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Abstract 

 

Nereis acuminata is a polychaete species with a unique life cycle.  A male and female 

form a monogamous pair bond, the female lays eggs and dies.  The male then fertilises 

the egg and undertakes sole parental care until the eggs hatch and larvae leave the 

parental burrow; the male can then reproduce again.  This body of work investigated 

aggression, pair formation, filial cannibalism, the scent of experience and the 

occurrence of male parental care for eggs fertilised by another male in the polychaete 

species Nereis acuminata.  

 

Female aggression following egg release was found to be absent when the females were 

not in the presence of an egg mass, with no aggression displayed towards sexually 

mature females.  Aggression between two males did not have a subsequent effect on the 

pairing behaviour with a female, although there was slight decrease (not significant) in 

the time taken for individuals to pair if they had previously formed a pair bond.  Males 

that had previously had an aggressive encounter were fought subsequently to determine 

if there was recognition for previous opponent but aggression did not change following 

previous fights, indicating that previous fights between the same opponents does not 

have an effect on the aggression levels exhibited.  Aggression between the populations 

maintained in the laboratory, Reish (R), Newport (N), San Gabriel (SG), Connecticut 

(C) and the wild population Los Angeles (LA) were examined.  Although there were 

significant differences in male aggression between the R, N, SG and C populations, and 

significant differences in female aggression between the R and LA populations, 

aggressive behaviour was not found to be a strong indicator of population divergence.  

Observations of pair formation, however, provided a stronger indicator of divergence.  

Pairing behaviour within each population was found to be significantly different to that 

between individuals from different populations, with Connecticut individuals failing in 

the majority of cases to form a pair bond with any of the other three laboratory 

populations.  The LA and R populations, sampled in the same location 44 years apart, 

did not form pairs with the same frequency as males and females from the same 

population but interactions between R and LA males and females were found to form a 

high frequency of pairs, indicating that although the R population may be heavily 

inbred, females of this population will still form monogamous pairs with males from the 

LA population.  The behavioural and molecular evidence suggests that these 

populations form a species complex and this is important to note when undertaking 
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ecotoxicology testing as the different populations may respond differently to the same 

environmental conditions.   

 

The occurrence of filial cannibalism was investigated in male N. acuminata, looking at 

aggressive interactions between males and female mate choice.  The presence of a 

cannibalistic male did not affect the aggression observed between two individuals and it 

appeared that females could not discriminate between males that had cannibalised their 

egg mass.  Conditioned water was used from various sources to determine if female 

preference could be altered following an initial selection of male by the female.  Water 

from males caring for eggs and from new experienced males that had just completed 

egg care was found to change the choice of the female to a pre-treatment loser.  Water 

conditioned from females, juveniles and inexperienced males appeared to enforce the 

previous choice of the female as in these trials the female chose the previous winner 

more frequently.  The mechanisms related to the scent of experience in terms of 

physiology and release of the chemical signal however, are still unknown.  It is thought 

that there is a physiological change in the male, for example by release of sperm or by 

production of ‘new’ sperm that the female can detect and uses to indicate that a male 

has previously cared for a brood.  As the female dies following egg release and the male 

undertakes sole parental care, an honest indication of the ability of the male to 

successfully care for eggs is vitally important.   

 

Finally, male behaviour towards an egg mass fertilised by another male was 

investigated.  Inexperienced males that had not completed egg care were found to care 

for the eggs until they hatched whereas experienced males were not, instead 

cannibalising the egg mass.  Inexperienced males were likely to gain from adopting 

eggs by gaining parental experience and receiving more matings in the future.  

Experienced males did not gain benefits from caring for unrelated eggs but 

cannibalising the eggs would benefit the experienced male by providing extra nutrients.   

 

Nereis acuminata is an ideal species to use as a model organism to investigate the 

behavioural and evolutionary processes involved in mate choice, aggression, preference 

for parental experience and the chemical signalling involved, due to its adaptable life 

history, short life cycle and ease of maintenance in the laboratory. 

 

 

  



- 9 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter One:  

 

Literature Review  



- 10 - 
 

1.1: Research rationale  

The life cycle of Nereis acuminata is unique among nereid polychaetes (Bridges et al., 

1996) with female death following reproduction by dehiscence (the splitting of the body 

wall); sole male parental care of eggs and the ability for the male to reproduce again 

once egg care is complete (Reish, 1957; Reish, 1985).  Although the life cycle of N. 

acuminata has not been observed in the field, this species can still be used as a model 

for evolution as it has an easily adaptable life history, a relatively short life cycle and is 

convenient to use for behavioural bioassays with observations easy to make and 

experiments simple to conduct at each stage of the life cycle (Reish, 1980b; Reish, 

1985).   

 

Populations of N. acuminata have been sampled worldwide but the taxonomy of this 

species is still unclear.  Populations may in fact form distinct, reproductively isolated 

units depending on their location.  The chromosome numbers of some of the 

populations of N. acuminata have been identified.  The diploid chromosome number of 

the Pacific Ocean populations (California, U.S.A) is 18 (Pesch and Pesch, 1980; 

Weinberg et al., 1990).  The diploid chromosome number of the Atlantic populations 

(Connecticut, U.S.A.) is 22 (Weinberg et al., 1990).  Differences in chromosome 

number can be an indication of reproductive incompatibility (Knowlton, 1993).  

Although populations examined share the same life history traits, previous studies have 

indicated that separate populations behave differently, for example in pairing 

experiments between populations (Weinberg et al., 1990; Weinberg et al., 1992; Sutton 

et al., 2005).  As N. acuminata is used in ecotoxicology studies to test for water quality 

and the presence of heavy metals bound to the sediment, differences in population 

behaviour may have wider implications; different populations may behave differently 

when used in such tests, for example in terms of metabolism, growth or reproduction.  

Differences in pairing behaviour between the populations has led researchers to suggest 

that N. acuminata populations may be reproductively isolated (Weinberg et al., 1990; 

Weinberg et al., 1992; Sutton et al., 2005); known as the final step before speciation 

(Snell, 1989).  Populations of this species may therefore form a species complex if 

reproductive isolation occurs.     

 

Although sexual selection has been examined in N. acuminata (Starczak, 1984; 

Fletcher, 2004, Storey, 2006, Fletcher et al., 2009), the process is still not fully 

understood.  As the female dies following reproduction, it is vital that the female makes 

a good mate decision as the reproductive success of her offspring depends entirely on 
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the ability of the male to care for offspring.  Although males undertake sole parental 

care, female choice for males that have previously fathered a brood has been shown to 

occur (Fletcher, 2004, Storey, 2006, Fletcher et al., 2009) and female reproductive input 

is higher than the input of males in this species due to the occurrence of female death 

following reproduction (Starczak, 1984).  The behaviour of males prior to reproduction 

with a female may have an effect on female choice.  Both cannibalism and adoption of 

eggs have been reported to occur in N. acuminata (Oshida et al., 1981, Sutton, 1998) 

but the full effects of these forms of behaviour in terms of subsequent female mate 

choice have not been expanded upon.  Although female mate choice has been shown to 

occur, the mechanism by which this advantage is conferred to females is still unclear.  

 

This thesis attempted to address the above questions and problems.  The more we know 

about the life history stages in this polychaete and the interactions between the 

populations, the more we can apply that knowledge to use N. acuminata as a model 

species not only as an indicator of pollution and water quality monitoring and 

population divergence, but also as model for sexual selection theory.   
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1.2: Annelid polychaetes 

Polychaetes are thought to represent 40% of all the species constituting the soft bottom 

sub-tidal benthos (Reish, 1980b) with approximately 8,000-9,000 different species 

(McHugh and Fong, 2002; Ruppert et al., 2004).  The general anatomy of Nereis spp. 

consists of a linear array of segments, with each segment acting as a sheath for the 

coelom (Kershaw, 1983).  The body consists of a prostomium and peristomium which 

form the head region, and also a pygidium, which forms the tail region and bears the 

anus (Knox, 1951).  In the head region, there is an eversible pharynx which is used to 

capture food (Kershaw, 1983).  The pharynx has a single pair of jaws with serrated 

edges (Knox, 1951), controlled by muscles in the wall of the proboscis (Kershaw, 

1983).  The circulatory system is closed and blood flows to the head region in a dorsal 

vessel and away from the head in a ventral vessel by peristaltic action (Flint, 1965).  

Gas exchange can occur across the cutaneous surface of the epidermis but some 

polychaetes have gill structures, which are often a modification of one set of parapodia 

(Withers, 1992).  The brain of nereid polychaetes is bi-lobed and the control of 

endocrine function is well-developed (Withers, 1992).  Individuals are also able to 

respond to tactile and chemosensory stimuli.  The epidermis houses the sensory nerve 

cells and the sense organs (Dyal, 1973).  The anterior region of the body usually 

contains sensory organs such as the palps, cirri, antennae, proboscis and eyes (Flint, 

1965).  The chemoreceptors are located in nuchal organs found at the junction between 

the prostomium and peristomium (Dyal, 1973).  Digestion enzymes are excreted from 

the epithelial lining via the nephridia as food passes through the continuous gut.  The 

products of digestion are then absorbed in the gut wall by blood capillaries (Kershaw, 

1983).  Sperm and egg maturation occurs mainly in the coelomic fluid (Rouse and 

Pleijel, 2006).  When gametes are ripe, they pass to the exterior of the body through the 

segmental organs known as coelomoducts but in some species the eggs are released by 

dehiscence (Borradaile et al., 1963).  Movement of the body via contraction of the 

longitudinal muscles is coordinated by the giant axon of the ventral cord (Horridge, 

1959) in response to the excitation of the supra- and sub-pharyngeal ganglia (Borradaile 

et al., 1963).   

 

The experimental species Nereis acuminata, like most nereids, has four eyes, two 

antennae, two palps and four pairs of dorsal and ventral tentacular cirri.  The proboscis 

is strong and eversible with oral and maxillary rings, terminated with horny falcate jaws 

(Moore, 1903; Pettibone, 1963).  Further anatomical detail can be seen in Figure 1.1 

below.   
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Figure 1.1: Dorsal view of the head region of a typical Nereis acuminata individual, 
with everted pharynx on the right; adapted from Bhamrah and Juneja (2001).  
 

1.3: The experimental species and previous research 

The polychaete species, Nereis (Neanthes) acuminata (Ehlers, 1868 cited Kudenov, 

1975) is also known by six other names including Nereis (Neanthes) caudata (delle 

Chiaje, 1828), Spio caudatus (delle Chiaje, 1828), Nereis (Neanthes) arenaceodentata 

(Moore, 1903) Nereis (Neanthes) cricognatha (Ehlers, 1904 cited Knox, 1951) Nereis 

(Neanthes) eikini (Hartman, 1936 cited Pettibone, 1963) and Nereis (Neanthes) bolivari 

(Rioja, 1918 cited Barnich et al., 2000).  There appears to be considerable confusion in 

the literature regarding the naming of the experimental species and the taxonomy is 

unclear (Pettibone, 1963).  Nereis has been described as an old name for Neanthes by 

Bhamrah and Juneja (2001) but Neanthes and Nereis are described as possessing 

chaetae that are different in their morphologies (Muir and Bamber, 2008).  At the end of 

the chaetae, the setae (bristles) have a shaft with a terminal end composed of two 

branches.  If these branches are the same length they are described as homogomph; if 

they are of different lengths, they are described as heterogomph.  The terminal end of 

each of the branches can either be long and pointed, described as a spiniger, or short and 

hooked described as a falciger (Knox, 1951).  Nereis is described as a genus with 

individuals possessing homogomph spinigers and falcigers in the middle and posterior 

notopods whereas individuals of the genus Neanthes have homogomph spinigers in the 

notopods only (Knox, 1951).  In the literature, however, Nereis and Neanthes appear to 

be used interchangeably for this species and there is no distinction made between the 

morphologies of each genus.  A summary of the different pseudonyms is detailed in 

Table 1.1.  In the literature, Day (1973 cited Reish, 1985) appears to have dismissed the 

Jaws 

Prostomial  
palp 

Parapodia 
with chaetae 

Eyes 

Protruded pharynx 

Everted bucchal region 
Prostomial tentacle 

Peristomial cirri 

Body segments 
Peristomium 

Prostomium 

3mm 
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use of Nereis (Neanthes) arenaceodentata in favour of Nereis (Neanthes) acuminata 

(the earliest name used) and this was subsequently adopted by Gardiner (1975), Taylor 

(1984 cited Moore and Dillon, 1992) and Weinberg et al. (1990).  However, Neanthes 

arenaceodentata is the most commonly used pseudonym in the ecotoxicology literature 

where most of the specimens are listed as originating from a population held in the 

laboratory of Dr. D.J. Reish, sampled from California on the west coast of North 

America.  However, Bakken (personal communication) states that Neanthes 

arenaceodentata is an east coast population, originally sampled in New England.  The 

species described here all have a similar morphology and life history traits and it is 

hypothesised that they may form part of a species complex composed of sibling species 

(Weinberg et al., 1990).  Sibling species are populations that are morphologically 

similar or identical that are reproductively isolated (Mayr, 1977).  In the case of this 

body of work, for ease of description, the species used will be referred to as Nereis 

acuminata (henceforth N. acuminata). 

 

Populations of N. acuminata which share the same life history traits and morphology 

have been reported in various coastal locations across the world as demonstrated in the 

distribution map on the following page in Figure 1.2.  The numbers used for each 

pseudonym in Table 1.1 above are also represented on the distribution map to show 

approximate geographical regions for each pseudonym.  For example, the species 

sampled along the east coast of North America is described as Neanthes acuminata 

whereas the species sampled in the Caribbean is described as Neanthes 

arenaceodentata.  This further highlights the confusion concerning the taxonomy of this 

species as the names given to the populations sampled in each geographical location 

vary considerably.  It is still unknown whether each of these populations should be 

classed as separate species. 
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Table 1.1: The original sampling locations for the experimental species, including the 
different nomenclature used. 
 
Name Location Reference 
1.  Nereis acuminata Mediterranean Ehlers, 1868 cited Kudenov, 1975. 

 
2. Neanthes acuminata 
 

East coast USA, Ehlers, 1868 cited Kudenov, 1975. 

3. Nereis caudata Mediterranean, Gulf of 
Naples, Egypt 

delle Chiaje, 1828. 

4. Neanthes caudata Mediterranean, Egypt  delle Chiaje, 1827 cited Pettibone, 1963 
 

5. Nereis 
arenaceodentata 

Caribbean Moore, 1903. 

6. Neanthes 
arenaceodentata 

West coast USA  Moore, 1903. 

7. Nereis eakini Mexico, Peru, Galapagos 
Islands 

Hartman, 1936 cited Méndez, 2006. 

8. Nereis bolivari Spain Rioja, 1918 cited Barnich et al., 2000. 
 

9. Nereis cricognatha New Zealand, Australia 
 

Ehlers, 1904 cited Knox, 1951 

10. Spio caudatus Mediterranean delle Chiaje, 1828. 
 

 

 
Figure 1.2: Distribution map of known sampling sites for N. acuminata (delle Chiaje, 
1827 cited Pettibone, 1963; Ehlers, 1904 cited Knox, 1951; Rioja, 1918 cited Barnich et 
al., 2000; delle Chiaje, 1828; Ehlers, 1868 cited Kudenov, 1975;  Moore, 1903; Fauvel, 
1923 cited Clark, 1959; Herpin, 1926 cited Reish, 1957; Hartman, 1936 cited Méndez, 
2006; Reish, 1957; Pettibone, 1963; Reish, 1980a; Pesch et al., 1987; Weinberg et al., 
1990; Wolff et al., 1993; Muir and Bamber, 2008; Abd-Elnaby, 2009). 
 

1       Nereis acuminata          6        Neanthes arenaceodentata 
2       Neanthes acuminata          7        Nereis eakini 
3       Nereis caudata          8        Nereis bolivari 
4       Neanthes caudata          9        Nereis cricognatha  
5       Nereis arenaceodentata    10       Spio caudatus 
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This species occupies mucus-lined burrows in the upper 2-3cm of brackish and marine 

sediments (Bridges et al., 1996), mainly found at low water levels in sand, but also on 

mussel beds, sponges or on floating algae (Pettibone, 1963).  Many species of 

polychaetes are known to construct mucous-lined burrows.  These are often sticky, 

allowing the external surfaces of the burrow to attach to bare surfaces.  Sand, debris, 

mud and shell fragments often become integrated and provide extra strength to the 

burrow.  Such burrows provide the inhabitant with protection, aid in prey capture and in 

some species, provide a nest site for eggs and young (Ruppert et al., 2004).  N. 

acuminata is able to extend from the burrow to feed without vacating it completely, 

presumably to avoid predation from fish and bird species which are their main predators 

(Hutchinson et al., 1995).  Although N. acuminata are opportunistic omnivores (Reish, 

1957), their typical diet consists mainly of diatoms and filamentous algae such as 

Enteromorpha spp. (Herpin, 1926 cited Reish, 1957).  Individuals have been known to 

be carnivorous and are able to use their jaws to attack and digest prey larger than 

themselves (Herpin, 1926 cited Reish, 1957).  The proboscis ends with two brown 

curved jaws, each with approximately ten teeth (Pettibone, 1963).   Individuals typically 

grow to 70mm long, 40mm in width and have approximately 75 segments (Pettibone, 

1963).   

 

The life cycle of N. acuminata has not been documented in the field (Starczak, 1984).  

However, under laboratory conditions, N. acuminata individuals do not follow a distinct 

breeding season as constant ambient and water temperatures are maintained.  Instead, 

this species reproduces all year round once sexual maturity is reached (Starczak, 1984).    

A complete life cycle documented under laboratory conditions can be seen on the next 

page in Table 1.2.   
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Table 1.2:  Life history traits of N. acuminata (adapted from Reish, 1957). 
 
 

Age 
(days) 

Characteristics Approx. length 
(mm) 

7 Egg elongation, muscular movement. 
 

0.52 

8 3 larval segments, anal cirri, hatched from egg capsule. 
 

0.62 

9 4 larval segments, 1 pair of peristomial tentacles. 
 

1.00 

10 5 larval segments, 2 pairs of peristomial tentacles, early 
palpi, jaws with terminal tooth only. 
 

1.10 

11 7 larval segments, 3 pairs of peristomial tentacles. 
 

 

13 12 adult segments, seta of 1st larval segment drop out, 
segment becomes peristomium, jaws with 4 lateral teeth. 
 

1.40 

14 14 segments, jaws with 5 lateral teeth, paragnaths on 
maxilliary ring only. 
 

 

16 16 segments, jaws with 6 lateral teeth. 
 

 

21 18 segments, jaws with 7 lateral teeth, jaws become dark 
brown at tips, paragnaths present on oral ring, vacate 
parental tube. 
 

4.00 

23 24 segments, 4 pairs of peristomial tentacles, feeding. 
 

6.00 

26 32 segments, paragnaths become dark brown. 
 

 

33 42 segments. 
 

 

36 48 segments. 
 

 

40 51 segments. 
 

7.00 

44 55 segments, eggs observed in female coelom. 
 

11.00 

65 Female lays eggs and dies, with male incubating. 
 

35.00-70.00 

92 Male fertilises eggs from second female. 
 

 

~300 Male dies. 
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Nereid polychaetes can either be referred to as iteroparous or semelparous, depending 

on the life history of the species.  Iteroparous individuals can reproduce more than once 

per lifetime, either continuously or at short intervals (Prevedelli and Simonini, 2003).  

In contrast to this, in semelparous individuals, reproduction terminates the life cycle 

(Clark, 1965).   Nereids can be further subdivided into those species that reproduce in 

an epitokous form and those that reproduce in an atokous form.  Epitokous individuals 

undergo a metamorphosis into a special reproductive form, also known as a 

heteronereid (Clark, 1961).  Atokous individuals however, do not undergo such a 

metamorphosis and there is no planktonic larval stage (Clark, 1961).  Reproduction in 

nereids can occur via a mass spawning event, triggered by environmental and endocrine 

cues, maximising the fertilisation rate due to an increase in gamete interaction (Hardege 

and Bentley, 1997).  However, mass spawning is not the only mode of reproduction 

found in nereids; internal and self-fertilisation also occurs, along with egg-laying.  

 

Some examples of polychaetes that reproduce via a mass spawning event include Nereis 

vexilosa, N. succinea and Platynereis dumerilii.  These species reproduce in an 

epitokous form and have a semelparous life history (Johnson, 1943; Beckmann et al., 

1995; Hardege et al., 2004).  N. vexilosa females release a mass of eggs which is 

followed by the male spawning directly into the water column (Johnson, 1943).  In both 

N. succinea and P. dumerilii,  individuals assemble near the water surface at night 

(Beckmann et al., 1995) and spawning is synchronised by complex environmental and 

endocrine cues such as day length, lunar cycle and chemical cues (Hardege et al., 2004).  

Complex bouquets of pheromones are used to coordinate both nuptial dance behaviour, 

where males swim round females in narrowing circles and spawning takes place (Clark, 

1961) coordinate the release of gametes (Zeeck et al., 1988).  The pheromone cysteine-

glutathione disulphide (CSSG), also termed “nereithione” is found in the coelomic 

cavity of both of these species and is released by females during reproduction, acting to 

aid in mate recognition (Ram et al., 1999) and inducing sperm release in males (Zeeck 

et al., 1998b).  At low concentrations of CSSG, males follow trails to locate females; 

spawning is induced in males with high concentrations of CSSG (Ram et al., 2008).  N. 

succinea and P. dumerilii do not spawn at the same time not only because each species 

initiates spawning at a different time in the lunar cycle (Watson et al., 2003), but also 

because the pheromone concentration required to elicit the reproductive response differs 

in each species (Hardege et al., 1998).  Reproductive behaviour in P. dumerilii was 

found to be further controlled by 5-methyl-3-heptanone (Beckmann et al., 1995) and 

uric acid (Zeeck et al., 1998a) and males of this species also produce an egg-release 
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pheromone, composed of inosine and glutamic acid (1:1) (Hardege et al., 2004). Other 

polychaetes that reproduce via a mass spawning event include N. virens (Olive et al., 

1997) and N. japonica (Smith, 1958).   

 

The semelparous species Platynereis megalops has an unusual mode of reproduction as 

fertilisation is internal (Just, 1914).  Sexually mature individuals swim at the water 

surface and the smaller males swim rapidly in spirals around the larger females in 

narrowing circles.  The female becomes trapped in the coil as the male begins to 

straighten out.  Once the female is trapped, the male inserts his tail into the jaws of the 

female where the eggs are packed within the coelomic cavity and fertilises the eggs with 

sperm.  The male and female then separate and eggs emerge by dehiscence (Just, 1914).  

Fertilisation of eggs is internal, which is unique in nereid polychaetes (Smith, 1958) and 

eggs cannot become fertilised outside of the female (Just, 1914).   

 

Nereis limnicola is a viviparous self-fertilising hermaphrodite (Baskin, 1970).  

Individuals reproduce in an atokous form (Smith, 1958) and parturition of larvae occurs 

through the body wall (Baskin, 1970).  Gametes are fertilised in the coelom and 

development proceeds in the coelomic cavity until the larvae are roughly 4-5mm in 

length (Baskin and Golding, 1970).  The coelomic milieu provides the developing 

larvae with essential nutrients and other components required for growth (Baskin and 

Golding, 1970) and also protects from osmotic shock (Evans, 2009).  In N. diversicolor, 

when a male detects the presence of a ripe female, males release sperm in front of the 

female tube, with no direct contact between the two individuals.  The female then 

transports sperm into the burrow using the proboscis (Bartels-Hardege and Zeeck, 1990) 

and eggs are released spontaneously by dehiscence (Smith, 1958).     

 

In N. acuminata, the complete reproductive cycle is unique among nereid polychaetes 

(Bridges et al., 1996), although some reproductive characteristics are similar to those of 

other species.  N. acuminata does not undergo epitoky to a heteronereid form (Reish, 

1957).  When a male and a female come into contact, there is a slowing of movement 

(Bridges et al., 1996), with the male and female forming a monogamous pair bond and 

constructing a new mucous-lined burrow (Reish, 1985).  Burrows are composed from 

excretions from glands situated near the parapodia to form a collar that is slowly 

extended to form a tube around the individual (Daly, 1973; Pleijel and Dales, 1991).  

After the eggs (measuring up to 650µm) have been shed, the female vacates the shared 

burrow to die (Reish, 1980b).  The male then fertilises the egg mass and is solely 
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responsible for parental care, circulating water over the developing eggs using body 

undulations (Reish, 1980b).  Male incubation of eggs has also been observed in 

Platynereis massiliensis, Micronereis variegata, M. nanaimoensis, Laconereis glauca 

and Ceratonereis costae (Reish, 1957).  After egg care is complete, once juveniles exit 

the tube and take up active independent feeding, the male is then able to reproduce 

again, as in P. megalops (Just, 1914).  Males of this species have been observed under 

laboratory conditions to reproduce and produce successful broods up to seven times 

(Reish et al., 2009).  In this species therefore, the female is classed as semelparous but 

the male is iteroparous (Reish, 1957).  Emergent juveniles exhibit weak dispersal 

(Weinberg et al., 1990), undergo direct development and therefore do not go through 

the planktonic trochophore larval stage, instead developing into benthic 

metatrochophore larvae, with segmented bodies and a distinct head (Moore and Dillon, 

1992).   

 

The theory of sexual selection predicts that mate choice will evolve when mating 

partners vary in genetic quality or with the ability to provide benefits to mating partners 

(Andersson, 1994).  Selected mates can either provide direct benefits, which can include 

parental care quality, increased fertility (Searcy, 1982) nest sites, territories, nuptial 

gifts, absence of parasites (Møller and Thornhill, 1998), food for mates and/or predator 

defence (Yasui, 2001), or indirect benefits, such as genetic fitness (Yasui, 2001).  It is 

likely that the gender with the lowest potential reproductive rate should be choosy 

(Kraak and Bakker, 1998) and the sex that provides the greater level of parental care 

investment should be more discriminating (Searcy, 1982).  Added to this, a skewed 

Operational Sex Ratio (OSR), the ratio of males to females in a population that are 

ready to reproduce (Emlen and Oring, 1977), can lead to increased competition among 

members of the more abundant sex.  Generally, females are choosy and males are more 

active in courtship, known as the ‘traditional’ male sex-role (Berglund et al., 1986).  

Reproduction in females is expected to be more costly due to the limitations of egg 

production and the number of young they can produce. Sperm are generally less costly 

to produce than eggs and only a small amount of energy is invested in sperm production 

(Pitnick and Markow, 1994).  Female choice and assessment of mates has therefore led 

to the evolution of multiple male traits and the preference of females for such traits 

(Kodric-Brown, 1995).  Male traits can signal to a female that he is in good physical 

condition (Cotton et al., 2006) and are often a sign of good genetic quality (Andersson, 

1982).  Such traits may include superior fighting ability, provision of breeding resources 

and/or the quality of male parental care (Pampoulie et al., 2004).  Females may not 
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receive direct benefits from males and should therefore select for health and genetic 

quality and prefer traits that are an honest indicator of the heritable variation in male 

genetic quality (Hoelzer, 1989).  Such males are less likely to carry disease and are 

more likely to have viable sperm (Fisher and Rosenthal, 2006).   

 

Three models have therefore been proposed to explain mate choice in females for such 

traits in males: the Fisherian process; the good genes process; and, the good parent 

process.  The Fisherian process proposes that females choose males to produce “sexy 

sons and choosy daughters”.  Traits that are selected for by the female will also be 

expressed in the offspring, for example if males with bright plumage are selected, sons 

will also have bright plumage and daughters will select a mate also based on bright 

plumage (Fisher, 1930 cited Zahavi et al., 1975).  Once sexual selection begins to have 

an effect, the preference itself creates a selective pressure which leads to the 

exaggerated development of the trait (Zahavi et al., 1975).  The good genes process 

hypothesises that a female may increase the fertility of her offspring by selecting a mate 

on the basis of good genes.  If a female selects a mate with ‘good genes’, the female can 

improve the viability or fertility of offspring; such trait evolve because they are 

correlated with genetic quality of the potential mate (Zahavi et al., 1975).  Finally, with 

the good parent process, females should select traits that advertise good male parental 

care ability, when such care influences the viability or fertility of offspring (Hoelzer, 

1989).  

 

Species with male mate choice are referred to as being sex-role reversed.  This occurs 

when females compete to mate and males are choosy (Ridley, 1978).  Sex-role reversal 

is expected to occur if mating is costly in males (Amundsen et al., 1997), if female 

quality varies, if there is a female-biased OSR, if the energy investment per female 

varies (Côte and Hunte, 1989), if females can re-mate faster than males (Berglund et al., 

1992), if males have a lower reproductive rate than females (Svensson, 1988) or if 

males invest more in gametes than females (Gwynne, 1981), for example in the giant 

sperm species Drosophila bifurca, where gamete production in males is limited (Luck 

and Joly, 2005).  In many sex-role reversed species, the male is the sole provider of 

parental care (Ridley, 1978) and male mate choice therefore correlates to the higher 

reproductive input of the male into his offspring (Berglund et al., 1986).  Females may 

compete not just for access to mates, but also for mating resources such as food and 

territory (Bebié and McElligott, 2006).     
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Mutual mate choice occurs predominantly in monogamous species where individuals 

have similar reproductive rates and there are benefits to both sexes (Amundsen et al., 

1997).  In the redlip blenny Ophioblennius atlanticus for example, males and females 

prefer to mate with larger individuals.  Females were found to release more eggs with 

larger males and in turn, larger males had a higher hatching success and were better at 

egg guarding.  Larger males were also found to spend longer in the nest and had fewer 

egg losses than smaller males.  Large females were found to be preferred by males due 

to the higher number of eggs produced by such females and greater egg numbers offset 

the associated costs of eggs guarding (Côte and Hunte, 1989). 

 

Although male N. acuminata undertake sole parental care of eggs, such behaviour does 

not always indicate that a species is sex-role reversed (Vincent et al., 1992).  Even 

though there are high levels of investment in offspring by both males and females of 

this species (Starczak, 1984), female reproduction costs due to female death following 

egg dehiscence are likely to be higher than costs incurred by males.  Males are also able 

to reproduce again following completion of egg care (Reish, 1957), meaning males have 

a lower investment than females (Starczak, 1984).  It is therefore unlikely that this 

species exhibits male mate choice.  Males are also more likely to engage in parental care 

if the likelihood of paternity is high (Ridley, 1978), where eggs will not survive without 

the presence of a male to undertake oxygenation, cleaning and defence of eggs (Reish, 

1957).  As males defend females before the egg mass is laid, and the fertilisation event 

is external, fertilisation by the guarding male is ensured and he is therefore highly likely 

to be caring for eggs that are his own.  Also, mating is non-random (Starczak, 1984) as 

female choice for males has been observed and studies indicate that choice is based on 

chemical cues received by the female (Starczak, 1984; Fletcher, 2004; Storey, 2006).  

Females of this species do exhibit a preference for dominant males but overall prefer 

experienced males, those that have previously produced a viable brood (Fletcher 2004; 

Storey, 2006, Fletcher et al., 2009).  Berglund et al. (1986) has also shown that 

extensive male care does not necessarily lead to sex-role reversal.  Therefore, it is 

indicated that female N. acuminata exhibit mate choice based on the good parent model 

of sexual selection, where males display to females the desired trait of completion of 

egg care and the successful rearing of a brood (Hoelzer, 1989).  It is thought that this 

evolved due to the death of the female following egg release (Starczak, 1984).  It has 

been shown that parental care in N. acuminata may increase future reproductive success 

(Fletcher et al., 2009). 
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In polychaetes, aggression involves eversion of the proboscis, thrust forward toward the 

opponent (Reish, 1957), with the jaws used for biting or grasping (Weinberg et al., 

1990).  Studies regarding aggressive behaviour in N. acuminata have shown that two 

individuals of the same sex will fight but also that a male will fight an intruder of either 

sex during parental care (Reish, 1957).  Once egg care is complete, however, a male 

will no longer fight a female as he is able to reproduce again (Reish, 1957).  Spent 

females (those that have laid eggs) are also known to fight with introduced females that 

have not yet laid eggs (Reish, 1957).  Aggression was also observed to alter following 

male interactions with females; after pairing with a female, aggression between two 

males increased if they were returned to fight with each other.  If a female was present 

however, aggression was observed to decrease (Fletcher, 2004).  Aggressive encounters 

have been found to be more frequent at increased densities with larger individuals more 

successful at defending larger territories (Bridges et al., 1996). 

 

During parental care, male N. acuminata have been observed to cannibalise eggs during 

incubation (filial cannibalism) (Reish, 1957).  Cannibalism has also been observed to 

occur at other stages in the life cycle of this N. acuminata.  Not only have individuals 

engaging in aggressive encounters been shown to be cannibalistic (Reish, 1985), but 

male N. acuminata are also known to consume the female once she has released her 

eggs (Reish, 1957).  Two other known cannibalistic polychaetes are Platynereis 

bicaniculata, shown to attack and cannibalise burrow intruders (Woodin, 1974) and 

Nereis grubei which is cannibalistic when food resources are low (Reish and Alosi, 

1968).  In N. acuminata, as in many other marine invertebrates (Dreon et al., 2006), 

eggs are rich in lipovitellin that provides energy and nutrients to larvae when they first 

hatch (Lee et al., 2005).  Filial cannibalism may therefore occur for a number of 

reasons: via accidental consumption (Schabetsberger et al., 1999), to clean the 

burrow/nest of dead and diseased eggs (Kraak, 1996) and may also provide the male 

with nutrients and energy to continue care of the brood until the larvae exit the tube and 

take up independent foraging (Polis, 1981).  Eggs are an easily-attainable resource, rich 

in nutrients and are also defenceless (Acha et al., 2002), although eggs may show a 

form of defence against predators by containing toxins or being unpalatable, as found in 

the toad Bufo valliceps (Licht, 1968; 1969).  Parental care may be costly in terms of 

reduced foraging opportunities (Lindström, 1998) so filial cannibalism may also 

function to offset the cost of such care (Okuda and Yanagisawa, 1996).  Consuming 

eggs may not fully compensate for the cost of care (Kraak, 1996) but has been found to 

have the potential to increase future reproductive success by survivorship of the parent 
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(Lindström and Sargent, 1997).  Filial cannibalism may also occur when the brood is 

smaller than normal as the reproductive value of the clutch would not outweigh the 

costs associated with care of that brood (FitzGerald, 1992). 

 

As well as the studies conducted to further understand behaviour and life histories, 

polychaetes have also been studied to obtain a greater understanding of the effects of 

contaminants in the environment, such as heavy metals.  In aquatic environments, heavy 

metals in particular are found bound to the sediment (Lee et al., 2000).  Due to their 

close proximity with the sediment, and ingestion of such sediment, polychaetes may be 

useful as an indicator species to monitor levels of contaminants in the environment and 

in particular, the sediment (Mason et al., 1988; Moore and Dillon, 1992; Pocklington 

and Wells, 1992).  Polychaetes are also well suited for this purpose due to their 

relatively small size, controllable diet and short life cycle (Hutchinson et al., 1995).  

Polychaetes may therefore be used to predict the concentration of contaminants in the 

environment and provide information that could be used for conservation or 

environmental purposes (Mason et al., 1988).   

