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Abstract 

This thesis presents the use of pattern recognition and data mining techniques into risk 

prediction models in the clinical domain of cardiovascular medicine. The data is modelled 

and classified by using a number of alternative pattern recognition and data mining 

techniques in both supervised and unsupervised learning methods. Specific investigated 

techniques include multilayer perceptrons, radial basis functions, and support vector 

machines for supervised classification, and self organizing maps, KMIX and WKMIX 

algorithms for unsupervised clustering. The Physiological and Operative Severity Score for 

enUmeration of Mortality and morbidity (POSSUM), and Portsmouth POSSUM 

(PPOSSUM) are introduced as the risk scoring systems used in British surgery, which 

provide a tool for predicting risk adjustment and comparative audit. These systems could 

not detect all possible interactions between predictor variables whereas these may be 

possible through the use of pattern recognition techniques. The thesis presents KMIX and 

WKMIX as an improvement of the K-means algorithm; both use Euclidean and Hamming 

distances to measure the dissimilarity between patterns and their centres. The WKMIX is 

improved over the KMIX algorithm, and utilises attribute weights derived from mutual 

information values calculated based on a combination of Baye’s theorem, the entropy, and 

Kullback Leibler divergence.  

The research in this thesis suggests that a decision support system, for cardiovascular 

medicine, can be built utilising the studied risk prediction models and pattern recognition 

techniques. The same may be true for other medical domains. 



Chapter 1 

Introduction 

This thesis presents an investigation into using pattern recognition and data mining 

techniques to produce and verify risk prediction models in medicine, in particular in the 

cardiovascular domain. The necessity for using pattern recognition and data mining 

techniques to develop and improve risk models arises from the need for clinicians to 

improve their prediction models for individual patients. This thesis focuses on the task of 

data modelling and classification using supervised and unsupervised techniques from 

pattern recognition and data mining. The term data modelling is used here to refer to the 

filtering of data according to clinical heuristic rules in order to produce the expected 

outcome set. A particular focus is the use of neural networks, which are being used with a 

great frequency and success in medical domains. In developing a framework for modelling 

the given medical data, the research proposes the use of clustering methods to generate new 

predictive models for use in the cardiovascular domain. 

There are popular medical scoring systems used for risk assessment in Britain, namely 

POSSUM and PPOSSUM (Copeland et al, 1991; Copeland, 2002; and Prytherch et al, 

1998). They can produce individual risk scores for patients. Like other logistic regression 

systems, although the outcome is not derived from linear calculations, the POSSUM and 

PPOSSUM have linear combinations of variables in the input set. Therefore, according to 

Tu (1996), these systems are not adept at modelling nonlinear complex interactions in 

medical domains. Also according to Tu (1996), pattern recognition and data mining, in 

particular neural network techniques, offer the ability to implicitly detect complex 
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nonlinear relationships between dependent and independent variables, and the ability to 

detect all possible interactions between predictor variables. Furthermore, according to 

Lisboa (2002); and Jain et al (2000), neural network techniques are useful tools for patient 

diagnosis and prognosis. Therefore, neural network techniques (e.g. multilayer perceptron; 

radial basis function; and support vector machine) can be seen as candidates for use with 

the thesis data. A substantive portion of the thesis concentrates on the prediction of 

cardiovascular risk through the use of clustering techniques such as self organizing maps 

and the KMIX algorithm. These are regarded as unsupervised pattern recognition 

techniques. These techniques can help to discover the internal data structure in order to 

verify the nature of the problems or the difficulty of measuring influential parameters. The 

selection of domain attributes is another issue in building risk prediction models. By using 

feature selection methods, in particular mutual information (Shannon, 1948; Kullback and 

Leibler, 1951), a ranking of domain attributes for risk prediction models can be produced. 

These features might then be used as attribute weights in the classification process. 

1.1. Risk Assessment in Medical Domains 

Medical decision support systems are designed, and implemented, to support clinicians in 

their diagnosis. They typically work through an analysis of medical data and a knowledge 

base of clinical expertise. The quality of medical diagnostic decisions can be increased by 

improvements to these systems. Some medical decision support systems are in popular use, 

such as MYCIN (Shortliffe, 1976); INTERNIST/QMR (Miller et al, 1982); the 

Framingham study (Framingham Heart Study, 1948); as well as scoring risk systems such 

as the Consortium for South Eastern Hypertension Control (COSEHC, 2003; Hawkins et al, 

2005) and the linear scoring system (Gupta et al, 2005). 
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The Physiological and Operative Severity Score for the enUmeration of Mortality and 

morbidity (POSSUM), first used by Copeland et al (1991), has been applied to predict 

individual risk for general surgical patients. This system, which is widely used in Britain, 

has been devised from both a retrospective and prospective analysis by using 12 factors 

over 4 grades of physiological scores and 6 factors of operative severity scores. There is 

another model based on POSSUM, namely Portsmouth POSSUM (PPOSSUM- Prytherch 

et al, 1998). This was produced because of a claim that POSSUM over predicted death, and 

in particular with “Low risk” patients (Prytherch et al, 1998). Therefore, the original 

POSSUM equation was modified leading to the Portsmouth predictor equation for mortality 

(PPOSSUM), which still utilises the same physiological and operative variables. Given no 

gold standard for predicting cardiovascular risk, this thesis sets a reference level for risk 

assessment using the POSSUM and PPOSSUM systems. Their performance is measured by 

comparison ratios between predicted mortality of all patients and observed dead patients. 

The POSSUM and PPOSSUM systems can produce individual risks using logistic 

regression calculations. However, not only are there disadvantages as indicated above, they 

are also ambiguous in the interpretation of categorical risks over the risk scale. By directly 

predicting alternative risk categories from a classification process, pattern recognition and 

data mining techniques might help in providing more reliable diagnoses. 

1.2. Pattern Recognition and Data Mining 

Pattern recognition (Bishop, 1995; Ripley, 1996) is of interest in many areas such as 

statistics, probability theory, machine learning, and medicine. The usefulness of pattern 

recognition is recorded in being able to perform highly sophisticated tasks such as 

recognising a face, medical diagnosis, and so on. According to Bishop (1995), there are 
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four approaches that can be applied to medical diagnosis field: template matching; 

statistical classification; syntactic matching; and neural networks.  

The design of neural network was originally motivated by the phenomena of learning and 

recognition (Hebb,1949; Parisi, 1986; Fausett, 1994; Cross et al, 1995; Haykin, 1999). The 

neural network techniques can be divided into two alternative ways of learning: supervised 

and unsupervised. In this thesis, both these approaches are applied to the cardiovascular 

domain, with the objective of determining the meaningful distinction of alternative 

outcomes in clinical risk prediction models. The motivation for using these techniques can 

be seen in their contributions to medical applications so far (see detail in Chapter 3). 

Data mining typically deals with data that has been collected for other purposes. In data 

mining, the emphasis is on the analysis of data sets to find unsuspected relationships and 

the modelling of the data in novel ways that are both understandable and useful to the data 

owner. A data mining methodology provides the framework for the processing of the data. 

Here, aspects of data mining, such as cleaning and filtering, are used in combination with 

pattern recognition techniques in order to investigate alternative prediction risk models for 

the cardiovascular domain. Feature selection methods from data mining are used to reduce 

the attribute-value capacity of the feature set and data set. This eliminates the redundant 

features without losing the significant characteristics of the data domain.  

1.3. Aims and Objectives 

This thesis is motivated by the growing interest in using pattern recognition and data 

mining prediction techniques, such as neural networks, in medical areas (Baxt, 1991; 

Harrison et al, 1991; Baxt, 1992; Wilson et al, 1995; Weingart et al, 2000; Barach and 

Small, 2000; Reason, 2000; Lisboa et al, 2000; Jain et al, 2000; Lisboa, 2002; Plaff et al, 
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2004). The supplied medical data used for assessing risk is, itself, inconsistent over a 

history of patients at any one clinical site, and not always immediately useable. The 

motivation for the work in this thesis is in the realization for the necessity of directing 

attention to the production of risk prediction models for the cardiovascular domain. A 

specific aim for this thesis is to find solutions for this problem using both supervised and 

unsupervised pattern recognition and data mining techniques (see Chapter 4). Alternative 

risk predictions based on the data domain and medical expert knowledge will be compared 

to other predictive systems such as the POSSUM and PPOSSUM. These alternative risk 

prediction models are verified using neural network and clustering techniques. 

Objectives 

This thesis will aim to answer and explore a number of key questions pertinent to the 

application of pattern recognition and data mining to risk assessment in medical domains. 

They are: 

1. How able are the existing systems in dealing with risk prediction for patients? 

2. Are linear model adequate for use with the data domain? 

3. What are the different ways to classify the data? 

4. Which method of clustering data is appropriate for this medical domain? 

5.  Can the attribute set be decreased by defining the significant attributes in the 

data domain? 

The objectives for this research can be summarized as follows: 

 Demonstrate the existing risk assessment systems, and their limitations. 

 Show the use of using pattern recognition and data mining classifications instead of 

the POSSUM and PPOSSUM systems. 



 6 

 Show the advantage of using nonlinear models for the classification compared to the 

use of linear models. 

 Produce a data mining methodology of use in applying pattern recognition and data 

mining to the cardiovascular data. 

 Improve the K-means algorithm for a medical data domain, in particular the 

cardiovascular data, so that it allows multiple data types. 

 Investigate alternative risk prediction models using both supervised and 

unsupervised pattern recognition techniques. 

 Investigate the use of mutual information for the reduction of feature selection in 

data domain. 

 Combine the mutual information method and pattern recognition theory for use with 

a clustering algorithm 

1.4. Thesis Structure 

The research questions stated above will be dealt with in the next eight chapters of this 

thesis. Risk assessment in the medical domain is discussed in Chapter 2. The popular 

scoring systems of POSSUM and PPOSSUM are described. This chapter also discuss the 

disadvantages of these systems as well as other risk assessment systems. Chapter 3 

provides a general background for the thesis. The general theory of pattern recognition is 

presented, and a detailed literature review of pattern recognition techniques is given. The 

standard classification measures, which are used for all thesis experiments, are introduced 

in detail. This chapter also compares linear and nonlinear models in classification problems. 

Chapter 4 provides an in-depth investigation of supervised neural network techniques for 

use in a medical domain, in particular the use of multilayer perceptrons, radial basis 
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functions, and support vector machines. This chapter also provides the detail of 

unsupervised pattern recognition techniques as self organizing maps and KMIX, an 

instance of the K-means algorithm, which can deal with the mixed data types presented in 

the cardiovascular domain. Chapter 5 presents the general theory about data mining and 

methodologies for performing it.  The thesis methodology and its framework are shown in 

this chapter. Information about cardiovascular data domain and the detailed data 

preparation steps for the thesis experiments, as an application of a data mining 

methodology, are represented in this chapter. The given data from two clinical sites is 

analysed and summarized, and the strategy for data preparation, and as used in all thesis 

experiments, is presented in detail. Chapter 6 introduces alternative models used as the 

main thesis experiments in the following chapter. This chapter also demonstrates all thesis 

case studies for the use of the POSSUM and PPOSSUM systems, supervised and 

unsupervised pattern recognition techniques with some of the thesis data. Chapter 7 shows 

the results and the analysis of these results using standard measures. Feature selection and 

mutual information is introduced in Chapter 8. A combination of Bayes’ theory and 

mutual information is applied in the KMIX clustering algorithm to increase its ability to 

deal effectively with the cardiovascular data. Chapter 9 unites the work of the previous 

chapters in a practical setting. The thesis concludes in this chapter with an analysis and a 

discussion of the research outlined in the previous chapters. The results from the case 

studies and thesis experiments using the various risk prediction models are revisited in light 

of the research questions stated in Chapter 1. The final chapter ends with conclusions and 

suggestions for future work and possible extensions to the research outlined in this thesis.  
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Chapter 2 

Risk Assessment in Medical Domains 

2.1. Introduction  

Of all the modern technological quests, the search to create artificially intelligent computer 

systems has been one of the most ambitious and, not surprisingly, controversial, 

particularly the recent application of artificial intelligence to decision-making areas of 

medicine (Coiera, 2003). Medical decision support systems or clinical decision support 

systems play an increasingly important role in medical practice (Marckmann, 2001). They 

are applied to broad areas of decision-making by clinicians to support their diagnosis based 

on medical data and domain knowledge. According to Coiera (2003), artificially intelligent 

computer systems, which are able to store and process vast stores of knowledge, might ably 

assist clinicians with tasks such as diagnosis, and prediction the patient risk. 

This chapter introduces some popular risk assessment and artificially intelligent diagnostic 

systems such as MYCIN (Shortliffe, 1976); Internist/QMR (Internist/Quick Medical 

Reference, Miller et al, 1982); the Framingham study (Framingham Heart Study, 1948); the 

Australian Busselton study (Knuiman et al, 1998); and the German PROCAM study 

(German Prospective Cardiovascular Münster, Assmann et al, 2002). These systems can be 

seen as a background for the thesis analysis on risk assessment systems.  Some other 

scoring risk systems such as the Consortium for Southeastern Hypertension Control 

(COSEHC, 2003; Hawkins et al, 2005) and the linear scoring system (Gupta et al, 2005) are 

also introduced. 
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Clinical risk assessment systems such as INdividual Data ANalysis of Antihypertensive 

intervention trials (INDANA, Pocock et al, 2001), the Physiological and Operative Severity 

Score for the enUmeration of Mortality and Morbidity (POSSUM, Copeland et al, 1991) 

and the Portsmouth POSSUM (PPOSSUM, Prytherch, 1998) are introduced and discussed 

in greater detail within this chapter.  

2.2. Risk Assessment Systems 

The intelligent medical system MYCIN (Shortliffe, 1976) is one of earliest expert systems. 

It was designed and implemented at Stanford University in the 1970s with the purpose of 

diagnosing and recommending treatment for certain blood infections. This rule-based 

expert system is comprised of two major components as follows: 

 A knowledge base that stores the information of the domain expert.  

 An inference engine to derive knowledge from the presently known knowledge in 

the first component (Lisboa, 2002). 

One of its disadvantages is the time taken to make a decision (Lisboa, 2002). Subsequently, 

other systems [based on MYCIN such as EMYCIN (Melle, 1979), and PUFF (Aikins et al, 

1983)] were introduced with improvements that speed up the decision-making time. These 

improvements are not discussed in this thesis. More detail can be seen in Lisboa (2002) and 

Coiera (2003). 

Another medical decision system is Internist/QMR (Miller et al, 1982), with a knowledge 

base that has 956 hypotheses, which works based on diagnostic strategies such as scoring 

function, partitioning, or questioning. According to Shortliffe et al (1990), the 

Internist/QMR mirrors hypothetic-deductive reasoning. It can handle coexistent diseases 

and is remarkably accurate from the start. Hence, it will make strong assumptions about 
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mutual independence of predictive variables. However, according to Lowe (2003), it was 

difficult to trace the system‟s recommendations. Subsequently, its results, and assumptions, 

were hard to explain to clinicians.  

Directing attention to cardiovascular disease, the popular studies are as follows: 

 Framingham study (Framingham Heart study, 1948); 

 Australian Busselton study (Knuiman et al, 1998); 

 and the German PROCAM study (Assmann et al, 2002). 

The Framingham study emphasises the relationships between cardiovascular disease and 

other attributes such as altered blood lipid, blood pressure, body weight, and so on. The 

detailed review can be seen in Gueli et al (2005). The Busselton study (Knuiman et al, 

1998) used epidemiological data from over 8000 patients collected from 1966 to 1981. 

This model uses logistic regression to predict the 10-year risk of coronary heart disease. 

Lastly, the German PROCAM study (Assmann et al, 2002) used the epidemiological data 

from 25000 patients collected from 1979 to 1985. Its logistic model predicts the 8-year risk 

of a cardiovascular event for patients. Both the Busselton model and German PROCAM 

model are improved by Twardy et al (2005). They built Bayesian networks using both 

models as the knowledge engineering component. Cross-validation was then used to 

evaluate these models. Twardy et al (2005) achieved the same risk results as the use of 

logistic regression in the original studies. However, they pointed out that their models are 

easier to interpret, giving a more intuitive causal story of coronary heart disease risk than 

both original models. The detail about the Busselton model, the German PROCAM model, 

as well as the use of Bayesian networks for these models can be seen in Twardy et al 

(2005). 
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There also exists scoring risk systems, such as the Consortium for Southeastern 

Hypertension Control (COSEHC, 2003; Hawkins et al, 2005), used to predict an 

individual‟s 5-year mortality risk for cardiovascular patients, or a linear scoring system 

(Gupta et al, 2005) to identify the cardiovascular mortality risk for renal transplant patients. 

The COSEHC used 17 risk factors divided into three groups as: non-modifiable; 

modifiable; and non-traditional. This system produces individual patient risk depending on 

“5-year cardiovascular mortality risk”. For example, individual risk is identified as “High 

absolute risk” when its “5 year mortality” risk is exceeding 2.5%. More detail about this 

system can be seen in Haukins et al (2005). Gupta et al (2005) applied a cardiac risk 

assessment system devised by one of the authors (Ward, 2005) to identify the 

cardiovascular mortality risk for renal transplant patients. Four risk groups were identified 

according to the scores: Low (0-4); Medium (4-8); High (8-12); and Very High (>12). The 

results are then separated by two groups of renal transplant patients. The first group 

contains patients who subsequently die, and the second contains patients who survive after 

a renal transplant. Gupta et al (2005) pointed out that the deceased groups had significantly 

greater cardiovascular scores than the other. 

The INdividual Data ANalysis of Antihypertensive (INDANA) intervention study (Pocock 

et al, 2001) used 47088 cardiovascular cases with 8 randomised controlled trials of 

antihypertensive treatment to assess the 5-year mortality risk of patients. The risk score is 

based on 11 factors such as age, sex, diabetes, stroke, heart disease, and so on (see detail in 

Table 2.1). By using a multivariate Cox model (Cox, 1972; Bennet, 2006) with 

cardiovascular death as the outcome, an individual score is predicted. This score is then 

compared to the average risk score in the same age and sex group to assign an appropriate 

risk for the patient.  



 12 

Attribute Example Value Attribute Example Value 

Sex Female Diabetes No 

Age 55 Myocardial Infarction No 

Smoker No Stroke No 

Blood Pressure 
100mm Hg. Left Ventricular 

Hypertrophy 
No 

Cholesterol 4.5 mmol/l. Height 160 cm. 

Creatinine N/A   

Table 2.1: The 11 factors used in the INDANA trial (Pocock et al, 2001) with example 

values. 

For example, a woman‟s profile can be seen in Table 2.1, for which the system produced a 

risk score of 19.83. This is compared to the average of risk score of 30.66 (“High”) in the 

age range (55-59). The system therefore concludes this woman„s risk is “Low”. If the value 

of woman‟s smoking is changed to “Yes”, the risk score will be 30.3. Her risk status is now 

“Medium”. Alternatively, if the stroke‟s value is changed to “Yes”, the risk score increases 

to 27.91 (less than 30.3 - when Smoker‟s value is “Yes”). The system would then conclude 

her risk as “Low”. From this point, it seems that this system places too much emphasis 

whether a patient smokes rather than other significant symptoms which can lead to the 

death of a cardiovascular patient, such as “stroke” and “history of myocardial infraction” 

(Kuhan et al, 2001).  

The advantage of this system is that it considers a range of personal factors instead of 

focusing on only treatment (e.g. drugs) and controlling blood pressure (Pocock et al, 2001). 

However, the individual risk is inferred from the average risk score of the same age and sex 

group. This can lead to ambiguous interpretations of the status of values such as “Low”, 

“Medium”, “High”, and “Very High” in the risk scale. For example, the final score 

indicated above is 27.91 (when the stroke‟s value is “Yes”) labelled as “Low”, whereas a 

nearby risk score (30.3 - when Smoker‟s value is “Yes”) gives the result of “Medium”. This 

score is also quite close to the “High” threshold (of 30.66). The same can be said for any 
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prediction model that uses fixed thresholds over a numeric scale to determine a categorical 

output.  

2.3. POSSUM and PPOSSUM  

This section concentrates in depth on the Physiological and Operative Severity Score for 

the enUmeration of Mortality and Morbidity (POSSUM, Copeland et al, 1991) and the 

Portsmouth-POSSUM (PPOSSUM, Whitley et al, 1996) systems. These systems are used 

broadly in the Britain for general surgical patients, and particularly with cardiovascular 

patients (Wijesinghe et al, 1998; Kuhan et al, 2001). The POSSUM and PPOSSUM 

systems predict mortality, morbidity, and death rate risks for patients based on the scoring 

system. Furthermore, these tools can compare the predicted deaths and the actual deaths in 

various ranges (bands) of patient risks. A case study in Chapter 6 will provides a focus for 

the discussion about these systems. 

The POSSUM system was first used by Copeland et al (1991). It has been applied to 

predict outcomes for general surgical patients. This system has been devised from both 

retrospective and prospective analyses. The key factor of the POSSUM system is the 

prediction of individual mortality and morbidity risks based on physiological and operative 

severity scores. The POSSUM system is built based on an original assessment of 48 

physiological factors, and 14 operative and postoperative factors. By using multivariate 

analysis techniques, these factors were reduced to 12 physiological and 6 operative factors 

in two parts of physiological assessment and operative severity. In physiological 

assessment, the following 12 variables are used in the scoring system: 

 Age  

 Cardiac signs  
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 Respiratory signs  

 Systolic blood pressure  

 Pulse  

 Coma score  

 Serum urea  

 Serum sodium  

 Serum potassium  

 Haemoglobin  

 White cell count  

 ECG  

The 6 variables used in the second part of system (operative factors) are: 

 Operative magnitude  

 Number of operations within 30 days  

 Blood loss  

 Peritoneal contamination  

 Presence of malignancy  

 Timing of operation  

The coefficients for the risk factor were divided by a constant and rounded number such as 

1, 2, 4, 8, and so on. Tables 2.2 and 2.3 below show the scores of physiological and 

operative severity for the POSSUM system. 
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Score 1 2 4 8 

Age <=60 61-70 >=71 … 

Cardiac signs 

CXR 

Normal 

Normal 

Cardiac drugs 

or steroids 

…. 

Edema; Wafarin 

Borderline 

Cardiomegaly 

JVP 

Cardiomegaly 

Respiratory signs 

CXR 

Normal 

Normal 

SOB exertion 

Mild COAD 

SOB stairs 

Mod COAD 

SOB rest 

Any other 

change 

Systolic BP mmHg 110-130 131-170 

100-109 

>=171 

90-99 

<=89 

Pulse, beats/min 50-80 81-100 

40-49 

101-120 >=121 

<=39 

Coma score 15 12-14 9-11 <=8 

Urea nitrogen, mmol/L <7.5 7.6-10 10.1-15 >=15.1 

Na,mEq/L >136 131-135 126-130 <=125 

K,mEq/L 3.5-5 3.2-3.4 

5.1-5.3 

2.9-3.1 

5.4-5.9 

<=2.8 

>=6 

Hb, g/dL 13-16 11.5-12.9 

16.1-17 

10-11.4 

17.1-18 

<=9.9 

>=18.1 

WCCx10
12

/L 4-10 10.1-20 

3.1-3.9 

>=20.1 

<=3 

… 

ECG Normal … AF(60-90) Any other 

change 

Table 2.2: Physiological Score (Copeland et al, 1991). 
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Score 1 2 4 8 

Operative 

magnitude 

Minor Intermediate Major Major+ 

No. of operations 

within 30d 

1  2 >2 

Blood loss per 

operation, mL 

<100 101-500 501-999 >1000 

Peritoneal 

contamination 

No Serious Local pus Free bowel 

content, pus or 

blood 

Presence of 

malignancy 

No Primary 

cancer only 

Node metastases Distant 

metastases 

Timing of 

operation 

Elective  Emergency 

resuscitation possible, 

operation<24h 

Emergency 

immediate, 

operation <2h 

Table 2.3: Operative Severity Score (Copeland et al, 1991). 

The mechanism to produce the physiological and operative severity scores can be seen in 

the example 2.1 below. 

Example 2.1 

Assume that data information is given in Table 2.4 and Table 2.5 below. The physiological 

(PS) and operative severity (OS) scores are calculated as the sum of respectively attributed 

scores arrived from Tables 2.2 and 2.3.  

Age Cardiac 

signs 

Respirat

-ory 

signs 

Systo-

lic BP 

Pul

se 

Coma 

score 

Urea  Na,m

Eq/L 

K,

mE

q/L 

Hb, 

g/d

L 

WCC

x10
12

/

L 

ECG PS 

Score 

80 JVP 

Mild 

COAD 132 85 15 10.5 140 3.4 10 5.2 Normal 32 

50 JVP Normal 115 85 15 10.5 140 3.4 10 5.2 Normal 27 

45 Normal Normal 115 85 15 7.8 140 3.4 10 5.2 Normal 18 

52 Normal Normal 115 85 15 7 140 3.4 10 5.2 Normal 17 

50 steroids Normal 115 85 15 7 140 3.4 12 5.2 Normal 16 

Table 2.4: An example of PS score calculations. 
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Operative 

magnitude 

No. 

operat

-ions 

within 

30d 

Blood loss 

per 

operation, 

mL 

Peritoneal 

contaminat

-ion 

Presence of 

malignancy 

Timing of 

operation 
OS 

Score 

Minor 2 120 Serious Node metastase Elective 14 

Major 1 120 Serious Node metastase Elective 14 

Intermediate 1 520 Serious No Elective 11 

Major 1 200 Serious No Operation <2h 18 

Major 1 200 No No Elective 10 

Table 2.5: An example of OS score calculations. 

Given the ratings in Table 2.2, and Table 2.3, the values for entries in Table 2.4, and Table 

2.5 can be mapped to an integer scores and summed. 

For example, the first entry (PS score) in Table 2.4 is given by: 

4 + 8 + 2 + 2 + 2 + 1 + 4 + 1 + 2 + 4 + 1 + 1 = 32. 

The first OS score in Table 2.5 is calculated as: 

1 + 4 + 2 + 2 + 4 + 1 = 14. 

The mortality and morbidity risks, based on the physiological and operative severity scores 

from Tables 2.2 and 2.3, are calculated for each patient. These rates are referred to 

respective models in chapter 7 (section 7.2.4), where they are the expected outcomes. A 

logistic regression analysis was performed to yield the equations for the mortality and the 

morbidity risks. 

Mortality rate 

Mortality rate is the rate (percentage) of the number of “Very High risk” patients (be called 

death patients) predicted by the system. Its equation can be calculated as: 

R1 = 1 / (1+ e-z ) (2.1) 

where z = - 7.04 + (0.13 * PS) + (0.16 * OS); R1 is mortality risk; PS is the 

Physiological Score; and OS is the Operative severity Score. 
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Morbidity rate 

Morbidity rate is the rate (percentage) of the number of “High risk” patients predicted by 

the system. Its equation can be calculated as: 

R2 = 1 / (1+ e-z ) (2.2) 

where z =- 5.91 + (0.16 * PS) + (0.19 * OS); and R2 is morbidity risk. 

According to Wijesinghe et al (1998); Prytherch et al (1998); and Midwinter et al (1999), 

the POSSUM system over-predicts deaths for cardiovascular patients, especially for the 

“Low risk” patients. In an effort to counteract the perceived shortcomings of the 

conventional POSSUM, Whitley et al (1996) devised a new version of POSSUM, called 

PPOSSUM (Portsmouth Predictor equation for mortality). The PPOSSUM equations were 

derived from a heterogeneous general surgical population. 

In PPOSSUM, the predicted Death rate is instead of Morbidity rate. This rate is also 

referred to the “Death rate” model in chapter 7 (section 7.2.4).  

Death rate 

Death rate is the rate (percentage) of the number of death patients predicted by the system. 

The Death rate is given by: 

R3 = 1 / (1+ e-z ) (2.3) 

where z = - 9.37 + (0.1692 * PS)  + (0.150 * OS). 

The use of the POSSUM and the PPOSSUM calculations can be seen detail in the Example 

2.1 below. 

Example 2.2 
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Assume that data scoring information is given in Table 2.6 below. The z values in the 

logistic equations, labelled as “z1” and “z2”, are calculated as follows: 

z1 =-7.04 +  0.13* PS +  0.16* OS  

z2 = -9.37 + 0.169* PS + 0.15* OS  

Assume that R1 and R3 are the “Mortality rate” and “Death rate” of the POSSUM and 

PPOSSUM systems. They are calculated as follows: 

11

1
1

ze
R  

21

1
3

ze
R  

Reg.No PATIENT_STATUS PhysiolScore OpSevScore z1 z2 R1 R3 

006330 Alive 36 14 -0.12 -0.43 88.69 65.05 

007931 Alive 27 16 -0.97 -1.84 37.90 15.88 

013384 Dead 18 14 -2.46 -3.85 8.54 2.12 

017888 Alive 17 14 -2.59 -4.04 7.50 1.75 

007931 Alive 16 14 -2.72 -4.23 6.58 1.45 

009912 Dead 16 14 -2.72 -4.23 6.58 1.45 

017888 Alive 15 14 -2.85 -4.42 5.78 1.20 

Table 2.6: An example of POSSUM and PPOSSUM calculation using PS and OS scores. 

Obviously, from Table 2.6, whenever the POSSUM system predicts a patient with a high 

R1 score, this patient will be predicted with high R3 score in the PPOSSUM system as 

well. For example, a patient, with highest R1 risk at 88.69, will have highest R3 risk at 

65.05.  

Various risk bands are produced from the individual mortality, morbidity, and death rate 

risks. Each band denotes patients with the mortality, morbidity or death rate in the same 

range. The number of predicted mortality is then calculated for each band. These predicted 
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numbers are compared to the actual deaths to evaluate the system performance. For 

instance, assume that the POSSUM results in Table 2.6 are divided into two bands of “0-

30%”, and “>30%” (R1 results). Therefore, the first band of “0-30%” has 5 patients, and 

the second band has 2 patients. Table 2.7 below shows a comparison of predicted deaths 

and actual deaths of the POSSUM system for the data in Example 2.2. 

According to Wijesinghe et al (1998), a ratio of 1.0 indicates that the scoring system 

predicts the same as actual deaths; greater than 1.0 means the scoring system under-predicts 

deaths whereas a ratio less than 1.0 means over-prediction of deaths. Therefore, in the 

Example 2.2, the POSSUM system over-predicts deaths in the band of “>30%” (ratio of 0 

in Table 2.7). The band of “0-30%” under-predicts with 0 predicted deaths, although the 

ratio cannot be calculated. Overall, the POSSUM system under-predicts deaths compared to 

actual deaths as shown with the band 0-100%, and the prediction ratio of 2.0.  

Range of 

predicted rate 

Mean predicted 

risk of Mortality 

(%) 

No of 

operations 

Predicted 

deaths 

Reported 

deaths 

The 

ratio 

0-30% 6.99% 5 0 2 N/A 

>30% 63.29%         2 1 0 0 

0-100% 23.08%         7 1 2 2.0 

Table 2.7: Comparison of observed and predicted death from POSSUM logistic equations. 

The argument against the POSSUM and PPOSSUM systems is the predictive accuracy of 

assessment. Prytherch et al (1998) complained that the POSSUM over-predicted mortality 

especially for “Low risk” groups. Wijesinghe et al (1998) pointed out that the predictive 

accuracy for the POSSUM and the PPOSSUM might be better if a correct analysis is used. 

According to Wijesinghe et al (1998), there are two methods of analysis for the predicted 

deaths: “linear” and “exponential”. Note that the latter is not given a clear description in the 
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original POSSUM publications (Yii and Ng, 2002). In the linear method, patients were 

divided into risk groups of 10%, 20%, and so on whereas in the exponential method the cut-

off value was used to group patients in a larger range. For example, patients in the range of 

50-100% of predicted death can be in one group with a 50% cut-off value. The detail for 

these methods can be seen in Wijesinghe et al (1998).  

2.4. Discussion 

The Internist/QMR system (Miller et al, 1982) is based on hypothetic-deductive reasoning. 

Therefore, it might be useful for the clinicians except its results are difficult to explain. The 

MYCIN (Shortliffe, 1976) is a rule-based system, but it is limited by its design for patients 

with blood infections. To be of use for the cardiovascular domain, explicit cardiovascular 

knowledge needs to be made available. Presently such clinical knowledge is not available. 

The system of Gupta et al (2005) is a linear system. It is simple and easy to implement. 

However, its disadvantage is that it is fails to deal with noisy data such as medical data 

(Manning et al, 2008). The detail of linear and nonlinear models and their discussions can 

be seen in Chapter 3. Furthermore, it is limited, because of use with just renal transplant 

patients.  

The Framingham study (Framingham Heart study, 1948); the Australian Busselton study 

(Knuiman et al, 1998); German PROCAM study (Assmann et al, 2002); the COSEHC 

(COSEHC, 2003); and the INDANA (Pocockt et al, 2001) used logistic regression methods 

to predict individual risk. These systems are easy to implement and their results are easily 

interpreted by clinicians. However, they are designed to their specific purposes. For 

example, the COSEHC (COSEHC, 2003) is limited for use in the Southeastern United 

States; the INDANA (Pocock et al, 2001) is limited for use with patients aged less than 74, 
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and concentrates on patients who smoke. Furthermore, according to Smulders et al (2004), 

these systems are lacking with no validation with an independent test set. The risk 

categories are heterogeneous resulting from the random spread of known and unknown risk 

factors in their scoring systems. 

The POSSUM and the PPOSSUM systems, like the above logistic regression systems, can 

be easily implemented. Furthermore, the performance of these systems can be evaluated by 

comparing the ratios between predicted deaths and actual deaths. However, the 

disadvantages of the POSSUM and the PPOSSUM systems are as follows: 

 Ignore the significantly contributed factors: The systems used significant 

attributes defined by Copeland et al (1991) to calculate the physiological score and 

the operative severity score. However, these systems do not consider other 

attributes, which might be involved to the prediction process to the patient risks. For 

example, according to Kuhan et al (2003), the attribute of “diabetes” is one of the 

significant factors for cardiovascular risk. 

 Ambiguous in the evaluation methods for system performance: This is because 

the systems‟ performance depends too much on the “linear” or “exponential” 

analysis methods for their results. For example, Wijesinghe et al (1998) run an 

experiment with 312 patients. Its result was 0.59 in the ratio of O/E (Observed per 

Expected (predicted) mortality of the patients) using the linear analysis whereas this 

ratio was 1.14 when using an “exponential” analysis. They pointed out that the first 

analysis yielded spurious results, because of using an inappropriate analysis method. 

The ambiguous use of linear and exponential analysis methods are also shown in 

(Yii and Ng, 2002). 
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 Ambiguous interpretations for the categorical risks in the risk scale: Like 

logistic regression systems, the POSSUM and the PPOSSUM systems use fixed 

thresholds over a numeric risk scale. Therefore, there are ambiguous interpretations 

to determine categorical outputs such as "High", "Medium", or "Low” from this risk 

scale. 

 Lack of the validation for the systems’ results: The POSSUM and the PPOSSUM 

systems lack an independent test set to validate the systems‟ results. 

From this point, a system to improve on the above disadvantages is needed. Pattern 

recognition and data mining classifiers might provide suitable candidates capable of 

producing better results.  

2.5. Summary 

This chapter provides a literature review of alternative decision support systems in 

medicine, particularly in the area of cardiovascular disease. The MYCIN (Shortliffe, 1976) 

and the Internist/QMR (Miller et al, 1982) can be seen as general background for medical 

diagnostic systems. The Framingham study (Framingham Heart Study, 1948); the 

Australian Busselton study (Knuiman et al, 1998); the German PROCAM study (Assmann 

et al, 2002); Bayesian networks models (Twardy et al, 2005); the COSEHC (COSEHC, 

2003; Hawkins et al, 2005); and the linear scoring system (Gupta et al, 2005) can be seen as 

providing more focused background on the cardiovascular area. The INDANA system 

(Pocock et al, 2001) is discussed in detail as an example to show the limitations in 

predicting risk for cardiovascular patients. 

The main focus in this chapter is the POSSUM and the PPOSSUM scoring systems. These 

systems can predict outputs of mortality, morbidity and death rate for general surgical 
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patients via the logistic regression method. However, these systems have some 

disadvantages as discussed. Consequently, another more appropriate approach needs to be 

investigated. It is suggested that the areas of pattern recognition and data mining classifiers 

may help in this. 
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Chapter 3   

Pattern Recognition 

3.1. Introduction 

This chapter presents a background for pattern recognition, with an emphasis on learning to 

recognise patterns in data sets. Four basic methods of machine learning are introduced: 

template matching; statistical classification; syntactic or structure matching; and neural 

networks. Linear and nonlinear models are also introduced in this chapter. The comparisons 

between both models lead to a discussion on the use of nonlinear models for noisy data as 

found in medical domains. Alternative evaluations for classification performance are 

introduced in this chapter. They are: mean square error; confusion matrix; accuracy; the 

rates of sensitivity and specificity as well as the positive predictive value and the negative 

predictive value. These rates are used in all thesis experiments in later chapters for 

discussions and comparisons. This chapter also presents a brief literature review in the 

application of pattern recognition techniques in medical domains. 

3.2. What is Pattern Recognition? 

There are many ways to define what a pattern is, depending on the area of study. In 

machine learning and data mining, a pattern can be defined as a set of measurements or 

observations, which can be represented in vector or matrix notation. For example, a pattern 

can be seen as a vector (patient‟s record) in the space of a medical data domain, where each 

data attribute represents separate dimensions. 
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Recognition is the classification of data according to predefined patterns. In other words, 

recognition means that "a computer can recognize the patterns of objects as ones that it has 

seen before" (Anzai, 1992). For example, recognition in respect to a medical database 

might be the classification of patients‟ status ("Low Risk" or "High Risk") given their 

symptoms (predefined patterns).  

Pattern recognition is an area of research, which studies the operation and design of 

systems for recognizing patterns in a data domain.  Pattern recognition has been of interest 

in many areas of study such as: 

 Diagnosing diseases (Baxt, 1991; Pedersen et al, 1996; Harrison et al, 1991; Plaff et 

al, 2004); 

 Character recognition and hand writing recognizer (LeCun  et al, 1995); 

 Speech analysis (Rabiner and Juang, 1993). 

More detail about these applications can be seen in Ripley (1996); and Lisboa (2002). The 

use of pattern recognition techniques is to somehow mimic the decision making of humans. 

According to Tou and Gonzalez (1974), the fundamental problems in building a pattern 

recognition system are: 

 The sensing problem; 

 The pre-processing and feature extraction problem; 

 And the determination of optimum decision procedures, which are needed in the 

identification and classification process. 

In the sensing problem, the pattern recognition system is concerned with the representation 

of input data. This representation should be chosen to aid the measurement of similarity 

between the current object and previously recognized classes.  In the second problem, the 

system is concerned with the extraction of characteristic features or attributes from input 
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data and the reduction of the dimension of pattern vectors. In the third problem, the data 

will be formed as pattern points or measurement vectors in feature space. By using 

alternative classified techniques, the system will decide to which classes these data belong. 

The architecture of an archetypal pattern recognition system can be seen in Figure 3.1. 

Sensor/

transducer

Preprocessing

and

enhancement

Feature/

primitive

extraction

algorithm

Classification

algorithm

Description

algorithm

(Syntactic)

(Statistic)

Classification

Description

Observed

world

pattern

data pi

Measurement, mi

Possible algorithm feedback or interaction

Figure 3.1: Typical pattern recognition system architecture (Schalkoff, 1992). 

As an example of this pattern recognition process, cardiovascular diagnosis can be seen as 

follows: The original collected data is represented in the form of database files; data might 

be then reduced or cleaned by using alternative data mining techniques; by using feature 

exaction algorithms, the feature space dimension might be reduced; the system then uses 

classification algorithms or description algorithms depending on the requested diagnostic 

purpose. By using classification algorithms, for instance, the system can predict the patient 

risk. Alternatively, by using description algorithms, the system can describe patterns in 

different classes based on their characteristics.  

Basically, the architecture of the thesis pattern recognition process follows this archetypal 

process. The detailed steps of the process can be seen in the “Thesis Methodology” section 

of Chapter 5 (Section 5.2.4). 
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The main issue in pattern recognition is building of a learning machine to represent the 

training set; defining methods of recognition; and evaluating the results. According to Jain 

et al (2000), four main approaches are as follows: 

 Template matching; 

 Statistical classification; 

 Syntactic or structural matching;  

 And neural networks. 

