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Abstract 

This thesis describes two main sections of work, an examination of a commercial 

product, Intrasite Gel, and the development of an algorithm for variable selection 

using projected latent structures. 

Following on from the successful development of a variable selection procedure for 

multivariate linear regression this work looks at transferring this idea for use with 

projected latent structures. The first part of this thesis will show how the variable 

selection algorithm was developed and used with three different data sets. The 

algorithm will be shown to be superior to standard projected latent structures, for 

linear multi-component data. Although the final algorithm developed requires 

considerable computing resources to carry out this is compensated for by significantly 

improved model predictions and robustness. The final algorithm developed is written 

to run using MATLAB ® on any computer platform that supports this application, 

though the principles of operation could be transferred to another method of 

execution, for example custom code written in C or Pascal. The approach used in the 

development of this method is that the ability of the model to predict unknown 

samples is of far greater importance than the internal performance of the model. All 

the assessments of the procedures developed are based on the ability of the model to 

predict accurately and precisely samples that were not presented to the model during 

the training stage. 

The second section of this thesis is concerned with the study of Intrasite Gel, 

produced by Smith & Nephew Ltd. Hull. The material in question is a medical device 

intended to assist in the treatment and healing of wounds that are necrotic, sloughy or 
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granulating. The product is characterised by its ability to maintain moisture 

equilibrium in a wound environment and to provide a suitable medium to encourage 

the growth of new cell tissue. Medical devices require registration, and as part of that 

registration a number of tests are made on samples to ensure that the material meets 

the required specifications. There was some concern at Smith & Nephew that the 

tests they were required to carry out as part of the device registration were not 

providing appropriate information about the product. Of particular interest was the 

fluid absorption property as it was suspected that the test has a large amount of 

random error associated with it and an investigation was required to examine this test 

and to provide an alternative procedure should the fluid absorption test prove 

inadequate. Also of interest to Smith & Nephew was the issue of sampling frequency, 

as it was felt that this should also be examined to determine whether the correct rate 

of sampling to ensure product quality was being carried out. The work reported here 

shows that the fluid absorption test as it stands is insufficient to the task of monitoring 

this property of Intrasite gel and that an alternative test should be considered. This 

work also showed that current sampling rate was too high and that the high sampling 

rate may in fact cause misleading assumptions as to the stability and quality of the 

product. 
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3Glossary of Terms 

Terminology 

ANOVA 
ANalysis Of VAriance, a standard test to examine the influences of variance within a 
data set. 

Autocorrelation 
The internal correlation between samples within a variable, either as a time function 
or a space function. 

Autoscaling 
Setting the mean and standard deviation of a matrix to zero and one respectively. 
This removes the effect of magnitude in a system, and reduces the influence of noise 
between variables. 

Calibration 
The determination of the relationship between two (or more) data matrices, normally 
called the independent matrix (X-Block) and the dependent matrix (Y-Block) 

CLS 
Conditional Least Squares, a variation on MLR where the coefficients are required to 

meet certain properties. 

Cluster Analysis 
Examination of the grouping or class of a group of objects 

Chi-squared test 
From a given mean and standard deviation the chi-squared test can be used to 
determine the normal expected distribution for that population, which can the be 
compared with the observed distribution. 

Collinearity 
Collinearity is a linear or nearly linear relationship between variables within a 
independent data matrix. Collinearity causes problems with some methods of inverting a matrix, and reduced the predictive ability of a callibration 

Correlation 
A quantitative term describing the linearity between two variables 
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Correlation Coefficient 
The correlation scaled between -1 and +1, +1 indicating a strong positive 
relationship, zero, no relationship, and -1 indicating a strong negative relationship 

CUSUM 
The CUmulative SUMation of a vector. A method for examining the way in which 
the mean of a variable changes over time 

Data Set 
Term used to describe the data that relates to a particular problem, a data set can be 

more than one data matrix 

Dependent Data Matrix 
The response variable or variables, for spectral information the dependent data matrix 
would be the component information. The response data can be quantitative or 
qualitative, with qualitative information the calibration carried out is for classification. 

Dixons Q Test 
This is a test for outlying values, the value calculated for the test is compared to a 
table of values to determine whether the specified point is outlying. This method is 
mostly used for small vectors. 

Eigenvalue 
When decomposing a matrix into two other matrices with the constraint to capture 
maximal variance in consecutive vectors the eigenvalue shows how much variance is 
captured by the corresponding eigenvector. 

Eigenvector 
An eigenvector is the vector of coefficients that rotate a data matrix onto the axis that 
form the principal components. 

GLS 
Generalised Least Squares, a variation on MLR that deals with heteroscedastic 

residuals. 

Grubbs Test 
Grubbs test detects outliers by their effect on the standard deviation of a group of 
samples. 

Heteroscedastic 
Heteroscedastic residuals are ones in which the error is not normally distributed 
across the span of the data space. 
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Homoscedastic 
Homoscedastic residuals occur when the error in a model is normally distributed. 

Independent Data Matrix 
The independent data matrix is the matrix of descriptive data pertaining to a system, 
in spectroscopy the independent matrix would normally be the matrix containing the 
spectra. 

ITTFA 
Iterative Target Testing Factor Analysis is a method to extract real world information 
from a matrix of data, for example with UV data ITTFA can be used to extract the 
molar extinction coefficients for the pure components. 

Kalman Filter 
Factor analysis method for removing noise from a signal 

KNN 
K-Nearest Neighbour, a classification technique that assigns a class to a sample based 
on its relationship to similar samples. 

LWR 
Locally Weighted Regression is a linear regression method that can be used to model 
non-linear data by examining the curve in short segments where the assumption can 
be made that a sufficiently short curve behaves as a line. 

Mean Centring 
A method for removing the influence of magnitude from a variable by subtracting the 
mean of the vector from each point in the vector. 

MLR 
Multivariable Linear Regression, a least squares method for determining the 
coefficients that relate an independent data matrix to a dependent data matrix. 

NIPALS 
Non-Iterative Partial Least Squares, a method for calculating PLS 

NLS 
Non-linear Least Squares, a variation on MLR that used a non-linear function to map 

the X-Block to the Y-Block 

PCA 
Principal Components Analysis is used to decompose a matrix into two other matrices 
with the constraint that the vectors produced describe maximal variance of the 
original matrix. 
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PCR 
Once a matrix has been decomposed using PCA the resultant vectors can be regressed 
against a response variable to form a Principal Components Regression model. 

PEP 
Percentage Error of Prediction, a method of comparing models developed using 
different methods, or form different data. 

PLS 
Projected Latent Structures, also known as Partial Least Squares, a factor analysis 
method that extracts new vectors on the basis of their correlation with a target vector 
and is used to build calibration models. 

PRESS 
Predicted Residual Error Sum of Squares, a method of determining the predictive 
ability of a model, normally used where small differences in models are being 
examined for the same data set. PRESS cannot be used to compare different 
components of a data set. 

Range Scaling 
A method of reducing the effect of magnitude on a data matrix, the matrix is divided 
by the largest absolute value in the matrix 

S/MCA 
Soft Independent Modelling Class Analogy models the classification of samples by 
considering groups of samples as independent models, assigning a class to a sample 
according to the model which it best fits. A sample can be assigned to more than one 
class. 

Smoothing 
Any method with is used to reduce the effect of randomly distributed noise within a 
vector. This includes moving average smoothing and Savitzy Golay smoothing. 

SNV 
Standard Normal Variate is autoscaling carried out by sample rather than variable. 

SVD 
Single Value decomposition is a non-iterative method for extracting eigenvalues and 
eigenvectors from a matrix. 

TFA 
Target Factor Analysis can be used to detect the presence of signals within a more 
complex signal, for example TFA can be used to detect the presence of a particular 
metal in a UV spectrum based on the pure component spectrum of that metal. 
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WLS 
Weighted Least Squares, a variation on MLR that can try and account for 

heteroscedastic residuals. 

X-Block 
The independent data matrix. 

Y-Block 
The dependent data matrix. 



1. Introduction 

1.1. Chemometrics 

Chemometrics can be seen as the use or study of mathematics and its use in chemical 

systems. Many of the techniques are little different from those found in standard 

statistics or Biometrics, others such as variable selection techniques are associated 

mainly with the chemistry side of statistics. This thesis considers closely variable 

selection techniques, as can be found in Walmsley [1] and Walmsley et. al. [2]. 

A definition of chemometrics taken from Chemometrics: A Textbook [3] "The 

chemical discipline that uses mathematical, statistical, and other methods employing 

formal logic (a) to design or select optimal measurement procedures and experiments, 

and (b) to provide maximum relevant chemical information by analysing chemical 

data. ". 

Another definition is that by Malinowski [4], "The use of mathematical and statistical 

methods for handling, interpreting and predicting chemical data. Yet a third by 

Svant Wold [5], chemometrics is the art of extracting chemically relevant information 

from data produced in chemical experiments. ". 

These definitions cover most of chemometrics, its use in both experimental design 

and in data analysis. Much of the work in chemometrics has taken place around 

techniques used in a laboratory, methods to examine the results of experiments on a 

small scale. These include regression and calibration based upon spectra results, and 

work towards the optimisation of experiments. There is, however, a large area of 
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chemometrics devoted to process analysis. This looks at a chemical process as a 

whole, relating the conditions of the process and its input to the properties and 

qualities of the outputs. 

The use of chemometric techniques in everyday chemistry is becoming increasingly 

prevalent, the range of problems to which chemometric techniques can be 

successfully applied is increasing rapidly. Largely this can be put down to an 

evolution in the use of chemometrics, a sort of natural selection takes place, i. e. 

techniques that provide robust reproducible and useful results proliferate, while less 

robust or poorly defined techniques become neglected. It takes considerable time for 

theoretical work to be converted into practical applications in any discipline and this 

is no different in chemistry. Many areas can be quite conservative, which is because 

after applying and developing new techniques the methods can be very expensive, as 

well was time consuming. As in any field, a few people will champion new ideas, as 

they receive the benefits, more researchers will begin to use the techniques and true 

growth will begin. 

Much of the needed fundamental work has been done, current methods have been 

shown to be successful and applicable. Chemometrics is doing well in shedding its 

roots, it began life as a few obscure statistical tools useful to psychologists in the early 

twentieth century, much of this work was published by people like Hotelling [6,7,8, 

9], Bartlett [ 10,111 and Thurstone [ 12] (though many of the mathematical premises 

date from the nineteen century). These roots are apparent even in many of the more 

modem and respected works on the subject for example the one by Malinowski, 

Factor Analysis in Chemistry, Wiley, 1992 [4]. 
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While a proper definition of chemometrics shows its roots in all the uses of statistics 

with chemistry, this work will consider two distinct sections. The first section of 

techniques considered are those to do with calibration and regression. While this 

includes ordinary linear regression and multivariate linear regression, together with 

non-linear variations, the section will be considered as factor analysis techniques, 

though none of these two techniques properly belongs to this category. A definition 

of factor analysis can be obtained from Malinowski [4], "Factor analysis is a 

multivariate technique for reducing matrices of data to their lowest dimensionality by 

use of orthogonal factor space and transformations that yield predictions and / or 

recognisable factors ". Malinowski, in this definition, considered factor analysis to be 

a single technique however many methods can be considered factor analysis. 

The second section considered is that of process analysis, and process control. These 

techniques look at data from mostly large-scale processes. The analysis of process 

analysis data can make use of factor analysis techniques, however it is mainly 

concerned with techniques such as ANOVA, CUSUM, t-tests, F-tests and Shewhart 

charts, among others. 

Chemometric techniques are widely applied to a variety of problems, including 

comparison of methods, experimental design, calibration and modelling, outlier 

detection and class separation. 

7.2. History of Chemometrics 

The techniques that form the core of chemometrics today (factor analysis techniques) 

did not start in the chemical field. The first few steps towards modern factor analysis 
techniques were slow and took many years of development and refinement. 
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Factor analysis techniques can be traced back to 1901, and the paper by Pearson [13]. 

Pearson's paper is not the first work to examine the axis of an ellipsoid but his work 

was the first to describe the lines and planes of best fit through such a system. Also, 

unlike any earlier work his method did not assume two or three dimensions, but was 

equally applicable to multi-dimensional space. Pearson did not describe lines or 

planes other than the principal one. It was left to Hotelling in 1933 [6] to provide the 

necessary rigorous definition of procedure to extract the principal axes and those axes 

that successively describe information within the data space. Pearson also assumed 

that any such data space would be ellipsoid, ignoring the possibility of non- 

symmetrical data. This flaw was quite serious, and one consequence of this was that 

the order in which the rows and columns of a data set were presented to the algorithm 

affected the results produced. This problem seriously affected how this technique was 

received, and it also followed through to much of the work over the next few years. 

Many of the papers produced between 1901 and 1954 were to do with this problem, 

various authors argued over the merits of their various techniques. L. L. Thurstone 

and his son T. G. Thurstone argued for many years in print about each other's 

variations, though they also collaborated on papers as well [12]. Although they both 

did much to advance both the techniques of factor analysis and the coverage that those 

techniques received by chemists, they also damaged the view many held of these 

techniques. Most people of this time held that the univariate techniques of the time 

were superior to the new factor analysis methods. Fisher and MacKenzie in 1923 [14] 

argued that PCA was sometimes a superior method to ANOVA for examining the 

causes of variation within a data set. In the same paper they also proposed a 

modification to principal components that was to form the basis for Projected Latent 
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Structures. In the most part these techniques were ignored by chemists, and the 

method that would become PLS proposed by Fisher and MacKenzie was also ignored. 

Psychologists in the `20's and `30's provided most of the work in factor analysis of 

that time. Psychological research of that period was concerned with the underlying 

properties of intelligence, which they referred to as factors, and they looked at 

techniques that extracted these factors. 

H. Harmon [15] was one of the first chemists to consider the applications of factor 

analysis to chemistry, publishing in the 1960's, though others such as Higman 

published at the same time. In 1964 C. Radhakrishna Rao published a review of 

factor analysis used in chemistry [16] , he suggested that the tide of public opinion 

towards factor analysis had turned in its favour. He also showed that many of the 

methods were clearly superior to the univariate methods otherwise used. The 

problems due to inconsistencies in calculations mentioned above were mostly 

resolved by this point. The mainstream maths of such routines as PCR, PCA, cluster 

analysis and related techniques were all well documented, understood and respected. 

PLS was fully developed by H. Wold in 1964 [17], from the paper in 1923 by Fisher 

and MacKenzie [ 14], and then further modified by his son, S. Wold [ 18]. Excellent 

papers in the subject was later written by Paul Geladi and Bruce Kowalski [19] (1986) 

and S. Wold again in 1989 [20]. 

Much of current work is in developing variations or complimentary processes rather 

than entirely new methods, and in determining the optimum chemometric approach to 

use for the mathematical analysis of data, [21,22,23]. 
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1.2.1. Application of Chemometrics 

Chemometrics has a very wide application, and grouping different techniques can be 

problematic. Possibly the easiest grouping, and also one of the more useful is that 

into supervised and unsupervised methods. 

1.2.1.1. Unsupervised Methods 

Unsupervised methods are those where there is only an X-block data set, i. e. no 

calibration / quantification information is provided. Such a data set might be from the 

spectroscopic analysis of a group of petrol samples, where only the samples have been 

provided, and no qualitative or quantitative information about the petrol being 

examined. Unsupervised methods can be used here to remove noise, provide 

smoothing, and examine the relationships between the different petrol samples, which 

might come from several different manufacturers or be of differing octane ratings or 

grades. Unsupervised methods are often used for exploratory data analysis, where the 

relationships between the rows or between the columns of the data set can provide 

useful information. 

1.2.1.2. Supervised Methods 

Supervised methods are used where both an X-block and a Y-block data set are 

provided, i. e. the spectra of the petrol samples could be provided together with the 

octane rating, the manufacturer and the concentration of some of the additives. 

Supervised methods can be used to group the petrols by manufacturer, or by grade, or 

octane rating, and they can be used to determine the relationship between the spectral 

information and for example the octane rating of the petrol. This would enable a new 

petrol sample to be analysed by the same method, and its octane rating calculated 

13 



rather than tested. If the method used to examine the samples was a cluster analysis 

method the new petrol sample could be assigned to a manufacturer, or grade type. 

1.2.1.3. Spectroscopy 

Chemometrics can be used for calibration in most spectroscopic methods [24]. Linear 

Regression, Multivariate Linear Regression, Principal Components Regression, and 

Projected Latent Structures have all been used for direct calibration / prediction of 

spectroscopic results. Spectroscopic methods include near infrared spectroscopy 

(NIR), ultraviolet spectroscopy (UV), ultraviolet-visible spectroscopy (UV-Vis), 

infrared spectroscopy (IR), diffuse reflectance infra-red Fourier transform 

spectroscopy (DRIFTS). These techniques all examine the relationship between a 

matrix of independent data (X-block or spectral information) and a matrix of 

dependent data (Y-block or concentration information). These terms will be used 

interchangeably depending on circumstances. These methods will be examined in 

detail later in the chapter. These methods are not exclusive to spectroscopic data, and 

further applications will be discussed. 

Also used with spectroscopic data, though again not exclusively, are other techniques, 

1.2.1.3.1. Kalman filter 

The Kalman filter was developed in the field of electronics by Rudolf Emil Kalman, 

as a useful method of removing noise from signals. The Kalman filter is an iterative 

least squares estimator that can be used to determine the correct linear response in a 

system perturbed by Gaussian noise [25]. This is useful in spectroscopy to remove 
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noise from spectra and to compensate for the effects of drift. The Kalman filter is a 

supervised method. 

1.2.1.3.2. Cluster Analysis 

Cluster analysis refers to techniques that examine the relationships between rows or 

between columns of a data set. This provides information about underlying factors 

that explain the information in a data space. In the petrol example used earlier cluster 

analysis would group the samples according to the biggest underlying source of 

variation. The clustering could be by manufacturer though as this is an unsupervised 

method there is no way to determine which manufacturer, or even if it is the 

manufacturer that has caused the clustering seen. Cluster analysis is normally carried 

out using a factor analysis technique as clusters can be seen to be related to 

underlying factors in a data set. Principal Components Analysis (PCA) could be used 

to carry out this task. 

1.2.1.3.3. 
. 

Hierarchical Cluster Analysis (HCA) 

Hierarchical cluster analysis is a method by which the similarities between different 

rows or samples of a data set can be determined. This is performed by taking a vector 

from the data set and comparing it to the other vectors in the data set. The way in 

which the similarity is determined is dependent on the type of clustering carried out, 

most methods are based on the standard deviations and correlation's between vectors. 

The measure of the distance between two vectors is know as the Mahalanobis [26] 

distance, and is normally scaled to between one and zero, one being identical samples, 

zero being orthogonal. Vectors are examined one at a time and assigned to clusters, a 

cluster can consist of a single vector. The method by which a vector is assigned a 
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cluster can have a large effect on the type of clustering observed (Figure 1.1)., The 

three most common method of assigning clusters are nearest neighbour, furthest 

neighbour and cluster centroid. 
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1. Nearest Neighbour. 
The vector A is 
considered, the cluster to 
which it is linked is the 
cluster that has the point 
closest to A in it. 
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2. Furthest Neighbour. 
The vector A is 
assigned to the cluster 
in which the furthest 
point from A within 
that cluster is closest to 
A. 
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3. Cluster Centroid. 
A is assigned to the 
cluster with the 
centre of gravity 
closest to A. 

Figure 1.1 Three types of clustering used In Hierarchical Cluster Analysis 

In all these cases (Figure 1.1) if the point A falls out side a certain clustering criteria 

it forms a new cluster. HCA can be carried out on raw data, pre-processed data or on 

principal components or latent vectors. The output of a HCA is either a table of 

distances, or a dendrogram (Figure 1.2). 