 

The response of N. acuminata to the effects of heavy metal contaminants has been 

studied and is used as an indicator species of semi-polluted conditions (Reish, 1966).  In 

this species, several contaminants have been used, to monitor effects on growth, 

reproduction and mortality (Pocklington and Wells, 1992) and accumulation of 

compounds can be observed in the body tissues (Pocklington and Wells, 1992).  Heavy 

metals used in bioassay trials have included lead, mercury and zinc (Reish et al., 1976), 

copper (Pesch and Morgan, 1978), chromium (Oshida et al., 1981; Oshida and Word, 

1982) and cadmium (Jenkins and Mason, 1988).  The effects of radiation were also 

observed in N. acuminata (Harrison and Anderson, 1994a; 1994b).  It has been 

observed that most pollutants tested caused some change in the reproduction of N. 

acuminata.  Radiation was shown to limit reproductive success (Harrison and Anderson, 

1994a; 1994b) and cadmium (concentration 10-8M Cd2+) was found to completely 

eliminate reproduction following eleven weeks of exposure (Jenkins and Mason, 1988).  

Earlier studies on other heavy metals such as mercury and zinc, showed these to be 

toxic to the individual but adults were found to be more tolerant than juveniles (Reish et 

al., 1976). 

 

Polychaete species are abundant in the environment, easy to sample, easy to maintain in 

the laboratory and have a life history length that is suitable for observing experimental 
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effects (Pocklington and Wells, 1992).  These traits hold true for N. acuminata; 

individuals easily adapt to laboratory conditions and do not require a period of 

acclimatisation before bioassays can be undertaken (Reish, 1985).  Also, populations of 

this species only require a small amount of space to be housed and are easy to transport 

(Reish, 1980b).  This makes N. acuminata an ideal species to use as a model organism 

to investigate the behavioural and evolutionary processes examined in this thesis. 

 

1.4: Laboratory populations and culture conditions 

Sexually mature male and female N. acuminata individuals can be separated and 

identified due to the presence of gametes in the coelomic cavity, which vary in colour 

between the two sexes (see Figure 1.3 below): sexually mature females are an intense 

yellow colour whereas males are white (Reish, 1957).  A male and a female can also be 

distinguished from one another according to aggression as a male and a female will not 

fight each other if placed together in a crystallising dish (Reish, 1957).  When used in 

short-term observational experiments using two individuals of the same sex, the two 

individuals can be distinguished from each other using the faecal matter pattern visible 

in the gut, which varies between individuals due to slight changes in feeding habits 

between individuals (Fletcher et al., 2009). 

 

  
Figure 1.3: Colouration of male and female N. acuminata due to the presence of 
gametes in the coelomic cavity.   
 

Populations maintained in the laboratory originate from four locations in the United 

States of America.  The different populations of N. acuminata were collected from the 

coastal regions of North America by Dr. D.R. Reish.  West Coast populations were 

collected from Los Angeles Harbour (‘Reish’ population), Newport Beach and the San 

Gabriel River in California.  The East Coast population was collected from Alewife 

Cove, Connecticut.  These populations are segregated in both the laboratory based at the 

50mm 
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California State University, Long Beach (CSULB) and at the University of Hull and are 

henceforth referred to as Reish (R), Newport (N), San Gabriel (SG) and Connecticut 

(C).  The number of stock tanks maintained in the laboratories at CSULB and at the 

University of Hull is detailed in Table 1.3 below.  Separate populations are housed in 

aquaria tanks (180mm x 100mm x 140mm) containing approximately 100 adult 

individuals per tank, all at a salinity of 35-40‰.  Although named the San Gabriel 

River, this is actually a concrete channel with a salinity of +30‰ (Hardege, personal 

communication) so this population is also maintained at a salinity of 35-40‰.  The 

laboratory populations are fed three times a week on a diet of low protein non-processed 

compressed hay (rabbit food) obtained from Smith’s Animal and Pet Supplies (Castle 

Road, Hull) and Enteromorpha spp. algae.  The laboratory room temperature is 

maintained at 18° C with a light:dark cycle of 16:8.  The Reish population was 

established from six breeding individuals collected in 1964 (Reish, 1985) with the sex 

ratio of the specimens unknown (Reish, personal communication).  Although Reish 

(1985) states that there does not appear to be any decrease in vitality of this populations, 

it could still be heavily inbred and this should be taken into account when analysing any 

data collected using this population.  In addition to these four laboratory populations, 

one wild population was sampled from Los Angeles Harbour in 2008 (ratio of males to 

females unknown) and bred in the laboratory to produce a population with over two 

hundred individuals.  It was originally thought that the Reish (R) population could no 

longer be sampled in the wild but individuals have been sampled very near to where the 

original Reish (R) population was sampled and will henceforth be referred to as LA 

Harbour (LA).  Both R and LA populations were collected using a sediment bottle 

collector suspended from floating docks in the west basin of Los Angeles Harbour 

(Reish, 1957, Reish, personal communication).  The harbour is divided into five 

regions: the east basin, west basin, Fish Harbour, Terminal Island and the Long Beach 

Naval Base (Reish et al., 1980).  When environmental studies commenced on the 

harbour area in 1951, there were high levels of organic content and the harbour was a 

heavily polluted body of water injected daily with untreated waste discharges (Reish et 

al., 1980).  In 1968, a pollution abatement programme was ordered by the Californian 

Regional Water Quality Control Board to ban the oil-refinery discharge (Reish et al., 

1980).  In 1975, pollution abatement at the Long Beach Naval Base commenced and in 

1978, fish cannery wastes from factories based at Fish Harbour were diverted to the 

Terminal Island Sewage Treatment Plant (Reish et al., 1980).  Also in 1978, the oil 

tanker S.S. Sansinena exploded in the outer harbour, causing a major ecological 

disaster.  Biological, chemical and physical measurements taken subsequently indicated 
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a crash in the benthic diversity, but the area is recovering following a clean-up operation 

and dredging of the area (Reish et al., 1980).  Although there was a tanker explosion, 

due to the abatement programme, the harbour area is now classed as a less polluted 

body of water between the time of the R collection (1964) and the LA collection (2008) 

(Reish, 1986).   

 

The date each population was collected, along with approximate numbers of specimens 

collected in each case can be seen in Table 1.3 below, including the number of stock 

tanks maintained at each facility.  The sampling locations for each of the populations 

maintained in the laboratory are shown in Figure 1.4 on the next page.  Experiments 

were carried out at the University of Hull unless otherwise stated and results in all 

chapters were analysed using SPSS version 16 (SPSS Inc., Chicago, Illinois, U.S.A.), 

apart from in Chapter 3 (section 3.3.1), where the statistical package R was used (R 

version 2.10.1). 

 
 
Table 1.3: Collection details for the populations maintained in the laboratory with the 
number of specimens collected in each case, including the number of stock tanks of 
each population maintained at each facility. 
 
Population Year sampled Individuals collected Stock tanks 

CSULB Hull 
Reish (R) 1964 6 7 4 
Newport (N) 2005 400 4 3 
San Gabriel (SG) 2003 300 3 3 
Connecticut (C) 2002 300 3 2 
Los Angeles (LA) 2008 300 3 2 
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Figure 1.4:  Population locations within North America.  Sample locations for each 
population are denoted by: 1 = San Gabriel River (SG); 2 = LA Harbour (R); 3 = 
Newport Beach (N), all from California; 4 = Alewife Cove, Connecticut (C).  The wild 
population Los Angeles (LA) was sampled at location 2, (the same as the R population). 
 

 

Previous work has been undertaken on these laboratory populations to determine the 

molecular differences between the populations.  Pesch and Pesch (1980) found that the 

R population had a diploid chromosome number of 18 and subsequently, this was also 

found to be the case in the N and SG populations (Weinberg et al., 1990).  However, the 

diploid chromosome number of the C population was found to be 22 (Weinberg et al., 

1990).  Chromosome numbers were also documented in other Nereid polychaetes and 

are as follows: Nereis limbata diploid  20-30, Platynereis megalops haploid 14, Nereis 

diversicolor diploid 32 and Perinereis cultrifera diploid 34 (Pesch and Pesch, 1980).  

Differences in chromosome number can be used as indicators of reproductive 

incompatibility (Knowlton, 1993).  Changes in chromosomes can play a role in 

evolutionary change, including the loss or gain of whole chromosomes but this may not 

influence any morphological change in a species (John, 1981).  Such chromosome 

2 

1 

3 

4 
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Approximate distances in 
miles between populations: 

1 to 2 = 15. 
2 to 3 = 18. 
1 to 3 = 22. 

1 to 4 = 2600. 
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change may, but does not always, influence speciation and can act to isolate individuals 

reproductively with differences at the chromosome level (John, 1981). 

 

The pairing behaviour both within and between populations of N. acuminata has also 

been examined, including both pre- and post-mating isolation trials to determine levels 

of reproductive isolation (Weinberg et al., 1990; Weinberg et al., 1992; Rodriquez-

Trelles et al., 1996; Sutton et al., 2005).  This is known as the final step before 

speciation and individuals can either be isolated by pre-zygotic barriers or by post-

zygotic barriers (Snell, 1989).  Pre-zygotic barriers include differences in behaviour, 

mating preferences (Snell and Hawkinson, 1983), mating season, fertilisation 

mechanisms (Snell, 1989) habitat and spawning synchrony (Palumbi, 1994).  Post-

zygotic barriers include genetic incompatibility, hybrid sterility and hybrids that are not 

viable (Snell, 1989).  Pre-mating bioassays are generally simple and quick to undertake 

and are useful for sibling species where morphological differences may be minimal 

(Snell, 1989).  In the experimental species N. acuminata, pre-mating isolation trials are 

suitable for study due to the initial pairing behaviour of a male and a female before the 

eggs are shed by the female.  This behaviour is easy to observe and gives a good 

indication of compatibility.  Weinberg et al. (1990) looked at the pre-mating isolation 

levels over the course of ten minutes using two populations from the Atlantic Ocean: 

Massachusetts (M) and Connecticut (C), and two from the Pacific Ocean: San Gabriel 

(SG) and Newport (N).  Pairing formation was not observed between male and female 

individuals from the Atlantic and the Pacific, therefore showing evidence of 

significantly higher levels of reproductive isolation between populations compared to 

the pairing behaviour between male and female individuals from within each 

population.  However, between the SG and the N populations, there were no 

observations of pre-mating isolation.  The above ten minute trials were then repeated, 

again by Weinberg et al. (1992), this time using the San Gabriel (SG), Newport (N) and 

Reish (R) populations.  High levels of pre-mating isolation were observed between R 

and both SG and N, however there were low levels of pre-mating isolation between SG 

and N.  It was therefore concluded that speciation occurred in the R population in the 

laboratory following a founder event.  Weinberg et al. (1992) also looked at the 

percentage of broods that produced healthy offspring between the R, SG and N 

populations (a post-mating isolation experiment).  A normal percentage was found to be 

between 75-95%.  When R individuals were paired with either SG or N individuals, the 

percentage of healthy offspring was equal to 0.  However, when SG individuals were 

paired with N individuals, the percentage of healthy offspring was found to be 77%.   
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The above work by Weinberg et al., (1992) has caused some controversy as it was 

suggested that speciation of the R population had occurred in the laboratory.  The 

findings were therefore further discussed in the work by Rodriquez-Trelles et al. (1996).  

This work disagreed with Weinberg et al. (1992) and hypothesised that the two wild 

populations used in the study (SG and N) were not representative of the population from 

which the R population was originally sampled from.  The study went on to investigate 

the genetic markers, genetic variability and divergence of the three populations.  It was 

found that in 13/18 loci, the R population does not share any alleles with either SG or N 

and high genetic differences (D) were found to be as follows:  SG to N = 0; R to SG = 

1.75; R to N = 1.76.  The genetic difference between the two sibling species N. 

diversicolor, a population from Germany, and N. limnicola, a species from the U.S.A., 

is 1.28.  The study therefore concludes that these three populations formed separate 

species before the R population was sampled in 1964.   

 

One final study (Sutton et al., 2005) looked at the pre-mating isolation between 

populations of N. acuminata, using ten minute trials between three laboratory-based 

populations (SG, N and R) and three wild populations (Connecticut, Massachusetts and 

a population from Hawaii).  Again, significant levels of pre-mating isolation were found 

between all population groups, except when individuals were paired with members of 

their own population.  Further to this, D.H. Lunt and J.D. Hardege (unpublished) 

examined the nuclear and mitochondrial DNA from these populations.  According to the 

nuclear DNA, the C population is likely to have diverged from the other three 

populations approximately ten million years ago.  Examining the mitochondrial DNA, 

following the divergence of the C population, the SG population diverged from the R 

and N populations approximately seven million years ago.  R and N have been found, 

using the mitochondrial DNA, to be very similar genetically, with little divergence.  The 

Connecticut worms have also been observed to have black eyes, whereas individuals 

from the other populations, including the wild LA population, have red eyes (Reish, 

personal communication).  There is still very little known about the new wild LA 

population, both in terms of behaviour and molecular composition.   

 

If N. acuminata forms part of a species complex, this may impact the results observed 

previously in both behavioural and ecotoxicology tests.  This has been found to be the 

case in ecotoxicology studies using the mussel Mytilus edulis, the most commonly used 

species for biomonitoring of water quality.  This species is part of a species complex 

with M. galloprovincialis and M. trossulus; M. trossulus is commonly mistaken for M. 
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edulis (Lobel et al., 1990).  In the study by Lobel et al. (1990), M. edulis and M. 

trossulus were collected from the same site in Canada and the body tissue analysed for 

twenty five different element concentrations (ppm dry weight), including Na, Zn, Cu, 

Ag, As, Ca, K, Al, Mg and Pb, using Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS).  Due to the differences in metabolic rate between M. edulis and M. trossulus, 

the concentrations of the elements tested were found to vary, even though these two 

species were sampled from the same geographical area (Lobel et al., 1990).  In the 

ecotoxicology tests described previously (Reish, 1966; Reish et al., 1976; Pesch and 

Morgan, 1978; Jenkins and Mason, 1988; Mason et al., 1988; Moore and Dillon, 1992), 

individuals were taken from the Reish (R) population housed in the laboratory of Dr. 

D.J. Reish at CSULB.  However, another study looked at a population, sampled prior to 

experimentation, from the San Gabriel River, California (Oshida et al., 1981) and other 

works do not mention the original location of the individuals used (Oshida et al., 1982; 

Lee et al., 2000).  Two further papers appear to have pooled results from the Reish 

population and another population from a supplier of test organisms (Harrison and 

Anderson, 1994a; 1994b).  It is therefore clear that care needs to be taken over 

interpretation of ecotoxicology results in this species. 
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1.5: Aims 

This thesis attempted to examine the role of aggressive relationships and male parental 

experience in mate choice in the polychaete N. acuminata. 

 

Aggression was examined in N. acuminata: firstly, using females that have shed their 

eggs (spent) to determine if there was any aggression exhibited by such females when 

an egg mass is no longer present.  It was expected that aggression would decrease as the 

female is no longer in the presence of her offspring and protection of her investment 

was no longer required.  Secondly, the effect of male aggression on pairing behaviour 

was examined to determine if such aggression should be taken into account in studies 

looking at mate choice and aggression in females.  It was expected that males 

aggression would cause pair time with females to increase following a fight as female 

N. acuminata have been shown to prefer good fathers over dominant males (Fletcher et 

al., 2009).  Thirdly, the aggression between males was examined over a period of time, 

with repeat fights observed, to determine if there was any memory for aggressive 

encounters and any evidence for the existence of a dominance hierarchy in this species.  

It was expected, as nereid polychaetes are capable of learning (Evans, 1966b; Dyal, 

1973), and recognition of a previous opponent would decrease the costs and risk 

associated with aggressive behaviour (Caldwell, 1985), that less aggression would be 

observed in subsequent fights between individuals. 

 

The levels of intrasexual aggression between the four laboratory populations were also 

examined, both in males and females, to determine if there were any similarities or 

differences in aggression (within or between populations), supporting the evidence of 

divergence between these populations.  Genetic divergence has been observed between 

the four populations Reish (R), Newport (N), San Gabriel (SG) and Connecticut (C) 

examining differences in chromosome number (Pesch and Pesch, 1980; Weinberg et al., 

1990), comparison of shared alleles (Rodriquez-Trelles et al., 1996) and both 

mitochondrial and nuclear DNA (D.H. Lunt and J.D. Hardege, unpublished).  

Divergence in populations can be expressed in changes in behaviour (Dunbrack and 

Clarke, 2003) and communication signals which deviate from the population norm have 

the potential to be ambiguous and lead to an escalation of aggression (Maynard Smith 

and Riechert, 1984; Dunbrack and Clarke), 2003.  Behavioural divergence has not been 

examined before in N. acuminata in terms of the expression of intrasexual aggression.  

It is therefore expected, as divergence can lead to changes in behaviour and escalation 

of fights can occur due to such divergence, that aggression between populations would 



- 33 - 
 

be higher than aggression exhibited within populations.  The new wild Los Angeles 

Harbour (LA) population (sampled in 2008) was also compared to the existing 

laboratory maintained Reish (R) population to determine if there were any differences in 

aggression between these two populations and whether these results suggest that these 

two populations should be treated as separate, providing an indication of divergence.  

The LA population is a new addition to the populations maintained in the laboratory but 

was sampled from the same location as the R population.  It was expected that 

aggression between these two populations would be higher due to the variation in 

environmental conditions experienced by these two populations, leading to population 

divergence.  It is possible that distinct populations of N. acuminata should be classed as 

sibling species, forming a species complex.  As N. acuminata is used in ecotoxicology 

testing and water quality monitoring, the existence of a species complex in N. 

acuminata must be taken into account when performing such bioassays as different 

populations may respond differently to testing, due to potential differences in metabolic 

rates, growth rates and heavy metal tolerances for example (Lobel et al., 1990). 

 

The levels of male aggression were also compared to the levels of female aggression to 

determine if one sex displays more aggressive behaviour, helping to further understand 

the role of sexual selection in this species.  Due to female death following reproduction 

and the ability of males to reproduce again, female mate choice is likely to occur in N. 

acuminata due to the higher reproductive investment made by females (Starczak, 1984).  

As female mate choice and male aggression has been documented in N. acuminata 

(Starczak, 1984; Fletcher et al., 2009), it was therefore expected that male aggression 

would be higher than female aggression.   

 

Following on from the observations of aggressive behaviour between individuals from 

different populations, the interactions between males and females from the four 

laboratory populations and the new wild population were examined to determine if pre-

mating isolation occurred, providing further evidence of divergence in this species.  Pre-

mating isolation is considered to be the final step before speciation (Snell, 1989).  It was 

expected that the number of individuals forming a pair bond between the four laboratory 

populations would be lower between populations than within them due to divergence of 

the communication signals within each population caused by variations in habitat 

conditions at the location that each population was originally collected from.  If pre-

mating isolation is evident between individuals from the R and LA populations, this 

would provide further evidence for the theory that the R population speciated in the 



- 34 - 
 

laboratory (Weinberg et al., 1990).  It was therefore expected that few pairs would be 

formed between these two populations due to the variations in habitat conditions 

experienced by each population. 

 

The incidence of filial cannibalism has been previously mentioned to occur in N. 

acuminata (Oshida et al., 1981) but such behaviour has not been fully examined.  The 

effect of the presence of a cannibalistic male on aggressive interactions between males 

was examined, comparing cannibalistic males to both inexperienced males (that have 

not reproduced) and experienced males (ones that have reproduced).  It was expected 

that as males consuming eggs should be in good physical condition, a reduction in the 

occurrence of escalated aggression would be observed.  The presence of a male 

potentially in better condition would alter the Resource Holding Potential (RHP) of that 

male, causing there to be asymmetry between the opponents.  Such asymmetries due to 

differences in the RHP of opponents can lead to the quick resolution of fights (Maynard 

Smith, 1974).  Female interactions with cannibalistic males were also observed.  As sole 

male parental care occurs in this species (Reish, 1957) and females make a larger 

gametic investment than males (Starczak, 1984), the female should select a male in 

good physical condition, capable of rearing her brood (Hoelzer, 1989).  Female mate 

choice trials were therefore observed to determine if a female could detect that a male 

has cannibalised an egg mass under his care and if so, whether the female would still 

form a monogamous pair bond with such a male.  As females should select a male based 

on his ability to care for her brood to avoid her reproductive investment being wasted 

(Hoelzer, 1989), and as males that consume eggs may be in better physical condition 

(Klug and St. Mary, 2005) and less likely to cannibalise eggs during future egg care 

(Manica, 2010), it was expected that females would not avoid pairing with a male that 

had previously cannibalised an egg mass.   

 

As yet, the process of sexual selection in N. acuminata is not fully understood.  

Although female mate choice has been exhibited, it is still not clear how males confer to 

females the reproductive advantage of previously caring for an egg brood.   Previous 

trials have shown that females will alter their initial choice based on the presence of a 

previous loser masked with water from males caring for eggs (Storey, 2006; Fletcher et 

al., 2009).  It was an aim of this thesis to further observe the chemical nature of 

experience by undertaking conditioned water trials from a variety of sources and 

observing their effects on mate choice trails where a winner and loser of female choice 

had already been established.  The conditioned water used in masking trials was 
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obtained from females, juveniles, inexperienced males, males caring for eggs and both 

new and old experienced males.  As females have been shown to prefer experienced 

males over inexperienced males, it was expected that males placed in conditioned water 

from new and old experienced males would alter subsequent female choice, as would 

the conditioned water from males caring for eggs.  It was expected that the conditioned 

water from females, juveniles and inexperienced males would not alter subsequent 

female choice as these should not alter the initial choice of mate made by the female.  

Aggression between individuals following the use of conditioned water was also 

observed to determine if there was any change in aggression following the masking of a 

male with conditioned water from various sources.  Individuals use assessment 

strategies to determine the RHP of their opponent and the likelihood of winning a fight 

(Maynard Smith, 1974).  Placing males in conditioned water from females, juveniles 

and inexperienced males was not expected to alter the aggressive behaviour observed 

between individuals, as the RHP of the masked opponent (an inexperienced male) 

should not be altered by the conditioned water.  However, conditioned water from males 

caring for eggs and both new and old experienced males was expected to alter the 

aggression observed between two opponents as the RHP of the masked male would 

have changed due to the ‘presence’ of a male undertaking egg care or an experienced 

male.   

 

The final aim of this thesis was to attempt to demonstrate ‘adoption’ in this species.  

Previously unpublished work has indicated that males care for eggs fertilised by another 

male (Sutton, 1998) but has not been performed under experimental conditions and has 

not taken into account the reproductive state of the male, comparing those that have 

undertaken parental care previously (experienced) to those that have not 

(inexperienced).  This was therefore examined here, comparing such males to see if 

there was evidence that males care for eggs fertilised by another male.  Females have 

been shown to select mates based on parental care abilities in N. acuminata (Fletcher et 

al., 2009).  Adoption in inexperienced males may therefore be a way for individuals to 

gain parental experience.   It was expected that care of eggs fertilised by another male 

would occur in inexperienced males, but that experienced males would not undertake 

such care as they do not gain benefits from such behaviour as they have already 

successfully reared offspring. 

 

As previously mentioned, the more we know about the evolutionary and behavioural 

processes in the polychaete N. acuminata, and the interactions between the populations, 
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the more we can apply that knowledge to undertake environmental studies, using this 

species as an indicator of pollution and water quality monitoring.  We can also use this 

species as a model for evolution as it has an easily adaptable life history, a relatively 

short life cycle and is convenient to use for behavioural bioassays.  Observations are 

easy to make and experiments relatively simple to conduct at each stage of the life 

cycle.   
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Chapter Two: 

 

Aggression and pairing behaviour in N. acuminata 
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2.1: Experimental reasoning and aims 

Aggressive behaviour, also described as agonistic behaviour, is defined as any 

behaviour associated with a contest between individuals, which often includes initiation, 

attack and eventual retreat or death (King, 1973).  Inter- and intraspecific aggression has 

been observed in both terrestrial and aquatic species, such as birds (Sandell, 1998), 

insects (Polizzi and Forschler, 1999), crustaceans (Hazlett, 1968), fish (Sale, 1972) and 

marine invertebrates (Reish and Alosi, 1968).  Such aggression may be due to 

competition for resources e.g. for food (Commito and Shrader, 1985), space (Chadwick, 

1987) or mating opportunities (Parker, 1974); for defence of territory (Reish and Alosi, 

1968), offspring (Bridges et al., 1996) or nest sites (Itzkowitz, 1990).  Individuals may 

also engage in aggressive interactions for social rank, dominance, to prevent other 

individuals from mating or to be the first individual to mate with a particular partner 

(Karvonen et al., 2000).   

 

In the lace bug Gargapha solani, females display aggression in order to protect their 

offspring (Tallamy, 1982).  In the willow ptarmingan Lagopus lagopus females are 

aggressively territorial against intruding females (Hannon, 1984).  Several crustacean 

species have been also shown to be aggressive in order to compete for resources.  Both 

male and female individuals of the shore crab Carcinus maenas display aggressive 

behaviour (Sneddon et al., 1997) but female aggression is less intense (Huntingford et 

al., 1995).  Both male and female individuals of the American lobster Homarus 

americanus will fight territory intruders of either sex, but males have been shown to be 

more competitive (Peeke et al., 1998).  Male individuals not only require shelter for 

protection from predators, like females, but also for reproduction (Peeke et al., 1998).  

H. americanus have also been shown to establish and maintain dominance hierarchies 

(Karavanich and Atema, 1998).  Individuals of the shrimp species Loligo pealii form 

dominance hierarchies where males will guard females and use arm waving to threaten 

approaching males and this often escalates to rushes, tail bumping and dark spot display 

(a further warning sign) if the approaching male persists (Arnold, 1962).  In 

polychaetes, aggression involves eversion of the proboscis, thrust forward toward the 

opponent (Reish, 1957), with the jaws used for biting or grasping (Weinberg et al., 

1990).  Polychaetes known to engage in aggressive encounters include Phragmatopoma 

lapidosa californica (Pawlik et al., 1991), Platynereis bicanaliculata (Woodin, 1974), 

Nereis virens (Commito and Shrader, 1985), Nereis diversicolor (Davey, 1994), 

Platynereis dumerilii (Evans, 1973), Nereis pelagica (Clark, 1959), Nereis grubei 
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(Reish and Alosi, 1968), Nereis fucata (Evans, 1973), Nereis latescens (Reish and 

Alosi, 1968) and the experimental species N. acuminata (Reish, 1957). 

 

This chapter is divided into three separate studies on the aggressive behaviour of N. 

acuminata: aggression between sexual mature females and females that have laid their 

eggs (spent females), the effects of aggression on pair formation, and the effect of 

previous bouts between males on subsequent aggressive interactions.   

 

2.1.1: Aggression in sexually mature and spent females 

Females can compete for access to reproductive resources such as nest sites, food, high 

quality mates and in defence of offspring (Berglund et al., 1992). Females are expected 

to compete for mates if high quality males are in short supply (Ridley, 1978) and a 

female should be more aggressive towards another female intruding into her mate’s 

territory/showing interest towards her mate, according to the investment guarding 

hypothesis (Yasukawa and Searcy, 1982).  When one sex makes substantial 

contributions of parental investment, sexual selection can favour the evolution of 

adaptations that protect the investment (Trivers, 1972 cited Yasakawa and Searcy, 

1972).  Aggression in females can be heightened during the breeding season (Slagsvold, 

1993) and intruders to the nest area may affect the resident female in a number of ways.  

Females that settle nearby with a mate can increase the competition for resources, but 

intruding females may also destroy offspring, parasitize the nest, displace the resident 

female or her mate and/or settle with the resident female’s male, therefore decreasing 

the paternal care extended to her offspring (Slagsvold, 1993).  Female willow ptarmigan 

Lagopus lagopus monogamously pair with males and have been found to chase and 

attack other female intruders to the territory, preventing unmated females from settling 

(Hannon, 1984).  In the red-winged blackbird Agelaius phoeniceus females display 

more aggression towards females soliciting their mates (Yasukawa and Searcy, 1982).  

In the great tit Parus major, resident females are aggressive towards intruding females 

but not towards intruding males (Slagsvold, 1993).  Such aggression from females has 

been suggested to be important in maintaining the monogamous relationship between 

males and females (Wittenberger and Tilson, 1980) and also secures full male assistance 

with caring for offspring (Davies, 1989 cited Sandell, 1998).    

 

The aggressive behaviour of individuals has also been shown to change when offspring 

are present and over the course of the breeding season.  In the scissortail sergeant 

Abudefduf sexasciatus, males care for eggs solely and are only aggressive during this 
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period (Manica, 2010).  Several studies have shown that whilst in the presence of 

offspring, females also increase their aggression levels in order to protect the 

reproductive investment, known as maternal aggression (Tallamy and Denno, 1981).  

Such aggression has been observed in the white tailed ptarmigan Lagopus laucurus, 

with females observed to exhibit heightened aggression towards other conspecific 

females whilst caring for eggs (Martin et al., 1990).  Females of the stomatopod 

Gonodactylus bredleni solely care for egg masses and defend nest cavities against 

predators and conspecifics only when caring for such masses (Montgomery and 

Caldwell, 1984).  Individuals caring for offspring also increase the intensity of 

aggression as the offspring get older and the probability of survival increases 

(Jaroensutasinee and Jaroensutasinee, 2003). 

 

In N. acuminata, a spent female has been observed to fight a sexually mature female if 

one is introduced to the dish that houses the male caring for her eggs (Reish, 1957), 

presumably to prevent the female from attempting to mate with the male guarding her 

eggs, therefore protecting her reproductive investment.  As females of this species die 

following reproduction, the survival of eggs depends entirely on the male and females 

should protect their reproductive investment, not only by selecting a good quality male 

to care for her eggs, but also by preventing the male from reproducing with another 

female and deserting or cannibalising the spent female’s eggs.  The first aim of this 

chapter was to determine if spent females engage in aggression without the presence of 

a male caring for their eggs and to determine if spent females show any aggressive 

behaviour once they are separated from their own egg mass.  As aggression levels in 

other species have been shown to only increase when protecting eggs, it was expected 

that the aggression levels shown by spent females would be less than that between 

sexually mature females as the female is no longer in the presence of the egg mass. 

 

2.1.2: The effect of male aggression on pair formation 

One of the broadest areas of research concerning female mate choice has been regarding 

dominance hierarchies in species with male to male contests.  Females select for 

dominance in many species (Searcy, 1982) and this has been observed in mammals, 

fish, birds, insects and other invertebrates (Forsgren, 1997).  This has been hypothesised 

to occur for a number of reasons.  It may be that dominant males possess a greater 

ability to provide breeding resources such as territory and female protection (Moore et 

al., 2003) and dominance may also be a good indication of reproductive success in 

males (Searcy, 1982).  Dominant males are likely to be larger in size and this may 
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indicate that they are superior at fighting for access to mates (Bisazza et al., 1989) or 

that they are better able to provide protection against predators (Takahashi and Kohda, 

2001).  Females have also been found to “eavesdrop” on aggressive contests between 

males to gain information regarding mate quality, as observed in the female Siamese 

fighting fish Betta splendens (Doutrelant and McGregor, 2000).  This ensures that 

females mate with high-quality males (Forsgren, 1997) as success in contests is 

indicative of good male condition (López et al., 2002).  In the shore crab Carcinus 

maenas, females mate with dominant males more often whereas subordinate males have 

to use alternative breeding strategies, such as sneaking matings with females (Van der 

Meeren, 1994).   

 

However, in some species, although male to male contests and the formation of 

dominance hierarchies can be observed, females do not always select for the dominant 

individual (Moore et al., 2003).  In the rock shrimp Rhynchocinetes typus, although a 

male dominance hierarchy exists, it has been found that females will mate firstly with 

subordinate males to prompt further displays by dominant males (Thiel and Correa, 

2004).  It is hypothesised that this further display acts as a reassurance for females, 

ensuring that females select to mate with winners and therefore good quality males 

(Thiel and Correa, 2004).  Also, in the three-spined stickleback Gasterosteus aculeatus, 

females show no preference for dominant males over subordinate males, selecting males 

that were less aggressive (Ward and FitzGerald, 1987).  However, dominance may not 

be the trait selected for by female mate choice.  In species with male parental care, the 

ability to raise offspring may be the deciding factor in mate choice, with good fathers 

preferred (Wong, 2004).  Hatching success must be heavily reliant on male care for 

females to select mates based on their parental care ability and therefore, the selected 

trait conferring the signal to the female must be reliable (Hoelzer, 1989).  Dominance 

may not provide such a reliable indication of parental care ability (López et al., 2002) 

and dominant males do not always make better fathers (Wong, 2004).  Hatching success 

in the sand goby Pomatoschistus minutus has been shown to be dependent on sole 

paternal care and males with nests containing eggs are preferred over those with empty 

nests (Forsgren et al., 1996).  Added to this, dominant males were not found to be better 

at egg care and females gained no direct benefits from mating with such males 

(Forsgren, 1997).  Finally, female fifteen-spined sticklebacks Spinachia spinachia, 

exhibit mate choice for males with higher fanning abilities, necessary for the 

oxygenation of eggs during parental care (Östlund and Ahnesjö, 1998).   
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Previous studies have examined the dominance relationships in N. acuminata (for 

example Starczak, 1984; Fletcher et al., 2009) but these studies do not appear to have 

taken into account whether the aggressive bouts themselves have any subsequent effect 

on pairing behaviour when males are placed with females.  The outcome of aggressive 

interactions may influence the ability of each male to attract a mate and may affect 

female choice (Kangas and Lindström, 2001).  This could therefore have an impact on 

results obtained in studies looking at the aggressive interactions between males, for 

example if males are returned to fight with one another.  The second aim of this chapter 

was to investigate the effects of an aggressive bout on the subsequent time it takes for 

males to form a pair bond with a female, seen when males and females lie alongside 

each other ‘head to tail’ and start to construct a new mucous tube.  It was expected that, 

as male parental care is vital in this species due to female death following reproduction 

(Reish, 1957), that pairing with males capable of performing such care would be more 

important to females than male fighting ability.  Females have previously been shown to 

select for males experienced in parental care, rather than males showing overt 

aggression (dominant males) (Fletcher et al., 2009).  It was therefore expected that the 

occurrence of an aggressive interaction would change the subsequent pairing time 

between a male and a female, increasing the time taken for a male and a female to form 

a pair bond. 

 

The third aim of this chapter was to determine if there is a reduction in the time taken 

for a male and a female to form a pair bond if they are familiar with each other; if they 

have previously formed a pair bond.  Mate recognition has been observed in other 

invertebrate species.  In the banded shrimp Stenopus hispidus, individuals were found to 

behave differently when interacting with previous mates compared to interactions with 

strangers; previous mates display less courtship behaviour towards each other (Johnson, 

1977).  In the stomatopod Gonodactylus bredleni, a male and a female will share a nest 

site during reproduction (Caldwell, 1992).  Once reproduction is complete, males will 

search for a new dwelling and will compete for this resource, evicting the resident (male 

or female) (Caldwell, 1992).  If a male does not recognise the female that he has mated 

with, he may jeopardise his offspring.  Under experimental conditions, male 

stomatopods never attacked a female with which they had copulated with but did 

attempt to evict unfamiliar nesting females (Caldwell, 1992).  As mate recognition can 

lead to reduced courtship displayed between individuals (Johnson, 1977), it was 

expected that the time for familiar individuals to form pairs would be lowered in 

subsequent interactions in N. acuminata.    
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2.1.3: The effect of previous aggression between males on subsequent interactions 

The formation of dominance hierarchies can be maintained when individuals that have 

previously fought are able to recognise each other (Gherardi and Teidemann, 2004).  