In fact, these approaches are not necessarily independent in their application. Sometimes a 

combination might be a better approach to deal with actual pattern recognition issues. A 

summary of the four approaches to pattern recognition can be seen in Table 3.1.  

Approach Representation 
Recognition 

Function 
Typical Criterion 

Template 

Matching 

Samples, pixels, 

curves 

Correlation, 

distance, measure 
Classification error 

Statistical Features 
Discriminant 

function 
Classification error 

Syntactic or 

structural 
Primitives Rules, grammar Acceptance error 

Neural 

networks 

Samples, pixels, 

Features 
Network function Mean square error 

Table 3.1: Pattern recognition (Jain et al, 2000). 

3.3. Methods of Pattern Recognition 

3.3.1. Template Matching 

Template matching is one of the simplest and earliest approaches to pattern recognition. 

Matching is a generic operation used to determine the similarity between two entities 
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(points, curves, or shapes) of the same type. For example, in clustering tasks in Chapter 4, 

the similarity can be defined by measurements such as Euclidean distance. Other well-

known examples of the template matching approach can be seen in symbol recognition 

problems (LeCun et al, 1995). The example below shows how a template matching method 

can be used to recognise patient status as “High risk” or “Low risk”. 

Example 3.1 

Assume that Table 3.2 represents patient information. The set of symptoms are shown in 

columns as Wound, CNS, Haematology, Carotid, and Cardiac (input columns). The results 

of diagnosis are shown in the Tract, Graft, and PTA columns (output columns). The column 

“Row ID” shows patient identifications. The risk for each patient can be calculated as 

follows. Note that risk here has values labelled as 1 or 0, meaning "High risk" or "Low 

risk" respectively. 

IF (Tract, Graft, PTA) =1   Risk =1 (High risk) 

Other wise,     Risk =0 (Low risk). 

Row 

ID 

Wound 

(i1) 

CNS 

(i2) 

Haema

-tology 

(i3) 

Carotid 

(i4) 

Cardiac 

(i5) 

GU 

tract 

(i6) 

Graft 

(i7) 

PTA 

(i8) 

Risk 

t1 1 0 0 0 0 0 0  0 0 

t2 1 0 1 0 0 1 0 0 1 

t3 0 1 0 0 0 0 0 0 0 

t4 1 0 0 0 0 ??? ??? ??? ??? 

t5 1 1 0 0 1 ??? ??? ??? ??? 

Table 3.2: Information on patients in the cardiovascular domain. 

Given a new patient labelled as t4 in Table 3.2, by comparing symptoms to the given 

patterns in the database, the system produces t4 results labelled as (0, 0, 0). This is because 
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of the exact match to symptoms of patient t1. Therefore, t4 risk is labelled as 0 or “Low 

risk”. However, sometimes, the system cannot produce output as it contains insufficient 

information to match to the given symptoms of a new patient. For example, t5 cannot be 

given any output labels as it is only a partial match to any existing patient.  

This approach is not be used within this thesis and more detail can be seen in Schalkoff 

(1992). 

3.3.2. Statistical Pattern Approach 

This section demonstrates the use of statistical pattern approach for the prediction or 

classification process. In the statistical pattern approach, each pattern is represented in 

terms of d- features or measurements. The main purpose of this approach is to choose 

suitable features in order to assign pattern vectors to different categories. If the patterns can 

be divided into separate classes, the feature space will be well determined. At this point, 

there exists a decision boundary in the feature space to separate these classes. Bishop 

(1995) defined the decision boundaries using a discriminant function based on Bayes‟ 

theory. Alternatively, these decision boundaries are built based on a classification approach 

(Jain et al, 2000). Detail about these methods can be seen in Bishop (1995); and Jain et al 

(2000). An example of a statistical pattern recognition model can be seen in Figure 3.2. The 

model contains two modes: the training (or learning) process; and the classification (or 

testing) process. In the pre-processing module, the pattern is segmented from the 

background, noise removed then normalized. For example, the pre-processing stage deals 

with missing values (cleaning task) and transforming original valued types into more 

appropriate types (normalisation task). 

In the training stage, the “feature extraction or selection” module finds appropriate features 

for the representation of input patterns. The classifier is then trained to partition the feature 
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space. In the classification stage, the trained classifier assigns each input pattern to one of 

the pattern classes based on the measured features. 

 

Pre-processing Feature 

Measurement 

Classification 

Pre-processing 
Feature 

Extraction/ 

Selection 

Learning 

Training 

Training 

Pattern 

Classification 

Test 

Pattern 

 

Figure 3.2: Model for statistical pattern recognition (Jain et al, 2000). 

3.3.3. Syntactic Pattern Approach 

The syntactic pattern approach is based on concepts from formal language theory, and in 

particular mathematical models of grammar (Gonzalez and Thomason, 1978).  Syntactic 

pattern recognition decomposes the patterns into sub-patterns or primitives. The goal is to 

classify each pattern as belonging to a specific class. The decomposition of patterns is 

sometimes referred to as parsing. Schalkoff (1992) suggested two approaches: top down 

parsing, and bottom up parsing. The syntactic pattern recognition approach can be used for 

the classification and description purposes.  

The elements of classification process are shown in Figure 3.3 (Schalkoff, 1992). This 

approach has disadvantages in implementation if the data set includes noisy patterns. This 

is because of difficulties in detecting the primitives, and in the inference of the grammar. 

Moreover, the explosion of combinatorial possibilities requires a large training data set and 

much computational effort (Perlovsky, 1998). More detail about this approach can be seen 
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in Fu (1982) and Schalkoff (1992). Another view of syntactic pattern approach can be seen 

in the “Decision Trees” section. 

 

Class 1 

structure 

Class 2 

structure 

Class c 

structure 
 

 

„Library‟ of 

classes, 

categorized 

by structure 

Structural 

analysis Input 
(Structural) 

Matcher 

Relevant 

Match(es) 

 

Figure 3.3: Using syntactic pattern approach for classification (Schalkoff, 1992). 

3.3.4. Neural Network Pattern Recognition 

The general background to neural networks is introduced in this section. Artificial neural 

networks (neural networks) have a rich history of research, starting with the McCulloch and 

Pitts (1943) concept of neural networks, and the following popular Hebbian rule (Hebb, 

1949). From the first concept of perceptron (Rosenblatt, 1958; Rosenblatt, 1962; Minsky & 

Papert, 1969), neural networks have developed quickly and been applied in many areas. 

The three characteristic components of a neural network can be seen as: 

 The network topology, or interconnection of neural „units‟; 

 The characteristics of individual units or artificial neurons;  

 And the strategy for pattern learning or training. 

The common point of view is that the neural network approach is a black-box strategy, 

which is trainable Haykin (1999). This means the outputs and the weights can be changed 

during the learning process. The goal in using neural networks is to build a good 
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relationship between inputs and outputs. Therefore, its performance seems to be strongly 

influenced by the quality of the training data and any pre-processing algorithm.  

Alternatively, neural networks can be seen as a directed graph with input, output, and 

hidden nodes where the input nodes are described in an input layer, the output nodes belong 

to an output layer, and the hidden nodes exist over one or more hidden layers. The number 

of input nodes is usually the number of input attributes in data domain. The output nodes 

will determine predictive outcomes. The number of hidden layers and hidden nodes are 

chosen by heuristic methods. Detailed choices of hidden nodes and layers for the neural 

network topologies in the thesis can be seen in the specific experiments.  

The advantage of the neural network approach is that the predictive outcomes can be 

improved via the learning process. However, its disadvantage is the difficulty in explaining 

the prediction results to end users. More detail about this approach can be seen in Chapter 4 

with the focus on neural network techniques as multilayer perceptron, radial basis function, 

and support vector machine. A review about the neural network applications can be seen in 

section 3.6.1 below, and in Sondak and Sondak(1989); Papik et al (1998);  Jain et al (2000); 

and Lisboa (2002). 

3.3.5. Decision Trees 

A decision tree is another view of the syntactical pattern recognition approach. This is 

because a tree includes a number of nodes that have a structure similar to the grammatical 

analysis in the syntactic pattern recognition method. The fundamental (root) node in the 

tree is a single node that has no connection from other nodes. A diagrammatic example of a 

decision tree can be seen in Figure 3.4. 

Example 3.2 
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Assume the transactions of the data set as given in Table 3.2 above. The result of building a 

decision tree for this data can be seen in Figure 3.4. The tree can be interpreted as a set of 

rules to define patient risk as follows: 

       if S= (i1 + i2 + i3 + i4 + i5 )>= 5             Risk=”High risk” 

        Otherwise, if (i4 + i5 ) ≥ 1                         Risk ="High risk" 

               Otherwise,                               Risk = "Low risk" 

For example, patient t4 in Table 3.2 will be labelled by this decision tree as “Low risk” as 

(S=i1 + i2 +i3 +i4 +i5 = 1; S < 5) and (i4 +i5 = 0; <1). Moreover, patient t5, can be classified 

as “High risk” according to this tree as (S=i1 + i2 +i3 +i4 +i5 = 3; S < 5) and (i4 +i5 = 1;=1). 

 

S=i1 + i2 +i3 +i4 +i5 >=5 

Risk=”High risk” 
(i4 + i5)  1 

Risk="High risk" Risk ="Low risk" 

Yes 

No 

No 

Yes 

 

Figure 3.4: A decision tree for the data in Table 3.2. 

More detail on building decision trees can be seen in Quinlan (1986); Quinlan (1993) with 

the ID3 (Iterative Dichotomiser 3) algorithm and its extension, the C4.5 algorithm; or in 

Breiman et al, (1984); Lewis (2000) with the use of CART (Classification And Regression 

Tree). The application of the C4.5 algorithm, as the J48 algorithm (Witten and Frank, 

2000), is used in Chapter 8 (Table 8.3) for the comparison purpose with neural network 

techniques. 

3.3.6. Discussion 
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The comparisons of statistical pattern recognition, syntactic pattern recognition, and neural 

network are shown in Table 3.3. According to Table 3.3, the statistical pattern recognition 

has difficulty in representing the structure of patterns whereas this structure is easily 

presented in the syntactic pattern recognition approach.  This is also true for the decision 

tree, where the pattern structure is clearly shown. This helps the end users to interpret the 

classification problem. 

 
Statistical Pattern 

Recognition 

Syntactic Pattern 

Recognition 
Neural Network 

Pattern generation Probability models Formal grammars State or weight array 

Pattern classification 

(Recognition/ 

Description) basis 

Estimation or decision 

theory 
Parsing 

Based on properties 

of neural network 

Feature organization Feature vector 
Primitives and 

observed relations 

Neural input or 

stored states 

Typical learning 

(Training) approaches: 

Supervised 

 

Unsupervised 

Density or distribution 

estimation (usually 

parametric) 

 

Clustering 

Forming grammars 

( heuristic or 

grammatical 

inference) 

Clustering 

Determining system 

parameters (e.g., 

weights) 

 

Clustering 

Limitation 
Difficulty in expressing 

structural information 

Difficulty in 

learning structural 

rules 

Little semantic 

information from 

network. 

Table 3.3: Comparing statistical pattern recognition, syntactic pattern recognition, and neural 

network approaches (Schalkoff, 1992). 

In fact, it is difficult to classify the boundaries between statistical pattern recognition, 

syntactic pattern recognition, and neural networks. For example, the classification for 

Example 3.2 with the statistical approach can be performed by representing the data in a 

feature space (5 - dimensions), with a decision boundary built to separate the patients into 

different classes.  
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Hence, whenever there is a specific pattern recognition problem, an appropriate approach 

should be chosen based on an analysis of underlying statistical components (statistical 

pattern recognition), underlying grammatical structure (syntactic pattern recognition), and 

the suitability of a neural network solution. According to Tsai and Fu (1980), sometimes 

the neural network approach might be seen as an implementation derived from the 

statistical pattern recognition and syntactic pattern recognition approaches. Therefore, 

depending on actual classification situations, the most appropriate approach might be 

applied. 

 3.4. Linear and Non Linear Pattern Recognition Techniques 

This section introduces linear and nonlinear models. The linear models are compared to 

nonlinear models via their use as pattern recognition techniques. 

3.4.1. Linear Models  

Definition: A linear model is a model defined using a linear function. A linear function can 

be represented in an n-dimensional space as follows: 

y = w1x1 + w2x2 + … + wnxn +b 

where x = (x1, x2, .., xn) is a vector of a pattern in an n-dimensional space,  

w = (w1, w2, .., wn) is a parameter vector of x in the data space 

The weights are used to define the decision boundary for the classification problem. For 

simplicity, y can be presented as: 

y = wTx +b ; or y = xTw +b 

Example 3.3 

Assume that the data distributions can be represented in the graph in Figure 3.5. Data is 

classified into two classes of “High risk” and “Low risk” areas. Obviously, this is a linear 
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classification problem in a 2-dimensional space, because its decision boundaries, to 

separate the output classes, can be represented as linear functions. 

 

Figure 3.5: An example of a linear classification problem. 

3.4.2. Nonlinear Models  

Definition: Any model that can not be defined using a linear model can be seen as a 

nonlinear model. It is defined using nonlinear functions. Nonlinear functions are 

represented as:  

y= f(w, x), where w=(w1, w2,..., wn) is not linear; or f is a nonlinear function. 

Example 3.4 

Assume that a Gaussian distribution of data as seen in Figure 3.6. This Gaussian function, 

in a 3-dimensional space, can be seen as 
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 Figure 3.6: Gaussian distributions of data in a 3-dimensional space. 

The graph can be redrawn into a 2-dimensional space as seen in Figure 3.7. It is clear that 

this is an example of a nonlinear classification problem, because the decision boundary 

between “High risk” and “Low risk” classes is a curve. 

 

Figure 3.7: An example of a nonlinear problem. 

3.4.3. Linear Vs Nonlinear Models  

A comparison of the linear and nonlinear models can be seen in Table 3.4.  
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Linear models Nonlinear models 

Advantage 

 Simple, and easy for the interpretation 

of models 

 Clearly separable by decision 

boundaries between classes. 

 A basic choice for a mixed models or 

nonlinear models analysis 

 Low requirement of computation 

(Vapnik, 1999; Lotte et al, 2007). 

 Can produce good estimates of the 

unknown parameters in the model 

with relatively small data sets 

(NIST/SEMATECH, 2006). 

 Able to deal with noisy classification 

problems (Manning et al, 2008). 

 Might produce confident values (Jain 

et al, 2000). 

Disadvantage 

 Poor prediction for outliers 

 Poor extrapolation properties 

(NIST/SEMATECH, 2006) 

 Very sensitive to the presence of 

unusual data points in the data used to 

fit a model 

 Hard to deal with noisy classification 

problems (Manning et al, 2008) 

 Slow training parameters (Jain et al, 

2000) 

 Complexity to implement models 

 Difficult to interpret and explain to 

the end users. 

 Require an iterative search for the best 

parameter values. 

Prediction and Classification Method Examples  

 Linear scoring system (Gupta et al, 

2005).  

 Single Perceptron (Haykin, 1999). 

 INDANA (Pocock et al, 2001). 

 POSSUM and PPOSSUM systems 

(Copeland et al, 1991).  

 Logistic classifier (Anderson, 1982) 

 Neural networks such as multilayer 

perceptron, radial basis function, and 

support vector machine with kernel 

functions (Jain et al, 2000). 

Table 3.4: Comparisons of linear and nonlinear models. 
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It is clear that linear models are the first choices whenever a new model is generated. 

However, they struggle to deal with the classification of noisy data whereas nonlinear 

classifiers usually deal better with noisy data (Manning et al, 2008). Furthermore, 

according to NIST/SEMATECH (2006), linear models have limited shapes, because they 

only can be devised using linear functions. This might cause a poor performance for their 

classification process. On the other hand, nonlinear models can be used with a broad range 

of linear and nonlinear functions. Therefore, they might demonstrate better classification 

performance than linear models. 

For example, the linear scoring model of Gupta et al (2005) introduced in Chapter 2 uses a 

global linear function to produce the cardiovascular risk for the patients. However, its 

performance might be poor with noisy classification problems as indicated by the 

disadvantages of linear models in Table 3.4. The INdividual Data ANalysis of 

Antihypertensive (INDANA) intervention trials (Pocock et al, 2001) as well as the 

POSSUM and the PPOSSUM systems introduced in Chapter 2 use local linear functions to 

calculate the system scores. These scores are then used with nonlinear functions, which are 

derived from the logistic regression, to produce individual numerical risks. Therefore, they 

show advantages in dealing with noisy classification in the cardiovascular risk prediction as 

indicated in Table 3.4. Similarly, neural network classifiers such as multilayer perceptron, 

radial basis function, and support vector machine are nonlinear models. Note that a single 

perceptron, however, can be viewed as a linear classifier (Haykin, 1999). Multilayer 

perceptron use nonlinear (logistic) activation functions; radial basis functions use Gaussian 

activation functions in its hidden nodes; and support vector machine use (eigenvalues) 

kernel activation functions. Therefore, as indicated in Table 3.4 they demonstrate 

advantages in dealing with noisy classification problems, and might produce better results. 
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Overall, nonlinear models show advantages in dealing with complicated classification 

problems.  Additionally, the INDANA as well as the POSSUM and the PPOSSUM 

disadvantages as shown and discussed in Chapter 2, suggest that nonlinear neural network 

classifiers, such as multilayer perceptron, radial basis functions, and support vector 

machines, might be more appropriate for the thesis data. 

3.5. Evaluating Classifiers 

This section introduces the concepts of classification performance evaluations. They are: 

the mean square error (MSE); confusion matrix; accuracy (ACC); sensitivity (Sen); 

specificity (Spec) rates; and the positive predictive value (PPV) and the negative predictive 

value (NPV). These evaluations are used in all thesis case studies and experiments. 

3.5.1. Mean Square Error 

Assume that the data domain has input patterns xi (i=1, 2,..,n), and a target pattern Yi. The 

classifier produces the output yi. The mean square error is mean of square of the error 

between the predicted and target output. It is given by: 

)1.3(

)( 2

n

Yy

E i

ii

 

3.5.2. Confusion Matrix 

Assume that the cardiovascular classifier output set includes two typically risk prediction 

classes as: “High risk”, and “Low risk”. Note in the thesis, unless stated otherwise, 

alternative valued scales such as “Very High risk”, "High risk", and “Medium risk” are all 

referred to as “High risk”. Each pattern xi (i=1, 2..n) is allocated into one element from the 

set {P, N} (positive or negative) of the risk prediction classes. Hence, each input pattern 
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might be mapped into one of four possible outcomes such as true positive- true high risk 

(TP)- when the outcome is correctly predicted as High risk; true negative- true low risk 

(TN)- when the outcome is correctly predicted as Low risk; false negative-false Low risk 

(FN)- when the outcome is incorrectly predicted as Low risk, in fact it is High risk 

(positive); or false positive- false high risk (FP) - when the outcome is incorrectly predicted 

as High risk, in fact it is Low risk (negative). The set of {P, N} and the predicted risk set 

can be built as a confusion matrix. 

 Predicted classes 

Expected

/Actual 

Classes 

High risk 

High risk Low risk 

TP FN 

Low risk FP TN 

Table 3.5: Confusion matrix. 

From the confusion matrix in Table 3.5, the number of correct or incorrect 

(misclassification) patterns can be derived. The numbers along the major diagonal (from 

left to right) represent the correct while the rest represent the errors (confusion between the 

various classes). 

3.5.3. Performance measures 

Some related concepts according to Altman and Bland (1994a; 1994b); Dunham (2002); 

Ye(2003); Han and Kamber (2006); Kononenko and Kukar (2007); and Bramer (2007) 

such as the accuracy (ACC), sensitivity (Sen), specificity (Spec) rates, and the positive 

predictive value (PPV or precision), and the negative predictive value (NPV) can all be 

built from the confusion matrix. These rates are used to evaluate and discuss classification 

performance.  



 43 

The accuracy (Duham, 2002; Ye, 2003; Han and Kamber, 2006; Kononenko and Kukar, 

2007; Fielding, 2007; and Bramer, 2007) of a classifier is calculated by the total number of 

correctly predicted “High risk” (true positive- true High risk) and correctly predicted “Low 

risk” (true negative- true Low risk) over the total number of classifications. It is given by: 

)2.3(
FNTNFPTP

TNTP
ACC  

The error rate of performance, or misclassification rate, can be referred from this accuracy 

rate as: 1- ACC.  

However, the accuracy does not show how well the classifier can predict the positive 

(“High risk”) and the negative (“Low risk”) for the classification process. Therefore, the 

sensitivity, specificity, positive predictive value, and negative predictive value 

measurements are created for this purpose (see detail in Figure 3.8) 

 

Figure 3.8: Classification performance rates. 

The sensitivity (Duham, 2002; Ye, 2003; Han and Kamber, 2006; Kononenko and Kukar, 

2007; Bramer, 2007; and Fielding, 2007) (given by Equation 3.3) is the rate of number 

correctly predicted “High risk” (true positive- true high risk) over the total number of 

correctly predicted “High risk” and incorrectly predicted “Low risk” (false negative- false 



 44 

Low risk). This rate can be seen as the rate of correctly predicted “High risk” over the total 

of expected/actual “High risk”. 

)3.3(
FNTP

TP
Sen   

The specificity rate (Duham, 2002; Ye, 2003; Han and Kamber, 2006; Kononenko and 

Kukar, 2007; Fielding, 2007; and Bramer, 2007) is the rate of correctly predicted “Low 

risk” over the total number of expected/actual “Low risk”. It is given by: 

)4.3(
FPTN

TN
Spec  

The positive predictive value (Altman and Bland, 1994b; Fielding, 2007; and Bramer, 

2007) is the proportion of correct “High risk” over the total number of predicted “High 

risk” (including correct “High risk” and incorrect “High risk” after classification process). 

It is given by: 

)5.3(
FPTP

TP
PPV  

The negative predictive value (Altman and Bland, 1994b; Fielding, 2007; and Bramer, 

2007) is the proportion of correct “Low risk” over the total number of predicted “Low risk” 

(including correct “Low risk” and incorrect “Low risk” after classification process). It is 

given by: 

)6.3(
FNTN

TN
NPV  

Example 3.5 

Assume that the confusion matrix and resulted evaluations is represented in Table 3.6.  
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 Predicted classes Evaluations 

Expected/

Actual 

Classes 

High risk 

High risk Low risk ACC Sen Spec PPV NPV 

80 5 

0.90 0.94 0.86 0.84 0.95 Low risk 15 95 

Table 3.6: An example of confusion matrix and measurements. 

From Table 3.6, the accuracy rate of 90% can be understood as a misclassification rate of 

10%. The sensitivity (correct “High risk”) rate of 0.94 is higher than the accuracy of the 

classification (0.90). Conversely, the specificity (correct “Low risk”) rate of 0.86 is smaller 

than this accuracy. Therefore, the accuracy of 0.90 shows the trade-offs of performance 

between the correct “High risk” and “Low risk” predictions in the classification process.  

The sensitivity of 0.94 in Table 3.6 shows that the rate of correctly predicted “High risk” is 

80 over total of 85 expected/actual positive cases. This means the misclassification of 5 

cases (5 per 85 positive cases) are predicted as the “Low risk” although they are the “High 

risk”. 

The positive predictive value of 0.84 shows the rate of expected correct “High risk” is 80 

per total of 95 predicted positive cases. This means the misclassification of 15 cases (15 per 

95 predicted positive cases) are the expected/actual “Low risk” although the classifier 

predicted them as the “High risk”. Conversely, the same explanation can be done for the 

specificity rate and the negative predictive value for the correct “Low risk” predictions. 

The sensitivity rate and the positive predictive value are of more interest in the thesis 

discussions, because they mirror the number of correct “High risk” patients in medical data 

domain. 

3.6. Brief Literature Review of Pattern Recognition Techniques 

in Medicine 
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This section provides an overview of pattern recognition applications in medicine, 

particularly the cardiovascular area, using both supervised and unsupervised learning 

approaches. The supervised techniques are represented as neural network classifiers such as 

multilayer perceptrons, radial basis functions, and support vector machines. The 

unsupervised techniques are represented as the use of self organizing maps, and clustering 

algorithms. This review can be seen as the motivation to explore the potential value of the 

techniques outlined in this thesis. 

3.6.1. Supervised Neural Networks in Medicine 

Baxt (1991; 1992) designed the first application of a neural network to detect the presence 

of acute myocardial infarction in patient presented to the emergency department with 

anterior chest pain. The use of multilayer perceptron, with 351 hospitalized patients in a 

high likelihood of having myocardial infarction, gave good results with a sensitivity of 

97.2% and a specificity of 96.2%. This technique was also used in the different researches 

of Harrison et al (1991); Baxt & Skora (1996; Heden et al (1996); Pedersen et al (1996); 

Jorgensen et al (1996); Ellenius et al (1997); Colombet et al (2000); Cacciafesta et al 

(2000); Cacciafesta et al (2001); and Gueli et al (2005) with good results in alternative 

areas of cardiac disease.  

Radial basis function networks are less widely used than multilayer perceptron networks in 

the medical domain. Radial basis function networks were used by: Langdell and Mason 

(1998) for training and testing of spinal measurements in order to classify spines into 

exposed and unexposed classes; Maglaveras (1998) to deal with electrocardiogram (ECG) 

pattern recognition and classification in data sets from the MIT-BIH and the European ST-
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T databases; and Luan et al (2005) to build quantitative structure–property relationship 

models to predict the pK
a 
values for new drugs. 

A support vector machine (Boser et al, 1992; Cortes and Vapnik, 1995; Vapnik, 1995; 

Vapnik, 1998) is a technique used to reduce the dimension of feature space. For example, 

Wang et al (2004) used support vector machines to discriminate cardiovascular disease 

patients from non-cardiovascular disease controls. They reported that the specificity and 

sensitivity for clinical diagnosis of cardiovascular patients as 85% and 93% respectively. 

The support vector machine technique also can be seen in the research of Nurettin (2006) as 

a perturbation method to reduce feature space dimensions for an ECG recognition system. 

It discards the redundant data components from the training data set. The performance of 

the system resulted in 91.7% sensitivity and 87.3% specificity. 

A comparison between alternative supervised neural network techniques can be seen in 

Serretti & Smeraldi (2004) where the multilayer perceptron out-performed the radial basis 

function with sensitivity measures of 85.61% and 35.21%, and specificity of 77.50% and 

51.20% respectively. Kamruzzaman  and Begg et al (2006) showed that the support vector 

machine demonstrates a higher performance than the multilayer perceptron with 3.21% and 

1.93% in sensitivity and specificity measurement respectively. According to Lisboa (2004), 

the use of multilayer perceptron in medicine is greater than other neural network 

techniques. For example, Lisboa (2004) reviewed 24 journal papers in neural network areas 

of randomised controlled studies and controlled studies. However, only three publications 

used the alternative techniques of Bayesian evidence approximation (Matsui et al, 2003) 

and support vector machine (Lin et al, 2004; Chan et al, 2003). The remaining 21 studies 

relied on multilayer perceptron. 
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The comparison between neural network techniques such as multilayer feedforward and 

Bayesian networks is shown in Bigi et al (2005). 496 patients with acute myocardial 

infarction were used to predict the cumulative end-point of cardiac death, nonfatal 

reinfarction and unstable angina. They complained that multilayer feedforward did not 

improve the prognostic classification of patients with uncomplicated acute myocardial 

infarction as compared to a robust Bayesian classifier. 

3.6.2. Unsupervised Pattern Recognition Techniques in Medicine 

Clustering techniques have been reported by many researchers, for example Hebb (1949); 

Widrow and Hoff (1960); Rosenblatt (1958); Rosenblatt (1962); Carpenter et al (1990); 

Jain et al (1996); Kohonen (1990). This section focuses briefly on two main categories of 

clustering using in the cardiovascular data domain: self organizing maps (Kohonen, 1990); 

and partitional cluster algorithms such as the K-means (Forgey, 1965; MacQueen, 1967; 

Hartigan, 1975; Hartigan and Wong, 1979). 

Although the use of self organizing maps for pattern recognition is wide spread, there are 

few applications in medical domains. The self organizing maps are often used when 

analysing medical images, such as registering multimodal retinal images (Matsopoulos et 

al, 2004), or in new drug research (Balakin et al, 2005). The self organizing maps are also 

used by Simelius et al (2003) for spatiotemporal analysis and classification of Body Surface 

Potential Mapping (BSPM) data in the cardiac domain, and by Mia et al (2003) for 

identifying clusters which are based on mammographic findings and patient age in the 

breast cancer domain. 

According to Jain (1999); and Berkhin (2002), K-means algorithm is the most popular 

clustering tool used in scientific and industrial applications. Two classical K-means 
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methods are the techniques of Jancey (1966) and MacQueen (1967). Research into these 

methods continues to thrive with the introduction of new ideas and extensions to the 

original algorithms (Cheung, 2003; Lingras et al, 2002; and Lin et al, 2004). For example, 

Maschewsky-Scbneider and Greiser (1989) used cluster analysis (FAST CLUS, a method 

similar to K-means) in a group of 1372 men and women participating in the German 

cardiovascular prevention study to identify risk factor profiles. Another use of clustering 

algorithm is shown in Plaff et al (2004). By using “clusterbase/rulebase”, the system 

predicts individual cardiovascular risks for 63 long-term hemodialysis patients. Syed et al 

(2007) used clustering algorithm for analyzing large amounts of cardiovascular signal data 

without any a priori knowledge about disease states. The use of max-min clustering and a 

fuzzy pre-clustering phase in this paper allowed the analysis of large amounts of data 

without excessive demands in terms of computational time or space. 

Although the success of self organizing maps, K-means, and other clustering algorithms 

cannot be denied, they suffer from some inherent drawbacks. For example, these algorithms 

can only be used with numerical data whereas many medical domains require the use of 

alternative data types. The application and improvement of self organizing maps and K-

means are issues that continue to challenge researchers throughout the field.  

3.7. Summary 

This chapter provides a general background on pattern recognition. The template matching, 

statistical, structural, and neural network approaches provide a general view for pattern 

recognition techniques. The combination of these approaches might lead to a set of 

techniques appropriate for any specific data domain. The decision tree approach is 
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mentioned in this chapter as an extension of the syntactic pattern recognition approach. The 

J48 algorithm is used for the comparison purpose in Chapter 8. 

Standard measurements are introduced in detail as the tools to evaluate the performance in 

all thesis experiments. Mean square error and accuracy rates will show the overall 

performance for the experiments. The sensitivity rate and the positive predictive value 

show alternative way of looking at “High risk” patients after the classification process. 

Similarly, the specificity rate and the negative predictive value show alternative way of 

looking at “Low risk” patients after the classification process. The differences between 

them might provide for interesting discussions.  

Linear models show many advantages in their implementation and interpretation. However, 

these models are of limited use, because of their linear functions used in the classification 

process. Nonlinear models such as neural network classifiers have the advantage of using 

alternative nonlinear functions in the classification process. Therefore, they can show the 

ability to deal with noisy data such as found in medical domains. Furthermore, the reviews 

of supervised neural network classifiers such as multilayer perceptron, radial basis function, 

and support vector machine; and unsupervised pattern recognition techniques such as self 

organizing maps and clustering algorithms in medicine are shown as the motivations to use 

them for this thesis.  
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Chapter 4 

Supervised and Unsupervised Pattern 

Recognition Techniques 

4.1. Introduction  

Alternative pattern recognition approaches were discussed in chapter 3. Their techniques 

are applied broadly in many areas, particularly in the medical domain (Lisboa, 2002). This 

chapter is motivated by the need to determine the advantage of using supervised and 

unsupervised learning pattern recognition in the cardiovascular domain. The supervised 

learning techniques introduced in great detail are the multilayer perceptron, radial basis 

function, and support vector machine. They are neural network techniques reviewed in 

Chapter 3. Two unsupervised learning methods of pattern recognition and data mining are 

also discussed in this chapter. They are self organizing maps and the KMIX clustering 

algorithm. 

4.2. Neural Network Pattern Recognition 

Artificial neural networks have been proposed as a reasoning tool to support clinical 

decision making from the early days of computing (Lisboa, 2002). They are adaptive 

models for data analysis and particularly suitable for handling nonlinear functions. This 

section provides a detailed view about the concepts of the perceptron, multilayer 

perceptron, radial basis function, and support vector machine. The WEKA software tool 



 52 

(WEKA, 2005) is also introduced in this section to show the applying of neural network in 

and their chosen parameters.  

4.2.1. Perceptron and MultiLayer Perceptron 

The perceptron is a one of the simplest neural networks (see Figure 4.1). With the input 

vector x, and a target vector Yi (expected output), the network produces an output vector yi 

(predicted output). The error between the predicted and the expected (target) output is 

calculated by mean square error (Equation 3.1 in Chapter 3). It can be rewritten as: 
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Figure 4.1: Node in full perceptron model. 

Assume that the decision boundary for a perceptron is given by: 
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where wj is the weights of the network, w0 is bias, and f is an activation 

function, and x= {xj} is a pattern vector in the input space.  
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Hence, the outputs belong to appropriate classes depending on which side of a decision 

boundary they fall. For example, assume that a linear decision function defines the classes 

for the pattern x according to the following rule: 

If 0

1

n

j

jj xw  then the pattern x belongs to the class C1 

Otherwise, the pattern x belongs to the class C2. 

Therefore, the visualization of patterns classified by a perceptron via the linear decision 

boundary can be seen in Figure 4.2. In other words, the perceptron classification can be 

seen as a linear pattern recognition technique. 
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Class C2 

x1 

x2  

 

Figure 4.2: Example of linear hyper-plane. 

A multilayer perceptron is formed through the combination of multiple perceptrons in 

separate layers. An example of a feed-forward multilayer perceptron can be seen in Figure 

4.3 



 54 

 Input 

Input 

Input 

Input 

Output 

Output 

 

Figure 4.3: An example of a multilayer perceptron. 

One popular algorithm for modifying weights in the multilayer perceptron learning process 

is the back propagation algorithm. According to Haykin (1999), this algorithm consists of 

the following steps: 

 Step 1: Pass the input nodes xi forward through the network, and calculate the 

output as given by Equation (4.2).  

 Step 2: For each output node, calculate the error as Equation (4.1).  

 Step 3: In this step, the error for the hidden nodes are calculated (backward pass) as 

a calculation of the gradient 

descent: )3.4()('
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where f’ denotes the differentiation with respect to the arguments. 

 Step 4 (Learning updates): The weights are updated using the results of the forward 

and backward passes (using Widrow-Hoff learning or the Delta rule) 

 w
j
(t+1)=w

j
(t) +  w

j
(t-1)+ 

j
(t)y

j-1
(t) (4.4) 

where t is number of iteration;  is a learning rate; and  is the momentum 

constant. 
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This momentum determines the influence of the old update upon the new one. It 

enables the learning process to persist in a direction of previous iterations, and to 

reduce the effect of small local optima. The iteration from step 1 to step 4 is 

continued until the necessary stopping criterion is satisfied. 

The multilayer perceptron usually uses nonlinear activation functions in its neurons to 

define the outputs (Haykin, 1999); and produces a nonlinear relationship between inputs 

and outputs across the network. Therefore, the multilayer perceptron can be seen as a non-

linear pattern recognition technique. 

A commonly used form of nonlinear activation function (sigmoidal function) is given by:  
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This activation function form is used in all thesis experiments in later chapters. Other forms 

such as hyperbolic tangent and so on can be seen in Schalkoff (1992), or Haykin (1999).  

4.2.2. Radial Basis Function 

The radial basis function has a structure similar to a multilayer perceptron except only one 

hidden layer is used in its topology. Each hidden unit acts as a local processor that 

computes a score for the match between input vectors and its connection weights or centres. 

The linear combination weights connecting hidden units to the outputs are used to produce 

the final classification (output). 

Rather than using the sigmoidal activation function, the hidden units in a radial basis 

function use a Gaussian or some other kernel functions (see an example in Figure 4.4). 
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Consequently, radial basis function classification can also be seen as non-linear 

classification.  

A popular form of Gaussian basic function (Haykin, 1999) used with parameter centre c 

and width  (scalar value) of input vector x can be given by: 
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Figure 4.4: The example structure of radial basis function networks. 

The main points in comparing radial basis functions with multilayer perceptrons are as 

follows: 

 One hidden layer: Radial basis functions contain only one hidden layer whereas 

multilayer perceptrons might have more than one hidden layer. This enables 

multilayer perceptrons to, arguably, deal with more sophisticated classification 

problems. 

 Faster classification: Multilayer perceptron inputs are weighted and summed 

before using the activation function whereas radial basis function pass its inputs to 

activation functions before weighting and summing. This means the multilayer 

perceptron uses global non-linear calculations between the inputs and the outputs 
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whereas the radial basis function only uses (locally) non-linear calculations in its 

hidden nodes but linear calculations in its output layer. Moreover, the multilayer 

perceptron requires a supervised training method in its algorithm whereas 

unsupervised techniques can be used in radial basis function to determine the basis 

functions (Bishop, 1995). Therefore, the radial basis function usually classifies the 

outputs faster than the multilayer perceptron. However, this might cause poorer 

classification because of the linear limitations as indicated in Chapter 3. 

 Disadvantage of localised minima: According to Haykin (1999), radial basis 

functions transform the nonlinear data from input space into output space whereby 

the data becomes linear. This means the radial basis function uses the localised 

functions (local approximations) in attribute space whereas multilayer perceptron 

uses the long-range functions (global approximations) in its models. Hence, the 

radial basis function network might experience problems associated with local 

minima. This is not discussed further in this thesis. More detail can be seen in 

Haykin (1999). 

4.2.3. Support Vector Machine 

Support vector machine was developed by Vapnik and co-workers (Boser et al, 1992, 

Cortes and Vapnik, 1995), as a system for efficiently training linear learning machines in 

kernel-induced feature spaces. One of the key concepts in support vector machine is the 

definition of support vectors. These vectors help the network to classify clearly alternative 

output classes in high dimensional attribute space. 

Support Vectors 
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Assume that a pattern data set can be described in an m-dimensional feature space. The 

idea of a support vector machine is to build a hyper-plane to separate the positive and the 

negative patterns in a given data set. This hyper-plane can be seen as a decision surface. 

The training points that are nearest to this hyper-plane can be seen as support vectors (see 

Figure 4.5).  
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Figure 4.5: The description of support vectors. 

The simplest model is a maximal margin classifier, which can be seen as the main 

building block for the later support vector machines (Cristianini and Shawe-Taylor, 2000). 

Building a Support Vector Machine for Pattern Recognition 

The key to understanding support vector machines is to see how it produces optimal hyper-

planes to separate the patterns. According to Haykin (1999), two operations to build a 

support vector machine can be summarized as: 

 Map data to higher dimensional space: It is a non-linear mapping based on 

Cover’s theorem (Cover, 1965). This means the following two conditions need to be 

satisfied: 

o The transformation is non linear; 
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o And the dimensionality of the feature space is high enough. 

 Construct an optimal hyper-plane to separate the patterns: This construction is 

based on the use of an inner-product kernel to define a linear function separating the 

vectors in feature space.  Therefore, the hyper-plane can be formed as: 
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where x is a vector in input space, 
m

jj x 1)}({ is a set of non-linear transformation 

vectors in feature space, wj are the vector weights, and b is the bias. 

Haykin (1999) introduced the inner-product kernel as K(x, xi )= wTxi in order to 

reformulate the hyper-plane. The Equation is given by: 
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where i are called Lagrange multipliers, b is the bias, x= {xi} is a pattern vector, 

and (xi,yi) are training vectors in the input space.  

More detail on how to find the Lagrangian multipliers to define maximal margin hyper-

plane can be seen in Haykin (1999). Examples of some inner-product kernels are given in 

Table 4.1. The expanding of inner-product kernels can be seen in Mercer (1909); and 

Courant & Hilbert (1970). 

Type of support vector machine Inner-Product kernel K(x,xi), i=1,2,..N 

Polynomial learning machine p

i

T xx )1(
 

Radial-basis function network 
)

2

1
exp(

2

2 ixx  

Two layer perceptron )tanh( 10 i

T xx  

Table 4.1: Some inner-product kernels (Haykin, 1999). 
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Figure 4.6 shows an architecture example of a support vector machine. The inner-

production kernel functions are used in a hidden layer. The output can be calculated by 

using an activation function for the hidden nodes and the bias b. 
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Figure 4.6: Architecture of support vector machine (Haykin, 1999). 

