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SYNOPSIS 

This thesis considers the classification of physical states in a simplified gearbox using 
acoustical data and simple time domain signal shape characterisation techniques allied 
to a basic feedforward multi-layer perceptron neural network. A novel extension to the 
signal coding scheme (TES), involving the application of energy based shape 
descriptors, was developed. This sought specifically to improve the techniques 

suitability to the identification of mechanical states and was evaluated against the more 
traditional minima based TES descriptors. The application of learning based 
identification techniques offers potential advantages over more traditional programmed 
techniques both in terms of greater noise immunity and in the reduced requirement for 
highly skilled operators. The practical advantages accrued by using these networks are 
studied together with some of the problems associated in their use within safety critical 
monitoring systems. 

Practical trials were used as a means of developing the TES conversion mechanism and 
were used to evaluate the requirements of the neural networks being used to classify the 
data. These assessed the effects upon performance of the acquisition and digital signal 
processing phases as well as the subsequent training requirements of networks used for 

accurate condition classification. Both random data selection and more operator 
intensive performance based selection processes were evaluated for training. Some 

rudimentary studies were performed on the internal architectural configuration of the 

neural networks in order to quantify its influence on the classification process, 
specifically its effect upon fault resolution enhancement. 

The techniques have proved to be successful in separating several unique physical states 
without the necessity for complex state definitions to be identified in advance. Both the 

computational demands and the practical constraints arising from the use of these 
techniques fall within the bounds of a realisable system. 
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1. Introduction 

This thesis details research undertaken during a three year Science and Engineering L4 

Research Council funded contract into the application of digital signal processing and 
neural networks to the problems associated with monitoring the condition of machinery' 
acoustically. It describes the development and evaluation of a number of novel 
techniques which enable intelligent automation of the monitoring process. The thesis is 

arranged into five main subsections which describe the key areas of research undertaken 
during the study. The first three Chapters present the theory and technical 

considerations involved in the development of the novel analysis techniques whilst 
Chapters 5 and 6 focus on a series of practical trials directed at evaluating the 

application of these techniques to a simplified gearbox testbed system. 

The work begins with a short introduction detailing the fundamental difficulties 

associated with the monitoring of machinery together with an outline of proposed 
methods of approaching some these problems. Chapter 2 gives a detailed account of a 
range of currently available techniques which can provide feedback on the physical 
condition of a range of machine types. 

Chapter 3 introduces the signal conversion techniques which will be employed as a 
means of presenting signal characteristics to a classification system and discusses the 
implementation of these techniques using digital signal processing hardware. This type 

of implementation could eventually lead to the development of more operationally 
flexible low cost on-line real time monitoring systems. 

Chapter 4 discusses some of the aspects associated with the neural techniques available 
to perform the final classification of the condition status. Considerations involved in the 
successful application of this classification mechanism are also discussed. 

Chapters 5 and 6 deal with the practical implementation issues involved in the 

evaluation of different application mechanisms based around the processing techniques 
discussed in the earlier Chapters. In particular some of the potential pitfalls of specific 
implementation procedures are examined as are some of the benefits accrued by these 
techniques. In each case a series of results are presented which seek to highlight the 
findings of the research. 

Finally in Chapter 7 the conclusions of the work contained within this thesis are 
discussed together with an outline of areas in which future research is required to further 

evaluate the potential of automated monitoring and management of machinery in situ. 
Appendices are included at the end of the thesis which detail work performed and 
techniques used during the course of the work undertaken which it is felt would detract 
from the general flow of the main body of the text. 
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1.1 Condition Monitoring 

Condition monitoring is a relatively new field of science created primarily out of the 

necessity for improved efficiency in modern machinery which is becoming increasingly 

more complex. This advancement in sophistication and consequently cost brings with it 

a necessity not only to operate more efficiently but also to extend the life cycle of 
sub-components and enhance safety. Making decisions about the condition of 
machinery whilst it is in operation based upon the characteristics of data acquired from 
it is essential to this process. Traditionally this aspect of condition identification was 
highly dependant upon the knowledge and experience of skilled personnel. More recent 
advances in computer technology have enabled increasingly more sensitive and 
responsive applications to be developed. Such systems can not only operate 
continuously without impairing performance but also reduce reliance upon costly 
experienced personnel. 

All monitoring techniques depend upon one essential premise, that there is a measurable 
symptom produced as a direct result of each fault condition of the system being 

monitored. The capability of the monitoring system is then dependant upon the manner 
in which the characteristics of the measurable symptoms are examined and upon the 
frequency with which they are examined. Figure 1.1 illustrates the association between 

the various elements which characterise an operational machine and the monitoring 
system tasked with identifying its instantaneous status. A particular monitoring system 
implementation may utilise one or more of these components each of which may be 

measured in a number of ways. 

Condition monitoring has expanded into ever more demanding and cost sensitive fields 
together with the rapid development of affordable computing power and now extends to 
a wide range of machine types. For this reason the work contained within this thesis has 
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focused upon the understanding of a unique subsection within this emerging sector. 
Although consideration will be given to some of the techniques used in other areas, such 
as the internal combustion engine, the main focus of the work concentrates on 
continuous rotating machinery such as turbines, drills, and more specifically gearboxes. 
Gearboxes represent one of the most common types of machine subsystem and are, like 

all mechanical systems, susceptible to a range of common faults which may reduce their 

efficiency, or in some circumstances cause physical failure. Because they are employed 
in situations where large rotational forces must be transferred they are exposed to high 

stress loads which increase the likelihood of wear and failure. The application of 
monitoring techniques to these mechanical devices provides potential for a reduction in 

the necessity for periodic maintenance as well as the capability for optimising the 
mechanical performance of systems whilst they are in operation. 

The intention of this work is not only to evaluate some of the techniques currently 
employed for monitoring but also to identify new techniques which may be applicable to 
the field. The ultimate goal being the development of techniques which make possible 
on-line automated monitoring of machines either in periodic or continuous modes 
without the necessity for complex sensor arrangements and highly trained personnel. 

1.2 Neural Classifiers 

Traditionally condition classification has been performed in one of two ways. The first 
is manually derived with human evaluation of the available data and the second is an 
automated algorithmic technique developed as a result of knowledge and/or trials. 
Whilst the first method is generally more robust as a result of the high level of human 
intervention, the second is both cheaper and less prone to many types of error associated 
with human involvement. As technology progresses and the drive for industrial 

efficiency accelerates, the number of instances where human intensive systems are 
either feasible or cost effective becomes more limited. However the more traditional 

automated methods which include techniques such as template correlation and spectral 
analysis can suffer as a result of inflexibility and their inherent lack of "understanding". 
They are by definition dependant upon algorithm(s) which are generally tailored by an 

expert with detailed knowledge of the system under observation. Once tailored to a 
specific application they may be difficult to modify and can be sensitive to sources of 
both internal and external interference which have not been specifically catered for. 

More recent development of neural networks presents the possibility of implementing 

monitoring systems which can offer significant reductions in operator overhead, whilst 

at the same time reintroducing some of the human-like strengths 'vital to flexible 

solutions. Neural networks are simple computational models inspired by the human 

brain which attempt to mimic some of the behavioural aspects of these biological 

systems. In common with the brain these models comprise many simple processing 
elements, or nodes, which when combined are able to perform highly complex 
functions. In contrast to more traditional monitoring techniques. which are composed of 
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pre-programmed sequential computing modules, these networks can be trained and are 
inherently parallel in nature. They represent not only an alternative method but also a 
potential means of improving response. 

For the purposes of this thesis the specific types of network which will be discussed are 
supervised multilayer perceptron networks. Prior to operational use they require a 
period of supervised training in which a problem is presented to the network as a series 
of exemplars which enables the network to "learn" the problem. The perceptron nodes 
within these networks are grouped into distinct layers, each of which is connected to 

nodes within neighbouring layers. Each individual interconnection has associated with 
it a weight which is used to modify the stimuli passed between itself and other unique 
processing nodes. This combination of multiple processing nodes in multiple layers 
interconnected by configurable weight factors modifying stimuli which are transmitted 
between nodes in the network imparts the network with an innate learning capability. 
For anything but the simplest of problems two or more layers are required to provide 
sufficient degrees of freedom in the classifier to adequately learn the problem. Once a 
network size and architecture has been selected, the training period is used to modify the 
individual interconnecting weights using an error back-propagation algorithm in 

conjunction with a set of data exemplars which describe the problem. As each of the 

exemplars within the training set is presented to the network in turn the network 
"learns" by evolving its weights to suit the exemplar. Providing the network is able to 

reach a single weight position which satisfies the demands of all exemplars in the 
training set the network is able to "understand" the problem and can subsequently be 

used to classify previously unseen data. 

If the problem has been sufficiently described by the training exemplars the network 
should also then be capable of making decisions upon similar data as well as incomplete 

or noisy data. Thus neural techniques should provide a mechanism with which to 
implement a more robust and flexible solution without the necessity for human 

supervision. They combine the repeatability and consistency of a programmed 
implementation together with some of the human-like characteristics of knowledge 
based estimation. 

1.3 Time Encoded Signal (TES) Condition Characterisation 

Independent of the method used to perform condition classification there is a 
fundamental requirement to present detailed characterisation data to enable an accurate 
physical description to be collated. The key facets of this data are that it encompasses 
sufficient indicators of the physical condition and can be transformed into a format 

suitable for presentation to the neural classifier. For the sake of simplicity a neural 
classifier containing neither nodal memory nor feedback was selected for this latter 

classification stage. This simple architectural constraint confines the decision making 
process to time independent state classification. Essentially this means that condition 
data must be separated into discrete packets each of which are processed by the 
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classifier completely independently to determine a corresponding state. 

Time encoded signals, or TES, refers to a time domain technique originally developed 
by King et at [1] to convert a speech signal into a series of discrete shape descriptors 

which are subsequently used to identify a simple word vocabulary. This algorithm 
provides an ideal mechanism with which to achieve both of the previously mentioned 
fundamental requirements of a neural network based condition monitor. that of data 

characterisation and presentation. TES consists of subdividing a discretised analogue 
signal into a number of unique elements, or epochs. These epochs are then analysed and 
converted into TES symbols according to their physical shape characteristics. Two 

unique conversion algorithms are discussed in this thesis, each of which is developed 
into two separate characterisation formats. Both algorithms focus on different aspects of 
the signal epoch shape characteristics. So called minima coding is associated with the 
harmonic content and amplitude coding with the energy content. Unlike King's work 
the target signal is not human speech but mechanical emissions. Once the conversion is 

completed the symbol stream so produced is post-processed to generate data in one of 
the previously mentioned presentation formats. 

Two presentation formats were evaluated, the first containing simple symbol histogram 
information and the second, the A-matrix, more complex histogram and shape 
information. Both generate data matrices which can be considered as data signatures 
each of which corresponds to a unique physical condition or state. These signature 
matrices provide an ideal means of applying condition data to a neural network, each 
element of the matrix being represented by a single node in the input layer. Prior to 

application however each matrix element requires normalisation to fulfil the physical 
requirements of the individual network processing nodes transfer functions which for 

the purposes of this work demand inputs to be within the range 0-1. 

One advantage of employing this simple time domain discrete signal conversion 
mechanism is the ease with which it may be implemented in digital signal processing 
hardware. With currently available hardware it is feasible for an entire classification 
system to be implemented in real-time on a single digital signal processing (DSP) board. 
This would include the discrete acquisition and pre-filtering of a condition signal as well 
as the conversion into a TES representation, the transformation into a series of 
presentation matrices and the final classification by a neural network. 

1.4 Proposed Method of Evaluating Automated Condition Classification 

Because the field of condition monitoring is wide and varied the intention of this thesis 
is to identify a subsection from within this field with which to evaluate a series of novel 
techniques used to classify physical system state. A simplified gearbox was constructed 
to act as the testbed from which these studies could be performed. This particular type 

of mechanical subsystem was selected for its relative dynamic simplicity and 
widespread use within the industrial environment. The dynamic simplicity is imparted 
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by the continuous nature of the rotational movement which reduces the complexity of 
the subsequent data processing required to generate the relevant condition signatures. 
Unlike cyclic devices such as combustion engines or pumps the continuous nature of 
gear rotation introduces fewer constraints upon the selectivity with which data must be 
acquired to provide acceptable condition information. 

The proposed method of acquiring the condition information is via a single acoustic 
microphone the output of which will, for evaluation purposes. be recorded onto high 

quality audio tape prior to processing. The recordings are subsequently used to generate 
acoustic signatures using the TES conversion algorithms prior to final application to a 
neural network post-classifier for state identification. The core of the system is 
developed from within a PC type environment which provides the additional benefits of 
both low cost and industrial suitability. The combination of acoustically derived TES 
data and neural classifiers offers the potential for the generation of a flexible, trainable, 
low cost system which would require significantly less overhead in terms of skilled 
manpower for operational use than any currently available. 

A block diagram of the various stages contained within the processing and classification 
mechanism, all of which are discussed in detail in the following Chapters, is illustrated 
in Figure 1.2. The initial stage, data capture, depicted in the top left of the diagram will 
acquire the classification associated acoustic emissions which will ordinarily contain 
additional acoustic disturbances not associated with problem under observation. 
Following data capture the analogue signal is converted into a discrete representation 
before TES conversion is carried out. The filtering of the raw emissions required to 
condition the signal may be performed before or after ADC conversion depending upon 
whether it is implemented in hardware or software. An algorithm selector is required to 
control the conversion from a series of discrete samples into specific types of TES shape 
descriptor symbols prior to the neural network conditioning. This conditioning module 
will also require a control input to identify the type of conditioning required for network 
application. The training input depicted in the final processing module, at the network 
application stage identifies the control required during the pre-operational system 
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training phase. This is the element of the application which requires input from an 
operator to direct the neural networks learning and thus its subsequent state 
classification capability. However once the initial training phase has been suitably 
completed this control input is unnecessary. 

There are several aspects of the work contained in this thesis which are both novel and 
original. Whilst TES has been applied to numerous speech applications it has so far 
been limited to a single application within the field of condition monitoring using a so 
called minima TES conversion mechanism to define the waveform shape descriptor 

symbols. In this thesis a new technique has been developed which is based upon the 
energy characteristics of the waveform, termed amplitude TES. Whilst it retains the 
essential simplicity of conversion characteristic of minima TES it is more applicable to 
the field of condition monitoring where signal energy fluctuations are the common 
result of variations in physical condition. This new conversion scheme is evaluated 
during practical performance trials, detailed in Chapters 5 and 6, against the minima 
technique. 

In addition to this new conversion mechanism a more simplistic neural data application 
format was evaluated. Rather than the more commonly employed A-matrix presentation 
format a more basic, and somewhat more compact presentation format, the histogram 

matrix was evaluated. Whist this method retains only the most basic physioacoustical 
cue information its represents a significant simplification of the neural network 
complexity required to perform the subsequent classification. In cases where the 

physical states are clearly separated this technique may prove to be adequate. 

The third novel aspect of the work is the implementation of the techniques using 
dedicated digital signal processing (DSP) hardware which is becoming increasingly 

more powerful and widely available. It offers the opportunity to perform the 

acquisition, conversion and classification of acoustic data from machinery to identify the 

system state both on-line and in real time. When compared to some of the tools 

currently available to the condition monitoring fraternity this type of system would offer 
significant enhancements in operational cost, portability, flexibility and most 
importantly performance. 

A list of the material published during the course of these studies and containing the 

results of a variety of investigations is included at the end of the thesis in Appendix A. 
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2. Condition Monitoring In Industry 

Condition monitoring is not a recent addition to the industrial workplace. Monitoring 

and overhaul of machinery has however historically been carried out manually by 

groups of highly skilled personnel. These personnel have accumulated, over many year,, 
of servicing, experience which has proved invaluable in the continued operation of 
industrial plant. However with the ever increasing volume, variety and complexity of 
machinery in use today this role becomes ever more specialised and challenging. 
Combined with these increasing demands comes the constant drive for improved 

productivity and enhanced efficiency. 

Prior to the recent acceleration in modern computer technology monitoring was 
restricted to the use of this skilled manual identification which included procedures for 

regular overhaul, visual inspection of parts and lubrication fluid contamination as well 
as audible fault identification. The labour intensive nature of these techniques is not 
only wasteful of resource and parts but also is heavily dependant on the level of skill of 
operators gained through their experience. More recently the manufacturing process has 
become increasingly complex with reductions being made in operating tolerances both 

of plant and of products to increase efficiency. In response to these pressures there is 

now a growing need in manufacturing industry for advanced monitoring tools with 
which to carry out these manual tasks; the aim being to reduce both production costs and 
the dependency upon the highly skilled personnel to carry out these tasks. 

Developments have now reached the point at which the manual procedures and skilled 
personnel who were relied on previously can be outperformed through the application of 
modern computer technology. This technology is focused around the rapid development 

of PC based hardware with ever increasing levels of computational as well as storage 

capacity. Also included amongst these developments is another significant 

advancement which will no doubt play a key role in the development of reliable and cost 

effective tools, that of the digital signal processor (DSP). These high performance 

processors have been developed specifically for the purposes of implementing "real 

time" signal processing algorithms. 

Many earlier developments relied on expensive, bulky, emerging computer technology 

so the applications to which they were put was in heavy industry and air/sea transport 

where mission and human safety were critical. However, the advancements in computer 
technology have produced ever more powerful devices at much reduced prices and 

sizes. This in turn has led to advancements in monitoring in areas once considered 

either impractical or uneconomically viable. Consequently the whole field of condition 

monitoring is expanding into newer and more cost sensitive product areas. 

Condition monitoring has now developed into a specialist branch of science solely 
devoted to the enhanced understanding and recognition of performance degradation and 
failure modes in machinery. The purpose of this research branch has been to further 

evaluate the widely understood patterns of wear and damage with the intention of being 
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able to determine in a more methodical and consistent manner the identifiable points on 
the wear cycle. The goal is to develop simple, objective. cost effective methods of fault 
identification and early warning that provide the gains in productivity and efficiency that 
are achievable. In association with these requirements they must be designed in such a 
way as to be easily integrated into harsh industrial environments. 

The research is based not only on the application of modern computational power to 
known distinguishing measures of machine status but also to the development of 
additional novel techniques. The aim is to find ever more accurate measures of system 
state able to recognise the significant, not necessarily quantitatively large, variations in 

condition so that identification of irregularities can be made earlier, and if possible 
automatically. If failure modes can be determined in advance of catastrophic failure 

then remedial action can be planned and prepared for together with any necessary parts. 
This provides certain key medium and long term benefits to users: 

(i) A reduction in economic losses incurred through unplanned stoppage could be 

expected, particularly in complex plant facilities where failure of a single 
component can halt production. In turn the cost of periodic overhaul, parts 
wastage and downtime can be minimised since expectation is replaced by 
identification. There is no longer a need to be driven by the estimated mean 
time before failure (MTBF) of parts, which themselves are only an indication of 
expected lifetime, to plan servicing. 

(ii) The stock of spare parts which are usually kept to provide cover for emergency 
backup of key plant could be reduced if monitoring can provide enough lead 

time to order and receive spare parts and plan for a controlled shutdown. 

(iii) A reduction in the level of costly industrial accidents caused by excessive wear, 
faulty parts or human error during servicing could be expected. 

(iv) A reduced requirement for the highly skilled personnel who would otherwise be 

needed to provide systems diagnosis and servicing backup. 

The greatest benefits, of course, will be achieved where the monitoring and overhaul of 
large numbers of machine stock distributed over a plant may be rationalised through the 

application of automated techniques. For example in the oil and gas industry many 

valves, turbines, pumps and other system sub-components may be distributed over a 
large site. The environmental and safety requirements mean that without automated 

monitoring much time and capital expenditure can be consumed on the types of manual 

monitoring and regular overhaul which have been described. There is therefore a clear 

requirement for the widespread availability of automated techniques for monitoring. 
How these requirements are satisfied is of course open to further discussion. Both the 
direct physical measurement of the machines mechanical parameters (e. g. power output 

and maximum revolutions) and physical measurement of the changes in mechanical 

condition would require costly shut-downs. In contrast, the measurement of residual 



changes as a result of degradation in machine condition do not require a shutdown of the 
plant. As a consequence this is by far the most promising- technique and is where most 
research is now concentrated. It covers both intrusive (sensors placed on or inside the 
device) and non intrusive (sensors located in the vicinity of the device), periodic and 
continuous monitoring configurations. 

If the decision is taken to monitor the subject periodically then the periods between 

monitoring samples being acquired must be selected carefully so as to provide sufficient 
warning of performance degradation whilst at the same time producing sufficient return 
on the investment in applying monitoring. If performance degradation is more difficult 
to predict or particularly mission critical then continuous monitoring, though more 
expensive, is probably required. The work of Rose [2] on failure modes of helicopter 

components completed in conjunction with Boeing helicopters highlights this criticality 
aspect. They report key componentry progressing to failure in time frames shorter than 
the average flight time rendering ground based tools inadequate. As a result their 
recommendations were for the development of real-time airborne diagnostics. 

The intention of this Chapter is to introduce to the reader some of the wide range of 
techniques which have been developed through this research to apply tests of a non- 
destructive nature to determine system state. It is not the intention to discuss the relative 
merits of each technique with regard to the novel work covered later in this thesis but 

merely to present the work as a background to the field of condition monitoring at this 
time. 

The first and by far the most commonly studied field among researchers is the 
development of tools to study the residual processes resulting from changes in the 

system state. This refers to the study of the vibroacoustical emissions from a target 

system to estimate the level of wear or damage. The technique is probably better 
described as measurement analysis and encompasses the extraction of condition 
information from data acquired using sensors either in the time domain or frequency 
domain. 

The second and generally less common method is prediction analysis. This encompass 
any technique which seeks to develop a mathematical model of a particular target 
subject. These models are generally used to simulate certain failure modes in order to 
compare them with results obtained during testing. Due to its potential complexity this 
technique is generally limited to the simpler devices in which all the system interactions 

can be adequately modelled and combined. 

2.1 Measurement Analysis of Machine Condition 

Measurement analysis describes the family of techniques which attempt to separate and 
decode the cause-and-effect chain of events underlying changes in v'ibroacoustic 
emissions. The diagnosis begins with the selection and positioning of the necessary 
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sensor(s). As would be expected both the choice and positioning of these devices can 
affect the overall performance of the diagnosis. The selection may be influenced by the 
requirements of the diagnosis system whilst the physical properties of the device, which 
affect the transmission paths of emissions, may limit the effective sensor positions. 

Once the raw signals have been captured they can be utilised either in their raw basic 
format to produce a prognosis or, as is more usually the case, post-processed to extract 
the useful condition information and reduce noise effects. It is these processing 4 

techniques which provide the key to a successful system implementation combining 
accuracy, speed and simplicity. Each type of processing algorithm makes its own 
particular demands upon the computational equipment available and is dependent upon 
the level of complexity. The following two sub-sections introduce some of the 
techniques which have previously been developed by other researchers and are intended 

to provide the reader with some background knowledge regarding the work which has 
been completed previously within the field. 

As discussed previously, measurement analysis techniques can be separated into two 

sub-categories, those involving processing in the time domain and those employing 
frequency domain manipulation. The uses to which each have been put will be 
discussed in isolation before summarising the relative merits of each at the end of the 
Chapter. 

2.1.1 Time Domain Signal Processing 

Many of the earliest techniques developed to recover health status information from the 

machinery were based upon the study of spatio-temporal or time domain variations in 

the sensor data. This concentration of effort was in most part due to the tools available 
to early workers in the field. The lack of widespread commercially viable tools to 

extract the spectral aspects of this data limited the early development of this type of 

study. Even today with the increasingly widespread availability of computational tools 

able to extract spectral information the time domain remains a key aspect of much new 

work. In fact the implementation of accurate temporal synchronisation with the 

monitored system provides an opportunity to apply time selection to the filtration of 

sensor data. It also enables the accurate reconstruction of a time history of events taking 

place within the monitored system enables us to highlight any functional variations in 

structure. This last point is of special note in the study of variations within reciprocating 

machinery where each cycle is composed of several distinctly separate events which 

each contribute to the "group" emissions. 

This section covers many of the significant processing sub-sets encompassing the 

temporal study of machinery together with examples of their use either within the 

research community or in "real world" development applications. It is not the intention 

here to detail the acquisition of data per se for this itself depends upon the sensor 
selected for the application. Instead most of the commonly employed methods 
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(vibration, acceleration and acoustic acquisition) will be covered during the discussion 
of the processing strategies. Two simple estimators, namely root mean square (rms) and 
peak signal measures are presented initially. From these simple techniques more 
complex estimators are developed which are directed towards providing less load 
sensitive discriminant measures. 

2.1.1.1 Root Mean Square Signal Assessment 

Stronach et al in their work on rolling element bearings [3] report this, one of the 
simplest and most common approaches to time domain analysis, the estimation of 
overall intensity of a wideband vibration signal. The calculation of the root mean square 
(rms) of the input condition signal, s(t) over an observation period T, defined in (1) 
provides useful information relating to the general health state of a bearing. 

JiT 
S s2 (t)dt (1) 

T0 

Stronach et al found the measure to be particularly responsive to shaft alignment errors 
but less so to light wear damage to the bearing itself. This simple measure has been so 
widely employed that several standards (API611,612,613,616; IS03945,2372; 
VD12059) have been developed to provide recommended boundary conditions for 

various groups of machine type. These standards however give only generalised 
guidelines for monitoring as they have been derived as averages over a large number of 
machine types. When attempting to use such measures for the identification of 
condition states in a specific machine two important factors must be considered which 
can affect the accuracy of the measurements. 

(i) The local environment surrounding the target machine which may have several other 
sources of potentially destructive additive noise. 

(ii) Any time varying loading constraints imposed upon the machine. 

As a result rms measurement provides an uncomplicated measure requiring simple 
hardware and a minimum of software processing. This, however, can be offset against 
some of the problems which could be encountered if a tool was developed to monitor a 
machine type to be placed in a range of diverse environments. Before the emergence of 
fast signal processing hardware the use of such an uncomplicated measurement 
technique would ensure a rapid response even from equipment with relatively modest 
processing capabilities. This speed of response was considered an important criteria in 

the work done by Dong et al [4] on adaptive drill system monitoring. With only 286 
based PC hardware Dong was able to develop a system capable of monitoring chip 
congestion at the drill bit to workpiece interface. This proved that even relatively 
simple hardware can achieve a level of fault identification and that given a controlled 
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environment rms measures should not necessarily be restricted to generalised 
monitoring of machine health status. 

2.1.1.2 Peak Signal Analysis 

Another method which bears consideration in terms of its widespread use and relative 
simplicity is signal peak assessment. This refers to the measurement of the maximum 
signal amplitude achieved in a given calculation time frame. It is generally more 
sensitive to the changes in condition, being less susceptible to external sources of 
disturbance. Consequently it should provide a more reliable diagnostic measure than 
rms. Changes in peak levels between the "new" state and just prior to overhaul of a 
bearing can be of the order of 10dB. An example of using this measure to determine the 
health or otherwise of two bearing types using just such variations in vibration velocity 
levels is shown in Figure 2.1 below. This is taken from [5] and relates to measurements 
taken from the bearings in a mechanical pump. The vertical line to the right of the 
diagram indicates the point at which a system overhaul was carried out resulting in an 
immediate reduction in vibration of about 10dB in both bearings. 

However Martins in [6] argues that even 10dB amplitude variations can be experienced 
in bearings containing no faults due to the harmonic nature of the process. This is 
further backed up by reference to some international guidelines which were developed 
in an attempt to rationalise the ranges of variation expected in differing groups of 
machinery (e. g. IS03945/2372, API611). These guidelines vary so widely that the use 
of such simple measures in tools may require the implementation of per machine system 
tolerance adjustments. Without such adjustments the measures would need to be tuned 
to account for all the varying mechanical tolerances expected during the production 
process as well as the environmental perturbations expected in-situ. This could impact 

severely on the potential sensitivity as a consequence. 

Koizumi et al [7] carried out some work on journal bearing signature diagnostic 

measurement which provides some advancement on the basic use of peak analysis. He 
developed two alternative variations upon the measures we have discussed up to this 

point. The first was the use of rms and peak measurement comparisons to classify 
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Figure 2-1 Change in peak vibration velocity of a pump bearing during utilisation [5] 
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Figure 2-2 Improper Lubrication (left), and Foreign Material Inclusion in Journal 
Bearings (right). [7] 

differing types of failure which provide some interesting observations. Figure 2.2 taken 
from their work illustrates graphically the difference between bearings containing 
foreign material and those with improper lubrication. Whilst improper lubrication will 
cause a gradual increase initially in vibration, the inclusion of foreign material produces 
some relatively rapid variations in vibration level. In the case of the plot on the right the 
initial increase is due to the inclusion of dust whilst the later reduction, at approximately 
four hours, is an indication of self exhaustion of the material by the bearing. 

The second technique which they experimented with was the use of spectral selection 
prior to processing. Two filters were applied to the raw signal, one passing 0.5-20kHz 

and the other 10-20kHz, after which each was applied to a standard peak vibration 
measure. Figure 2.3 again taken from their work shows that the failure mode can be 

estimated by comparison. When components of both the wide band and high frequency 

agree the most likely failure modes are excess thrust loading or foreign material 
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inclusion. By contrast if the two components do not agree then the most likely failure 

modes are improper lubrication or system unbalance. To separate each of these pairs of 
modes, further study would be required on the original waveform in the time domain. 

2.1.1.3 Signal Kurtosis Analysis 

What should be noted from the two measures described previously is the potential level 

of diagnostic supervision which would be required to implement such absolute measures 
in a diverse range of machine types. The development of dimensionless measure, 
particularly those that are insensitive to speed variations are much more readily 
applicable to automated diagnostics. A more recent addition to the diagnostics toolset is 
just such a measure. The statistical kurtosis measure is based upon the fundamental 

premise that a perfect component, for example a bearing, generates vibroacoustical 
signals in a random manner. Any change in this essential "randomness" caused by wear 
or failure brings with it corresponding changes in the statistical distributions of the 

amplitudes of the sensory signal (Figure 2.4). 

Mathematically we can express these characteristic amplitude distributions in terms of a 
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Figure 2-4 Statistical variations in signal amplitude for a perfect bearing (top). a bearing 

with incipient wear characteristics (middle), and displaying significant 
damage (bottom). [6) 
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probability density function, the statistical moments of which are defined by the general 
integral (2). 

00 

Mn =S (x - x)n P(x)dx 

00 

Where, 

x, x are the vibrational amplitudes and the mean 
vibrational amplitude respectively. 

P(x) is the instantaneous probability of the event x. 

(2) 

The kurtosis value, 82, of the signal is defined as the fourth moment (M4) normalised 
with respect to the standard deviation (., [M-2 ) as expressed in (3). 

ß2 

00 

j (x - x)4P(x)dx 

-00 (3) 
00 

2 
j (x - x)2 P(x)dx 

00 

Stronach et al [3] and Dyer [8] both reported that using this equation a nominally 
"perfect" bearing would exhibit a kurtotsis value of 3-4 whereas a worn or damaged one 
would be in the region 10-20. This would provide a sufficient level of stable separation 
to be incorporated within an automated diagnostic system. They also report that the 
discriminant measures are relatively independent of prevailing load or speed conditions 
and that they remain relatively unaffected by the transmission path effects introduced by 
the sensors. The distribution of amplitudes remains relatively constant despite 

variations in vibrational sensor signal path. 

Once again, when this measure, like others described previously, is implemented in a 
"real" system some preliminary filtration is applied prior to measurement to reduce 
disturbances and enhance separation. It was noted by Stronach et al in [3] that trials of 
this measure by British Steel produced good condition separation when the analysis was 
performed on four separate frequency bands. They found that damage severity could be 
determined by examination of the distribution of kurtosis between the four bands 

providing the bearings were under load. 

The experimental simulations, carried out by British Steel, of fault conditions in several 
bearings took the form of "baseline" kurtosis measurements for undamaged parts, 
followed by measurements of the same bearings after subjecting them to artificially 
induced faults. This type of measure, an example of which is depicted in Figure 2.5. 

proved accurate in correctly identifying roller and inner/outer race defects. However a 
note of caution is necessary here. Under "no load" conditions they found that impacting 
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Figure 2-5 Comparison of the value of kurtosis, in six bands measured from vibrations 
in a bearing housing. '[9] 

forces caused by wear or damage are sufficiently reduced to limit the magnitude of 
variations in kurtosis and thereby the separation of states. 

2.1.1.4 Combining Signal Measures to Improve Separation 

Having now discussed three of the most common types of measure employed to separate 
the "condition states" of machinery or machine sub-components attention turns to the 
integration of these measures. In the first two cases, peak and rms, the greatest asset is 

simplicity rather than guaranteed reliability. The measures are both susceptible to 
outside sources of interference as well as the prevailing load and speed conditions of the 
source. The third, kurtosis, was somewhat more reliable and less easily influenced by 

changes in the prevailing load, speed, and sensor signal path. The discussion however 

of signal preconditioning and combined measures that have been outlined in both 

sections 2.2.1.2 (peak) and 2.2.1.3 (kurtosis) deserve further thought. This section will 
cover the use of such composite methods in more detail. McFadden in his work on 
fatigue crack analysis of helicopter gearboxes [101 makes a particularly relevant point 
regarding some of the simpler parameters we have been discussing. He suggests that 

advanced wear or damage can be identified using many of these simpler techniques but 

that very early detection, necessary in some critical applications, requires the use of 
more sophisticated signal conditioning strategies to enhance the information content 
prior to the application of a suitable separation measure or measures. 

The Curtis-Wright sonic analyser, Figure 2.6, is an analysis system combining spectral 
filtering of the acoustic signal and the use of rms level measurements. It was originally 
developed for use in monitoring gas turbine systems and comprises a series of narrow, 
approximately 15Hz, bandpass filters centred about key component characteristic 
frequencies (e. g. ball-pass frequency in a bearing). Each of the pre-filtered signals is 

then applied to a standard rms detector of the type previously described. In this way a 
measure of condition for one of several constituent parts whose characteristics are 
contained within a specific band can be derived for the machine. 

In order to deploy this type of system in an industrial environment there are two 
problems to overcome. The first is the selection of the relevant acoustic bands. This 
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Figure 2-6 Flow Diagram of the Curtis Wright Sonic Analyser 

should be done so as to ensure that all failures result in signal perturbations which lie 

within of one of the selected discreet bands. The second and most difficult aspect of the 
technique also relates to the selection of specific "failure bands". It is the requirement 
either for accurate speed stability or dynamic filter tuning in the system under 
observation since all the measures are highly speed dependant. When this work was 
first carried out the scarcity of digital signal hardware would have meant performing the 
dynamic tuning using discreet components. With the advent of cheap DSP devices the 
dynamic filtering front-end could be more easily implemented in software in real-time 

so reducing the cost and complexity of this measurement technique. 

The peak-to-rms ratio comparison of condition signals, termed figure of meritO (FOMO) 

by Gadd and Mitchell [11] in their work with helicopter gearboxes, is a simple 
development of the peak measure. The premise being that local defects will give rise to 

a proportionally greater rise in the peak value than they will over the rms . 
The FOMO 

should therefore vary according to the state of the machine under observation. Taking 

the example of their work with helicopter gearboxes if a tooth breaks on the gear drive 

system then a significant local increase in the peak level will be recorded due to 
increased localised impact loading whilst the mean signal level over a longer period will 
be less significantly affected by such local effects. A consequent rise in FOMO will be 

detected highlighting the failure. Wojciechowski [12] reports using this measure to 

compare the effectiveness and diagnostic sensitivity of the three commonly used sensor 
types, acceleration, velocity and displacement. Figure 2.7 taken from this work shows 

the variation in recorded measures taken from the bearing housing of a electric motor 
for each of the sensor types. Ca refers to acceleration, C,, to velocity and Cd to 
displacement. Both C1. and Cd show little variation during system degradation whilst 
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Figure 2-7 Trends in the peak factors of acceleration Ca, velocity C,., and vibration 
displacement Cd in the bearing housing of an electric low power motor. [ 12 ] 

Ca rises from a "normal" value of 5-10 to a worn value of more than 20 giving a clear 
indication of the change in system condition. 

However difficulties can be encountered when implementing this type of measure in 
bearings with multiple or spreading defects where the rms level may dominate the 

equation. Gadd and Mitchell also developed further measures; FOM 1 to detect the 

modulation of meshing frequencies which can identify misalignment faults and FOM2 

to calculate some zero crossing statistics which are affected by general wear. 

2.1.1.5 Improved Separation Using Synchronised Noise Reduction Techniques 

In almost all the practical applications of condition monitoring we have described, or 

would expect to encounter, the effects of external disturbances can impair the reliability 

of any separation measures. In severe cases the noise effects can reduce sensitivity to 

such an extent that wear progresses to catastrophic failure prior to detection. Astridge 

[13] reports that to circumvent these problems in a health monitoring system for 

helicopter mechanical systems the raw vibration data was enhanced by averaging the 

signal over several recorded "frames". Each recorded frame refers to the time history of 

a single machine cycle. Successive frames are summed to produce an enhanced time 
history of a single cycle. The summation process, illustrated diagramatically in 

Figure 2.8, reduces the non-synchronous random noise elements within the frame which 

are responsible for reduced sensitivity. Once these disturbances have been reduced the 

remaining signal residue will exhibit more clearly defined localised variations where 

any wear or damage has occurred to the system under observation. The application of 

measures to this residue to subjectively test the condition status shows improved 

separation in most cases. 

In trials using an accelerometer attached to a helicopter main rotor gearbox casing 
Mcfadden [ 10] employed just such a system of synchronised signal averaging to reduce 
the effects of noise on the digitally sampled signal This signal was then digitally 
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Figure 2-8 The application of synchronised signal averaging as a means of enhancing a 
condition signal and thus improving separation 

bandpass filtered about the second harmonic and a Hilbert transform applied to provide 
an amplitude and phase modulated analytic signal. Kurtosis analysis, based upon 
comparisons with a "normal" baseline, was then performed on each of the traces 
separately, the phase trace providing an earlier warning of damage than did the 

amplitude trace. McFadden notes also that the more accurately machined the gear 
arrangement is the earlier a deviation from a "healthy" state can be made. These results 
provide proof that improvements upon the use of kurtosis on the raw, unpreprocessed 
signal can be made with the simple addition of synchronised averaging. A further 
improvement of note is the advantage accrued by the use of the phase information. In 

the trials it displayed the potential to distinguish between crack growth which 
introduced a phase-lag and foreign material build-up which introduced a phase-lead. 

2.1.2 Frequency Domain Signal Processing 

The second condition analysis method available is the extraction of relevant information 

by spectral decomposition [14,15,16,17]. In contrast to the temporal selection of data 

discussed previously, spectral decomposition can be applied to identify specific failure 

modes with less prior knowledge of a system or its fault parameters. Specific physical 

parameters of the system under observation can be identified on a spectral plot with 

reference to the running conditions and system structure. Figure 2.9 shows this 

graphically, identifying the shaft, bearing and gear mesh frequencies of a simplified 

system. 

