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Chapter 1 
Introduction 



1.1 Introduction 

There are several examples of studies that combine different 

types of cellular analysis with digital image processing 

techniques. Rutovitz et al[39], describe a system used to 

analyse genetic material within cells and Psenner[36] has a 

semi-automatic system that analyses the sizes of planktonic 

bacteria. Watanabe and the CYBEST Group[46] use image processing 

techniques to check cervical smears for cancerous cells. Similar 

techniques are also used to automate blood cell counts. However 

research combining palynology with digital image processing is 

extremely rare to say the least. 

This chapter provides a basic introduction to palynology, 

then outlines the particular problems that this thesis attempts 

to tackle and how they may be solved using image processing 

techniques. 

1.2 What is Palynology? 

Palynology is quite simply the study of all aspects of pollen 

and spores, such as pollen formation, morphology, dispersal and 

deposition. Pollen grains are formed in the anthers of flowering 

plants (gymnosperms or angiosperms). They carry the male sex 

cell (gamete) to the stigma of the female part of the flower. 
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Spores are reproductive cells for lower plants such as ferns 

(pteridophyta) and mosses (bryophyta). For convenience future 

references to pollen will encompass both pollen and spores. 

Pollen are extremely small with the majority falling within 

the range 25µm to 35µm. Few pollen exceed 100µm in diameter. 

The outer cell wall or exine is a highly resistant waxy coat 

of material called sporopollenin. It is the morphological 

features such as the number, distribution and shape of apertures, 

the size and shape of the grain, as well as the exine texture 

that forms the bases of pollen identification. 

A major part of palynology is pollen analysis. This is a 

technique used by palaeontologists, botanists and biogeo- 

graphers to assist in the reconstruction of past vegetational 

population structures (assemblages), and thus climatic and 

environmental conditions. It is based on the identification 

and counting of various pollen types (or taxa) which have been 

preserved in deposits such as peat and lake muds. Well defined 

sequences of pollen taxa throughout a sediment core can be 

identified. These represent climatic swings from glacial to 

interglacial periods that, for example, may help to make spatial 

correlations between climatic events. This is currently very 

important in modelling climate change for research into the 

potential threat of the greenhouse effect. Pollen analysis 

cannot give an absolute age for a deposit, but it can assist 

in relative dating and for this purpose it is often used by the 

oil industry. 
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1.3 Current Problem with Pollen Analysis 

The identification of pollen from a sediment core is one of 

the most time consuming processes in pollen analysis. Samples 

from different levels of a pollen bearing sediment are treated 

with various chemical cocktails to remove as much non-pollen 

material (detritus) as possible. Each sample then requires 

hours of work by highly skilled personnel to identify and count 

over 600 pollen grains which in turn may contain over 50 different 

taxa. Finally, a pollen diagram is produced to show how the 

concentrations of pollen taxa change throughout the sediment 

core and therefore time. The automation of any part of this 

process would allow more time for the evaluation of data rather 

than on its collection. In particular the automation of the 

identification and counting of pollen would bring great benefits 

to research. Results could be obtained more rapidly and with 

greater objectivity. The pollen would be identified using well 

defined criteria and would not be susceptible to any human bias. 

Objectivity may also be increased by using larger data sets per 

sample than is at feasible at present. Using more samples from 

a sediment profile would allow a finer resolution analysis of 

vegetational fluctuations. It is with this aspect of the 

automation problem that this thesis is concerned. 

41 
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1.4 Digital Image Processing as a Solution 

The technique employed to solve this automation problem is 

based upon digital image processing. Before any automated 

identification can be discussed it is important to briefly 

review the process employed by human researchers to identify 

pollen. There are many classification schemes that may be 

followed for pollen identification. Moore and Webb[32), for 

example, use the type, number and arrangement of apertures over 

the pollen surface as the initial classification. This is 

relatively easy with an optical microscope as a pollen grain 

can be focused through or even rotated to give a 3-D impression. 

An aperture is a thin or missing part of the exine which is 

independent of the surface texture of the exine. There are two 

basic types in pollen; colpi or furrows (illustrated in Plate 

12a) and pori or pores. Colporate structures may also form as 

combinations of these. Spores have neither colpi or pori but 

do possess a three-branched slit forming a Y-shape structure 

called a trilete. The subsequent classification levels use a 

multitude of criteria to separate the pollen into successively 

smaller sub-divisions. Such criteria include the morphology 

of the aperture edges which may be thickened to different extents 

or partially filled. Other surface structures such as thickened 

bands connecting apertures (arcus), large spines (spinae (see 

Plates 1,4,5 & 10)) or small spines (spinulae (see Plate 3a) ) 

may occur. The above examples are only a small proportion of 

the different features that may be used to distinguish between 

pollen taxa. 
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Any attempt to duplicate such a classification scheme for 

use with digital image processing techniques would be overly 

complex. Previous work by Langford[25] ignored all the features 

mentioned above and classified six pollen taxa using their fine 

structure (or texture). Examples of pollen texture can be seen 

in Plates 2b, 3b, 6b, 7b, 8b, 9b, 11b and 12b. Textural features 

are seldom utilised by human workers for identification purposes 

as texture is not very distinctive under optical microscopes 

as they have a narrow depth of field and relatively low mag- 

nification. Langford[25] used SEM pollen images in which texture 

is very well defined due to the greater field depth and mag- 

nification. There are many methods that may be used to describe 

texture in digital image processing, some of which have proved 

very useful for this task (see chapter 2 for further details). 

However these may prove to be less effective when used to 

identify large numbers of pollen taxa. An additional clas- 

sification level may need to be incorporated. 

1.. 5 Overall Classification Scheme 

The overall classification scheme envisaged is summed up in 

Fig. 1.01. The first level is the sample preparation stage where 

the raw pollen sample is treated in various ways to remove as 

much detrital material as possible and may also be used to 

produce a rough sorting of pollen taxa. The refined pollen 

sample is then mounted on an SEM stub ready for the next stages 

of the classification scheme where image processing techniques 
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are utilised. The particles found in the refined sample are 

split into sub-samples of pollen and detrital material on the 

grounds of their general size or shape. The exact nature of 

the size and shape analysis is explored in this thesis. At the 

final level of the scheme the pollen sub-samples are classified 

using a set of texture or shape discrimination variables that 

are optimal for discriminating between that particular sub- 

sample. Ideally the sub-samples of pollen should consist of 

as few pollen as possible, thus reducing the number of com- 

parisons required to produce the final classification. 

Langford[25] has already shown that texture analysis is very 

useful for the discrimination of small groups of pollen. This 

thesis also explores shape analysis at this final classification 

level. 

1.6 Outline of Thesis 

The main thrust of this thesis is to examine features in the 

above classification scheme that have as yet been unexplored, 

namely pollen shape and geometry. The format of the thesis is 

as follows: 

Chapter 2 is an overall review of literature and previous 

work relating to automation in palynology and image processing. 

Problems that were left unanswered after earlier research are 

outlined. Then chapter 3 describes how and why the previous 

pollen image processing system was changed and describes the 
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new hardware and software systems used. The chapter concludes 

by describing the pollen samples used to test the classification 

scheme on the new system. 

Chapter 4 assesses numerous methods that may be employed to 

detect and locate objects in an image prior to shape and geometric 

analysis. Chapter 5 explores a number of schemes the may be 

useful for shape and geometric analysis in the gross clas- 

sification of pollen. A new method of shape analysis for the 

lower levels of classification is also explored for spinose 

(spiny) pollen. The chapter concludes by attempting to classify 

a set of pollen taxa using the classification scheme outlined 

in Fig. 1.01. 

Chapter 6 concludes the thesis by exploring the problem of 

automatically selecting the best region of a pollen surface 

from which take a distinctive texture sample for analysis. The 

potential usefulness of neural networks to the problem of pollen 

identification is also explored here. Future work and an outline 

of any further problems to be solved conclude this chapter. 
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Chapter 2 
Research Review 



2.1 Literature Review 

2.1.1 Automation in Palynology 

There is a distinct lack of literature that has been written 

or work that has been done in the field of automatic 

identification in pollen analysis. However, there have been 

developments in the use of computers for other aspects of pollen 

analysis, for example the analysis of raw pollen taxa frequency 

data. There are several software packages which now do this 

and present the information as pollen diagrams eg Squires[ 411. 

Pollen database systems have also been developed, eg Walker 

et al[44] and Guppy et al[20]. These may be used as tools to 

aid the identification of unknown pollen taxa. The morphological 

characteristics of an observed pollen grain are compared with 

those within the database. The closest match is then given as 

a suggestion of its identity. 

Flenley[11] proposed automation beyond the above mentioned 

data manipulation techniques to include the data acquisition 

process of pollen analysis. Both the automatic counting and 

identification of pollen could be used to clear up many of the 

problems described in section 1.3. It was envisaged that the 

once slow and laborious process would become faster and less 

arduous. Also it could increase the numbers of grains that can 

currently be practically counted. Thus an increase in the 

objectivity of results would occur allowing more horizons to 
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be sampled and increasing the sample size within each horizon. 

This fine resolution sampling would be very useful in pollen 

analysis. There is also the possibility of differentiating 

between taxa that cannot at present be separated by conventional 

means. 

The identification of pollen purely by image based data on 

computer was attempted by Mirkin and Bagdasaryan[31]. They 

used the technique of 'template-matching' which is difficult 

with material such as pollen that has a large amount of 

variability. Mirkin and Bagdasaryan[31] concluded that the 

greatest limitation was the small amount of memory available 

on the computers of that time. However, they did recognize the 

potential for the computer identification of pollen. 

2.1.2 Digital Image Processing 

One of the first applications for digital image processing 

was in the 1920's when photographic images were digitised for 

transmission along telegraph wires and subsequently recon- 

structed by specialised printing equipment. It took the arrival 

of large-scale digital computers and the space program to trigger 

the development of image processing techniques into what they 

are today. The Jet Propulsion Laboratory, California, was a 
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driving force for image processing with its work on image systems 

for lunar and planetary probes. Since then image processing 

techniques have undergone vigourous expansion into a multitude 

of areas. For example, biomedical images such as x-rays are 

enhanced by computers to make them clearer for human inspection. 

The basic hardware components of an image processing system 

are a video input device, a frame-store (as an add-on within 

a computer) and a video output monitor. 

A video input device (such as a video camera or SEM as in 

this case) transmits a complete image (frame), line by line, 

as an analogue video signal where voltage represents brightness. 

A frame-store receives this analogue signal from the input 

device and converts it to a digital format using a high speed 

analogue to digital converter. Having been formed by dis- 

cretising the analogue signal to both brightness and spatial 

co-ordinates the digital image is placed line by line in a 

rectangular array of memory in the frame-store. It may be 

considered as a matrix whose column and row indices identify 

a point in the image and the corresponding matrix element value 

identifies the grey-level (or brightness) at that point with 

black represented by the lowest value and white the highest. 

The elements of such a digital array are called image elements 

or pixels. The size of the image stored can vary from about 

256x256 to 1028x1028 pixels, brightness levels may vary from 
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64; roughly the number of grey-levels that the human eye can 

distinguish, to 256 grey-levels. If colour images are used the 

number of brightness levels can be greatly increased. 

The contents of the frame-store are continually converted 

back into an analogue signal for display on a video monitor. 

This aids the user by showing any subsequent changes made to 

the image. 

Images within the frame-store can be manipulated and analysed 

by computer using numerous image processing techniques. The 

following subsections give an outline of some of these techniques 

used in this research. 

2.1.2.1 Point operators 

Point operators are nonlinear operators that transform input 

images into output images by mapping input grey-levels to 

different grey-levels according to certain criteria. They may 

be used to enhance or restore images and may also be viewed as 

a way of transforming the histogram of the input image to a new 

histogram for the output image. Two point operations are 

discussed here, namely histogram equalisation and thresholding 

of images. 
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Histogram equalisation can perform many tasks in image 

processing but in this study it provides an important first 

step for texture analysis. It enhances the contrast of an image 

and produces a standard format image giving a greater ability 

to compare different images taken under different lighting 

conditions. It also allows the number of grey-levels within 

an image to be reduced and thus reduces the computation required 

on some textural measures such as those proposed by Haralick 

et al[22] (see below). 

The operation is very easily carried out. From the probability 

histogram (P) of an image a transformation histogram (T) is 

readily constructed thus: 

t 
T(k) -L PCi) 

a=o 

0<T(k)ý51 and 0: 5k : 5L- 1 

L -maximum grey-level. 

p(i)-probability of grey-level i occurring. 

If, for example, a 64 grey-level image is being equalised to 

a 16 grey-level image then each successive 16th of the trans- 

formation histogram is assigned to successive grey-levels. For 

instance, a grey-level 0 is assigned to all grey-levels in the 

transformation histogram which range from 0 to 116th. Likewise 

grey-level 6 would be applied to all grey-levels with values 

greater than 6 th and up to th . 16 
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The second point operator is the thresholding operation. 

A threshold (0) is a grey-level that is used to segment an 

image into two classes, namely object and background. That is: 

B(i i)-1 if I(i, l)ýe 
and B(i, j)-0 if I(t, j)<6 

B(i, j) is the resultant, binary image. 

I(i, j)is the original image. 