Recognition occurs when each individual in a group can be discriminated from every 

other individual based on a unique set of cues that define that individual (Karavanich and 

Atema, 1998).  Individual recognition has been demonstrated in the hermit crab Pagurus 

longicarpus; individuals were more aggressive during fights when placed with unfamiliar 

opponents (Gherardi and Teidemann, 2004).  Recognition of previous opponents has also 

been shown in male Homarus americanus lobsters, where previous encounters are 

remembered and the subsequent aggressive response is lowered (Karavanich and Atema, 

1998).   

 

The outcome of prior aggressive interactions can influence an individual’s behaviour in 

subsequent interactions.  Winning or losing fights can increase or decrease various 

measures of fighting motivation and affect the ability of the individual to win in a 

subsequent encounter.  Winners of fights may keep winning, and losers keep losing 

(Collias, 1943 cited Jackson, 1991).  In the pumpkinseed sunfish Lepomis gibbosus, prior 

winners of a fight defeated unfamiliar prior losers (Beacham and Newman, 1987).  Males 

of the Norway lobster Nephrops norvegicus decrease their fight duration when 

encountering a familiar male a second time and the aggression displayed is strongly 

reduced (Katoh et al., 2008).  Prior aggressive interactions have also been found to have a 

lasting affect (at least 48 hours) in the cyprinid fish Rivulus marmoratus, where winners 

win in subsequent fights and losers go on to lose again (Hsu and Wyatt, 1999).  As 

escalated or prolonged fight pose a considerable risk to both opponents, recognition of 

former opponents may also reduce this risk of injury and reduce the costs associated with 

aggression (Caldwell, 1985).  

 

Several studies have also been conducted into the learning ability of polychaetes and 

nereid polychaetes are thought to have the highest level of complexity among the 

different polychaete genera (Dyal, 1973).  Nereids are known to use the rapid withdrawal 

reflex as a defence mechanism in response to sudden light changes or in the presence of a 

predator (Evans, 1963).  It has been found that nereids can habituate with repeated 

exposure to stimuli and no longer use the withdrawal reflex; this is regarded as the 

simplest form of learning (Evans, 1966b).  Habituation in Nereis spp. is said to be both a 

slow (Evans, 1966c) and short-lived process (Evans, 1966b).  Examples of such 

habituation have been observed in Nereis diversicolor, Nereis pelagica and Nereis virens.  
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In N. diversicolor, individuals were observed to avoid a punishment at the end of a 

perspex tube (Evans, 1966c).  In N. pelagica individuals fail to respond to light trials with 

the rapid withdrawal reflex after a number of trials (Clark, 1960).  In N. virens, 

individuals also learn to avoid punishment but only if reinforced with a food reward at the 

end of an arm in a T-maze.  If no reward was offered, there was no preference for either 

arm (Evans, 1966a).  If nereids are able to learn, individuals may be able to use 

information acquired in prior aggressive interactions and use this information in 

subsequent fights with the same individual.  Although the ability of nereid polychaetes to 

learn has been demonstrated (Evans, 1966b; Dyal, 1973), in N. acuminata, the ability of 

individuals to learn in terms of recognition of specific individuals and aggressive 

behaviour is unknown. 

 

The final aim of this chapter was to determine if previous aggressive encounters 

between individuals affects their behaviour when they interact subsequently, observing 

if there were any changes in the levels of aggression recorded.  This may have an 

impact on results obtained in studies looking at the aggressive interaction between 

males, for example if males are returned to fight with one another.  The aggression 

displayed may not be due to the variable being tested but instead due to the recognition 

of a previous opponent, affecting the results.  Any effect of previous aggressive 

encounters on subsequent encounters between individuals could also indicate that a 

dominance hierarchy is formed in N. acuminata.  As nereid polychaetes are capable of 

learning (Evans, 1966b; Dyal, 1973) and recognition of former opponents would reduce 

the risk of injury and lower the costs of displaying aggression towards an opponent 

(Caldwell, 1985), it was therefore expected that aggression would decrease in 

subsequent interactions between N. acuminata males.   
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2.2: Methodology 

All individuals used in this chapter originated from the Newport population.  

Experiments in this chapter were conducted at the laboratory at CSULB.  

 

2.2.1: Aggression in sexually mature and spent females  

Two females were placed in a crystallising dish (50mm diameter) containing 40ml of 

clean sea water (25mm depth of water, 49.09 cm3 volume of water).  Sexually mature 

individuals measure approximately 50mm (Pettibone, 1963) and individuals were 

placed in this amount of water for a short period of time only, making the amount of 

water used suitable for the study.  Using the adapted Reish and Alosi (1968) aggression 

score detailed in Figure 2.1 below, an aggression score was taken over a fifteen minute 

period.  Aggression was only recorded when both individuals had head to head contact 

and the experiment was initiated following frontal contact between the two individuals.  

Therefore, the aggression score is not a score of individual aggression but of the 

interaction between the two individuals.  In previous studies, interactions between 

individuals of the same sex were observed for aggression from two minutes (Reish and 

Alosi, 1968) to a maximum of five minutes (Fletcher et al., 2009).  A fifteen minute 

observation period was used in this thesis to provide a good indication of the 

aggression, if any, displayed between individuals.   

 

 
 

Figure 2.1: Behaviours used to score the level of aggression between individuals, 
adapted from Reish and Alosi (1968).   
 

The highest aggression level reached for each replicate was noted in each case (level 0, 

1, 2 or 3) to control for any effects of sustained aggressive contact between the two 

individuals.  Females in two different reproductive states were compared: spent females 

0 1 

2 3 

 
Score: 
0 = No fighting response. 
1 = Avoid contact and palpi may            
be flared. 
2 = Fighting position assumed, palpi 
flared and jaws visible (eversed). 
3 = Severe aggression with obvious 
attacks, biting and grasping. 
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were placed with spent females (n = 10 fights), spent females were placed with sexually 

mature females (n = 10 fights) and finally an aggression score was also taken between 

two sexually mature females that had not yet shed eggs (n = 10 fights).  Spent females 

were used for one replicate only on the day her eggs were observed in the parental tube 

as spent females only live for approximately a day after eggs are shed.  Spent females 

are green in colour compared to the yellow colouration of sexually mature females.  The 

total number of replicates equalled 30. 

 

2.2.2: The effect of male aggression on pair formation 

Two sexually mature, size-matched males were initially selected at random from the 

population tank and differentiated by the observer as male 1 and male 2 by the 

difference in individual gut contents visible in the digestive tract (Fletcher et al., 2009).  

Each male was placed in a separate crystallising dish (50mm diameter) containing 40ml 

of sea water with a sexually mature female (also selected at random).  The time taken 

for pair formation to occur with each male was noted.  This was seen when a male and a 

female lie alongside each other ‘head to tail’.  The two males were then immediately 

placed in another crystallising dish (50mm diameter), again with 40ml of sea water and 

an aggression score was taken of the interaction between the two males over fifteen 

minutes using the scoring system detailed in section 2.2.1, again, with the aggression 

scored as an interaction between the two individuals.  In each case, the highest level of 

aggression reached (level 0, 1, 2 or 3) was noted.  Following this, each male was 

returned to the crystallising dish containing the female and the time to form a pair bond 

was again noted (n = 25 fights).  Each part of the trial was performed in succession on 

the same day when individuals from the population were found to be sexually mature. 

 

The above protocol was then repeated, again using randomly selected males but after 

the fifteen minute aggression score was taken, males were separated and placed with 

two new females that they had not encountered before (n = 25 fights).  This was 

undertaken to observe if the time taken to pair form was affected by encountering a 

previously unknown female.  In all experiments, individuals were only used in one trial 

and not used again.  Individuals were only used in trial when they had reached sexual 

maturity in population tanks.  The total number of replicates equalled 50.   

 

2.2.3: The effect of previous aggression between males on subsequent interactions 

Two sexually mature, size-matched males were selected at random and placed in a 

crystallising dish (50mm diameter) containing 40ml sea water.  The two males were 



- 47 - 
 

noted as male 1 and male 2, differentiated using the individual gut contents (Fletcher et 

al., 2009).  A fifteen minute aggression score was then taken with focal observations 

made every 30 seconds, (section 2.2.1).  In each case, the highest level of aggression 

reached was noted (level 0, 1, 2 or 3).  The two males were then separated and placed in 

crystallising dishes (50mm diameter) containing 40ml of fresh sea water.  The males 

were then returned to fight two hours after the first fight in the dish and the fifteen 

minute aggression score was repeated and any dominant male noted.  Following the 

fight, males were again separated and placed in fresh sea water with a small pellet of 

low protein rabbit food.  The aggression score was repeated once more after a period of 

24 hours from the initial placing in the crystallising dish and again, the dominant male 

was noted.  The total number of interactions equalled 60 (2 individuals observed on 3 

separate occasions with n = 20).   
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2.3: Results 

 

2.3.1: Aggression in sexually mature and spent females 

Figure 2.2 below shows a summary of the highest level of aggression observed in each 

case when comparing females from the different reproductive states: spent versus spent 

(SS), spent versus mature (SM) and mature versus mature (MM). 

 

 
Figure 2.2: The number of fights reaching each aggression level comparing the three 
combinations of females; spent versus spent (SS), spent versus mature (SM) and mature 
versus mature (MM). 
 

The results were analysed using the non-parametric Kruskal-Wallis test as aggression 

scores were compared as ranked data.  There were significant differences in the 

aggression scores between the three combinations of females (χ2/2 = 11.587, d.f. = 2, P 

= 0.003).  As detailed in Zar (1996), post-hoc non-parametric multiple comparisons 

following the Kruskal-Wallis test were used to compare each combination of females: 

SS, SM and MM.  Using a standard error of 26.926 and the critical value q0.05,∞,3 = 

3.314, there were no significant differences between SS and SM (q = 2.321) or SM and 

MM (q = 2.043).  However, a significant difference in aggression was found when 

comparing SS and MM (q = 4.364). 
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2.3.2: The effect of male aggression on pair formation 

As shown in Figure 2.3 below, mean pre- and post-fight pair times for males placed 

with familiar females and unfamiliar females were recorded.  There was a decrease in 

the mean pairing time when males were placed with familiar females following an 

interaction with another male.   

 

 
Figure 2.3: The mean time and standard error for a male and a female to form a pair 
bond prior and subsequent to an aggressive interaction with another male, placing the 
male either with a familiar or an unfamiliar female.  Each bar represents 50 interactions 
(male 1 and male 2 pooled data). 
 

The pairing times for male 1 and male 2 were pooled for each observation, giving a 

sample size of n = 50 for each pairing interaction (pre-fight with familiar female, pre-

fight with unfamiliar female, post-fight with familiar female and post-fight with 

unfamiliar female).  Pre- and post-fight mean pairing times for males placed with familiar 

and unfamiliar males were then analysed using a repeated measures ANOVA.  Mauchly’s 

test for sphericity was not significant (W = 1.000, P = 1.000), showing that the results do 

not violate the assumption of sphericity and no adjustment of the results of the repeated 

measures ANOVA is necessary.  There were no significant differences found between the 

pairing times of males after an aggressive bout (F = 0.715, P = 0.400), whether the male 

was placed with a familiar female or an unfamiliar (new) female (F = 2.073, P = 0.153).   
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2.3.3: The effect of previous aggression between males on subsequent interactions  

As shown in Figure 2.4 below, the results show that after the initial fight and period of 

separation, the occurrence of fights reaching level 2 and level 3 decrease for both 

subsequent fights and the occurrence of fights reaching level 1 increases, as more fights 

only reach this level and do not intensify.   

 

To compare the highest levels of aggression found for each of the three different fights, 

the results were analysed using the non-parametric Friedman test which takes into 

account repeated measures.  There were no significant differences found between the 

levels of aggression recorded (χ2/2 = 4.769, d.f. = 2, P = 0.092).  Although there is a 

decrease in level 2 and level 3 aggression for fights 2 and 3, these changes are not 

significant.   

 
 

 
Figure 2.4: The total number of fights reaching each level of aggression for the initial 
fight (fight 1), the second fight after 2 hours (fight 2) and the final fight after 24 hours 
(fight 3).  The number of interactions for each fight = 25. 
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2.4: Discussion 

 

2.4.1: Aggression in sexually mature and spent females  

Aggression has been observed to change in females during the course of the breeding 

season (Slagsvold, 1993) and whilst females are in the presence of their offspring 

(Manica, 2010).  It is also possible that changes in parental behaviour are exhibited as 

the reproductive value of the parent or the offspring changes (Tallamy, 1982).  In the 

lace bug Gargapha solani, females are more aggressive as their offspring reach maturity 

(Tallamy, 1982).  Females should protect their reproductive investment from other 

females to prevent the male from mating with an intruding female to protect the parental 

care investment that males provide (Slagsvold, 1993).  Although females die following 

reproduction, placing their lifetime’s reproductive effort in the care of the male, it was 

expected that N. acuminata females would no longer exhibit aggression when removed 

from the vicinity of their eggs mass (their territory).  The results show there was a 

significant difference in aggression exhibited between spent females (SS) compared to 

between sexually mature females (MM) (Figure 2.2).  Although spent females have 

‘nothing to lose’ as they have laid their eggs, no aggression was exhibited between 

spent females.  Aggression was observed between spent and sexually mature females 

but aggression only reached level 1 and only in four out of ten trials.  As females have 

already shed their eggs, unless a female is attempting to protect an egg mass, there will 

be no benefit to undertaking aggressive behaviour, as female death follows egg 

shedding (Reish, 1957).  As females were removed from the vicinity of the parental 

tube and observed in a separate crystallising dish, the spent female may not exhibit 

aggression as there is no reason or benefit associated with such behaviour and no egg 

mass to protect from a potential competitor or predator.  Great tit Parus major females 

have been found to be less aggressive towards the end of the breeding season 

(Slagsvold, 1993).  However, this is contradicted by the theory that aggression should 

be increased as offspring get older and the probability of their survival increases 

(Jaroensutasinee and Jaroensutasinee, 2003).  Female N. acuminata may have depleted 

energy levels or a decreased ability to show aggressive behaviour due to the shedding of 

eggs by dehiscence.  Females lose a large proportion of their body mass through 

dehiscence (eggs fill the coelomic cavity as they develop), leaving a split in the 

structure of the body wall (Hardege, personal communication) with degeneration of 

musculature after dehiscence (Starczak, 1984).  This change in the female may mean 

females are no longer capable of being aggressive or defensive, either due to the loss of 

body mass, lack of energy or due to the change in the body wall structure.     
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2.4.2: The effect of male aggression on pair formation 

Female mate choice has been shown to be affected by male aggression (Forsgren, 1997; 

Doutrelant and McGregor, 2000; López et al., 2002).  In some species, such as the shore 

crab Carcinus maenas (Van der Meeren, 1994), dominant males signal to females that 

they are of good quality, likely to be reproductively successful (Searcy, 1982).  In other 

species, such as the sand goby Pomatoschistus minutus (Forsgren et al., 1996), 

dominant males are avoided, instead female choose males that indicate they are good 

fathers capable of caring for the female’s offspring (Östlund and Ahnesjö, 1998).  As N. 

acuminata females have been shown to prefer males capable of undertaking parental 

care, rather than aggressive males (Fletcher et al., 2009), the aggressive interaction was 

expected to increase the subsequent pairing times of males with females.  The results 

showed no significant differences in mean pair times, with no effect of whether males 

were placed with familiar or unfamiliar females (Figure 2.3).  Males and females were 

found to form pair bonds in less than 9 minutes in all cases.  Aggressive bouts therefore 

in this case, do not influence pairing times, either with familiar or unfamiliar females.  

Only inexperienced males were used in the two trials and females could only pair form 

with the male that was presented to them, rather than given a choice between males.  

Pairs were formed in all replicates so there was no decision on the part of the female to 

reject a male.  This could be due to female death following reproduction, if a male is not 

present when she sheds her eggs, it is unlikely that those eggs will be fertilised and 

produce viable offspring as eggs do not survive longer than approximately 2 days 

without paternal care (Reish, 1957).    

 

There was a decrease in mean pair formation time with familiar females but this was not 

significantly different to the mean pair formation time observed when males were 

placed with unfamiliar females.  It is possible that this decrease is due to the male and 

female recognising each other as former mates but as the difference in mean pairing 

times was not significantly different to the mean pairing time of males placed with 

unfamiliar females, there is no supporting evidence for this here.  Performing more 

replicates may help to ascertain if mate recognition is occurring in N. acuminata.  

Separating pair-formed male and female individuals for varying amounts of time and 

comparing these interactions to those of the male and female when placed with 

unfamiliar potential mates, may help to determine if individual mate recognition occurs 

in this species.   
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With both trials, males were placed either with familiar or unfamiliar females, rather 

than placing one male with a familiar female and the other male with an unfamiliar 

female.  It was therefore not possible in this experiment to see what effect the same 

aggressive interaction has on pairing, with either familiar and unfamiliar females and 

whether any differences are observed.  Further to this, dominance and subordinate 

relationships were not examined between males, along with the effects of these 

relationships on subsequent female pairing.  Dominant males have been shown to be 

preferred over subordinate males when females are presented with a choice of these two 

males (Fletcher et al., 2009); can the female detect this when she is not present in the 

fighting arena?  Further to this, female presence may have an effect on male aggression.  

Although this was not examined here as aggression levels prior to males pairing with 

females were not taken, if males perceive a valuable resource such as a sexually mature 

female, this may alter the aggressive response (DiMarco and Hanlon, 1997).  In N. 

acuminata, Fletcher et al. (2009) found that aggression levels were heightened between 

inexperienced males following pairing with a female.  Aggression levels between two 

inexperienced males were also found to be heightened when a female was present in the 

experimental arena (Fletcher et al., 2009).  It is possible that N. acuminata males may 

indicate to an opponent chemically that they have recently pair formed with a female, 

therefore affecting the aggressive response.  In the velvet swimming crab Necora puber, 

exposing crabs to water conditioned using sexually receptive females led to prolonged 

aggressive interactions observed between two males, with more instances of behaviour 

seen with the potential to inflict injury (Smith et al., 1994). 

 

2.4.3: The effect of previous aggression between males on subsequent interactions  

Individual recognition for previous opponents has been reported in hermit crabs 

(Gherardi and Teidemann, 2004), lobsters (Karavanich and Atema, 1998; Katoh et al., 

2008), swordtails (Franck and Robowski, 1987) and fish (Beacham and Newman, 1987).  

As fights can be both costly and pose a risk in terms of injury (Caldwell, 1985), it was 

expected that the aggression observed in subsequent fights between N. acuminata 

individuals would be less intense to reduce these effects.  The results (Figure 2.4) showed 

that, although there was a decrease in the number of fights reaching level 2 and level 3 

aggression over time, there was no significant difference in the aggression observed in 

subsequent fights between males.  There was no evidence to suggest, therefore, that 

subsequent fights significantly alter the exhibited aggression between two individuals in 

this experiment.  It is possible that individuals do recognise that they have fought 

previously but this does not have an effect of the aggression levels exhibited.  Male 



- 54 - 
 

aggression in the swordtail Xiphophorus helleri has been observed to increase with 

subsequent fights (Franck and Ribowski, 1987).  It is therefore not clear from the 

experimental design that individual recognition for opponents is present or absent.  Short-

term learning has been reported in nereid polychaetes (Evans, 1966b) and is proposed to 

be slow (Evans, 1966c).  In this experiment, individuals were isolated for two hours 

before individuals met again.  It may be the case that this period of separation was too 

long and in this time, the recognition of individuals was lost.  Further experiments should 

be conducted with individuals in each other’s presence for longer than fifteen minutes 

using periods of separation that start small (such as one minute), building up to longer 

periods, to determine if there is an effect of individual recognition that was missed due to 

the experimental design used here.    

 

2.4.4: Next steps 

In the above experiments, aggression was examined in terms of the aggression level 

reached between two individuals.  It may be the case that aggression levels remain 

relatively constant but the time engaged in fighting changes depending on the 

circumstances and the individuals placed together.  New experimental designs should 

therefore be investigated, observing the time two individuals spend fighting, related to 

aggression levels recorded with each bout.   

 

Female aggression was found to be absent when females where not in the presence of an 

egg mass following dehiscence.  Females have been shown in a previous study to be 

aggressive when they have just laid eggs and are near to the parental male and the egg 

mass (Reish, 1957).  Also, males have been shown to be aggressive when undertaking 

sole paternal egg care (Reish, 1957).  Further experiments should be undertaken to 

determine if females (and males also) are aggressive towards intruding individuals of 

either sex prior to reproduction, when males and females are monogamously paired and 

sharing the same mucous tube.   

 

It is also suggested that future studies should focus on individual recognition in terms of 

both fighting and pairing behaviour in this species to understand if males and females 

can recognise an individual that they have previously come into contact with.  Winner 

and loser effects should also be examined in N. acuminata to determine if winners of 

fights also win subsequent fights (and losers lose subsequent fights) with unfamiliar 

individuals.  
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Chapter Three: 

 

Intrasexual aggression between populations of N. acuminata 
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3.1: Experimental reasoning and aims 

Aggressive interactions have been studied in a number of species and intrasexual 

aggression (between individuals of the same sex) may occur due to competition for 

resources such as space, food and mates or to defend territories or offspring (Clark, 

1959).  Both sexes may also engage in intrasexual aggressive interactions for social 

rank, dominance and potentially to prevent other individuals from mating or to try and 

be the first individual to mate with a particular partner (Karvonen et al., 2000).  Such 

aggressive behaviour has been observed in the crabs Necora puber and Liocarcinus 

depurator, however female aggression was generally less intense than that of males 

(Huntingford et al., 1995).   

 

Different species may occupy the same habitat and compete over resources.  The two 

sympatric crayfishes Cambarus bartonii bartonii and C. robustus have asynchronous 

breeding and moult cycles and have largely non-overlapping distributions.  In 

aggressive contests, C. robustus males were found to be dominant over males of C. b. 

bartonii when compared in size-matched fights (Guiasu and Dunham, 1999).  In the 

hermit crabs Clibanarius tricolour, C. antillensis and Calcinus tibicen individuals all 

share a preference for gastropod shells and interspecific aggression has been observed 

over this limited resource used for predator protection (Bach et al., 1976).  Similarly, in 

C. antillensis and Pagurus crinitocarnis, shell fighting is also likely and it has been 

found that C. antillensis individuals are generally dominant over P. crinitocarnis (Turra 

and Denadai, 2004).  In the territorial ant Formica pratensis, aggression towards 

opponents decreases with increasing genetic relatedness, with more aggression therefore 

shown towards non-nestmates (Beye et al., 1998).  This was also observed in the fire 

ant Solenopsis invicta, where individuals are also territorial and are highly aggressive 

towards members of other fire ant colonies compared to individuals of their own colony 

(Vander Meer and Alonso, 2002). 

 

Same-sex aggression has been observed in many polychaete species, a few examples 

being Platynereis dumerilii (Evans, 1973), Nereis virens (Commito and Shrader, 1985) 

Nereis pelagica (Clark, 1959), Nereis grubei (Reish and Alosi, 1968) and also the 

experimental species N. acuminata (Reish, 1957).  Individuals may use aggressive 

displays in order to defend territories, mates and offspring (Reish and Alosi, 1968; 

Evans, 1973).  In N. acuminata, males are known to be aggressive towards any 

individual approaching the parental tube during egg care (Reish, 1957).  Females that 

have shed their eggs are also known to be aggressive towards sexually mature females 
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introduced in the vicinity of the parental tube where the male is caring for the recently 

laid egg mass (Reish, 1957).   

 

Individuals can use assessment strategies to avoid fighting individuals that they are 

likely to lose against in order to lower the costs and risk of injury (Caldwell, 1985).  

Game theory predicts that individuals will compare their Resource Holding Potential 

(RHP), the ability of an individual to win a fight, to that of their opponents before 

deciding whether or not to escalate a fight (Sneddon et al., 1997). The RHP of an 

individual can be influence by body size, age, sex (Beacham and Newman, 1987), 

morphology, physiology, previous aggressive experiences (Sneddon et al., 1997), prior 

residency, energy reserves, resource value and physical condition (Morrell et al., 2005).  

Asymmetries between opponents, where the RHP of each opponent differs, for example 

body size, can lead to the quick resolution of fights (Maynard Smith, 1974).  

Interactions between closely-matched individuals, however, are likely to escalate over 

time and increase the risk of injury to each individual (Maynard Smith, 1974).  The 

fight will continue until the individual with the lowest cost threshold reaches that level 

(e.g. expended energy levels) meaning that the duration of the fight is determined by the 

RHP of the individual with the lower cost threshold, the eventual loser (Morrell et al., 

2005). 

 

In order to decrease the risk of injury incurred during combat, communication systems 

capable of transmitting sufficient information to the opponent would be expected to 

evolve if weapons used in aggressive interactions are potentially lethal (Caldwell, 

1979).  In N. acuminata, aggression potentially involves such behaviour as the jaws are 

used in fights to attack the opponent, which can escalate to severe aggression involving 

biting (Reish and Alosi, 1968).  Communication signals may be shaped by features of 

the biotic and abiotic environment and differences in habitat conditions occupied by 

populations can affect signalling systems (Lovern et al., 1999).  Closely related species 

often exhibit great signal diversity and such divergence in communication signals is a 

factor that can promote speciation (Leal and Fleishman, 2004).  Signal diversity may 

evolve because species or populations occupy different habitat conditions where 

selection for effective communication promotes divergence in signal design.  This may 

occur due to differences in habitat condition which favour differences in sensory 

systems which in turn select for differences in signal design (Leal and Fleishman, 

2004).  Alternatively, differences in habitat noise and transmission properties may 

favour differences in signal design even if there is no change in the sensory system 



- 58 - 
 

(Leal and Fleishman, 2004).  If there is a change in the signal design, reproductive 

isolation may occur due to a failure to communicate if such signals are important for 

mate choice or species recognition (Leal and Fleishman, 2004).  Divergence of 

populations can also be affected by the level of predation, parasite prevalence (Madden, 

2006), food availability and/or density (Ward and McLennan, 2008).  If local or 

geographical selective regimes are different and strong enough, behaviour in different 

populations of a species may evolve in different directions (Lahti et al., 2001).  

Variation in traits such as metabolic rates, trophic structures, acclimatisation abilities, 

thermal and osmotic tolerances and life history parameters can also be expressed 

through changes in behaviour (Ptacek and Travis, 1996). 

 

Divergence between populations may therefore be expressed in changes in behaviour, 

including aggression.  Dunbrack and Clarke (2003) stated that the levels of aggression 

in pair-wise contests should be higher the greater the behavioural divergence there is 

between two opponents.  Individuals from different populations should display 

divergence that is greater than that shown between two individuals from the same 

population.  This is known as the communication failure hypothesis and can lead to the 

escalation of fights between individuals (Maynard Smith and Riechert, 1984).  As 

mentioned before, asymmetries in RHP are likely to lead to the quick resolution of 

fights from an initial assessment of the opponent (Maynard Smith, 1974) and escalated 

fights are more likely when cues from the initial assessment are ambiguous and 

individuals must use more overtly aggressive behaviours in order to determine the 

outcome of the fight (Maynard Smith, 1974).  Communication signals which deviate 

from the population norm could be sufficiently ambiguous that it provokes a more 

aggressive response (Dunbrack and Clarke, 2003).  Evolutionary modifications of 

communication signals may lead to divergences in population behaviour, causing higher 

levels of aggression or prolonged fights between populations in pair-wise contests due 

to a mutual ambiguity in individual assessment (Dunbrack and Clarke, 2003).  

Population comparisons are therefore used to gain insight into the causes of behavioural 

differentiation (Lahti et al., 2001) and the selective influence of the environment on 

signal expression (Lovern et al., 1999).  

 

Previous studies have shown behavioural divergences within populations (Saito, 1995; 

Lahti et al., 2001).  Aggression levels were examined within population of the brown 

trout Salmo trutta (sea-run, lake-run and resident populations) with migratory 

populations exhibiting higher aggression levels when compared to the aggression 
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observed within the other populations (Lahti et al., 2001).  Among populations of the 

spider mite Schizotetranychus miscanthi, there was found to be high variations in the 

aggressive behaviour with mean winter temperature of the sample site positively 

correlated with the level of aggressive exhibited (Saito, 1995).  Aggression has also 

been examined in staged contest between individuals from different populations by 

Dunbrack and Clarke (2003).  In their study, two populations from different riverine 

systems of the brook trout Salvelinus fontialis were compared in size-matched contests, 

using nipping rate as the index of aggressiveness.  The mean number of nips in fights 

between individuals from different populations was found to be greater than the mean 

number of nips in fights involving individuals from the same population, showing 

escalated fights between individuals from different populations (Dunbrack and Clarke, 

2003).    

 

As N. acuminata populations were sampled from the wild and from different types of 

habitats, differences in the environment may have led to a divergence in behaviour.  The 

Reish (R) and Los Angeles (LA) populations were sampled from LA Harbour (R 

collected in 1964, LA in 2008), the Newport (N) population was collected from 

Newport Beach (in 2005), the San Gabriel (SG) population was collected from San 

Gabriel River (in 2003) and the Connecticut (C) population was collected from Alewife 

Cove (classed as an estuary, collected in 2002).  Genetic divergence in the four 

laboratory populations has already been investigated (Pesch and Pesch 1980; Weinberg 

et al., 1990; D.H. Lunt and J.D. Hardege, unpublished).  Not only is there a difference 

in the chromosome number of the C population (2n = 22 in the C population compared 

to 2n = 18 in R, N and SG populations) (Pesch and Pesch 1980; Weinberg et al., 1990) 

the C population, according to the nuclear DNA, is likely to have diverged from the 

other three populations approximately ten million years ago.  Examining the 

mitochondrial DNA, following the divergence of the C population, the SG population 

diverged from the R and N populations approximately seven million years ago.  R and 

N have been found, using the mitochondrial DNA, to be very similar genetically, with 

little divergence (D.H. Lunt and J.D. Hardege, unpublished).   

 

Previous work on the aggressive relationships between populations of N. acuminata has 

not examined the intrasexual aggressive behaviour.  Therefore, the levels of intrasexual 

aggression both within and between the four laboratory populations were examined.  

Aggression between males was examined, as was the aggression between females.  

Differing aggression levels may add supporting evidence to show divergence of the 
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populations of N. acuminata.  It was expected that individuals from different 

populations would exhibit higher aggression levels towards each other than individuals 

from the same population, with both males and females.  As the populations all share 

the same life history traits and are very similar morphologically (Weinberg et al., 1990), 

aggression levels may be used to identify the separate groups and the divergence 

between the populations may be expressed via heightened aggression due to the 

communication failure hypothesis, indicating that escalated aggression would be 

expected between populations that have diverged (Dunbrack and Clarke, 2003).   

 

In addition, the new wild Los Angeles (LA) population (sampled in 2008) was 

compared to the existing laboratory maintained Reish (R) population with both males 

and females to determine if there are any differences in aggression between these two 

populations and whether these results suggest that these two populations should be 

treated as potentially separate species.  Studies undertaken by Weinberg et al. (1990; 

1992) have caused some controversy as it has been suggested that the R population had 

speciated in the laboratory since its collection in 1964.  Weinberg et al. (1990) 

concluded that due to high levels of pre-mating isolation between the R population with 

both SG and N populations compared to low levels of pre-mating isolation between SG 

and N, speciation occurred in the R population in the laboratory following a founder 

event.  Weinberg et al. (1992) subsequently looked at the percentage of broods that 

produced healthy offspring between the R, SG and N populations (a post-mating 

isolation experiment).  When R individuals were paired with either SG or N individuals, 

no healthy offspring were produced.  However, when SG individuals were paired with 

N individuals, the percentage of healthy offspring was found to be 77% (normal levels 

were calculated as 75-95%).  These controversial findings were therefore further 

discussed in the work by Rodriquez-Trelles et al. (1996).  This work disagreed with 

Weinberg et al. (1992) and hypothesised that the two wild populations used in the study 

(SG and N) were not representative of the population from which the R population was 

originally sampled from.  The study went on to investigate the genetic markers, genetic 

variability and divergence of the three populations.  It was found that in 13/18 loci, the 

R population does not share any alleles with either SG or N and high genetic differences 

(D) were found to be as follows:  SG to N = 0; R to SG = 1.75; R to N = 1.76.  The 

genetic difference between the two sibling species N. diversicolor, a population from 

Germany, and N. limnicola, a species from the U.S.A., is 1.28.  The study therefore 

concludes that these three populations formed separate species before the R population 

was sampled in 1964.   As the R population and the wild LA populations were collected 
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from the same geographical location, the LA population may provide a better 

representation of the population that R was originally sampled from.  Due to changes in 

the environmental conditions in Los Angeles Harbour due to the pollution abatement 

programme (Reish et al., 1980) and as the R population has been maintained in the 

laboratory under constant light, temperature and feeding regimes, it is hypothesised that 

these two populations will have diverged.  As these populations have been separated for 

44 years, it is hypothesised that aggression levels between these two populations would 

be higher than the aggression within each population. 

 

In nature, the male is generally the more aggressive sex due to its relationship with 

mating and mating success, where females are often choosy and males actively court 

such females, undertaking ‘traditional’ sex-roles (Berglund et al., 1986).  However, 

female competition and male mate choice (sex-role reversal) has been observed to occur 

when the sex ratio is female-biased (Côte and Hunte, 1989), if mating is more costly for 

males (Ridley, 1978) or when males contribute greatly towards parental investment 

(Gwynne, 1981).  In the case of the experimental species N. acuminata, Starczak (1984) 

observed that winning fights when an individual of the opposite sex was present was 

more prevalent when two males were placed with a female compared to two females 

placed with a male.  Males are also typically the more aggressive sex if there is limited 

availability of females (Kvarnemo et al., 1995).  Due to female death following egg 

release in N. acuminata and because more monogamous breeding events occur over 

time, it is likely that the sex ratio in a population will become male-biased (Starczak, 

1984).  Males are also able to reproduce again once the eggs have hatched and larvae 

have left the parental tube (Reish, 1957).  The final aim of this chapter was to compare 

the levels of aggression found between male individuals to those found between 

females.  As female choice and male aggression for females is evident in this species 

(Starczak, 1984; Fletcher et al., 2009), it was hypothesised that female aggression 

intensity will be lower than that of males.  Therefore, levels of aggression were 

compared to determine the sex displaying the highest levels of aggression to see if this 

provided further indication of the occurrence of female choice in N. acuminata.  
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3.2: Methodology 

Individuals used in the following experiments were selected at random from the stock 

population tanks maintained at the University of Hull, each containing over 100 adult 

individuals and only sexually mature worms were used.  Males and females were 

identified by the colouration of the gametes in the coelomic cavity: white for males and 

yellow for females.  Any ambiguity in coloration was resolved by placing the individual 

with another and observing the behaviour for a short space of time to determine if 

pairing occurred.   The four laboratory populations plus the recently sampled wild 

population, detailed in section 1.10, were used: Reish (R), Newport Beach (N), San 

Gabriel River (SG), Connecticut (C) and Los Angeles Harbour (LA).  Individuals used 

in experiments were size-matched to within approximately a 2mm range of each other 

to eliminate the possibility that size may influence aggressive interactions.  Sexually 

mature individuals typically measure approximately 60mm in length.   