The ability to differentiate in this manner between specific physical parameters may be 

particularly relevant in complex situations where the sequence of vibroacoustical events 
is not clearly identified but the form of the events is known. Biswas et al [18] used 
these principles to study the failure of a high speed industrial turbine gear coupling in a 
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Figure 2-9 Sources of vibrational excitation identified in a spectral plot taken from a 
simple gear drive set attached to a motor 

sugar plant which was resulting in heavy losses in production. As would be expected 
the spectral analysis provided data which could be traced back to certain characteristics 
of the machine. Components such as rotation frequency and thrust pad passing 
frequency could have been predicted, but they also noted the presence of some non- 
synchronous components which indicated that rubbing was taking place in the coupling. 
This evidence resulted in the overhaul of the coupling and replacement of damaged parts 
restoring the machine to full health with a resultant increase in plant productivity. 

Simplifying this type of spectral component identification still further requires an 
understanding of the behaviour of sub components. The wear and damage introduced 
into these components has two primary effects upon the spectrum of emissions from a 
machine. The lower frequency components, caused by bearing or shaft inconsistencies 
for example, can modulate the higher frequency, carrier-like, meshing components of a 
system. Envelope detection or amplitude demodulation may be used to study these 
lower frequency perturbations. The second effect is caused as a result of inconsistencies 
in componentry, particularly gear teeth which are subject to substantial cyclic load 

variations. Physical irregularities in stiffness for example induce flexing effects in the 
teeth which in turn lead to phase variations in the emissions. These can be detected and 

analysed using frequency demodulation techniques. 

The increasing availability of cheap, powerful processors together with the development 

of the Fast Fourier Transform (FFT) has meant that frequency domain analysis can now 
be performed on-line in real time with dedicated digital signal processors where 

previously it would have been processed off-line. Increasing availability makes possible 
the development of low cost spectral analysis identification systems. Sections 2.1.2.1 

and 2.1.2.2 investigate some of the wide variety of work completed on the application of 

spectral measures to condition monitoring under steady state, runup and rundown 

conditions. 

23 

f, fp fj f, fS 

Frequency 



2.1.2.1 System Identification Using Spectral Data 

One of the defining reasons for the use of spectral information in condition monitoring 
is its ability to identify specific physical parameters on a system in motion. Mohamed et 
al [19] report the results of work they completed in comparing measured and simulated 
spectral data for a pair of interacting surfaces. The measured data was recorded using a 
microphone and an accelerometer, whilst the mathematically derived data was simulated 
using simple approximations and accurate physical measures to describe the interactions 
between two opposing surfaces. A testbed (see Figure 2.10) comprising of two abrasive 
surfaces moving relative to one another at a constant velocity and under constant load 

conditions was used to obtain the live data. The intra-surface interactions (see 
Figure 2.11) resulted in the emission of wideband friction noise which was recorded 
using both the microphone and accelerometer. The microphone was mounted in close 
proximity to the two rotating surfaces, whilst an accelerometer was mounted on the 
testbed support frame to record the localised acoustic and vibration emissions. Spectral 

analysis consisted of subdividing the signals from each of the two sources into 0.04 

second frame segments and performing a fast fourier transform on each. The frame 

spectra, each representing a 0.04 second signal segment, were then summed over several 
such segments, reducing the noise effects, to produce an averaged spectral signature 
frame for each sensor signal. 

The spectra taken from each sensor highlight different interactions between the surfaces. 
Whilst both the microphone and accelerometer derived spectra have peaks at the support 
beam fundamental frequency, the vibration spectrum also contains the higher harmonics 

of this. In contrast the noise spectrum contains a broad band emission which is centred 

about the surface asperity impact centre frequency, ff given in (4). 
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They report that the centre frequency fc and noise spectra correlate well with the 

mathematically simulated emissions based on measurements of the mean surface 
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Figure 2-10 Schematic of the testbed system used by Mohamed et al in their work on 
friction noise, [ 19] 

24 



asperity spacing, up, and relative velocity, V. of the opposing surface, ww, hilkt the 
loading affects the signal energy content. The ability to relate machine loading, velocity 
and surface interface condition to the group emissions is an integral part of the condition 
monitoring process and as such this work provides proof that both physical interactions 
and system conditions can be estimated from vibrational and acoustic emissions. 

The necessity for greater efficiency in system componentry has led towards a reduction 
in operating tolerances which bring with them an increased risk of wear through 
rubbing. Increased risk brings with it a need to more accurately estimate the condition 
of sub components as a result of continuous usage. When working with the reduced 
operating tolerances required to improve efficiency even small inaccuracies introduced 

either through wear or inconsistent manufacture in areas such as thermal mismatch, 
unbalance, misalignment can cause potentially catastrophic wear patterns. Beattty [20] 

completed some work on rotor response due to radial rubbing and as with Mohamed 

used spectral analysis to determine the state, in this case, of high speed, high 

performance turbomachinery rotors. As with Mohamed the data taken from system 
trials was then compared with simulated results. 

Beatty employed a real time data analyser to acquire spectral plots both in steady-state 
and transient operation which were subsequently used to analyse the harmonic 

components of the emissions. The harmonic amplitude content was used to estimate the 

arc length of radial rubbing occurring between the rotor and housing of a high pressure 
turbopump. When compared with results gained by mathematical modelling they 

showed good correlation. This work backs up the findings of Mohamed in proving that 

accurate system state information can be determined through the use of simple spectral 
techniques. Beatty went one stage further and was also able to identify certain boundary 

measures relating to rubbing force and arc length after which severe or catastrophic 
damage would be caused to the parts under observation. These measures would provide 
an adequate basis with which to develop automated monitoring techniques although this 

was not specifically discussed in this work. 
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Figure 2-11 Simplified view, of the infra-surface interactions on the testbed system used 
by Mohamed et al, [ 19] 

ý` IJ nH r 

1 

25 



2.1.2.2 The Application of Spectral Data to Condition Monitoring 

The work done by both Mohamed and Beatty provided a good introduction to the 
principle of system diagnosis using spectral data. Zhaoqian et al [21] used these same 
principles when developing a diagnosis system for the toolpiece of a CNC lathe. The 
raw signal data source in this application was an accelerometer installed on the lathe in 
the feed direction. Again the same principles of signal averaging to those we detailed 
earlier in the discussion of time domain applications was used to reduce the effects of 
noise interference. During initial trials they were able to identify tool piece 
characteristics, such as natural frequencies and higher harmonics as peaks on the 
recorded spectra. They report that wear during usage causes the relatively sharp 
characteristic spectral peaks produced by a new toolpiece to spread, causing a broader 
spectral peaks. 

They went on to investigate the concept of spectral component division. The spectral 
components of a worn toolpiece are divided by the fingerprint spectral components 
characterised by a new toolpiece. The results from this study highlighted the 
importance, in this application, of the spectral ranges 1-3 kHz and 16-20 kHz which 
proved most sensitive to changes in wear. The higher band itself was more appealing in 
terms of an in-situ diagnosis system since a considerable amount of the external noise 
interference could be eliminated by using a high pass filter. Any other local high 
frequency components not attenuated by the high pass filter and not relevant to the 
system condition are readily attenuated by the structure of the machine itself. This 

premise relies on the accelerometer being placed sufficiently close to the toolpiece that 
the path attenuation effects do not impact on those signal components containing the 

condition information. The concept of sub-division of spectral bands is not a novel one 
and is in fact used to a greater or lesser extent in a substantial number of applications to 

rationalise the quantity of data required for diagnosis. There are two reasons why this 
technique may be useful. 

(i) Variations in group emissions caused by wear or damage are focused on specific 
spectral bands. 

(ii) Certain spectral bands provide improved conditions for signal separation, perhaps 
through the elimination of external noise effects. 

In the case of [21] the elimination of the majority of external disturbances made the 
16-20 kHz band preferable. Any such compression in the spectral data requirements for 

adequate fault separation also has a useful secondary effect, that of a reduction in 

diagnosis system complexity and response time. For example, if the group emissions 
from a complex gear cluster arrangement were to be analysed for the purposes of 

monitoring a particular gear within the cluster there is a risk that any diagnosis system 

will be overloaded with sensor data. However if the assumptions made above are 

applied then damage will affect certain elements of the spectrum of the group emissions 

more than others so subdivision and extraction of specific spectral elements should 
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provide a better analysis solution. 

However by sub-dividing the spectrum for the purpose of monitoring we can incur the 
additional problem of non-static measurement instability described by Randall [2: ]. 
These effects are characterised by a spectral emphasis shift as a result of the machine 
under examination being subjected to variations in either load or speed which have an 
impact upon the spectral signature. Hence the choice of the spectral components to use 
in determining system state can be further complicated but still remains the key to a 
successful spectral monitoring system strategy. Most researchers agree though that the 

spectral components which are of most interest in a system composed of a rotating 
shaft(s) are generally the first few harmonics of the shaft rotational speed namely half, 
first, second and third. 

Imam et al [23] extracted precisely these components from a rotating shaft using 
encoders attached to the machine to synchronise the frame sampling for their sub-band 
and spectral signature comparison measurements. They employed time domain signal 

averaging methods to reduce the effects of background noise prior to spectral 
decomposition. Prior to monitoring on-line a series of recordings are performed to 

obtain an initial baseline data set for later comparison. Each sample frame, relating to a 

single shaft cycle, recorded whilst the shaft was in a steady-state mode, is then 

synchronously summed over a number of cycles to provide a single histogram signature. 
For the on-line monitoring a similar process of synchronous sampling and summing is 

used to provide an in-use signature. The baseline signature is subsequently subtracted 
from the in-use signature to produce an "error signature". 

The analysis is then completed by performing a fourier transform on this error signature 

to provide a set of differential histogram harmonics. The variations in the extracted 
harmonic components can provide sufficient detail to identify faults such as crack 

growth and shaft imbalance. In field trials Imam et at noted that early detection of 

cracks of the order of 1-2% of the 7" shaft diameter could be made by studying the 

variation in the first and second harmonic components. The initial crack development 

causes asymmetric shaft imbalance which gives rise to a rapid rise in the second 
harmonic amplitude component. As the depth of the crack increases the shaft flexibility 

begins to dominate so reducing the second harmonic component and giving rise to 

proportionally greater changes in the first harmonic. They also noted during the course 

of their trials that these variations are position sensitive. For cracks near couplings or 

bearings the dominant initial changes are noted in the second harmonic whereas the 

closer the crack is to the mid-span of a shaft the more dominant the effects of flexibility 

and hence the first harmonic. The monitoring tools which they developed using these 

techniques and which were later used in trials had three main modes of operation. 

(i) Manual mode. where the measures discussed previously are extracted for manual 

recognition by a trained expert. 

(ii) Automatic mode, where an internal rule set is used to identify likely fault pattern. 
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(iii) Analytical mode, which allows a trained user to estimate parameters regarding the 
current system state, simulate the expected effects of these system conditions and 
then compare them with the actual system signatures. 

These monitoring tools have been successfully implemented in the field on turbine 
systems in the power generation industry and provide a significant improvement over 
those which were otherwise available. 

Another method whereby spectral data can be used to monitor condition is unitary 
spectral coefficient tracking as Herbert [24] reports. As with Imam et al. Herbert used a 
tachometer attached to the shaft under observation to co-ordinate the sampling of sensor 
data. In this case though, the timing is not used to reduce noise effects but to 
continually monitor the shaft speed during a rundown or runup cycle. At selected 
rotational velocities corresponding to shaft resonance frequencies a data acquisition 
process is initiated. This consists of sampling the signal data and extracting the 

amplitude and phase components. Initially measurements are then used to develop a 
system state historical archive baseline. This archive is then used to determine, by 

comparison with the baseline, the current state of the system either in an on-line, or off- 
line mode. 

The techniques discussed up to now have shown the potential of spectral analysis in 
determining the health or otherwise of unitary cycle rotating machinery. The issues 

relating to the use of spectral data in the case of reciprocating machinery are somewhat 

more involved. Reciprocating machinery itself provides a greater challenge to those 

who wish to study the spectra for monitoring purposes and in this respect the work of 
Chaudhuri and Serridge [25,26] should be considered. The added complexity to which 
Stronach, et al [27] also refers in applying spectral techniques to reciprocating machines 
is focused around the discontinuous series of events taking place during a single 

machine cycle. Each cycle consists of at least one, and usually many more, 
instantaneous detonation events produced by a machine which is also inherently 

mechanically unstable. As with the continuous case each machine is made up of many 

sub-components, all of which have specific harmonic properties. However in this case 

the excitations are further complicated by the series of instantaneous events each of 

which excites characteristic machine resonance's producing a group emission which 

exhibits a wide dynamic range. The spectral information content is consequently of a 

more complex and non-steady nature. Again as with many of the previous discussions 

the principles of time synchronous averaging of input data to reduce the effects of noise 

provides a good basis from which to start the analysis. Both Serridge and Stronach then 

apply full and partial cycle spectral analysis to the pre-processed data. The terms full 

and partial represent the length of the time segment, full being one rotation cycle, over 

which the FFT analysis is performed. Full cycle analysis can. as a result of the non- 

steady nature of each cycle, quickly become highly complex and sometimes misleading. 
On the other hand partial cycle analysis sub divides the rotation into its constituent 

events, making the study of dynamic wear and damage effects simpler. This require', 

the synchronous subdivision of the sampling cycle into shorter, typically 10-2Oms. 
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frames which can be referred to particular mechanical "events" such as inlet valve 
opening or exhaust valve closing. 

Chaudhuri applied various sensor types depending upon the type of faults being 
identified. He found acceleration mode sensors to provide greater resolution for faults 
involving higher frequency effects, whilst displacement and velocity sensors are more 
suited to lower frequency faults such as structural support problems. Despite the 
complexity Chaudhuri was able to determine several failure modes. One particular 
example was cylinder liner looseness, which was identified by studying the spectrum 
measured using both acceleration and velocity vibration sensors attached to the cylinder 
head. In this case the fault manifests itself in the higher frequency end of the spectrum 
making the acceleration mode sensor more sensitive than the velocity measurement. 

In contrast to Chaudhuri's manual comparisons of spectral content to determine system 
state, Stronach refers to the obvious advantages which could be afforded by the 
implementation of a form of pattern matching to the spectral data to provide automated 
diagnosis. His preferred method is to further simplify the process by producing a 
difference spectra. The difference spectra would be produced by subtracting the 
baseline spectral components from the on-line spectral components taken during 

machine usage. With this system a series of fault patterns, each defined by its difference 

spectra, could be compared to the current pattern and a decision on its distance measure 
be obtained to classify the condition. Such a system would of course be of considerable 
attraction in terms of both simplicity and a reduced requirement for skilled personnel to 
operate the machinery. However the major disadvantage afforded by such a system is 

the necessity to provide a complete set of failure patterns for each machine prior to 

usage. 

2.2 Simulation Analysis of Machine Condition using Mathematical Modelling 

This is arguably the most deterministic technique but relies on the development of 
sometimes complex mathematical descriptors of the machine to be monitored. 
Obviously the more complex the machine, the more convoluted the mathematical 

representation. There are two variations upon this theme, the first is transfer function 

estimation and the second is component part simulation. The first uses the emissions 
from the device to derive an estimation of the function describing the variations from 

source to sink whilst the second relies on knowledge of the device sub-componentry and 

an understanding of the emission characteristics of each of these within the device in its 

running state. 

2.2.1 Transfer Function Modelling 

The dynamic response of a complete system can be modelled in terms of a transfer 
function in which the behaviour of sub-components are characterised in mathematical 
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terms. These include the characteristic frequencies of sub-components, steady state 
gains, time constants and damping effects caused by both material content and system 
design. Once a model has been produced these sub-components can be individuall\ 
identified from each other by the application of the transfer function to the output , signal 
from the machine being monitored. This function estimation may be done in the time or 
frequency domain and relies on the accurate sensing of both the signal source and its 
sink to the outside world. 

In [28] this technique is applied to an electro-hydraulic servo system. The key to the 
success in this instance is to minimise complexity whilst at the same time ensuring that 
all relevant dynamic parameters are included in the function. Firoozian uses (5) with 
which to model a simple system comprising two critical components with different time 
constants (T1 and T2). Monitoring is then a simple matter of calculating the baseline 

values on the system when new and periodically comparing the in-use values with the 
baseline whilst in service. This comparison would highlight changes in dynamic 
behaviour of the system. Limits could be associated with changes in these parameters in 

order to determine the state the component parts of the machine. The major advantage 
this has over many techniques is that each element within the model can be individually 

monitored for variations separately from one another. It has one major disadvantage in 

that the more complex the system the more convoluted and complex the ensuing model 
is to estimate. It does however in this form provide a somewhat modular approach to 
the system which could be beneficial if a sub-component was to be replaced within the 

system. This technique does not necessarily require the generation of a wholly complete 
model of the system under observation but must provide a representative model from 

which the relevant machine parameters may be identified. 

Bartelmus's development of coherence function measures used to generate condition 
measures from multiple sensor systems attached to gearbox drive systems is based upon 
the modelling of physical interactions of meshing teeth. In [29] he describes 

mathematically the development of a condition measure based upon the acquisition of a 

pair of inputs from a gear system. The measure is based upon the separation of the 

correlated and uncorrelated parts of the two signals. He found the measure to provide 

good feedback for assessing the state of the gear mesh providing that the measure is 

out 

in 

A 

(Tls±1XT2s+112 
s2 + 

2s+l 
2 

Co ý 
nn 

(5 ) 

Where, 
A is the steady state gain. 
T is the time constant. 
c0� is the natural frequency of one component. 
k is the damping ratio of the same component. 
9;,, is the demand signal, centrifugal force, and is the 

output variable, measured vibration. 
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made under normal working conditions. 

2.2.2 Component Modelling 

This technique is based upon the premise that the group emissions from a mechanical 
device are made up from the emissions from each of a number of constituent mechanical 
sub-components. In other words each of the separate sub-component excitations 
provides some part of the total emission. The proportion that each part provides is not 
necessarily solely related to its size. If each of the constituent sub-components can be 

modelled mathematically then it follows that a model may be derived that provides a 
complete system description built up from each of these individually modelled 
constituent parts. This is what is meant by the term component modelling. 

In [30] McFadden and Smith model the vibratory emissions from a rolling bearing and 
attempt to relate modelled characteristic emissions to the measured characteristics in the 

case of a single defect on the inner race of a roller bearing. They model the effect by 

assuming the excitation caused by the rolling ball impacting upon a point defect is an 
impulse function, bf. The magnitude of the impulse is proportional to the severity of the 
defect and the load exerted upon it. Several other factors must be taken into account 
when modelling this simple system. The first is the number and velocity of the rolling 
elements in the bearing and the constantly varying angular load exerted upon the defect 
by the rolling elements as the bearing rotates (assumed to follow the Stribeck equation). 
The second factor which must be included in this model is the effect introduced by 

cyclic variations in the transmission path between the defect impact emissions and the 
transducer used to sense them. The last point noted by the authors is that "real" damage 

cannot be considered a point source but can be modelled by assuming it is a series of 

adjacent point defects 

Each of these effects is applied in turn to the initial impulse function to produce a 

comprehensive model. In order to determine the accuracy of this model they compare 
the modelled emissions with experimental measurements taken from a real system. The 

agreement between the two results is reasonable. However considering such a simple 

model we should be able to estimate the resultant emissions with relative accuracy. In 

many of the types of machinery in which we would wish to monitor condition we may 
have several tens of bearings together with many hundreds of other separate components 

as well as casings, mountings and the effects from surrounding plant machinery may be 

involved. In this situation the building of a reasonable model is no longer a trivial 

exercise. The complexity involved would most likely ensure that component modelling 

would be uneconomic to apply. If this is the preferred option a conscious effort should 
be made to apply it to the correct type of application whilst at the same time ensuring 

that only relevant constituent parts of the model be estimated for the purposes of 
identification. 
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2.3 Chapter Summary 

This Chapter has provided an overview of some of the techniques which have been 
applied to the extraction of condition data for use as a means of estimating system 
condition. The requirement for such systems is becoming more widespread in toda} ", 
safety and cost conscious environment. A good system provides savings in the cost of 
direct ownership through reduced maintenance and labour as well as enabling operators 
to run the plant closer to the system operating tolerances resulting in increased 

efficiency. Whether we apply the techniques on-line or off-line, continuously or 
periodically depends upon key factors such as likely cost benefits, the expected mean 
time before failure (MTBF), and safety criticality. 

All the techniques rely primarily on the premise that any component, or group thereof, 
being monitored produces a characteristic signature which is modified as a result of any 
change to the system. Which techniques are most applicable to particular situations 
depends in most part on the nature and type of variations which we expect to encounter 
and the level of external interference which may be introduced to the raw signals by the 
local environment. Some of the simple time domain processing techniques such as peak 
and rms are easily implemented but are affected by local noise and can be somewhat 
machine specific. The use of combined measures can improve the condition separation 
as can the use of dimensionless measures such as kurtosis. This technique in particular 
is reported to be relatively insensitive to changes in both load and speed as well as the 
transmission path effects due to sensor positioning. Other techniques combining the use 
of spectral selection with time domain measures, as in the case of the Curtis-Wright 

analyser, rely heavily on the use of accurate speed control or dynamic filter tuning for 

their effectiveness. In most cases the measures can be enhanced by the application of 

synchronised filtering which reduces the random noise elements within the raw 

condition signals. The synchronisation information can also be used to specify the 
initiation or position of a specific fault by reverse referencing. 

Spectral processing in contrast can be used to provide system information based on a 

physical understanding of the processes under observation. Primary rotation frequencies 

and harmonics of each of the components can be estimated and compared to the 

extracted data to provide status information. In complex systems the condition of 
individual parts may be difficult to extract from the acquired spectra. As in the case of 

time domain techniques though some selection may be applied to reduce the complexity 

of the data. The model based techniques are complicated still further by the requirement 

to simulate each of the sub-components accurately enough to make relevant 

comparisons with recorded data. For this reason their application has yet to become 

widespread. With the more recent introduction of modern digital signal processors 

cheaper, simpler and more compact devices are now feasible, bringing with them an 

opportunity to develop monitoring systems for an increasingly wider range of 

machinery. 
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3. Time Domain Signal Coding 

The concept of coding a signal in terms of its shape and duration between amplitude 
zero crossings has its roots in some early work by Licklider [31] on the intelligibility of 
infinitely clipped human speech. Studies of clipped speech showed that removal of 
signal shape information had little effect on the intelligibility. Whilst connected 
sentences were identified in 90% of test cases this level was reduced to 7517c in tests on 
isolated words. However this relatively small effect on intelligibility is outweighed by a 
marked reduction in speaker identification by listeners. It was apparent from this initial 
work that the removal of shape information removes data vital to voice classification. 
In 1978 King and Gosling went on to develop this signal coding technique for use in 
speech encoding and identification [1]. It was for this reason that the technique became 
known as time encoded speech, or TES, as it more usually termed. Their research 
centred around maintaining more of the shape information found to be vital to the 
speech quality and subsequent speaker identification. 

Initially the work concentrated on applications in automated tactical military 
communication systems where the emphasis is not focused on telephone quality speech 
but on intelligible speech which may be transmitted over low bit rate channels (e. g. HF 

radio). TES coding not only produces the necessary reduction in bandwidth 

requirements but also permits the subsequent application of complex digital encoding 
algorithms to provide secure communications which are essential in the military arena. 
They went on to study the technique's applicability to direct voice input (DV1) systems 
for use in `hands off' ontrol of tactical military equipment. Such systems are ideally 

suited to reducing loading on personnel in high stress hostile environments. This 

application requires a robust classification engine which must be able to respond quickly 
to user commands. Additional constraints are placed on the system by the necessity to 
perform the classification in different environmental conditions introduced by the 
variety of circumstances in which it would be used. For example during military 
engagements a subject's speech can become highly distorted due to stress, the effects of 
protective clothing (e. g. respirators) or the necessity for whispered speech. In all cases 
the classification must take account of these effects and still be able to respond 
accurately. This work was then extended to voice recognition of severely handicapped 

people suffering from disorders which have reduced their ability to interact using 
speech. In some cases this leaves severely impaired speech as the only form of 

communication for a patient. The work carried out by Warner et al [32] centred on the 
development of a system which enabled skilled staff to train a speech recogniser for a 
particular patient depending upon their specific needs. The recogniser is trained using a 
series of utterances from the patient with the help of a staff member. This routine 
identifies a small, sometimes less than ten, set of unique patient utterances which can be 

associated with a particular sentence or action. The results of this study identified the 

effectiveness of such a system to a group of people who would otherwise be unable to 

communicate. All of the work discussed up to this point regarding the development of 
utterance archetypes and archetype comparisons employ simple difference sum 
calculations to determine the likeness of a particular utterance to each of a number of 
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predetermined archetypes. As will be discussed later in this Chapter a more recent 
addition to the field, namely that of neural classifiers, offers further room for future 
development of such systems in terms of flexibility and accuracy. 

This work has shown that the coding technique itself is compatible in a number of 
different applications and has resulted in the development of several robust and accurate 
systems implementations encompassing it. All these initial developments have been 
based upon applications to human speech processing but there is obviously no 
underlying reason why such techniques could not be applied to signals in other fields. 
The term TES, or Time Encoded Speech, was originally chosen simply because it 
described the application of the technique to speech in particular. However the 
technique may equally well be described as Time Encoded Signal where the signal can 
be taken from any number of a wide range of sources and using a variety of sensor 
types. Automating the application of condition monitoring to industrial machinery as 
previously discussed in Chapter 2 is a highly desirable goal. It requires the development 
of a system which is able to acquire the primary measurement data then process it and 
extract the information pertinent to classifying the state of a monitored target as 
efficiently as possible. In each case the location and dynamic range of the transducer 
chosen to capture the raw signal will vary with respect to the type of machinery and the 
choice of monitoring strategy. TES provides an ideal means of both compressing and 
conditioning a wide range of raw signal sources into a format which can be applied to 
simple automated recognition techniques. Given the level of processing power now 
available at relatively low cost TES based condition monitoring has the potential to be 

performed continuously in real-time whilst a system is in operation. In this Chapter 
both the theoretical and practical aspects of the application of an acoustical TES based 

system to the automated management of condition classification in a simulated gearbox 
will be discussed. 

3.1 The Principles of a TES Coding Scheme 

The definition of the principle of TES coding can be described as "the conversion of a 
digitally sampled signal into a series of shape codes representative of the original 
signal in terms of one or more of its physical attributes". The points in the sample 
stream which define the limits between which the attributes for each TES code are 
measured are the real zero crossings which are identified by sample polarity inversions. 
In TES the periods between these polarity inversions are termed epochs which means 
literally "an extended period of time characterised by a memorable series of events ". 
The TES conversion consists of allocating a unique symbol to each individual epoch in 

the stream dependant upon the chosen set of measured attributes specific to each 
conversion type. Figure 3.1 describes graphically this signal segmentation and 
conversion process based either on the amplitude or minima shape characteristics of 
each respective epoch. The details of these two particular techniques will be covered 
more fully later in the Chapter. However once these attributes have been identified the 

conversion is a simple matter of using a pre-configured look-up table to select each 
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symbol depending upon its shape characteristics. The resulting symbol stream is 
denoted in Figure 3.1 by the numbers seen below the raw digitised source signal. 

In order to encode a signal source into a representative series of TES symbols for the 
purposes of condition monitoring the shape attributes and their relevance to the 
changing machine condition of the source signal must be defined. The selection of a 
particular set of attributes is the first important aspect of the monitoring process. 
Without sufficient primary information about the source signal the identification of 
specific faults becomes impossible. The three attributes which are considered to be 
most relevant to condition monitoring are duration, harmonic composition and energy 
content. 

The duration attribute contains fundamental frequency and noise content information 

and requires only a straightforward measurement of the number of discrete samples in 

an epoch. That duration measures can be used to estimate signal to noise content as 
well as explicit frequency data may seem abstract initially. However given that signal 
generation is the result of physical interactions certain assumptions regarding the type of 
epochs which can physically be generated during the normal course of events can be 

made. Certain epochs falling outside these predefined physical boundaries may quite 
legitimately be attributed to the introduction of additional unwanted noise. The noise 
content of a specific signal may be estimated by measuring the frequency with which 
low energy, short duration (1-2 samples) epochs occur. Such epochs are found to be 
indicative of additive noise effects having caused "spurious" crossings in the signals 
being analysed. Phipps [33] notes in some of his work on human speech conversion that 
such noise impairs the general speech quality. For his applications in low rate speech 
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Figure 3-1 A graphical representation of the signal attributes used to convert a raw 
source signal using the TES technique 

36 



transmission he employed a more complex duration measurement technique aimed at 
reducing these external noise effects. By measuring the duration and energy of 
successive epochs against selected thresholds he was able to identify suspected noise 
induced epochs. By then interpolating between successive adjacent epoch maxima the 
original crossover points position can be estimated. However this type of added 
complexity is considered to be unnecessary for an initial monitoring investigation. It 
would entail additional computational overhead to what is intended to be a simple 
application. Since human intelligibility is unnecessary it is thought better to provide 
conversion and manipulation tools which take account of this additive noise component 
in the condition signal. 

The harmonic attribute which as the name implies conveys additional information 

regarding the spectral content is portrayed through the measurement of epoch minima 
characteristics. The minima techniques used by King and others described earlier which 
were applied to their speech work were based upon some earlier work performed by 
Bond and Cahn [34] and later developed further by Voelcker [35]. It was Bond and 
Cahn who first introduced the concept of complex signal zeros, or minima, and their 
relationship with the harmonic content of the signal. In general they found that the 

number of minima measured for a given epoch duration was indicative of the presence 
of certain specific higher harmonics. Consequently these minima characteristics can be 

used as an indirect measure of a signals harmonic content. In the discrete domain the 

minima themselves are identified by comparing successive samples within an epoch for 

gradient reversals. If the continuous stream of samples, S,,, in Figure 3.2 is considered 
then the test for a minima condition consists of the simple comparison detailed in Eq. 1 

S, 
1-11 > IS, 1 I<f Sn+l 1 (1 

In reality it is also necessary to compensate for the effects of additive noise on the signal 
introducing fluctuations which could be incorrectly identified as harmonic related 

Figure 3-2 Simplified view of the process of minima identification in a discrete signal 
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minima. This correction is implemented by applying the depth threshold test described 
in Eq. 2 to each potential minima identified. 

(J Sn-x` 
- 

`Sn I) ý! Minimathresh < "Sn+x` 
- 

`Sn) ý2) 

In the simplest case this measure involves comparing the adjacent maxima s'amples 
(Sn-1, Sn+l) with the central minima sample S. to calculate the depth. In cases where a 
minima extends over several samples this comparison must search outwards from the 
minima position to the surrounding maxima samples at S�-r and S�+l to measure the 
depth. Figure 3.3 illustrates this search graphically, identifying two potential minima 
only one of which is classified as a minima after the depth test has been performed. 

The third and final attribute to be considered is the energy attribute. As the name 
implies this attribute is intended to convey information about the energy content of each 
individual epoch and is estimated by identifying the maximum epoch amplitude (Amax). 
Taken in isolation this measure can convey information about the peak-to-mean ratio of 
the signal but when combined with the duration component it provides an estimate of 
signal energy. Measuring the amplitude attribute itself requires a simple sample by 

sample linear comparison search to be performed on the magnitude of individual 

samples from one zero crossing point to the next within each epoch. In fact this 
description of the estimation of the energy content attribute is a somewhat simplified 
view of the application required to provide useful classification data. This is because, 

unless carefully controlled, the measurement is prone to variations caused by sensor 
position and equipment characteristics. These variations are caused as a result of the 

potential fluctuations in measurement conditions between successive signal acquisitions. 
To circumvent some of these problems the magnitude measure is made with respect to a 

selected signal reference. Providing this reference measure is acquired satisfactorily the 

conversions can be made sufficiently repeatable as to be acceptable for signal 
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Figure 3-3 The process of minima identification in extended duration epochs under 
varying noise conditions 
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classification. The acquisition of the reference level will be considered in depth in the 
implementation section later in this Chapter. 

As a result of selecting these three epoch attributes the description of shape can be made 
in several fundamentally distinct ways. Excluding for the moment the complexity of 
defining a coding scheme which uses all three attributes simultaneously two separate 
methods were developed both of which employed the duration component as a 
fundamental feature. The first method, which uses the extrema information in 

conjunction with the duration measure is known as minima coding. The second 
technique, which replaces the extrema information with the energy composition 
characteristics has been called amplitude coding. Both of these coding schemes result in 

a stream of uniquely defined epoch symbols each conveying information about a 
fundamentally different aspect of the signal source. Figure 3.4 graphically describes 
these two schemes both of which are intended be used independently to determine the 
health status of machines in use. For the purposes of this diagram the amplitude coding, 
using a 300 element allocation table, has been applied to positive epochs and minima 
coding, using a 150 element table has been applied to the negative epochs. 

As has been described in this section TES coding is able to provide a simple means by 

which an analogue signal may be converted into a format suitable for its subsequent 
classification. In Chapter 2 some of the methods which have been employed previously 
to provide mechanical status information on machinery were discussed. Some of the 

ways in which these wear and damage patterns in machine parts introduce variations in 

their vibroacoustical emissions were also described. It should now be apparent that TES 
implicitly provides such frequency, harmonic and energy content information without 
the necessity for extended or complex processing. In addition the techniques described 
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so far are ideally suited to the wide range of digital signal processing hardware which is 
becoming available at ever more competitive prices. 

3.2 Allocation of TES Symbols to Signal Epochs to Generate a Symbol Stream 

The process of coding each epoch requires the development of a suitable allocation table 
which defines for each particular coding mechanism the association between unique 
symbol descriptors and the epoch parameters used to select them. Coding then consists 
of measuring the relevant parameters from the discretised signal and selecting the 
symbol referred to by this set of parameters from the allocation table. The number of 
descriptor types or epoch symbols resident in each allocation table is dependant upon 
the signal source and additionally the states which must later be identified during 

classification. The basic rule of thumb is that there must be sufficient to adequately 
describe a particular source and this is itself dependant upon three key factors. 

1) The definition of the term "adequately described source" which is application 
specific and difficult to define without practical trials. The basic concept itself 
is that the more coarsely the signal is encoded the smaller the set of symbols 
required to describe the signal becomes. However any reduction in the symbol 
set is made at the expense of increased signal distortion. 

2) The coding strategy to be employed. In terms of the two methods being 

proposed in this work, amplitude coding requires a larger table than minima 
coding simply because the minima diversity of the gearbox acoustic emissions 
is less than the amplitude quanta diversity for the same emissions. 

3) The dynamic range of the raw signal source which is primarily dependant upon 
the transducer type. However the range required to extract sufficient 
information to classify a signal can be substantially less than the dynamic range 
provided by the transducer depending upon the target to be monitored and the 
states which must be identified. 

What is required to combine all these facets is a robust yet flexible technique for the 
development of an adequately populated strategy dependant allocation table. The final 

contents of this table must be sufficient to perform the required conversion without 
compromising the essential simplicity of the scheme more than is acceptable. At the 

same time to reduce the system cost and improve the response of the identifier the 

processor overhead required to perform the conversion and subsequent classification 

must be minimised. By minimising the symbol table set both data set size and diversity 

should be reduced so, in principle, reducing the processor overhead required for 

subsequent classification. Irrespective of whether amplitude or minima coding are 

employed the table generation and optimisation requires a two stage process of symbol 
rationalisation. The first stage applies a set of absolute boundary conditions for each 
table parameter based on knowledge of the signal source and of the information 
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requirements of the classification mechanism. These initial boundary conditions are 
defined for each table parameter independently. They effectively outline the perimeters 
of a fully populated symbol table and should exclude only descriptors. which occur 
spuriously or convey no information pertinent to the classification process. The second 
stage of rationalisation is concerned with optimising this fully populated table to 
produce an allocation table containing a minimal symbol set. This second phase results 
in the generation of a partially populated table containing only those symbols which are 
essential to the subsequent classification process. 

In performing this table boundary definition and the subsequent optimisation it is 

necessary to be aware of the two most basic limitations involved and develop 

optimisation techniques which take account of them. The first is the specific physical 
limitations associated with the emissions and the second is the application limitations 

related to a particular device or machine implementation. The epoch duration boundary 

parameter, for instance, may be estimated using information known about the band-pass 
filters used to condition the signal prior to discrete sampling. These filters will impose 

specific high and low frequency limitations on the source which will result in specific 
epoch duration limitations. As such this restriction is described as a physical boundary. 
In the case of the other two coding parameters, extrema and energy, limits are more 
usually constrained by the requirements of the classification mechanism since it is 
difficult to specify physical boundaries on these attributes. The potential number of 
minima occurring in an epoch or the number of energy quantisation levels which are 
used to code epochs is application specific and difficult to quantify without prior 
evaluation. As such the type of symbol optimisation most applicable to these particular 
parameters is statistical analysis. In practice this evaluation is performed on a series of 
test segments acquired from the particular source involved to identify these bounds. 
Because of its basis on statistical analysis these limits are termed application limitations 

and are dependant upon the characteristics of a particular signal source as well as the 

requirements of the monitoring application. 

3.3 Statistical Analysis of the Signal Source to Define the Symbol Table 

As would be expected the potential size of an allocation table describing all possible 

signal epoch parameter combinations is vast. One of the primary objectives of 

employing TES is to reduce the volume of data required to represent a signal in an 

effective manner and since this goal is at odds with the principle of a fully populated 

allocation table optimisation is essential. In previous speech work carried out by a 

number of researchers this tuning has been performed by statistical means. Although 

this does not necessarily identify the suitability or otherwise of each of the symbols 

within the table in the post-coding classification process it does limit the symbol set 
based on the structure of the source itself. It also has the advantage of providing a 

simple yet flexible means of automating the process of table construction which for the 

purposes of an automated system requiring minimal user intervention would be of 

additional benefit. 
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A key concern when applying statistical analysis to assist in the table optirni. "ation 
process is to ensure that the acoustic sample(s) used to carry out the analysis are deemed 
to be a sufficiently significant subset of the acoustic source to be subsequently 
classified. This should be accomplished by including at least one extended sample set 
from each of the classification states which must be identified. Once this stipulation has 
been satisfied the analysis itself simply consists of performing an evaluation of the 
relevant symbol table parameters from the sample segments acquired from the source. 
Initially the sample set is analysed to extract all the relevant shape information in order 
to define parameter quantisation boundaries for each parameter in isolation. The second 
stage focuses on analysing the symbols generated by a sample set using a base table 

generated with the initial quantisation boundary selection. This stage enables the 

symbol set to be reduced still further by considering the parameters together rather than 
in isolation. 

