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The work presented in this thesis attempts to solve a long 
standing palynological problem, the identification and counting of 
pollen grains, by the application of digital image processing 
techniques. Digital image processing has developed rapidly over 
the last two decades and an extensive range of techniques have 
been developed for the analysis of images stored in a digital 
format. 

Exine textures, shown in great detail under the scanning Aectron 
microscope (SEM), are highly characteristic of a given pollen 
class. This offers great potential. for automated pollen 
identification provided that reliable texture measures can be 
computed from digital SEM images. 

Tbree methods of texture quantification, two statistically based 
and the other structurally based, were applied to digital samples 
of exine texture taken from six pollen taxa. This provided a 
variety of numerical texture descriptions that were used to 
develop statistical classification schemes. 

Using a statistical classifier on the texture descriptions of 
unknown exine samples produced correct classification rates in 
the order of 70 % to 98 %. These success levels were not 
attained immediately, but were achieved by careful design 
modifications to a standard classification scheme to yield 
enhanced performance. Optimal feature selection was a major 
contribution to improved classification success. Combining 
numerical descriptions from different texture quantification 
schemes also produced notable improvements in classification 
performance. 

ne problem of automatically locating pollen under the SEM and 
selecting a suitable region for texture analysis is also considered 
briefly. 
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Chapter One 

1.1 INTRODUCTION 

Introduction 

Palynology and digital image analysis are two fields of study which have 

until now had little, if indeed any, connection. The work presented 

here draws these two diverse sciences closer together as it attempts to 

solve a long standing palynological problem, the identification and 

counting of pollen grains, by the application of modem digital image 

processing techniques. 

Before specifying the nature of the identification problem in detail, a 

brief r6sun-)6 of palynology that focuses particularly on pollen analysis is 

presented, for the sake of those unfamiliar with the principles involved 

in this subject. The need for a solution and its value to the 

palynologist can be more fully appreciated once a basic understanding of 

these principles has been established. 

1.2 PALYNOLOGY 

The term rn icropal aeon tolo gy is used within the science of geology to 

refer to the study of microfossils. We can consider palynology to be a 

branch of micropalaeontology that is concerned specifically with the study 

of pollen grains and spores. Pollen grains are the male reproductive 

organs of the flowering plants, known as the angiosperms. Similarly, 

spores are the reproductive bodies of fungi and ferns, known as the 

gymnosperms. 

In fact palynology is a rather broader multi-disciplinary field than the 

simple definition given above would suggest. It has, for example, found 

applications in the exploration of petroleum and coal deposits, and in 
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Chapter One Introduction 

studies of Quaternary history, archaeology, criminology, and medicine. 

Palynologists are concerned with all aspects of pollen and spores. They 

study their formation and morphology. The processes of dispersion from 

the parent plants and the potential for preservation in different natural 

environments are investigated. However, perhaps the most important and 

useful area of study is that of pollen analysis. Mannion (1980) 

provides a simple introductory guide to the theory and applications of 

pollen analysis. In order to understand the fundamental principles 

involved it is first necessary to identify some important characteristics of 

pollen itself. 

1.3 POLLEN AND POLLEN ANALYSIS 

Plants are capable of producing pollen in enormous quantities, especially 

those that rely on wind pollination. . 
For example, it has been estimated 

that over 40000 grains may be released from a single anther of the 

Pine tree (Moore and Webb, 1983), and there may be hundreds of such 

anthers on any one tree. 

Pollen grains are very small, typically they have a mean diameter of 
between 1.5xlO -7 m and R IO -7 m, and as a consequence they are 

extremely light which facilitates their rapid and widespread dispersal by 

wind. T his in tum ensures that the pollen released from plant species 

within a local area become thoroughly and homogeneously mixed before 

eventually settling out as a' pollen rain. 

With vast production by local plant species and thorough mixing and 
dispersal, the pollen settling out from the atmosphere should be an 
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accurate reflection of the plant population of the region. Pollen 

analysis relies on the assumption that if, at any given location, no 

pollen of a species settles, there is minimal chance of that species being 

present within the local area (Faegri and Iversen, 1975). 

Another important feature of pollen is that the grains have a much 

greater potential for preservation than almost all other plant materials. 

This fact can be attributed to the construction of the cell wall which is 

composed of two layers. The inner layer, the intrine, is a normal cell 

wall built from cellulose. However, the outer wall, the exine, is 

composed of a material called sporopollenin. This is a very complex 

natural substance that has an extraordinary high resistance to both 

biological and chemical attack. Biological enzymes and many chemicals, 

particularly acids, have little effect on its decomposition. Therefore, any 

pollen that settle onto an actively accreting surface, such as a peat bog 

or lake bed, have a good chance of preservation as they become 

buried. This is particularly so if anaerobic (oxygen deficient) or acidic 

conditions exit. Eventually, over geological time spans, they may 

withstand the heat and pressures associated with diagenesis (rock 

formation) to become fully fossilized remains. 

A final feature, and one that is of fundamental importance, is that 

despite their microscopic size pollen grains are highly recognizable 

objects. Frequently it is possible to discriminate betwee n them down to 

the plant species level. All the information needed for discrimination is 

contained in the morphology of the exine. Thi s last feature allows 

pollen that has been extracted from a sediment to be identified and 

counted. These proportions may then be related back to a vegetation 

assemblage. 
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Chapter One Introduction 

This then leads us to the fundamental principle of pollen analysis: The 

assemblage of pollen contained in a sediment has a relationship to the 

assemblage of plants in the local area at the time that the sediment was 

deposited. 

Pollen analysis consists of the quantitative evaluation of pollen 

assemblages extracted from successive levels of a sedimentary core 

(Brasier, 1980), allowing the reconstruction of the vegetation history of a 

region. The cores from wh ich pollen are ext racted are typically of peat 

bog or lake bed sediments, but they may also be older geological 

deposits such as sandstones and clays. 

Of course, a preserved pollen assemblage is a biased estimate of the 

ancient plant population. It is necessary to take into account the 

production rate, the dispersal characteristics, and the preservation 

potential of different species. However, with these borne in mind it is 

possible to reveal remarkable details of vegetation history within a 

region. 

1.4 APPLICATIONS OF POLLEN ANALYSIS 

The true power of pollen analysis depends not only on the ability to 

decode vegetation history but also on the insight that this gives us of 

the natural environment. The vegetation found within a region is 

closely linked to the regional climate and other environmental factors. 

By analogy with present day vegetation patterns a pollen assemblage can 
be used to shed light on the climatic and environmental history of an 

area. The value of pollen analysis is easily demonstrated with reference 

to studies of the geological Quaternary Period (0-2 million years ago). 

Page 



Chapter One Introduction 

Pollen analysis of Quaternary sediments from northern Europe has 

revealed cyclical variations in the vegetation assemblage. Each cycle can 

be attributed to the climatic changes occurring during an interglacial 

period (an interval between the 'ice ages'). It has been possible to 

define a number of pollen-analytical zones, each identified by a 

characteristic vegetation sequence. This in turn has enable pollen 

analysis to become an important method of relative dating, and has 

made wide correlations between sediments possible over the greater part 

of northern Europe (West, 1977). 

Archaeologist have been frequent users of the pollen zone dating system. 

Pollen analysis can also provide them with information regarding the 

impact of early man on the environment. The first acts of 

deforestation, for example, are often clearly identifiable in the pollen 

record. 

The work of Van der Harnmen et a]. (1973) is a spectacular example 

of the application of pollen analysis. Their investigation of Pliocene and 

early Quaternary sediments in the Columbian Eastern Cordillera produced 

an astonishing palynological record of the upheaval of the Andes 

mountain range. The pollen assemblages showed gradual changes in the 

vegetation from tropical lowland flora, through intermediaries, to high 

mountain flora. From the data obtained it was possible to estimate the 

average rate and the period of uplift of the mountain range. 

Fossilized pollen are found in rocks dating as far back as the Devonian 

Period (approximately 390 million years ago). They are frequently 

contained in rock strata that are closely related to deposits of crude oil 

and coal. In these rocks other fossils are often scarce and pollen may 

then become essential stratigraphic markers that aid the correlation of 
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the order of three or four hundred are ever likely to be found in any 

one sample. Of these the vast majority will be very rare and appear 

only occasionally. In a typical northern hemisphere sample only twenty 

or thirty taxa will occur in any significant number. Furthermore, it is 

possible to derive useful palynological information from the relative 

proportions of only a few, say six to ten, common taxa. Therefore the 

identification task is considerably simpler than it at first appears. A 

system that could automatically identify and count only the most 

common taxa in a sample, and express these as a proportion of the 

total pollen content, would be a very powerful palyn ological tool. 

All pollen identification and counting is currently performed manually. 

Human powers of visual recognition and interpretation are heavily relied 

upon. By employing techniques from digital image analysis it may be 

possible to provide an alternative to this situation. 

Due to the size of pollen a high powered microscope is an essential 

requirement for viewing. Standard optical microscopy is typically 

employed but occasionally, and ever more frequently, use is made of 

the scanning electron microscope (often abbreviated to SEM). 

The first stage in the identification process is to scan the sample in 

order to locate pollen, which are often situated among other artifacts 

left over from the preparation process. This search is carried out using 

a special microscope stage that allows a grid-like movement of the 

sample in order to prevent the repeated identification and counting of 

any individual specimen. 

Once a pollen grain is located it is studied carefully by the analyst and 

a decision made on its identity. The morphological features of the 
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exine provide all the information necessary for its identification. The 

specific features employed in the identification process depend on the 

specimen itself and to a large extent on the type of microscope in use. 

A running total is kept of each pollen taxa found in the sample and 

these raw data are passed on to the next major stage of the process. 

It is not possible to specify the exact time taken to analyse a sample 

since this obviously depends on many factors. A crude idea can be 

given, but it must be considered as such. To produce results that have 

some statistical significance the identity of at least 200 grains are 

generally considered necessary. Normally somewhere between 200 and 

400 grains would be analysed but in some situations it may be 

necessary to identify many more, 1500 grains is not uncommon. The 

quality of the preparation, the experience of the palynologist, the variety 

of pollen types present, and the familiarity of the analyst with these 

types, are all factors that will affect the time taken for the analysis. 

However, suppose a count of 400 grains was required for a 'typical' 

sample, one in which the majority of the pollen present were familiar to 

the analyst. A palynologist of average ability would not expect to 

complete this task in under two days. 

The majority of palynologists, most of whom are graduates, regard the 

identification and counting of pollen as a burdensome chore. It is the 

interpretation of the data that provides interest in the work. Clearly 

then an automated identification system would be very welcome. 
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1.6 DIGITAL IMAGE PROCESSING AS A POSSIBLE SOLUTION 

Digital image processing has developed rapidly since the early 1970s and 

continues to do so today. Over the last two decades an extensive range 

of techniques have been developed for the manipulation and analysis of 

images stored in a digital format. Thresholding, edge detection, and 

texture analysis are three examples that will be seen later in this report. 

By suitably combining these basic techniques it might be possible to 

construct a system that will allow the automatic identification and 

counting of pollen. 

Many identification systems employing digital image analysis already 

exist. These cover a wide range of applications but the majority are 

designed to deal with objects of well defined form. The identification 

of components on a production line is a typical example. There are, 

however, some systems working with biological materials. For example, 

Rutovitz et al. (1978) describe the application of image processing for 

the automated analysis of chromosomes. A commercial system that 

classifies and counts white blood cells is currently in use in several 

British hospitals. There have as yet been no attempts to analyse pollen 

using the digital image processing approach and this material presents a 

number of unique problems to overcome. 

The term pattern recognition is often used to describe the application of 

computers to recognition problems. This covers a very broad range of 

applications such as speech interpretation, the reading of hand written 

characters, and the location of objects within a scene. In all pattern 

recognition problems three fundamental stages can be identified. 

The first stage, and one that is not necessary when the task is 
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performed manually, is the digitization of the data. This means that 

some form of relevant data must be captured and converted into a 

numerical format for storage and analysis by the computer. For a 

pollen recognition system this does not present a major difficulty as we 

simply require digitally encoded images of pollen taken from under the 

microscope. This can be readily achieved with suitable hardware, either 

attached to the microscope itself, or via a video scanner and 

photographic prints. 

Once a digital description of the object has been stored the stage of 

feature extraction is needed. This is equivalent to an analyst 

recognizing the shape of a grain when identifying pollen manually, or to 

a computer counting the number of sides on a object when searching 

for a specific part on a production line. It is at this stage that digital 

image processing and analysis will play a major role in automated 

pollen identification. 

The final stage is to act upon the data provided by the feature 

extraction procedures. For pollen identification we need to use the data 

to classify the object. Statistical classification schemes will be required 

to perform this task. 

1.7 AN OUTLINE OF THE THESIS STRUCTURE 

In the following chapter a review of the literature citing previous 

relevant work is presented. It is divided into two sections, the first on 

palynological aspects and the second on digital image processing 

techniques. The palynology section outlines recent advances in 

preparation techniques that simplify the identification problem. It also 
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discusses previous work aimed at providing automation in pollen 

analysis. In the second section a review of selected items from the 

digital image processing literature is presented. This selection 

concentrates on the techniques that are most likely to prove useful in 

solving the pollen identification problem. 

in Chapter Three details are given of the equipment and practices used 

in order to obtain and process the digital image data. This includes 

information on the source of pollen and the preparation techniques used, 

as well as details about the hardware and software used to capture and 

analyse the images. 

The remainder of the report broadly follows the sequence of stages 

identified above for all pattern recognition problems. Chapter Four 

deals with the image processing procedures that are required to extract 

or measure useful features from the scenes of pollen available. 

Chapter Five outlines the various statistical classification schemes available 

for identifying the objects from the extracted feature information. It 

also describes some variable selection procedures that may be used to 

enhance the performance of a classifier. 

In Chapter Six a summary of experimental results is presented. These 

were obtained by using the procedures covered in the earlier chapters. 

Chapter Seven looks very briefly at some possible approaches to the 

problem of locating pollen within a given scene. Finally, Chapter Eight 

draws conclusions from the work currently undertaken and identifies 

areas that are likely to prove profitable for future development in this 
field of study. 
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Chapter Two 

PALYNOLOGY 

2.1 POLLEN PREPARATION TECHNIQUES 

Literature Review 

The extraction of fossilized pollen from a sediment and its preparation 

prior to viewing under a microscope are both important aspects of 

palynology. The selection of a suitable preparation process is a vital 

consideration since pollen can react differently to alternative methods, 

and the visual effects often vary between taxa (Cusma Velafi, 1984). 

The choice of preparation technique becomes more critical if automated 

identification is required since features such as the shape, size, and the 

surface detail of the grain must be kept as constant as possible for 

effective machine interpretation. 

2.1.1 Extraction of Pollen fi-om Sediments 

An extensive range of methods is available to deal with the removal of 

sediments in which pollen is contained. Most are based on chemical 

processes and they are adequately described in the standard palynological 

texts (e. g. Faegri and Iversen (1975), Moore and Webb (1983)). 

The process of acetolysis deserves a special mention since it is used as 

the first step in most preparation techniques. This consists of immersing 

the sample is a series of increasingly powerful acidic solutions in order, 

primarily, to remove the inner cellulose layers of the pollen. The 

sample is then passed back through a second sequence of progressively 

weaker solutions until it is neutralised. 
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Chapter Two Literature Review 

After treatment with a series of suitable chemical processes a typical 

core derived sample still contains a considerable quantity of material 

other than pollen. This often consists predominantly of amorphous 

organic materials and silica spicules. When manually identifying the 

grains these impurities are usually left in the sample unless the problem 

is very severe. However, for an automated system it is essential that 

as clean a preparation as possible is obtained in order to minimise the 

complexities of locating pollen. The unwanted artifacts are most readily 

removed by recently developed physical extraction and concentration 

techniques. 

By the use of density gradient and centrifugation equipment an extremely 

clean, pollen rich sample may be obtained (Forster, 1986). The 

separation of some groups of pollen taxa is also possible. Although 

this is a difficult process to use at present, it does have potential for 

future automation. 

Ultrasonic sieving or filtration (Caratini, 198 1) can also produce a 

considerable improvement in the quality of prepared samples. Ultrasonic 

shaking of the sample on extremely fine mesh sieves removes material 

outside the size range of pollen grains. This technique has been found 

to be particularly effective on silt and clay rich deposits which are 

difficult to process chemically without causing damage to the pollen 

(Tomlinson, 1984). An example of the combined use of chemical and 

physical extraction techniques in order to produce usable samples is 

presented by Heusser and Stock (1984). 
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2.1.2 SEM Preparation Techniques 

The advantages offered by the scanning electron microscope (SEM) over 

conventional optical microscopy include much greater magnification and 

definition and a remarkable depth of field. However, the environment 

within the SEM is much harsher on the samples. Specimens must be 

completely desiccated and are subjected to a high vacuum during 

viewing. Pollen is relatively rigid and indestructible compared to most 

other biological materials and yet serious problems can still occur with 

many taxa (Adams and Morton, 1972). The most important of these 

are grain distortion, excessive contrast, and charging (the build up of 

electrons on the surface which deflects the electron beam). Since the 

scanning electron microscope became available to palynologists a series 

of new preparation techniques have been developed, and many of the 

traditional methods have been modified. 

Initially, the preparation techniques of optical microscopy were used for 

SEM samples. The only alteration was the use of a conductive carbon 

or metal film to prevent charging of the specimen. This film was 

applied by an evaporation process. Adams and Morton (1972) proposed 

a greatly improved procedure which displayed two essential features. 

Firstly, acetolysis was used to reduce the contrast and glare in the 

image. More importantly a critical point drying method was employed 

to prevent the distortion and collapse of the grains. Collapse is 

normally caused by surface tension forces generated during drying, but 

these are eliminated by the critical point drying process. They also 

recommended the use of gold or aluminiurn as the coating material as 

this helped to further reduce image contrast. However, an aluminiurn 

coating has the disadvantage that it deteriorates rapidly, so a sample 

must be analysed shortly after its preparation. 
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The advantages of critical point drying over conventional methods have 

been extolled in many later papers. For instance, Nilsson et al. (1974) 

noted consistently better results when comparing this method to the 

vacuum and excess-pressure treatments used previously. Cusma Velari 

(1984) found critical point drying and dehydration through acetone 

solutions to give the most satisfactory results in a comparison of five 

preparation methods. 

The virtues of acetoiysis in SEM preparation have been the cause of 

some debate. Rowley (1973) suggests acetolysis limits fine detail and 

causes distortion and shrinkage of the grains. Lynch and Webster 

(1975) point out that acetolysis is often a disadvantage for fresh pollen 

since removal of the inner cellulose layer encourages the grains to 

collapse. 

A further significant advance in SEM preparation was presented by 

Damblon (1975). He introduced the sputtering technique as a means of 

applying the conductive coating to a sample. A metal target, typically 

gold, is bombarded with ions under a low vacuum. This causes metal 

atoms to be ejected onto the specimen producing a thinner and more 

even coating than the evaporation method. This technique improves the 

level of surface detail and the consistency of image quality. It has now 

been adopted almost universally. 

2.2 AUTOMATION IN PALYNOLOGY 

Previous work at providing automation in palynology has been notably 
lacking. The analysis of raw pollen taxa frequency data by computer to 

provide statistical interpretations has been the most obvious development. 
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A number of packages are now available to achieve this (e. g. Hill, 

1979a and 1979b) and many include facilities for the production of 

pollen diagrams or other graphical presentations of output (e. g. Squires, 

1970). 

There have also been some attempts at automating the preparation 

processes. These range from simple mechanical manipulators to improve 

the mounting of pollen onto an SEM stub (Leffingwell and Hodkin, 

1971), to the development of sophisticated extraction and purification 

techniques (Forster, 1986). 

Walker et al. (1968) describe a computerized pollen database system. 

This was designed primarily to assist palynologists in the identification 

of unfamiliar tropical and southern hemisphere pollen of Quaternary age. 

The morphological characteristics of an unknown grain are encoded and 

compared to the coded descriptions of modem reference pollen. The 

coding is divided into a number of sections, each section dealing with 

one of the major morphological features used in normal manual 

identification. The pollen taxa with the highest number of section 

matches are listed as the output. These are treated as suggestions 

which may be investigated further by traditional means. 

An improved version of the original system is described by Guppy 

et al. (1973). The number of descriptive sections was increased and 

many features were defined more precisely. In addition, they 
incorporated greater sophistication into the presentation of printed output. 
The extention of the system to include fully fossilized pollen was 
discussed, and they reported that a number of early Tertiary grains had 

been successfully encoded. 
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A new system for the description and coding of pollen and spores was 

proposed by Germeraad and Muller (1970, and 1971). This attempted 

to remove the subjectivity of the scheme presently adopted, and is 

inherently more suitable for computer manipulation in a database 

environment. The construction of a data bank employing the new 

numerical coding system was proposed. This could be used, like the 

Walker system, for the identification of unknown pollen. However, so 

far the new classification scheme has not found great success. The less 

precise, but much simpler, traditional system is still preferred by the 

majority of palynologists. 

An early attempt at the identification of palynological objects using 

image based data is presented by Mirkin and Bagdasaryan (1972). They 

record that "... the memory storage of modem computers is very 

limited. ", a sharp reminder of the enormous progress made in recent 

years in digital computing power. Due to this limitation they 

concentrated on an optical based system to produce Fourier power 

spectra from photographic images of pollen and spores taken under a 

standard optical microscope. They then employed a correlation measure 

in order to match these images with Fourier spectra from type 

specimens. The results were not conclusive, but they noted that the 

"... microelements of the image play an appreciable role in the 

recognition of objects ...... Thus suggesting that edges and textures are 

more valuable than broad tone levels and shape in the identification of 

the objects. 

Dickson et al. (1977) describe a similar approach for the identification 

and counting of diatom communities in an attempt to provide automated 

ecological monitoring. They, like Mirkin and Bagdasaryan, produced 
Fourier power spectra using laser light projected through negatives of 
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diatoms taken from under an optical microscope. These were filtered 

using Fourier spectra obtained from type specimens and the image 

reformed to give bright spots of light on an output plane whenever 

close matches occurred. The spots were counted and the process 

repeated with alternative filters to identify other species present. 

Dickson et al. noted several difficulties with their system. The size of 

diatoms, like pollen, vary and a variation of only 4% could reduce the 

signal-to-noise ratio of spots on the output plane by 50%. Sample 

orientation was also a problem, requiring the specimen to be rotated and 

several attempts made to count correlation spots. The optical microcopy 

gave very limited field of view so that invariably only a few diatoms 

were in focus at any one time. This was a big problem when using 

negatives, but even a direct output from the microscope would require 

some sort of automatic focussing system which is not an easy task. 