The threshold may be set a priori or determined adaptively 

using the data in 1(i, j). There are a wide variety of techniques 

that may be used to automatically set a threshold. These may 

be broadly divided into two groups; global and local. Global 

techniques use a single grey-level value to threshold the entire 

image and may be sub-divided into either point-dependent or 

region-dependent techniques. The point-dependent techniques 

(eg. Otsu[33] and Levine & Nazif[27]) assign a threshold using 

only the grey-level histogram of the image. A region-dependent 

technique (eg. Wong & Sahoo[49] and Watanabe et al[46]) however 

uses a local property within each pixel neighbourhood, the 

gradient for example. Local techniques split the image into 

sub-images and assign thresholds for each one. 
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2.1.2.2 Neighbourhood Operators 

Neighbourhood operations are carried out on groups of adjacent 

pixels. Each pixel in an image is surrounded by eight neighbours. 

By relating the central pixel to its neighbours the changes in 

intensity across small areas of the image may be either enhanced 

or diminished. This operation is carried out by convolving an 

image with a neighbourhood operator. This is easily demonstrated 

by the use of an example. The following operator is a Laplacian 

operator, Prewitt[35]. 

-1 -1 -1 
_1 +8 -1 
-1 -1 -1 

For every 8-neighbourhood in an image this operator represents 

the following equation: 

N 

L(i, I) 8x 1(1, J)+ -lx 1(1, j) 
a1 

N =number of neighbours. 

L(f. j)=new value for central pixel of neighbourhood. 

1(f, j)- central pixel of original image neighbourhood. 

1(i. j)a ° Ott" neighbour of central pixel. 

This convolution has the effect of enhancing the differences 

in intensity between adjacent pixels, resulting in edge 
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enhancement. Examples of other operators are image smoothing 

(for noise reduction) or image sharpening. 

2.1.2.3 Texture Analysis 

In the field of texture analysis there is a multitude of 

techniques that may be used. Previous work by Langford[25] 

found that two techniques of texture analysis were particularly 

useful, namely those proposed by Haralick et al[22] and Laws[26] 

(also Pietikainen et al(34]). 

Haralick et al[22] produced a set of second-order statistics 

to analyse the grey-tone spatial dependence of textures. It 

has been used in various ways. Don et al [9] used it to measure 

surface roughness in metals and Weszka et al[47] classified 

terrain from aerial and satellite images. 

The starting point of this type of analysis is the construction 

of co-occurrence matrices containing information on the spatial 

organisation of grey-levels of an image. This is best 

illustrated with the use of an example (see Fig. 2.01) .A digital 

image (Fig. 2.01(a)) is first equalised (as described above) and 

then a grey-level distribution matrix constructed (Fig. 2.01(b)) 

using the displacement vector (1,0). This means that each pixel 
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Digital Image f(x, y) 

o 0 1 1 

0 0 2 3 

0 2 2 3 

1 2 3 2 

(a) 

Grey-level Distribution Matrix 

0 1 2 3 

0 2 1 2 0 

1 0 1 1 0 

2 0 0 1 3 

3 0 0 1 0 

(b) 

Symmetrical Grey-level Distribution Matrix 

`I 0123 

02 0.6 1 0 

1 0.6 1 0.6 0 

21 0.6 1 2 

30 0 2 0 

(c) 

Co-occurrence Matrix : P(I, J) 
\ý 

0123 

0 . 17 . 04 . 08 0 

1 . 04 . 08 . 04 0 

2 . 08 . 04 . 08 . 17 

30 0 . 17 0 

(d) 

Fig. 2.01 Construction of Co-occurrence Matrix 



in the equalised image is compared with the pixel found at a 

distance of 1 pixel away and at an angle of 0' from the x-axis. 

The elements within the matrix that are indexed by the grey- 

levels of the pixel pairs are incremented. The matrix is then 

made symmetrical (Fig. 2.01(c)) about the main diagonal by 

averaging equivalent elements, eg element (1,2) and (2,1). The 

co-occurrence matrix (Fig. 2.01(d)) is then easily formed by 

dividing each element by the sum of all elements in the sym- 

metrical grey-level distribution matrix. Each element, P(1. J), 

is the probability of finding grey-levels i and j separated 

by a displacement vector of (1,0). 

When co-occurrence matrices are used to analyse texture a 

variety of displacement vectors are used. To reduce the effects 

of rotation of a texture the displacement vectors over the 

angles 0°, 45", 90° and 135° are usually averaged. 

Haralick et al[22] proposed 14 statistical measures of 

distribution within the matrix that relates to textural 

information. However, Langford[25], Waterhouse[45] and Rut- 

ter[40] all used only 6 of the most easily calculated measures 

in pollen texture analysis. These are as follows: 

i) Angular Second Moment or homogeneity of the image is a 

measure of how even the values are distributed throughout the 

matrix; the lower the value the greater the homogeneity. 
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LL 

ASM -YZ p(j 1)2 ISO ISO 

L-maximum grey-level. 

ii) Contrast or local variation (coarseness) of grey-levels 

is a measure of the moment of inertia about the main diagonal 

of the matrix. When the probabilities are concentrated about 

this main diagonal the contrast is low. 

Lc 
CON =ZZ (i-! )2. p(, j) 

t-o=o 

iii) Variance is a measure of the spread of the probabilities 

in the co-occurrence matrix. The closer the probabilities are 

to the centre of the matrix the lower the variance. 

LL 

VAR ° 
7(1'µ)2' PCj, 

1.0 j=o 

L µ-z 

iv) Inverse Difference Moment or local homogeneity is given 

by: 
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IDM- 7 PýýºI) 

i-o 1=0 1+ (1- 1)2 

v) Entropy or texture non-uniformity. Gives high values 

when the elements in the matrix are large and low values when 

they are unequal. 

It 
ENT-- ZP(i, j)- logP(i, 1) 

ISO ISO 

vi) Correlation returns larger values as elements within the 

matrix become more similar. 

COR ° 
(E- µx)' (1' µy)' P(t! ) 

t=o IWO ax' oy 

µx(µr). cix(ciy) are the mean and standard deviation of the row 

(column) sums of the matrix. 

Laws[ 261 developed and investigated a set of texture features 

based on average values of local properties. A set of standard 

masks (both 3x3 and 5x5) define grey-level patterns in local 

pixel neighbourhoods of an image. The features produced 

represent the degree of affinity between these local pixel 

neighbourhoods and pre-defined patterns specifying local 

averaging, edge, spot, ripple, and wave detection. The 

statistics used for texture discrimination are the sum of the 

squared or the absolute values of the image pixels after 
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convolution with a specific mask has been performed. As with 

the construction of co-occurrence matrices the histogram of the 

image must first be equalised. If different size images are 

used the final statistics are normalised to the number of pixels 

convoluted. Fig. 2.02 shows some examples of masks used by Laws. 

Pietikainen et al[34] did further analysis of Laws masks. 

They found that the performance of Laws' features does not 

depend on the specific numerical values within the masks but 

upon their general form. 

The main weaknesses of the Laws Mask method are: 

i) It extracts features closely related to the grey-levels 

of the image. It may classify similar class textures differently 

due to the differences of illumination between them. 

ii) There is a trade-off between computation time and 

structural information. To extract more structural information 

from an image larger masks are required and as these increase, 

the computation time increases rapidly. 

iii) The method does suffer from the directionality problem. 
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3x3 Masks 

L3xL3 L3xE3 L3xS3 

121 -1 01 -1 2 -1 

242 -2 02 -2 4 -2 

121 -1 01 -1 2 -1 

5x6Masks 

L6E6 E686 

-1 -2 0 2 1 -1 0 2 0 -1 

-4 -8 0 8 4 -2 0 4 0 -2 

-6 -12 0 12 6 0 0 0 0 0 

-4 -8 0 8 4 2 0 -4 0 2 

-1 -2 0 2 1 1 0 -2 0 1 

L685 R5R6 

-1 0 2 0 -1 1 -4 6 -4 1 

-4 0 8 0 -4 -4 16 -24 16 -4 

-6 0 12 0 -6 6 -24 36 -24 6 

-4 0 8 0 -4 -4 16 -24 16 -4 

-1 0 2 0 -1 1 -4 6 -4 1 

Fig. 2.02 Examples of 5x5 and 3x3 Laws Masks 



2.1.2.4 Shape and Geometry 

As explained in chapter 1 it is hoped that these features 

will be useful for the gross classification of pollen. The 

objective of chapter 5 is to explore this area further so no 

more time is spent here on it. 

2.1.3 Classification Procedures 

This sub-section briefly describes how a feature vector 

consisting of variables that describe a certain characteristic 

of the pollen taxa (one of the Haralick measures for example) 

can be used to construct a classifier to separate each possible 

class of pollen. The first method utilises discriminant 

functions and has been widely used in previous pollen project 

research. The second method uses neural networks and has, as 

yet, been unexplored in this field. A more detailed analysis 

of neural networks can be found in chapter 6. 

2.1.3.1 Discriminant Functions 

The classifier employed in all previous research used a 

Fisher Linear Discriminant Function (see Weszka et al[471) to 

separate every possible pair of classes from each other. 

Consider two classes Cj and Cj each with a set of feature 
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vectors [x11 , xL2,,.., xLk] and [x,, , xi2, ..., xfx] where k is the number 

of variables in the vector. Their optimal linear direction acs 

is given by: 

ýi_(I:! +I: i)-i. (µi-I ) 

µ, = sample means of variable k in class t. 

EF=sample co-variances of variable k in class t. 

This is calculated for all the samples in a training set of 

features and then used to construct a decision boundary, defined 

by: 

(pia) + µl(1t) 
Bbl 

(1t+Cll 

t, = the sum of the means of a,, "x 1k for each variable k 

in class 1. 

cl, =the sum of the standard deviations of aiI xik 

for each variable k in class t. 

The class to which an unknown sample x is assigned is 

determined according to the following rules: 

if >a j" xk > Bpi then assign to Ct . 
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If F-a i. xk < BLI then assign to C1 

If Ya - xt - Bit then indeterminate. 

In practice the final case will never occur as these values are 

real numbers. 

As there are more than two possible classes into which an 

unknown pollen taxa may fall a voting system is used. The 

feature vector of the unknown taxa is compared with each of the 

known class pair boundaries. In each case the one to which it 

is assigned has its vote counter incremented. As soon as all 

the class pairs have been considered the vote counter with the 

highest value represents the class into which the unknown is 

classified. Consider a case where sample x is from class 1 

and that there are 4 classes. When x is compared with classes 

1-2,1-3 & 1-4, class 1 should be selected every time. But 

when it is compared with classes 2-3,2-4 & 3-4 its selection 

should be essentially random. Thus the class 1 vote counter 

will have the largest value and therefore class 1 is selected. 

A problem may occur if 2 or more class vote counters are 

drawn with the maximum value. In this case the above clas- 

sification procedure is repeated with only drawn class pairs 

used. If classification is still not possible the system divides 

the vote between all drawn classes. 

A leave-one-out scheme is used to test the success rate of 

the classifier. This involves removing each sample in turn 

22 



from the training set and classifying it using a discriminant 

function built from the remaining samples. This ensures that 

the training set is as large as possible and gives a good 

assessment of the true error rate. It does however increase 

the computational cost as a new classifier is constructed for 

each sample. 

It is not necessary or practical to use all the variables 

available in a feature vector. A subset often exists that 

produces comparable results but with less calculation. Also, 

increasing the dimensionality of the classifier can lead to 

diminished classifier performance (Hand[21]). Thus a variable 

selection procedure is used to search for an optimal subset of 

variables. 

Hotelling's T2 statistic, a multivariate extension of the 

standard single variable t-test, is employed as a measure of 

separability between two classes. The T2 statistic is useful 

for this type of search as it is strictly monotonic, ie the T2 

value of a subset of variables is less than or equal to that 

for the full variable set. It indicates whether any two pollen 

classes are statistically inseparable using the available data 

set by producing a measure of the distance between sample means 

normalised to dispersion within the samples: 
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S1"Sl 
T2=S 

+s 
(µý-µf)'" S' "(i -µl) 

1 

st-number of samples in class i. 

µl = mean centroid vector of class i 

(sample mean for each variable). 

S -assumed common variance-covariance matrix. 

In practice however si-s1-s and so the within-class scatter 

matrix, W, is used in place of S, as it is easier to calculate: 

1 

where 

J=1 i=1 

nj=number of sample points in class j. 

X1a ith point from class ,j. 
µj =sample mean for class , 

j. 

There are a variety of methods that may be employed to search 

for the optimum variable subset. These may be grouped thus: 

i) Exhaustive search methods. These are only applicable 

when a small number of variables are used and is therefore of 

little value here. 
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ii) Accelerated search. These consider all variable sets, 

but due to the monotonicity of T2 does not explicitly evaluate 

all of them. 

iii) Suboptimal stepwise methods. These produce the most 

rapid searches but do not always guarantee finding the best 

solution. 

Due to the many classification combinations and speed of 

operation required the initial variable selection procedure 

employed is the suboptimal search using sequential backward 

elimination (described below). At later stages accelerated 

searches may be employed to improve the classifier performance. 

Sequential backward elimination starts with a complete 

variable set and removes the variable that reduces the value 

of T2 the least. In other words, T2 is calculated for the 

complete data set with consecutive variables removed. The 

variable omitted for the maximum value of T2 is then permanently 

removed from the data set. This procedure is repeated until 

the value of T2 falls below a predefined separability threshold 

or stopping point. Both the absolute separability and the 

McKay[30] variable stopping point have been used in previous 

pollen classification work. The absolute separability value 
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has proved to produce the best classification rates and is 

extensively used in this thesis. The minimum T2 stopping point 

used can be expressed as: 

2 (2s-2)"N-F 
Tmin 

(2s- 1-N) 

N- number of variables in the feature vectors 

F- 5% level of the F-distribution with N& (2s -1- N) 

degrees of freedom 

s>N 

A good source of further information on the above functions 

may be found in Hand[21]. 