3.3.1 Initial Parameter Quantisation to Minimise Signal Distortion and Table Size 

This initial phase of the table rationalisation is essentially part of what was previously 
termed an application limitation. It employs information extracted from the source 
samples to identify optimised table boundaries for each parameter. These optimised 
boundaries are defined as being positioned so as to minimise signal distortion for each 

given set of table rules. The distortion takes two forms, shape distortion and noise 
distortion. The TES coding process as with analogue to digital conversion is susceptible 
to noise as a result of quantisation effects. The amount of quantisation noise introduced 

during this coding is non-uniform in distribution. It is dependant upon the positions of 
the parameter boundaries as well as the dynamic properties of the signal. The most 

effective method of reducing the effects of quantisation errors is to provide a constant 

signal to quantisation ratio (SQNR) over the entire dynamic range. This is achieved by 

allocating the signal parameter boundaries in a non-linear fashion across the range 
depending upon the cumulative distribution of the parameter when measured from the 

source. This results in allocation tables which have non-linear parameter boundaries. 

In the case of amplitude coding where the emphasis is on generating codes which 

provide an indication of signal energy content this non-linear step-size allocation entails 

coding the lower energy epochs more accurately than the higher energy ones to maintain 

the necessary flat SQNR in the converted signal. The nature of the source is important 

in the allocation of boundaries since the distribution of amplitude levels across the 

dynamic range should accurately reflect the distribution of epoch energies in the source. 
Each individual source may have a different set of physical attributes which will cause 

these boundaries to shift. 

Thus to minimise noise distortion in an n-level energy based TES coding scheme it is 

necessary to identify (n-1) boundary positions based upon the source signal 

characteristics. Figure 3.5 provides a good example of the boundary positions selected 
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Figure 3-5 Statistical identification of the energy boundaries for application in a ten 
level quantisation TES conversion scheme 

after the statistical analysis of a taped record from the gearbox testbed platform 
converted using this type of energy based amplitude coding scheme. This particular 
example is of a ten level (n=10) energy parameter definition plot. It should be noted 
that all the boundaries lie in the 0-0.5 region with non-linear separations between the 
successive points. If these boundaries were employed in a practical system then epochs 
having normalised amplitude peaks in the region 0.5-1.0 may be allocated symbols from 
the symbol table which significantly distort their energy content with respect to actual 
levels. Each coding scheme parameter, as with the case of the energy term just 
described, requires its own particular limitations to be placed on the dimension, n. 
However the same boundary optimisation principles are used for both of the remaining 
parameters, minima and duration, which make similar demands on the use of statistical 
analysis. 

The development of a practical recognition system must encompass such tools as are 
required to perform the analysis and boundary selection discussed in this section. This 
introduces two considerations which are essential to the viability of a "system". The 
first is that the statistical pre-processing of sample source signals from a particular 
device in order to perform the boundary selection satisfactorily should be as automated 
and as simple to operate as possible. Secondly, since any subsequent classifications are 
based on the data stream produced by signal encoding using an optimised table any 
variations in the symbol tables could be expected to impact upon the consistency of the 

classification itself. Consequently this situation should be controlled by providing as 
large an initial data set as possible during the calibration phase. The principle being to 

encompass as many different system conditions so enhancing the range of signals which 
can he adequately catered for. 
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3.3.2 Secondary TES Symbol Table Optimisation 

Once the primary phase of parameter truncation and quantisation has been performed an 
initial, or first-stage, symbol table is produced which contains entries for all axis 
combinations. This table however is generated as a result of statistical analysis of each 
of the parameters when taken in isolation. As a result there is room for additional 
rationalisation of the symbol set populating each allocation table. This second stage of 
optimisation considers symbol rather than parameter distributions in the source. The 

analysis is performed by passing a sample signal through a TES coder which uses the 
newly created first-stage allocation table in the coding algorithm to produce a raw 
symbol stream. Measurements can then be made on the frequency of occurrence of the 
individual symbols within the allocation table contained in the raw symbol stream 
subsequently generated. This statistical symbol evaluation provides valuable 
information on the occurrence of combined signal parameters which in turn can be used 
to prune the fully populated first-stage table to produce a better optimised second-stage 
table which is only partially populated. 

This secondary pruning process requires the provision of criteria for symbol 
incorporation into the table. Since the complexity of the signal-to-state relationship is 

generally non-trivial using a purely physical means to distinguish between a symbol 
which is useful to the classification procedure and one which may be discarded is not 
practicable. Instead a more basic frequency based criterion is applied to each symbol 
from the primary table. In other words each unique symbol is required to attain or 

surpass a pre-selected cut off frequency prior to inclusion in the final optimised 

allocation table. This procedure reduces the symbol set to a minimum by excluding all 
those symbols which do not attain the required selection cut of frequency. 

In defining this cut off point a balance must be sought between the primary need for an 

allocation table containing few symbols which reduces subsequent matrix diversity and 
the need to minimise the introduction of signal distortion due to symbol warping. 
Whilst reduced symbol diversity should lessen the demand placed upon the subsequent 

classifier increased distortion will introduce additional overhead. Symbol warping is the 
inevitable result of a fragmented table and refers to the distortion caused when an epoch 

whose associated symbol is missing from the allocation table is reassigned to a 

neighbouring symbol which has a different shape definition. The process of minimising 
the effects of the symbol warping phenomenon are discussed in more detail in the next 

section. 

Once again the success of the secondary pruning exercise is mainly dependant upon the 

selection of an adequate set of source samples being passed through the coding process 

to provide the symbol distribution data which is used to identify those symbols 

warranting inclusion. Each particular recording, or state, will have differing acoustical 

properties and consequently the symbol characteristics will vary accordingly. To 

provide a symbol set capable of performing adequately over a range of signal types the 

source sample yet should include sufficient data for each of the required types. What 
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Figure 3-6 Statistical analysis of symbols produced from a coder applying minima 
based symbol selection to emissions corresponding to an out-of-mesh state 

should result if the set selection is performed effectively is an allocation table which is 

able to code a limited range of source signals whilst at the same time maintaining the 
signal distortion introduced to an acceptable level. It should also preserve this signal 
information in as compact a form as possible to enable the development of classification 
strategies based upon this data which respond in reasonable time and with sufficient 
accuracy for minimal computational effort. 

Graphical examples of the frequency of symbol occurrence produced by segments of 
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Figure 3-7 Statistical analysis of symbols produced from a coder applying amplitude 
based symbol selection to emissions corresponding to a partial-mesh state 
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Figure 3-8 Statistical analysis of symbols produced from a coder applying amplitude 
based symbol selection to emissions corresponding to an out-of-mesh state 

acoustical source from the testbed system acquired to perform the table minimisation are 
given in Figure 3.6, Figure 3.7 and Figure 3.8. As can be seen the distributions vary 
according not only to the signal source used but also to the coding strategy and symbol 
tables employed. For example, comparing the minima symbol distributions in 
Figure 3.6 with those for amplitude coding in Figure 3.8 both acquired from an identical 

signal source the differences in the distributions are clearly visible. The minima 
symbols are more evenly distributed across the table when compared to the peaky 
characteristics of amplitude coding. As a result the cut off for minima coding is placed 
at logf=-1 which corresponds to a frequency of occurrence of 0.1%. This produces a 
second-stage table containing just 30 symbols. In contrast the more peaky nature of 
amplitude coding requires a cut-off to be placed at logf=-0.6 which corresponds to a 
frequency of symbol occurrence of 0.25% giving a second-stage table containing 40 

symbols. However from this it should be noted that the pruning has resulted in the 

omission of between 85 and 90 percent of symbols from an initial fully populated table 

of 300. 

If the symbol distributions are examined in detail certain key characteristics associated 
with the source, which will later be used to classify the signals, can be identified. For 
instance the pronounced peaks which accompany some of the symbol blocks in the 
distributions are the result of epoch clipping on the tables duration axis. These peaks 
give an indication of the low frequency content of the signal. If the distributions in 
Figure 3.7 and Figure 3.8 which were both acquired using the same amplitude coding 
strategy are compared certain other characteristics can be seen. For example in 
Figure 3.8 the signal energy is more evenly distributed throughout the frequency range 
whilst in Figure 3.7 it is biased more towards codes in the range 120-300. This type of 
data is precisely the type of signal information which can be used in accurately' 
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determining the state of the signal source. 

3.4 Symbol Allocation within a Fragmented Table 

The selection of symbols based on the frequency of occurrence which is so critical to 
table minimisation poses an additional problem which was alluded to in the previous 
section, i. e. that the minimised table becomes fragmented as a result of the symbol 
selection. Thus the encoder used must be developed to account for the possibility that a 
given set of epoch parameters will not have a unique symbol allocated to them. Under 
these circumstances the encoder must select a symbol from those remaining in the 
fragmented table. This process is termed symbol warping. Warping will obviously 
cause some distortion in the coded signal no matter how it is performed. However the 
effects of the distortion can be minimised if the manner in which the reallocation is 

performed is chosen carefully. The solution is to define a set of rules outlining the 
definition of nearest neighbour symbols to those entries in the table which do not have 

unique symbols. These rules are then applied when an unallocated table entry is 

referenced and a replacement symbol is selected instead. Essentially the most important 

aspect of this rule set identification is to monitor, at each stage, the side effects caused 
by the inevitable epoch, and in turn signal, distortion. These distortion effects are most 
easily identified by a reduction in sensitivity, response and accuracy of the subsequent 
classification process used to separate the TES data sets. 

Figure 3.9 graphically displays the scenario of a pair of epoch parameters which relate to 

a position in the allocation table which is unoccupied. The position is surrounded by 

eight other symbols which in this instance have all been included in the final table. The 

rules defining the best choice of substitute symbol, or freedom bound, is dependant 

upon the emphasis placed upon the information defined by the two axes. In the 

Duration 
Frequency Distortion 

11 12 13 12 
13{11 

+Engy 

ä -Frq +Frq 

-Engt' 54- ------. ^: 
6 

Amplitude Distortion 

Figure 3-9 Amplitude and frequency code warping as a result of allocation table 
fragmentation with the amplitude coding strategy 
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amplitude coded example above one axis describes the duration of the epoch and 
consequently contains information about the raw frequency content of the signal. The 

second axis in this scenario defines the amplitude quantisation groups and as such 
describes the energy state to which the epoch belongs. Since the best secondary- choice 
of symbol is determined to be the nearest neighbour the diagonal symbols may be 

eliminated as these would constitute a distortion in both information axes. This simply 
leaves a choice between the vertically or horizontally aligned symbols. The preservation 
of the epochs frequency information, or duration, is considered to be of greater 
importance than the energy or minima information conveyed by the remaining epoch 
parameter. This reduces the choice to the two remaining codes one of which increases 
the perceived energy of the signal epoch and one which reduces it. Allocating the epoch 
to the lower band would statistically minimise the error in energy allocation since the 
allocation is non-linearly quantised. 

3.5 The Application of TES Information to Condition Monitoring 

The extraction of accurate machine condition information based upon the application of 
either minima or amplitude derived TES coding algorithms consists of three interrelated 

sub-areas. The primary stage which has already been discussed is the adequate 
conversion of the raw signal data derived from the acoustic sensor into a format suitable 
for post-processing classification. This first stage results in the generation of a 
continuous stream of TES symbols which are focused on preserving the key aspects of 
the raw signal. The second stage absorbs the symbol stream taken from the first stage 
and converts it into a format which may readily be applied to a condition classification 
based pattern matching algorithm. The final stage in the process centres on the 
development of pattern matching techniques which are able to provide fast and reliable 
identification of signal characteristics from the TES data generated. This section will 
concentrate on the discussion of the intermediate stage in the process, making the 

assumption that the raw symbol stream provided by the first stage, and already described 
in this Chapter, provides an adequate definition of the processes occurring within the 

machine. 

The development of pattern based symbol stream post-processing strategies appropriate 
for use in on-line monitoring applications should be constrained by the processing 

overhead required to generate and utilise the pattern data which must be minimised. 
What is required is the definition of a data format which compresses an acoustically 
derived stream of TES symbols into a single data reference. For the studies completed 
in this thesis two matrix based techniques were used to perform this conversion and 

compression. The first is the A-matrix format, taken from the earlier work performed 
by King et al on speech recognition systems whilst the second, the histogram matrix, is 

a simpler technique requiring less processor overhead during generation. The A-matrix's 

added complexity is encompassed in its retention of some of the duration detail which is 

discarded during histogram generation. Both techniques generate matrix format data 

sets which for ease of visualisation are easily translated into three dimensional contour 
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Figure 3-10 Description of the relationship between the cyclic nature of a signal and the 

way in which it can be separated into token frames to generate condition 
matrices 

maps which will fluctuate with respect to time. These fluctuations are related to the 

calculation period or framesize used for the matrix generation (see Figure 3.10) as well 
as on the acoustical stability of the source under observation. In addition to these 
fluctuations secondary effects which are not the result of predictable instabilities but 

caused as a result of genuine changes in the system condition due to the introduction of 
faults are expected. If this is indeed the case then there is no reason why the contour 
movements within the acoustically derived matrices cannot be used to provide feedback 

regarding the condition of the target system. 

One of the important areas of consideration made during the authors studies was the 

statistical comparison of condition feedback provided by each of the four different 

matrix formats applied during this study. These consist of matrices derived using 

combinations of the two different TES conversion techniques and the two distinct 

matrix generation strategies. Amplitude and minima are the TES conversion strategies 

concerned whilst each of these are combined with either histogram matrix or A-matrix 

template generation schemes to produce classification data. Each of the combinations 

of coding strategy and matrix generation algorithm were evaluated on acoustical token 

sets recorded from the testbed gearbox system. These practical comparisons and the 
discussion of the relative merits of each are discussed in depth in Chapters five and six. 
The remainder of this section is concerned with the mathematical derivation of the 

matrix generation strategies which have already been described and are used in the 

practical trials in Chapters five and six. 

3.5.1 The Generation of Simple Symbol Histogram Contour Maps 

The generation of histogram contour maps for direct application to pattern matching 

algorithms provides a simple and yet effective manner of information concentration. In 
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terms of processing overhead required to convert the symbol stream generated by the 
TES coder into this particular matrix format only a simple symbol summation of the 
type defined in Eq. 3 is required. If this technique is applied to a minima based TES 
stream the map concentrates information pertaining to both the frequency and harmonic 
content of the acoustic signal. In contrast an amplitude TES stream source generates 
histogram matrices which concentrate information about the frequency and energy 
content of the source. Whilst both types of data can be used to classify signals, the most 
effective method may be dependant upon the type of faults to be classified or the 
properties of signal that the source generates. 

n=N 

a, 
1 = 

N-'I., X 
, j(n) 

n=0 

(3) 

where N is the number of TES symbols in a single frame, d, is the duration 

parameter of the nth symbol and px is the minima or the amplitude parameter 
associated with the symbol used in matrix generation. X is a function defined by: 

Xýý (n) =1 if dX { t(n) }=i and px { t(n) }=j 
Xy (n) =0 otherwise. 

To provide the means for histogram map generation from the raw symbol stream using 
Eq. 3, independent of the coding scheme, the symbol stream must first be subdivided 
into shorter discrete token frames. Each individual frame is then subjected to the 
histogram algorithm to generate a simple matrix, or token, which represents the 

properties of the signal over the frame period. As discussed earlier the selection of this 
frame length should be made with consideration for the cyclic nature of the source to be 

monitored. It should be short enough to reduce the likelihood of signal averaging over 
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Figure 3-11 A histogram matrix generated from a gearbox acoustic recording using a 
Minina coding scheme 

50 

Number of Samples 
0 

1 f--- - per Epoch 30 



multiple cycles which may swamp intermittent faults yet long enough to eliminate the 

predictable variations due to expected periodic events in the system under observation. 

If the statistical symbol data contained within the histogram map is then plotted in three 
dimensions a visual description of the acoustical processes taking place over the 
calculation frame is obtained. The map is subdivided into individual elements, a; j, each 
of which corresponds to a unique symbol resident in the allocation table used for TES 

conversion. The magnitude of each matrix element (Ia111), denoted by the height above 
the matrix plane in visual terms, corresponds to the frequency with which its associated 
symbol has occurred during the frame used to generate the matrix. Thus peaks are 
expected in the matrix map corresponding to the most common source symbols and 
smaller hills for those less commonly used symbols. Each matrix map has a fixed 
boundary on the horizontal plane due to the constraints imposed by the fixed symbol set 
but the contours contained within each of the maps is dependant on the nature of the 

signal from which it was derived. 
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Figure 3-12 A histogram matrix generated from a gearbox acoustic recording using an 
Amplitude coding scheme 

3.5.2 Generation of A-matrix Contour Maps 

In common with the histogram matrices, the A-matrix data format reduces an N- 

dimensional symbol stream to a single point reference of dimension D. In this particular 

conversion scheme a single frame is represented by a matrix of dimension, D=3. The 

matrix generation is performed by an ordered summation of all D dimensional 

histograms associated with the stream. The algorithm used for generating the A- 

matrices from a raw signal stream is described mathematically in Eq. 4. Unlike the 

histogram matrix described in 3.5.1 the A-matrix analysis map of a TES symbol stream 

retains some of the general signal shape and timing information from the original signal. 
This information would have been lost in the less complex symbol histogram contour 

map described previously. 
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n=1ti 
1 

a1 =(N-1Y X1ý(n) 
n-1+1 

(4) 

Where N is the number of TES symbols in a frame and l is the lag parameter 
defining the distance, in symbols, between symbols pairs in the stream which are 
compared. X is a function defined by: 

Xrý (n) =1 if S(n) =i and S(n-l) =j 
Xy (n) =0 otherwise. 

And S(n) refers to the nth symbol in the TES symbol stream. 

As can be seen it defines a matrix whose i and j boundaries are symmetrical and equal to 
the number of TES symbols resident in the requisite allocation table. The magnitude of 
each element, X; j, of the matrix is dependant upon the frequency of occurrence of pairs 
of TES symbols, S(n) and S(n-1), separated by a pre-defined symbol lag, 1. Each 
individual matrix frame contains N TES symbols from the raw symbol stream. The sum 
of the magnitudes of all elements in the matrix is constrained by the TES frame length 

used to generate the matrix in either coding format since each individual symbol is 

associated with a specific duration. The lag, in samples, may vary between 1=0 and 
1=(N-1) where N is the number of samples in each matrix frame. Because of this 

relationship between the symbol comparisons and the magnitude of individual matrix 

elements the lag term used in matrix generation will affect the contours of the map for a 

given frame since it affects the comparisons which define the contours. Multiple lag 

values may be incorporated into the generation of a single matrix. The greater the 

number of lag values used to generate each matrix the more complete the information in 

the matrix corresponding to the source becomes. However, work both in the speech 

recognition field and in early trials on machinery suggest that a single value of lag, 

usually 1=1, is sufficient to derive an A-matrix adequate for signal classification whilst 
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Figure 3-13 An A-matrix generated from a gearbox acoustic recording using an 
Amplitude coding scheme 

52 



minimising the generation overhead. This selection is ideal since it minimises processor 
overhead in matrix generation whilst at the same time retaining sufficient signal 
information to classify. 

3.5.3 The Identification of a Suitable Pattern Matching Tool 

The final stage in the process of signal classification is the application of a suitable 
pattern matching strategy to the contour map style matrices that have been constructed 
using either the simple histogram or more complex A-matrix algorithms. From the 
point of view of industrial applications this final classification mechanism should 
combine accuracy with ease of use. As such the development of an automated 
technique for template and matrix correlation to identify signal class would improve still 
further the suitability of a system, particularly to unskilled users in the industrial 

workplace. In the early work carried out in [32,36,37] on TES speech techniques these 
matrix template comparisons were performed using a simple distance based algorithm 
of the type described in Eq. 5. 
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This algorithm was successfully used by the authors to classify a range of spoken words 
in both continuous and broken speech. It is invariant to scale changes and generates a 
distance measure, c, which is used to perform the classification. The measure compares 
the generated contour map, A (with elements a1), with each one of a predefined range of 
templates, B; (elements b1). Each of these templates, which must be generated prior to 
the comparisons, contains details of a specific signal type. In the case of the work 
performed by King and others these signals were segments of human speech utterances. 
Whilst this technique could be readily applied in a similar manner to condition 
monitoring it suffers from two potential problems which may reduce its effectiveness. It 
is susceptible to orthogonality occurring between templates and becomes more 
inaccurate the smaller the matrix variations become. 

A more recent addition to the pattern classification arena is the neural classifier. 
Applications such as the matrix comparisons required in a TES based system where 
large and repetitive data sets require classification are ideally suited to some of the 

neural architectures which have been developed. The term neural network itself applies 
to a wide variety of architectures based around the organisation of simple processing 

elements which are able to perform more complex tasks as a result of their common 
interaction. Each network variant has a set of unique operating characteristics which 

predefine the uses to which it may be put. Supervised network architectures are ideally 

suited to the application of the TES data which has been described previously in this 
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Chapter. These configurations which are able to separate a complex decision space into 

relevant classification groups are termed supervised networks because of their 
requirement for an initial period of training. They are representative of a type of 
classifier known as an adaptive pattern recogniser which is specifically aimed at pattern 
separation. The application of such networks to pre-processed matrix templates of 
human speech by others have shown classification accuracy's of the order of 90T. 
Following on from this, some very early work was completed by Vu et al [38] using 
similar neural techniques to identify simple acoustic characteristics of a diesel engine 
with excellent results. These were achieved with a code table containing only 29 codes 
to compress the 4kHz band limited data stream and to generate the A-matrix templates. 
From these positive early results it would seem that the technique may indeed prove to 
be a viable alternative to the more traditional techniques which have hitherto been 

available. The adaptive nature of the classification process also lends itself well to 
industrial applications where ambient conditions are rarely ideal and where there is a 
desire to reduce the necessity for skilled labour in the workplace. For these reasons the 

author has considered the application of neural techniques for this last phase of the 

classification process with a view to understanding the underlying principles and any 
limitations in their use. The theoretical and practical concerns associated with the 

application of these techniques to monitoring applications will be developed in full in 
Chapter 4. For the moment the neural classifier is assumed to be a black box 
implementation which takes pre-processed matrix tables as an input and produces a 
system state decision output based upon the data contained in the matrix. 

Due to the nature of this particular neural architecture there are two phases to the 

application of a classification tool based upon this technique in a monitoring system, the 
first being supervised learning by the neural processor of the specific patterns, or 
contours, in the matrices produced by each state, or class, of signal. This requires the 

application of a predefined training data set which adequately defines each particular 

signal class. Once the neural processor has completed this training phase successfully it 

should in theory at least be capable of identifying and categorising a specific matrix 

presented to it. In the remaining part of this Chapter the practicalities of combining all 

of the stages so far outlined to provide a system which could be developed as a 

monitoring package will be discussed. These practicalities cover such problems as 

speed of conversion and compression, storage limitations, accuracy, usability and 

response. Further discussions on the specific problems associated with the application 

of neural classifiers is included in Chapters four, five, and six. 

3.6 Practical Considerations in Implementing a Real Time TES Processing Engine 

In order to perform a series of studies into the practical application of TES coding to 

machine condition classification and make objective statistical comparisons of the 
different processing techniques over a range of simulated machine conditions an 

efficient experimental toolset is required. For the purposes of this thesis a simple 

practical testbed system was constructed. The constraints imposed upon this testbed 
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implementation were more relaxed than those which would be required for a more 
dedicated commercial system. Rather than simplicity of use or cost, the main concern at 
this stage is the ease with which the system can be reconfigured to study the effects of 
variations in classification strategies. User friendliness, responsiveness and the cost 
implications associated with changes made to the system are considered to be of 
secondary importance. These secondary performance criteria are however taken into 

consideration when characterising and evaluating any processing modifications. The 

modifications themselves range from changes in recording conditions, coding schemes, 
matrix template generation and compression schemes to the type and arrangement of the 

pattern matching neural network used to finally classify the data. 

The TES coding system which was produced to satisfy all these diverse requirements 
employed a modular approach whereby each stage of the process could be considered in 

relative isolation. This maximised the ease with which the system could be modified 
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but at the expense ultimately of simplicity. However for study purposes this modular 
system, seen graphically in Figure 3.14, provides a reasonable compromise between 
flexibility and acceptable response. For a more detailed description of the individual 
modules in the test and evaluation system the reader is directed to refer to Appendix A. 
The remainder of this Chapter discusses one of the most important aspects of practical 
trials of TES for classification purposes, that of acoustic data stability. 

3.6.1 The Acoustic Library used for Practical Trials 

In order to enable repeatable comparative tests of the various TES techniques against 
several different machine conditions and in various configurations it is essential to 
provide a stable acoustic source against which comparisons may be made. To achieve 
this fundamental stability the testbed acoustic emissions used to provide the condition 
feedback in all the investigations performed within this work were initially recorded 
onto high quality audio tape. The use of a recorded media enabled the compilation of a 
fixed emissions database which subsequently provides the means to perform accurate 
statistical comparisons of the various different strategies. The database consisted of a 
series of extended recordings, each of which corresponded to a particular physical 
gearbox testbed configuration or simulated fault state. Each mechanical configuration, 
or condition, was recorded as a series of separate audio segment records each of which 
was four minutes in duration. The reason for recording so much data was to ensure that 

sufficient acoustic source was available for each specific condition to perform a variety 
of comparative evaluations. This was particularly important in the case of conditions 
which required the mutilation of parts of the testbed system which could not be easily 
replaced if additional data was required later. 

The recordings were made under supervision in a laboratory office rather than a 
dedicated testbed chamber. This recording room was not subject to any particular 

acoustic controls during data acquisition, the principle being that a system which is 

dependant upon rigidly controlled ambient acoustic noise levels is of little practical use 
in an industrial environment. Efforts however were made to ensure that ambient noise 
levels were kept relatively constant throughout each recording run. Both Chapters five 

and six will later discuss trials which were performed on the sensitivity of the 

classification system to various fluctuations in the recording conditions. These focus on 

two key elements of the recording process, the positioning of the microphone sensor in 

relation to the testbed and the signal specific considerations of the conversion process. 
For the positional sensitivity evaluations small variations in microphone position were 

made during a series of recordings included in the acoustic database. 

Another aspect of the recording process which was monitored to ensure that all library 

entries contained valid time series emission samples was that of the physical stability of 

the target system. To guard against the deterioration of a particular configuration over 

each of the recordings made for a unique gearbox state checks were made after each and 

every run when the testbed was shutdown. After each recording and shutdown cycle 
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measurements were made to ensure that the configuration had remained sufficiently 
stable throughout the complete recording. This ensures that each four minute acoustic 
state segment acquired from the testbed contains only data relating to a single svstem 
condition state. 

3.7 Chapter Summary 

This Chapter has dealt with the historical and theoretical description of TES coding as 
well as the practicalities of implementing a system with this type of signal coding 
scheme for the purposes of monitoring the condition of a simple gearbox testbed system. 
Licklider, King and Gosling all contributed to the early development of this simple 
signal coding scheme. Their early work focused on the development of the technique as 
a means of developing tactical military communications systems which were able to 
operate over low bit rate channels. Later work considered the techniques applicability to 
human speech recognition for which it proved well suited. Early indications of the 
extension of the technique into condition monitoring are provided by the work of Vu et 
al [38]. However the technique is still in its infancy in this respect. 

All the work carried out by previous researchers up to this point had centred around the 

use of the minima characteristics of the discrete signals to specify TES shape descriptor 

symbols. For the purposes of condition monitoring at least there would appear to be 

certain advantages in developing the technique and employing the energy rather than the 

minima characteristics of signals to provide shape information in the coded signal. Both 

this and the minima based techniques have been discussed during the course of the 
Chapter together with illustrations of each of the coding processes involved. The 

application of both techniques to practical signal conversion is discussed in association 
with some of the problems faced in selecting and optimising the various allocation 
tables required for each method. This discussion covered both the initial imposition of 
physical constraints on the boundaries of the tables as well as the subsequent statistical 
optimisation for particular signal types. The optimisation is particularly pertinent to the 
development of the A-matrix conversion which requires a much smaller allocation table 
if the subsequent matrix size is to be limited. A mechanism for the allocation of 

symbols within a fragmented symbol table is also provided. 

The main objective of employing TES is to provide a means of signal application to a 

classifier for the purposes of condition monitoring. The evaluation of two matrix 

compression techniques for this purpose, histogram and A-matrix, is covered together 

with examples acquired from the gearbox testbed system used for practical evaluation of 

the monitoring techniques. Neural networks are presented as a means of condition 

classification using the matrix data produced as a result of TES coding. They are 

compared to the more classical means of pattern identification such as simple distance 

measures. The main advantage of utilising neural network classifiers is twofold. Firstl}' 

they can offer substantial improvements in terms of processing overhead due to their 
inherently parallel nature and secondl}' they do not require an explicit definition of the 
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classification problem itself. Both of these are of interest to the automation of complex 
condition monitoring problems. 

Finally the implementation of an evaluation system is outlined. The necessity for a 
modular architecture which provides an easy means of reconfiguration is recognised as 
is the necessity for a stable library of acoustic recordings with which to evaluate each 
stage of the monitoring process. The separate modules within this evaluation system are 
briefly described in Appendix A and provide the reader with a basic insight into the 
means by which the TES based condition monitoring evaluation trials discussed in later 
Chapters were performed. 
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4. The Application of Neural Networks to TES Condition Monitoring 

After initial conversion of the acoustic source which is performed using a TES encoder 
the next important aspect in the implementation of an automated monitoring system is 
the signal classification. Considering the complexity of some of the physical 
abnormalities and faults which can occur and the acoustical effects which arise as a 
result, it is quite apparent that state identification is unlikely to be trivial. What the TES 

conversion and subsequent matrix encoding generates is a series of technique dependant 

matrices which contain basic information pertaining to the source. The quantity of data 

generated for each unique source token varies between 300 to 1600 points depending 

upon the matrix encoding algorithm employed. Each of the data matrices. 
corresponding to particular machine states must then be analysed and identified if the 
associated condition is to be correctly ascertained. 

Traditional pattern classification methodologies are available and could indeed have 
been used in this identification phase. These techniques could be used to calculate 
distance metrics between an acquired data matrix and a series of predefined templates 

corresponding to each of the known system states. However the more valid states there 

are in the system and the shorter the distance metric is between these states the more 
fine grained the classifier resolution must become in order to correctly select the 

associated state. These pressures result in a classification space which becomes ever 
more complex as a consequence of the volume of data necessary to adequately represent 
the source initially. This in turn is likely to lead to an extension of the time taken to 

perform the template mapping from the representation to classification space due to the 
inherently non-parallel nature of these traditional methodologies. However the more 
recent developments in neural based techniques offer some potentially useful 
enhancements to this latter mapping stage. 

Neural networks, more usually termed artificial neural networks, are computational 

engines loosely modelled on the human brain. Their development stemmed originally 
from a desire to both understand more fully the human brain and to emulate some of its 

key strengths. Initially the innovative developments by Rosenblatt [39,40,41] on 

perceptrons in the later part of the 1950's were hindered by the fundamental problem 

surrounding the procedures for training of these networks. Such difficulties were 

overcome with the development of the now commonly used back-propagation learning 

algorithms developed by Rumelhart et al [42]. This comparatively recent breakthrough 

triggered an explosion in research into the practical application of such networks which 
has since lead to their widespread acceptance in a variety of fields. These include 

applications as diverse as process control, financial analysis and signal processing where 

they are able to provide significant financial benefits over more conventional means. 
One of their key strengths, and the reason for their widespread application, is their 

ability to model the arbitrarily complex multidimensional non-linear functions found in 

some real world problems. without the necessity for an explicit definition of the 

relationship between the variables involved by the implementer. More conventional 

methods rely upon a more in-depth understanding of the underlying principles and 
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relationships involved in a particular process to provide a central processor with the 
necessary artificial intelligence to make decisions based on input stimuli. In contrast a 
neural based system relies on a much larger network of less complex processing 
elements and can be applied in situations where the knowledge base is incomplete. 
These characteristics of neural networks can provide distinct advantages in both the 
application and subsequent classification response even to relatively complex data sets. 

The biological similarity already alluded to originates from certain distinguishing 
features which are present in the brain itself. The first is that signals are passed between 
individual processing elements, or nodes, by interconnections. Each of these 
connections has an associated weight factor which conditions the signal passed between 
individual nodes. The processing nodes themselves then apply a simple activation 
function to their net input to generate an output signal which is passed on to further 

nodes in the network. Whilst individual nodes are themselves only able to apply 
relatively simple activation functions to their net input signal the strength of the network 
as a whole is imparted by the manner in which these individual elements are 
interconnected. The resulting interconnected networks are able to demonstrate not only 
a rich variety of flexibility by identifying patterns and forming associations between 
individual data occurrences through experience but are also capable of doing so in a 
robust manner. The inherent robustness is imparted by the massively distributed parallel 
nature of the architecture which ensures that, given a reasonable network size, 
individual nodes only contribute to the output rather than dictate it. This not only 
enables decisions to be made on incomplete or noisy input data, which is common in 

real world applications, but may also provide a degree of graceful performance 
degradation in situations where individual nodes fail. 

The rapid expansion in the field of artificial neural network research and development 
has produced now a wide range of network types each with different functional 

properties. Characterisation of each of these network types is generally performed by 
defining their nodal connectivity, or architecture, the specific nodal activation function 

used in each of the individual network elements or the training mechanism applied to 
the network to prepare it. The architectures vary from simple single layer networks to 

more complex multi-layer networks which can be fully or partially interconnected and 
which can include feedback paths with or without nodal memories. The training 

algorithms, used to pre-condition the networks prior to application, generally fall into 

one of three clearly defined categories. Unsupervised learning networks, as the name 
implies, require no output control and rely instead upon inherent properties of the input 

stimuli to identify common properties or features amongst them. A common use of 

such architectures, typified by Kohonen self-organising map networks, is the clustering, 

or partitioning of an input space to produce a series of data exemplar vectors 

corresponding to similar input vectors within the input space. In contrast supervised 
learning networks such as the multi-layer perceptron require each of the known states or 

output vectors which the network is expected to be capable of identifying to be backed 

up by a suitable number of input excitation vectors which the network is trained to 

associate with the relevant output states. This is a much more rigid and convoluted 
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technique requiring a suitably controlled regime of data application to obtain acceptable 
results. The third and final type is the reinforcement learning network in which a 
penalty function is applied to weight updates according to the performance of the 
network to input stimuli during the training phase. 

Having now identified some of the key incentives behind the selection of neural 
classifiers as well as introducing some of the historical and biological origins of these 
techniques the remainder of this Chapter will cover some of these aspects in more detail. 
The first section, 4.1, deals with the basic theoretical principles of the technique focused 

specifically on the multi-layer perceptron (MLP) implementation. Section 4.2 forms a 
general review of the practical considerations associated with applying TES data to 
these MLPs for the purposes of monitoring a simple gearbox. Section 4.3 considers the 
impact of variations in both the internal and external architectures of the networks on 
the systems performance. Section 4.4 examines the necessity for adequate training 
procedures to be defined and the contribution this has on the subsequent performance 
during comparative trials. 

4.1 A Theoretical Introduction to the Multilayer Perceptron (MLP) 

One of the most common types of neuro-computational network used in the field of 
pattern recognition, the feed-forward multilayer perceptron or MLP, network has 

undergone rapid development since Rosenblatt's early perceptron work. This is a 
network containing many simple individual processing nodes called perceptrons, groups 
of which are ordered into distinct layers. The layers are then organised into specific 
functional types. The primary layer acts a passive data presentation type layer which 
performs no other function than to pass the input vector, or data pattern, onwards to the 
first dedicated processing layer. This first processing stage, and any other subsequent 
internal stage which is not directly exposed as an input nor an output layer is termed a 
hidden layer. In multi-layer architectures there may be any number of these so called 
hidden layers depending upon the level of data abstraction required to map input to 

output. The final stage in the network is called appropriately enough the output layer 

and its function is to present the result of the networks input-to-output vector mapping. 
The networks feed-forward definition refers to the fact that data is passed sequentially 
through the layers from input to output in a forward direction during operation. In this 

most basic format there are no feedback links between layers nor memories within 
individual nodal elements. 

Each individual layer within the network interacts with its neighbouring downstream 

layer through a series of weighted interconnections between the individual perceptrons. 
Each perceptron, or node, acts as a simple processing element absorbing the series of 

weighted input stimuli from the previous layer, summing them, adding a bias weight and 

then passing the sum through a non-linear transfer function to produce a cumulative 

output stimulus. This output stimulus is then fed through to the perceptron elements in 

the subsequent layer. Whilst the early work with single layers of trained perceptrons 
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was limited to the mapping of simple decision boundaries, multiple layered or cascaded. 
networks offered the capability to implement far more complex decision boundaries. A 
3 layer architecture, an example of which is illustrated in Figure 4.1, contains an input 

or presentation layer, a single hidden layer, and an output or class layer and provides 
sufficient decision boundary modelling capability for most data characterisation 
problems of reasonable complexity. In addition to the perceptrons transfer function and 
the effects of adding or removing layers the internal connectivity between layers and the 
number of nodes within each individual layer will also affect the ensuing performance 
both during the training and operational phases of classification. This will be discussed 

more fully later in the Chapter in section 4.3 

The application of an MLP network to a real world problem must be performed in two 

phases. Prior to operational classification a period of supervised training is required 
during which the interconnecting weights between individual perceptrons in adjacent 
layers are trained on a series of data exemplars. During this phase the network must be 

presented with a reasonable cross-section of the data it will later be required to classify. 
Until the early training problems concerning the adjustments of these interconnecting 

weights acting upon the output stimuli in successive layers of such cascaded networks 
had been developed by, among others Rumelhart et al [43], the theoretical 
improvements in performance could not be realistically achieved. The most widely used 

algorithmic approach to this weight tuning phase is a gradient descent algorithm which 
is used in conjunction with a soft-limiting non-linear perceptron transfer function such 

as the sigmoid function. This non-linearity is necessary to ensure that the 

transformations between layers are not simply linear as would be the case with a 
hard-limited function. It also has the advantage of being differentiable making the 
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gradient descent approach to learning feasible. It is also useful in a wide variety of 
situations where a continuous valued output is required rather than a hard-limited binary 
switching mechanism. 

The back-propagation algorithm as this improved training scheme was termed was a 
central factor in harnessing the potential which the earlier work of Rosenblatt had 
predicted. It provides a means of apportioning the contribution to an error in an output 
layer node to the nodes in multiple previous layers by back propagating this error 
contribution through each of the various layers to the input layer. In this way the 
algorithm tunes the weights so as to reduce the overall sum-of-squares error in an 
attempt to identify the global weight error minima within the classification data space 
for a particular data set. This algorithm is detailed further in Appendix B. In practice 
the identification of the global minima is rarely achieved since the error surface 
attributed to a mapping problem is generally non-ideal and contains peaks and troughs 
which the training algorithm may become trapped in. The effect that such a situation 
has upon subsequent classification is dependant on the error surface itself and the 
distance the local minima which the network converges to is from the surfaces global 
minima. 

