 femora (Beck et al., 1990).

A number of studies over a significant number of years have also reported the utility

of 3D FEA based upon CT image data to predict the mechanical integrity of the

human proximal femur (Keyak et al., 1990, 1998; Keyak and Falkinstein, 2003;

Lotz et al., 1991; Cody et al., 2000; Wirtz et al., 2003). With relevance to the

current study, it has been demonstrated that in a stance loading configuration, a

3D finite element method derived from CT scan data explained at least 20% more

of the variance in strength of the proximal femur than based upon either areal and

volumetric density, with R2 values of 83.7%, 57.4% and 66.1% (Cody et al., 1999).

Several approaches have been previously adopted to derive volumetric density

(gcm−3) from a conventional 2D DXA representation of areal bone mineral density

(gcm−2), necessitating the derivation of the unknown bone depth (cm). Such
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approaches have generally aimed at deriving an average depth across the areal

projection rather than creating a formal 3D shape of the bone. More consideration

has been given to the lumbar vertebrae than the proximal femur. Few studies have

quantified the accuracy of their approach. For example, the lumbar vertebra has

been considered to be of cuboid nature, where the depth is calculated simply as

the square root of the cross-sectional area (Carter et al., 1992; Jergas et al., 1995)

or the mean vertebral width in the orthogonal direction (Duboeuf et al., 1994).

Both scientific (Sabin et al., 1995) and clinical (Peel and Eastel, 1994) evaluation of

the vertebra considered to be an elliptical cylinder have been performed, although

both studies did not report a significant benefit in their volumetric approach. For

assessment of the distal radius and ulna, an assumption of cylindrical geometry has

been assumed (Boyanov et al., 2002). For the proximal femur, the square root of

projected area has also been clinically applied to the femoral neck (Leslie et al.,

2001; Hou et al., 2007).

This case study demonstrated that 3D FEXI derived from a single 2D radiographic

image such as a DXA scan image with added bone shape information may be used

to derive an accurate estimation of the stiffness of the proximal femur and to provide

a better prediction of fracture-risk for patients.



Chapter 8

Conclusions

8.1 Summary

Osteoporosis has often been described as the ‘silent epidemic’ that typically affects

the elderly, particularly women, causing debilitating hip and spine fractures. With

the current changing demographics showing an increasingly ageing population,

osteoporosis-related incapacitations are proving to be a major drain on national

health resources. Osteoporosis measurement needs to consider bone quality along

with bone quantity for an accurate assessment of fracture-risk for a patient. DXA

scans, the current gold-standard for osteoporosis assessment, focus entirely on bone

mineral density values. Bone quality measurements should include analysis of bone

distribution as well as the shape of the bone.

The finite element analysis approach for testing bone strength has been previously

studied and found to be better than BMD at estimating the mechanical strength of

bones. However all of these studies had relied on the use of CT scans to create the
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three-dimensional model for finite element analysis. The increased radiation dose as

well as expense of CT scans make these approaches less likely to be introduced into

routine osteoporosis assessment. An easy-to-use routine for assessing bone strength

which could be used along with the current norm of DXA scanning was a major

motivation behind this research.

Finite Element Analysis of X-ray Images (FEXI) used two-dimensional DXA scan

images to build 2D finite element thin plane stress models. This technique considered

bone density as well as bone distribution by assigning finite element material

properties corresponding to the apparent bone mineral density at each pixel in the

DXA image. The major drawback of this approach was the assumption of the

bone as an object with constant thickness as also its inability to incorporate the

effects of the head anteversion angle in the loading scenario. The shape analysis and

reconstruction task was undertaken to add the bone geometry effects into the bone

strength assessment computations.

As discussed in Chapter 3, the variation in the sensitivity of FEXI to changes in

bone geometry corresponds to the observed variation in bone geometry. This effect

is entirely missed by the BMD analysis. Also, the porcine femur study discussed

in the afore-mentioned chapter showed that FEXI-derived stiffness correlates well

with bone mineral density values. Thus, FEXI using the reconstructed 3D shape

was found to incorporate the contributions of both bone mineral density as well

bone geometry in the estimation of bone stiffness. Since the finite element material

properties were based on the greyscale distribution of the DXA image, it was

expected that this provided a good estimation of bone density distribution as well.

Hence it was concluded that FEXI using a predicted 3D shape may provide a better

assessment of osteoporosis than the conventional BMD analysis approach. The
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availability of a shape atlas makes 3D finite element analysis of the bone for strength

analysis a feasible and practical option to be evaluated for possible clinical use.

This research has demonstrated the potential for replication of 3D shape from

a single 2D projection with applications including 3D finite element analysis for

prediction of mechanical integrity of the proximal femur. A similar technique may

be applied to generate shape atlases for other objects that can be similarly modelled.

8.2 Limitations & Future Work

The 3D FEXI technique relies on the input DXA image for areal bone density

information from which it estimates volumetric bone density based on bone depth at

each pixel. Since DXA does not discriminate between cortical and cancellous sections

of the bone, this can affect the accuracy of bone strength assessment and hence

fracture-risk prediction. Quantitative CT would be required to estimate volumetric

density while distinguishing between cortical and trabecular bone. However, its

high radiation dose and cost make it unsuitable for routine assessment. A future

enhancement to the FEXI technique might look at modelling cortical and cancellous

sections for the bone model with a mesh-like structure describing the trabeculae.