2.1.3.2 Neural Networks 

Over the last decade the study of artificial neural networks 

has come to the fore in computer science (Aleksander and 

Morton[1]). They attempt to mimic the computational archi- 

tecture of the human brain (Rumelhart et al[38]), the objective 

being to incorporate intelligent functions such as learning 

into computers. Pattern Recognition is one of the primary areas 

of study within neural network research with classification 

being one of its fundamental objectives. A neural network, 

given an input pattern (feature vector) attempts to map it to 

a specific output category, thus classifying the input pattern. 
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As this is such a new research tool and therefore in need 

of much explanation a great deal of chapter 6 has been devoted 

to it. There the theories behind neural networks are explored 

along with an analysis of the areas within the current problem 

that might lend themselves to neural network solutions. 

2.2 Review of Previous Pollen Project Research 

2.2.1 Preparation Techniques 

As well as automating the counting and identification of 

pollen, it is important to prevent a 'bottle-neck' occurring 

at the preparation stage. Forster and Flenley[12,13] attempted 

to automate the preparation of various pollen samples prior to 

analysis with the development of complex extraction and 

purification techniques. Their system successfully cleaned out 

large detrital (non-pollen) material and produced sub-samples 

of pollen taxa groups. Thus reducing the probability that 

detrital material would be misclassified as pollen at a later 

stage. This can be considered to be the initial separation or 

classification level (Fig. 1.01). A more detailed account of 

the techniques may be found in Forster[12]. 
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2.2.2 Digital Image Processing 

The greatest contribution to the automation of pollen 

identification was that given in a Ph. D thesis by Mitchel 

Langford[25]. He introduced the discriminant function discussed 

above and used a branch and bound accelerated search. Using 

fresh pollen taxa he showed that it was feasible to separate 

pollen using textural criteria. All six Haralick measures 

described above were used with displacements of 1,4 and 8 

pixels. Several of the Laws masks were used and edge pair 

analysis was also tried but this proved to be less useful. 

An M. Sc thesis by Helen Waterhouse[45] followed up Langford's 

work and tried to apply the Haralick measures to six fossil 

pollen taxa (3 of which were identical to those used by 

Langford[25]. ) This provides many problems as type material 

of fossil pollen is much harder to find than that of fresh 

pollen. It does however provide a realistic test of the potential 

of the final system. Unfortunately no separation was possible 

for any pair of fossil pollen taxa. Closer inspection of her 

results however shows that they are not as negative as they may 

at first appear. Very small images were used having dimensions 

of only 20x20 pixels; this is nowhere near large enough. Even 

when the images have been equalised to 16 grey-levels there is 

not enough data to produce a significant co-occurrence matrix 

for analysis. Langford[25] recommended images with dimensions 

of at least 64x64 pixels. Also constant displacement vectors 

of 1,4 and 8 pixels were used. These may not have been the 

28 



best to separate these pollen. Also a constant magnification 

was used for all six taxa and this would have meant a loss of 

texture detail on the smaller pollen. 

Several final year projects have also contributed to the 

overall research. Rutter[40] worked in parallel with Water- 

house[45] and obtained the same results. However close analysis 

of the software uncovered bugs that may well have prevented any 

separation at all being found. Gundersen[19] produced 

knowledge-based software that may be used for pollen clas- 

sification. Beney[3] worked on pollen location. 

2.3 Review of Problems Remaining to be Solved 

Following the initial work described above there are still 

numerous problems that need to be solved. These have been 

raised in both the textural and the automation aspects of the 

problem. Also the value of other digital image processing 

techniques have not yet been explored. 

sections these problems are outlined. 

In the subsequent 
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2.3.1 Textural Feature Problems 

Langford[25] obtained some very encouraging pollen clas- 

sification results for six taxa. However the efficiency of the 

discriminant function declines for a greater number of pollen 

types as the number of comparisons required increases. More 

variables will also be required to discriminate between the 

extra classes. Thus the hierarchical classification scheme 

proposed in the first chapter uses the textural features at the 

lower levels where only a few taxa remain to be separated. 

There are other drawbacks with pollen texture to be overcome. 

The main problem is that of automating the choice of the area 

of the pollen's surface to be sampled. This selection is made 

difficult by several features of the pollen surface which cause 

the texture to differ quite markedly. The system would have 

to deal with pollen grains in all possible orientations. 

Flattened grains may be viewed edge on and so present only a 

small area from which to sample texture. Also surface features 

such as colpi, pori and spines present problems as the texture 

changes rapidly around them. Similar problems can be found at 

fold edges as the surface is tilted, also towards the edges of 

the grain where it curves away giving an increasingly acute 

view of the pollen texture. Due to the effects of preservation, 

the problems as described above may be heightened in fossil 

pollen. It can be increasingly folded, squashed, pitted, holed 

and torn. Material may also be attached to the grain surface. 

Such areas need to be recognized and avoided when sampling. 
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The consistency of the pollen exine structure may not be as 

fixed as has been assumed. Pollen texture can be observed to 

vary with changing conditions of temperature and humidity as 

they mature within the anther. In some species of Fraxinus 

(Ash) the textural elements may vary in both size and shape 

over a single grain. Using the average of several discrete 

areas of the pollen surface at the classification stage may get 

around this problem. Some variation in textural features within 

a single pollen taxa may be due to subtle differences in pollen 

size which may cause the texture to be compressed or stretched. 

Normalising the displacement vectors used, to the size of the 

pollen, may account for this problem. The changes in the exine 

outlined above may be so subtle that texture is not significantly 

influenced. This is analysed further in chapter 6. 

Spores present an additional problem in that they can often 

lose their distinctive outer layer, leaving a relatively 

featureless inner layer for identification. It may be necessary 

therefore to include both possible textures in the classifi- 

cation scheme. 
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2.3.2 Automation Problems 

No work has yet been done on the hardware system. This may 

only be undertaken once the specific requirements of the software 

are known. The computer would have to be able to control all 

aspects of the microscope including stage movement, focusing, 

magnification and brightness/contrast settings. 

2.3.3 Some Unexplored Techniques 

There are still some areas of work that may prove to be 

useful that have, as yet, been unexplored. 

If a method to detect the presence of features such as colpi 

or pori could be developed this would be extremely useful. This 

could act as an alternative gross classification of pollen taxa. 

If, for example, a pollen image contained two pori then it could 

not be classified to a taxa that has one or no pori, but could 

be to a taxa with two or more. The most obvious problem with 

such a detector is that it would also have to be able to tell 

the difference between preservation damage such as creases, 

folds and pits, and the colpi and pori. 

Another area that may prove useful is that of pollen shape 

and size (Langford[251). This area is explored extensively in 

chapter 5 of this thesis. 
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Chapter 3 
Equipment and Samples 



3.1 Introduction 

In the course of this research the image capture system was 

changed. This chapter starts with a summary of the previous 

image analysis system and then describes the reasons for the 

change. The new system hardware and software are then briefly 

described. Finally, there is a description of the pollen taxa 

used and how they were prepared for examination. 

3.2 Reasons for Change in System 

Langford[25] and Waterhouse[45] both employed the same pollen 

image capture system. They used the Cambridge Instruments 600 

Series SEM to obtain images of pollen. Black and white 

photographs were taken of images projected onto a fluorescent 

screen by the SEM. Once these were developed they were digitised 

by a video camera connected to a Matrox frame-store housed in 

a DEC PDP 11/23. Image files were then transferred onto a VAX 

11/750 for analysis. Both Langford[25] and Waterhouse[45] 

called for a more direct link between the SEM, frame-store and 

computer. The method they were using was very time consuming 

and so limited the number of pollen taxa that could realistically 

be used. With so many transfers of image data there was a real 

danger of a loss of image quality. Firstly, the curvature of 

the fluorescent screen distorted the original images. Secondly, 

the way the photographs were taken and developed changed the 

picture quality. Thirdly, lighting of the photographs prior 
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to capture by the video camera was crucial; reflections from 

the photographs needed to be avoided. Magnification of the 

final image may also be inadvertently changed at any of the 

above steps. The system was also a far departure from an 

envisaged final integrated system. 

So, for the above reasons it was decided to move to a PC-based 

image capture system. This allowed images to be captured easily 

and rapidly from the SEM. The system is outlined in the next 

section. 

3.3 System Hardware and Software 

The hardware of the system utilised the DT2803 Low Cost Frame 

Grabber (from Data Translation Ltd[5,6,7]) plugged into a IBM 

compatible PC. As IBM PC compatibles are so widely used no 

further description is required here. However a more detailed 

account of the frame grabber is necessary. 

The DT2803 is a single board 256x256x6 bit (64 grey-level) 

frame grabber for real-time digital image processing. It plugs 

directly into any IBM or compatible PC expansion slot. A frame 

is digitised every 30th second from a video input. The scanning 

electron microscope (SEM) employed outputs a standard video 

signal that the DT2803 can digitise. The frame grabber then 

outputs monochrome images to a video monitor. The main drawback 

of the frame-store is that it has an aspect ratio of 3: 2 causing 
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a certain amount of image distortion. This problem is dealt 

with in subsequent chapters. Hardware architecture includes 

both input and output look-up tables (LUTs) and programme control 

by a microprocessor. 

VideoLab is the component software for the DT2803. It 

consists of a combined tutorial package (VideoTutor) and 

comprehensive subroutine library (VideoSub). Any Microsoft 

compiler may be used with the subroutine library to carry out 

basic manipulations of the image. The subroutine library 

includes functions to read and write pixels or regions to the 

frame-store, construct grey-level histograms of the image and 

store images to disk. 

The Microsoft compiler used for image manipulation software 

is the Pascal compiler version 4. However, this compiler can 

be frustrating to use as software compiles and runs relatively 

slowly. As a result nearly all software for use independently 

of the frame-store is written with Turbo Pascal version 6. 

The SEM used was the Cambridge Instruments 360 Series Stereo 

Scan Microscope, the newest available in the university. This 

is vastly superior to the 600 Series used by Langford[25] and 

Waterhouse[45]. Images are built-up within the SEMIS own 

1028x1028x8-bit frame-store before being output as a video 

signal which the DT2803 can capture and manipulate. Controls 

36 



on the SEM such as focus, magnification, brightness and contrast 

are all electronically controlled allowing minute adjustments 

to be made to any of the parameters. 

A wide variety of software was updated and written for use 

with this new system. Image capture software, for example, was 

written that offered continuous displays of image histograms 

to allow the optimum contrast and brightness to be selected. 

Texture analysis software was upgraded and written for both 

Laws mask and Haralick measure methods. Edge pair methods were 

ignored as they were considered to be of little value (Lang- 

ford[25]). Image manipulation functions such as averaging, 

median and Sobel operators were written to pass over images. 

Software relating to the methods discussed in the following 

chapters were also incorporated into the system. 

3.4 Pollen Samples 

Fossil pollen has the disadvantage that it can often be 

damaged or distorted. In some cases it may be difficult for 

a trained observer to classify it. This may result in the 

eventual use of a misclassified pollen in the construction of 

computerised classification rules. Fresh pollen has the 

advantage that it provides a pure sample and so no time need 

be wasted identifying each pollen before its image is captured. 
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Fresh pollen is also easier to prepare for viewing under the 

SEM. Thus to remove any unnecessary complications fresh pollen 

taxa were used. 

The pollen taxa used originated from Pacific islands such 

as Fiji, Hawaii and Easter Island. They are commonly found 

together in fossil cores and so provide a realistic test of the 

system. Pollen from 12 species was successfully extracted from 

an initial sample of 25 flowering plants (double that attempted 

by Langford[25]). This could be built upon to produce a final 

system classifying over 50 different species. One aim of this 

investigation is to lay down some basic principles or techniques 

that may then be applied to larger groups of taxa. The following 

pollen taxa were used (examples of which may be seen in the 

plates indicated): 

Bidens hendersonensis (Plate 1), 

Canthium barbatum (Plates 2(a) and (b)), 

Elephantopis mollis (Plates 3(a) and (b)), 

Emilia sonchifolia (Plate 4), 

Fitchia speciosa (Plate 5), 

Macaranga graeffeana (Plates 6(a) and (b)), 

Passiflora quadrangalaris (Plates 7(a) and (b)), 

Pritchardia minor (Plates 8(a) and (b)), 

Pseudoelephantopis spicatur (Plates 9(a) and (b)), 

Senecio stokesii (Plate 10), 

Spore, Fungal (Plates 11(a) and (b)), 

Xylosma suaveolens (Plates 12(a) and (b)). 
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These taxa were obtained from two sources. The majority 

were taken from the Herbarium in the Department of Geography 

at Hull University. The remaining samples were from the 

collection at Kew Gardens, London. 

3.4.1 Preparation 

Pre-prepared samples were available suspended in oil, however 

the oil contaminated the SEM images and proved extremely 

difficult to remove from the samples. Thus the pollen was 

extracted directly from dried flowers. 