Finally, the alignment of the whole system was critical. It had to be 

kept within 2m -6 using sensitive step motors under computer control. 

Case et al. (1978) simplified the procedure for diatom identification and 

counting. A laser beam was used as the source of illumination in the 

microscope to produce coherent images directly, without the need for the 

photographic stage. Several optical filtering operation were required, 

however, in order to match the image quality obtained from the 

previous method using film negatives. 
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DIGITAL IMAGE PROCESSING 

2.3 INTRODUCTION 

It is possible to identify two basic aims of digital 

(Gonzalez and Wintz, 1977). The first of these is 

in some way such that it is clearer, easier, or 

information, for human perception. The second is 

data by machine, almost invariably a computer, 

interpretation. 

image processing 

to improve an image 

contains more 

to process image 

for automatic 

Sometimes a process or technique can accomplish both aims 

simultaneously, but more often it will assist in only one. For example, 

a smoothing operation to reduce noise can make a scene more pleasing 

for a human observer and at the same time assist an automated system 

when segmenting the image into meaningful regions. On the other hand 

colour coding, the substitution of colours for grey tones, is an example 

of the second case. A computer will deal with numerical image data 

regardless of whether it represents, or is represented by, grey tone or 

colours. However, the human visual system has much greater powers 

of discrimination and information extraction when dealing with colours 

than with monochrome shades. Colour coding can bring out information 

or detail which, although present in the original image, is otherwise lost 

to a human observer. 
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2.3.1 Biief I-fistory 

Literature Review 

An interesting account of the early development of digital image 

processing is given by McFarlane (1972). One of the first applications, 

around the turn of the century, was the transmission of digitized 

newspaper pictures between London and New York via a submarine 

cable. In 1929 the tonal resolution of this system was improved from 

5 to 15 grey levels. Similar small advances in digital imagery were 

made up until the early 1960s when the space program and the 

increasing availability of powerful digital computers provided a spark for 

massive development. 

Gonzalez and Wintz (1977) document the work of the Jet Propulsion 

Laboratories in California where many basic digital image analysis 

techniques were developed. These were used to correct the various 

distortions found on digital images received from satellites such as the 

Ranger and the Mariner series. By the early 1970s attention was 

turning to other applications and the Jet Propulsion Laboratories 

themselves reported work on such diverse topics as improving forensic 

fingerprint images, and the removal of atmospheric distortions from 

astronomical images (O'Handley and Green, 1972). The expansion of 

applications still continues to accelerate today. Digital image processing 

now finds its way into an enormously broad range of subjects and is 

particularly well founded in the fields of biomedicine, computer vision, 

astrophysics, and Earth resource sciences. 
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2.4 IMAGE PROCESSING TECHNIQUES 

Understandably, with such an enormously diverse range of applications, 

the number of techniques developed for processing digital images is 

extremely large. Some of the methods are now discussed below. By 

no means should this be considered an exhaustive discussion of image 

processing techniques, since it aims to concentrate on those that have 

particular relevance to solving the problems presented by automated 

pollen identification. 

2.4.1 Point Operations 

Point operations are a simple but important class of image processing 

technique. By definition a point operation produces an image in which 

the value of each individual output pixel depends only on the intensity 

level of the corresponding input pixel. The relationship between the 

input and output levels is defined by a transformation or 'mapping' 

function (Castleman, 1979). 

Point operations are particularly important for modifying the way in 

which the image data fills the grey level range available. Point 

operations modify the range of grey scales in the image, and 

consequently modify the grey level histogram (the frequency distribution 

of grey levels) in a predictable manner. 

Linear point operations stretch, compress, or shift the distribution within 

the histogram. Linear contrast stretching is a typical example in which 

the grey level range of the histogram is stretched so that it fills the 

full range available, assuming this was not achieved in the original 
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image. The details of this and other grey scale transformation functions 

are adequately covered in standard digital image processing texts (e. g. 

Hall (1979), Gonzalez and Wintz (1977), Rosenfeld and Kak (1976)), as 

well as many of the remote sensing texts (e. g. Curran (1985), Lillesand 

and Kiefer (1987)). 

An important point operation is that known as histogram flattening, 

histogram equalization, or equal probability grey level quantization. 

This process aims to produce an image that has an equal number of 

pixels in each grey level bin (hence giving a flat histogram). This is 

particularly valuable since it allows the normalization or standardization 

of the first-order statistics of the image (such as the mean and variance 

of the grey levels). It is used as an early preparation stage of many 

texture analysis procedures. Castleman (1979), Niblack (1986), and 

Haralick et al. (1973) give details on how the transformation is 

implemented. More complex algorithms based on this theme are also 

available, such as that proposed by Alparslan and Ince (1981) who 

employ a locally adapted histogram stretching scheme. These are 

particularly suitable for retaining maximum information when using low 

tonal resolution output devices, such as the majority of printers in 

current use. 

Peleg (1978) describes an iterative histogram modification scheme based 

on a similar idea by Rosenfeld and Davis (1978). Grey level 

frequencies are transferred to large bins from nearby smaller bins 

resulting in a modified histogram in which only a few spikes remain. 

Hence, this process is often called the 'super-spike' algorithm. 
Frequently the image corresponding to the modified histogram is barely 

distinguishable from the original. Image segmentation and data 

compression techniques such as run-length encoding or quadtrees (Walker 
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and Grant, 1986), are more easily facilitated with the image in this 

modified form. 

2.4.2 Thresholding 

In many applications images contain objects which are lighter or darker 

than the background on which they occur. Thresholding is a technique 

that is commonly employed to segment such images into their object 

and background points since it is a relatively simple and fast procedure. 

Although often classified as a segmentation technique, thresholding may 

also be considered as a type of point operation, since the output pi, xel 

values depend only on their corresponding input values. 

Thresholding is performed with reference to the grey level histogram of 

the image. We assume that the histogram displays a bimodal 

distribution with the two peaks corresponding to the grey level 

populations of the objects and background points. Between these peaks 

should lie a valley of less frequent intermediate grey levels which 

normally correspond to points lying on the boundaries between the 

objects and background (Ahuja and Rosenfeld (1978), Kirby and 

Rosenfeld (1979)). A threshold value is selected from within this valley 

and the image is segmented into a binary format by mapping all points 

below the threshold to black and all those above to white, or vice 

versa. 

However, the selection of a suitable threshold is frequently a non-trivial 

task. The segmentation of textured regions presents one problem, which 

will be discussed later, but even with uniform regions a valley in the 
histogram is often difficult to detect (Weszka et al. (1974), Otsu 

ullimlity 
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(1979)). This situation arises especially when the proportions of object 

and background are very dissimilar (Weszka et al. (1974), Kittler and 

Illingworth (1985)). The histogram may then become predominantly 

unimodal in character with one side of the peak displaying a shoulder 

or a change of slope, or it may simply show a skewed distribution 

(Weszka and Rosenfeld, 1979). 

2.4.3 ffistogram Modification To Aid Thresholding 

There have been a number of attempts to modify or enhance the grey 

level histogram in order to make the selection of a suitable threshold 

easier. These methods take into account not only the grey level at 

each point but also local property values, in particular the rate of grey 

level change, in order to produce an enhanced histogram. With 

enhancement the valley is deepened or the histogram is converted to 

display a sharp peak near the optimal threshold level. Reviews of the 

various techniques developed are given by Weszka (1978), and Weszka 

and Rosenfeld (1979). 

For example, each point can be given a weighting, depending on its 

edge strength value, before contributing to the histogram. Similarly the 

Laplacian operator can be used as an indicator of grey level gradient 

(Weszka et al., 1974). Those points with a high output, normally 

associated with an object boundary location, may be discarded to deepen 

the valley between the background and object populations. Alternatively, 

if those with a low output are discarded, a bimodal histogram is 

produced whose sharp peaks are on either side of, and close to, the 
ideal threshold value. 
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The use of second-order statistics from co-occurrence matrices are an 

alternative method of distinguishing between border points and those 

lying in the interior of object or background regions. This appears to 

give better results than using edge values, particularly when selecting 

only the border points to produce a strongly peaked histogram (Ahuja 

and Rosenfeld, 1978). 

Yet another approach is based on the use of scatter plots in 

(grey level/local average grey level) space (Kirby and Rosenfeld, 1979). 

As with the co-occurrence matrices, entries near the main diagonal 

represent interior points, while the distal. entries she 

points. This method, that closely resembles the 

approach, is no more expensive to compute than 

statistics and may be particularly valuable in cases 

averaged image is already being computed for other 

reduction). 

2.4.4 Automatic 11ireshold Selection. 

uld represent border 

Laplacian based 

the second-order 

where the locally 

purposes (e. g. noise 

None of the transformation processes discussed above address the problem 

of automatically selecting an optimal threshold. They simply enhance 

the histogram to make manual selection easier. Detecting the two peaks 

and locating a suitable threshold level may be difficult even after 

enhancement, especially when the histogram is noisy. In many 

applications of digital image analysis unsupervised operation is required, 

so automatic threshold selection is essential. 

One approach to automatic selection is to use the 'busyness' measure of 

a cooccurrence matrix constructed from the original image (Weszka and 
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Rosenfeld, 1978). A threshold level is selected which minimizes this 

measure. An alternative is the iterative selection method outlined by 

Ridler and Calvard (1978) which yields successively refined threshold 

positions. These converge to an optimum in about four iterations. 

This process effectively minimizes the within-class grey level variance of 

the object and background regions (Kittler and Illingworth, 1985). A 

mathematically efficient implementation of the method, which processes 

the histogram rather than the image itself, is described by Trussel 

(1979). 

Otsu (1979) approached the task of automated thresholding from the 

viewpoint of discriminant analysis. He proposed a discriminant cfiterion 

measure which is a determinant of the between-class separability. The 

grey level giving the highest output is taken as the optimal threshold 

point. Essentially this is the reverse operation to that proposed by 

Ridler and Calvard (1978), but Otsu suggests that his method is simpler 

requiring the computation of first-order rather than second-order 

moments. Importantly it is a non-parametric technique so it has 

general applicability, and is ideal for use in an unsupervised 

environment. 

More recently, Kittler and Illingworth (1985) have shown Otsu's method 

to break down for certain ratios of object and background areas. The 

assumption of unimodality for the discriminant criterion does not always 

hold, and it can become bimodal or even multimodal. A local peak 

determination and simple 'valley check' are required to ensure the 

correct threshold level is selected. This process can also usefully 
indicate when a single threshold and the resulting binary image are 
inappropfiate classifications of the image. 
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2.4.5 Thresholding Of Textured Regions 

Simple thresholding does not work effectively for textured regions. 

Although regions may have different average grey level, a fixed threshold 

level between these averages will still lead to misclassification of points 

due to the range of grey tones within the textured regions. Davis 

et al. (1975) showed that a fixed smoothing method can allow such 

regions to be separated. The size of the averaging neighbourhood 

needed for effective separation is difficult to predict however, and an 

experimental method of automatic variable averaging did not prove to be 

successful. 

The smoothing approach can be generalized to cases where the average 

of any local property, other than simple grey level intensity, varies 

between the regions. The use of a local digital gradient and the 

Laplacian operator were demonstrated, but other more specialized 

operators could be devised for separating specific textural regions. 

One serious problem is that this method will fail under certain 

conditions. Specifically, if there are three or more regions to be 

separated, each with distinct local property value ranges, and regions 

with high and low ranges are adjacent, the methods proposed above 

will not perforrn satisfactorily. 

Tomita and Tsuji (1977) provide a solution to the multiple region 

problem with an improved smoothing method. At each point a gradient 

operator is used to calculate non-homogeneity indices from each of four 

surrounding local regions. The averaging procedure is applied to the 

region with the lowest non-homogeneity index. This should prevent 

averaging from being performed over areas that contain a boundary 
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between regions. The smoothing process is iterated until distinguishable 

regions are obtained. 

Nagao and Matsuyama (1979) believe that the rectangular smoothing 

window employed by Tomita and Tsuji still leads to blurring and does 

not yield good results when applied to complexly shaped regions. They 

propose smoothing within an elongated bar that is rotated around each 

point, allowing nine positions in a standard raster-type digital image. 

Again smoothing is performed within the region with the lowest 

non-homogeneity index. This procedure ensures that smoothing occurs 

without the incorporation of edges, even in complex shapes. Thus the 

textured regions can be smoothed without losing definition of shapes or 

edges. Iteration of the process gives an effect equivalent to averaging 

over a larger neighbourhood. It was also demonstrated that the 

technique also has the useful ability to sharpen initially blurred object 

edges. 

2.4.6 Local Operators 

The use of local operators or spatial filters is extremely common in 

image restoration and enhancement applications. Castleman (1979) 

defines a local operator as a filter whose output at a pixel is a function 

of the input values within the neighbourhood of that pixel. 
Schowengerdt (1983) notes that spatial filtering is therefore in effect a 
'context -dependent' operation. The neighbourhood is often referred to 

as a window. The window may be any shape, although square is most 

common, and almost all are symmetrical around a centre pixel. The 

window is scanned exhaustively across the image with each location 

contributing one pixel to the output image. 
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Spatial filters come in a great many guises. The form and application 

of the most common filters are adequately covered in standard image 

processing texts (e. g. Castleman (1979), Niblack (1986), Rosenfeld and 

Kak (1976)). Filters may be classified under terms that reflect their 

mathematical properties. Terms such as linear, nonlinear, gated, and 

several others fit this bill. Alternatively, a common division into low 

pass and high pass filters is based upon the effect that the filters have 

on the frequency information contained in an image. 

2.4.7 Low Pass (Smoothing) Filters 

Low pass filters enhance low spatial frequency information, or features 

that are larger than the filter itself (Curran, 1985). They are often 

called 'smoothing' or 'defocus' filters due to their visual effect upon an 

image. The most common use for this class of filter is to enhance an 

image by the suppression of high frequency noise, The simplest 

smoothing filter takes the mean value of the filter window as its output. 

Davis et al. (1975) report using this process to suppress high frequency 

detail prior to thresholding to yield greatly improved results. The 

principal problem in low pass filtering is to avoid the blurring of 

objects boundaries while still reducing noise. Many of the nonlinear 

procedures, using both nonlinear filters and nonlinear implementations of 

linear filters, have proved most successful in this respect. 
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2.4.8 ffigh Pass (Edge Enhancement) Filters 

High pass filters enhance the high spatial frequency information, or 

features that are smaller than the filter itself (Curran, 1985). The most 

familiar type is the edge enhancement filter. Edge enhancement and 

edge detection are important stages in many automated image analysis 

applications. They are also a common form of enhancement prior to 

human interpretation. There are many designs of edge filtering available 

including the template matching and differential methods. Hall (1979) 

compares the merits of ten local edge detection procedures including the 

Roberts, Sobel, and Laplacian filters. Abdou and Pratt (1979) evaluate 

edge filter design by assessing the filters measurement of the edge 

magnitude, the probabilities of correct and false edge detection, and by 

employing a figure of merit calculation. They conclude that 30 

differential detectors (e. g. Sobel and Prewitt) perform notably better than 

2x2 differential operators (e. g. Roberts). Furthermore, the differential 

operators were found to be as good as the template matching detectors 

and required fewer calculations. 

2.4.9 Rank and Range Filters 

A class of nonlinear filters known of as rank filters have shown 

themselves to be particularly useful in image processing tasks. Rank 

filters take the pixel values from within the filtering window and place 

them into rank order. The output of the rank(i) filter is the ith value 
in the ranked sequence. If the extreme rank positions are selected the 

filters are known as Min and Max filters (Nakagawa and Rosenfeld, 

1978). If the window contains an odd number of pixels the median 

rank produces a median filter. The properties of rank filters are 
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discussed by Hodgson et al. (1985). In particular the median filter is a 

powerful al ternative to the low pass mean filter. It smooths noise but 

causes less degradation of edges. Rank filters can shift edges and alter 

the mean intensity of the image, but no new intensity values are 

generated. Nakagawa and Rosenfeld (1978) discuss the use of Min and 

Max filters for shrinking and expanding operations. These may be used 

to remove noise or detect densely clustered regions. 

Range filters, described by Bailey and Hodgson (1985), are an extension 

of the rank filter. The output from a range filter is the difference in 

intensity between two selected positions in the ranked list of pixel 

values. Range filters may be used for edge detection and enhancement 

purposes, and by selecting an appropriate range the edge response 

width, edge position and connectivity scheme, may be adjusted. Bailey 

and Hodgson conclude that a range filter is more flexible than the 

Sobel filter but does not perform as well in a noisy image. 

2.4.10 Efficient Filteting 

Convolution is a term that is widely used when discussing spatial 

filtering. It consists of an operation whereby the output value at a 

point is formed from multiplying the image values by the filter 

coefficients and taking the sum total of these results. A substantial 

quantity of computation can be involved in this process if the window 

is large. Spatial filtering with windows larger than lIxII pixels is 

generally less efficient than performing the convolution in the frequency 

domain using the Fast Fourier transform (Schowengerdt, 1983). 

Calculating each value from scratch when the filter has only moved one 
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pixel position is often inefficient when symmetry exists in the filter 

coefficients (a common situation). Lee (1983) discusses the elimination 

of redundant operations in respect to producing a fast Sobel operator. 

Computation may be reduced by more than a half, the only penalty 

being increased storage requirements. The principles proposed by Lee 

are in fact applicable to most convolution filtering operations where a 

degree of symmetry in the filter design exists. Kim and Strintzis 

(1980) give details of an efficient convolution method which is especially 

effective as dimensionality increases. 

Methods of efficient filtering with rank or median filters have also been 

investigated. Huang et al. (1979) employed a histogram storage 

technique. This algorithm is essentially equivalent to performing a 

'running average' technique when using a mean filter. They 

demonstrated that the histogram method is much faster than an efficient 

sorting algorithm. Other methods using bit sorting (Ataman et aL, 

1980) and a sorted list (Bednar and Watt. 1984) are reviewed by 

Hodgson et al. (1985). 

2.5 TEXTURE ANALYSIS 

Texture is an important characteristic of many images. While tone and 

colour are obvious conveyors of information, texture also plays a 

considerable part. Variations in texture normally reflect some variation 
in the scene being imaged (Davis et al., 1981). This may be a change 
in the terrain, the type of skin tissue, the grain size of rock, or endless 

other possibilities. However, despite the fundamental importance of 
texture in image analysis it is still difficult to provide a simple 

definition of this phenomena. 
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Davis et al. (1981) provides one of the simplest definitions, "A textured 

area in an image is characterized by a nonuniform, or varying, spatial 

distribution of intensity". Others have emphasised the structural 

characteristic of many textures. For example, Wang et al. (1981) 

consider "... texture as composed of 'primitives' (connected regions 

satisfying certain properties) placed in a certain spatial arrangement". 

Tamura et al. (1978) give a similar description when they "... regard 

texture as what constitutes a macroscopic region. Its structure is simply 

attributed to the repetitive patterns in which elements or primitives are 

arranged according to a 'placement rule"'. They go on to provide an 

equation, 
R(e) 

where a texture f is a function of a placement rule R and texture 

elements e. Irons and Petersen (1981) note the interrelation between 

tone and texture when they state "Visual texture refers to the impression 

of roughness or smoothness created by variation of tone or repetition of 

visual patterns across a surface". This theme was also discussed in 

some detail by Haralick (1979) who concluded that tone and texture are 

closely inter-linked. When there is little variation in tonal primitives, 

tone is the dominant feature, but as variation increases texture becomes 

the dominant partner. 

From the definitions given above it can be seen that there is still 

debate and some uncertainty as to what precisely constitutes a texture. 

To some extent this uncertainty is reflected by the development of a 

wide range of techniques which attempt to quantify texture properties in 

digital images. 
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2.5.1 General Review 

Literature Review 

A comprehensive survey of techniques for texture analysis is provided by 

Haralick (1979). There are two approaches to texture quantification; 

statistical and structural. Statistical techniques attempt to characterize 

texture by statistical references to the spatial distribution of the grey 

levels. This is normally achieved on a pixel-to-pixel basis although 

local measurements are sometimes used. Structural analysis differs in 

that it aims to identify and define 'texture primitives', and then 

proceeds to specify their 'placement rules'. 

Eight statistical approaches to the characterization of image texture are 

reviewed by Haralick. Autocorrelation functions, optical transforms, and 

digital transforms (including the Fourier transform), are similar in that 

they all analyse spatial frequency. This relates to texture in the sense 

that fine textures are rich in high spatial frequencies, whilst coarse 

textures are rich in low spatial frequencies. The Fourier transform 

provides directional as well as frequency information. 

The 'textural edgeness' method considers texture as an amount of edge 

per unit area. This approach was employed by Rosenfeld and Thurston 

(1972) using the Roberts gradient as the local edge property. Sutton 

and Hall (1972) extended the technique to allow the identification of 

pulmonary disease by textural analysis. 

Spatial distribution and dependence among grey tones in a local area 

may be analysed by the co-occurrence technique. Grey level run-length 

analysis characterizes texture in terms of the frequency spectrum of 

collinear connected sets of pixels that have equal grey tone. Both of 

these techniques are discussed in further detail later. 
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Texture transforms construct a new image which indicates how strongly a 

texture pattern is represented around each pixel of the original image. 

Since the textural properties at each pixel location are characterized, this 

approach is particularly attractive for remote sensing applications, where 

most classification algorithms assign categories on an individual pixel 

basis. Irons and Petersen (1981) attempted the thematic mapping of 

Landsat images with this method. They found the results to be poor 

but conclude that higher spatial resolution (now available with the latest 

generation of satellites and sensors) and better classifier design might 

lead to improvements. Furthermore, some transforms were found to 

produce useful image enhancements. 

Haralick (1979) notes that pure structural based approaches have not 

been widely used and concentrates on statistical-structural hybrids that he 

divides into two classes. The 'weak' texture measures have only weak 

spatial interaction between primitives. Many of the statistical measures 

described above, such as run-lengths, edgeness, and local extrema density 

(Mitchell et al., 1977) fall into this class. The 'strong' texture 

measures also take into account the co-occurrence between texture 

primitives. The best example of this is the analysis of local maxima 

co-occurrence suggested by Davis et al. (1979). 