4.2.4. WEKA Software Tool Introduction 

WEKA software package (WEKA, 2005) is a tool for machine learning and data mining, 

which is implemented with object-oriented Java class hierarchy. The data set is represented 

in ARFF format file, which consists of a header describing the attribute types and the data 

as comma-separated list. However, data can be saved in MS EXCEL files as CSV data type 

(*.CSV). All the thesis data files are saved as this data type.  

WEKA can demonstrate many aspects of data mining such as Regression, Association 

Rules, clustering algorithms, and so on. Neural network techniques such as multilayer 

perceptron, radial basis function and support vector machine are also implemented in 

WEKA as alternative classifiers. In general, WEKA implements the basic functions for 

alternative neural network techniques. For example, radial basic function is implemented in 
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WEKA using Gaussian basis function; multilayer perceptron is used with sigmoid function; 

and support vector machine is used with polynomial kernel in polynomial learning 

machine. All mathematic equations for these can be seen above in section 4.2. The 

parameters declared in WEKA for each classifier models are chosen upon the neural 

network techniques’ use.  For example, radial basis function is used with the declaration of 

parameter of c (number of centers); multilayer perceptron is used with the declaration of 

number of epochs, learn rate, and number of hidden nodes; and support vector machine is 

used with the chosen of alternative types of inner kernels (see Table 4.1). 

4.3. Unsupervised Pattern Recognition. 

In contrast to the theory of supervised learning introduced above, this section discusses two 

unsupervised learning methods of pattern recognition and data mining: self organizing 

maps and the KMIX clustering algorithm. The concept of self organizing maps is 

introduced with its characteristics of data clustering and projection. Their goal is to map 

data from a nonlinear space (attribute space) onto the lower (usually 2) dimensional output 

space. On the other hand, the KMIX algorithm is introduced as an instance of the popular 

K-means technique adapted for use with the mix of attribute types in the current data 

domain. 

4.3.1. Self Organizing Map 

The self organizing map (Kohonen, 1981; 1990a, 1990b) is a type of a neural network 

model that represents and clusters input data onto a lower dimension space (map). 

According to Haykin (1999), the input topological properties remain in the output space of 

the map. 
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One common example of the application of self organizing maps is the visualization of 

World Poverty Map (see in Kohonen, 1996; Kaski, 1997). Here a self organizing map has 

been used to classify statistical data describing various quality-of-life factors such as state 

of health, nutrition, educational services, and so on. The countries with similar quality-of-

life factors end up clustered together. Further self organizing map applications can be seen 

in Kohonen (1996). 

How It Works? 

As indicated above, the self organizing map provides a topology preserving mapping from 

high dimensional input space onto a map of units (neurons) (see Figure 4.7). Note that the 

property of topology preserving means the mapping will preserve the relative distance 

between map points. These points, those near each other in the input space, are mapped to 

nearby map units in the self organzing map. Therefore, a self organizing map can serve as a 

cluster analyzing tool of high-dimensional data. Furthermore, it has the capability to 

recognize, generalize and characterize the input data. In the output space of a self 

organizing map, adjacent neurons are connected to each other by the neighborhood relation 

according to a pre-defined radius. Generally, two types of maps, either rectangular or 

hexagonal, are used to present its topology (or structure). 
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Figure 4.7: The description of a self organizing map technique. 
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The visualisation of a map can be seen in the U-matrix representation (unified distance 

matrix) (Ultsch et al, 1990; Ultsch, 1993). This matrix visualizes the distances between 

neurons. The distance between adjacent neurons is calculated and presented with different 

shades of colour. A light shade of colour between the neurons corresponds to a large 

distance, signifying a big gap between codebook values in the input space. Conversely, a 

dark shade of colour between the neurons signifies that the codebook vectors are close to 

each other in the input space. In other words, dark shading areas might be thought as 

clusters and the light shading areas as cluster separators (see an example of U-matrix in 

Figure 4.8). 

 

Figure 4.8: The example of the final U-matrix. 

Algorithm of Self Organizing Map 
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Assume that x = {x(t)}, t = 1, 2,..n is a vector in the input space, and the map is 

represented in k x d matrix (map size), and the weight can be seen as: 

W = {w1, w2,..., wk}.  

Step 1: Initialize weight vectors wi, i = 1,..,k. 

Step 2:  For each map unit i (i = 1,..,k): Choose x(t) from input space (t = 1,2,..n); 

Calculate the distance from x(t) to each node i; Find the winer node c where the 

distance between the inputs and this node is minimized.  

||x(t) – wc(t)|| ≤ ||x(t) – wi(t)||,   i = 1,..,k (4.9) 

Update the weight as follows: 

wi(t+1) = wi(t) + *Gci(t) * (x(t) - wi(t))               (4.10) 

where   is learning rate, Gci(t)  is neighborhood function (Gausian 

function), and t = 1,2,...,n. 

Step 3: Repeat step 2 until the algorithm time is terminated or all input vectors are 

tested. 

Map Quality Measurement. 

According to Kohonen (1995); and Kiviluoto (1996), the Davies-Bouldin index (Davies 

and Bouldin, 1979) is used to define the Average Quantization Error (AQE) and 

ToPographic Error (TPE) of the maps.  The average quantization error measures the 

average error of distances between each pattern (in the data set) and its best matching unit 

on the map. It also can be seen as a measure of a map resolution and given by: 
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where N is total of number of patterns, wic(x) is the winner unit in the map of 

input vector xi. 

Therefore, the accuracy of the map can be calculated as: 
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According to Kohonen (2001), topographic error is a proportion of all data vectors for 

which the first and second best matching units are not adjacent units. It is given by: 
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4.3.2. KMIX Algorithm 

This section introduces the KMIX algorithm, which can be seen as an instance of the K-

means technique. This algorithm uses both Euclidean and the Hamming dissimilarity 

measurements instead of just the Euclidian measurements of the K-means. These measures 

will be adequate for the mixture of attribute types in the thesis data.  

4.3.2.1. Introduction and Notations 

Clustering analysis is a machine learning area of particular interest to pattern recognition 

data mining. The resulting data partition improves the data understanding, and reveals its 

internal structure. Clustering has been used in many application domains including biology, 

medicine, and so on, as indicated in Chapter 3. Further clustering applications can be seen 

in Dunham (2002); Berkhin (2002); Mirkin (2005).  
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One well-known partition clustering algorithm is the K-means algorithm (Forgey, 1965; 

Jancey, 1966; MacQueen, 1967; Hartigan, 1975; Hartigan and Wong, 1979) which, 

according to Berkhin (2002), is the most popular clustering tool used in scientific and 

industrial applications. The main duty of K-means is to partition n patterns in input space 

into k clusters such that similar patterns belong to the same clusters; and dissimilar patterns 

will belong to alternative clusters.  

Assume that X is a pattern (observation, case, or patient record in data set). X typically 

consists of m components: X= (x1,x2,…,xm) = (xj)j=1,..m. Note that each component in 

multidimensional space is an attribute (continuous or discrete) in the data domain. 

Therefore, we have a n  m pattern matrix, where n patterns {Xi}i=1..n ; Xi= (xi,1, xi,2,.., 

xi,m), and m attributes.  

Similarity Measurements 

A similarity measurement is the strength of relationship between two patterns in the same 

multidimensional space. It can be represented as simij= sim(xi,xj), i,j= 1,2,.. n. According 

to Gower (1985), a similarity is regarded as a symmetric relationship. This means 

sim(xi,xj)=sim(xj,xi). Contrastingly, dissimilarity measures of patterns have been 

introduced as the complement of similarity measures. A list of dissimilarity measures can 

be seen in Gower (1985). The dissimilarity measures used in this thesis are as follows: 

 Continuous attributes: the most common measure used is the Euclidean distance 

between two patterns. It is given by: 
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where D is Euclidean distance, m1<= m (m1 is number of “continuous” attributes). 
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 Discrete (categorical) attributes: the similarity measure between two patterns 

depends on the number of similar values in the categorical attribute (Kaufman & 

Rousseeuw, 1990). This means the dissimilarity is a number of different values in this 

categorical attribute. It is given by: 
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of categorical attributes. 

 Boolean attributes: The dissimilarity measures are calculated as in the categorical 

or continuous attributes according to the interpretation of the attribute. 

Centre Vectors 

Assume that the data attribute set includes continuous and discrete attributes. Note that 

Boolean attributes are treated as continuous or discrete as indicated above. Therefore, there 

are two types of centre vectors. Assume that m attributes contains the p first continuous 

attributes; and m-p remaining discrete attributes. This means each pattern X in the input 

space can be seen as:  

X=(xi1, xi2,…xip, xip+1, xip+2,… xim) ) 

If Q is a centre vector for the sub data set C, Q can be represented as:  

Q= (qj1, qj2,… qjp, qjp+1,qjp+2,…, qjm) 

The task now is to find p continuous attribute values, and m-p discrete attribute values for 

centre vector Q. According to Han (1981), these centre attribute values can be calculated as 

follows: 
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 Continuous attribute: The centre values {qjk}k=1,..p,={meank}, where meank is the 

average of kth 
attribute.  

 Discrete attribute: The centre values {qjk}k=p+1,.., m ={modek}, where modek is the 

“mode” of kth 
attribute.  

Definition 1: A vector Q is a “mode vector” of a data set C = (X1, X2,… Xc), c<=n if the 

distance from each vector Xi, i=1,.,c to this vector is minimized.  

This means 
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is minimized. 

According to the theory in Huang (1998), the Equation (4.16) is minimized if the frequency 

of value qk in data set C, for k
th

 attribute, is equal or greater than the frequency of all 

different xik such that xik  qk. Therefore, we can choose the mode vectors of m-p attributes 

as the highest frequency values in these attributes. Their forms can be seen as follows: 

{qjk} = modek= {“max freq” ValCk},  k=p+1,.., m.  (4.17) 

Accuracy Measure 

The accuracy (Acc) for measuring the quality of clustering algorithm is given by:  
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where n is the number of samples in the dataset, ai is the number of data samples 

occurring in both cluster i and its corresponding class, and K is number of clusters. 

Consequently, the clustering error (err) is defined as: 

)19.4(1 Accerr  . 
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4.3.2.2 KMIX Algorithm 

Step 1: Initialise K clusters according to K partitions of data set.  

Step 2: Update K centre vectors in the new data set ( in the first time, the centre vectors are 

calculated) 

Qj = (qN
j1, q

N
j2, …, qN

jp, q
C

jp+1, …, qC
jm),  j = 1, 2, …, k  

where {qN
ji}i=1,2..p = {meanN

ji } (mean of ith attribute in cluster j), 

and {qC
ji}i=p+1,..m ={modeC

ji} (max freq value in attribute ith in cluster j). 

Step 3: Update clusters as the following tasks: 

 Calculate the distance between Xi in ith 
cluster to K centre vectors: 

d(Xi,Qj)  = dN(Xi,Qj) + dC(Xi,Qj); j=1,2,..k  

where dN(Xi,Qj) is calculated according to Equation (4.14), 

and dC(Xi,Qj) is calculated according to Equation (4.15) 

 Allocate Xi into the nearest cluster such that d(Xi,Qj) is minimised. 

 Repeat for whole data set, and save them to the new data partition with K new 

centre vectors. 

Step 4: Repeat step 2 and 3 until no more change in the distance between Xi and new K 

centre vectors. 

4.3.2.3. Standard Dataset Comparisons 

To verify the KMIX algorithm, alternative data sets from the UCI repository (the empirical 

analysis of machine learning algorithms- Merz & Merphy, 1996) are used. KMIX is applied 

to alternative data types such as discrete numerical (Small Soybean; Michalski and 

Chilausky, 1980); mixture of numerical and categorical (Zoo small; Richard, 1990; Merz & 

Merphy, 1996); and all categorical (Votes data set; Jeff, 1987). The experiments are 
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performed using randomised data sets. The discussions are based on the error rates (or 

accuracy rates) in these experiments. Furthermore, a comparison between the KMIX 

results, publicised results, and standard K-means is shown to discuss the use of this 

algorithm for the thesis data. 

Small Soybean 

This data set contains 47 samples and 35 attributes. The experimental results can be seen in 

Table 4.2. Overall, the error rates are negligible (in average of 0.04). 

Experimental 

types 

Actual 

classes/Clusters 

C1 C2 C3 C4 Error 

Original D1 10 0 0 0 0 

(0.00%) D2 0 10 0 0 

D3 0 0 10 0 

D4 0 0 0 17 

Rand 1 D1 0 10 0 0 0.02 

(2.13%) D2 10 0 0 0 

D3 0 0 0 10 

D4 0 0 16 1 

Rand 2 D1 0 0 10 0 0.04 

(4.26%) D2 0 10 0 0 

D3 10 0 0 0 

D4 2 0 0 15 

Rand 3 D1 0 10 0 0 0.08 

(8.51%) D2 10 0 0 0 

D3 0 0 10 0 

D4 0 0 4 13 

Rand 4 D1 10 0 0 0 0.06 

(6.38%) D2 0 0 0 10 

D3 0 2 8 0 

D4 0 16 1 0 

Table 4.2: The experiment results with Small Soybean Data. 
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Zoo Small 

This data contains 101 cases distributed in 7 categories and 18 attributes (15 Boolean, 2 

numerical, and 1 unique attributes). The results in Table 4.3 show the accuracy and error 

for 10 experiments with alternative randomised data sets for the KMIX algorithm. The 

average error is about 0.15 (0.84 of accuracy). This error result is similar to the results of 

Shehroz and Shri (2007) (0.166).  

Random experiments Accuracy Error 

Rand0 0.90 0.10 

Rand1 0.75 0.25 

Rand2 0.90 0.10 

Rand3 0.82 0.18 

Rand4 0.90 0.10 

Rand5 0.88 0.12 

Rand6 0.81 0.19 

Rand7 0.84 0.16 

Rand8 0.87 0.128 

Rand9 0.80 0.198 

Average 0.84 0.15 

Std Deviation 0.05 0.05 

Table 4.3: 10 test results of Zoo data set in randomisation. 

Vote data 

The data set contains 435 records with 2 output classes labelled as 168 “republicans” and 

267 “democrats”. Table 4.4 shows the experimental results from 10 randomised data sets. 

Overall, the accuracy is about 86%. The sensitivity rates are quite consistent (an average of 

0.95) over the experiments except in Rand0 (0.83). Figure 4.9 shows that although the 
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experiments fluctuate in sensitivity and specificity rates their accuracy and the error rates 

remain consistent. 

  C1 C2 Sen Spec Acc Err 

Rand0 Democrat 222 45 0.83 0.92 0.86 0.13 

Republican 14 154 

Rand1 Democrat 261 6 0.98 0.69 0.87 0.13 

Republican 52 116 

Rand2 Democrat 257 10 0.96 0.67 0.85 0.14 

Republican 55 113 

Rand3 Democrat 257 10 0.96 0.67 0.85 0.14 

Republican 55 113 

Rand4 Democrat 253 14 0.95 0.73 0.86 0.13 

Republican 45 123 

Rand5 Democrat 261 6 0.98 0.69 0.87 0.13 

Republican 52 116 

Rand6 Democrat 257 10 0.96 0.67 0.85 0.14 

Republican 55 113 

Rand7 Democrat 252 15 0.94 0.74 0.86 0.13 

Republican 44 124 

Rand8 Democrat 257 10 0.96 0.67 0.85 0.14 

Republican 55 113 

Rand9 Democrat 257 10 0.96 0.67 0.85 0.14 

Republican 55 113 

Average 0.95 0.71 0.86 0.14 

Table 4.4: Results of 10 executions of Votes recording data set. 
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Figure 4.9: Vote data results in sensitivity, specificity, accuracy and error rates. 

Discussions 

 The comparison results based on the error rates can be seen in Table 4.5 for the KMIX 

algorithm with the others of recent publications and K-means. A WEKA software package 

is used here for the K-means algorithm. Note that the data sets used in K-means are the 

original data (no random ordering of the data); and all data is transformed into numerical 

data type. 

Data set Data Type Publication results KMean KMIX 

Soy Bean Integer 0.11 ~ 0.23 0.07 

Votes Categorical 0.132 0.14 0.14 

Zoo small Mixed 0.166 0.22 0.15 

Table 4.5: Publication comparisons.  

From Table 4.5 the KMIX performs as well as other published results for the Soy Bean 

(Ohn et al, 2004); Votes (Shehroz and Shri, 2007; Zengyou, 2005), Zoo small (Jeff,1987). 

Furthermore, the KMIX achieve better results compared to the standard K-means algorithm 

except for the use of the Votes data set. For example, the K-means clustering achieves the 

performance at 77% (error rate of 0.23) whereas the KMIX performance is at 93% for the 
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small soybean data (with the use of original data set). Therefore, the KMIX algorithm 

seems suitable for use with the thesis data. 

4.4. Summary 

This chapter focuses on three neural network techniques: Multilayer perceptron, radial basis 

function and support vector machine, as examples of non-linear classifiers. The multilayer 

perceptron produces the outputs via the global non-linear calculations between the inputs 

and the outputs. The radial basis function uses locally non-linear calculations in its hidden 

nodes, and linear calculations in its output layer to produce the outputs. The support vector 

machine classifies alternative output classes in high dimensional attribute space (optimal 

hyper-planes). Multilayer perceptron usually use non linear (typically sigmoidal ) activation 

functions while radial basis function usually use Gausian functions and  support vector 

machine can use both activation function types for its inner-product kernel ( see Table 4.1).  

Two methods of clustering data, self organizing maps and the KMIX algorithm, are 

described as examples of unsupervised learning pattern recognition techniques. The self 

organizing maps clustered and mapped the patterns onto the final map (U-matrix) where the 

dark grey units show the close distance of patterns in the input space. In other words, these 

patterns can be seen as in the same clusters. KMIX, as an example of the K-means 

algorithm, is compared to publicised results from standard machine learning data to show 

its ability to deal with alternative data types.  

These supervised and unsupervised learning techniques will be discussed in greater detail in 

the case studies in Chapter 6 which make use of cardiovascular data. 
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Chapter 5 

Data Mining Methodology and Cardiovascular 

Data 

5.1. Introduction 

This chapter describes the general process of “knowledge discovery from data” (Hand et al, 

2001), gives the definition of data mining, and discusses data mining methodologies. Two 

popular data mining methodologies, CRISP_DM (Shearer, 2000) and SEMMA (SAS, 

2008), are introduced as examples of data mining methodologies. An adopted methodology, 

based on Davis (2007), is described and used in this thesis.  

The thesis data mining framework steps are described in detail. The strategy for preparing 

experimental data is also presented in this chapter. Three types of thesis experiments are 

explained in a systematic way to demonstrate the use of the thesis methodology in detail. 

As part of the data mining methodology, the structure, and nature of the data used in this 

thesis is analysed. The thesis data contains cardiovascular patient information collected 

between 1982 and 1999 from clinical sites in Hull and Dundee. Partial data from each of 

these sites is used in the thesis case studies. The combined data from both these sites is used 

in the main thesis experiments. 

5.2. Data Mining and Thesis Methodology 

5.2.1. What is Data Mining? 
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There are many definitions of data mining. Hand et al (2001) produced a general definition 

as follows: 

"Data mining is the analysis of (often large) observational data sets to find 

unsuspected relationships and to summarize the data in novel ways that are both 

understandable and useful to the data owner.”  

Hand et al (2001); MIT Press. Cambridge. Chapter 1; Page: 1. 

On the other hand, Tan et al (2006) defined that data mining provides a way to get the 

information buried in the data. This means it finds patterns hidden in large and complex 

collections of data, where these patterns elude traditional statistical approaches to analysis. 

In medical domains, data mining can be seen as a pattern recognition system to predict 

patient risks from patient records. 

Hand et al (2001) and Tan et al (2006) list the various data mining tasks as follows: 

 Exploratory data analysis: Data is represented in some graphical ways such as 

graphs, pie charts, plots, and so on.  

 Descriptive modelling: Data is described using alternative models such as density 

estimation models, or cluster analysis. This explores the nature of the data and 

summarizes underlying relationships between patterns in the data. 

 Predictive modelling: This task is to build a classification and regression model for 

the target variable as a function of the explanatory variables. The POSSUM and 

PPOSSUM systems described in Chapter 2 are examples of such a model. They 

produce patient risks based on logistic regression functions of the physiological 

scores and operative severity scores. 

 Discovering patterns and rules: This task is to detect patterns in the data. For 

example, this task is to find the unknown patterns in a data domain; or to find the 

rules between values for data attributes.  
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 Content retrieval: This task means finding the patterns hidden in the data domain.  

5.2.2. Data Mining Methodology and Criteria  

One perspective on the process of the “knowledge discovery from data” (Hand et al, 2001) 

can be seen in Figure 5.1 below, where the process is described as the following steps: 

(1) Selection step: To obtain the raw data from various sources, and then identify the 

target data of use in the following data mining steps. 

(2) Pre-processing step: Erroneous data may be identified then corrected, or removed. 

For example, missing data values can be supplied. This step can be seen as the data 

cleaning step. Alternatively, filter methods might be used in this step to produce an 

adaptable data set for the user’s requested purposes. 

(3) Transformation step: The pre-processed data is transformed into a more useable 

format in order to be easily used with techniques of the later steps. 

(4) Data mining step: Based on user’s purpose and the tasks being requested, appropriate 

data mining techniques are used on the transformed data set. This step involves the use 

of pattern recognition techniques to produce classifications or clusters or whatever 

alternative outcomes are required. 

(5) Evaluation/Interpretation step: The patterns produced from the data mining step are 

evaluated by standard measurements such as mean square error, confusion matrix, and 

so on. An interpretation method is then applied to produce the meaningful and 

clarified knowledge for the end users.  
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- As there is no second chance now! 

 

Figure 5.1: Overview of a “knowledge discovery from data” process (Hand et al, 2001). 

It is clear from Figure 5.1 that, data mining is a particular step in the “knowledge discovery 

from data” process whereby a set of specific techniques are used to extract patterns from 

the transformed data. 

What Is A Data Mining Methodology? 

A data mining methodology is a system or a strategy for using alternative techniques to 

take raw data to a transformed data set in order to produce knowledge for users.  

What Are Criteria? 

How is the right methodology for a “knowledge discovery from data” process chosen? It 

has to be satisfied the following two main conditions: 

 Adequate: The methodology has to be adequate to the data domain. This ensures 

the techniques can effectively mine the data.  

 Accuracy extractions: The extracting patterns should be accurate and satisfactory 

with user’s requirements. 

Therefore, the criteria for a data mining methodology can be summarized as: 

 Right techniques choices: This means the chosen techniques are appropriate for the 

selected data set. The criterion might be represented by questions such as: Are the 
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techniques suitable for the data domain, or easy to use? For example, in CRISP-DM 

(Shearer, 2000), appropriate models are chosen according to the relationships 

defined by association rules; or in this thesis framework, the supervised techniques 

are used whenever there is a request for risk prediction. 

 Correctness of measurement methods: The use of correct measurement methods 

is another criterion in determining data mining performance. These measures are to 

ensure the classification results are both accurate and trustworthy. Standard 

measures such as mean square error, confusion matrix, sensitivity and specificity 

rates, the positive predictive value, and negative predictive value are used in this 

thesis. 

 Usefulness of end results: The results of data mining process should be meaningful 

for the user’s purposes. For example, the unsupervised classifiers’ results in this 

thesis are shown the internal structure of data in the data domain. 

5.2.3. Examples of Data Mining Methodologies 

There are two popular existing data mining methodologies for the “knowledge discovery 

from data” process (KDNuggets, 2007): CRISP_DM (Shearer, 2000), and SEMMA (SAS, 

2008). CRISP-DM is being developed by an industry led consortium as the CRoss-Industry 

Standard Process Model for Data Mining (see Figure 5.2). It consists of a set of tasks 

described at four levels from general to specific (Chapman et al, 1999). At the top level, the 

data mining process is organized into a number of phases where each phase consists of 

several generic tasks at the second level. The second level includes generic tasks which can 

cover all possible data mining situations such as the process tasks, possible data mining 

applications, and techniques. In the third level, the specialized task shows detailed actions 
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in generic tasks for certain specific situations. For example, if the generic task is a “dealing 

with missing data”, the more detailed tasks in the third level will be a category of 

specialized missing data tasks namely “dealing with missing numeric values”; “dealing 

with missing categorical values”; and so on. The fourth level, as the process instance, is a 

record of the actions, decisions, and results of an actual data mining engagement.  

An example of the use of CRISP-DM methodology is the predictive modelling, association 

rule use, and sequence detection to predict the onset and successful diagnosis of thrombosis 

(Jensen, 2001). 

 

Figure 5.2: The methodology of CRISP-DM (Shearer, 2000). 

SEMMA is a data mining methodology derived from the Statistical Analysis Software 

Institute (SAS, 2008) consisting of the five steps: Sample, Explore, Modify, Model, and 

Assess (SEMMA). All cases from data set are taken and partitioned into the training, 

validation and test sets in the Sample step. The Explore step allows data sets to be 

visualised statistically and graphically. The Modify step allows the transformation of the 

data or deals with missing values in the data set. The Model step requires the fitting of the 
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data mining and machine learning techniques such as decision trees and neural networks. 

Lastly, the Assess step means using alternative partitions of test sets to validate the derived 

model in order to estimate how well the data mining process performs. One of the uses of 

SEMMA methodology is the estimating of a nationwide statistic for hernia operations using 

the claims database of the Korea Health Insurance Cooperation (Kang et al, 2006). The 

claims database was divided into the electronic interchange database (EDI_DB) and the 

sheet database (Paper_DB). SEMMA is used here to produce a predictive model for the 

sheet database. In this database, the operation and management codes were not shown for 

the “facts” and the “kinds” of operations whereas they are shown in the EDI_DB. The 

model predicts potential hernia surgery cases extracted by matching management code 

from the Paper_DB to appropriate records in the EDI_DB.  More detail about the model 

can be seen in (Kang et al, 2006). 

5.2.4. Thesis Methodology 

The data mining methodology adopted for this thesis can be seen in Figure 5.3. This 

methodology is derived from one developed for the teaching of data mining and decision 

systems (Davis, 2007). The following are reasons for using this specific methodology: 

 The existing methodologies are not suitable for the thesis data: As described 

above the CRISP-DM and SEMMA methodologies are too big and too complicated 

for use with the thesis data domain. For example, CRISP-DM contains the 

“Business Understanding” and “Deployment” phases whereas the thesis 

methodology does not. SEMMA includes the task of representing data sets 

statistically and graphically, again not required for the purposes of this thesis.  
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Figure 5.3: A general thesis frame work; based on (Davis, 2007). 

 Demonstrating thesis objectives: This thesis focuses on investigations in the use of 

alternative pattern recognition and data mining techniques in the cardiovascular 

data. Therefore, its objectives concentrates on the demonstrations and evaluations of 

supervised versus unsupervised techniques with the thesis data.  

The thesis methodology can be seen in the following steps: 

 Step 1 (Selection): The data set relevant to the thesis experiments is chosen from 

various sites in the “Standard Databases”.  

 Step 2 (Data Preparation): Data is analysed by using data mining methods in order 

to define how the data is to be made more meaningful and useable for the 

classification techniques used in later steps. For example, data is cleaned by 

supplying missing values; or data is transformed to more appropriate value types 

such as numerical for the use of neural network techniques. 

 Step 3 (Data Task Filter): Whenever a specific data mining task is requested, the 

data set in the “Data Mine Warehouse” is selected. Heuristic decision rules are 
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applied in this step to define expected outcomes for the prediction in later steps. The 

selected data set is then stored in the “Data Mining Task Warehouses”.  

 Step 4 (Data Mining Techniques): In this step, a suitable classifier is chosen with 

an appropriate data set for the task requested in step 3. For example, the clustering 

algorithm KMIX is chosen to fulfil the clustering task requested from the “Data 

Task Filter” step. 

 Step 5 (Comparison/ Evaluation): The classified results are compared or 

evaluated based on standard measures such as mean square error, confusion matrix, 

sensitivity and specificity rates, the positive predictive value, and negative 

predictive value.  

 Step 6 (Building New Models): In some specific circumstances, unsupervised 

clustering results might be used for the next prediction task. This means clustering 

outcomes can be seen as the expected outcomes for the next classification process. 

In this step, clustering results are combined with an appropriate data set to create a 

new model (clustering model). The data set is then stored in the “Data Mine 

Warehouse” for further prediction processes. Other tasks are then repeated from 

step 3 to step 5. 

5.3. Application of Data Mining Methodology 

This section introduces the thesis data collected from the Hull and Dundee sites. The 

analysis of this data, and the detailed preparation data steps for the thesis experiments are 

also shown in this section. 

5.3.1. Cardiovascular Data 
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Hull Site Data 

The data from this site includes 98 attributes and 498 cases of cardiovascular patients. The 

detailed structure of the original data can be seen in Appendix A. The main characteristics 

of the given data are as follows: 

 Redundant attributes: These are the date and time attributes with mostly null 

values; or explanatory attributes; and so on. These attributes bear little relevance to 

the thesis experiments, or the a-priori outcome models. These attributes will be 

eliminated in the selection stage (see detail in “Data Selection Strategy” section). 

 Missing values: The data has 7018 out of 42914 cells (16%) with missing values 

after removing the redundant attributes indicated above. The method of dealing with 

missing values will be shown in “Data Selection Strategy” section. 

 Noisy and inconsistent data: These are abbreviations in categorical attributes and 

outlier values in some numerical attributes. For example, the attribute 

“CAROTID_DISEASE” includes a mixture of abbreviated and fully specified 

values such as “asymptomatic carotid disease”, “Asx”, and so on. In fact, both these 

values have the same meaning. Therefore, these inconsistent entries are harmonised 

as single values. 

 Scoring values: The original data included the physiological score and operative 

severity score values taken from the POSSUM and PPOSSUM systems. 

Furthermore, the data in this site includes enough information for use separately in 

the POSSUM and PPOSSUM calculations. 

The valid or missing value frequencies of some significant attributes can be seen in Table 

5.1. These attributes are labelled as "PATIENT_STATUS"; "Heart Disease”; "Diabetes”; 
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and “Stroke”. These attributes are highlighted in the research of collaborative clinicians 

(Kuhan et al., 2001), as some of the main factors expected to contribute to the outcomes for 

patient risks. 

 Diabetes 

Heart 

Disease Stroke PATIENT_STATUS 

Number Valid 497 497 497 498 

  Missing 1 1 1 0 

Table 5.1: The frequencies of significant attributes in the Hull site data. 

It is clear from Table 5.1 that there is one case (1 out of 498) that includes missing values in 

all the significant attributes except the “PATIENT_STATUS” attribute. However, the 

“PATIENT_STATUS” attribute is the most significant, and this attribute will be the main 

factor for outcome calculations in later chapters. Therefore, this case with some missing 

values will not be eliminated. Its missing values will be filled by the use of data mining 

method (see detail in “Data Selection Strategy” section). 

Dundee Site Data 

This data includes 57 attributes, and 341 cases from cardiovascular patients at the Dundee 

site. The detailed structure of the original data can be seen in Appendix A. This data site 

has similar characteristics to the Hull site such as redundant attributes, missing values, and 

noisy values. The method of data treatments such as elimination of redundant attributes, 

filling the missing data, and so on is based on the strategy indicated in “Data Selection 

Strategy” section below.  The main characteristics can be seen as follows:  

 Redundant attributes: For example, the attribute “ADMISSION_DATE” shows 

patient’s operation date; or the two attributes “Surgeon name1” and “Surgeon 
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name2” represents names of operating doctors. Their values might be helpful in a 

general evaluation, but offer little relevance to the specific purposes of this thesis. 

 Missing values: The data includes 1912 output of 12311 cells with missing values 

(16%) after deletion of the above redundant attributes. 

 Noisy and inconsistent data: As an example of numerical outlier values, the 

attribute "PACK YRS" has a big gap between the maximum value of 160, and the 

minimum value of 2. This affects the transformation process as it unduly changes 

the mean of the attribute values. 

 Scoring values: The site does not include the scored values (physiological score, 

and operative severity score) from the POSSUM and PPOSSUM systems. 

Furthermore, the data in this site is insufficient to use with the scoring systems of 

POSSUM and PPOSSUM, as it lacks information for these systems’ variables. 

To complete a similar analysis, as with the Hull site, the valid or missing value frequencies 

for some significant attributes can be seen in Tables 5.2 below. 

 30 D stroke/death 

Heart 

Disease Diabetes Stroke 

N Valid 341 334 341 340 

  Missing 0 7 0 1 

Table 5.2: The frequencies of the significant attributes for the Dundee site. 

Table 5.2 shows that the attribute “Heart Disease” has 7 missing values whereas there is 

only one missing value for the “Stroke” attribute. The method of dealing with missing 

values is identical to the method indicated for the Hull site. 

5.3.2. Thesis Experimental Steps 
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The detailed steps of the thesis methodology can be redrawn as shown in Figure 5.4. The 

process flow and individual steps in Figure 5.4 can be illustrated in detail as follows: 

 Step 1 (Selection): A data set is selected from one or both of the Hull and Dundee 

sites, and stored in the “Data Warehouse”. Note that data from both sites were 

collected and stored in various (Excel) computer files in earlier studies. The data 

here is understood as “Raw data” in the “knowledge discovery from data” process. 

Therefore, the other process steps such as pre-processing and transformation steps 

are needed.  

Alternatively, a selection of the data set derived from the Hull site is stored in the 

“POSSUM, PPOSSUM Data Warehouse” for use with the POSSUM and PPOSSUM 

systems. The risk results are selected and combined with an appropriate data set in the 

Hull site. This combined data set is then used to produce the scoring risk models for use 

in the later steps. 

 Step 2 (Clean/Transform/Filter): Data is cleaned and transformed by using the 

appropriate data mining methods as detailed in the “Data Preparation Strategy” 

section below. Alternative models are then built. Note that the term model here 

means the filtering data set (from the filtering task) derived from the use of heuristic 

clinical decision rules. The three types of models introduced in Chapter 6 are:  

o Clinical Models: These are based on the decision rules of significant 

attributes in the data domain. For example, the clinical models CM3a, 

CM3b, CM4a, and CM4b, are based on significant attributes derived from 

clinical advice (Kuhan et al, 2001). 
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Figure 5.4: The detailed steps for the thesis experiments. 

o Scoring Risk Models: These are built from the POSSUM and PPOSSUM 

systems results, to produce the Mortality, Morbidity, or Death rate models.  

o Clustering Models: These are derived from the results of applying the 

clustering algorithms (if step 5 is required). 

 Step 3 (Data Mining Techniques): Depending on the purpose of the classification 

or clustering task, this step is to choose appropriate pattern recognition and data 

mining techniques. They can be divided into supervised and the unsupervised 

methods. From this point, the appropriately formatted data set is then selected and 

stored in the “Unsupervised Data Warehouse” or “Supervised Data Warehouse” 

according to the technique chosen. The unsupervised techniques contain self 
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organizing maps, KMIX, and WKMIX (see detail in Chapter 4 and Chapter 8) 

whereas the supervised techniques include multilayer perceptron, radial basic 

function, and support vector machine (see detail in Chapter 4). Note that the mutual 

information feature selection method (described in Chapter 8) might be used here to 

measure the significance of data attributes to the outcome classes. 

 Step 4 (Compared/ Evaluation): All results of the unsupervised or supervised 

techniques are evaluated by one or more of the standard measures as indicated 

above. 

 Step 5 (Building New Models): This step might be used if the unsupervised 

classifiers’ outcomes become the expected outcomes for new risk prediction 

models. A new classification process starting from step 3 is then created. 

5.3.3. Data Preparation Strategy  

In data mining methodologies, the preparation of data is an important task. The careful 

preparation of the data contributes heavily to the success in applying data mining 

classifiers. From the specific steps for all experiments, as indicated in Figure 5.4, a strategy 

for preparing data in each stage can be seen as follows: 

Data Selection Stage  

In this stage, the attribute set is selected by eliminating redundant and irrelevant attributes. 

For example, the attribute “Theatre session date” in the Hull site, reflecting the operation 

date for patients, is not relevant to any of data mining tasks here. Therefore, it can be 

eliminated. The “empty attributes”, such as “LOWEST_BP”, which represents the lowest 

blood pressure measurements during an operation, contain mostly null values. As almost of 

its values are null except for four entries (see Table 5.3), such attributes are best removed. 
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By the use of this method, the attributes in the Hull site are reduced from 98 (original) 

attributes to 86 "meaningful" attributes. Similarly, the original 57 attributes in the Dundee 

site are reduced to 36 "meaningful" attributes. 

 LOWEST_BP 

N Valid 4 

  Missing 494 

Table 5.3: The frequencies of LOWEST_BP attribute in the Hull site. 

Data Cleaning Stage  

The most significant work in this stage is dealing with missing data values. There are many 

methods to deal with missing data values such as linear regression, decision tree 

computation, standard deviation, mean-mode method, and so on. The detail for each 

method except the mean-mode is not described here. Detail of these methods can be seen in 

Pyle (1999) and Han and Kamber (2001). The mean-mode method, for each type of 

attribute, can be seen as follows: 

o Numerical attributes: Fill missing values by the mean of the “non-missing” 

values (Pyle, 1999).  

o Categorical attributes: Fill missing values by the mode (Han and Kamber, 

2001). This is the maximum of frequency of the “non-missing” categorical 

values for the attribute. 

o Boolean attributes: The missing values here can be treated as for 

categorical attributes. This means missing values are filled by the mode of 

the attribute. 

For example, Table 5.4 shows the rates of missing values in both the Hull and Dundee sites.  
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Attribute Name 

  

Descriptions 

  

Type 

  

% Missing Values 

Hull Site 

Dundee 

Site 

Heart disease Any heart disease Boolean 

 1/498 

(0.002%) 

7/341 

(2.05%) 

ECG  Electrocardiogram Categorical  0 

16/341 

(4.69%) 

Blood loss  Blood loss in operation Continuous 

 8/498 

(0.016%) 

243/341 

(71.26%) 

Table 5.4: The  missing values rates  of some attributes for both the Hull and Dundee sites. 

The missing values for the “Heart disease” attribute in both sites will be filled by the mode 

valued “N” (see Table 5.5). The missing values for “ECG” in the Dundee site (16 out of 

341 cases - see in Table 5.4) will be replaced by the mode valued “Normal”, and the 

missing values for the continuous attribute of “Blood loss”  will be filled by the mean value 

of 317 (for the Hull site) and 213.17 (for the Dundee site). 

Attribute Name 

  

Mean/Mode 

Hull Site 

Dundee 

Site 

Heart disease N (295/498) N(255/341) 

ECG 

Normal 

(338/498) 

Normal 

(233/341) 

Blood loss 317 213.17 

Table 5.5: The mean/mode values  of some attributes for both the Hull and Dundee sites. 

Data Transformation Stage 

This step concentrates on the transformation from various attribute types to appropriate 

formatted types for the use with the selected data mining techniques. Three transformation 

types are: 
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o Numerical attributes: Continuous attribute values are rescaled into the 

range of [0, 1] with a linear normalisation formula. It is given by: 

New value = (original value - minimum value)/(maximum value - minimum value). 

For example, Table 5.6 shows the descriptive statistics for the continuous “Age” attribute in 

the Hull site.  

 N Minimum Maximum Mean 

Std. 

Deviation 

AGE 498 38 93 67.96 7.958 

 

Table 5.6: The descriptive statistics of Age attribute for the Hull site. 

The new values in this attribute are rescaled in to the range of [0,1]  by applying the above 

formula as follows: 

New value = (original value - 38)/55. 

o Boolean attributes: Boolean values are transformed (from T or F, Yes or 

No, etc.) to values of 0 or 1. 

o Categorical attributes: The categorical values are transformed whenever 

there is a request for numerical transformation for the data mining 

techniques. Two phases of this transformation are: Firstly, categorical values 

are transformed to special discrete values of “Normal” and “Abnormal” in 

term of the medical signal. Then, these are transformed in to numerical 

Boolean values of 0 or 1. Note that the value of “Normal” here can stand for 

the values of “No”, “None”, or “Normal” etc. in the attribute. Conversely, 

the value of “Abnormal” stands for all the other medical symptoms. 