In the case of the petrol example the histogram may group the samples by 

manufacturer, then by grade, or the other way round, or may show an entirely 

different clustering system. The way in which the samples are clustered could be 
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greatly affected by the clustering method chosen. The difference could cause a 

change between clustering by grade to clustering by manufacturer. 

Figure 1.2 An example of a dendrogram showing random data 

Discriminate Analysis 

Discriminate Analysis is the name given to the group of techniques that look at 

assigning classes to groups of objects based on information about the data set [3]. 

Discriminate analysis is a supervised method. Class modelling can be seen to arise 

when the attribute to be predicted is discrete rather than continuous. In discriminate 

analysis a training set is used where the correct class assignments for each sample is 

known, a model is constructed, and an unknown sample can then be projected against 

the model to determine its correct class. This is commonly used in the food and 

drinks business, where for example a sample of wine analysed by UV spectroscopy 
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can be modelled to show which grapes were used to make it, and within grape types 

which growing region the wine came form. 

SIMCA [27] is an old class determination method, and while it is still used it has 

several flaws. SIMCA uses factor analysis on each cluster to build a model of all the 

clusters present, new samples presented to the model are matched to each cluster until 

the cluster is found with the smallest amount of residual error. SIMCA cannot work 

effectively when the number of samples in each cluster is too small, so the data sets 

required to calibrate can be quite large. SIMCA is not robust when the clusters have 

distinct sub groupings, or when the clusters are too close together. SIMCA will 

however indicate when a sample could belong to more than one group, and it can also 

indicate when a sample does not belong to any group. 

Another key discriminate analysis method is KNN [3], unlike SIMCA KNN is non- 

parametric, which means that detail within clusters is not as significant, and that the 

clusters can be any size. With KNN there is no within class modelling, the 

determination is entirely done using the distance measure (Mahalanobis distance). 

When an unknown sample is presented to a KNN model its distance measure is 

calculated, and this measure is compared to the K distance measures closest to it, the 

new sample is assigned to the cluster which has the most members within the K 

nearest measures. KNN will work with sample poor data, and if weights are used can 

assign unknowns to a cluster with only a single member. However KNN will always 

assign a new sample to an existing cluster, which can be an important consideration. 

Using the petrol example a training set of petrol spectra together with information 

about who manufactured each sample could be used to develop a model, the spectral 

information from an unknown sample could then be taken and used to determine 

which manufacturer produced that particular sample of petrol. 
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1.2.1.3.5. Iterative Target Testing Factor Analysis (ITTFA) 

ITTFA [4] extracts factors from a data set that contain information. These factors can 

be rotated to correlate to real world properties (Rotation is examined in the chapter on 

factor analysis 1.6.4). The number of factors within a data set is fixed however the 

alignment of those factors within the data set is open with an infinite number of 

possible orientations for any non-singular data matrix. (The problem of singular 

matrices will be examined in the chapter on factor analysis 1.6). As an example, with 

an UV spectroscopy data set of a solution of metals ITTFA can be used to extract the 

molar extinction coefficients for the metals in the solution. This is easy with UV 

spectroscopy because the UV signal for each component is Gaussian and linear as 

long as the solution obeys Beer's law. ITTFA can be seen to be a search method, 

examining a data space for factors that obey certain criteria, in the petrol octane 

example, ITFA would extract the spectra for the pure components of the petrol 

samples. 

1.2.1.3.6. Target Factor Analysis (TFA) 

TFA [4] uses many of the same principles as ITTFA, namely that are extracting 

factors according to real world rules. In the case of TFA factors can be extracted 

from a data space that correspond to input vectors. With spectroscopic data the input 

vector can be a pure spectra, the data space is decomposed into factors that include the 

target vector. This can be used to determined whether the target vector exists in the 

data space. In the spectroscopic example the data space can be tested to determine 

whether the component that formed the target vector is present within the sample that 

produced the data set. 
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This method would enable spectra of petrol samples to be tested for the presence of a 

certain additive. 

1.2.1.3.7. Principal Component Analysis (PCA) 

Any non-singular matrix can be decomposed into two different matrices, the 

combination of which will reproduce the original data matrices exactly [28]. The 

exact details of two possible methods of carrying out this operation will be covered in 

detail in the chapter on factor analysis. In principal components analysis the 

decomposition of the data matrix is constrained such that the variance within the data 

set is described by the new theoretical axes produced in order of decreasing variance. 

Thus the first principal component will contain the greatest amount of variance, the 

second component the next greatest and so forth. 

PCA is a useful tool for exploratory data analysis because by plotting the data set on 

the new axes formed by the principal components the relative distribution of variance 

within the data set can be discerned. Groupings of objects of similar structure will 

occur, and data points that are outliers can become more clearly recognisable. 

Likely clustering in the case of petrol samples would be by grade, or manufacturer, 

information about which portions of the spectra were important for the clustering 

shown could be obtained as well. 

1.3. Calibration & Regression 

Calibration is the name given to the process of relating one data matrix to another. 

This could be in the form of an input to a system to an output or property of the 

system, or of an output of a system to a property of a system. Calibration depends on 
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the relationship -X °C ), this can be a direct linear relationship, an inverse 

relationship, a non-linear relationship, an inverse non-linear relationship, or any 

combination of these. If there is no relationship between the two (or more) data sets 

then no information transfer can take place. By convention the X data set is referred 

to as the Independent data set, and the Y as the Dependent data set. The X data set (or 

X-Klock) is normally a measured value, the Y data set (or Y-block) can also be a 

measured value but in chemical systems is as likely to be a calculated value, e. g. 

weight. concentration, percentage. 

+ 
Ylock 

_ 
Model X-Block IF I] 

New X-Block +I Model 
= Predicted Y-Block 

l 

Once a Model has been built relating the X-Block 

to the Y-Block that information can be used to 

Predict Y-Block values for new X-Block Data 

Figure 1.3 The principal behind regression modelling 

Regression is the term given to the method of carrying out calibration. "thus in the 

simple system of a gas in a closed volume, the output could be heat, and the measured 

property the pressure. The calibration would he the process of relating the heat in the 

system to the pressure. Regression would be the method by which the relationship 

between the heat input and the pressure is determined (See Figure 1.3). 

In a spectroscopic example the X-block would he the measured spectra of a sample, 

the Y-block could be the calculated concentrations of the components of the sample, 

calculated from the known mass of material that formed the sample. 
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Although the above statement implies that calibration examines two analogue values, 

the term calibration can also be used in the discrete sense of assigning a class to a 

sample as would occur in cluster or discriminate analysis. 

There are great number of possible regression methods, the choice of the regression 

method is determined by the type of system being examined, and the information that 

is sought. In the case of an ideal gas in a closed system, the relationship between the 

temperature and pressure is a very simple one (equation 1.1), 

Y=mX+C. (1.1) 

With a non-ideal gas over a large range of temperatures and pressures then this simple 

equation will not provide an accurate solution, as the range of values becomes more 

extreme then the results will have greater amounts of error. A more sophisticated 

model is required, containing more parameters. 

Standard linear regression is sufficient in some cases, but often the number of 

independent variables is greater than one. The number of dependent variables can 

also increase. In the early days of spectroscopy a spectroscopic instrument, a 

spectrometer might only be capable of measuring the response of a sample at a single 

wavelength at a time, thus simple linear regression would enable a calibration to be 

performed. This is a workable solution as long as the sample being measured is 

simple, there are no interfering matrix elements, and the instrument carrying out the 

measurement is reliable and free from drift. It was quickly found that calibrations 

carried out using measurements from several different wavelengths were more 

reliable and provided results with less error. Thus, linear regression was no longer 
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enough as more variables needed to be included in the calibration. Multivariate 

Linear Regression (MLR) is a method of including more than one variable into the X- 

block of a regression calculation, MLR involves minimising the least squares solution 

to equation 1.2 

Y= ý0 + 
181 

+ 
182 

X2 + ß3 x3 
..... 

ßn x. (1.2) 

Using MLR the response or more than one frequency from a spectrometer could be 

included in a calibration. MLR has many problems, which will be discussed more 

fully in the section on MLR (1.5), and other methods were developed to removed 

these weaknesses. These methods include locally weighted regression (LWR), 

principal components regression (PCR) and projected latent structures (PLS). 

In the three cases mentioned above, PLS, PCR and LWR, the principle equation is 

identical, however the terms corresponding to X are linear combinations of the 

original variables rather than the variables themselves. In PLS and PCR the functions 

that relate the linear combinations to the dependent data set are constant, in LWR they 

vary across the response surface to account for non-linearity's. 

LWR is used only for calibrations using non-linear response data, by modelling linear 

sections of the data, and the whole calibration is then composed of many smaller 

linear models. PCR and PLS can be modified to model non-linear data, however this 

takes the form of a non-linear function relating the linear combinations of the original 

variables to the dependent variables. PLS and PCR can also be used on non-linear 

data when the data set itself has been linearised. 
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1.4. Data Pre-treatment 

Chemometric techniques are all mathematical algorithms, they will all work on any 

appropriate sets of numbers. The results obtained from the use of the chemometric 

technique selected will vary with the quality of the data used. An essential task in any 

chemometric analysis is the determination of the appropriate technique to use, the use 

of an inappropriate technique will not provided any useful information. Often the 

difference between a high quality data set and a poor one, or the correct selected of 

technique and the wrong one can be affected by any pre-treatment that the data set 

undergoes. 

Pre-treatment involves modifying a data set so that the useful characteristics are 

enhanced. 

There are three main ways of pre-treating data, detecting outliers, smoothing the data 

set, and scaling the data set. All these processes can be applied to a single data set, 

though it is unusual for more than one method of a particular type to be used on a 

single data set. 

1.4.1. Outliers 

Outliers are samples or values within a data set that do not appear to come from the 

same population as the rest of the samples or values. Outliers are not extreme values 

within a data set, they are values from a different population. This means that it is not 

sufficient to calculate that a point is extreme for a data set and remove it, some valid 

reason must exist to exclude a sample from a data set. Samples and values within a 

data set can be tested to determine whether they qualify as outliers, but they must also 

be examined to determine the reason that they are outliers. The most common form 

24 



of outliers are from measurement errors, particularly when there is a human transfer 

of information. Typographical errors account for the vast majority of outlying 

samples found in process analysis data sets. Typographical errors can be rectified if 

the original source document exists. 

1.4.1.1. Dixon's Q test 

The Dixon Q [29,30] test is a simple test to determine whether a single point is an 

outlier. The test is carried out by examining the relationship between the suspected 

outlier and its nearest neighbour, and the span of data including the suspect value 

(equation 1.3). 

Q= (xl-x2)1(xn-x) (1.3) 

where xl is the suspect value, and x2 is the nearest neighbour to the suspect value. 

The Q result cross-referenced with the Q table of expected values, if the Q value 

exceeds the tabulated value the sample is considered an outlier. The test is easily 

carried out, however it is not effective when there are several suspect points. The test 

is best used for small data sets or single vectors. 

1.4.1.2. Grub's Test 

The Grub's test [29][30] is an examination of the standard deviation of a vector with 

and without the suspect value, or can be calculated as simple value derived from the 

mean of the vector together with- the suspect value and the standard deviation. The 

two forms are as follows, equation 1.4 & equation 1.5. 

(ýý xJ G= s 
(1.4) 

where G is the test value, x, is the suspect value, x is the mean value, and s is the 

standard deviation. 
ý''*vaýll 
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Or, 

R=1001-5' 
S 

(1.5) 

from equation 1.5 where R is the percentage reduction in the standard deviation when 

the suspect sample is removed from the vector, s, is the standard deviation without 

the suspect sample, S is the standard deviation with the suspect sample. 

The Grubs test is useful however its value decreases with increasing size of test 

vector. 

1.4.1.3. Standard Deviation 

Where there is a large vector to be tested, or many outlier are suspected then another 

useful method of examining outliers is by taking the standard deviation [29,30] for 

the data set, and examining points that exist beyond a pre-determined limit, often ±3 

times the standard deviation. This method is useful for examining large data sets, and 

will often remove values that might distort a model however, care must be taken to 

examine removed values to determine their true status. 

When factor analysis methods are applied to a data set there are other opportunities to 

examine the data space for outlying points. If principal components are taken from 

the data space, the original data set can be redrawn onto the new axis, and the values 

for the scores and loadings examined for outliers rather than the original values. This 

has the advantage that values are considered as outliers on the basis of their response 

within several vectors as'opposed to just on the basis of a single extreme point. The 

methods already examined can be used with the scores and loadings from the data set. 
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Iterative target testing factor analysis can be used to determine whether a vector 

within a data set is taken from the same population as the rest of the data set. The 

vector to be tested is used as its own test vector, the resultant vector is compared to 

the original vector using an F-test. The significance level shows whether the two 

vectors are the same, if they differ the test vector is not from the same population as 

the rest of the data set and could be considered an outlier. 

In all cases of outlier detection the vectors can be row or column vectors, though there 

should a valid reason for testing the data set by row or column. There is little reason 

to test for outliers within spectra, as opposed to testing by sample. 

Samples should not be removed as outliers just because these tests indicate that 

mathematically they appear to be outliers. Each potential outlier should be considered 

to examine its reason for appearing different to the rest of the population. 

1.4.2. Smoothing 

Smoothing is the process of distributing random noise across a data set, the principle 

being that the random nature of the errors present will cause the error to cancel each 

other out. Smoothing also works for some type of systematic error, such as when 

there is a baseline drift on a spectroscopic instrument. Smoothing does tend to 

broaden peaks, so if the peak maxima have shifted on an instrument the smoothed 

spectra will tend to help counter this because the peak maxima will be spread across 

several wavelengths. This means that neighbouring wavelengths will provide the 

same information as might be found at the normal peak maxima. 

Smoothing tends to hide unique events, spreading them across a sample. This means 

that smoothing is totally inappropriate for certain types of data, this includes process 

analysis data, and process measurement data. In the analysis of samples from a 
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process, the readings taken for different samples must remain discrete, this also 

applies to instrument readings from a process, individual readings will be from 

different times, sensors and even batches. 

The most frequently used type of smoothing is moving average. Here a window of 

values is taken, and the average of the values in the window replaces the value at the 

centre of the window. The windows moves through the vector from one end to the 

other. This size of the window taken reflects the amount of smoothing required, the 

larger the window the greater the smoothing and the more information lost. 

1.4.3. Scaling 

Scaling a data set can be used to correct certain types of problems with a data set, or 

to adjust a data set to highlight features of interest. Scaling a data set can included 

modifications made to account for non-linearity. Scaling is used to counter non- 

linearity in a data set, and it is used to enhance features. 

Any vector will have a standard deviation (equation 1.6), 

]I/2 
ýIVP (x, 

K -XK)Z (1.6) SK = 
NP1- 1 ; =i 

and a mean (equation 1.7), 

x 
x=n (1.7) 

the standard deviation is an indication of the degree of variance in a vector and its 

magnitude within the vector, and the mean will indicate the average values for the 

vector. When the vector is from a single population and is normally distributed these 

two statistics are useful descriptors for the data set. When there is more than one 

vector being considered, any large differences in the standard deviations and means of 
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the vectors can have a significant effect on the results of any calculations carried out, 

particularly any factor analysis techniques. Factor analysis techniques look to extract 

useful information from a data set, large variation in the standard deviations and 

means of a data set can mask the variation that is required to produce the model. One 

possible method of reducing the influence of variations in magnitude and variation 

between vectors is to use scaling methods. 

1.4.3.1. Range Scaling 

Range scaling is carried out by dividing the values in a vector by the maximum 

absolute value in the vector (equation 1.8). 

xi x; = xmax 
(1.8) 

this has the result of scaling a vector between 1 and -1. This does not centre the mean 

to zero however, though the mean may coincidentally be zero. Range scaling 

removes the effect of magnitude from a set of vectors, however it has no effect on the 

variance within the vectors. 

1.4.3.2. Mean Centring 

Mean centring sets the mean of a data set to zero. This is carried out by subtracting 

the mean of a vector from each value in the vector (equation 1.9). 

xi=x, -. x (1.9) 

mean centring enhances the variance in a vector, this can have unexpected results on a 

data set when the vectors have similar magnitudes but widely differing means. 
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1.4.3.3. Autoscaling 

Autoscaling sets a vectors mean to zero, and its standard deviation to one. This 

removes the influence that magnitude and extreme variation might have. Magnitude 

distorts factors extracted from a data set because either the coefficients must 

overcompensate for the extreme values, or the factors selected are biased towards the 

vectors with large magnitudes. Overcompensated factors lead to greater noise in 

predictions. Extreme variation overemphasises vectors containing noise in 

comparison with vectors containing information. 

Autoscaling can be carried out using the following formula (equation 1.10). 

xt 
XIK - XK 

iK 
K 

1.4.3.4. Linearisation 

It is often easier to linearise the data set rather than try and develop an non-linear 

model. If the non-linearity within a variable or data set is constant across the range 

then it may be possible to linearise the variable. This requires that the type of non- 

linearity be determined, such as a log term, cube term e. t. c. The best method for this 

is to make use of knowledge about the system being examined. Chemical knowledge 

can often indicate what the non-linear term within a system might be. An 

examination of the normality of the variable can provide information, the chi-squared 

test can be used to determine how the variable differs from normal, which can give 

information about non-linearity. Herteroscedatic residuals can also indicate non- 

linearity, though heteroscedatic residuals are also symptoms of systematic noise or the 

result of other types of scaling. 
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Once the type of non-linearity has been determined then the vector can have the 

appropriate function applied to it. 

If the type of non-linearity cannot be determined then either trial and error may lead 

to the correct solution, or a non-linear model could be developed. 

1.4.4. Chi-Squared Calculations 

The Chi-squared calculation [30] is designed to provide information about the 

distribution of points within a data set. This is useful both as a test for normality, and 

also as a method of determining the profile of the population that a series of points 

comes from. The Chi-squared calculation requires the mean and standard deviation to 

be calculated, this can be calculated from the data set, or used as a target for an 

analysis. The distribution of points within a data set can be compared with the 

distribution that should exist for that data set with its given mean and standard 

deviation. 

1.5. MLR 

Multivariate Linear Regression (MLR) is essentially a method of solving a system of 

simultaneous equations (equation 1.11). The aim is to find the coefficients for the 

independent variables that will allow the calculation of the dependent variable. 

yl= 
ß0+/" 

1L1 lI+/" 2! 112+ß X13... +ßIX11+e1 

Y2 = 
ß0+/" 

111 21+ß2l1 22+ß31l 23... 
x'16, X 

21+e2 

(1.11) 
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Q represents the linear regression parameters, these can only be determined in limited 

cases, normally b is taken, the linear estimation of fl. 8 can be calculated when the 
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number of coefficients is the same as or less than the number of samples (rows), the 

mean of the random errors is zero, and they are normally distributed. 

Where no exact solution is possible, a solution is obtained to satisfy equation 1.12 

where the error term is minimised: - 

E=Ijxb-yll (1.12) 

When the number of variables is greater than the number of coefficients, the over 

determined case, and when the number of variables is less than the number of 

coefficients, the under determined case, no exact solution is possible as there are an 

infinite number of possible solutions. In most modem chemical systems, either one 

situation or the other exists. In spectroscopy modern scanning instruments can 

measure several thousand variables with ease, measuring the same number of samples 

would be problematic. In large scale chemical processes measurements can be taken 

every second for a number of variables, quickly building a data set with many times 

the number of samples compared to variables. 

The solving of simultaneous equations is essentially a matrix manipulation problem. 