 

Two sexually mature males were selected from the designated population aquaria and 

placed in a crystallising dish (70mm diameter) containing 40 ml of sea water (salinity 

36-38‰).  The salinity in each of the population tanks ranges between 35-40‰.  

Crystallising dishes of this size were used to allow individuals to interact but also to 

separate following any aggressive interactions to minimise the risk of injury.  Males 

were distinguished from each other by observing the faecal contents in the gut which 

vary between individuals due to differing feeding habits, giving a unique ‘pattern’ 

(Fletcher et al., 2009).  Individuals were used only once in any aggressive interaction.  

The level of aggression was observed between the two individuals, as detailed in Figure 

2.1 (page 45) over a fifteen minute period and scored as follows: 

Level 0: no aggression between the two individuals. 

Level 1: individuals avoid contact with each other, palpi may be slightly flared. 

Level 2: a fighting position is assumed by both individuals with the palpi flared and the 

jaws visible. 

Level 3: severe aggression is observed with biting of the opponent. 

 

The experiment was initiated following frontal contact between the two individuals.  

Therefore, the aggression score is not a score of individual aggression but of the 

interaction between the two individuals.  As previous studies have only looked at 

observations over a 5 minute time frame (Reish and Alosi, 1968; Fletcher et al., 2009), 

the 15 minute observation period was used to provide a good indication of the 

aggression, if any, displayed between individuals.  
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For each replicate, the highest aggression level overall (0, 1, 2 or 3) was recorded to 

provide an accurate level of intensity for each interaction and to avoid any effects of 

continuous fighting or an escalation of fights on the aggression recorded.  Aggression 

was observed between each of the different population groups, with n = 20 pairs of 

individuals.   

 

Finally, aggression was observed between individuals from the wild LA population (n = 

20 pairs) and these were compared to the aggression observed between individuals from 

the LA population and individuals from the laboratory-based R population (n = 20 

pairs) using the same method as described above.  The aggression found within the R 

population as described above (n = 20 pairs) was also used as a comparison to the 

aggression observed between LA and R individuals.  The above protocol was then 

repeated using two sexually mature females, with aggression level assessed again using 

the different population groups.  The total number of interactions observed was 440.   
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3.3: Results 

 

3.3.1: Male aggression within and between the four laboratory populations 

Within each of the four laboratory populations, the majority of the aggressive 

interactions only reached level 1 and interactions were found to have low frequencies of 

the highest level of aggression (level 3), involving severe attacks with biting, as Figure 

9 below demonstrates.  Aggression level frequencies observed for each combination of 

males were compared to determine if there were any differences in aggression levels 

between individuals originating from different populations.  Figure 3.1 below shows the 

number of fights reaching each level of aggression when combinations of males from 

each of the populations were placed together.  There was variation in the number of 

fights reaching each level of aggression depending on the individuals that were placed 

together.  The aggression levels recorded for each combination of individual were 

compared using the Kruskal-Wallis test.   

 
Figure 3.1: The number of fights reaching each level of aggression for each combination 
of males, with comparisons for each of the four populations: Reish (R), Newport (N), 
San Gabriel (SG) and Connecticut (C). Each bar represents 20 replicates. 
 

There was a significant difference found when the aggression levels were analysed 

using the Kruskal Wallis test (χ2/2 = 30.6376, P = 0.0002).  A post-hoc Nemenyi-

Damico-Wolfe-Dunn test, according to Zar (1996), was then performed in the statistical 

package R (version 2.10.1) to determine which groups differed.  Significant differences 

0

2

4

6

8

10

12

14

16

18

20

RR NN SGSG CC RN RSG RC NSG NC SGC

Population combination

N
um

be
r o

f f
ig

ht
s

Level 3

Level 2

Level 1

Level 0



- 65 - 
 

in aggression level were found between NN and NSG (P = 0.0346), between NN and 

RSG (P = 0.0193), between NN and SGC (P = 0.0114) and between SGC and RN (P = 

0.0343).  No other groups displayed significant differences in aggression (P > 0.05). 

 

3.3.2: Male aggression between the laboratory (R) and the wild (LA) population 

Observed aggression frequencies for each combination of the R and LA populations are 

demonstrated in Figure 3.2 below.  The recorded aggression was analysed using the 

Kruskal Wallis test.   There were no significant differences between the aggression 

levels from RR, RLA and LALA (χ2/2 = 2.721, d.f. = 2, P = 0.257).  Although the RR 

aggression data has been analysed statistically in the previous section, Rice (1989) 

suggests that a correction need only be made when two or more tests that cannot be 

pooled attempt to answer the same null hypothesis.  As this data set is examining the 

differences in aggression level to the LA population and not the populations compared 

previously, a different hypothesis is being tested here. 

 
Figure 3.2: The number of fights reaching each level of aggression with interactions 
within the laboratory Reish population (RR), between the Reish population and the wild 
Los Angeles population (RLA) and within the wild Los Angeles population (LALA).  
Each bar represents 20 replicates. 
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3.3.3: Female aggression within and between the four laboratory populations 

Within the R, N, SG and C laboratory populations, the majority of the aggressive 

interactions only reached level 1 and interactions were found to have low frequencies of 

the highest level of aggression (level 3); fights were found to have low levels of 

aggression involving severe attacks with biting, as Figure 3.3 below demonstrates.  

Aggression level frequencies observed within each of the four laboratory populations 

were compared to the frequencies found when members of the different populations 

were placed together to determine if there were any differences in aggression levels 

between individuals originating from different populations.  Figure 3.3 below also 

shows the number of fights reaching each level of aggression when combinations of 

females from each of the populations were placed together.  There was variation in the 

number of fights reaching each level of aggression.  The aggression levels recorded for 

each combination of individual were compared using the Kruskal-Wallis test, showing 

there was no significant difference in the aggression levels observed between each 

combination (χ2/2 = 12.523, d.f. = 9, P = 0.185).   

 
Figure 3.3: The number of fights reaching each level of aggression for each combination 
of females, with comparisons for each of the four populations: Reish (R), Newport (N), 
San Gabriel (SG) and Connecticut (C). Each bar represents 20 replicates. 
 

3.3.4: Female aggression between the laboratory (R) and the wild (LA) population 
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Kruskal Wallis test and there significant differences were found (χ2/2 = 8.832, d.f. = 2, P 

= 0.012).  A post-hoc Nemenyi-Damico-Wolfe-Dunn test, according to Zar (1996), was 

then performed to determine which groups differed.  A significant difference in 

aggression level was found between RR aggression and RLA aggression (q0.05,∞,3 = 

3.314, q = 3.969) but not between either RR and LALA (q0.05,∞,3 = 3.314, q = 2.561) or 

between RLA and LALA (q0.05,∞,3 = 3.314, q = 1.408).  Although the RR aggression 

data has been analysed statistically in the previous section, Rice (1989) suggests that a 

correction need only be made when two or more tests that cannot be pooled attempt to 

answer the same null hypothesis.  As this data set is examining the differences in 

aggression level to the LA population and not the populations compared previously, a 

different hypothesis is being tested here. 

 

 
Figure 3.4: The number of fights between females reaching each level of aggression 
with interactions within the laboratory Reish population (RR), between the Reish 
population and the wild Los Angeles population (RLA) and within the wild Los 
Angeles population (LALA).  Each bar represents 20 replicates. 
 
 
3.3.5: Male aggression compared to female aggression within each population 

The results indicate that in most cases, frequencies of female aggression were found to 

be similar to the frequencies of male aggression, as displayed in Figure 3.5 below. 
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Figure 3.5: The number of fights reaching each level of aggression between males (M) 
and females (F) from each of the populations, Reish (R), Newport (N), San Gabriel 
(SG), Connecticut (C) and Los Angeles (LA).   
 

 

With all five populations, the number of fights showing no aggression was greater in 

males than females.  Observing interactions within the Reish population, the number of 

fights reaching level 1 was higher between males.  Females had more fights reaching 

levels 2 and 3 than males.  With the Newport population, the number of fights reaching 

level 1 was higher in females, level 2 was higher in males and the number of fights 

reaching level 3 was equal.  With the San Gabriel population, the number of fights 

reaching level 1 was higher in females, level 2 was higher in males and equal for fights 

reaching level 3.  With the Connecticut population, fights reaching level 1 was higher 

between males.  Females had more fights reaching levels 2 and 3 than males.  With the 

Los Angeles population, the number of fights reaching level 1 was equal.  The number 

of fights reaching level 2 was higher in males whereas the number of fights reaching 

level 3 was higher in females. 

 

For each of the 5 populations R, N, SG, C and LA, differences in male aggression were 

compared to differences in female aggression using the Mann Whitney U test.  As 

detailed in Table 3.1, there were no statistical differences observed between the 

aggressive frequencies of males to females in any of the populations.  Again, although 

the aggression recorded for each of there populations, both male and female, have been 
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analysed statistically before, this analysis is testing a different hypothesis comparing 

male and female aggression.  As previously mentioned, Rice (1989) suggests that a 

correction need only be made when two or more tests that cannot be pooled are used to 

attempt to address the same null hypothesis.   

 

Table 3.1: Statistical results comparing observed male aggression to female aggression 
for each population using the Mann Whitney U test. 
 
Population U value P value 
R -0.555 0.579 
N -0.548 0.584 
SG -0.092 0.926 
C -0.664 0.507 
LA -1.043 0.297 
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3.4: Discussion 

 

3.4.1: Aggression within and between the four laboratory populations 

Game theory predicts that individuals should compare their RHP with that of their 

opponent before escalating aggression both before and during a fight (Sneddon et al., 

1997).  Contests are predicted to be resolved more quickly the more the strengths and 

weaknesses of the opponents differ, known as asymmetries between contestants 

(Gammell and Hardy, 2003).  Where opponents are evenly-matched in RHP, fights are 

likely to escalate and increase the risk of injury to each opponent (Maynard Smith, 

1974).  According to the communication failure hypothesis, fights are also likely to be 

escalated if there is behavioural divergence between the two opponents due to the 

expression of communication signals which deviate from the norm (Dunbrack and 

Clarke, 2003).  Individuals from different populations should display divergence that is 

greater than that shown between two individuals from the same population (Dunbrack 

and Clarke, 2003).  Differences in aggression can be exhibited when comparing levels 

of aggression within a population to other populations in different habitat condition, 

such as the variation in aggression levels observed within different populations of the 

brown trout Salmo trutta (Lahti et al., 2001).  Differences can also be exhibited in 

staged contests between individuals from different populations, as observed in size-

matched contests of individuals from two populations of the brook trout Salvelinus 

fontialis (Dunbrack and Clarke, 2003).   

 

The aggression of both males and females within the four populations with R, N SG and 

C were found to be similar.  The male aggression results (Figure 3.1) showed that 

within each of the four laboratory populations (R, SG, N and C), the majority of fights 

only reached level 1 aggression and fights were found to have low occurrences of level 

3 aggression, involving severe attacks with biting.  Similarly, the female aggression 

results (Figure 3.3) showed that within each of the populations N, SG and C, the 

majority of fights only reached level 1 aggression.  Within the R population, there were 

more fights that reached level 2.  Again, fights were found to have low occurrences of 

level 3 aggression.  With both male and female aggression within each of the 

populations, as the aggression level increased, the frequency of fights reaching that level 

decreased within all four populations.  The low level of aggression found may be due to 

assessment of opponents, with ritualised displays of aggression without incurring injury 

rather than escalated aggression between opponents.  Due to the eversion of the jaw and 
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biting exhibited with level 3 aggression (Reish and Alosi, 1968), individuals may not 

engage in this type of aggression to avoid a bite from the opponent.  It could be the case 

in N. acuminata, that within populations, individuals assess the RHP of their opponents 

and resolve fights quickly to avoid risky and costly fighting behaviour.  There were no 

significant differences found in female aggression with any of the four populations R, 

N, SG or C.  Significant differences were found in the male aggression results however 

but the post-hoc test showed that there were no significant differences when comparing 

aggression found within each of the four populations (comparing RR, NN, SGSG and 

CC).  Therefore, if divergence of these populations does cause a change in behaviour, it 

is not exhibited through aggression between individuals from the same population.      

 

Individuals in these experiments were size-matched to eliminate size as a variable in the 

aggression displayed between two individuals.  As N. acuminata individuals are 

typically difficult to measure, opponents were size-matched to within 5mm, where 

sexually mature individuals measure approximately 60mm (Pettibone, 1963).  As 

previously mentioned, symmetries in RHP can lead to escalated fights (Maynard Smith, 

1974).  It is possible that the symmetry in body size used in these experiments with 

matching opponents has led to individuals exhibiting a greater level of aggression 

towards each other.  It is also possible that although worms were size-matched to their 

opponents, there were differences in the size ranges of individuals between the 

replicates, with some individual fights involving smaller individuals than other fights.   

 

Morrell et al. (2005) found that in the fiddler crab Uca mjoebegi, fight duration 

increased with increases in the mean size of closely-matched opponents.  This suggests 

that larger individuals are capable of fighting for longer periods than smaller opponents 

(Morrell et al., 2005).  It is possible in N. acuminata that fights involving larger 

individuals could have impacted upon the results.  However, sexually mature 

individuals were used in all replicates.  In females, only sexually mature individuals 

were used, meaning that egg were visible in the coelomic cavity, excluding females that 

are smaller.  Females do not generally grow bigger than 60mm, as eggs fill the cavity, 

individuals cease feeding, preventing further growth (Reish, 1957).  In males, only 

sexually mature individuals were used as opposed to a male that had reproduced already 

as experienced males are older and can be larger than inexperienced individuals.  

Therefore, any size discrepancies would have been relatively small between the 
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replicates and attempts were made to control the age of the individuals used so 

individuals larger than approximately 60mm were not used.       

 

The male aggression results show that there were significant differences in aggression 

between the combinations of opponents from the four populations (Figure 3.1).  The 

post-hoc test showed however that there were only significant differences between 

aggression when comparing NN aggression to NSG aggression, NN to RSG aggression, 

NN to SGC aggression and SGC and RN aggression.  With female aggression, however, 

although aggression within and between the four populations was also found to vary 

(Figure 3.3), there were no significant differences found in aggression between any of 

the combinations of females placed together.  According to the communication failure 

hypothesis, escalation of fights can occur if during the initial assessment of an 

opponent, the information received is ambiguous (Dunbrack and Clarke, 2003).  This 

could explain why there are significant differences in aggression recorded, if between 

certain individuals, fights are escalated and reach a higher level of aggression involving 

serious attack and biting. However, if this were the case, female aggression would also 

be expected to differ significantly from aggression involving individuals from the same 

population and this was not observed. 

 

Males appear to be more aggressive towards individuals from other populations, as 

demonstrated by the significant differences in aggression observed.  It could be that 

female aggression towards individuals from other populations is naturally less intense 

than male aggression.  Female aggression has been observed to be less intense than 

male aggression in the American lobster Homarus americanus (Peeke et al., 1998).  The 

results indicate that females exhibit the same intensity of aggression towards an 

individual, regardless of the opponent’s population.  Females may not be able to 

recognise each other as originating from different populations and therefore exhibit the 

same level of aggression to all females presented.   

 

3.4.2: Aggression between the laboratory (R) and the wild (LA) population  

The male aggression results between the R and the LA populations showed no 

significant differences (Figure 3.2), either within or between the two populations.  This 

suggests that individuals may not recognise each other as different.  Although these two 

populations have been separated for 44 years, the R population may still form a 
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representative population that is comparable to the population found in natural 

conditions, such as the LA population.      

 

With female aggression however, a significant difference was observed when the 

aggression within the R population was compared to that between the R and LA 

populations (Figure 3.4).  The aggression between the other combinations was found to 

have no significant differences.  The aggression between R and LA individuals was 

found to have higher incidences of level 2 aggression compared to aggression from 

within both R and LA.  It may be the case that females are recognising a signal that the 

males are not, although the results for the other four population combinations contradict 

this as female aggression was not different, whichever females were placed together.  

These two populations have been separated with one population reproducing in the 

laboratory and the other in the wild for approximately 44 years so this difference in 

environmental conditions could be attributed to this.  As previously mentioned, 

differences in habitat conditions such as food availability, predator abundance, light 

intensity and temperature can alter the communication system (Lovern et al., 1999) and 

cause an escalation of fights due to ambiguity in the initial assessment of opponents 

(Dunbrack and Clarke, 2003).  The R population was collected in 1964, prior to the 

pollution abatement programme of Los Angeles Harbour that was introduced in 1968 

(Reish et al., 1980).  The R population has subsequently been maintained under 

laboratory conditions, with constant light, food and temperature regimes.  The LA 

population was collected in 2008, after a period of dramatic change in the harbour 

including the pollution abatement and an oil tanker explosion (Reish, 1986).  These 

differences in environmental conditions between the two populations could have caused 

changes in the signal design and/or the sensory systems in N. acuminata.    

 

However, it seems unlikely that changes in the signal design or sensory systems, leading 

to changes in aggression, would be expressed in one gender and not the other.  Female 

aggression between the R and LA populations was not found to be significantly 

different to LALA aggression, only to RR aggression.  It is possible that this is due to 

variation in aggression exhibited between individuals.  Aggressive behaviour has been 

described as being genetically complex with loci sensitive to the physical and social 

environment, potentially causing deviations in behaviour (Edwards et al., 2009).  It is 

possible in N. acuminata that slight variations between individuals in their genetic 

composition could cause deviations in aggressive behaviour.  More replicates should 
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therefore be undertaken to determine the extent of variation in aggression between the R 

and LA populations.  

 

The aggression results found in this chapter within and between populations of N. 

acuminata were difficult to interpret.  It is unclear why there would be heightened 

aggression in males and not females for the combinations of R, N, SG and C 

populations, but reversed with heightened female aggression but not male aggression 

when comparing the aggression for the combinations of the R and LA populations.  It is 

possible that with further replicates, these differences would become clear, either in the 

case of male aggression, or female aggression.  

 

3.4.3: Male aggression compared to female aggression within each population 

There were no significant differences found when male aggression was compared to 

female aggression for each of the populations, R, N, SG, C and LA (Figure 3.5).  In 

previous studies, higher levels of aggression in males were linked to the incidence of 

sexual selection in this species.  As males display aggressively and females are choosy, 

aggression in females will not be linked to reproduction but is more likely to exist for 

competition for resources, for example food and space (Clark, 1959).  This is supported 

in the study by Starczak (1984) that found that females were not interested in fighting.  

Aside from defending territory or resources, there may be no other benefit to the female 

exhibiting aggression.  In pipefish species, male-to-male competition has also been 

found to be stronger than female-to-female competition suggesting the sex roles are not 

reversed (Matsumoto and Yanagisawa, 2001). 

 

As there were no significant differences between male and female aggression, the 

results do not provide support for the argument for female mate choice and male 

aggression in this.  However, aggression levels in this study were only examined by 

placing two members of the same sex together.  Starczak (1984) found that aggression 

levels between two males were higher but only when a female was present.  As no 

member of the opposite sex was present during the aggressive interactions, the 

aggression levels recorded may not be related to reproduction, instead showing 

aggression due to lack of food or space, for example. 

 

In summary, the evidence suggests that although male individuals react differently 

when placed with an individual from another population, aggression is a weak indicator 
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of population divergence.  The R population may still be a representative sample of the 

wild population LA, even though these two populations have been separated by 

approximately 44 years.    

 

3.4.4: Next steps 

Further work on aggression in this species needs to be undertaken including studies 

looking at aggression from an individual rather than observing the aggressive 

interaction between two individuals.  It may be the case that one individual shows 

aggression and the opponent responds in turn to this aggression display.  It would be 

interesting to determine if one population started the aggressive bout over another.  

Further to this, work needs to be undertaken looking at the potential resources that 

individuals may fight over, for example mates, food and assessing any differences 

between male and female needs for particular resources.  Experimental work could also 

be undertaken to look at the population water for this species, observing if placing an 

individual in the water from a different population affects the subsequent aggression 

exhibited towards a member from that population. Molecular work on the Los Angeles 

population also needs to be undertaken to determine the genetic relationship of this 

population to the other populations maintained in the laboratory. 

 

The pairing behaviour between these four laboratory populations (R, N, SG and C) and 

the LA wild population was examined further in Chapter 4. 
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Chapter Four: 

 

Pair formation and pre-mating isolation between populations of Nereis 

acuminata 
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4.1: Experimental reasoning and aims 

As mentioned in Chapter 3, the diploid chromosome numbers of the different 

populations was found to be 18 in the Reish (R) population (Pesch and Pesch, 1980), 18 

in the San Gabriel (SG) and the Newport (N) populations but 22 in the Connecticut (C) 

population (Weinberg et al., 1990).  Chromosome numbers were also documented in 

other nereid polychaetes and are as follows: Nereis limbata diploid 20-30, Platynereis 

megalops haploid 14, Nereis diversicolor diploid 32 and Perinereis cultrifera diploid 34 

(Pesch and Pesch, 1980).  Differences in chromosome number can be used as indicators 

of reproductive incompatibility (Knowlton, 1993).  Changes in chromosomes can play a 

role in evolutionary change, including the loss or gain of whole chromosomes, but this 

may not influence any morphological change in a species (John, 1981).  Such 

chromosome change can, but does not always, influence speciation and act to isolate 

individuals reproductively (John, 1981).   

 

The pairing behaviour both within and between populations of N. acuminata, including 

both pre- and post-mating isolation trials, has been examined in order to determine 

levels of reproductive isolation (Weinberg et al., 1990; Rodriquez-Trelles et al., 1996; 

Sutton et al., 2005).  Reproductive isolation is known as the final step before speciation 

and individuals can either be isolated by pre-zygotic barriers or by post-zygotic barriers 

(Snell, 1989).  Pre-zygotic barriers include differences in behaviour, mating preferences 

(Snell and Hawkinson, 1983), mating season, fertilisation mechanisms (Snell, 1989) 

habitat and spawning synchrony (Palumbi, 1994).  Post-zygotic barriers include genetic 

incompatibility, hybrid sterility and hybrids that are not viable (Snell, 1989).   

 

Pre-mating bioassays are generally simple and quick to undertake and are useful for 

sibling species where morphological differences may be minimal (Snell, 1989).  In the 

marine copepod Acartia clausi, the west and east coast populations from the U.S.A. are 

morphologically similar but have diverged and are reproductively isolated (Carrillo et 

al., 1974).  In the experimental species N. acuminata, pre-mating isolation trials are 

suitable to use due to the initial pairing behaviour of a male and a female before the 

eggs are shed by the female.  This behaviour is easy to observe and gives a good 

indication of compatibility.  Weinberg et al. (1990) looked at the pre-mating isolation 

levels over the course of ten minutes using two populations from the Atlantic Ocean: 

Massachusetts (M) and Connecticut (C), and two from the Pacific Ocean: San Gabriel 

(SG) and Newport (N).  Pairing behaviour was not observed between male and female 
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individuals from the Atlantic and the Pacific, therefore showing evidence of 

significantly higher levels of reproductive isolation between populations compared to 

the pairing behaviour between male and female individuals from within each 

population. 

 

However, between the SG and the N populations, there were no observations of pre-

mating isolation.  The above ten minute trials were then repeated, again by Weinberg et 

al. (1992), this time using the San Gabriel (SG), Newport (N) and Reish (R) 

populations.  High levels of pre-mating isolation were observed between R and both SG 

and N, however there were low levels of pre-mating isolation between SG and N.  It 

was therefore concluded that speciation occurred in the R population in the laboratory 

following a founder event.  Weinberg et al. (1992) also looked at the percentage of 

broods that produced healthy offspring between the R, SG and N populations (a post-

mating isolation experiment).  A normal percentage was found to be between 75-95%.  

When R individuals were paired with either SG or N individuals, the percentage of 

healthy offspring was 0.  However, when SG individuals were paired with N 

individuals, the percentage of healthy offspring was found to be 77%.   

 

Due to the nature of the findings by Weinberg et al. (1992), suggesting that speciation 

of the R population had occurred in the laboratory, the findings were further discussed 

in the work by Rodriquez-Trelles et al. (1996).  This work disagreed with Weinberg et 

al. (1992) and hypothesised that the two wild populations used in the study (SG and N) 

were not representative of the population from which the R population was originally 

sampled from.  The study went on to investigate the genetic markers, genetic variability 

and divergence of the three populations.  It was found that in 13/18 loci, the R 

population does not share any alleles with either SG or N and high genetic differences 

(D) were found to be as follows:  SG to N = 0; R to SG = 1.75; R to N = 1.76.  The 

genetic difference between two sibling species N. diversicolor, a population sampled 

from Germany, and N. limnicola, a species sampled from the U.S.A., is 1.28 

(Rodriquez-Trelles et al., 1996).  The study by Rodriquez-Trelles et al. (1996) 

concludes that these three populations formed separate species before the R population 

was sampled in 1964.  Further to this, work undertaken by D.H. Lunt and J.D. Hardege 

(unpublished) found that, based on the nuclear DNA, the C population is likely to have 

diverged from the other three populations approximately ten million years ago.  

Subsequent to this divergence, based on mitochondrial DNA, the SG population 
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diverged from the R and N populations approximately seven million years ago.  R and 

N have been found, based on the mitochondrial DNA, to be very similar genetically, 

with little divergence (D.H. Lunt and J.D. Hardege, unpublished).   

 

One final study has looked at the pre-mating isolation between populations of N. 

acuminata.  Sutton et al. (2005) looked again at ten minute trials between three 

laboratory based populations (SG, N and R) and three wild populations (Connecticut, 

Massachusetts and a population from Hawaii).  Again, significant levels of pre-mating 

isolation were found between all population groups, except when individuals were 

paired with members of their own population.  Aggression was also observed between a 

male and a female from different populations when placed together in the pairing 

experiment (Sutton et al., 2005). Successful courtship and pair formation depends on 

the recognition of cues, such as colour, posture, odour and specific sex pheromones 

(Weinberg et al., 1990).  Any divergence in these traits may cause reproductive 

isolation and an increase in aggression (Weinberg et al., 1990). 

 

Sibling species are typically difficult to distinguish based on morphological 

characteristics as these are often very similar (Knowlton, 1993) but examples of 

polychaete sibling species have been documented. Hediste (Nereis) diversicolor, 

Hediste (Nereis) limnicola and Hediste (Nereis) japonica are three morphologically 

similar species and form a species complex but each of these species possess different 

reproductive and developmental mechanisms and they have large genetic differences 

between them (Fong and Garthwaite, 1994).  N. japonica reproduces via a mass 

spawning event (Smith, 1958), N. limnicola is a viviparous self-fertilising 

hermaphrodite (Baskin, 1970) and N. diversicolor females reproduce in burrows with 

males releasing sperm in front of the female tube (Bartels-Hardege and Zeeck, 1990).     

 

The polychaete Capitella capitata has as many as six sibling species with only slight 

morphological differences observed between them but show large genetic differences, 

where only two alleles are shared by comparing any pair of the six sibling species 

(Grassle and Grassle, 1976).  Two sibling species have also been observed in Perinereis 

cultrifera where the English Channel species and the Mediterranean species each have a 

unique protein binding pattern and slight variation in breeding cycles but otherwise are 

very similar morphologically (Scaps et al., 2000).  Some other examples of sibling 

species include the rotifer Brachionus plicatilis (Snell and Hawkinson, 1983) and the 



- 80 - 
 

bonnethead shark Sphyrna tiburo (Parsons, 1993).  Sibling species have been found to 

react differently in response to ecological bioassays (Knowlton, 1993) so the 

characterisation of such species is important.  The mussel Mytilus edulis forms part of a 

species complex with M. galloprovincialis and M. trossulus; M. trossulus is commonly 

mistaken for M. edulis (Lobel et al., 1990).  In the study by Lobel et al. (1990), M. 

edulis and M. trossulus were collected from the same site in Canada and the body tissue 

analysed for twenty five different element concentrations (ppm dry weight).  Due to the 

differences in metabolic rate between M. edulis and M. trossulus, the concentrations of 

the elements tested were found to vary, even though these two species were sampled 

from the same geographical area (Lobel et al., 1990). 

 

The aim of this chapter was to understand further the interactions between male and 

female individuals from both within and between the four laboratory populations to 

ascertain the occurrence of any pre-mating reproductive isolation.  Due to female death 

following egg shedding, mate recognition by females should be important in the species 

as incorrect mate recognition could lead to a wastage of gametes if eggs are shed with 

an ‘incorrect’ male (Snell, 1989).  It was hypothesised that there would be significant 

pre-mating isolation between these populations when compared to pairing behaviour 

observed within populations.  Following on from this, the final aim of this chapter was 

to determine if there were any pre-mating differences between the wild population Los 

Angeles and the laboratory reared Reish population, which has been bred in the 

laboratory for 44 years.  These two populations were collected from the same 

geographical location so the LA populations may provide a better representation of the 

populations that R was originally sampled from.  Any differences in pair formation 

behaviour between these two populations may further aid to decipher the differences 

between the populations of N. acuminata currently maintained in the laboratory and it is 

expected that these populations will have diverged and will show significant levels of 

pre-mating isolation.  If pre-mating isolation does occur between the R and LA 

populations, this would add further evidence in support of the theory that the R 

population has speciated in the laboratory (Weinberg et al., 1990).  Although the 

populations from the west coast of the USA are unlikely to encounter individuals from 

the east coast, it is still important to observe the behavioural interactions between the 

populations to attempt to understand the similarities and differences between these 

populations and to untangle any confusion regarding speciation between these 

populations.  Sibling species may also react differently in response to ecological 
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bioassays, giving varying results to standard testing conditions (Knowlton, 1993).  As 

N. acuminata have been established as an indicator species for ecological testing of 

pollutants (Reish, 1966), it is important to know if these population groups should be 

treated separately to ascertain that the results obtained for such studies are valid.   
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4.2: Methodology 

The populations used in this study were Reish (R), Newport (N), San Gabriel (SG), 

Connecticut (C) and the wild population Los Angeles (LA).  Sexually mature 

individuals were chosen at random from population tanks containing over 100 hundred 

individuals and as mentioned previously, males and females were identified by their 

colouration by the presence of gametes in the coelom (Figure 1.3, page 25); white for 

males and yellow for females.  Individuals were only used once in a pairing replicate.  

The male and female individuals were placed in a crystallising dish (70mm diameter) 

containing 40ml of filtered sea water (36-38‰).  The size of the dish allows interaction 

between the two individuals but also allows for separation following an aggressive 

event, so neither individual is harmed by aggressive behaviour.  The combinations of 

male and female individuals from each population can be seen in Table 4.1 below.  

Each pair combination was replicated 20 times (n) to provide an accurate observation of 

any aggressive behaviour and change in pairing behaviour over time between the four 

laboratory populations.   

 

Table 4.1: Population combinations to assess pair formation behaviour. 
 
  Female 
  R N C SG 
 
Male 

SG 20 20 20 20 
C 20 20 20 20 
N 20 20 20 20 
R 20 20 20 20 

 

A pin-point focal observation was made at 5 minutes, 1 hour and 24 hours to monitor 

aggressive interactions.  If aggression was observed between a male and a female, a 

fifteen minute aggression score was taken using the adapted scoring system as detailed 

in Figure 2.1 (chapter 2, page 45).  Any pairing behaviour was also noted at 5 minutes, 

1 hour and at 24 hours.    

 

To simulate natural conditions as far as possible and to maintain a constant water 

quality, the crystallising dish containing the male and the female was placed into an 

aerated jar (180mm x 100mm x 140mm) containing 2 litres of sea water (36-38‰) 

between the 1 hour observation and the 24 hour observation.  Individuals originating 

from the same population were subjected to the protocol above to determine if a male 

and a female would demonstrate any aggressive behaviour under experimental 

conditions (n = 20 per population).  Finally, the above protocol was repeated comparing 
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the Los Angeles Harbour (LA) and the Reish (R) population, with reciprocal crosses 

between both of these populations, as detailed in Table 4.2 below (n = 20 pair 

combinations).     

 

Table 4.2: Population combinations to assess pairing behaviour between LA and R 
populations (n = 20 pairs). 
 

                                    Female 
  R LA 

Male R 20 20 
 LA 20 20 
 

Pair formation behaviour was compared both within and between populations to 

ascertain levels of pre-mating isolation between the four populations.  A male and a 

female were considered to have formed a pair when the two individuals were lying 

alongside one another ‘head to tail’.  Comparisons were also made between the LA and 

R populations to ascertain any differences in pair formation behaviour between these 

two groups sampled from the same collection site.  The total number of pairings made 

in this chapter equalled 360. 
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4.3: Results 

 

4.3.1: Pair formation within and between the four laboratory populations. 

Pairing frequencies for the three observations (5 minutes, 1 hour and 24 hours) were 

recorded for each of the combinations of the four laboratory population, represented in 

Figure 4.1 over the page.  Pair formation was found to be the highest when individuals 

were placed with members of their original population.  The Connecticut population 

was found to have the lowest pairing incidence when placed with individuals from other 

populations.   

 

Although behavioural observations were made at three different time intervals, only the 

results from the 24 hour observation for each population combination were compared 

statistically.  This was done to provide a good indication of the pairing behaviour within 

and between individuals from different populations without the bias of using the 

frequencies of individuals that may have paired at one observation point and then 

separated by the next.  A table of the number of pairs formed after 24 hours is shown in 

Table 4.3 below.   

 

Table 4.3: The number of pairs formed out of 20 replicates between males and females 
from the four laboratory populations (R, N, SG and C) after 24 hours. 
  

  Female 

  R N SG C 

 

Male 

R 20 10 8 1 

N 5 19 9 3 

SG 14 8 19 0 

C 2 2 0 19 
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Pairing frequencies were converted into proportions.  The arcsine transformation was 

then applied to each proportion (where the square root of the proportion is calculated 

and the inverse sin taken), shown in Table 4.4 below.  The results were then analysed 

parametrically. 

 

Table 4.4: Percentages, proportions and arcsine transformations for the number of pairs 
formed for each combination of R, N, SG and C males and females. 
 

Male Female No. of pairs Percentage Proportion Arcsine transformation 
R R 20 100 1.00 1.57 
N N 19 95 0.95 1.35 

SG SG 19 95 0.95 1.35 
C C 19 95 0.95 1.35 
R N 10 50 0.50 0.79 
R SG 8 40 0.40 0.68 
R C 1 5 0.05 0.23 
N R 5 25 0.25 0.52 
N SG 9 45 0.45 0.74 
N C 3 15 0.15 0.40 

SG R 14 70 0.70 0.99 
SG N 8 40 0.40 0.68 
SG C 0 0 0.00 0.00 
C R 2 10 0.10 0.32 
C N 2 10 0.10 0.32 
C SG 0 0 0.00 0.00 

 

Pair formation frequencies observed within populations were compared to the 

frequencies observed between the different populations using an independent samples t-

test to determine if there was a significant difference in the pairing behaviour.  A 

significant difference was found when comparing the pairing behaviour within the 

populations to the pairing between the populations (t = 5.672, d.f. = 14, P = 0.000). 

 

Further to this, to determine which population was driving the significant difference, a 

series of independent samples t-tests were performed, pooling the results for each 

combination of males and female (for example, R♂N♀ and N♂R♀ were pooled).  This 

converts the results to 6 groups of pooled male and female combinations (with n = 40 in 

each case): RN, RSG, RC, NSG, NC and CSG.  The percentages, proportion and the 

arcsine transformations were again calculated in each case and used in each t-test.     
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The following comparisons were therefore analysed using the t-test: 

RN, RSG, RC compared to the other three groups (t = 0.888, d.f. = 4, P = 0.425).  