The anthers and as little of the rest of the flower as 

possible were cut from the dried plants. These were then added 

to a centrifuge vessel containing hot Potassium hydroxide (KOH) 

and agitated using a glass rod. After a couple of hours in the 

hot KOH each sample was centrifuged at 2000rpm for approximately 

7 minutes. The pollen then formed a solid cluster at the bottom 

of the vessel. The KOH was then poured off and replaced with 

distilled water. The sample was repeatedly spun and drained 

to remove all the KOH. Once the samples were suspended in 

almost pure distiled water they were mounted drop by drop on 

small heated glass coverslips. The water evaporated leaving 

the pollen behind. Any visibly large particles on the coverslips 

were removed with a pair of tweezers. Finally, the coverslips 

were stuck to SEM stubs and splatter-coated with either gold 

or carbon. They were then ready for analysis under the SEM. 
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A wide variety of images were captured for analysis. Between 

18 and 20 sample images were taken for each taxa in each of the 

following groups: 

i) Images of all pollen at a magnification of 1250x so that 

comparisons of relative sizes could be made. 

ii) Images of each individual pollen at the maximum mag- 

nification where it was still possible to see the whole grain. 

Within each individual taxa the maximum magnification used was 

kept constant. For examples see all plates indexed by (a). 

iii) Texture images of each grain at the minimum magnification 

that could be used without including any of the pollen edges 

in the image. For this group the magnification was allowed to 

vary from grain to grain. For example see all plates indexed 

by (b). 
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Chapter 4 
Object Detection 



4.1 Introduction 

Separating objects from the background in SEM images is 

obviously the first step in the automatic analysis of its shape, 

size, texture etc. This may be achieved using a number of 

thresholding techniques. A threshold, k, is a grey-level value 

that divides an image into two classes (or populations). The 

background class, Co, represents pixels with grey-levels [0..... k] 

and object class, C� denotes pixels with grey-levels [k + 1...., L] 

where L is the maximum grey-level. 

There are a wide variety of techniques that may be used to 

automatically set a threshold. These may be broadly divided 

into two groups; global and local. Global techniques use a 

single grey-level value to threshold the entire image and may 

be sub-divided into either point-dependent or region-dependent 

techniques. The point-dependent techniques assign a threshold 

using only the grey-level histogram of the image. A 

region-dependent technique however uses a local property within 

each pixel neighbourhood, the gradient for example. Local 

techniques split the image into sub-images and assign thresholds 

for each one. 

Brightness and contrast settings on the Cambridge 360 SEM 

can be changed very easily. This allows the difference between 

the bright objects and dark backgrounds to be highly exaggerated. 

All images were taken with brightness and contrast settings at 

44% and 17% respectively to take advantage of this facility. 
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4.2 Otsu Method 

The first thresholding measure to be tested is that proposed 

by Otsu[33]. In his brief study of thresholding methods 

Langford[25] found this to be the most useful and suggested 

that an image should be convoluted with a large (9x9 or 11x11) 

smoothing filter before applying this technique. As it is a 

global point-dependent thresholding method an optimal threshold 

is set using the normalised grey-level histogram or probability 

distribution, pi, of an image with no other a priori knowledge. 

The method employs discriminant analysis to evaluate the 

"goodness" of threshold and thus determines an optimal 

threshold. A measure of separability, a (k), is evaluated for 

each potential threshold of classes Co and C1 thus: 

aä(k)- 

where 

[µr" w(k)-u(k)]2 
w(k)-[1-w(k)] 

µr= total mean level of the original picture 

L 

PT ip, 
! =o 
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w(k)- zeroth-order cumulative moment of the histogram up to 

the k`? level 

w(k)' 
IRO 

µ(k)-first-order cumulative moment of the histogram up to 

the k`k level 

V(k) ° iAt 
LxO 

The optimal threshold, k, is selected by maximising 0ä thus: 

aä(k')= max aä(k) 
0 sts[ 

Otsu however assumed that the measure of class separability, 

a (k) , was always unimodal. This is however not always the 

case. Kittler and Illingworth[24] showed that for certain 

ratios of object-to-background pixel populations, öä(k), was 

multimodal and therefore the best threshold may not be set. 

A modification procedure was proposed to be used whenever the 

separability function was found to be multimodal. 

If the separability function is bimodal, for example, there 

will be two candidate thresholds at kl and k2. For each of 

these candidate thresholds the means of the two classes that 

they separate are calculated. The grey-level histogram value 
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at the candidate threshold point k' is compared with the values 

at the means µl, and µ12 of the two populations formed by 

dividing the histogram at that threshold. Thus the candidate 

threshold that satisfies the following is accepted: 

PRA<Pill 

and P; l PW2 

i-[1.2] 

p1,11 = the mean of the j" population isolated by 1h 

candidate threshold 

If it is not possible to reject a threshold at this point 

it is assumed that both thresholds are equally valid and that 

the image can not be binarised without losing meaningful 

information. 

4.3 Combination of Methods 

Here a threshold is set using two different methods. These 

are then combined to give a single optimum threshold that 

maximises the two methods. Wong and Sahoo[49] combined a 

uniformity and shape measure to produce a threshold that 

maximised both the uniformity and shape information in the 

resultant binary image. 

44 



4.3.1 Uniformity Method 

Uniformity is a global point-dependent threshold measure, 

k*'. It was introduced by Levine and Nazif[27] to assess the 

performance of a segmentation method. For every possible 

threshold value, k, the uniformity measure, U(k), is calculated 

thus: 

zz 

F, 

F1= positive normalisation factor 

Nai of class i given by: 

i=E (k-µi)2pt(k) 
LcC( 

Ct =pixel class i where [i - 0,1 ] 

µg= mean grey-level of pixels in C, 

The threshold, k'1, is assigned to the maximum uniformity 

value. 

4.3.2 Shape Method 

Shape, the second threshold measure, k*2, is a global 

region-dependent method as it includes information on the 

grey-levels that make up the shape features of an object (eg 

its edges). After all, it is the occurrence of edges that 
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separates the object from the background. The shape measure, 

S(k) , is computed for every possible threshold value using the 

formula: 

2: son(h(x. Y)-µH)' O(x, Y)- son(h(x, Y)-k) 
S(k) - 

h(x, y) 
F2 

h(x, y)- grey-level at location x. y 

µN= mean grey-level of 8-neighbourhood of h(x. y) 

FZ= positive normalisation factor 

sgn(x) a {+ 
1. if x2: 0 
1, if x<O 

A(x, y)=generalised gradient value, calculated thus: 

4 1/2 

i (x, Y)- ED 
i +rD1(D3+D4)'f D2(D3-D4) 

! =1 

Di =h(x+ 1, y)-h(x- I, y) 

D2 - h(x, y- 1) - h(x, y+ 1) 

D3=h(x+ 1, y+ 1)-h(x- I. y- 1) 

D4 a h(x+ 1, y- 1)-h(x- 1, y+ 1) 

As with the uniformity measure the optimum threshold, k$2, 

is set at the maximum shape value. 
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4.3.3 Combining the Threshold Functions 

The two threshold functions returned, S(k) and U(k) are 

easily normalised to produced probability density functions. 

The maximum value of the sum of both these functions is taken 

to be the threshold value, k% This value thresholds a binary 

image thereby maximising both the uniformity and the shape 

information of the image. 

4.4 CYBEST Method 

This global region-dependent method was proposed by Watanabe 

and the CYBEST Group[46] as a thresholding solution for cervical 

cancer cell pre-screening. The method is based on the dif- 

ferential histogram of an image. The first step is to calculate 

the grey-level difference, sip , of every pixel xis and its 

8-neighbours xj') (where n- 1.. 8) thus: 

S11 dig 
ncN 

d11= xý1- xýf if (xij - x; ý) > 0, dif = 0, otherwise. 

The differential histogram, s(k), may then be calculated by 

summing sip over the whole image and then averaging by the 

number of pixels in the image with grey-level k. A threshold, 

ký1, may now be set at the maximum value of s (k) which represents 
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the grey-level with the greatest average differential. A second 

threshold, k*2, is set by repeating the above method but by 

using an inverse form of dtv, thus: 

dt1 = x11- x� if (x11' xi1) < 0, d; 1= 0, otherwise. 

The final threshold, k*, is set by combining k *' and k$2 thus : 

* (k$1+k$2 
2 

4.5 Local Threshold Techniques 

As well as the global techniques described above a couple 

of simple local techniques were tried. These attempt to produce 

binary images by setting individual thresholds for each 

8-neighbourhood of pixels. 

4.5.1 Gradient Direction 

The first method uses the pair of Sobel gradient operators 

shown on the following page to calculate the directionality of 

the gradient at each pixel. 
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-1 0 1 1 2 1 
Gx=-2 0 2 Gym 0 0 0 

-1 0 1 -1 -2 -1 

Gx represents the change in gradient in the x direction and 

G,, the change in the y direction. If both C., and G,, are 

equal to 0 (or less than a threshold), then there is no 

directionality at the target pixel. It can be assumed that if 

a pixel has no directionality then it must be a part of the 

image background, whereas a pixel with directionality is highly 

likely to be part of an object. 

4.5.2 Edge Magnitude 

This second method convolutes an image with eight edge 

detectors (see below) and sets each target pixel to the maximum 

value they return. 

1 0 -1 0 -1 -1 
1 0 -1, 1 0 -1, etc.., 
1 0 -1 1 1 0 

After the convolution a preset threshold value is used to 

highlight the edges and blank the rest of the image. 
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4.6 Set A Priori 

The final method tests the viability of having a single 

threshold value to binarise every image. The advantage of this 

is that it would make the process of constructing a binary image 

almost instantaneous. The proposition is made more realistic 

when the nature of the images is considered ie the high contrast 

between object and background. The best thresholds from a small 

number of images are averaged and then used to threshold all 

subsequent images. 

4.7 Results, Discussions and Conclusions 

The relative performances of the global thresholding methods 

can be seen in Fig. 4.01. 

The method proposed by Otsu[33] performed extremely well. 

There was no need for prior convolution with a large smoothing 

operator as Langford suggested. The images Langford[251 used 

had brightness and contrast levels which maintained texture 

quality. With no prior smoothing there was a danger that some 

edge elements would be missed but this problem was removed 

effectively in this study by the exaggerated brightness and 

contrast levels which reduced the texture influences. The 

smoothing convolution also tends to reduce the prominence of 

some edge features such as spines. The speed of this technique 
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was greatly enhanced as no time was wasted convoluting the image 

with a large operator. The method was in fact the fastest of 

all those used. 

In the vast majority of cases it set good thresholds, with 

intact pollen edges and little noise from the background pixels. 

However, on a couple of occasions the Otsu method set a threshold 

that was a couple of grey-levels too high resulting in pollen 

with parts of their edges missing in the binary image. This 

happens where there are shadows on an object. The electrons 

in the SEM are emitted at a 7° angle from the detector, so 

shadows can occur due to the uneven illumination. While this 

is not a common problem it is annoying. A simple solution is 

to reduce the Otsu threshold set by a couple of grey-levels for 

every image. This would have little effect on the good quality 

images but would eliminate the shadow problem on the rest. 

Not once in over 300 images was the Otsu threshold function 

multimodal. As a result no comment can be made on the 

modification procedure proposed by Kittler and Illingworth[24]. 

Both independently and together the Shape and Uniformity 

methods proved to be completely inadequate as the thresholds 

set were much too high. The uneven illumination had a marked 

effect on the images produced. Areas of the pollen with only 

slight electron shadows were lost completely. As well as setting 

inadequate thresholds these methods also took much longer to 

compute than any of the other methods explored. 
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The CYBEST thresholding method, while relatively fast did 

tend to set thresholds too high, resulting in the shadow problems 

discussed above. 

Images produced using both local techniques were very 

encouraging. Both methods, while not as fast as the Otsu method, 

did work quite rapidly. Their great strength was that they 

always picked out the complete pollen edges as they were less 

susceptible to local changes in grey-level than the global 

techniques. However, they were more susceptible to noise in 

the background which did tend to clutter the images somewhat. 

With the correct edge and directionality threshold this problem 

is reduced. We are now back to a thresholding problem. What 

level of edge or directionality do we use as a cut-off? To set 

this automatically would add more time to the production of a 

binary image and to have a set threshold for both these techniques 

would make them inflexible. While these are promising techniques 

more work needs to be done to set meaningful thresholds. 

The thresholds set a priori had limited success. Shadows, 

as ever, were a problem and the method's inflexibility in 

responding to them was its greatest weakness. 

The Otsu method was selected as the best all-round thresh- 

olding technique and was subsequently used in the production 

of binary images to be analysed in the next chapter. 
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Chapter 5 
Shape and Geometric 

Analysis 



5.1 Introduction 

Binary images constructed using the thresholding techniques 

described in the previous chapter are now analysed to extract 

information about the shape and location of objects within each 

image. The method chosen to store both the shape and location 

of each object is that proposed by Freeman[14]. As well as an 

edge encoding system Freeman[14-18] produced a wide variety of 

shape analysis functions to describe the form of an object. 

This chapter describes the initial separation of pollen from 

detrital material and then examines a variety of shape analysis 

functions. 

5.2 Separating Detrital Material and Pollen 

No matter how many filtering procedures a pollen sample goes 

through prior to analysis it will always contain a certain 

amount of detrital material. Inorganic solids are easily removed 

chemically and so present little problem. However, it is the 

organic plant material that is the problem as attempts to 

classify it as pollen are almost certainly doomed to failure. 