Several studies have looked at variation of bone shape between ethnic and gender

groups as well as with age. Ward et al. (2007) found that there were differences in

bone geometry, BMC and volumetric BMD at the radial diaphysis between South

Asian and European women of UK origin which were not explained by differences

in body size. They also concluded however, that there was no significant change in

polar stress-strain index and hence the difference in bone geometry did not affect
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bone strength. Ethnic differences were also found to contribute to bone mass and

fracture risk in a study of 197,848 community-dwelling post menopausal women by

Barrett-Connor et al. (2005). African-American and Asian women were found to

have 50% and 70% lower fracture risk respectively compared to Caucasian, Hispanic

and Native American women. They also found markedly higher fracture rates among

African-American, Caucasian, and Hispanic women over 80 years of age than women

of similar origin in younger age groups; but this effect of age on fracture risk was

found to be less obvious among Asian and Native American women.

Meta et al. (2006) showed age-related changes in bone geometry among healthy

women in two distinct age groups. Bone mineral content and bone mineral density

values were seen to differ significantly between the 28 young and 124 elderly healthy

Caucasian women included in the study. Cross-sectional area and volumes at

skeletal sites such as the trochanter and femoral neck were also measured using QCT

and found to be larger in the elderly than younger subjects although compressive

and bending strength were higher among the young. Mayhew et al. (2005) found

substantial thinning of the cortical shell at the femoral neck area with ageing. It

was found that cortical thickness reduced by 6.4% in women along with a decline

in critical stress of 13.2% each decade relative to a mean age of 60. Both cortical

thinning and critical stress decline were found to be lesser among men than women.

This study considered the distribution of bone from CT scans of the mid-femoral

neck of 77 proximal femurs people who died suddenly aged 20 - 95 years.

A collection of ethnicity, gender and age-specific bone shape templates could be

used to generate a comprehensive shape atlas. Bone shape reconstruction from

a radiographic image could then be derived from the matched shape model, thus

producing a more accurate predicted-3D bone for finite element analysis.
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The shape reconstruction case study considered was based on a relatively small

dataset of 23 femurs for the training set and 20 femurs for the validation set.

Moreover, both the training and validation datasets came from people of similar

ethnic backgrounds. A wider sampling of femurs, including extreme cases such as

small stumpy bones and long slender bones, are required for a more rigorous testing

of the shape template technique. The author would also like this technique tested

for other bones such as the distal radius and the lumbar region of the vertebra which

are the other main regions affected by osteoporosis.

FEXI application in a clinical setting would depend on the quality of the DXA

scans in terms of exposure, contrast and orientation. The shape template procedure

expects the alignment of the bone processes in the input 2D image to be close to the

stored template 2D shape. The shape template application case study was based on

a set of just 18 cadaveric femurs. This technique needs to be tested using clinical

data including patients with confirmed osteoporosis and age-, sex-, and ethnicity-

matched controls. Both DXA and CT scans may be carried out on these subjects

and FE analysis performed on reconstructed models from both sets of scans, the

former using the shape template. Paired t-test may then be used to compare the

abilities of BMD, FEXI and CT-FE in terms of discriminating between the fracture

and control groups. However, a clinical validation procedure such as this is quite

time-consuming in terms of recruiting patients and requires ethics and research

committee approvals. The additional radiation exposure for non-essential CT scans

is expected to prove to be a major hurdle in this case.

The author envisions a software module built on this research to be used in

conjunction with routine DXA scans in a clinical setting. The DXA scans would

provide the bone quantity measurements with the FEXI analysis adding the bone
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quality component. Such a system would improve the accuracy of bone stiffness and

hence osteoporosis-related fragility fracture risk prediction.
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Appendix A: Additional FEXI
Modules

A.1 Femur contour extraction from hip radio-

graph

One of the preliminary tasks in the FEXI process is to extract the femur contour

from a radiograph of the pelvic area. The extraction of the femur contour required a

solution that would accept a hip radiograph as input and deliver the femoral contour

as output. A particular problem in this task was the extraction of the femoral head

since this was not always clearly outlined in the X-ray images.

Several methods were considered starting from simple gradient-based edge detection

to seeded region growing (Adams and Bischof, 1994) and snake-based segmentation

algorithms (Kass et al., 1987). These were discarded due either to the poor quality

of the results obtained or to too much manual intervention being required.

A template-based approach was finally chosen for this task. An interface was

designed to allow the user to define the control points to fit the template contour

to the femoral outline in the radiographic image. The template femur outline was
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then warped to fit these control points using the polynomial-fit routine provided by

MATLAB. The warped template was then used as a mask to filter out the femur

from the hip X-ray. This module has been used in various 2D FEXI studies involving

Figure A.1: The contour extraction process

in-vivo samples. The case studies described in this thesis were based on cadaveric

femurs and hence the contour extraction module was not required. It is, however,

an important component of the FEXI cycle for clinical application.