This transformation is based on the specific characteristics of the data domain, and derived 

from the advice of medical experts (Kuhan et al, 2003). For example, the transformation 
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method is applied to the categorical attribute of ECG in both Hull and Dundee site data. 

This attribute in the Dundee site contains 3 values of “Normal”; “A-fib<90”; and “other”. 

However, it includes 8 separate values in the Hull site. They are: ">=5 etopics/min"; "Afib 

60-90"; "A-fib <90"; "Normal"; "other"; "other abnormal rhythm"; "Qwaves"; and "ST/T 

wave changes". Obviously, the value of “other” has a different meaning in the Dundee and 

the Hull sites. Therefore, to be consistent across the data domain for both sites, the attribute 

ECG will be transformed into two discrete categorical values of “Normal” and “Abnormal”. 

The value of “Normal” stands for all values as “Normal” in both sites; the value of 

“Abnormal” stands for the rest. These values of “Normal” and “Abnormal” are then 

transformed to numerical Boolean values of 0 or 1 respectively.  

Additionally, there is another reason for the use of the above categorical transformation for 

this data domain. This transformation might help to reduce the nodes in the input layer in a 

neural network topology. This helps to reduce the complexity of a neural network process. 

For example, the clinical model CM1 (detailed structure can be seen in section C.5.1 in 

Appendix C), contains a set of 24 input attributes and 839 cases derived from both the Hull 

and Dundee sites. Assume that all the data needs to be presented as numerical data. 

Therefore, the categorical values have to be transformed into numerical ones. Alternatively 

assume that the categorical attribute is transformed into binary sub-attributes, where each 

sub-attribute represents an individual value in the original one. Therefore, as indicated 

above the ECG attribute needs 9 binary sub-attributes (3 binary sub-attributes for the 

Dundee site and 8 binary sub-attributes for the Hull site). Similarly, the 

CAROTID_DISEASE attribute needs 15 binary sub-attributes; the ARRHYTHMIA attribute 

needs 4 binary sub-attributes; the CCF attribute needs 4 binary sub-attributes; the PATCH 

attribute needs 9 binary sub-attributes; and the RESPIRATORY attribute needs 4 binary sub-
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attributes. Obviously, CM1 now has 63 input-attributes instead of 24. Therefore, the 

network topology is more complicated and needs a greater sized data population to run any 

experiment than the one with only 24 input nodes and 839 cases.  

Data Filtering Stage 

In this step, the use of alternative decision rules is applied to identify expected risks for 

individual patients before using the classification techniques. Note that these rules are 

based on clinician’s advice (Kuhan et al, 2001), or the result from other classification 

processes (e.g the POSSUM, the PPOSSUM, or unsupervised clustering algorithms).  

o Supervised Filtering task: The data set in the “Supervised Data 

Warehouse” is taken from the “Decision Rule Warehouse”, but with a 

labelled a-priori outcome, for use with supervised techniques such as 

multilayer perceptron, radial basis function, and support vector machine.. 

For example, the clinical model CM3aD in the Case Study II in Chapter 6 contained 16 

inputs and 1 output attribute, and has two levels of risk derived from heuristic decision 

rules. These rules are based on clinician’s advice on the attributes “PATIENT STATUS” 

and “COMBINE” as follows: 

(PATIENT STATUS, COMBINE) = 0  “Low risk” 

(PATIENT STATUS, COMBINE)  1 ”High risk”. 

Therefore, the model outcome set contains 284 “Low risk”, and 57 “High risk” patterns 

(see Table 5.7). 

 Frequency % 

Valid 

Percent 

Valid High risk 57 16.7 16.7 

Low risk 284 83.3 83.3 

Total 341 100.0 100.0 
 

Table 5.7: The frequency of outcome for the clinical model CM3aD. 
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o Unsupervised Filtering task: Similarly, the data set is taken from the 

“Decision Rule Warehouse” without the expected outcome attribute. This set 

is then stored in the “Unsupervised Data Warehouse”. Appropriate 

unsupervised techniques such as the self organizing maps and clustering 

algorithms of KMIX and WKMIX are applied to give outcome labels. 

For example, model CM3aD in the Case Study IV in Chapter 6, taken from  “Unsupervised 

Data Warehouse”, contains 341 cases and 16 inputs after eliminating the outcome for 

applying KMIX clustering algorithm (see detail in the Case Study IV in Chapter 6). The 

same decision rules as in the Case Study II in Chapter 6 are applied for evaluating the 

clustering outcome results.  

5.3.4. Explanatory Case Studies 

This section describes the use of the general thesis methodology for three typical thesis case 

study experiments. The detail of data preparation and experimental steps for each case 

study can be seen in Appendix C. 

POSSUM and PPOSSUM Classifiers 

This section describes how the Case Study I in Chapter 6 fits with the thesis methodology. 

 Step 1 (Selection): A selection of data set derived from the Hull site contains 3 

attributes and 498 cases. The data is formatted to use with the POSSUM and 

PPOSSUM systems. 

 Step 2 (Clean/Transform/Filter): This step is ignored, because the data is already 

clean and ready to be used with the POSSUM/ PPOSSUM formulas. 

 Step 3 (POSSUM and PPOSSUM calculations): Data is used with the POSSUM 

and PPOSSUM formulas (Equations 2.1, 2.2, and 2.3 in Chapter 2) to calculate 
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Mortality, Morbidity, and Death rate risk scores. The patient risk scores are divided 

into various groups ranging from 0% to 100%. For example, a group of the range 

from 0% to 10% shows the patients, whose risk scores are in this range. The 

averaged risk score for each group is also calculated. The predicted numbers of 

Mortality, Morbidity, and Death rate for each group are then produced. 

 Step 4 (Compared/ Evaluation): The performances of the POSSUM and 

PPOSSUM classifiers are evaluated based on comparisons between predicted 

numbers of Mortality, or Morbidity, or Death rate and the actual outcome in each 

group and overall across all groups. 

 Step 5 (Building New Models): Individual categorical risk is generated based on 

the average value of the overall risk scores. The risk category contains two levels of 

risk (“High risk” and “Low risk”) depended on the higher or smaller of threshold 

value (average value of overall risk scores). For example, assume that the average of 

the “Death rate” risk scores is 25.18%; this then defines a threshold. The individual 

outcome risk is “High risk” if the individual risk score is higher than this threshold. 

Otherwise, the individual outcome risk is “Low risk”. These categorical risk results 

are then selected and combined with an appropriate data set derived from the Hull 

site. This data set is then stored in the “Data Warehouse” to produce scoring risk 

models used in later experiment. 

Supervised Classifiers 

This section describes the use of the thesis methodology for model CM3aD of the Case 

Study II in Chapter 6.  
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 Step 1 (Selection): The data set is selected from the Dundee site with 18 attributes, 

and 341 cases. 

 Step 2 (Clean/Transform/Filter):  

o Cleaning task: The missing values are filled using the following methods: 

Numerical missing values are replaced by the mean of the “non-missing” 

numerical values; categorical missing values are replaced by the mode of 

"non-missing” categorical values; and Boolean missing values are filled by 

the mode of "non-missing” Boolean values.  

o Transformation task: The experiment requires all numerical data. 

Therefore, three transformation methods as indicated in the “Data 

Preparation Strategy” section are used. 

o Filtering task: The heuristic decision rules are based on two attributes of 

“PATIENT STATUS” and “COMBINE” as follows:  

(PATIENT STATUS, COMBINE) = 0  “Low risk” 

(PATIENT STATUS, COMBINE)  1 ”High risk” 

 Step 3 (Data Mining Techniques): The techniques used in this step are: multilayer 

perceptron; radial basis function; and support vector machine. The WEKA software 

package (WEKA, 2005) is used for this. For example, the multilayer perceptron 

technique, described in the Case Study II in Chapter 6, is used with a 16-0-1 

topology (16 input nodes, 0 hidden nodes, and 1 output -2 class nodes). Alternative 

parameters are used with this topology such as changing the number of cycles, or 

learning rates. These changes are used to compare performance. The data is split 

into a training set of 90% of population, and the rest is for a test set (10%). A 10-

fold cross-validation method is used. 
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 Step 4 (Comparison/ Evaluation): Standard measurements such mean square 

error, confusion matrix, sensitivity and specificity rates, positive predictive value, 

and negative predictive value are used to evaluate the classification results. 

Unsupervised Classifiers 

The last example here is an analysis of how thesis methodology fits to the unsupervised 

experiments with two clinical models of CM3aD, and CM3bD (Case Study IV in Chapter 

6). 

 Step 1 (Selection): The data set is selected from the Dundee site with 18 attributes, 

and 341 cases. 

 Step 2 (Clean/Transform/Filter):  

o Cleaning task: Missing values are filled using the same method as in the 

previous section.  

o Transformation task: This task requires only numerical attributes. Hence, 

the continuous data is rescaled into the range of [0, 1] using the linear 

equation as indicated above. The other (categorical and Boolean) attributes 

are ignored in this step.  

o Filtering task: The following heuristic decision rules are applied based on 

the two attributes “PATIENT STATUS” and “COMBINE”. The model 

CM3aD has two levels of risks (“High risk”, “Low risk”) as given by: 

(PATIENT STATUS, COMBINE) = 0  “Low risk” 

(PATIENT STATUS, COMBINE)  1 ”High risk” 

The model CM3bD has three levels of risks (“High risk”, “Medium risk”, “Low 

Risk”) as given by: 
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(PATIENT STATUS, COMBINE) = 0 “Low risk” 

(PATIENT STATUS, COMBINE) = 1 ”Medium risk” 

(PATIENT STATUS, COMBINE) = 2 ”High risk” 

 Step 3 (Data Mining Techniques): The clustering algorithm KMIX is used in this 

step with both models without the expected outputs indicated above. The number of 

required clusters is 2 and 3 according to the model CM3aD and CM3bD 

respectively. 

 Step 4 (Compared/ Evaluation): The clustering results are compared to the 

expected outcomes defined in step 2 by using standard measures such as confusion 

matrix, sensitivity, specificity rates, and so on.  

 Step 5 (Building Clustering Models): The new clustering models of CM3aDC and 

CM3bDC are built based on the KMIX results. This means the input set is the same 

as in the models of CM3aD and CM3bD. However, these new models’ outcomes 

are derived from the KMIX results. Both new models, CM3aDC and CM3bDC, are 

then applied again from step 3 in the thesis framework. A new process is created for 

a request for the use of supervised neural network techniques. The results are then 

measured and evaluated with standard measures. 

5.4. Summary 

Data mining is a particular set of steps in the framework of the “knowledge discovery from 

data” process. Alternative views of the definition of data mining are shown in order to 

produce the definition of a data mining methodology. The data mining methodology 

selection criteria are discussed in order to provide a general view about the thesis 

methodology. Additionally, the popular existing data mining methodologies of CRISP-DM 

and SEMMA are discussed to show the motivation for producing a thesis specific 
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methodology. A data mining methodology is derived from Davis (2007). The illustration of 

the thesis methodology shows the experimental framework for the thesis. The analysis of 

data from both the Hull and Dundee sites and some detailed examples of data preparation 

strategy is shown as an application of applying data mining methodology for this thesis. 

Furthermore, three typical thesis case studies demonstrate the fitting of the thesis 

methodology for the data domain used in this thesis. The data from both sites will be used 

partially or fully in different case studies and the thesis experiments in later chapters. 
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Chapter 6  

Experimental Models and Case Studies 

6.1. Introduction 

This chapter defines the set of main variables selected from the data domain. These 

variables are significant in defining the inputs for alternative experimental models in the 

thesis. Note that the term model here means the filtering data set that is ready formatted for 

use with alternative pattern recognition and data mining techniques. Two types of 

experimental models are introduced in this chapter: clinical models and scoring risk 

models. The input set of the a-priori (clinical) models are based on common attributes of 

both the Hull and Dundee sites and significant attributes derived from Kuhan et al (2001). 

The input set of scoring risk models are based on main variables derived from Copeland et 

al (1991) and the POSSUM and PPOSSUM systems. The expected (and alternative) 

outcomes for these models are inferred from heuristic rules based on two attributes 

“PATIENT STATUS” and “30D stroke/death”. These outcomes are divided into categorical 

levels of risks, such as “High risk”, “Medium risk”, “Low risk”, and so on. 

This chapter also discusses the thesis case studies. The POSSUM and PPOSSUM, and 

pattern recognition (supervised and unsupervised) techniques are applied with alternative 

models and the thesis data in these case studies. 

6.2. Main Variables for Risk Prediction Models 
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According to Kuhan et al (2001), the significant cardiovascular factors identified by logistic 

regression analysis can be seen in Table 6.1. It is clear that the results in Table 6.1 show the 

good relationship between three risk factors to the cardiovascular outcomes as all the 

regression coefficients (parameter estimate) are positive and the significant levels (P 

values) are less than 0.05 (95 % of confidence interval). For example, the regression 

coefficient of “Heart disease” factor of 0.992 and its standard deviation error of 0.402 with 

the significant level of 98.6% (P value of 0.014) means this factor strongly influences to the 

outcome for cardiovascular models. These attributes (Heart disease, Diabetes, and Stroke) 

are the main factors for the outcome calculations for the thesis models.  

Risk Factor Parameter Estimate Standard error P 

Heart disease 0.992 0.402 0.014 

Diabetes 0.996 0.450 0.027 

Stroke 0.827 0.394 0.036 

Table 6.1: Significant risk factors in cardiovascular models (Kuhan et al, 2001). 

The significant variables taken from the given data from both the Hull and Dundee sites can 

be seen in Table 6.2. They are selected using the advice of a clinician expert in the 

cardiovascular area (Kuhan et al, 2001). Some of these variables are in the 12 physiological 

and 6 operative factors described in Chapter 2 (for example, “Age”, “ECG”, “Blood loss”, 

and “Duration”). Additionally, some of the variables in Table 6.2 are signal symptoms in 

the POSSUM and PPOSSUM systems. For example, the variable “RESP-problem” 

(Respiratory) here is derived from “Respiratory signs” in the POSSUM system; and the 

variable “Hypertension” is derived from “Systolic blood pressure”. 

It is clear from Table 6.2 that overall the number of missing values for the Dundee site is 

greater than for the Hull site. For example, the rate of missing values of “Blood loss” 
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attribute in the Hull site is negligible (8 per 498) whereas the rate of missing values in this 

attribute in the Dundee site is over two-thirds (243 per 341 - 71.26%). 

Attribute Name 

  

Descriptions 

  

Type 

  

% Missing Values 

Hull Site 

Dundee 

Site 

Age Patient Age Continuous  0 0  

Sex Patient gender Boolean  0 0  

Heart disease Any heart disease Boolean 

 1/498 

(0.002%) 

7/341 

(2.05%) 

Diabetes Diabetes disease Boolean 

 1/498 

(0.002%) 

1/341 

(0.29%) 

Stroke Signal of stroke Boolean 

 1/498 

(0.002%) 0 

Side Side of operation Boolean  0 0  

RESP-problems Respiratory disease 

Categorical- 

discrete  0 

14/341 

(4.11%) 

Renal failure Renal failure  Boolean  0 

6/341 

(1.76%) 

ASA grade 

Grade of Acetyl Salicylic 

Acid
 

Discrete  0 

37/341 

(10.85%) 

Hypertension  Hypertension symptom Boolean  0 

6/341 

(1.76%) 

ECG  Electrocardiogram Categorical  0 

16/341 

(4.69%) 

Duration  Duration of operation Continuous  0 0  

Blood loss  Blood loss in operation Continuous 

 8/498 

(0.016%) 

243/341 

(71.26%) 

Shunt  Shunt Boolean  0 

5/341 

(1.47%) 

Patch  Patch Categorical  0 

10/341 

(2.93%) 

CABG 

Coronary Artery Bypass 

Graft surgery Boolean  0 

8/341 

(2.35%) 

Table 6.2: Statistical analysis of main variables. 
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6.3. Clinical Risk Prediction Models 

This section presents alternative risk prediction models for the experiments in this thesis. 

CM1 is the base model. Model CM2 is derived from the model CM1 (same input attributes) 

with a different outcome. The models CM3a, CM3b and CM4a, CM4b are derived from the 

models of CM1, and CM2 with a smaller set of attributes and alternative outcomes. 

6.3.1. Clinical Model 1 (CM1) 

The data structure here includes 25 attributes (24 inputs and 1 attributes used for the 

outcome calculation) and 839 cases. Its inputs are common attributes derived from the Hull 

and Dundee sites. The data is a combination of both these sites (498 cases of the Hull site 

and 341 cases of the Dundee site). The data structure and its summary can be seen in Table 

6.3.  

Note that the column of “Missing values” shows the number of missing values for each 

attributes. The column of “Max Freq/Mean” shows the maximum frequency values of 

either categorical or Boolean attributes, or the mean value of numerical attributes 

respectively. These values will be used as the replacements for missing values as indicated 

the “Data Preparation Strategy” section in Chapter 5. For example, the attribute 

“ANGINA” has 12 missing values. The mode value of this attribute is “N” (570 from 839). 

Hence, missing values will be replaced by the value of “N”. The number of missing values 

in the numerical attribute of “DURATION” (72) is filled by the mean of “non-missing” 

values (1.57). Note that attribute “COMP_GROUP” in Table 6.3 contains a large number of 

missing values (605/839). Therefore, this attribute is eliminated. 

The expected risks of this model are calculated based on "PATIENT_STATUS" as follows: 
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IF    PATIENT_STATUS = “Dead”        “High risk” 

Otherwise,                                               “Low risk”. 

Attribute name 

Attribute 

type 

Missing 

values Attribute values Max Freq/Mean 

PATIENT_STATUS Boolean 0 Alive/Dead 713 (Alive) 

AGE Continuous 0 [38,93] 67.99 

ANGINA Boolean 12 Y/N/Null 570 (N) 

ARRHYTHMIA Categorical 8 

none/A-Fib<90/min/A-Fib 

<90/Null/Other 792 (None) 

ASPIRIN Boolean 166 Y/N/Null 648 (Y) 

ASA_GRADE Continuous 38 [1,4] 2.24 

BLOOD_LOSS Continuous 252 [0,2000] 300.45 

CABG_PLASTY Boolean 9 Y/N/Null 778 (N) 

CAROTID_DISEASE Categorical 2 N/A 303 (TIA) 

CCF Categorical 9 

<1/12/ 

>1/12/None/Null/Yes 803 (None) 

COMP_GROUP Categorical 605 N/A (removed) N/A 

D Boolean 1 Y/N/Null 748 (N) 

DURATION Continuous 72 [0.7-5] 1.57 

ECG Categorical 33 

Normal/Null/other abnormal/Q 

wave/ST/A-Fib<<90/and so on 571 (Normal) 

HD Boolean 1 Y/N/Null 550 (N) 

HYPERTENSION Boolean 7 Y/N/Null 449 (N) 

Smoking Boolean 0 Y/N 787 (Y) 

PATCH Categorical 253 

PTFE/Dacron/Vein/Other 

Vein/Stent 

171 (PTFE- 170/341-

Dundee site); 185 (Dacron 

-185/499 - Hull site) 

RENAL_FAILURE Boolean 7 Y/N/Null 820 (N) 

RESPIRATORY Categorical 16 

Normal/Mild COAD/Mod 

COAD/Severe COAD/Null 711 (Normal) 

SEX Boolean 0 M/F 507 (M) 

SHUNT Boolean 14 Y/N/Null 501 (Y) 

St Boolean 1 Y/N/Null 565 (N) 

WARFARIN Boolean 5 Y/N/Null 809 (N) 

R1-A SIDE Boolean 0 Left/Right  458 (left) 

Table 6.3: The CM1 and CM2 data structure and summary. 

6.3.2. Clinical Model 2 (CM2) 
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This model has the same input attribute set as the model CM1 (as given in Table 6.3). 

However, the expected risk is calculated from the two attributes of "PATIENT_STATUS” 

and “30D stroke/death”. Assume that the attribute “PATIENT_STATUS” is assigned as 

“Attr1”, and the attribute of “30D stroke/death” is assigned as “Attr2”. The expected risks 

are given by: 

IF    Attr1 = “Dead”  Or Attr2 = “Y”      “High risk” 

Otherwise,                                              “Low risk” 

6.3.3. Clinical Model 3a (CM3a) 

This model includes 18 attributes; containing 16 attributes used for inputs and the rest used 

for the expected outcome calculation. The number of model cases is 839 derived from the 

Hull and Dundee sites. The data structure and its summary can be seen in Table 6.4. The 

expected outcome is based on the attributes of “PATIENT_STATUS” (Attr1), and “30D 

stroke/death” (Attr2); and is given by: 

IF   Attr1 = ”Dead” Or Attr2 = “Y”  “High risk” 

Otherwise,                                          “Low risk” 

6.3.4. Clinical Model 3b (CM3b) 

This model has the same structure as in model CM3a (see in Table 6.4). However, the 

expected outcomes contain alternative categorical values labelled as “Very High risk”; 

“High risk”, “Medium risk”, and “Low risk”. These values are based on attributes 

“PATIENT STATUS” (Attr1), and “30D stroke/death” (Attr2).  

IF Attr1 = "Dead" AND Attr2 = "Y"   "Very High risk" 

Else IF Attr1 = "Dead"                       "High risk" 

                Else IF Attr2 = "Y"                                     "Medium risk" 

        Other wise,                                  "Low risk" 
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Attribute name 

Attribute 

type 

Missing 

values Attribute values Max Freq/Mean 

PATIENT_STATUS Boolean 0 Alive/Dead 713 (Alive) 

30D stroke/death Boolean 0 Y/N 806 (N) 

AGE Continuous 0 [38,93] 67.99 

ASA_GRADE Continuous 38 [1,4] 2.24/0.46 

BLOOD_LOSS Continuous 252 [0,2000] 300.45 

CABG_PLASTY Boolean 9 Y/N/Null 778(N) 

D Boolean 1 Y/N/Null 748(N) 

DURATION Continuous 72 [0.7-5] 1.57 

ECG Categorical 33 

Normal/Null/other 

abnormal/Q-wave/ 

ST/A-Fib<<90/; so on 571 (Normal) 

HD Boolean 1 Y/N/Null 550 (N) 

HYPERTENSION Boolean 7 Y/N/Null 449(N) 

PATCH Categorical 253 
PTFE/Dacron/Vein/ 

OtherVein /Stent 

171/341 PTFE-

Dundee; 185/499-

Dacron -Hull 

RENAL_FAILURE Boolean 7 Y/N/Null 820 (N) 

RESPIRATORY Categorical 16 

Normal/MildCOAD/ 

ModCOAD/Severe 

COAD/Null 711 (Normal) 

SEX Boolean 0 M/F 507 (M) 

SHUNT Boolean 14 Y/N/Null 501 (Y) 

St Boolean 1 Y/N/Null 565 (N) 

R1-A SIDE Boolean 0 Left/Right  458 (left) 

Table 6.4: CM3a and CM3b data structure and summary. 

6.3.5. Clinical Model 4a (CM4a) 

This model includes 16 attributes (14 attributes used for inputs and 2 attributes used for the 

expected outcome calculation) and 839 patient records derived from the Hull and Dundee 

sites. The data structure and its summary can be seen in Table 6.5. 

 The expected outcomes are the same as model CM3a outcomes. They are given by: 

IF Attr1 =”Dead” Or Attr2= “Y”  “High risk” 
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Otherwise,                                        “Low risk” 

 

Attribute name 

Attribute 

type 

Missing 

values Attribute values 

Max 

Freq/Mean/Stdev 

PATIENT_STATUS Boolean 0 Alive/Dead 713 (Alive) 

30D stroke/death Boolean 0 Y/N 806 (N) 

AGE Continuous 0 [38,93] 67.99 

ASA_GRADE Continuous 38 [1,4] 2.24/0.46 

D Boolean 1 Y/N/Null 748(N) 

HD Boolean 1 Y/N/Null 550 (N) 

HYPERTENSION Boolean 7 Y/N/Null 449(N) 

PATCH Categorical 253 
PTFE/Dacron/Vein/Other 

Vein/Stent 

171/341-PTFE -Dundee; 

185/499 -Dacron - Hull 

site 

RENAL_FAILURE Boolean 7 Y/N/Null 820 (N) 

RESPIRATORY Categorical 16 
Normal/Mild COAD/Mod 

COAD/Severe COAD/Null 711 (Normal) 

SEX Boolean 0 M/F 507 (M) 

SHUNT Boolean 14 Y/N/Null 501 (Y) 

St Boolean 1 Y/N/Null 565 (N) 

R1-A SIDE Boolean 0 Left/Right   

CONS Categorical 0 1;2;3;4;5 383 (4) 

Vascular Unit Categorical 0 1;2 498 (2) 

Table 6.5: CM4a and CM4b data structure and summary. 

6.3.6. Clinical Model 4b (CM4b) 

The data structure for this model is the same as in the model CM4a (see Table 6.5). 

However, the expected outcomes are the same as model CM3b outcomes.  

They are given by: 

IF Attr1 = "Dead" AND Attr2 = "Y"       "Very High risk" 

Else IF Attr1 = "Dead"                           "High risk" 

                                Else IF  Attr2 = "Y"                        "Medium risk" 

              Other wise,                               "Low risk" 

6.4. Scoring Risk Models 
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The data for these models is selected from the Hull site and the POSSUM and PPOSSUM 

classified results. Three scoring risk models are introduced as: Mortality, Morbidity, and 

Death rate. These models share the same structure (in Table 6.6) with 498 and 22 input 

attributes.  

Attribute name 

Attribute 

type 

Missing 

values Attribute values 

Max 

Freq/Mean 

PhysiolScore Continuous 0 [12,41] 20.37 

OpSevScore Continuous 0 [13,23] 14.29 

AGE Continuous 0 [38,93] 67.99 

RESPIRATORY Categorical 1 

Normal/MildCOAD/Mo

dCOAD/ Severe 

COAD/Null 431(Normal) 

WARFARIN Boolean 2 Y/N/Null 474(N) 

RESP_SYSTEM Categorical 1 

Limiting SOB/No SOB/ 

Null/SOB at rest/ SOB in 

exertion 468 (No SOB) 

BP Continuous 21 [90,220] 151.9 

PULSE Continuous 23 [42,110] 74 

JVP Boolean 2 N 495(N) 

WCC Continuous 10 [4, 24.3] 7.67 

HAEMOGLOBIN(Hb) Continuous 10 [7.7,18.2] 13.9 

UREA Continuous 8 [2.1, 17.2] 6.34 

SODIUM(Na) Continuous 11 [122, 146] 138.5 

POTASSIUM(Ka) Continuous 9 [3, 5.6] 4.3 

ECG Categorical 16 

≥5 ectopics/min; Afib 60-

90; Normal; Null; Other 

abnormal; Q waves; ST/T 

Wave change 338 (Normal) 

GCS(Coma Score) Continuous 1 [15] 15 

URGENCY Categorical 1 

Elective; Scheduled 

urgent 497(Elective) 

BLOOD_LOSS Continuous 8 [100, 1800] 318 

NO_PROCS 

Discrete 

number 59 [1; 2; 3] 418 (1) 

OP_SEVERITY Categorical 0 Major Plus 

497 (Major 

Plus) 

MALIGNANCY Categorical 0 None 497 (None) 

PERI_SOILING Categorical 0 None 497 (None) 

Table 6.6: Scoring risk models’ input structure and summary. 
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There is a special pattern in this model with almost null values except the scoring values. 

This case will be eliminated in other models. The expected outcomes for these models can 

be seen in Table 6.7. These outcomes are calculated upon the comparison between the 

appropriate POSSUM and PPOSSUM outcome values (Mortality, Morbidity, and Death 

rate) and their threshold values. Note that the threshold value here means the average value 

(mean) of overall risk scores in the appropriate POSSUM and PPOSSUM outcomes. 

Models Outcome 

Mortality model 

 The risk is based on the mean value of “Mortality outcome 

values” (MortV) 

IF MortV >= mean      “High risk” 

Otherwise,                    “Low risk” 

Morbidity model 

The risk is based on the mean value of “Morbidity outcome 

values” (MorbV). 

IF MorbV >= mean      “High risk” 

Otherwise,                     “Low risk 

Death Rate model 

The risk is based on the mean value of “Death rate outcome 

values” (DR). 

IF DR >= mean         “High risk” 

Otherwise,                 “Low risk 

Table 6.7: Outcome calculations for the scoring risk models. 

6.5. Thesis Case Studies 

6.5.1. Case Study I 

This section discusses the use of POSSUM and PPOSSUM with cardiovascular data 

derived from the Hull clinical site. The mortality and morbidity risks are calculated for each 

patient. The individual risk predictions are grouped into alternative bands from 0-100%. 
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The ratios between predicted deaths and actual deaths for each group and overall are 

discussed. The aim of this study is to analyse and discuss the POSSUM and the PPOSSUM 

classifications; the detailed steps for this experiment can be seen in section C.1 in Appendix 

C. 

Data 

The experimental data set contains 3 attributes and 498 cases. Note that two of the three 

attributes are the clinician generated physiological score (PS) and the operative severity 

score (OS). A statistical analysis in terms of these scores can be seen in Table 6.8. The 

minimum scores of the PS and the OS are nearly the same (12). The maximum of the PS is 

41 while the maximum OS score is approximately half at 23.  

 PS OS 

N Valid 498 498 

  Missing 0 0 

Mean 20.36 14.30 

Std. Error of Mean 0.247 0.064 

Std. Deviation 5.507 1.421 

Minimum 12 13 

Maximum 41 23 

Table 6.8: Statistical analysis of the PS and the OS scores. 

Method 

Mortality, and Morbidity rates are calculated with the equations in Chapter 2 (equations 

(2.1), (2.2) for the POSSUM, and (2.3) for the PPOSSUM). The linear analysis method for 

predicted deaths is used here. The patients were divided into alternative groups according to 

their predicted mortality rates as bands: 0-10%, 10-20%, 20-30%, 30-40%, 40-50%, and 

greater than 50%. The mean of predicted mortality risk represents the average risk for 
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patients in each range. For example, the average mortality risk for patients in the first group 

(band of 0-10%) is 6.75% (see in Table 6.9). The number of operations is the number of 

patients in each group. Predicted death (E) is the number of dead patients as predicted by 

POSSUM. The Reported death (O) is the number of actual dead patients in each group. The 

performance of the system is measured by the ratio of observed to predicted mortality 

(O/E).  

Results and Discussions 

Table 6.9 shows mortality results of the POSSUM scoring risk system in 7 patient groups. 

The number of predicted and observed mortality for each group is also shown. The 

prediction performance is indicated by the ratios between the observed and predicted deaths 

in each group as well as for the patients in overall. 

Range of 

predicted rate 

Mean predicted 

risk of Mortality 

(%) 

No of 

operations 

Predicted 

death 

Reported 

death Ratio 

0-10% 6.75% 274  18  29   1.61  

10-20% 14.85% 148  22  28  1.27  

20-30% 24.97%  44   11  8  0.73  

30-40% 34.90%  11   4  3    0.75  

40-50% 43.10%  16   7  7     1.00  

>50% 60.85%  5   3  3     1.00  

0-100% 13%  498  65 78     1.20  

Table 6.9: Comparison of observed and predicted death of the POSSUM logistic equations. 

The risk groups of 20-30%; and 30-40% achieved ratios of 0.73 and 0.75 respectively. This 

means the POSSUM system over-predicts the mortality risk for patients in these bands. 

Two other risk groups (40-50%; and >50%) have the same ratio being equal at exactly 1. 

This means the POSSUM system predict the number of mortality risk exactly the same as 
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the actual death of patients. Overall, POSSUM achieved results better than a ratio of 1.2 

(band of 0-100%) except for the first and the second groups (bands of 0-10% and 10-20%) 

with the ratios of 1.61 and 1.27 respectively.  

The performances of the PPOSSUM system for predicting mortality rates can be seen in 

Table 6.10. There is only one risk group which has the same rate of predicted deaths and 

reported deaths (the ratio of 1). This means the PPOSSUM predicted exactly as reported 

from the actual data for this group. The overall ratio is 3.12, meaning that the PPOSSUM 

under-predicts deaths for patients. This means the PPOSSUM performance is worse than 

expected. 

Range of 

predicted rate 

Mean predicted risk 

of Mortality (%) 

No of 

operations 

Predicted 

deaths 

Reported 

deaths 

The 

ratio 

0-10% 3.00%     438       13       60  4.62 

10-20% 13.48%      39        5        9  1.80 

20-30% 23.25%      12        3        3  1.00 

30-40% 32.27%       5        2        4  2.00 

40-50% 44.86%       3        1        2  2.00 

>50% 58.37%       1        1       -   0.00 

0-100% 5%     498       25       78  3.12 

Table 6.10: Comparison of observed and predicted death from PPOSSUM logistic equations. 

The comparison between Table 6.9 and Table 6.10 shows that the POSSUM performance is 

better than PPOSSUM, in general. Overall, both POSSUM and PPOSSUM underestimate 

the risk for patients (O/E ratios are 1.20 and 3.12 respectively). Both systems estimate the 

O/E ratios according to the linear analysis method. It seems that the POSSUM uses an 

appropriate analysis method, because its ratio is quite close to 1.0. However, this linear 

analysis method seems to be inappropriate for the PPOSSUM results, because the ratio of 

3.12 reflects the number of predicted deaths is too far short to the actual deaths. This result 
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is against the discussion of Wijesinghe et al (1998) where the linear analysis method is 

found to be appropriate for the PPOSSUM results. Therefore, there is an inconsistency 

between the linear and exponential analysis methods for POSSUM and PPOSSUM. The 

ambiguous use of linear and exponential analysis methods are also shown in (Yii and Ng, 

2002). As discussed in Chapter 2, POSSUM and PPOSSUM also have some disadvantages. 

For example, these systems might have ambiguous interpretations for the categorical risks 

in the risk scale such as "High", "Medium", or "Low”. From this point, a system to improve 

on the above disadvantages is needed. Pattern recognition and data mining classifiers might 

provide suitable candidates capable of producing better results.  

6.5.2. Case Study II 

This section demonstrates the use of the alternative neural network techniques with the 

thesis data. Alternative network topologies and parameters are applied to discuss their 

relative performances. The detailed steps of data preparation and process explanations can 

be seen in section C.2 in Appendix C 

Data 

Two clinical models, CM3aD and scoring risk model Hull_POSS, are used. Note that 

experimental data is prepared by supplying missing values and transforming into 

appropriate numerical values using the methods explained in Chapter 5. 

Model CM3aD 

The CM3aD data is taken from the Dundee site with a selection of 16 input attributes and 

341 patients. The two expected outcome levels are calculated in the following heuristic 
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formula. This calculation is based on two attributes of “PATIENT STATUS” and 

“COMBINE” derived from (Heart Disease, Diabetes, and Stroke). 

(PATIENT STATUS, COMBINE) = 0  “Low risk” 

(PATIENT STATUS, COMBINE)  1  ”High risk” 

Therefore, the model CM3aD contains 284 “Low risk”, and 57 “High risk” patterns. 

Model Hull_POSS 

The data is taken from the Hull site with a selection of 22 input attributes based on 

Copeland et al (1991) and 497 cases. Basically, these attributes are the main factors for the 

POSSUM and PPOSSUM systems. Through analysing the data, 6 “empty” attributes are 

eliminated by applying data mining methodology for preparing experimental data (see 

detail in “Data Preparation Strategy” section in Chapter 5). For example, the attribute 

“PERI_SOILING” is eliminated, because it contains 497/497 values of “None”. 

The expected outcome is calculated based on the attribute “PATIENT_STATUS” as 

follows: 

IF    PATIENT_STATUS = “Dead”        “High risk” 

Otherwise,                                             “Low risk” 

Therefore, data set includes 16 inputs, and the expected outcome set contains 78 values of 

“High risk” and 419 values of “Low risk”. 

Method 

Alternative neural network techniques are applied using the WEKA software package 

(WEKA, 2005). A method of 10 cross-validation folds is used. This means the data is 

divided into 10 partitions. A random partition (10% of population) is selected as a test set 

whereas the rest (90%) is used for the training set; and this process is repeated 10 times. 

This is to avoid the over-fitting problem in the training process. 

Alternative topologies are used with alternative parameters such as number of hidden 

nodes; number of epochs; and so on. The outcome results are represented in a confusion 
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matrix with standard measurements of sensitivity, specificity, positive predictive value, 

negative predictive value, and mean square error. 

Results and Discussions 

Table 6.11 and Table 6.12 show the results for the two models CM3aD and Hull_POSS. 

Two models CM3aD and Hull_POSS are applied with alternative parameters such as the 

epochs of 100 or 500, and the learn rates of 0.01 or 0.3 (for multilayer perceptron - see 

Table 6.11); or the number of center c of 1 or 2 (for radial basic function - Tables 6.11 and 

6.12); or alternative types of kernel functions applied in support vector machines 

(polynomial or radial basic function - Table 6.11). The representative parameters in the 

experimental models in the thesis are chosen based on the lowest mean square errors (MSE) 

for the models.  
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`

 

Figure 6.1: Alternative epochs and learn rates applied to CM3aD model. 

For example, Figure 6.1 show alternative epochs and learn rates applied to the CM3aD 

multilayer perceptron model with the topology of 16 inputs; 0 hidden node; 2 nodes for the 

output. It is clear that the MSE of each experiment is a negligible change (lowest MSE is 

0.09 and highest MSE is 0.12). However, according to Haykin (1999), the lower learn rate 

helps in smoother learning, and reducing epochs can help to reduce the over-fitting in 
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leaning process. Moreover, in general the model produced quite stable MSE (about 0.09 on 

average - see Figure 6.1) with the learn rate of 0.3 with alternative epochs. Therefore, the 

representative epoch (smallest) and learn rate can be used in this model as 100, and 0.3 

respectively. 

Topologies and 

Parameters 

Risk 

 

Confusion 

Matrix 

 

 

ACC Sen 

 

Spec 

 

PPV 

 

  

NPV 

 

MSE 

 

High 

risk 

Low 

risk 

MLP_TP1 (2H; 

=0.3; 500 epochs)  

High risk 27 30 

0.88 0.47 0.96 0.73 0.90 0.09 Low risk 10 274 

MLP_TP2 (0H; 

=0.01;100 epochs) 

High risk 0 57 

0.83  0.00 1.00  N/A 0.83 0.11 Low risk 0 284 

MLP_TP3 (0H; 

=0.3; 100 epochs)  

High risk 28 29 

0.90 

  

0.49 

  

0.98 0.85 0.91 0.09 Low risk 5 279 

MLP_TP4 (0H; 

=0.3; 500 epochs)  

High risk 27 30 

0.90 

  

0.47 

  

0.98 0.84 0.90 0.09 Low risk 5 279 

RBF_TP6 (c=1) 

High risk 27 30 

0.85 

  

0.47 

  

0.93 0.56 0.90 0.1 Low risk 21 263 

SVM_TP8 (poly 

kernel, w=1, p=1) 

High risk 17 40 

0.88 0.30 

  

1.00 0.94 0.88 0.11 Low risk 1 283 

SVM_TP9 (poly 

kernel, w=2, p=2) 

High risk 27 30 

0.89 

  

0.47 

  

0.98 0.82 0.90 0.1 Low risk 6 278 

SVM_TP10 (rad-

kernel w=1; =0.01) 

High risk 0 57 

0.83 

  

0.00 

  

1.00 N/A 0.83 0.16 Low risk 0 284 

Table 6.11: Alternative topologies and techniques for the CM3aD model.  

The assigned symbols in both Tables 6.11 and 6.12 for alternative neural network 

parameters are as follows: 

 Multilayer perceptron: The parameter set contains number of hidden nodes; learning 

rate ( ); and number of training epochs. 

 Radian basis function: The parameter is number of centres (c). 
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 Support vector machine: The parameter contains the type of kernel functions; margin 

w; and exponent p (if applicable). 

For example, the classifier MLP_TP1 (2H;  =0.3; 500 epochs) in Table 6.11 means the 

multilayer perceptron classifier used with a hidden layer of 2 nodes, the learning rate ( ) of 

0.3 and 500 of training epochs. 