Prior to the commencement of training the interconnecting weights must be initialised, 

usually to small random values. The intention of this being to provide a reasonably 
stable starting point for the network which ensures that input signals to the processing 
nodes do not fall into the so called saturation region of the transfer function. The 

training procedure for a specific application requires sufficient data exemplars to be 

selected for the associated classification space to be adequately described so enabling 
the network to learn the patterns within these exemplars. During training each exemplar 
vector within the training set is presented in turn to the network at the input layer nodes 
and the required output vector, or class, is applied to the nodes in the output layer. Once 

a vector has been applied it is propagated through the network in a forward direction to 
the output layer using the preconfigured nodal interconnections and their associated 

weights. The output vector formed at the output nodes is then compared to the required 
output pattern and an error term is calculated for each individual node in the output layer 

by determining the difference between the actual and required outputs. This error term 
is then propagated backwards through the layers and used to adjust the weights to 

produce the correct input-output vector mapping. This same presentation and 

propagation routine is performed for all of the vectors within the training set, each 

updating the weights to satisfy its own mapping requirements. Each of these passes of 
the complete training set through the network presentation and weight tuning cycle is 

called a training epoch. It is likely that several data epochs will need to be performed 
before the weights have stabilised to a point whereby each training vector when 

presented to the network will generate the required output vector within a selected error 
bound. At this point the network is said to have converged. It must be stressed that 

convergence of the network is by no means guaranteed under all circumstances. It will 

only be achieved if the data contains sufficiently segmented classes and there is 
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sufficient network flexibility to implement the necessary boundary definitions to 
separate the classes. 

Assuming that the initial problem can be adequately defined so as to be presented to a 
neural network for classification the network must then be suitably trained to learn the 
interclass boundaries. There are several pitfalls which can potentially undermine the 
implementation of a neural classification scheme at this stage when compared with 
some of the more traditional techniques of class identification. These problems are 
mainly caused as a result of the semi-autonomous nature of the problem definition by a 
neural network. Most basic among these is the initial problem associated with 
convergence. During this stage the weight tuning process itself can be adversely' 
effected by local minima located on the global error surface which can slow or in some 
cases stop the network from reaching a sufficiently global minimum to perform 
acceptably. Even if this does not happen and the network is able to reach convergence 
there is a finite possibility that the network will identify aspects of the data not 
specifically related to the particular classification problem. This may subsequently 
cause the system to classify previously unseen data according to a different set of data 

characteristics so reducing the systems overall capability. This final problem is one of 
the most difficult to control because there is no physical means of directing the weight 
tuning during training in this type of network learning algorithm. As a consequence it 

can produce a network which is well able to identify the elements within the training set 
but unable to adequately identify similar class exemplars taken from previously unseen 
data. This situation is described using two terms specifically associated with neural 

applications, namely generalisation and memorisation. 

Memorisation refers to the situation whereby a network is able to classify correctly only 
those members of the training set. Generalisation on the other hand is a means of 
defining a networks capability to identify a previously unseen input vector correctly. A 

network is deemed to generalise acceptably when it can correctly class a series of unseen 
data vectors which whilst being members of identical class populations may differ 

slightly in terms of their data definition as a result of noise or operational signal 

perturbations. The ability to generalise from real world data sets which are almost never 
ideal is essential to the successful application of the procedure. An inability to 

generalise may be caused as a result of under or over training or by a fragmented class 

set whose boundaries cannot adequately be mapped by a specific network architecture. 
Over training may cause the network to memorise a set of patterns so that when faced 

with an unseen data pattern it is incapable of identifying the correct class. The ideal 

solution is one in which a network has learnt sufficiently to class unseen data correctly 
but has not reached the stage at which memorisation takes place. Identifying this 

optimum training phase cut-off point is a non-trivial problem which is, amongst other 
factors, associated with a specific data set, a training regime and the network 

architecture itself [44, pp. 148-156]. All these factors must be taken into account when 

considering the development and application of a neural solution to a classification 

problem. 
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4.2 Technical Considerations in Applying a Neural Classifier to the TES Data 

Having described some of the general theoretical concepts behind the application of 
neural classifiers in section 4.1 it is necessary now to consider a few of the practical 
details surrounding the development of a classification system for acoustical condition 
monitoring. Essentially what a neural approach is able to offer this particular 
application is a means of extracting information from a complex acoustic signal with a 
reduced requirement for the operator to predefine the dimensions of freedom of the 
signal data under observation. They can, with more recent developments in dedicated 
hardware, provide a means of applying a fast, hard real time classification system to 
monitoring applications. With such hardware the replacement of microprocessors and 
digital signal processors which introduce limitations in terms of fixed serial operation 
becomes feasible. Advancements of this sort bring with them the potential for 

operational performance several orders of magnitude faster than currently available 
processor technology can produce for comparable cost. Such development can only 
accelerate the applications to which neural classifiers become feasible. 

The architecture of neural networks, based as they are on multiple discrete processing 
elements, require the physical application of the signal data to be performed in a 
similarly discrete manner. For the application to acoustical condition monitoring this 
could in its most basic format be carried out by simply applying a series of discrete 
digital samples from an acoustical signal source. However the development of the TES 

scheme already described in Chapter 3 enables additional acoustical signal information 

to be encoded into a series of discrete elements represented by unique codes predefined 
for a signal type or types. The subsequent matrix conversion techniques developed 

around this initial TES encoding are able not only to present additional signal data to the 

classifier but also represent an ideal presentation format for direct application to the 
input layer of a supervised MLP classifier. 

Applying this particular type of network leads to the development of an acoustical 

monitoring system which through necessity must operate in two distinctly different 

modes. The primary mode is the training mode in which a series of pre-prepared 

exemplar data sets acquired from the signal source are applied in succession to a 

network containing as many input nodes as there are data elements in the exemplars and 

as many output nodes as there are classes to be identified. In this scenario each of the 

classes which must be identified by the network must be presented to it during the 

training phase. For practical reasons several exemplars corresponding to each distinct 

machine state will be required for acceptable training. Once this stage has been 

satisfactorily completed and the network has learnt the signal types sufficiently the 

second phase may be entered into. This is the active classification mode whereby live 

data samples are acquired from the source, converted using the same TES scheme and 
then applied to the network for classification in the same way that training sets had been 

previously. The remainder of this section focuses on the practical considerations in 

applying such TES data acquired from the gearbox testbed system to basic three layer 
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MLP networks and some of the difficulties which must be overcome to produce an 
acceptable monitoring solution given these stipulations. 

4.2.1 Safety Aspects of Neural Classifiers Applied to Monitoring Applications 

Applying what are essentially non-deterministic classifiers to the field of condition 
monitoring brings with it a heavy responsibility in terms of the associated safety 
considerations. Condition monitoring itself may be applied to a particular machine for 

one of a number of reasons. It may be applied as a means of enhancing performance 
and economy through the identification of a more ideal set of operating conditions. It 

may be used to improve the economic viability of machine plant by reducing the cost of 
overhaul and replacement parts which would normally be part of a predetermined 
service schedule. It may also be used to reduce the overhead of trained operators on a 
site. Whatever the reason for its application one fact remains, that the implementation 

must be capable of being adequately controlled. MLP networks employing supervised 
training are however by nature essentially non-deterministic. Unlike some of the more 
conventional means of classification they are trained and not programmed. Training 
does not require the definition, by an expert, of a series of rules which are tested for and 
analysed by a fixed control algorithm or series of control sub-modules containing 
problem definitions. Instead they are trained to develop associations between a given 
set of vectored inputs and specific outputs. Since this mechanism is autonomous it 

introduces the possibility of a trained classifier making a decision on a given set of 
inputs which an expert may, given the same information, feel is inappropriate. Such 

decisions sometimes termed false positives can be catastrophic. In fact an MLP 
implementation is able to produce such unexpected false positive decisions with a high 

degree of certainty on previously unseen data sets, particularly if the training is not 
directed and monitored adequately. 

This type of behaviour can be particularly disconcerting when considering some of the 

applications to which such classification procedures may be applied. For example one 
field in which such techniques are beginning to be developed is in the monitoring and 

automated diagnostics of mechanical subsystems onboard aircraft and helicopters, 

particularly in the military arena. In such applications the capability of a monitoring 

system is critical to the safety of personnel. Whilst identifying failure modes too early 

will cause inconvenience and additional service overheads to be incurred, identifying 

them too late can lead to terminal failure and in catastrophic circumstances the loss of 
human life. This is obviously an unacceptable situation. 

Concern over crashes, ditchings and precautionary landings in helicopters, both military 

and commercial, which led to tighter regulations has increased funding for research into 

enhanced monitoring and diagnostics tools [13,45]. This has produced health and 

usage monitoring (HUM) systems capable of improving both the financial viability and 

safety of such equipment. The majority of these tools are based on more conventional 

techniques many of which are off-line ground based systems dedicated to post-mortem 
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diagnosis. XMAN and CEMS IV [46], developed by the US military for jet engine 
diagnostics is a combination of control system, historical database, and knowledge base 
and typifies the use of advanced monitoring and expert systems for the enhancement of 
system availability and safety. This particular system however is still heaN, 'ily reliant 
upon the capability of the technician for its successful application. If neural techniques 
are to become as accepted as some of these more conventional methods have in recent 
times it is essential that the safety issues, particularly the possibility of unconstrained 
false positive decisions, are confronted and overcome. However the overriding potential 
advantage offered by neural techniques in terms of the reduced necessity for expert 
knowledge during application or fault identification still makes them attractive to 
researchers. Two techniques which have been or could be used to constrain the 
application of neural techniques are self-adaptive monitoring and trend analysis. 

Skitt and Witcomb's [47] use of a data compression network combines the advantage of 
supervised networks with the reduction in the necessity for separate training and 
operational phases. They employ a five layer MLP which has its input and output 
vectors constrained to be identical. This removes the necessity for the implementer to 
predefine the class associated with each input vector. Instead the network, in this case a 
64-16-3-16-64 arrangement of nodes, is used to compress the condition data acquired 
from a jet engine and represented by a 64 element data input vector into a3 element 
encoded representation. Each 3 point vector extracted from the hidden layer is then 
used to define a virtual point in a three dimensional space. During normal operation the 
engine traces a trajectory in virtual space which can be used to monitor its condition. 
After an initial period of usage the normal bounds of the engine within the data space 
can be ascertained and subsequently used to identify rapid deviations from the norm 
which may correspond to the introduction of faults. This method of application is able 
to absorb the smaller trajectory deviations resulting from natural wear as the engine ages 
without necessarily concluding that a fault has occurred. This type of self-adaptive 
network is ideally suited to the long term monitoring of equipment being able, as it is, to 

evolve with a particular machine throughout its lifecycle. 

In contrast an MLP network trained in the more conventional manner using pre-prepared 
class exemplars can also be applied in a manner which is commensurate with robust and 
safe monitoring by applying a degree of post-decision trend analysis. The trend analysis 
can consist of a few simple rules being applied to the raw output of a neural classifier to 
filter the decisions made by the network to ensure that they are mechanically consistent. 
Rather like human experts neural classifiers are prone to making decisions which are 
difficult to account for sometimes. It is these mechanically inconsistent so called false 

positive decisions which can reduce the effectiveness of neural implementations and 
introduce unacceptable classification errors into critical systems monitoring. However 

providing these perturbations occur relatively infrequently a post analysis filter is 

capable of eliminating them and identifying the true mechanical trends taking place. In 

this way the strengths of a neural classifier can be combined with the more conventional 

wisdom of an expert-like decision classifier. An example of this type of decision 

filtering may be a situation in which a classifier identifies a single failure pattern in an 
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engine being monitored within a continuous stream of healthy state patterns. Applying 
the basic mechanical premise that faults are generally not self rectifying it is reasonable 
to assume that real faults will exhibit a trend towards an unhealthy status rather than 
occurring aperiodically. The rules defining this mapping function would of course 
depend upon the type of failure being identified and the pattern with which this fault is 

expected to exhibit itself. 

4.2.2 Implications of using TES to Precondition the Acoustic Signal 

Whilst many aspects of applying neural networks to TES data are the same as applying 
other types of data there are certain aspects of the TES mechanism which will drive the 
configuration of the network. This study has employed two possible TES coding 
strategies each of which have been subjected to two different post coding conversion 
algorithms in order to provide a primary source of conditioning information for a 
gearbox testbed monitoring system. The first and most rudimentary transformation is 

the generation of a statistical code likelihood, or histogram, matrix. In both amplitude 
and minima conversion guises this corresponds to a matrix containing 300 individual 

elements for each data vector. The second and more computationally intensive is the 

generation of the A-matrix data presentation format. Significantly this later technique 

produces a larger data vector format which contains additional signal information 
intended to further aid the identification of the gearbox condition. Depending upon 
whether the initial coding scheme employs amplitude or minima signal components this 
data matrix will vary in size between 900 and 1600 unique code elements. 

Having selected the four combinations of TES coding and data compression it is 

essential then to identify which, if any, of these schemes is best suited to the task of 

monitoring the condition of the gearbox. The definition of an ideal solution will require 

a balance to be sought between each of the constituent elements of a successful scheme 
from initial signal conversion to the final state identification. Network size, network 

architecture, the data set size, the information content and the training strategy all play 

an integral part in this balance. A simple example of this balancing problem is the basic 

data presentation format. Where the basic 300 element histogram matrix can be 

generated more rapidly and requires a smaller network for data application the A-matrix 

is more computationally intensive to generate and requires a significantly larger network 
for application. Given that the networks used to apply these data formats are fully 

interconnected then this corresponds to networks containing three to six thousand 

weights each of which must be calculated for each training epoch or operational 
decision. The application of A-matrix data requires a more than five fold increase in 

this number of weight calculations per cycle. Since initial development of the 

classification mechanism will be performed using neural networks simulated on single 

processor workstations rather than in hardware this represents a significant increase in 

the system processor overhead. However should the additional signal data provided by 

the A-matrix conversion provide a better solution in terms of classifier capability then 
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the necessary network expansion and consequent degradation in response as a result of 
the more intensive data scheme may be acceptable. 

The use of the TES scheme also makes certain specific demands regarding the definition 
of the code look-up tables necessary for the initial conversion. Whilst neural techniques 
are ideally suited to noisy data they still require sufficient data to be presented to the 
network if an adequate classification is to be performed. For the gearbox application 
described in this work a statistical filtering technique was necessary to reduce the 
symbol set required for A-matrix generation. This filtering must be performed in such a 
manner as to minimise the number of unique TES codes in the lookup table. However 

at the same time it must ensure that the distortion and subsequent noise effects 
introduced to the input vectors applied to the network to not degrade classification 
performance significantly. It is important also that this phase of the mechanism does not 
become reliant upon the need for expert knowledge as this can only reduce the 
effectiveness of what is otherwise intended to be a semi-autonomous monitoring system. 

The training of classifier networks in a TES based system does not differ from those of 
other applications in as much as the scheme can be considered simply as another means 
of generating an input vector. However for the scheme to be successful there must be 

sufficient movement within the data sets themselves and the network must have 

sufficient degrees of freedom to enable the boundaries to be defined. Of interest during 
this phase of the application is the means of selecting a training set which is able to best 
fulfil the requirements of the network in terms of optimised generalisation. The best 

means of defining any such signal parameters affecting the training phase is a process of 
practical trials. These will be covered in more detail in Chapters five and six which 
focus on practical trials. 

4.2.3 The Development Classification System 

For development purposes the neural network architectures employed with the TES 

coding scheme were simulated using a SUN Sparc 10 workstation. This type of 

software simulated implementation not only enables the evaluation of a series of 

architectures within reasonable time scales but also provides the scope for considerable 
flexibility in terms of the construction of the basic network. Rather than specifically 
develop a package to perform the neural implementation for the purposes of this thesis 

one was chosen from the many which are commercially and freely available. The 

Aspirin/MIGRAINES package [48], available for a multitude of different hardware 

platforms was selected for its ease of use and architectural flexibility. It uses a scripting 
language, Aspirin, to define a networks architecture before generating an executable 

simulation of that network which can be trained and tested. The language provides 
flexibility in all the key areas of feed-forward network topologies which determine the 

capability of the subsequent classifier. These are specifically the: - 

i) Number of layers. 
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ii) Number of nodes in each layer. 
iii)Transfer function each node applies to its input stimulus. 
iv) Inter-nodal connections between layers. 

The data patterns required by the networks themselves can be presented to the 
simulations in a simple space separated ASCII file format. The data pattern or matrix 
template files themselves are generated separately as defined previously in Chapter 3 by 
the PC hosted DSP board coder module. Once the data is generated locally by this PC 
hosted system the files are transported to the Sparc station for presentation to the 
network simulations. Aspirin also enables the common training parameters associated 
with the back propagation algorithm to be controlled via a sequence of command line 

arguments associated with a particular network and data set. This flexible system 
provides a fast, simple and robust method of developing an understanding of the 
demands of applying TES data to automated condition monitoring. 

MIGRAINES is a utility available with the Aspirin package which itself provides an 
interface which can be used for interacting and evaluating a particular network 
configuration both during and after training. It enables a user to study the network 
internally rather than simply treating it as a black box implementation. This can, for 
instance, be useful in identifying the evolution of the weights and biases within the 
network which can provide valuable information as to the means by which a network 
extracts information from the input layer for classification. Such information may be 

used for tasks such as pruning whereby individual nodes or connections can be selected 
for removal if they are deemed to contribute little to the classification process. 

The Sparc 10 platform is capable of providing adequate computational power to perform 
studies into the various architectural configurations of a TES implementation when used 
in conjunction with the Aspirin. /MIGRAINES package. The vast burden of the 

computational effort is obviously required during the training phase when the demands 

of the back-propagation of the error contributions from individual nodes have to met. 
During the trials performed the training phase varied from a few seconds to a few hours 
depending upon the demands placed upon the network and the configuration used. 
Once the network had been trained the time taken to classify an unseen data set was of 
the order of a few milliseconds per input vector. Thus even without specific hardware 

acceleration this level of classification response, both during training and evaluation, 

makes the workstation simulation solution acceptable. 

4.2.4 Potential for Hardware Optimisation of Networks 

Until relatively recently the full benefit offered by the massively parallel nature of neural 

network implementations has been difficult to achieve. Most developments in the field 

of neural computation have been performed by simulating the architectures on serial 

processor based machines as indeed has been done with the TES based system 

considered in this work. The main problem with the development of dedicated VLSI 
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hardware devices has always been the need for very large numbers of interconnections 
between individual processing elements. These often amount to some fraction of the 
square of the number of nodes and has thus limited the potential size of the networks. 
However the development of a range of optical based [49] as well as VLSI [50] 
implementations now present the possibility of achieving the types of training and 
response speeds which until now had been unattainable with serial processor sN, stems. 

Many of the major semiconductor companies now have neural hardware 
implementations available for a range of network types. For example Bell Laboratories 
developed the Analogue Neural Network Arithmetic chip (ANNA) which supports a 
range of optical character recognition (OCR) algorithms. Intel have developed the 
Electrically Trainable Analogue Neural Network (ETANN) which supports a range of 
network architectures including back-propagation. These are just two examples of a 
wide range of products which are becoming available from these manufacturers to meet 
the increasing demand from developers for use in a diverse range of products. No doubt 

the increasing availability of such hardware will bring with it further applications which 
until now would not have been feasible due to excessive training requirements. In some 
cases applications which could require training phases stretching into weeks or years on 
conventional serial processor systems could conceivably be performed in real-time with 
hardware assistance. 

4.3 Architectural Considerations of Practical MLP Networks 

Up to now the architectural considerations of a specific TES focused neural 
implementation have not been covered in detail. The ability of an MLP network to 

approximate an arbitrary non-linear mapping given an adequate period of training and 

reasonable data set is not in question. However there are a number of practical concerns 

which must be considered if the network is to be optimised for any specific application. 
The first is the matter of selecting a physical network configuration. As we have already 

said the number of individual layers within the network, the number of elements within 

each layer and the interconnections between layers all play a part in defining the 

characteristics of a network. Selecting a suitable size and construction is essential if key 

areas of concern are to be addressed. 

The first of these is the question of training. The important aspects here are the 

networks ability to learn the classification space and the time taken to do so. Once 

trained it is also important that the network is able to generalise from the knowledge it 

has acquired and classify accurately data from outside of the training set itself. If the 

network is too small it will be incapable of forming a sufficiently accurate model of the 

problem whilst if it becomes too large it can become over capable. An over capable 

network is able to implement numerous solutions, all of which fit the training data but 

which may ultimately be poor approximations to previously unseen data. Architectural 

optimisation consists of seeking the solution which best balances these various 

requirements for each specific application. The remainder of this section covers in more 
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detail the selection of the architectural parameters of networks used in conjunction with 
TES data during practical trials. 

4.3.1 Selection of a Suitable Basic Network Architecture 

The first stage in defining the architecture of an MLP network is the selection of the 
basic organisation of the nodal layers within the structure. This definition refers 
specifically to the separation of the individual nodes into a series of ordered processing 
layers. Cybenko [51] states that architectures containing two hidden layers are sufficient 
to model any function with arbitrary accuracy. In general however, one hidden layer is 

sufficient for most practical applications [52,53]. Consequently despite the statement 
made by Fausett [page 324,54] that in certain situations a second layer may improve the 
networks general training capability most applications use only a single hidden layer. In 
the interests of reduced complexity and computational overhead, the networks to which 
TES data has been applied in this work have been limited to these more basic single 
hidden layer implementations. 

Once the basic configuration of the network has been defined the number of nodes 
within each layer must be carefully selected. The best method for estimating this 
optimum network size and configuration remains practical trial and error. This entails 
starting with a reasonable definition and evaluating the performance at each stage of an 
optimisation process. A few simple guidelines exist for the definition of this 

architectural starting point prior to practical evaluation [54, pp. 298,55]. Most are 
related to the number of data patterns in the data set used to train the network. Widrow 
[56] states that the number of training samples required is approximately ten times the 

number of weights in the network. Baum and Hausler [57] provide a more theoretical 
insight into the determination of this pattern and data set size relationship. The 

subsequent process of network tuning may be achieved either by starting with a minimal 
sized network and gradually increasing the number of nodes or by starting with a large 

network and pruning nodes which contribute little to the decision process. 

In the case of TES data networks the definition of the basic network is driven by the 
data itself. The two signal conversion strategies impose certain predefined limitations 

on the flexibility. Whilst the simple histogram matrices consist of 300 individual data 
items the A-matrices contain between 900 and 1600 unique elements depending upon 
the conversion strategy employed. These data matrices therefore fix the size of the input 

stage of the network. In a similar manner the output stage is defined by the number of 
different states which must be identified. Since each output node corresponds to a 

unique state the number of nodes is again fixed for each application. The hidden layer is 

a little more difficult to define. This layer is not bounded in the same way as the input 

or output layers but is instead dependant upon the complexity of the data space which 
the network is expected to classify. It is this layer which provides the flexibility 

necessary to define the class boundaries within the data space. There will be a lower 

limit on the size of this layer as a result of the location of each of the class boundaries 
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but no fixed upper bound. However as this layer increases in size so the number of 
nodal calculations for each data presentation increases and corresponding network 
response is reduced. In addition an oversized network can become over capable which 
itself will impair the classification performance. 

The practical selection and evaluation of network architectures suitable for the varying 
TES data matrix types is discussed in sections 5.2.2 and 6.6. Section 5.2.2 covers the 

evaluation of the hidden layer configuration in an histogram matrix system. Section 6.6 

approaches the problem from the opposing direction and considers the configuration in 

terms of the data space applied to a fixed network architecture. 

4.3.2 Implications of Reduced Nodal Connectivity 

Many MLP's are used in their most basic configuration in which each and every node in 

adjacent layers is connected together. However there is no reason to suggest that all 
these interconnections are indeed necessary for a specific data class boundary definition. 

The concept of reducing the number of interconnections within the network is an 

attractive one [50, pp. 30-36]. It not only reduces complexity and the associated 

computational overhead but can provide a means of subdividing the data classes and 
improving separation. In some ways the subdivision of the network through the 

removal of nodal interconnections can be compared to an expert system in which several 
knowledge sources, or experts, exist to provide an integrated solution. In the case of a 

neural classifier this subdivision can be achieved by separating one large network with a 

single classification space up into several smaller knowledge expert like subnets each of 

which is tasked with a subset of the space. The conflicting demands placed upon the 

single classifier architecture to separate each of the classes during the training and 

classification phase can thus be reduced through the removal of certain connections 

which subdivide the network and thereby the classification space itself. In addition to 

this the smaller network so created requires fewer weights so reducing the 

computational demands both during training and operation. 

The manner in which the connections are removed can have a profound effect on the 

way in which the data is to be applied and the way in which the network performs as a 

result. For example a partially interconnected network similar to the example in 

Figure 4.2 which subdivides the interconnections at the hidden to output layer interface 

requires little or no change in the actual manner of application to that of a fully 

interconnected network. Such a variation is likely to affect the back-propagation 

procedure modifying the time required to converge as a result of the change in classifier 

demands placed on the reduced connectivity network. 

In contrast a network similar to that in Figure 4.3 will require consideration to be made 
for the allocation of class nodes to input interconnections. This is because the input to 

hidden layer interface has been changed. As a result the respective output nodes only 
have a partial view of the input data. This will have a profound effect upon the manner 
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Figure 4-2 A three layer network with partial hidden-to-output layer connections 

in which output nodes are assigned. Both techniques are viable but the choice is 
dependant upon the specific application and the way in which the raw input data is 

related to the classes to be assigned by the network. In the case of the TES application 
which is the main focus of this work the latter variation is less attractive because it 

requires substantially more to be known about the interaction between the mechanical 
gearbox faults and the corresponding acoustical effects. In contrast the pruning of 
connections between hidden and output layer affords more room for manoeuvre in terms 
of data application and thus knowledge of the acoustical effects of fault conditions is 
less critical. 

The transition between a single large all encompassing all-class-in-one-network 
(ACON) and the other extreme, a series of grouped one-class-in-one-networks (OCON) 
in performance terms is not well defined. There are several factors which can effect the 

relative performances of these various network configurations foremost amongst which 
is the data which is presented to the networks and the level to which the classes are 
subdivided by reducing network interconnectivity. The practical evaluation of partially 
interconnected networks of the type defined in Figure 4.2 is covered in section 6.7. In 

this section the conclusions from a series of trials using amplitude A-matrix data as the 
input medium are discussed. 

"""" ib 0ä 

Figure 4-3 A three layer network with partial input-to-hidden layer connections 
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4.4 Applying Supervised Training to Practical MLP Networks 

One of the most exciting and attractive reasons for applying a neural network solution to 
a classification problem such as TES based condition monitoring is its ability to learn by 

example rather than act on a predetermined set of rules. Rather than having to specify 
every detail of the problem in advance the training phase enables the network to extract 
the relevant information from a precompiled set of representative data examplars. 
Whilst a neural approach may not necessarily provide the type of solution afforded by an 
optimised algorithm or ruleset developed by experts it can provide a manageable 
solution of reasonable accuracy. The more complex the application the more cost 
effective and viable the neural approach becomes. In the case of a feed-forward 

multilayer perceptron architecture the effectiveness of the solution is very much 
dependant upon the training phase of the application. The regimes used to train the 

network are as important as the architectural considerations used to define its physical 
arrangement in the first place. The control of this regime can be separated into two 

clearly defined areas. The first is the physical requirements of the back-propagation 

algorithm used to control the weight tuning in the network (Egs. 1,2) and the second is 

the composition of the training set presented to the network during the weight tuning 

phase. 

w11(t+1)= w +AW,.; (t+1) (1) 

Where wji is the weight for the jh node at time (t+]). The change in weight is defined 

as: - 

Awj; =aSj (t+1)0; (t+1)+ßAwj; (t) (2) 

a and P are the learning rate and momentum parameters respectively'. 

It is the second of these two facets which presents the greatest challenge to the practical 

application of neural techniques to TES based condition monitoring. With the ready 

availability of powerful computational engines to perform training the optimisation of a 

particular configuration using the training bounds imposed by the back-propagation 

algorithm itself can, in many cases, be reduced to a process of trial and error. More 

recently techniques utilising genetic algorithms have been developed to automate this 

process of optimisation [58]. These powerful search algorithms based on a mechanism 

of natural selection are ideally suited to such repetitive and complex tasks. 

In contrast the composition of the training set used to optimise a network for a specific 

application is less compatible with the concept of automisation. This aspect is generally 

more dependant upon specialist knowledge of the data presented to the network. In the 

case of TES data matrices this corresponds to an understanding of the signal conversion 

mechanism, the effects it introduces to the data and the information contained within the 
data. Without this knowledge input the likelihood of selecting a sufficient set of 

' For further reference the reader is asked to refer to Appendix B. 
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relevant exemplars and training the network most effectively is reduced. The practical 
discussion of the selection of training data and the number of exemplars required in a 
typical TES application are discussed in sections 5.2.3 and 5.2.4. In sections 4.4.1 and 
4.4.2 the theoretical discussion of this network optimisation is covered in more depth. 

4.4.1 Optimisation of the Back-propagation Mechanism in a TES System 

The back propagation algorithm requires three learning related parameters to be defined 

which control the process of data presentation, error calculation and weight update. The 
learning rate, a, limits the magnitude of the weight change for each nodal 
interconnection for each iteration of the back-propagation algorithm. This in turn 
determines both the speed of convergence and the network state at convergence. A 

series of practical trials was performed using live acoustically derived TES data to study 
the effects this parameter had on the convergence times and performance of several 
network configurations and selected data sets. Figure 4.4 illustrates the rate at which 
convergence is achieved for different training rates. The training sets contained data 

matrices generated using a basic amplitude TES histogram conversion scheme which 
was then applied to two different network architectures, one with 20 nodes in the hidden 
layer and the other with 8 nodes. Given the two fixed data sets and network 
configurations it illustrates the growth trend in the number of iterations required for 

convergence as the learning rate parameter is incrementally raised. Figure 4.5 
demonstrates that despite the extended learning period induced by the increase in 

magnitude of the learning rate parameter there is little variation in the subsequent 
performance of the network when tested against previously unseen data. 

This suggests that the learning rate should be kept as low as possible to optimise the 

network solution. However whilst a reduced learning rate provides enhanced learning 

resolution and reduces oscillation during gradient descent learning it does generally 
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extend the time to converge. What is required is a means of accelerating the learning 

process whilst at the same time retaining the advantage accrued by a smaller learning 

rate. To satisfy both of these two conflicting demands a momentum factor, (3, can he 
introduced which provides the necessary acceleration whilst retaining the fine-grained 

weight update resolution of a lower training rate. The l factor is used to tune the weight 
update algorithm throughout training depending upon the gradient at each update cycle. 
If the gradient of the combined network entropy is increased then the momentum factor 

acts to increase the step size, whilst a reduction in the gradient reduces the weight 
update momentum. This not only improves the speed of convergence towards a global 
minima but also ensures that weight oscillation about the minima caused by large step 
sizes is minimised as a global minima is approached. For the network training 
illustrated in Figure 4.4 a momentum factor of 0.95 was employed which significantly 
improves the convergence performance of the network during the training phase. The 
final training control parameter is the error bound term. This controls the point at which 
the network is deemed to have converged, where all output node errors are within the 

error bound for all the training set patterns. This term is somewhat dependent upon the 

activation function implemented in each of the nodes. With the sigmoidal function used 
in the TES networks requiring binary type target outputs values close to 0 and 1 were 

employed. The sigmoidal function itself is constrained to these bounds so outputs of 0 

and 1 would require weights approaching infinity. 

In association with these algorithm control parameters the frequency with which the 

corresponding weight updates are performed during training can also affect the final 

performance. Two types of update mechanism are commonly employed. These are 

respectively termed block adaptive and data adaptive weight revision. When a block 

adaptive mode is employed the weights in the network are updated after each complete 

epoch of the training data set. In contrast a data adaptive strategy updates the weights 

after each and every exemplar presentation and back-propagation to the network. In 

terms of the relative performance of the two techniques the block adaptive method is 
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generally more robust as a result of the cumulative averaging influence exacted upon the 
error terms over each full data epoch. It does however impose additional overheads in 
processing and data storage capacity during training. In contrast the data adaptive 
method is generally more sensitive to noise effects on individual data patterns and as a 
result is generally more appealing for on-line applications. This technique also provides 
a more effective means of adapting to the local gradient and does not require additional 
data averaging or storage. It is this technique which has been employed for all practical 
trials involving the TES data acquired from the gearbox testbed system for fault 
analysis. 

4.4.2 Optimisation of the TES Sourced Training Data 

Whilst there are many facets to the development of a good neural condition classifier the 
one area which can make or break the viability is the raw data used to train the network. 
Whilst other areas can improve the speed of training or accuracy of performance within 
reasonable bounds this raw data forms the backbone of the problem definition to the 
network. Without sufficient initial data space definition no network will be capable of 
acceptable state separation. Data definition, in this context, not only refers to the basic 
presentation medium but also of the manner in which this information is presented to a 
network during the training phase. 

The specific application of an amplitude based TES coding scheme to generate the 
primary data from an acoustic sensor prior to network application necessitates particular 
attention for this very reason. Intuitively this technique is likely to be susceptible to 
variations in the signal level of the source based as it is upon the amplitude of the 
individual signal components. Changes in the acquired signal level would be expected 
to cause fluctuations in the perceived dynamic range of the source which are likely to 
manifest themselves as variations in the magnitudes of individual elements within the 
data matrices. This is due to the predetermined nature of the TES code table responsible 
for the allocation of codes based upon the features of individual signal components. 

The practical evaluation of the effects of such fluctuations on the performance of any 
neural classifier to which the data is subsequently applied was carried out by artificially 
varying the signal level at the conversion stage. In trials with two network 
configurations, one a fully interconnected three layer network with 8 nodes in the hidden 
layer and the other a similar network with 20 nodes in the hidden layer the disparity in 

performance was clear. When the TES training data was generated from a signal with a 
reduced dynamic range the classification performance on unseen data was significantly 
impaired. Compared to the correct classification of 94% of all test data with TES data 

generated using an optimised dynamic range the reduced dynamic range caused 
performance to fall to approximately 78% against the same unseen data. This reduction 
is caused by the "blurring" of the energy boundaries which define the amplitude codeset 
used for signal conversion. This results in incorrect allocation of TES codes during the 

conversion and subsequently manifests itself in the matrix data generated from the code 
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stream. The reduced quality of the signal information contained in the matrices- and 
applied to the network produces a corresponding reduction in interclass resolution. 

It is clear from these trials that the application of an amplitude based TES scheme 
necessitates the addition of a suitable signal conditioning stage prior to conversion to 
minimise these adverse effects. There are further discussions of these dynamic signal 
effects in Chapter 5 which are based upon further practical trials and are presented in 
sections 5.2.1 and 5.2.5. 

4.4.3 Training and Testing Data Conventions 

Practical trials which were performed to evaluate the effectiveness of applying simple 
MLP networks to classifying gearbox condition states are presented in Chapters five and 
six. All these trials were performed under strict control so as to provide a reasonable 
opportunity for direct comparison of the differing techniques. In order to maintain this 
realistic perspective on the practicality of such techniques to the industrial arena certain 
rules were applied to the selection of data for performance evaluation of the differing 

architectures and coding schemes. These rules were similar in principle to those 
outlined by many other neural researchers regarding the data applied to each network. 
Essentially there must be a clear distinction between the data used to train a network and 
that used to evaluate its performance. In many situations the distinction is made at the 

most basic level. That is providing that the data used to evaluate a network has not 
previously been applied during the learning phase it can be used for performance 
evaluation. 

However for the purposes of the practical trials in this work the distinction between the 
two data sets was separated still further. Rather than simply using data which may have 
been acquired within the same physical recording but not used for the training phase the 
distinction was made that training and testing data must be sourced from separate 
physical recordings. This added distinction was made so that evaluation could be 

performed under more "realistic" conditions. If the technique were applied in a practical 

situation this same physical distinction could not be avoided. Small perturbations in the 
local environment and possibly in the daily operating conditions encountered could be 

expected without a change in physical state necessarily being introduced. In some cases 
this resulted in training and testing data being recorded on different days. As far as was 

possible no special consideration was made to eliminate natural environmental 

variations in the day to day acquisition of the data used for practical trials. 

4.4.4 Enhancement of the Network Training Phase 

Whilst the back-propagation algorithm currently provides the most common means of 
tuning the weights of practical neural classifiers it is inherently slow to converge. It has 

already been shown that the rate at which the weights are modified affects the network 
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weight solution attained and the time required to reach this solution. Many researchers 
have invested time in developing techniques intended to improve this phase of the 
application. Most result in modified training algorithms which seek to dynamically 

modify the way in which the network learns. Some, like the work of Hossein et al [59]. 
have studied the effects upon the convergence times of increasing the magnitude of the 
initial weights. This technique is complicated by the average fan-in of units and the 
specific data set being applied which can force nodes into the saturation regions of their 
activation functions. In such situations the training is degraded often producing less 

acceptable solutions with little or no improvement in convergence times. 

More often than not the element which provides the greatest headroom for optimisation 
is the dynamic modification of the learning rate used in the back-propagation algorithm 
[60] as well as the particular method of error back-propagation [61]. However in the 
final analysis the time taken to train a specific network application is only one of a 
number of factors to be considered. In many cases it is the least important of the factors 

affecting the network definition. Alpsan et al [62] make a particularly pertinent 
comment regarding any such efforts expended upon improving the speed of network 
convergence which is relevant not only our particular TES application but also to many 
general applications. This is that whilst there are many techniques now available to 

optimise networks for speed of training most if not all are flawed in terms of the 

resultant performance they provide over routines which are not optimised simply for 

speed. In the specific application to condition monitoring the rate at which a network 

can be trained is most definitely of secondary importance to its raw classification 
capability. Network generalisation which is directly linked to this raw performance is 

often best achieved by removing complex dynamic learning modifications from the 
basic back-propagation algorithm and resorting to lengthier training runs. With the 

capability of modern computational processors developing so rapidly the extended 
timing overheads imposed by these non-optimised techniques will be reduced 

significantly, providing better training without necessarily imposing unreasonable 
training demands. 

4.5 Chapter Summary 

This chapter has dealt with the fundamental considerations of the application of artificial 

neural techniques to automated acoustic monitoring of a testbed gearbox system using 
TES. Theoretically at least the networks themselves should be capable of providing a 

means of reducing the role of skilled operators in this process. This potential is 

imparted by the ability of networks to identify patterns within presented data without the 

need for specific rules or guidance to be provided during the decision making process. 
The selection specifically of a multilayer perceptron implementation from amongst the 

wide range of neural networks which have been developed since the late 1950's has 

been discussed. This simple network architecture brings with it certain characteristic 

which require careful consideration in terms of safety. These characteristics are all the 
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more relevant considering the intended application. This aspect of the implementation 
has been discussed together with some potential solutions in section 4.2.1. 