MATLAB is the ideal tool to use in this situation since MATLAB is designed 

specifically to handle matrix manipulation. The regression coefficients can be 

calculated using simple matrix operators. 

Starting with the term to be minimised, the squared length of the error term (equation 

1.13), 

E2 = (xb-y)T(xb-y) 
EZ=xT xb2-2x'yb +y" y 

(1.13) 

this is minimised by taking the derivative with respect to b, setting b to zero (equation 

1.14) 

32 



2T 

dE 
= 2xT xb - xY Y=0 (1.14) 

db 
which gives equation 1.15, 

T 

xy (1.15) 
T 

xx 
because of the relationship with equation 1.16 

T 

x= lx, T 
x xr 

(1.16) 

xx 
this becomes equation 1.17, 

(1.17) b=(XT (X'xT Y 

and from this, 

ýxT x' xT (1.18) 

is the right pseudo inverse (equation 1.18), MATLAB ® uses the right pseudo inverse 

when the forward divisor (/) is used, the calculation of the regression coefficients can 

achieved using a single line of commands written in MATLAB S. 

MLR has a number of drawbacks. In the over and under determined systems the 

coefficients, b, can vary widely with just a small variation in the data set, this is 

particularly true when the independent data matrix is nearly singular. This is when 

the rank of the matrix is less than the dimensionality, in practise this is when one 

column of a matrix is collinear with another variable, or combination of variables. 

This problem can be demonstrated very simply. 
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x is not quite singular, and the calculation of b appears to give reasonable answers 

(equation 1.19), however if y is changed slightly (equations 1.20 & 1.21), the 

coefficients can vary widely. 
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In ICP and UV spectroscopy this is a particular problem as the peaks produced are 

normally simple Gaussian curves. Thus any group of samples with little error and 

only one component is likely to produce a data set that is nearly singular, even some 

of the more complicated data sets can suffer from this. 

Although there are a number of modifications to MLR that can be made to 

accommodate these problems, the best solution is to move to a different approach. 

One of the more successful group of methods are factor analysis techniques, these 

include PCR and PLS. 

7.6. Factor Analysis [4] 

34 



In the calibration of equation 1.22, 

(1.22) bX+E=Y, 

the data set X can be considered to be composed of an information term and an noise 

term (equation 1.23), 

x=i+e. (1.23) 

Unmodified it is difficult to separate the information from the noise. Smoothing can 

be used to help with this, but most forms of smoothing assume normal and random 

distribution for error, in many cases, error is neither normally distributed nor random. 

Smoothing also makes no allowances for noise within the data set that is information 

not useful to the model being built. If the variables that -form the data set can be 

recombined into a form where the information is already separated from the noise and 

error then this problem can be solved. 

Factor analysis is a method of producing a linear combination of the original variables 

where the noise term is separated from the information term. The way in which this 

occurs depends on the actual factor analysis technique being used. 

All factor analysis method relies on the basic principal that any non-singular matrix 

can be decomposed into two other matrices (equation 1.24). 

x =Utv , n*m n'm m*m 

(1.24) 

The rules that are used to generate the two matrices determine the type of information 

produced. If the factor analysis method being considered is Principal Components 

Analysis or Principal Components Regression, then the equation to be considered is; 

DP=AP, (1.25) 
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In this case (equation 1.25), pi is an eigenvector, and ý-i is its corresponding 

eigenvalue, and D is the covariance matrix from the data set. In principal components 

analysis or regression p is known as the loadings, and provides information about the 

columns (variables) of D. Information about the samples or rows of 'D can be found 

by calculating equation 1.26. 

t=Dp, (1.26) 

the matrix t is known as the scores. 

DP =A P (1.27) 

In equation 1.27 the values for are calculated individually by iteration. The result of' 

this is that the first vector of p will describe the most variance from the data set. The 

second vector of p will describe the next greatest axis of variance. 
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Figure 1.4 Graphical representation of how two principle components could be derived 
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The above figure (Figure 1.4) shows ten points plotted at random. These points could 

be re-plotted on new orthogonal axis that pass through successive quantities of 

variance. The line labelled PC1 passes though the greatest amount of variance, with 

only two dimensions only one other axis is possible, and this passes through the next 

greatest variance with the constraint that it is orthogonal to PC1. If this were a 

calibration, PCI would represent the least squares best fit between the points [1.5,4.0, 

3.7,2.0,9.0,3.0,6.6,9.0,8.5,11.0] (X) and the numbers 1 through 10 (Y). If it is 

assumed that the relationship between these two sets of number is linear, and that the 

error is entirely in the X axis, then vertical distance between PC1 and the points 

would represent error in the measurement of X. 

If information about the relationship between the original axis and the two new axis is 

retained (the loadings) and the positions of the points on these new axis (the scores) is 

produced then no information is lost and the original data set can be recreated with no 

loss. If only the information about the positions of the points on PCl were taken, 

which represents the true relationship between X and Y, then it can be seen that the 

information in the data set has been separated from the noise. This example uses only 

two variables, however the principle can be expanded to many dimensions. In PCA 

the data set is redrawn on new axis that describe successively smaller portions of the 

variance. By taking only the principal components that contain information the noise 

in the data set can be discarded. The points on these new axis can then be regressed 

using MLR against a quantifying variable and the process is then principal 

components regression (PCR). 
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In the decomposition of the data matrix that leads to PCA and PCR there are two key 

properties of the resultant matrices that force a single maximal solution to the result. 

Starting from equation 1.28, 

(1.28) Dp, = 2; p, , 
or equation 1.29, 

ID-A I 1=0, (1.29 

whereD is non-singular, and has n real non-negative roots (equation 1.30) 
n*n 

(eigenvalues), 

Al ýý 22ý23ý... An, (1.30) 

pT *p . 1, (1.31) 
!r 

that is the variance captured by each component is maximal (equation 1.31), 

and from equation 1.32 and equation 1.33 it follows that 

ti=D p; '. 
(1.32) 

ti*tJ=O, ij, (1.33) 

that is that the new vectors (equation 1.2) are orthogonal (equation 1.33). 

Using these equations the eigenvalues and eigenvectors of the matrix D can be 

determined by successive approximation, an approximation for pi is entered, ý-i is 

determined, then pi is recalculated. This is repeated until there is no change in the 

value for pi. The first loading is multiplied out by the data matrix, to give the scores 

for the first component (equation 1.34), 

t, =D p, ' (1.34) 
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the data matrix is recomposed from the first principal component and this is 

subtracted from the original data matrix (equation 1.35), 

D =D 
(1.35) 

the second principal component can then be extracted by the same procedure from 

D. This is repeated until n components have been removed, all that remains in 

D *should be the electronic error. With MATLAB on a Pentium ][ computer the 

electronic error is the value 2.2* 1016. 

This method is classical eigenvector decomposition, and is computationally 

exhaustive, it also can produce unstable solutions, and fails to converge with some 

data sets. This type of matrix decomposition is more usually carried out by Single 

Value Decomposition (SVD) to avoid these problems. 

1.6.1. SVD 

SVD [4] is a non-iterative method of decomposing a matrix that fulfils all the 

requirements of PCA (equations 1.30,1.31,1.32 and 1.33). 

Starting with a data set X, this can be expressed as equation 1.36, 
p*q 

X =L 
oo ]MT, 

where, 

(1.36) 

L &M are orthonormal, A is a diagonal matrix where the non-zero elements are the 

square roots of the eigenvalues of equation 1.37. 

X XT & XT X 91 (1.37) 

these are called singular values, and where equation 1.38 and equation 1.39hold, 
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2 

LT X XT L= 
A0 (1.38) 

L J0 0 
PsP 

2 

MTX XTM 
00 

(1.39) 
=00 

9'9 

thus, if 

Xp =A p, (1.40) 

(x-AI)p =0 (1.41) 

SVD is mathematically identical to PCA, and the properties of the resultant matrices 

remain the same however SVD is calculated in a single step from the original data 

matrix, rather than using an iterative method. In an examination of the scores and 

loadings matrices produced by these two methods, it can be seen that the numerical 

values in these matrices are not identical for the two techniques. 

1.6.2. PLS 

Projected Latent Structures (PLS) [4] is a method of decomposing an X block matrix 

and aY block matrix into vectors such that the resultant vectors from the X block are 

highly correlated with the vectors from the Y block. 

The result of this is that the coefficients of the X block variables that provide 

information relating to the Y block increase, while the coefficients for variables with 

no information tend towards zero. 

The PLS algorithm used in this work is the NIPALS [4] algorithm, which is based on 

the PLS2 procedure. The PLS2 procedure is different from the PLS I procedure in 
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that it allows the calculation of coefficients for data sets with more than one vector to 

the Y-Block. This has important implications for this work since the data sets 

concerned all have four vectors in the Y-Block, if PLS 1 were used the coefficients 

would have to have been calculated individually for each vector. The implication of 

this is that any multiple collinearity or interactions would be ignored during the 

calculations, and the variables selected would be calculated independently for each 

vector, this would lead to both redundancy in the variables selected and to the 

possible loss of information concerning overlapping peaks. 

NIPALS [4] relies on the mathematical fact that seen in equation 1.42, 

D3=Eu, s, v; (1.42) 

Where D is the Data matrix, u&v are vectors, and s is a scalar for all D where D is 

non-singular (A singular matrix has no inverse, and so cannot be used for these 

calculations). 

This expression can be seen in equation 1.43, 

D v, =u, s1 
(1.43) 

Here a randomly selected vector vi is selected and used to calculate s, & u, 

this is an approximation of u1, a better approximation can then be found by recreating 

V1 using equation 1.44 

T 

u, D=s, vi (1.44) 

This is repeated until convergence for a value of v1. This allows the calculation 

of DI the first approximation. The residual matrix is then calculated from equation 

1.45, 

Eý =D -Dº (1.45) 

41 



The next eigenvector v2 can then be extracted from the residual matrix. In 

each stage of the calculation of the vectors ul and vj the vectors are normalised to unit 

length to ensure orthogonality between the vectors. 

NIPALS describes the decomposition of a matrix into eigenvalues and 

eigenvectors however this is for one matrix and does not allow for a relationship 

between two matrices. NIPALS can effectively be used to carryout PCA however this 

can more effectively be done using SVD. NIPALS is useful in that it allows for the 

possibility of relationship between two matrices. If the eigenvectors are calculated 

simultaneously for two different matrices (equation 1.46 & equation 1.47), 

(1.46) Y p, = q; a, 

D v; =uis, (1.47) 

then a relationship can be found between pi & vj and q, & ui 

such as is seen in equation 1.49 and equation 1.50, 

w; q, = u; ßi. 49) 

ti p, = vj (1.50) 

thus for the first latent variable, an estimation of vi would be made, then an estimation 

of p;, then an estimation of t,, and so on, this process is cycled until convergence. The 

residual matrices are then calculated and the next eigenvector generated. This process 

can be stopped when the required amount of information has been extracted from the 

matrices. One of the major advantages of PLS is that this process can be carried out 

for more than one Y Block vector, this process needs to be carried out for each Y 

Block vector, producing a vector of weights for each. This can increase the time 

taken for the calculations considerably, the number of calculations required is 

multiplied by the number of Y Block variables. 



PLS provides both predictive information, allowing calibration of an X-block against 

a Y-block, and it also provides descriptive information about how the Y-block data 

affects the Y-block data. This diagnostic information is useful for fault diagnosis and 

error detection. One of the faults of any variable selection process is the loss of 

descriptive information in the X-block and that relationship with the Y-block, and a 

consequent loss of fault detection. The routine for variable selection presented in this 

paper is less susceptible to this problem than many other techniques because it does 

not concentrate on highly correlated variables or variables at the centre of peaks as 

most of the other techniques tend to do. This will be cover further later on in the 

paper. 

1.6.3. PLS vs. PCR 

PLS and PCR are possibly the most commonly used factor analysis techniques for 

regression analysis of two-dimensional data. Which technique to use is an important 

decision to make. In simple terms PCR maximises variance, and PLS maximises 

correlation. This will affect the choice of appropriate technique to select. When the 

information required for a calibration is a small part of the total variability of a matrix 

then PCR will have trouble modelling. This is because PCR selects principal 

components according to variation, the first components selected will not contain 

useful information, the required information will be in the smaller components. When 

the number of components in the matrix exceed the number of components for which 

there are Y-block variables then PCR will also have problems. This is due to 

unwanted variation for unknown components being captured in principal components 
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that also contain the information for wanted components. These considerations mean 

that for all but the simpler problems PLS is likely to provide an equal or better model. 

A general rule is that PLS will capture the required information for modelling with 

fewer latent vectors than PCR would require principal components and will have 

lower error. PLS can require more calculation to find a solution which means on old 

computers it may be a slower algorithm, this last point should not be a consideration 

with modem computers. PLS can also require more memory in the computers 

carrying out the calculation as a larger number of matrices are required 

simultaneously to carry out the calculations, this is also only a minor consideration 

with modem computers. 

1.6.4. Rotation 

Factor analysis methods can be considered as a form of rotation, the original axis that 

the data is displayed on are rotated so they have new properties more closely related 

to the problem being examined. This rotation produces abstract factors, that is, 

factors that have no meaning to the real world, there may be a requirement to change 

this however. Once the factors have been extracted they can be further rotated to 

align them with real properties. As an example, in ITTFA the factors are rotated till 

they equal the molar extinction coefficients of the components present, remaining 

factors beyond the number of components present a noise. 

When produced, the factors are formed in orthogonal pairs, that is that they are at 

right angles to each other, there are two types of rotation commonly used, rotation that 

retains that orthoganality of the factors, two methods of which are Quartimax and 

Varimax [31 ], and rotation that does not, this is known as oblique rotation, there are 
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many methods that are oblique, such as Oblimax, Quartimin, Biquartimin and Promax 

[32]. ITTFA is an oblique rotation method since it cannot be assumed that the molar 

extinction coefficients will be orthoganal to each other. 

1.7. 
, 

Variable selection 

Variable selection has been a recurring theme in chemometrics from since 

multivariate techniques were developed. The reasons for choosing variable selection 

vary, but three important reasons should be discussed. 

1. Although modem instruments are capable to recording thousands of wavelengths 

in a very short period of time, depending on the technique from milliseconds to 

seconds, this often comes at a price. Instruments capable of scanning large 

numbers of frequencies are often expensive, considerably more so that an 

instrument designed to scan just a few wavelengths. If the wavelengths of a 

spectrum that can be used to solve a problem can be identified then an instrument 

can be purchased to examine just those wavelengths. 

2. When thousands of wavelengths are scanned the problem of calibration becomes 

more difficult, in order to carry out a prediction a computer is required to carry out 

the thousands of calculations needed. If a satisfactory model can be developed 

with a small number of wavelengths then the problem becomes one that can be 

dealt with with a calculator. Predictions based on calibrations can be made by 

recording the responses at the selected wavelengths and simply multiplying by the 

appropriate coefficients. 

3. If there is only a single analyte of interest in a complex matrix the measurements 

of the responses of frequencies not of interest will introduce error into the model. 

It is possible to reduce this problem by selecting sections of a spectra to examine, 
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however this is a crude method in most circumstances and is not a precise as 

calculating the correct wavelengths to record. 

Most variable selection procedures are computationally expensive. The exception are 

those based on examination of either loadings coefficients or on correlations between 

the dependent and the independent data matrices[33] [34]. These two methods can be 

carried out rapidly since they only require one calculation of the relevant coefficients, 

though if the loadings are used to select variables then the calculations must be 

repeated after variable selection to ensure that removing certain variables does not 

unduly perturb the system. Removing a variable from a multivariate system can have ' 

a large effect on the corresponding coefficients, though the effect is larger with 

methods such as MLR and PCR compared with PLS. The computational expense of 

variable selection is rarely a reason not to carry out variable selection as modem 

computers can carry out most calculations in a reasonable period of time. 

An argument against variable selection is that reducing the dimensionality of a data 

set reduces the ability of the model to detect faults in the system being modelled. 

This is based on the fact that in process modelling the stability of the process under 

examination is often measured by examining the noise in the system. When the 

system is stable the noise will tend to be stable. Changes in the noise will indicate a 

change in the system that may require correction. This approach is common and 

works for any stable process, however if the process is examined by examination of 

the active components then this information is not entirely lost. Variable selection 

can make detection of unexpected matrix elements more difficult and if the situation 

calls for the detection of foreign materials in a process stream for example then 
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variable selection may not be appropriate. When the matrix is known to vary and it is 

still only the response of one of mode components of the matrix that is of interest that 

variable selection will allow a more robust model as it will not include error 

introduced by matrix elements that were not present during modelling. 

When the reason for a model is purely the prediction of one or more components then 

variable selection will invariably allow a better model to be built than could be 

constructed without. 

In most spectroscopic situations an ordinary MLR model will be hugely 

underdetermined, the number of variables will be greater than the number of samples 

for most situations. Variable selection can correct this. 

1.8. Model Building 

Model building is the process by which the relationship between the independent data 

matrix and the dependent data matrix is determined. Here the assumption will be that 

both matrices are two-dimensional. Methods that use three dimensional or greater 

matrices will not be covered here. An examination of the process required to model a 

data set against reference materials can be seen in the appropriate BS ISO document 

[35]. 

There are a series of steps to model building that should be followed, some of the 

steps have a greater importance than others. 

Initially it is important to know what questions will be answered by the model. This 

would normally be considered before all else as it will determine the type of model 
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built and the techniques used. This is normally a consideration as to whether 

quantitative information is required from the model, or qualitative. Some form of 

regression will be required for quantification and some form of classification will be 

required for qualification. Only regression models will be considered here. 

What information is available to build the model? This question is best asked, and 

answered, before any data is collected allowing experimental design to be used to 

optimise the whole modelling process. If this question is asked before the data is 

collected then experiments can be designed to collect the required number of samples 

of sufficient variation. Ideally the samples will span the possible range of responses 

required of the model. Any model required to predict beyond the range of input data 

will lack robustness. The range to be calibrated must be determined and samples 

collected to span that range for all components of interest, and ideally including 

information about possible interference and matrix effects. 

Once these steps have been carried out where possible, an initial examination of the 

data will give an idea of which of the appropriate techniques would be the best 

starting place, and the consideration of any pre-processing can be made. 

Unsupervised clustering analysis would provide useful information, indicating highly 

correlated variables, and any deviation from normality within the data matrix that 

might effect the modelling or type of modelling required. 

The initial analysis will indicate whether any pre-processing is appropriate. Spectral 

information may require correction for baseline problems, and some spectra will 

require modification to highlight the features of interest. For example NIR spectra 
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would normally require some form of derivative to be taken as the variation in the 

spectra that holds the required information will normally be only a small part of the 

variability within that spectra. 

Pre-processing will then be carried out. Pre-processing can involve several stages, 

dealing with missing values, with large data sets that can often be carried out by 

eliminating samples or variables that contain omissions. If it is considered 

inappropriate to remove whole rows or columns then the results must either be 

obtained by new experiments or calculated in some way, either interpolation, 

imputation or extrapolation. Extrapolation will reduce the robustness of the model. 

Interpolation can be carried out when there is strong autocorrelation within the 

variable, and imputation is carried out to retain certain properties of the data set. 

Interpolation carried out by calculating the missing values from the other X-Block 

variables is a step that will reduce robustness since this implies a degree of 

collinearity, and thus means that the matrix will be singular or nearly singular. 

Modelling with the appropriate technique is the next step. A good guide here is 

Occams Razor, the simplest model is the best, thus for most regression purposes the 

progression of techniques should be LR, MLR, PCR, PLS. That is, a linear regression 

model where it provides a sufficiently high quality answers is all that is needed. 