Classifier 

 

Risk 

 

Confusion 

Matrix 

ACC 

  
Sen 

  
Spec 

  
PPV 

  
NPV 

  
MSE 

  

High 

risk 

Low 

risk 

Hull_POSS_TP1 

(MLP_2H_0.3_5

00)  

High risk 9 69 

0.82 0.12  0.96 0.33 0.85 0.14 Low risk 18 401 

Hull_POSS_TP2 

(MLP_0H_0.3_5

00 ) 

High risk 6 72 

0.84 0.08 0.98 0.46 0.85 0.14 Low risk 7 412 

Hull_POSS_TP3 

(RBF_c_2) 

High risk 1 77 

0.84 0.01 0.99 0.20 0.84 0.13 Low risk 4 415 

Hull_POSS_TP4 

(SVM_Poly_p_2) 

High risk 0 78 

0.84  0.00 1.00 0.00 0.84 0.16 Low risk 2 417 

Table 6.12: Hull_POSS model results with alternative techniques and parameters. 

Overall, all classifiers from Tables 6.11 and 6.12 achieve small mean square error rates 

(average of about 0.12) for both CM3aD and Hull_POSS models. In Table 6.11, the 

classifier MLP_TP2 (none hidden node; =0.01; 100 epochs) predicted all expected “High 

risk” patterns as “Low risk”, despite this topology seemingly appropriate for the data 

domain population of 341 cases (about 10 cases per weight per class). 

This poorest result might be due to inappropriate network parameters (e.g the learning rate 

or number of training epochs), as can be seen from a later experiment (classifier 

MLP_TP3), where the learning rate ( ) is increased to 0.3. Consequently, the sensitivity 

rate achieved from this topology is 0.49. From this point, the classifier MLP_TP2 (0H; 
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=0.01; 100 epochs) had the worst sensitivity rate (0.00), because the learning rate (  is 

inappropriate (too small). The model MLP_TP3 (0H; 0.3; 100 epochs) and the model 

MLP_TP4 (0H; 0.3; 500 epochs) have the same topology and learn rate, and resulting MSE 

(0.09). However, the model MLP_TP3 shows faster convergence than MLP_TP4 (100 and 

500 epochs respectively). Moreover, the MLP_TP3 predictive rates such as sensitivity, 

positive predictive value and negative predictive value are little higher than these in 

MLP_TP4 (0.49, 0.85, 0.91 and 0.47, 0.84, 0.90 respectively). Therefore, the parameters 

chosen in the MLP_TP3 model can be seen as more appropriate for the multilayer 

perceptron model with the given data. 

From Table 6.12, all classifiers achieve the same accuracy rate (0.84) except the classifier 

Hull_POSS_TP1 (0.82). The sensitivity rates as well as the positive predictive values are 

very poor (less than 0.12 and 0.46 respectively). Furthermore, there are big difference 

between the sensitivity rates and the positive predictive values except for the very poor 

classifier Hull_POSS_TP4. For example, in the classifier Hull_POSS_TP1, its sensitivity is 

0.12 whereas its positive predictive value is 0.33. This sensitivity shows that 9 “High risk” 

patterns are predicted correctly in “High risk” class (horizontal comparison in the confusion 

matrix) whereas 69 “High risk” patterns are mis-predicted as “Low risk” class. These mis-

predictions might be explained by the natural structure of the data, with multiple forms of 

patterns in “High risk” class, some of which are similar to some patterns in the “Low risk” 

class. In a medical context, the mis-classification of patients can be explained that their 

medical symptoms are similar to “Low risk” patients although they are the expected “High 

risk” patients (as indicated in the heuristic rule above in this section). By contrast (vertical 

comparison), 18 “Low risk” patterns are mis-predicted into the “High risk” class possibly 

because their data forms are similar to the “High risk” patterns. Therefore, the poor “High 



 120 

risk” predictions might imply confusion in the data patterns or the nature of problem or the 

difficulty of measuring the influential parameters. Further investigation, in particular into 

the “High risk” borderline patterns, is necessary. 

Tables 6.11 and 6.12 also show that the multilayer perceptron seems to be the “most 

appropriate network” for risk predictions applied with both CM3aD and Hull_POSS 

models in general. Furthermore, these results indicate that radial basis functions show the 

“poorest results”. These results might be explained by the disadvantages of radial basis 

function networks as indicated in Chapter 4. 

The appropriate choice of neural network topology and its parameters help to produce the 

appropriate results and avoid over-parameterisation. According to Haykin (1999), the 

smallest number of hidden neuron is chosen so that it can produce a performance better or 

close to a Bayesian classifier’s results. The chosen appropriate number of hidden nodes can 

be seen in the comparison between the use of neural network and Bayes classifier for 

models CM3aD and Hull_POSS (see in Table 6.13). 

Classifiers 

  
Risk 

  

Confusion 

matrix 

Sen 

  
Spec 

  
PPV 

  
NPV 

  
MSE 

  

High 

risk 

Low 

risk 

CM3aD_MLP(0H;0.

3; 100 epochs) 

High risk 28 29 
  

0.49 

  

0.98 0.85 0.91 0.09 Low risk 5 279 

CM3aD_Bayes 

  

High risk 28 29 

0.49 0.94 0.62 0.90 0.09 Low risk 17 267 

Hull_POSS(MLP_0

H_0.3_500) 

High risk 6 72 

0.08 0.98 0.46 0.85 0.14 Low risk 7 412 

Hull_POSS_Bayes 

  

High risk 8 70 

0.10 0.94 0.25 0.85 0.14 Low risk 24 395 

Table 6.13: The comparison between multilayer perceptron and Bayes classifiers. 

The results in Table 6.13 show that almost ratios of the mean square error, sensitivity, 

specificity, and negative predictive values are similar in both classifiers of neural network 



 121 

and Bayes. Only the positive predictive values of the multilayer perceptron are clearly 

better than that of the Bayes classifier.  

The chosen neural topology and number of hidden nodes depend on the data domain size. 

This thesis uses a heuristic calculation of 10 cases per class per network weight to 

determine the adequate number of hidden layers and hidden nodes. This is to avoid over-

parameterisation problems, in which the data will not support the use of too many layers 

and nodes. Therefore, for example, the multilayer perceptron with the topology of 16-0-1 

(16 input nodes; 0 hidden nodes; and 1 output -2 class nodes) is suitable for the CM3aD 

data set with 341 patterns; i.e. 16 weights with 10.66 examples per class per weight. 

However, it means there are no hidden layer in the network, as the data can only support for 

the network output class (2 classes) and its weights (16). The requested examples for the 

network are about  341.12 cases (16*10.66*2).  

According to Haykin (1999), the learning rate is chosen to achieve a realistic training 

period, and the number of epochs is kept as small as possible. For example, Table 6.11 

results show that the best performance for model CM3aD is from the classifier MLP_TP3 

(0H; 0.3; and 100 epochs). This is marginally better than the more complex network 

MLP_TP1 (2H; =0.3; 500 epochs) which makes use of a hidden layer, with 2 nodes.  

The cross-validation method used in the neural network techniques can help to avoid the 

over-fitting of topology, parameters and so on in the training process. In this thesis, the 

folding cross-validation method is used. The final mean square errors are achieved over the 

average of all the mean square error for each fold. 

Alternative number of cross-validation folds (k) is investigated to find the appropriate 

number of folds, which can then be used for all thesis experiments. The two best multilayer 
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perceptron topologies from Table 6.11 and Table 6.12 are used for two models CM3aD and 

Hull_POSS. The results can be seen in Table 6.14.  

It is clear that the mean square error rates are the same with three choices of k (k=5, k=10, 

and k=15). However, the other evaluations (sensitivity; specificity; positive predictive 

value; and negative predictive value) show that the choice of k of 10 achieves the better 

results for model CM3aD; and not much difference for model Hull_POSS. Therefore, from 

now on the number of cross-validation folds used in all thesis experiments is 10. 

Classifiers Risk 

Confusion 

Matrix 

Sen Spec PPV NPV MSE 

High 

risk 

Low 

risk 

CM3aD 

k=10 

High risk 28 29   

0.49 

  

0.98 0.85 0.91 0.09 Low risk 5 279 

CM3aD 

 k=15 

High risk 27 30 
  

0.47 

  

0.96 0.71 0.90 0.09 Low risk 11 273 

CM3aD 

 k=5 

High risk 26 31   

0.46 

  

0.95 0.63 0.90 0.09  Low risk 15 269 

Hull_POSS 

 k=10 

High risk 6 72   

0.08 

  

0.98 0.46 0.85 0.14  Low risk 7 412 

Hull_POSS  

k=15 

High risk 9 69   

0.12 

  

0.97 0.45 0.86 0.14 Low risk 11 408 

Hull_POSS  

k=5 

High risk 9 69 

0.12 0.96 0.38 0.85 0.14  Low risk 15 404 

Table 6.14: Alternative number of cross-validation experiments. 

As discussed above, the correct prediction of “High risk” patterns is of concern in the 

thesis. All “High risk” prediction results (from Tables 6.11 and 6.12) show a big gap 

between the sensitivity rates and the positive predictive values. These distances either 

mirror the poor performance of classifiers or the internal structure of the data, which the 
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classifier could not recognise. Therefore, a more in depth investigation of the structure of 

data is necessary. Unsupervised pattern recognition and data mining techniques might 

provide the abilities for this. 

6.5.3. Case Study III 

This section demonstrates the use of a self organizing map for the data derived from the 

Dundee site (model CM3bD). The use of self organizing map here is to show the abilities 

of unsupervised pattern recognition techniques when applied into thesis data domain. The 

detailed steps of data preparation and experimental process can be seen in section C.3 in 

Appendix C. 

Data  

The data is taken from the Dundee site with a selection of 16 input attributes and 341 

patients. The expected risks are calculated based on two attributes, “PATIENT STATUS” 

and “COMBINE”, in the following rules: 

If  (PATIENT STATUS, COMBINE) = 0       “Low risk” 

If  (PATIENT STATUS, COMBINE) = 1      ”Medium risk” 

If  (PATIENT STATUS, COMBINE) = 2       ”High risk” 

Hence, the CM3bD model contains 48 values of “High risk”; 73 values of “Medium risk”; 

and 220 values of “Low risk”. Note that these risks are only used for the visualization in the 

final map, they are not involved into the clustering process.  

Method 

A self organizing map tool is used with the SOM Toolbox (SOM toolbox, 2000) of the 

Matlab software package (Mathworks, 1994). A map is created of size [30, 16]. Note that 

the map’s size is calculated based on a heuristic formula derived from Alhoniemi et al 

(2005). The self organizing map produces the U-matrix to visualise the data on the map. 
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Alternative component planes are also represented as individual maps for each attribute. A 

clustering map is shown via applying this model data with a clustering algorithm. The 

expected risks are also shown in this map.  

Results and Discussions 

The final map has an average quantization error of 0.43, and topographic error of 0.00. 

Therefore, the accuracy of the map calculated according to Equation (4.12) in Chapter 4 is 

about 0.7 (70%). The visualization results for the U-matrix can be seen in Figure 6.2. 

 

Figure 6.2: The final U-matrix of data set for model CM3bD. 

From Figure 6.2, the colour scale shows that the distance between clusters is very small in 

most areas in the map, because they are almost the same colour (middle dark in the black 

and white scale). Hence, we can suggest that these input patterns might have similar pattern 

forms.  
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When the correlation between input attributes is of interest, it is convenient to look at the 

“component planes” where each plane presents an attribute in data domain. Figure 6.3 

shows the component plane visualisations for the map in Figure 6.2.  

In Figure 6.3, the component plane of “PATCH” shows the data for the “PATCH” attribute. 

It is clear that the high values are allocated in the upper right corner of the map whereas the 

low values are distributed in the middle to bottom left. 

 

Figure 6.3: The component planes for the attributes in CM3bD model. 

Also from Figure 6.3, attributes “EBL”; “RENAL_HX”; “CABG”; 

“RESPIRATORY_DIS_HX”; “DIABETES_HX”; and “St” seem to be similar, because 

they have low values distributed in a similar area of the map.  

The SOM algorithm is applied to the input map to cluster the input data (see the results in 

Table 6.15). Assume that clusters “C1”; “C2”; “C3” correspond to the classes “High”; 

“Medium”; and “Low” respectively. According to Table 6.15, the accuracy rates are poor 

(less than 0.50). Figure 6.4 shows the clustering map where each generated cluster is coded 

 



 126 

by the black and white colour scale. The expected labelled risks can be seen in the map as 

in Figure 6.5 below. From Figure 6.4 and Figure 6.5, it is suggested that the cluster on the 

top left of clustering map (cluster 2) can be seen as the “Medium” cluster. This is because 

many “Medium” labels are distributed in this area (Figure 6.5). 

 

C1 

(High) 

C2 

(Medium) 

C3 

(Low) ACC Sen Spec PPV NPV 

High 13 13 22 0.45 

  

  

0.55 

  

  

0.40 

  

  

0.33 

  

  

0.62 

  

  

Medium 17 23 33 

Low 42 90 88 

Table 6.15: SOM-Clustering results for CM3bD model. 

 

Figure 6.4: The clustering result for the map in Figure 6.2. 

However, it seems to be difficult to identify “High risk” and “Low risk” clusters, because 

the labelled clustering map (Figure 6.5) does not show these clearly. This might 

demonstrate noise and the diffuse delineation of risk in the data. This needs further 

investigation. 
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Figure 6.5: The labelled risks for the map in Figure 6.4. 

6.5.4. Case Study IV 

This section demonstrates the use of KMIX algorithm applied to two of the cardiovascular 

models (CM3aD and CM3bD) mentioned in the Case Study II and Case Study III. The 

detail of experimental steps can be seen in Appendix C (section C.4). The objective in this 

section is to discuss what the clustering reflects on the data structure as well as the 

differences between sensitivity versus positive predictive value. 

Data 

The given data sets contain 16 inputs, two attributes for the expected outcome calculations, 

and 341 patient cases. The preparation data tasks are shown in Case Study II and Case 

Study III. The expected outputs are calculated according to the following rules. Note that 

these outcomes are not involved to the clustering process. They are used just for 

comparison on the clustering results.  

o Model 1 (CM3aD): The two outcomes are calculated based on two attributes 

(“PATIENT STATUS” and “COMBINE”), using: 
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(PATIENT STATUS, COMBINE) = 0  “Low risk” 

(PATIENT STATUS, COMBINE)  1 ”High risk” 

o Model 2 (CM3bD): Three outcomes are given, using: 

(PATIENT STATUS, COMBINE) = 0  “Low risk” 

(PATIENT STATUS, COMBINE) = 1 ”Medium risk” 

(PATIENT STATUS, COMBINE) = 2 ”High risk” 

Therefore, the model CM3aD has 57 values of “High risk”; and 284 values of “Low risk”. 

The model CM3bD contains 48 values of “High risk”; 73 values of “Medium risk”; and 220 

values of “Low risk”. 

Method 

Two models CM3aD and CM3bD are used with KMIX algorithm with alternative number 

of clusters (k=2, and k=3 respectively). Clustering results are then assigned as expected 

outputs for the new clustering models CM3aDC and CM3bDC. These models are then used 

with neural network techniques. The classification results are then discussed using standard 

measures.  

Results and Discussions 

The clustering results can be seen in Table 6.16 and Table 6.17 for models CM3aD and 

CM3bD respectively. Clusters of “C2” and “C1” correspond to the classes “High risk” and 

“Low risk” in Table 6.16; and clusters “C3”; “C2”; and “C1” correspond to the classes 

“High risk”; “Medium risk”; and “Low risk” in Table 6.17. These assumptions are based on 

the highest number of “High risk”; “Medium risk”; and “Low risk” patterns belong to the 

output clusters. 
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  C2 

(High risk) 

C1 

 (Low risk) ACC Sen Spec PPV NPV 

High risk 39 18 
0.48 0.68 0.44 0.20 0.88 Low risk 158 126 

Table 6.16: Clustering results for CM3aD model. 

  
C3 

(High risk) 

C2 

(Medium risk) 

C1 

(Low risk) 
ACC Sen Spec PPV NPV 

High 

risk 18 17 13 

0.42 

 

0.70 

 
0.26 0.34 

 
0.62 

Medium 

risk 28 22 23 

Low risk 103 59 58 

Table 6.17: Clustering results for CM3bD model. 

According to Table 6.16 and Table 6.17, the accuracy rates are poor (less than 0.50). For 

both the experiments, the sensitivity rates are more than double the positive predictive 

values. The sensitivity rates here mirror the correct clustered “High risk” patterns over total 

actual “High risk” expectations whereas the positive predictive values mirror the correct 

clustered “High risk” patterns over total clustered “High risk” outcomes. For example, 39 

over 57 (expected) “High risk” patterns (horizontal comparison in Table 6.16) show the 

correct distributions (with a 0.68 of sensitivity). Contrastingly, 39 over 197 (clustering) 

“High risk” patterns (vertical comparison) show the correct distributions (with a 0.20 

positive predictive value). Therefore, 39 “High risk” patterns here can be seen as the true 

“High risk” patterns. The other patterns (see in Table 6.16) can be explained as follows: 18 

expected “High risk” patterns are clustered into “Low risk” class, because their forms are 

similar to this class form; 158 “Low risk” patterns are clustered into “High risk” class, 

because their pattern forms are similar to the “High risk” patterns. The other mis-clustering 

patterns in the confusion matrix in Table 6.16 and Table 6.17 are similarly explained. From 

this point, the poor performance of the clustering results might arise because of the poor 
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quality of clustering algorithm or the nature of the given data or the difficulty of measuring 

influential parameters. Therefore, further investigation is needed. 

Two new models CM3aDC and CM3bDC, based on the clustering results, are built and 

then used with alternative neural network techniques (see results in Tables 6.18 and 6.19). 

For example, the multilayer perceptron is used with a topology of 16-0-1 (16 input nodes; 0 

hidden nodes; and 1 output-2 class nodes for model CM3aDC) or 16-0-3 (16 input nodes; 0 

hidden nodes; and 3 output nodes for model CM3bDC); with a learning rate of 0.3; and 100 

training cycle epochs. Note that ten-fold cross-validation is used for all experiments. 

Classifiers   C2H C1L ACC Sen Spec PPV NPV MSE 

CM3aDC-MLP 

(MLP16-0-1; 0.3; 

100 epochs) 

C2H 188 9 
0.95 

  
0.95 0.94 0.96 0.94 0.04 

C1L 8 136 

CM3aDC- RBF  

(RBF_c=1) 

C2H 189 8 0.95 

  0.96 0.93 0.95 0.94 0.03 C1L 10 134 

CM3aDC-SVM 

(SVM_poly_p=1) 

C2H 185 12 0.91 

  0.94 0.86 0.90 0.91 0.09 C1L 20 124 

Table 6.18: Neural network results for CM3aDC model. 

Classifier   C3H C2M C1L ACC Sen Spec PPV NPV MSE 

CM3bDC-MLP 

(MLP16-0-3; 0.3; 

100 epochs)  

  

C3H 97 0 1 

0.96 0.98 0.89 0.96 0.98 0.02 
C2M 0 148 1 

C1L 8 2 84 

CM3bDC-RBF 

(RBF_c=1) 

  

C3H 81 7 10   

 0.92 0.94 0.87 0.95 0.85 0.06 
C2M 9 135 5 

C1L 5 7 82 

CM3bDC-SVM 

(SVM_poly_p=1) 

  

  

C3H 97 0 1   

 0.97 0.99 0.90 0.96 0.99 0.08 
C2M 0 149 0 

C1L 7 2 85 

Table 6.19: Neural network results for CM3bDC model. 

Overall, Tables 6.18 and 6.19 shows that the achieved accuracy rates are quite high (over 

0.90). This is also true for the sensitivity rates and positive predictive values (over 0.90). 

There are very negligible differences between sensitivity rates and positive predictive 
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values. For example, the classifier CM3aDC-MLP (in Table 6.18) produces the positive 

predictive value 0.96 whereas its sensitivity of 0.95; and the classifier CM3bDC-RBF (in 

Table 6.19) produce the positive predictive value of 0.95 with its sensitivity of 0.94. Similar 

comparisons are found for the differences in the specificity rates and negative predictive 

values. These results demonstrate that the neural networks can replicate the clustering 

results, resulting from the KMIX algorithm. Therefore, the nature of the problem and the 

difficulty of measuring influential parameters might be the main reason to cause the poor 

clustering performance in Tables 6.16 and 6.17. 

6.6. Discussion 

To compare the use of neural network techniques and POSSUM and PPOSSUM systems, a 

best performance (in sensitivity rates) in Table 6.3 is chosen. The compared sensitivity 

rates results can be seen in Table 6.20. Note that the “Mortality” values in the POSSUM 

and PPOSSUM systems can be seen as the “High risk” values in the Hull_POSS model.  

Classifier 

No of 

cases 

Predicted 

deaths/High 

risk 

Reported 

deaths/High 

risk 

Sensitivity 

rates Ratios 

Hull_POSS_TP1 

(MLP_2H_0.3_500) 498 9 78 0.12 8.67 

POSSUM 498 65 78 0.83 1.20 

PPOSSUM 498 25 78 0.32 3.12 

Table 6.20: Neural network and POSSUM and PPOSSUM sensitivities comparison. 

It is clear from Table 6.20 that POSSUM and PPOSSUM have a higher performance than 

the neural network classifier. The POSSUM ratio O/E of 1.20 reflects that the system 

classified the “High risk” (Death) patients quite close to the reported “High risk” (Death). 
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Contrastingly, the neural network classifier (Hull_POSS_TP1) has a ratio of 8.67. It means 

neural network under-predicts deaths for “High risk” patients in data domain.  

The POSSUM sensitivity is highest whereas the neural network classifier 

(Hull_POSS_TP1) produced the poorest sensitivity rate (0.12). Therefore, it seems that the 

use of linear method with POSSUM system is adequate for this data set. However, as 

indicated above and in Chapter 2, there is an ambiguity in the use of the (linear) evaluation 

method in the estimation of POSSUM and PPOSSUM. The predicted “High risk” or “Low 

risk” results depend upon the chosen threshold value in the risk scale. For example, in 

Table 6.9 and Table 6.10, threshold value for “High risk” (Death) and “Low risk” is the 

mean of the “Mortality” calculations. Therefore, there might be ambiguous interpretations 

for the categorical risks in the risk scale. This will be highlighted by dividing the 

categorical risk into a smaller scale such as “High risk”, “Medium risk”, “Low risk”. 

Although the pattern recognition techniques (neural network) produced poor sensitivity 

results compared to POSSUM and PPOSSUM, they provided another in depth view into the 

data domain such as the observations and the evaluation of internal pattern forms via 

confusion matrix. Moreover, the neural network classifiers produced their results via the 

validation of independent test sets during the prediction process whereas POSSUM and 

PPOSSUM did not. By building alternative models for use with neural network techniques, 

the classifiers can avoid the ignorance of significant contributed factors into the patient 

risks as indicated in Kuhan et al (2003). For all of these reasons, neural network classifiers 

are used in this thesis 
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Case Study II shows the big gap between the sensitivity rates and positive predictive 

values. For example, the classifier MLP_TP3 (0H; =0.3; 100 epochs) in Table 6.11 has 

sensitivity rate of 0.49 whereas its positive predictive value is 0.85.  

The gap between the sensitivity rates and the positive predictive values is investigated by 

the use of unsupervised pattern recognition techniques (KMIX). These classifiers show the 

actual forms in the internal structure of the data which the supervised learning techniques 

could not recognise. The poor accuracy rates (less than 0.50) from the use of clustering 

techniques in the models of CM3aD (KMIX) and CM3bD (KMIX and SOM) suggest there 

is a problem in these models, such as the nature of the problem and the difficulty of 

measuring influential parameters. The reuse of supervised pattern recognition techniques 

for clustering models CM3aDC and CM3bDC derived from models CM3aD and CM3bD 

provided higher performance in the sensitivity estimations (in about 0.95 in average - see 

Tables 6.18 and 6.19). It is beyond the bounds of this thesis to give a clinical description for 

the pattern forms found to be significant in clustering as clinical trials would be required. 

As expected supervised results on clustering classes show high performance, and their 

results might be used as trained classifiers in a decision tool. This high performance for 

clustering models is in sharp contrast to the poor quality performance in the clinical 

models. 

6.7. Summary 

By using common attributes and the main factors in the Hull and Dundee sites, the thesis 

data can be divided into 6 clinical models (CM1; CM2; CM3a; CM3b; CM4a; and CM4b). 

Additionally, three scoring risk models (Mortality; Morbidity; and Death rate) are 

generated by a combination of data from the Hull site and the POSSUM and PPOSSUM 
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results. CM1 and CM2 are generated as the main models. The remaining models (CM3a; 

CM3b; CM4a; and CM4b) are based on these models with alternative inputs and output 

attributes. All these models will be used in Chapter 7 in the main thesis experiments. 

The data derived from the thesis data domain is used in alternative models as the case 

studies before running experiments for the main thesis data models. The POSSUM and 

PPOSSUM produced better sensitivity rates compared to supervised neural network 

classifiers (Table 6.20). The poor sensitivity rates and the gap between the sensitivities and 

positive predictive values can be explained by the results from the use of unsupervised 

pattern recognition classifiers (KMIX). It is suggested that many “High risk” pattern forms 

are alike to the “Low risk” ones in the data domain. Hence, many of the “High risk” 

patients have similar medical symptoms to some of “Low risk” patients. Therefore, this ill-

defined classification border might cause the poor sensitivity performance in the neural 

network classifiers. 

The unsupervised clustering results also disagree with the outcomes for clinical models via 

the poor accuracy rates in KMIX and SOM. This is supported by the high performance of 

the pattern recognition classifiers on the clustering models. This might be due to the nature 

of the problem and the difficulty of measuring influential parameters. The next chapter will 

analyse in great detail pattern recognition classifiers with all the above models. This might 

provide some clarity on the performance of the classifiers in the clinical models. 
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Chapter 7 

Results and Analysis 

7.1. Introduction 

This chapter analyzes the results from applying the classifier techniques introduced in 

Chapters 4 to the data models discussed in Chapter 6. Two categories of pattern recognition 

and data mining techniques are applied here: supervised neural networks (multilayer 

perceptron, radial basis function, and support vector machine); and the KMIX-unsupervised 

clustering algorithm. The classification results are measured and evaluated by using the 

standard measurements indicated in Chapter 3 such as confusion matrix, sensitivity, 

specificity, positive predictive value, and negative predictive value. This gives rise to a 

discussion on the performance of the classifiers, and the nature of the data.  

7.2. Experiment Results 

This section shows the results of all experiments with clinical models, scoring risk models, 

and clustering models. The detailed structure of all models can be seen in Chapter 6. The 

detailed data preparation and processing steps for each model can be seen in Appendix C 

(section C.5). Note that the experimental data is derived from a combination of the Hull and 

the Dundee data sites.  

7.2.1. Clinical Models CM1 and CM2 



 

 

 

136 

Table 7.1 shows the results of neural network techniques applied to the CM1 and CM2 

models. The techniques chosen in these experiments are multilayer perceptron, radial basis 

function, and support vector machine. The classifier labels can be understood as the name 

of models plus the classifier techniques applied. For example, CM1-MLP means the CM1 

model is applied with a multilayer perceptron. 

Classifiers Risk 

Confusion 

Matrix 

ACC Sen Spec PPV NPV 

High 

risk 

Low 

risk 

CM1-MLP 

High risk 9 117 

0.82 0.07 0.95 0.21 0.85 Low risk 34 679 

CM1-RBF 

High risk 0 126 

0.85 0.00 1.00 N/A 0.85 Low risk 0 713 

CM1-SVM 

High risk 30 96 

0.75 0.24 0.84 0.21 0.86 Low risk 112 601 

CM2-MLP 

High risk 6 133 

0.81 0.04 0.96 0.18 0.83 Low risk 27 673 

CM2-RBF 

High risk 0 139 

0.83 0.00 1.00 N/A 0.83 Low risk 0 700 

CM2-SVM 

High risk 24 115 

0.71 0.17 0.82 0.16 0.83 Low risk 125 575 

Table 7.1: Experimental results of CM1 and CM2 models. 

The detail of the techniques and their parameters are as follows: the multilayer perceptron 

technique is used here with a 25-2-1 topology (25 input nodes; 2 hidden nodes; 1 output - 2 

class nodes), a learning rate  of 0.3, and 500 training epochs; the radial basis function 

classifier has centre parameter c of 2; and the support vector machine uses a poly kernel 
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function with the exponent parameter p of 2. The 10-fold cross-validation method is used 

for these experiments. 

Overall, the accuracy rates of all classifiers are over 0.70. The correct predicted “Low risk” 

rates (specificity) and the “Low risk” predictive rates (negative predictive value) are high 

whereas the equivalent rates for “High risk” are very poor (0.93; 0.84 vs 0.09; 0.19 on 

average). The two radial basis function classifiers, CM1-RBF and CM2-RBF, predicted all 

expected “High risk” patients as “Low risk”. This again shows the technique’s 

disadvantages for use with the thesis data.  

From Table 7.1, the correct predicted “High risk” rates (sensitivity as well as the positive 

predictive value) are very poor (0.09 and 0.19 on average except CM1-RBF and CM2-

RBF). The nature of the problem and the difficulty of measuring influential parameters 

might be the cause for these poor performances. 

7.2.2. Clinical Models CM3a and CM4a 

Table 7.2 shows the results for supervised neural networks on the clinical risk prediction 

models CM3a and CM4a. These models share the same expected outputs but their input 

sets are different (as indicated in Chapter 6). The techniques and their parameters used in 

these experiments are the same as the description in section 7.2.1 except for the reduced 

input set; for example, the topology of the multilayer perceptron is now 16-2-1 (16 input 

nodes; 2 hidden nodes; and 1 output - 2 class nodes). 

Overall, the accuracy rates are over 0.77 for all classifiers. The sensitivity and positive 

predictive values (“High risk” predictions) are still very poor (average about 0.07 and 0.25 

respectively) whereas the specificity and negative predictive value (“Low risk” predictions) 
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are high (about 0.95 and 0.84 in average). Also from Table 7.2, the radial basis function 

classifiers again show poorest results in the correct “High risk” predictions (none of “High 

risk” patients is correctly predicted). 

Classifiers Risk 

Confusion Matrix 

ACC Sen Spec PPV NPV 

High 

risk 

Low 

risk 

CM3a-MLP 

High risk 13 126 

0.81 0.09 0.95 0.28 0.84 Low risk 34 666 

CM3a-RBF 

High risk 0 139 

0.83 0.00 1.00 N/A 0.83 Low risk 0 700 

CM3a-SVM 

High risk 16 123 

0.77 0.12 0.90 0.19 0.84 Low risk 67 633 

CM4a-MLP 

High risk 14 125 

0.81 0.10 0.95 0.30 0.84 Low risk 32 668 

CM4a-RBF 

High risk 0 139 

0.83 0.00 1.00 N/A 0.83 Low risk 0 700 

CM4a-SVM 

High risk 18 121 

0.79 0.13 0.92 0.24 0.84 Low risk 58 642 

Table 7.2: Experimental results of CM3a and CM4a models. 

The results in Table 7.2 show the considerable distances between the sensitivity versus the 

positive predictive value as well as the specificity versus the negative predictive value. As 

indicated in Chapter 6, models CM3a and CM4a are derived from model CM2 with a 

smaller attribute set (reduction from 25 input attributes to 16 input attributes). Therefore, 

the selection of what are thought to be significant attributes does not improve classification 

performances. Furthermore, the poor gap between correct predicted “High risk” 

(sensitivity) and correct predictive “High risk” (positive predictive value) persists. Again, 
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the nature of the problem, the difficulty of measuring influential parameters, and the 

resultant poor mapping between input attributes and outcomes, is suspected. 

7.2.3. Clinical Models CM3b and CM4b 

The results of two models CM3b and CM4b can be seen in Table 7.3. These models share 

the same input attribute sets as in models CM3a and CM4a respectively. However, the 

expected output sets are expanded using alternative risk categories such as “Very High 

risk”; “High risk”; “Medium risk”; and “Low risk”. The hope is that the expansion of 

categorical risks will show an improvement in the classification results.  

The evaluation measures here are based on confusion matrix with an assumption that the 

number of “Very High risk”, “High risk”, and “Medium risk” are referred to as the number 

of positive outcomes, and the number of “Low risk” is referred to as the number of negative 

outcomes. The network topologies and their parameters are the same as in the CM3a and 

CM4a experiments except the increased number of output nodes (4). This is required by the 

binary representation for the categorical outcomes of “Very High risk”; “High risk”; 

“Medium risk”; and “Low risk”. For example, the multilayer perceptron used with models 

CM3b and CM4b has topologies of 16-2-4 (16 input nodes; 2 hidden nodes; and 4 output 

nodes) and 14-2-4  (14 input nodes; 2 hidden nodes; and 4 output nodes).  

Surprisingly from Table 7.3, all expected “Medium risk” patients are predicted into “Low 

risk” class except for the classifiers CM3b-SVM (only one pattern correctly falls into 

“Medium risk” class) and CM4b-MLP (one pattern falls into “High risk” class). This 

suggests that the combinations of data models and classifiers support just three levels of 

risks.  
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Classi-

fiers Risk 

Confusion Matrix 

ACC Sen Spec PPV NPV 

Very 

High 

risk 

High 

risk 

Medi

-um 

risk 

Low 

risk 

CM3b-

MLP 

Very High risk 2 1 0 16 

0.84 0.04 0.97 0.25 0.84 

High risk 0 3 0 104 

Medium risk 0 0 0 13 

Low risk 5 13 0 682 

CM3b-

RBF 

Very High risk 0 0 0 19 

0.85 0.00 1.00 N/A 0.83 

High risk 0 0 0 107 

Medium risk 0 0 0 13 

Low risk 0 0 0 700 

CM3b-

SVM 

Very High risk 0 3 0 16 

0.79 0.08 0.90 0.14 0.83 

High risk 1 6 0 100 

Medium risk 0 0 1 12 

Low risk 13 46 8 633 

CM4b-

MLP 

Very High risk 0 1 0 18 

0.83 0.07 0.96 0.27 0.84 

High risk 0 8 0 99 

Medium risk 0 1 0 12 

Low risk 0 27 0 673 

CM4b-

RBF 

Very High risk 0 0 0 19 

0.85 0.00 1.00 N/A 0.83 

High risk 0 0 0 107 

Medium risk 0 0 0 13 

Low risk 0 0 0 700 

CM4b-

SVM 

Very High risk 2 4 0 13 

0.8 0.14 0.90 0.21 0.84 

High risk 2 11 0 94 

Medium risk 0 0 0 13 

Low risk 17 45 9 629 

Table 7.3: Experimental results of CM3b and CM4b models. 

The sensitivity rates and positive predictive values of all classifiers are very poor (an 

average of 0.06 and 0.22 respectively except the classifiers CM3b-RBF and CM4b-RBF). 
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Furthermore, the distances between these rates are not reduced. Therefore, the expansion of 

outcome risk labelling does not help to clarify and improve the classification results in 

particular with regard to “High risk” predictions. 

7.2.4. Scoring Risk Models 

This section demonstrates the results of the POSSUM and PPOSSUM systems via the 

scoring risk models as Mortality, Morbidity, and Death rate. Note that in the confusion 

matrix, the expected outcomes (“High risk” and “Low risk”) are derived from the actual 

number of “Dead” and “Alive” patients. Table 7.4 shows the POSSUM and PPOSSUM 

results via the use of standard measurements. 

Overall, all classifiers (Mortality, Morbidity, and Death rate) produce the similar standard 

measurement rates. For example, all accuracy rates are at about 0.83. From this point, the 

results seem to show that POSSUM and PPOSSUM classifiers have a stable performance in 

their classification process for the thesis data. 

Classifiers Risk 

Confusion Matrix 

ACC Sen Spec PPV NPV 

High 

risk 

Low 

risk 

Mortality 

High risk 10 69 

0.83 0.13 0.96 0.40 0.85 Low risk 15 405 

Morbidity 

High risk 15 64 

0.82 0.19 0.94 0.38 0.86 Low risk 24 396 

Death rate 

High risk 10 69 

0.83 0.13 0.96 0.38 0.85 Low risk 16 404 

Table 7.4: Confusion matrix for scoring risk models. 

Nevertheless, there still is a big gap between numbers of the correct “High risk” and the 

correct predictive “High risk” via the sensitivity and the positive predictive value. For 
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example, the Mortality classifier predicts 13% of correct predicted “High risk” (sensitivity 

of 0.13) whereas it predicts 40% of correct predictive “High risk” (positive predictive value 

of 0.40). Also according to this classifier’s confusion matrix, 10 over 79 (13%) “Death” 

patients (“High risk”) are correctly predicted whereas 69 over 79 “Death” patients are mis-

predicted into “Alive” (“Low risk”) class. This might mean that these (69) mis-classified 

patients might have pattern forms (original data) similar to the “Alive” patients. In contrast, 

the vertical comparison in the confusion matrix shows 15 “Alive” (“Low risk”) patients are 

mis-predicted into “Dead” (“High risk”) class, perhaps because their pattern forms are 

similar to “High risk” patients.  Note that these results are taken from the existing 

POSSUM and PPOSSUM risk assessment systems. Therefore, the performance in “High 

risk” prediction (sensitivity and positive predictive value) again shows the nature of the 

problem and the difficulty of measuring influential parameters. The use of unsupervised 

techniques to investigate data structure may help to resolve this. 

7.2.5. KMIX Clustering Results 

This section demonstrates the use of the KMIX algorithm for models CM3a and CM3b as 

the representatives for all the above models. Tables 7.5 and 7.6 show the results for two of 

these models. Clusters of “C2H” and “C1L” correspond to the classes “High risk” and 

“Low risk” in Table 7.5; and clusters “C4VH”; “C3H”; “C2”; and “C1” correspond to 

classes “Very High risk”; “High risk”; “Medium risk”; and “Low risk” in Table 7.6. These 

assumptions are based on the highest number of “Very High risk”; “High risk”; “Medium 

risk”; and “Low risk” patterns in the output clusters. 
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Risk C2H C1L ACC Sen Spec PPV NPV 

High risk 48 91   

0.60 

  

0.35 0.65 0.16 0.83 Low risk  248 452 

Table 7.5: The clustering results for model CM3a. 

From Table 7.6, no pattern falls into cluster “C3H”. This seems to indicate as there is no 

“High risk” class in the outcome set. In other words, there seems to be just three data 

clusters in the domain. 

Risk C4VH C3H C2M C1L ACC Sen Spec PPV NPV 

Very High risk 7 0 6 6 

0.45 0.89 0.38 0.18 0.96 
High risk 43 0 33 3 

Medium risk 5 0 5 3 

Low risk 249 0 199 280 

Table 7.6: The clustering results for model CM3b. 

There are considerable differences in the sensitivity versus positive predictive value as well 

as the specificity versus negative predictive value over the two Tables 7.5 and 7.6. For 

example, the clustering for model CM3a (in Table 7.5) achieves a sensitivity rate of 0.35 

whereas its positive predictive value is 0.16. Note that the CM3a model is derived from the 

CM3aD model in section 6.5.4 in Chapter 6 (containing data just from the Dundee site) 

plus an expansion of patterns. Therefore, the increasing number of patterns improves a little 

the clustering performance in accuracy rate (0.48 in Table 6.16 in Chapter 6; 0.60 in Table 

7.5 in Chapter 7). 

Also by looking at the confusion matrix in Table 7.5, the gap between sensitivity versus 

positive predictive values might be explained in terms of the way the KMIX algorithm 
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works. 91 patterns, which are mis-clustered into “C1L” class, because their distances to the 

“Low risk” centre vector are smaller than their distances to the “High risk” centre. In other 

words, their forms are similar to the “Low risk” patterns in data space. Contrastingly, 248 

“Low risk” patterns are mis-clustered into “C2H”, because they are nearer to the “High 

risk” centre vector than the “Low risk” centre. This means their pattern forms are similar to 

the “High risk” class patterns. The same explanation can be used for the distances between 

the sensitivity versus positive predictive value in Table 7.6. All the above misclassifications 

show that the data seems not to support the expected outcomes. To verify the output from 

the clustering algorithm, as repeatable as a classification, the use of neural network 

techniques for the KMIX outcomes is necessary. 