Solutions to this problem may be derived from both the 

preparation and image processing techniques. Research by 

Forster and Flenley[12,13] on preparation techniques has 

produced some very helpful results. They have produced a system 

where detrital material is largely removed from samples leaving 
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only smaller material behind. This makes the subsequent task 

of separating pollen and detrital material from each other using 

image processing techniques much easier. Unfortunately, the 

equipment used by Forster and Flenley[12,13] was unavailable 

and therefore large detrital material has been removed manually 

from some images leaving only the smaller particles. As the 

detrital material is in the form of relatively small particles 

it may be detected on the basis of size. As we shall see in 

the next section, any object that has a shorter perimeter than 

a set threshold is considered to be detritus and is ignored. 

A chemical analyser attached to an SEM may also prove useful 

as a solution to this problem. By analysing x-ray absorption 

of target areas of a sample an evaluation of its chemical 

constituents may be made. This would detect non-organic material 

with little difficulty, however, and more importantly, its 

ability to separate sporopollenin (a specific pollen 

macro-molecule) from lignin or cellulose (other plant 

macro-molecules) has not been tested. It may also be possible 

to classify detritus on the grounds of texture although these 

methods may add an unnecessary amount of complexity to the 

problem. 

A secondary problem is one of pollen overlap. If overlapping 

pollen are not separated there is a great chance that the 

classification scheme will fail as pollen size, shape and texture 

data could be confused. Preparation techniques offer a solution 

to this problem by increasing the dilution of the original 
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sample and thereby reducing the probability of overlap. Also 

if the samples are kept moving as they are mounted there is 

limited time for them to become aggregated. 

5.3 Edge Encoding using Freeman Chain Code 

Rather than storing the (x. y) co-ordinates of every pixel 

on the pollen binary image edge, the direction in which each 

successive edge pixel lies is recorded. As each pixel has 8 

possible neighbours the position of the next may be stored as 

a digit from 0 to 7 where 0 represents an adjacent pixel along 

the positive x -axis and the digits 1 through 7 represent 

consecutive 45° turns in an anti-clockwise direction. Fig. 5.01 

illustrates the coding scheme applied to a short edge segment. 

The starting point of the code is termed the initium and the 

end the terminus. Each digit refers to one directed line segment 

known as a link that represents a unique x and y component, 

for example a code of value 1 describes a change in co-ordinates 

of (1,1). A chain is a line structure made up of a number of 

links and can be represented thus: 

A=Cl la2.... a. 

A -chain of length n. 

a, = link number x. 
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Employing the methods described in the previous chapter 

binary images of pollen were made. A border one pixel thick 

was 'wiped' black. This prevented the subsequent object search 

from fruitlessly trying to trace a boundary that was not 

contained wholly within the image. It would be quite simple 

to include a portion of code that detected an object that was 

not entirely contained within the image under investigation and 

caused the next image captured to incorporate it. 

The process of extracting the objects and their chain codes 

from the binary images is describe in the steps outlined below: 

1. Start the scan from the top-left of the image (the origin). 

2. At each successive point check for an object ie a pixel with 

the value of the maximum grey level. 

3. Once an object pixel is located its co-ordinates are stored. 

4. The rest of the object is traced and stored thus: 

a) Object maximum-minimum location array is set to out of 

range values. The array stores the co-ordinates that 

enclose the object and is used to delete it at a later 

stage. 

b) The Freeman location counter is set to 4 (ie it points 

back to the last non-object pixel). 
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c) From the current pixel a search begins for the next object 

pixel at the pixel pointed to by the Freeman location 

counter. 

d) If no edge is found the Freeman location counter is 

incremented by a modulo-8 addition of 1. This produces 

an anti-clockwise search of pixels around the current 

pixel. A check is also made that the object is not a 

single point - this would result in an infinite loop as 

the search cycles about it. The procedure jumps to 5 

if a single piont is found. 

e) If an edge is found the value of the Freeman location 

counter is stored. 

f) The maximum-minimum location array is updated. 

g) The current pixel is updated to that pointed to from the 

last current pixel location. 

h) The Freeman location counter is set to point to the last 

pixel searched before the current pixel was found. 

i) Steps (c) to (h) are repeated until the original 

co-ordinates are reached again. 

5. Then using the maximum-minimum location array the object is 

deleted thus preventing further chain codes being produced 
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for the same object. 

6. If the edge just traced is longer than a previously set 

threshold length (eg a chain more than 100 links long) then 

it is stored to disk or is used in further shape analysis 

procedures. Objects with shorter chains are ignored as 

detritus. 

7. The scan continues from the original co-ordinates of the 

object just located as described from 2 to 6. This continues 

until the bottom-right of the image is reached. 

5.4 Image Distortion 

It is important when looking at shape that the image being 

used has a 1: 1 relationship with the 'real' world. In other 

words the aspect ratio of the image is 1: 1. The frame-store 

used in this study however has a 3: 2 aspect ratio. This resulted 

in the images used being distorted in such a way that they were 

stretched along the vertical axis. By deleting every third 

horizontal line from the image and then compressing the remaining 

lines together this distortion was rapidly removed. For any 

future work a frame-store with a1 :1 aspect ratio is recommended. 
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5.5 Basic Information Extracted from Code 

As well as the basic chain coding scheme, Freeman[14-18] 

produced numerous algorithms that extracted shape information 

from the chain code. A selection of the most useful of these 

is described below. 

5.5.1 Area Enclosed by Chain 

The following formula may be used to calculate the area 

enclosed by a chain. 

Area =j aix y1-1 +1 alr 
t= 2 

yi = the y ordinate of link i. 

Yt = YL-i + city 

atx-the x component of the link aj 

(ie if al=0 then at -1& aly-0 ). 

As closed chains are used the ordinate of the initium yo can 

be arbitrarily selected. This formula calculates the area 

encircled in a clockwise direction. The result has a negative 

value for anti-clockwise encirclement. The direction of 

enclosure is easily removed by using the absolute value of the 

result. 
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5.5.2 Length of Object Perimeter 

The length of an object's perimeter can be calculated very 

rapidly using the following equation: 

L=ao+[a0'r2] 

n, -number of odd-valued chain code links. 

n, -number of even-valued chain code links. 

5.5.3 Moments of Inertia 

The first moment of inertia of an area enclosed by a chain 

code along a given axis (in this case the x-axis) is calculated 

thus: 

Mi s 
2atx[Yi 

t+ atrýYt-t + 3atrlJ 
tt 

ajx-the x component of the link aj 

(ie if aj -7 then a-1 & at,, --1) . 

ye - the y ordinate of link i. 
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5.5.4 Centroid of the Chain 

The centroid of a chain, or its centre of gravity, may easily 

be calculated given the first moments of inertia about both 

major axes and also the area enclosed by the chain. The location 

of the centroid with respect to a specified axis is given by 

the ratio of the moment about this axis to the enclosed area. 

Thus the centroid co-ordinates (x, y)are: 

- M' X X = Area 

_ M1 
yy 

Area 

The absolute values of both the moment and area values will 

need to be used to give valid co-ordinates within the frame-store 

co-ordinate system. 

5.5.5 Maximum & Minimum Dimensions 

The maximum and minimum diameters of an object can be easily 

calculated from a chain code. The distance from the initium 

to the link at the half-way point along the code is calculated 

using Pythagoras' theorem. Subsequent calculations are made 

using pairs of links around the chain . The maximum and minimum 

distances encountered are stored for future analysis. This 

method assumes a certain amount of symmetry in the object being 
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measured. Fresh pollen is generally symmetrical and is therefore 

suitable for measurements using this method. Fossil pollen may 

be more asymmetric due to preservation damage and this method 

may require further refinement. Regions of the code where the 

maximum and minimum dimensions are found may require closer 

scrutiny to check that no other combinations of link pairs 

produce larger or smaller diameters. 

5.5.6 Combination of Shape Measures 

The basic geometric measures described above may be combined 

to produce further features. Ratios of measures such as object 

perimeter length to area or maximum to minimum diameter may be 

used. A measure of the compactness of the object may be 

calculated using the following equation: 

Compactness - 
Perimeter2 

Area 

5.6 Moment Invariants 

These may be used to extract features from images and are 

invariant under image rotation and reflection. Since the 

introduction of moments by Hu[23] they have had varying degrees 

of success in applications such as aircraft identification 

(Dudani et al[10]), scene matching (Maitra[29]) and character 
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recognition (Casey[4]). The moments are calculated using the 

second- and third-order central moments (µP4) of an image (1(tß /)) 

given by: 

x and y are the co-ordinates of the centre of gravity calculated 

above (see section 5.5.4). The co-ordinate system of the image 

is shifted so that the origin coincides with (x. y) thus: 

µpa- ip-! a'10.! ) 

The following equations represent the seven low-order 

invariant moments most commonly used: 

0l s1120+1102 

+2 a (112o 1102)2 +'4ý=11 

43 ° (430-31112)2+(31121 -µ03)Z 

04 a( µ30 + 1112 )2 + (1121 + 1103 )2 

03 =Cµ30'3µ12)(1130+R 2)[(R30+41z)2-3(1121 +µ03)Z] 

+(31L21 - µo3)(µ21 + µo3)[(3I 3o + µ12)Z - (µ21 + 1103 )2] 
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46' CI 2o'µoz)(Cµ3o+µ12)T(1121+µ03)Z]+4µi, (µ30+µ12)(11s1+1103) 

07-(31121 - 1103)(µ30+ µ12)[CI=30+ N12)2-3(µ21 + 1103)2] 

'0130 - 3µl2)(µ21 + 903)[(31130 + 1112 )2 - (µzi + I1o3)2] 

It must be noted that moments ý,..... ýb are all invariant 

under rotation and reflection. However, 07 is sign sensitive 

to reflection, but its magnitude is unchanged and so the absolute 

value of this moment is used. 

The moments calculated above can have a very large dynamic 

range causing the classification system described in chapter 

2 to be unusable as the within-class scatter matrix cannot be 

inverted. Tien[42] suggested that it is more practical to use 

the logarithm of the moment magnitudes. Invariant moments (wj) 

are therefore calculated thus: 

wa=logI of I, i= 1,2,..., 7 

By substituting normalised central moments (q.. ) for the 

central moments (R) in the invariant moment equations Hu[23] 

produced moments that are invariant under scale changes. 

Normalised central moments are calculated thus: 
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2 

µ oo =image area. 

Maitra[29] proposed a further adaptation to the moment 

calculations to produce six functions invariant under contrast 

changes. The functions (ßj) are given by: 

ßl _ 

ýZ 

03 1100 ß2 ° Az' Al 

53_04 03 

Q4 = 

03 

N 04 

1%a 4a 
ý4*01 

ß6a07 0s 
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The different moment invariant functions may be applied to 

object boundaries, binary images or even the raw images of 

objects. Moments calculated from the object boundary contain 

some information not carried by moments taken from either raw 

or binary images (Dudani et al[10]). Information about the 

high-frequency part of an image is contained disproportionately 

in the moments derived from the object boundary. In other 

words, minute details of the pollen shape are best characterised 

by moments calculated from the pollen boundary ie directly from 

its chain code. Coarse structural features on the other hand 

are best described by moments calculated from binary or raw 

images. These moments also have the advantage that they are 

less susceptible to noise. A combination of moments from both 

boundary and binary or raw images will maximise the shape 

information extracted from an object. 

5.7 Shape from Boundary Tracing 

Boundary tracing techniques employ the centre of gravity 

(see section 5.5.4) as a standard reference point within an 

object to produce a "centroidal profile". A plot is made of 

the distances from the centre of gravity of an object to each 

boundary point in sequence. The maximum distance is chosen as 

the starting point of the trace as well as being a normalising 

factor to reduce all distances to the range 0 to 1. The distance 
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1 is the maximum distance and 0 at the centre of gravity. If 

a fixed number of edge points are sampled the resultant plot 

is scale and rotation invariant. 

This study uses two different methods to define which edge 

points to sample. The first samples points at equal distances 

around the object perimeter using the "true" length (see section 

5.5.2) of the edge between each successive point. Alternatively, 

points that subtend equal angles to the object centroid are 

used. if, for example, 100 points are sampled then points at 

angles 0° , 3.6° , 7.2° , ... etc are employed. Angles may be 

easily calculated using the cosine rule: 

b2+c2-a2 
Cos Aa 

2bc 

A -angle subtended to centroid from edge points. 

a =distance from point 1 to point 2. 

b- distance from centroid to point 1 

c- distance from centroid to point 2 

The main difference between these two methods is the dis- 

tribution of their sample points around the object perimeter. 

The first method has an even distribution of points around the 

perimeter, whereas the equal angle method has higher sample 

densities on parts of the edge closest to the centroid. 
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Due to the nature of this method the classification techniques 

used for the earlier methods cannot be used. An unknown shape 

is classified by matching its profile with a set of standard 

shape profiles. The closest match should occur with the most 

similar standard shape profile. Moore & Webb[32] present a set 

of standard pollen shapes often found in nature. The set of 

seven standard pollen shapes that most closely resemble the 

pollen classes used are shown in Fig. 5.02. These standard 

shapes produced the profiles in Fig. 5.03 (equal distance method) 

and Fig 5.04 (equal angle method). The closeness of the match 

between an unknown pollen shape and a standard is determined 

by the square of variance a, y between them: 

N 

axy° L(xt-yl)2 

N -number of sample vectors. 

xi=it"element of unknown pollen shape. 

y, °i"`element of standard pollen shape. 

The standard shape that produces the lowest o.,,, when compared 

to an unknown is the shape into which the unknown is classed. 