Obviously, a univariate approach is very limited and only appropriate for a very small 

number of possible cases, but it can always be considered as a starting point. MLR 

provides many advantages over linear regression, and is still a remarkably good 

method, particularly if some form of variable selection is used. Many of the 

limitations of MLR have been addressed in other texts, and solutions to MLR can be 
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found to solve most irregularities in a data set. The effort required to optimise a least 

squares method means that moving onto a factor analysis approach is normally a 

better solution. If a least squares method is required then there are variation such as 

GLS, WLS, CLS, NLS, [29] and then several versions of least squares that consider 

the sources of error in a model and attempt modelling without the assumption that all 

the error is in the X-Block. If MLR is insufficient to model the data then a factor 

analysis method can be used, PCR is a useful technique, in many cases it can provide 

a far superior model to MLR. Where PCR does not work, PLS can be tried. 

Any appropriate pre-processing is then carried out. 

When a method has been selected and the data pre-processed for the initial modelling 

the data available for the model must be arranged. Some form of validation will be 

required for any serious model. The data set ideally would be separated into a 

training set, a test set for standard methods, and a validation set will be required for 

factor analysis methods. The training set is the set of data from which the 

relationships between the X-Block and the Y-Block will be derived. The test set is 

the data which will be used to optimise the model during factor analysis model 

building, and to determine the error with simple model building. The validation set is 

the data set that will be used after the model has been built to determine the model 

error. Ideally the three sections of the data will occur by random selection. The data 

set as a whole should have no replicate samples in it. 
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With LR and MLR and other non-factor analysis methods the regression coefficients 

are calculated, the error is calculated using the validation set and some assessment is 

made as the models quality. 

With factor analysis methods the number of factors be used in the model must be 

optimised. It is important to recognise that if the number of factors chosen is equal to 

the number of variables used to build the model then there will be no difference 

between the MLR model and the factor analysis model. Methods used to determine 

the number of factors to use include block validation, leave one out validation and 

venetian blinds validation. Block validation methods tend to be superior to other 

methods in terms of determining how good a predictor a model will be, cross 

validation methods tend to suggest too few factors be kept in the model for the model 

to be robust. The reason to leave out a test set is to allow for block validation during 

the factor selection stage. 

The error of prediction for the completed model is then used to determine its quality. 

Usual techniques to determine predictive ability are PRESS and PEP. 

1.9. Process analysis 

Process analysis covers the use of statistics to analyse the data produces by industrial 

processes, in this context chemical ones, though that is not the only context where this 

type of maths is appropriate. Any system that produces large amounts of data can 

benefit from the use of chemometric techniques. Although the simple methods such 

as t-tests and F-tests have their place here, they are not common, regression modelling 

methods are more frequently used together with trend analysing tools. 
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When processes are examined rather than spectra there are several key considerations. 

First scaling methods are often used, it is the nature of measurements on differing 

physical properties that they are likely to be measured on different scales. 

Temperature in Kelvin may be several orders of magnitude lower than a pressure in 

Pascals. Scaling methods are chosen that reflect this, and typically range scaling will 

be selected. 

Second smoothing is almost never applied. Each sample is a discrete segment of 

information often spread over the time domain. With data from batch systems there 

can be no smoothing between batches as this will compromise the clear distinction 

between batches. Even with continuous flow systems there are strong reasons not to 

use smoothing methods, there may well be important events in the process where 

information will be critically distorted by smoothing, an example of such an event 

may be the activation of pumps that are responding to unusual occurrences such as a 

thermal runaway. Smoothing such data will lead to the effects of such activation 

being spread both forward and backwards in the time domain, an unlikely occurrence 

in the actual process. There are smoothing methods that smooth only forwards, or are 

weighted to smooth in the direction of the time line however they are beyond the 

scope of this document. 

The use of regression tools in process analysis is to examine the relationships between 

the process parameters. These relationships can be used to examine or control a 

dependent function that could be related to the speed or efficiency of a reaction or 

some property of the manufactured material. The goal of process analysis is to 

completely model the process so that the output of the process is under control and 

meets the required specification at all times. For this to be possible it is normal to 
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consider the properties of the raw materials used as part of the data used for the 

process model. 

Process analysis techniques such as Shewhart charts and CUSUM charts are used to 

examine the stability and current performance of a process. Shewhart charts are used 

to examine the stability of a process variable with a stable mean and give an 

indication of the degree and frequency with which a process exceeds its operating 

parameters. CUSUM charts are used to examine processes where the mean of a 

process variable is not stable and can be used to look at reasons why the mean may 

have changed. CUSUM charts also play a role in examining collinearity between 

variables, trends can be examined to see if they occur in the same manner in other 

parameters of the process. 

1.10. Statistical Process Control 

Statistical process control is a situation where the process under consideration has 

been successfully modelled and by modifying parameters that are under operator 

control any change in the required performance or output of a process can be modified 

by the appropriate changes to the process parameters. 

1.10.1. Correlation Coefficient 

The correlation coefficient [30] is a scaled version of covariance, and is also known as 

the product moment correlation coefficient, which is the product moment of two 

vectors about their means. Variance is calculated from equation 1.51, 

Z 
(-Y 

S --(-) -, (1.51) 

this is related to the covariance by equation 1.52, 
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cov =n E(y -y)( 
(1.52) 

-z , -1 

the covariance can vary between - oo &+ co, and is of little use in comparing the 

relationship between groups of different lines, a scaled version of this number would 

give an indication of the relative relationship between different pair of vectors, and 

can be seen in equation 1.53 

(f ý1-Y )yi 
r=o. s 

(1.53) 

(xi Yl[z 
1y 

the correlation coefficient varies between -1 & 1, and gives an indication of the 

relationship between two vectors. The correlation term can be misleading, indicating 

a strong or weak relationship where none exists; a correlation term should never be 

used without a visual inspection of the data. 

1.10.2. ANOVA 

ANOVA [30] is analysis is variance, ANOVAs are very useful tools for making 

comparisons between data matrices and can be used to consider the differences in 

error between different groups of data. ANOVA calculations are used to compare 

means to determine whether any significant differences that occurred. ANOVAs can 

be used to compare more than two means, and are useful in distinguishing between 

different sources of error or variation. As an example and ANOVA can be used to 

examine the difference between repeatability and reproducibility for an experiment. 

1.10.3. CUSUM Charts 

The cumulative summation of variation [36,37] from the mean of a data set is a 

useful method of monitoring the way in which the underlying trend of a process varies 
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over time. CUSUM charts are useful to show where the mean of a process has 

changed. 

CUSi1MS are calculated by taking the mean of the vector from each point in the 

vector, and summing each point successively with the points before it, thus in an 

example using 10 points, 

Sample Sample -Mean CUSUM 
10 -6 -6 
15 -1 -7 
20 4 -3 
20 4 1 
20 4 5 
25 9 14 
13 -3 11 
14 -2 9 
13 -3 6 
10 -6 0 
Mean = 16 Mean =0 

Table 1.1 Example of CUSUM calculations 
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Figure 1.5 Example of a CUSUM plot for random data 

The CUSUM shows how a vector changes over time, regions of constant slope 

indicate time when the values in the vector are constant, flat lines indicate that the 

vector values are equal to the mean for the vector, positive slopes show periods where 

the vector values are greater than the mean, and negative slopes show periods where 

the vector values are lower than the mean. The magnitude of a slope indicates the 

degree to which the process is deviating from the mean. Uneven portions of the graph 

CUSUM plot for an example data set 
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show where the value for the process is changing, changes in slope above a certain 

degree indicate significant changes in the process. Thus a constant negative slope as 

an example does not indicate that the process is out of control, just that the process is 

currently running lower than average. 

1.11. Current Research in Chemometrics 

Chemometrics research has developed from its early days, when the arguments were 

about the relative merits of multivariate methods compared with univariate methods, 

Rao, C. E., [16], to the modem arguments about the merits of different multivariate 

methods, such as MLR, PCR, PLS, and ridge regression. Comparisons of the various 

techniques appear fairly regularly, and the general consensus is that while ridge 

regression is slightly ahead [39] it is the quality and type of data that has a significant 

bearing on the results of the various methods tried [40,411. Kowalski and Seasholtz, 

wrote a paper outlining available chemometric methods [42], and since then Wold has 

published several letters and papers describing in detail collections of the methods 

available at one time and the relative merits of these methods, two good papers were 

both published in the Journal of Chemometrics and Intelligent Laboratory systems 

[43,44], these papers give indications of the current developments in chemometrics, 

and also consider important issues such as data pre-processing [41], in each case the 

later papers have a much greater range of techniques to pull from than the previous 

ones. Other recent developments are again by Wold, orthogonal signal correction 

(OSC) is a method based on PLS that is designed to replace other smoothing methods 

for spectra that remove information relating to the Y-block [45] 
, and this method has 

been looked at as an approach to remove the traditional problem of transferring a 

calibration from one instrument to another, with some success [46]. The pros and 
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cons of each of these methods are well understood. With clean data, well-defined 

peaks and no overlapping they will each provide very similar solutions. This can be 

seen in the UV data set in Walmsley's paper [1], where three of the components are 

relatively error free, and provide good results with any of the methods tried. The 

improvement seen with the variable selection techniques is due to correcting the rank 

of the matrix by removing unwanted variables, and also removing the error 

contribution from these variables. The difference is when the data set becomes more 

complicated and noisy. The addition of noise quickly reduces the effectiveness of 

MLR, and methods that are designed to compensate for noise, OSC, PCR, PLS 

become more useful. If the problem of noise is further compounded by having the 

component of interest as only a small percentage of the signal then the effectiveness 

of PCR is reduced, this can be seen in the iron component. 

With the increase in computer power cheaply available the complexity of the 

techniques considered also increases, the ability to collect large data sets (1000 x 

1000), three dimensional data sets (1000 x 1000 x 1000) and sets of even higher 

dimension mean that the methods required to deal with them also become more 

complex. Parallel factor analysis (Parafac) which was originated by Harshman in the 

'70's [47,48,49] is explained in great detail by Bro [50]. Parafac is a type of 

Trilinear decomposition (TLD) and deals with large three dimensional data sets by 

trying to maintain the three dimensional arrangement rather than using an approach 

based on unfolding the data space. [51,52]. Three-dimensional matrices are 

becoming more common, and it is easy to imagine how they are generated, take for 

example a GC connected to a UV detector, running many samples. With spectra 

being recorded at time intervals for each sample a three dimensional array is created. 
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These methods have been compared with standard two dimensional methods, [52] and 

in general the three way methods often allow easier interpretation of the results, but 

with a slight penalty in increased error in modelling. Modelling three-dimensional 

data with a two dimensional method such as PCA or PLS may seam nonsensical but 

the matrix is simply "unfolded", take an Ixjxk three-dimensional matrix, this 

would unfold into an Ix JK matrix. The expense with using a 2D method is the 

increased complexity of the model, a far greater number of factors will be generated 

than for the 3D method [50], and consequently interpretation can be far more 

complex. 

With variable selection there is some argument as to the usefulness of variable 

selection [personal communication with McKelvey and Wold, 1998 & 1999, 

Appendix V], and these arguments are expanded in sections 1.7,3.1,3.2,3.5 and 5.1. 

For the work reported here the NIPALS algorithm was selected, this algorithm is a 

general PLS algorithm that is useful for all types of data sets (tall thin, short fat, tall 

fat, e. t. c. ) and discussions on the various different PLS method available can be seen 

in many of the papers by De Jong, who has published prolifically on this subject [53, 

54,55,56]. Variable selection has been attempted using many different techniques, 

there are the fast methods which tend to produce results quickly without iteration, 

these tend to be based on either selection of variables from the correlation of the 

predictor variables to the Y-Block [57,58] or on the magnitude of the coefficients 

produced during the modelling [59,60]. These types of methods have two flaws. 

First with multi-component data they perform very poorly, either wavelengths / 

coefficients are selected based on there performance with individual components and 

thus include a surplus of variables, or wavelengths are included based on there 
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multiple correlation with all the components, this means many of the best variables 

are excluded. Secondly they make the assumption that either the correlation 

coefficients or the coefficients of regression give a true indication of the best 

additions to the model, as this work shows this is not always the case and that low 

correlation variables, or variables that might have small coefficients can provide 

important information. This can be seen in the example of the UV data set [1]. A 

simple correlation approach examining each component individually will select 

wavelengths centred on each peak for the three clean components, for the iron 

component there are no correlations greater than ±20%, and either no wavelengths 

will be selected or the selection will be very poor. Selecting on the basis of the 

coefficients will have, in many respects, a bigger problem. The first PC or LV 

extracted from the data set will describe the average of the spectra, and the second 

will be for the fourth component, copper. These two components provide the balance 

of the variation in the data set, and coefficients dealing with the iron component will 

actually rank lower than coefficients for the noise, so may not be included in the 

model at all. 

The next group of methods are based on genetic algorithms (GA) or simulated 

annealing (SA) These rely on weighted random chance to throw together the correct 

variables for prediction [61,62]. While these methods are also effective, they have 

their own problems. Genetic algorithms take variables from a pool of variables, 

assess their use, and throw poor variables back into the pool. There is also a chance 

that good variables will be returned to the pool randomly. This means that these 

methods are poor solutions to the problem of searching the data space for appropriate 

variables. While on the surface they may appear similar to the method proposed here 
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there is the difference that within a given search variables have only one chance of 

entering a model, and two of getting removed, so unlike the GA and SA useful 

variables are unlikely to be removed and poor variables are less likely to be included 

in the model. Both SAs and GAs tend to take longer to calculate as they are not 

efficient at searching the data space. The method proposed here [2] looks at all the 

problems associated with the other variable selection techniques. Its main flaw is that 

although it is faster than the SA and GA methods it is still slow, especially compared 

with the correlation and coefficient methods. This method does however select 

variables on the basis of overall improvement to the model, as determined by 

predictive error, this has advantages over the other methods which either concentrate 

on individual chemical components or compromise by selecting variables correlated 

with all components. The different data sets presented here show differing features, 

clean data with high signal to noise, non-linear data, very noisy data with small 

responses, and noisy data with good responses, this gives an indication of how the 

algorithm will perform in a variety of situations, not all of them ideal for this method. 

With the data set containing non-linear data the linear component was modelled well, 

at the expense of the other three (non-linear) components. The correlation between 

the linear component and the concentration information was small however it was 

modelled by taking information about the variation in the other components to allow 

the contribution from these components (effectively noise) to be removed. 

The problems associated with the development of new tools are that as they become 

more specialised and sophisticated the knowledge required to not only select the 

correct method but to implement it correctly increases daily. Simple UV scans on 

clean samples [1 ] suit simple methods, such as MLR, however once the complexity of 
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the system being modelled increases and the signal to noise ratio drops more 

sophisticated methods are required. In a spectral environment variable selection is 

nearly always of assistance, removing sections of the data with no information 

produces no great danger. In a process environment where some of the variables may 

be only partially (or not at all) understood this is not such a safe option, variables that 

are removed are not modelled, and a variable that is thought to contain noise or 

provide no information may contain vital information critical to the operation of the 

plant when its value changes. As always great care must be taken in selecting a 

method, and in applying it to any data set 

1.12. Software 

All work carried out was done on a Pentium computer, running Windows 95. This 

was chosen for its cost, ease of use and availability. The software chosen was thus 

limited by this operating system. The University of Hull supports Microsoft Office, 

and site licenses were available so this was chosen for general word-processing and 

spreadsheet applications. 

1.12.1. Excel 

The spreadsheet Excel was used for general manipulation of data, the file format is 

reasonably transferable, and the Dynamic Data Exchange structure is relatively bug 

free. Excel was used mainly for its graphing functions, all mathematical calculation 

were carried out in MATLAB ®. 
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1.12.2. Word 

Microsoft Word is a moderately good word processing package and all the features 

expected in a modern word processor are present. All reports, papers and this thesis 

were written with Word. 

1.12.3. PowerPoint 

PowerPoint is a general drawing tool, with a reasonable group of drawing tools. 

PowerPoint was sufficient to draw all the diagrams used in this thesis, and was used to 

prepare any presentations given. 

1.13. Maths Software 

The maths software used was MATLAB by Mathworks, Version 4.02 in the first two 

years and version 5.02 in the final year. 

For research into chemometric techniques, and for flexible application of 

chemometric techniques flexible software needs to be used. This limits the choice of 

software. Suitable software requires the ability to describe exactly how mathematical 

techniques should be carried out to allow variation in methods such as PLS and PCR. 

Many of the standard chemometric tools are thus unsuitable. 

Pirouette is spectral modelling tool designed to allow factor analysis techniques to be 

used easily, with a wide range of options for scaling, methods and other data 

handling, however because of its graphical nature it tend to be relatively slow in 

calculating results and more critically, it does not allow modification of the maths 

used to carry out the various techniques. Pirouette does not facilitate the easy export 
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of results into other formats and does not allow easy access to coefficients produced 

by calculations, making it inappropriate to the development of chemometric methods. 

Unscrambler is another standard chemometric tool, in recent years it has been 

developed extensively to allow more flexibility however it is still restricted to a 

relatively small list of factor analysis techniques. Unscrambler is also flawed in many 

respects due to bugs in the coding, possibly due to the speed of recent developments. 

Although the graphical interface it very different to Pirouette it is otherwise very 

similar in terms of modifications to code. Unscrambler does have a rudimentary 

scripting tool, however it is not very flexible and will not allow modification to the 

code used to carry out the calculations. 

Spectracalc is an old chemometrics package, and while its maths tools for calculating 

results do allow modification to is greatly hindered by its user interface, manipulating 

raw data is difficult, and its design as a spectral tool is quite rigid making its use for 

other reasons difficult. 

These problems also persist in software developed by equipment manufacturers for 

analysis of data produced by specific spectrometers, most are capable of carrying out 

chemometric analysis of data to a reasonable standard but are not useful for varying 

methods or data not produced on the machine they were developed for, they will not 

be discussed further. 

1.13.1. Mathcad & Mathmatica 

Mathcad and Mathmatica are both tools useful for writing reports using maths. They 

both carry out scripted math formulae and a powerful programs for calculating the 
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results of mathematical equations. They are both principally built around their user 

interface and are designed to allow the easy inclusion of mathematical equations and 

results into documents. This is the main reason why they are inferior to MATLAB 

for this work. Both tools carry out calculations from within the documents they are 

written in, displaying the results within the reports themselves. This makes both 

programs very difficult to use with large amounts of data, effectively limiting their 

use with spectral or process analysis. They are also both based around building 

equations from standard mathematical tools which can make it difficult to script the 

equations needed for complex matrix manipulation. 

1.13.2. MATLAB 

MATLAB ® is a scripting language for maths, particularly matrix manipulation. 

MATLAB ® can be used in both a command line interface mode, where operations 

are carried out on matrices directly command by command and in a batch file mode, 

where strings of commands can be written for be followed in sequence to allow more 

complex tasks to be carried out. MATLAB ® has been designed specifically to 

process matrix maths, and as such is significantly faster than most other applications 

in carrying out these tasks. MATLAB ® has a large array of built in functions, 

however these form the building blocks to construct other functions. Groups of 

specially written functions are known as toolboxes, and normally have a focus on a 

particular field, Mathworks has written toolboxes for neural networks, chemometrics 

and statistics among others. While the chemometrics toolbox is useful, a toolbox 

written by another company is the one principally used for this research. The PLS 

Toolbox, by Eigenvector Research contains a large group of tools specifically for 

carrying out chemometric calculations and they are better organised and designed 

than the ones in the Mathworks toolbox. 
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MATLAB ® is a batch processing tool, most of the tools in a toolbox are written as 

"m" files, which are flat ACSII files containing commands. M files can be written to 

carry out most functions, and it is "m" files that are used to carry out the steps 

required for the development outlined in this thesis. 