7.2.6. KMIX Clustering Models Results 

Here the KMIX results are used as expected outcomes for the new clustering models 

(CM3aC and CM3bC). Alternative neural network techniques are applied to these new 

models to discuss classification results. The CM3aC model has 296 expected values of 

“C2H” and 543 values of “C2L”. The CM3bC model contains 304 values of “C4VH”, no 

values of “C3H”, 243 values of “C2M”, and 292 values of “C1L”. The parameters for the 

neural network techniques are: multilayer perceptron is used with topologies of 16-2-1 (16 

input nodes; 2 hidden nodes; 1 output - 2 class nodes for CM3aC); and 16-2-4 ( 16 input 

nodes; 2 hidden nodes; 1 output - 2 class nodes for CM3bC), learning rate  of 0.3, and 500 

training epochs; radial basis function is used with number of centre c of 2; and support 

vector machine is used with the poly kernel function and exponent parameter p of 2. The 

number of cross-validation folds is 10.  Tables 7.7 and 7.8 show the experimental results. 
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Overall, all classifiers produce very high accuracy rates (over 0.98) except classifier 

CM3aC-RBF (0.77) in Table 7.7.  

The multilayer perceptron classifiers have highest performance in both Tables 7.7 and 7.8 

according to all the standard measurements of accuracy, sensitivity, specificity, positive 

predictive value, negative predictive value, and mean square error (about 0.99 in all 

measured rates except 0.97 of negative predictive value in Table 7.8).  

Classifier Risk  C2H C1L ACC Sen Spec PPV NPV MSE 

CM3aC-MLP C2H 296 0 
1 1 1.00 0.99 1 0 

(MLP_2H_0.3_500)  C1L 2 541 

CM3aC-RBF C2H 230 66 
0.77 0.78 0.77 0.65 0.86 0.14 

(RBF_c=2)  C1L 124 419 

CM3aC-SVM C2H 293 3 
0.99 0.99 0.99 0.99 0.99 0.01 

(SVM_poly_p=2) C1L 3 540 

Table 7.7: The CM3aC model results. 

Classifiers Risk C4VH C2M C1L ACC Sen Spec PPV NPV MSE 

CM3bC-MLP 

(MLP_2H_0.3_

500) 

C4VH 302 1 1 

 0.99 0.99 0.99 0.99 0.97 0.01 
C2M 3 233 7 

C1L 1 3 288 

CM3bC-RBF 

(RBF_c=2) 

  

C4VH 300 2 2 

 0.98 0.99  0.97 0.98 0.98 0.01 
C2M 3 235 5 

C1L 4 5 283 

CM3bC-SVM 

(SVM_Poly_p=

2)  

C4VH 304 0 0 

 0.98 0.99  0.96 0.98 0.99 0.07 

C2M 0 240 3 

C1L 0 12 280 

Table 7.8: The CM3bC model results. 
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Contrastingly, overall the radial basis classifiers (CM3aC-RBF and CM3bC-RBF) have the 

poorest performance according to all the evaluation measures (for example, 0.77; 0.78; 

0.77; 0.65; 0.86; and 0.14 respectively in Table 7.7). 

The classifiers CM3aC-MLP (Table 7.7) and CM3bC-SVM (Table 7.8) predict correctly all 

“C2H” and “C4VH” patterns into the right classes. Furthermore, there is very negligible 

difference between pair-rates of sensitivity versus positive predictive value as well as 

specificity versus negative predictive value. These rates mirror the correct predictions for 

all patterns as the vertical or horizontal comparisons in confusion matrix in both Tables 7.7 

and 7.8. For example, there is no mis-classification in “C1L” class, and just 2 patterns are 

mis-classified into “C2H” class (see CM3aC-MLP confusion matrix in Table 7.7). As 

indicated above, these outcomes are derived from KMIX outcomes for models CM3a and 

CM3b. Therefore, these neural network classifiers replicate the KMIX clustering results. In 

other words, there are negligible overlap predictions for patient risks (“High risk” and 

“Low risk”) in the confusion matrix. This suggests that the nature of the problem and the 

difficulty of measuring influential parameters might cause the poor clustering performance 

in the above sections in particular with regard to “High risk” patterns. A deeper 

investigation of the KMIX results is necessary. 

7.3. Discussion 

For the discussion in this section, two groups of classifiers are used. The first group 

contains the classifiers derived from clinical models and scoring models (see the results 

rewritten in Table 7.9). The second group contains classifiers derived from clustering 
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models (CM3aC-MLP; CM3aC-RBF; CM3aC-SVM; CM3bC-MLP; CM3bC-RBF; and 

CM3bC-SVM). In the first group, the radial basis function classifiers produced the poorest 

results of “High risk” patterns (sensitivity of 0.00 and positive predictive value of “N/A”). 

They again show their limited use for the risk prediction process in this data domain. The 

comparison of the accuracy rates of all classifiers can be seen in Figure 7.1. Overall, there 

is little fluctuation in the accuracy rates of all classifiers (an average of about 0.78). 

Although radial basis function classifiers produced the poorest performance for “High risk” 

patients (in the sensitivity and positive predictive value measurements), their accuracy rates 

(see in Figure 7.1) are the highest compared to other techniques (0.84 in the average). This 

is due to the accuracy rates representing the trade-off between correct “High risk” and 

correct “Low risk” predictions (their specificity rates and negative prediction values are the 

highest compared to other classifiers). 
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Figure 7.1: The comparisons of accuracy rates over all classifiers. 

 



 

 

 

148 

Classifiers ACC Sen Spec PPV NPV 

CM1-MLP 0.82 0.07 0.95 0.21 0.85 

CM1-RBF 0.85 0 1 N/A 0.85 

CM1-SVM 0.75 0.24 0.84 0.21 0.86 

CM2-MLP 0.81 0.04 0.96 0.18 0.83 

CM2-RBF 0.83 0 1 N/A 0.83 

CM2-SVM 0.71 0.17 0.82 0.16 0.83 

CM3a-MLP 0.81 0.09 0.95 0.28 0.84 

CM3a-RBF 0.83 0 1 N/A 0.83 

CM3a-SVM 0.77 0.12 0.9 0.19 0.84 

CM4a-MLP 0.81 0.1 0.95 0.3 0.84 

CM4a-RBF 0.83 0 1 N/A 0.83 

CM4a-SVM 0.79 0.13 0.92 0.24 0.84 

CM3b-MLP 0.84 0.04 0.97 0.25 0.84 

CM3b-RBF 0.85 0 1 N/A 0.85 

CM3b-SVM 0.79 0.08 0.92 0.14 0.85 

CM4b-MLP 0.83 0.07 0.96 0.24 0.85 

CM4b-RBF 0.85 0 1 N/A 0.85 

CM4b-SVM 0.8 0.15 0.91 0.23 0.86 

Mortality 0.83 0.13 0.96 0.4 0.85 

Morbidity 0.82 0.19 0.94 0.38 0.86 

Death rate 0.83 0.13 0.96 0.38 0.85 

Table 7.9: Results of first group’s classifiers. 

To compare all the first group classifiers’ performance with the random classification 

performance, three random representative classifiers are built. These random results are 

based on three types of heuristic outcomes labelling (“PATIENT STATUS” attribute; 

“PATIENT STATUS” and “30D stroke/death”; and POSSUM and PPOSSUM threshold) 

indicated in Chapter 6. The prediction rates (in Table 7.10) for the random classifiers are 

calculated as follows: 
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SenRand = p(High risk) - number of “High risk” over total number of data set. 

SpecRand = q(Low risk) - number of “Low risk” over total number of data set 

ACCRand = PRand(true positive  true negative), where PRand is random 

probability of total true positive and true negative in risk predictions. 

ACCRand = PRand(truepositive) + PRand(truenegative) - 

PRand(truepositive truenegative) 

ACCRand = p(High risk)*p(High risk) + q(Low risk)*q(Low risk). 

For example, model CM1 contains 126 “High risk” and 713 “Low risk”. Therefore, the 

random sensitivity is the probability of 126 “High risk”, from a total of 839 patterns, 

classified as “true positive” (0.15). The random specificity rates are given via a similar 

explanation.  

The random accuracy is the probability of total number of “High risk” and “Low risk” 

classified to correct “High risk” and “Low risk” classes respectively. Therefore, it is 

calculated as the total of probability of true “High risk” (true positive), and probability of 

true “Low risk” (true negative), minus the probability of intersection of true positive and 

true negative (= ). The random classification results can be seen in Table 7.10. 

Random Classifiers 

ACC 

(Rand) 

Sen 

(Rand) 

Spec 

(Rand) 

Random1 (CM1) 
0.74 0.15 0.85 

Random2 

(CM2;CM3a,b;CM4a,b) 
0.72 0.17 0.83 

Random3  

(POSSUM and PPOSSUM) 
0.73 0.16 0.84 

Table 7.10: Results of random classifiers for first group’s models. 
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Tables 7.9 and 7.10 show that all classifiers have higher accuracy compared to the random 

classifiers (Random1 and Random2) in overall (0.84 and 0.73 in average respectively). The 

neural network classifiers have poorer sensitivity and higher specificity rates than the 

random classifiers except the radial basis function classifiers. The POSSUM and 

PPOSSUM classifiers (Table 7.9) have nearly the same in the average of the sensitivity rate 

(0.15) compared to the random predictions (Table 7.10). These results suggest that the 

POSSUM and PPOSSUM classified “High risk” patients to equivalent level as the random 

and better than the neural network classifiers.  

Importantly, the random specificity rates in Table 7.10 are five times higher than the 

sensitivity rate. This reflects the much higher density of “Low risk” patterns in data space. 

This might cause the poor sensitivity performance for all classifiers. 

The average classification rates for the four subgroups (multilayer perceptron, support 

vector machine, radial basis function and the POSSUM/PPOSSUM calculations) can be 

seen in the Table 7.11. Here, the POSSUM and PPOSSUM achieved the highest overall 

results compared to the other techniques. The accuracy rates show negligible differences 

between the four techniques. However, there are considerable differences between the 

correct “High risk” (sensitivity) and correct predictive “High risk” (positive predictive 

value) except for the radial basis function classifier. All classifiers demonstrate poor 

performance in “High risk” predictions. 

The average classification performances for the second group (clustering models) are 

shown in Table 7.12. 
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Techniques ACC Sen Spec PPV NPV 

MLP  0.82 0.07 0.96 0.24 0.84 

RBF 0.84 0 1 N/A 0.84 

SVM  0.77 0.15 0.89 0.2 0.85 

POSSUM/ 

PPOSSUM 0.83 0.15 0.96 0.39 0.86 

Table 7.11: The average classification rates of subgroups models. 

Techniques ACC Sen Spec PPV NPV 

MLP  0.99 0.99 0.99 0.99 1 

RBF 0.88 0.88 0.87 0.82 0.93 

SVM  0.99 0.99 0.98 1 1 

Table 7.12: The average classification rates of clustering models (second group). 

The multilayer perceptron and support vector machine classifiers achieve the highest 

measurement rates (sensitivity, specificity, accuracy, positive predictive value, and negative 

predictive value) whereas the radial basis function classifiers achieve the poorest. Specially, 

there is negligible difference between the sensitivity and positive predictive value rates over 

these techniques. This is also true for the differences of the specificity rates and negative 

predictive values.  This means these results demonstrate that the neural networks can 

replicate the clustering results from the KMIX algorithm. Therefore, the poor clustering 

performance in Tables 7.5 and 7.6 above might be influenced by the nature of the problem 

and the difficulty of measuring influential parameters or the KMIX clustering performance 

failing to find centre vectors for patterns for the different outcomes. 

To further investigate the KMIX performance, the distance in data space from expected 

classes (“High risk” and “Low risk”) to the clustering outcomes (“High risk” and “Low 

risk” clusters) are calculated. Furthermore, the gaps between different groups in the 
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classifier’s confusion matrix are also calculated to investigate the distribution of the data in 

the attribute space. Note that these distances are calculated based on the distances between 

centre vectors, which are representative for the groups.  

Mathematically, the centre vector contains m components, with p first continuous 

components and m-p categorical components. Note that the Boolean components are 

treated as if categorical. Therefore, the centre vectors can be rewritten in the form: 

Q= (qj1, qj2,… qjp, qjp+1,qjp+2,…, qjm), 

where {qjk}k=1,..p,={meank}, and meank is the average of kth 
continuous attribute; 

{qjk}k=p+1,.., m ={modek}, and modek is the “max frequency of ValCk “ in the kth  

categorical attribute. 

The distance between two centre vectors is calculated as follows:  

d(Qi,Qj)  = dN(Qi,Qj) + dC(Qi,Qj); j=1,2,..k 

where dN(Qi,Qj), and dC(Qi,Qj) are calculated according to Equation (4.14), and Equation 

(4.15) in Chapter 4. 

In summary, this distance is calculated based on Euclidean distances for the continuous 

attributes and Hamming distances for the categorical attributes. More detail about the 

centre vector as well as distance calculations can be seen in section 4.3.2 of Chapter 4. 

 The CM3a clustering results are used here as the representative for this investigation (see 

confusion matrix result in Table 7.5). The resultant distances can be seen in Table 7.13 and 

Table 7.14 below. Note that “Expected High” means the expected “High risk” (“High risk” 

class), and “Cluster High” means “High risk” cluster. The same explanation is used for 

“Expected Low” and “Cluster Low”. 
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Groups Distances 

Expected High – Cluster High 2.00 

Expected High – Cluster Low 0.01 

Expected Low – Cluster Low 0.00 

Expected Low – Cluster High 2.01 

Table 7.13: The distances from expected classes to alternative clustering outcomes. 

From Table 7.13, the distances between cluster “Low risk” to “High risk” and “Low risk” 

classes (expectations) are negligible (nearly 0.00). Contrastingly, the distances between 

cluster “High risk” to both these classes are quite far (2.01). This shows the reason for the 

poor clustering “High risk” performance as in their original distributions the patterns in the 

expected “High risk” class are not close to each others.  

Table 7.14 shows the negligible distance (0.01) between correct “High risk” group and 

incorrect “Low risk” group (in the “High risk” cluster). This means these patterns are very 

closely distributed in data space. In other words, they have similar pattern forms. The same 

explanation might be used for the gap between correct “Low risk” group and incorrect 

“High risk” group (with a distance of 1.01). 

Contrastingly, the distances between alternative clustering groups are more than double the 

two above distances. For example, the distance from the correct “High risk” patterns to the 

incorrect “High risk” is 3.02. This means their distributions in data space are quite far from 

each other. Hence, the correct “High risk” pattern forms are different to the incorrect “High 

risk” ones. However, their patterns have the same outcomes as labelled using the heuristic 
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rules indicated in Chapter 6. From this result, it is strongly suggested that the natural 

structure of the data (similar pattern forms) does not support the labelled outcomes from the 

heuristic clinical models. In other words, the nature of the problem and the difficulty of 

measuring influential parameters cause the poor performance for classifiers on the data, and 

in particular for the “High risk” patterns. 

Groups Distances 

Correct High – Incorrect High  

(True Positive – False Negative) 3.02 

Correct High – Correct Low 

(True Positive – True Negative) 2.03 

Correct High – Incorrect Low  

(True Positive – False Positive) 0.01 

Correct Low – Incorrect High  1.01 

Correct Low – Incorrect Low  

(True Negative – False Positive) 2.02 

Incorrect Low – Incorrect High 

(False Positive – False Negative) 3.01 

Table 7.14: The distances between alternative groups in confusion matrix. 

To discuss the relationship between all supervised classifiers and clustering classifiers, the 

model CM3a is chosen as the representative for all the above models. A rule to build the 

confusion matrix for all supervised classifiers (multilayer perceptron; radial basis function; 

and support vector machine) is given by: 
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IF the outcome is “High risk”, and for any supervised classifiers (MLP, RBF, and 

SVM) it is predicted as “High risk”, it can be seen as true positive “High risk” 

Otherwise, it can be seen as false negative “High risk”.  

The same is done for the “Low risk” patterns. The results can be seen in Table 7.15. 

  High risk Low risk ACC Sen Spec PPV NPV 

High risk 14 125 

0.76 

  

0.10 

  

0.89 

  

0.15 

  

0.83 

  
Low risk 78 622 

Table 7.15: The confusion matrix for CM3a model with all  supervised classifiers. 

A confusion matrix for the model CM3a in clustering classifier (see in Table 7.5 above) can 

rewritten as:.  

Risk High risk Low risk ACC Sen Spec PPV NPV 

High risk 48 91   

0.60 

  

0.35 0.65 0.16 0.83 Low risk  248 452 

Table 7.16: The confusion matrix for CM3a model with clustering classifier (KMIX). 

The confusion matrix resulted by combination of the supervised and unsupervised 

(clustering) classifiers can be seen in Table 7.17. The rule to generate the outcomes as 

follows: 

If the outcome is “High risk”, and for any supervised classifiers (MLP, RBF, and 

SVM) it is predicted as “High risk”, or the clustering resulted as “High risk”, it can be seen 

as true positive “High risk” 

Otherwise, if it is predicted as “High risk” it can be seen as false negative “High 

risk”.  

A similar rule exists for the “Low risk” patterns: 
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IF the outcome is “Low risk”, and for any supervised classifiers (MLP, RBF, and 

SVM) it is predicted as “Low risk” or the clustering result is “Low risk”, it can be seen as 

true negative “Low risk” 

Otherwise, if it is predicted as “Low risk”  it can be seen as false positive “Low risk”.  

  High risk Low risk ACC Sen Spec PPV NPV 

High risk 58 81 

0.55 0.42 0.57 0.16 0.83 
Low risk 300 400 

Table 7.17: The results of a combination between clustering classifier (KMIX) and 

supervised classifiers. 

Although the accuracy rate in Table 7.15 is highest (0.76) but the sensitivity rate and 

positive predictive value is poorest (0.10 and 0.15). This means all supervised classifiers 

poorly predicted for “High risk” patients. Table 7.16 shows the improvement of predicted 

sensitivity rate (0.35) although the accuracy rate is poorer (0.60). The big improvement for 

predicted “High risk” patient via sensitivity rate can be seen in Table 7.17 (0.42). This 

result is generated by a combination of the supervised classifiers (multilayer perceptron, 

radial basis function, and support vector machine) and the clustering classifier (KMIX). As 

indicated above the natural structure of the data affects the supervised classifiers’ results. 

Therefore, the combination between supervised and unsupervised might open the new 

direction for the prediction process. This is left for further research. 

7.4. Summary 

This chapter shows and discusses the classification results for the combined data from the 

Hull and the Dundee sites. The discussions about both "clinical - structure" classifiers 

(clinical and scoring risk models) and “natural – structure” classifiers (clustering models) 
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are shown in greater detail in section 7.3 above. The "clinical - structure" classifiers 

produced similar rates of accuracy, specificity, and negative predictive value. However, all 

produced poor performance for “High risk” predictions (sensitivity and positive predictive 

value). Furthermore, there are big gaps between the sensitivity and the positive predictive 

value. This is also true for the use of the KMIX algorithm. Therefore, an investigation of 

the distances of the risk groups in KMIX confusion matrix was needed. The resultant 

distances show that the patterns in the same KMIX cluster have similar forms (small 

distances) whereas the expected classes (clinical heuristic outcome) have quite different 

pattern forms (high distances). Furthermore, the “natural - structure” classifiers produced 

high performance in the reuse of neural network techniques to replicate the clustering 

outcomes. Therefore, the poor performance for “High risk” predictions in "clinical - 

structure" classifiers can be explained by the nature of the problem and the difficulty of 

measuring influential parameters.  

In all the above classifiers, each attribute is treated equally. The next chapter investigates 

whether certain attributes might be more important than the others in determining the 

model outcomes. Furthermore, the stressing of significant attributes during the clustering 

process makes for an interesting investigation.  



 158 

Chapter 8 

Feature Selection and Mutual Information 

8.1. Introduction 

Feature selection can help in data mining by reducing the number of irrelevant and 

redundant features, which often degrade the performance of classification algorithms in 

both speed and prediction accuracy. Most feature selection methods use evaluation 

functions and search procedures to achieve their targets. These evaluation functions 

measure how good a specific subset of input attributes is in discriminating between the 

outcome classes. Feature selection methods can be seen as belonging to two main groups: 

filters and wrappers. The former will be used in this thesis as they are faster and simpler 

than the wrapper techniques (Dash and Liu, 1997). Furthermore, they are useful for 

clustering, as they present the distance between the attributes to the outcomes. The 

concept of mutual information is also introduced in this chapter. It measures the 

dependencies between random variables. Therefore, it is suitable for assessing 

“information content” of the attribute contributions to outcome classes in the data 

domain. For example, it was used in O'Connor and Walley (2000) for measuring the 

quality of a self organizing map. It is applied here with the KMIX algorithm as the 

attribute weights in the clustering process; in an attempt to improve the quality of the 

clustering performance. 

8.2. Feature Selection 
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This section introduces the two feature selection methods of filters and wrappers. Filters 

measure independently the relevance of feature subsets to classifier outcomes whereas 

wrappers use the classifier’s performance as evaluation function. A representative of the 

filter concept, the Relief algorithm (Kira and Rendell, 1992), is also introduced in this 

section. This is for a comparison purpose with mutual information in the following case 

study. 

8.2.1. Filter Method 

Each feature is evaluated with a measure such as the distance to outcome classes. All 

features in the data set are then ranked according to these measures. The first m features, 

from the ranked list, can be chosen by the user. The methods for choosing m features are 

not described in detail in this thesis. More detail about this method, and the definition of 

m features, can be seen in Liu and Motoda (1998). 

8.2.2. Wrapper Method 

The wrapper method is used as an inductive algorithm to estimate the value of a given 

feature subset (e.g via cross-validation). This means its goal is to return a subset of 

features that gives the lowest prediction error. However, according to Dash and Liu 

(1997) the algorithms exhibit a moderate complexity, because the number of executions 

requires a high computational cost, in particular when used with exhaustive search 

strategies. Therefore, this method is not used for the thesis data.  Further details about the 

wrapper method can be found in Dash and Liu (1997); Liu and Motoda (1998); and 

Talavera (2005). 

8.2.3. Relief Algorithm 



 160 

The Relief algorithm (Kira and Rendell, 1992) is a filter method that estimates the 

usefulness of attributes according their values in distinguishing samples that are near each 

other. The algorithm searches for two nearest neighbors of each sample in the data 

domain in the following way:  Firstly, it compares one pattern from the “nearest hit” class 

with another from the “nearest miss” mis-class. It updates the quality estimation 

according to the “miss” and the “hit” value. This process is repeated until a best ordering 

for the attribute set is found; or is terminated by some user defined parameter. The 

pseudo code for the Relief algorithm can be seen in Figure 8.1. 

 

Figure 8.1: Pseudo code of original relief algorithm (Kira and Rendell, 1992). 

In Figure 8.1, A is the current attribute; W[A] is the weight of the currently considered 

attribute; Ri is the ith sample; H is the “hit”; M is the “miss”;  diff() is the probability 

function; and m is number of the neighbors. 

More detail on the Relief-family of algorithms can be seen in Kononenko(1994); and 

Lopez(2002). 

Algorithm Relief 

Input: For each training instance a vector of attribute values and the class value 

Output: The vector W of estimations of the qualities of attributes 

set all weights W[A]:=0.0; 

for i:=1 to m do begin 

    randomly select an instance Ri; 

   find nearest hit H and nearest  miss M; 

   for A:=1 to a do 

        W[A]:= W[A] –diff(A,Ri,H)/m +diff(A,Ri,M)/m; 

 end; 
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8.3. Mutual Information 

This section introduces the concepts of mutual information, entropy, and a measure of 

mutual information based on Bayes’ theory.  

Mutual Information has been applied to many areas to help reduce the feature set by 

evaluating the significant attributes in the feature set. For example, Battiti (1994) 

produced the MIFS algorithm (Mutual Information based Feature Selection) to classify 

sonar data (Gorman and Sejnowski, 1988), Iris data (Fisher, 1936), and for use in optical 

character recognition. Recently, mutual information has been used in feature selection 

algorithms such as in Huang et al (2006), Sanchez et al (2008), Liu et al (2008), and 

Schaffernicht et al (2009). Huang et al (2006) produced a wrapper method to find a 

subset of features applied to the benchmark data sets (UCI, Merz & Merphy, 1996). 

Sanchez et al (2008) used mutual information to discover the most important variables 

for a fuzzy rule-based system for use with benchmark imprecise data. Liu et al (2008) 

shown the advantage of using mutual information in a feature selection algorithm 

compared to other filter methods over thirty-three datasets. Schaffernicht et al (2009) 

proposed a feature selection algorithm using residual mutual information as selection 

criterion to evaluate the output and the input features with the UCI data sets (Merz & 

Merphy, 1996). They concluded that the resulting performance is on par with the other 

approaches, but it needed fewer adaptation cycles. All of these researches are the 

motivation for the use of mutual information in the feature selection algorithm with the 

thesis data.  

8.3.1. Notations 
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Entropy 

In information theory, Shannon (1948) defined entropy or information entropy as a 

measure of the uncertainty associated with a discrete random variable. In other words, 

entropy is a measure of the average information content of the missing recipients when 

the system does not know the value. Mathematically, entropy can be written as: 
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where pi(x) is probabilities of occurrence in a set of possible events x (i.e. the 

transaction in cardiovascular risk prediction), n is number of transactions, and c is 

a positive constant (usually consider c=1). 

Joint Entropy 

Suppose there are two discrete variables X and Y. H(X,Y) is the joint entropy, given by: 
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where pi,j(x,y) is the probability of the joint occurrence of x and y. 

Condition Entropy 

The conditional entropy of Y is HX(Y) defined as average of the entropy of Y for each 

value of x, weighted according to the probability of that particular x. 
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where pi,j(x,y) is the probability of the joint occurrence of x and y; and pi(y) and 

pj(x) are conditional probabilities of X, and Y. 
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Relative Entropy 

The relative entropy is a measure of the statistical distance between two distributions. It 

is originally introduced by Solomon Kullback and Richard Leibler in 1951. It is known as 

the Kullback Leibler distance; or Kullback Leibler divergence (Cover and Thomas, 

1991). 
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where p(x), and q(x) are the distributions in the data set A. 

Quantization 

Quantization, also called discretization, is the process of converting continuous variables 

into discrete variables. The discretized variable has a finite number of values which is 

considerably smaller than the number of possible values in the original data set. The 

continuous values are mapped to alternative intervals (bins) in the attribute value range. 

According to Venables and Ripley (1994); Yang et al (2001); and Tourassi et al (2001), 

the proper number of the bin is given by: 



 164 

bin = log2N +1 (8.7), 

where N is total number of patterns. 

8.3.2. Mutual Information 

The mutual information between discrete random variables X and Y, MI(X,Y), is a 

measure of the amount of information in X that can be predicted when Y is known. 

For the case where X and Y are discrete random variables, MI(X,Y) can be written as: 

)8.8()]()(|),(log[),(

)|()(),(

,,

i j

jijiji ypxpyxpyxp

YXHXHYXMI

 

where H(X) is the entropy of X, H(X|Y) (or HX(Y)) is the conditional entropy, 

which represents the uncertainty in X after knowing Y. 

The concept of entropy can be extended to continuous random variables (Shanon, 1948; 

Cover and Thomas, 1991) by: 
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Based on the Kullback Leibler divergence given in Equation (8.6), the Equation (8.8) and 

Equation (8.9) can be written as follows: 



 165 

)10.8(
)().(

),(
log).,())().(),((),(

YyXx yPxP

yxP
yxPyPxPxPKyxMI

)11.8(
)().(

),(
log).,())().(),((),( dxdy

yPxP

yxP
yxPyPxPxPKyxMI  

In this thesis, the continuous values are transformed into discrete ones by using the above 

quantization method. So from now on, the mutual information formula is written in the 

discrete case only. 

Bayes' Theorem for Mutual Information in Pattern Recognition 

Assume that the output classes set C= {Ci}, i=1,.,c and the attributes set X= {xj}, j= 1,..m 

are two sets of random variables in the data domain. According to the Bayes theorem: 
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Therefore,  
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where p(Ck,xjk) can be seen as the probability of finding attribute xj in  class Ck. 

in the kth
 state. 

To evaluate the relevance between classes and attributes in the data set, the mutual 

information is calculated. By applying Equation (8.10) for class Ci (i=1,..c), and 

attributes xj (j=1 to m), the mutual information is calculated as: 
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where p(Ci,xjk) is probability of finding attribute xj in class Ci in the kth
 state; 

p(Ci) is prior probability of class Ci; p(xjk) is prior probability of finding attribute 

xj in the kth
 state; c is number of classes,  s is number of states in the considered 

attribute, and m is number of attributes. 

It clear that the probability of finding attribute xj in class Ci in kth
 state, (p(Ci,xjk)), is the 

probability of finding number of patterns in class Ci with attribute xj when considering 

the kth
 state.  

In short, Equation (8.14) can be rewritten as follows: 
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where 
sum

sum
p

ijk

ijk , sumijk is total number of patterns in class Ci with attribute xj 

and in the kth
 state, and sum is total number of patterns; 

sum

sum
q i

i
, and sumi is total number of patterns belong to class Ci; 

sum

sum
r

jk

jk , and sumjk is total number of patterns in attribute xj and in the kth 

state. 

Example 8.1 

Table 8.1 below shows information about cardiovascular patients. The input attributes are 

labeled as 30D_St/D (x1), Diabetes (x2), SEX (x3), and Age (x4). The output attribute is 
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labeled as Risk. Assume that three output classes are labeled as C1=”High”, 

C2=”Medium”, and C3 = “Low”.  

The calculation for the mutual information for the discrete attribute“30D_str/D” is as 

follows: p(C1,x11) (finding 30D_St/D = ”Y” (x11) in “High” class (C1)) can be seen as 

the ratio of the number patients with Risk = "High", and 30D_St/D = “Y” over the total 

number of patients in the data set.  Hence, p(C1,x11) = 2/10. Similarly, the prior 

probability of class Ci, p(Cj), is probability of finding the number of patterns in class Ci; 

and p(xj) is the probability of finding the number of patterns of attribute xj in the kth
 state. 

Therefore, p(C1) =3/10, p(x11)=6/10.  

30D_St/D 

(x1) 

Diabetes 

(x2) 

SEX 

(x3) 

AGE 

 

AGE_BIN 

(x4) 

Risk 

(C) 

Y N M 90 4 Medium 

Y Y F 45 2 High 

Y Y M 40 2 High 

N Y F 74 4 High 

Y N M 20 1 Medium 

Y N F 42 2 Medium 

N N M 25 1 Low 

N N F 45 2 Low 

Y N F 86 4 Medium 

N N M 68 2 Low 

Table 8.1: Cardiovascular patient information. 

MI(C,x1) is given by: 
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Hence, 

MI(C,x1)= (0.030-0.126) + (0.295+0) + (0+0.396) =0.595 

Similarly, MI(C,x2),and MI(C,x3) are calculated as: 

MI(C,x2)= (0.521+ 0) + (0 + 0.206) + (0+0.29) = 0.757 

MI(C,x3)= (0.083- 0.058) + (0 + 0) + (-0.1 + 0) =-0.075 

Therefore, it is clear that x2 (Diabetes) has a stronger relevance than other attributes 

(0.757), and the least relevant attribute to the output classes is the SEX attribute (-0.075).  

As indicated above, the discretization method is used for attribute “Age” to convert its 

continuous values into discrete values. The number of bins is calculated as Equation 

(8.7). Hence, we have 4 bins (  log210). 
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MI(C,x4)= (0 + 0.083 + 0.015) + (0.032 – 0.1 +0.147) + (0.074 + 0.082 +0) = 0.334. 

8.4. Case Study V 

This section demonstrates the use of mutual information for the thesis data. The results 

are discussed by comparison to the use of the Relief algorithm. More detail can be seen in 

section C.6 in Appendix C. 

Data 

Two models are used in this experiment, CM3aD and CM2. CM3aD contains 16 input 

attributes and 341 cases whereas model CM2 contains 26 input attributes and 839 cases. 
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All data is cleaned by supplying missing values, and transformed to appropriate 

categorical types. The number of “continuous to discrete value” bins for the models 

CM3aD and CM2 are 9 and 11 respectively.  

Method 

Both these models are used with the WEKA software package (WEKA, 2005) for the 

Relief algorithm. Mutual information calculations are applied to both these models using 

Equation (8.15). 

Result 

The comparison result for the use of the Relief algorithm and mutual information can be 

seen in Figures 8.2 and 8.3. 
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Figure 8.2: A comparison of mutual information and Relief for the CM3aD model. 

Discussion 

From Figure 8.2, the use of mutual information for ranking attributes produces a slightly 

higher value compared to the Relief algorithm. The results in Figure 8.3 show that some 

attributes have high rank according to the Relief whereas their ranks are low 

corresponding to the mutual information calculations. For example, the Relief algorithm 
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ranked the attribute “R1 PAT” as the first whereas the first ranked by the mutual 

information is the “CARDIAC_FAIL” attribute. 
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Figure 8.3: A comparison of mutual information and Relief for the CM2 model. 

Overall, in Figures 8.2 and 8.3, the measurements, between each attribute in the data set 

(CM2, CM3aD) for the outcomes, are very similar using either Relief or mutual 

information algorithms. This means the rank from the use of mutual information 

calculations is nearly the same as the popular Relief algorithm except The advantage of 

using mutual information over Relief is that this algorithm can show the weight values 

from each attribute directly to outcome classes whereas Relief weight values are based on 

the distinguishing samples that are near each other in the same class. Hence, mutual 

information seems to be simpler to use than the Relief algorithm. Moreover, mutual 

information algorithm represents an interesting combination between pattern recognition 

concepts (a pattern is represented in the attribute dimensional space), Bayes' theory, and 

mutual information.  

8.5. Mutual Information and Clustering 
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This section demonstrates the use of mutual information in the KMIX clustering 

algorithm. The hope is that the KMIX results can be improved by using the attribute 

weights (mutual information values) inside the clustering process. 

8.5.1. The Weighted KMIX Algorithm (WKMIX) 

The idea behind the Weighted KMIX Algorithm (WKMIX) is derived from the 

contributions of Huang (1997) where the weights are applied to the categorical attributes. 

According to Huang (1997), the choice of the weight depends on how many numeric 

attributes are allocated in the data domain. The weight is normally chosen as the overall 

average standard deviation of numeric attributes. Therefore, the weights do not clearly 

reflect the relationship between the data attributes and the clusters. Moreover, there 

always exists an influence of data attributes to the outcome risks for patients in medical 

domains. Therefore, the data attributes will have an influence on the clusters in the 

clustering process. The use of mutual information enhances the alternative significant 

levels of the data attributes contributing to the outcomes as shown in the previous section. 

It is suggested that the combination of the KMIX algorithm and the weights derived from 

the mutual information might improve the clustering process. This is like supervised 

clustering, where the attributes’ contributions to the outcomes are considered during the 

clustering process. This algorithm can be seen as the first instance of the idea being used 

in medical risk prediction. 

The algorithm steps are the same as the KMIX algorithm. However, the distance between 

each pattern to the centre vector is calculated as follows: 
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d(Xi,Qj)  = WiNdN(Xi,Qj) + WiCdC(Xi,Qj); j=1,2,..k;       (8.16) 

where WiN, WiC are the mutual information values of individual numerical, or 

categorical attributes.  

In other words, Equation (8.16) can be rewritten as: 

d(Xi,Qj)  = MIiNdN(Xi,Qj) + MIiCdC(Xi,Qj); j=1,2,..k;       (8.17) 

The detail steps of WKMIX algorithm are rewritten as: 

Step 1: Initial K clusters according to K partitions of data set.  

Step 2: Update K centre vectors in the new data set (for the first time the centre vectors 

are calculated) 

Qj = (q
N

j1, q
N

j2, …, q
N

jp, q
C

jp+1, …, q
C

jm),  j = 1, 2, …, k  

where {qN
ji}i=1,2..p = {meanN

ji } (mean of ith attribute in cluster j); 

and {qC
ji}i=p+1,..m ={modeC

ji} (max freq value in attribute ith in cluster j). 

Step 3: Update clusters as the following tasks: 

Calculate the distance between Xi in ith 
cluster to K centre vectors: 

d(Xi,Qj)  = MIiNd
N
(Xi,Qj) + MIiCd

C
(Xi,Qj); j=1,2,..k; 

Allocate Xi into the nearest cluster such that d(Xi,Qj) is minimum. 

Repeat for the whole data set, and save them to the new data set with K new centre 

vectors. 
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Step 4: Repeat step 2 and 3 until no more change in the distance between Xi and new K 

centre vectors. 

The computational cost of this algorithm is O(TmnK), where T is the number of 

iterations of the reallocation process; m is number of data attributes; n is the number of 

objects; and K the number of clusters. Like the K-means algorithm, this algorithm 

produces potentially problematic locally optimal solutions. To deal with this, techniques 

such as genetic algorithm can be applied to produce globally optimal solutions. 

Optimization via genetic algorithms is not discussed further in this thesis.  

The WKMIX algorithm is KMIX with a small change in the 3rd step in the algorithm, 

where mutual information is used to weight the data attributes. Hence, WKMIX might be 

appropriate for medical data domains, in particular the thesis data domain, where the 

mutual information between the attributes and the prediction risks reflects important 

dependencies. The next section will show the demonstration on this algorithm in a case 

study with the thesis data domain. 

8.5.2. Case Study VI 

This section demonstrates the use of the WKMIX algorithm for the thesis data. The 

results are compared to the KMIX algorithm results. 

Data 

The experimental data is model CM3aD with 16 input attributes and 341 cases. The 

preparation of the data such as cleaning, transformation and so on is the same as in Case 

Study V above (in section 8.4). 

Method 
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The mutual information values are used as the attributed weights for the WKMIX 

algorithm. The clustering results are compared to the KMIX results (taken from Table 

6.16 in Chapter 6). Alternative clustering models are then built for the use of neural 

network techniques and the J48 decision tree algorithm. The classification results will be 

discussed using the standard measures. 

Result and Discussion 

The results can be seen in Table 8.2. Note that the outcome clusters of “C2H” and “C1L” 

are regarded as “High risk” and “Low risk” respectively. 

From Table 8.2, the WKMIX sensitivity is a little poorer than the KMIX sensitivity (0.53 

and 0.68) whereas the prior positive predictive value is nearly the same (0.22 and 0.20). 

However, the WKMIX achieves a considerable improvement in accuracy compared to 

the KMIX algorithm (0.61 and 0.48 respectively). Therefore, the WKMIX achieves 

higher performance compared to the KMIX in overall. Importantly, the WKMIX gap 

between sensitivity and positive predictive value is a little smaller compared to the KMIX 

(about 0.30 and 0.48 respectively).  

Algorithms  Risk C2H C1L ACC Sen Spec PPV NPV 

WKMIX 

High risk 30 27 

0.61 0.53 0.63 0.22 0.87 Low risk 105 179 

KMIX 

High risk 39 18 

0.48 0.68 0.44 0.20 0.88 Low risk 158 126 

Table 8.2: The results of alternative weights for CM3a model. 

Like the framework of the Case Study IV for discovering the data structure, the clustering 

model CM3aDC is generated with the outcomes derived from the WKMIX results. This 

new model is then used with the same neural network techniques as in the Case Study IV. 
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For example, the multilayer perceptron with a topology of 16-0-1 (16 input nodes; 0 

hidden node; and 1 output - 2 class nodes) is used; its learning rate is 0.3; 100 training 

cycles; and ten-fold cross-validation (see detail in Table 8.3). The use of the J48 decision 

tree technique is also applied to this new model. 

Classifiers Risk  C2H C1L ACC Sen Spec PPV NPV MSE 

CM3aDC-MLP 

(16-0-1; 0.3;100 

epochs) 

C2H 135 0 

1 1 1 1 1 0 C1L 0 206 

CM3aDC-RBF 

 (c=1) 

C2H 132 3 

0.97 0.97 0.98 0.99 0.96 0.02 C1L 6 200 

CM3aDC-SVM  

(poly; p=1) 

C2H 135 0 

1 1 1 1 1 0 C1L 0 206 

CM3aDC-J48 

 (binary tree) 

C2H 135 0 

1 1 1 1 1 0 C1L 0 206 

Table 8.3: The results of CM3aDC used alternative techniques. 