Using profiles ordered with their maximum distances first, may 

not always produce the best matches, therefore a.,, is calculated 

with the unknown profile ordered to each of the top ten longest 

distances in turn. 
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5.8 Chain Autocorrelation 

The autocorrelation function of a chain (A) was suggested 

by Freeman[16] and is given by: 

OAA(J)° 1R 
cos(min(l as -aL. I I, I (aL-a, "f)-8I)) n L_I 

j-0,1.2,..., n 

n- number of links in chain A 

ai - i`" link of chain A. 

When using this formula it is assumed that the chain is a 

continuous loop ie the link following the terminus is the 

initium. 

As the number of elements in the autocorrelation function 

is dependant on the size of its original chain code the function 

is sampled at regular intervals. It is hoped that the sampled 

plot produced will be distinctive for each standard pollen 

shape. Fig. 5.05 shows the sampled autocorrelation functions 

for the standard pollen shapes shown in Fig. 5.02. The same 

classification methods used for the boundary traces in the 

previous section are used here. 
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5.9 Specific Spine Detection and Classification 

This section of the study describes a new method (Treloar 

and Taylor[ 431) to distinguish between a group of spinose pollen. 

These have long, conspicuous, and generally sharp, excrescences 

(spines) whose length generally exceeds 3µm. The usefulness 

of texture to identify pollen within this group is hindered as 

the spines make it difficult to select an area with a uniform 

microstructure for analysis, Waterhouse[45]. The shape 

parameters presented here are unconstrained by the spines and, 

in fact, use them to identify the pollen. 

Fresh pollen from four spinose taxa were used: 

Bidens hendersonensis (Plates 1), 

Emilia sonchifolia (Plates 4), 

Fitchia speciosa (Plates 5), 

Senecio stokesii (Plates 10). 

A human would use the size, distribution and shape of spines 

over the pollen surface to identify these pollen. Fitchia 

speciosa is recognised most easily as it has steeply pointed 

spines that have a relatively sparse distribution. The surfaces 

of the other pollen are dominated by the spines and are harder 

to separate. Emilia sonchifolia has small spines that are 

densely packed over the pollen surface. Bidens hendersonensis 
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may be distinguished from Senecio stokesii in that it has a 

slightly higher spine density with spines which are generally 

shorter with wider bases. 

5.9.1 Difference Code 

A close look at Fig. 5.01 shows the way in which the chain 

code(A) changes as it traces its way around a spine. As it 

moves towards the peak of the spine the chain code is either 

1 or 2. Once past the peak the code is either 6 or 7 with a 

sharp change at the peak from 2 to 6. A difference code can 

be used to highlight this change in code and therefore may be 

useful in the classification of spinose pollen. 

5.9.2 Generating the Difference Code 

Difference code can quickly and easily be constructed. The 

difference code (DI) in Fig. 5.01 is formed by recording the 

minimum number of 450 turns between each chain code and the 

next. For example, to go from code 6 to 7a single 45' turn 

is required and so the difference code is 1. From codes 7 to 

2, three 45' turns are required and so a difference code of 3 

is recorded. This can be represented thus: 
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Dx-min (Ia1-a,., I. N-Ian-a,.. 1) 
r 

0<Dx<Z 

N number of pixel neighbours (N - 8). 

x -distance between links to be compared. 

The chain code used is assumed to be a closed loop where the 

initium and terminus coincide and therefore: 

al=a.., and a. = a, _, 

As the above equations suggest, each code need not be compared 

to its immediate successor, but may be compared to codes several 

steps along. For example, Fig. 5.01 also shows the difference 

code for a step displacement of 4. This gives yet more 

information about the chain code being analysed. It is the 

potential of this property that will now be explored. 

5.9.3 Difference Code Probabilities 

A set of difference codes is calculated for displacement 

steps 1 to 20. Then the probability of each difference code 

occurring at each step is calculated and used as feature vectors 

for variable selection and leave-one-out classification (see 

chapter 2). Due to the large number of features (and small 
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number of samples) numerous sub-samples of difference code 

probabilities were used and the best combined into a final 

classification system. 

5.10 Analysis of Shape and Geometric Measures 

5.10.1 Results 

Two sets of 18 images were captured for each of the 12 pollen 

taxa. The first set of images was taken at a constant mag- 

nification of 1250x. The information extracted from these 

images was concerned with relative pollen sizes. A second set 

of images was taken at the maximum magnification so that the 

whole pollen grain could still be seen. These images were used 

for shape analysis. 

The first set of results was derived from the basic shape 

measures outlined in section 5.5. The relative pollen areas 

and perimeters observed at 1250x magnification are shown in 

Fig. 5.06 and Fig. 5.07. A gross perimeter measure, namely the 

number of links in the chain code, is shown in Fig. 5.08. The 

measures shown in Fig. 5.09 to Fig. 5.13 were calculated at the 

maximum possible magnifications and are ratios of the basic 

shape measures; area, perimeter and the maximum and minimum 

diameters. 
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As well as considering the separation of the pollen using 

single shape variables as described above, a whole set of 

variables was classified using the leave-one-out classifier 

described in section 2.1.3.1. The nine variables selected were; 

compactness index, area, perimeter, number of chain code links, 

area : perimeter, perimeter : area, maximum minimum diameter, 

maximum diameter : area and maximum diameter perimeter. Table 

5.1 (a) shows the classification rates for all 12 taxa using the 

variables selected. The classification rates for the 

non-spinose pollen are shown in Table 5.1(b) and those for the 

spinose pollen can be seen in Table 5.1(c). 

The variable selection procedure tended to select single 

variables to discriminate between pollen class pairs. The 

variables were of varying usefulness for classification purposes 

and Table 5.2 shows the frequency with which each variable was 

selected. Also there were 5 groups of variables that tended 

to be associated with each other. Table 5.3 shows the relative 

importance of each group given by the relative frequency with 

which each group was selected. The groups made up of compactness 

index, area and either perimeter : area or area : perimeter 

were the most useful exclusively for separating spinose pollen. 

Moment invariants were calculated for all 12 taxa and then 

for both the spinose and non-spinose taxa. Three different 

combinations of the moment invariant calculations were used. 

Firstly, using the logarithm of each of the 7 moments (*i) 

applied to the object boundaries and both the raw and binary 
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Table 5.1(a) : Basic shape measures applied to all 12 taxa 

% Matched to Taxa 
Bh/Pq 

Taxa/ Ps/Ss Cb Em Es Fs Mg Pm Sp Xs 
Bh/Pq/Ps/Ss 94 -2 2--2 - - 

Cb - 88 6 ---- - 6 
Em - - 94 3--- 3 - 
Es 2 -- 97 --- 2 - 
Fs - -- - 100 -- - - 
Mg - -- -- 88 - - 13 
Pm - -- --- 100 - - 
Sp - -- --6- 94 - 
Xs - -- ---- - 100 

Table 5.1(b) : Basic shape measures for non-spinose pollen 

Taxa/ Cb Em 
Cb 88 6 
Em - 86 
Mg -- 
Pm -- 

Pq/Ps -- 
Sp -- 
Xs -- 

% Matched to Taxa 
Mg Pm Pq/Ps Sp Xs 

----6 
-2 11 -- 

88 --- 13 
- 100 --- 
-3 97 -- 
6-- 94 - 
---- 100 

Table 5.1(c) : Basic shape measures for spinose pollen 

% Matched to Taxa 
Taxa/ Bh/Ss Es Fs 
Bh/Ss 94 6- 

Es 3 97 - 
Fs -- 100 



Table 5.2 : Relative occurrences of basic shape variables 

Area = 30.11% 
Perimeter = 29.55% 
Number of Links 12.50% 
Max. Diameter : Area = 9.66% 
Max. Diameter : Perimeter = 8.52% 
Perimeter : Area = 4.55% 
Area : Perimeter = 2.84% 
Compactness Index 2.27% 
Max. : Min. Diameter = 0.00% 

Table 5.3 : Relative occurrences of basic shape variable 
groups 

Area & Number of Links = 41.18% 
Perimeter & Area : Perimeter = 17.65% 
Links & Perimeter : Area = 17.65% 
Compactness, Area & Area : Perimeter = 11.76% 
Compactness, Area & Perimeter : Area = 11.76% 



images at the maximum magnification. The best classification 

results were obtained using a combination of moments calculated 

from raw images and object boundaries. These results may be 

seen in Table 5.4. The second moment combination utilised the 

invariant moments calculated from the normalised central moments 

(11.,, ) to give scale invariant moments. These were applied to 

both the raw images and pollen boundaries and produced the 

classifications seen in Table S. S. The final combination simply 

added the contrast invariance features (Dj) to the calculations. 

These were again applied to both raw images and pollen 

boundaries. The resulting features could only separate about 

half of the class pairs'and therefore no final classification 

was attempted. 

The standard shapes shown in Fig. 5.02 and their boundary 

trace and autocorrelation plots (Fig. 5.03 to Fig. 5.05) were 

used as templates to classify the pollen taxa into general shape 

groups. The results for both the boundary tracing and auto- 

correlation methods are summarised in Table 5.6. As these 

methods are inappropriate for spinose pollen only the 

non-spinose pollen are used. 

Finally the spine detection and classification method was 

tested. Due to the large number of difference code probability 

features produced, the variable selection procedure was applied 

to several sub-groups. The best variables f rom each sub-group 

were combined and reapplied to the variable selection procedure - 

The efficiency of the variables selected on this second pass 
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Table 5.4(a) : Basic moment invariants for all 12 taxa 

Taxa/ Bh Cb Em 
Bh 77 - 15 
Cb - 69 - 
Em 6 - 94 

Es/Fs 14 -- 
Mg - - 13 
Pm - -- 
Pq - 6- 
PS - 16 - 
Sp - - 19 
Ss 13 -- 
Xs - -- 

% Matched to Taxa 
Es/Fs Mg Pm Pq Ps Sp Ss Xs 

--- -- - 8- 
6-- 13 - 13 -- 

73 -- -- - 14 
- 78 - -- 9 -- 
-- 75 66 - - 13 
-6- 81 - 6 -- 
-3- - 81 - -- 
--- -- 81 -- 
3-- -- - 84 - 
- 13 - -- - - 88 

Table 5.4(b) : Basic moment invariants for non-spinose 
pollen 

% Matched to Taxa 
Taxa/ Cb Em Mg Pm Pq Ps Sp Xs 

Cb 69 6 - - 13 - 13 - 
Em - 88 13 ----- 
Mg - 13 69 --- 13 6 
Pm -- - 75 66- 13 
Pq 6- 6 - 81 -6- 
Ps 15 - 2 -- 81 2- 
Sp - 21 2 --- 77 - 
Xs -- 13 ---6 81 

Table 5.4(c) : Basic moment invariants for spinose pollen 

% Matched to Taxa 
Taxa/ Bh Es/Fs Ss 
Bh/Ss 94 - 6 

Es 9 72 19 
Fs 13 3 84 



Table 5.5(a) : Moment invariants applied to all 12 taxa 

% Matched to Taxa 
Cb/Em Es/Fs 

Taxa/ Bh Pq/Ps Ss Mg Pm Sp Xs 
Bh 78 41 3 6 71 

Cb/Em/P /Ps 2 88 - 10 1 -1 
Es/Fs/Ss 8 3 86 - 3 -- 

Mg 2 1- 96 - -2 
Pm 8 52 - 83 -2 
Sp - 2- - - 98 - 
Xs 6 2- - - - 92 

Table 5.5(b) : Moment invariants for non-spinose pollen 

Matched to Taxa 

T / 
Cb/Em 

Pm S /P M P Xs 
fr ý". ý 

�ýý ýf J- axa p g q s ',, l "{ Cb/Em/Pq/Ps 87 10 -- 3 1° C, ' W. 
Mg 2 93 -- 5 ' O~ 
Pm 5- 94 - 1 lie- lu ý 
Sp 11- 99 - 
Xs 27-- 91 

Table 5.5(c) : Moment invariants for spinose pollen 

% Matched to Taxa 
Taxa/ Bh Es/Fs/Ss 
Bh 98 2 

Es/Fs/Ss 13 88 



Table 5.6(a) : Equal distance boundary trace classification 

% Matched to Shape Class 
Taxa/ 1 234567 

Cb 63 38 ----- 
Em 75 25 ----- 
Mg 56 44 ----- 
Pm - 75 -- 13 - . 

13 
Pq 88 13 ----- 
PS 94 6----- 
Sp 100 ------ 
Xs - 13 -- 81 6- 

Table 5.6(b) : Equal angle boundary trace classification 

% Matched to Shape Class 
Taxa/ 1234 5 67 

Cb ---6 75 19 - 
Em --- 25 25 50 - 
Mg ---- 69 31 - 
Pm --- 56 6 38 - 
Pq --- 19 44 38 - 
Ps -6- 13 56 25 - 
Sp ---6 88 6- 
Xs --- 38 6 56 - 

Table 5.6(c) : Autocorrelation classification 

% Matched to Shape Class 
Taxa/ 12 34 5 67 

Cb -6 -- 63 31 - 
Em -- - 100 - -- 
Mg - 25 - 13 25 31 6 
Pm - 69 -- 6 - 19 
Pq - 13 - 13 44 31 - 
Ps - 13 -- 50 38 - 
Sp - 31 -- 69 -- 
Xs - 13 -6 38 31 13 

Key : Shape Class 1 Circle 
2= Ellipse 
3= Rectangle 
4= Diamond 4 
5= Diamond 5 
6= Lense 
7= Pillbox 



ranged from 81% to 100%. Average results from three of the 

best variable sets are shown in Table 5.7. Each class pair 

required approximately three variables to separate them. 