1.14. Intrasite Gel 

1.14.1. Confidentiality 

Intrasite is a commercial product produced by Smith and Nephew, certain aspects of 

the gel and its manufacture cannot be published. It should be noted that the following 

aspects are omitted from this thesis for these reasons. 

1. The dry polymer that is used to make Intrasite Gel is manufactured by another 

company; that company requires that their name not be published. 

2. Specific details of the specifications of the dried polymer may not be published. 

3. Specific details of the gels manufacture may not be published, including a 

description of the exact formulation and specifications of manufacture. 

4. One of the variables used in the analysis of Intrasite will be referred to as SCI, 

this variable is an important parameter to the properties and manufacture of 

Intrasite Gel and contains information that is commercially sensitive. 

5. Detailed examination of the dried polymer is not permitted. 

6. Reverse engineering of the dried polymer is not permitted. 
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1.14.2. Introduction to Intrasite Gel 

Intrasite Gel is the product name given to a specific formulation of a carboxymethyl 

cellulose hydrogel (the structure can be seen in Appendix I). Intrasite Gel is used to 

assist in the healing of severe wounds, usually severe lacerations. The gel is a viscous 

paste and is packed into the wound once the wound has been cleaned. Carboxymethyl 

cellulose gels, particularly Intrasite gel, act in several ways in a wound: - 

1. Acts as a barrier to prevent micro-organisms from entering the wound 

2. Maintains a constant level of moisture (moist wound healing) 

3. Assists in sloughing where dead cells are removed by the body 

4. Assists in granulation when new skin cells form. 

The main marketing feature of the product is its ability to maintain moisture 

equilibrium within a wound. The Gel is sterile but contains no drugs or medication of 

any kind. 

Intrasite gel was originally purchased by Smith & Nephew as Sherisorbe from 

Sheerings Ag. The gel has two basic formulations, a starch based polymer (originally 

Sherisorbe) which is the original form of the gel, and a carboxymethyl cellulose 

polymer (Akucell X181) which is the more modern formulation. The starch based 

polymer is still produced but in a reduced quantity. Hydrogel is produced from the 

dry powdered carboxymethyl cellulose polymer which is produced in bulk 

approximately once a year by an outside company. The dry powdered polymer is 
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then made up in water in smaller batches as required. Originally there were several 

formulations of the gel for export to different countries however these have been 

merged into the one formulation over the years. 

The dried polymer is delivered approximately once a year, this is termed a bulk batch, 

the polymer is then made up into the gel about once a week, and that batch is 

packaged and sterilised on a daily basis. 

Although each bulk polymer batch conforms to the same set of standards there are 

significant differences in the properties of individual batches made up from different 

bulk polymer batches, thus there is variation between each individual batch and a 

greater variation between batches made up from different bulk polymer batches. The 

specifications for the bulk polymer batches are very broad, and the only information 

supplied by the manufacturer is that the batch conforms to the specifications, no other 

information is recorded so bulk batch variation in properties cannot be used to assist 

in building a global model for this polymer. 

Once made up in water the gel is packaged and sterilised. There are five standard 

types of packaging, 10m1 & 20m1 sachets, and 8m1,15m1 and 20m1 "appli-packs". 

Appli-packs are bulb shaped dispensers with a nozzle that can be used with one hand. 

Sterilisation occurs after packaging and is carried out on a small batches. Once 

sterilised, samples are taken to the laboratory for analysis. 

The carboxymethyl cellulose polymer that forms up Hydrogel is highly absorbent, this 

absorbency is the basis of the useful properties of the gel. The use of this type of 
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product in medicine is relatively recent, there has been little research into this type of 

application of absorptive gels. Current knowledge suggests that its usefulness is based 

entirely on is physical absorptive properties, maintaining a moisture equilibrium with 

the wound. 

1.14.3. Fluid Absorption 

The fluid absorption test is one of the key test carried out on Intrasite Gel, the 

properties of the gel that it is marketed on are based around the fluid absorption 

characteristics of the gel. The test is a simple test, as described in the test procedure 

sheet, [63]. Although this test takes 24 hours to allow for equilibrium it is known that 

this period is not sufficient for true equilibrium. Equilibrium time is based on the 

vigour and length of initial mixing with saline solution. It is also known that with 

centrifuging more liquid can be measured above the gel layer than was added for the 

test. This is evidence that the moisture retention is absorption, not adsorption. The 

gel is also known to be soluble in both water and saline solution, the solubility is 

variable, and is normally between 20% and 40% by weight. 
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1.14.4. I ntras ite Tests 

During laboratory analysis seven tests are carried out, the hydrogel must meet the 

specification for all of them; 

1. Identification of propylene glycol, this is to determine that the gel has been made 

up in propylene glycol [64]. 

2. Identification of carboxymethyl cellulose, this test ensures that the material being 

tested performs to the chemical characteristics of carboxymethyl cellulose [65]. 

3. pH, the pH of the material is critical since it is intended for medical use on open 

wounds, if the the pH is not within the specified limits then there can be severe 

reactions to the application of the gel [66]. 

4. Elasticity, this is a rheological test, the elasticity of the gel affects the ease with 

which the gel can be applied [67] 

5. Viscosity, this is a rheological test, the viscosity of the material affects whether 

the material remains in the wound [68]. 

6. SCI: [69] 
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7. Fluid Absorption, one of the key properties of Intrasite gel is its ability to maintain 

an equilibrium of the moisture present in a wound, this test is intended to have an 

indication of the fluid transfer that occurs between the wound and the gel [63] 
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2 Experimental 

The Experimental section is divided into two parts, the first deals with the 

development of the variable selection PLS algorithm, outlining the five important 

stages that occurred during the production of the final algorithm. The second part of 

the experimental deals with the examination of Intrasite Gel, initially looking at the 

measurements made in the laboratory as a whole, then focusing on the fluid 

absorption parameter. 

2.1 Variable Selection PLS 

The variable selection section of this thesis covers the development of an iterative 

method to select variables from a data matrix based on their ability to improve the 

predictive ability of the generated model. This development took place in five main 

stages, outlining the important decisions that were made during the development of 

the final algorithm to carry out variable selection using PLS. 

In the following text the notation is as follows, all indexing is relative to the matrix being 

indexed unless stated otherwise. 

j is the number of rows 

i is the number of columns 

k is the number of variables 

r is the number of components being predicted 

q is the number of samples 

h is the loop number 

N is the matrix of actual values 

P is the matrix of predicted values 
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T is matrix of training data 

V is matrix of validation data 

C' is matrix of training concentration information 

C2 is matrix of validation concentration information 

S is matrix of selected variables (initially is empty) 

s is the number of selected variables 

Model prediction in this section is based on the Predicted Residual Error Sum of Squares 

(PRESS) (equation 2,1), 

PRESS = 
E(N_J)2 

i=1 j=1 
(2.1) 

this is calculated from a validation set. After each variable is added, the PLS model is built 

using the training set, it is then used to predict on the validation set, which is completely 

independent of the training process. 

2.1.1 Data Sets 

Three data sets were used, one UV spectra data set [1], and two synthetic data sets. 

2.1.1.1 The UV Data set [1] 

The data consisted of 52 spectra of 4 transition metal ions (Fe, Co, Ni and Cu) run on 

a Varian DMS90 UV/VIS spectrometer, over the 190-890nm range, at a varied 

concentration ranges. The entire spectra range was digitised, with a data spacing of 

3.3nm, giving 211 spectral points. The concentration of the iron was miscalculated at 

the sample preparation stage and is present only at the limit of detection. The iron 

response has a large amount of error and calibration is difficult. 

The data was split to give 40 training samples and 12 ̀ unknowns' 
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2.1.1.2 Synthetic Data Set I 

Sixty samples of forty points with four overlapping components of random 

concentration. 4% normally distributed random noise added to each data point. The 

non-linear response components were two squared terms, and a logarithmic term. 

All the components are have a normally distributed concentration range. This data set 

was produced in MATLAB ® using a Gaussian curve generator and a random number 

generator. The concentration of each component in any one spectra was determined 

using a linear random number sequence. The noise added to the spectra was 

generated using a normal distributed random number generator. 

2.1.1.3 Synthetic Data Set 2 

Eighty samples of two hundred and fifty points with four overlapping components of 

random concentration. Up to 10% randomly distributed noise added to each data 

point. All the components are linear and normal. The concentration of each 

component in any one spectra was determined using a linear random number 

sequence. The noise added to the spectra was generated using a normal distributed 

random number generator. 
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2.1.1.4 Data Pre-treatment 

Data was treated using autoscaling, producing data sets where the variance in the 

variables has a mean of zero. Autoscaling was determined by ordinary PLS to give 

the best response to the UV data set. Mean centring and range scaling were also tried. 

2.1.2 Single Addition Mode, SVA-PLS 

The first attempt at prediction based variable selection started with a single randomly 

selected variable, a PLS model was calculated using this variable and one latent 

vector. Another variable from the pool of remaining variables is then selected at 

random and added into the model. The PLS model is recalculated and the optimum 

number of latent vectors for this model determined. An improvement in the model 

leads to the variable being selected, no improvement or a worse model and the 

variable is removed from both the model and the pool. This is in contrast to many 

genetic algorithm methods where the variable is returned to the pool of unselected 

variables. The random selection of an individual variable from the pool continues, 

each time the number of latent vectors is re-calculated. This process stops once all the 

variables have been added into the model and been either selected or discarded. Once 

the selection of variables has been determined the selected variables are recorded, 

together with the value for the PRESS those selected variables produced. The whole 

process is repeated. 

The order in which a variable is added into the model affects how that variable 

changes the PRESS produced. This is one of the key reasons why selecting variables 
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by either their correlation with the determinant or the magnitude of their loading 

produces models that can lack robustness and include excess variables. This is also 

why the modelling process must be repeated. The variables that produce the lowest 

PRESS might not be found on the first attempt. 

The algorithm that this procedure follows can be seen below 

Calculate PLS using Tqk and Coq, 

Predict using Vyk and C2q, 

Determine correct number of latent vectors for minimum press, l 

BASEPRESS = (Nu - Pv) 2 
i=1 j =l 

select 1 random variable and put it into S 

Start loop (h) 

Calculate PLS using [Sqs Th, ] and CCq� using 1 latent vectors 

Predict using [Sc., Vh] and Co., 

Determine correct number of latent vectors for minimum press, l 

PRESS = 
E(N_J, 

)2 
i=1 j=1 

If BASEPRESS > PRESS then add Th to S and BASEPRESS = PRESS 

Stop loop when h is equal to k 

Loop 

Record the variables in S and the final value for BASEPRESS, and I 

Repeat the whole process at least 2* times 

Determine the iteration with the lowest BASEPRESS, these are the variables to keep, together 

with I 
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Although this algorithm produced a reasonable model there were several flaws. The 

main issue was that due to the algorithm of necessity starting with a single latent 

vector the error in the model was too high. The result of this is that the first variables 

presented to the model, up to the number equal to the number of latent vectors 

required to describe the model, will be accepted as improving the model. This 

process leads to a poorer model than could be produced without the first few variables 

in the model, as these variables invariably had little or no information to add. 

This problem is compounded when several dependent variables are being calibrated 

simultaneously. The models produced tend to be very unstable with a very wide 

spread of potential PRESS results. 

2.1.3 Multiple Variable Addition Single Pass MVA-PLS 

Taking into account the problems associated with the first attempt the method was 

adjusted. Initially the optimum number of latent vectors is determined using block 

validation PRESS. The number of latent vectors is taken as the number of starting 

variables, chosen at random. Variables are then added in blocks equal to this number, 

for reasons of ease of programming. 

The blocks added are considered for addition or removal as a whole, either the whole 

block is added or the whole block is removed. 

These changes produced better models than the first algorithm, although this method 

produced more stable models also included a great number of surplus variables. 



Calculate PLS using Tyk and Cq, 

Predict using Vqk and C q,. 

Determine correct number of latent vectors for minimum press, l 

rq 

BASEPRESS = (Ni, - Pj) 2 
1=1 f=l 

select I random variables and put them into S 

Start loop (h: l); (increase the value of It by l each iteration) 

Calculate PLS using [Sqs Th_h+, ] and Cyr, using I latent vectors 

Predict using [Sqs V,, 
_,, +, ] and C2q, 

PRESS =t 
±(Nij 

-Pj)2 
i=1 j=1 

If BASEPRESS > PRESS then add Th to S and BASEPRESS = PRESS 

Stop loop when h is equal to k 

Loop 

Record the variables in S and the final value for BASEPRESS, and I 

Repeat the whole process at least 2*V -k 
times 

Determine the iteration with the lowest BASEPRESS, these are the variables to keep, together 

with l 

2.1.4 Single Variable Addition, Single Variable Removal, SVA-SVR- 

PLS 

By adding variables initially as a group and then singly the flaws in the first two 

attempts were removed. However the models produced contained too many variables. 
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Rather than try and restrict the addition of variables, the next approach considered 

was to remove unwanted variables. This is done by taking the selected variables, then 

running through the addition procedure in reverse, remove one variable, test the 

model, if the model is worse, add the variable back in to the model, otherwise, discard 

it. 

Calculate PLS using Tk and C'q, 

Predict using Vqk and C' '. w, 

Determine correct number of latent vectors for minimum press, I 

BASEPRESS = (N, j -p ,ý 
)2 

i=1 j=1 

select l random variables and put them into S 

Start loop (h) 

Calculate PLS using [S., Th] and Cq� using l latent vectors 

Predict using [Sqs V:, ] and Czq, 

PRESS= > E(N_1)2 

1=1 j=1 

If BASEPRESS > PRESS then add Th, to S and BASEPRESS = PRESS 

Stop loop when It is equal to k 

Loop 

Record the variables in S and the final value for BASEPRESS, and I 

Set T equal to S, Set S to empty. 

Start loop (h) 

Calculate PLS using [SQ., Tk_h] and Cyr, using 1 latent vectors 

Predict using [Sys Vk_h] and Ctgr 

PRESS = 1: E(N-J)2 

i=1 j=1 
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If BASEPRESS > PRESS then add Th+, to S and BASEPRESS = PRESS 

Stop loop when h is equal to k-1 

Record the variables in S and the final value for BASEPRESS, and 1 

Loop 

Repeat the whole process at least 2* times 

Determine the iteration with the lowest BASEPRESS, these are the variables to keep, together 

with l 

2.1.5 Single Variable Removal, SVR-PLS 

By using the addition mode followed by removal mode the model was improved 

significantly. This raised the possibility that the modelling process might be superior 

if just the removal mode is used. Instead of adding variables into a group, the whole 

spectra could be taken and then variable could be removed individually. 

Calculate PLS using Tqk and Cl., 

Predict using Vqk and Czgr 

Determine correct number of latent vectors for minimum press, 

BASEPRESS =1± (NU -p ,j 
)2 

i=1 j=1 

Start loop (h) 

Calculate PLS using [Sqs Tk_h] and Cq� using I latent vectors 

Predict using [Sqs Vk. h] and 
C2yr 

PRESS 
j(N, 

-1L)2 
i=i j=I 

If BASEPRESS > PRESS then add TT+l to S and BASEPRESS = PRESS 
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Stop loop when h is equal to k-1 

Loop 

Record the variables in S and the final value for BASEPRESS, and 1 

Repeat the whole process at least 2* NIT times 

Determine the iteration with the lowest BASEPRESS, these are the variables to keep, together 

with 1 

2.1.6 Single Variable Removal Duel Pass with Squashing Function, 

SVR-DP-PLS 

The removal mode works better than the methods tried before, however due to the 

random order of selection, and the issues of co-linearity, surplus variables may still 

remain. Once the unwanted variables have been removed once, a second pass is made 

through the algorithm, starting again with the shuffling of the variables. The second 

pass removes variables that were added in, then found to be inferior to variables 

already added. 

Calculate PLS using T9 and C! q, 

Predict using Vqk and Czq, 

Determine correct number of latent vectors for minimum press, l 

r 

BASEPRESS = 1: ± 
(N, -j ,j 

)2 
i=1 j=1 

Start loop (h) 

Calculate PLS using [Sqs Tk. h] and C,,, using I latent vectors 

Predict using [Sqs Vk_h] and C2q, 

80 



PRESS =tj (Nij - P)2 
i=1 j=1 

If BASEPRESS > PRESS then add T,, +r to S and BASEPRESS = PRESS 

Stop loop when h is equal to k-1 

Loop 

Record the variables in S and the fmal value for BASEPRESS, and I 

Set T equal to S, Set S to empty. 

Start loop (h) 

Calculate PLS using [Sqs Tk_h] and C!, � using I latent vectors 

Predict using [Sqs Vk_a] and Co., 

PRESS =Z 
E(N_J)2 

i=1 j=1 

If BASEPRESS > PRESS then add Th+, to S and BASEPRESS = PRESS 

Stop loop when h is equal to k 

Loop 

Record the variables in S and the final value for BASEPRESS, and I 

Repeat the whole process at least 2* Nrk- times 

Determine the iteration with the lowest BASEPRESS, these are the variables to keep, together 

with l 

2.1.6.1 Squash Function 

The current method still has a tendency to include too many variables into a model, a 

large number on the first pass, a significantly smaller number on the second pass. 

This can be adjusted with a squashing function. The squashing function (known 

mathematically as a cost function) is active when the calculation is performed as to 

whether a variable is included into a model. The standard calculation is; 

If BASEPRESS > PRESS then add Th to S and BASEPRESS = PRESS 
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This can be modified, here, x is the squashing value. 

If BASEPRESS > (PRESS * x) then add Th to S and BASEPRESS = PRESS 

In this case the PRESS value must smaller than the BASEPRESS by a factor of X. 

Thus, a value for x smaller than 1 will have the effect of reducing the number of 

variables added to a model and a value greater than I will increase the number of 

variables added. 

The values for the squashing function need to be chosen with care for each data set 

modelled. There are two squashing functions, the first controlling addition of 

variables during the first pass. The second squashing function controls the addition of 

variables during the second pass. 

The squashing function can greatly affect the quality of the model produced by the 

algorithm, correctly used the function will produce a more stable model. Incorrect 

balanced and magnitude of the two squashing functions leads to unstable modelling as 

either too many or too few variables are included in the model. 

2.1.7 Selected Variables Histograms 

The variables selected for each iteration are different for each iteration when spectral 

data is analysed (or any data with a high degree of collinearity). The selection 

however will be centred on sections of the spectra. By collecting the selected 

variables of each iteration and plotting them as a histogram of frequency overlaying 

the spectra itself key information about important sections of the spectra can be 
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gained. This information can be used in several ways, first the information is useful 

for determining which sections of the spectra are useful. Secondly this information 

could be used in a variable ranking method to alter the way in which variables are 

selected, or to weight the value given to a particular wavelength. This would be 

useful where variable selection as outlined here is not providing the sort of model 

required by the data, either due to large amounts of interference or some consideration 

to differing standard of robustness. 

2.1.8 Number of Iterations 

Each iteration of any of the above methods produces a different value for the 

minimum PRESS under normal circumstances. If the data set is composed of spectra 

then there will almost always be variation in the variables selected. A data set from a 

process may be different from this as there may be only a small number of variables 

within the data set that provide information for a calibration. The difficulty is in 

determining the number of iterations to use in the modelling. The more iterations 

carried out the lower the PRESS produced is likely to be. This takes longer to 

compute. One way of examining the problem is to carry out the iterations X times, 

recording the value for the PRESS on each occasion. The values for the PRESS can 

be charted as a histogram using appropriate bins, and a x2 test carried out to determine 

the shape of the peak being generated. From this the chance of producing a lower 

PRESS value can be easily calculated, and the modelling can be stopped when the 

chance of finding a lower PRESS value falls below a pre-determined limit. 