The selection of a software simulation package to evaluate the application of these 
network techniques has been discussed together with a brief description of the flexibility 
that the chosen package provides both in terms of data and network configurability. For 
the purposes of this particular research such non-optimised software implementations 

provide a good balance between performance and flexibility. The potential for future 

enhancement of the applications through the development of hardware implementations 
is briefly discussed together with some examples of the type of packages which are 
currently commercially available for this purpose. 

The main focus of the Chapter however is upon the specific problems which are 
associated with the MLP implementation selected. Clearly the configuration of the 
network in terms of the number of layers and the number of individual processing 
elements within these layers will affect the performance. The selection of number and 
size of each of these layers is discussed together with some of the general rules used by 

other researchers to identify good starting points from which to iteratively optimise the 

architecture for specific classification requirements. As a result of the discussions made 
networks containing a single hidden layer are thought to provide a good starting point 
for further evaluation. Within this selected architectural model a hidden layer size of 
between 10-30 nodes would seem to provide adequate performance. The problems 
associated with pruning the links between individual layers within the networks is also 
considered. 

Having discussed the network itself the next stage in the application which has been 

evaluated is the training phase. The quantity, type and selection of data have all been 

singled out as areas which require practical evaluation. A few of the potential pitfalls 
which may be encountered at this stage are also discussed, particularly the problems 
associated with optimising the generalisation and minimising the memorisation 

capability of networks as a result of architecture or training schemes. 

Two other important aspects of the implementation have been considered one of which 
has been discussed in association with some results acquired during network evaluation. 
The first is related to the importance of data set selection. This is discussed with 

reference to the expected impact that specific TES data presentation mechanisms will 
have upon the subsequent network capability as well as the additional effects of 

template selection within a presentation type. The second aspect of the application 

procedure to be selected for evaluation is the modification of parameters used to direct 

the network training phase during which data exemplars are presented to the network. 
Since these parameters are used to update the interconnecting weights which impart the 
learning ability to the network they were expected to impact upon the manner in which 

the back-propagation algorithm traverses the weight space for a specific classification 

space. During a series of simple evaluations the effects upon classification of varying 
both the learning rate, a, and the momentum factor, P. were studied. The contrasting 
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needs of an optimum step resolution and enhanced weight velocity have been 

considered. These early trials highlighted the necessity for a low a value and high ß 

value to optimise the performance. 

Whilst this Chapter has provided a brief discussion of the key elements of applying TES 
data matrices to neural networks for the purposes of monitoring the mechanical state of 
a testbed gearbox system it has also highlighted the potential weaknesses. The 
feasibility of providing adequate training for the networks must yet be more fully 

evaluated whilst the safety considerations must not be overlooked. Despite these factors 
it is clear that the potential does exist for enhancing the monitoring of complex devices 

through the application of simple MLP networks. 
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5. Practical Trials of TES Based Monitoring Carried out on a Gearbox Testbed 

In application terms the most important question which must be answered is whether 
TES really can provide the condition monitoring fraternity with a viable alternative to 
higher cost, knowledge intensive system state classification. Already it is clear that if it 
is to be effective as the primary signal preconditioning component in an integrated 

neural based monitoring system, as outlined earlier in Chapter 3, it must be capable of 
retaining sufficient signal data within the symbols generated. This is, of course. the 
primary prerequisite of any signal conversion mechanism employed for the purposes of 
monitoring systems not simply TES. Assuming that the prerequisite can be met by TES, 

consideration must then be made for the subsequent classification strategies this data is 

applied to. As has been detailed in Chapter 4 all the strategies which are to be 

considered within this thesis centre upon the application of neural classification 
techniques. The ultimate goal being to ascertain whether a system utilising this core 
TES acoustic data to drive a neural classifier is capable of deriving physical information 

about the target. To provide a viable alternative in condition monitoring applications 
this must be accomplished with a minimum of effort and in a manner which does not 
require highly trained operators. Both this Chapter and the next are devoted to the 
discussion of a series of practical trials performed using the gearbox testbed system to 

evaluate this capability. 

The focus of the trials is upon the different elements within the classification process 

which potentially affect overall performance. Specific areas here include the interaction 

between the neural classifier and the raw TES data as well as the architectural 

considerations of the neural classifiers themselves. The intention of the trials being to 

attempt to identify key elements of an optimal system and to identify specific limitations 

arising as a result of these configurations. At this stage of the investigation it is entirely 

appropriate to perform the trials on a representative, or simplified, system rather than on 

a production equivalent. The added complexity associated with a production based 

system would only serve to increase the potential for ambiguity in the ensuing 

comparative examinations of particular configurations. The intention, at this time, is to 
identify whether or not the principle of applying such methods is acceptable and 

whether they are likely to be considered sufficiently accurate or financially acceptable. 
In doing this it was important to attempt to recreate, in the representative system, a 

range of illustrative faults so that the techniques studied may reasonably be expected to 

carry over into a more complex production based system at a later date. 

A simple mechanically configurable gearbox testbed system was developed as the 

representative system for the trials. Its aim was not to replicate specific faults which 

occur in a particular gearbox system but be capable of mimicking a set of illustrative 

faults which may be controlled within a test environment. Primarily then the key to 

judging the effectiveness of the TES techniques is to measure the accuracy with which 

each of these illustrative faults can be identified and the simplicity with which the TES 

data can be presented to the neural networks to achieve this. Another question which 

arises in terms of the potential future adaptability of the technique is the degradation in 
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performance associated with an unconstrained acoustic environment. Most practical 
situations in which systems would be expected to operate are noisy. As such, the 
classification engine will almost certainly be subjected to a diverse range of both 
internal and external sources of noise. Internally the conversion of the acquired signal 
itself will introduce distortion whilst externally the surroundings in which the target 
system is situated will typically consist of other additional acoustic sources. The 

susceptibility of the classification mechanism to such additive acoustic noise is 
important. Attempts to quantify these effects are an essential part of the evaluation 
process. Clearly a practical classification engine should be capable of guaranteeing 
sufficient accuracy whilst operating in the presence of reasonable levels of additive 
background noise. 

The employment of neural classification to the TES data also brings with it further 

constraints which must be considered. Since the type of network proposed in this work 
requires a training sequence, the demands of the training program required to achieve 
adequate performance must be examined. If training of the classification system is 
dependant upon a rigid data collection and selection mechanism then cost savings made 
through the reduced requirement for an operator may become absorbed by the 

requirement for highly skilled personnel to oversee the system training program. For 

this reason the training program is a primary target for performance evaluation. Ideally 

a balance should be sought between the need for skilled personnel and the necessity to 

minimise the time required to complete a training sequence. Ideally this would consist 
of a semi-automated system which required only periodic attention by a operator. 

The final consideration in terms of the effectiveness of the technique as a whole is the 

expected response time. For the most part this is academic as far as the operational 

phase of the classification is concerned. With the rapid development of computer 
technology it is unlikely that under operating conditions the response of a reasonably 

sized neural network could become an overriding issue. However this is not necessarily 
the case as far as the training phase is concerned. The mathematically intensive nature 

of a neural network which relies on a separate training program inevitably brings with it 

the need for a powerful mathematical engine to perform the training within reasonable 
time scales. Since network training times are directly proportional to the volume of data 

and network complexity required there is a basic need for rationalisation in both of these 

areas. It is important therefore to establish at an early stage in trials the architectural and 
data requirements for an operationally adequate classification system. 

The remainder of the Chapter contains a description of the basic test system used to 

investigate the areas identified so far as well as the application of the more basic TES 

data types to the definition of its fault states. The first section covers the technical 

description of the testbed system used throughout the trails, outlining the various fault 

configurations which can be introduced. The remaining sections focus on the 

application of the simple 300 element amplitude and minima symbol histogram matrices 

which were defined earlier in section 3.5.1 of Chapter 3. Application of the more 
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complex A-matrix data along with discussion of some of the more demanding fault 

states will be covered in Chapter 6. 

5.1 Gearbox Testbed System 

The selection of a gearbox fault simulator for the purposes of analysing a TES based 

conditioning system was made because of their universal use in mechanical systems. 
Wherever there is a need to alter the rotational velocity between input and output drives 

a gearbox may be used. They are most commonly used in situations requiring the 
transfer of high loads between shafts where friction dependant systems would prove 
inadequate. The test platform which was developed for the monitoring trials, detailed in 

this and the next Chapter, is intended to be a much simplified version of these common 
types of load transfer gearbox. Its reduced complexity enables the rapid and secure 
acquisition of acoustic data essential for trials by minimising the number of degrees of 
mechanical freedom which must be monitored during recordings. This in turn focuses 

the attention of the trials on the monitoring techniques and the affects of specific 
variations in data presentation rather than the mechanical stability of the gearbox. 

As well as being designed for the necessary mechanical simplicity two other key 

requirements were placed on the testbed design. Firstly, the ease of access to the 
internal parts of the system was required to facilitate direct acoustic coupling and thus 

more easily perform measurements of acoustic sensor sensitivity. Second and most 
importantly the system had to be mechanically configurable to provide the means to 

carry out trials on the various classification techniques. This configurability needed to 

provide sufficient movement of internal parts to mimic several faults which commonly 

occur in generalised gearbox systems. Figure 5.1 shows diagramatically the unit which 

was used. 

Having described some of these basic design concepts it is necessary to become 

acquainted with the physical implementation of these requirements in so far as this 
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Figure 5-1 An illustration of the gearbox testbed used throughout the practical trials 
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affects the acoustical properties of the emissions. From Figure 5.1 it will be noted that 
the unit consisted of a solid metal plate box casing with an exposed top which provides 
a direct path to maximise acoustic coupling from the source to the microphone sensor 
used to record the emissions. The box contains two gear shafts, the first being an 
intermediate load transfer shaft and the second a final drive shaft. The unit is powered 
by an externally mounted electric motor which drives the intermediate shaft via a gear 
wheel with 23 teeth at speeds up to 4000rpm. The motor is driven using a pulse 
modulated (PWM) source which provides the speed control necessary during data 

acquisition. The rotational velocity is directly measured using a photo-detector cell 
arrangement housed in the gearbox, the LED source and detector units being mounted 
on opposing sides of the driven gear on the first shaft. The coupling between source and 
detector is through a series of holes drilled through the gear wheel. Velocity 

measurements are made by converting the LED detector signal frequency into a 
corresponding rotational velocity using knowledge about the number of holes located in 

the gear wheel. The PWM motor drive signal is derived from a digital signal processing 
board which drives a power amplifier circuit powering the motor. This same DSP 

simultaneously performs the shaft velocity measurement described previously by 
decoding the LED signal. 

The motor itself drives the first shaft with a step up ratio of 2.6: 1, which in turn drives 

the second with a step down ratio of 0.6: 1. Both of these shafts are secured into the 

external casing with screw adjustable eccentric bearings at each end. These are able to 

provide each shaft with 3° of freedom relative to the shaft axis permiting a range of 
simple alignment like defects to be simulated between the primary drive and output 
shafts. In all configurations the relationship between actual and simulated faults is 

important in terms of the confidence level which can be placed on any conclusions 
obtained regarding TES conversion and neural classification of the mechanical 
processes involved. 

Since the speed is not independent of but dependant upon the driven load of each 
individual configuration control of the shaft velocity was essential to eliminating, where 

required, classification based on the acoustic signal frequency-to-shaft velocity 

relationship rather than on the actual physical condition of the system conveyed by the 

acoustic data. Consequently most of the configurations used for classification 

performance analysis were recorded at comparable shaft velocities. Figure 5.2 shows 
the non-linear relationship between motor drive PWM duty cycle and the shaft speed for 

a fixed configuration incorporating a single fully engaged shaft. Although most of the 
later trials were performed at fixed shaft speeds some early trials which were used to 

estimate basic network capability and acoustic sensitivity did not make use of this. In 

these first few trials shaft speed itself was the parameter of interest so although speed 

control was still required several shaft speeds were recorded; these are discussed in 

section 5.2. 
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Figure 5-2 Relationship between motor drive PWM signal and the primary shaft 
velocity for a fixed testbed configuration 

5.1.1 Simulation of Specific Fault States on the Test System 

Simple displacement misalignment was simulated by rotating both anchor bearings on a 
shaft by equal amounts whilst locking the second shaft in a fixed position. This 

effectively varies the distance between shafts and consequently varies the amount of 
displacement misalignment which is induced. Figure 5.3 illustrates this degree of 
freedom graphically. Angular misalignment is achieved either by rotating both the 
anchor bearings on one shaft in opposing directions, or by fixing one bearing and 
rotating the other. Since each bearing can provide 3° of freedom, the maximum angular 
misalignment which may be simulated per shaft pair is 6°. This type of misalignment is 
detailed graphically in Figure 5.4. It will be noted from the system diagram in 
Figure 5.1 that neither of these errors can be simulated, with the bearing mechanism, in 

exactly the same way they would be expected to occur in the production equivalent. 
The eccentric bearings will introduce additional offsets which cannot themselves be 

eliminated from the fault states. However for the purposes of a test system used to 

simulate representative faults these additional effects are considered to be acceptable. 

Displacement 
misalignment, A1. 

Figure 5-3 An illustration of displacement misalignment between two shafts 
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Figure 5-4 An illustration of angular misalignment between two shafts 

Both displacement and angular misalignment faults of this type are commonly found in 

real systems. They can occur as a result of initial manufacturing tolerance errors or 
during subsequent operation as a result of wear or mechanical component failure. Both 

are a source of what is termed double rotary frequency, 2fo [63] with the amplitude of 
the vibrations induced being directly proportional to the magnitude of the particular 
misalignment error. 

In addition to alignment faults both tooth damage and wear effects can be exhibited 
when gear based systems are exposed to high levels of stress for continuous periods of 
operation. Such faults were simulated in the test system by machining of the tooth tip 
itself. Whilst in reality this type of tooth damage is rarely perfectly symmetrical over 
the width of the tooth or teeth the faults simulated in the test system do result in similar 
periodical fluctuations to those experienced under operating conditions. For the 

purposes of estimating the sensitivity of the various classification techniques to tooth 
damage this particular fault condition was limited to the introduction of a single defect 
in a tooth on one gear. During the acoustic acquisition stage and prior to system state 
evaluation trials this fault was progressively worsened over three separate recording 
sessions by additional machining of the tooth. Initially the fault was introduced to the 

system with aI mm section of the tooth tip removed. Following acoustic data 

recordings, this was increased initially to 2mm and then to 3.5mm by further machining 
of the tip. As with the misalignment errors these fault states represent somewhat 

artificial failure modes since tooth damage is often accompanied by a change in the 

physical properties of the material caused by the continuous impact stress. Furthermore 

the primary failure can often cause additional damage as a result of the ingestion of the 

tooth fragment into the system. Such effects are difficult to simulate within the current 
test environment. 

Another common problem which may be encountered with gearbox systems is the level 

of lubrication required to achieve ideal operating conditions. Some crude initial analysis 

was performed in an attempt to identify the gearbox in two very basic operating states. 
The first was an unlubricated state where the gears were run in the absence of any 
lubricant. The second state consisted of running the system for short periods of time 

with a heavy grease lubricant. Short runs were necessary in order to re-lubricate the 

gears at regular intervals, since the centrifugal force of the rotating gears tended to strip 
the grease and as the system is not self-lubricating this lubricant is lost. Essentially this 
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meant that the lubrication levels of recordings varied rapidly so the shorter the run the 
more stable the acoustic state remained. Whilst this gave a very basic simulation of the 
fundamental lubrication states it is unable to provide a sufficiently representative 
simulation when compared to a real system. In reality high speed gearboxes are 
constantly lubricated within a closed environment which contains the lubricant causing 
the emissions to remain more stable than in the testbed simulation used for basic trials. 

Each of the configuration variations which have been discussed and which are used in 
the analysis of classification techniques in the remainder of this Chapter and the next 
can be described using a set of basic physical measures. These are not intended to be 

considered an absolute definition of the configuration but as with the states themselves a 
representative description. The first two states were the crudely simulated lubricant 

state configurations in which the acoustic emissions of gears 1 and 2 meshing in two 
distinct lubrication states were analysed. In these two recordings gears 3 and 4 were 
disengaged and did not contribute to the group emissions. The remaining ten states 
concentrated on shaft and tooth variations. The three parameters which have been used 
to define each of these test conditions are illustrated in Figure 5.1. These are the linear 

shaft displacement, Ash, the relative offset of the two shafts, Xh and the quantity of the 

material removed from a single tooth on the 3rd gear, µt. Variations in these parameters 
will introduce variations in the tooth overlap, Do,,, and the pitch variation, bp, between 

the third and fourth gears which are used to describe the various condition states. In all 
these remaining ten states the gear and bearing lubrication was kept at a constant 
minimal level so as to eliminate interference caused by fluctuations during 

classification. For reference purposes each of the configurations are allocated a 

particular state descriptor. The ordering of these states does not necessarily correspond 
to the physical differences between states and is only intended as a reference for the trial 

evaluations. 

State descriptor Gear status Physical description 
State 1 3 &4 com pletely disengaged Ratios 1&2 lubricated 

State 2 3 &4 com pletely disengaged Ratios 1&2 unlubricated 
State 3 3 &4 com pletely disengaged D0 = 0,8,, = N/A. 

State 4 3 &4 partially en gaged Do,, = 1.5mm, 2.5mm 

State 5 3 &4 partially en gaged Do�= 4mm, 0.5mm 

State 6 3 &4 fully engag ed D0 < 5mm, 8, )< 0.5mm 
State 7 3 &4 fully engag ed, with offset X h= 2mm. 

State 8 3 &4 fully engag ed, with offset Xsh= 3mm 

State 9 3 &4 fully engag ed, with offset ? h= 5mm 

State 10 3 &4 fully engag ed, tooth wear t=1 mm 
State 11 3 &4 fully engaged, tooth wear t= 2mm 

State 12 3 &4 fully engag ed, tooth wear t=3.5mm. 

TABLE 5.1 A description of the fault states employed during practical trials 
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It may be noted by closer inspection that these defining physical measures are not 
necessarily fully independent. For instance states 7.8 and 9 are defined only in terms of 
the shaft offset, X h, whereas in fact both Do� and Sp will also vary along the width of the 
gear teeth. The same will be true of Do,, in the case of the simulated tooth fault in state,, 
10,11 and 12. However the measures outlined in table 5.1 provide sufficient indication 
of the differences between particular states and are intended only as such. Each of the 
states have been selected so as to provide not only a means of determining the 
capabilities of the various classification techniques but also as a means of estimating the 
sensitivity of particular techniques to physical changes. Both of these factors are 
important in terms of the industrial applicability of TES techniques. 

5.1.2 Effect on Group Emissions of Simulated Mechanical Faults 

Each of the states discussed in the previous section will affect the acoustic properties of 
the group emissions in different and for identification purposes hopefully sufficiently 
unique ways. Before moving on to the discussion of practical identification techniques 
it is worth considering some of the acoustic effects which each of the predefined 
physical states is likely to introduce to the TES data matrices used for neural 
classification. Whilst an ideal gear pair would transmit power with no change in shaft 
angular velocities and with zero loss of power in practice transmission systems are not 
ideal and energy is dissipated acoustically as a result. Practical gear systems will 
generate natural levels of acoustic noise as a result of these factors, but imperfections, 
damage and wear will result in additional variations in the levels and spectral content of 
this noise emission. Discrepancies in tooth spacing or profile, shaft alignment or 
bending due either to production inaccuracies, damage or wear will produce periodic 
accelerations and decelerations in the gear pairs which will contribute towards the 

acoustic emissions. The casing design and gear material composition will also vary the 
level and spectral content of the emissions. In addition to these mechanical effects 
factors such as lubrication level and system temperature will also introduce additional 
variations to the group emissions. It is these unwanted additional factors that each of 
the simulated states is intended to mimic. 

Taking firstly the example of the simulated displacement states 3-6. The modification 
in relative base pitch, 8P, simulated in these four states will have two important effects 

upon the transfer of rotational energy taking place in the system. An increase in 8p, 

caused in this case by relative shaft displacement will introduce a proportional increase 

in tooth central impact energy transfer as a result of load variations. These are caused 
by fluctuations in drive shaft acceleration of the drive gear relative to the driven gear. 
However there will also be a reduction in the frictional energy caused by the relative 

motion of the gear teeth against one another since the effective tooth contact patch is 

reduced by the displacement. As 8p is reduced the situation is reversed. These 

variations should appear on amplitude TES matrices as energy related contour 

movements. 
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The shaft offsets simulated in states 7-9 will also result in energy shifts due to the 
variable contact force exerted on the meshing gears by a skew shaft. In the simulated 
faults defined by these states the shift will be constant in nature. The more complex 
non-static energy shifts caused by unbalance in a bent shaft were not simulated during 
the course of this work. States 10 to 12 which mimicked catastrophic failure of a single 
tooth induce acoustic variations as a result of variations in shaft acceleration similar to if 

generally more severe than shaft displacement, states 3-6. Whilst the previously 
described displacement states will result in a constant increase in emissions over a full 

shaft cycle, tooth failure introduces periodic fluctuations which are dependant upon the 
extent of the tooth damage and on the rotational velocity and loading of the associated 
parts 

5.1.3 Acoustic Data Acquisition 

Having described now in some detail the design of the gearbox testbed and each of the 

specific configuration states it is necessary also to give consideration to the means by 

which the emissions be acquired. For the practical work described in this and the next 
Chapter a single uni-directional condenser microphone located approximately 50mm 
from the open casing was used to record the acoustic emissions. The physical 
positioning of the microphone could be freely controlled in order to perform 
measurements on the sensitivity of the TES data generated from various locations. As 

the group acoustic emissions from the gearbox are made up from many simultaneous 
point sources so it is reasonable to assume that the acoustic emissions, and thus the TES 
data, will be position sensitive just as is the case with the more commonly used contact 
type sensors such as accelerometers or velocity transducers. Without practical trials the 

extent of this acoustic sensitivity is difficult to predict. It is therefore crucial to gauge 
these effects so that the means by which TES techniques may be applied and also 
possibly their effectiveness in noisy environments may be estimated. The need for 

complex arrangements of directional microphones to produce acceptable results, for 

example, would militate against the use of acoustic TES in a cheap monitoring system. 

For each of the predefined states a set of acoustic samples were recorded onto a high 

quality audio media under controlled conditions. The control consisted of monitoring 
the shaft velocities during the recording of each unique acoustical state. In cases where 
the shaft velocity was not the identifiable parameter this monitoring and associated 

control was loosely constrained. This was because whilst it was important to keep the 

shaft velocity relatively stable in such cases it was also considered necessary to maintain 

the systems usability by minimising the number of complex constraints placed on the 
basic data capture. Consequently during the acquisition of data for the practical trials 

not involving shaft speed state identification shaft velocity fluctuations of approximately 
200rpm were deemed acceptable. This corresponded to variations in shaft velocity 
during acquisition of approximately 7%. Recordings which remained within these 

bounds were included in the acoustical archive, whilst those which did not were 
discarded. 
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Another key to building a stable archive of emissions records was the periodic 
inspection of the testbed to determine the current mechanical status. Between each of 
the recorded segments included in the archive the mechanical configuration of the 
system was checked for stability. This added safety precaution was mainly intended to 
ensure that the bearing locating mechanisms had not become loose and caused an 
unwanted change in mechanical configuration during the recording process. 

5.2 Application of Simple Amplitude Histogram Matrices for Classification of 
Basic Shaft Velocity States 

There are two major advantages to using the simple amplitude TES symbol histogram 
matrices defined in 3.5.1. The first is the ease of generation of the matrix data, requiring 
only summation of the symbols in the converted TES stream over short fixed time 
periods. The second is the physical size of neural network which is required for the 
application of the generated data. In trials the TES conversion symbol table consisted of 
only 300 elements which equates to a similar number of input layer nodes for the 
classification network, rather less than the A-matrix scheme. Whilst the main focus of 
the application of TES to the archive of acoustical data acquired from the gearbox 
testbed was the identification of specific physical fault states some initial suitability 
trials were performed using these very basic histogram matrices to identify a series of 
four unique gearbox velocity states. These four unique velocity modes are not contained 
in the earlier state Table 5.1 but are instead defined below in Table 5.2. 

State 
descriptor 

- 

Gear ratio status Physical description 

State A 3 &4 com pletely disengaged Primary shaft velocity of 500 rpm 
State B 3 &4 com pletely disengaged Primary shaft velocity of 1200 rpm 
State C 3 &4 comp letely disengaged Primary shaft velocity of 1500 rpm 
State D 3 &4 comp letely disengaged Primary shaft velocity of 2000 m 

TABLE 5.2 A description of the four basic velocity states used during initial trials of 
TES application to neural networks 

In these preliminary trials the 300 element neural network input layer was connected to 

a 10 node hidden layer and a4 node output layer (one per velocity state). The simplicity 
of the primary data generation combined with a moderate network size, and thus small 
number of interconnections, results in a classifier configuration requiring a relatively 
low computational overhead. Each histogram matrix applied to the network was 
constructed from a one second segment, or token, of the raw TES stream generated from 

the recorded acoustic archive and converted into the amplitude TES symbol format. 

Four sets of data were produced in total from the recorded archive for network training 

and evaluation, each containing ten histogram matrices corresponding to each of the 
four states defined in Table 5.2. Thus each data set contained 40 matrices, or 40 

seconds of acoustic data, clustered into unique state groups of ten matrices. Ten 
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separate train and test sessions were performed with the neural classifier, each using 
different permutations of training and testing data from the four available sets. In each 
trial one or two of the four data sets were selected for training purposes with the 
remainder dedicated to the testing of the network. Thus two different sizes of training 
and testing data sets were used. In training 40 and 80 matrix template sets were used 
whilst for performance evaluation 80 and 120 element matrix sets were employed. The 

use of these differing data set ordering and size permutations enabled early indications 
of the effects of the data sensitivity discussed previously in Chapter 4 to be assessed for 
this basic TES presentation format. The results of these trials are given in Figure 5.5. 

The error rates encountered during classification testing ranged from 0-17.5 % 
depending upon the quantity and composition of the data used during training and 
testing. This disparity in error performance between similar sized data sets illustrates 

graphically the dependence between the data presented to the network and the global 
network error minima which is achieved during convergence. Whilst trial 3 produced 
an acceptable 2.5% (3 errors in 120) error rate, trial 1 produced considerably more errors 
with 17.5% (21 errors in 120) of the test set classified incorrectly. When the training 
data set size is doubled in size the disparity between best and worst performing 
networks is reduced from 15% to 10%. This improvement is most noticeable in trial 10 
(rightmost plot in Figure 5.5) where the extended data set (containing sets 3& 4) 

eliminated classification errors in the test set altogether. 

In addition, some fluctuation in network performance was noted during the trials when 
the data set presentation ordering was modified during training runs. This was 
undoubtedly the result of the effect the data presentation has upon the training of 
network weights. Effectively the path taken by each weight over the error surface of the 

network during training is sensitive to the contents of each training exemplar and 
thereby the order in which they are presented during the training phase. As an example 
when the data sets used for training in trial 10 were reversed a classification error was 
introduced where previously there had been none. These stability effects filter on 
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Figure 5-5 Results of the trials employing amplitude-frequency data matrices 
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through to the various parameters of the training control mechanism itself. Again in 
tests with the trial 10 data it was found that the error performance may be improved by 
testing for convergence less frequently. This would indicate that the original test 
sequence was probably terminating training at a point where network convergence was 
acceptable but not necessarily optimised for the particular data set. The improvement in 
performance introduced by lengthening the time between successive convergence tests 
can be accounted for by a reduction in the subsequent global network entropy caused by 
the inclusion of additional training iterations. In subsequent trials this problem is 
uncovered as a common theme where neural classifiers are employed. 

It is clear from these trials that amplitude-frequency histogram matrices provide 
sufficient raw acoustic information to separate simple shaft velocity states, even when 
training runs are limited to relatively short, 10 second segments of acoustic tokens for 
each state. Whilst the subject of this classification trial, shaft velocity identification, is 
not in itself particularly demanding it is still encouraging to see that a basic feed-forward 
network had been able to separate the state space with reasonable accuracy. It is also 
evident that the combination of network, data and training regime can impact 
measurably upon classification performance as a result of variations between specific 
training and testing data sets. 

5.2.1 Positional Sensitivity Associated with Amplitude Histogram Matrices 

Having performed some initial work and ascertained the basic suitability of simple 
amplitude histogram matrices to the identification of a few rudimentary gearbox shaft 
velocity states consideration was made as to the microphone positional sensitivity of this 
particular presentation technique. Microphone sensitivity had earlier been identified as 
being one area which could adversely complicate the application of the neural acoustic 
technique. For a series of initial trials, sensitivity was defined as the effect upon 
classification performance of variations in microphone position between the training and 
testing phases of between 100-200mm. Figure 5.6 illustrates the three different 

microphone positions which were used to acquire the acoustic data used for amplitude 
TES histogram generation for evaluating a similar neural classifier configuration to that 

applied previously in section 5.2. This time however a fifth output node was added to 
the network to enable detection of a gear lubricant. 

A network was trained on histogram matrices generated from testbed emissions acquired 
at a constant speed in both unlubricated and artificially lubricated states from the three 

microphone positions. Baseline sensitivity of the configuration to these sensor positions 

when classifying data into lubricated and unlubricated states was estimated by using 
data acquired from the same physical microphone location for both training and testing. 
In tests carried out on the three longitudinal positions (1.2,3) using training and test 

sets of 20 matrices, lubrication classification accuracy ranged from 55% (2). to 80% (3). 
Having ascertained the baseline performance from each of the separate microphone 
locations a second trial was performed to estimate the location sensitivity of the data. In 
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this trial the network was trained on histogram matrices generated from acoustic 
recordings taken with the microphone in one location and tested on data generated from 
the remaining two positions. In this way the positional diversity of the respective 
microphone positions could be estimated. The results of this are provided in Table 5.3. 
Whilst not wholly conclusive in this instance, the results indicate that there is a 
relationship between the microphone location and the network performance. Location 3 

performance was eroded from 80% to only 50% when train and test locations were 
separated. 

Acoustic acquisition positions 
Training set : Testing sets 

Classification of 
lubricated/unlubricated states 

1: [2,3] 54% 
2: [1,3] 60% 
3: [1,2] 50% 

TABLE 5.3 Results of the trials using amplitude histogram data acquired from different 

microphone locations to train and test a three layer network 

5.2.2 The Effect of Histogram Matrix Presentation on Network Performance 

The sensitivity of neural classifiers upon the data sets applied during the training phase 
has already been noted for the shaft velocity classification problem. A further trial was 

completed using the network defined in section 5.2.1 to quantify the additional effects of 
data ordering on the tokens used in the tests discussed so far. This trial consisted of two 

separate train and test phases, both using data from two unique data sets (A and B) but 

applied to the network in different orders. For the first evaluation, matrix tokens in data 
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set A are presented to the network during training and the network performance i" 

measured against set B. In the second evaluation this order is reversed and instead set B 

matrices are used to train the network with the set A data being used to measure 
performance. As a result of the information gained about positional sensitivity made in 
the previous trial the contents of the data sets were modified. This time both sets 
contain data tokens acquired from microphone positions 1,2, and 3 aimed at reducing 
some of these sensitivity problems. Both sets contained 60 data matrices, corresponding 
to 20 seconds of acoustic data from each of the three microphone locations. 

In the first trial the network identified 95% of all data matrices correctly following 

training, whilst in the second it classified only 80% of the 60 test matrices correctly after 
training. The disparity between the two runs can be accounted for by variations in the 
two data sets with respect to one another and to the acoustic phenomena which they 

represent. In this particular instance the training data in set A obviously enhances the 
training program and subsequently produces a network more suited to the data matrices 
in the testing set. The performance attained in both of these trials by using data from 

multiple sensor positions highlights the necessity for adequate network generalisation if 

the effects of sensor position, seen previously, are to be minimised. The ability to 

reduce the effects of the sensor selectivity are of particular relevance to industrial 
implementations of a classification system where restrictions on this flexibility should 
be discouraged. The results here provide proof that given adequate training these 

sensitivity effects can be significantly reduced. 

5.2.3 Varying the Internal Structure of the Neural Network 

Whilst some of the physical data acquisition and network training constraints had been 

considered in the initial trials the architectural requirements of the neural classifier itself 

were not. From the point of view of implementing a realisable and cost effective 

monitoring system, in this instance with histogram data matrices, these architectural 

considerations are similarly important. As discussed in Chapter 4 the architectural 
definition of any supervised network applied to data defining a state space relies upon a 
balance being sought between network size and the corresponding computational 

overhead required during both training and operation. On one hand the fewer nodes 

there are in the different network layers the fewer the number of interconnections and 

thus the lower the computational overhead required. However the fewer nodes there are 

the more restricted the dimensions of freedom of the network become and with it its 

classification capability. In contrast, as network size is increased so too does the 

capability, training time and the data set required for adequate generalisation. Since the 

input and output layers are effectively fixed by the data format and state space 
definitions respectively the only significant room for flexibility in network size and 

configuration is within the hidden layer. 

To study the effects of these architectural facets performance evaluation was carried out 

using the shaft velocity state matrix tokens utilised earlier in 5.2. Two evaluations were 
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performed, one including and one excluding the lubrication status of the gears. Initially- 
the data matrices taken from the eight state classification problem discussed previously 
in 5.2.1 were evaluated against a range of different internal network configurations. The 
hidden layer was varied in size between six and fifty nodes, whilst other architectural 
and training parameters for the networks remained stable. Most important in this 
respect was the stability of all training and test data sets. Each contained 80 data 

matrices, 10 per state corresponding to 80 seconds of amplitude histogram TES data in 
total acquired whilst the microphone was fixed in position 2. The subsequent training 
rates and classification performances of each of these network configurations are 
graphically represented in Figure 5.7 and Figure 5.8. 

Somewhat expectedly the number of training iterations and the time required for 

network convergence in these tests is related to the number of nodes contained in the 
hidden layer. Below six nodes in the hidden layer the number of iterations required for 

convergence produced training times considered to be unreasonable and additionally did 

not provide quantifiable improvements in state separation. Beyond 50 nodes, the 
training times became similarly excessive despite a reduction in the number of iterations 

required to reach convergence. The increase here in the time to convergence, despite a 
reduction in the number of iterations, is caused by a corresponding increase in the 

computational time taken to perform each cycle of the matrix presentation and error 
back-propagation as a result of the additional number of nodal interconnections. 

Despite the differences in the time taken to complete the training phases for the various 
configurations correct identification of the shaft velocity states during the testing phase 
remained relatively stable. Over the range of configurations examined it varied by only 
approximately 4%. Identification of the lubrication status during the same trials showed 
a little more variation, approximately 13%. Given the results obtained from these trials 
there seem to be few indications that any specific configuration is more suited than 

another to the separation of these particular states although networks containing 10,16 
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Figure 5-7 Network performance for velocity and lubrication status classification with 
selected hidden layer configurations in an eight state data space 

99 

68 10 12 14 16 18 20 50 



1. °" 600 t 

500 

400 + 
ZC 
4J 
r BL 

300 
or, cc 

200 
w 
O 

100 

0 z 
68 10 12 14 16 

Number of nodes in the hidden layer 

18 20 50 

Figure 5-8 Network convergence for various hidden layer configurations in an eight 
state data space 

and 50 nodes provided marginally better separation of the lubrication state in this 
evaluation. However, there is likely to be some degree of data sensitivity to be 

accounted in these findings as a result both of initial training weights and the path 
followed subsequently by each weight during training. Given this premise and the 
results obtained it would seem reasonable to select a particular architecture(s) from this 
range primarily on the computational requirements of the network during the training 

and testing phases rather than on point performance with individual data sets. 

5.2.4 Detection of Four Shaft Displacement Misalignment States 

One area of concern in terms of the acoustic data used in the eight state network used in 

previous trials was the use of an artificially simulated lubrication status. The dynamics 

of the gearbox were such that the state of lubrication could, and did, change rapidly 
during the course of each acquisition recording. This effectively introduced additional 
dynamic states into the data space which combined to degrade the networks perceived 
performance. Consequently these particular states were removed from the decision 

space to increase the confidence in results attained in relation to the performance 

requirements of the hidden layer in the network architecture. However, at the same time 

reducing the output space to the four remaining shaft velocity states would reduce the 

classification problem to a considerably less demanding frequency focused exercise. 
Thus rather than continue the discussion of network architectures with such 

comparatively simple states, a further four, more demanding states (3,4,5,6) were 
selected. They correspond to four shaft misalignment states each of varying degrees of 
severity and were each recorded at a controlled constant shaft velocity. 

Since the dimensions of the input matrix required for misalignment detection remain 
unchanged a similar 300 element input layer was required to apply the TES data from 

the amplitude histogram matrices providing the raw acoustic information to the network. 
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This was coupled to a four node output layer with each node corresponding to one of the 
four unique shaft position states. These two external layers were connected via a 
configurable hidden layer containing between two and one hundred nodes. As with 
previous trials the training regime was strictly controlled to ensure that the effects of a 
range of hidden layer configurations could be evaluated in isolation. Control consisted 
of maintaining a fixed set of network training parameters including learning rate (a). 
momentum (ß) and convergence bound. Each network configuration was trained using 
a fixed training set containing a series of the 300 element amplitude TES histogram 

matrices. Each of the data sets within this fixed training set corresponded to 
approximately 14 minutes of acoustic data. Following successful completion of the 
training phase for each configuration, the networks were subjected to an identical set of 
acoustic test patterns corresponding to approximately 7 minutes of recorded data. The 

results of the training and testing phases of these more demanding shaft position 
detection trials are given in Figure 5.9 and Figure 5.10. 

The use of four more complex positional states placed an increased burden upon the 

network to classify the data adequately when compared to the earlier shaft velocity trials 

which had been carried out. The demands of this increased burden were partially offset 
by the application of a considerably extended training data set to further improve the 

networks learning capability and generalisation properties. The performance of these 

networks when compared with those from previous trials is particularly interesting. 
Despite the added complexity of the requirement to separate the more acoustically 
similar shaft positional states the general performance of the networks at identifying 

each of these states was better than that achieved with the eight states described in the 

previous section. This improvement, although partially attributed to the elimination of 
the dynamic variations in the lubrication state included in previous trials, was mainly 
due to the tenfold expansion of the training data set. 

As with earlier evaluations the deviation in network performance over the range of 

network architectures tested appears inconsistent as a result of the combined affect on 
the networks of data dependencies and weight updates during training. As an example a 

network with a six element hidden layer correctly identified 82% of the test patterns 

whilst a 32 node layer only identified 76.2% of the test patterns correctly. Again since it 

seems reasonable to surmise that both the training path taken by individual weights and 
the diversity in content of the acquired data sets themselves will effect the performance 

of each network selection of an "ideal" layer size again becomes a non-trivial exercise. 