NSG, NC, SGC compared to the other three groups (t = 0.766, d.f. = 4, P = 0.486). 

SGR SGN SGC compared to the other three groups (t = 0.290, d.f. = 4, P = 0.786).              

RN RC NC compared to the other three groups (t = -4.310, d.f. = 4, P = 0.013). 

 

As these frequencies have undergone multiple testing, the Bonferroni correction was 

applied using the α1 value of 0.0125 (α = 0.05, k = 4 due to the number of times each 

pooled population was tested) and the comparisons above were not found to be 

significant.     

 

4.3.2: Aggression between males and females originating from different populations 

Observations of aggression between a male and female were made between certain pair 

combinations.  This was not observed when individuals were placed with a member of 

their own population.  Aggression was found in only 16 out of 320 replicates and no 

aggression was observed after 24 hours. 

 

Aggression was observed between males from the Connecticut and San Gabriel 

populations towards females from the Newport and Reish populations.  In two 

instances, aggression was observed between a Newport male and a Reish female.  There 

was also one replicate with aggression exhibited between a Reish male and a 

Connecticut female.  The aggression level only reached level 3 in one replicate between 

a San Gabriel male and a Newport female (after 5 minutes and after 1 hour).  After 5 

minutes, 3 interactions reached level 1 aggression and 9 reached level 2.  After 1 hour, 3 

interactions reached level 1 and 2 interactions reached level 2 aggression (in some cases 

aggression was observed after 5 minutes and after 1 hour).  

 

4.3.3: Pair formation between the laboratory (R) and the wild population (LA) 

The results showed that pairing behaviour between the two populations R and LA were 

similar to the pairing observed between individuals from the same population, as 

demonstrated in Figure 4.2 on the next page. 
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Figure 4.2: The number of pairs observed after 5 minutes, 1 hour and 24 hours between 
male (♂) and female (♀) individuals from the Reish (R) and Los Angeles (LA) 
populations out of 20 replicates for each combination. 
 

Again, although behavioural observations were made at three different time intervals, 

only the results from the 24 hour observation for each population combination were 

compared statistically.  This was done to provide a good indication of the pairing 

behaviour within and between individuals from different populations without the bias of 

using the frequencies of individuals that may have paired at one observation point and 

then separated by the next.  The results within the R and LA populations (R♂R♀ and 

LA♂LA♀) were compared to the results found between males and females (R♂LA♀ 

and LA♂R♀).  The arcsine transformation was calculated from the proportion of pairs 

formed and used to compare the pairing behaviour within the two populations to 

between them, using an independent samples t-test.  Table 4.5 below shows the number 

of pairs formed, percentages, proportions and the arcsine transformation for each 

combination of males and females.       

 
Table 4.5: Percentages, proportions and arcsine transformations for the number of pairs 
formed for each combination of R and LA males and females. 
 

Male Female No. of pairs Percentage Proportion Arcsine transformation 
R R 20 100 1.00 1.57 

LA LA 20 100 1.00 1.57 
R LA 15 75 0.75 1.05 

LA R 17 85 0.85 1.17 
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As this test attempted to answer a separate hypothesis regarding pair formation between 

the R and LA populations, no correction was made.  According to Rice (1989), a 

correction only needs to be made when two or more tests, that cannot be pooled, are 

used to answer the same null hypothesis.  The results of the t-test show therefore that 

there were significant differences in pairing behaviour when comparing pairing within 

populations to between them (t = 7.318, d.f. = 2, P = 0.018). 
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4.4: Discussion 

Successful courtship and pair formation depends on the recognition of cues, such as 

colour, posture, odour and specific sex pheromones (Weinberg et al., 1990).  Any 

divergence in these traits may cause reproductive isolation (Lovern et al., 1999), known 

as the final step before speciation (Snell, 1989).  The morphological differences 

between populations of N. acuminata are minimal (Weinberg et al., 1990) and 

populations maintained in the laboratory all share the same life history traits with 

monogamous mating and male parental care (Reish, 1957; Weinberg et al., 1990).  

Therefore, both pre- and post-mating methods can be used to determine if two 

individuals will reproduce.  In this chapter, pre-mating experiments were undertaken to 

determine if there were any differences in the pairing behaviour within each population 

compared to between them.  

 

4.4.1: Pair formation within and between the four laboratory populations. 

The results showed that within each of the populations R, N, SG and C, the majority of 

males and females had formed a pair bond after 24 hours (Figure 4.1).  This was not the 

case when males and females from different populations were placed together.  It 

appears that the west coast populations Reish, Newport and San Gabriel will undertake 

pair formation to some extent with each other (R and N = 15/40 pairs formed, R and SG 

= 22/40 pairs formed, N and SG = 17/40 pairs formed).  Low pairing frequencies were 

observed when Connecticut individuals were placed with members of the other three 

populations, both male and female (8/120 pairs were formed).  Significant differences in 

pairing behaviour were therefore observed when comparing the results of pairing within 

each population to the results of pairing between the populations.  Subsequent statistical 

tests to determine which population was driving these differences showed that there 

were no significant differences when comparing each of the combinations of 

populations.  The Bonferroni correction, however, is an overly conservative test, due to 

the restrictions on the critical value that is used (Rice, 1989).  It is therefore likely that 

the pairing behaviour involving the Connecticut population was driving the significant 

differences observed but more replicates would need to be undertaken to ensure this.  

As populations are all maintained in the laboratory under identical temperature, salinity 

and feeding conditions, it is unlikely that these would be contributing to the differences 

observed in pairing behaviour between populations.   
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Aggression was observed between male and female individuals from different 

populations in 16 of the 320 replicates.  Males and females may show aggression 

towards each other for a number of reasons.  In the American lobster Homarus 

americanus for example, intersexual aggression over shelter was observed but it was 

found that males were more likely to win over females as males require shelter not just 

for predator protection but also for reproduction, providing an increased drive to win 

(Peeke et al., 1998).  Male and female individuals of the cichlid fish Cichlasoma 

nigrofasciatum show aggressive behaviour that forms part of the mating ritual.  The 

female attempts to withstand the aggressive male and in a well-matched pair, 

intersexual aggression is kept under control and mating can proceed (Lamprecht and 

Rebhan, 1997).  However, intersexual aggression between a male and a female 

individual in polychaetes is uncommon (Weinberg et al., 1990).  Following on from the 

aggression observed by males during egg incubation (Reish, 1957), similar to the male 

aggression exhibited by the bluefin killifish Luciania goodie, where males will defend 

nest sites toward both male and female intruders (Fuller and Travis, 2001).  In the field 

cricket Gryllus integer, males and females show aggression towards each other as part 

of mating (Kortek and Hedrick, 2005).  Weinberg et al. (1990) and Sutton et al, (1990) 

observed aggression in some interactions between individuals, including males and 

female from the same population.  This was not the case here and no aggression was 

observed between male and female individuals from the same population.  Aggression 

between a male and a female may be evidence of a reproductive barrier and therefore 

pre-mating isolation.  In this chapter, only a relatively low number of individuals were 

aggressive towards each other with a low level of aggression recorded, indicating that 

aggression is still unusual between males and females in this species.  As no aggression 

was recorded between males and females from the same populations, it is possible that 

the aggressive individuals did not recognise each other as mates.  It is also possible that 

aggressive behaviour was missed due to the experimental design; observations of 

behaviour were only made at three points.  The populations used in these experiments 

were maintained in the laboratory for approximately 5 years prior to the start of 

experimentation.  In the study by Sutton et al. (2005), individuals were used 

immediately after they were sampled from the environment.  It is possible that in natural 

populations, males and females are aggressive towards each other but this is not 

observed in the laboratory after a period of acclimatisation.  In the three-spined 

stickleback Gasterosteus aculeatus, habituation has been found to alter the aggression 

observed in individuals, with lowered aggression displayed towards nest neighbours 
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(Giles and Huntingford, 1985).  It is possible that individuals have become habituated to 

the laboratory environment, altering their behaviour.       

 

The R population maintained in the laboratory has been cultured from only six 

individuals (sex ratio unknown, Reish, personal communication).  This population has 

undergone approximately 200 generations in the laboratory and is considered to be 

heavily inbred (Fletcher at al., 2009).  This may affect the results of the replicates 

involving the R population (either male or female) as it has been suggested that 

individuals avoid mating with closely related individuals to avoid inbreeding (Gerlach 

and Lysiak, 2006).  Inbreeding depression can lower the fitness of offspring 

(Armbruster and Reed, 2005).  In the zebrafish Danio rerio, kin recognition of 

individuals is used to avoid mating with closely related individuals (Gerlach and Lysiak, 

2006).  In the three-spined stickleback Gasterosteus aculeatus, individuals preferred 

mates with dissimilar Major Histocompatibility Complex (MHC) genes (Aeshlimann et 

al., 2003).  The MHC is a large cluster of genes found in most vertebrates that is used 

by the immune system to discriminate between self and non-self (Brown and Eklund, 

1994).  The results showed that after 24 hours, in replicates involving the R population, 

40/120 pairs were formed.  In replicates involving the N and SG populations however, 

pairs were formed in 37/120 and 39/120 respectively, showing very similar pairing 

frequencies between these three populations after 24 hours.  The C populations, as 

previously discussed, paired in only 8/120 replicates.  The occurrence of inbreeding in 

the R population should be investigated further using choice tests between R and non-R 

populations to determine the breeding preferences of R population individuals.   

 

Differences in pairing behaviour and the occurrence of aggressive displays between 

populations of N. acuminata could be due to differences at the genetic level.  The 

Connecticut population (2n = 22) has a different chromosome number to the other 

populations (2n = 18) (Pesch and Pesch, 1980; Weinberg et al., 1990).  By examining 

the nuclear DNA, the C population was also found to have diverged from a common 

ancestor earlier than the other three populations (D.H. Lunt and J.D. Hardege, 

unpublished).  These differences in chromosome number and the divergence of the 

population may explain the lower incidences of pairing in replicates involving the 

Connecticut populations, compared to the other replicates between populations.  A lack 

of pairing behaviour could be indicative of population divergence in this species.  

Nereid polychaetes have been shown to have extremely high pheromone specificity 
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(Zeeck et al., 1988) and a ‘bouquet’ of sex pheromones are detected by individuals via 

chemoreceptors located in the cephalic appendages and in the cirri (Boilly-Marer and 

Lassalle, 1980).  Communication signals may be altered by the environment (Lovern et 

al., 1999).  In the fruit fly Drosophila melanogaster, cuticular hydrocarbons are used for 

species recognition, courtship and mating (Billeter et al., 2009).  Variation in the 

hydrocarbon profile among the nine species of the melanogaster subgroup causes 

reproductive isolation between D. melanogaster and these sibling species due to a lack 

of recognition (Billeter et al., 2009).  As the R, N, SG and C populations were all 

collected from different environments which may differ in food availability, 

temperature, light intensity, level of predation and parasite prevalence, the signalling 

systems of each population may have diverged due to selection pressure for effective 

communication (Leal and Fleishman, 2004).  Closely related species often exhibit great 

signal diversity and such divergence in communication signals is a factor that can 

promote speciation due to reproductive isolation due to a failure to communicate if such 

signals are important for mate recognition (Leal and Fleishman, 2004).   

 

As successful courtship and pair formation depends on the recognition of cues, 

including odour and sex pheromones, any divergence in these traits may cause 

reproductive isolation (Weinberg et al., 1990).  Small changes in the pheromone 

structure can cause major changes to occur in the effects these pheromones have on 

individuals and distinct populations exposed to varying habitat conditions may produce 

slightly different pheromones (Weinberg et al., 1990).  The preliminary study by Brown 

(2005) showed that exposing individuals of the same population to different diet 

regimes increased the aggression observed between individuals.  Male individuals fed 

on fish food (Tetra min) were placed in staged contests with individuals fed on low-

protein processed hay with subsequent aggression levels found to be increased 

compared to staged contests between two individuals fed on the same diet (either fish 

food or processed hay) (Brown, 2005).  It is therefore possible that N. acuminata forms 

a species complex comprised of different populations of individuals as individuals share 

the same morphology and life history traits.   

 

Although, Weinberg et al. (1990) and Sutton et al. (2005) showed that there were 

significant differences in the pairing behaviour between populations after only ten 

minutes, in this chapter, pairing behaviour was only observed over a 24 hour time 

period.  In these experiments, although the female used was sexually mature, it was 
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unknown what effects the age of the female would have on the results.  A female that is 

closer to reproducing may affect the results and pair with males at a higher frequency to 

protect her reproductive investment.  Males and females from different populations 

should therefore be left for longer periods of time, using females of a precise age, with 

video recording equipment to monitor all interactions and behaviour between the two 

individuals and to determine whether aggression (if and when it occurs) is instigated by 

the male or the female.   

 

The results demonstrated in Table 4.3 show that the numbers of pairs formed between 

populations are lower than within them, and very few pairs are formed when individuals 

from the Connecticut population were used in pairing experiments.  The pairing 

behaviour demonstrated here is likely to be a more reliable indicator than aggression 

(Chapter 3) for determining differences between populations and may be a good starting 

point for comparing populations sampled from the field.  As the results comparing the 

pairing between the populations were not significant, an increased number of replicates, 

using a longer time frame to investigate both pre- and post-mating behaviour are 

required.    

 

4.4.2: Pair formation between the laboratory (R) and the wild population (LA) 

Although significant differences were observed when comparing the numbers of pair 

formations within the R and LA populations compared to between them (Figure 4.2), 

there were still high levels of pairing behaviour recorded when individuals from these 

two populations were placed together.  Within the R and LA populations, pairs were 

formed in 40/40 replicates.  Between these two populations, pairs were formed in 32/40 

interactions.  No aggression was observed in any of the interactions between males and 

females, either within or between populations.  As pairing did occur to a high 

frequency, and the LA population is likely to be representative of the population that R 

was originally sampled from, it is likely that these two populations are not isolated and 

speciation of the R population has not occurred in the laboratory.  The two populations, 

although they originate from the same location, have been separated in differing 

environmental conditions for approximately 44 years.  The R populations has been 

maintained under laboratory conditions for 44 years, cultured form only six individuals, 

whereas the LA population has been subjected to variation in temperature and light:dark 

cycles.  Such separation of the two populations may have lead to a divergence in the 

behaviour in these two populations, leading to the reduced levels of pairing behaviour 
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observed.  LA Harbour is now considered to be less polluted than when the R 

population was sampled in 1964 due to the pollution abatement programme that was 

introduced in 1968 (Reish et al., 1980).  Individuals have been shown to adapt to 

respond to their environment (Lahti et al., 2001) and the R population may have 

undergone certain changes to adapt to the heavily polluted harbour conditions present at 

the time of collection.  It may be the case that R and LA individuals take longer than 24 

hours to form a pair bond so this should be investigated in future experiments, leaving 

individuals for longer periods of time and observing to see if viable offspring are 

produced from pairings.  Using more than 20 replicates for each combination of males 

and females may also help to determine if there are any differences in pair formation 

between these two populations.   

 

As previously mentioned, there seems to be considerable confusion regarding the 

taxonomy of this species and the relatedness of sampled populations (Pettibone, 1963).  

There could therefore be a link between the confusion regarding the different 

pseudonyms used for this species and their pairing behaviour.  It may be the case that 

populations from different locations around the world should each be called by a 

different species name and form part of a species complex.  Individuals from different 

locations in this species all share similar morphology, life history traits and behavioural 

characteristics so other behavioural methods need to be utilised by taxonomists to 

determine if each population of N. acuminata should be described as a sibling species.  

It is clear that there are differences in the pairing behaviour when individuals are placed 

with an individual from a different population and care should be taken when 

attempting to compare the response of different populations to ecotoxicology testing. 

 

4.4.5: Next steps 

Further studies should be conducted to look into the genetic relatedness of populations 

and the kin recognition signals emitted by each, but also to compare laboratory raised 

populations of N. acuminata to wild populations.  We do not yet know the chromosome 

complement of the Los Angeles population, nor the genetic relatedness of this 

population to the others kept in the laboratory.  It would also be interesting to develop 

the experimental time used and leave male and female individuals for longer periods of 

time to determine, if individuals are left for long enough, whether they pair form after 

such time.  Further samples of wild populations around the world should also be 

collected and genetic and behavioural experiments undertaken to provide a clearer 
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picture of the diversity of populations and the occurrence of a species complex in N. 

acuminata. 

 

Due to the experimental design used in this chapter, it is also unclear which sex is 

driving the significant differences observed.  Further replicates with a new experimental 

design to determine which sex is driving isolation, is it females due to female choice, or 

males or both?  

 

Post-mating isolation trials should also be undertaken to examine if offspring from 

reproductive events between populations results in the production of viable offspring.  

Although pre-mating tests give a good initial indication of population dynamics, 

observations of full copulation are better (Gómez and Serra, 1995).  Furthermore, it 

would be interesting to undertake mate choice tests to see if one population is preferred 

over any other, especially examining the Reish population due to the fact that this is 

potentially an inbred population.  
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Chapter Five:  

 

Female detection of cannibalistic males 
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5.1: Experimental reasoning and aims 

Cannibalism is the consumption of conspecifics, also known as intraspecific predation 

(Fox, 1975).  Cannibalism has been reported in a diverse range of taxa including 

rotifers, insects, snails, copepods, fish, birds and mammals (Fox, 1975).  Population 

density has been found to be related to cannibalism with a positive correlation 

established between increases in density and the frequency of cannibalism due to an 

increased encounter rate (Moksnes et al., 1997).  This has been observed in the Pacific 

threadfin Polydactylus sexfilus (Ostrowski et al., 1996) and the blue crab Callinectes 

sapidus (Eggleston et al., 2005).  Due to the associated energetic gain, rates of 

cannibalism may also be expected to vary with changes in food availability (Polis, 

1981).  Although cannibalism may be costly to the cannibal, for example from increased 

transmission of parasites or a decrease in genetic variability due to a loss of potential 

mates in the population (Michimae and Wakahara, 2001), there are considered to be 

associated benefits with cannibalistic behaviour.  It may increase individual fitness by 

increasing growth (Michimae and Wakahara, 2001), lowering competition for resources 

within a population (Fox, 1975) and/or decreasing the chances of intraspecific predation 

on the cannibal (Polis, 1981).  Cannibalism may also act as a ‘last resort’ in a number of 

species when other food resources are depleted (Baras and Jobling, 2002). 

 

Cannibalism has many forms: between non-kin individuals, between siblings, between 

sexual partners and between parents and offspring.  Cannibalism between non-kin 

conspecifics, or heterocannibalism, has been observed in the wolf spider Schizocosa 

ocreata (Wagner, 1995) and the blue crabs Callinectes sapidus (Moksnes et al., 1997) 

and Portunus pelagicus (Marshall et al., 2005).  Cannibalism between siblings has been 

observed in the wood frog Rana sylvatica where juveniles will cannibalise eggs and 

newly hatched individuals (Petranka and Thomas, 1995). 

   

Intraspecific predation between sexual partners (sexual cannibalism) occurs when 

females consume courting males during, or immediately following copulation (Johns 

and Maxwell, 1997).  Such cannibalism is common particularly in spiders, such as the 

red back spider Latrodectus hasselti (Andrade, 1996), but has also been observed in 

other invertebrate species and it may provide nutrients to the female for the production 

of offspring (Johns and Maxwell, 1997).  Such behaviour may benefit the male 

consumed by increasing both the fertilisation rate and the duration of copulation.  

Females were also found to be more likely to reject a subsequent mate if the first mate 
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was consumed (Andrade, 1996).  The reverse (males consuming females) has not been 

well documented, instead males may possess weapons to harm females during 

copulation, which can include spiny protrusions or toxic seminal fluid, which may 

prevent the female re-mating or allow the male to achieve sperm precedence over 

previous matings (Edvardsson and Tregenza, 2005).  One such example is the bruchid 

beetle Callosobruchus maculatus, where males have spines that can puncture the 

reproductive tract, in this case to act as a male “anchor” to prevent detachment from the 

female (Edvardsson and Tregenza, 2005).  In the fruit fly Drosophila melanogaster, the 

male seminal fluid is toxic to the female and can cause female death (Chapman et al., 

1995).   

 

Cannibalism of eggs by a parent, termed filial cannibalism, may occur for a number of 

reasons.  Aside from accidental consumption, as observed in the walleye pollock 

Theraga chalcogramma where ingestion occurs during normal gill ventilation 

(Schabetsberger et al., 1999), cannibalism may serve to clean nests of dead or diseased 

eggs (Kraak, 1996) but it also provides the parent with nutrients and energy (Polis, 

1981).  Eggs are an easily-attainable resource, rich in nutrients and are also defenceless 

(Acha et al., 2002).  Parental care may be costly in terms of reduced foraging 

opportunities (Lindström, 1998) so filial cannibalism may also function to offset the 

cost of such care (Okuda and Yanagisawa, 1996).  In many fish species, eggs are carried 

in the oral cavity, known as mouthbrooding (Okuda and Yanagisawa, 1996).  This 

forces the parent to fast during egg care and may lead to a deterioration of physical 

condition (Okuda et al., 1997).   Consuming eggs may not fully compensate for the cost 

of care (Kraak, 1996) but has been found to have the potential to increase future 

reproductive success by survivorship of the parent (Lindström and Sargent, 1997).  

Such cannibalism is known as partial clutch cannibalism but during egg care, whole 

clutch cannibalism may also occur (Payne et al., 2002).  Whole clutch cannibalism has 

been interpreted as a decision by the parent to terminate care of eggs, with energy 

therefore redirected towards attracting new mates or defending a nest site for longer 

(Peterson, 1990).  In the cardinal fish Apognon doederleini, Okuda and Yanagisawa 

(1996) found that males were more likely to cannibalise eggs if they were expecting to 

re-mate quickly.  When mate availability is high, males can easily obtain matings from 

additional females (Kondoh and Okuda, 2002).  Whole clutch cannibalism may also 

occur when the brood is smaller than normal as the reproductive value of the clutch 
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would not outweigh the costs associated with care of that brood (Petersen and 

Marchetti, 1989). 

 

Filial cannibalism is more prevalent in species with male parental care (Okuda et al., 

1997) due to the large gametic investment made by the female compared to the smaller 

parental investment made by the male (FitzGerald, 1992).  Some examples of egg 

cannibalism in species with male parental care include the assassin bug Rhinocoris 

tristis (Thomas and Manica, 2003), the cardinal fish Apognon notatus (Okuda, 2000) 

and Apognon lineatus (Kume et al., 2000) and the beugregory damselfish Stegastes 

leucostictus (Payne et al., 2002).  To counteract losses from predation and cannibalism, 

females have been observed ‘copying’ the mate choice of previous females by laying 

eggs in nests already containing egg masses (Rohwer, 1978).  Such behaviour has been 

observed in teleost fish and increases the chances of a female selecting a good quality 

male.  Such copying also increases the level of care to the brood due to its larger size 

and dilutes the predation risk (Kraak, 1996).  Females have also been observed using 

test eggs, small clutches containing only a few eggs, to test the parental abilities of 

males (Kraak and van den Berghe, 1992; Manica, 2010).  Kraak and van den Berghe 

(1996) reported that in the blenny Aidablennius sphynx, females lay small clutches of 

one to ten eggs in nest sites defended by males (‘normal’ clutch sizes laid contain > 100 

eggs).  Males were significantly less likely to receive additional eggs if the small 

clutches were not present after one day, compared to those received when the small 

clutches remained (Kraak and van den Berghe, 1992).  Females therefore test the quality 

of male care by laying such clutches and males should therefore be prepared to care for 

small numbers of eggs in order to increase their chances of receiving additional matings 

(Kraak and van den Berghe, 1992).  The laying of such test eggs has also been reported 

in the scissortail sergeant Abudefduf sexasciatus where eggs are also used to monitor 

male parental care quality (Manica, 2010).  Although detailed in the examples above, 

few studies have gone into detail regarding sexual selection by females for or against 

cannibalistic males.  

 

In the experimental species N. acuminata, filial cannibalism has been observed with 

males caring for offspring (Oshida et al., 1981) but why and how such behaviour in this 

species occurs has not been fully examined.  Personal observations of cannibalism of 

eggs by the male have indeed been made during egg care with both experienced and 

inexperienced males, with the male consuming the whole clutch in every case.  Female 
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N. acuminata make a larger gametic investment than males due to female death 

following reproduction (Starczak, 1984) whereas males make a larger parental care 

investment than females (Reish, 1957).  Females of this species have been observed to 

select males based on male experience of parental care, preferring males that have 

successfully reared a brood to the larval stage (Fletcher et al., 2009).  If female choice 

occurs, females should select for good quality males (Hoelzer, 1989).  Filial 

cannibalism may be a way for males to increase their physical condition prior to 

undertaking future parental care (Klug and St. Mary, 2005) and this may serve as an 

advantage to N. acuminata females looking for a male able to undertake sole parental 

care once the female has laid her eggs and died.  Males in good physical condition are 

less likely to need to cannibalise eggs during egg care (Manica, 2010).  Females should 

minimise the chances of the reproductive investment being lost due to the eggs laid 

becoming food (Petersen, 1990).  The occurrence of male filial cannibalism can 

therefore exert a selective influence on female reproductive tactics (Petersen, 1990). 

 

As males of the experimental species have been found to cannibalise eggs, the first aim 

of this chapter was to determine if there was an effect of the presence of a cannibalistic 

male on aggression when such males are placed with either an inexperienced male (one 

that has not been allowed to reproduce) or an experienced male (one that has been 

allowed to complete one brood cycle).  This was then compared to the aggression 

observed within and between experienced and inexperienced males.  It was expected 

that as males consuming eggs should be in good physical condition, a reduction in the 

occurrence of escalated aggression would be observed.  The presence of a male 

potentially in better condition would alter the Resource Holding Potential (RHP) of that 

male, causing there to be asymmetry between the opponents.  Such asymmetries due to 

differences in the RHP of opponents can lead to the quick resolution of fights (Maynard 

Smith, 1974).  The second aim of this chapter was to examine if a female can detect that 

a male has cannibalised an egg mass under his care and if so, whether this influences 

female choice of male, with females preferring to mate with either an inexperienced or 

an experienced male over a cannibalistic male.  As sole male parental care occurs in this 

species (Reish, 1957) and females make a larger gametic investment than males 

(Starczak, 1984), the female should select a male in good physical condition, capable of 

rearing her brood (Hoelzer, 1989).  Female mate choice trials were therefore observed 

to determine if a female could detect that a male has cannibalised an egg mass under his 

care and if so, whether the female would still form a monogamous pair bond with such a 
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male.  As females should select a male based on his ability to care for her brood to 

avoid her reproductive investment being wasted (Hoelzer, 1989), and as males that 

consume eggs may be in better physical condition (Klug and St. Mary, 2005) and less 

likely to cannibalise eggs during future egg care (Manica, 2010), it was expected that 

females would not avoid pairing with a male that had previously cannibalised an egg 

mass.   
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5.2: Methodology 

Males were separated from the Newport (N) population at the larval stage and isolated 

to ensure that they did not undertake reproduction.  These were kept in isolation and 

noted as ‘inexperienced’ males.  Once a male had become sexually mature, he was 

placed in a crystallising dish (70mm diameter) containing 50ml of sea water (36-38‰) 

with a sexually mature female (selected at random from the N population).  The dish 

was then placed in an aerated jar (180mm x 100mm x 140mm) containing 

approximately 2 litres of sea water (36-38‰) to maintain a constant water quality.  The 

male and female were allowed to form a pair and reproduce with observations made 

every day to detect the presence of eggs in the parental burrow.  If males were observed 

to have ingested the egg mass, confirmed visually to the naked eye by the presence of 

eggs in the gut contents, they were subsequently noted as ‘cannibalistic’.  If the male 

completed egg care and emergent juveniles were observed around the parental tube, the 

male was noted as ‘experienced’. 

 

Two distinct sets of replicates were performed using males that had cannibalised an egg 

mass.  A cannibalistic male was placed in a crystallising dish (70mm diameter) with 

50ml of sea water (36-38‰) with a sexually mature female and another male (either 

inexperienced or experienced).  The three individuals were then observed over a fifteen 

minute time period and an aggression score of the interaction between the two males 

taken (as detailed in Figure 2.1, page 45).  The highest level of aggression was noted for 

each fight, as follows: 

Level 0: no aggression between the two individuals. 

Level 1: individuals avoid contact with each other, palpi may be slightly flared. 

Level 2: a fighting position is assumed by both individuals with the palpi flared and the 

jaws visible. 

Level 3: severe aggression is observed with biting of the opponent. 

 

Female choice of male was also observed, noted when the female formed a pair bond 

with a male, lying ‘head-to-tail’ with the other individual.  The trials were repeated, 

with inexperienced (n = 20) and experienced (n = 10) males placed with the 

cannibalistic male and the female.   

 

The highest levels of aggression reached were also examined in a further 3 trials: 

between two inexperienced males (n = 20); between two experienced males (n = 20); 
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and between one inexperienced and one experienced male (n = 20).  The above protocol 

was followed with individuals observed over a fifteen minute time period, with a female 

present, to determine if interactions involving cannibalistic males exhibited different 

aggression levels.  The total number of replicates equalled 90. 
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5.3: Results 

The percentage number of fights reaching each aggression level for cannibals versus 

inexperienced males (n = 20 fights) and cannibals versus experienced males (n = 20 

fights) is shown in Figure 5.1 below, compared to the highest aggression levels recorded 

between two inexperienced males, two experienced males and between an 

inexperienced and an experienced male.  The highest aggression levels reached in each 

trial were found to vary depending on the two males placed together.  There were 

generally low incidences of level 3 aggression exhibited, except between two 

experienced individuals (20% of replicates) compared to that exhibited in the trials 

involving cannibalistic males (5% with inexperienced males and 0% with experienced 

males).  With aggression between two inexperienced males, there were low incidences 

of level 2 and 3 aggression (5% and 10% respectively) and therefore more interactions 

exhibiting level 1 aggression (45%) or no aggression at all (40%).  With aggression 

between inexperienced and experienced males, no fights reached level 2 or level 3, with 

most fights reaching level 1 (65%). 

 

 
Figure 5.1: The percentage of number of fights reaching each level of aggression (0, 1, 2 
or 3) when males from different reproductive states were placed together: inexperienced 
(I), experienced (E) and cannibalistic (Cann.) males. 
 

 

The aggression levels exhibited in all five trials (Cann. vs. I, Cann. Vs. E, I vs. I, E vs. E 

and E vs. I) were compared using a Kruskal-Wallis test and significant differences in 

the highest aggression level reached were found between the groups (χ2/2 = 16.466, d.f. 
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= 4, P = 0.002).  Using non-parametric comparisons with unequal sample sizes outlined 

in Zar (1996), the mean ranks of aggression between males for each group were 

compared.  The standard error was taken as 7.830 (for n1 and n2 = 20) or 9.589 (for n1 = 

20 and n2 = 10) with a critical value of Q0.05,5 = 2.807.  Significant differences in 

aggression levels were found between the E x E group and the E x I groups (Q = 3.675) 

and also between the E x E groups and the I x I group (Q = 3.254).  There were no 

significant differences between any of the other groups (Q ranging between 0.421-

2.289).   

 

The percentage of males selected by the female for each of the 2 trials involving 

cannibals is shown in Figure 5.2 below.  When females were given a choice between an 

inexperienced and a cannibalistic male, the female selected the cannibalistic male in 

50% of the replicates.  When females were given a choice between experienced and 

cannibalistic males, the female selected the cannibalistic male in 40% of the replicates.  

The choice of male made by the female for each trial was compared using the Chi-

squared test.  There was no significant difference in female choice between 

inexperienced males and cannibalistic males (χ2/2 = 0.000, d.f. = 1, P = 1.000).  There 

was also no significant difference in female choice between experienced males and 

cannibalistic males (χ2/2 = 0.400, d.f. = 1, P = 0.527).  It was therefore found that there 

was no preference for one male over another in either of these trials. 
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Figure 5.2: The percentage of males selected in each trial for inexperienced vs. 
cannibalistic males and for experienced vs. cannibalistic males. 
 
 

Aggression was also observed between a cannibalistic male and a female in some of the 

replicates, which was not expected.  The aggression observed between a female and a 

cannibalistic male was scored the same as that between two males, with the highest 

aggression level reached noted over the course of the 15 minutes observation.  In 4 out 

of 20 of the inexperienced versus experienced trials, an aggressive response was noted 

between the female and the cannibalistic male.  The highest aggression reached was as 

follows: level 1 (1 case), level 2 (2 cases) and level 3 (1 case).  In all of these trials, the 

female selected to form a pair with the inexperienced male.  Aggression between a 

female and a cannibalistic male was only seen in 1 trial out of 10 experienced versus 

cannibalistic males, reaching level 2 aggression.  The female selected the experienced 

male in this replicate. 
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5.4: Discussion 

Significant differences in aggression levels between males from different reproductive 

states were found (Figure 5.1).  However, post-hoc testing showed that significant 

differences were only observed when comparing the aggression with experienced males 

(E x E) to that with an experienced male and an inexperienced male (E x I) and to that 

with two inexperienced males (I x I).  The aggression between two experienced males 

showed more fights reaching level 2 and 3.  This is in contrast to the fights between I x I 

and E x I in which both groups had aggression levels reaching only level 1 and most 

showing no aggression (level 0).   

 

Game theory predicts that individuals should compare their Resource Holding Potential 

(RHP) with that of their opponent before escalating aggression both before and during a 

fight (Sneddon et al., 1997).  RHP may be influenced by morphology, body size 

physiology, age, sex (Beacham and Newman, 1997), prior residency, resource value, 

energy reserves, physical condition and previous aggressive encounters (Morrell et al., 

2005).  Relative body size, including weapon size can also influence RHP (Sneddon et 

al., 1997).    Contests are predicted to be resolved more quickly the more the strengths 

and weaknesses of the opponents differ (Gammell and Hardy, 2003).  Aggression 

displays between individuals with similar potentials however, are likely to be escalated 

and last longer (Sneddon et al., 1997).  In the fiddler crab Uca mjoebergi for example, 

individuals that were more closely size-matched fought for longer than pairs where 

there was a large size discrepancy (Morrell et al., 2005).  In the shore crab Carcinus 

maenas, the chelae (weapons used in aggression) grow in relation to body size (carapace 

width) and were found to be a more reliable indicator of the outcome of fights in pair-

wise contests (Sneddon et al., 1997).  In N. acuminata, the jaw would be considered 

weapons as these are used in aggressive interactions and therefore the ability to win 

fights may not be related fully to body size but instead related to weapon size.  In this 

experiment, with aggression between two experienced males, RHPs are likely to be 

similar due to similarities in age, size, reproductive state and potential weapon size.  

Interactions between closely matched individuals typically escalate over time (Stocker 

and Huber, 2001).  This is also supported by the lowered aggression observed between 

experienced and inexperienced males.  If one individual has a higher RHP than another, 

fights are predicted to be shorter in order for the loser to conserve energy and reduce the 

costs associated with fighting (Caldwell, 1989).  In the case of aggression between two 

inexperienced males in this experiment, fights were found to exhibit very low levels of 
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aggression.  Although RHP values are predicted to be the same between these 

individuals, escalated fights may be avoided due to their reproductive state; 

inexperienced males may be naturally less aggressive.  Aggression between N. 

acuminata individuals is therefore very complex and although individuals were size-

matched during replicates, a host of other variables may not have been taken into 

account when observing aggressive interactions. 