As well as efficiently classifying the spinose pollen this 

method may also be used to separate spinose from non-spinose 

pollen. The probability of difference codes 3 and 4 occurring 

in spinose pollen is always greater than zero for all dis- 

placement steps. Non-spinose pollen have occasional incidents 

of difference code probabilities greater than zero for codes 

3 and 4 but these never span more than 3 or 4 displacement 

steps. When they do occur the difference code probabilities 

never exceed 0.027 and 0.002 for codes 3 and 4 respectively. 

The equivalent probability values for spinose pollen are always 

greater than 0.12 and 0.02 respectively for displacement steps 

from 7 and above. 

5.10.2 Discussion and Concluding Remarks 

The ultimate purpose of the shape measures discussed in this 

chapter is to reduce the number of pollen taxa in each sub-sample 

at the final level of the classification scheme (Fig. 1.01). 

Before any assessment can be made in respect to this, it is 

important to examine the success of the texture classification 

for all 8 non-spinose pollen together. It has already been 

shown that spinose pollen can easily be separated from the rest 

of the pollen; they are therefore left out at this point. The 
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Table 5.7 : Spinose pollen classification using difference 
code probabilities 

% Matched to Taxa 
Taxa/ Bh Es Fs Ss 

Bh 88 2 46 
Es 6 94 -- 
Fs 3 1 93 2 
Ss 6 - - 94 

Table 5.8 : Non-spinose pollen texture classification 

% Matched to Taxa 
Taxa/ Cb Em Mg Pm Pq 

Cb 67 - 11 5- 
Em - 96 2 -- 
Mg - - 61 -- 
Pm - -- 91 - 
Pq - 6- - 94 
Ps 6 -- -- 
Sp 13 -- 7- 
Xs 2 6 18 6- 

Ps Sp Xs 

-- 
2 `! (n%, 

-- 39 
-2 7 

94 - - 9"ý -. 
- 74 6 

-- 68 6ý 



classification of spinose pollen is discussed later. Table 5.8 

shows the texture classification of non-spinose pollen. The 

texture features employed are Haralick measures obtained 

automatically from images using methods that will be described 

in more detail in the next chapter. While the success of the 

classification for some pollen is very encouraging with rates 

of over 90%, others do less well at less than 75%. Ideally the 

shape measures need to separate pollen taxa that commonly become 

confused, for example, Macaranga graeffeana (Mg) and Xylosma 

suaveolens (Xs). 

The equal distance boundary tracing and matching method only 

met with limited success. Six non-spinose taxa were basically 

circular or elliptical and these are indeed the standard shape 

classes to which they were assigned. Both Pritchardia minor 

(Pm) and X. suaveolens (Xs) tend towards diamond, lens and pillbox 

shapes and indeed these are the only taxa that are classified 

this way. While this technique classifies the basic taxa shapes 

correctly it does not allow them to be split into sufficiently 

small groups for subsequent texture analysis. 

The equal angle boundary tracing and matching method was 

even less successful than the equal distance method. The taxa 

are almost exclusively classified to either diamond or lens 

shape classes. The main problem with this method is brought 

about by the troughs in the boundary plot that cover a relatively 

short number of vectors due to the sampling frequency on edges 

furthest from the centroid. During the plot matching stage 
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even slight misalignments of the plots cause large squares of 

variance to occur. On reflection it may have been more 

advantageous to have matched these plots at their minima and 

not their maxima. Even with this method changed it is unlikely 

that any significant improvement over the equal distance method 

would occur. 

Both these boundary tracing methods suf f er when any part of 

the object boundary is missing. Firstly this displaces the 

position of the object centroid and secondly it disrupts the 

form of the resultant plot. This method, while more efficient 

than two dimensional template matching (used by Mirkin and 

Bagdasaryan[311), suffers due to the natural variability of 

pollen shape. 

The results using the autocorrelation technique are very 

poor for the same reasons as for the boundary tracing methods. 

This technique is much less flexible however, as all the plots 

are very similar and rely on subtle differences to distinguish 

between the shape classes. 

The initial results obtained from the basic moment invariant 

calculations were very promising with relatively high clas- 

sification rates and little confusion between the pollen taxa. 

However, subsequent results with the addition of both scale and 

contrast invariances show that the initial separations in Table 

5.4 are probably due to contrast and scale differences in the 

images. It is too early however to discount the potential of 
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moment: invariant: s from t: his problem. The classificat: ion scheme 

collapsed when t: he cont: rast invariant functions (01) were added. 

This is not too surprising as the contrast and brightness levels 

of the image were very high at the time (to enhance the pollen 

edge for object location). The brightness of the central regions 

of the pollen almost totally removed any trace of internal 

texture. The moments were effectively picking up the differences 

in illumination from taxa. to taxa. To combat this problem a 

second image may be captured with $normal' illumination - as 

used for texture analysis. After histogram equalisation and 

therefore dampening the contrast between images the moment 

invariants with scale invariance and without contrast invariance 

may be applied. The resulting moments will then contain 

information about both the shape and internal structure of the 

pollen. 

The spine detection and classification method proved to be 

highly effective, producing high classification rates that are 

comparable to those achieved using texture analysis and 

requiring a small number of variables per class pair to do so. 

They can also be easily separated from non-spinose pollen by 

examining a portion of the difference codes produced. 

The compactness index, one of the basic shape measures, also 

separates the spinose pollen from the non-spinose (Fig. 5.09). 

Interestingly this measure also classes Elephantopis mollis 

(Em) at a point bridging the gap between spinose and non-spinose 

pollen. As Plate 3(a) shows E. mollis does have some small 
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spines on its surface - however these are not large enough for 

it to be classed as a 'true' spinose taxa. The classification 

of spinose and non-spinose pollen is still most effectively 

done using difference codes. Although as Table 5.1(c) shows 

the classification of Emilia sonchifolia (Es) and Fitchia 

speciosa (Fs) is improved when basic shape measures are combined. 

indeed,, F. speciosa may be left out of the difference code 

classification as the basic shape measures produce a 100% 

classification. 

Of all the shape measures analysed in this chapter the basic 

shape measurements are by far the most effective. The three 

most successful single variables are; pollen area, perimeter 

and number of links in the chain code. All of these produced 

sub-samples containing no more than four pollen taxa. From the 

area graph in Fig. 5.06, five sub-samples of pollen may be 

constructed with the following cut-off points: 

8000+ - sub-samples of; Pq & PS 

6-8000 - sub-samples of; Pm, Pq & PS 

4-6000 - sub-samples of; Ein, Pm. Pq & ps 

2-4000 - sub-samples of; Cb, Ein & Pm 

0-2000 - sub-samples of; Cb, Mg, Sp & xs 

The resulting texture classifications of these sub-samples are 

given in Table 5.9(a) to (e). 
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Table 5.9(a) : Texture classification of Pq & Ps 

% Matched to Taxa 
Taxa/ Pq Ps 

Pq 100 - 
Ps - 100 

Table 5.9(b) : Texture classification of Pm, Pq & Ps 

% Matched to Taxa 
Taxa/ Pm Pq Ps 

Pm 100 -- 
Pq 6 94 - 
Ps -- 100 

Table 5.9(c) : Texture classification of Em, Pm, Pq & Ps 

% Matched to Taxa 
Taxa/ Em Pm Pq Ps 

Em 100 --- 
Pm - 100 -- 
Pq 72 91 - 
Ps --- 100 

Table 5.9(d) : Texture classification of Cb, Em & Pm 

Matched to Taxa 
Taxa/ Cb Em Pm 

Cb 83 - 17 
Em - 100 - 
Pm -- 100 

Table 5.9(e) : Texture classification of Cb, Mg, Sp & xs 

% Matched to Taxa 
Taxa/ Cb Mg Sp Xs 

Cb 72 11 17 - 
Mg - 61 - 39 
Sp 24 - 74 2 
Xs 4 26 - 70 



It must be noted that the variables used to separate these 

sub-samples have been selected individually for each sub-sample. 

The classification of non-spinose pollen in Table 5.8 used 17 

different Haralick measures. The number of measures used for 

these sub-samples are considerably smaller. Also the measures 

produced by Laws[ 261 play a greater role as the number of classes 

to separate declines. When only two taxa are to be separated 

Laws measures are used on about 70% of occasions. 

Both the perimeter and number of chain code links produce 

identical sub-samples at slightly different cut-off points. 

The most distinct separations may be seen in the perimeter graph 

in Fig. 5.07: 

550+ - sub-samples of; Fs (spinose) 

200-550 - sub-samples of; Em, Pm, Pq & Ps 

0-180 - sub-samples of; Cb, Mg, Sp & Xs 

The subsequent texture analysis of the lower groups may be seen 

in Table 5.9(c) and (e). The good classifications achieved 

using these sub-samples are marred by the classification shown 

in Table 5.9(e) where M. graeffeana (Mg), X. suaveolens (Xs), 

Canthium barbatum (Cb) and the fungal spores (Sp) are all poorly 

classified. 

In an attempt to improve this situation several of the basic 

shape measures were combined and produced the classification 

shown in Table 5.1(b). Using this table it can be seen that 
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if an 'unknown' sample is matched to X. suaveolens (Xs) then 

there is a small chance that it could also be either C. barbatum 

(Cb) or M. graeffeana (Mg). Using this principle the following 

7 sub-samples were constructed: 

Cb match - sub-samples of; Cb (100% classification) 

Em match - sub-samples of; Cb & Em 

Mg match - sub-samples of; Mg & Sp 

Pm match - sub-samples of; Em, Pm, Pq & Ps 

Pq/Ps match - sub-samples of; Em, Pq & Ps 

Sp match - sub-samples of; SP (100% classification) 

Xs match - sub-samples of; Cb, Mg & Xs 

The subsequent classifications of these sub-samples may be seen 

in Table 5.10(a) to (e). Sub-samples Cb and Sp however can be 

classified immediately. These sub-samples again have clas- 

sification rates over 90% and indeed more often than not at 

100%. However,, X. suaveolens and M. graeffeana are still poorly 

classified in sub-sample Xs but this is less significant as 

both C. barbatum and M. graeffeana are represented separately in 

other sub-samples (Table 5.10(a) and (b) respectively) with 

high classification rates. Here it may be plausible to ignore 

M. graeffeana from this classification as there is only a small 

chance that the 'unknown' is in this class. This is not an 

ideal situation. There will inevitably be pollen taxa in the 

same sub-sample with very similar texture. It is quite clear 

that more work is required on sensitive texture measures to 

separate such taxa. 
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Table 5.10(a) : Texture classification of Cb & Em 

Matched to Taxa 
Taxa/ Cb Em 

Cb 100 - 
Em - 100 

Table 5.10(b) : Texture classification of Mg & Sp 

% Matched to Taxa 
Taxa/ Mg Sp 

Mg 94 6 
Sp - 100 

Table 5.10(c) : Texture classification of Em, Pm, Pq & Ps 

% Matched to Taxa 
Taxa/ Em Pm Pq Ps 

Em 100 - 
Pm - 100 - 
Pq 72 91 
Ps 100 

Table 5.10(d) : Texture classification of Em. Pq & Ps 

% Matched to Taxa 
Taxa/ Em Pq Ps 

Em 100 - 
Pq 6 94 
Ps 100 

Table 5.10(e) : Texture classification of Cb, Mg, & xs 

% Matched to Taxa 
Taxa/ Cb Mg XS 

Cb 81 is 4 
Mg 2 57 41 
XS 6 28 67 



In conclusion it must be noted that the pollen used in this 

classification scheme are all fresh pollen. The usefulness of 

this type of scheme in areas of palynology such as the composition 

of modern pollen rain is more or less proven. However, the 

usefulness of this scheme for the identification of fossil 

pollen is still unknown. This system is probably applicable 

to the younger fossil samples, but the pollen in older fossil 

sediments having been compressed and damaged tend to lose their 

shape and therefore this classification scheme will require 

modifications. Even with the loss of shape information the 

size of the grains may still be of some use. This is mainly 

speculation and awaits further investigation. 
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Chapter 6 
Other Techniques and 

Future Work 



6.1 Location of Optimum Areas for Texture Analysis 

In all previous research (Langford[251, Waterhouse[451 and 

Rutter[401) regions of the pollen sampled for texture analysis 

have been selected manually. This would not be acceptable in 

any final automated system. 

Bef ore outlining any technique f or automatic texture region 

location it is necessary to def ine how a texture region is 

selected manually. Firstly, it is important to avoid sampling 

macro-elements of the pollen grain such as colpi or pori. 

Secondly the area selected must have as wide a range of 

grey-levels as possible, thus maximising the information content 

of the image. However, areas with rapid changes in grey-levels 

may indicate the edges of colpi or pori and must also be avoided. 

Also areas to which small particulate material have become 

attached must be excluded as the texture is obscured. Overly 

dark or bright areas of the image must also be avoided. 

Waterhouse[45] also noted that different areas of the pollen 

surface have different textures. Also texture changes as the 

pollen surface curves away from the viewer and therefore samples 

taken towards the pollen edges are different from the centre. 