Table 8.3 shows that all classifiers achieve nearly ideal results over all standard rates. For 

example, at the confusion matrix of the poorest classifier CM3aDC-RBF, there are only 3 

mis-classified patterns (“C2H”) in the “C1L” class whereas there are 6 mis-classified 

“C1L” in the “C2H” class. Importantly, there is no distance between the sensitivity 

versus positive predictive value, and the specificity versus negative predictive value 

except the very negligible gap (0.02) of the classifier CM3aDC-RBF. Again, these results 

demonstrate that pattern recognition techniques (neural networks and decision tree of 

J48) can replicate the clustering results derived from the WKMIX outcomes. Therefore, 

as discussed in Chapter 7, the nature of the problem and the difficulty of measuring 

influential parameters again influence the clustering WKMIX results in Table 8.2. 
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8.6. Discussion 

Figure 8.2 and Figure 8.3 show that the mutual information performance is very similar 

to the popular Relief algorithm. However, it is simpler to use than the Relief algorithm.  

Adding attribute weights to the clustering algorithm does not change the computational 

cost of the algorithm compared to the KMIX. The WKMIX results (Table 8.2) clearly 

show an improvement in accuracy compared to KMIX. Furthermore, the high 

performances (ideal rates) in Table 8.3 show the supervised techniques can perfectly 

replicate the outcomes of the WKMIX clustering models. This means the data is formed 

into well defined clusters by the WKMIX algorithm. This suggests that by adding 

weights in the clustering process, the quality of the algorithm is improved. 

8.7. Summary 

This chapter presented the concept of feature selection. A simple (filter) feature selection 

method is applied to the thesis data to measure the relevant level of attribute set to the 

outcomes. The improved WKMIX algorithm provides an investigation of using attribute 

weights (mutual information calculations) in the clustering process. The Case Study VI 

results proved this by showing the increasing performance compared to the KMIX.   
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Chapter 9 

Conclusions and Further Research 

9.1. Introduction 

This chapter presents the conclusions for each research question initially presented in 

Chapter 1. The main contributions of the thesis are shown for the theory and practice in 

the use of pattern recognition and data mining techniques for generating risk prediction 

models. The limitations of the research are discussed in order to propose directions for 

further works. 

9.2. Concluding Remarks 

Chapter 1 introduced the reasons for the use of pattern recognition and data mining 

techniques in the cardiovascular domain. From this, a list of questions was generated 

(Section 1.3 in Chapter 1) to outline specific goals for this research. This section 

discusses the research findings in the light of these questions. 

9.2.1. How Able Are The Existing Systems In Dealing With Risk 

Prediction For Patients?  

It is not to deny that the POSSUM and PPOSSUM systems have a dramatic impact on 

risk prediction in the cardiovascular domain for the morbidity and mortality of patients. 

From the reduction to 12 physiological factors and 6 operative and postoperative factors 

(Copeland et al, 1991), for each patient, the mortality and morbidity rates are easily 
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calculated using Equations (2.1), (2.2), and (2.3) in Chapter 2. However, these systems do 

not consider all possible attributes. The POSSUM equations concentrate on the attributes 

defined by Copeland et al (1991) to calculate the physiological scores and the operative 

severity scores whereas other attributes might contribute to the prediction of 

cardiovascular risk for patients. For example, according to Kuhan et al (2001), the list of 

attributes in Table 6.1 in Chapter 6 is seen as significant in risk prediction for 

cardiovascular patients. Some of these are not used in POSSUM calculations, but they are 

correlated to the heuristic outcomes with the thesis models via the mutual information 

evaluations. For example, “Heart disease” attribute is significant (Kuhan et al, 2001), and 

it is not being used in POSSUM calculations. This attribute is very much correlated to the 

models CM3aD outcomes (its value (HD) is 0.51- see in Figure 8.2 in Chapter 8) 

according to mutual information evaluation. Hence, this attribute can be seen as a 

significant indicator in the prediction of patient risk. This is to be expected as the 

POSSUM is a generic medical risk prediction system. Moreover, in POSSUM and 

PPOSSUM and other logistic regression systems, the transformed categorical risks, from 

the numerical risk threshold, might lead to an ambiguous interpretation for patient 

outcome. For example, the analysis of an example from the use of the INDANA system 

(Pocock et al, 2001) can be seen as the representative of logistic regression system. At 

this point, although the POSSUM and PPOSSUM risk assessment systems present some 

advantages in the risk prediction for patients, they are not totally satisfactory for use 

according to the needs of the clinicians in this data domain. 

9.2.2. Are Linear Models Adequate For Use With The Data Domain? 
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Linear models are usually a first choice for classification problems. However, they are 

not adequate for use with the cardiovascular data, because of the limitations indicated in 

section 3.4 in Chapter 3. For example, linear models provide poor prediction for data 

outliers, and struggle to deal with noisy data whereas these data characteristics are typical 

in the thesis data domain (see in section 5.3.1 in Chapter 5). The use of linear models 

might lead to poor classification performance as they just use linear boundaries to 

separate the patterns in the data space. However, the thesis data is difficult to separate 

clearly in to alternative classes as their patterns are non-linear distributions in data space. 

For example, Figure 6.5 in the Case Study III in Chapter 6 showed that the patient risks 

(“High risk”, “Medium risk”, and “Low risk”) are very hard to separate by linear 

boundaries in the map. Therefore, nonlinear models might be the better choice for use 

with the cardiovascular data used in the thesis. 

9.2.3. What Are The Different Ways To Classify The Data? 

Four pattern recognition and data mining techniques, template matching; statistical 

classification; syntactic or structural matching; and neural network, can be used 

separately or in combination to solve classification problems. For example, according to 

Tsai and Fu (1980), the neural network approach sometimes might be seen as an 

implementation derived from statistical pattern recognition and syntactic pattern 

recognition approaches. 

In this thesis, two main approaches to pattern recognition and data mining, supervised 

(multilayer perceptrons; radial basis functions; support vector machines; and J48 decision 

tree) and unsupervised (self organizing maps; and the KMIX/WKMIX clustering 

algorithm) methods are used. 
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Of the supervised methods, radial basis function classifiers offered the poorest results. 

For example, the radial basis function classifiers predicted all “High risk” patterns to 

belong to the “Low risk” class for all clinical risk models (CM1-RBF, CM2-RBF, CM3a-

RBF, CM3b-RBF, CM4a-RBF, and CM4b-RBF) in Chapter 7 (Sen=0 in Table 7.9). The 

reason for this may arise from the disadvantages indicated in section 4.2.2 in Chapter 4. 

The decision tree technique (using the representative J48 classifier) performs as well as 

the neural network classifiers through the Case Study VI in Chapter 8 (see Table 8.3). 

However, its use is limited, because of the difficulties in finding clinically meaningful 

structural rules. 

Although the self organizing maps offer the benefit of a visual presentation for the data, 

they are not suitable for use in this thesis as they require numerical data maps for input. 

This is not convenient for the thesis data domain where a mixture of data types is given. 

KMIX and the improved WKMIX showed advantages in dealing with both numerical and 

categorical data via the use of Euclidean and Hamming distances. By using this clustering 

approach, and the resulting confirmatory classification results, the nature of the problem 

and the difficulty of measuring influential parameters are suspected for the earlier poor 

supervised classification results. For example, KMIX accuracy rates were at 0.60 and 

0.45, and there is a big distances between the sensitivity and the positive predictive value 

(see in Tables 7.5, 7.6 in Chapter 7), for the models CM3a and CM3b. The high 

performance in the use of neural network techniques with clustering outcome models 

highlighted the nature of the problem and the difficulty of measuring influential 

parameters (see results in Table 7.7, 7.8). The improvement in the accuracy rate of 

WKMIX compared to the KMIX (see Table 8.2 in Chapter 8) might open a new direction 
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in the use of attribute weights in the clustering process. Generally, there is an influence of   

the attributes to the patient’s outcomes in medical domain.  For example, the INDANA 

trial (Pocock et al, 2001) indicated that smoking attribute is one of significant attributes 

in the predicting the patient risk (see section 2.2 in Chapter 2). Another example is the list 

of attributes in Table 6.2 in Chapter 6 (Kuhan et al (2001), where they are estimated as 

the significant attributes to predict the cardiovascular risks. Therefore, attribute weights 

might help the clustering process place data in the right classes. 

9.2.4. Which Method Of Clustering Data Is Appropriate For This 

Medical Domain? 

The thesis focuses on the use of the partitional clustering method, because of the 

advantages highlighted in the literature review in Chapter 3. The K-means algorithm 

(Forgey, 1965; Jancey, 1966; MacQueen, 1967; Hartigan, 1975; Hartigan and Wong, 

1979) is the most popular clustering tool used in scientific and industrial applications 

(Berkhin, 2002). An example of K-means, KMIX, is used with the thesis data. The results 

(see in Table 4.5 in Chapter 4) show an improvement in the ability to deal with the 

mixture of numerical, categorical, and Boolean attributes in the data set, by using both 

Euclidean and Hamming distances to the appropriate clustering centre. The centre vector 

types and its measures can be listed according to attribute types as follows: 

 Numerical (continuous) attributes: The centre is the average value of all 

attributed values. The measurement method used here is Euclidean distance. 

 Categorical (discrete) attributes: The centre is the mode (maximum 

frequency value) in the attribute. The measurement method is Hamming 

distance (see in Equation (4.17) in Chapter 4). 
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 Boolean attributes: They can be viewed as either numerical or categorical 

attributes. In the thesis, they are, in most cases, treated as categorical 

attributes. 

The KMIX algorithm is compared to the publicised and K-means results through the use 

of standard data sets from the UCI repository (Merz & Merphy, 1996). The better results 

for KMIX (see in Table 4.5 in Chapter 4) lead to confidence in its use for the thesis data. 

9.2.5. Can The Attribute Set Be Decreased By Defining The Significant 

Attributes For Data Domain? 

The use of the filtering and ranking methods based on mutual information can reduce the 

number of attributes for the data domain. The mutual information between the attributes 

and output classes can be calculated as Equation (8.15) in Chapter 8. This is based on 

Bayes’ theorem (Bayes, 1763); the entropy (Shannon, 1948); and Kullback Leibler 

divergence (Cover and Thomas, 1991); given by: 
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Case Study V in Chapter 8 showed the same performance of mutual information 

calculations compared to the popular Relief algorithm (see comparison results in Figures 

8.2 and 8.3). These slight improvements, plus its simpler calculation, lead to mutual 

information being chosen for use with the thesis data. 

9.3. Contributions 

From the academic point of view, the main contributions in this thesis can be identified as 

follows: 

 The implementation of modeling the cardiovascular data based on clinical 

knowledge. 

 Investigating and implementing the use of pattern recognition and data 

mining techniques instead of the use of other methods such as POSSUM 

and PPOSSUM. 

 The investigation and verification of a data mining methodology for 

evaluating individual risk prediction in alternative risk prediction models by 

using alternative pattern recognition and data mining techniques.  

 The improvement of K-means algorithm, as KMIX, to use alternative 

attribute types in the data domain. 

 The definition of a calculation based on mutual information and Bayes’ 

theorem, and its use as attribute weights in the WKMIX algorithm. 

Data from both clinical sites (Hull and Dundee) is viewed using 6 clinical models based 

on clinical expert advice. Three other scoring risk models were built based on the Hull 

site data. The clinical model outcomes for individual patients are labeled via heuristic 

formulas (see section 6.3 in Chapter 6) whereas the scoring risk outcomes are based on 
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the model threshold values (see Table 6.6 in Chapter 6). Model CM2 was derived from 

the model CM1 with different outcome set (based on the “PATIENT STATUS” and 

“30D stroke/death” attributes). The CM3a and CM4a outcomes are derived from CM2 

outcomes with smaller input sets. The other models, CM3b and CM4b, differ to CM3a 

and CM4a in an expansion of the scale for the outcomes. These alternative outcomes 

were used here with the hope to determine more detailed risk predictions for individual 

patients. However, all the above models seem to be fail, as indicated by the poor 

performances in the supervised classifiers and the high gaps of the sensitivity rates versus 

positive predictive values (for “High risk” predictions) in all thesis experiments. The 

suggested reason for these failures is the nature of the problem and the difficulty of 

measuring influential parameters for the models. 

POSSUM and PPOSSUM can predict individual risk for patients via the mortality, 

morbidity, and death rate scores. The numeric output moving from 0 (0%) to 1 (100%) 

supported the patient risks being located in alternative risk bands. Categorical risks, such 

as “High risk”, “Low risk” and so on, based on the POSSUM and PPOSSUM bands, are 

familiar and easily realized for individual patterns. This might help the clinicians be 

aware, and make more exact calls about the risk predictions for individual patients. 

Moreover, the categorical risks enable the use of standard measurement evaluations in 

order to analyse results from the use of alternative classifiers with these outcomes. 

However, the individual categorical risks according to this are ambiguous in their 

interpretations and dependent on the threshold between the numerical bands. For 

example, the first band, from 0% (0) to 10% (0.1) of the POSSUM and PPOSSUM 

results, can be seen as an implicit “Very Low risk” group (see in Tables 6.9, 6.10 in 
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Chapter 6). Therefore, a patient with the results of 10.5% might be belonged to this band 

or the next band depending on the user.  

The primary research and the literature review in Chapter 3 showed clearly that the use of 

pattern recognition and data mining in medical areas is of wide interest. However, there is 

a lack in the methodology for generating and deploying the models for the cardiovascular 

data domain. The popular methodologies of CRISP_DM (Shearer, 2000), and SEMMA 

(SAS, 2008) are not suitable to use in this thesis, because they are too big and too 

complicated. The thesis methodology proposed here (see in Chapter 5) is based on Davis 

(2007). This framework satisfies data mining criteria such as the right technique choices 

(supervised and unsupervised pattern recognition methods), and the use of correct 

measurement methods (mean square error, confusion matrix and so on). It also provides a 

systematic approach in transforming raw data to a state where it can be reliably used with 

the chosen classifier techniques. 

The supervised approach makes use of multilayer perceptron; radial basis function; and 

support vector machine classifiers whereas the unsupervised method uses self organizing 

maps and K-means clustering algorithms. The KMIX algorithm is shown to be an 

improvement over K-means, and can be applied to the alternative attribute types 

(categorical, Boolean and numerical) in the thesis data. 

The mutual information calculations are based on the probability of the number of 

patterns falling to alternative classes in alternative output states. The significance of input 

attributes to the model outcomes are based on the mutual information values. The 

WKMIX algorithm was proposed based on the KMIX algorithm plus the use of mutual 

information values (as the attribute's weights) (see Chapter 8). However, as the nature of 
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the problem and the difficulty of measuring influential parameters are suspected for the 

poor results in the thesis experiments, this approach may need to be investigated further 

in future work. 

The above issues apply to the cardiovascular data derived from both the Hull and Dundee 

clinical sites. The nature of the problem and the difficulty of measuring influential 

parameters caused poor performance for the classifiers though all thesis experiments. 

According to Haykin (1999), the performances of neural network classifiers are 

influenced strongly by the quality of the training data. Towards the end of the thesis 

research, an interesting comment was made by one of the cardiovascular clinicians. The 

thesis data from the Hull and Dundee sites is in fact not the raw, original data. It is 

derived and interpreted data, with many attributes representing clinical interpretations of 

numeric measurements and categorical values. Therefore, these interpretations of the 

original medical data (held on paper patient records), the nature of the problem and the 

difficulty of measuring influential parameters may be the major reasons for the poor 

classification results across many of the experiments presented in this thesis. The original 

uninterpreted data is currently not available, so further investigation of this was not 

possible. It is, however, a message to those applying data mining to clinical domains: 

make sure the original uninterpreted data is available! 

9.4. Summary and Further Research 

The thesis presented an investigation in the use of pattern recognition and data mining 

techniques to produce and verify risk prediction models in medicine, and in particular in 

the cardiovascular domain. Firstly, the existing risk assessment systems, and in particular 

POSSUM and PPOSSUM, were introduced and discussed to show the need for using 
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pattern recognition and data mining techniques (and in particular, neural networks) for 

the thesis data. A data mining methodology was proposed as the framework for use with 

the thesis data. Alternative supervised (neural networks) and unsupervised techniques 

(self organizing map and KMIX clustering algorithm) were used with the thesis data. The 

standard measurements such as mean square error, confusion matrix, accuracy, 

sensitivity, specificity, positive predictive value, and negative predictive value are used to 

analyse the performance of the classification process. 

Overall, the radial basis function classifiers produced worst results compared to the 

multilayer perceptron and support vector machine classifiers. This is not surprising, given 

the disadvantages shown in the literature review in Chapter 3 (section 3.6.1), and in the 

case studies in Chapter 6. 

In Chapter 7, all neural network classifiers produced very poor sensitivity and positive 

predictive values (about less than 0.24 and 0.30 - see Table 7.9 in Chapter 7) over all 

experiments with the thesis data whereas the specificity rates and negative predictive 

values are high (over 0.82 and 0.83). However, in the context of the thesis, the specificity 

and negative predictive values provide poor information content. This is because these 

rates reflect the classification results for the "Low risk" class, which was the minor 

predictive outcome considered in this thesis. 

The scoring risk classifiers (Mortality, Morbidity, and Death rate) produced better results 

in “High risk” patterns compared to the neural network classifiers, with higher rates for 

sensitivity and positive predictive values. 

However, all classifiers (neural network and scoring risk models) show big gaps in the 

sensitivity versus the positive predictive value. Furthermore, the specificity rates and 
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negative predictive values are much higher than the sensitivity rates and positive 

predictive values. This suggests many distributions of “Low risk” patterns in data space; 

or the poor quality of the classification techniques. The comparison between neural 

network classification and random classification results (see Table 7.10 in Chapter 7) 

suggests that the former is likely.  

Unsupervised techniques, such as self organizing maps and K-means algorithm (KMIX), 

were used to find out what pattern structure existed in the data set. Although self 

organizing maps can visualize data, they could not define clearly the data structure, 

because not all patterns can be seen in the clustering map. The KMIX algorithm was used 

with the thesis data due to its ability in dealing with many data types of the 

cardiovascular data. However, the gaps between the sensitivity and positive predictive 

value for KMIX are at about 0.19 and 0.71 respectively (Tables 7.5 and 7.6 in Chapter 7). 

The gaps between these results means the clustering outcomes are very different to the 

predicted expectations derived from heuristic rules. By using Euclidean and Hamming 

distances in risk prediction groups (see Tables 7.13, and 7.14 in Chapter 7), the results 

suggested that the data did not support the outcome labeling (for the clinical risk models). 

Therefore, it is suggested that the nature of the problem and the difficulty of measuring 

influential parameters are the main reasons for the poor performance for all classifiers. 

Although the thesis classifiers produced poor results, the thesis methodology can be seen 

as a viable strategy for the practical implementation for a complete decision support tool 

in the cardiovascular data domain. 

The results, techniques and methods developed in this research could not be used in 

clinical diagnosis, without trials that have ethical clearance. However, the thesis has 
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demonstrated that the theory, from the data mining and pattern recognition research area, 

might be applied in to this medical domain with good results, given reliable data. There 

needs to be further collaborative research, between clinicians and computer scientists, to 

verify the interpretation of cardiovascular data, and to build a more complete decision 

support tool in the cardiovascular area.  

Furthermore, the strategy of combining clinical knowledge and the data mining 

techniques used in the thesis framework via fuzzy logic theory might produce a realistic 

tool for the risk prediction process (Warren et al, 2000). The combinations of neural 

networks and fuzzy systems are popular (Nauck et al, 1993; Nauck, 1994; Kosko and 

Burgess, 1998; Gegov et al, 2007). According to Wang and Mendel (1992), fuzzy 

systems are capable of approximating any nonlinear function over a compact set to 

arbitrary accuracy. Hence, the design methods for fuzzy systems are developed which 

determine fuzzy systems based on desired input-output pairs and fuzzy IF- THEN rules 

from human experts. Wang and Mendel (1992) proved that the performance of these 

fuzzy identifiers is much better than the neural network identifiers. Also according to 

Kochurani et al (2007), the utility of fuzzy systems lies in their ability for modeling 

uncertain or ambiguous, multi-parameter data often encountered in complex situations 

like medical diagnosis. Kochurani et al (2007) proposes a new model, a combination 

between the rule structure obtained from decision tree and TSK fuzzy model (Takagi and 

Sugeno, 1985; Sugeno and Kang, 1988), to predicting the risk for medical decision 

making situations. 

For the problem indicated in the thesis, first of all, the heuristic labeling for the outcome 

need to be further investigated. For example, the expected outcomes produced from the 
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clustering WKMIX might be the reliable risks for patients. Based on the given ideas from 

the experts about the significant attribute set, and the status of patients in the given data 

domain, an estimation of the attributes weights via mutual information evaluations for the 

data attributes is obtained. The clustering WKMIX used with the attributes weights might 

produce a reliable outcome set for the data domain. However, further collaborations 

between clinicians and computer scientists are needed to verify this. 

 As indicated in this thesis the use of multilayer perceptron classifiers produced the better 

results compared to other neural network classifiers. Moreover, the combination between 

supervised and unsupervised classifiers might ensure the improvement of correctly 

prediction for patients in particular “High risk” ones (see Table 7.17 in Chapter 7). 

Therefore, by using neuro-fuzzy classification techniques (Wang and Mendel, 1992; 

Nauck and Kruse, 1995) building on the combination of supervised classifiers such as 

multilayer perceptron and the clustering classifier such as WKMIX (see in Chapter 8), 

where attribute weights are used, the resultant classifiers might enhance the thesis results. 

All of these suggestions are left for the further research. 
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Appendix A. Data structure 

A.1. Hull site 

The following table summarises the data from the Hull clinical site. As can be seen 

there are 30 numeric, 3 discrete numeric, 23 categorical, 38 Boolean, and 4 date/time 

typed attributes. 

Attribute name 

Attribute 

types Attribute name 

Attribute 

types 

UNIT_NO Categorical JVP Boolean 

THEATRE_SESSION_DATE Date/Time LEG_OEDEMA Boolean 

CONS Discrete PULM_OEDEMA Boolean 

DATE_OF_DEATH Date/Time CARDIAC_FAIL Boolean 

Combined Categorical HAEMOGLOBIN Numeric 

30D MR Boolean WCC Numeric 

30D Ipsi CVA Boolean PLATELETS Numeric 

CAUSE_OF_DEATH Categorical UREA Numeric 

PhysiolScore Numeric CREATININE Numeric 

OpSevScore Numeric SODIUM Numeric 

P-POSS(2) Numeric POTASSIUM Numeric 

P-POSS(1) Numeric GLUCOSE Numeric 

POSS Numeric INR Numeric 

D Boolean PAO2 Numeric 

HD Boolean ECG Categorical 

St Boolean CXR Categorical 

CODE Categorical PULM_CXR Categorical 

CAROTID_DISEASE Categorical URGENCY Categorical 

ARRHYTHMIA Boolean DURATION Numeric 

ANGINA Boolean CONSULTANT_PRESNT Boolean 

MYOCARDIAL_INFARCT Categorical ASA_GRADE Discrete 

CCF Boolean ANAESTHETIC_TYPE Boolean 

DIABETES Categorical CRYSTALOID_VOL Numeric 

SEX Boolean COLLOIDS Numeric 

PATIENT_STATUS Boolean TRANSFUSION Numeric 

INDICATION Categorical OTHER_BLOOD Numeric 

PVD Categorical BLOOD_LOSS Numeric 

DATE_HISTORY Date/Time LOWEST_BP Numeric 

AGE Numeric MIN_TEMP Numeric 
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HYPERTENSION Boolean INOTROPES Boolean 

RENAL_FAILURE Boolean PRIMARY_OP Boolean 

HYPERCHOLESTEROLAEMIA Boolean OPERATION_DESC Categorical 

ALLERGIES Boolean NO_PROCS Discrete 

SMOKING Categorical OP_SEVERITY Categorical 

PACK_YEARS Numeric PERI_SOILING Boolean 

RESPIRATORY Boolean MALIGNANCY Boolean 

AMBUL_STATUS Categorical LETTER_TEXT Categorical 

CABG_PLASTY Boolean PROCEDURE_RANK Numeric 

THROMBO_EMBOLISM Boolean SHUNT Boolean 

EJECT Numeric PATCH Categorical 

DIURETICS Boolean COMP_GROUP Categorical 

WARFARIN Boolean COMPLICATION Categorical 

DIGOXIN Boolean SEVERITY Categorical 

ANTIHYPERTENSIVES Boolean COMPLICATION_DATE Date/Time 

STEROIDS Boolean RESP_SYSTEM Categorical 

ANTI_ANGINAL Boolean GCS Numeric 

STATINS Boolean BUILD Boolean 

ASPIRIN Boolean BP Numeric 

ORTHOPNOEA Boolean PULSE Numeric 
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A.2. Dundee site 

The following table summarises the data from the Dundee clinical site. As can be seen 

there are 6 numeric, 1 discrete numeric, 19 categorical, 10 Boolean, and 6 date/time 

typed attributes. 

Attribute Name 

Attribute 

type Attribute Name 

Attribute 

type 

ID# Categorical HYPERTENSION HX Boolean 

ADMISSION.DATE Date/Time RENAL HX Boolean 

 Discharge date Date/Time  SMOKING HX Categorical 

PROCEDURE Categorical PACK YRS Numeric 

DATE Date/Time RESPIRATORY DIS HX Categorical 

OP DURATION Numeric  DIABETES HX Categorical 

Surgeon.name.1 Categorical ARRHYTHMIA Categorical 

surgeon.name.2 Categorical  ANGINA Boolean 

ASA Discrete 

MYOCARDIAL 

INFARCT Categorical 

EBL Numeric  CCF Boolean 

SHUNT FOR CEA Boolean  CABG Boolean 

PATCH Categorical Carotid status Categorical 

R1-A SIDE Boolean  ECG Categorical 

R1 GRAFT Categorical  Disposal Categorical 

R1 PAT Categorical 

 LAST FOLLOW-UP 

DATE Date/Time 

R1 LOO Date/Time  DATE OF DEATH Date/Time 

R1 DURATION PATENT Numeric  CAUSE OF DEATH Categorical 

Aspirin Boolean G/S COMPL1 Categorical 

Warfarin Boolean  I/P OP GEN COMPL Categorical 

CROSSCLAMP TIME 

CEA Numeric DATE GENCOMPL 1 Date/Time 

Tack Boolean Complication Categorical 

AGE Numeric   
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Appendix B. 

Experimental Models Overview 

This appendix shows all models used in all the case studies plus Chapter 7 experiments. 

They can be seen in three categories as clinical risk prediction models, scoring models, and 

clustering models. Note that the classifier techniques are shown in the tables as multilayer 

perceptron (MLP); radial basis function (RBF); support vector machine (SVM); J48; self 

organizing map (SOM); KMIX; and WKMIX clustering algorithm. 

B.1. Clinical Risk Prediction Models 

The Table B1 shows the summary of all clinical models. These models outcomes are based 

on heuristic rules such as inferring from the “PATIENT STATUS”, or “30D stroke/death” 

attributes. 

Models 

Input 

numbers 

Pattern 

numbers Risk Prediction Using Classifiers 

CM1 26 839 High risk; Low risk. MLP; RBF;SVM 

CM2 26 839 High risk; Low risk. MLP; RBF;SVM 

CM3a 16 839 High risk; Low risk. MLP; RBF;SVM 

CM3b 16 839 

Very High risk; High 

risk; Medium risk; 

Low risk. MLP; RBF;SVM 

CM4a 14 839 High risk; Low risk. MLP; RBF;SVM 

CM4b 14 839 

Very High risk; High 

risk; Medium risk; 

Low risk. MLP; RBF;SVM 

Hull_POSS 22 497 High risk; Low risk MLP; RBF; SVM 

CM3aD 16 341 High risk; Low risk KMIX; WKMIX 

CM3bD 16 341 

High risk; Medium 

risk; Low risk. SOM; KMIX 

Table B1: Clinical models summary 
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B.2. Scoring Risk Models 

Table B2 shows the summary of applying scoring risk models to the thesis data. The 

outcomes are based on heuristic rules derived from POSSUM and PPOSSUM threshold 

scores. 

Models 

Input 

numbers 

Pattern 

numbers Risk Prediction Using Classifiers 

Mortality 18 499 High risk; Low risk POSSUM 

Mortbidity 18 499 High risk; Low risk POSSUM 

Death rate 18 499 High risk; Low risk PPOSSUM 

Table B2: Scoring risk models summary. 

B.3. Clustering Models 

Table B3 shows the summary of clustering models used with the thesis data. The outcomes 

are derived from KMIX and WKMIX clustering algorithms. 

 

Models 

Input 

numbers 

Pattern 

numbers Risk Prediction Using Classifiers 

CM3aDC 16 341 C2H; C1L MLP; SVM 

CM3bDC 16 341 C3H; C2M; C1L MLP; SVM 

CM3aC 16 839 C2H; C1L MLP; RBF; SVM 

CM3bC 16 839 

C4VH; C3H; C2M; 

C1L MLP; RBF; SVM 

CM3aDC 16 341 

WKMIX Outcomes 

(C2H; C1L) 

MLP; RBF; SVM; 

J48 

Table B3: Clustering models summary. 
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Appendix C. Experimental Data Explanations 

This appendix describes the detailed steps of data preparation and experimental 

explanations for all thesis case studies and the Chapter 8 experiments. These steps are 

fulfilled following the thesis methodology in Chapter 4 as in the systematic representations. 

C.1. Case study I 

 Step 1 (Selection): Data is taken from Hull site including 4 attributes and 498 cases 

(see statistical analysis in Table C1). Note that 2 over 4 attributes are the physiological 

score and operative severe score calculated by POSSUM and PPOSSUM. 

 PS OS 

N Valid 498 498 

  Missing 0 0 

Mean 20.36 14.30 

Std. Error of Mean .247 .064 

Std. Deviation 5.507 1.421 

Minimum 12 13 

Maximum 41 23 

Table C1: Statistical analyses of PS and OS score in the Hull site. 

 Step 2 (Clean/Transform/Filter): All data is cleaned. Therefore, this step is 

ignored. 

 Step 3 (POSSUM and PPOSSUM Techniques): Data is used with the POSSUM 

and PPOSSUM formulas (Equations 2.1, 2.2, and 2.3 in Chapter 2) to produce the 

mortality, morbidity, and death rate scores for individual patients. The results are then 

divided to different groups in the range from 0%-100%. For each group a predicted mean is 

calculated in order to calculate the number of predicted “mortality” or “death rate” (see in 

Tables C2, C3 below).  
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Range of 

predicted 

rate 

Mean 

predicted risk 

of Mortality 

(%) 

No of 

operations 

Predicted 

deaths 

Reported 

deaths 

The 

ratio 

0-10% 6.75%         274            19            29  1.53 

10-20% 14.85%         148            22            28  1.27 

20-30% 24.97%           44            11              8  0.73 

30-40% 34.90%           11              4              3  0.75 

40-50% 43.10%           16              7              7  1.00 

>50% 60.85%             5              3              3  1.00 

0-100% 13%         498            65            78  1.20 

Table C2: Comparison of observed and predicted death from POSSUM logistic equations. 

Range of 

predicted 

rate 

Mean predicted 

risk of Mortality 

(%) 

No of 

operations 

Predicted 

deaths 

Reported 

deaths 

The 

ratio 

0-10% 3.00%         438            13            60  4.62 

10-20% 13.48%           39              5              9  1.80 

20-30% 23.25%           13              3              3  1.00 

30-40% 32.27%             5              2              4  2.00 

40-50% 44.86%             3              1              2  2.00 

>50% 58.37%             1              1            -    0.00 

0-100% 5%         498            25            78  3.12 

Table C3: Comparison of observed and predicted death from PPOSSUM logistic equations. 

 Step 4 (Comparison/ Evaluation): The comparisons are fulfilled based on the 

ratios between the predicted and actual rates. For example, the band group of 20%-30% in 

Table C2 shows that, the predicted mortality is calculated based on the mean (24.97%) and 

the number of operation cases (44). Therefore, the ratio between the reported mortality (8) 

and the predicted one (11) is 0.73. 

C.2. Case study II 

Clinical Model CM3aD 

 Step 1 (Selection): The data is taken from the Dundee site with a selection of 18 

attributes (16 input attributes, and 2 attributes are for the outcome calculations) and 341 

patients.  

 Step 2 (Clean/Transform/Filter): The method used here is followed the methods 

indicated in “Data Preparation Strategy” section in Chapter 5. The detail as follows: 
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o Cleaning task: The summary for this task can be seen in Table C4 below. 

For example, the number of missing values for attribute namely “OP 

DURATION” is 72. The values are in the range of [0.7, 3]. Therefore, 

missing values will be filled by the mean of non-missing values (1.50). The 

number of missing values is 10 in the attribute “PATCH”, and the most 

frequency value of “PTFE” is 170. Therefore, attribute missing values will 

be filled as “PTFE”. 

Attribute Name 

Number 

of 

Missing Attribute values 

Mean/Max 

freq values 

OP DURATION 72 [0.7,3] 1.50 

ASA 37 [1,4] 2.45 

EBL 243 [0,2000] 214.18 

SHUNT FOR CEA 5 Yes/No 213 (No) 

PATCH 10 None/Other/PTFE/Vein 170 (PTFE) 

R1-A SIDE 0 Left/Right   

AGE 0 [42,86] 68 

Sex 0 Male/Female 215(Male) 

HYPERTENSION 

HX 6 None/Yes 176(None) 

RENAL HX 6 Normal/Abnormal 324 (Normal) 

 RESPIRATORY 

DIS HX 14 

Normal/Mild COAD/Mod 

COAD/sev COAD 280 (Normal) 

 CABG 8 No/Yes 314 (no) 

 ECG 16 Normal/A-Fib<90/Other 233 (normal) 

HD 0 Y/N 255(N) 

DIABETES 0 

Diet 

Rx/IGT/Insulin(NIDDM)/Insuli

n(NIDDM)/none 306(normal) 

St 0 Y/N 323(N) 

Table C4: CM3aD data structure, and its summary. 

o Transformation task: All data is required to transform to numerical values. 

Therefore, continuous values are rescaled to the values in the range of [0,1] 

by using normalisation method. Boolean values are transformed to values of 

0 or 1 respectively. Categorical values are transformed as discrete-Boolean 

categorical values. They are then treated as Boolean transformation. The 

transformation summary can be seen in Table C5 below.  
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  Attribute Name 

Orginal data 

Type 

Transformation 

Range Methods 

OP DURATION Continuous [0,1] 

NewVal=(OldVal

-Min)/(Max-Min) 

ASA Continuous [0,1] 

NewVal=(OldVal

-Min)/(Max-Min) 

EBL Continuous [0,1] 

NewVal=(OldVal

-Min)/(Max-Min) 

SHUNT FOR CEA Boolean 0/1 Yes=1; No=0 

PATCH Categorical 0/1 non-discrete 

R1-A SIDE Boolean 0/1 Right=1; Left=0 

AGE Continuous [0,1] 

NewVal=(OldVal

-Min)/(Max-Min) 

Sex Boolean 0/1 

Male=1; 

Female=0 

HYPERTENSION HX Boolean 0/1 Yes=1; None=0 

RENAL HX Boolean 0/1 

Abnormal=1; 

normal=0 

 RESPIRATORY DIS HX Categorical 

0/1 

 

Normal=0; 

MildCOAD=1; 

ModCOAD=1; 

Sev COAD=1 

 CABG Boolean 0/1 Yes=1; No=0 

 ECG Categorical 0/1 non-discrete 

HD Boolean 0/1 Y=1; N=0 

DIABETES Categorical 0/1 non-discrete 

St Boolean 0/1 Y=1; N=0 

Table C5: Transformation summary for CM3aD. 

o Filtering task: The two levels of expected outcome are calculated in the 

following heuristic rules. This is based on two attributes of “PATIENT 

STATUS” and “COMBINE” derived from (Heart Disease, Diabetes, and 

Stroke). 
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(PATIENT STATUS, COMBINE) = 0  “Low risk” 

(PATIENT STATUS, COMBINE)  1 ”High risk” 

Hence, this model contains 284 “Low risk” patterns, and 57 “High risk” patterns. 

 Step 3 (Data Mining Techniques):  A WEKA software package (WEKA, 2005) is 

used. Alternative neural network classifiers as multilayer perceptron, radial basis function, 

and support vector machine are applied to the model. Classification results can be seen in 

Table C6 below. Note that number of cross-validation fold is 10; and alternative topologies 

are shown inside the Table C6. For example, the multilayer perceptron classifier namely 

“MLP_TP3” is used here with a topology of 16-0-1 (16 input nodes; 0 hidden node; and 1 

output - 2 class nodes); learning rate  =0.3; and number of cycles = 100 epochs. The 

topology of 16-0-1 is chosen based on heuristic suggestions (about 10 cases/weight/class).  

 Step 4 (Comparison/ Evaluation): The standard measures such as sensitivity, 

specificity, positive predictive value, negative predictive value, accuracy, and mean square 

error are used (see detail in Table C6 below). 

Model Hull_POSS. 

 Step 1 (Selection): The data is taken from the Hull site with a selection of 22 input 

attributes, and 497 patients. The structure can be seen in Table C7. 

 Step 2 (Clean/Transform/Filter):  

o Cleaning and transformation tasks: The missing values are filled as the 

same above experiment method. The summary of filling missing data can be 

seen in Table C7. For example, the “Respiratory” missing values are filled 

by “Normal” value, because its most frequency is 431. The data is 

transformed to numerical values as indicated method above. 

o Filtering task: From the summary of data in Table C7, some input attributes 

can be eliminated. For example, attribute “JVP” contains 495/497 value of 

“N”; the attribute “PERI_SOILING” contains 497/497 values of “None”. 

Obviously, these attributes are eliminated. Similarly, attributes as “GCS 

(Coma Score)”; “URGENCY”; “OPSEVERITY”; and “MALIGNANCY” 

can be eliminated with the same explanations. Therefore, model Hull_POSS 
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contains now 16 instead of 22 input attributes. The expected outcome is 

based on the attribute “PATIENT_STATUS”. Heuristic rule is as follows: 

IF        PATIENT_STATUS = “Dead”               “High risk” 

Otherwise,                                                           “Low risk” 

Therefore, the model includes 78 “High risk” patterns and 419 “Low risk” 

patterns. 

Topologies and 

Parameters 

Risk 

 

Confusion 

Matrix 

 

 

ACC Sen 

 

Spec 

 

PPV 

 

  

NPV 

 

MSE 

 

High 

risk 

Low 

risk 

MLP_TP1 (2H; 

=0.3; 500 epochs)  

High risk 27 30 

0.88 0.47 0.96 0.73 0.90 0.09 Low risk 10 274 

MLP_TP2 (0H; 

=0.01;100 epochs) 

High risk 0 57 

0.83  0.00 1.00  N/A 0.83 0.11 Low risk 0 284 

MLP_TP3 (0H; 

=0.3; 100 epochs)  

High risk 28 29 

0.90 

  

0.49 

  

0.98 0.85 0.91 0.09 Low risk 5 279 

MLP_TP4 (0H; 

=0.3; 500 epochs)  

High risk 27 30 

0.90 

  

0.47 

  

0.98 0.84 0.90 0.09 Low risk 5 279 

RBF_TP5 (c=0)  

High risk 26 31 

0.87 

  

 0.46 

  

0.96 0.68 0.90 0.09 Low risk 12 272 

RBF_TP6 (c=1) 

High risk 27 30 

0.85 

  

0.47 

  

0.93 0.56 0.90 0.1 Low risk 21 263 

SVM_TP8 (poly 

kernel, w=1, p=1) 

High risk 17 40 

0.88 0.30 

  

1.00 0.94 0.88 0.11 Low risk 1 283 

SVM_TP9 (poly 

kernel, w=2, p=2) 

High risk 27 30 

0.89 

  

0.47 

  

0.98 0.82 0.90 0.1 Low risk 6 278 

SVM_TP10 (rad-

kernel w=1; =0.01) 

High risk 0 57 

0.83 

  

0.00 

  

1.00 N/A 0.83 0.16 Low risk 0 284 

Table C6: CM3aD results with alternative classifiers and parameters. 
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Attribute Name 

Attribute 

Type 

Missing 

Values Attribute Values 

Max 

Freq/Mean 

PhysiolScore Continuous   [12,41] 20.37 

OpSevScore Continuous   [13,23] 14.29 

AGE Continuous   [38,93] 68 

RESPIRATORY Categorical 1 

Normal/Mild 

COAD/Mod 

COAD/Severe 

COAD/Null 431(Normal) 

WARFARIN Boolean 2 Y/N/Null 474(N) 

RESP_SYSTEM Categorical 1 

Limitting SOB/No 

SOB/ Null/SOB at rest/ 

SOB in exertion 

468 (No 

SOB) 

BP Continuous 21 [90,220] 151.9 

PULSE Continuous 23 [42,110] 74 

JVP Boolean 2 N 495(N) 

WCC Continuous 10 [4, 24.3] 7.67 

HAEMOGLOBIN

(Hb) Continuous 10 [7.7,18.2] 13.9 

UREA Continuous 8 [2.1, 17.2] 6.34 

SODIUM(Na) Continuous 11 [122, 146] 138.5 

POTASSIUM(Ka) Continuous 9 [3, 5.6] 4.3 

ECG Categorical 16 

≥5 ectopics/min; Afib 60-

90; Normal; Null; Other 

abnormal; Q waves; ST/T 

Wave change 338 (Normal) 

GCS(Coma Score) Continuous 1 [15] 15 

URGENCY Categorical 1 

Elective; Scheduled 

urgent 496(Elective) 

BLOOD_LOSS Continuous 8 [100, 1800] 318 

NO_PROCS 

Discrete 

number 59 [1; 2; 3] 418 (1) 

OP_SEVERITY Categorical 0 Major/ Mayjor Plus  497 

MALIGNANCY Categorical 0 None 497(None)  

PERI_SOILING Categorical 0 None  497(None) 

Table C7:Hull_POSS structure and summary. 