Haralick concludes that for microtextures the statistical methods have 

been proven to work well, whilst for macrotextures the trend has been 

towards the use of statistical-structural generalizations based on 

histograms or co-occurrence of primitive properties. So far, structural 

methods have found success only in very limited applicati ons. 
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2.5.2 Grey Level Run lengths 

Analysis by grey level run length (Galloway, 1974) relies on recording 

the frequency of linearly connected sets of pixels having equal grey 

level. A fine texture is expected to have runs primarily of short length 

and very few of long length. Conversely, coarse textures will tend to 

have long runs of constant grey level occurring relatively often. A 

simple matrix may be used in which an element P0 j) represents the 

number of times that a run length of j pixels occur, having a grey 

level of L Matrices may be computed for runs analysed in several 

directions, differences between these matrices reflecting properties of 

directionality. 

This technique has been adapted for the analysis of handwriting using 

run lengths measured in the vertical and horizontal directions (Arazi, 

1977). In similar experiments with ancient Hebraic handwriting (Dinstein 

and Shapira, 1982) over 91% of text samples were correctly classified, 

and 100% of individual letters. In these cases ab inary image is used 

so the matrices condense into simple histograms. This method is 

particularly suited to the task since most characters consist of straight 

line segments which are readily characterized by their run lengths. In 

the analysis of terrain image samples the method was found to be 

susceptible to interference from noise (Weszka et al., 1976) 

2.5.3 Grey Level Co-occurrence Analysis 

Haralick et al. (1973) developed a set of texture measures for the 

classification or categorization of images based on a set of grey tone 

spatial dependence matrices. These matrices have since become 
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commonly known as grey level co-occurrence matrices. They specify the 

relative frequency with which any two grey levels occur in the image at 

some specified vector displacement. Fourteen measures of matrix 

distribution were proposed which could yield valuable textural 

information. Applying the technique to a selection of sandstone 

photomicrographs, aerial terrain photographs, and satellite imagery, good 

results were obtained with a piecewise linear discriminant classifier and 

independent test set. 

It has been established for some time that important textural information 

is contained in second-order statistics (Julez, 1962). The co-occurrence 

matrices are a second-order equivalent of the histogram, specifying the 

probability of occurrence of any pair of grey levels rather than of a 

single grey level. 

The power of the co-occurrence technique was confirmed by Weszka 

et al. (1976) in a comparative study with Fourier based descriptors and 

run length analysis. The co-occurrence technique produced decidedly 

better classification success rates. However, they also found that 

simplifying the matrices into vectors of grey level difference yielded 

results of a similar standard. 

Rosenfeld et al. (1982) applied the grey level difference method for the 

simultaneous texture analysis of multispectral imagery. This type of 

imagery is common in remote sensing applications. Concentrating 

particularly on the two-band case they found that the texture features 

derived could provide information that was not available by single-band 

analysis. 

Grey level co-occurrence analysis has been applied successfully to a wide 
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range of images and textures. Gersen and Rosenfeld (1975) employed 

it to distinguish between clouds and sea ice on aerial photographs. 

Photomicro graphs of various sandstones have been differentiated on the 

basis of their co-occurrence texture descriptors (Haralick and 

Shanmugam, 1973). Bertolini and Vernazza (1982) utilized co-occurrence 

matrices for the analysis of nucleated cells, and Don et al. (1984) found 

it possible to assess the roughness of metal surfaces using co-occurrence 

statistics. Chien and Fu (1974) applied grey tone co-occurrence to 

automated chest X-ray analysis. 

Co-occurrence analysis has frequently been used to provide texture 

measures for image segmentation. Chen and Pavlidis (1979) employed 

co-occurrence matrices with a split-and-merge algorithm, while Mason 

(1979) used the simpler grey level difference vectors of Weszka et al. 

(1976). Sklansky (1978), while providing a general overview of image 

segmentation and feature extraction processes, notes the use of 

co-occurrence as a common and important texture analyzer. 

2.5.4 Generalized Co-occurrence 

Davis et al. (1979) developed co-occurrence statistics further with their 

introduction of generalized co-occurrence matrices (GCMs). The GCM 

approach, one of Haralicks (1979) 'strong' texture measures, utilizes 

c. o-occurrence of local property values that satisfy certain spatial 

constraint predicates. For instance, the local properties of edge strength 

and orientation could be obtained. Possible spatial constraint predicates 

might be that the edge properties are nearest neighbours or that they 

occur within a threshold distance of each other. 
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This method is particularly aimed at quantifying coarser or macro 

textures which are less appropriately analysed by standard grey level 

co-occurrence. As texture becomes coarser the statistics derived from 

normal grey level co-occurrence will increasingly reflect the intensity 

transitions within the texture elements rather than the structural 

organization of the texture (Shen, 1980). 

Davis et al. (1979) discovered that with a small data set of 30 samples 

from five texture classes, and using a leave-one-out euclidean distance 

classifier, the GCMs yielded over 80% accuracy compared to 50-57% 

for standard grey level co-occurrence analysis. In a later study a much 

larger data set of 128 images from eight texture classes were used 

(Davis et al., 1981). Texture descriptors were evaluated from grey 

level co-occurrence matrices, edge-pixel GCMs, and extended-edge 

GCMs. Entered into three classification schemes the grey level 

co-occurrence statistics gave slightly better overall results. This was 

attributed to their superior performance when comparing textures of 

similar characteristics within the data set available. When dissimilar 

textures were compared the GCM measures provided the greatest levels 

of statistical separation. 

Dyer et al. (1980) attempted to combine the grey level co-occurrence 

and generalized co-occurrence techniques. They proposed a scheme in 

which grey level co-occurrence matrices are. constructed using pixels at 

locations and separations defined relative to the position and orientation 

of local edge maxima. In this way account is taken of both the tonal 

and structural properties of a texture. Furthermore, the statistics should 
be less sensitive to the coarseness or size of primitive elements in the 

texture. Improved results over the standard grey level technique were 

reported for a small experimental data set. 
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2.5.5 Local Property Analysis 

Pietikainen et al. (1983) developed a statistical scheme for texture 

analysis based on the analysis of local image properties. The texture 

features describe the degree of match between each pixel neighbourhood 

and a set of standard masks. Masks of both 3x3 and 5x5 dimensions 

were convolved with the image and the sum of absolute values employed 

as the texture descriptors. The design of the masks made them 

sensitive to particular local properties such as edges, lines, spots, and 

ripples. Comparing results on a small data set of 28 images they 

concluded that the local property masks had greater discriminating power 

than statistics based on grey level co-occurrence. 

2.5.6 Structural Analysis 

Wang et al. (1981) describe three schemes for the explicit extraction of 

texture primitives. The simplest uses fixed percentile thresholding of the 

grey level histogram to extract the upper or lower 25 percent of points 

in the image. The second used the histogram modification scheme of 

Peleg (1978) to condense the histogram into a few spikes, containing 

around 25 percent of the image points. Finally a 'superslice' algorithm 

was used which segments the image by a selection of thresholds, where 

the threshold level generating the greatest coincidence with an edge map 

is selected. This last technique allows information from both the 

histogram and local properties to be taken into account. 

Once primitives had been extracted both first-order and second-order 

statistics were calculated. The first-order statistics measured size, shape 

and direction properties of the primitives. The second-order statistics 

Page 42 



Chapter Two Literature Review 

were derived from primitive attribute co-occurrence matrices. These 

were employed in order to capture some information on the spatial 

distribution or 'placement rules' of the primitives. Applying these 

methods to a data set showed that the superslice extraction method gave 

noticeably better results with second-order statistics than the others. 

Also, the second-order statistics could distinguish between some textures 

where the first-order statistics failed. The overall conclusion, however, 

was that the simplest methods had worked about as well as the more 

complex. 

Hong et al. (1980) discuss a structural technique in which the extraction 

of primitives was achieved by the use of edge pairs rather than the 

more common threshold based schemes. Eight 30 gradient template 

detectors were used to detect edge points. The edge map was then 

thresholded to remove weak edges and non-maxima values suppressed. 

Edges were paired if they had opposite orientation and were positioned 

within a maximum threshold distance from each other. An interior 

point probability value was increased whenever an image point occurred 

between paired edges. Finally, a weak region growing stage was used 

to clean up the extracted primitives. The mean values of area, 

perimeter, dispersiveness, and other attributes, were evaluated from the 

extracted primitives to provide the texture measures. 

Pietikainen and Rosenfeld (1982) produced a similar class of texture 

measures based on the first-order statistics derived from edges in an 
image. The same scheme as Hong et al. (1980) was used to obtain an 

edge map. Edge pairs of opposite orientation and within a threshold 
distance were identified in the belief that these would relate to the 

texture primitives. The mean and range of grey levels of points 
between pairs, the separation of the edge pair, and the difference in 
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edge contrasts were calculated. These were used along with the mean 

and variance of edge curvatures as texture measures. This 

statistical -structural hybrid is closely related to the generalized 

co-occurrence matrices of Davis et al. (1979). The texture measures 

yielded good discrimination amongst scenes of different geological 

terrain. This method does not require the explicit extraction of 

primitives, and the texture measures have the advantage of simple 

perceptual interpretation. 

2.6 ANALYSIS OF SHAPE AND GEOMETRIC PROPERTIES 

Considerable research has gone into analysing the geometric properties 

of objects captured in digital images. Much of this work has been 

aimed at robot vision systems to allow the discrimination, sorting, and 

manipulation of parts for automated robotic assembly. In general these 

parts are of well defined and consistent form. Therefore, there is 

considerable advantage to be gained in the analysis of both simple 

properties such as area, compactness, and centre of gravity, as well as 

more complex properties such as principle axes, the number, magnitude 

and location of comers, and so on. Umetani and Taguchi (1979) 

define a number of properties suitable for discriminating between 

complex shaped machine parts. 

Pollen viewed under an optical microscope has reasonably consistent 

shape and is an important feature used by palynologists in manual 
identification. However, under the SEM pollen is frequently distorted 

and is no longer a reliable feature for classification purposes. Therefore 

in an automated system of pollen identification it is unlikely that there 

will be any great profit in the detailed analysis of shape. 
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Simple properties such as area and compactness may help distinguish 

between pollen grains and other artifacts in the image. Furthermore, 

most pollen have a degree of symmetry and comers or points on their 

outline, whilst not precisely located, are likely to be evenly spaced and 

of roughly similar magnitude. Therefore the calculation of simple 

geometric properties of pollen in the digitized image may provide 

valuable information for discriminating between pollen grains and other 

unwanted debris. 

2.6.1 Boundary Encoding 

Many geometric properties of an object can be obtained from the 

analysis of its boundary. Freeman (1961) proposed a simple yet 

compact method of encoding such boundaries known as chain code. 

Batchelor and Marlow (1980) describe a hardware/software mechanism 

which allows rapid generation of chain code from binary images. 

Dudani (1976) provides an algorithm for the location and following of 

object boundaries and the generation of a binary image displaying the 

extracted regions. Other boundary following techniques are given by 

Rosenfeld and Kak (1976), and by Bennet and Mac Donald (1975). 

2.6.2 Geometric Properties 

Freeman (1961) illustrated that it is possible to determine boundary 

length, and enclosed area from a chain coded description of the object. 
The calculation for centre of gravity is a simple extension of the area 

calculation, and Kakikura (1979) provides a fast method of extracting the 
feature axes of objects from their boundary chain code. 
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A classic measure of compactness for a figure is the square of the 

perimeter divided by the area. Rosenfeld (1974a) notes that this 

measure is less satisfactory with digital images since the smallest values 

may be yielded from octagons or diamonds rather than circles. Since 

these precisely defined forms are most unlikely to occur with pollen 

images this problem should not be important. However, Haralick 

(1974) provides a simple measure for the circularity of digital figures 

which behaves well. 

As stated earlier the precise location and details of comers are unlikely 

to be of great benefit for pollen identification. However, since many 

pollen taxa have an approximately smooth and symmetrical outline it 

may be possible to differentiate between pollen and other artifacts using 

shape information. 

The principle problem in detecting comers from chain coded objects is 

that the spatial quantization in a digital image causes most straight lines 

to be represented by a series of alternating slope segments. These 

characteristics are examined in some detail by Rosenfeld and Kak 

(1976), and by Rosenfeld (1974b) who defines a test for a true digital 

straight line. 

Davis (1977) describes several methods that have been proposed for 

angle detection and provides a technique for hierarchical shape analysis. 

The simpler method proposed by Rosenfeld and Johnston (1973) is more 
likely to be suitable for analysing pollen images. This calculates rates 

of curvature by detecting the differences between successive 

non-overlapping slope segments, incorporating a variable degree of 

smoothing. An improved version of this method is presented by 

Rosenfeld and Weszka (1975). 
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Freeman and Davis (1977) also employ a 'smoothing line' connecting 

two points on the chain coded boundary, but claim their method is 

simpler and requires less computation. A 'comer prominence' measure 

is also described, based on the magnitude of the angle and the length 

of the straight line segments on each side. They illustrate the 

effectiveness of their method with several examples. 
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Chapter Three 

3.1 INTRODUC-rION 

Methods and Equipment 

This Chapter describes the source and the type of pollen that were used 

in the experiments on automated identification procedures. It also 

reviews the equipment that was used to obtain suitable images of these 

pollen and describes the computer hardware used to digitize these 

images. Finally, both the hardware and the software used to analyse 

the image data is discussed. 

3.2 POLLEN TAXA USED IN THE EXPERIMENTS 

Only fresh pollen were used during the course of these investigations. 

It was felt that fossilized pollen would add unnecessary complications at 

this early stage of experimentation. Fossilized pollen samples extracted 

from sediments will contain unwanted materials no matter how thorough 

the preparation techniques used. The unwanted material normally 

consists of amorphous organic matter and silica spicules. This clutter 

hinders the locating of pollen under the microscope. Fossilized grains 

are also likely to have suffered some degree of distortion. In very 

severe cases the grains can be flattened and fragmented making the 

identification process many times more difficult, even for the human 

observer. 

Six pollen taxa were utilised in this work, these are shown in Table 3.1 

below. For simplicity, the report refers to these taxa by their common 

rather than taxonomical names from now on. An example of a typical 

pollen grain of each taxon is illustrated in Plate 3-1. 
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Code Taxonon-Lical name 

(Pi) Pinus sylvestris 
(EI) Ulmus glabra 
(0a) Quercus robur 
(Ry) Lolium perenne ssp. multiforum 
(Ha) Corylus avellana 
(P1) Plantago lanceolata 

Methods and Equipment 

Common name 

Pine 
Elm 
Oak 
Rye grass 
Hazel 
Plantain 

Table 3.1 Pollen taxa used throughout these experiments. 

3.3 THE PREPARATION AND VIEWING OF POLLEN SAMPLES 

Since the fresh pollen was not encapsulated in any sedimentary material, 

most of the normal preparation techniques used to remove the 

extraneous substances were not needed. The process of acetolysis was 

employed to strip out the inner cellulose layers so that the pollen more 

closely resembled a natural sediment derived sample. The samples were 

dried at room temperature (since equipment for critical point drying was 

not available) and mounted on aluminium stubs before sputter coating 

with pure gold. 

The prepared samples were viewed on a Cambridge 600 Series 

Stereoscan scanning electron microscope. Photographic images were 

taken using a built-in camera and phosphor screen, once suitable grains 

had been located. The negatives were processed to provide black and 

white prints of about l5x2Ocm dimensions. The SEM was selected in 

preference to an optical microscope as it could provide images with 

much greater detail. Furthermore, a complete pollen grain could be 

kept in focus due to the far superior depth of field available. 
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Chapter Three Methods and Equipment 

The magnification on the SEM was selected to try and ensure that a 

complete pollen grain would fit comfortably inside the screen boundaries. 

Unfortunately, the SEM in use had a fairly coarse magnification 

adjustment so the best overall setting could not view a complete Pine 

grain since these are larger than the other taxa. The final prints 

produced had a magnification of approximately X2000. Efforts were 

taken to ensure that the contrast and brightness levels were kept as 

constant as possible for each image captured, but this was very difficult 

to achieve especially between viewing sessions. 

3.4 IMAGE PROCESSING AND CLASSIFICATION SOFTWARE 

Software was written almost exclusively in FORTRAN. This was mainly 

due to the greater level of support available for this language. The 

presence of previous in-house image processing software written in 

FORTRAN was a further incentive, although this was only used during 

the earlier days. 

Other in-house utility routines were available on the image digitiser. 

These consisted of simple pixel read and write facilities on the frame 

store, along with image capturing, saving and loading procedures. 

These were used quite extensively throughout the project. In particular 

the image capture and save routines were used to convert the 

photographic images to a digital format. 
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3.5 INIAGE PROCESSING HARDWARE 

All digital images of pollen were derived from the SEM 

photomicrographs. They were captured and digitized using a Cotron 

video camera attached to a Matrox frame store. The frame store had a 

256x256 pixel resolution and eight bit planes providing 256 intensity 

levels. The system was controlled by a DEC PDP 11/23 minicomputer 

running the RTS single user operating system. Plate 3-11 illustrates the 

digitization equipment in use. 

In addition to capturing and storing images, the PDP 11/23 could be 

used to perform some basic image processing tasks. Generating grey 

level histograms to check the dynamic range utilised during image 

capture, and contrast manipulation techniques, are examples of the 

procedures that could be undertaken. It was not uncommon to test out 

ideas on this machine before moving the images to a more powerful 

computer for serious processing. 

Much of the early image analysis work was performed on a DEC PDP 

11/34 machine running the RSX multi-user operating system. It was 

possible to view the images using a frame store attached via a parallel 

interface. 

This machine was not entirely suitable to the task of image processing 

for a number of reasons. The most important of these was the very 

limited memory available which made it possible to store only a few 

lines of the image at any one time. A considerable amount of 
input/output operations were therefore required for most processing tasks. 

Naturally this severely limited the speed of processing and necessitated 

efficient rather than elegant coding. With the multi-user environment 
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consisted of a video camera for viewing the photomicro graphs, attached 
to a Matrox frame store and display device. These were all under the 
control of a DEC PDP 11/23 computer. 
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the problem was further exacerbated when the machine was placed under 
heavy load by other workers. A lesser problem was the limitations 

imposed by a FORTRAN IV compiler. 

After twelve months of work the PDP 11/34 was replaced by a DEC 

VAX 11/750 minicomputer operating under VMS. This provided much 

greater processing and data handling power. It was possible to store 

several complete image arrays in memory at a time. A FORTRAN 77 

compiler was available on this machine. 

There were, however, two disadvantages with the VAX machine. 

Firstly, a file transfer package had to be used to transfer images from 

the PDP 11/23 system where they were digitized. This was a fairly 

slow procedure. Secondly, it was not possible to view the images once 

on the VAX as there was no frame store attache d. Operations that 

required viewing the image had to be carried out on the PDP 11/23. 

Fortunately these all occurred at the early stages of processing, after 

which the image could be transferred to the VAX for serious 'number 

crunching'. 
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4.1 APPROACHES TO THE IDENTIFICATION PROBLEM 

4.1.1 Finding and Identifying Pollen 

Before discussing the image processing techniques that were used to help 

identify pollen we need to consider the problem in a little more detail. 

For an automated pollen identification system there are in fact two 

major problems to solve. The first is the need to 'find' pollen under 

the SEM, and the second is to 'identify' these objects. 

The initial task requires the computer to control the microscope stage 

and to have the ability to locate objects when they appear within an 

image. The sort of problems to be solved are, 

(a) Are there any objects in the image? 

(b) If so, how many, and where are they? 

(c) For each object, is it fully visible or will the 
microscope stage need to be moved a little in 
order to see the entire object? 

(d) How likely is it that the object is a pollen grain 
and not some other artifact? 

These problems are not dealt with in detail in this report; time did not 

allow a thorough investigation into them. In Chapter Seven a brief 

review of some techniques that might prove useful are presented, but 

essentially the task remains an area for future research. Instead, the 

problem of identifying pollen is to be tackled here, making the 

assumption that some scheme for providing the location of the objects 

will be developed in the future. 
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4.1.2 Potential Features for Identification 

Given the problem of identifying a pollen grain a decision has to be 

made as to what features are to be measured in order to perform the 

task. Potential candidates are the size and the shape of a grain, the 

number and location of apertures in the exine surface, and the pattern 

of exine sculpturing or texture. 

When pollen is identified manually under an optical microscope it is the 

number and location of apertures, and the size and the shape of a 

grain, that are the primary sources of discriminatory evidence. Due to 

the low resolution of optical microscopy surface texture is of secondary 

importance. However, the human's power of interpretation is a complex 

subject, and the precise importance of any feature is impossible to state 

as they all tend to be analysed simultaneously in the decision making 

processes of the brain. After consultation with experienced palynologists 

the following conclusions were made on the potential use of the stated 

features for automated identification of pollen using SEM derived 

imagery. 

4.1.3 Grain Shape 

Grain shape was considered to be the least reliable property. Due to 

the severity of the SEM environment fresh pollen frequently become 

distorted. Fossilized pollen is typically squashed or distorted before it 

is even subjected to SEM analysis. There is an additional complication 
in that the SEM is able to view objects obliquely. Unless this was 

carefully avoided, even a well formed grain would be difficult to identify 

due to the distortion of shape imposed by the viewing angle. 
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4.1.4 Grain Size 

Grain size was considered to be a slightly more reliable feature. 

However, since pollen is biological material its size does vary even for 

objects from the same pollen taxon. This imposes limitations on its 

reliability and diagnostic power. Almost all pollen fall within the size 
-7 -7 range of 1.5xIO m to 5xlO M. Therefore, this property might 

perhaps be more usefully employed in answering question (d) posed in 

Section 4.1.1 above, i. e. how likely is it that the object is really a 

pollen grain? 

4.1.5 The Number and "cation of Apertures 

Apertures within the exine are an extremely important feature in manual 

identification using optical microscopy. Their number and location are 

usually the first feature analysed by the palynologist. It must be 

appreciated, however, that it is possible to view the complete pollen 

grain when using optical microscopy. This may be achieved either by 

focussing at successive levels though the grain (one advantage of the 

narrow depth of field), or by rotating the grain (which is possible since 

a fluid mountant is used). Consequently all the apertures may be seen. 

The image produced by a SEM does not allow this facility, only a 
fixed view of a solid object is provided in any single scene. it is 

uncertain how many pores are hidden on the unseen side of the grain. 

which severely limits the diagnostic power of an aperture count. 