 

The results (Figure 5.1) showed that there were no significant differences in the 

aggression exhibited between cannibalistic males and either inexperienced or 

experienced males.  The same amount of aggression was expressed between cannibals 

and males of both reproductive states.  This indicates that the presence of a cannibalistic 

male does not change the aggressive behaviour exhibited, either because a cannibalistic 

male is not recognised as such, or the resources competed for are not altered by one 

male being cannibalistic.  

 

The results also show that there were no significant preferences exhibited by the female 

either for or against cannibalistic males (Figure 5.2), regardless of the reproductive state 

of the other male in the trial.  When females were placed with a cannibalistic male and 

an inexperienced male, the female choose the cannibal in 50% of the replicates.  When 

females were placed with a cannibalistic male and an experienced male, the female 

choose the cannibal in 40% of the replicates. Although sexual selection by females has 

been discussed in terms of male mating success and the benefits of cannibalism to male 

physical condition, female preferences for or against cannibalistic males have been 

sparsely discussed in the literature.  Several theories related to sexual selection are 

suggested to attempt to explain the behaviour of the females in this chapter.  

 

Females should want to select the best possible male to care for her eggs as the female 

dies following egg release, leaving parental care solely down to the male (Reish, 1957).  

If the female selects a male that isn’t able to care for her brood, the reproductive effort 

of the whole of her lifetime is wasted.  Females may not be able to detect that males are 

cannibalistic males; perceiving a male that has eaten eggs as inexperienced.  This would 

explain why cannibalistic males and inexperienced males were chosen equally.  

However, this does not explain the results observed when females were choosing 

between cannibalistic males and experienced males.    If females cannot detect that a 

male has cannibalised his eggs, then experienced males would be preferred over 
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cannibalistic males, as cannibalistic males have not produced a larval brood.  Although 

males have consumed their egg mass, it could be the case however that such males have 

undertaken a partial form of care.  Fletcher et al. (2009) found that experienced males 

were preferred over inexperienced males and that this advantage was conferred to the 

female chemically via a ‘scent of experience’.  Although full care has not been 

completed, N. acuminata cannibalistic males may convey this ‘scent of experience’ to 

females.  This chemical signal may also be related to physical condition, with males in 

good physical condition, and with experience of producing a viable brood, being 

preferred over other males.  Cannibalistic males may give an indication to the choosing 

female that he was attractive to a previous female and this may also be involved in the 

‘scent of experience’; a female is selecting a male that a previous female has found 

attractive and that females copy the mate choice of previous females, as in the three-

spined stickleback Gasterosteus aculeatus, where females lay eggs in nests already 

containing egg masses (Jamieson and Colgan, 1989).  It is unknown in N. acuminata 

whether males have to complete a full brood cycle, producing viable offspring, to 

become experienced and become preferred by females.  Cannibalistic males may be 

signalling to the female that they are capable of undertaking parental care and are in 

good physical condition.  This would explain why cannibalistic males were selected in 

40% of cases against experienced males, if both are equally adept at caring for the 

female’s brood.  In this instance, if cannibalistic males were selected by females either 

by caring for a brood partially, or as a form of copying, it would be expected that 

cannibalistic males would be preferred over inexperienced males.  This was not 

observed here as there was no significant difference in female selection when given a 

choice between an inexperienced male and a cannibalistic male.   

 

The female may be ‘confused’ by cannibalistic males.  After eggs are eaten by the male, 

they are visible in the gut.  It may be that the presence of eggs in the gut, or the colour 

or smell, indicates to the female that there is another female present which is in fact the 

cannibalistic male.  This is supported by the aggression exhibited between females and 

cannibalistic males in some of the trials.  Aggression between males and females has 

been observed when males are undertaking egg care (Reish, 1957) and as discussed in 

Chapter 4 between males and females from different populations.  However, aggression 

between the two males was also observed in all but one of these trials so the presence of 

eggs in the gut has not ‘confused’ the other male present.  Aggression between a male 

and a female was only seen in 5 trials out of 30 replicates in total.  If females were 



- 111 - 
 

confused by the presence of eggs in the coelomic tract, more instances of aggression 

between males and females would be expected.  It is possible that these occurrences of 

aggression are an anomaly and on occasion, male and female N. acuminata will fight 

with each other over space for example.  Such aggression between males and females 

has previously been observed in the American lobster Homarus americanus, where 

males and female will fight over access to shelters (Peeke et al., 1998).   

 

It is possible that females can detect the presence of a male that has cannibalised his 

brood.  Filial cannibalism can occur for a number of reasons and not all of these should 

be considered selfish on the part of the individual consuming the eggs.  Although eggs 

are a good source of food and can increase growth and fitness (Polis, 1981; Michimae 

and Wakahara, 2001), filial cannibalism may also be undertaken to clean the nest of 

dead and diseased eggs to prevent the spread of infection (Kraak, 1996).  Such 

cannibalism may also occur if the costs of care outweigh the benefits received, as with 

small clutches with low viability (Petersen and Marchetti, 1989) or may occur 

accidentally (Schabetsberger et al., 1999).  Filial cannibalism has been thought to 

increase the future reproductive success of the parent by survivorship (Lindström and 

Sargent, 1997).  Mating with a cannibalistic male may be beneficial to the female.  It 

may be that cannibalistic males are in better physical condition due to the ingestion of 

eggs and they may be potentially better at looking after a future brood.  If eggs were in 

poor condition or were diseased, filial cannibalism may indicate to a female that the 

male has good parenting skills if eggs in such condition were consumed (Kraak, 1996).  

Males in good physical condition may be less likely to consume eggs when undertaking 

care of future broods (Okuda et al., 1997) and filial cannibalism may be a way for males 

to increase their physical condition prior to undertaking parental care (Manica, 2010).  

The occurrence of cannibalism in N. acuminata may not be related to female choice and 

the female may be selecting between two males, choosing the male in better physical 

condition.  The occurrence of continued filial cannibalism in this species has not been 

reported; it may be the case that males that cannibalised eggs go on to produce viable 

offspring in subsequent matings.  Cannibalistic males may form a ‘middle ground’ 

between inexperienced and experienced males; males that have cannibalised their egg 

mass may have undertaken some form of care but have not produced a viable brood.     

 

It is clear that female choice in this species is altered in the presence of cannibalistic 

males but possible explanations for the behaviour observed are not supported clearly by 
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the results, either in trial involving experienced or inexperienced males.  More replicates 

should therefore be carried out using cannibalistic males.  It could be the case that 

performing the experiment with more replicates may show that females prefer 

experienced males over cannibalistic males.  Therefore, further experimental studies 

need to be undertaken to understand the processes involved.     

 

5.4.1: Next steps 

Further replicates need to be undertaken between cannibalistic males and experienced 

males to determine if, with more replicates, there is a female preference for experienced 

over cannibalistic males.  It is also unclear at what stage males consume their eggs and 

what affect this has on their subsequent mating success and why inexperienced males 

would consume their egg brood unless the costs of care were too great.  The physical 

condition of the males, nor the reasons why males cannibalised their eggs were not 

known prior to this experiment.  This needs to be investigated as differences between 

males looking for additional food and males cleaning the nest of dead and diseased eggs 

may cloud the results.  It may also be necessary to conduct trials using all males in the 

three different reproductive states: inexperienced, cannibalistic and experienced.  This 

may help understand what drives female choice in N. acuminata.   

 

Females may lay clutches of different sizes due to variation in body size and growth 

rates of females.  In future experiments, an attempt to control this should be investigated 

in the future.  If males can care for a brood for a short period of time and become 

‘experienced’, egg cannibalism may occur more frequently to gain both nutritional 

benefits and increased reproductive success.  Such behaviour needs to be examined in 

this species involving choice trials with females correlated with the time spent caring 

for eggs.  Future experiments should also examine if there is a repeated occurrence of 

filial cannibalism in N. acuminata individuals: are cannibals always cannibals?  As 

aggression has been exhibited between females and cannibalistic males, further 

experiments need to be carried out to determine the cause of this; whether males that 

have ingested eggs are perceived as female, whether the ‘scent of experience’ is 

involved and how males and females detect one another.  Fundamentally, it is still 

unknown how individuals can recognise when they are in the presence of a male or a 

female. 
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Chapter Six:  

 

The effect of the scent of experience on aggression and female mate 

choice 
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6.1: Experimental reasoning and aims 

Females have been shown to select mates based on dominance ranking in many species 

(Searcy, 1982).  It may be that dominant males possess a greater ability to provide 

breeding resources such as territory and female protection (Moore et al., 2003) and 

dominance may also be a good indication of reproductive success in males (Searcy, 

1982).  Dominant males are likely to be larger in size and this may indicate that they are 

superior at fighting for access to mates (Bisazza et al., 1989) or that they are better able 

to provide protection against predators (Takahashi and Kohda, 2001).  Females have 

also been found to “eavesdrop” on aggressive contests between males to gain 

information regarding mate quality, as observed in the Siamese fighting fish Betta 

splendens (Doutrelant and McGregor, 2000).  This ensures that females mate with high-

quality males (Forsgren, 1997) as success in contests is indicative of good male 

condition (López et al., 2002).     

 

However, in some species, although male to male contests and the formation of 

dominance hierarchies have been observed, females do not always select for the 

dominant individual (Moore et al., 2003).  In the three-spined stickleback Gasterosteus 

aculeatus, females show no preference for dominant males over subordinate males, 

selecting males that were less aggressive (Ward and FitzGerald, 1987).  In species with 

male parental care, the ability to raise offspring may be the deciding factor in mate 

choice, with good fathers preferred (Wong, 2004).  Hatching success must be heavily 

reliant on male care for females to select mates based on their parental care ability and 

therefore, the selected trait conferring the signal to the female must be reliable (Hoelzer, 

1989).  Dominance may not provide such a reliable indication of parental care ability 

(López et al., 2002) and dominant males do not always make better fathers (Wong, 

2004).  Hatching success in the sand goby Pomatoschistus minutus has been shown to 

be dependent on sole paternal care and males with nests containing eggs are preferred 

over those with empty nests (Forsgren et al., 1996).  Added to this, dominant males 

were not found to be better at egg care and females gained no direct benefits from 

mating with such males (Forsgren, 1997).  

 
The life cycle of N. acuminata has been extensively studied (Reish, 1957).  It is known 

that females die following egg release, whilst males undertake sole parental care of eggs 

and can then reproduce again (Reish, 1957).  Once males have reared a brood, they are 

referred to as ‘experienced’ (and those that have not ‘inexperienced’).  It has been 
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shown in N. acuminata that females prefer ‘experienced’ males over ‘inexperienced’ 

males (Fletcher et al., 2009), even though there are high levels of reproductive 

investment made by both males and females (Starczak, 1984).  Female reproduction 

costs due to female death following egg dehiscence are likely to be higher than costs 

incurred by males.  Males are also able to reproduce again following completion of egg 

care (Reish, 1957), meaning males have a lower investment than females (Starczak, 

1984).  There is also evidence that choice is based on chemical cues received by the 

female (Starczak, 1984; Fletcher, 2004; Storey, 2006).  Although these findings add 

support to the evidence that female choice occurs in this species, it is still not entirely 

clear at which point the male becomes preferred by a female, either by a morphological, 

behavioural or hormonal change in the male, and if such a preference is signalled to the 

female chemically. 

 

Conditioned water bioassays have been used previously to determine if water-borne 

chemicals are used for communication both between and within species.  Such 

experiments use surrounding water taken from certain individuals that can then be used 

in choice trials to determine the effect (if any) of chemical signals that may be present in 

the water sample.  In the zebrafish Danio rerio, Gerlach and Lysiak (2006) used 

conditioned water from four different kin groups in a choice chamber to determine if 

there was a difference in preference between males and females.  Females were found to 

prefer non-related males whereas males were indiscriminate of kin group.  In another 

study, the sea urchin Strongylocentrotus droebachiensis moved away from conditioned 

water from crab and lobster predator sources compared to the control with no stimulus.  

Urchins were also shown to respond to stimuli from damaged urchins, moving away 

from the odour source, likely to be an anti-predator response (Mann et al., 1984).  

Odour choice tests have also been examined in the brown trout Salmo trutta, where 

individuals preferred the odour of same-sibling groups to non-siblings.  Individuals of 

this species how been found to prefer to shoal with same-sibling groups (Ojanguren and 

Braña, 1999).  Studies on the velvet swimming crab Necora puber have shown that 

conditioned water originating from sexually mature females influenced aggressive 

interactions between two competing males, increasing aggression between them as there 

was a perceived presence of a female and therefore a perceived resource to induce 

further aggressive bouts (Smith et al., 1994).  Also with crustaceans, in the blue crab 

Callinectes sapidus, females aggregate to release egg masses and ovigerous females 
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have been found to respond positively to odour plumes of water conditioned with such 

masses (Tankersley et al., 2002).    

 

Conditioned water has also been used to examine the behavioural responses in N. 

acuminata.  Brown (2005) found that aggression was lowered between males 

originating from different populations when exposed to conditioned water from the 

opposing population.  It was also found that female choice changed in N. acuminata 

when males were placed in conditioned water originating from males undertaking 

parental care of an egg mass.  Previous losers of female choice were subsequently 

chosen by the female after they were placed in conditioned water from parental males 

(Fletcher et al., 2009). 

 

The aims of this chapter were, first, to observe if there was any change in aggression 

following the masking of a male with conditioned water from various sources.  

Individuals use assessment strategies to determine the RHP of their opponent and the 

likelihood of winning a fight (Maynard Smith, 1974).  Placing males in conditioned 

water from females, juveniles and inexperienced males was not expected to alter the 

aggressive behaviour observed between individuals, as the RHP of the masked 

opponent (an inexperienced male) should not be altered by the conditioned water.  

However, conditioned water from males caring for eggs and both new and old 

experienced males was expected to alter the aggression observed between two 

opponents as the RHP of the masked male would have changed due to the ‘presence’ of 

a male undertaking egg care or an experienced male.  Second, to examine if female 

preference was artificially altered following the use of such conditioned water and if a 

water-borne chemical cue is involved in female choice and reproduction in N. 

acuminata.  Experienced males convey chemically to females that they have previously 

undertaken egg care, as previously shown with conditioned water from males caring for 

eggs (Fletcher et al., 2009) but it is unknown if the same effect will be observed with 

conditioned water from other sources.  Individuals in different stages of the life cycle of 

N. acuminata were used to condition water and these include juveniles, sexually mature 

females, inexperienced males, males undertaking egg care, new experienced males and 

older experienced males.  Conditioned water from older males was also used to observe 

if there was an effect on female choice due to the age of the male.  As females have 

been shown to prefer experienced males over inexperienced males, it was expected that 

males placed in conditioned water from new and old experienced males would alter 
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subsequent female choice, as would the conditioned water from males caring for eggs.  

It was expected that the conditioned water from females, juveniles and inexperienced 

males would not alter subsequent female choice as these should not alter the initial 

choice of mate made by the female.  
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6.2: Methodology 

All individuals used in this chapter originated from the Newport (N) population and 

experiments were undertaken in the laboratory at CSULB.  Two inexperienced, size-

matched males and a sexually mature female were placed in a crystallising dish (55mm 

diameter) with 50ml of filtered sea water (36-38‰) and observed for fifteen minutes.  

Males were identified as 1 and 2 using the natural variations in the faecal matter in the 

gut of each individual to allow the observer to distinguish between them.  An aggression 

score for the two males was recorded over a period of fifteen minutes using visual 

observations to ascertain the highest level of aggression between the two individuals.  

As detailed in earlier chapters (2, 3 and 5) and shown in Figure 2.1 (page 45), the 

following scoring system was used: 

Level 0: no aggression between the two individuals. 

Level 1: individuals avoid contact with each other, palpi may be slightly flared. 

Level 2: a fighting position is assumed by both individuals with the palpi flared and the 

jaws visible. 

Level 3: severe aggression is observed with biting of the opponent. 

 

Female choice for male 1 or male 2 was also noted when the female formed a pair bond 

with a male, where the two individuals lie alongside each other, head to tail (as shown 

in Figure 3, page 49).  The three individuals were then separated and placed in 70mm 

diameter crystallising dishes containing the following: 

 

Female:   50ml filtered sea water 

Winner of female choice: 50ml filtered sea water 

Loser of female choice:   50ml conditioned sea water   

 

Following separation, the fifteen minute aggression test was repeated and female choice 

was noted to observe if there were any changes in female choice and/or male aggression 

behaviour following the use of conditioned water.  Each treatment (A-G, listed below) 

was replicated twenty times.  The total number of trials undertaken in this chapter 

equalled 140. 

 

Conditioned water was produced by placing individuals from each of the treatment 

groups in 50ml of pasteurised sea water (salinity 36-38‰) in a crystallising dish (70mm 

diameter) for 15 minutes.  Pasteurised water was produced by heating sea water on a hot 
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plate with a mixer at 80°C for 2 hours, allowing the water to cool to 18°C before use 

(normal tank water temperature).  Pasteurised water was used to remove any impurities 

or live contaminants that could potentially influence the results of the experiment.  The 

experimental treatment groups used to obtain conditioned water were as follows: 

 

A: Juveniles: 10 individuals in 50 ml pasteurised sea water (10 individuals were used 

for this treatment as juveniles are approximately 10 times smaller than adult worms). 

B: Sexually mature female water: 1 individual in 50ml pasteurised sea water. 

C: Inexperienced males: 1 individual in 50ml pasteurised sea water. 

D: New experienced males: 1 individual in 50 ml pasteurised sea water (males were 

noted as experienced when emergent juveniles were observed). 

E: Old experienced males: 1 individual in 50 ml pasteurised sea water (males were 

isolated from the population following completion of egg care and used in trials after at 

least two weeks). 

F: Male caring for eggs: 50ml of sea water was taken from a crystallising dish 

containing the parental burrow with eggs.  

G: Control: pasteurised sea water was also used as a control to determine if any changes 

observed were due to the use of the conditioned water treatments rather than due to the 

separation of the three individuals or due to any variable that may have been 

unaccounted for.   

 

New experienced males were obtained by removing males from the parental tube once 

hatched larvae had been observed outside of the burrow.  A portion of the males that 

produced a successful brood were kept in isolation for 2 weeks and then noted as old 

experienced males.  Conditioned water was made when necessary for experimental 

replicates and discarded after each trial.  Inexperienced males were separated as 

juveniles and kept in isolation from all other individuals to ensure they did not 

reproduce.  Inexperienced males were placed with females and allowed to reproduce to 

produce experienced males and also kept in isolation following the completion of egg 

care.   
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6.3: Results 

As shown in Figure 6.1 below, the aggression levels between males varied between the 

pre- and post-treatment observations (A-G).  Level 0 and level 1 aggression were 

generally observed more frequently than both level 2 and level 3, with level 3 

aggression generally very rare for each treatment, for both pre- and post-treatment 

observations following placement of the loser male in conditioned water. 

 

 
Figure 6.1: The highest levels of aggression reached for each treatment A-G, both pre- 
and post-treatment.  The following treatments of conditioned water were used: A – 
juvenile, B – sexually mature females, C – inexperienced males, D – new experienced 
males, E – old experienced males, F – males caring for eggs, G – sea water control. 
 

The highest level of aggression reached for each of the pre-treatment groups A-G was 

analysed using the Kruskal-Wallis test, with no significant differences observed 

between the groups (χ2/2 = 6.031, d.f. = 6, P = 0.420) indicating that aggression levels 

were the same between all groups before the conditioned water treatment was applied. 

 

Within each treatment group A-G, the highest level of aggression reached in the pre-

treatment trial was compared to that reached in the post-treatment trial using the 

Wilcoxon Signed Rank test.  There were no significant differences found in treatment 

groups A (juvenile, Z = -1.232, P = 0.218), B (sexually mature females, Z = 0.000, P = 

1.000), C (inexperienced males, Z = -0.632, P = 0.527), D (new experienced males, Z = 

-1.540, P = 0.124), F (males caring for eggs, Z = -0.378, P = 0.705) or G (sea water 

control, Z = -0.707, P = 0.480).  However, a significant difference was found between 
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the pre- and post-treatment levels of aggression with group E (old experienced males, Z 

= -2.496, P = 0.013).  There was a decrease in the number of fights reaching level 1 and 

level 2 aggression (no level 3 aggression was observed in any fights with this treatment 

group) and the number of interactions displaying no aggression at all increased. 

 

Although the aggression levels recorded for the pre-treatment groups were compared 

using two separate statistical tests, the P values obtained have not been corrected for 

multiple testing.  Rice (1989) states that a correction need only be made when two or 

more tests that cannot be pooled attempt to answer the same null hypothesis.  Therefore, 

as a comparison was only made within each treatment group following the test to 

compare observed pre-treatment aggression, no correction was made as each test was 

attempting to answer a different hypothesis.     

 

Female choice following each treatment was noted with the female either selecting the 

pre-treatment winner or loser of female choice (the loser being the male that was placed 

in the crystallising dish containing conditioned water).  Figure 6.2 below shows the 

post-treatment female choice (winner or loser) for each treatment of conditioned water 

used (A-G).  

 

 
Figure 6.2: The choice of the female following treatment of the loser in conditioned 
water (female either selected previous winner or conditioned loser), for each of the 
different treatments. A: juvenile, B: sexually mature female, C: inexperienced male, D: 
new experienced male, E: old experienced male, F: male caring for eggs and G: sea 
water control (n = 20 replicates per treatment). 
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The frequency of female choice for pre-treatment winners and losers following each 

treatment type was analysed using the Chi-squared test.  There was a significant 

difference observed when the numbers of winners and losers selected in each treatment 

were compared (χ2/2 = 57.286, d.f. = 6, P = 0.000), detailed in Table 6.1 below.   

 

Table 6.1: Contingency table and Chi-squared analysis for each of the different 
treatments (d.f. = 6).  
 
Treatment  Winner Loser Total 
A: juvenile Observed 19 1 20 

Expected 14.9 5.1 20 
B: sexually mature female Observed 19 1 20 

Expected 14.9 5.1 20 
C: inexperienced male Observed 19 1 20 

Expected 14.9 5.1 20 
D: new experienced male Observed 6 14 20 

Expected 14.9 5.1 20 
E: old experienced male Observed 20 0 20 

Expected 14.9 5.1 20 
F: male caring for eggs Observed 7 13 20 

Expected 14.9 5.1 20 
G: sea water control Observed 14 6 20 

Expected 14.9 5.1 20 
 Total 104 36 140 

  χ2/2 =  57.286 
  P =  0.000 

 
Further to this, the contingency table was subdivided according to Zar (1996) to 

determine which treatment groups were driving the differences in female choice.  For 

each treatment, the female choice results were compared to the pooled results for all 

other treatments.  It should be noted that Zar (1996) states that such subdividing of 

tables should only be used as a guide and used to develop additional hypotheses to test 

on new data sets.  However, it does provide an indication of which groups are driving 

the significant differences.  Table 6.2 below shows the subdivision of the contingency 

table for each of the separated treatment groups tested.  As treatment groups A, B and C 

all have the same frequency of female choice for winners and losers, only one 

contingency table has been performed for these values. 
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Table 6.2: Contingency tables and Chi-squared analysis of the subdivided treatment 
groups A-G compared to the pooled data of the other groups (A: juvenile, B: sexually 
mature female, C: inexperienced male, D: new experienced male, E: old experienced 
male, f: male caring for eggs and G: sea water control) (d.f. = 1 in all cases). 
 
Treatment  Winner Loser Total 
     
A/B/C Observed 19 1 20 

Expected 14.9 5.1 20 
All other treatments Observed 85 35 120 

Expected 89.1 30.9 120 
 Total 104 36 140 
   χ2/2 =  5.241 
   P =  0.022 
     
D Observed 6 14 20 

Expected 14.9 5.1 20 
All other treatments Observed 98 22 120 

Expected 89.1 30.9 120 
 Total 104 36 140 

   χ2/2 =  23.957 
   P =  0.000 
     
E Observed 20 0 20 

Expected 14.9 5.1 20 
All other treatments Observed 84 36 120 

Expected 89.1 30.9 120 
 Total 104 36 140 

   χ2/2 =  8.077 
   P =  0.004 
     
F Observed 7 13 20 

Expected 14.9 5.1 20 
All other treatments Observed 97 23 120 

Expected 89.1 30.9 120 
 Total 104 36 140 

   χ2/2 =  18.852 
   P =  0.000 
     
G Observed 14 6 20 

Expected 14.9 5.1 20 
All other treatments Observed 90 30 120 

Expected 89.1 30.9 120 
 Total 104 36 140 
   χ2/2 =  0.224 
   P =  0.636 
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Therefore, all groups apart from the sea water control are significantly different to the 

expected frequencies of female choice for winners and losers.   For the treatment groups 

A, B, C and E, females chose the previous winner in more cases than were expected.  

For the treatment groups D and F, females chose the previous loser in more cases than 

were expected.  For treatment group G, the sea water control, the expected frequencies 

of previous winners and losers were observed. 
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6.4: Discussion 

The results indicate that the pre-treatment aggression levels were not significantly 

different between the treatment groups (Figure 6.1).  The highest aggression level was 

recorded between two inexperienced males, before any conditioned water was applied 

so individuals in every trial were expected to behave in a similar way.  Following the 

separation phase where different treatments were applied, aggression levels did not 

significantly change, apart from with treatment group E: old experienced males.  

Following the use of conditioned water from old experienced males, the aggression was 

observed to decrease.  Following treatment with old experienced male water, more 

fights showed no aggression compared to the pre-treatment results.  Also, the 

occurrence of fights reaching level 1 and level 2 decreased (there were no incidences of 

level 3 aggression either pre- or post-treatment).  This was the only treatment group to 

show significant differences in aggression, although some decreases in aggression were 

observed following conditioning with new experienced males and males caring for 

eggs.  This change therefore must be due to the conditioned water.  It may be that old 

experienced males are more likely to win aggressive fights between individuals and the 

opponent of the male placed in conditioned water from this source could detect this.  

Age-related dominance has been shown demonstrated in the African elephant 

Loxodonta africana, where older males have heightened testosterone levels leading to 

heightened aggressive displays (Hollister-Smith et al., 2007).  It is possible that the 

water from old conditioned males reflects this type of heightened dominance to the 

other male.    Another possible explanation is that old males are larger in size than new 

experienced males as they have undergone a further two weeks of growth and this size 

difference may be conferred chemically to the inexperienced opponent.  Individuals 

assess the Resource Holding Potential (RHP) of their opponent and base decisions on 

this assessment whether to escalate on this assessment (Sneddon et al., 1997).  If a size 

difference is conveyed to the opponent, the fight may not escalate as that individual 

recognises that a size difference is evident and the fight will not escalate (Maynard 

Smith, 1974).  Smaller males may avoid conflict by assessing themselves to be smaller 

than their opponent (Turner, 1994) and this may explain why aggression decreased 

following treatment with water conditioned from an old experienced male.   

 

Conditioned water has been shown to have an effect on the behaviour of individuals in 

kin recognition trials (Gerlach and Lysiak, 2006), predator recognition trials (Mann et 

al., 1984) and in female choice trials (Barata et al., 2008).  Females have been shown to 
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respond in Y-maze trials to water conditioned by sexually receptive males but not to 

water conditioned by sexually receptive females in the blenny Salaria pavo (Barata et 

al., 2008).  With N. acuminata, placing individuals in conditioned water from some 

sources did have an effect on subsequent female choice (Figure 6.2).  Female choice 

frequency for pre-treatment winners and losers was found to be significantly different 

for all treatment groups apart from with the sea water control treatment.  As there was 

no significant change in female choice when losers were placed in the sea water control 

treatment, separating the individuals does not affect the female’s subsequent choice of 

individual and the female is more likely to select the male chosen in the first interaction.  

For the treatment groups A, B, C and E, females chose the previous winner in more 

cases than were expected.  Females selected significantly more winners for treatment 

groups A: juvenile, B: sexually mature female, C: inexperienced male and E: old 

experienced male.  It is possible that placing the loser in conditioned water from these 

sources reinforced the female’s choice of previous winner.   

 

Conditioned water from both new experienced males (D) and males caring for eggs (F) 

had a significant effect on the subsequent choice of the female.  With both of these 

treatments, female choice following separation changed and the pre-separation loser 

was selected over the previous winner of female choice.  It is possible that there is a 

change in the male that occurs during egg care that makes the male preferable to 

females.  Male parental care ability in N. acuminata may be expressed chemically to the 

female following successful egg care.  For example, prolactin has been found to be 

related to experience of parental care (Smith and Hoar, 1967).  In the common 

marmoset Callithrix jacchus, the levels of prolactin vary significantly between males 

carrying infants and non-parental males (da Silva Mota et al., 2006) and prolactin levels 

also vary between first time fathers and those that have successfully reared a brood 

(Schradin and Anzenberger, 2004).   

 

There was no significant change in female choice when loser males were placed in 

conditioned water from old experienced males.  It may be that once males have 

completed egg care, the scent of experience wears off, as the ‘scent of experience’ 

comes from the eggs rather then the male.  However, if this were the case, it would be 

unlikely that conditioned water from new experienced males would have an effect on 

altering female choice following masking of the loser.  It is possible that as males 

increase in age, there is a decrease in their attractiveness to females.  Female choice 
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related to age of males has been discussed in the literature with hypotheses suggested 

both supporting and opposing female choice for older males.  A male may show he has 

good genes merely by survivorship (Manning, 1985); older males show higher genetic 

quality for viability (Brooks and Kemp, 2001).  Older males may also invest more in 

offspring and be better parents (Brooks and Kemp, 2001).  Features of male behaviour 

may also develop with age (Manning, 1985). In. N. acuminata, the jaw increases in size 

relative to the growth of the individual (Reish and Alosi, 1968), therefore the weapons 

used for aggression and defence of offspring increase with increasing age, with the 

potential for a older and therefore larger male to be better at defending his eggs mass.  

In the fruit fly Drosophila melanogaster, older males had higher reproductive success 

than younger males due to the longer copulation time and greater volume of sperm 

transferred by older males (Avent et al., 2008).  However, old males should be 

discriminated against if aging reduces their reproductive fitness (Manning, 1985) and 

older males are less capable of producing high quality sperm (Brooks and Kemp, 2001).  

The older the male, the greater the chance that mutations have accumulated that 

potentially offset the advantages of survivorship (Crow, 1993).  Younger males may 

also be better adapted to the present environmental conditions than older males (Brooks 

and Kemp, 2001).  In the sandfly Lutzomyia longipalis, females discriminate against 

older males which have reduced hatching success than younger males; females benefit 

from increased fitness by avoiding poor quality mates (Jones et al., 2000).  Pervez and 

Richmond (2004) found that in the ladybird beetle Propylea dissecta, females selected 

intermediate aged males that produced more viable offspring than either younger of 

older males.  A similar selection for intermediate-aged males was observed in the 

pigeon Columba livia, mates were preferred if they were experienced but avoided if 

they were over a certain age (Burley and Moran, 1979).  It is possible that in N. 

acuminata, there is an optimum age of male; a male that is experienced in parental care 

but not too old to provide adequate care or maximum reproductive success.   

 

There does appear to be an effect on female choice linked to males are involved in egg 

care but also when males that are not currently caring for an egg mass but have recently 

completed egg care.  There is evidence that conditioned water from these sources has an 

effect on female mate choice but as there was no significant difference between the 

change in female choice for treatments with males caring for eggs and new experienced 

males, there is no further evidence as yet to help identify the source of the scent of 

experience.  During egg care, there may be a physiological change in the male after 
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sperm release, after the eggs have hatched or following the production of more sperm.  

Very little is known about the physiology of males in terms of reproduction in this 

species.  The scent of experience may just emanate from the smell of eggs, as 

conditioned water from both males caring for eggs and new experienced males altered 

the subsequent choice of the female.  As females were only given a choice of two males, 

one inexperienced, and one from conditioned water, the female may select the male that 

is the ‘best case scenario’, the male that smells of eggs.  A further treatment group using 

conditioned water from egg masses may have shed light on whether the female was 

selecting for the smell of eggs or for the smell of the experienced male.  However, if 

females were selecting for the smell of eggs alone, it would be unlikely that the 

conditioned water from new experienced males would have had an effect on female 

choice.  In these experiments, previous losers placed in conditioned water from new 

experienced males were selected over the previous winner in 14/20 cases.   

 

In summary, conditioned water does not appear to affect the aggression levels observed 

between two males, except when the loser is placed in conditioned water from an old 

experienced male.  This may be due to the other male recognising the opponent as 

experienced and with a better chance of winning a fight but this is unlikely as this was 

not observed when losers were placed in conditioned water from new experienced 

males.  It is more likely that a size difference is conveyed in the conditioned water from 

old experienced males.  When loser males were placed in conditioned water from old 

males, the female chose the previous winner and did not select the conditioned loser.  It 

is possible therefore that a male may be considered too old to undertake parental care 

and is no longer preferred over an inexperienced male.  Female choice was observed to 

change from previous winners to losers placed in conditioned water from both new 

experienced males and from males caring for eggs.  This provides further evidence that 

females can detect males as experienced through chemical signals as this was the only 

variable changed during the experiments, but does not provide further evidence as to the 

mechanism involved or the origin of the ‘scent of experience’.   

 

6.4.1: Next steps 

Further investigations need to be undertaken to look at the behaviour of a female 

towards older experienced males and what effect this has on female choice.  There may 

be that there is a point where males become too old to undertake parental care and are 

no longer preferred by females over inexperienced males, possibly due to their physical 
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condition.  The scent of experience also needs to be investigated further using a greater 

number of replicates to learn more about the possible chemical signal released.  Future 

trials should include replicates involving egg masses without a male present to 

determine what effects a male conditioned with water surrounding egg masses would 

have on a female and the length of time any effect may have.  Conditioned water should 

also be tested from males that have not completed egg care to determine the effects of 

this on female choice.  The potential physical changes in the male following parental 

care also need to be investigated to understand further its importance in female choice.   
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Chapter Seven:  

 

The occurrence of male parental care for eggs fertilised by a different 

male 
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7.1: Experimental reasoning and aims 

Adoption is defined as the care of offspring by individuals that are not the genetic 

parents (Wilson, 1975 cited Riedman, 1982) and has been reported in fish, bird and 

mammal species (Riedman, 1982).  However, it may be difficult to define what is full 

adoption, rather than just social interaction, as assistance may be given to the parents 

but offspring will not be fully cared for by the foster parent (Wisenden, 1999).  

Alloparental care is another form of tending to offspring but differs from adoption as 

the genetic parent may return to care for their progeny (Riedman, 1982).  With adoption 

however, full care of the offspring is assumed with no consequent care from the genetic 

parents.  Therefore, levels of care constituting adoption are hard to define and can vary 

from egg defence through to feeding (Meek and Robertson, 1991).  Both adoption and 

alloparental care are hypothesised to be reproductively costly and inconsistent with 

classic evolutionary theory (Riedman and Le Boeuf, 1982) but the benefits of adoption 

may offset such costs incurred (Brown, 1998).  During adoption, parental behaviours 

may be transferred to offspring through imprinting and may include preferences for 

food, mate choice, a particular niche preference or foraging techniques (Avital et al., 

1998).   

 

Debate has emerged as to the reasons why individuals may undertake such a seemingly 

costly act of parental care and the following theories have been proposed to attempt to 

explain the occurrence of adoption and alloparental care: altruistic behaviour, selfish 

behaviour, kin selection, acts of reciprocity, misdirected acts (or mistakes) and forced 

acts (Daniels, 1979). 