A.2 Improved BMD assessment

An improved greyscale-BMD regression technique was devised for use with input

DXA images. For this, average grey values were computed for the shaft, trochanter

and neck regions along with the average of all these three regions. The regions

were demarcated similar to the region-boundaries defined by standard DXA

software. These regional grey values were then mapped to the corresponding BMD

values obtained from the DXA scanning software and the regression equation was

determined. This regression was then used to compute the apparent areal BMD

from the grey levels in the radiographic image. This BMD mapping approach was
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Figure A.2: BMD regions
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Figure A.3: BMD regression

not utilised for the study described in this document as the input 2D test images

used were 2D projections from the CT data and not actual DXA scans.
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A.3 Fall loading scenario

The fall loading condition was designed to simulate the scenario of a person falling

sideways on their hip. The loading configuration adopted was as defined by Keyak

et al. (2005) with the femoral shaft orientated at an angle of 30o to the ground,

pivoted at the junction of the inter-trochanteric line and the shaft axis. A neck

anteversion angle of 30o was also applied as might be seen in an actual fall situation.

For the finite element analysis, a platen was attached to the greater trochanter and

the bone was loaded at the femoral head, as shown in figure A.4. This loading

Figure A.4: The ‘Fall’ loading condition

scenario was omitted from the results discussed in 7 because of unavailability of CT

FE and mechanical stiffness results for this loading scenario. However, this loading

setup will be used for testing the performance of 3D FEXI in ongoing and future

bone strength studies.



Appendix B: Glossary

Table B.1: Glossary of commonly-used terms used in this document

Term Description
Cortex The thick outer shell of a bone
Cancellous bone Bone in which the trabeculae form a latticework, with

interstices filled with bone marrow
Marrow The fatty network of connective tissue that fills the

cavities of bones
Femur The longest and thickest bone of the human skeleton;

extends from the pelvis to the knee
Proximal femur the proximal end of the femur - from the lesser

trochanter up to the pelvis
Femoral Shaft The cylindrical mid-section of a long bone (the femur,

in this case)
Trochanter One of the bony prominences developed near the upper

extremity of the femur to which muscles are attached
Femoral Neck The short constricted portion of the femur between the

trochanter and the head
Femoral Head The hemispheric surface at the upper extremity of the

femur
Neck-shaft angle The angle between a line drawn through the shaft of

the femur with one passing through the long axis of the
femoral neck

Head/ Neck anteversion The angular displacement of the femoral head such that
its axis is directed forward

FEXI Finite Element Analysis of X-ray Images
FEA Finite Element Analysis

Continued on next page. . .
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Table B.1 – Continued
Term Description
Stiffness It is the resistance of an elastic body to deformation by

an applied force (unit: N/m)
Strength The stress at which a material starts deforming

plastically (unit: Pa)
Young’s modulus Also known as the modulus of elasticity - is a measure

of the stiffness of a given material (unit: Pa)
Poisson’s ratio The ratio of relative contraction strain to relative

extension strain for a given material. It describes the
tendency of a material to deform along one or more axes
corresponding to a deformation in another axis.

BMD Bone Mineral Density - a measure of the amount of
minerals (such as calcium) in the bone

aBMD Apparent BMD - calculated as the areal BMD based up
on the average grey level of the bone pixels within a
radiographic image

Bone tissue density Reflects the mineralized bone tissue (material) density,
determined from Archimedes’ principle, and calculated
as dry weight of the specimen divided by the volume of
bone matrix excluding marrow space (unit: gcm−3)

Apparent density Reflects the mineralized bone apparent (structural)
density, and calculated as dry weight of the specimen
divided by the volume of specimen (unit: gcm−3)

Ash density Reflects the mineralized bone non-organic density, and
calculated as ash weight of the specimen divided by the
volume of specimen (unit: gcm−3)

DXA Dual-Energy X-ray Absorptiometry - measures BMD in
regions of the bone

X-ray, Radiograph An image produced on a radiosensitive surface such as a
photographic film by radiation (x-rays) passing through
the object being scanned

Radiographic image An image created as a substitute for an actual
radiograph by taking a 2D axial projection of a given
3D object

CT Computed Tomography (previously, Computed Axial
Tomography, CAT) scans generate 3D models of an
object using multiple cross-sectional slices along an axis

Continued on next page. . .
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Table B.1 – Continued
Term Description
MRI Magnetic Resonance Imaging uses radio frequency

signals applied to an object in a magnetic field to create
a slice-by-slice view of an object

Landmark Homologous points on a shape that are in the same plane
and can be found repeatedly and reliably

Landmark configuration The set of landmark co-ordinates for a particular
specimen

GPA Generalised Procrustes Analysis is used to align a set of
shapes by removing Euclidean transformations between
them

TPS Thin Plate Spline is an interpolation function used
to describe the deformation from one landmark
configuration to another

Offset The number of voxels from the edge of the slice to the
first bone voxel in that column

Depth The number of voxels from the edge of the slice to the
last bone voxel along the particular column
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