Page 59 



Chapter Four Image Processing Techniques 

4.1.6 Exine Texture 

Exine sculpturing, or surface texture, was believed to be the most 

reliable and power feature for computer based discrimination of pollen 

taxa. Almost all pollen taxa have raised and depressed areas on the 

exine giving rise to a surface texture. Under the SEM these are shown 

in great detail and the texture proves to be highly characteristic of a 

given pollen class. Although these patterns do vary slightly due to the 

nature of biological materials, they appear to be reasonably consistent. 

Moreover, since they cover a large area of the grain we might assume 

that statistical properties of the texture can overcome the problem of 

small scale variability, providing a sufficiently large region is analysed. 

4.1.7 Conclusion 

From the discussion presented above it should be self-evident that exine 

texture is the most promising feature for automatically discriminating 

pollen within the SEM environment. Section 4.3 describes the methods 

that were used in an attempt to measure the textural properties of the 

exine surface from the six pollen taxa considered in this work. 

However, before this, Section 4.2 reports on the other digital image 

processing techniques that were necessary in order to allow the texture 

analysis schemes to proceed. 
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4.2 DATABASE PREPARATION TECHNIQUES 

4.2.1 Extracting Sub-scenes of Exine Texture 

Texture is a spatially based phenomena; it is a property that exists 

within an area and not at a point. Consequently it must be measured 

over an area, although how big this region should be is a topic for 

debate. In these experiments sub-scenes of 64x64 or 60x6O pixels were 

used for the calculation of textural properties. The actual area of the 

pollen grains covered by samples of this size obviously depended on 

their magnification in the digital images. In general approximately one 

tenth of the pollen surface area visible in an SEM image was covered 

by a sub-scene sample. 

The location of exine texture regions was performed manually. 

Ultimately an automated method would be needed, but this should be a 

much simpler task than locating the grains themselves. While selecting 

the samples some care was taken to ensure that they were a 

representative set. Obviously apertures were avoided, but some samples 

were located close to the edge of the grain where the texture becomes 

distorted by the curvature of the surface. Moreover, the 

photom icro graphs of pollen were positioned randomly under the video 

camera to ensure that there was no favoured orientation of textures 

displaying directional properties. 

Since at most a 64x64 pixel region was to be used to measure the 

textural properties of a grain. storing the full image would have been a 

inefficient use of resources. Each 256x256 pixel image requires 64K of 

storage space, whereas the 64x64 pixel sub-scenes require only 4K. 

Therefore, the texture samples were cut out from the original full size 
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scenes, and recombined in a montage image file. In this way sixteen 

samples could be stored as a single image file. The effect of this 

process is clearly seen in Plates 6-1 to 6-XI1 of Chapter Six. 

4.2.2 Point Operations 

Point operations are a relatively simple collection of procedures that 

transform an image on a pixel-by-pixel basis without regard for the 

values of surrounding pixels. The mapping between the input and 

output pixel values is defined by a transformation function. If we 

assume that an image has grey levels denoted by g. The transformation 

function has the form, 

s= T(g) 

where g is an original grey level, s is the new grey level it is mapped 

to, and T is the transformation function which normally satisfies the 

conditions of being single valued, non negative, and monotonically 

increasing. 

Point operations are typically implemented by a table look-up procedure 

that allows rapid and efficient processing, especially on modem display 

devices using hardware directed look-up tables. Their main applications 

are in the manipulation of contrast, pseudo-colouring and thresholding. 

4.2.3 I-listogram Equalization 

Digital images are frequently captured using only a small portion of the 

full dynamic range of intensity levels. When displayed, these images 

have a low level of contrast making it difficult to discern detail. A 
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popular enhancement is the linear contrast stretch which scales the 

intensity values to fill the full range available. This transform, and 

others of a more elaborate design, are invaluable for enhancing contrast 

levels to allow easier human interpretation. 

Histogram equalization is a point operation that is commonly used to 

enhance contrast for human observers. However, it also has considerable 

value for automated image analysis systems. The transfon-nation function 

used for histogram equalization is in fact the cumulative distribution 

function of the original image. The grey level probability density 

function of a digital image is represented by the equation, 

P(g) F(ij) =g 

where P(g) is the probability of grey level g occurring in the image F. 

The cumulative distribution function (CDF) is given by, 

CDF(w) =Z P(w) 

1 

It can be easily demonstrated that using the CDF as a transformation 

function should yield an image whose histogram has an even distribution 

among all grey level bins (Gonzalez and Wintz, (1977), Niblack 

(1986)), hence the term histogram equalization. However, only an 

approximation to a flat histogram can be achieved with a digital image 

due to the discrete nature of the data. 

Using the CDF as a transformation function distributes contrast evenly 

across the full dynamic range and is frequently used as an enhancement 
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process. However, more importantly for automated image analysis, 

histogram equalization transforms an image into a standard format. The 

first-order statistics of the transformed image, in particular the mean and 

the variance of the intensity levels (which equate to the properties of 

global brightness and contrast) are standardized. This allows the direct 

comparison of images taken at different locations in time and space, 

since effects such as unequal lighting conditions at the time of image 

acquisition are effectively removed. 

The global brightness and contrast of the digitized pollen images could 

not be tightly controlled. These parameters could be altered by the 

controls on the SEM, during the developing of the photographs, and 
during the digitization process. Many measurements obtained with the 

texture analysis routines described later were sensitive to these global 

parameters. Therefore, histogram equalization was commonly employed 

to normalize the first-order statistics of the pollen sub-scenes before 

texture analysis was undertaken. 

4.2.4 Local Operations 

Local operations transform an image on a pixel-by-pixel basis. 

However, unlike point operations, the value of a pixel in the output 
image is a function of the pixel values within a local area of the 

corresponding pixel in the input image. The application of local 

operators, or spatial filters as they are frequently known, is very 

common for image restoration, enhancement, and analysis purposes. 

The term convolution is often employed when discussing spatial filtering. 

This consists of a repetitive 'shift-multiply-add' procedure which is 
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illustrated in Figure 4.1. The local neighbourhood is defined by a 

'filtering window' which is typically square and symmetrical around a 

central pixel location. This window is placed exhaustively at all 

locations within the image area. At each location the intensity values 

of the underlying image pixels are multiplied by the filter coefficients. 

The resulting values are summed and this produces the new value that 

is assigned to the corresponding pixel in the output image. 

The choice of filter coefficients deten-nines what effect the operation has 

upon the image. Figure 4.1 illustrates the coefficients that are used for 

the operations of 'mean smoothing' and 'Laplacian edge detection' using 

a 3x3 pixel filtering window. In Chapter Seven a mean smoothing 

filter is used before thresholding to reduce high frequency information 

generated by texture. The convolution algorithm is an integral part of 

the Laws' mask texture measures described in Section 4.4, and it is also 

used for edge detection by the edge pair texture measurement scheme 

described in Section 4.5. 

The nonlinear median filter used for noise reduction in the edge pair 

texture measurement scheme works on a slightly different basis. In this 

case the image pixel values within the filtering window are sorted into 

rank order rather than multiplied by coefficients. The median value in 

this ordered list is then used as the output value. 
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TEXTURE ANALYSIS SCHEMES 

4.3 GREY LEVEL CO-OCCURRENCE 

Grey tone spatial dependence analysis has been one of the most 

successful and widely used techniques for the quantification of textural 

properties in digital images. It makes use of a grey tone spatial 

dependence matrix which has become commonlY known as a 

co-occurrence matrix. Haralick et al. (1973) were the first to propose 

that statistics extracted from a co-occurrence matrix could be used as 

measures of textural properties. Since its introduction the technique has 

been used by many workers on a broad range of image types. Some 

examples that illustrate the diverse range of applications found for 

co-occurrence analysis are given below. 

4.3.1 Examples Of Grey Level Co-occun-ence Analysis 

Haralick et al. (1973) introduced the technique by applying the measures 

to a classification problem involving three types of image data. These 

were photomicrographs of sandstone taken from five classes, aerial 

photography illustrating eight land-use categories, and multispectral 

satellite imagery containing seven land-use categories. Classification 

results of over 80% for all three image groups indicated the potential 

versatilitY and power of the extracted features. 

Widely contrasting applications were found by Bertolini and Vernazza 

(1982), who employed co-occurrence measures for the identification of 

changes in biological cells, and by Don et al. (1984) who successfully 

quantified the roughness of metal surfaces. Gersen and Rosenfeld 
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(1975) used these descriptors in their attempts to differentiate between 

clouds and sea ice on aerial photography, while Chien and Fu (1974) 

found a biomedical application in the automated analysis of chest X-ray 

images. 

The power of co-occurrence measures in comparison with other texture 

analysis techniques, including those based on the Fourier power spectrum 

and grey level run-lengths, was assessed by Weszka et al. (1976). TheN- 

concluded that the texture features extracted from co-occurrence matrices. 

and the closely related grey level difference vectors. performed better 

than either the Fourier descriptors or the run-length measures. 

4.3.2 Construethig Co-occuirence Mattices 

The co-occurrence matrix can be considered as an extension of the grey 

level histogram to a higher-order distribution (Sklansky, 1978). The 

histogram simply represents the probability distribution of grey levels 

measured from individual pixels. The co-occurrence matrix represents 

the probability distribution of grey level pairs, where the two pixels 

providing the grey level values are separated by some pre-specified 

displacement vector, d=(8x, 6y). 

Any element of the co-occurrence matrix P 
(i j) represents an estimate of 

the probability of finding the grey levels i and j at the spatial 

displacement, or relative positions, defined by the displacement vector. 
2 

The dimensions of the matrix will be N. where N is the number of 

discrete grey levels present in the digital image. A simple example 

will help to explain the construction of a matrix. 
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Consider the very simple digital image depicted in Figure 4.2. This 

image has a spatial resolution of 4x4 pixels and a tonal resolution of 

four grey levels, ranging in value from 0 to 3. The first step in 

constructing a co-occurrence matrix is to define a 'mask' which specifies 

the displacement vector d. In this example we select a displacement of 

one pixel in the horizontal direction. 

Displacement Mask 
I 

1 1 

1 

Digital Image 

aO 123 

0 2 3 0 0 

1 3 4 1 0 

20141 

10101114 

Co-occurrence matrix 

Figtue 4.2 A simple digital image, a vector displacement mask, and 
the corresponding co-occurrence matrix. 

Every possible combination of grey level values are entered into the 

mask in turn, which is then placed exhaustively at all locations in the 

image. Matches between the values in the mask and the grey tones in 

the resolutions cells of the image are counted. Once a scan is 

completed the total number of recorded matches is entered into the 

appropriate element of the matrix. the subscripts corresponding to the 

values within the mask. 

it is usual to construct a symmetrical matrix by counting grey level 

pairs with a separation of both d and -d. In the example that is 

shown, the grey levels of 0 and I appear horizontally adjacent in either 

orientation three times. This information is represented by the value 3 
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in the matrix elements P(l'o) and P 
(0, I). Thus, it can be clearly seen 

that an element P 
(i j) 

is a measure of the probability of finding within 

the image the grey levels of i and j at the spatial separation specified 

by the displacement vector. 

4.3.3 Practical Implementation of Matrix Construction 

The scheme for matrix construction described above is perhaps the 

simplest to understand. However, the actual computer implementation 

of matrix construction did not count matches between pixel values and 

those of a mask as it was scanned across the image. Instead the mask 

was effectively 'empty' and picked up the values of the pixels at each 

location. These values were then used directly as subscripts to access 

and increment the relevant matrix element. Using this scheme only a 

single pass needs to be made through the image rather then one for 

each grey level combination. This is clearly a much more efficient 

implementation. 

4.3.4 ne Displacements Vectors Used 

A total of twelve displacement vectors were used during these 

experiments. Consequently, twelve co-occurrence matrices were 

constructed for each textured image sample. The vectors were orientated 

in four directions; the left and fight diagonals, horizontally, and 

vertically. Over each direction three vector magnitudes were used. 

These were displacements of 1,4, and 8 pixels for the horizontal and 

vertical directions. For the diagonal directions the nearest equivalents of 

1, -3, 
r2, and 6Z were used. 
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4.3.5 Matrix Nomudization 
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Using displacement vectors of different magnitude affects the total sum 

of the entries in a matrix. As the magnitude increases there are fewer 

possible locations for the mask to occupy within an image of a given 

size. In order to account for this it is necessary to normalize the 

matrices if more than one displacement magnitude is to be used. 

To achieve this the total number of possible locations for the 

displacement mask within the image area must be evaluated. Haralick 

et al. (1973) explain the simple rules needed to establish this value. 

Each matrix element must then be divided by this normalizing constant. 

4.3.6 Reducing the Tonal Resolution of an Image 

It has been stated previously that the dimensions of a co-occurrence 

matrix reflect the tonal resolution of the digital image. The original 

tonal resolution of 256 grey levels, captured with the video camera and 

frame store, would therefore produce very large matrices. In fact each 

matrix would be equivalent to a complete image in terms of the data 

generated. If only a small proportion of the full image is to be 

analysed we would expect most of the matrix elements to remain 

empty. 

It was therefore necessary to reduce the tonal resolution in the images 

prior to constructing the co-occurrence matrices. This ensured that 

matrices of a manageable size were produced. It also eliminated wasted 

space and prevented excessively slow calculation times. 
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There is unlikely to be any advantage in using images with a tonal 

resolution greater than 64 grey levels unless the textured region to be 

analysed is exceedingly large. During these experiments the area 

selected for texture analysis was never larger than a very modest 64x64 

pixels. A reduction of the tonal resolution down to either sixteen or 

thirty-two tones was therefore considered a reasonable procedure. This 

was performed while constructing the montage image files so that it 

need not be repeated for each run of the matrix production program. 

4.3.7 Co-occun-ence Texttwe Measimes 

Information is extracted from a co-occurrence matrix using second-order 

statistics to produce a numerical evaluation of the texture properties. 

Haralick et al. (1973) proposed fourteen texture features that could be 

derived from a matrix. These were all essentially measures of the 

concentration and the distribution of counts within the matrix. They 

noted that many of the proposed measures were likely to be highly 

correlated and thus carry similar information. 

Six statistical measures, or texture features, were used during this study. 

These are given the symbolic names ASM, ENT, CON. VAR, IDM, 

and COR. The definition of these is as follows: 

Angular Second Moment: 

ASM =EEP (ili) 
2 

i. i 

Entropy: 

ENT = -EEP O'D 
log( P0 

j) +c 

i. j 
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Contrast: 

CON E (, -j)2 p 

j 

Variance (Sum of Squares): 

VAR YE (i-u) 
2p0, 

j) 
i-j 
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inverse Difference Moment: 

IDM I, ( +(, -j)2 )p 

information Measure of Correlation: 

COR =(I- expl -2.0(XY2 - XYI) I) 
1/2 

EE 
where, XYI = P 

(ij) 
log( P O, j) +c 

XY2 = 
j. j 

E px(i)pyo) log( px(i)pyo) 

j 

Px(i) = ith entry in the vector px, the sum of the rows of P0 
J) 

PY(i) = ith entry in the vector py, the sum of the columns of P 
6, j) 

u = the mean value of the mat rix elements 

c = an arbitrarily small positive constant 

4.3.8 Texttwe Infonnation hi the Co-occurrence Matiix 

Co-occurrence matrices capture information on the textural properties, or 

the spatial distribution of grey levels, in the image analysed. More 

specifically, they capture information on the grey tone transitions that 

exist between pixels separated by the displacement vector. To see how 

matrix values are affected by textural properties we can consider some 

of the basic perceptual properties of texture, as identified by Tamura 

et al. (1978). 
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Coarseness is a property fundamental to the perception of texture. In a 

coarse texture low spatial frequencies are dominant, producing large 

regions of low contrast. In this situation we expect mainly small 

transitions between the grey levels except at the boundaries between the 

texture primitives. This will lead to a con centration of counts around 

the principal diagonal of the co-occurrence matrix. As coarseness 

decreases more transitions between texture primitives will occur and 

consequently the distribution in the matrix should become more 

dispersed. Larger displacement vectors will also tend to select pixels 

that lie across primitive boundaries more frequently and so the 

concentration effect should be reduced in the corresponding matrices. 

Contrast is another fundamental property of texture, but one that can be 

subdivided into 'global' contrast and 'local' contrast. For the images 

used in these experiments the global contrast levels are likely to be 

affected by external influences. For instance, the contrast setting on the 

SEM during the initial acquisition of the images, and the lighting level 

while digitizing the prints, would both affect global contrast 

characteristics. Variations at this global level are undesirable as they do 

not relate to textural properties. The histogram equalization method, 
described previously, was used to eliminate variations in the global 

contrast level. 

Local contrast is a factor that does relate to textural properties. At 

this level we are concerned with the grey tone differences between 

closely spaced regions. However, the inseparable interrelationship of 

coarseness and contrast noted by Haralick (1979) becomes an important 

factor. Although an image may contain a fine texture with rapidly 

varying tones the level of local contrast can affect our perception of the 

two properties. If the local contrast within such a region is very low 
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the average intensity of the region can become the dominant perceived 

property and it will appear as a coarse texture primitive, As the local 

contrast is increased the rapid variations 'stand out' and we begin to 

perceive a very fine texture. 

Relating these properties to the co-occurrence matrix we find again that 

the concentration around the principal diagonal an important measure. 

As local image contrast increases the co-occurrence counts will shift 

away from the principal diagonal of the matrix. Clearly, a measure of 

concentration along the diagonal will reflect both the coarseness and the 

local contrast of the texture. This description is provided by the CON 

measure. 

The ASM measure is regarded by Haralick et al. (1973) as an 

indication of image homogeneity. In a homogeneous image a few grey 

tone transitions are dominant leading to a concentration of counts into a 

few matrix elements. As homogeneity decreases more varied transitions 

occur and the counts become dispersed to give a large number of small 

values in the matrix. The ASM feature, calculated as the sum of 

squares of the entries, will therefore take on larger values as 

homogeneity increases. ASM will of course be affected to some extent 

by the coarseness as this too leads to a concentration of values. 

The correlation measure COR, corresponds to linear dependency among 

the grey tones. It will take on larger values in an image where grey 

tones are linearly related. This would be roughly equivalent to 

detecting long run-lengths of similar grey tones. 
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Other features defined by Haralick et al. relate to less tangible 

properties of the texture. This, in fact, is a disadvantage of most 

statistical approaches to texture quantification. Although Haralick's 

measures may provide valuable descriptions of matrix distribution it can 

be difficult to relate these to common perceptions of textural properties. 

Another important perceptual property of texture identified by Tamura 

et al. (1978) is that of directionality. Haralick et al. suggested using 

the absolute range of the feature values over four displacement directions 

as an indication of directionality. In a highly directional texture we 

would expect the range to be large. However, the textures of the 

pollen taxa used in these experiments were fairly isotropic-, only Pine 

displayed any significant degree of directionality. Therefore, the range 

over the vector directions was not employed for texture description 

during this study. 

In order to account for any small degree of directionality that existed in 

the samples analysed, the mean value of each feature over the four 

vector directions was taken. In this way features that are reasonably 

invariant to the rotation or the orientation of the texture are produced. 

The mean values were calculated for each displacement size to produce 

a total of eighteen texture measures from each image sample. 
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4.4 LAWS' MASKS 

4.4.1 Introduction 

image Processing Techniques 

Texture features based on Laws' masks were introduced by Pietikainen 

et al. (1983). The Laws' masks define grey level patterns in local 

pixel neighbourhoods. The features produced are based upon the 

average level of correspondence between local neighbourhoods in the 

textured image and these predefined pattems. The construction of the 

masks and the extraction of texture measures is explained below. 

4.4.2 Consti ucting Laws' Masks 

The Laws' masks are all derived from three simple vectors of length 3. 

These are illustrated in Figure 4.3(a) and are given the identifications 

13, e3 and s4. They represent the one-dimensional operations of 

centre-weighted averaging, edge detection, and spot detection respectively. 

If these initial three vectors are convolved with each other a further five 

vectors of length five may be derived. The five new vectors, illustrated 

in Figure 4.3(b) are given the identifications 15, e5, s5, r5, and w5. 

The vectors 15, e5, and s5 again represent local averaging, edge and 

spot detection, while the r5 and w5 vectors may be regarded as ripple 

and wave detection schemes. 
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13 (1,2,1) e3 (-1,0,1) s3 
(a) Definition of Uws' three simple vectors 

15 ( 1,4,6,4,1) 13 * 13 
e5 (-], -2,0,2,1) 13 * e3 
S5 (-1,0,2,0, -1) 13 * s3 
0 ( 1, -4,6, -4,1) s3 * s3 
w5 (-1,2,0, -2,1) e3 * s3 
(b) Definition of the extended Laws vectors 

Figwe 4.3 Laws' vectors used to produce the texture masks. 

4.4.3 Masks Used for Texture Analysis 

The Laws' masks are produced by simply taking the inner product of a 

column and row vector, where the column vector is formed by taking 

the transpose. The five 30 masks used in these studies are defined in 

Figure 4.4, and the eight R5 masks are shown in Figure 4.5. It can 

be seen that all are zero-sum masks (i. e. their coefficients sum to zero). 

Pietikainen et al. found that the power of the masks depended on their 

general form rather than the specific coefficient values used. They tried 

several variations of a genuine Laws mask and found that these 

performed about as well, or in some cases better, than the original 

masks. To experiment a little with this idea the two masks (d) and (e) 

in Figure 4.5 are modified forms based on the original Laws masks 

indicated. 

The masks (a) and (h) represent the two-dimensional operations of 

center-weighted vertical and horizontal edge detection. The masks (b) 

and (0 may be considered as 'wave' or 'streak' detectors. A 

center-weighted spot detector describes the mask (d), while (g) represents 
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(a) EP A E3 (b) SP * S3 (c) LP * S3 (d) S31 E3 (e) E3, S3 

10 1-1 1 -2 112110 1-1 1 -2 1 

0 -2 4 -2 -2 4 -2 -2 02000 

1 -2 112-1101121 

Figure 4.4 The five 30 Laws' masks 

L5' - E5 

-21 01 2 1 

-4 -81 ol 8 4 

-6 -121 Oj 12 6 

-4 8 0 8 4 

1 -2 0 2 1 

(e) S5' - E5m 

-1 
1 

-2 
1 01 2 1 

ol ol ol 0 0 

2 4 l 0 -4 -2 

0 o 0 0 0 

1 -2 0 21 1 

(b) L5' - S5 

1 T--O- -T T2 0 -1 
-4 0 8 0 -4 

-6 12 0 -6 

4 0 8 0 -4 
1 0 2 0 -I 

( f) S5' - L5 

1 -4 -6 -4 1 

0 0 0 0 0 

2 8 12 8 2 

0 0 0 0 0 

4 -6 -4 -1 

(c) E51 - S5 

-1 0 1 21 0 -1 

-2 0 4 0 -2 

0 0 0 0 0 

2 0 -4 0 2 

1 0 -2 0 1 

(9) R51 * R5 

1 -4 
1 61 -4 11 

-4 16 -24 16 -1 
6 -24 36 -24 6 

-4 16 -24 16 -1 
1 -4 61 -41 1 

Figure 4.5 The eight R5 Laws' masks 

(d) R5' I R5m 

-2 -2 -2 -2 -2 

-2 3 3 3 -2 

-2 3 8 3 -2 

-2 3 3 3 -2 

1-2, -21 
- 

-21 -21 -2 

ES' - L5 

-6 -4 -11 

-8 -2 

0 0 

8 12 6 2 

6 4 1 
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the two-dimensional 'ripple' detector. Finally the masks (c) and (e) are 

rather more difficult to name, perhaps 'chevron detectors' would be the 

appropfiate term. 