 

Adoption may form a true altruistic act with no selfish benefits to the carer, as observed 

in social insects such as termites, wasps, bees and ants where sterile castes exist that 

care for offspring of the queen (Wilson, 1975).  However, such unselfish behaviour is 

rare and it is more likely that the carer will receive benefits in some way, making the act 

selfish.  Such benefits may include receiving an increased number of matings due to 

caring for offspring, enjoying increased social status, increased access to resources such 

as food or shelter, gaining parental experience and enhancing parenting skills (see 

Daniels, 1979 for review).  Caring for young may influence the future reproductive 

success of the male (Riedman and Le Boeuf, 1982) and may be favoured by natural 

selection to enhance the adoptive individuals parenting skills (Riedman and Le Boeuf, 

1982).  This is especially important for species where competent parenting skills are 
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vital for example if females produce a very limited number of eggs (Riedman, 1982).  In 

the elephant seal Mirounga angustirostris, females without offspring may care for pups 

to gain experience.  Pup mortality is high with inexperienced mothers and as females 

can only produce a limited number of seals per lifetime, care of such pups is important 

(Riedman and Le Boeuf, 1982).  Such behaviour by females to gain parental experience 

has also been observed in chimpanzees, rhesus macaques and gorillas (Riedman, 1982).  

In fish species, males have been shown to care for eggs not their own as this influences 

females to spawn in a nest that contains eggs, rather than empty nests (Constanz, 1985) 

and females have been shown to copy the previous mate choice of another female 

(Wisenden, 1999).  This has been observed in the fathead minnow Pimephales 

promelas, where females are attracted to males with eggs at nests sites.  Adopted eggs 

however receive less care and have increased mortality rates and only the minimum 

number of eggs required to attract a mate are maintained in the nest (Sargent, 1989).  

Other examples of males that use eggs to attract mates have been observed in the pygmy 

sculpin Cottus pygmaeus (Johnston, 2000), the fathead minnow Pimephales promelas 

(Unger and Sargent, 1988) and the three-spined stickleback Gasterosteus aculeatus and 

males have been observed to kidnap eggs from other nests to achieve matings (Ridley 

and Rechten, 1981).  One further example of a male fish that exploits this female 

preference for eggs in nests is the fantail darter Etheostoma flabellare and as such, 

males of this species have developed two strategies to influence females: adoption 

(Rohwer, 1978) and egg mimicry.  The males possess dorsal spines with a fleshy ball 

coloured orange with a black rim with a transparent membrane at the tip.  When the 

male is positioned near the roof of the nest, these balls closely resemble an egg mass. 

Such egg mimics were found to be preferred over males that did not have an egg mass 

in the nest or possess such appendages (Knapp and Sargent, 1989).  Tallamy (2000) 

postulates in arthropods that if the presence of an egg mass increases the attractiveness 

of the male, unrelated eggs should be accepted by the male but also competed for 

against other males.  Therefore, males should be willing to care for unrelated eggs if 

such care attracts additional mates and therefore increases reproductive success 

(Tallamy, 2000).   

 

Caring for related offspring may be a form of kin selection (Daniels, 1979), aiding a 

closely related individual and therefore influencing its own genetic fitness (Riedman, 

1982).  This has been observed in the cichlid Lamprologus brichardii where helpers aid 

in the defence and feeding of closely related siblings (Taborsky and Limberger, 1981).  
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Older juveniles of the monkey species Callithrix jacchus partake in young carrying, a 

form of parental care, of related siblings (Box, 1977).  In social insects, such as wasps, 

bees, ants and termites, sterile workers in the colony care for the offspring of a single 

laying queen, which includes constructing and protecting the nest, foraging for food and 

tending for the larvae (Wilson, 1975).  Workers do not produce any offspring of their 

own so have no personal fitness but their actions greatly improve the reproductive 

efforts of the queen (Sudd and Franks, 1987). 

 

Individuals may also assume parental care roles if it is an act of reciprocity; if the favour 

is returned later, for example where alloparents receive help with their offspring in turn 

(Daniels, 1979).  In the cichlid Tilapia rendalli, four parents care for two brood sets 

which may lower the risk of predation to both sets of offspring (Ribbink et al., 1981).  

In harsh or stressful environments where breeding resources such as food and space 

may be limited, parental cooperation may be beneficial to both parties (Riedman, 1982).  

Males of the cichlid Cichlasoma nicaraguense have been observed to defend the young 

of the predator cichlid Cichlasoma dovii.  It is thought that this is an act of reciprocity 

as the predator C. dovii will feed on the main competitors of C. nicaraguense (McKaye, 

1977).  However, this has been contested by Coyne and Sohn (1978) who suggested that 

the findings may be a case of mistaken identity on the part of C. nicaraguense 

individuals. 

 

The act of adoption may occur as a result of a mistake.  Mistaken identity and 

subsequent brood mixing may occur if parents are unable to recognise their own 

offspring (Daniels, 1979; Silk, 1999).  Such instances of brood mixing have been 

observed in the cichlids Pseudocrenilabrus multicolour (Mrowka, 1987), Haplochromis 

polystigma (Ribbink, 1977) and Hemichromis bimaculatus (Greenberg, 1961), to name 

a few examples.  However, parental care may also be forced upon the individual.  If 

parents cannot recognise their own offspring, other parents may place offspring with 

such individuals so as to avoid parental care duties themselves, known as brood 

parasitism or cuckoldry, where eggs are laid in the nests of other individuals (Weller, 

1959).  Such behaviour has been observed in a number of fish, bird and insect species, 

such as the minnow Pungtungia herzi that deposit eggs in the nests of the freshwater 

perch Siniperca kawamebari (Baba et al., 1990), the barnacle goose Branta leucopsis 

that lay eggs in the nests of conspecifics (Anderholm et al., 2009) and the lace bug 

Gargaphia solani that lay eggs among the egg masses of conspecifics (Tallamy, 1985). 
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The classic example of cuckoldry is found in the cuckoo Cuculus canorus where 

females lays eggs in a host’s nest, such as the meadow pipit Anthis pratensis, and 

removes one or more of the host species’ eggs (Lack, 1963).  Such parasitism benefits 

the genetic parents as the offspring will carry their genetic material, but the parents do 

not incur the costs associated with parental care (Wisenden and Keenleyside, 1992).  

However, in some species, this may still provide a benefit to the adoptive parent as an 

increased number of offspring equals a dilution of predation risk (Smith, 1968 cited 

McKaye et al., 1992).  Not only does egg survival increase with the number of eggs 

present, but foreign young accepted into an existing fry group may aid differential 

predation so smaller young may be accepted that are more likely to be preyed upon 

(Smith, 1968 cited McKaye et al., 1992).  Such young are often kept on the periphery 

and “nipped back” if they stray into the centre of the fry group (McKaye et al., 1992).  

Such behaviour has been observed in the convict cichlid Cichlasoma nigrofasciatum 

(Fraser and Keenleyside, 1995) and the catfish Bagrus maridionalis (McKaye et al., 

1992).   

 

Males may acquire non-descendent young by evicting a resident male from a spawning 

territory or nest site already containing eggs to enhance his attractiveness to females.  

They then guard and care for old and new eggs.  However, the fathead minnow 

Pimephales promelas prefers to cannibalise non-descendent eggs once the male has 

mated with a female (Wisenden, 1999).  Large and dominant peacock wrasse males 

(Symphodus tinca) have also been observed taking over a nest site to spawn and then 

leaving the original male to care for the brood.  The large male therefore incurs no costs 

of parental care (nest maintenance, guarding) and the original male is unlikely to 

abandon the nest site if this also means abandoning his brood as well (van den Berghe, 

1988).   Kidnapping of broods also occurs, for example in the cichlid Cichlasoma 

citrinellum and it is hypothesised in this species that this dilutes the predation risk for 

the individual’s own brood (McKaye and McKaye, 1977). 

 

Due to parental death or abandonment, N. acuminata eggs normally under parental care 

may be found uncared for in natural populations, although this is rare as males caring 

for eggs hardly leave the egg mass, except to forage at the mouth of the burrow (Reish, 

1957).  Approximately 10-15% of males abandon the parental tube containing 

developing eggs (Reish, personal communication).  Eggs left in a tube will not survive 

longer than two days (Reish, 1980a) and will turn a white colour when dead (personal 
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observations).  Initial studies have shown that N. acuminata males will take care of eggs 

that are not their own.  A preliminary study by Sutton (1998) found that males would 

care for eggs of another male after parental males have been removed from the burrow 

and replaced.  In the study by Sutton (1998), males were reported to have adopted eggs 

if two distinct behaviours are observed: egg fanning to oxygenate the eggs and 

aggression towards potential mates (Sutton, 1998).  These criteria concur with the 

original work by Reish (1957), where males undertake fanning behaviour to oxygenate 

the egg mass and fight both male and female intruders to the parental burrow.  

Replacement males will undertake parental care following the paternal male death and it 

was hypothesised that inexperienced males would undertake such care in order to gain 

‘experience’ and subsequently be preferred by females in future reproductive events 

(Reish, personal communication).  Females of this species have been shown to 

preferentially select males that have previously undertaken egg care compared to 

‘virgin’ males (Fletcher et al., 2009) and therefore may select mates on the basis of their 

parental care abilities.  The completion of egg care also signals to the female that the 

male is likely to be of high quality as he has survived to produce offspring despite the 

high costs associated with egg care (Tallamy, 2000).  It is unknown, however, whether 

such adoption and selection for experienced males occurs in the wild.        

 

The aim of this chapter was to determine if care of eggs from another male occurs under 

experimental conditions in the laboratory and if there was a difference in the behaviour 

of experienced males (those that have previously undertaken egg care) and 

inexperienced males.  It was hypothesised that care of eggs fertilised by another 

inexperienced male occurs under experimental conditions and also that experienced 

males will not care for eggs that they have not fertilised.  It was hypothesised that 

experienced males gain no benefit from such behaviour whereas inexperienced males 

may benefit by increasing their parental experience.  In this study, cannibalism was also 

noted if it occurred.  As previously mentioned, cannibalism of eggs has been known to 

occur in this species (Oshida et al., 1981) and it seems unlikely that a male would leave 

an egg mass (a potential food source) if it will just be consumed by a competitor.  A N. 

acuminata male encountering an abandoned egg mass was observed cannibalising them 

(Starczak, 1984).  Males undertaking cannibalism of eggs would likely do so to gain 

nutritional benefits and do not care for the eggs so they develop.   
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7.2: Methodology 

A male and female from the Reish population maintained in the laboratory were paired 

in a crystallising dish (70mm diameter) containing 50ml of filtered sea water (36-38‰) 

to produce fertilised eggs.  During pairing behaviour and before egg release, the 

crystallising dish was placed in an aerated container (180mm x 100mm x 140mm) with 

approximately 2 litres of sea water (36-38‰) to minimise disturbance and to regulate 

the environmental conditions.  Animals were fed a small amount of low protein rabbit 

food (non-processed compressed hay, Smith’s Animal and Pet Supplies, Castle Road, 

Hull) ad libitum throughout the experiment.  Eggs were shed in the parental tube by the 

female and fertilised by the male.  After the first division of the eggs was observed, the 

parental male was gently removed from the parental tube by placing a paintbrush at the 

tail end of the animal; the male reluctantly vacates the parental tube in response to this 

stimulus, leaving the egg mass intact.  The parental male was then replaced with another 

sexually mature male, also from the Reish population.  The subsequent behaviour of the 

replacement male was observed using the scoring system detailed in Table 7.1 below.  

Egg fanning was used as a good indication that introduced males were undertaking 

parental care.  Any cannibalism was also noted, confirmed by observation of eggs in the 

gut.  Introduced males were scored after 5 minutes, after 24 hours and after 48 hours.  

After 48 hours, if the male was still present with the eggs in the parental tube, 

observations of the egg mass were made every day to determine if the eggs hatched.   

 

Table 7.1: Scoring system for parental and replacement male behaviour. 
 

Score Observation 
0 Male entered tube and fanned eggs 
1 Male ignored eggs and constructed a new tube 
2 Male cannibalised eggs 

 

Two different categories of males were introduced into the crystallising dish (70mm 

diameter) containing the egg mass, depending on their reproductive history:  

experienced males (n = 6) and inexperienced males (n = 6).  Inexperienced males were 

separated from the population at the larval stage and allowed to mature sexually but 

prevented from reproducing with a female.  Experienced males were allowed to 

reproduce once with a female (males were previously inexperienced males as above) so 

will have already successfully cared for eggs that hatched.   To ascertain that males 

would enter constructed tubes and proceed to fan eggs, parental males were removed 
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from the burrow, isolated for ten minutes and then re-introduced and scored as per 

above (n = 15).  The total number of replicates for this study equalled 27. 
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7.3: Results 

When a male was introduced to a crystallising dish containing an egg mass within a 

burrow, the ensuing behaviour was found to vary depending on the reproductive state of 

the male, as shown in Figure 7.1 below.  Parental males were found to return to their 

burrows and care for eggs, after a period of swimming behaviour.  All but one of the 

fifteen re-introduced parental males successfully produced eggs that hatched; one brood 

was cannibalised.  When inexperienced males were introduced into the crystallising dish 

with an egg mass, 5 out of 6 males fanned the eggs and emergent juveniles were 

observed following hatching.  One male cannibalised the egg mass.  When experienced 

males were introduced into the crystallising dish with an eggs mass, none of the males 

were observed to fan the eggs and three of the males cannibalised the egg mass.  The 

other three males ignored the egg mass and constructed a new burrow in the same 

crystallising dish.   

 

 
Figure 7.1: Percentage of eggs hatched, cannibalised or ignored by males from the three 
groups: re-introduced parental males, experienced males and inexperienced males. 
 

The differences between hatched, cannibalised and ignored eggs for each type of male 

were analysed using the Freeman-Haltman extension of the Fisher’s exact test for a 3 x 

3 contingency table (expected frequencies were < 5).  There was a significant difference 

found between the frequencies of eggs masses that were hatched, cannibalised or 

ignored (Fisher’s exact = 0.000).  Further to this, the contingency table was subdivided 

according to Zar (1996) and Fisher’s Exact tests used to determine the location of the 
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differences in behaviour between the three types of male used.  This can only be used as 

a guide but will give an indication of which data set is driving the significant difference 

(Zar, 1996).  Table 7.2 below shows the subdivision of the results with pooled data for 

both ignored and cannibalised eggs due to the low frequencies of ignored egg masses. 

 
Table 7.2: Subdivision of the contingency table with each type of male used: parental, 
experienced or inexperienced. 
 
Male type  Hatched Other Total 
Parental Observed 14 1 15 

Expected 10.3 4.4 15 
Non-parental Observed 5 7 12 

Expected 8.4 3.6 12 
 Total 19 8 27 
   Fisher’s =  0.008 
     
Experienced Observed 0 6 6 

Expected 4.2 1.8 6 
Non-experienced Observed 19 2 21 

Expected 14.8 6.2 21 
 Total 19 8 27 
   Fisher’s =  0.000 
     
Inexperienced Observed 5 1 6 

Expected 5.4 0.6 6 
Parental Observed 14 1 15 

Expected 13.6 1.4 15 
 Total 19 2 21 
   Fisher’s =  0.500 
 

There was a significant difference in the behaviour of the parental male compared to the 

pooled results from the inexperienced and the experienced male (P = 0.008).  However, 

there was no significant difference found between the behaviour of parental males to 

inexperienced males towards an egg mass (P = 0.500).  However there was a significant 

difference in behaviour when experienced males were compared to the pooled results 

from parental and inexperienced males (P = 0.000).  Therefore, although the results 

from the parental type male were significant to the other types of male, the behaviour of 

the experienced males towards egg masses is driving the significant difference. 

 

  



- 140 - 
 

7.4: Discussion 

Several theories have been suggested as to why individuals would adopt and care for 

young not their own: altruistic behaviour, selfish behaviour, kin selection, acts of 

reciprocity, misdirected acts/mistake and forced acts (Daniels, 1979).  The associated 

benefits related to caring for such offspring, such as increased reproductive success 

(Tallamy, 2000) and increased social status (Daniels, 1979) have also been proposed.    

 

In this study, inexperienced males were found to care for eggs not their own (apart from 

in one case where the eggs were ignored). Experienced males were observed either 

ignoring or cannibalising egg masses (Figure 7.1).  However, these results should be 

viewed with caution as only six inexperienced and six experienced males were 

introduced.  During the undertaking of these experiments, several variables were not 

controlled prior to the experiment.  As the Reish population is likely to be a heavily 

inbred population, with only six individuals collected in 1964, this may affect any 

results observed with males caring for eggs not fertilised by them.  As individuals are 

likely to be closely related genetically, males may care for such eggs in order to pass on 

their genes.  Individuals may also have originated from the same brood as the parental 

male, although an attempt was made to control this by separating individuals at the 

larval stage and noting the brood they originated from.  Older siblings have been shown 

to help care for brothers and sisters, as in the monkey Callithrix jacchus, where older 

juveniles partake in young carrying of younger siblings, a form of parental care (Box, 

1977).  In this study, the complete parental lineage and the relatedness of the individuals 

used were unknown.  However, if males were caring for eggs due to their genetic 

relatedness, it would be expected that experienced males would also care for eggs; this 

was not observed in these experiments.   

 

Two studies have observed the caring behaviour of cichlid fish and found that the 

previous experience of the males did not affect adoption as both experienced and 

inexperienced males adopted young.  The cichlids Tilapia sparrmani and Aequidens 

partalegrensis both accepted young of the other species (Collins and Braddock, 1962) 

as did the cichlids Hemichromis bimaculatus and Aequidens partalegrensis and both 

experienced and inexperienced males raised successful broods (Greenberg, 1961).  

However, in these species, young were only accepted when males had broods 

themselves and accepted young were similar in age to those broods.  It may be the case 

that in N. acuminata, males only recognise broods as their own by their physical size.  
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As inexperienced males undertook care of eggs but experienced males did not, it does 

not seem likely that care occurs due to a mistake in the recognition of offspring.  If 

males cannot recognise their own offspring, then experienced males would also be 

expected to undertake parental care of eggs if introduced to an egg mass.  The other 

theories proposed for such care also do not appear to relate to the observed results.  If 

caring for eggs from another male were an altruistic act or an act of reciprocity, then it 

would be expected again that both inexperienced males and experienced males would 

care for such eggs.  Caring for such eggs is also not a forced act as males were put at the 

entrance of a burrow already containing eggs rather than eggs added to their own 

burrow.  Due to the documented life cycle in this species of male and female 

monogamous pairing, female dehiscence and male parental care (Reish, 1957), it seems 

unlikely that cuckoldry occurs in this species.  It may be the case, however, that N. 

acuminata males abandon their eggs to be cared for by another male.  This ensures that 

the parent’s genetic information is passed on but the male incurs no costs of care 

(Wisenden and Keenleyside, 1992).  Such behaviour has been shown to occur in fish, 

such as the minnow Pungtungia herzi where parents ‘dump’ eggs in another 

individual’s nest.  This also seems unlikely in N. acuminata as there would be a risk that 

the abandoned eggs would either be cannibalised by a different individual (either male 

or female) or the eggs would die due to a lack of oxygenation.  This occurs after 2-3 

days if eggs are not fanned by the male (Reish, 1980b).   

 

Experienced males may not have cared for the eggs because they were of poor quality 

(diseased or dead).  Consuming such eggs may prevent the spread of infection and 

protect the remaining eggs (Kraak, 1996).  In three instances where an experienced male 

was introduced, the entire egg mass was consumed by the experienced male when 

cannibalism was observed.  Also, cannibalism was only observed in one instance with 

inexperienced males (Figure 7.1).  It seems unlikely that experienced males were placed 

with poor quality eggs in each trial but the inexperienced male was not.  However, more 

replicates would be needed to reduce the likelihood of poor quality eggs affecting the 

results. 

    

When offspring require prolonged or extensive parental care, competent parental skills 

may be an important factor affecting reproductive success (Riedman, 1982). 

Inexperienced males may benefit by caring for eggs not their own by gaining parental 

experience and an increase in reproductive success, a form of selfish behaviour.  If the 



- 142 - 
 

‘scent of experience’, as examined previously in Chapter 6, is indeed how parental care 

ability is conferred to the female, this signal should be an honest and reliable indicator 

of ability (Holezer, 1989).  If males can gain an advantage by caring for males not their 

own then there should be associated costs to such behaviour in order for the signal of 

parental care experience to be an honest indicator for the female (Hoelzer, 1989).  

Adoption may cost males if they have to care for eggs even for only a short amount of 

time.  Costly male behaviour for the purpose of obtaining a mate, however, is not 

unusual (Härdling and Kaitila, 2004).  If the female cannot detect that males have not 

successfully produced (or cared for) viable offspring, this signal may not be an honest 

indication to the female and parental experience may be expressed to the female in some 

other way, for example via physical condition.  If females can tell the difference 

between cannibals and non-cannibals and males that only care for eggs for a short time 

period, then adoption may not be cheating.  This needs further investigation as the 

results obtained in Chapter 5 (female detection of cannibalistic males) were 

inconclusive. 

 

Male parental care ability may also be expressed to the female chemically following 

successful egg care.  A relationship has been found with the expression of prolactin and 

parental care (Smith and Hoar, 1967).  In birds and mammals, prolactin is known to be 

involved in maternal behaviour (Schradin and Anzenberger, 2004) but in some mammal 

and fish species, increases in prolactin correspond with male parental care (Nunes et al., 

2000), as observed in the common marmoset Callithrix jacchus where the levels of 

prolactin vary significantly between males carrying infants and non-parental males (da 

Silva Mota et al., 2006).  There may also be a relationship between prolactin levels and 

experience of males, for example differences between first time fathers and those that 

have successfully reared a brood (Schradin and Anzenberger, 2004).  Similarly, in the 

sex-changing goby Lythrypnus dalli, experienced males were found to have higher 

ketotestosterone levels than inexperienced males (Rodgers et al., 2006).  It may be the 

case in N. acuminata that experienced males signal to the female that they are capable 

of providing good parental care but the processes involved in the production and 

recognition of such a cue in N. acuminata are still unclear. 

 

In summary, previous work in N. acuminata and observations made in this study 

indicate that there is a difference between experienced and inexperienced males when it 

comes to adopting egg masses.  Parental males will also return to their burrows if 
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separated from the egg mass.  The replicates undertaken here did not take into account a 

series of variables that would have been important in forming the basis of these 

hypotheses and as such, these experiments should be repeated, taking such variables 

into account.  It is clear that further work needs to be undertaken to disentangle the 

relationships between parental care, experience and female mate choice in this species.     

 

7.4.1: Next steps 

It is apparent that the experiments undertaken in this chapter need to be repeated, taking 

into account the relatedness of the individuals within a population, requiring careful 

notation of family lineages and relatedness of offspring and ‘carers’ but also taking into 

account the quality and the number of eggs laid.  It would also be of use to determine if 

such behaviour involving caring for eggs occurs in any of the other populations 

maintained in the laboratory or if such care occurs in wild populations or even within 

mesocosm (a larger population tank housed in the laboratory).  It would be interesting to 

note the reaction of the introduced male caring for an egg mass when a female is placed 

in the same crystallising dish.  The parental male would defend the eggs and not leave 

the parental burrow but would the same reaction be observed with an introduced male?  

Observing a parental male’s behaviour following the addition of another male’s eggs to 

the egg mass that he is caring for may also give an indication if individuals can 

recognise their own offspring in N. acuminata.  Following a male completing care of 

eggs that he did not fertilise, experiments involving female choice tests would be useful 

to determine if the male with new parental experience is now preferred over an 

inexperienced male and if males have to care for eggs until they hatch.  It may be that 

males only need to have the smell of eggs for them to be preferred by a female, since it 

is still unclear if males can recognise their own egg mass so further experiments are 

needed to investigate if males have a preference for their own egg mass. 
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Chapter Eight: 

 

Final discussion and conclusions  
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Reproduction in N. acuminata is unique among nereid polychaetes (Bridges et al., 

1996).  A male and a female form a monogamous pair bond and occupy the same 

mucous burrow (Reish, 1957).  Once females have reached sexual maturity, they lay 

their eggs in the burrow and die (Reish, 1957).  Males undertake sole care of the 

offspring and once larvae vacate the parental burrow, the male can go on to reproduce 

again (Reish, 1957).  The populations of N. acuminata maintained in the laboratory all 

share this unique reproductive cycle and share similar morphological traits (Pettibone, 

1963; Weinberg et al., 1990).  There is evidence however, that these populations have 

diverged and form a species complex.  

 

Species can be separated by changing land masses for example and separated species 

may continue to evolve from each other independently and diverge from each other with 

time (Ribinoff and Rubinoff, 1971).  Sibling species are morphologically similar, if not 

identical populations that are reproductively isolated (Mayr, 1977), making it difficult to 

establish which populations are still conspecific (Lovern et al., 1999).  Biotic and 

abiotic factors of the environment can shape the individuals that occupy that habitat.  

Communication systems used by individuals in populations can also be adapted to 

changes in the environment (Lovern et al., 1999).  Differences in temperature, humidity, 

salinity, level of predation, food availability parasite prevalence and other factors of the 

habitat conditions may favour differences in sensory systems which in turn select for 

differences in signal design (Mayr, 1977; Madden, 2006; Ward and McLennan, 2008).  

Alternatively, differences in habitat noise and transmission properties may favour 

differences in signal design even if there is no change in the sensory system (Leal and 

Fleishman, 2004).  If there is a change in the signal design, reproductive isolation may 

occur due to a failure to communicate if such signals are important for mate choice or 

species recognition (Leal and Fleishman, 2004).  Variation in traits such as metabolic 

rates, trophic structures, acclimatisation abilities, thermal and osmotic tolerances and 

life history parameters can also be expressed through changes in behaviour (Ptacek and 

Travis, 1996). 

 

In terms of aggression, individuals can use assessment strategies to avoid fighting 

individuals that they are likely to lose against in order to lower the costs and risk of 

injury (Caldwell, 1985).  Game theory predicts that individuals will compare their 

Resource Holding Potential (RHP), the ability of an individual to win a fight, to that of 

their opponents before deciding whether or not to escalate a fight (Sneddon et al., 
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1997). The RHP of an individual can be influence by body size, age, sex (Beacham and 

Newman, 1987), morphology, physiology, previous aggressive experiences (Sneddon et 

al., 1997), prior residency, energy reserves, resource value and physical condition 

(Morrell et al., 2005).  Asymmetries between opponents, where the RHP of each 

opponent differs, for example body size, can lead to the quick resolution of fights 

(Maynard Smith, 1974).  Interactions between closely-matched individuals, however, 

are likely to escalate over time and increase the risk of injury to each individual 

(Maynard Smith, 1974).  The fight will continue until the individual with the lowest 

cost threshold reaches that level (e.g. expended energy levels) meaning that the duration 

of the fight is determined by the RHP of the individual with the lower cost threshold, 

the eventual loser (Morrell et al., 2005). 

 

In order to decrease the risk of injury incurred during combat, communication systems 

capable of transmitting sufficient information to the opponent would be expected to 

evolve if weapons used in aggressive interactions are potentially lethal (Caldwell, 

1979).  In N. acuminata, aggression potentially involves such behaviour as the jaws are 

used in fights to attack the opponent, which can escalate to severe aggression involving 

biting (Reish and Alosi, 1968).  Divergence between populations may therefore be 

expressed in changes in behaviour, including aggression.  Dunbrack and Clarke (2003) 

stated that the levels of aggression in pair-wise contests should be higher the greater the 

behavioural divergence there is between two opponents.  Individuals from different 

populations should display divergence that is greater than that shown between two 

individuals from the same population.  This is known as the communication failure 

hypothesis and can lead to the escalation of fights between individuals (Maynard Smith 

and Riechert, 1984).  Escalated fights are more likely when cues from the initial 

assessment are ambiguous and individuals must use more overtly aggressive behaviours 

in order to determine the outcome of the fight (Maynard Smith, 1974).  Communication 

signals which deviate from the population norm could be sufficiently ambiguous that it 

provokes a more aggressive response (Dunbrack and Clarke, 2003).  Evolutionary 

modifications of communication signals may lead to divergences in population 

behaviour, causing higher levels of aggression or prolonged fights between populations 

in pair-wise contests due to a mutual ambiguity in individual assessment (Dunbrack and 

Clarke, 2003).  Population comparisons are therefore used to gain insight into the causes 

of behavioural differentiation (Lahti et al., 2001) and the selective influence of the 

environment on signal expression (Lovern et al., 1999).  Undertaking genetic and 
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behavioural studies using populations of a species are also important as taxonomists do 

not take into account the different reproductive methods used by a species, the genetic 

diversity between populations or the behavioural differences expressed within and 

between populations.  In the species complex comprised of N. diversicolor, N. limnicola 

and N. japonica, all three share similar morphology but each has different reproductive 

and developmental characteristics (Fong and Garthwaite, 1994).  N. japonica 

reproduces via a mass spawning event (Smith, 1958), N. limnicola is a viviparous self-

fertilising hermaphrodite (Baskin, 1970) and N. diversicolor females reproduce in 

burrows with males releasing sperm in front of the female tube (Bartels-Hardege and 

Zeeck, 1990).   

 

Previous studies have shown behavioural divergences within populations (Saito, 1995; 

Lahti et al., 2001).  Aggression levels within populations of the brown trout Salmo 

trutta show high variation with migratory populations exhibiting higher aggression 

levels when compared to the aggression observed within the other populations (Lahti et 

al., 2001).  Aggression has also been examined in staged contests between individuals 

from different populations by Dunbrack and Clarke (2003).  In their study, two 

populations from different riverine systems of the brook trout Salvelinus fontialis were 

compared in size-matched contests, using nipping rate as the index of aggressiveness.  

The mean number of nips displayed between individuals from different populations was 

found to be greater than the mean number of nips in fights involving individuals from 

the same population, showing escalated fights between individuals from different 

populations (Dunbrack and Clarke, 2003).    

 

Studies on the different populations started with examining the chromosome numbers of 

the different populations.  The Reish (R) population, collected in 1964 from Los 

Angeles Harbour, was found to have a diploid chromosome number of 18 (Pesch and 

Pesch, 1980).  The Newport (N) and San Gabriel (SG) populations were also found to 

have diploid chromosome number of 18 (Weinberg et al., 1990).  The Newport 

population was collected from Newport Beach in 2005 and the San Gabriel populations 

collected from the San Gabriel River in 2003.  The Connecticut (C) population, 

collected from Alewife Cove in 2002, has a diploid chromosome number of 22 

(Weinberg et al., 1990).  Differences in chromosome number can be used as indicators 

of reproductive compatibility (Knowlton, 1993).  To determine if these populations 

were reproductively isolated, pre- and post-mating isolation trials have been undertaken.  
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Weinberg et al. (1990) looked at the pre-mating isolation levels between two 

populations from the Atlantic Ocean: Massachusetts (M) and Connecticut (C), and two 

from the Pacific Ocean: San Gabriel (SG) and Newport (N) and found evidence of 

significantly higher levels of reproductive isolation between populations.  However, 

between the SG and the N populations, there was no evidence of pre-mating isolation.  

The trials were then extended by Weinberg et al. (1992), using the SG, N and R 

populations.  High levels of pre-mating isolation were observed between R and both SG 

and N, however there were low levels of pre-mating isolation between SG and N.  It 

was therefore concluded that speciation occurred in the R population in the laboratory 

following a founder event.  This work by Weinberg et al., (1992) caused controversy as 

it suggested that speciation of the R population had occurred in the laboratory.  The 

findings were therefore further discussed in the work by Rodriquez-Trelles et al. (1996).  

This work disagreed with Weinberg et al. (1992) and hypothesised that the two wild 

populations used in the study (SG and N) were not representative of the population from 

which the R population was originally sampled from.  The study went on to investigate 

the genetic markers, genetic variability and divergence of the three populations, finding 

high genetic differences and the R population sharing no common alleles with either the 

SG or the N populations in 13/18 loci.  The study therefore concludes that these three 

populations formed separate species before the R population was sampled in 1964 

(Rodriquez-Trelles et al., 1996).   

 

In support of the pre-mating isolation findings, D.H. Lunt and J.D. Hardege 

(unpublished) examined the nuclear and mitochondrial DNA from these populations.  

According to the nuclear DNA, the C population is likely to have diverged from the 

other three populations approximately ten million years ago.  Examining the 

mitochondrial DNA, following the divergence of the C population, the SG population 

diverged from the R and N populations approximately seven million years ago.  R and 

N have been found, using the mitochondrial DNA, to be very similar genetically, with 

little divergence.   

 

In this thesis, experiments were undertaken using the four laboratory populations R, N 

SG and C, looking at the aggression between individuals over fifteen minute trials. 

Also, aggression and pairing behaviour was observed between the R population, 

sampled in 1964, and the wild Los Angeles (LA) population, sampled in 2008 from the 

same location as the R population.  This was performed to determine if there was any 
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divergence in behaviour within the populations which would affect the interactions of 

individuals between populations.  It was expected that individuals from different 

populations of N. acuminata would exhibit higher aggression levels towards each other 

than individuals from the same population, with both males and females.  As the 

populations all share the same life history traits and are very similar morphologically 

(Weinberg et al., 1990), the divergence between the populations may be expressed via 

heightened aggression due to the communication failure hypothesis, indicating that 

escalated aggression would be expected between populations that have diverged 

(Dunbrack and Clarke, 2003).  In addition, the new wild Los Angeles (LA) population 

(sampled in 2008) was compared to the existing laboratory maintained Reish (R) 

population with both males and females to determine if there are any differences in 

aggression between these two populations and whether these results suggest that these 

two populations should be treated as potentially separate species.  As the R population 

and the wild LA populations were collected from the same geographical location, the 

LA population may provide a better representation of the population that R was 

originally sampled from.  It was hypothesised, due to changes in the environmental 

conditions in Los Angeles Harbour due to the pollution abatement programme (Reish et 

al., 1980) and as the R population has been maintained in the laboratory under constant 

light, temperature and feeding regimes, that these two populations will have diverged in 

the 44 years that they have been separated and that aggression levels would be higher 

between these two populations than within them.  Aggression was found to be a weak 

indicator of differences between the populations, although significant differences were 

observed in male aggression between the populations, this was not observed with 

female aggression.  There were significant differences in female aggression between the 

R and LA populations, but this was not the case for male aggression.  There may be 

problems with using individuals in staged fights not only because this is a forced 

situation between two individuals, but variable may not have been taken out when 

comparing individuals.  It is possible that individuals used in some staged contests 

within populations were more related than individuals used in other replicates.  In many 

species, individuals have been shown to be less aggressive towards kin as observed in 

the spider mite Schizotetranychus miscanthi (Saito, 1995).  Studies of this kind in the 

future should therefore take into account the kin relationships of the individuals used 

and avoid staged contests between closely-related individuals. 
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Staged contests between individuals may not have been long enough to gain a true 

picture of the interactions between individuals, and this may hold true for all aggressive 

interactions observed in this thesis.  It may also be the case that the fight duration is a 

more important indicator or aggression than intensity of fighting.  Staged contests 

between size-matched individuals may also have an effect on the results.  As previously 

mentioned, symmetries in RHP can lead to escalated fights (Maynard Smith, 1974).  It 

is possible that the symmetry in body size used in these experiments with matching 

opponents has led to individuals exhibiting a greater level of aggression towards each 

other.  It is also possible that although worms were size-matched to their opponents, 

there were differences in the size ranges of individuals between the replicates, with 

some individual fights involving smaller individuals than other fights.  Morrell et al. 