As with the trials on velocity and lubrication detection it is better to assume that a range 

of hidden layer architectures will provide adequate performance and make the selection 

of the hidden layer attributes based on the computational demands of each 

configuration. Thus providing the hidden layer contains a reasonable number of nodes 
for a particular classification problem enough network flexibility should be available to 

separate each class and it is unnecessary to expend further effort on identifying a 

notionally ideal configuration. For this particular shaft misalignment problem a hidden 

layer containing 10-20 nodes would seem to offer the best compromise between 
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adequate performance and optimised computational requirements during training and 
operation. 

5.2.5 Improving Generalisation by Extending the Network Training 

The initial results drawn from the evaluation performed on the configuration of the 

hidden layer in networks detecting shaft status provides a stable baseline from which to 

investigate further the effects of varying some of the other parameters associated with 

neural classifiers. Extending the quantity of data applied during the network training 

phase is one such parameter. From the performance achieved during the preliminary 

trials with shaft alignment the importance of this aspect of the training cannot be 
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overlooked. For further comparative evaluation of this aspect of the implementation it 
is essential once again to maintain not only the same basic network platform and 
training regime but also to use training and test sets based upon the data used 
previously. 

To maintain the necessary data stability each of the training data sets used in the earlier 
evaluation was retained to form the cores of the training sets generated for the additional 
testing. These core sets were complemented by selecting a further seven minutes of 
TES histogram matrix data to extend each of the training sets to 21 minutes of data in 
total. As in the case of earlier trials, network convergence testing during this phase was 
performed after each and every iteration, or epoch, of the extended training set. In 

reality this meant that convergence testing was not performed after an identical number 
of network data presentations to the previous trials due to the extended size of the set. 
However it was assumed for the purposes of the evaluation that this change, taken in 
isolation, would not cause a significant distortion to the subsequent performance. 

At this stage no analysis had been conducted into defining methods for selecting a 
balanced range of data sets with which to most effectively and rapidly train the system. 
It was therefore reasonable to, once again, assume that data dependency amongst the 
four training data sets would provide a variety of network solutions, some of which may 
be more suited to the test patterns than others. Thus, as was done previously, four 

separate data sets were provided for the evaluation to take account of the likely effects 
upon the performance of randomly selected additional data sets being added to the core 
data sets. By using four separate data sets it is not only possible to quantify these effects 
but also to account for them when drawing conclusions from the trials. Ultimately it 

also enables comparison of the contents of the respective data sets and their physical 
attributes to determine the causes of such data dependencies. 

Figure 5.11 and Figure 5.12 below graphically illustrate the results of the training and 
classification trials with the various network configurations using each of the four 

extended training sets. Overall performance of the network was improved with the 

addition of the extra TES data in the training groups. Comparing network classification 

performance with the reduced data set, illustrated in Figure 5.9 above, and those 

obtained with the extended data sets, illustrated in Figure 5.11, it should be noted that 

the magnitude of this performance gain is between 0-16%. As predicted the effects of 
data set dependencies caused the enhancements to be separated into two distinct data set 

sub-categories. 

When sets 2 and 4 are presented during training the resultant classification is improved 

by between 0-6.5% whilst with sets 1 and 3 the improvement in performance is in the 

region 11.3-16.6"/c. Essentially, this indicates that training sets 1 and 3 produce better 

network generalisation than sets 2 and 4. In spite of this performance gap it is evident 
that even without specific data selection the larger the training set, the better able the 

network is to correctly classify the unseen test data subsequently. 
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Figure 5-11 Classification of shaft alignment defects for various hidden layer network 
architectures following training with four extended data sets 
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Figure 5-12 The network training characteristics for various hidden layer network 

architectures using the four extended training data sets 

In these trials a 50% increase in training set size effectively guarantees a worst case 

error rate of 18.7% which is comparable to the best performance achieved with the 

smaller data set used earlier. However optimal performance was restricted to network 

configurations trained with sets 1 and 3 where approximately 95% of the unseen test 

patterns could be correctly identified with a 20 node hidden layer. With these two 

particular training sets all network configurations achieved better than 93% accuracy, a 

significant improvement over the core training set used during the earlier evaluations. 

This improvement is however associated in all but 3 of the 40 network and data set 

combinations with a corresponding increase in the number of training iterations required 
to achieve the preset convergence bound. Since the time taken to train a network is a 
function not only of the number of iterations required to converge but also of the time 
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taken for each iteration this period is extended still further by the larger data sets being 
used. However providing that the training periods are still reasonable, which they were 
in this instance, then the primary selection criteria should always remain the 
classification performance of the network rather than rapidity of training. Of the trial 
performed here only a6 node hidden layer architecture trained using the set 1 extension 
and a 10 node configuration trained using the set 3 extension need necessarily he 
eliminated based upon their excessively demanding training requirements. As with the 
performance testing there are two distinctive performance sub-groups. Both sets 2 and 
4, which produce a reduced classification performance take significantly less time to 
converge than sets 1 and 3 which take longer to converge but provide better separation 
when exposed to the test set. This direct correlation between the number of iterations 
required for convergence and the subsequent performance of the network is a further 
indication that the differences are caused by data dependencies. 

5.2.6 Feasibility of Performance Optimisation Through Data Selection 

Whilst early trials have shown that TES data presented to a neural network in 

amplitude-frequency histogram matrix format can provide a reasonable means of 
condition identification it has also emphasised the fact that the selection of suitable 
training data is important if performance is to be maximised. The difficulties of using 
randomly selected data to extend a training set have been highlighted by the 
discrepancies in performance achieved with the four different data extension sets 
applied in 5.2.5. Whilst a process of data selection should provide a more optimised 
solution to a given problem it also imposes additional demands upon the system 
operator. To achieve this solution either trials must be performed over a wide range of 
operating conditions or the parameters affecting performance within the data sets must 
be identified. It is necessary therefore to further quantify the benefits a prolonged 
training regime, consisting of performance analysis feedback, has when compared to an 
automated training scheme which employs random data of varying training benefit. To 

estimate this potential for improvement several additional data sets were developed 
from, and for comparison against, the extended sets used in trials described in the 

previous section. 

The additional data sets which were used for the trials in section 5.2.5 were arranged 
into four further groupings, each containing a different mix of the original data sets. 
Sets I and 3 which boosted the performance of the core set previously were combined to 
determine whether the performance could be enhanced still further by combining these 

two "good" sets. Sets 2 and 4, which when added separately to the core set previously, 
had produced a less effective network solution were combined to see if performance 

could be improved simply by weight of data. A third set used in the trial contained all 
four of the extension sets, both good (13) and bad (2,4). Could this provide a more 
balanced and possibly better range of TES histogram matrices with which to train the 

network? The fourth training set used in this evaluation consisted of the two good 

extension sets combined with the core data set used previously. Would the addition of 
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the second good extension set to one of the better sets used previously further improve 
the network solution? 

As expected those training sets which contained the data from sets 1 and 3 once again 
provided the best training material for the various network configurations(see Figures 
5.13-5.14). When combined the trained network was able to classify 949 of all test 
matrices correctly. This performance is comparable to the training data used previously 
in section 5.2.5 where sets 1 and 3 were used as a means of extending the core set. 
However this level of performance is achieved with only two thirds of the quantity of 
training data used previously. Allied to this the number of iterations of the 
back-propagation learning algorithm necessary to achieve such performance, between 
2500-6000, proved to be more consistent over the range of network configurations than 
when they were employed simply as extension data to a core set. 
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Figure 5-13 Network performance for various hidden layer architectures trained with a 
variety of selected training data sets 
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When sets 1 and 3 were simultaneously added to the core data set used in the previous 
trials the network showed no further improvement in state identification performance 
indicating that the data saturation point had probably been reached. This data set also 
seemed to result in the network requiring disproportionately long and also more erratic 
training periods to converge. The exact reason for this remains unknown. It is possible 
that the two data sets contained differing matrix anomalies which combine to drive the 
weight updates in a more erratic manner and thus necessitate additional data 
presentations to achieve the required convergence limit. If this had been the case though 
the consequent network unusually seems no more able to classify the test exemplars 
than either data set used in isolation which might be contrary to expectations. 

When sets 2 and 4 were combined and used to train the various configurations the 
networks required substantially fewer training iterations, by a factor of at least 10, to 
achieve convergence. The trained networks which result from this however are only 
able to classify between 85-89% of the test set correctly. Whilst this still corresponds to 
an improvement of between 3-4% in classification performance and a 50-25OC/c 

reduction in training requirements when compared against their use in conjunction with 
the core data set previously they are still less effective than sets 1 and 3. The data set 
which produced the optimal network solution during these trials however consisted of 
combining the four extension sets together. With this data set network performance 
varied between 93.5-95.5% depending upon the hidden layer configuration. However 
this 1.5% improvement, when compared with the set consisting only of 1 and 3, comes 
at the expense not only of a data set twice the size but also of a training program which 
requires up to eight times the number of data iterations to converge. 

In conclusion, all four data sets provided a reasonable level of network performance 
when identifying the shaft displacement misalignment faults and whilst the selection of 
good data sets provides a more optimised solution acceptable performance can be 

achieved without necessarily resorting to a prolonged series of comparative testing and 
selection trials. This statement is backed up by the performance with the two extension 
sets which proved less effective previously. When combined these in fact provided 
reasonable performance whilst at the same time requiring less training time in which to 

achieve this than they had done earlier. 

5.2.7 Impact of Dynamic Signal Properties on the TES Conversion Process 

As discussed in Chapter 3 the conversion of an acoustic signal, acquired initially with a 

microphone, into an amplitude TES representation of this source requires determination 

of a normalisation factor. This factor is defined as being the maximum signal 

magnitude of the source attained over a given pre-conversion sampling period, which 
for practical trials was 10 seconds. After the initial pre-conversion period this 

normalisation factor is stored and then subsequently applied to all samples prior to TES 

conversion. Essentially, this causes each individual TES segment conversion associated 

with a single matrix to be performed with a unique dynamic range. This normalisation 
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is essential to the conversion process if the data is to be used later for identification 
purposes. However utilising such a basic approach to the acquisition and conversion 
procedure in the interests of minimising system complexity and reducing cost has 
implications on the matrix generation phase. With this in mind it is essential to be 
aware of any adverse training effects induced as a result of the self-imposed dynamic 
variability which may significantly reduce the systems subsequent classification 
capability. 

In an attempt to gauge the practical effects of this conversion technique a series of trials 
was performed in which the train and test group histogram matrix members were 
selected by analysing the normalisation factor characteristics used for each specific 
conversion from which they originated. Four different matrix data sets were used to 
train each network prior to evaluation against one of three test data sets generated. 
Normalisation factor based statistical representations of each of these train and test sets 
is illustrated in Figure 5.15 below; the horizontal axis is used only for plotting purposes. 
The normalisation factor axis identifies the relevant statistical coefficient for each data 

set component. Two neural architectures were employed to perform the tests, one 
containing an 8 node and the other a 20 node hidden layer. In both cases the remainder 
of the structure was unchanged from previous trials and consisted of a standard 
amplitude TES 300 element input layer allied once again to a four node output layer. 

Initially the two networks were trained using training data sets 5 and 6 each containing 
histogram matrices corresponding to 21 minutes of acoustic record taken from the 
archive. Training set 5 was weighted with low biased matrix conversion coefficient 
components thus corresponding to a TES stream with a narrower dynamic range. In 

contrast set 6 was weighted with matrix components having higher biased conversion 
characteristics and thus a wider dynamic range. The primary test set, set a, which had 
high biased TES conversion characteristics and contained 7 minutes of histogram 

matrices was used initially to determine the baseline performance characteristics prior to 

evaluation of the remaining configurations classification performance. Whilst some 
network architecture and data dependency based variations in the respective 
convergence and classification performances is to be expected what Table 5.4 clearly 
identifies is what appears to be a wider divergence of classifications rates for the 
different training sets. Training set 5 seems to provide the back-propagation learning 
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process with TES data which is statistically more dissimilar to that of set a 
characteristics, resulting in a poorly trained classification engine. In contrast training set 
6 produces a network capable of correctly identifying approximately 93% of all test 
patterns presented from set a, albeit also requiring significantly longer to converge 
during the training phase. 

TES histogram 
training set 

Number of nodes in 
the hidden layer 

Training iterations 
required for 
convergence 

Correct 
classification of 
system state (17c) 

5 8 2732 75.7 
5 20 984 74.8 
6 8 8502 94.2 
6 20 20592 93 

TABLE 5.4 Results of network classification given two opposing normalisation bias 
based training sets analysed with test set a. 

To ascertain whether this apparent performance mismatch can be partially rectified by 

statistical selection of data a second test set, set b, was generated to test the trained 

networks. The statistical composition of this test set, seen in Figure 5.15, resembles 
more closely the lower biased statistical distributions of training set 5. Somewhat 

expectedly, the performance, detailed in Table 5.5, is improved when this statistically 
more similar test set is employed for network evaluation. However in reality both 

training sets show improvement with training set 5 still apparently at a distinct 
disadvantage relative to the training data acquired using a wider dynamic range and 

contained in set 6. 

TES histogram 
training set 

Number of nodes in 
the hidden layer 

Training iterations 
required for 

convergence 

Correct 
classification of 
system state (%) 

5 8 2732 78.6 

5 20 984 76.7 
6 8 8502 98.8 

6 20 20592 99.5 

TABLE 5.5 Results of network classification given two opposing normalisation bias 
based training sets analysed with the lower biased test set, set b. 

Assuming for the moment that there is a correlation between the statistical balance of 

the data sets and subsequent performance in terms of the signal normalisation performed 

prior to TES conversion it is essential to attempt to quantify these effects. Consequently 

further comparative tests were performed against test set a using two additional training 

sets, set 3 and set 3b each containing 28 minutes of acoustic matrix tokens, slightly 

more than either set 5 or set 6 previously. The matrix data for set 3, the baseline set, 

was selected at random without regard to the statistical characteristics of the individual 

histogram matrix elements. This data was used to train two baseline classifiers, again 

one with an 8 node hidden layer and the other with a 20 node hidden layer. The second 
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new training set, set 3b, whilst based on the data contained in set 3, had some low 
biased components replaced by equivalent data components with higher bias 
characteristics. In this way if the normalisation factor is responsible for the performance 
anomalies then an improvement in classification performance would be expected when 
the controlled data of set 3b is used during the training phase rather than the randomly 
selected data in set 3. The results of this comparative test are illustrated in Figure 5.16. 
In each case networks were trained at three different a rates to minimise the likelihood 
of results being distorted by local network minima effects during training. 

Considering the relatively minor alterations made to the composition of training set 3 

any variation in performance induced by the altered characteristics of training set 3b 
data was expected to be small. However whilst the eight hidden node architecture does 

show signs of the type of improvement expected the 20 hidden node network displays 

characteristics which are contrary to those expected. During the course of further trials 
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to back these findings up similar small performance differences were noted. It would 
seem from these trials therefore that provided the training sets are not generated with 
statistically low conversion bias characteristics and contain a reasonable range of 
characteristics within the TES histogram matrices the classification performance will 
remain relatively unaffected by small fluctuations in subsequent test data characteristics. 
However the acoustic acquisition must ensure that the type of discrepancy seen between 
training sets 5 and 6 is eliminated since this will introduce additional unnecessary 
performance degradation. 

5.3 An Evaluation of the Application of Minima TES Histogram Matrices to 
Shaft Alignment Classification 

Prior to the development and application of an amplitude TES data format in this thesis 
all research into signal classification, with or without neural classifiers, had been 
implemented with a minima TES conversion scheme. With this technique the two 
primary data components used as TES epoch shape descriptors are the frequency and 
harmonic content rather than the energy component used in amplitude coding. As 
described in Chapter 3 these signal characteristics are extracted by measuring the epoch 
length, in samples, and the frequency with which minima occur in each epoch within the 
sampled signal. Previous applications based upon this technique have mainly been 
limited to automated speech identification systems [32,37,64,65] although some work 
has been performed on low rate data transmission systems [33,66]. Only relatively 
recently was the TES signal conversion technique used in conjunction with a neural 
classifier to evaluate its capability in a simple condition monitoring application [38]. 
Whilst the development, in this thesis, of an amplitude based system was driven by the 
belief that a signal conversion scheme sensitive to variations in signal energy 
characteristics should be better suited to condition monitoring than an minima focused 

scheme this has yet to be suitably determined. Already in this Chapter the basic concept 
of amplitude coding has been evaluated and found able to provide reasonable condition 
information. However if genuine comparisons are to be made in terms of the relative 

performance of the two coding schemes it is essential to carry out direct comparative 
tests of the two conversion schemes under comparable conditions. 

Using the same 300 element data matrix presentation format, this time containing basic 

minima TES symbol information, three configurations of network were evaluated for 

suitability to classifying the four shaft misalignment states used earlier in section 5.2. 

Whilst the table generation itself remains the same a minima TES lookup table and 

conversion mechanism replaces the amplitude TES conversion used previously. 
Similarly the symbol table used to convert the discrete signal epochs was identical in 

format if not in composition to that used in the amplitude scheme. It consisted of the 

same 30 discrete sample levels but instead replaced the 10 energy quantisation levels 

with 10 unique minima quanta. During initial tests it was noted that the matrix 

variability produced by the four gearbox states using this scheme was more limited than 

the earlier amplitude matrices. The number of individual symbols required in the 



conversion process for all states was similarly constrained, producing when visualised, 
matrix maps with much reduced contour variations. Even prior to performing any 
performance comparisons it was felt that this reduced matrix diversity between states 
would not only affect performance but increase the network training times. 

The trials were performed using identical acoustic condition recordings taken from the 
archive and used previously to evaluate the amplitude histogram classification 
mechanism. The recordings were used to generate four training sets compiled for these 
trials each containing approximately 28 minutes of minima histogram matrix data. Two 
different network configurations, containing 10 and 20 nodes respectively in the hidden 
layer, were employed for the tests. As previously, each configuration was trained at a 
variety of different training rates to minimise the likelihood of local minima effecting 
performance during the evaluation phase. The momentum factor, ß, and error bound 

used for each of the training runs was the same as used during the earlier trials with 
amplitude data. 

As initially surmised when the minima matrices were used to train each of the network 
configurations it was found that training times were indeed prolonged substantially 
when compared to the equivalent amplitude data matrices. In fact in several cases the 

network training phase was halted without convergence being achieved. Two 

configurations which eventually did converge provided acceptable state separation with 
little sign of the expected degradation in performance. The results of the tests, when 
four 7 minute test data sets were presented to the trained networks are illustrated in 

Figure 5.17. The 10 node hidden layer configuration required over half a million 
training iterations to achieve convergence whilst the twenty node configuration required 
approximately 45500 iterations. Both of these examples are unacceptably long for 

practical applications when compared to what can be achieved using amplitude 

conversion. Whilst it is possible that some of the other architectures or training 

parameter variations which were halted prematurely would also eventually have 
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produced converged networks they would be similarly unacceptable for a practical 
application. Therefore, despite the positive comparison in terms of the classification 
performance of the two examples which did eventually converge against a similar 
network trained using the amplitude histogram matrices the technique is not considered 
to be viable for use in a system implementation for this particular set of condition states. 

5.4 Chapter Summary 

This Chapter has described the concepts which were used in the design of the gearbox 
testbed system used to simulate the mechanical faults which are used to evaluate some 
TES based monitoring techniques. This covered the description of a series of 
representative physical states corresponding to displacement, and tooth wear as well as 
the crude simulation of lubrication status. The design, though simple, provided an ideal 

means by which acoustic data could be acquired relatively easily to provide a stable 
baseline for the TES matrix techniques to be evaluated. 

Initial investigations centred on the application of basic histogram matrices generated 
using the novel amplitude TES conversion technique and were applied to three layer 
MLPs firstly to measure their ability to recognise four simple shaft velocity states. Even 

with small training data sets of the order of 40-80 seconds correct identification of the 
velocity status was achieved at least 82.5% of the time. Depending upon the data sets 
used for training this figure could be improved to 100%. These early results provided 
the impetus for examining the technique still further. 

At an early stage of the discussion regarding the use of acoustic data the question of 
sensitivity was raised. Since one of the primary reasons for adopting the use of an 
acoustic data acquisition scheme was its potential simplicity the effects upon the 

classification mechanism of a loosely controlled microphone position had to be studied. 
In trials the effects of selecting training and test matrix tokens from microphone 
positions separated by up to 200mm were measured. The results obtained highlighted 

the effects that such differences could potentially cause. Obviously the effects are 
somewhat dependant upon the acoustic environment and the emissions being recorded 
but in trials differences of up to 30% were noted when classifying the lubrication status 

of the testbed. Whilst some of this discrepancy was attributed to the dynamic variation 

of the lubrication states the majority of the degradation in performance was caused by 

the location of the microphone. However when this positional flexibility is accounted 
for in the training data the performance degradation caused by movement during 

classification is reduced to more acceptable levels. 

The architecture of the hidden layer which provides the network with its ability to 

perform complex mapping functions was studied for a number of different classification 

problems and data sets. In the most part the results support the theory that there is not 

an ideal configuration for a given problem unless the data sets are fixed. Instead, 

provided that the network has sufficient hidden layer nodes for the problem the addition 
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of further nodes is unlikely to affect significantly the performance. Optimisation of the 
architecture of this central layer is thus better performed in terms of the computational 
overhead required to implement a particular network configuration. 

The identification of shaft displacement status proved, as expected, to be more 
demanding than classification of the velocity status. Initial trails used 14 minutes of 
acoustic matrix tokens to train a basic network which was subsequently able to correctly 
identify 82% of tokens in a test set. Further extension of the training data set by one 
third improved the performance under test conditions to approximately 93 c depending 

upon the specific training set used. The disparity in network performance, depending 

upon the training data used, varied but in the worst case amounted to a variance of 
approximately 10%. Further trials were carried out to evaluate the potential of data 

selection as a means to further enhance the performance. Whilst practical evaluation 
could be applied to the selection of data sets it was found that similar improvements 

could be achieved simply by extending further the size of the data sets used during the 
training phase. During the course of these trials successful classification of 95% of a 
test set was possible with an extended data set where 94% could be achieved with a 
smaller but selected set. In most applications the extension of the training data set 
would be more desirable and easier to implement than the addition of a further 

evaluation phase to the practical application of the technique. 

The final aspect of the application of an amplitude TES conversion scheme which was 
studied was the performance of the classifier under varying conversion conditions. The 

effects of dynamic variations in the normalisation coefficients applied to the discrete 

signal prior to symbol conversion was discussed earlier as a potential difficulty. In 

practice the performance statistics can be affected by up to 20% when the training data 

sets are weighted with matrices generated with low bias normalisation characteristics. 
However as with the microphone sensitivity considerations, provided that the data sets 

are neutrally biased the performance remains acceptable. 

In the final section of the Chapter the application of minima histograms was evaluated. 
Unlike the amplitude technique there was little evidence to suggest that this method was 

suitable for the identification of physical state in practice. Whilst the technique was 

able to perform reasonably under certain circumstances the training performance was 

very erratic and in many cases the networks were unable to converge. This would be 

totally unacceptable in a practical system implementation. Of the two simple matrix 

types used to provide signal condition information in this Chapter it is reasonable to 

conclude that the amplitude based matrix types studied provide reasonable accuracy 

with networks that learn at an acceptable rate to be considered for further system 

evaluation. It is also reasonable to conclude that the simplified minima TES data format 

is unable to provide an acceptable balance between classification capability and learning 

performance. Both of these simple techniques are however considerably more basic 

than the A-matrix data format employed by previous researchers for the purposes of 

automated signal identification. 
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6. The Application of A-matrix Data to the Classification of System State 

Having evaluated the suitability of the basic histogram matrix formats in Chapter 5 it is 

essential now to consider the extension of the signal conversion process to encompass 
the additional shape information imparted by converting a raw TES stream into an 
A-matrix format. The detailed mathematical description of this conversion process was 
presented in section 3.5.2 of Chapter 3. Whilst this conversion technique requires only 
modest additional computational overhead when compared to the basic histogram 

matrix format discussed in the previous Chapter it should in theory improve the 
subsequent classification. This Chapter considers not only the practical application of 
the technique, in both minima and amplitude conversion forms, but seeks also to 
identify whether or not the expected improvement can realistically be achieved. For the 
purposes of this thesis it is also important to identify whether the expected improvement 
in classification can be achieved without recourse to excessively large neural classifiers 
or complex data analysis and the additional computational overhead that this would 
necessitate. 

The primary requirement prior to converting a TES symbol stream into an A-matrix 
format, independent of the parameters being used in the conversion, is to reduce the 

symbol set required to represent the signal. This is crucial to the feasibility of applying 
the subsequent data to a neural classifier since the number of elements in an A-matrix is 

the square of the number of symbols in the symbol set used for conversion. If the 

symbol set, in either amplitude or minima formats, were used in their initial fully 

populated state the matrices presented to the neural classifier would require 3002, or 
90,000, elements. which would impose an unacceptable computational burden on any 
implementation of network classifier. Of course any reduction in the symbol set used 
for conversion introduces further distortion to the converted signal. As has already been 
discussed in Chapter 3 the key to successful optimisation of the symbol table is to 

ensure that any additional distortion remains at an acceptable level so that sufficient 
signal information is retained whilst the computational requirements imposed on any 

classifier are minimised. In the practical trials discussed in this Chapter minima symbol 
tables containing 30 entries and amplitude symbol tables consisting of 40 entries were 
found to provide adequate signal information without incurring excessive additional 
distortion. 

The symbol selection necessary to reduce the tables down to only 30-40 entries is 

essentially a statistical exercise necessitating individual symbols in a test TES stream to 
be monitored. The necessary analysis, taking as an input a raw TES symbol stream, was 

performed automatically using a custom utility which extracted and presented the 

statistical signal details. Practical application of this process, for both conversion tyrpes, 

necessitated a series of statistical symbol plots to be acquired over a range of condition 

states to eliminate symbol biasing for individual states. Once the data has been 

extracted from a symbol stream a global symbol allocation threshold can then be applied 

to the symbol set. Only if a symbol is generated by the TES converter at a rate equal to 

or greater than this threshold is it included in the new A-matrix symbol set. This initial 
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stage reduces drastically the size of the required symbol table. However since each 
symbol within the original 300 entry table has a finite probability of occurrence it is 
necessary to ensure that even those symbols which do not surpass the threshold 
occurrence frequency are catered for. This is efficiently achieved by means of a nearest 
neighbour symbol allocation, the details of which were discussed in Chapter 3. 

The practical application of this process to the symbol table is best explained by taking 
as an example the provision of an A-matrix symbol set for use in an amplitude based 
coding scheme. Initially a fully populated 300 element symbol table similar to the one 
illustrated in Figure 6.1 was used to convert a series of acoustic samples acquired from 
the gearbox testbed in each of four displacement misalignment configurations to 
produce sufficient sample data for symbol optimisation. By placing the allocation 
threshold limit, in this example set at 0.25% for the amplitude TES format, only those 
symbols shaded in Figure 6.1 surpassed the threshold and warranted immediate 
inclusion in the final symbol table. During trials for the displacement states this group 
of symbols constituted roughly 74% of all symbol types generated by the converter 
during operation, the remaining 26% of symbols falling below the required inclusion 
threshold. Having such a large minority of infrequent symbols spread over the 
remaining table elements however poses a secondary problem. Although each of the 
remaining symbols only had a likelihood of occurrence in the region of 0.1 % they were 
still able to swamp the majority symbols had not careful consideration been given to the 
manner of table restructuring. It was therefore considered vital to represent them in a 
manner which minimised the likelihood of distortions being caused by such grouping. 

In addition to ensuring that reallocation did not introduce such unwanted symbol 
swamping effects during this secondary optimisation stage it was also necessary to give 
consideration to minimising symbol warping both in the frequency and energy domains. 
The compromise solution eventually selected, the final table for which is presented in 
Figure 6.2, consisted of reducing the individual shaded codes on the left side of the table 
by introducing distortions of up to one energy level for those elements which surpassed 
the threshold. Two additional codes, 6 and 17, catered for the remaining elements on 
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Figure 6-2 An optimised 40 element symbol allocation table for an amplitude coding 
scheme 

the left side of the table which had not exceeded the symbol threshold. A single symbol 
was used to describe the right hand column of the table which was occupied, in the most 
part, by symbols generated as a result of low frequency sample truncation by the coder. 
As such this symbol in fact provides a good indication of the low frequency content of 
the source signal. The remaining 220 table elements were allocated to 12 symbols, the 
boundaries of which were selected so as to enable a crude level of energy information to 
be conveyed whilst at the same time minimising the frequency warping. The discrete 

energy levels were separated into high, medium and low quanta whilst the frequency 

axis was subdivided into four non-linearly separated subgroups which provide optimised 
correction for the effects of frequency warping. 

In this final table the symbols on the left which were originally marked for immediate 

inclusion vary in allocation probability up to approximately 9.5%. The reallocated 

entries in the central region which are composed of the lower frequency elements not 

originally assigned have occurrence probabilities in the region of 1-2%. This 40 

element symbol table was found to provide an adequate balance between minimising the 

symbol set and thereby the conversion distortion and maximising the information 

content in the symbol stream. 
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All these same principles can be applied to the analysis of the symbol stream data in a 
minima based coding scheme. The optimised symbol table generated from signal,, 
converted using this coding scheme, seen in Figure 6.3, has a slightly different format 
due mainly to the lower probability of minima occurring in the discrete signal epoch`. 
However the same technique of sample distortion reduction is employed at the right 
hand side of the table. Unlike the amplitude implementation which required a 40 

element conversion table, adequate performance can be attained in a minima based TES 

system with only 30 symbols in the conversion table. 

6.1 A Comparative Study of the Two Minima Data Presentation Types 

The application of minima data, in its basic histogram matrix format, discussed 

previously in Chapter 5, to three different network architectures proved relatively 
unsuccessful. Whilst direct comparisons with amplitude TES did, in some cases, prove 
reasonable in terms of classification performance they did not provide adequate 
insurance of network convergence within acceptable time limits. This was essentially a 
by-product of the reduced symbol diversity in the minima symbol stream generated from 

the acoustic testbed for each of the simulated mechanical faults. However this reduced 
diversity makes simpler the generation of a suitable symbol table for an A-matrix 

conversion scheme. As illustrated in Figure 6.3 a compact symbol table containing only 
30 unique symbols proves more than adequate. Moreover, the A-matrix presentation 
model, whilst more complex to derive than the earlier histogram type, conveys 

additional signal shape detail which in the simpler format was discarded. This 

additional detail may be sufficient to overcome the basic lack of symbol diversity 

observed previously. To identify the improvements, if any, that this additional shape 
detail provides over the more rudimentary format a series of comparative trials were 

performed. If the research carried out by Vu et al [381 which focused upon diesel 

engine state identification is used as a benchmark then a 30 code table should indeed 

provide sufficient source detail to enable suitable state separation. The key questions 

which the trials sought to answer were whether the technique can fulfil the separation 

requirements sufficiently and if so whether the rate of network learning improves as 

expected compared with the earlier histogram format. 

To enable effective comparisons to be made between these two minima presentation 
formats several key elements of the trials already detailed in Section 5.3 were retained. 
The basic network architecture was retained but with an input layer extended from 300 

to 900 elements to accommodate the expansion of the presentation matrices. Both the 

number of elements within the hidden layer and the number of unique states to be 

identified were retained. Further to this the acoustic state samples themselves were 

taken from the same archived recordings of the four gearbox states used for the 

histogram evaluations earlier. These recordings were used to generate two new training 

sets, each consisting of 28 minutes of A-matrix formatted data, with similar basic 

statistical acquisition characteristics to those used in the earlier tests. As with the 

previous evaluations the networks were trained at a range of different learning rates to 
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minimise the likelihood of local minima disturbing the results. Four test sets were also 
selected, containing approximately 7 minutes of A-matrix data, with which to grade the 
performance of the classifiers using this enhanced conditioning technique. The results 
of trials on two network configurations are detailed in Figures 6.4 to 6.8. There are 
several observations to be made regarding the performance of each of these networks 
when trained and tested on the various combinations of data compiled. Neither the 
training rate parameter, a, nor the different data sets used with the networks radically, 
affected their subsequent performance, although clearly in the case of training set 2 an a 
rate of 0.4 did not result in network convergence for either configuration within a 
reasonable time period. 

The effect of the a parameter on the rate at which the network converges is illustrated in 
Figure 6.8. As expected the relationship between the training rate and convergence 
shows reasonable proportionality although the associated training data also plays a part 
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Figure 6-4 Classification for a 900-10-4 network configuration trained on data set 1 and 
tested against each of the four separate test sets 
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Figure 6-5 Classification for a 900-10-4 network configuration trained on data set 2 and 
tested against each of the four separate test sets 

120 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 



in defining the overall weight path taken during training. The variation in convergence 
times seen for a>0.25 in some configurations (Figure 6.8) is most probably caused by 
oscillatory and erratic behaviour induced in the weight updates by the increased step 
size. A rate of between 0.05 and 0.2 provides acceptable and more predictable 
performance when combined with the momentum parameter. 13=0.95. For a values 
above 0.2 the convergence becomes less predictable and often excessively prolonged. 
In the most extreme case identified here, a 10 hidden node layer architecture trained on 
test set 2 at a=0.35 required nearly 168,000 training iterations to converge. This 
degraded still further to the point where at a=0.4 the network training was halted prior 
to achieving convergence after 200,000 iterations. 

However if the network performance, in those combinations which did converge, is 
compared there is little to differentiate between a network requiring 1,000 training 
iterations and one requiring 10,000. The most obvious visual difference in performance 

100 

98 
C 

96 

94 

92 

90 

w 88 

V 86 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 

84 -+- 
0.05 

Learning rate used to train the network 

+ Test set ID Test set 2 Test set 3 )( Test set 4 

Figure 6-6 Classification for a 900-20-4 network configuration trained on data set 1 and 
tested against each of the four separate test sets 
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Figure 6-7 Classification for a 900-20-4 network configuration trained on data set 2 and 
tested against each of the four separate test sets 
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Figure 6-8 Rate of network convergence for each of the four network configuration, 
minima A-matrix training data set combinations used 

characteristics illustrated in Figures 6.4-6.7 are the variations caused by the data 
diversity in the various training and test sets. Whilst test set 1 resulted in the worst 
performance, 90-92% over the range, test sets 2 and 3 gave the best performance with 
correct classification rates of between 96% and 99.5%. The best overall performance 
was produced by the 10 node hidden layer architecture with rates of 98-99.5%. Test set 
4 highlighted the inconsistencies in training data sets, resulting in 97% performance 
when trained with set 1 or 88% performance when trained with set 2. 

From this comparison of the two minima network data presentation types it is clear that, 

although ultimately classification performance remains reasonably comparable, the 
training requirements are considerably less onerous when the A-matrix format is used. 
Comparing the case of a 10 node hidden layer network presented with histogram data 

and one presented with A-matrix data this reduction is substantial, from 500,000 to only 
1,000 iterations. Thus as expected the technique does overcome the difficulties faced by 

the lack of symbol diversity identified in the previously discussed histogram matrix 
trials. The additional shape information has also enhanced the training phase which 
becomes much less demanding of processor overhead than the earlier histogram driven 

networks proved to be. 

6.2 An Evaluation of Amplitude A-matrix Conditioning on Misalignment 
Classification 

Whilst the basic minima histogram matrices produced reasonable performance in 

instances where network convergence was achieved the convergence proved erratic. 
The erratic behaviour was reduced through the introduction of a reduced symbol set and 

with it the inclusion of additional signal shape information using the A-matrix 

conversion algorithm. This presentation scheme provides comparable classification 

performance coupled with the added advantage of more predictable and less onerous 
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training requirements. By comparison amplitude TES data, even in its basic histogram 
format, provides reasonable performance coupled with acceptable training requirements. 
The possibility of further improvements in both the training and classification phases 
through the introduction of an amplitude A-matrix format seemed not onl}' feasible but 
very likely. 

The overriding drawback of this technique is the comparative increase in the network 
size required to implement the classification phase of the scheme. Whilst both of the 
basic histogram formats require a 300 element input layer and minima A-matrices 
require a 900 element structure the amplitude A-matrix format requires 1,600 elements. 
This five fold increase over histogram data requirements is a direct result of the square 
relationship between matrix dimensions and symbol table size. However given the 
availability of relatively low cost computational power even this obstacle would be 

acceptable if performance can be improved. Assuming that the presumption concerning 
computational resources can be met the single most important aspect of the techniques 
evaluation should be the training requirements necessary for its practical 
implementation and the subsequent capability of the classifier so produced. 

As with all the other comparative tests performed so far this evaluation was carried out 
using acoustic source samples of the four gearbox displacement misalignment states. 
The training sets each contained 28 minutes of matrix data converted using the 

statistically generated 40 element code table described at the start of this Chapter. Four 

test sets, each containing 7 minutes of matrix data corresponding to the gearbox states 
was used for evaluation purposes. Both the 10 and 20 element hidden layer, four output 
state network configurations were employed once again, this time with a 1,600 element 
input layer rather than the 900 element configuration described in 6.1. As a result of 
these previous evaluations a narrower range of training rates, a, were employed in an 
attempt to reduce the likelihood of unpredictable weight behaviour during training 

which had earlier impacted upon results. All the remaining training and testing 
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Figure 6-9 Classification for a 1,600-10-4 network configuration trained on data set I 
and tested against each of four separate test sets 
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Figure 6-10 Classification for a 1,600-10-4 network configuration trained on data set 2 

and tested against each of four separate test sets 

parameters were fixed to maintain the integrity of any direct performance comparisons 
made with respect to the other techniques described so far. 

From the trials performed using the amplitude derived A-matrix presentation format it is 

clear that the technique does indeed provide many of the predicted gains in performance 
both during the training and classification phases. A sample of these trials results are 

graphically presented in Figures 6.9 to 6.13. Whilst worst case separation proved to be 

below that expected at 82% the average rate of correctly classified states was in the 

region 93-98%. The worst case performance identified during this evaluation was the 

result of network training with data set 2 followed by testing with set 3. Three data set 

and network combinations produced better than average performances by classifying 
between 98-100% of all test data correctly. In addition to this general performance 

enhancement, training of the various networks involved required significantly fewer 

data passes than all of the presentation types evaluated so far. In most cases 40-400 
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Figure 6-11 Classification for a 1,600-20-4 network configuration trained on data set 1 

and tested against each of four separate test sets 
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Figure 6-12 Classification for a 1,600-20-4 network configuration trained on data set 2 
and tested against each of four separate test sets 

iterations were sufficient for the network to converge over the range of training rates 
applied. This represents a significant improvement upon previously evaluated signal 
conditioning and presentation strategies. In some cases halving the training times. 