2.1.9 Final MATLAB ®Code 

The final MATLAB ® code can be found in Appendix II, this code requires 

MATLAB ® 5.2.1 and the PLS Toolbox 1. 
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2.2 Intrasite Gel 

Intrasite Gel is a registered medical device produced by Smith & Nephew Hull, and is 

used in the care of wounds. Intrasite Gel is used to treat necrotic, sloughy, and 

granulating wounds, in its role in wound care Intrasite Gel provides a moist wound 

environment which aids healing. The measurements made on the material in Smith & 

Nephew's laboratories were examined in this thesis to look at the stability of the 

production, and there was a detailed examination of the fluid absorption measurement 

to consider whether the test for fluid absorption should be replaced or modified. 

2.2.1 Initial Data 

The Intrasite data set is composed of two sections, the product analysis results and the 

sterilisation parameters. The data for Intrasite gel dates back to January 1993, when 

the current formulation was initially developed, and continues to the present day. In 

this work, only data up to December 1997 was included in this analysis. Prior to 

January 1993 the polymer was starch based and as the starch based polymer was not 

covered by this research, this data has not been considered. The historical data before 

January 1996 is held on paper records, this information was typed into Microsoft 

Excel to allow its inclusion into the research. 

After batch production the gel is tested twice, initially with the SC 1 test as soon as the 

gel is produced. If the test meets specification then the batch is then packaged into its 

delivery unit, either an apli-pack (8m1,15m1,25m1) [70] or a sachet (10ml, 20m1) 

[71]. The Apli-packs are hard plastic dispensers designed for one-handed use, as is 

often convenient in the environment where Intrasite Gel is often used. After the gel 
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has been packaged it is sterilised in batches of between 400 and 8000 units (a unit 

being either an apli-pack or a sachet) depending on the unit size. 

Sterilisation occurs according to the Fo procedure, where FO is the integral of the time 

the batch spends above 121 °C. Random samples are taken from the sterilised batch 

and sent for analysis. Part of the sample will remain in storage to allow re-testing 

later if required. Fo is used as an indication of biological activity, items sterilised to 

the Fo standard are assumed sterile for the purposes of medical devices and dressings. 

The Fo value must exceed 22 for the item to be considered sterile. Further 

information about FO can be found in Appendix I. 

During laboratory analysis seven tests are carried out, the hydrogel must meet the 

specification for all of them; 

1. Identification of propylene glycol, this is to determine that the gel has been made 

up in propylene glycol [64] 

2. Identification of carboxymethyl cellulose, this test ensures that the material being 

tests performs to the chemical characteristics of carboxymethyl cellulose [65] 

3. pH, the pH of the material is critical since it is intended for medical use on open 

wounds, if the the pH is not within the specified limits then there can be severe 

reactions to the application of the gel [66] 

4. Elasticity, this is a rheological test, the elasticity of the gel affects the ease with 

which the gel can be applied [67] 

5. Viscosity, this is a rheological test, the viscosity of the material affects whether 

the material remains in the wound [68] 

6. Sc! [69] 
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7. Fluid Absorption, one of the key properties of Intrasite gel is its ability to maintain 

an equilibrium of the moisture present in a wound, this test is intended to have an 

indication of the fluid transfer that occurs between the wound and the gel [63] 

For historical reasons, test number 6 [69], the test SCI is carried out twice, though 

this is not part of the test method. The results for only one of these tests (the first one 

listed) has been used as there is negligible difference between them. 

Intrasite Gel was purchased as a complete product, and the product arrived with its 

registration. However, Fluid absorption and viscosity coefficient measurements were 

added to the list of required measurements. Fluid absorption was added when 

Intrasite gel was acquired, viscosity coefficient was added in February 1994. 

The variables recorded for the sterilisation of Intrasite gel are recorded directly from 

the sterilisation equipment (Table 2.1) , they are recorded on paper. One years worth 

of data, January 5`}' 1995 through December 18th, was entered into a spreadsheet for 

an initial examination. The variables recorded are seen in table 2.1 

There were a number of occasions during the period examined that the batch failed to 

sterilise properly, when this occurred the batch was simply re-sterilised. 

Unfortunately although it is thought that the total time above 121°C is important to the 

properties of the Intrasite gel, the instrument reading of the sterilisation attempts 

before the batch was successfully sterilised were not recorded. 
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Graphs of these data sets can be seen in the appendix. The sterilisation data set was 

collected at a later data than the analysis data set. 

1 Quantity Number of units in a batch 

2 Heat up The time required to reach 121°C 
Time 

3 Pressure the Pressure in the steriliser 

4 Minimum The lowest temperature the batch reached once Fo had been 
Temperature reached. If the temperature dropped below 121°C for any 

reason before sterilisation was complete then sterilisation had to 
be repeated 

5 Maximum The highest temperature reached during sterilisation 
Temperature 

6 Hold Time The time the batch was held at 121°C or greater 

7 Cool Time Once sterilisation has occurred the batch is allowed to cool 
slowly 

8 F0 The integral of the temperature above 12 1°C 

Table 2.1 Variables Taken from the Sterilisation Process of Intrasite Gel 

2.2.1.1 Intrasite Experiment I 

The statistics of the data set was examined. The historical analysis data and the 

sterilisation data where typed into the computer by hand. The data set was checked 

initially by examining the spread of data, values outside the expected range were 

considered outliers and checked against the source and corrected. Where the source 

contained the same value and the value was found to lie outside the possible range of 

values, that data point was removed. All incomplete rows were deleted from the data 

set, with process data of such a large quantity there was seen no value in imputing or 

interpolating values. 
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The examination of the analysis data set was split into four parts. Initially the data 

was examined as a whole and a global model was looked for. The data was 

considered when split by bulk batch. The data for the year 1997 was examined. 

Finally the data set was split according to the analyst that carried out the testing. 

Information about the analyst that carried out the testing was only available for data 

after December 1996. The work concerning the variation in analyst results is reported 

in a report for Smith & Nephew that can be seen in Appendix VII 

While it was hoped that a general model for the analysis of Intrasite gel might be 

developed, it was recognised that the between bulk batch variation might make this 

impossible. This is the reason why the data set was examined on an individual bulk 

batch basis as well as using the entire data set. If separate models for the fluid 

absorption could be developed, some form of transfer function might be developed 

that would allow the model to be transferred between bulk polymer batches. 

2.2.2 Initial Examination 

The fluid absorption test [63], by the settling volume method, was an essential issue in 

the initial project. This test is flawed in several respects, first it does not really 

represent the environment that the gel would be used in, the test involves the 

examination of the saturated gel, not the gel in equilibrium with a moist environment, 

and second the test method contains a high degree of error due to two factors, first the 

equipment used does not allow accurate measurement of results, and second the gel is 

up to 40% soluble in water. This solubility is known to vary constantly from batch to 

batch, and is not constant for one bulk batch of polymer. There are a variety of 

reasons why this might be the case, most likely due to particle size variation due to 
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the bulk batch being incompletely homogenised. The fluid absorption test [63] is 

examined in detail, including details of the solubility of the gel in QA3174 [72], and 

in QGM\137 [73]. 

2.2.2.1 Normality, Intrasite Experiment 2 

Histograms were calculated for the frequency of values in the analysis variables. The 

expected distributions were also calculated for each variable, based on the population 

mean and standard deviation of each variable. For the full data sets the variables were 

found to depart from normal distribution. All the variables show evidence of a 

binomial distribution. A non-normal distribution might be expected when the product 

is produced from differing batches of starting material. 

Histograms of value distribution were then calculated for the variables, taking data 

collected during 1996 and 1997, and the results compared with the expected 

distributions, calculated on the new population mean and standard deviation. The 

results show that the variables now follow a normal distribution. The Chi-squared test 

is used to examine whether the distribution of values is normal. In all the variables 

the distribution of values taken from 1996 and 1997 show normal behaviour. 
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2.2.2.2 Correlation, Intrasite Experiment 3 

The purpose of the initial examination was to determine whether the test could be 

replaced with a simple calibration based on the other analysis variables. This would 

allow prediction of the result of the settling volume method based on parameters that 

are measured with a greater precision and accuracy. The first examination was of the 

simple correlation between the analysis variables to determine if the fluid absorption 

variable closely matched any of the other recorded parameters. The correlation 

showed a moderate level of correlation between fluid absorption and the solids 

content, and a slightly better one between fluid absorption and the viscosity 

coefficient. 

The correlation was then examined for sections of the variables where the distribution 

was known to be normal. Two sections where taken, one composed of data from the 

years 1995 through 1997, and the other section was the data from 1997 only. The 

results showed little difference compared to the results taken from the full data set. 

2.2.2.3 Regression Modelling, Intrasite Experiment 4 

Despite the high correlation between the viscosity coefficient and the solids content, 

the relatively low correlation between fluid absorption and the other variables, and the 

non-normal distribution of the full data set, an MLR model was attempted. This was 

done for the full data set and two bulk batches, one from 1996, the other from 1997, 

where the distribution is normal. 
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All the models produced showed more error than might be expected from the levels of 

error present in the measurements. The modelling was repeated with Projected Latent 

Structures (PLS) in order to reduce the error of modelling. 

2.2.3 Intrasite Experiment 5, Inclusion of the sterilisation data 

The MLR and PLS models while poor did show a relationship between fluid 

absorption and the other variables. With carefully selected process measurements 

there will be little or no correlation between recorded variables, thus the required 

information to improve the model might be missing from the selected variables. Data 

from a different source could provide an improved model. The sterilisation data was 

the only other source of information available about Intrasite gel, so this was 

collected. No attempt was made to transfer all the historical sterilisation data into 

spreadsheet format as there was no evidence that this contained any useful 

information. If the sterilisation data proved useful then the remaining data could be 

transferred at a later date. 

The sterilisation data was added directly to the data set that already existed, taking 

only those batches that matched. On a number of occasions the data for a particular 

batch might be recorded twice, usually from a re-test, occasionally from a 

typographical error in the batch numbering. In cases where the discrepancy could not 

be resolved the first instance of a batch was taken and the other instance was deleted. 

Correlation analysis was done, although the results showed that there was very poor 

correlation between the fluid absorption and the new variables. MLR and PLS 
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calibrations were carried out to determine whether the model error had been reduced 

by the addition of the new variables. It is possible that some of the solubility of 

Intrasite gel in water might be explained by the conditions during sterilisation, and 

thus the model might be improved. The models produced were still very poor, 

showing at least 40% error. 

2.2.4 Intrasite Experiment 6, Effect of pH on Measured Fluid 

Absorption 

The equipment used to carry out the settling volume test is one of the major reasons 

for the large error in the measurement, however the solubility of the hydrogel in the 

saline solution is of great importance as well. In this and all other experiments calling 

for saline solution, saline solution means a solution in pure water of 0.142 mol 1', 

sodium chloride and 0.0025 mol 1"1 calcium chloride. The effect of the pH of the 

saline solution was investigated to determine whether there is any noticeable effect on 

the result of the settling volume test. The solubility of a material is affected by the 

ionic strength of the solution into which is dissolving, and the pH of the solution 

reflects this. A series of experiments were carried out to examine the effect of the pH. 

Due to sampling limitations, it is only possible to examine about 100 ml of Intrasite 

gel. If the sample is greater than this then archive samples must be used and this is 

unacceptable under the guidelines for the registration of medical devices. The 

guidelines call for samples of the batches analyses to be held in storage for at least 

five years in case re-testing is required. The experiment to examine the effect of pH 
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was intended to have five replicates for each of six levels of the pH, spanning the pH 

range limits described in the specifications. It was not possible to take the 300m1 

required for this series of test from one batch so the experiment was run with 5 

different batches, each batch tested at six different pH. 

The results of the test were examined for between and within batch variation using 

ANOVA. The variation between the batches was found to be greater than the 

variation due to pH changes by a significant amount. It was decided that trying to 

account for the error in the settling volume method was not going to significantly 

reduce the error in the test. 

2.2.5 Examination of Process Control, Intrasite Experiment 7 

Fluid absorption was initially examined because the test to measure it is the one 

considered most flawed, and the results are the least reliable. Smith and Nephew's 

interest however is wider than that, clearly they wish to ensure that their product is 

produced to a high and constant standard. Excessive testing to show this is not of 

value. Smith and Nephew would like to reduce the level of testing they carry out and 

still be certain that the product they produce is still to the same standard. The results 

from the analysis of the sample can be used to examine the production of Intrasite gel. 

2.2.5.1 CUSUM Charts 

In producing a CUSUM chart there is no assumption of a normal distribution. The 

CUSUMS were plotted for all the whole data set. Solids content, viscosity coefficient 
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and fluid absorption show approximately the same profile, the pH shows a different 

profile. The elasticity profile appears to have a profile corresponding to the combined 

effects of the pH profile and the solids content profile. 

The CUSUM profiles were also plotted for the data from the year 1997. These 

CUSUM profiles showed similar relationships to the profiles from the full data sets. 

One of the possible causes for changes in population mean shown in the CUSUM 

charts is the change in analyst. The routine analysis of Intrasite gel is carried out by a 

undergraduate student on placement with Smith & Nephew, this requires that each 

year the person carrying out the analysis changes. Periods of holiday and training of 

new staff affect which analyst carries out the tests. The CUSUMS for the variables 

were plotted for time periods where the analyst was know and was constant for long 

periods of time to investigate these this possible influence. The analysts designated 

65,67,68 and 76 suited the requirements for this examination, each person analysed 

Intrasite gel for a period of more than six months. The results show that for each 

analysis the profiles of the variables, particularly viscosity coefficient, elasticity and 

SCI show a remarkable correlation. This work is reported in Appendix VII, a report 

for Smith & Nephew. 

The CUSUM charts were used to examine the sampling frequency employed for the 

analysis of Intrasite gel, the Shewhart charts are not appropriate for this task as there 

is uncertainty about the exact error present in each measurement. If the process is 

under control the product can be assumed to be within specification. The minimum 

level of analysis to determine the process state is all that is needed. By calculating the 

CUSUM charts for the variables using fewer points than are available the effect of 
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reduced sampling can be determined. The CUSUM charts for each variable were 

calculated using every second, fifth, tenth and twentieth point. The profiles present in 

the charts from the full data set can still clearly be seen, suggesting that the process 

can be monitored using fewer sampling points. 

2.2.6 Reference Data 

The models produced so far are not useful as a replacement to the actual settling 

volume test, so a new approach was considered. A method that measured the fluid 

absorption accurately and precisely would allow the relationship between fluid 

absorption and the other variables to be studied. The results from this method could 

then be related to the results from the settling volume method, and the settling volume 

results predicted. This new prediction would not contain the error present in the 

actual measurement. If this approach turn out not to be feasible then the new method 

could replace the settling volume method as the standard test. Prediction of the 

settling volume test results from the reference method is required, however the 

reference method cannot be used directly. The relationship between the reference 

method and the settling volume test, and the relationship between the reference 

method and the analysis variables need to be established. This will allow the 

development of a model predicting the settling volume method, 

1. Measure Fluid absorption, or a closely related property 

2. Precision 

3. Accuracy 

4. Reproducibility 

5. Ease of measurement 

6. Speed of Measurement 
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7. Low Skill requirements 

8. Low Materials and Equipment Cost 

Ideally any method would not just measure fluid absorption, but also have some 

information about the rate at which any equilibrium was reached. Four methods were 

examined as to their suitability. 

The first method considered monitoring the viscosity coefficient of the Intrasite gel as 

saline solution was added to it. This would show not only the total fluid absorbed by 

the gel, but also give some indication of the rate at which the fluid was absorbed. 

This test would satisfy all the requirements except 5 and 6. The measurement would 

not be particularly easy due to the requirement of measuring the viscosity of a 

material with a changing volume. This would cause problems with the design of the 

equipment since the probe would need to remain at constant height relative to the 

surface of the gel. Early tests showed that the test would also be very slow as the gel 

would have to reach full equilibrium to each level of saline added or the viscosity 

coefficient results would be unstable. Further reading suggested other reasons why 

the test would fail. M. Dolz et. al. [74,75] showed that the viscosity of 

carboxymethyl cellulose polymers was affected by shear stress, the viscosity was 

found to reduce by 40 to 50% after five minuets of stirring. Since shear stress would 

be a factor in mixing the gel once saline had been added and a factor in the test itself 

the results, the results would be unreliable. 

The second method considered was the standard method for examining the fluid 

absorption of solids gels and foams. The material to be tested is placed under a petri 

dish and saline is slowly pumped in. The amount of fluid pumped in before the petri 
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dish leaks is the fluid absorbed by the material being tested. This test would require 

modification to be used with Intrasite gel, as air would not be displaced in this case, 

so arrangements would be needed to deal with the expansion of the gel. The flow rate 

of the saline would need to be considerably slower than standard. Of the 

requirements, only 1 and 8 are satisfied by this test. The precision, accuracy and 

reproducibility of the test would be suspect due to difficulty in ensuring that the gel is 

homogenous beneath the petri dish. The test would require too much preparation, and 

due to the requirements of equilibrium would take too long. There is a high degree is 

skill required in setting the test up and monitoring it during the testing period. 

The third method is one of the standard methods for measuring the fluid absorption of 

a material, and is covered by the British Pharmacopoeia Appendix VI, Physical Test 

Methods. The test is known as the tea bag method where a known mass of the sample 

of the material to be tested is placed in a semi-permeable membrane, and suspended 

in a solution, in the case of Intrasite gel, saline solution. After equilibrium has been 

reached the sample is re-weighed and the fluid absorbed can be calculated. This 

method was discounted immediately due to the solubility of Intrasite gel [73] in saline 

solution and water. 

The forth Method was referred to as "the Paddington Cup" method, and the Agar 

Plate method [76]. The Paddington cup method was developed as a method to 

examine the differences between competitors products and Intrasite gel. The method 

examined the different properties of the various hydrogels in absorbing and releasing 

saline solution. To carry out this test a sample of the hydrogel to be measured is left 
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in contact with a suitable material. To examine the water absorbing properties of the 

hydrogel the material used is Agar gel, more than one concentration of Agar is used, 

1%, 2%, 4% & 6%. For the examination of the water donating properties Gelatine gel 

was used, at several different concentrations, 10%, 20% and 30%. This range of 

substrates is used because the different hydrogels produced by the various 

manufacturers can have markedly different properties, some are intended for slightly 

different end uses and this will effect the water transfer properties. The span of 

materials used allows the relative properties of the different gels to be examined. 

The main drawback to this method is that it is time consuming, taking approximately 

four days to complete. The method is also unable to provide any information about 

the rate at which fluid is transferred. This method however does not posses the flaws 

evident in the other methods considered, and it measures directly the transfer of fluid 

between different mediums, relating directly to its end use. This test was selected as 

the one most likely to provide a useful replacement to the settling volume method 

despite its long time requirement. 

2.2.6.1 The "Paddington Cup" Method 

This method has shown its usefulness for the comparison of different hydrogels, the 

fluid absorption is calculated from the change in weight of either an agar disk of 

varying concentration or of a gelatine disk of varying concentration. 

The work is carried out in a 60m1 syringe with the nose cut off, leaving a wide 

opening with a smooth edge. The plunger of the syringe is withdrawn to leave a 

suitable volume of space, approximately 30m1. The syringe is weighed. lOg of 

substrate are introduced into the syringe, the syringe is then sealed and is left to 
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solidify and equilibrate at 25°C for 24 hours. The syringe is re-weighed. l Og ofthe 

hydrogel sample being tested are added, and the syringe weighed again, then sealed. 