 Step 3 (Data Mining Techniques): Alternative neural network classifiers as 

multilayer perceptron, radial basis function, and support vector machine are used with 

different parameters (see in Table C8) by using WEKA software package (WEKA, 2005). 

For example, classifier “Hull_POSS_TP1” is applied to data with multilayer perceptron of 

22-2-1 topology (22 input nodes; 2 hidden nodes; and 1 output -2 class nodes); learning rate 
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of 0.3; and 500 training epochs. Note that the number of cross-validation folds is 10. 

Classification results can be seen in Table C8 below.  

 Step 4 (Comparison/ Evaluation): Data outcomes are presented in confusion 

matrix for the use of standard measurements (see in Table C8). 

Classifier 

 

Risk 

 

Confusion 

Matrix 

ACC 

  

Sen 

  

Spec 

  

PPV 

  

NPV 

  

MSE 

  

High 

risk 

Low 

risk 

Hull_POSS_TP1 

(MLP_2H_0.3_500)  

High risk 9 69 

0.82 0.12  0.96 0.33 0.85 0.14 Low risk 18 401 

Hull_POSS_TP2 

(MLP_0H_0.3_500 ) 

High risk 6 72 

0.84 0.08 0.98 0.46 0.85 0.14 Low risk 7 412 

Hull_POSS_TP3 

(RBF_c_2) 

High risk 1 77 

0.84 0.01 0.99 0.20 0.84 0.13 Low risk 4 415 

Hull_POSS_TP4 

(SVM_Poly_p_2) 

High risk 0 78 

0.84  0.00 1.00 0.00 0.84 0.16 Low risk 2 417 

Table C8: Hull_POSS results with alternative techniques and parameters. 

C.3. Case Study III 

Clinical Model CM3bD 

 Step 1 (Selection): The data is taken from the Dundee site with a selection of 16 

input attributes and 341 patients (model CM3bD).  

 Step 2 (Clean/Transform/Filter):   

o Cleaning and transformation tasks: The data preparations including 

cleaning and transformation are similar as in the Case Study II in section C.2 

(see in Table C4 and C5).  

o Filtering task: The expected outcomes are calculated based on two 

attributes of “PATIENT STATUS” and “COMBINE” as the following 

heuristic rules. Note that the expected outcomes here are used for 

comparison purpose only with the clustering results. 
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(PATIENT STATUS, COMBINE) = 0 “Low risk” 

(PATIENT STATUS, COMBINE) = 1 ”Medium risk” 

(PATIENT STATUS, COMBINE) = 2 ”High risk” 

Hence, the CM3bD model contains 48 “High risk”; 73 “Medium risk”; and 220 “Low risk” 

patterns.  

 Step 3 (Data Mining Techniques): A SOM Toolbox clustering tool in the Matlab 

software package (SOM toolbox, 2000-2005) is used. Data is stored in a matrix of 341 x 16 

(341 rows and 16 columns). A map with a size of [30, 16] is created. Note that value of 30 

is length (munits); value of 16 (number of attributes) is dim of the map; and the size of 

[30,16] is based on a heuristic formulas for “munits” (Alhoniemi et al, 2005) as: 

(5*341 (rows) ^0.54321)/4  30 

The data is trained with the Best Matching Unit algorithm (BMU- SOM toolbox, 2000-

2005). This means all the distances between input vectors and map units (map nodes) is 

calculated. The greatest similarity (minimum Euclidean distance) to input vectors is chosen. 

The node here is so called winner node. The map weight is updated; and self organizing 

map algorithm is continued until all the input vectors to be tested. The final map has 

quantization error of 0.438, and topographic error of 0.000. The visualized map of Umatrix, 

all components can be seen in Figure C1 below. 

 

Figure C1: The U-matrix and each component plane for model CM3bD. 
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The data is distributed in U-matrix and individual map component plane (individual 

attribute). For example, “OP_DURATION” plane showed the continued data. To be clearer 

Figure C2 shows the distribution of data in only U-matrix.  

 

Figure C2: The U-matrix for model CM3bD. 

Data is clustered by SOM Kmeans algorithm (SOM toolbox, 2005). The map cluster results 

and its data label distribution can be seen in Figure C3 below. 

 

Figure C3: The clustering results of self organizing map Kmeans algorithm. 
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 Step 4 (Comparison/ Evaluation): This step is ignored in this experiment, because 

its objective is to illustrate the clustering data representation on the map. 

C.4. Case study IV 

Clinical Models CM3aD and CM3bD 

 Step 1 (Selection): Two data sets of CM3aD and CM3bD are taken from Dundee 

site with 16 input attributes and 341 patient cases. Their structure can be seen in Table C4 

in section C.2. 

 Step 2 (Clean/Transform/Filter):  

o Cleaning task: The strategy of filling missing values is the same as in 

section C.2. 

o Transformation task: The continuous values are purely to numerical values 

between the range [0,1]. Other attributes including Boolean and categorical 

are treated as the original attribute data types. The summary of 16 input 

attributes can be seen in Table C9 below. 

 Filtering task: The heuristic rules for both models outcomes are given by:  

o Model 1 (CM3aD): The two outcome levels are calculated based on two 

attributes of “PATIENT STATUS” and “COMBINE”. 

(PATIENT STATUS, COMBINE) = 0  “Low risk” 

(PATIENT STATUS, COMBINE)  1 ”High risk” 

o Model 2 (CM3bD): Its outcomes are divided into three levels of ris 

predictions: 

(PATIENT STATUS, COMBINE) = 0 “Low risk” 

(PATIENT STATUS, COMBINE) = 1 ”Medium risk” 

(PATIENT STATUS, COMBINE) = 2 ”High risk” 

Hence, the model CM3aD contains 57 values of “High risk”; and 284 values 

of “Low risk”. The model CM3bD contains 48 values of “High risk”; 73 

values of “Medium risk”; and 220 values of “Low risk”. 
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Attribute Name 

Original 

Data Type Attribute Values 

Transformed 

Range 

OP DURATION Continuous [0.7,3] [0,1] 

ASA Continuous [1,4] [0,1] 

EBL Continuous [0,2000] [0,1] 

SHUNT FOR 

CEA Boolean Yes/No  

PATCH Categorical None/Other/PTFE/Vein  

R1-A SIDE Boolean Left/Right  

AGE continuous [42,86] [0,1] 

Sex Boolean Male/Female  

HYPERTENSION 

HX Boolean None/Yes  

RENAL HX Boolean Normal/Abnormal  

 RESPIRATORY 

DIS HX Categorical 

Normal/Mild 

COAD/Mod COAD/sev 

COAD  

 CABG Boolean No/Yes  

 ECG Categorical Normal/A-Fib<90/Other  

HD Boolean Y/N  

DIABETES Categorical 

Diet 

Rx/IGT/Insulin(NIDD) 

/Insulin(NIDDM)/none  

St Boolean Y/N  

Table C9: Transformation summary of 16 inputs for models CM3aD, CM3bD. 

 Step 3 (Data Mining Techniques): The models data is used with KMIX algorithm 

with alternative output clusters (k=2 and k=3) corresponding to the number of outcome 

classes in models CM3aD and CM3bD. The outcomes are assigned to classes “C1”, and 

“C2” (for model CM3aD); and “C1”, “C2”, and “C3” (for model CM3bD). The resulted 

clusters of “C1” and “C2” are implicit as “Low risk” and “High risk” respectively. This is, 

for example, based on number of “Low risk” belong to cluster “C1” greater than that in 

cluster “C2”. The same explanation is done for the classes in model CM3bD.  

 Step 4 (Comparison/ Evaluation): The confusion matrix is used in this step. All 

standard measures are used (see Tables C10, C11). 
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  C2 

(High risk) 

C1 

 (Low risk) ACC Sen Spec PPV NPV 

High 

risk 39 18 0.48 0.68 0.44 0.20 0.88 
Low risk 158 126 

Table C10: Clustering results for CM3aD model. 

  

C3 

(High 

risk) 

C2 

(Medium 

risk) 

C1 

(Low 

risk) 
ACC Sen Spec PPV NPV 

High 

risk 18 17 13 

0.42 

 

0.70 

 
0.26 0.34 

 
0.62 

Medium 

risk 28 22 23 

Low risk 103 59 58 

Table C11: Clustering results for CM3aD model. 

 Step 5 (Clustering Models): A new model of CM3aDC is built based on KMIX 

results for the CM3aD. This new model contain includes 16 input attributes, 341 cases, and 

the expected outcomes (“C1L”, and “C2H”). Similarly, a new model of CM3bDC is built 

based on the CM3bD with expected outcomes as “C1L”, “C2M”, and “C3H”. Therefore, 

the CM3aDC contains 144 values of “C1L”; and 197 values of “C2H”. The model 

CM3bDC contains 94 values of “C1L”; 149 values of “C2M”; and 98 values of “C3H”. 

New Data Mining Process 

Two models CM3aDC and CM3bDC are used with alternative supervised techniques 

(multilayer perceptron, radial basis function, and support vector machine). Note that the 

topology and its parameters here are as follows: multilayer perceptron is used with a 

topology of 16-0-1 (16 input nodes; 0 hidden nodes; 1 output- 2class nodes for CM3aDC), 

and 16-0-3 (16 input nodes; 0 hidden nodes; 3 output nodes as three level of risks) for 

CM3bDC, learning rate =0.3, and number of cycles= 100 epochs; radial basis function has 

number of centre c of 2; and support vector machine is used with poly kernel function, and 

exponent parameter p=2. The 10-fold cross-validation is used. The results can be seen in 

Tables C12 and C13. 
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Classifiers   C2H C1L ACC Sen Spec PPV NPV MSE 

CM3aDC-MLP 

(MLP16-0-1; 0.3; 

100 epochs) 

C2H 188 9 
0.95 

  
0.95 0.94 0.96 0.94 0.04 

C1L 8 136 

CM3aDC- RBF  

(RBF_c=1) 

C2H 189 8 0.95 

  
0.96 0.93 0.95 0.94 0.03 

C1L 10 134 

CM3aDC-SVM 

(SVM_poly_p=1) 

C2H 185 12 0.91 

  
0.94 0.86 0.90 0.91 0.09 

C1L 20 124 

Table C12:  Neural network results of CM3aDC. 

Classifier   C3H C2M C1L ACC Sen Spec PPV NPV MSE 

CM3bDC-

MLP 

(MLP16-0-3; 

0.3; 100 

epochs)  

C3H 97 0 1 

0.96 0.98 0.89 0.96 0.98 0.02 

C2M 0 148 1 

C1L 8 2 84 

CM3bDC-

RBF 

(RBF_c=1) 

  

C3H 81 7 10   

 0.92 0.94 0.87 0.95 0.85 0.06 
C2M 9 135 5 

C1L 5 7 82 

CM3bDC-

SVM 

(SVM_poly_p

=1) 

C3H 97 0 1   

 0.97 0.99 0.90 0.96 0.99 0.08 
C2M 0 149 0 

C1L 7 2 85 

Table C13:  Neural network results of CM3bDC. 

C.5. Chapter 7 Experiments 

C.5.1. Clinical Models CM1 and CM2 

 Step 1 (Selection): The data structure here includes 26 attributes (24 inputs and 2 

attributes for outcome heuristic calculations) and 839 patient records. They are the common 

attributes derived from the Hull (498 cases) and the Dundee (341 cases) data sites. The data 

structure can be seen in Table C14 below.  

 Step 2 (Clean/Transform/Filter):  

o Cleaning task: The missing values are filled as the same method above (the 

mean for the continuous attributes) and the mode (for the categorical or 

Boolean attributes). However, a specialized heuristic transformation for the 

missing values in attribute “PATCH” is used. There were 253 missing 
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values in both sites where 243 missing values in the Hull site, and 10 

missing values in the Dundee site. Therefore, missing values are replaced by 

the mode values of PATCH attribute in the Hull site (“Dacron”) whereas 

they are replaced by “PTFE” in the Dundee site.  

o Transformation task: The continuous values in data set are also purely 

transformed into the range [0,1] with the linear transformation method 

indicated in Chapter 5 (section 5.3.3 - “Data Preparation Strategy”). 

o Filtering task: The final data set contains 25 instead of 26 input attributes 

after removing the “empty” one (COMP_GROUP attribute has 650/839 

missing values). The outcome for model CM1 is created by the heuristic 

formula based on “PATIENT_STATUS “ attribute  as follows: 

IF        PATIENT_STATUS = “Dead”               “High risk” 

Otherwise,                                                           “Low risk” 

Hence, CM1 has 126 values of “High risk” and 713 values of “Low risk” 

respectively. Alternatively, model CM2 outcomes are derived from by the 

heuristic formula corresponding to the attributes of PATIENT_STATUS 

(attr1), and “30D Stroke/death)-(attr2) as follows: 

IF       attr1 = “Dead” or attr2=”Y”               “High risk” 

Otherwise,                                                           “Low risk” 

Hence, the CM2 has 139 expected outcome values of “High risk” and 700 

values of “Low risk” respectively. 

 Step 3 (Data Mining Techniques): The neural network techniques chosen in this step 

are multilayer perceptron, radial basis function, and support vector machine. The classification 

results for the models CM1 and CM2 can be seen in Table C15 below. The same as other 

experiments, the data is divided into training set (90% of population), test set (10%) with a 

number of cross-validation folds of 10. The multilayer perceptron technique is chosen with the 

topology of 25-2-1 (25 input nodes; 2 hidden nodes; 1 output -2 class nodes); learning rate  is 

0.3; and number of epochs is 500. Radial basis function classifier has centre parameter c of 2. 

The support vector machine uses poly kernel function with the exponent parameter p of 2.  
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Attribute name 

Attribute 

type 

Missing 

values Attribute values 

Max 

Freq/Mean 

PATIENT_STATUS Boolean 0 Alive/Dead 713 (Alive) 

AGE Continuous 0 [38,93] 67.99 

ANGINA Boolean 12 Y/N/Null 570 (N) 

ARRHYTHMIA Categorical 8 

none/A-Fib<90/min/A-

Fib <90/Null/Other 792 (None) 

ASPIRIN Boolean 166 Y/N/Null 648 (Y) 

ASA_GRADE Continuous 38 [1,4] 2.24 

BLOOD_LOSS Continuous 252 [0,2000] 300.45 

CABG_PLASTY Boolean 9 Y/N/Null 778 (N) 

CAROTID_DISEASE Categorical 2 N/A 303 (TIA) 

CCF Categorical 9 

<1/12/ 

>1/12/None/Null/Yes 803 (None) 

COMP_GROUP Categorical 605 N/A (removed) N/A 

D Boolean 1 Y/N/Null 748 (N) 

DURATION Continuous 72 [0.7-5] 1.57 

ECG Categorical 33 

Normal/Null/other 

abnormal/Q wave/ST/A-

Fib<<90/and so on 571 (Normal) 

HD Boolean 1 Y/N/Null 550 (N) 

HYPERTENSION Boolean 7 Y/N/Null 449 (N) 

Smoking Boolean 0 Y/N 787 (Y) 

PATCH Categorical 253 

PTFE/Dacron/Vein/Other 

Vein/Stent 

171 (PTFE- 

170/341-Dundee 

site); 185 (Dacron 

-185/499 - Hull 

site) 

RENAL_FAILURE Boolean 7 Y/N/Null 820 (N) 

RESPIRATORY Categorical 16 

Normal/Mild COAD/Mod 

COAD/Severe 

COAD/Null 711 (Normal) 

SEX Boolean 0 M/F 507 (M) 

SHUNT Boolean 14 Y/N/Null 501 (Y) 

St Boolean 1 Y/N/Null 565 (N) 

WARFARIN Boolean 5 Y/N/Null 809 (N) 

R1-A SIDE Boolean 0 Left/Right  458 (left) 

Table C14: CM1 and CM2 data structure, and their summary. 
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 Step 4 (Comparison/ Evaluation): The results are presented in confusion matrix for 

the use of standard measurements of sensitivity, specificity, and so on (see Table C15).  

Classifiers Risk 

Confusion 

Matrix 

ACC Sen Spec PPV NPV 

High 

risk 

Low 

risk 

CM1-MLP 

High risk 9 117 

0.82 0.07 0.95 0.21 0.85 Low risk 34 679 

CM1-RBF 

High risk 0 126 

0.85 0.00 1.00 N/A 0.85 Low risk 0 713 

CM1-SVM 

High risk 30 96 

0.75 0.24 0.84 0.21 0.86 Low risk 112 601 

CM2-MLP 

High risk 6 133 

0.81 0.04 0.96 0.18 0.83 Low risk 27 673 

CM2-RBF 

High risk 0 139 

0.83 0.00 1.00 N/A 0.83 Low risk 0 700 

CM2-SVM 

High risk 24 115 

0.71 0.17 0.82 0.16 0.83 Low risk 125 575 

Table C15:  Using neural network techniques for model CM1 and CM2. 

C.5.2. Clinical Models  

Models CM3a, CM3b, CM4a, and CM4b 

 Step 1 (Selection): Models CM3a and CM3b contain 18 attributes (16 input attributes 

and 2 for outcome calculations) and 839 patient records (see in Table C16 below). Models 

CM4a and CM4b contain 16 attributes (14 input attributes and 2 for outcome calculation) and 

839 patient records (see in Table C17).  

 Step 2 (Clean/Transform/Filter):  

o Cleaning and Transformation tasks: These tasks are the same as above 

method used for models CM1 and CM2. 
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Attribute name 

Attribute 

type 

Missing 

values Attribute values Max Freq/Mean 

PATIENT_STATUS Boolean 0 Alive/Dead 713 (Alive) 

30D stroke/death Boolean 0 Y/N 806 (N) 

AGE Continuous 0 [38,93] 67.99 

ASA_GRADE Continuous 38 [1,4] 2.24/0.46 

BLOOD_LOSS Continuous 252 [0,2000] 300.45 

CABG_PLASTY Boolean 9 Y/N/Null 778(N) 

D Boolean 1 Y/N/Null 748(N) 

DURATION Continuous 72 [0.7-5] 1.57 

ECG Categorical 33 

Normal/Null/other 

abnormal/Q-wave/ 

ST/A-Fib<<90/; so on 571 (Normal) 

HD Boolean 1 Y/N/Null 550 (N) 

HYPERTENSION Boolean 7 Y/N/Null 449(N) 

PATCH Categorical 253 

PTFE/Dacron/Vein/ 

OtherVein /Stent 

171/341 PTFE-

Dundee; 185/499-

Dacron -Hull 

RENAL_FAILURE Boolean 7 Y/N/Null 820 (N) 

RESPIRATORY Categorical 16 

Normal/MildCOAD/ 

ModCOAD/Severe 

COAD/Null 711 (Normal) 

SEX Boolean 0 M/F 507 (M) 

SHUNT Boolean 14 Y/N/Null 501 (Y) 

St Boolean 1 Y/N/Null 565 (N) 

R1-A SIDE Boolean 0 Left/Right  458 (left) 

Table C16: CM3a and CM3b data structure and their summary. 

 

o Filtering task: The outcomes for model CM3a, and CM4a are calculated the 

same heuristic rules in CM2 model as follows: 

IF       attr1 = “Dead” or attr2=”Y”               “High risk” 

Otherwise,                                                           “Low risk” 

Hence, CM3a, and CM4a has 139 values of “High risk”, and 700 values of 

“Low risk”. Alternatively, the outcomes for model CM3b, and CM4b are 

calculated as the following heuristic rule: 
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IF       attr1 = “Dead” and attr2=”Y”               “Very High risk” 

Otherwise IF attr1=”Dead”                             “High risk” 

Otherwise   IF attr2=”Y”                                  “Medium risk” 

           Otherwise,                                                                        “Low risk” 

 

Hence, CM3b, and CM4b has 19 values of “Very High risk”; 107 values of “High risk”; 13 

values of “Medium risk”; and 700 values of “Low risk” respectively. 

Attribute name 

Attribute 

type 

Missing 

values Attribute values 

Max 

Freq/Mean/Stdev 

PATIENT_STATUS Boolean 0 Alive/Dead 713 (Alive) 

30D stroke/death Boolean 0 Y/N 806 (N) 

AGE Continuous 0 [38,93] 67.99 

ASA_GRADE Continuous 38 [1,4] 2.24/0.46 

D Boolean 1 Y/N/Null 748(N) 

HD Boolean 1 Y/N/Null 550 (N) 

HYPERTENSION Boolean 7 Y/N/Null 449(N) 

PATCH Categorical 253 

PTFE/Dacron/Vein/Other 

Vein/Stent 

171/341-PTFE -

Dundee; 185/499 -

Dacron - Hull site 

RENAL_FAILURE Boolean 7 Y/N/Null 820 (N) 

RESPIRATORY Categorical 16 

Normal/Mild 

COAD/Mod 

COAD/Severe 

COAD/Null 711 (Normal) 

SEX Boolean 0 M/F 507 (M) 

SHUNT Boolean 14 Y/N/Null 501 (Y) 

St Boolean 1 Y/N/Null 565 (N) 

R1-A SIDE Boolean 0 Left/Right   

CONS Categorical 0 1;2;3;4;5 383 (4) 

Vascular Unit Categorical 0 1;2 498 (2) 

Table C17: CM4a and CM4b data structure and their summary. 
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 Step 3 (Data Mining Techniques): The same neural network techniques as above 

experiments are used for these models. The classification results can be seen in Table C18, and 

C19. The detail topology and parameters as follows: multilayer perceptron technique is used 

with topologies of 16-2-1 (CM3a), 14-2-1 (CM4a), 16-2-4 (CM3b), and 14-2-4 (CM4b); 

learning rate  is 0.3; and number of epochs is 500. Radial basis function classifier has centre 

parameter c of 2; and support vector machine uses poly kernel function with the exponent 

parameter p of 2.  

 Step 4 (Comparison/ Evaluation): The comparisons are fulfilled based on the 

confusion matrix and standard rates of sensitivity, specificity, and so on.  

Classifiers Risk 

Confusion Matrix 

ACC Sen Spec PPV NPV 

High 

risk 

Low 

risk 

CM3a-MLP 

High risk 13 126 

0.81 0.09 0.95 0.28 0.84 Low risk 34 666 

CM3a-RBF 

High risk 0 139 

0.83 0.00 1.00 N/A 0.83 Low risk 0 700 

CM3a-SVM 

High risk 16 123 

0.77 0.12 0.90 0.19 0.84 Low risk 67 633 

CM4a-MLP 

High risk 14 125 

0.81 0.10 0.95 0.30 0.84 Low risk 32 668 

CM4a-RBF 

High risk 0 139 

0.83 0.00 1.00 N/A 0.83 Low risk 0 700 

CM4a-SVM 

High risk 18 121 

0.79 0.13 0.92 0.24 0.84 Low risk 58 642 

Table C18: Experimental results of CM3a and CM4a models. 
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Classi-

fiers Risk 

Confusion Matrix 

ACC Sen Spec PPV NPV 

Very 

High 

risk 

High 

risk 

Medi

-um 

risk 

Low 

risk 

CM3b-

MLP 

Very High 

risk 2 1 0 16 

0.84 0.04 0.97 0.25 0.84 

High risk 0 3 0 104 

Medium 

risk 0 0 0 13 

Low risk 5 13 0 682 

CM3b-

RBF 

Very High 

risk 0 0 0 19 

0.85 0.00 1.00 N/A 0.83 

High risk 0 0 0 107 

Medium 

risk 0 0 0 13 

Low risk 0 0 0 700 

CM3b-

SVM 

Very High 

risk 0 3 0 16 

0.79 0.08 0.90 0.14 0.83 

High risk 1 6 0 100 

Medium 

risk 0 0 1 12 

Low risk 13 46 8 633 

CM4b-

MLP 

Very High 

risk 0 1 0 18 

0.83 0.07 0.96 0.27 0.84 

High risk 0 8 0 99 

Medium 

risk 0 1 0 12 

Low risk 0 27 0 673 

CM4b-

RBF 

Very High 

risk 0 0 0 19 

0.85 0.00 1.00 N/A 0.83 

High risk 0 0 0 107 

Medium 

risk 0 0 0 13 

Low risk 0 0 0 700 

CM4b-

SVM 

Very High 

risk 2 4 0 13 

0.8 0.14 0.90 0.21 0.84 

High risk 2 11 0 94 

Medium 

risk 0 0 0 13 

Low risk 17 45 9 629 

Table C19: Experimental results of CM3b and CM4b models. 

C.5.3. Scoring Risk models 



 235 

 Step 1 (Selection): The data is selected from the Hull site and the POSSUM and 

PPOSSUM results. The models are built as Mortality, Morbidity, and Death rate. Note that 

these models share the same structure (see in Table C20) including 499 cases and 22 input 

attributes.  

 Step 2 (Clean/Transform/Filter):  

o Cleaning task: The method of filling missing values is the same as 

experiments above. This means, for example, continuous missing values are 

replaced by the mean of non-missing numerical values. Note that the second 

column in Table C20 shows number of missing values whereas the last 

column shows replacing values if applicable. For example, the missing 

values in the attribute WCC are replaced by the mean (7.67). 

o Transformation task: This task is to transform all data to numerical data 

type. This means the numerical data is rescaled in to the range of [0,1]. 

Boolean values are transformed into values of 0 or 1.  The categorical data is 

transformed into discrete Boolean (“Normal” and “Abnormal”) then they are 

transformed into values of 0 or 1.  

o Filtering task:  Some attributes in these models structure can be eliminated. 

They are JVP, GCS (Coma Score), URGENCY, OP-SEVERITY, 

MALIGNANCY, and PERI_SOILING (see the summary in Table C20). For 

example, the attribute namely JVP contained only value of “N”, or 

MALIGNANCY contained only value of “None” as well. Hence, the data 

sets contain now 16 input attributes and 497 cases. 

The outcome for three models are calculated basing on the average (mean) values of 

Mortality, Morbidity, and Death rate scores as follows:. 

Mortality model: 

IF       Mortality>= mean      “High risk” 

Otherwise                                            “Low risk” 
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Attribute name 

Attribute 

type 

Missing 

values Attribute values 

Max 

Freq/Mean 

PhysiolScore Continuous 0 [12,41] 20.37 

OpSevScore Continuous 0 [13,23] 14.29 

AGE Continuous 0 [38,93] 67.99 

RESPIRATORY Categorical 1 

Normal/MildCOAD/Mo

dCOAD/ Severe 

COAD/Null 431(Normal) 

WARFARIN Boolean 2 Y/N/Null 474(N) 

RESP_SYSTEM Categorical 1 

Limiting SOB/No 

SOB/ Null/SOB at 

rest/ SOB in exertion 

468 (No 

SOB) 

BP Continuous 21 [90,220] 151.9 

PULSE Continuous 23 [42,110] 74 

JVP Boolean 2 N 495(N) 

WCC Continuous 10 [4, 24.3] 7.67 

HAEMOGLOBIN(Hb) Continuous 10 [7.7,18.2] 13.9 

UREA Continuous 8 [2.1, 17.2] 6.34 

SODIUM(Na) Continuous 11 [122, 146] 138.5 

POTASSIUM(Ka) Continuous 9 [3, 5.6] 4.3 

ECG Categorical 16 

≥5 ectopics/min; Afib 

60-90; Normal; Null; 

Other abnormal; Q 

waves; ST/T Wave 

change 

338 

(Normal) 

GCS(Coma Score) Continuous 1 [15] 15 

URGENCY Categorical 1 

Elective; Scheduled 

urgent 497(Elective) 

BLOOD_LOSS Continuous 8 [100, 1800] 318 

NO_PROCS 

Discrete 

number 59 [1; 2; 3] 418 (1) 

OP_SEVERITY Categorical 0 Major Plus 
497 (Major 

Plus) 

MALIGNANCY Categorical 0 None 497 (None) 

PERI_SOILING Categorical 0 None 497 (None) 

Table C20: Scoring Risk models’ input structure and their summary. 

Morbidity model: 

IF       Morbidity>= mean       “High risk” 

Otherwise                               “Low risk” 

Death rate model: 
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IF       Death rate>= mean       “High risk” 

Otherwise                               “Low risk” 

Therefore, the Mortality has got 25 “High risk”, 474 “Low risk”; Morbidity has got 

39 “High risk”, 460 “Low risk”; and Death rate contains 26 “High risk”, 473 “Low 

risk” respectively. 

 Step 3 (Data Mining Techniques): This step is ignored, because of the comparison 

purpose between the outcomes of scoring risk models and the actual risks in later step. 

 Step 4 (Comparison/ Evaluation): The three models outcomes derived from step 2 

are compared to the actual risks. Note that the “PATIENT STATUS” values as “Dead” or 

“Alive” are assigned as “High risk” or “Low risk” for the comparison purpose. The detailed 

comparisons can be seen in Table C21. 

Classifiers Risk 

Confusion Matrix 

ACC Sen Spec PPV NPV 

High 

risk 

Low 

risk 

Mortality 

High risk 10 69 

0.83 0.13 0.96 0.40 0.85 Low risk 15 405 

Morbidity 

High risk 15 64 

0.82 0.19 0.94 0.38 0.86 Low risk 24 396 

Death rate 

High risk 10 69 

0.83 0.13 0.96 0.38 0.85 Low risk 16 404 

Table C21: Confusion matrix for scoring risk models. 

C.5.4. Clustering Models 

Models CM3a and CM3b 

 Step 1 (Selection): A selection data set for models CM3a and CM3b includes 16 

input attributes and 839 patient records (see the structures and summaries in Table C16). 

  Step 2 (Clean/Transform/Filter):  

o Cleaning task: The missing values are treated as the same as models CM3a, 

CM3b in section C.5.2 (detailed replacements of missing values can be seen 

in Table C16). 
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o Transformation task: The continuous values in data set are also purely 

transformed into the range [0,1] as linear transformation method. Other 

attributes (Boolean and categorical) are ignored in this task. 

o Filtering task: The expected outcomes for both models of CM3a and CM3b 

are calculated the same as in section C.5.2. Note that these outcomes are 

only for the comparison purpose after use of clustering algorithms. 

 Step 3 (Data Mining Techniques): Both models of CM3a and CM3b are used with 

the KMIX algorithm. The number of chosen clusters is 2 or 3, according to the models 

CM3a and CM3b respectively. The clustering results are assigned into alternative clusters 

as “C2H” and “C1L” for model CM3a; and “C4VH”, “C3H”, “C2M”, and “C1L” for 

model CM3b. 

 Step 4 (Comparison/ Evaluation): Clustering results are evaluated in confusion 

matrix with the expected outcomes in step 2 (see in Table C22 and Table C23). 

Risk C2H C1L ACC Sen Spec PPV NPV 

High risk 48 91   

0.60 

  

0.35 0.65 0.16 0.83 Low risk  248 452 

Table C22: The clustering results for model CM3a. 

Risk C4VH C3H C2M C1L ACC Sen Spec PPV NPV 

Very High risk 7 0 6 6 

0.45 0.89 0.38 0.18 0.96 

High risk 43 0 33 3 

Medium risk 5 0 5 3 

Low risk 249 0 199 280 

 

Table C23: The clustering results for model CM3b. 

 Step 5 (Building New Models): Two new models CM3aC and CM3bC are built 

based on the clustering results and the input attribute set derived from models CM3a and 

CM3b. Therefore, the model CM3aC contains 16 inputs and 839 cases. Its outcome set 

contains 403 “C2H” and 436 “C2L”. The model CM3bC shares the same structure as 

model CM3a. Its outcome set contains 304 “C4VH”, none values of “C3H”, 243 “C2M”, 

and 292 “C1L”. Both models CM3aC and CM3bC are used alternative neural network 
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techniques. The topologies and parameters are the same as in model CM3a and CM3b 

experiments in section C.5.2 above. The results can be seen in Table C24 and C25. 

Classifier Risk  C2H C1L ACC Sen Spec PPV NPV MSE 

CM3aC-MLP C2H 296 0 
1 1 1.00 0.99 1 0 

(MLP_2H_0.3_500)  C1L 2 541 

CM3aC-RBF C2H 230 66 
0.77 0.78 0.77 0.65 0.86 0.14 

(RBF_c=2)  C1L 124 419 

CM3aC-SVM C2H 293 3 
0.99 0.99 0.99 0.99 0.99 0.01 

(SVM_poly_p=2) C1L 3 540 

Table C24: The CM3aC model results with alternative neural network classifiers. 

Classifiers Risk C4VH C2M C1L ACC Sen Spec PPV NPV MSE 

CM3bC-MLP 

(MLP_2H_0.

3_500) 

C4VH 302 1 1 

 0.99 0.99 0.99 0.99 0.97 0.01 
C2M 3 233 7 

C1L 1 3 288 

CM3bC-RBF 

(RBF_c=2) 

  

C4VH 300 2 2 

 0.98 0.99  0.97 0.98 0.98 0.01 
C2M 3 235 5 

C1L 4 5 283 

CM3bC-SVM 

(SVM_Poly_

p=2)  

C4VH 304 0 0 

 0.98 0.99  0.96 0.98 0.99 0.07 

C2M 0 240 3 

C1L 0 12 280 

Table C25: The CM3bC model results with alternative neural network classifiers. 

C.6. Case Study V 

Model CM3aD and Model CM2  

 Step 1 (Selection): A selection data set of model CM3aD includes 18 attributes (16 

input attributes and 2 for outcome calculations) and 341 patient records (see in Table C4). 

Another selection data set of model CM2 includes 26 attributes and 839 cases data derived 

from the Hull and Dundee sites (see in Table C14). 

 Step 2 (Clean/Transform/Filter):  

o Cleaning task: The missing values are treated as above experiments.  
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o Transformation task: All data is transformed to appropriate categorical 

types. Boolean values can be seen as categorical Boolean values of 0 or 1. 

The categorical values are ignored in this task. The numerical data is 

transformed to categorical by discretization method (Venables and Ripley, 

1994; Yang et al, 2001; and Tourassi et al, 2001). This means continuous 

data is divided into alternative bins with the proper number bin is log2N +1, 

where N is number of cases. For example, the models CM3aD and CM2 

have got 341 and 839 cases. Therefore, the number of bins is log2341 +1= 

9 and log2839 +1=11 respectively.  

The summary of the transformation from numerical values into categorical 

values for the attributes in the models of CM3aD and CM2 can be seen in Table 

C26 and C27. For example, the attribute namely “OPDURATION_BIN” in 

Table C26 has the categorical values, which are resulted after transformation, 

as: “BIN1”, “BIN2”, to “BIN9”. This attribute contains the number of cases felt 

into each “BIN” such as 5, 68, and so on (see detail in Table C26). 

BIN OPDURATION_BIN EBL_BIN AGE_BIN ASA_BIN 

1 5 313 1 4 

2 68 19 9 0 

3 33 6 13 0 

4 172 1 50 165 

5 7 1 63 37 

6 48 0 78 0 

7 2 0 82 129 

8 5 0 35 0 

9 1 1 10 6 

Total 341 341 341 341 

Table C26: Bins and its summary for CM3aD. 
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BIN OPDURATION_BIN EBL_BIN AGE_BIN ASA_BIN 

1 3 4 99 155 

2 6 0 620 73 

3 20 0 66 403 

4 42 607 31 157 

5 134 38 11 29 

6 171 0 7 15 

7 214 0 2 0 

8 169 182 0 3 

9 59 0 1 3 

10 20 0 1 0 

11 1 8 1 1 

Total 839 839 839 839 

Table C27: Bins and its summary for CM2. 

o Filtering task: This task is ignored in this experiment. 

 Step 3 (Use Mutual Information Calculations): The data in both models of CM3aD 

and CM2 are used with mutual information calculations. These data also are use with the 

Relief algorithm with the WEKA software package (WEKA, 2005; Witten and Frank, 2005). 

The number of neighborhood m is 10.  

 Step 4 (Comparison/ Evaluation):  The comparison results can be seen in Figures C4 

and C5. 
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Figure C4: A comparison of MI and Relief with CM3aD model. 
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Figure C5: A comparison of MI and Relief with CM2 model. 

C.7. Case Study VI 

Model CM3aD 

 Step 1 (Selection): Model CM3aD includes 16 input attributes and 341 patient records 

(see in Table C4). 

 Step 2 (Clean/Transform/Filter):  

o Cleaning task: The missing task is fulfilled as above experiments.  

o Transformation task: The data transformation is fulfilled only for 

numerical attributes (rescaled to the range of [0,1]), the other (Boolean and 

categorical) attributes are ignored. 

 Step 3 (Data Mining Techniques): The data is used with mutual information 

calculations.. The detailed result can be seen in Table C28. The mutual information results are 

then used as attribute weights in WKMIX algorithm.  
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Attribute name MI 

HD 0.507 

ECG 0.149 

St 0.083 

PATCH 0.011 

RESPIRATORY DIS 

HX 0.005 

HYPERTENSION 

HX 0.012 

DIABETES HX 0.013 

ASA 0.041 

R1A SIDE 0 

SEX 0.004 

RENAL HX 0.013 

SHUNT FOR CEA 0.01 

AGE_BIN 0.013 

OPDURATION_BIN 0.022 

CABG 0.041 

BloodLoss_BIN 0.01 

Table C28: Mutual information calculation results for model CM3aD 

 Step 4 (Comparison/ Evaluation):  The comparison results can be seen in Table C29 

with the use of KMIX and WKMIX for the model CM3aD over standard measurements as 

sensitivity, specificity, and so on. 

Algorithms  Risk C2H C1L ACC Sen Spec PPV NPV 

WKMIX 

High risk 30 27 

0.61 0.53 0.63 0.22 0.87 Low risk 105 179 

KMIX 

High risk 39 18 

0.48 0.68 0.44 0.20 0.88 Low risk 158 126 

Table C29: Comparison between KMIX and WKMIX 

 Step 5 (Building New Models): The new clustering model (CM3aDC) is built with the 

outcomes derived from the use WKMIX algorithm. Neural network techniques (multilayer 

perceptron, support vector machine, and radial basic function), and decision tree technique of 

J48 are used; the results can be seen in Table C30. 
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Classifiers Risk  C2H C1L ACC Sen Spec PPV NPV MSE 

CM3aDC-MLP 

(16-0-1; 0.3;100 

epochs) 

C2H 135 0 

1 1 1 1 1 0 C1L 0 206 

CM3aDC-RBF 

 (c=1) 

C2H 132 3 

0.97 0.97 0.98 0.99 0.96 0.02 C1L 6 200 

CM3aDC-SVM  

(poly; p=1) 

C2H 135 0 

1 1 1 1 1 0 C1L 0 206 

CM3aDC-J48 

 (binary tree) 

C2H 135 0 

1 1 1 1 1 0 C1L 0 206 

Table C30: The results of alternative techniques for CM3aDC model. 
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