Once again, as expected, the relationship between the training rate, a, and the number of 
training iterations subsequently required to achieve convergence over the a range 
employed is approximately linear. However, from the results illustrated there would 
seem to be little to indicate that fewer training iterations, as a result of a reduced a, 
result in an inadequately generalised network or that performance is impaired as a 
consequence. This is a good indication that the error surface for the weight training 

with this classification problem is relatively smooth and is not significantly affected by 
local weight space minima. 

These early trials indicate clearly that, as predicted, the combination of amplitude TES 
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Figure 6-13 Rate of network convergence for each of the four network configuration, 
amplitude A-matrix training data set combinations used 
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coding and A-matrix compression provides the best compromise between network size, 
learning ability and classification capability. These results highlight the potential of the 
technique as a powerful and effective tool with which to classify the acoustic signals 
emitted by the gearbox. The remainder of the Chapter is dedicated to studying in greater 
depth the techniques applicability to additional mechanical faults which may be 
simulated using the gearbox testbed system. In addition evaluation was performed on 
potential restrictions which may be associated with a practical implementation as well as 
the physical characteristics of a variety of network architectures used to classify the data 
presented. 

6.3 Restrictions Imposed on the Acquisition and Application of Amplitude TES 
by Neural Techniques 

Whilst the majority of the evidence from trials with amplitude A-matrices provides good 
encouragement for the further development of this technique there was one specific data 
combination which produced a network solution with significantly reduced 
classification capability. This discrepancy, illustrated in Figure 6.10 and Figure 6.12, 
and associated with the combination of the second training and third test sets resulted in 
more erratic classification. Between 82% and 90% of the test matrices were correctly 
identified independent of the network configuration applied. As with the other 
presentation formats some variation in perceived performance is to be expected due to 
the random nature of the data selection. However, a disparity of this magnitude was 
unlikely to have been caused solely as a consequence of random data selection from a 
reasonable set and thus it warranted further investigation. 

The initial focus of attention was on the characteristics of the smaller test sets rather 
than on the training sets simply because of the number of data permutations involved. 
Seven further test sets were generated each based upon the contents of test set 3 which 
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Figure 6-14 Classification for a 1,600-10-4 network configuration trained on data "et 2 
and tested against each of the seven test set variants 
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had previously highlighted the disparity. Four of the new sets were constructed by 
replacing, in turn, all matrix tokens pertaining to one of the four gearbox states 
(3,4,5,6). In each case the tokens were replaced by corresponding state data from test 
set 1. The remaining three sets, again based on set 3, had the tokens for states 3.4 and 5 
respectively replaced by equivalent data matrices not previously used but still 
corresponding to the state which had been removed. Another series of trials was then 
performed using these test sets applied to both original network configurations again 
trained using data set 2, the other element associated with the problematical 
performance results. The intention of the trials was to identify whether or not any 
specific element within the original set could be attributed to the degradation in 
performance. 

Clearly from the results obtained in this evaluation, graphically illustrated in 
Figures 6.14 and 6.15, the fourth test set produces similar perceived performance to the 
previous data combinations covered in section 6.2 the remainder still result in poor 
classification. The distinguishing feature between the newly generated test set, set 4, 
and the remainder of the new sets are the A-matrix tokens corresponding to state 6. 
When this particular token sub-set is replaced in the test set by another sub-set 
corresponding to the same state, as it was in set 4, the perceived network performance is 
improved by between 7% and 14% to approximately 98%. Having identified the 
apparent cause of the degradation in perceived performance it was then necessary to 
consider why the discrepancy had occurred. Three possible causes were examined. 

" An additional physical fault, configuration change, or excessive shaft velocity 
variation had occurred during the original archive recording period. 

" Data bias, whereby the configuration of the training set had in some way 
become weighted so as to produce a network which was insensitive to these 
particular state 6 data tokens. 
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Figure 6-15 Classification for a 1600-20-4 network configuration trained on data set 2 
and tested against each of the seven test set variants 
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" That a fault had been introduced during the TES signal conversion stage 
through the selection of an unrepresentative normalisation coefficient prior to 
commencement of the conversion. 

All three possibilities may have been sufficient to introduce perturbations to the matrix 
tokens which led to the degradation in perceived performance. In order to clarify the 
cause or causes of this discrepancy all three of the hypotheses were evaluated in turn. 

To identify whether or not a physical discrepancy had caused the fluctuation five further 
test sets were constructed. In each of these five sets those matrix tokens associated with 
state 6 were replaced by additional state 6 matrix tokens generated from the same 
archived recording retrieved from the taped database. The TES symbol stream for four 
of the new sets was produced from the same physical segment of the tape, in each case 
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Figure 6-16 Classification for a 1,600-10-4 network configuration trained on data set 2 
and tested against each of the five test sets containing replaced state 6 data 
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Figure 6-17 Classification for a 1,600-20-4 network configuration trained on data set 2 
and tested against each of the five test sets containing replaced state 6 data 
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using a different normalisation coefficient, whilst the fifth was generated from a 
segment later in the recording and had similar normalisation properties to the original 
data. Both of the trained network configurations were evaluated using these five test 
sets. The results of these trials are illustrated in Figures 6.16 and 6.17. The sct 
composing matrix tokens generated from a different physical section of the archived 
recording, set 5, produces a tangible improvement in the perceived performance over 
those containing tokens generated from the original segment. 

Whilst this is more clearly defined in the 20 node hidden layer configuration it is also 
seen in four of the seven trained network configurations having 10 hidden nodes. The 
remaining four new test sets produce results comparable with earlier network 
performance. This provided an early indication that the most probable cause of the 
disparity in relative system performance was the signal characteristics of a particular 
physical segment of the acoustic recording used to generate the original test data set. 
However there had still been a finite possibility that the inconsistency was simply the 
result of an inadequately formed training set rather than a physical perturbation. Since 
essentially the network performance is controlled by information the network extracts 
from the training set any mismatch, or bias, is likely to be distinguished by a disparity in 
the subsequent performance evaluation. 

To eliminate data bias as a cause a further three training sets were created, once again 
based on set 2. Each of these examined specific areas of the data which could feasibly 
have produced the variation in performance. All three focused on the order in which 
data is presented to a network during a training run based upon specific physical 
attributes and the conversion characteristics of the data. Of particular interest in this 

respect were the shaft velocity and the amplitude TES normalisation coefficient 
attributes of each data set within the training group. Already in previous trials the effect 
of the conversion coefficient on performance has been highlighted so there is good 
reason for believing that the effectiveness of the network training with A-matrix data 
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Figure 6-18 Classification for a 1,600-10-4 network configuration trained using a data 
set containing TES state data clustered into different shaft velocity biases 
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may be similarly affected. However initial investigations centred upon the effect, of the 
shaft velocity component of the acoustic samples at the time they were acquired and 
prior to TES conversion. 

Two alternative training sets were produced using the data from set 2 as a template to 
gauge the effects that this velocity attribute exacts upon the network. One `et. set 3, was- 
subdivided into four smaller subgroups each corresponding to 7 minutes worth of matrix 
data. Two of these subgroups contained matrix token data generated from archived 
recordings with a high biased velocity attribute whilst two contained data generated 
from recordings with low biased velocity characteristics. This technique produces a 
training set comprising of TES A-matrix tokens with four subgroups of alternate 
velocity attributes, 50% high biased split into two equally sized subgroups and 501( low 
biased, again split into two subgroups. The absolute difference in shaft velocity 
between low and high bias subgroups is relatively small, only in the region of 50rpm or 
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Figure 6-19 Classification for a 1,600-20-4 network configuration trained using a data 

set containing TES state data clustered into different shaft velocity biases 
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Figure 6-20 Classification for a 1,600-10-4 network configuration trained using a ̀ et 
containing TES state data with evenly distributed shaft velocity attributes 
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Figure 6-21 Classification for a 1,600-20-4 network configuration trained using a set 
containing TES state data with evenly distributed shaft velocity attributes 

1.5% of shaft speed. It is though conceivable that even such a relatively minor variation 
may be sufficient to affect the matrix tokens in such a way as to inadequately train the 

network and so produce the disparity in results which were noted. The second of the 
two new training sets, set 4, contained exactly the same matrix data as the first, set 3, 
but reordered so that the velocity attributes were uniformly distributed throughout the 

set rather than concentrated into four sub-clusters. 

From the evaluation results presented in Figures 6.18-6.21 the indication is that the 

velocity attribute was not the cause of the original performance degradation which was 
identified. The perceived performance against each of the five test sets actually worsens 

and has certainly not been enhanced through the selection of matrix tokens based 

specifically upon their velocity attributes. Despite the degradation in performance set 5, 

with its modified state 6 data tokens is still associated with the best perceived 

classification performance as it had been previously. 
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Figure 6-22 Classification for a 1,600-10-4 network configuration trained using as-'et 
containing TES state data with evenly distributed normalisation attributes 
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Figure 6-23 Classification for a 1,600-20-4 network configuration trained using a set 
containing TES state data with evenly distributed normalisation attributes 

The second physical attribute of the TES data, other than the velocity attribute, which 
should be considered as a source of potential performance degradation is the 
normalisation coefficient. The effect of this factor acquired prior to and then used 
during the conversion to amplitude TES codes which provide the indication of the 
source status has already been discussed in relation to the histogram matrices. To 

evaluate the effect of this conversion parameter on the efficiency of the A-matrix 
training data and thus the efficiency of the subsequent network learning a further control 
set was developed which specifically targeted these normalisation attributes. Rather 
than the spread of coefficient attributes found in the randomly selected training set a 
further set was generated which contained data with an evenly distributed range of 
normalisation coefficients. The results of this test are presented in Figures 6.22 and 
6.23. Again they show clearly that selection of specific training data matrices in terms 
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Figure 6-24 Performance of a 1,600-20-4 network configuration trained using TES "tats 
data with grouped shaft velocity attributes (TR3) and tested on data set. 
not containing the state 6 tokens identified as causing the drop in perceived 
performance. 
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of particular normalisation characteristics does not improve the perceived performance 
of the network when presented with those test sets which proved difficult previously. In 
fact the performance against set 5 which previously was affected less severely is 
degraded still further by selecting a training set in this manner. 

The results of the evaluations on both the training and test sets appears to suggest that in 
fact the most likely cause of the under performance of the network seen originally is 
associated with a particular segment of the original recording corresponding to state 6. 
This was backed up further during a series of three retrospective trials employing some 
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Figure 6-25 Performance of a 1,600-10-4 network trained using the original TES data 
tokens (TR 1) and tested using sets containing state 6 data generated from 
the suspect recording (set 14) and the corrected state 6 data (set 13) 
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Figure 6-26 Performance of a 1,600-10-4 network trained using a data set containing 
tokens from the acoustic anomaly (TR6) and evaluated on sets containing 
state 6 data produced from recording set 14 and from other recordings (1, 
2,8,13). 
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Figure 6-27 Training statistics for each of the three trials illustrated in Figures 6-24-26. 

of the newly generated training and test sets used to evaluate the data selection and set 
construction discussed so far in this section. The training and testing statistics for these 
trials are illustrated in Figures 6.24-6.27. They further substantiated the notion of an 
abnormal acoustic record by producing similar perceived performance to those used 
originally in Section 6.2 when the suspect data tokens were removed. Likewise when 
the suspect record was included (Figure 6.25) the performance dropped once again. The 

trial depicted in Figure 6.26 illustrates this. It demonstrates that whilst performance 
against the test set containing the disparity can be enhanced by modifying the training 

set the performance against the remaining sets is not affected. Whether this unusual 
data set was caused by an unexpected fault in the system or extraneous acoustic noise 
during the early part of the recorded state sample from which this data was extracted is 

not clear. 

6.4 Detecting Angular Misalignment through the Application of Amplitude A- 

matrices 

Angular misalignment is another fault which commonly occurs in systems in which 

rotational energy is transferred between close coupled shafts. It is caused when the two 

opposing shafts between which rotational energy is being transferred become non- 

uniformly offset as was illustrated graphically in Figure 5.3 (see Chapter 5). Such faults 

induce a vibration component which if measured from opposing bearings on a shaft 

produce components out of phase by ir°. More traditional schemes for identifying 
. such 

faults rely on measuring the vibrational phase offsets between sensors attached to 

opposing bearings. Attempts to detect such faults using a single acoustic source 

represent a novel if more challenging approach. Initial trials centred on three gearbox 

configurations which mimicked crudely the shaft offset states. Simulated using the 

eccentric bearings these three configurations introduced relative bearing offsets of 
between 1-2mm over the length of the 100mm shaft. The magnitude of these offsets was 

made intentionally small so as to provide an indication of the likely sensitivity and thus 
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Figure 6-28 Performance of a 1,600-20-3 network configuration trained using the set 8 
TES state data information and tested on randomly selected sets containing 
the three angular misalignment states 

the capability of an acoustic identification scheme. 

As with earlier trials differing network configurations were evaluated to minimise 
specific configuration peculiarities when measuring performance. In these trials two 
configurations were employed the first with 10 and the second with 20 hidden nodes. 
Both had a common 3 element output configuration with each node corresponding to 
one of the three unique angular misalignment states. The networks were each presented 
with identical amplitude A-matrix tokens corresponding to the three states generated 
from the taped archives. For the performance evaluation a series of training and test 

sets, each with a range of randomly selected train and test data were generated. Whilst 

the training sets each contained 16 minutes of acoustic matrix tokens the test sets 
contained five minutes of token data. The results are presented in Figures 6.28-6.30. 
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Figure 6-29 Performance of a 1,600-20-3 network configuration trained using the set 9 
TES state data information and tested on randomly selected sets containing 
the three angular misalignment states 
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Figure 6-30 Training statistics for both of the networks evaluated 

Whilst both network configurations were able to separate each of the states under 
evaluation the 10 node configuration produced generally inferior performance to that of 
the 20 node network. As in previous studies the time required for each network to 

converge is dependant upon the configuration and the contents of the randomly selected 
training sets. This is graphically illustrated in Figure 6.30. In this case set 8 provided 
the more consistent and rapid convergence, requiring between 60-400 iterations of the 
training data prior to completion when compared to that required by set 9. 

However when the training and testing performances are compared it is clear that the 

extended convergence requirements of set 9 do not result in the generation of a more 

capable classifier. In fact the more erratic training behaviour seen in Figure 6.30 is 

carried through in those networks to the testing phase illustrated in Figure 6.29. Whilst 

this training set produced the best perceived performance, 97% of states correctly 
identified when measured against set 18, it also produces the worst perceived 

performance, at 80% when evaluated against set 17. Training set eight by comparison 

produced a more consistent classifier still capable of correctly identifying up to 95% of 

the test patterns presented without similar fluctuations in performance and for a much 

reduced training requirement. Given the network performances achieved in this simple 

series of tests with randomly selected data it is reasonable to conclude that amplitude 
A-matrix data provides sufficient acoustic information to separate even the relatively 

small mechanical angular misalignment errors in shafts simulated on the testbed 

gearbox system. 

6.5 Detecting Gearbox Tooth Failure using Amplitude A-matrix Data 

Toothed gears are commonly used to transfer rotational loads between close coupled 

shafts particularly in situations where large torsional loads are involved. As a 

consequence the gear teeth are subjected to rigorous operating conditions which 
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introduce high levels of stress. This in turn causes wear to the teeth which can 
ultimately lead to failure. The identification of wear and failure pattern', is therefore 
classed as a high priority in condition monitoring systems particularly when applied to 
safety critical systems. In the description of gearbox states in Chapter 5 (see table 5.1) 
three configurations were identified as simulating a point tooth failure on a single gear 
wheel in the testbed system. This particular tooth fault was simulated in three stages by 
progressive removal of material from the tip of the gear tooth. At each stage a 
symmetrical section of the tooth tip was removed across the entire width of the gear. 

For a series of practical trials four gear tooth states ranging from healthy to worn were 
used to generate A-matrix data subsequently used to evaluate a series of detection 
networks. The healthy state, state 6, was allied to three progressively more severe 
failure modes. The first identifiable failure state used for these practical evaluations 
corresponded to aI mm cross section of tip having been removed (state 10), the second 
corresponded to a 2mm section (state 11) and the third to a 3.5mm section (state 12). The 
mechanically driven acoustic components which combine to produce the group emission 
for each of these states are based on the shaft input frequency, f, and the shaft output 
frequency, f0. In addition to these there are also harmonic meshing components based 
on the physical characteristics of the system which contribute to this group emission. 
The harmonic meshing components f, 1, and f, , which can reach 5f in the spectrum, are 
defined below in terms of the number of teeth t; and to on the respective input and output 
drive wheels. 

fmif"ti 
-(1) 

fmofo. to -(2) 

Faults in the condition of the intermeshing teeth will impact upon the spectral 
components causing further elements as a result of the disturbance of the rotational 
properties of the meshing gears. In addition to these spectral effects there will also be 
cyclic energy disturbances caused by the rapid acceleration/deceleration cycle of the 
drive and driven gears relative motions to one another as the damaged tooth meshes 
with opposing healthy teeth. Whilst this is undeniably a simplified view of the 
combined acoustic effects on a system with a single tooth fault they represent a 
definition of the generalised type of effects introduced. Other factors such as shaft 
loading can also further complicate the group emission. It is clear, even from the 
simplified model, that identifying such relatively small faults introduced into the testbed 
system is by no means a trivial exercise. 

The results from the network evaluations employing amplitude TES A-matrix data 

representing the four described states are illustrated in Figures 6.31-6.33 below. They 

show clearly that whilst the network is able to identify each of the four tooth fault states 
from the TES acoustic data the basic system performance against these tokens is below 

that attained in previous trials with more simple faults. The main cause of this relative 
performance deficit when compared to previous evaluations is the reduced diversity of 
acoustic data caused by the reduction in the resolution of the physical variations. As an 
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indication of the narrowing of state boundaries and the increasing similarity between the 
acoustic tokens of adjacent states the training phases for both networks become 
lengthier. In the case of the network comprising a 20 node hidden layer this training 
requirement has increased by up to 30 times in some cases. Subsequent performance 
evaluation for the 20 node configuration against three selected test sets indicates that the 
best achievable performance is in the region of 75% whilst in some cases only 53% of 
test patterns could be correctly identified. A 10 node configuration whilst not illustrated 
here had similar performance characteristics. 

When the same four acoustical states were retrospectively applied to a network using the 
amplitude histogram matrices successful network convergence became erratic and 
classification performance was reduced still further to below 50%. Whilst the A-matrix 

100 

`0 

80 

70 
wu 

Ly 
Ln 

it W 

5ß 
0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.25 

Learning rate used to train the network 

Test set 21 E3 Test set 22 fir--Test set 23 

Figure 6-31 Performance of a 1,600-20-4 network configuration trained using the set 11 
TES state data information and tested on randomly selected sets containing 
the four tooth wear states 
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Figure 6-32 Performance of a 1,600-20-4 network configuration trained using the set 12 
TES state data information and tested on randomly selected sets containing 
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Figure 6-33 Training statistics for both of the networks evaluated 

still appears to provide the best means of network presentation when compared to those 
used previously it is unlikely that without further processing this technique could be 

used to effectively monitor a system for such failure modes. Certainly from the 

performance attained with the data sets used in trials it is clear that some further data 

selection testing would be required to produce a system with even a reasonable level of 
classification capability. 

6.5.1 Comparison of Inter-State A-Matrix Tokens by Partial Network Training 

Although it was assumed that the degradation in performance noted in 6.5 was wholly 
due to the demands placed upon the classifier network as a result of the similarity 
between states this could not be proved without further examination. If indeed the 
degradation was associated with inadequate network sensitivity then it was reasonable to 

assume that the performance could be enhanced by artificially reducing the state 

resolution required by the classifier. During the earlier trials each of the four applied 

states had incremental physical differences corresponding to not more than 1.5mm of 
tooth section removed from a single tooth on a gear containing 43 teeth. In order to 

evaluate a reduction in the classification resolution an additional series of trials were 

performed by applying the four states in pairs rather than as a single set. In this way the 

networks perceived acoustic similarity between pairs of states may be estimated in 

isolation. 

The trials were performed using the same 20 element hidden layer, 4 output state 

configuration used previously to enable direct comparisons to be made with the earlier 
findings. In addition training during each of the pair tests was carried out using the 

same quantity of acoustic data for each specific state as had been used in the earlier 

trials. Thus each of the new training sets contained exactly half of the data used for 

previous four state training, or seven minutes per state in total. To maintain an adequate 
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level of confidence for later performance correlation all the remaining parameters 
associated with training were unchanged. 

If the premise regarding state resolution was accurate then classification performance 
figures attained from the pair trials and illustrated in Figure 6.35 would be expected to 
increase the greater the physical separation in status became. The first three columns 
starting from the left of the graph (in Figure 6.35) correspond to adjacent tooth state 
boundaries and can be expected to result in relatively more errors than the remaining 
three columns which correspond to boundaries of more than a single physical state. The 

network performance measured for these first three state pairs, each corresponding to 
tooth wear disparities of between 1-1.5mm, ranges from 73% to 84%. The remaining 
three state pairs correspond to network classification against states differing in physical 
terms by between 2-3.5mm. Whilst two of the three tests did show improvements in 

classification to 94-96% consistent with the earlier predictions the third comparison 
actually resulted in reduced rather than enhanced performance. States 10 and 12 
however could only be separated by the network correctly during the evaluation stage in 
53% of cases. This contradicted the earlier expectations and raised doubts regarding the 

premise that the earlier evaluation results discussed in 6.5 had been the direct result of 
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unreasonable demands being placed upon the network. 

However what has not been discussed up to this point are the non-linear effects elicited 
upon the A-matrices by changes in the TES data stream caused by state changes. In 
actuality the relationship between the gearbox state, the acoustic emissions and the 
A-matrices subsequently generated is complex. In this instance it has produced matrix 
templates for two gearbox states which despite being relatively more physically 
dissimilar than other state pairs have very similar matrix properties when presented to 
the network for classification. 

6.6 Evaluation of the Effects of Expanding the Size of the Classification Space 
in a Fully Interconnected Network Architecture 

Up to now the classification space for each of the network configurations subjected to 
performance evaluation has been limited to only three or four unique states. If a TES 
based neural classification scheme is to be considered for inclusion in a practical 
monitoring system it is reasonable to expect that the number of potential fault states 
would be much larger. The difficulty here is that as the classification space expands so 
the complexity of adjoining state boundaries within this space increases. Ultimately 
there will always be a limitation on the boundary complexity a particular network 
configuration can achieve. Whether a single network is capable of separating sufficient 
fault states to provide a single network monitoring solution depends not only upon the 

number of states within the classification space but also upon the resolution necessary to 

separate adjacent states within the problem space. It is therefore essential not only to 

explore these limitations but also consider some of the alternatives which are available. 

Whilst the architecture of a single large network capable of identifying all fault states 
may in principle be an attractive option from the point of view of system simplicity 
there are some potential drawbacks. Primary amongst these are the computational 
limitations associated with a single large fully interconnected network in terms of 

response. Basically as the network size increases so too does the number of 
interconnections and thereby the number of computational operations required per input 

vector presentation. In order to obtain some measure of this response and the capacity 
for data separation a series of performance tests on a unitary network configuration was 

carried out against a superset of those states previously used in isolation. In all. this 

superset consisted of the four displacement and three angular misalignment positions 

already discussed and used in earlier trials. 

These seven states were applied to both the 10 and 20 element hidden layer network 

models during a series of trials. The key difference between these extended network', 

and those used previously is simply that seven output nodes. rather than the previous 
three or four, are required to cater for the expansion of the state space. The elements of 

network operation which were monitored during the trials were the basic error 

performance and the number of training iterations required to facilitate this. The time 
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taken to present all the training data matrices during a single back propagation training 
iteration will obviously be increased as a result of the data expansion necessary to cater 
for each of the states in the extended space. However the increase or otherwise in the 
number of these iterations required to achieve convergence provides a better indication 
of the relative complexity of the data space expansion. The raw classification 
performance on unseen test data also provides further indication of the sensitivity of the 
extended network to the increase in diversity of the state space. 

The training itself was performed by applying A-matrix data generated from 35 minutes 
of recorded acoustic samples, five minutes per state for each of the seven states. The 
findings attributed to this particular trial provide encouragement for the modest 
expansion, from four to seven, of the state space allocated to a unitary fully 
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Figure 6-36 Performance of the extended network configurations trained using set 20 
containing amplitude A-matrix data relating to the seven states and tested 
using two randomly selected sets 
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Figure 6-37 Performance of the extended network configurations trained using set 21 
containing amplitude A-matrix data relating to the seven states and tested 
using two randomly selected sets 
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Figure 6-38 Training statistics for both of the networks evaluated 

interconnected network. Whilst a reduction of between 5-8% in overall performance 
was noted when compared with the earlier classification of displacement alignment 
states, a general improvement was noted over previous angular alignment classification. 
Similarly performance fell below the best achieved previously for these states (97%) but 

showed consistent improvement over the range. More notable was that the general 

consistency of classification of each of these states was improved as a result of the 

expansion. Where previously several of the train and test set combinations introduced 

discrepancies in performance of up to 15% making the definition of acceptable training 

procedures more complex the expansion of the data space reduced this. With the 

exception of the oc=0.175 point in Figure 6.36 the performance between data set 

combinations within the extended state space did not vary by more than 4%. 

In comparisons of the relative network performance the 20 node hidden layer 

configuration proved to be marginally better in terms of both rapidity and consistency of 

network convergence and classification. This network was able to outperform the 10 

node configuration by up to 2.3% for 80% of all train and test set combinations used in 

the trials. It is reasonable to conclude from this modest state expansion trial that 

increasing the state space does not necessarily incur penalties in terms of training 

requirements or classification performance. However without further extension of the 

space it was difficult to estimate were the limitations of such an expansion lie. 

6.7 Evaluation of the Internal Network Architecture on Classification 

So far the effects of the network architecture on performance have been limited to 

studies on the effects of the number of nodes within the hidden layer under fixed 

conditions. All of these networks have been fully interconnected with all input nodes 

connected to all hidden layer nodes and all hidden layer nodes connected to all output, 

or state, nodes. However the networks internal connectivity may be considered flexible 

in the same way as the number of nodes or the training parameters used to configure 

them have been. Both of these other two properties have been shown to affect the 
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convergence and classification capabilities when tested against real data. Having 
already covered in some detail now the capabilities of a fully interconnected architecture 
on a number of different acoustic state data matrices it is time now to study the 
interconnectivity of the networks themselves. In this section consideration will be ýD'ven 
to pruning of the internal nodal connections and the effects this has upon state 
identification by the network. Investigations focus upon two specific architectural 
variations within the hidden-to-output layer connections of the networks. Whilst both 
concern the implementation of a partially interconnected interface between the two 
layers, the first has no overlapping of the associated interconnections and the second 
permits partial overlapping of the interconnections to be applied. For further details 
regarding these configuration parameters the reader should refer to Section 4.3 in 
Chapter 4 

6.7.1 Applying the Seven State Space to a Partially Interconnected Network 
Model 

Initial evaluation of partially interconnected structures was carried out by developing 
two networks with non-overlapping interconnections between the hidden and output 
layers. The first of these networks was developed with a 21 node hidden layer so that 
performance comparisons could be made against the 20 node fully interconnected 

configuration used in section 6.6. The expansion to 21 nodes from the 20 used in the 
fully interconnected configuration was necessary due to the necessity for a seven node 
output layer with no hidden layer overlaps. For the purposes of this comparison any 
enhancement or degradation in performance caused by the addition of this single extra 
node will be considered as negligible. In this configuration nodes in the hidden layer are 
connected to each of the seven output nodes, or classes, via only three internal 
interconnections. This represents a seven fold reduction in output layer connectivity 
over the fully connected model which in turn reduces the number of computational 
operations necessary during both learning and classification. In addition to the 21 node 
model a second configuration containing 35 hidden nodes was developed for evaluation. 
The 14 extra nodes in this configuration provide a further two hidden nodes per output 
class and are used to study the significance upon classification of varying the internodal 

tasking demands. Both networks were used to classify the seven gearbox shaft states, 
previously used in Section 6.6, to evaluate the fully interconnected configuration. 

In the trials training requirements for both configurations varied between 60 and 920 

iterations depending upon the data set, the specific configuration and the a value used 
during training. When the 35 node configuration is presented with identical training 
data it generally converged more rapidly than the 21 node configuration, on average 

requiring 10% and 30% fewer data iterations. When the training statistics for these 

partially interconnected configurations are compared to similar fully interconnected 

models an increase in the number of iterations required for convergence is noted. In 

fact, from observations made during trials with identical training and test data the fully 

interconnected architectures converge on average after 30% fewer iterations than their 
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partially interconnected counterparts despite having more interconnections and 
equivalent numbers of internal nodes. 

The performance of both networks, illustrated in Figures 6.39-6.41, again exhibits good 
consistency over the full range of training parameters as the fully interconnected `y stem 
had done. The 35 node architecture provides only marginally better classification. 
between 0.3-0.7%, than the 21 node architecture classifying on average 90.6% of all test 
patterns correctly. However the general performance of the partially interconnected 
networks is marginally below that of similar fully interconnected networks. When the 
performance of the 21 node variant is compared to previous work with a 20 node fully 
interconnected network the degradation in performance is of the order of 1-2%C. 
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Figure 6-39 Performance of the 21 and 35 hidden node network configurations trained 
using set 20 containing amplitude A-matrix data relating to the seven shaft 
states and tested using two randomly selected sets. 
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Figure 6-40 Performance of the 21 and 35 hidden node network configurations trained 
using set 21 containing amplitude A-matrix data relating to the seven shaft 
states and tested using two randomly selected sets. 
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Figure 6-41 Training statistics for both partially interconnected networks. 

6.7.2 Applying the Partially Interconnected Network Model to Tooth Fault 
Analysis 

The reason for selecting the tooth fault detection problem for further testing with a 
variety of partially interconnected networks was to identify whether or not the decision 
boundaries can be further optimised through the rationalisation of the network 
interconnections. Whilst in earlier trials the general performance of fully interconnected 

network configurations was adequate for most states one specific inter-state boundary 

proved difficult to define. In the initial trials the separation of states 10 and 12 caused 
significantly more errors, in the region of 47%, as a result of this ill defined boundary. 
By pruning the networks internal connectivity the number of conflicting signals received 
by each of the output, or state, nodes from the hidden layer is reduced. This in turn 
reduces the burden on each output class to simultaneously satisfy all the requirements of 
the matrix vector applied at the input stage. The intention of the trials is to determine 

whether such rationalisation is sufficient to enhance the performance of the network 
when presented with the conflicting requirements of states 10 and 12. 

The internal pruning takes two basic forms both of which have previously been 
discussed in Chapter 4. The first is complete compartmentalisation of output classes 

whereby each output class is connected to a unique subset of the hidden nodes with no 
overlapping, or interaction, between nodal subsets. Likewise the second method 

attempts to compartmentalise the classes but allows a degree of overlapping, or 

crosstalk between the internal interconnections. For the purposes of this trial four 

partially interconnected architectures were considered and assessed against the baseline 

performance of a fully interconnected network model. The internal structure and nodal 
dimensions of the four separate configurations are listed below. 

1. A 20 node network with partial interconnections between the hidden and 
output layers. All the feed-through connections are distributed symmetrically 
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with groups of five allocated per output node with no overlap between the 
adjacent groups. 

2. A 32 node network with a comparable architecture to the first model. 
However in this instance each output node has a group of 8 unique 
connections from hidden layer nodes, again with no overlap. 

3. A 20 node network with 8 connections from the hidden layer to each output 
node. Since only 20 nodes are in the hidden layer this configuration employs 
symmetrical overlapping of the feed-through groups. The overlap is applied 
at each boundary so that four hidden nodes are shared between adjacent 
output classes as is described in Chapter 4. 

4. A 19 node network similar to (3) again with a symmetrical overlap but this 
time with 7 hidden layer nodes being allocated to each output class node. 

From the results acquired during evaluation of the four networks described in 
Figure 6.42 it will be noted that in all but one pair state, st l O-st l 2, the partially 
interconnected networks take longer to converge than the benchmark 20 node fully 
interconnected network. In the case of the st6-st l0 pair up to four times as many 
training iterations may be necessary. In this respect they follow the pattern set in the 
earlier evaluation of partially interconnected structures outlined in Section 6.7.1. 
However, in contrast to the previous trials with partially connected networks most of the 
test evaluations performed with the gear tooth states indicate that classification 
proficiency is actually improved, in one particular instance by 6.6%, rather than reduced 
as they had been earlier in Section 6.5. However despite generally acceptable class 
separation performance of 75-95% the st l O-st l2 boundary still remained difficult to 
define with sufficient accurately. Despite an improvement in separation of 
approximately 3.5% on the benchmark figure produced by the fully interconnected 

network for these states only about 56% of all test matrices were correctly identified. 
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Figure 6-42 Training statistics for the five different network architectures when trained 
to recognise each of the four system gear tooth state pairs 
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Figure 6-43 Performance of all five network configurations when evaluated against a 
test set containing amplitude A-matrix data corresponding to state pairs 

In general these trials have proved inconclusive in terms of identifying fully the effects 
of the internal network architecture. It does however seem clear from the tests 

completed that there are, with these acoustic tokens at least, no significant gains to be 

made in terms of improved training and only relatively small enhancements to be made 
in certain cases in terms of subsequent classification. Reductions in performance, where 
they exist, are not offset by comparable improvements in computational overhead 
attained by the rationalisation of the network interconnections. Only significant pruning 
of the input to hidden layer connections is likely to produce any meaningful savings in 

the time taken to perform each matrix training and classification presentation. The 
drawbacks in pruning this layer however are the likely complications introduced to the 

classification process itself by outputs nodes relying upon partial information for 

decisions. Such a scheme is only really applicable in situations in which the failure 

modes can be clearly defined at the outset and the input vector generation for network 

application can be strictly controlled . 

6.8 Chapter Summary 

This Chapter has described the practical application of both of the A-matrix TES 

techniques to the identification of a series of acoustical tokens acquired from the 

gearbox testbed. The most challenging aspect of applying this technique to neural 
identification when compared to histogram data is the selection of a suitable allocation 

table with which to generate the TES symbols. During trials allocation tables containing 
forty entries were used to generate the amplitude TES symbols whilst a thirty entry table 

was sufficient to support the minima conversion. In addition the networks required to 

apply this A-matrix data to are significantly larger than those previously required for 

histogram application. The trials detailed in this Chapter were performed with the 
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intention of comparing the relative performance not only of the amplitude and minima 
conversion schemes but also of the histogram and A-matrix data formats. 

In comparative trials between matrix types using a minima conversion . scheme the 
A-matrix format demonstrated superior performance. In the worst case test scenario the 
networks were able to classify approximately 90% of unseen matrices correctly w hilkt 
the best recorded performance with a ten node hidden layer network was 99.517c. A 
with the studies carried out using histogram data there were relative performance 
differences in identical networks trained using different randomly selected data sets. 
However despite the much larger input layers and thus network interconnection" 
required to perform the classification the training times were reduced. This 
improvement was produced as a result of the additional signal information contained 
within the extended A-matrix data sets. 

A similar, if less dramatic, improvement was identified during early trials using the 
amplitude conversion scheme in conjunction with the A-matrix data format. 
Classification performance with this data format was generally in the 93-98% region 
with the worst case being 82% and the best achieving 100%. Once again despite the 
requirement for an even greater expansion of the input layer, to 1,600 nodes, the training 
times were reduced significantly. In the early trials with amplitude TES A-matrices 

some discrepancies were identified between specific data sets which were not readily 
attributable to simple data differences. In an attempt to identify the cause of this 
discrepancy a series of additional tests were performed to compare the performance with 
a modified data set. These tests focused on both specific physical and general bias 

characteristics of the data set identified as the cause of the performance discrepancy. 
The conclusion after these tests was that the discrepancy had been caused by specific 
physical characteristics of a particular acoustic record within the data set. 

The amplitude TES A-matrix data format, having been identified as the most desirable 

means of generating condition information, was applied to two other identification 

problems which were simulated with the testbed gearbox. When applied to angular 
misalignment conditions it was capable of identifying between 80-95% of all unseen 
data correctly. Whilst this was classed as acceptable the technique proved less so 
against acoustic data representing tooth failures. In trials using acoustic tokens 

representing four failure stages in a single tooth of between 1-3. Smm the network 

performance degraded to between 53-75%. Given this perceived capability it would 

seem that even for a reasonable level of performance to be achieved some additional 
data selection would be necessary to optimise the classification. Some work was 

performed using networks trained on subsets of these tooth failure states to identify 

whether the performance was attributable specifically to the resolution required to 
distinguish the individual states or not. There was some evidence to support this notion. 
When states which differed physically by 1-1.5mm were compared correct identification 

was achieved in 73-84% of cases. In contrast when the physical discrepancy was 

widened to between 2-3.5mm perceived performance improved to between 94-96ý'(-. 

However in the case of states 10 and 12 which correspond to physical differences of 
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2.5mm the performance was drastically reduced to 53%. This highlighted one of the 
difficulties associated with classification of this type. That is that there is not 
necessarily a linear relationship between the physical aspects of a particular condition 
and the acoustic emissions generated as a result of it. When this is combined with a 
learning based classification mechanism as opposed to the more conventional 
programmed approach relationships of this sort can result in variable system 
performance. In the case of the tooth failure identification the performance of the 
network is acceptable in most instances. However the combined performance, which 
was found previously to be inadequate, was mainly caused by the difficulties 
surrounding the separation of states 10 and 12. 

The expansion of the state space associated with a particular network configuration was 
investigated by applying four displacement and three misalignment states to a series of 
network configurations. Whilst there will ultimately be a physical limitation attributable 
to a particular network configuration in terms of the complexity of the boundaries it can 
define, the seven state system which was implemented for trials did not surpass this. 
During the trials a reduction in the performance against the displacement misalignment 
states of between five and eight percent was noted. However in contrast a small 
improvement in the general performance with the angular misalignment states was 
observed. In general though the consistency of the networks over a range of training 
runs was much improved with a performance against unseen data of approximately 
90%. 

The final aspect of the application of neural networks to the classification of TES data 

which was considered was the connectivity of the networks themselves. The 
investigations performed on this element of the application concerned the removal of 
some of the hidden-to-output layer connections. The results of the investigations 
indicated that whilst in most cases the operational accuracy is reduced by a small 
percentage, in the case of the tooth failure identification improvements of up to 6.6c7ý 

could be achieved. However in all cases the training requirements were extended as a 
result of the elimination of nodal connections. In conclusion the small gains achieved in 

processor overhead as a result of the rationalisation of the network architecture did not 

provide sufficient performance benefits to offset the additional training requirements. 
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7. Final Summary 

This Chapter summarises the research undertaken during the period of study and already 
detailed in the main body of this thesis. It outlines a number of objectives, defined at 
the outset of the study period, as well as a discussion of the key features of the 
monitoring techniques developed to satisfy these objectives during the research 
undertaken. The discussion of these techniques will be made with reference to practical 
trials performed upon a testbed gearbox system which was constructed to simulate a 
series of identifiable physical faults. The last two sections in this Chapter highlight the 
key achievements of the work and seek to identify a number of areas within the scope of 
the work which the author feels to be worthy of further study. 