4.4.4 Texture Measures 

Pietikainen et al. record that the best statistics for texture discrimination 

are the sums of the squared or the absolute values of the image pixels 

after convolution with the masks has been performed. Use of the 

absolute values is preferable since it reduces the amount of computation 

involved. This texture analysis scheme produced a total of five texture 

descriptors from the 30 masks, and eight descriptors from the 5x5 

masks. 

The texture features produced from this method tended to have very 

large values. In Chapter Six these texture measures are combined with 

those from the other texture analyzers which produce feature values that 

are several orders of magnitude smaller. This could be a potential 

problem since the classification stage employs a matrix inversion routine. 

inverting a matrix whose elements have widely differing values can lead 

to excessive computational errors (Stewart (1973), Steinberg (1974)). 

Therefore, all the Laws' mask texture measures were divided by a 

suitable fixed denominator (the value of 10000 was used) so that the 

feature values were of comparable magnitude to the outputs from the 

other texture analyzers. 
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4.5 TEXTURE MEASURES BASED ON EDGE PAIRS 

4.5.1 Introduction 

The texture measures to be described in this section are based on paired 

edges and are a form of structural analysis rather than the statistical 

methods described above. In a structural approach the texture is 

considered to be composed of texture primitives. Texture primitives may 

be defined as connected regions satisfying certain properties (Wang 

et al., 1981), uniform grey tone being the most common property 

utilized. In order to quantify the texture the characteristics of the 

primitives must be captured, along with information on the structural or 

spatial organization of the primitives. This is sometimes called a 

syntactic approach which uses a type of 'texture language'. The syntax 

describes the way the texture is constructed from primitives, and the 

primitives may be thought of as the 'words' of the texture language. 

This approach to texture analysis is initially very appealing as it relates 

easily to human perceptions. Despite this advantage there have been 

very few successful applications of structural analysis techniques. A 

common problem is in making the technique general enough to be used 

on a wide variety of image classes. Another problem is the heavy 

computation frequently involved in extracting texture primitives. 

4.5.2 Schemes for Extracting Texture Primitives 

Wang et al. (1981) describe one of the simpler schemes for primitive 

extraction which is based on fixed percentile thresholding. Hong et al. 
(1980) used an edge based extraction process that evaluated a confidence 
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rating for individual pixels belonging to a texture primitive. The 

confidence level was determined by the number of times the pixel was 
found to occupy a position between paired antiparallel edges. This 

property was considered to indicate that the pixel was an interior point 

of a primitive. When this computation had been completed the 

confidence ratings were modified by taking into consideration the ratings 

of the eight nearest neigbouring pixels. This was to allow for 

fragmented edge boundaries occurring around the primitive. Finally the 

values were thresholded and those pixels exceeding the threshold level 

were considered to form the primitives. 

An interesting feature of this work was that the search for antiparallel 

pairs was performed on the dark side of the edges. In most textures 

this would be considered equivalent to measuring the properties of the 

areas between primitives. Although there is no reason why the lighter 

regions should be considered as primitives rather than the darker regions 

this is usually the case. 

Once primitives had been isolated six properties were measured; area, 

perimeter, dispersiveness, elongatedness, eccentricity, direction of major 

axis, and average grey level. The mean and standard deviation of these 

values taken over all primitives larger than a threshold area were the 

final texture measures. 

4.5.3 Measuring Texture From Paired Edges 

An alternative texture analysis scheme, also based on the identification 

of edge pairs, was proposed by Pietikainen and Rosenfeld (1982). This 

has considerable similarities with the method described above, but it 
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avoids the need for the explicit extraction of primitives. This is an 

advantage as it reduces the quantity of computation involved. More 

importantly, Pietikainen and Rosenfeld note that textures may be 

perceived even if primitives are not fully defined. For example, local 

clusters of edges may produce a texture even if the edges do not 

completely surround connected regions to form primitives. This might 

be important for some of the pollen textures to be analysed. In 

particular the texture of Pine, while undeniably distinctive, is unlikely to 

be fully captured in primitives requiring complete boundary definitions. 

The texture measures to be used are derived directly from pairs of 

facing edges. Again the assumption is made that these will represent 

opposite sides of a primitive. There is a close relationship between this 

method and the generalized co-occurrence matrices discussed by Davies 

et al. (1979,1981). Generalized co-occurrence matrices analyse local 

properties that satisfy certain spatial constraint predicates. Edges are 

frequently used as the local property and the spatial constraint is that 

they occur in certain relative positions and orientations. These edge 

pair measures are also defined by recording edges with specific 

orientation and separation. They are simpler however, requiring the 

calculation of first-order rather than second-order statistics. 

4.5.4 Preparation of the Textured Images 

A number of preparation processes must be applied on the textured 

images before edge pairs can be identified and the texture measures 

calculated. These are described below. 

The first stage necessary was to process each image with a low pass 
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filter. This was used to suppress the weaker edges, especially those 

that are caused by noise. Any low pass filtering operation could be 

used. For example, a simple mean filter or even low pass filtering in 

the Fourier frequency domain would be sufficient. However, the 

nonlinear median filter is perhaps the most appropriate, as it reduces 

the noise component without causing too much degradation to the 

stronger edges present. The images were filtered twice with a 3x3 

median operator to achieve the desired effect. 

The next stage was the production of an edge map for the texture 

samples. The eight simple 30 gradient filters shown in Figure 4.6 

were used for detecting edges. At every location all eight filters were 

convolved with the image and the filter producing the strongest output 

selected. An alternative method would be to use a differential edge 

filter such as the Roberts or Sobel operators, and quantize the vector 

gradient direction into eight 45 0 divisions. When completed, this 

operation yields an edge map indicating both the orientation and the 

magnitude of edges at each pixel location. 

Processing was then switched to the edge map. The map was 

thresholded and all edge responses weaker than the threshold value 

discarded. The selection of the threshold level is somewhat arbitrary 

and should be done on a 'trial and error' basis for any given 

application. For this study a threshold level of II was set after some 

experimentation. This level seemed to leave edges that corresponded 

well to discernible features in the original textured images. 

Finally, a non-maxima suppression algorithm was used to thin down the 

edge responses that remained. The algorithm used a Ix3 neighbourhood 

centered on each pixel and oriented in the direction of the edge 
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Figure 4.6 The eight edge templates used for edge map production 

gradient at the centre pixel. If either of the neigbouring pixels had a 

greater edge response the centre pixel's value was suppressed by setting 

it to zero. 

4.5.5 Detecting Edge Pairs 

Edge pairs are detected by first locating each edge maxima point within 

the edge map in turn. A search for an antiparallel edge is initiated at 

each maxima point found. The search is made on through pixels that 

are orientated along the direction of the edge gradient at the initiating 

point. An antiparallel or matching edge is considered to be one that 

has an approximately opposite gradient direction. More specifically, if 

the starting pixel has an orientation of 45(i)*, we consider an edge to 

match if it has an orientation of 45(i+3)0,45(i+4)0, or 45(i+5)c', 
0 

modulo 360 

The search was conducted on both the light and dark sides of the 

initiating pixel but only to a maximum search distance. If a match had 

not been located within this distance the search was abandoned. The 

threshold distance should be set after considering the size of the 
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primitives that occur within the textures to be analysed. In this study 
it was set at 13 pixels as the dimensions of most discernible primitives 

were within this limit. 

4.5.6 Edge Based Texture Measures 

Once an edge pair had been located the primitive statistics given below 

were recorded. These measures were recorded separately for matching 

pairs found from searching on both the light and the dark side of the 

initiating pixel. 

d The distance between the paired edges 

u The mean grey level along the line connecting the 
edges 

D The absolute difference between the contrast, or 
gradient magnitudes, at the two edges 

We would expect measurement d to reflect the size and spacing 

characteristics of the primitives. Measurement u should record the tonal 

properties of both the primitives and the inter-primitive regions. 
Finally, measurement D should record how well and how consistently 
the primitives' boundaries are defined. 

The texture features that were derived from these measures and used for 

classification purposes were the mean and standard deviation of d and 

u, and the mean value of D. In addition, the total number of paired 

edges, N, was employed as an extra texture descriptor. The 

measurements recorded on the dark and the light sides of edges were 

still kept separate while calculating these descriptors. A total of twelve 
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texture measures were therefore available from the edge based texture 

analyzer, six based on dark-side searches and the remainder on light-side 

searches. 
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Chapter Five Classification Procedures 

5.1 SOME PRINCIPLES OF MULTIVARIATE CLASSIFICATION 

The methods for texture analysis described in Chapter Four simply 

supply a numerical evaluation of the textural properties in an image 

sample of the exine surface. Classification rules must be developed in 

order to assign a sample to the correct pollen class. These rules are 

constructed using the texture measurements obtained on images from 

known pollen classes. Once they have been developed, the rules may 

be applied to the problem of classifying unknown image samples. 

It is unlikely that any single texture measurement will be able to 

adequately distinguish between the pollen classes. Combinations of 

measurements can provide greater discriminating power. provided that 

they are not highly correlated. This necessitates the use of multivariate 

classification schemes. In these schemes we consider each feature, or 

texture measure in this case, to be represented by one dimension of a 

multidimensional or multivariate space, often referred to as the feature 

space. 

A collection of texture measurements from samples of known class are 

used to fon'n mathematical decision boundaries that divide the feature 

space into a number of regions. Each region is related to a specific 

class. In order to classify an unknown sample its texture measurements 

are plotted in the feature space and it is allocated to the class in whose 

region these measurements fall. 

More formally, the feature space is partitioned into CI regions, 

i=1,2, ... n, where n is the number of classes. An object k is 

assigned to class i if its feature vector xk (the collection of texture 

measurements) lies within the region Ci (Gordon, 198 1). The 
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boundaries between the class regions are known as the decision surfaces. 

There are a number of ways to construct the decision surfaces and these 

are considered next. 

5.2 THE PARALLELEPIPED CLASSIFIER 

The parallelepiped or box classifier is probably the simplest classifier 

design. It uses the least computer resources and is popular since it is 

both fast and effici ent. Parallelepiped regions are constructed by 

specifying acceptable limits on the statistical distribution of each variable. 

This limit might be set, for example. as a distance of two standard 

deviations on either side of the arithmetic mean. Any feature vector 

that falls within the limits imposed upon all variables is assigned to the 

appropriate class, The c oncept is shown in Figure 5.1 for a two 

variable problem. 

V-4 

(0 
a) 

(Z4 

Class I 

X ý>assified 
X 

;k 

A! k"'3'-Class 2 

Feature 2 

Figttre 5.1 The Parallelepiped Classifier. 

The major drawback with the parallelepiped classifier is that it does not 

calculate any form of 'certainty weighting' when classifying a sample 

(Thomas et al., 1987). When the feature vectors of unknown samples 
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are plotted in the feature space they either fall within the boundaries of 

a parallelepiped region, in which case they are assigned to the 

appropriate class, or they don't and are classified as unknown. It is as 

simple as that. 

5.3 THE NEAREST EUCLIDEAN DISTANCE CLASSIFIER 

This is still a relatively simple classification scheme which evaluates the 

distance, in multidimensional space, between the position of the sample 

vector and the location of the mean centroid vector of each class under 

consideration. The unknown sample is allocated to whichever class is 

the nearest on the basis of this measurement. The square of this 

distance can be expressed mathematically as, 

2i (xkmi)(xkmi) 

where xk is the feature vector of sample k, mi is the mean centroid 

vector for class i, and T represents the transpose of the vector. This 

is equivalent to, 

2i (xIm li )+(x2m 2i )+... +(xnm 
ni 

) 

where x is the value of each feature and m. is the mean value of this 
I 

feature for samples taken from class i. 

This measure is therefore the square of the Euclidean distance between 

the vectors x and rn I. 
A second measure, the so called 'city block' 

distance, is sometimes used for computational efficiency. This produces 

piecewise linear boundaries that approximate the linear decision surfaces 
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defined by d2 above (Schowengerdt, 1983) 

block measure is, 

Classification Procedures 

The definition of the city 

x2m 2i 
I+... +Ixnm 

ni 
1 

It can be shown that the Euclidean distance classifier, using the d2 

distance measure, is a special case of the maximum-likelihood classifier 

(Schowengerdt, 1983). It assumes that the variance-covariance matrices 

of each class are equal and that all a priori probabilities are equal. 

Furthermore, it assumes that entries in the variance-covariance matrices 

are confined to diagonal values. This means that all the features are 

uncorrelated. Finally, it assumes that each feature has equal variance. 

The problem with this classification scheme is that it ignores the spread 

of data points in the multidimensional feature space. It operates only 

on independent single-dimensional representations of the probability 

distributions. failing to take account of the multivariate distribution and 

the correlations that are likely to exist between the variables. 

5.4 THE MLAHALANOBIS DISTANCE MEASURE 

The shortcomings of the Euclidean distance classification scheme noted 

above may be largely overcome by using the Mahalanobis distance 

measure. This also evaluates the distance between the unknown 

sample's feature vector and the position of the mean centroid ý vector of 

each class. However, these distances are normalized with respect to the 

multidimensional variance of each measured variable. Thus the 
2 Mahalanobis distance, usually represented as M, is equal to the square 

of the distance expressed in units of variance for that class (Thomas 
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et al., 1987). It is defined as, 

m12=(xk-mI)T*S i- 
I*(xk-mi) 

where S. is the variance-covariance matrix for class i. This measure is 
I 

a component in most maximum-li keli hood classification schemes. 

5.5 THE LINEAR DISCRIMINANT CLASSIFIER 

5.5.1 The Fisher Linear Discriminant Ruiction 

The Fisher linear discriminant function is an alternative way of 

constructing decision surfaces in the feature space. Suppose we have a 

series of texture measurement vectors, 

"Ii, x 2i' x nj and 

" lj' x2j' x 
nj 

belonging to the classes i and j respectively. We attempt to construct a 

linear combination of the form 

fIxI+f2x2+fnxn 

which has values that are large for population i and small for 

population j, or vice versa, 

Let the mean centroid vector and the variance-covariance matrix be 

designated as mig SI and mi, Si for each class respectively. Using the 

vector maximization theorem, it may be shown that the value of f 
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maximizing the separation is given by, 

s)*(m- In ) 

The vector f is known as the Fisher linear discriminant function. The 

linear combination presented above effectively projects a feature vector 

onto some linear direction or axis within the multidimensional space such 

that the separability of the two classes is maximized. 

For the purposes of classification all that is required is to locate a class 

decision boundary on the projection axis. This is achieved by projecting 

the sample vectors that were used for constructing the discriminant 

function. Thus we calculate the values of f*x. and f*x. and construct 
Ii 

the class boundary at the location providing the minimum classification 

error using the formula, 

Boundary =(mI *s 
j+mi 

*s i)/(si+si) 

where mk and sk are the mean and standard deviation of the projected 

values for class k. 

5.5.2 A Pairwise Linear Discriminant Classifler 

The Fisher linear discriminant function described above may be used as 

a decision rule that divides the feature space. Any class pair may be 

separated by an appropriate discriminant function and its associated 

decision boundary along the axis of projection. 

The Fisher linear classifier constructed by this method is the optimal 
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linear classifier and yields the minimum error probability classification 

provided both classes have a multivafiate normal distribution with equal 

variance-covariance matrices (Weszka et al., 1976). 

The assumption of equal variance-covariance matrices allows the 

hyper-surfaces partitioning the feature space to be simplified to linear 

hyper-planes, but it means that the classifications obtained are not 

necessarily the maximum-likelihood classifications (Schowengerdt, 1983). 

Since we have more than two classes, the classification process is 

repeated for all possible class pair combinations and a 'vote' is allocated 

to the winning class on each occasion. At the end of this procedure 

the sample is assigned to the class that receives the greatest number of 

votes. 

When using a discriminant function that was constructed with the true 

sample class, we expect the unknown sample to be classified correctly 

and a vote allocated accordingly. The alloca tion of the vote for other 
'redundant' discriminant functions should be essentially random, thus 
leaving the actual class with the highest vote (Weszka et- al.. 1976). 

5.6 TESTING CLASSIFIER PERFORMANCE 

5.6.1 TrAining Sets and Test Sets 

In order to construct the decision surfaces that segment the feature 

space we need data obtained from samples of known class. In the 
Euclidean distance classifier these measures are used to provide the mean 

centroid vectors of each class. In the linear discriminant classifier they 
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allow the construction of the Fisher discriminant function vectors and the 

determination of a decision boundary along the projection axis. 

The data used for constructing a classifier is known as the training set. 

It is important that there are sufficient data in this population sample to 

allow accurate estimates of the true probability density functions 

(abbreviated to PDFs) of each class. Of course, the larger the sample 

size the more accurate the PDF estimates should become. Large 

training sets are therefore a desirable feature when constructing a 

classifier. 

Once a classifier has been constructed we need to test its performance. 

The simplest method is to use the feature vectors of each sample from 

the training set, and treat them as if they are the feature vectors of 

unknown samples. However, using the same data for both training and 

testing can lead to over-optimistic estimates of the classifier success rate. 

This is especially true if the data set used to construct the classifier is 

small. 

The reason is simply that the training set is only a population sample. 

Therefore only an approximation of the true PDF of the classes is 

estimated. Any estimate is likely to possess irregulafities compared to 

the true population PDFs. Such differences are not accounted for within 

the design of the classifier, which will simply attempt to optimize the 

classification success of the training set presented to it. The PDFs of a 

new set of samples, although drawn from the same population, are 

likely to differ slightly from those of the training set. Consequently, 

the classifier will no longer be the optimal classifier for these data. and 

the success rate will deteriorate. 
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Therefore, using the same data as both a training set and a test set 

will lead to a favourably biased estimate of the classifier performance. 

The estimate of classifier performance obtained from the training set is 

known as the apparent error rate, while that obtained from an 

independent test set is called the true error rate. To obtain a true 

estimate an independent test set should be used. 

Dividing the available data into two sets and using one for training and 

the other for testing would appear to be the sensible solution. 

However, if the amount of data available is limited, as is frequently the 

case. splitting it into two groups does not make best use of it (Hand. 

1981). As noted above, it is desirable to have the largest possible 

training set in order to accurately reflect the population characteristics, 

but we also want a large test set when assessing the classifier 

performance. The leave-one-out or jackknifed classification strategy 

provides a solution to this dilemma. 

5.6.2 ne Leave-one-out Strategy 

The leave-one-out technique is a simple and elegant solution to the 

problem of obtaining unbiased estimates of classifier performance when 

only a limited data set is available. Each sample in the data set is 

classified in turn, using a classifier constructed from all the remaining 

samples. This ensures that the training set is always as large as 

possible, yet eventually all the samples are independently classified to 

give an accurate assessment of the true success rate. 

The penalty to pay for this attractive scheme is the increased 

computation involved in constructing a new classifier for each sample. 
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It is usually possible, with some care, to limit the amount of 

recalculation necessary. For instance, in the Euclidean distance 

classifier, 'running mean' centroid vectors may be used greatly to reduce 

the work involved. Similar techniques may be found for the pairwise 
linear discriminant classifier. By using efficient algorithms the need to 

restructure the classifier for each sample should not become too great a 

burden. 

5.7 FEATURE SELECTION 

5.7.1 Selecting Suitable Features for Classification 

During any identification process there will be an almost infinite number 

of features that could be measured in order to facilitate the classification 

of the objects under consideration. Obviously some assessment of the 

'goodness' of features is needed so that those with higher ratings can be 

employed in preference to the rest. 

There are a number of aspects to consider when evaluating how good a 

feature is for classification purposes (Pankhurst, 1978). Ease of 

observation, for example, may be considered a valid criterion. Almost 

certainly the reliability of the feature will be critical in this assessment. 

Finally, the diagnostic power of the feature is bound to be an essential 

factor. 

To a large extent many of these decisions have already been made in 

this particular application. Texture analysis on the exine was selected, 
in preference to the analysis of pollen shape, principally because it was 

considered to be a more reliable feature within the SEM environment. 
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Counting apertures would have only limited diagnostic power because we 

cannot be sure that all apertures are visible when they are recorded on 

a single SEM image. Having chosen texture analysis as the principal 

feature extraction technique. the specific methods employed were selected 

with 'ease of observation' borne in mind. Obviously, in this situation, 

ease of observation equates to computational considerations such as the 

time and memory required to calculate a texture measurement. 

Thus, the features that are to be supplied to the statistical classifiers 

have already been vetted and should be those that are likely to prove 

the most suitable in terms of reliability. diagnostic power, and so on. 

Yet the question of which of the computed features are the best in a 

statistical classification scheme, that is which will give the best results, 

still remains to be answered. 

5.7.2 The Need to Select Opthmal Subsets 

At this point it can be tempting to wonder why we should bother to 

select optimal variable subsets. Although it is clear that the use of 

several highly correlated variables can add only a little information to 

that already available from just one, they are still adding information. 

The use of more variables cannot subtract discriminating evidence, so it 

might seem sensible to use all the data available (Hand, 1981). 

There are a number of reasons why finding the best subset of variables 
is still important. The first of these is that it is simply inefficient to 

go to the trouble of programming in feature extraction routines, 

performing the necessary computations and storing the data if the 

variables are not needed. The use of unnecessary variables will 
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obviously increase the time taken to perform the classification process. 

Finally, and perhaps rather surprisingly, the use of a greater number of 

variab, les can lead to a deterioration in the classifier performance. 

Increasing the number of variables in the classifier produces a 

corresponding increase in the dimensionality of the feature space. 