The experiment is left for 48 hours at 25°c. After 48 hours, the syringes are unsealed 

then weighed again, and the hydrogel removed, care being taken to ensure that the 

substrate surface is not disturbed. Either the removed hydrogel or the syringe with 

substrate can then he weighed again, for practical reasons it is easier to weigh the 

syringe and substrate. The percentage change in weight can be calculated from these 

measurements and used to give a relative measure of the fluid absorption of' the 

sample. 

Foil Cap 

Hydrogel 
(l Og Aprox. ) 

2% Agar 
(l Og Aprox. ) 

Syringe 

Figure 2.1 Diagram Showing the Arrangement of Apparatus for the Analysis of 
Hydrogels Using the "Paddington Cup" Method 
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2.2.6.1.1 Intrasite Experiment 8, The "Paddington Cup" Method 

For the comparison of competing hydrogell all the various substrates are used. For 

the analysis of Intrasite gel only one substrate is needed. The variation in fluid 

transfer between batches of Intrasite gel is less than the variation between competitors 

products and Intrasite gel, making the different substrates unnecessary. 

2.2.6.1.2 Intrasite Experiment 9, Selecting the Correct Substrate 

The Paddington cup method was carried out on a all the different substrates 

recommended in the test method, and the best for the intended purpose was selected. 

After examining the results for the different substrates 2% agar was selected as the 

most appropriate to carry out this work. The concentration of agar affects the 

percentage of fluid transferred between the agar and the hydrogel, lower percentages 

of agar lead to a higher fluid transfer, however the trade-off is that the agar gel will 

not be as firm. If the agar is too fragile then it becomes difficult to remove the 

hydrogel from the agar without damaging the agar, this leads to large error in the 

measurements. If the concentration of the agar is too high, the volume of fluid 

transferred can be small, leading to a larger error from imprecision in measuring. 

Initial tests showed that an agar concentration of 2% w/w provided the best 

compromise, ranges of agar concentration between 1% - 6% were tried. Three 

replicate experiments for each hydrogel sample were made. 
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2.2.6.1.3 Intrasite Experiment 10, Generating the Reference Data 

The Paddington cup method was carried out on 42 different batches of Intrasite gel 

over a six week period, using three replicates of each sample. The results showed that 

the fluid transfer between the agar and the Intrasite gel were fairly stable over the test 

period, this would be expected if the procedure to manufacture the gel was stable. 

The relatively constant results could be seen as an indication that the test is not really 

measuring what it is intended to. To demonstrate that the test was in fact measuring a 

changing property the test was carried out in its entirety (using all the recommended 

substrates) on a variety of competitor samples to compare the results. 

2.2.6.2 Analysis of the Paddington Cup Data 

The data produced was examined for its relationship to the fluid absorption variables 

measured using the settling volume method, and any relationship with the other 

recorded variables. No real results were expected as the Paddington cup method 

produced very stable results. A relationship between these new measurements and the 

old variables was found, though further work is required to improve on this. 
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3. PLS Results and Discussion 

3.7. Reasons for Variable Selection 

Much of the work described here has been reported in a paper submitted to 

Chemometrics & Intelligent Laboratory Systems [2], and can be seen in Appendix VI. 

Multivariate regression techniques produce coefficients between an independent 

matrix and one or more dependent vectors. The coefficients minimise the influence of 

variables that do not positively contribute to the model, and maximise the contribution 

of variables that provide useful information. The coefficients produced by MLR are 

hindered when the problem is either over-determined or under-determined; the result 

is overcompensation of the coefficients. A large positive coefficient to a variable with 

no information is compensated by a large negative coefficient from another variable 

that contains no information. PLS and PCR solve this problem by regressing against 

new vectors themselves products of the independent vectors. The new vectors are 

created to minimise the contribution from variables with no information. The new 

vectors do however contain a contribution from all the variables used in the model. 

When a new test vector is introduced to the model for prediction the prediction is 

based on the coefficients spanning all the input vectors. If the vectors for those 

variables not containing any information contain values that are outside the ranges 

used in the calibration then the calibration will have error introduced from those 

variables. This is more extreme for MLR where coefficients for variables that contain 

no useful information can be quite large, however even in the factor analysis 

techniques the coefficients for vectors without information will not be at zero, they 

will just tend to zero. The contribution for a large number of unwanted variables 

provides a large part of the error present in a model. One possible solution to this is 
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to remove the variables that do not have information in them. Removing variables 

can be done as part of pre-processing, with spectroscopic calibration sections of 

spectra are routinely removed when it is known that there is only noise in that section. 

This is not an ideal method. Manual deletion of variables suffers from two main 

flaws 

1. The judgement of the analyst must be considered, no two people will remove 

exactly the same sections of spectra, and the sections that are removed may not be 

the best one to remove. When examining complex spectra most people will 

remove sections where there is high noise, and sections were there is a low 

response, retaining those sections that contain the peaks. This can be 

counterproductive, information about the background noise in a spectra is 

important to a model, and the sections between overlapping peaks will often 

provide the information required to separate peaks. 

2. With many spectra, particularly noise free spectra the largest source of error in 

prediction can be caused by collinearity between neighbouring wavelengths in a 

peak. Neighbouring wavelengths tend to provide the same information as each 

other, and are thus collinear, leaving these variable in the model will influence the 

matrix towards singularity, and this can be seen to strongly influence the 

coefficients. 

Several possible routines have been considered to allow for the selection of the 

correct variables to build a model, they are all based on within model predictions, that 

is modelling the calibration set. Models that are optimised to predict from the 

calibration set often perform poorly when it come to the prediction of new results. 
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Using the predictive ability of the model to select the appropriate variables is a better 

solution. 

3.2. Reasons to Avoid Variable Selection 

Variable selection is not always appropriate; the most likely reason for this is when 

the object of the analysis is not the direct calibration of the data set with the aim of 

producing a model to predict component values, often component concentrations. 

This is usually associated with process analysis situations where the noise level 

present in the data set is often used as an indicator of the stability of the process. It is 

assumed that if the noise is stable across the variables recorded then the process is 

also stable. It is also important to consider the application of variable selection when 

the presence of unusual events within the data set must be considered important, that 

is that an event that does not occur in the training set in a section of the variables that 

otherwise has no information. An example of this might be the presence of an 

unexpected contaminant in a flow stream that does not affect the section(s) of the 

spectra that contain information about the analyte, where the presence of this 

contaminant must be detected. If a variable selection procedure is used the presence 

of this contaminant may not be detected as it will not effect the prediction results, of 

course even if a variable selection procedure is not used this does not mean that the 

contaminant will be detected as it may not have a significant effect on the predicted 

result of the component(s) of interest. It is important to note that variation in the 

prediction of the concentration of components should never be used as a method to 

detect contaminants, other methods should be used, such as more direct monitoring 

across all the variables, unless the model has been built expressly for that purpose. 
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In the situation where matrix effects need to be ignored, for example if a water sample 

is examined for lead only and other materials present are of no interest, then a variable 

selection routine will provide some level of robustness towards the matrix effects that 

may be present. Obviously for variables where a contaminant directly overlaps the 

variables selected to model a component there will be the same problems with a 

variable selection method as there would be experienced with a model built without 

variable selection. 

3.3. Variable Selection MLR 

Of the common multivariate techniques, MLR, PCR, and PLS, MLR will normally 

has the greatest error, this is due to the overcompensating coefficients, and under 

determination in most cases. The paper by Walmsley [1] concerning VS-MLR 

examined variable selection in several stages. Once the limitations of the existing 

techniques had been determined then the best approach was considered. The main 

issue with the other variable selection methods developed was the model building on 

the basis of calibration performance not predictive ability. By deciding to select 

variables on the basis of their predictive ability the two most popular methods had to 

be discounted immediately, variable selection by examining the correlation 

coefficients will always provide the same solution, and no modification based on 

predictive ability is practical. Variable selection based on the coefficients (effectively 

partial multiple correlation coefficient) also cannot be modified by predictive ability. 

These two methods are also weak when more than one dependent vector is considered 

simultaneously, and both have difficulty eliminating the problems caused by 
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collinearity since they both effectively act to enhance collinearity by selecting highly 

correlated variables. 

The method first used to select variables was a single pass addition method; a single 

variable was selected initially by choosing the most highly correlated variable. The 

PRESS produced using this one variable was used as a baseline to compare the effect 

of adding in variables. Variables were added into the model individually on a random 

basis, a new PRESS was produced and if the model was an improvement with the 

added variable then it was retained, otherwise the variable was discarded. As the 

model improves the PRESS is updated so that each new PRESS produced is 

compared to the current best PRESS produced up to that point. Variables were added 

on a random basis as with most spectra the wavelengths within a peak are highly 

correlated, thus if the variables were presented to the model in sequence the first 

wavelength in a peak would be selected as being important to the model, the next 

wavelengths of the peak are likely to be reject as information about the peak is 

already present in the model and collinearity will cause the model performance to 

degrade with the added variable, the result of this is that sequential addition of 

variable neglects the most important variables as they have already been encountered 

in some form. This selection procedure was run a set number of times, and the group 

of selected variables that produced the best model were kept. The model building 

process must be repeated because of the random addition of the variables. The MLR 

coefficients vary according to the variables present in a model, certain groups of 

variables can produce unpredictable effects. If a small group of variables are selected 

in the early stages of building that provide a good solution to the problem then there 

may not be any single other variables that will provide an improvement in the model 
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and no more variables will be selected, the model will have peaked early, below its 

best. The additions of variables can also result in a very slow increase in the 

performance of the model, the result of this will be the selection of a large number of 

variables that are not actually required in the model. 

This method of selecting variables produced a strong improvement on standard MLR, 

however there was still a tendency to retain too many variables. The reason for this is 

that if a variable that is retained in the model provided poorer quality information to 

the model than another variable that has not already been selected, then both variables 

will end up selected as there was no procedure to discard variable that became 

redundant. The VS-MLR procedure was modified to have a removal mode, once all 

the variables had been tested the process was run in reverse, a model was built from 

all the selected variables, and the PRESS produced used as a new baseline, variables 

were then removed individually and randomly and the model re-tested. Random 

chance still operates, so the model building must be repeated a number of time to 

obtain a good solution, however variables that had been added in the first pass that 

were then exceeded by subsequent variables will be removed from the model 

producing a better model. 

Once these two stages were developed a squashing function was added to the model, 

the squashing function either encourages the addition of variables, or hinders them. 

The squashing function is a multiplier for the current best PRESS for a model. If the 

squashing function acts to reduce the current best PRESS then the addition of 

variables will be reduced as any improvement to the model for the addition of a 

variable will have to be greater than normal for the variable to be selected, and the 
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reverse will be true when the squashing function makes the current best PRESS 

larger. 

The variable selection procedure described worked very well with many data sets, 

providing an 80% reduction in error on average. This method was transferred to PLS 

to determine whether it would be useful. 

3.4. Comparison with VS-MLR 

This work stemmed from work in developing a variable selection MLR algorithm; the 

development of the variable selection routine for MLR was eventually published (1]. 

During the development of the VS-MLR routine this work was begun, one of the data 

sets used in the two different routines (VS-PLS and VS-MLR) is the same, the UV- 

Data set. This can be seen as a link between the two methods for comparison 

purposes. The final version of the VS-MLR code can be seen to outperform VS-PLS 

for all components through all the VS-PLS versions with the exception of the final 

VS-PLS method (SVR-DP-PLS, section 3.10) where VS-PLS is superior to VS-MLR 

for the first component, iron. There are various reasons why VS-PLS is inferior to 

MLR for the other three components. First the UV data set is a very good data set, 

with little noise and peaks with minimal overlap, except for the iron peak, which is 

near the limit of detection. The UV data set for the other components is ideally suited 

to analysis using VS-MLR, once the number of variables is reduced the error is low, 

and the system is over determined, this allows VS-MLR to extract very good 

coefficients to describe this data set. VS-PLS has a much greater noise overhead for 

the "clean" components where by necessity noise is added in, both through the 
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various calculations, of which there are significantly more for the PLS algorithm than 

for the MLR algorithm, and through the use of latent vectors which tends to spread 

noise that cannot be removed from the system across all the components being 

predicted. This is due to the MLR calculations having separate coefficients for each 

component relating back to the separate variables, while the PLS coefficients are 

calculated for each component individually back to the same latent vectors, which 

contain contributions from all the selected variables. This can be seen with the iron 

component where the advantage that PLS has with regards to removing noise 

outweighs the advantages MLR has with limiting noise across components, giving a 

better prediction for the iron component. While there have been no other comparative 

uses with other data sets it is hypothesised that this advantage that VS-PLS has means 

that for noisy data, data where the peaks overlap to a significant degree, and data 

where the peaks of interest are not the major influences in the data set , VS-PLS will 

show strong predictive superiority over VS-MLR. 

3.5. Variable Selection PLS 

The development of the variable selection PLS algorithm took place in approximately 

five stages, the results of each of those stages are outlined below. The histograms 

examined in each section were only developed after the final stage had been 

produced, so each stage was repeated to get the information needed to produce the 

histograms. The results reported are all shown using PRESS values this is because 

the PRESS values can be used to compare results between components in a model and 

between different models of the same data, but not to compare models of different 

data. 
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3.6. Variable Selection Histograms 

The process of variable selection used is an iterative one using randomized variable 

orders. As has been discussed this is to reduce to effect of collinearity on the 

selection of variables. On any one pass through the algorithm there will normally be 

variations in the variables selected, no two models are likely to be identical unless the 

collinearity of the data is very low or the data set is very small. Although the various 

models produced will be developed using differing selections of variables, variables 

that contain particularly important information will be selected with a greater 

frequency than variables with lower information or worse signal to noise ratios. By 

examining every run through the algorithm that a data set makes, not just the one with 

the lowest error, patterns can be built up about which variables contain more 

information than others, this will tend to indicate sections of the spectra that contain 

useful information. The frequency that a variable has been selected over the whole 

course of training is recorded so that this information can be incorporated into the 

model evaluation, in the figures that display this information only a few of the spectra 

used in the model have been shown to avoid crowding of the graphs. 

3.7. Single Addition Mode, SVA-PLS 

The flow chart for the first variable selection method can be seen in figure 3.1, and 

shows the stepwise procedure followed in this algorithm. 
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Figure 3.1, Flow chart for the first variable selection method, SVA 
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3.7.1. UV Data Set 

Two hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 23, and the number 

of variables selected for the model with the lowest PRESS was 45. 

Component PRESS 
Fe 21.8267 
Co 0.7054 
Ni 0.5974 
Cu 0.2126 

Table 3-1 PRESS Results for ordinary PLS using the UV data set, 7 LVs were used, and 
the base PRESS was 23.34 

Component PRESS 
Fe 16.8267 
Co 0.6054 
Ni 0.5674 
Cu 0.116 

Table 3.2 PRESS values for the model developed for the UV data set using SVA. 7 LVs 
were used, and the base PRESS was 16.20 
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Figure 3.2 Prediction results for the UV data set using SVA 
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On average this method retained about 10% of the available variables, and improved 

over ordinary PLS by a reduction in error of about 33% (Table 3.1 and Table 3.2), this 

compares poorly with the equivalent VS-MLR method, which achieved reductions in 

error of about 80% with this method. The PLS variable reduction techniques was not 

expected to outperform the MLR method initially due to the limitations of the PLS 

algorithm when used in this way. The algorithm starts with a single variable, and this 

requires the PLS model to initially use a single latent vector, this is a very poor 

situation for a multi-component mixture and results in each variable examined being 

selected until sufficient variables are present in the PLS model for a stable solution. 

As the variables added may have little or no relevance to the model this can mean the 

addition of a significant number of variables before the solution stabilises. Figure 3.2 

shows the predicted results for this model, all the components have been plotted as a 

single data set as it is the overall results that are of interest in this work not just the 

results from a single component. It should be noted that although the model has been 

considered as a whole the single biggest improvement is in the prediction for Fe, this 

likely to be because the is a very high noise component in the information for the Fe, 

and the removal of any significant number of variables from the data set would 

achieve similar results, if only because of the commensurate reduction in noise 

present. 
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Figure 3.3 Frequency with which a particular wavenumber is selected from the UV data 

set by SVA 

Figure 3.3 shows that there is structure to the selection of variables, although no 

wavenumber has been selected constantly by the model, this is expected as many of 

the wavenmbers carry the same information. A feature of interest is that the centres 

of the peaks have not been picked more frequently than other sections of the spectra, 

this was hypothesised earlier as is likely to be due to the fact that more information is 

available in the overlapped areas concerning the contribution from diflcring 

components. 

3.7.2. Artificial Data Set I 

Two hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 15, and the number 

of'variables selected for the model with the lowest PRESS was 14 

114 



Component PRESS 
Comp 1 2.3795 
Comp 2 2.2962 
Comp 3 0.21709 
Comp 4 1.8912 

Table 3.3 PRESS values for the first artificial data set using ordinary PLS, 6 LVs were 
used and the base PRESS was 6.57 

Component PRESS 
Comp 1 3.3795 
Comp 2 3.2962 
Comp 3 0.11709 
Comp 4 4.8912 

Table 3.4 PRESS Values for the first artificial data set using SVA, 6 LVs were used, and 
the base PRESS was 11.68 
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Figure 3.4 Predicition results for SVA on the first artificial data set 

The PRESS results seen with this data set shows that the model is actually inferior in 

most respects to the original PLS one, the overall PRESS is lower, and it is only the 

PRESS for component three that shows any improvement. Component three is the 

only linear component in this model. This could be because for the non-linear 

components a stable model cannot be built up using the addition of stable models, and 
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any variable that could improve the model could only do so as part of an interruption 

with another variable. Figure 3.5 shows that there is structure to the variable selection 

and this could be due to the selection of variables that allows the contribution of the 

three non-linear components to be removed from the calculation fcr the linear 

component. 
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Figure 3.5 Variables selected against the spectra for SVA using the first artificial data 
set 

3.7.3. Artificial Data Set 2 

Two hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 73, and the number 

of variables selected for the model with the lowest PRESS was 73. 
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Component PRESS 
Comp 1 0.16282 
Comp 2 0.36906 
Comp 3 0.39796 
Comp 4 0.17581 

Table 3.5 PRESS results for the second data set us ing ordinary PLS, 4 LVs were used, 
and the base PRESS was 1.11 

Component PRESS 
Comp 1 0.14282 
Comp 2 0.34906 
Comp 3 0.37796 
Comp 4 0.15581 

Table 3.6 PRESS results for the second artificial data set using S VA, 4L Vs were used, 
and the base PRESS was 1.00 
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Figure 3.6 Predicted results for SVA on the second artificial data set 

Ordinary PLS can predict using this data set very well, the improvement using the 

variable selection routine is only minor, figure 3.7 shows that although there is some 

structure to the variables selected this does not show any clear features. It is possible 

that there is too little variation and too little noise for individual variables to he 

significantly better than any other variable. There is a clear indication from the 
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amount of' noise in evidence that far too many variables are being selected, the model 

could probably perform very well with a very small number of variables. 
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Figure 3.7 Variables selected against wavenumbers for the second artificial data set 
using SVA 

3.8. Multiple Variable Addition Single Pass, MVA-PLS 

The next method was intended to improve the modeling of' non-linear variables, and 

to reduce the number of variables added initially when the stable ITS model was 

being built. Variables were added to the model groups of size equal to the number of' 

components in the data set so hear the number of variables added was föur für each 

data set. This reasoning was flawed, as variables were accepted or rejected as blocks 

of tour, this resulted in very poor variable selection and a large number of variables 

being selected to no benefit. The results showed that about 45% of variables available 

were selected in each case and although there was a slight improvement in the 

modelling for the non-linear components this was due to the increased number of 
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variables being selected bringing the model closer to the ordinary PLS model. There 

was no improvement for the linear components. 