(2005) found that in the fiddler crab Uca mjoebegi, fight duration increased with 

increases in the mean size of closely-matched opponents.  This suggests that larger 

individuals are capable of fighting for longer periods than smaller opponents (Morrell et 

al., 2005).  In future studies, these variables should be investigating, looking at how 

long individuals spend fighting, observing behaviour over longer periods of time, and 

taking care when selecting individuals to use in staged contests, using digital equipment 

to document all behaviours exhibited. 

 

Pairing observations between male and female individuals from the different 

populations were used to determine if there was any pre-mating isolation between these 

populations.  Due to female death following egg shedding, mate recognition by females 

should be important in the species as incorrect mate recognition could lead to a wastage 

of gametes if eggs are shed with an ‘incorrect’ male (Snell, 1989).  Before engaging in 

courtship, individuals need to ascertain that the potential mate is of the correct gender, 

of the same species, is sexually mature and receptive (Gompel and Prud’homme, 2009).  

Population divergence may potentially cause a divergence in sex pheromones, causing a 

breakdown in mate recognition (Weinberg et al., 1990).  It was hypothesised that there 

would be significant pre-mating isolation between these populations when compared to 

pairing behaviour observed within populations.  Pre-mating bioassays were also carried 

out between the wild LA population and the laboratory reared R population.  As 

mentioned above, these two populations were collected from the same geographical 

location so the LA populations may provide a better representation of the populations 

that R was originally sampled from.  Any differences in pair formation behaviour 

between these two populations may further aid to decipher the differences between the 
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populations of N. acuminata currently maintained in the laboratory and it was expected 

that these populations will have diverged and will show significant levels of pre-mating 

isolation.  If pre-mating isolation does occur between the R and LA populations, this 

would add further evidence in support of the theory that the R population has speciated 

in the laboratory (Weinberg et al., 1990).  Although the populations from the west coast 

of the USA are unlikely to encounter individuals from the east coast, it is still important 

to observe the behavioural interactions between the populations to attempt to understand 

the similarities and differences between these populations and to untangle any confusion 

regarding speciation between these populations.  Pairing behaviour was observed to be a 

much more reliable indicator of population differences and divergence, with aggression 

observed between males and females in some of the replicates.  There were significant 

differences in the pairing behaviour observed within the populations than between 

individuals from different populations.  However, some pair bonds were found between 

individuals that diverged approximately 10 million years ago, between the Reish 

population and the Connecticut population.  Even though it is thought that the Reish 

population is heavily inbred, this population still formed pairs with members from the 

Los Angeles populations and vice versa.  The frequency of pair formation within the R 

and LA populations was also found to be significantly different to that when males and 

females from different populations were placed together.  Although there was a 

significant difference, the pairing frequencies were high between the R and LA 

populations, with 32/40 pairs formed after 24 hours.  It is possible that the experimental 

time of 24 hours was not long enough to determine the true pre-mating pairing 

behaviour between these populations.  Post-mating trials were not conducted to see if 

any of the pair formations resulted in viable offspring.  If viable offspring are produced 

from individuals from difference populations, this would indicate that the populations 

are not members of different species.  The genetic relatedness of these two populations 

needs to be examined, along with post-mating trials to see if viable offspring are 

produced from any pre-mating pairs. 

 

As it is possible that N. acuminata forms part of a species complex, this has to be taken 

into account when observing behaviour and undertaking ecotoxicology testing as sibling 

species may react differently in response to ecological bioassays, giving varying results 

to standard testing conditions (Knowlton, 1993).  As N. acuminata have been 

established as an indicator species for ecological testing of pollutants (Reish, 1966), it is 

important to know if these population groups should be treated separately to ascertain 
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that the results obtained for such studies are valid.  In the mussel Mytilus edulis, the 

most commonly used species for biomonitoring of water quality, M. edulis and M. 

trossulus were collected from the same site in Canada and the body tissue analysed for 

twenty five different element concentrations (ppm dry weight), including Na, Zn, Cu, 

Ag, As, Ca, K, Al, Mg and Pb, using Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS). Even though these two species were sampled from the same geographical 

area, due to the differences in metabolic rate between M. edulis and M. trossulus, the 

concentrations of the elements tested were found to vary (Lobel et al., 1990).  In N. 

acuminata therefore, the results of any ecotoxicology testing should be re-assessed to 

ascertain that effects are due to the environment and not due to any possible differences 

between the populations used.  Further work needs to be undertaken to resolve the 

confusion between the different pseudonyms used for this species, including further 

sampling of natural populations, both pre- and post-mating trials and molecular 

similarities and differences.  The more we know about the behavioural processes in N. 

acuminata, the more we can apply such knowledge to use this species as an alternative 

indicator species for pollution and water quality monitoring.  This species can also be 

used to determine the effects of habitat change on population divergence. 

 

Sexual selection theory predicts that mate choice will evolve when mating partners vary 

in genetic quality or with the ability to provide benefits to mating partners (Andersson, 

1994).  Direct benefits can include parental care quality, increased fertility (Searcy, 

1982), provision of breeding resources (Pampoulie et al., 2004), nuptial gifts, absence 

of parasites (Møller and Thornhill, 1998), food for mates and/or predator defence 

(Yasui, 2001).  Indirect benefits to mates can include health and genetic quality (Yasui, 

2001).  It is likely that the sex with the lowest potential reproductive rate should be 

choosy (Kraak and Bakker, 1998).  Added to this, a skewed Operational Sex Ratio 

(OSR), the ratio of males to females in a population, can lead to increased competition 

between the more abundant gender (Emlen and Oring, 1977).  Generally, females are 

choosy and males are more active in courtship, known as the ‘traditional’ male sex-role 

(Berglund et al., 1986).  Reproduction in females is considered to be more costly due to 

the limitations of egg production and the lower reproductive rate (Pitnick and Markow, 

1994).  Female choice and assessment of mates has therefore led to the evolution of 

multiple male traits and the preference of females for such traits (Kodric-Brown, 1995).  

Such traits can signal to the female that males are in good physical condition and are of 

good genetic quality (Andersson, 1982).  Traits can include superior fighting ability 
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and/or the quality of parental care (Pampoulie et al., 2004).  Sex-role reversal, where 

males are choosy and females compete to mate, is expected to occur if mating is costly 

in males (Amundsen et al., 1997), if female quality varies, if there is a female-biased 

OSR (Côte and Hunte, 1989), if females can re-mate faster than males (Berglund et al., 

1992), if males have a lower reproductive rate (Svensson, 1988) or if males invest more 

in gametes than females (Gwynne, 1981).  In many sex-role reversed species, the male 

is the sole provider of parental care (Ridley, 1978) and male mate choice correlates to 

the higher reproductive input of the male into his offspring (Berglund et al., 1986).   

 

Although male N. acuminata undertake sole parental care (Reish, 1957), this does not 

necessarily mean the species is sex-role reversed (Vincent et al., 1992). Even though 

there are high levels of investment in offspring by both males and females of this 

species (Starczak, 1984), female reproduction costs due to female death following egg 

dehiscence are likely to be higher than costs incurred by males.  Males are also able to 

reproduce again following completion of egg care (Reish, 1957), meaning males have a 

lower investment than females (Starczak, 1984).  Also, mating is non-random (Starczak, 

1984) as female choice for males has been observed and studies indicate that choice is 

based on chemical cues received by the female (Starczak, 1984; Fletcher, 2004; Storey, 

2006).  Females of this species do exhibit a preference for dominant males but overall 

prefer experienced males, those that have previously produced a viable brood (Fletcher 

2004; Storey, 2006, Fletcher et al., 2009).  It is therefore unlikely that this species 

exhibits male mate choice and there is evidence that female N. acuminata exhibit mate 

choice based on the good parent model of sexual selection, where males display to 

females the desired trait of completion of egg care and the successful rearing of a brood 

(Hoelzer, 1989).   

 

This thesis attempted to expand upon the knowledge of female mate choice in N. 

acuminata.  These can be loosely divided into female aggression, male aggression and 

male parental experience (including cannibalism).  The experiments undertaken are all 

related to the unique life cycle in N. acuminata, and the behaviours investigated in 

terms of their relationship to the life cycle are demonstrated in Figure 8.1 on the next 

page. 
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Figure 8.1: The life cycle of N. acuminata (bold boxes) with the different interactions 
observed in each chapter and their relationship to the life cycle (dotted boxes). 
 
 

In nature, the male is generally the more aggressive sex due to its relationship with 

mating and mating success, where females are often choosy and males actively court 

such females, undertaking ‘traditional’ sex-roles (Berglund et al., 1986).  In the case of 

the experimental species N. acuminata, Starczak (1984) observed that winning fights 

when an individual of the opposite sex was present was more prevalent when two males 

were placed with a female compared to two females placed with a male.  Males are also 

typically the more aggressive sex if there is limited availability of females (Kvarnemo et 

al., 1995).  Due to female death following egg release in N. acuminata and because 

more monogamous breeding events occur over time, it is likely that the sex ratio in a 

population will become male-biased (Starczak, 1984).  Males are also able to reproduce 

again once the eggs have hatched and larvae have left the parental tube (Reish, 1957).  

Levels of aggression found between male individuals were compared to those found 

between females.  As female choice and male aggression for females is evident in this 

species (Starczak, 1984; Fletcher et al., 2009), it was hypothesised that female 
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aggression intensity will be lower than that of males.  Therefore, levels of aggression 

were compared to determine the sex displaying the highest levels of aggression to see if 

this provided further indication of the occurrence of female choice in N. acuminata.  

However, there were no significant differences found in the levels of aggression 

displayed by males to those displayed by females.  As previously mentioned, the 

similarity in aggression displayed by males and females could be due to the potential 

problems with using staged contests between individuals.  Aggression may also be 

lower in males if the resource is not present, in this case a female, as individuals should 

avoid costly fighting if it is unnecessary (Caldwell, 1985). 

 

One of the broadest areas of research concerning female mate choice has been regarding 

dominance hierarchies in species with male to male contests.  Females select for 

dominance in many species (Searcy, 1982) as dominant males may possess a greater 

ability to provide breeding resources such as territory and female protection (Moore et 

al., 2003) and dominance may also be a good indication of reproductive success in 

males (Searcy, 1982).  Dominant males are likely to be larger in size and this may 

indicate that they are superior at fighting for access to mates (Bisazza et al., 1989) or 

that they are better able to provide protection against predators (Takahashi and Kohda, 

2001).  Females have also been found to “eavesdrop” on aggressive contests between 

males to gain information regarding mate quality, as observed in the female Siamese 

fighting fish Betta splendens (Doutrelant and McGregor, 2000).  This ensures that 

females mate with high-quality males (Forsgren, 1997) as success in contests is 

indicative of good male condition (López et al., 2002).  Previous studies have examined 

the dominance relationships in N. acuminata (for example Starczak, 1984; Fletcher et 

al., 2009) but these studies do not appear to have taken into account whether the 

aggressive bouts themselves have any subsequent effect on pairing behaviour when 

males are placed with females.  The outcome of aggressive interactions may influence 

the ability of each male to attract a mate and may affect female choice (Kangas and 

Lindström, 2001).  This could therefore have an impact on results obtained in studies 

looking at the aggressive interactions between males, for example if males are returned 

to fight with one another.  The effects of an aggressive bout on the subsequent time it 

takes for males to form a pair bond with a female, seen when males and females lie 

alongside each other ‘head to tail’ and start to construct a new mucous tube were 

investigated in N. acuminata.   
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In some species, although male to male contests and the formation of dominance 

hierarchies can be observed, females do not always select for the dominant individual 

(Moore et al., 2003).  In species with male parental care, the ability to raise offspring 

may be the deciding factor in mate choice, with good fathers preferred (Wong, 2004).  

Hatching success must be heavily reliant on male care for females to select mates based 

on their parental care ability and therefore, the selected trait conferring the signal to the 

female must be reliable (Hoelzer, 1989).  Dominance may not provide such a reliable 

indication of parental care ability (López et al., 2002) and dominant males do not 

always make better fathers (Wong, 2004).  Hatching success in the sand goby 

Pomatoschistus minutus has been shown to be dependent on sole paternal care and 

males with nests containing eggs are preferred over those with empty nests (Forsgren et 

al., 1996).  Added to this, dominant males were not found to be better at egg care and 

females gained no direct benefits from mating with such males (Forsgren, 1997).  In N. 

acuminata, females have previously been shown to select for males experienced in 

parental care, rather than males showing overt aggression (dominant males) (Fletcher et 

al., 2009).  It was therefore expected that, as male parental care is vital in this species 

due to female death following reproduction (Reish, 1957), pairing with males capable of 

performing such care would be more important to females than male fighting ability and 

the occurrence of an aggressive interactions would increase the time taken for a male 

and a female to pair.  The results showed that there was no such decrease in aggression.  

Males and females that were familiar with each other did not show significant 

reductions in pair times.  It is therefore possible that aggression does not influence 

pairing behaviour with a female in N. acuminata and that there is no recognition for 

individuals that have previously formed a pair bond. 

 

Dominance hierarchies can be maintained when individuals that have previously fought 

are able to recognise each other (Gherardi and Teidemann, 2004).  Recognition occurs 

when each individual in a group can be discriminated from every other individual based 

on a unique set of cues that define that individual (Karavanich and Atema, 1998).  

Individual recognition has been demonstrated in the hermit crab Pagurus longicarpus; 

individuals were more aggressive during fights when placed with unfamiliar opponents 

(Gherardi and Teidemann, 2004).  Recognition of previous opponents has also been 

shown in male Homarus americanus lobsters, where previous encounters are remembered 

and the subsequent aggressive response is lowered (Karavanich and Atema, 1998).   
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The outcome of prior aggressive interactions can influence an individual’s behaviour in 

subsequent interactions.  Winning or losing fights can increase or decrease various 

measures of fighting motivation and affect the ability of the individual to win in a 

subsequent encounter.  Winners of fights may keep winning, and losers keep losing 

(Collias, 1943 cited Jackson, 1991).  In the pumpkinseed sunfish Lepomis gibbosus, prior 

winners of a fight defeated unfamiliar prior losers (Beacham and Newman, 1987).  As 

escalated or prolonged fight pose a considerable risk to both opponents, recognition of 

former opponents may also reduce this risk of injury and reduce the costs associated with 

aggression (Caldwell, 1985).  Subsequent aggressive interactions between individuals 

were observed between males to determine if there was any recognition of opponents 

from previous fights.  There was no observed decrease in the intensity of fighting 

between individuals.  However, as mentioned above, the intensity of aggressive displays 

between individuals may not be important, instead fight duration may provide a better 

indication of aggressive behaviour.  Learning is reported to be slow and short-lived in 

polychaetes.  It is possible that fighting individuals for fifteen minutes and then 

separating them for two hours does not lead to recognition of previous opponents, 

because the fight duration was too short, because the separation period was too long, or 

both.  

 

All these interactions potentially affect the formation of a pair bond between a male and 

a female.  After individuals have formed this pair bond, females release their eggs to be 

fertilised and cared for by the male.  Females are expected to be more aggressive 

towards another female intruding into her mate’s territory/showing interest towards her 

mate, according to the investment guarding hypothesis (Yasukawa and Searcy, 1982).  

When one sex makes substantial contributions of parental investment, sexual selection 

can favour the evolution of adaptations that protect the investment (Trivers, 1972 cited 

Yasakawa and Searcy, 1972).  Aggression in females can be heightened during the 

breeding season (Slagsvold, 1993) and intruders to the nest area may affect the resident 

female in a number of ways.  Females that settle nearby with a mate can increase the 

competition for resources, but intruding females may also destroy offspring, parasitize 

the nest, displace the resident female or her mate and/or settle with the resident female’s 

male, therefore decreasing the paternal care extended to her offspring (Slagsvold, 1993).  

Such aggression from females has been suggested to be important in maintaining the 

monogamous relationship between males and females (Wittenberger and Tilson, 1980) 

and also secures full male assistance with caring for offspring (Davies, 1989 cited 
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Sandell, 1998).  The aggressive behaviour of individuals has also been shown to change 

when offspring are present and over the course of the breeding season.  In the scissortail 

sergeant Abudefduf sexasciatus, males care for eggs solely and are only aggressive 

during this period (Manica, 2010).  Several studies have shown that whilst in the 

presence of offspring, females also increase their aggression levels in order to protect 

the reproductive investment, known as maternal aggression (Tallamy and Denno, 1981).  

Such aggression has been observed in the white tailed ptarmigan Lagopus laucurus, 

with females observed to exhibit heightened aggression towards other conspecific 

females whilst caring for eggs (Martin et al., 1990).  Individuals caring for offspring 

also increase the intensity of aggression as the offspring get older and the probability of 

survival increases (Jaroensutasinee and Jaroensutasinee, 2003).   

 

In N. acuminata, a spent female has been observed to fight a sexually mature female if 

one is introduced to the dish that houses the male caring for her eggs (Reish, 1957), 

presumably to prevent the female from attempting to mate with the male guarding her 

eggs, therefore protecting her reproductive investment.  As females of this species die 

following reproduction, the survival of eggs depends entirely on the male and females 

should protect their reproductive investment, not only by selecting a good quality male 

to care for her eggs, but also by preventing the male from reproducing with another 

female and deserting or cannibalising the spent female’s eggs.  This thesis examined the 

aggressive response of females that had laid eggs to sexually mature females when 

spent females were removed from the vicinity of their egg mass and the male caring for 

them.  It was expected that the aggression levels shown by spent females would be less 

than that between sexually mature females as the female is no longer in the presence of 

the egg mass.  No aggression was observed between spent and sexually mature females.  

Dehiscence causes a breakdown in the body wall and changes in the musculature 

(Starczak, 1984) which may have affected fighting ability.  The spent female was also 

no longer in the presence of her egg mass so there would be no benefit to displaying 

aggressive behaviour. 

 

Female choice for males with parental experience has been demonstrated in N. 

acuminata (Fletcher et al., 2009) and this thesis examined this occurrence in more 

detail, looking at filial cannibalism and female preferences, conditioned water 

experiments and also adoption of eggs fertilised by another male. 
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Cannibalism of eggs by a parent, termed filial cannibalism, may occur for a number of 

reasons.  Aside from accidental consumption (Schabetsberger et al., 1999), cannibalism 

may serve to clean nests of dead or diseased eggs (Kraak, 1996) but it also provides the 

parent with nutrients and energy (Polis, 1981).  Parental care may be costly in terms of 

reduced foraging opportunities (Lindström, 1998) so filial cannibalism may also 

function to offset the cost of such care (Okuda and Yanagisawa, 1996).  Consuming 

eggs may not fully compensate for the cost of care (Kraak, 1996) but has been found to 

have the potential to increase future reproductive success by survivorship of the parent 

(Lindström and Sargent, 1997).  Energy can therefore be redirected towards attracting 

new mates or defending a nest site for longer (Peterson, 1990).  In the cardinal fish 

Apognon doederleini, Okuda and Yanagisawa (1996) found that males were more likely 

to cannibalise eggs if they were expecting to re-mate quickly.  When mate availability is 

high, males can easily obtain matings from additional females (Kondoh and Okuda, 

2002).  Filial cannibalism may also occur when the brood is smaller than normal as the 

reproductive value of the clutch would not outweigh the costs associated with care of 

that brood (Petersen and Marchetti, 1989). 

 

Filial cannibalism is more prevalent in species with male parental care (Okuda et al., 

1997) due to the large gametic investment made by the female compared to the smaller 

parental investment made by the male (FitzGerald, 1992).  To counteract losses from 

predation and cannibalism, females have been observed ‘copying’ the mate choice of 

previous females by laying eggs in nests already containing egg masses (Rohwer, 

1978).  Such behaviour has been observed in teleost fish and increases the chances of a 

female selecting a good quality male.  Copying also increases the level of care to the 

brood due to its larger size and dilutes the predation risk (Kraak, 1996).  Females have 

also been observed using test eggs, small clutches containing only a few eggs, to test the 

parental abilities of males (Kraak and van den Berghe, 1992; Manica, 2010).  Males 

were significantly less likely to receive additional eggs if the small clutches were not 

present after one day, compared to those received when the small clutches remained 

(Kraak and van den Berghe, 1992).  Females therefore test the quality of male care by 

laying such clutches and males should therefore be prepared to care for small numbers 

of eggs in order to increase their chances of receiving additional matings (Kraak and 

van den Berghe, 1992).  However, few studies have gone into detail regarding sexual 

selection by females for or against cannibalistic males.  

 



- 160 - 
 

In the experimental species N. acuminata, filial cannibalism has been observed with 

males caring for offspring (Oshida et al., 1981) with both experienced and 

inexperienced males consuming eggs (personal observation).  Female N. acuminata 

make a larger gametic investment than males due to female death following 

reproduction (Starczak, 1984) whereas males make a larger parental care investment 

than females (Reish, 1957).  Females should select good quality males (Hoelzer, 1989) 

and filial cannibalism may be a way for males to increase their physical condition prior 

to undertaking future parental care (Klug and St. Mary, 2005) and this may serve as an 

advantage to N. acuminata females looking for a male able to undertake sole parental 

care once the female has laid her eggs and died.  Males in good physical condition are 

less likely to need to cannibalise eggs during egg care (Manica, 2010) and females 

should minimise the chances of the reproductive investment being lost due to the eggs 

laid becoming food (Petersen, 1990).  The occurrence of male filial cannibalism can 

therefore exert a selective influence on female reproductive tactics (Petersen, 1990). 

 

Female preferences were examined in N. acuminata to determine if a female can detect 

that a male has cannibalised an egg mass under his care and if so, whether this 

influences female choice of male, with females preferring to mate with either an 

inexperienced or an experienced male over a cannibalistic male.  As sole male parental 

care occurs in this species (Reish, 1957) and females make a larger gametic investment 

than males (Starczak, 1984), the female should select a male in good physical condition, 

capable of rearing her brood to avoid her reproductive investment being wasted 

(Hoelzer, 1989).  It was expected that females would not avoid pairing with a male that 

had previously cannibalised an egg mass.  However, the results were found to be 

confusing as female choice was equal when given a choice between cannibalistic males 

and inexperienced males, but also equal when give a choice between cannibalistic males 

and experienced males.  Females should want to select the best male possible to care for 

her eggs (Holezer, 1989) so it is possible that cannibalism is an intermediate preference 

for females, preferred over inexperienced males but not preferred over experienced 

males.  More replicates need to be carried out to determine the extent of female 

preferences in relation to cannibalism in N. acuminata.   

 

Once males have reared a brood, they become experienced in parental care and are 

preferred by females over inexperienced males (Fletcher et al., 2009), even though there 

are high levels of reproductive investment made by both males and females (Starczak, 



- 161 - 
 

1984).  There is also evidence that choice is based on chemical cues received by the 

female (Starczak, 1984; Fletcher, 2004; Storey, 2006).  Although these findings add 

support to the evidence that female choice occurs in this species, it is still not entirely 

clear at which point the male becomes preferred by a female, either by a morphological, 

behavioural or hormonal change in the male, and if such a preference is signalled to the 

female chemically. 

 

Conditioned water bioassays have been used to determine if water-borne chemicals are 

used for communication both between and within species, using surrounding water 

taken from certain individuals that can then be used in choice trials to determine the 

effect (if any) of chemical signals that may be present in the water sample.  Conditioned 

water has been used to examine the behavioural responses in N. acuminata.  Brown 

(2005) found that aggression was lowered between males originating from different 

populations when exposed to conditioned water from the opposing population.  It was 

also found that female choice changed in N. acuminata when males were placed in 

conditioned water originating from males undertaking parental care of an egg mass.  

Previous losers of female choice were subsequently chosen by the female after they 

were placed in conditioned water from parental males (Fletcher et al., 2009). 

 

Observations were made of both male and female behaviour following the masking of a 

male with conditioned water from various sources.  Male aggressive behaviour was 

observed following masking.  As previously mentioned, individuals use assessment 

strategies to determine the RHP of their opponent and the likelihood of winning a fight 

(Maynard Smith, 1974).  Placing males in conditioned water from females, juveniles 

and inexperienced males was not expected to alter the aggressive behaviour observed 

between individuals, as the RHP of the masked opponent (an inexperienced male) 

should not be altered by the conditioned water.  However, conditioned water from males 

caring for eggs and both new and old experienced males was expected to alter the 

aggression observed between two opponents as the RHP of the masked male would 

have changed due to the ‘presence’ of a male undertaking egg care or an experienced 

male.  Female choice behaviour was observed to determine if female preference was 

artificially altered following the use of such conditioned water and if a water-borne 

chemical cue is involved in female choice and reproduction in N. acuminata.  

Experienced males convey chemically to females that they have previously undertaken 

egg care, as previously shown with conditioned water from males caring for eggs 
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(Fletcher et al., 2009) but it is unknown if the same effect will be observed with 

conditioned water from other sources.  Individuals in different stages of the life cycle of 

N. acuminata were used to condition water and these include juveniles, sexually mature 

females, inexperienced males, males undertaking egg care, new experienced males and 

older experienced males.  Conditioned water from older males was also used to observe 

if there was an effect on female choice due to the age of the male.  As females have 

been shown to prefer experienced males over inexperienced males, it was expected that 

males placed in conditioned water from new and old experienced males would alter 

subsequent female choice, as would the conditioned water from males caring for eggs.  

It was expected that the conditioned water from females, juveniles and inexperienced 

males would not alter subsequent female choice as these should not alter the initial 

choice of mate made by the female.  It was found that male aggression was not altered 

following the use of conditioned water in all treatments except when using conditioned 

water from old experienced males.  Age-related dominance has been observed 

(Hollister-Smith et al., 2007) so it is possible that older males are more likely to win 

fights between individuals and this was conveyed in the conditioned water that the 

inexperienced male was placed in.  A size difference may also be conveyed in the 

conditioned water, leading to a quick resolution of fights due to asymmetries between 

opponents (Maynard Smith, 1974).  Conditioned water did have an effect on the 

subsequent choice made by the female.  With the trials involving water from new 

experienced males and males caring for eggs, female choice switched from a previous 

winner to the masked loser.  It is possible that a change occurs during egg care that 

confers the parental care ability of the male, causing the female to prefer the masked 

female over the other inexperienced male.  In the common marmoset Callithrix jacchus, 

levels of prolactin have been found to vary between males that have not undertaken care 

of offspring and those that have successfully reared a brood (Schradin and Anzenberger, 

2004).  In the trials involving water from females, juveniles and inexperienced males, 

female selected the previous winner in significantly more cases than in the trial using 

sea water.  In these trials, the use of conditioned water appeared to reinforce the original 

choice made by the female.  However, these types of trials only present the female with 

two males, ‘forcing’ the female to choose between the two males in order to complete 

the experiment.  The female should avoid wasting her lifetime’s reproductive effort 

(Booksmythe et al., 2008) so future studies should be undertaken using ‘free-mixing’ 

experiments, if females are given a choice of multiple males rather than just two, to help 

to understand the processes involved in female choice in N. acuminata.   
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Related to female preferences for experienced males, adoption was examined in N. 

acuminata.  Adoption is defined as the care of offspring by individuals that are not the 

genetic parents (Wilson, 1975 cited Riedman, 1982) and has been reported in fish, bird 

and mammal species (Riedman, 1982).  Adoption is hypothesised to be reproductively 

costly and inconsistent with classic evolutionary theory (Riedman and Le Boeuf, 1982) 

but the benefits of adoption may offset such costs incurred (Brown, 1998).  During 

adoption, parental behaviours may be transferred to offspring through imprinting and 

may include preferences for food, mate choice, a particular niche preference or foraging 

techniques (Avital et al., 1998).   

 

Adoption may form a true altruistic act with no selfish benefits to the carer, as observed 

in social insects such as termites, wasps, bees and ants where sterile castes exist that 

care for offspring of the queen (Wilson, 1975).  However, such unselfish behaviour is 

rare and it is more likely that the carer will receive benefits in some way, making the act 

selfish.  Such benefits may include receiving an increased number of matings due to 

caring for offspring, enjoying increased social status, increased access to resources such 

as food or shelter, gaining parental experience and enhancing parenting skills (see 

Daniels, 1979 for review).  Caring for young may influence the future reproductive 

success of the male (Riedman and Le Boeuf, 1982) and may be favoured by natural 

selection to enhance the adoptive individuals parenting skills (Riedman and Le Boeuf, 

1982).  This is especially important for species where competent parenting skills are 

vital for example if females produce a very limited number of eggs (Riedman, 1982).  

Tallamy (2000) postulates that if the presence of an egg mass increases the 

attractiveness of the male, unrelated eggs should be accepted by the male but also 

competed for against other males.  Therefore, males should be willing to care for 

unrelated eggs if such care attracts additional mates and therefore increases reproductive 

success (Tallamy. 2000).  Caring for related offspring may be a form of kin selection 

(Daniels, 1979), aiding a closely related individual and therefore influencing its own 

genetic fitness (Riedman, 1982).  Individuals may also assume parental care roles if it is 

an act of reciprocity; if the favour is returned later, for example where alloparents 

receive help with their offspring in turn (Daniels, 1979).  In the cichlid Tilapia rendalli, 

four parents care for two brood sets which may lower the risk of predation to both sets 

of offspring (Ribbink et al., 1981).  In harsh or stressful environments where breeding 

resources such as food and space may be limited, parental cooperation may be 

beneficial to both parties (Riedman, 1982).  The act of adoption may occur as a result of 
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a mistake.  Mistaken identity and subsequent brood mixing may occur if parents are 

unable to recognise their own offspring (Daniels, 1979; Silk, 1999).  However, parental 

care may also be forced upon the individual.  If parents cannot recognise their own 

offspring, other parents may place offspring with such individuals so as to avoid 

parental care duties themselves, known as brood parasitism or cuckoldry, where eggs 

are laid in the nests of other individuals (Weller, 1959).  The classic example of 

cuckoldry is found in the cuckoo Cuculus canorus where females lays eggs in a host’s 

nest, such as the meadow pipit Anthis pratensis, and removes one or more of the host 

species’ eggs (Lack, 1963).  Such parasitism benefits the genetic parents as the 

offspring will carry their genetic material, but the parents do not incur the costs 

associated with parental care (Wisenden and Keenleyside, 1992).  However, in some 

species, this may still provide a benefit to the adoptive parent as an increased number of 

offspring equals a dilution of predation risk (Smith, 1968 cited McKaye et al., 1992).  

Not only does egg survival increase with the number of eggs present, but foreign young 

accepted into an existing fry group may aid differential predation so smaller young may 

be accepted that are more likely to be preyed upon (Smith, 1968 cited McKaye et al., 

1992).  Kidnapping of broods also occurs, for example in the cichlid Cichlasoma 

citrinellum and it is hypothesised in this species that this dilutes the predation risk for 

the individual’s own brood (McKaye and McKaye, 1977). 

 

Due to parental death or abandonment, N. acuminata eggs normally under parental care 

may be found uncared for in natural populations, although this is rare as males caring 

for eggs hardly leave the egg mass, except to forage at the mouth of the burrow (Reish, 

1957).  Approximately 10-15% of males abandon the parental tube containing 

developing eggs (Reish, personal communication).  Eggs left in a tube will not survive 

longer than two days (Reish, 1980a) and will turn a white colour when dead (personal 

observations).  A preliminary study by Sutton (1998) found that males would care for 

eggs of another male after parental males have been removed from the burrow and 

replaced.  Replacement males will undertake parental care following the paternal male 

death and hypothesised that inexperienced males would undertake such care in order to 

gain ‘experience’ and subsequently be preferred by females in future reproductive 

events (Reish, personal communication).  As females prefer experienced males 

(Fletcher et al., 2009), females may select mates on the basis of their parental care 

abilities (Holezer, 1989).  The completion of egg care also signals to the female that the 
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male is likely to be of high quality as he has survived to produce offspring despite the 

high costs associated with egg care (Tallamy, 2000).   

 

Adoption was examined to determine if care of eggs from another male occurs under 

experimental conditions in the laboratory and if there was a difference in the behaviour 

of experienced males (those that have previously undertaken egg care) and 

inexperienced males.  It is hypothesised that care of eggs fertilised by another 

inexperienced male occurs under experimental conditions and also that experienced 

males will not care for eggs that they have not fertilised.  It was hypothesised that 

experienced males gain no benefit from such behaviour whereas inexperienced males 

may benefit by increasing their parental experience.  The results showed that there were 

significant differences in male behaviour between the different reproductive states of 

males.  Experienced males did not undertake any form of care, instead cannibalising the 

eggs in some replicates.  In inexperienced males however, males did undertake parental 

care of eggs fertilised by another male.  Experienced males would not gain any benefits 

in terms of increased mating by looking after another male’s eggs, instead gaining in 

physical condition by consuming them.  An inexperienced male would gain in terms of 

increased matings from females due to increased parental care experience.  It is 

unknown, however, whether such adoption and selection for experienced males occurs 

in the wild.        

 

With all experiments, the test situation may not truly reflect natural behaviours 

occurring in the wild and the results may not predict the levels shown in the original 

environment (Giles and Huntingford, 1985).  For example, females of the sand lizard 

Lacerta agilis are not aggressive in nature towards males or females but in captivity, 

have been observed competing over food using biting (Olsson, 1994).  As N. acuminata 

individuals are very difficult to observe in natural burrows (Starczak, 1989), it is 

possible that part or all of the life cycle of N. acuminata only occurs under laboratory 

conditions and not in natural habitats.  Even if this is the case, this species can still be 

used to observe the behavioural characteristics that occur at every stage in the life cycle 

and used as a model species to investigate the processes of sexual selection and 

evolution. 

 

It is likely that this species forms a species complex and therefore, the results of any 

ecotoxicology testing should be re-assessed to ascertain that effects are due to the 
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environment and not due to any possible differences between the populations used.  

Further work needs to be undertaken to resolve the confusion between the different 

pseudonyms used for this species, including further sampling of natural populations, 

both pre- and post-mating trials and molecular similarities and differences.  The more 

we know about the behavioural processes in N. acuminata, the more we can apply such 

knowledge to use this species as an alternative indicator species for pollution and water 

quality monitoring 

 

This thesis attempted to examine the role of aggressive relationships and male parental 

experience in mate choice in the polychaete N. acuminata.  As previously mentioned, 

the more we know about the evolutionary and behavioural processes in the polychaete 

N. acuminata, and the interactions between the populations, the more we can apply that 

knowledge to undertake environmental studies, using this species as an indicator of 

pollution and water quality monitoring.  We can also use this species as a model for 

evolution as it has an easily adaptable life history, a relatively short life cycle and is 

convenient to use for behavioural bioassays.  Observations are easy to make and 

experiments relatively simple to conduct at each stage of the life cycle.   

 

It is clear that this study poses more questions than it answers.  The mechanisms 

involved in male and female recognition in N. acuminata are still unclear, especially in 

natural environments.  How populations behave and respond to multiple stimuli in the 

wild is still unknown.  Populations used in this series of experiments have all been kept 

in the laboratory for at least ten years (apart from the newly sampled wild Los Angeles 

population) and the effects of this on the populations housed in the laboratory have yet 

to be investigated.  Notwithstanding this, it is postulated here that this species is ideal to 

use as a model organism to assist in unravelling the behavioural and evolutionary 

processes involved in mate choice and aggression, sexual selection for parental 

experience and the chemical signalling involved in such a species, due to its adaptable 

life history, relatively short life cycle and ease of maintenance in the laboratory. 
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