Unless the size of the training set is also enlarged there is a danger 

that poorly sampled estimates of the PDFs will be generated as the data 

becomes more dispersed within the multidimensional space. This can 

weaken the foundations on which the classification scheme is based. 

Furthermore, the complexity of the decision surfaces is also increased 

which can make the classifier too inflexible. Although the apparent 

error rate estimated with the training set may decrease, an independent 

test set will show that the true error rate has increased due to this 

inflexibility (Hand, 1981). 

5.7.3 Optimal Subset Selection Procedures 

Optimal subset selection is concerned with finding a subset d' of 

variables, from the complete set d, that gives the greatest classification 

success rate. The simplest idea for the selection of an optimal subset 

is to combine the d' features that performed best when used 

individually. Unfortunately this is not guaranteed to find the best 

subset since it ignores the multivariate relationships that exist between 

variables. One important relationship is the correlation among the 

variables. Combining d' variables that are highly correlated would be 

little better than using a single variable alone (Hand, 1981). 

The next simplest idea is the exhaustive search method. All the 
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possible combinations of d' from d are tried. The best combination is 

guaranteed to be found, but the method is only viable if the number of 

variables involved are small. The number of possible subsets of r 

variables from a total of n variables is given by the combinations rule, 

nC 
r 

(n-r)! r! 

Thus, even the fairly modest request of finding the optimal five variable 

subset from a total of fifteen variables would require the classification 

procedure to be repeated over 3000 times! 

There are a series of so-called 'suboptimal' search methods that are fast 

relative to the exhaustive search, but are not guaranteed to find the best 

solution. The sequential backwards elimination method is one example. 

Starting with the full variable set, each variable in turn is omitted and 

a separability index (see Section 5.7.4 below) is calculated. When this 

has been completed the variable which caused the least deterioration in 

the separability index is discarded and the process is repeated on the 

subset that remains. This procedure is much faster than the exhaustive 

search. For example, finding the subset of five variables from fifteen 

would require the classification process to be repeated only 105 times. 

Once a variable has been discarded in this scheme it cannot be 

reconsidered. The relationships between discarded variables are ignored 

and it is this fact which can lead to the suboptimal selection of subsets. 

A similar method is the sequential forward addition algorithm. As its 

name suggests, this is effectively the reverse process of sequential 

backward elimination. Starting with the best single variable, each 
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variable in turn is added and the one producing the greatest 

improvement in the separability index is kept. This algorithm can 

require fewer calculations if small subsets are being searched for, but it 

suffers from the same problems as the backward elimination method. 

Since the relationships between the discarded variables. or those that are 

still to be selected, are ignored, the two methods can produce different 

results. 

A type of hybrid scheme is the even more strangely named 

'plus-p, take-away-q' selection algorithm (Hand. 1981). This iterates 

through the process of adding the best combination of p variables and 

then sI ubtracting the worst q variables. Values of ( p=2 , q= I) are a 

popular selection. 

5.7.4 A Separability Index 

In the section above there was talk of a separability index that was 

used to estimate how well a set of variables could separate or 

distinguish classes. Several such measures are available, as outlined by 

Thomas et al. (1987), but the measure to be used here is the 

Hotelling's T2 statistic. This a measure of the distance between group 

means relative to the dispersion within the samples. It is the 

multivariate equivalent of the well known univariate T-test statistic. The 

T2 statistic is defined by, 

1 ý42 
(xx2)T* S-1 x2 

N 

where xI is the mean centroid. vector of class i, S is the pooled 
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common variance-covariance matrix, Nk is the number of samples in 

class k, and N is the total number of samples (N 
I +N 2)' 

The separability measure was used in this work for subset selection 

using the sequential backward elimination method. However, the 

coherence property of this statistic also allows an accelerated search 

algorithm to be used (Hand 1981). In the accelerated search all 

possible subset combinations are considered without the need to explicitly 

compute each one. 

5.7.5 Ilie Acceleitated Search Algoridun 

The coherence property of Hotelling's index states that the T2 value for 

a subset is always less than, or equal to, the T2 value of the complete 

set from which the subset is derived. The way the coherence property 

of the T2 measure is used for an accelerated search is best explained 

by the use of a simple example, and the corresponding diagram drawn 

in Figure 5.2. 

Suppose we have a two class problem with six variables measured on 

samples from each class. The first stage is to calculate the T2 statistic 

using the full six variables which, in this example, gives a value of 
379. We now proceed to construct a treelike structure by the 

successive deletion of variables. 

The second level of the tree consists of six nodes, each of which is 

formed by the omission of a single variable. At each node the new T2 

statistic is calculated. The subset that maintains the highest. separability 
index is then selected. In the diagram it can be seen that this is the 
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subset containing the variables 11,2,3,5.6), which has aT2 value of 
354. 

We continue by constructing the next level down on this selected 

branch. This provides a further five nodes each with a corresponding 

T2 value. Again the subset with the largest T2 value is selected. 

This is the subset (1,2,3,61 which has a separability index of 179. 

So far we have followed the procedure of the sequential backward 

elimination method. This method would continue to pick the best 

subset at each level and continue to move on down the branch of the 

tree thus selected. In the accelerated search we now consider what 

other four variable subsets are possible using the variables discarded so 

far. 

To do this the T2 value of our best four variable subset is compared to 

the T2 values obtained on the preceeding level. Starting from the left 

in the diagram we can see that our value of 179 exceeds the first two 

values of 76 and 29. It also exceeds the 130 value obtained from the 

rightmost subset on this level. Therefore, following on from the 

coherence property, we know that there can be no four variable subset 

derived from these sets that will exceed our maximum value of 179 

found so far. 

The third subset on level one had a value of 215. It is therefore 

possible that this may be able to yield a higher scoring four variable 

subset and should be investigated. It must be noted at this point that 

there is the possibility of considerable repetition in the tree structure. 

For example, the subset (2,4,5,6) may be derived from this set now 

under consideration. However, the same combination has already. been 
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'rejected' as a possibility because it may be derived from the first set 

on level one. In fact it can be shown that a subset must contain the 

variables 1,2,4, and 6 in order for it not to have been derivable from 

a set already considered and rejected. Only the (1,2,4.6) subset needs 

to be examined and this turns out to have a lower value than the 

maximum of 179 found so far. At this stage we have considered. and 
found the best of, all four variable subsets that are possible without the 

need to evaluate explicitly every one. 

Proceeding to the next level we find that the best three variable subset 
has aT2 value of 132. Again this exceeds the values on the first 

level of 76,29, and 130. Therefore any subset would have to contain 

the variables 1,2,4, and 6, in order for it not to have already been 

considered or rejected. This is clearly impossible for a set of three 

variables so we may conclude that no better subset can exist. Finally. 

we arrive at the best two vafiable combination 11.2) that has a 

separability index of 79. 

In this particular example a sequential backward elimination would have 

produced the same optimal subsets at each level. However. the 

advantage of the accelerated search in being able to find true optimal 

subsets without the computational costs of an exhaustive search are 

clearly demonstrated. If the 11.2,4,6) combination on level two had 

had a larger value than the (1.2,3,6) combination we could have 

jumped across to this branch of the tree and continued the search from 

that node. The algorithm is often said to be a 'search-and -bound' 
technique because of this ability to skip to other nodes whenever it is 

appropriate. 
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Chapter Six Classification Results 

6.1 INITIAL EXPERIMENTS 

The initial classification experiments were performed with only three 

pollen taxa. These were Elm, Plantain, and Hazel. Three digitized 

images displaying a single complete pollen grain were available for each 

of the taxa. Several methods of texture evaluation were investigated 

including those based on invariant moments (Sadjadi and Hall, 1978, 

Wong and Hall, 1978), and the coarseness and contrast indices described 

by Tamura et al. (1978). None of these appeared to be promising. 

In contrast, the initial results obtained from grey level co-occurrence 

analysis were encouraging. 

Texture analysis was perfon-ned on 64x64 pixel areas selected with a 

'roaming window' which could be positioned manually anywhere within 

the image. Once a textured patch of the exine had been selected, the 

tonal resolution within this region was linearly reduced to sixteen grey 

levels and the twelve co-occurrence matrices constructed. Only two 

texture descriptors, namely ASM and ENT, were extracted from each 

matrix. These measurements were averaged over the four displacement 

vector directions to produce a final total of six texture measures per 

sample. 

In order to construct the Fisher linear discriminant functions used in the 

classification scheme eight texture samples were extracted for each pollen 

taxon and used as a training set. A further eight samples were then 

taken from each class, at different locations on the pollen grains, in 

order to form an independent test set. 

When the texture measures calculated from the test set were entered into 

the classifier nineteen samples, or almost 80 %, were correctly identified. 
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This was considered an encouraging start, especially since several of the 

test samples were positioned close to the pollen margins where the 

texture becomes distorted due to the curvature of the grains. Due to 

these promising results further investigations into co-occurrence analysis 

were undertaken and these are discussed next. 

6.2 CO-OCCURRENCE ANALYSIS 

6.2.1 Details of the Database and Texture Measures 

Further experiments with co-occurrence analysis were performed on all 

six pollen taxa-, Oak, Pine and Rye grass being added to the original 

three classes. Ten SEM photomicrographs of pollen grains were 

available for each taxon. Sub-scenes of 60x6O pixels were extracted 

from the digitized photomicrographs and reassembled into new image 

files. A complete montage file containing sixteen samples was produced 

for each pollen class. These files contained eight unique samples whose 

tonal resolution had been linearly reduced to sixteen grey levels. The 

remaining eight samples were duplicates except that the histogram 

equalization technique was employed to normalize the sub-images before 

reducing the tonal resolution to sixteen levels. 

The number of texture measurements extracted from the co-occurrence 

matrices was increased in this second stage of experiments. The three 

measures ASM, ENT and COR are invariant under monotonic grey tone 

transformations (Haralick et al., 1973) and could be used with any of 

the sub-scenes. A second set of features consisting of the CON, VAR, 

and IDM measures were suitable for use only on the histogram 

equalized samples. 
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6.2.2 Classification of the Unequalized Samples 

The Fisher linear discriminant classification procedure was performed first 

on the samples that were not histogram equalized. This restricted the 

number of texture features that could be used to the nine derived from 

the ASM, ENT and COR measures. The results of the classification 

are summarized in the confusion matrices presented in Tables 6.1(a-c). 

A confusion matrix shows the classification distribution among the pollen 

classes. For samples obtained from a given taxon, represented by a row 

of the matrix, the figures show the proportion that are classified as any 

other taxon, given by the columns of the matrix. Thus, if every 

sample was correctly classified, all entries would be concentrated on the 

principal diagonal of the matrix. The codes identifying the pollen taxa 

are the same as those given in Section 3.1 of this report. The code 

Uc indicates samples that were unclassified. 

Table 6. ](a) illustrates the results that were obtained from using a single 

texture measure. These results have been averaged over the nine texture 

measures that were used. The matrix indicates that considerable 

variation in the success rate among the pollen taxa existed. Elm was 

surprisingly successful (over 66% correctly classified), while Rye grass 

and Hazel did rather poorly (less than 20%). By analysing the raw 

results it was found that texture features based on vector displacements 

of I and 4 pixels averaged a 34% success rate, while those based on 

the 8 pixel displacement averaged only 29%. It was also noticed that 

the performance of the COR texture measures was significantly poorer 

than those of ASM and ENT. 

The overall success rate using a single texture measure was 32.6% 
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correctly classified. Although this may appear to be rather poor it is 

still considerably better than that expected from chance alone (17%). 

The classification performance obtained with two texture measures is 

illustrated in Table 6.1(b). These results are the averages taken over 

all thirty-six possible combinations of two features. It is immediately 

apparent that a large increase in the number of correct classifications 

has occurred. The overall average rose to 57.5% but considerable 

variations between pollen classes still existed. Pine and Elm did rather 

well while Rye grass and Hazel still lagged behind. The best pair of 

features managed to correctly classify 75% of the samples, while the 

worst pair achieved only 42%. A small number of samples (3 % of the 

total) remained unclassified since they had an equal number of 

classification votes for two or more of the classes. These are represented 

by the Uc column of the matrix. 

As more texture measures are incorporated into the classification scheme 

the number of feature combinations possible becomes prohibitively large. 

For experiments using four texture descriptors eight combinations were 

selected, somewhat arbitrarily, based only on intuition gained through the 

study of earlier results. The performance of these feature sets are 

summarized in Table 6.1(c). 

The average classification rate rose to 89%, with a range of 94% for 

the best combination selected, to 79% for the worst. Again some 

samples, particularly those of Hazel, remained unclassified. Finally, 

utilizing all nine texture measures only one sample was identified 

incorrectly, and one remained unclassified. 

Page III 



Chapter Six Classification Results 

A 
c Pi 
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s 
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Classified As 
Pi El Ry Oa Ha Pi 

33.3 8.3 16.7 26.4 0.0 15.6 

4.2 66.7 0.0 1.4 11.1 16.7 

9.7 6.9 18.0 34.7 19.4 11.1 

11.1 1.4 15.3 38.9 15.3 18.1 

5.6 15.3 31.9 9.7 16.7 20.8 

12.5 6.9 19.4 5.6 33.3 22.2 

Table 6.1a Confusion matrix for unequalized samples classified by a 
single texture measure. Figures are percentages. 

Classified AS 
Pi El Ry Oa Ha Pi Uc 

IA. 

c Pi 
t 

u El 
a 
1 Ry 

c Oa 
1 
a Ha 
s 
s P1 

80.0 0.7 1.7 11.8 0.7 3.1 

1.0 87.0 1.0 0.3 4.2 3.1 

1.7 11.8 35.8 16.3 19.4 7.9 

13.2 0.3 5.7 58.2 9.6 11.0 

1.7 7.9 23.5 11.1 31.1 21.8 

5.6 0.3 13.2 9.4 17.7 52.1 

1.7 

3.1 

6.9 

2.5 

2.8 

1.7 

Table 6.1 b Confusion matrix for unequalized samples classified by two 
texture measures. Figures are percentages. 

classified As 
Pi El Ry Oa Ha Pi UC 

Ift 
c Pi 
t 
u El 

a 
1 Ry 

C Oa 
1 
a Ha 
s 
s P1 

100.0 0.0 0.0 0.0 0.0 0.0 

0.0 100.0 0.0 0.0 0.0 0.0 

0.0 1.6 82.3 0.0 10.9 1.6 

0.0 0.0 0.0 90.6 6.3 3.1 

0.0 0.0 6.3 4.7 76.6 1.6 

0.0 0.0 6.3 9.4 0.0 84.4 

0.0 

0.0 

3 .1 

0.0 

10.9 

0.0 

Table 6.1 c Confusion matrix for unequalized samples -classified by four 
texture measures. Figures are percentages. 

Page 112 



Chapter Six Classification Results 

6.2.3 Classification of the Equalized Samples 

For comparative purposes the classification procedure described above 

was repeated for the histogram equalized samples. The corresponding 

confusion matrices are displayed in Tables 6.2(a-c). Studying the results 

for a single texture measure, shown in Table 6.2(a), it is evident that 

some differences exist. The performance of Pine and Rye grass are 

greatly improved, Hazel and Plantain are similar, but Oak and 

particularly Elm have deteriorated. The grand average is almost 

identical however at 32%. The COR measures were still found to be 

notably inferior to ASM and ENT. 

With classification by two features, shown in Table 6.2(b), the grand 

average obtained (55%) was also similar to the previous result. There 

was, however, slightly less variation in the results between pollen taxa. 

More samples than previous were drawn on votes and could not be 

classified. 

The average success rate with four texture measures, shown in Table 

6.2(c), had deteriorated slightly at 80%, but using all features only a 

single image sample was classified incorrectly. 

On the basis of these results it was felt that although histogram 

equalization produced quite drastic changes in the visual appearance of 

the samples, it did not appear to have any ill-effects on the 

performance of the ASM, ENT, and COR texture measures. 

The advantage of using the equalized images is that a greater number 

of texture measurements may be extracted from the co-occurrence 

matrices. These additional features could not be used before since they 
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A 
c Pi 
t 
u El 

Ry 

C Oa 
1 
a Ha 
s 
s P1 

Classified AS 
pi El Ry Oa Ha 

Classification Results 

Pi 

61.1 0.0 22.2 2.7 6.9 6.9 

0.0 33.3 1.4 11.1 22.2 31.9 

16.7 5.5 31.9 0.0 33.3 12.5 

4.2 13.8 6.9 25.0 18.1 31.9 

5.6 12.5 26.4 12.5 15.3 27.8 

9 -. 7i 23.6 11.1 18.1 34.7 30.6 

Table 6.2a Confusion matrix for equalized samples classified using a 
single texture measure. Figures are percentages. 

Classified As 
Pi El Ry Oa Ha PI UC 

t% 

c Pi 
t 
u El 
a 
1 Ry 

C Oa 
1 
a Ha 
s 
s PI 

87.8 0.7 7.5 0.4 0.4 0.7 

0.0 52.1 3.2 7.5 16.4 12.8 

5.7 12.5 51.2 2.1 17.8 5.7 

0.4 6.1 6.4 62.9 7.1 8.9 

2.1 15.7 24.2 6.4 24.5 21.4 

1.4 13.4 9.9 9.9 6.7 52.3 

2.5 

7.9 

5.0 

8.2 

5.7 

6.4 

Table 6.2b Confusion matrix for equalized samples classified by two 
texture measures. Figures are percentages. 

Classified AS 
Pi El Ry Oa Ha Pi UC 

c Pi 
t 
u El 
a 
1 Ry 

C Oa 
1 
a Ra 
s 
s P1 

100.0 0.0 0.0 0.0 0.0 0.0 

0.0 78.1 9.4 0.0 12.5 0.0 

0.0 20.3 62.5 6.3 3.1 0.0 

0.0 0.0 0.0 100.0 0.0 0.0 

0.0 7.8 12.5 0.0 71.8 3.1 

0.0 3.1 4.7 0.0 6.3 82.8- 

0.0 

0.0 

7.8 

0.0 

4.7 

3.1 

Table 6.2c Confusion matrix for equalized samples classified by four 
texture measures. Figures are percentages. 
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are sensitive to the average brightness and global contrast of the image. 

These are parameters that could not be accurately controlled during 

image acquisition on the SEM or at the digitization stage. The 

classification procedures were repeated on the equalized samples using 

the newly available features CON, VAR and IDM. The outcome is 

summarized in Tables 6.3(a-b). 

There were no surprises with the results using a single texture measure. 

The overall average of 30% was in accordance with previous results, and 

the success of individual pollen taxa. closely resembled those in Table 

6.2(a). The IDM features produced the poorest results so far (averaging 

22%) and features using the eight pixel displacement did badly again 

(averaging 21 %). Hence, the IDM feature with eight pixel displacement 

produced a very dismal 1.0%. 

With two features the results were not as good as those obtained 

before, averaging only 43%. An important discovery at this stage was 

that feature pairs that included one of the IDM measurements were 

giving the best performances (the combination of IDM at one and four 

pixel displacements produced a 66% success rate). This clearly 

illustrated that the performance of individual features could not be used 

to predict successful combinations. 

The trend of poorer overall performance relative to the ASM, ENT and 

COR measures continued as larger feature sets were used, 

Page 115 



Chapter Six 

A 
c Pi 
t 
u El 

Ry 

c oa 
1 
a Ha 
s 
s P1 

Classification Results 

Pi 
Classified As 

Pi El Ry Oa Ha 

61.1 6.9 9.7 11.1 6.9 4.2 

9.7 30.6 11.1 15.3 9.7 23.6 

18.0 13.8 26.3 12.5 18.0 11.1 

2.7 12.5 30.6 30.6 2.8 20.8 

5.6 25.0 27.7 9.7 11.1 20.8 

8.3 27.7 25.0 9.7 6.9 20.8 

Table 6.3a Confusion matrix for equalized samples classified using a 
single CON, VAR, or IDM texture measure. 

Classified As 
Pi El Ry Oa. Ha. Pi Uc 

XA 

c Pi 
t 
u El 
a 
1 Ry 

C Oa 
1 
a Ha 
s 
s P1 

85.7 4.2 3.1 0.7 1.0 1.7 

4.2 39.6 9.7 16.7 8.0 17.4 

7.6 10.1 37.5 14.9 12.5 6.6 

0.7 9.4 17.4 48.6 4.9 16.0 

1.0 24.0 29.2 6.9 17.0 19.4 

3.8 21.2 17.7 16.7 6.9 29.9 

3.5 

4.5 

10.8 

3.1 

2.4 

3.8 

Table 6.3b Confusion matrix for equalized samples classified by two 
texture measures taken from the CON, VAR, and IDM statistics. 

6.2.4 Leave-one-out Classification 

It was indicated in Chapter Five that classification success rates assessed 

by using the same data for both training and testing the classifier are 

vulnerable to producing over-optimistic results. In order to assess the 

extent of this problem the original classifier was restructured to allow 

leave-one-out, or jackknifed, classification. The classification of the 

equalized samples by the ASM. ENT, and COR features was then 

repeated using the leave-one-out scheme. 
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The results, summarized in Tables 6.4(a-b), indicate a drop in success 

rate, as might be expected. Employing two texture descriptors an 

average of 47.3% was achieved. The best pair of texture measures 

obtained 62% and the worst pair 31%. Using the combinations of four 

features an average of 58% were correctly classified, and with all 

features 60%. 

Clearly, the previous classification scheme was producing over-optimistic 

estimates of the success rate. Furthermore, this degree of over-optimism 

increased greatly as more texture descriptors were utilised. - 
Leave-one-out classification was therefore considered an important 

procedure, in the absence of independent training and test sets, allowing 

an unbiased assessment of the true classification error rate. 

6.3 FURTHER CO-OCCURRENCE ANALYSIS 

6.3.1 Details of the Database 

The leave-one-out classifier avoids the problem of over optimistic 

classification success rates. However, a large training set is still an 

advantage as it should reflect the population characteristics more 

accurately. The classifier is then less likely to become specialised 

towards peculiarities present in the training set and hence it may perform 

better with new independent test sets. 