The work contained within this thesis describes the development and evaluation of a 
TES based neural network condition monitoring system applied to a custom built 

simplified gearbox fault simulator. The work consists of a discussion of two TES 

coding schemes and two selected neural application strategies. A series of practical 
trials concentrated on the identification of a number of simple faults seeded into the 

simulation testbed and recorded acoustically. The trials were used to carry out a 
fundamental evaluation of the problems associated with these novel techniques as well 

as determining the capabilities of such a system using the various different data formats. 

7.1 The Original Objectives 

Many of the traditional condition monitoring techniques adopt empirical analysis or 
theoretical modelling as a means of identifying state indicators. These more 

conventional techniques can be relatively simple to apply in well defined problems 

where localised environmental conditions either do not pose a threat to the success of 

the monitoring or can be strictly controlled. The aim of this work has been to study the 

potential of novel methods for identifying the fault modes which occur in machinery 

on-line, in real-time and without necessarily imposing some of the more severe 

restrictions upon the manner in which this processing is performed. The self-adaptive 
learning techniques of neural networks can potentially make simpler the application of 

condition monitoring to a range of machines by removing the necessity for specifically 

defining condition indicators or controlling localised environmental additive noise. 

However at the outset there were several aspects of the proposed solution which 

necessitated careful evaluation to determine whether in practice these methods were 

capable of producing the kind of enhancements envisaged. Clearly the potential exists 

for removing certain undesirable aspects of the more conventional techniques only to 

replace them with different ones associated with the new techniques. 

The impetus for this study is provided by the increasing demand for greater control of 

the production process within the industrial environment. The monitoring of specific 

elements within this process is an integral part of the ability to control them in order to 

both improve efficiency and enhance safety. Traditionally, monitoring has been a 
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human intensive operation requiring a combination of both skill and experience. As the 
demands placed upon equipment intensify, the necessity to operate more efficiently and 
within tighter physical tolerances has led to ever higher operational stresses- and thus 
indirectly increased operational costs. As a result of these demands the research into 
automated methods of condition monitoring has accelerated considerably in recent 
years. Many methods now exist which are capable of reducing the operational cost 
attributed to the maintenance of a range of complex machine types. They employ both a 
variety of sensor types and condition extraction algorithms to identify the state of 
machines either during operation or periodic maintenance. There are however a number 
of problems which can reduce the effectiveness of some or all of the techniques 
currently available. A few are outlined below: 

1. System cost. 
2. Implementational complexity. 
3. Overheads associated with the skilled operatives. 
4. Sensitivity of the identification techniques to localised conditions. 

The intention of this research was to evaluate some novel techniques which seek to 
overcome some or all of these concerns. The key focus at the outset of the research 
period was the identification of techniques which answered two of these concerns. 
These related specifically to the operational overheads associated with the necessity for 

skilled personnel and the simplicity and ease of use of the systems developed. 

Neural networks were identified at an early stage as a potential means of reducing the 

necessity for skilled personnel without necessarily eliminating the human strengths of 
experience and adaptability. The acceleration in their use for a wide range of tasks in 

recent years owes much to their ability to learn rather than be programmed. This makes 
them particularly useful in situations where complex problems are difficult to fully 

define. Their distributed architecture also imparts them with the ability to perform these 

complex tasks in the presence of additive noise or where the data presented is 

incomplete. 

In conjunction with the selection of neural networks as a tool to perform the 
identification a simple discrete signal coding scheme, TES, was chosen as a means of 

presenting the condition data to the networks to enable the classification. TES itself has 

previously been applied to human speech both for the purposes of automated 
identification and for low data rate radio transmission. The extension of this technique 

to acoustic emissions from machines for the purposes of condition identification was a 

natural progression. In fact some early evaluations of this type had already been 

performed by Vu et al [38] with reasonable success. 

In summary the general direction of the research from the outset was to evaluate TES as 

a means of condition data application and neural networks as a robust yet flexible means 

of condition identification. A PC environment was selected as the basis for the system 
implementation together with the use of digital signal processing technology for the 
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more computationally intensive signal acquisition and conversion stages of the 
processing. These two elements not only fulfil the basic computational requirements to 
achieve reasonable response but also fit in well with the desire to develop cost effective 
means of condition monitoring. 

7.2 System Performance Under Trial Conditions 

The main focus of the thesis has been the evaluation of an amplitude TES conversion 
scheme whereas previously all the speech work had been limited to the application of a 
minima based technique. The early work of Vu et al also employed a minima 
conversion to present a neural classifier with acoustic condition cues for emissions from 
diesel engines. Amplitude TES, in contrast, is a novel approach which conveys 
information about energy and frequency variations in a source. In conjunction with this 
change of signal conversion strategy initial trials employed a more basic neural network 
presentation format to that employed by earlier researchers. Rather than post processing 
the TES stream acquired from the signal source to generate an A-matrix the raw 
statistical information about symbol generation over short periods is applied to the 
neural network. During practical trials each of these so called histogram matrices 
presents the symbol allocation statistics over a one second period for the source in a 300 

element neural network data vector format. 

In early trials on gearbox shaft velocity identification using the amplitude data format 
the neural classifier was, depending upon the adequacy of the training data applied, able 
to correctly identify between 82-100% of a pool of 120 test vectors. The quantity of 
data required by the training phase for this level of performance was relatively short at 
only 40-80 seconds. When the classification problem was made more difficult by 
introducing the lubrication status of the system the performance of the classifier 
worsened. Under these circumstances the classifier was only able to correctly identify 

the shaft velocity state in approximately 65% of test cases and lubricant status in 
60-70% of cases. Considering the inherent uncertainty of the lubrication simulation data 

this represented a reasonable rate of success. 

During trials in which the classifier was presented with acoustic tokens acquired from 

simulations of the more complex shaft displacement problem the training requirements 
for the amplitude based system had to be extended considerably to offset the increase in 

complexity of the boundaries in the corresponding data state space. During these trials 

the extension of the training phase to include TES matrix tokens amounting to 14 

minutes of acoustic emissions was sufficient to achieve identification rates of between 

76-82% from a test pool of 420 unseen data sets. By further enhancement of the data 

presented during the training phase this could be improved to approximately 93%. 

Network convergence in these trials required the presentation of data to the network for 

back-propagation learning between 500-2,300 times. 

In back to back comparative trials the minima TES technique was applied to identical 
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shaft displacement acoustic emissions and was able to achieve similar and in some 
instances slightly better separation of test data vectors than the amplitude format had. In 
some tests 98% of all matrix tokens presented to the neural network were correctly 
identified. However, the single overriding drawback encountered with this particular 
data presentation format was the erratic nature of the network training when presented 
with this classification problem. Whilst in some instances it was necessary to present 
the training data sets approximately 45,000 times in others 500,000 iterations were 
required. In many instances the training was aborted prior to network convergence due 
to the inability of the back-propagation algorithm to identify a network weight 
configuration which satisfied all the training requirements. Thus despite the apparent 
capability of the networks in certain circumstances it was apparent that this signal 
coding and presentation scheme was not suitable in the majority of trials involving shaft 
misalignment detection. The variation in acoustic emission properties caused by these 
faults could not be as suitably conveyed through the application of minima TES 
descriptors as they had already proved to have been with the amplitude scheme. 

When the minima TES data was subjected to a further transformation using the 
A-matrix algorithm prior to network application both the learning ability and 
classification capability were improved. In trials with the same misalignment faults 

used to evaluate histogram data matrices results showed that between 90-99.5% of all 
test vectors could be correctly classified following a training program comprising 28 

minutes of acoustic token data. Whilst ultimately the performance proved only 
marginally better in some cases the most obvious advantage of this presentation format 

was the improvement in the likelihood of success during the weight training phase. Not 

only did the networks converge more readily but the time taken to reach a stable weight 
state was reduced significantly. Where 45,000 iterations was considered reasonable 

earlier the introduction of additional acoustic shape cues, associated with the A-matrix 
format, reduced this to as few as 1,000 iterations in some instances. The additional 

overhead incurred in this instance as a result of the necessary A-matrix post-processing 

and the extension of the network input layer from 300 to 900 elements was more than 

offset by the improvement in system performance. 

The classification enhancements identified as a result of employing the A-matrix symbol 

stream presentation format led to trials of the fourth network presentation format. This 

combined the novel amplitude TES coding scheme with the more advanced A-matrix 

data conversion algorithm. The expectation prior to practical trials was that 
improvements in system capability similar to those attained in the case of minima TES 

would be achieved. During subsequent trails, again using identical misalignment faults, 

the networks were able to identify between 82-100% of unseen acoustic matrix tokens 
depending upon the training data sets employed. The wide variation in perceived 

performance described here was due in the most part to the type of training data 

selection performed during the trail. With training sets of comparative size to those 

used in the minima trials correct identification of test vectors was more usually in the 

range 93-98%. The main drawback of this coding type is the necessity for a larger code 

table to implement the scheme which in turn produces larger matrices containing 1600 
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elements, considerably more than for any previous application scheme. However this IN 
once again offset by further improvements in the number of data iterations required to 
achieve convergence. In trials between 40-400 iterations were usually- sufficient to 
converge the network weights. 

Because of these encouraging trials the amplitude A-matrix technique was singled out 
for further studies at this stage. Overlooking the network expansion aspect of the 
scheme this method had already been identified as being the most suitable technique for 
the presentation of acoustic cues associated with displacement misalignment of the 
gearbox shaft. Three further acoustic states corresponding to various stages of shaft 
angular misalignment and four states representing tooth wear and failure were employed 
during these later tests. In the case of angular misalignment trials 16 minutes of matrix 
data was sufficient to adequately train a classifier. During the training phases between 
60 and 1,000 data iterations were required to achieve a satisfactory weight configuration 
and in subsequent trials 80-97% of test vectors were correctly classified. The tooth 
wear/failure states proved to be somewhat more problematic. Whilst training seemed to 
identify suitable weight configurations reasonably quickly, usually within 250-3,000 
iterations, the subsequent test results were relatively poor. In some cases only just over 
half of the test vectors could be correctly classified. 

Despite the knowledge that these simulated tooth fault states represented a non-trivial 
classification exercise it was felt that the performance should have been superior to that 

observed. Thus a series of additional trials were performed in an attempt to identify the 

cause of this reduced capability. They highlighted a single state-pair which proved most 
difficult to separate during the trials. Where other states could be identified with 

relative ease (94-96%) this particular pair, although not adjacent in terms of physical 
likeness, could only be identified correctly in approximately 53% of cases. Difficulties 

of this sort are caused by the complexity of the relationship between physical state and 
the acoustic emissions which are converted into TES format signatures. This is the 

result of the training phase not having identified the perimeters of the state boundaries 

with sufficient accuracy to be applied to the previously unseen test vectors. Identifying 

when such failures are caused by insufficient or unrepresentative training data 

exemplars and when they are caused by insufficient raw data is undoubtedly one of the 

keys to the successful application of neural techniques to such complex data types. 

Such separation is usually empirically derived using a process of trial and error. 

7.2.1 Physical Restrictions of the Implementation Scheme 

Whilst evaluation of the fundamental capabilities of TES based monitoring techniques 

has been the primary aim of this work the appraisal of the methods by which these 

techniques are applied is also important. Several of the trials therefore focused on the 

application process with the intention of identifying and evaluating particular elements 

within the procedures where restrictions affecting performance might be encountered. 

Four key elements where it was felt such effects may be experienced were studied. 
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The first two areas centred on the initial acquisition of the acoustic signals which form 
the basis of the monitoring mechanism. The first of these was the positional sensitivity 
of the acoustic data which impacts upon the requirements imposed upon implementers 
in terms of the rigidity of the rules surrounding data acquisition. Often in monitoring 
systems relying upon contact sensors the position of these sensors is a primary factor in 
the success or otherwise of the system. The intention of employing a microphone was to 
reduce the effects caused by complex contact transmission paths so making the 
application of monitoring a more straightforward and non-intrusive procedure. 
However, during trials the effects of varying transmission paths remained identifiable 
when the microphone position was varied by between 100-200mm. Despite this it was 
found that providing the data presented to the network classifier during training took 
account of this positional diversity the capability of the classifier on subsequent unseen 
data taken from a variety of positions was not significantly impaired. In practical terms 
this necessitates the acquisition and inclusion of acoustic emissions from a range of 
positions in the data used for the learning phase of the implementation. 

The second aspect of the acoustic acquisition monitored during trials was the effect on 
performance of localised acoustic conditions. Although this aspect was not specifically 
singled out for analysis the effects were assessed indirectly by studying system 
performance using data recorded without the imposition of rigorous localised 
restrictions. By capturing the acoustic data in this manner it effectively guaranteed the 
inclusion of some additive noise. However one of the strengths of neural networks is 
their ability to perform input-output mappings in the presence of incomplete or noisy 
data. During the course of the practical trials the performances of networks remained 
acceptable despite not having imposed acoustic controls over data acquisition. It is 
therefore reasonable to suppose that providing the levels of external localised noise do 
not become excessive there is no necessity to provide an additional filtering stage within 
the TES coder. 

The remaining two areas in which it was felt application restrictions could arise 
concerned the handling of the acoustic signal following initial acquisition. At this stage 
the signal is converted into a representative TES stream and is used to produce condition 
signature matrix data. Following compilation this data is used to train a neural 
classifier. Intuitively the characteristics of these data sets will affect the "knowledge" 

gained by the network about the problem being "taught". Thus the characteristics of the 

converted signal and the subsequent matrix data will affect the performance of the 

classifier when presented with unseen data. During the course of the trials two aspects 
of this process were singled out for examination in order to define their impact upon the 
TES data and thereby the network performance. 

The first of these was the stability of rotational velocity necessary to reliably perform 
condition identification of gearbox fault conditions independent of the instantaneous 

operational state of the machine. In terms of implementation what was seen as 
undesirable was the necessity either to maintain a steady velocity whilst monitoring or 
to train the monitoring system to identify the fault set under many different machine 

157 



operating configurations. The work carried out on this aspect of the conditioning 
procedure was fairly limited. As with the case of microphone positional sensitivity once 
again the philosophy was one of training using loosely constrained data sets thereby 
reducing the sensitivity of the network to parameters which are unrelated to the fault 
state. In trials using the gearbox shaft velocity was constrained within a 200rpm hand 
during acoustic fault state data acquisition. This constraint, which represented 
approximately 7% of the average velocity, did not significantly affect the system 
performance under test conditions using data recorded at shaft operating velocities 
within this band. 

The second aspect of the signal processing identified as a potential problem area for 
practical applications was associated with the dynamic properties of the raw acoustic 
signal. These signal properties are particularly important in amplitude TES coding 
which relies upon a normalisation coefficient for symbol allocation. As a result 
variations in the signal periodicity must be adequately catered for by the pre-coding 
normalisation coefficient search phase if the subsequent TES symbol stream is to 
provide a reasonable signal representation for fault characterisation. Trials did reveal 
some network sensitivity associated with this aspect of the coding process. However 
these effects could be minimised by careful control of the input conditioning and 
conversion stage of the TES symbol generation. 

The conclusion from these experimentative trials was that providing the neural classifier 
is trained with these effects in mind and is able to extract the relevant condition cues 
from within the data then the classifier will be relatively unaffected by acceptable 
variations in the prevailing acoustic environment. The tradeoff however is that the more 
loosely constrained the conditions surrounding the acquisition of acoustic data are the 
larger the data set required to adequately describe the problem to the network. 

7.2.2 Performance Optimisation 

Following the initial examinations with each of the four signal coding and presentation 
techniques investigations were carried out on methods of further enhancing their basic 

capabilities. There are a number of elements of the classification mechanism which can 

potentially be modified to improve the performance but the areas which were focused 

upon during the course of this work were limited almost entirely to the neural network 

application phase. Within this context areas such as network configuration and 

architecture, classification requirements, data set size and composition, and data set 

ordering all affect the overall system performance against previously unseen data. 

The backpropagation learning concept used in the network training phase is, by 

definition, a weight search algorithm which seeks to reduce the error between an input 

vector and a desired output pattern by backpropagating the error from output to input 

nodes. This is accomplished by successively calculating the contribution to the 

measured group error made by individual nodes within the network when an 
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input-output vector pair are applied. The weight configuration path taken over the 
network's "error surface" by applying the gradient descent search algorithm is therefore 
affected not only by the training vectors applied at each backpropagation iteration but 
also by the network architecture and the chosen starting point on the error surface. 

The ordering of the data was found during the trials to affect both the length of time 
which the network required to reach convergence and the final weight configuration 
attained. Whilst the actual configuration of the weights is immaterial, providing that 
classification is not affected, the time required to achieve convergence is important. The 
observed lengthening in training times can be caused by the varying demands made 
upon the network of individual training vectors. Whilst some vectors may drive the 
weights in one direction others may have differing requirements. Thus the manner in 
which these various vectors are applied during training affects the path taken across the 
error surface and thus the weight path taken by individual nodal interconnections. 
During the course of practical trials it was discovered that the best method of applying 
vectors was to not separate the individual classes too much thereby making the weight 
path more erratic nor by grouping the states too much causing convergence oscillation. 
Best results were achieved by applying the various state vectors in evenly sized and 
orderly subsets. In reality this technique is only able to increase the likelihood of' 
training success because the contours of the error surface for a given problem are 
unknown at the outset of training. Thus the effect of each unique training vector on the 
direction taken along this error surface is difficult to determine in advance. 

Another area which was examined for performance optimisation was the content of the 
data set applied during training. In many instances the performance of individual 

networks could be measurably improved in one of two ways. Empirical data selection 
generally provided the best means of generating data sets for optimised network 
performance and usually resulted in less training vector exemplars being required to 

achieve a particular performance level. However the disadvantage with this method is 
its implicit reliance upon an intelligent means of comparing data sets during an 

evaluation phase. Whether this is performed by an operator or by automated 

combinatory trials of data components it requires an extra level of complexity to achieve 

success. In contrast it was noted during trails that in the most part the extension of the 
data set would produce a similar improvement in performance without the necessity for 

the additional trial period. This mechanism though will still extend the training period 

simply because the quantity of training data which must be applied to the network has 

been increased. 

From the point of view of the potential for industrial monitoring systems the effect upon 

a classifiers capability as the state space is extended is important. During the course of 

the studies relating to the application of amplitude TES A-matrix data matrices the 

effect of a moderate increase from four to seven states was examined. Whilst this single 

study is insufficient to provide conclusive evidence of the general effects, of such 

extensions it does at least provide an indication of the type of effects which are present 
in this application. The results indicated that whilst the general performance was 
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slightly reduced the consistency of classification over a range of training regimes was 
improved. Correct separation of the seven condition states was achieved in 
approximately 90% of all unseen test matrices. 

The scope for architectural performance optimisation was examined in a series of trial', 
which experimented with the interconnectivity of the network classifiers. These 

modified networks were evaluated against both the seven state problem which has just 
been discussed and with the tooth fault analysis problem discussed in Chapter 6. The 
intention of both studies was to identify whether or not a reduction in the competing 
demands of individual nodal weights could be used to enhance both the training 
requirements and the separation of states in problems composed of more complex state 
boundaries. Although the trials were not sufficiently conclusive it was apparent that in 
those problems it was evaluated upon no significant improvements could be identified. 
In the seven state problem the performance was in fact reduced whereas in the tooth 
fault problem some improvement was noted. In both these problems the partially 
interconnected networks required longer to train than their fully interconnected 

counterparts. 

7.2.3 TES System Implementation 

In many respects the application of TES data, particularly the novel amplitude coding 
technique, and neural networks to the classification of acoustic signals has proved to be 

successful. Although the research is still in its infancy there is reason to believe that 

these techniques represent a realistic alternative to the more conventional monitoring 

systems currently available. They offer the potential not only for a trained rather than a 

programmed solution but also one which is robust enough to operate acceptably within 

an industrial environment. The implementation of a significant part of this evaluation 

system within the PC environment also highlights the potential for low cost monitoring 

systems which may be tailored for a wide range of applications. Those elements of the 

system which were not developed under the umbrella of the PC environment, namely 

the neural network simulator, fall well within the capabilities of modern PC technology 

and could feasibly be incorporated at a later date into a combined PC based package. 

DSP implementation of the combined signal capture and TES symbol generation 

algorithms enables significant improvements to be made in the generation of raw 

condition signatures over a similar PC solution. If the system were to be developed still 
further by implementing the neural classifier on a second DSP hosted by the PC the 

potential exists for a monitoring system which is able to respond in real-time to changes 
in the condition of a monitored system. 

The most problematic aspect of implementing the type of condition monitoring system 

outlined in this study has been the difficulty encountered in evaluating the effects upon 

classification of alterations made in the training data sets. This is a direct result of the 

complexity with which the network encodes the learning process. 
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7.3 Conclusions 

The author feels that the following conclusions can been drawn from the Studies 
performed during the research period: - 

" TES coding of the acoustic emissions provides a good means of data compression 
without reducing the information content significantly. 

" The amplitude A-matrix data presentation format offers the best compromise 
between the necessary training requirements and the subsequent classification 
performance. 

" The physical restrictions of the data acquisition phase can be overcome by additional 
training data set presentation. 

" Training data is best applied to a selected network in evenly sized ordered subsets to 
minimise the path length taken over the network error surface during the training 
phase. 

" Empirical data set selection can improve system performance whilst limiting the size 
of the training data set. However, data set extension can be used to minimise the 
requirements for operator intervention during the training phase. 

" The application of a nodal interconnection pruning phase adds additional complexity 
without providing significant classification performance enhancements. 

"A single network is able to classify a seven fault state system with reasonable 
accuracy. 

" The implementations studied offer marked improvements over the capabilities 

afforded by a human operator at low cost and without the necessity for constant 
operator supervision. 

7.4 Recommendations for Future Work 

Despite the basic potential surrounding TES based neural classifiers there are still a 

number of areas which could benefit from further evaluation. This section identifies 

areas which the author feels were not suitably examined or hold the most potential for 

further improvement. 

The classifier implementation described in this thesis has remained focused upon a "one 

application, one classifier" solution to the identification of gearbox condition state. 
Whilst the concept of expanding the number of states which may be handled by a single 

classification network has been touched upon it is felt there is much room for further 
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work to be carried out in this area. It is highly unlikely that most "real world" 
applications will require only seven unique fault states to be identified. As such both 
the examination of the limits of data space expansion within a single network and the 
concept of a multi-network monitoring system should prove to be worthwhile. 

Observation of the effect additive noise has upon the classification process has up to 
now been limited. Whilst the studies carried out during the course of this work made no 
attempt to eliminate potential sources of additive noise during the recording of acoustic 
state emissions no specific trials were performed on the degenerative effects such noise 
could introduce. The application of neural networks will no doubt make the 
classification process more robust but without practical trials the effects are difficult to 
quantify accurately. This particular study would help to define the environmental 
restrictions which would be required of an industrial application of such a monitoring 
system. 

The neural network applied to this study is effectively only capable of making time 
independent decisions. In this respect it is unable to use knowledge about previous 
classification decisions to modify its current decision. This simplistic behaviour 

eliminates the advantages to be accrued by evaluating the decisions made by the 
classifier over a short but finite time period. In contrast a human operator can use 
additional knowledge about the problem under observation to come to a decision on a 
machines current status. One area in which the author feels significant improvements 

could be made is in post decision analysis of the network classifier output. In particular 
knowledge about the manner in which physical faults occur could be used to extend the 
capabilities of the classification system described in this thesis. For example by 

applying the basic rule that faults are not self correcting to the stream of time 
independent fault status decisions a more representative indication of the status might be 

attained. For instance if a classifier indicated that at time, T-n (where n represents the 
number of decisions made by the classifier) the machine status was healthy and at time 
T+n the machine state was healthy, but that at time T the machine status was unhealthy, 
then a post decision analyser could calculate the probability of the fault actually being 

present based upon knowledge about the indicated fault. 

Whilst the trials evaluated the characterisation techniques on a series of basic fault states 

simulated on a simplistic gearbox testbed the ability of the acoustic TES system to 
identify the complex fault states associated with a real system are as yet not known. 

There are two areas which would benefit from further studies using more representative 

acoustic emissions. Firstly the evaluation of the technique using a more realistic testbed 

model would provide additional feedback regarding the potential of the system for 

industrial applications. The most important aspect of such a study should be an 

evaluation of the sensitivity required for acceptable fault state analysis. The second area 

which would benefit from further analysis is the ease with which on-board monitoring 

systems may be applied to mechanical devices. Of particular interest in this respect 

should be the evaluation of the likely success of a model based rather than a unit based 

training regime for high volume production type equipment. The necessity, in such 
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applications, for a per unit training regime would significantly limit the areas in which 
this type of monitoring could be applied. In contrast if the training can be achieved 
off-line before subsequently being applied to many identical units fewer limitations are 
present. 
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A. Practical TES Evaluation System 

A. 1 Acquisition of the Condition Signal 

The first stage in the condition monitoring process is to capture the signal from the 
library of acoustic emissions whilst at the same time preventing it from being corrupted 
by the effects of aliasing. To guard against this the source is band limited using a filter 
prior to being digitally sampled using a digital signal processor. The characteristics of 
the bandpass filter used to pre-condition the signal are dependant upon the dynamic 
range of emissions required for classification and upon the sampling rate used for 
conversion. Basic sampling theory [58] states that for the converted source to he an 
accurate digital representation of the analogue original, the sampling rate must meet or 
exceed the Nyquist frequency. For the purposes of the trials detailed in this work a 
dynamic range of approximately 15 kHz was used by applying the necessary pre-filter. 
in this case a 5th order Chebyshev type, to the input stage. The characteristics of this 
filter are plotted illustrated graphically in Fig. A. 1. 

Once filtered the signal is sampled at 40kHz. Oversampling at this rate provides a 
margin of safety in the signal acquisition. For a commercial system implementation 

there may be some scope for further reduction in the frequency range employed during 

this initial signal acquisition. However any such reduction would be dependant upon 
the machinery under observation and the associated condition states which require 
identification. Unless these bandwidth restrictions are applied with a full understanding 
of the specific fault modes further sensitivity problems may be unintentionally 
introduced. To minimise complexity at this stage in the evaluation process no such 

additional bandwidth limitations were imposed. Instead the greater flexibility provided 
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Figure A-1 Characteristics of the bandpass filter used to condition the acoustic signal 
prior to sampling and TES conversion 
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by a less restricted frequency range was employed at the expense of an increased data 
bandwidth. 

A. 1.1 Real-time Conversion of Acoustic Emissions into a TES Format 

Once an acoustic signal has been acquired it must be converted into a series of TES 
symbols before applying one of the matrix data encoding techniques- discussed 
previously in Chapter 3. To perform this task in real-time an acquisition and conversion 
system was developed around a PC platform. The core of the system is based on a 
dedicated Digital Signal Processor (DSP) which resides in the PC. The AT&T DSP32C 
is, as a result of its 80ns instruction cycle time and pipelined instruction capability, able 
to perform the signal capture and TES conversion algorithms in real-time. This 
provides a significant improvement over comparative PC conversion performance. The 
PC itself is used to control this capture and conversion process and store the subsequent 
data for further processing. 

The TES data is exchanged between PC and DSP using a protected, shared memory 
area. This memory area is divided into two blocks. Each of the blocks has a semaphore 
flag to indicate the state of the data contained within it which both the PC and DSP 
processors can read and write to. During operation the DSP converts the condition 
signal and writes TES symbol data to the first "empty" block and uses the semaphore to 
indicate that the block is currently active. As this block becomes full the DSP sets the 
semaphore associated with it to "full", and begins using the second memory block. 
Meanwhile the PC monitors the status of each of the block semaphores. When the PC 

sees a "full" flag it downloads the associated TES data in the block and resets the 
semaphore to indicate an "empty" status. Providing the data blocks are sufficiently long 
for the PC to complete a "full" block transfer to a ramdisk during the time taken for the 
DSP to acquire a block of TES data then the DSP will always have an "empty" block 

available to write data to. This data transfer procedure is known as a two block shuffle. 

A. 1.2 Associated Signal Effects 

There is one stage in the conversion process yet to be discussed which can adversely 

affect the characteristics of the condition signal. If left uncontrolled it can cause 
distortions in the TES symbols assigned to the raw signal epochs. This refers 

specifically to signal level variations caused as a result of microphone position and 

amplifier gain characteristics during signal recording or playback. Fluctuations of this 

type at the input stage of the DSP are of particular concern in an amplitude coding 

scheme. To minimise these effects normalisation is applied to the signal prior to 

coding. This reduces the potential for inter-recording perturbations and essentially 

reduces the analysis to one of statistical distributions of signal energies rather than 

specific magnitudes. This is perfectly adequate since for a given signal type the energy 
distributions remain relatively stable despite any fluctuations which may occur in 
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absolute signal levels as a result of the acoustic sensor stage. However the variation' in 
statistical amplitude distributions between signals of different types should remain. In 
the discussions of the work of Martins [16] in Chapter 2 these variations- in statistical 
distribution have already been used to monitor the development of defects. The shift of 
emphasis from signal magnitude to statistical distribution is also of particular interest 
since it provides a method of monitoring a signal source without the necessity for strict 
acquisition controls being imposed. 

The practical application of normalisation to a signal requires a pre-determined 
normalisation coefficient to be applied to each discreet sample in turn. This coefficient 
should accurately represent the maximum magnitude of the signal over a finite coding 
period. In order to acquire this normalisation factor the source is sampled over a finite 

measurement period prior to TES coding. During this precoding measurement interval 
the DSP device acquires, compares and then discards successive samples in its search 
for the magnitude of the absolute maxima. At the end of the precoding period a 
normalisation coefficient is calculated and stored. This coefficient is subsequently used 
during coding to condition each sample prior to analysing the epoch characteristics and 
generating a symbol stream. Providing the initial measurement period is of sufficient 
duration to represent the short term average signal level during a coding run then the 

normalisation coefficient will accurately condition the signal. For the purposes of the 

work contained in this thesis a precoding period of 10 seconds was considered adequate 
to acquire a normalisation coefficient which could be used for single conversion runs of 
60-90 seconds. 

A. 2 A TES Analysis Package 

Having discussed the basic configuration of the PC based processing package the 

manner in which it may subsequently be operated should be considered. As discussed in 

Chapter 3 the conversion necessitates the generation of TES symbol allocation tables 

which themselves require statistical analysis tools to make the relevant symbol 

selections. To cater for this, a combined PC/DSP package was developed to perform in 

two operational modes. Initially it is used in analysis mode to generate the relevant 

symbol allocation tables and subsequently it is used in an operational conversion mode. 

The analysis mode is itself separated into two phases. In the first phase the DSP 

acquires the signal, and measures the relevant epoch parameters such as duration. 

amplitude and minima frequency. This epoch data is then presented for statistical 

evaluation at the PC using the two block shuffle for data transfer. A graphical user 
interface was developed for the PC to enable the results of this evaluation to be 

displayed. From this graphical feedback the user is able to generate the initial, or first- 

stage, allocation table. The second phase of the allocation table generation is the 

statistical table optimisation detailed previously in Chapter 3. This requires the first- 

stage table to be downloaded to the DSP device and used to perform a full TES 

conversion of a sample of source. Once again statistical analysis is then performed at 
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the PC on the TES symbol data generated. At the end of this cycle. an optimised. or 
second-stage, symbol allocation table is generated. 

This manual modular approach, although slower than an automated technique, provides 
complete freedom in terms of symbol selection and allocation table generation which for 
the development system was essential. All of the off-line analysis and data transfer 
software for the PC was written as standard ANSI `C' routines. Whilst `C' does not 
afford ultimate algorithm performance it does provide a simple and easy method of 
module reconfiguration. In a commercial system implementation much of this data 
analysis could be performed automatically on the DSP device which would significantly 
improve the response. 

A. 3 Conversion of the TES Symbol Stream into a Condition Matrix 

The system which has been described up to now is able to capture the signal, generate 
statistical data relating to it and with manual intervention produce an allocation table 
optimised for a particular coding strategy. This optimised allocation table is then 
downloaded from the PC to the DSP for use in an on-line real-time conversion without 
further PC intervention. The PC then becomes a receptacle for symbol stream data 
acquired from the stable taped source library. The final PC based step in the processing 
chain is the conversion of a symbol stream into a matrix format suitable for use in a 
condition identification mechanism. This requires the subdivision of the symbol stream 
into a series of sub-frames. Each of these frames is then used to produce a unique 
condition matrix containing acoustic information corresponding to that segment of the 
original signal recovered from the tape. The selection of the length of each frame in 

symbols, previously detailed in Chapter 3, is important to the subsequent analysis and 
recognition stages. The number of symbols contained in each frame is primarily 
dependant upon the aspect of the signal under observation which is of interest. 

Taking the example of a gear wheel rotating at a constant 60 rpm with a single damaged 

tooth the effects of varying the frame length can be described. Each time the faulty 

tooth in the gear meshes with a secondary gear it will emit a characteristic peak of 

energy emission due to a rapid acceleration-deceleration action. This characteristic is 

expected to appear in the emitted signal once every second. Suppose then a frame 

length significantly shorter than Is, for arguments sake assume this to be Us is 

selected. In this case the characteristic energy burst due to the fault will be captured 

only every tenth frame. If this is the case, one of two scenarios is possible. The first is 

that the fault may be identified as being intermittent because of its infrequent 

occurrence. The second is that the fault may be missed altogether because the frame 

containing the characteristic to classify the machine state by has not been selected. 

The solution is either to ensure that the frame length is sufficiently long to incorporate a 
single machine cycle or secondly to ensure that each state decision requires several 
frames which together make up a single machine cycle. For the practical trials 
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discussed in this thesis the frame length was selected so as to ensure that each matrix 
contains a symbol set made up of at least one cycle of the lowest frequency machine 
event. To accommodate this requirement a frame length of 5000 symbols was employed 
which corresponded to approximately one second of acoustic source signature. 

A. 4 Configurable Neural Classification Module 

The culmination of this combination of PC and DSP hosted processing is the series of 
condition matrices which contain the information used to characterise the fault status of 
the target system. These matrices however do not in themselves constitute a condition 
detector. What is required to perform the condition detection is a pattern classifier 
module. For the reasons discussed in section 3.5.3 this classifier was implemented 
using a simple multi-layer perceptron network. As with all the other PC and DSP based 
tools discussed so far this module required sufficient flexibility to be incorporated as to 
enable modifications to be introduced to the architecture and presentation format. 
Rather than develop a specific package for this purpose it was decided to make use of a 
UNIX hosted package, aspirin/MIGRAINES, which was readily available. This 

package contains a script language which is able to generate network simulations 
containing all the relevant flexibility in architecture to simulate large non-trivial 
networks without the need for a custom design. In a more commercialised system 
implementation this final neural based signal classification would be performed on the 
DSP, on the PC host, or using dedicated neural network hardware. 

However for the evaluation work detailed in this thesis a SUN Sparc 10 workstation was 
used to run the network simulations. This platform provides significant improvements 
in processing power over the available PC hardware. This ensured that the learning and 

evaluation periods required for a simple back propagation neural network were reduced. 
On the matrix based condition patterns employed this varied from between a few 

seconds to a few minutes for each matrix during the course of the more computationally 
intensive training phase. The aspirin/MIGRAINES network simulations were able to 
import the matrix data generated at the PC in space delimited format. Each data file 

consisted of 104 data matrices, each with an appropriate system state identifier attached. 
All neural network configurations were trained using the matrix data as input stimuli 

and each state identifier tag as an output pattern. Further details regarding the structured 

training and architecture of this package can be found in Chapter 4. 

177 



B. Derivation of the Generalised Delta Rule for Network Training 

The back-propagation learning algorithm is a central component of the application of 
neural networks to specific problems. Without a mechanism for modifying the ti%'eights 
which constitute the means of learning a neural network becomes uselc`: '. The 
derivation of the generalised delta rule for the updating of %veights in multilavcr 
networks during training is presented in this section. Fig. B-1 identifies each of the 
components of a simple network presented with an input vector. Xpi. and the 
corresponding output training vector, Tv;. 

Output training vector 
T, T,, T, 

Figure B-1 A simple three layer perceptron network training with an input vector, Xp 

The weighted sum of inputs to the j`h node in a simple feedforward perceptron network 
from n nodes in the networks preceding layer is 

nett =w jo 
+ Wjixi (B-1) 

This input is then passed through a nodal activation, or transfer function', fj, to produce 
the output for the jt' node, oo 

oi = f3 (nett) (B-2) 

If the j`h node is an output unit then the error, E, between the actual output, off, and the 
target output, Tj, defined during the application of a training vector to the network is 

Eý 
ß(T1_oj)2 

(B-3) 

During all practical trials the nodal activation was performed by a sigmoid function 
1 

fj (ntetý, -I+e neri 
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The weight change, Over},, to help correct this error should be proportional to the 
contribution of that weight to the total error, E. 

dE 
Lwji =-a dw(B-4) 

ji 

or 

OWjt = ai5. 
io» (B-5) 

Where bj is the error information term for the jt' node and is defined by 

dnetj 

Converting this using the chain rule we obtain 

aE =-' fl (B-7) 
äoß 9net! 

However from (B-2) 

do' 
=f 'net . 

(B-8) 
et 'ý 

Thus, 

S_- 
äE 

f' nett1 (B-9) 
J do 

(/ 

j 

and from (B-3) 

dE 
-(ti -) 

B-10) 
do, 

Therefore by substitution 

Si = 
(t3 

-oj)f'(netj) (B-11) 

Likewise for a hidden layer node within the network bj can be derived as 

f'(nett) J, wk) 
k 

(B-12) 
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A 

Thus the weight at time (t+1) is defined as 

w»(t+1)= wji +Awf; (t+1) (B-13) 

where 

©wjt =aSi(t+l)o1(t+1)+ßAw;; (t) (B-14) 

and (3 is an optional momentum term used to accelerate the learning process. 
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characterisation with neural networks", Proc. IEE International symposium on 

communications theory and applications, July 1993, pp. 111-113 

W. Lucking, E. D. Chesmore, and M. Darnell "Acoustical condition monitoring of a 
mechanical gearbox using artificial neural networks", IEEE International conference on 
neural networks, WCCI, Orlando, June 1994, pp. 3307-3311 

W. Lucking, and E. D. Chesmore, "Acoustical condition monitoring of a mechanical 
gearbox using artificial neural networks- further results", 10th International conference 
on systems engineering, ICSE `94, Coventry, September 1994, pp. 749-753 
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