As already stated in chapter 5 the texture measures used are 

taken from pollen regions selected automatically. So how are 

the worst texture areas ou tlined above excluded? The simple 

answer is that they are not excludedi The basic assumption 

being that the worst texture areas are as much a part of the 
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distinctive texture of a particular pollen taxa as the best 

areas. The area selected is quite simply the whole image after 

the SEM has magnified the pollen to such an extent that its 

edges are lost. It effectively samples the largest square 

region that can fit completely inside the pollen grain. This 

eliminates some of the problem areas of a pollen grain such as 

the edges that are curving away and averages out the changes 

in texture from region to region over the pollen surface. For 

this study the selection of the square region is done manually. 

As the location of the pollen edge is known (see chapter 4 and 

5) it should be a relatively easy task to do this with computer 

controlled magnification and stage movement. 

Although the brightness and contrast used for texture analysis 

are more or less constant an automatic tuner would be useful. 

To adjust these settings manually the histogram of the image 

is used and the balances changed until there are few maximum 

or minimum grey-levels. No subjective visual estimation of the 

image balance is used. Again these settings should be achieved 

easily by a computer that has been given some initial settings 

and boundaries. 

To use the whole (256x256) image to construct the texture 

measures is computationally very time consuming. About 7225 

pixels (equivalent to an 85x85 image) are sampled within the 

whole image to produce the texture measures used in chapter S. 

This reduced the significance of the overall classification 

only slightly. It must be noted here that the displacement 
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vectors used in the construction of the Haralick measures are 

not limited to 1,4 and 8 as used by all other researchers, but 

range from 1 to 17. The variables that worked best for each 

sample are subsequently used. 

As pollen size is relatively constant there is little concern 

that the subtle differences in magnification of the texture 

within a taxa would effect the results significantly. Indeed 

the taxa most often confused, namely Macaranga graeffeana (Mg) 

and Xylosma suaveolens (Xs) have the smallest size ranges 

(Fig. 5.06 to Fig. 5.08). Fossil pollen may present a problem 

if their sizes fluctuate greatly due to preservation damage. 

This has yet to be demonstrated. 

The quality of the texture measures may be improved further 

by using an initial scan of the whole image to eliminate areas 

of extreme brightness and darkness. The image could be split 

into small overlapping regions and the grey-level histograms 

of each analysed. The regions with extremes of grey-level 

intensities (possibly taken as a mean) would be ignored. This 

may then exclude dark areas such as colpi, pori or even damaged 

areas. Bright areas such as the regions close to the pollen 

edge that tend to be highly illuminated may also be detected 

and ignored. Such calculations may prove to be computationally 

too time consuming. 
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6.2 Neural Networks 

Rumelhart et al[381 begin their book by posing the question: 

'What makes people smarter than machines? ' Even though people 

are not as fast or precise as computers for numerical calcu- 

lations they are far better at perceiving objects and noting 

their relationships to each other, understanding languaget as 

well as a wide variety of other cognitive tasks. People have 

the ability to learn tasks so that they can improve their 

accuracy and fluency at doing them, machines cannot. 

A classic response to the above question is that it is the 

, software' that brains follow that is important. Therefore all 

that is needed to produce a learning and thinking machine is 

the correct computer program. 

However, Rumelhart et al[381 take the view that: 

",,, people are smarter than today's computers because the 

brain employs a basic computational architecture that is more 

suited ... to processing tasks that people are good at. " 

So what is this computational architecture that the brain 

employs? The brain is a highly complex parallel mechanism 

composed of about 8 billion processing units (neurons), each 

one of which is connected to thousands of others. The parallel 

nature of the brain explains its great ability to solve pattern 

recognition problems. Speed is not the important factor - 
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parallelism is. The serial nature of an electronic computer 

lends itself to rapid numerical computations but not to pattern 

recognition. 

The approach of neural computing is to apply the basic 

principles of brain architecture to computer systems. By 

modelling the brain's basic systems it should be possible to 

make computers learn solutions to parallel problems such as 

pattern recognition. 

There are numerous models that have been proposed for work 

on neural networks. The network explored here is the layered 

feed-forward network model which is one of the most popular 

(Rangwala & Dornfeld[371). This provides a very flexible model 

able to coup with more complex tasks and also has a sophisticated 

learning scheme for network training. 

Fig. 6.01 shows the structure of a simple layered feed-forward 

network. It consists of an input layer, any number of hidden 

layers and an output layer, each of which is made up of individual 

processing units or nodes. The input layer serves only to 

distribute input values received to the hidden layer(s). An 

input signal is propagated through a network a layer at a time 

and is modified as it goes by simple equations. The input 

signal to each node is dependent on the output signal from each 

node in the layer below, combined with the weight (or strength) 
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of the connection between them. A node also has an activitY 

level (or threshold) that is added to the total input signal. 

This may be expressed using the following equation: 

netix= ILIljk*Ojk-i]+t1k 
1-1 

neti, t - input to the il node in the k' layer. 

N, t- I= number of nodes in the (k -I )h layer. 

Wilk - weight of connection between j"node in (k - 1)'layer to 

the ill node in the k"' layer. 

OLt - output from the V" node in the k" layer. 

(jjt -activity level of the il node in the V' layer. 

1 for input layer. 

The output signal from a node is then calculated by applying 

a nondecreasing nonlinear function to the inputs of that node. 

The function used in this case is a sigmoid function. The 

output from a node may therefore be expressed thus: 

pik 
1 -ItQCit 

To produce a working neural network the values of all the 

weights and activity levels have to be set to small positive 

and negative random numbers. Then the neural network is taught 

by presenting it with a set of input and desired output patterns. 

Firstly, an input is transmitted through the network (as 
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described above) and the resulting signals at the output layer 

are compared to the desired output patterns, if the actual 

output is identical to the desired output then no learning need 

occur, otherwise the weights between each node (WIjk) and activity 

levels of each node (tik) are changed to reduce the difference 

between actual and desired outputs (ie the error). Further 

input/output patterns are applied until the error is driven 

close to zero. Thus the network is taught to map a set of input 

patterns to a set of output patterns. The network should then 

be able to map similar patterns to the correct output pattern. 

The learning rule used to change the weights during the 

learning phase is the generalised delta rule. The error at the 

output layer of the network is propagated backwards and used 

to change the weights and activity levels of the nodes as it 

goes. In the following text the computations for changing 

weights are used. To apply this method to change the activity 

level of a node the activity level must be treated as a weight 

into that node from an imaginary node which has a constant 

output of 1. 

All the weights are changed a layer at a time f rom the output 

to input layer using the following formula: 
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Tl(bjkoik-, )+aAWII(x) 

x -the number of pattern presentations. 

q- learning rate (0 < 11 ý5 1) . 

a- momentum rate (0: 5 a: 5 1). 

6j, t =error signal of J'h node in V4 layer. 

Oct-, = output f rom, ith node (k -I )' layer. 

The function aAWjj(x) is a momentum term that prevents the 

network from falling into a local minima by relating the present 

weight change to the last. 

There are two equations for the error signal (6A), the first 

is used for the output layer: 

61k,, o (dik - Olk) - Oik - (1 - Ojk) 

djA; -desired output of the J" node in output layer k. 

The delta value of each output node is used to calculate all 

the weight changes for all the connections feeding into that 

node from the layer above. The second delta calculation for 

all hidden layers is: 
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Nb-l 

61t = ojk -(I- ojk) - Ik* 11*1 Ilk# I 

N k. I =number of nodes in layer (k + 1) . 

6,,;,, -delta value for i" nodes in previous layer (k+ 1) . 
Wilk., =weight between jttl node in present layer and ilt, node in 

previous layer (k+1) . 

Once all the weights and activity levels have been modified 

in this back propagation stage, a new set of input patterns are 

presented to the network. These forward and backward passes 

are repeated until the error at the output layer falls below 

a predefined level for all input patterns. The total error of 

the network for pattern, p, is given by: 

N 
E, 

p- 
E(dik-Oik 

21.1 

djA, -desired output for pattern P of the jth node in output 

layer k. 

Opt -actual output for pattern P of the J'h node in output 

layer k. 

N -number of nodes in output: layer. 

Now that the basic principles of neural networks have been 

explained their usefulness for pollen texture classification 

can be explored. The idea is to match a set of input texture 
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measures to a set of output nodes each of which represent a 

single pollen taxa. The desired output is 1 at the node 

representing the present input and 0 at the rest. 

Three training sets of input measures are used f or each 

pollen taxa. These are the mean together with the mean plus 

the standard deviation and the mean minus the standard deviation, 

of each variable. As there are 18 samples of each variable, 

each sample only has a limited influence on the overall mean 

and standard deviation. The maximum value of the mean plus 

standard deviation for each variable in all taxa is then used 

to normalise both the training set and the original samples 

(Davalo and Naim[8]). The training variables all lie in the 

range 0 to 1. Some of the original samples however can take 

on larger values as they can exceed the normalising value. The 

particular variables used were those selected by the variable 

selection procedure used with the linear classifier (see chapter 

2). 

The first test of the neural network was on two taxa; Canthium 

barbatum (Cb) and Elephantopis mollis (Em). Using the linear 

classifier with only a single variable both these taxa had a 

100% classification rate (Table 5.10(a)). The neural network 

constructed had a structure of 1-1-2 ie one input node (for the 

single variable), a single hidden node and two output nodes 

(one for each taxa). 
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This network learnt very quickly and achieved the target 

error of 0.001 in less than 100 iterations. A 100% classification 

was achieved when the original texture samples were passed 

through the network. This is not at all surprising as this had 

already been attained using a linear classifier. 

The next test was to try and separate Pritchardia minor (Pm), 

Passif lora quadrangalaris (Pq) and Pseudoelephantopis spicatur 

(Ps). Using the linear classifier both Pm and Ps had achieved 

a 100% classification rate. However, Pq had only a 94% success 

rate due to confusion with Pm. A network structure of 4-8-3 

was used and took just 445 iterations to reach a target error 

of 0.01. Fig. 6.02 shows the learning curve of this network. 

All the original samples passed through the trained network 

were correctly classified. Even the worst classification is 

very convincing having the following output pattern: 

Output node 1: 0.903611 

Output node 2: 0.011722 

Output node 3: 0.219977 

desired : 1.000000 

desired : 0.000000 

desired : 0.000000 

final test was done on the very poor classifications of 

Canthium barbatum (Cb) , Macaranga graef f eana (Mg) I Fungal spore 

(Sp) and Xylosma suaveolens (Xs) (see Table 5- 09 (e) ). A network 

structure of 16-80-4 was constructed with a target error of 

0.01 . Although the target error was achieved the classification 

of original samples was particularly poor for Mg and Xs. The 

network failed completely to identify Mg and only classified 
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Xs correctly 33% of the time. The classification rates of Cb 

and Sp both increased by about 12% however. The structure 

required to achieve these classifications was also overly bulky. 

These results serve to illustrate f urther that the variables 

used to separate Mg from Xs are completely inadequate and further 

research is required to improve the situation. 

The use of neural networks needs f urther exploration to 

discover other areas within this project to which they may be 

applied. 

6.3 Future Work and Concluding Remarks 

This thesis has demonstrated the success of the classif ication 

scheme proposed in chapter 1 Pollen may now be located in the 

image and their edges found. optimum areas of the pollen exine 

for texture analysis have now been selected automatically and 

the pollen that was initially poorly classified have been split 

into small highly classified sub-groups by shape analysis. A 

study of neural networks has shown a way that these clas- 

sifications may be improved still further. 

There are several areas however that require further 

investigation. The hardware control of the microscope itself 
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still awaits work - similar systems are already available# for 

example, the automatic analysis of cervical smears (Watanabe 

et al[461). 

As well as testing other methods of texture analysis it may 

be useful to see whether detrital material has a distinctive 

texture that may be used to exclude it f rom a sample. Also the 

assumption that spinose pollen cannot be separated using texture 

measures becomes more doubtful as other macro-elements of the 

pollen exine have been shown to have little effect on their 

classification. The texture analysis of fossil pollen also 

requires further investigation. 

The f inal problem is in the use of the SEM. Every image 

used in this study took at least 45 seconds to construct in the 

SEM frame-store due to the slow scan rate of the electron beam. 

Images captured using faster scan rates are of poorer quality. 

The slow scan is less of a problem at the moment as processing 

speeds of the images are slower than the image capture. However 

for a final system this will be less acceptable. Therefore it 

may be advisable to attempt pollen analysis using either a 

laser-scan or conventional light microscope where image capture 

is instantaneous. 
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Plate 1: Bidens hendersonensis 

Plate 2(a) : Canthium barbatum 
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Plate 2(b) : Canthium barbatum (Texture) 

Plate 3(a) : Elephantopsis InOllis 
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Plate 4: Emilia sonchifolia 



Plate 5: Fitchia speciosa 

Plate 6(a) : Macaranga graeffeana 



Plate 6(b) : Macaranga graeffeana (Texture) 

Plate 7(a) : Passiflora. quadrangalaris 
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Plate 7(b) Passiflora quadrangalaris (Texture) 

Plate 8(a) : Pritchardia minor 



Plate 8(b) : Pritchardia minor (Texture) 

Plate 9(a) : Pseudoelephantopis spicatur 



Plate 9(b) : Pseudoelephantopis spicatur (Texture) 

Plate 10 : Senecio stokesii 
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Plate 11(b) : Spore, Fungal (Texture) 



Plate 12(a) : Xylosma suaveolens 
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plate 12(b) : Xylosma suaveolens (Texture) 