It is also desirable when attempting to maximize classification success 

occasionally to renew the samples. This prevents alterations being made 

which, although producing better classification results, are in fact merely 

'fine-tuning' the classifier to the peculiarities of the samples available. 
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Classified AS 
Pi El Ry Oa Ha Pi Uc 

it 
c Pi 
t 
u El 
a 
1 Ry 

C Oa 
1 
a Ha 
s 
s P1 

84.4 0.7 9.4 1.7 0.3 1.7 

0.0 47.9 4.2 9.0 17.0 14.6 

6.9 13.2 41.7 3.1 21.2 5.6 

0.7 7.3 6.9 51.7 6.9 12.8 

2.1 16.3 27.8 6.9 17.7 21.5 

1.4 17.7 11.5 10.4 8.3 41.6 

1.7 

7.3 

8.3 

13.5 

7.6 

9.0 

Table 6.4a Equalized samples classified by a leave-one-out scheme with 
two texture measures drawn from ASM, ENT, and COR. 

Classified AS 
Pi El Ry Oa Ha Pi UC 

m 
c Pi 
t 
u El 
a 
1 Ry 

C Oa 
1 
a Ha 
s 
s Pl 

94.6 1.8 1.8 0.0 0.0 0.0 

0.0 58.9 19.6 1.8 8.9 7.1 

0.0 25.0 33.9 7.1 12.5 7.1 

0.0 1.8 5.4 
f 

76.8 3.6 7.1 

0.0 21.4 26.8 0.0 28.6 12.5 

0.0 3.6 8.9 5.4 14.3 55.4 

1.8 

3.6 

14.3 

5.4 

10.7 

12.5 

Table 6.4b Equalized samples classified by a leave-one-out scheme with 
four texture measures drawn from ASM, ENT, and COR. 

Poorer performance on a new set of samples drawn from the same 

population may be the outcome of such actions (Hand, 1981). 

It was for these reasons that a new and larger set of exine texture 

sub-scenes were obtained. For each of the six pollen taxa two montage 
image files were constructed in a similar manner to before. All 

samples were 64x64 pixels in dimension and were histogram equalized 
before reducing the tonal resolution to sixteen grey levels. Thus, the 

new database contained a total of 192 new exine samples, 32 unique 
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samples from each pollen class. The first sixteen samples of each taxon 

are shown in Plates 6-1 to 6-VI. 

6.3.2 Texture Measures 

Due to the poor performance of the COR features and their relatively 

expensive computation time it was decided to no longer extract these 

from the co-occurrence matrices. The remaining five features were 

unaltered except that the two previously separate groups were combined 

to produce a single output listing. Hence fifteen texture measures were 

calculated and available for use from each exine texture sample. 

6.3.3 Initial Classification Results 

Following the procedure employed previously the samples were classified 

by the leave-one-out scheme using all possible pairs (now 105) of 

texture measures. The average rate of correct classification was 25%, 

and the best pair classified only 36% correctly. These results were 

rather poor and very disappointing considering those achieved with the 

previous data set. Closer inspection of the results revealed the reason 
for this deterioration. Many samples were remaining unclassified since 

they were drawn on votes between two or more classes. in fact the 

majority of these unclassified samples were drawn on votes between only 

two classes. 

To alleviate this problem the classification algorithm was redesigned 

again. In this newly modified algorithm, whenever a sample was found 

to be drawn on votes between two classes its feature vector was 
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Plate 6-1. Pine exine samples. 

Plate 6-11. Iýim cxIne samples. 
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Plate 6-111. Kýc grass exine samples. 

Plate 0-IN'. (), tk ý: Xillc 
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reentered into the discriminant function constructed for the drawn class 

pair and the output from this taken as the final result. If a sample 

was drawn on votes between more than two classes it was left 

unclassified. 

Applying this 'drawn-between-two' tie-breaker decision algorithm and 

repeating the classification process the average success rate increased to 

44%, and the best pair of texture measures correctly classified 55% of 

the samples. These improved results were comparable to those 

previously obtained with the leave-one-out classifier. 

6.4 INCORPORATION OF VARIABLE SELECTION 

It had been established from the results obtained so far that the 

classification performance was very sensitive to the particular subset of 

texture measures used. A selection of a few 'good' texture measures 

could rival the classification performance of a much larger feature set. 

in order to identify optimal feature combinations a variable selection 

procedure was used. This employed the Hotelling's T2 statistic as a 

multivariate measure of between-class separability, along with the 

accelerated search technique described in Chapter Five (section 5.7.5). 

6.4.1 Redesigning the Linear Discriminant Classifier 

Yet another modification to the classification algorithm was now 

necessary, this time a rather major alteration. The Fisher linear 

discriminant classifier was redesigned so that it would use the optimal 

subset of variables for each discriminant function. 
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Understandably the optimal features for discrimination varied depending 

on which particular class pair was under consideration. The variable 

selection program produced a data file in which the optimal subset of 

variables for discriminating each individual class pair were held. The 

classifier algorithm was modified to access this file and used only the 

selected features when constructing the linear discriminant function for 

each class pair combination. Similarly, when it came to classifying the 

unknown samples, the same file was accessed so that only the 

appropriate features were used in each discriminant function calculation. 

The leave-one-out scheme could still be retained in this more complex 

classifier design. The results obtained with the new scheme are 

presented below. 

6.4.2 Improved Classification Results 

A summary of classification success rates utilizing variable selection in a 

Fisher linear discriminant classifier, are displayed in Table 6.5. Even 

without employing the tie-breaker decision algorithm over 66% of the 

samples were correctly identified using two texture measures. This was 

a very substantial improvement over the result that had been obtained 

without feature selection (44%). If the tie-breaker decision was also 

employed a very impressive 93% of the 192 samples were correctly 
identified, again an enon-nous improvement. 

When the decision algorithm was omitted a steady improvement in the 

results was observed as more texture measures were incorporated. 

However, when using the decision algorithm no substantial improvement 

was obtained with larger feature sets. It appeared that this new 

classifier design incorporating both variable selection and the tie-break 
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Number of 
Features Used 

Tie-breaker Decision: 

in Classifier No Yes 

2 66.7 92.7 
3 75.5 87.0 
4 78.7 90.6 
5 81.8 92.7 
6 80.7 93.0 

Table 6.5 Classification results using feature selection, 
both with and without a decision taken on samples 
drawn between class pairs. 

decision algorithm was performing about as well as possible with tile 

available data. No advantage could be gained from employing a larger 

number of texture measures. 

Evidently the incorporation of variable selection and the modified 

classifier design lead to a powerful classification scheme. The 

improvements produced by variable selection and a decision between 

drawn class pairs is summarized in Table 6.6 below. This shows the 

success rate that was obtained, using only two texture measures, under 

the various classification schemes available. 

0 Tie break off Tie break on 

Selection off 25% 44% 

Selection on 67% 93% 

Table 6.6 Summary of the improvements to 
classification success gained through modifications of the 
classifier design. 
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6.5 ANALYSIS BY TEXTURE MASKS 

6.5.1 Texture Measures and Classification Procedure 

The so called Laws' masks, described by Pietikainen et al. (1983), were 

used as an alternative texture analyzer to grey level co-occurrence. 

When these texture filters are convolved with the image each mask 

produces a single texture descriptor as an output. Five masks of 30 

dimension, and eight masks of 5x5 dimension were available. Thus five 

or eight texture measures could be extracted from a texture sub-image. 

The image database was unaltered from the 192 grey level equalized 

samples used in the previous section, as these were quite suitable for 

analysis with the spatial filters. Similarly, the variable selection and 

tie-breaker decision algorithms were unaltered from their previous 

application. The results using texture mask analysis are presented 

below. 

6.5.2 Results with Laws' Masks 

The results for the 30 masks, exhibited in Table 6.7, were very 

promising. Utilizing two selected features 75% of the samples were 

correctly identified. The error rate dropped as more features were 

deployed, and the best result of 85% was obtained with four texture 

descriptors. Although these success rates were not as good as the 

co-occurrence results it was possible to calculate these texture measures 

more quickly. They also suggested that the more sophisticated 5x5 

masks may be able to rival the performance of co-occurrence analysis. 
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Features Used 3x3 masks 5x5 mask 

2 75.0 84.4 
3 81.8 96.4 
4 84.9 96.4 
5 84.4 96.4 
6 - 96.4 
7 96.4 
8 95.8 

Table 6.7 Classification results using 30 and 5x5 Laws' masks. 

The 5x5 masks did indeed produced better results. A success rate of 

over 84% was achieved by two features, and a consistent 96.4% was 

maintained as more features were utilised in the classifier. Indeed these 

results, with the exception of the two feature subsets. exceeded the 

success rates of co-occurrence analysis. With five texture measures 

used, three of the samples in the database remained unclassified. if 

these are treated as 'rejects' then 98% of the samples were identified 

correctly. This is a very satisfactory outcome. 

It would appear therefore that the Laws' mask texture filters are a 

powerful scheme for texture analysis. Certainly in these experiments the 

5x5 masks produced better results than co-occurrence analysis. which 

itself perfon-ned admirably. 

6.6 COMPARISON OF LAWS' MASKS AND 

CO-OCCURRENCE ANALYSIS 

The confusion matrices displayed in Tables 6.8(a-c) show the 

classification results obtained by Laws' masks and co-occurrence analysis 

when using five texture measures. They confirm the superiority of the 

5x5 masks over co-occurrence analysis. 
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Classified AS 
Pi El Ry Oa Ha Pi Uc 

I'll 
c Pi 
t 
u El 
a 
1 Ry 

C Oa 
1 
a Ha 
s 
s P1 

100.0 0.0 0.0 0.0 0.0 0.0 

9.3 84.4 6.3 0.0 0.0 0.0 

6.3 0.0 93.7 0.0 0.0 0.0 

0.0 0.0 0.0 100.0 0.0 0.0 

6.3 0.0 0.0 0.0 90.6 0.0 

0.0 0.0 0.0 0.0 87.5 

0.0 

0.0 

0.0 

0.0 

3.1 

3.1 

Table 6.8a Confusion matrix for samples classified using co-occurrence 
texture measures. Figures are percentages. 

Classified As 
Pi El Ry Oa Ha Pi UC 

c Pi 
t 
u El 
a 
1 Ry 

C Oa 
1 
a Ha 
s 
s Pi 

93.7 0.0 0.0 0.0 0.0 0.0 

6.3 87.5 3.1 0.0 0.0 0.0 

9.3 3.1 84.5 0.0 0.0 0.0 

18.7 0.0 3.1 78.1 0.0 0.0 

3.1 3.1 6.3 0.0 84.5 0.0 

15.6 0.0 6.3 0.0 0.0 78.1 

6.3 

3.1 

3.1 

0.0 

3.1 

0.0 

Table 6.8b Confusion matrix for samples classified using Laws' 30 
texture measures. Figures are percentages. 

Classified As 
Pi El Ry Oa Ha PI UC 

c Pi 
t 
u El 
a 
1 Ry 

C Oa 
1 
a Ha 
s 
s P1 

100.0 0.0 0.0 0.0 0.0 0.0 

6.3 90.6 3.1 0.0 0.0 0.0 

0.0 0.0 100.0 0.0 0.0 0.0 

3.1 0.0 0.0 96.9 0.0 0.0 

0.0 0.0 0.0 0.0 90.7 0.0 

0.0 0.0 0.0 0.0 0.0 100.0 

0.0 

0.0 

0.0 

0.0 

9.3 
1--0-0 

Table 6.8c Confusion matrix for samples classified using-Laws' 5x5 
texture measures. Figures are percentages. 

Page 128 



Chapter Six Classification Results 

The variable selection procedure supplies not only an optimal subset of 

texture measures but also a corresponding T2 statistic. This measure of 

multivariate class separability may give some insight into the 

performances of the different texture analyzers. In particular we may 

investigate the reason why Laws' masks do less well than co-occurrence 

when only two texture measures are employed, but become superior with 

five feature classification. 

Table 6.9 presents the T2 values corresponding to the optimal subsets 

selected from Laws' mask and co-occurrence texture measures. These 

are given for subsets consisting of two and five features. 

Considering the T2 values of two feature subsets between Pine and all 

other classes it is noticeable that whilst the figures are generally high, 

the Laws' values are substantially smaller than the co-occurrence. With 

subsets of five features this difference is greatly reduced, the Laws' 

features having all but caught up with the co-occurrence values. On the 

other hand, Laws' subsets of two features have greater distinguishing 

power than co-occurrence measures for class pairs containing Elm, but 

this difference is also reduced for five feature subsets. For class pairs 

containing Rye grass the Laws' T2 values show a much bigger 

improvement between the two and five feature subsets than 

co-occurrence. Similarly the Laws' subsets appear to show a greater 

improvement for class pairs containing Oak, Hazel, and Plantain. 

The general impression is that co-occurrence subsets of two features have 

greater overall discriminating power than the Laws' subsets. However, 

when five features are used the Laws' subsets show the greatest 
improvement and become superior to the CO-occurrence measures. In 

order to back up this contention we may consider the median or the 
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228 
El ill 

896 53 
Ry 234 180 

206 63 292 
Oa 95 150 94 

783 23 33 167 
Ha 117 54 38 248 

783 84 80 112 42 
Pi 117 146 60 82 59 

Pi El Ry Oa Ha 

Laws' Masks Co-occurrence 

Sum of Ranks 229 236 

(a) T2 values for two variable subsets. 

356 
El 382 

1576 94 
Ry 1092 310 

318 196 418 
Oa 374 190 426 

914 112 75 253 
Ha 887 195 172 262 

1060 169 168 786 95 
Pi 668 403 437 196 89 

Pi El Ry Oa Ha 

Laws' Masks Co-occurrence 
Sum of Ranks 250.5 214.5 

2 
(b) T values for five variable subsets. 

Table 6.9 Comparison of T2 values from optimal subsets of 
co-occurrence and Laws' masks texture measures. Upper figures are 
derived from co-occurrence measures and lower figures from Laws' 5x5 
masks. 
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sum of ranks of the T2 figures. The mean would be inappropriate 

measure due to the highly skewed distribution of these data. Table 6.9 

also displays the sum of ranks. It can be seen that the co-occurrence 

values have a slightly larger sum of ranks for two feature subsets, 
indicating a slim superiority in discriminating power. This situation is 

reversed for the five feature values, and furthermore the Laws' measures 

hold a much larger superiority. A lower degree of correlation between 

the variables is the probable explaination as to why the Laws' subsets 

become more powerful than co-occurrence subsets as further texture 

measures are incorporated. 

6.7 COMBINED CO-OCCURRENCE AND TEXTURE MASKS 

It was felt that combining Laws' mask and co-occurrence texture 

measures may produce subsets with even greater discriminating power. 

To examine this idea the Laws' texture measures were combined with 

eight of the co-occurrence measures, selected somewhat arbitrarily, and 

entered into the variable selection procedure. The full set of 

co-occurrence measures were not used because the variable selection 

procedure would have become very slow with such a large number of 

variables to process. 

In general the T2 values for a given class pair were greater than those 

obtained when the Laws' and co-occurrence measures were used alone. 

However, a few of the two feature subsets did not achieve as high a 
degree of separation as the co-occurrence subsets, presumably because a 

critical co-occurrence measure had been omitted in the arbitrary 

selection. It was also noticeable that with subsets of five or more 

variables the Laws' texture measures were more frequently selected than 
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co-occurrence measures. This is perhaps another indication of their 

greater discriminating power. 

The results using the combined measures are presented in Table 6.10 

below. The 88% achieved with two features was better than the Laws' 

mask features managed, but not as good as the co-occurrence features 

when they were used exclusively. This was to be expected considering 

the T2 values described above. With four or more features the 98.4% 

success rate was an improvement over the figures for the separate use 

of either texture analyzer. In fact this success rate meant that only 

three samples were incorrectly identified. 

Features Used % Correct Classification 

2 88.0 
3 95.8 
4 98.4 
5 97.9 
6 98.4 
7 98.4 
8 98.4 

Table 6.10 Classification success from combined co-occurrence 
and Laws' mask texture measures. 

It would appear, therefore, that combining measures from the two 

texture analyzers can produce feature subsets with greater discriminating 

power than those obtained from Laws' mask or co-occurrence measures 

alone. This is clearly reflected by the greater classification success rates 

obtained with combined measures. 
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6.8 ADDITION OF A STRUCTURAL TEXTURE ANALYZER 

The classification success rates obtained in the previous section were 

considered to be very encouraging. A palynologist would expect 

misclassification errors of up to 5% to occur during manual 

identification. However, the palynologist would be attempting to classify 

a greater number of pollen taxa, and would generally be concerned with 

fossilized pollen which are likely to prove a greater challenge for 

automated recognition. An automated system may also be required to 

differentiate between more than six taxa. and this might increase the 

error rates. Furthermore. it may also be necessary to differentiate 

between different taxa for which the statistical texture analyzers described 

above would be less suitable. The samples used up until now had all 

been taken at the same magnification and only modified by the histogram 

equalization technique. Altering the magnification and applying more 

preprocessing operations may also have a significant affect on the ability 

to classify correctly the exine samples. 

For these reasons it was decided to continue experiments into 

classification by texture analysis. A structural texture analyzer was 

added to the statistical methods which required the samples to be 

processed differently. The effects of these changes are described below. 

In this section some consideration was also given as to how the 

complexity of the system might be reduced. The variable selection and 

classification procedures used so far were compared to some simpler 

methods. The results of these comparisons are also discussed below, 
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6.8.1 Details of the Database 

In order to make use of the structural texture analyzer based upon 

matched edge pairs (Pietikainen and Rosenfeld, 1982) it was necessary to 

generate a new database with images whose characteristics were more 

suitable for this analysis scheme. In particular, it was necessary that 

the textural primitives (spots, streaks, blobs, etc. ) were fairly large, and 

that noise and consequent false edges in the image were minimized. 

A fresh set of exine samples was selected from new SEM 

photornicrographs of the same six pollen taxa. Sub-scenes of 6404 

pixels were extracted, but the magnification of the samples was 

increased. Of course, this meant that the actual portion of the pollen 

grain covered by a sub-scene was considerably less than with the 

previous samples. The change in magnification was achieved at the 

digitization stage by altering the height of the camera on its stand. 
Sixteen samples were collected from each pollen taxon, producing a 
database with ninety-six samples in total. The new database is 

illustrated in Plates 6-VII to 6-XII. 

6.8.2 Preprocessing of Exine Samples 

The new samples were first processed with a 30 median filter. This 

was applied twice in order to greatly suppress noise levels in the 

image, and to eliminate very weak edges. However, it was hoped that 

the strong edges associated with texture primitive boundaries were not 

affected by the process and so would remain sharply defined. The 

median filter was selected in preference to a simpler mean filter in 

order to try and preserve these stronger edges. Using the median filter 
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Plate 6-VII. Pine exine samples. 

Plate 6-VIII. Elm exine samples. 
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Plate 6-IX. Rye grass exine, samples. 

Plate 6-X. Oak exine samples. 
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Plate 6-XII. Plantaiii cxine samples. 
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operator caused a reduction in the size of the samples to 60x6O pixels 

as boundary locations were discarded. The histogram equalization 

technique was employed to normalize the sub-scenes after the median 

filtering operation. The samples were reduced in tonal resolution to 

thirty-two grey levels. This was a change to the sixteen grey levels 

used in the previous databases. 

6.8.3 Texture Measmes 

Texture measurements were produced by three texture analyzers. The 

co-occurrence and Laws' texture measures were calculated as before. In 

addition, twelve new texture measures were produced by the structural 

edge based analyzer. The texture measurements produced by each 

analyzer were first used independently to classify the new database 

samples. Later they were combined in an attempt to improve 

classification results. 

6.8.4 Results ft-om Individual Texture Analyzers 

The classification results from the texture measurements of each 

individual analyzer are shown in Table 6.11. These results were 

obtained using the Fisher linear discriminant. classifier incorporating the 

leave-one-out technique and tie-breaker decision algorithm. 

It is clear that the success rate of both the co-occurrence and Laws' 

mask analyzers show a significant deterioration from those obtained with 

the previous data set. The co-occurrence analyzer displays the smallest 
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Features Used Co-occurrence Laws Mask Edge Pair 

2 73 66 72 
3 72 72 74 
4 81 75 78 
5 85 81 75 
6 87 78 77 
7 83 76 75 
8 82 54 73 

Table 6.11 Results from using the texture analysis schemes individually. 
Figures are percent correctly classified. 

deterioration, with success rates averaging just over 80%, while the 

Laws' mask analyzer averages a little over 70%. 

This deterioration in performance was expected due to the larger 

magnification of the new samples. It has been stated previously that 

macro textures are less appropriately analysed by grey level 

co-occurrence (Davis et al., 1979) since the derived statistics tend to 

reflect intensity transitions within the texture primitives rather than the 

large scale structural properties of the texture (Shen, 1980). 

The same argument applies to the Laws' mask measures. The texture 

primitives in the newer samples were now much larger than the 

dimensions of the masks. Therefore, the masks would have to be 

increased in size if they were to respond to the local image properties 

that they were originally designed to detect. 

The structural edge pair analyzer produced results that fall midway 

between those discussed above. They average around 75% success rate, 

but show less sensitivity to the number of texture features used. 

Analysing the T2 values for two feature subsets it was found that the 

co-occurrence measures produced the highest figures for most of the 
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Classified AS 
Pi El Ry Oa Ha Pi Uc 

. ft 

c Pi 
t 
u El 

a 
1 Ry 

C Oa 
1 
a Ha 
s 
s P1 

87.4 6.3 0.0 0.0 0.0 0.0 

6.3 81.1 6.3 6.3 0.0 0.0 

0.0 12.6 87.4 0.0 0.0 0.0 

12.6 6.3 0.0 74.8 0.0 0.0 

0.0 0.0 6.3 0.0 56.1 31.3 

0.0 0.0 6.3 6.3 25.0 56.1 

6.3 

0.0 

0.0 

6.3 

6.3 

6.3 

Table 6.12a Confusion matrix for classification by two co-occurrence 
texture measures. 

Classified As 
Pi El Ry Oa Ha Pi UC 

c Pi 
t 
u El 
a 
1 Ry 

c Oa 
1 
a Ha 
s 
s P1 

87.4 0.0 0.0 6.3 0.0 0.0 

6.3 43.6 12.5 6.3 12.5 12.5 

0.0 6.3 87.4 0.0 6.3 0.0 

0.0 6.3 0.0 68.7 0.0 25.0 

0.0 6.3 0.0 43.6 37.5 0.0 

0.0 12.5 6.3 0.0 6.3 68.6 

6.3 

6.3 

0.0 

0.0 

6.3 

Table 6.12b Confusion matrix for classification by two Laws' 5x5 mask 
texture measures. 

Classified As 
Pi El Ry Oa Ha Pi UC 

A 
c Pi 
t 

u El 
a 
1 Ry 

c Oa 
1 
a Ha 

s 
s PI 

56.1 6.3 0.0 12.5 0.0 6.3 

18.8 81.2 0.0 0.0 0.0 0.0 

0.0 6.3 81.2 0.0 12.5 0.0 

6.3 6.3 0.0 68.6 0.0 0.0 

6.3 0.0 6.3 0.0 68.6 12.5 

0.0 0.0 0.0 12.5 81.2 

18.8 

0.0 

0.0 

18.8 

6.3 

Table 6.12c Confusion matrix for classification by two edge pair 
texture measures. 
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class pairs. The edge pair measures produced far superior values for 

class pairs that included Plantain and closely rivalled the co-occurrence 

values for pairs that included Hazel. The Laws' mask features produced 

marginally better values for pairs that included Rye grass. If the 

confusion matrices shown in Table 6.12 are studied carefully it is seen 

that this pattern is closely mirrored in the results. Whilst the 

co-occurrence features yield the best overall results the edge pair 

features are much more successful in classifying the Hazel and Plantain 

samples. We might hope, therefore. that combining the co-occurrence 

and edge pair measures will yield greater classification success. 

6.8.5 Comparison with Euclidean Distance Classifier. 

It was decided that it would be useful at this stage to compare the 

performance of the Fisher linear discriminant classifier to the much 

simpler Euclidean distance classifier. We might expect the performance 

of the Fisher classifier to be better, but unless the margin is of 

sufficient magnitude it may be pertinent to use the simpler and quicker 

Euclidean classification scheme. 

Table 6.13 displays the results obtained in a Euclidean distance classifier 

which incorporated the leave-one-out method. The performance was 

considerably poorer than the Fisher classifier, despite the fact that all the 

texture measures were employed during the classification. This proved 

unequivocally that the Euclidean classifier could not produce results of a 

sufficiently high standard. Therefore, the Fisher classifier is obviously to 

be preferred, even though it is substantially more complex and slower to 

compute. 
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Co-occurrence Laws Mask Edge Pair 

49% 43% 60% 

Table 6.13 Results obtained from a Euclidean distance classifier. 

6.8.6 Comparison of Variable Selection by Accelerated 

Search and Sequential Backward Elimination 

Another way in which the complexity of the system could be reduced 

would be to employ a variable selection procedure based on sequential 

backward elimination or sequential forward addition. rather than the 

accelerated search technique utilised so far. 

To test how the classification performance might be affected by a 

simpler technique the texture measurement data were entered into a 

sequential backward elimination procedure. In this process we begin 

with the complete set of texture features and delete, one at a time, the 

variable which causes the smallest deterioration in the separability index. 

it is a similar technique to the accelerated search except that the 

relationships between discarded variables are ignored. It has the 

advantage, however, of being simpler and quicker to compute. 

Table 6.14 shows the difference between the percentage classification 

results obtained from subsets selected by backward elimination and the 

accelerated search. Analysis of the T2 values indicated that the 

separation levels of the subsets selected by backward elimination were 

generally a little poorer. The classification results remained comparable, 
however, with the co-occurrence measures, but were rather poorer with 

the Laws' masks and edge pair texture measures. 
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Features Used Co-occurrence Laws Mask Edge Pair 

2 + 4% -12% - 3% 
3 - 4% - 5% 0% 
4 + 3% + 1% - 2% 
5 0% 0% + 3% 
6 -1% 0% 0% 
7 -1% 0% 0% 
8 + 2% 0% 0% 

Table 6.14 Relative performance of the classifier after using variables 
selected by backward deletion rather than the accelerated search. 

it is \, cry noticeable that in some cases the performance improved with 

the use of the suboptimal feature sets. The final classification result for 

any given sample depends not only on how well the classification 

functions containing the true class identity perform. If a sample does 

not receive the full number of votes for the correct class then the 

outcome may be determined by the voting in the 'redundant' 

classification functions (i. e. those that do not contain the true class). 

Although the subsets can be optimised for distinguishing between a given 

class pair we cannot deten-nine what effect these optimal subsets have 

when the sample is not from one of these classes. Thus, it is possible 

that subsets with poorer separability indices cap produce better 

classification results due to their ability to share the 'redundant' votes 

more evenly amongst the false class identities. 

6.9 COMBINING TEXTURE MEASURES 

Texture measures from the different analyzers were combined and entered 

into the variable selection process in an attempt to find feature subsets 

with greater discriminating power. This was carried out on combined 

co-occurrence and Laws' mask measures, on combined co-occurrence and 
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edge pair measures, and finally on the combined texture measures of all 

three analyzers. 

6.9.1 Combined Co-occurrence and Laws' Mask Measures 

A combination of eight co-occurrence features and the full eight Laws' 

mask features were used in the accelerated search procedure. The eight 

co-occurrence features chosen were the same as those selected from the 

previous database. 

The T2 statistics indicated that in many cases there was no combination 

of Laws' mask and co-occurrence features that could exceed the 

separability managed with their independent use. A stronger two feature 

subset was discovered in only seven of the fifteen class pairs. 
However, the classification results displayed in Table 6.15 below do not 

reflect this fact. The results were consistently better than those obtained 

with co-occurrence and Laws' mask measures used alone. Obviously the 
few better subsets that were discovered had a strong influence on the 
final classification outcome. 

Features Used % Correct Classification 

2 77.2 
3 89.6 
4 89.6 
5 91.7 
6 90.6 
7 90.6 
8 89.6 

Table 6.15 Classification success using co-occurrence and Laws mask 
texture measures combined. 

Page 



Chapter Six Classification Results 

6.9.2 Combined Co-occurrence and Edge Pair Measures 

These combined measures consisted of the eight co-occurrence, features 

previously selected, and the full twelve edge pair features. The 

accelerated search routine was used with these data for variable 

selection. 

The T2 statistics of' the selected subsets again revealed that only a few 

combinations had greater powers of separability. In general the optimal 

subsets selected for a given discriminant function were composed either 

of co-occurrence measures. or of edge pair measures. Only three of 

the fifteen selected subsets combined measures from both analyzers. 
Furthermore. the T2 values were in most cases lower than those for the 

combined Laws' mask and co-occurrence subsets. 

The results of classification. shown in Table 6.16, were quite surprising 

considering (he details discussed above. Combining these texture 

measures was as successful as combining co-occurrence and Laws' mask 

data. The success rates were considerably better than when the features 

from each analyzer were used independently. 

It appeared that the main reason for this success was the ability of 

edge pair measures to distinguish between Plantain and the other classes. 

The edge pair subsets were particularly superior for differentiating 

between Plantain and Hazel. The co-occurrence measures were selected 

exclusively for almost all the other discriminant functions. Therefore. 

although the overall level of separability was not as great as for the 

combined co-occurrence and Laws' mask measures, the improved results 

with the Hazel and Plantain samples produced the lower classification 

error rate. 
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Features Used % Correct Classification 

2 81.3 
3 90.6 
4 89.5 
5 92.7 
6 90.6 
7 90.6 
8 90.6 

Table 6.16 Classification succeSS Using co-occurrence and edge pair 
lexttire measures combined. 

6.9.3 All textum features combined 

As a final experiment the measures from all three texture analyzers were 

combined into a single file. This was entered first into the backward 

elimination routine to reduce the thirty-five texture descriptors to 

SUI)OPtiIIIIII SLIbSCtS of fifteen features. The accelerated search program 

then continued with these subsets. This procedure was obviously quite 

expensive on compUter time. 

The classification results are displayed in Table 6.17. The success rate 

with subsets of' 2.3. and 4 variables were lower than previous results. 
However. ývith the larger subsets an improvement was produced. The 

95 Tc success rate was roughly comparable to that obtained with the 

previous database using combined co-occurrence and Laws' mask texture 

measures. 

It must be noted that substantially more computation was required to 

produce these results. This includes the extra preprocessing techniques 

used. the additional calculations needed to produce the edge pair 

measures (which were more complex to produce than the statistical 
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measures). and the extra work involved in the construction of the 

classifier. Taking all this into consideration there seems to be little 

advantage III LISIIIg the structural texture measures, certainly for 

classifying these partiCUlar textures. 

Features Used % Correct Classification 

2 72.9 
3 84.4 
4 86.5 
5 93.6 
6 94.8 
7 94.8 
8 91.7 

'rabic 6.17 Classification success using co-occurrence, Laws mask. and 
edge pair texture measures combined. 
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Chapter Seven 

7.1 INTRODUCTION 

Searching for Pollen 

This Chapter describes briefly the efforts that were made to tackle the 

problem of locating pollen using SEM derived imagery. Unfortunately 

there was insufficient time to thoroughly investigate this essential aspect 

of a automated pollen analysis system. The problem remains one to be 

tackled further in future work. However, the modest progress that was 

made during (his period Of Study should still prove highly valuable to 

any person continuing research in this area, and so is reported here 

primarily for their benefit. 

The discussion in Section 4.1.1 has already indicated the need for 

computer control of the microscope stage, and broadly specified the 

major problems (hat need to be tackled. We will be concerned here 

only with (he image processing aspects of a solution. 

7.2 SEPARATING OBJECTS FROM THE BACKGROUND 

7.2.1 Segmentation by Thresholding 

A principal requirement of a working system will be the need to 

identify the location of all objects in the scene that is viewed. This 

classic segmentation problem can probably best be tackled by using 

simple thresholding techniques. SEM imagery typically displays a very 

dark background on which the objects are defined by their higher tonal 

levels. We would expect a grey level histogram derived from this 

type of image to display a bimodal tendency. The lower modal group 

would represent the dark background pixels, while the higher group 

would naturally represent the lighter object pixels. Selecting a threshold 
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grey level between these groups should allow all pixels to be segmented 
into object and background classes. 

Unforlunately this fundamentally simple idea is often complicated by 

other factors. These have already been discussed in some detail in 

Sections 2.4.2 to 2.4.5 of this report. Of particular relevance is the 

fact that simple thresholding of textured regions is often unsatisfactory. 

The range of intensities associated with the texture lead to 'holes' within 

an object wherever pixels have values that fall below the threshold level, 

since the%e are consequently classified as background points. 

A simple solution is provided by Davis et al. (1975). If the image is 

first processed by a low pass smoothing filter the extreme values within 

the textured region are suppressed. The underlying principle is that the 

textured regions have a higher average grey level, when measured over 

a local area. than the background regions. Producing a locally averaged 

image enables a single fixed threshold to successfully segment the 

image. 

Unfortunately the size of local averaging necessary for successful 

segmentation is problematic and depends on the images themselves. 

Textures wilh higher levels of local contrast require a larger degree of 

local averaging. In the tests undertaken it was found that, averaging 

over IIxII pixel regions was sufficient for all the taxa used in these 

experimen(s! 
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7.2.2 Selecting a Thmshold Autornaticafly 

In an automated systern the selection of a suitable threshold must be 

undertaken without the need for human assistance. Although the idea 

of segmentation by thresholding is a simple one, the automatic selection 

of a satisfactory level is often a non-trivial task (Rosenfeld and Kak, 

197t)). After considering several approaches the method proposed by 

01su ( 1979) aplwared to hold the greatest promise of success. This 

was implemented on the PDP 11/23 machine and in conjunction with 

the IIxII smoothing filter was found to perform very well. None of 

the problems described by Kittler and Illingworth (1985) were 

encountered during the study period. However, future researchers may 

likc to test this method more thoroughly and, if necessary, employ the 

extra error checking procedures that are proposed by Kittler and 
Illingworth. 

The scheme that is outlined above is capable of producing a binary 

image where objects are represented as white pixels and the background 

as black plxcls. The sequence of events is illustrated in Plates 7-1 to 

7-111. An image displaying a single Oak pollen grain is shown in 

Plate 7- 1. The effect of low pass smoothing on this image is shown in 

Plate 7-11. Finally, the binary image produced by using the automatic 

thresholding algorithm is displayed in Plate 7-111. 
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I'latc - 1. SEM iniage of an Oak pollen grain 
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Plate 7-111. Biiiaiý immic from automatic thresholding 

Plate 7-IV. Edge map of binary image 
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7.3 TRACING AND MEASURING OBJECTS 

7.3.1 Locating Object Botmdafles 

Once a binary image is obtained the next stage should be to analyse 

this information. From the binary map the location, size, and other 

geometric properties of each object can be ascertained. In order to do 

this the object boundaries must first be encoded. Dudani (1976) 

provides an algorithm for following and encoding the boundaries in a 

binary image. The scheme developed during this study employed a 

rather different approach and has a number of advantages. 

The first stage in the scheme developed was to derive an edge map 

image from the binary image. A simple method of achieving this was 

to process the binary image with the Roberts 2x2 edge operator. 

Whenever this operator crossed a boundary between black and white 

regions an edge pixel was generated, but elsewhere zero values were 

produced. The effect of this action is clearly seen in Plate 7-IV where 

an edge map of the Oak pollen grain has been produced from the 

image in Plate 7-111. 

7.3.2 Tracing Boundaries 

In order to trace object boundaries a search was initiated from the 

top-left of the edge map image, working left to right along each row, 

and from one row down to the next. Whenever a nonzero value was 
found this location became the starting pixel for a boundary following 

stage. From the initiating pixel a search was made for an adjacent 

edge pixel. This search was started by looking at the pixel to the left 
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of the initiating pixel (where an adjacent edge pixel should never be 

found since it would have become the initiating pixel) and working 

round all other neighbours in an anti-clockwise direction. 

If an edge neighbour was discovered the relative direction of this new 

edge pixel was recorded using Freeman chain-coding (Freeman, 1961). 

The search was then continued from the new pixel, starting 45 degrees 

around from the direction of the old edge pixel. A search was 

concluded if the boundary ran off the image area, came to a dead-end, 

or returned to the location of the initiating pixel. All boundaries where 

chain-encoded as they were traced. 

Once a trace had been completed the location of the starting pixel and 

the chain code of the boundary were used to set all pixels in this trace 

to zero value. In this way there were no difficulties in avoiding the 

multiple recording of any given boundary. The search for a new 

initiating pixel continued from the location of the last initiating pixel, 

and the process continued in this fashion until the entire image had 

been searched. 

7.3.3 Recording Object Properties 

Once the search had been completed the chain codes recorded from 

object boundaries were analysed. From these data the boundary length 

and the enclosed area of all completely enclosed objects were 
determined. These measures were combined to give a 'compactness' 

index by dividing the square of the perimeter by the enclosed area. 
The enclosed area calculation provided by Freeman (1961) was developed 

further to provide the centre of gravity of each object. Therefore, the 
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location. size, and simple shape characteristics of each object were 

produced from this procedure. 

The comer-finding algorithm of Freeman and Davis (1977) was also 

briefly experimented with. This was found to produce encouraging 

results, easily outperforming the methods described by Rosenfeld and 

Johnston (1973). and Rosenfeld and Wezska (1975), which were also 

investigated. It appeared to have considerable potential for providing 

more detailed shape information, but again this remains an area for 

future research. 

7.4 CONCLUSION 

This chapter has described the investigations that were undertaken into 

automatically locating objects in SEM derived imagey, and in identifying 

pollen from other artifacts. It has described a method to obtain a 

satisfactory segmentation of objects and background within a given 
image. The problem of tracing object boundaries has been tackled, 

using a newly developed algorithm that simplifies the task. Some 

measures derived from the encoded objects that should be useful in a 

system to determine where pollen is located have been presented. 

Although insufficient experimental results were available to provide a 

balanced appraisal of the effectiveness of the proposed scheme, the 

information presented here should prove valuable for future research into 

this task. Obviously some problems, such as dealing with overlapping 

grains and non-pollen objects that have a pollen-like shape, have not 
been addressed but these provide interesting tasks for those undertaking 
further work. 
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Chapter Eight Conclusions and Further Work 

8.1 DIGITAL IMAGE PROCESSING IN PALYNOLA)GY 

The future for digital image processing within the field of palynology 

would seem to be secure. Almost all modem scanning electron 

microscopes capture their image data in digital format, and equally 

invariably this information is readily exportable into external computer 

systems. Contrast stretching, thresholding, and frame averaging, are 

examples of image processing techniques that are now implemented on 

many SEMs directly. With this easy access-to digitally encoded image 

data the desire for automated computer analysis of the captured 

information is likely to grow ever stronger. 

This study has concentrated on investigating the potential of digital 

image processing and analysis for the automated recognition of pollen as 

viewed under a SEM. Before discussing the results that were obtained 

in greater detail, some statements can be made on a rather broader 

scale concerning the lessons learnt from this work. 

8.2 GENERAL CONCLUSIONS 

Digital image analysis offers a method of analysing pollen SEM imagery 

directly by computer. The potential for automated pollen identification 

exists provided that suitable software can be developed. Although pollen 

presents a difficult recognition problem, encouragement may be taken 

from the fact that successful systems for analysing other biological 

materials are already in existence. 

This study has concentrated on the task of identifying pollen grains, 

making the assumption that a system for accurately locating grains will 
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become available in the near future. It has been shown that analyzing 

the textural properties of the pollen exine is the most likely method of 

providing measured features that have sufficient reliabilitY and diagnostic 

power for accurate identification. 

The need for sophisticated classification procedures is also clear from the 

work reported here. It is quite apparent from the results of Chapter 

Six that classifier design can have a very significant effect on the 

success (if an automated system. Associated with this is the need to 

select suitable measurements at the feature extraction stage. In order to 

obtain sui(able measurements we require reliable and powerful texture 

analysis schemes. However. the most suitable features for identifying 

any given taxa naturally depend on the properties of the taxa itself. 

Variable selection routines are likely to be vital in establishing the best 

individual measurements for any given case and so maximize classifier 

performance. 

Thc allempts described in Chapter Seven at tackling the problem of 
locating ix)llcn grains within a given scene, although not conclusive, 

strongly suggest that this will not be an insurmountable difficulty. 

8.3 A RE' NIEW OF THE RESULTS 

ne success rates attained in Chapter Six are worthy of a more detailed 

evaluation than is presented above. The results obtained from the first 

major database of samples clearly illustrated several important points. 
These were. firstly. that multiple measures of textural properties were 

essential in order to gain sufficient discriminatory information to allow 
high levels of classification success. Almost invariably the success rates 
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increased as more texture measures were utilised. However, it was soon 

established that an independent assessment of classifier performance is 

needed in order to prevent biased estimates of the success rate. 

With a leave-one-out classification scheme the success rate was found to 

reach a saturation level as increasing numbers of variables were used. 

Greater classification accuracy was possible only be resorting to other 

means, as described below. 

Improved results were gained through modifying the original design of 

the pairwise linear discriminant classifier. The addition of a simple 

tie-breaker algorithm to resolve samples drawn on votes between two 

possible classes provided a notable increase in the number of correct 

identifications. The use of a variable selection procedure combined with 

a further modification to the classifier in order to capitalize on this 

extra information, produced even more impressive improvements to 

success rates. 

Using only co-occurrence texture measures in this enhanced classification 

scheme, success rates in the region of over 90% were produced. 

Texture features based on local mask matching, the Laws mask texture 

measures, produced similarly impressive results. 

Through studying the results presented in the earlier sections of Chapter 

Six, it became apparent that the success rates were often 'spoilt' by 

certain frequently occurring confusions between pollen taxa. Confusions 

between Rye grass, Elm and Hazel, and between Plantain and Hazel, 

are typical examples. However, the taxa, confused were not consistent 
between different texture analysis schemes. There was, in effect, 

confusion in this sense as well. 
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Combining features from several texture measurement schemes was 

attempted, using the variable selection routine to guide the choice of 

combinations. in this way the confusion between certain combinations 

of taxa ought to be minimized, since features from the most appropriate 

analysis scheme could be selected. 

This approach was quite successful, especially with the second major 

database of exine samples. Due to changes in the magnification of 

these samples the statistical texture analysis schemes were less 

appropriate for quantifying their textural properties. Consequently, the 

results obtained using the analysis schemes individually show a marked 

deterioration. However, by combining texture features from several 

analysis schemes, including those from a structural texture analyzer 

better suited to these sample, the success rate recovered to over 90% 

again. 

Overall, it is clear that substantial improvements to unbiased estimates 

of classification success were brought about through improved classifier 

design, variable selection, and combining texture measures from several 

analysis schemes. 

8.4 THE FUTURE FOR AUTOMATED POLLEN ANALYSIS 

The classification success rates attained in Chapter Six of this report 

suggest that automatic pollen identification using digital image processing 

is a feasible proposition. There should be no illusion that the 

production of a satisfactory working system will be a simple task; many 

difficulties remain that have yet to be tackled. However, we may 

cautiously anticipate the day when fully automated pollen analysis 
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becomes a reality. 

8.5 AREAS FOR FUTURE WORK 

Conclusions and Further Work 

There are a number of readily identified areas that future work should 

address. The most obvious of these is the need for a system that can 

accurately locate pollen within the captured scenes. 

Computer control of a microscope stage is a problem to be solved 

through hardware rather than software. It is unlikely that a satisfactory 

system for this task could not easily be manufactured given sufficient 

funds. Locating objects in general within captured scenes should not 

prove to be an especially difficult task. A scheme based on simple 

automated thresholding, like that proposed in Chapter Seven of this 

report, should be sufficient to segment images into background and 

object points. 

Differentiating between genuine pollen and other unwanted artifacts may 

present a tougher problem. Use might be made of the 'elemental 

analyzer' found on modem SEM equipment. This can provide a break 

down of the chemical elements in a targeted object. With this 

information a quick and reliable method to distinguish between organic 

and non-organic material ought to be possible. Object shape and 

surface texture descriptions could supplement this information if 

necessary. Careful preparation of the original samples ought to ensure 

that very little other organic materials are present. 

Preparation techniques are likely to play a valuable role in the 

production of a satisfactory system. If methods of producing very clean 
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samples are employed, and if the distribution of pollen can be tightly 

controlled such that individual grains are well separated then the overall 

task will be greatly simplified. Therefore, this is another area of 

interest for future research. 

Consideration will need to be given to improving the techniques 

established in this work. In particular the classification structure could 

be investigated further. If it is necessary to identify many more pollen 

taxa than attempted here the pairwise classifier design will be an 

inappropriate instrument for the task. Possible solutions are the use of 

multiple discriminant functions, multinomial logit models, or hierarchical 

based classification systems. 

Many other techniques for the quantification of texture exist, and some 

may prove more effective for pollen identification than those investigated 

here. A feature selection routine, like that described in Chapter Five, 

is likely to be useful in determining the power of new texture 

measures, and would also be invaluable when constructing a hierarchical 

classifier. 
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