3.9. Single Variable Addition, Single Variable Removal, 
SVA-SVR-PLS 

The main flaw with the first method was the selection of too many variables. This is 

due mainly to the instability of the model during the initial stages of the modeling 

when insufficient variables have been selected for the model to be stable. This gives 

rise to the selection of any variable regardless of suitability. Another key reason for a 

surplus of selected variables is again the issue of co-linearity. In each of the three 

data sets there are likely to be many variables that contain essentially the same 

information with only slight differences in the signal to noise ratio If a variable is 

selected initially with a low signal to noise ratio, any variable with the same 

information but a better signal to noise ratio will be selected as well at a later stage. 

The variable selection routine needs some procedure to remove redundantly selected 

variables. The logical method to do this is to test the suitability of variables attcr they 

have been selected by examining the performance of the model when they are 

removed. This method showed improvements over the previous two methods, and the 

flow chart showing the algorithm can be seen in Figure 3.8 
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Figure 3.8 Flow chart showing SVA-SVR 
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3.9.7. UV Data Set 

Two hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 16, and the number 

of variables selected for the model with the lowest PRESS was 15. The PRESS 

values can be seen in Table 3.7. 

Component PRESS 
Fe 11.2546 
Co 0.54923 
Ni 0.3235 
Cu 0.2 

Table 3.7 PRESS values for the model developed for the UV data set using SVA-SVR. 7 
LVs were used, and the base PRESS was 12.32 

This algorithm shows a good improvement over the previous two with this data set, 

one key point is both a reduction in the number of selected variables and a reduction 

in the predictive error. The structure to the frequency of variable selection (Figure 

3.10) is also more pronounced, again clearly emphasising the variables that are away 

from the peak centres. This shows the importance of examining the contribution of 

variables that provide information about the overlap between peaks. 
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Figure 3.9 Prediction results for the UV data set using SVA-SVR 
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In this case the high end noise seen in the spectra has had variables selected from it 

fairly constantly, this is likely to be a requirement to examine the base line noise 

across the spectra. 
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Figure 3.10 Frequency of variables selected against the spectra, UV data set using 
SVA-S VR 

3.9.2. Artificial Data Set 1 

1-wo hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 6, and the number 

of variables selected for the model with the lowest PRESS was 2. 

Component PRESS 
Comp 1 2.468 
Comp 2 8.2316 
Comp 3 0.10324 
Comp 4 10.0015 

Table 3.8 PRESS values for the first artificial data set using the SVA-SVR, 6 LVs were 
used and the base PRESS was 20.80 
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With the exception of the third component of this data set this method was inferior to 

any method tried so far, ordinary PLS, and the two VS-PLS methods performed 

better. As intended this method reduced the number of variables selected however the 

variables that remained appear to have been those that contained information 

concerning the third component. Figure 3.11 shows the predictions for this model. 

The variables selected over the course of the training (Figure 3.12) remain similar to 

those selected initially, again concentrating on the sections of the spectra that explain 

the linear component. 
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Figure 3.11 Prediction results for the fist artificial data set using SVA-SVR 
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Figure 3.12 Frequency of variables selected vs. spectra for the first artificial data set 
using SVA-SVR 

3.9.3. Artificial Data Set 2 

Two hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 29, and the number 

of variables selected for the model with the lowest PRESS was 22. 

Component PRESS 
Comp 1 0.06832 
Comp 2 0.36022 
Comp 3 0.1096 
Comp 4 0.0758 

Table 3.9 PRESS values for the second artificial data set using S VA-S VR, 4 LVs were 
used and the base PRESS was 0.61394 

This method did significantly better than the first and second methods, this was 

expected as there is a large number of variables in this data set, and unlike the IJV 

data set there is a high percentage of collinearity. The PRESS values ("fahle 3.8) 

show that the improvement is equal across all the components in contrast to the other 
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two data sets, again this is due to the non-linear variables in the first artificial data set 

and the high noise in the Fe component of the UV data set. 
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Figure 3.13 Prediction results for the second artificial data set using SVA-SVR 

Figure 3.13 does not show any huge improvement over any of the previous methods, 

however this is not expected as the modelling for this data set was very good anyway. 

Figure 3.14 shows a little more structure compared with the previous histogram 

(Figure 3.7), an although it cannot he conclusive again it shows that the inlormation 

about the overlaps between the peaks is again ranked higher than the information 

contained in the peak maxima. 
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Figure 3.14 Frequency of variables selected against spectra for the second artificial 
data set using SVA-SVR 

3.9.4. Summary 

The overall result of the third VS-PLS method is that it successfully solves the major 

problem with the first method, that of selecting too many variables. This is not true of 

the non-linear components, but the method does improve the modelling of linear 

components when there are non-linear components present in the data set. The 

presence of non-linear components overlapping with a linear component can cause 

severe problems with conventional calibration methods. 

One interpretation of the Addition-Removal algorithm is that the Addition section 

"thins" out the variables that may he of use, and the Removal section sorts through to 

files the selection. This raises the possibility that the algorithm could function 

perfectly well with just the Removal section, the addition stage could well be 

superfluous. This hypothesis is tested in the next section. 
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3.10. Single Variable Removal, SVR-PLS 

The single variable removal algorithm is intended to examine the possibility that the 

initial variable addition step in the previous algorithm was superfluous. The 

algorithm used to test this can be seen in Figure 3.15. 
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3.10.1. UV Data Set 

Two hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 16, and the number 

of variables selected for the model with the lowest PRESS was 13. The PRESS 

values can be seen in Table 3.7. 

Component PRESS 
Fe 11.3487 
Co 0.23269 
Ni 0.20232 
Cu 0.097441 

Table 3.10 PRESS values for the UV data set using SVR, 7 LVs were used and the base 
PRESS was 11.88 

What is significant about this method is the remarkable similarity between the results 

for the Addition-Removal method and this one, the PRESS values seen in Table 3.110 

are lower than those in Table 3.7. This suggests as hypothesised that the initial 

addition step is in fact redundant. 

The prediction results (Figure 3.16) are also similar to the results in Figure 3.9 as 

expected from the PRESS results, and the frequency of variable selected (Figure 

3.17) is again very similar to Figure 3.10. 
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Predicted UV Component Concentration vs Actual Concentration 
(Autoscaled) All Four Components 

4 

3 

Gz 
m 

Ü 

a 
N 

ao 

_1 

Figure 3.16 Prediction results for the UV data set using SVR 
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Figure 3.17 Frequency of variable selection vs. spectra for the UV data set using SVR 
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3.10.2. Artificial Data Set 1 

Two hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 6, and the number 

of variables selected for the model with the lowest PRESS was 3. 

Component PRESS 
Comp 1 3.01254 
Comp 2 11.5584 
Comp 3 0.05897 
Comp 4 15.001 

Table 3.11 PRESS results for the first artificial data set using SVR, 6 LVs were used, 
and the base PRESS was 29.63 

This model is again worse for all the components apart from the linear third one, it is 

likely that again the only variables that are selected are those that improve the 

modelling for this component. As seen with the UV data set the model produced is 

very similar to the model produced using the third VS-PLS method, and both the 

predicted results (Figure 3.18) and the frequency of variable selection (Figure 3.19) 

are show the same patterns. 
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Predictions From Data Set 1 Concentrations vs Actual Values 
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Figure 3.18 Prediction results for the first artificial data set using S VR 
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Figure 3.19 Frequency of variable selection vs. spectra for the first artificial data set 
using SVR 
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3.10.3. Artificial Data Set 2 

Two hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 19, and the number 

of variables selected for the model with the lowest PRESS was 21. 

Component PRESS 
Comp 1 0.07123 
Comp 2 0.35441 
Comp 3 0.11230 
Comp 4 0.07400 

Table 3.12 PRESS results for the second artificial data set using SVR, 4 LVs were used 
and the base PRESS was 0.62394 
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Figure 3.20 Predicition results for the second artificial data set using SVR 

This data set shows the same pattern of results as the other data sets, this algorithm 

has produced very similar results to the addition-removal algorithm, the PRESS 

results (Table 3.12) the prediction results (Figure 3.20) and the variables selected 

appear to be very similar to the previous results. With this data set it may be diflicult 
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to detect variation as the model is very good in all cases, however this does act to 

hatch up the reasoning from the other two data sets. 
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Figure 3.21 Frequency of variables selected vs. Spectra for the second artificial data 

set using SVR 

3.11. Single Variable Removal Duel Pass with Squashing 
Function, SVR-DP-PLS 

Modification to the algorithm so that only the removal phase of the procedure is 

carried out provides a model that is very comparable to the addition-removal model. 

I'his indicates that the addition step is not needed. The addition step is selecting the 

correct variables, as the variable the addition mode selects are the ones used for the 

removal mode, however the addition mode is selecting too great a number of 

variables. The removal stage is not removing enough variables. This is due to the 

sequence in which variables are presented to the model. The solution chosen for this 

is to re-shuffle the selected variables and repeat the variable removal procedure, by 

changing the sequence of the variables again this problem will be reduced. Another 

change added at the same time was a squashing function. When two nearly identical 
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variables are presented to the model the overall PRESS may be reduced by a small 

fraction, the reduction in model error may not be sufficient to warrant the inclusion of 

the second variable however the model has no procedure to reject the variable. A 

squashing function could be used to adjust the likelihood of a particular variable is 

selected. By using a squashing function the algorithm could be adjusted so that a 

variable is only included in the model when the model error drops by a fixed amount, 

a not when the model error is just a fraction smaller than the current best value for the 

PRESS. A squashing function is used in both variable removal stages. 

The flow chart for this method can be seen in Figure 3.22 the squashing function is 

used in the comparison of the current best PRESS result and the new PRESS result, 

and is the scalar by which the new PRESS result must improve on the old one for the 

variable being tested to be included in the model. If the squashing function is less than 

one the new PRESS value will have to be that much smaller than the original for the 

variable to be added into the data set. There is little reason for a squashing function 

greater than one, this would tend to encourage variables to be included into the data 

set, which is not normally an issue. 
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Validation Set 

Do PLS Shuffle Variables 
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Re-Shuffle Remaining Variables 

Remove 1 Variable 

Do PLS 
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4, 
Discard Variable 
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to Data Set 

Have all Variables been Removed? 

NO 
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Record New PRESS 

Is New PRESS Smaller than Old PRESS? 

YES NO 

l 
Discard Variable Return Variable 

to Data Set 

Have all Variables been Removed? 

YES NO 

Record the Variables that 
produced the smallest PRESS 

Exit loop when you have 
a statistically low PRESS 

Figure 3.22 Flow Chart for Single Variable Removal Duel Pass, SVR-DP-PLS 
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3.11.1. Matlab Code for the final VS-PLS method, SVR-DP-PLS 

The code for this algorithm in MATLAB ® can be seen in Appendix Il. The code as 

displayed will work with MATLAB ® 5.2 provided that the PLS Toolbox I or PLS 

Toolbox 2 from Eigenvector Research is also available. 

3.11.2. UV Data Set 

After 200 iteration training the best model up to that point was examined. 

Average number of variables selected over 200 iterations, 13. Variables selected for 

the model with the lowest PRESS, 11. 

Component PRESS 
Fe 3.7648 
Co 0.0440 
Ni 0.1563 
Cu 0.0046 

Table 3.13 PRESS results for the UV data set using SVR-DP, 7 LV's were used, and the 
base PRESS was 3.7366 

Predicted UV Component Concentration vs Actual Concentration 
(Autoscalled) All Four Components 
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Figure 3.23 Prediction results for the UV data set using SVR-DP 
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This model shows a significant improvement over the previous method, PRESS 

values (Table 3.13) for all the components have dropped by a significant amount 

compared to previous values, the prediction results (Figure 3.23) also appear better. 

The biggest change however is in the plot showing variables selected (Figure 3.24). 

the "background"' variables, those that are selected infrequently has dropped, leaving 

only the larger peaks behind. There are only three major groupings of variables, 

together with the grouping in the noise, it is likely that the variables containing the 

information about the Fe component are very similar and are still difficult to separate. 
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Figure 3.24 Frequency of variable selection for the UV data set using SVR-DP 

3.11.3. Artificial Data Set 1 
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Two hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 5, and the number 

of variables selected for the model with the lowest PRESS was 2. 
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Component PRESS 
Comp 1 4.1828 
Comp 2 16.9242 
Comp 3 0.0002 
Comp 4 24.6406 

Table 3.14 PRESS results for the first artificial data set using S VR-DP, 6L V's were 
selected, and the base PRESS was 45.7136 
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Figure 3.25 Prediction results for the first artificial data set using SVR-DP 

In terms of'overall PRFSS (Table 3.14) this is the worst model produced so far. This 

would appear to be caused by an almost constant PRESS contribution form the non- 

linear components during the model building, the model being influenced only by the 

relatively small changes in the PRESS for the linear component. The linear 

component is modelled very well despite this (Figure 3.25), with the lowest error for 

any of the other models built with this data set. This model has been built with most 

of the influences from the non-linear variables removed, and suggests that the current 

method can resolve the influences from many different sources of error, this model 

behaves as if the non-linear components are a source of error I )r the linear 

component. which is one possible way of interpreting this data set. The histogram 

showing the frequency of variables selected (Figure 3.26) indicates that the variables 
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selected for this model were chosen from the edges of the peak for information 

concerning overlaps and from the centre of the peak for magnitude information. This 

does not show that same degree of organisation that the histogram for the UV data set 

shows however it does clearly indicate that even in a crowded peak such as is present 

in this data set there are variables that provide significantly more information to a 

model than apparently similar ones fairly close together. 
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Figure 3.26 Frequency of variables selected for the first artificial data set using SVR-DP 

3.11.4. Artificial Data Set 2 

Two hundred iterations were trained and the best model at that point was examined. 

The average number of variables selected over 200 iterations was 12, and the number 

of variables selected for the model with the lowest PRESS was 12. 
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Component PRESS 
Comp 1 0.004063 
Comp 2 0.003111 
Comp 3 0.003802 
Comp 4 0.004823 

Table 3.15 PRESS results for the second artificial data set using SVR-DP, 4 LV's were 
used, and the base PRESS was 0.016 

In comparison with the previous method (single variable removal) this method 

appears far more efficient in removing unwanted variables from the group of selected 

variables, with a data set hat contains a very high percentage of co-linear variables it 

is expected that there will be a lot of redundant variables selected during the first 

removal stage, this is increased by the relatively low level of noise in this data set. 

The PRESS results show that there is an average of two orders of magnitude reduction 

in the error of prediction for this data set using variable selection compared to 

ordinary PLS. This series of tests have shown that this data set has far less error than 

might be expected in any real data set but this does show some limit for the 

effectiveness of this algorithm, the reduction in error is comparable to the reduction in 

error seen for component four for the UV data set and can seen to be a useful 

comparison with real data sets built with high quality data. This model together with 

the model for the UV data set using this method (Section 3.10.2) show that the 

variable selection procedure described here is very efficient at determining 

appropriate variables to select for a robust model. The predicted results (Figure 3.27) 

give very little further information, however the variables selected (Figure 3.28) are 

showing that the selection is weighted to various sections of the data set. 
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Predictions From Data Set 2 Concentrations vs Actual Values 
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Figure 3.27 Prediction results for the second artificial data set using SVR-DP 
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4 Intrasite Gel Results and Discussion 

4.1 Intrasite Experiment 1 

The basic statistics of the data sets were examined, these can be seen in table 4.1 for the 

sterilisation data, and table 4.2 for the Intrasite Gel Analysis. As expected for a fully 

feedback controlled. system, the sterilisation data shows a low degree of variability, the 

greatest amount of variability can be seen in the quantity. The rest of the variables appear to 

show low variability in comparison. 

QTY Heat up Pressure Min 7C Max T°C Hold Time Cool F(O) 
Time Time 

Mean 5244.73 33.85 3.12 121.42 123.23 26.55 18.63 51.96 
Median 5888 34.35 3.202 121.4 123.2 30 17 56.85 
Standard Deviation 1481.72 5.67 0.16 0.07 0.26 6.94 4.33 11.54 
Range 7717 74.29 1.753 1.6 3.2 33.87 47.35 88.5 
Minimum 441 17 2.037 121 122 7.2 12.05 7 
Maximum 8158 91.29 3.79 122.6 125.2 41.07 59.4 95.5 

Table 4.1 Basic Statistics for Batch Sterilisation Data 

The analysis results show a high variability, the highest of which is the fluid absorption. This 

reflects the high degree of noise in the measurement. The pH measurement is the most 

highly controlled as expected, this variable is the most critical in terms of medical safety. 

The huge variation in means and variance that these variables display indicate that any 

modelling carried out should be preceded by autoscaling of the data set. 

pH Elasticity Viscosity Coefficient Solids Content Fluid sorption 

Mean 6.83 2107.30 356.73 2.76 158.92 
Median 6.8 1978 369 2.8 110 
Standard Deviation 0.17 570.34 103.65 0.29 91.52 
Range 1.1 2584 415 1.7 315 
Minimum 6.4 887 196 2 60 
Maximum 7.5 3471 611 3.7 375 

Table 4.2 Basic Statistics for Intrasite Gel Material Analysis 

143 



4.2 Intrasite Experiment 2 

4.2.1 Fluid Absorption Distribution 

Histogram of Fluid Absorption Values 
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Figure 4.1 Bar Chart Showing Distribution of Values for Fluid Absorption 

The fluid absorption (mis 0.9% NaCl / 100g) distribution (Figure 4.1) appears to he a 

combination of two separate means, one centred on a fluid absorption of 120, corresponding 

to the results obtained from the original formulation, and a second skewed distribution 

centred on a fluid absorption of 65. The reason for the two separate distributions is the 

k rmulation change that occurred in 1994. The exact details of the formulation change are 

covered by confidentiality agreements, however its effect can be clearly seen in all the 

distribution graphs. For each variable the expected distribution for the observed means and 

standard deviations are also plotted. The second, lower distribution appears to be skewed, one 

possible explanation is that since the value of 60 represents the lower limit for the 

specification for fluid absorption for Intrasite gel there is some pressure on analysts to 

determine that the value for fluid absorption is at least this value. 'T'here is no evidence to 

support this, and a more likely explanation is that this represents effect of producing the 

product to this specification. Figure 4.2 Shows the expected distribution for fluid absorption 

values given a normally distributed data set. A value of 55 for fluid absorption represents the 

lower limit for the release specification. One hypothesis could he that this lower limit is the 
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cause for the skewed distribution, either representing the a deliberate skewing of the data by 

the analyst to force the material to pass specification, or this is some feature caused by the 

manufacturing process. The former hypothesis is highly unlikely as Smith & Nephew adhere 

to strict control on analytical quality, and the SC 1 variable is also subject to a specification 

limit of 4.5, and shows no evidence of this type of skewing. which would be expected if this 

was a feature of the analyst. 
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Figure 4.2 Histogram Showing Expected Distribution for Fluid Absorption Values 

4.2.2 SC1 

Histogram of SCI Values 
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Figure 4.3 Histogram Showing the Distribution for SCI Values 

The bimodal distribution for SCI (Figure 4.3) represents the effect of a change in the 

specification for the product, SCI. SCI specification changed from 2.8 to 2.3 in 1994, 

originally Intrasite gel was manufactured to several different specifications to meet the 
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requirements of several different segments of the global market, however during the early 

1990's the varying specifications were unified, meaning that only a single standard for the 

product existed after 1994. This change is the underlying reason for the bimodal distributions 

evident in all the distributions from the other variables. Figure 4.4 shows the expected 

distribution for this data. 
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Figure 4.4 Histogram Showing the Expected Distribution for SCI Values 

4.2.3 pH 
Histogram of pH Values 
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Figure 4.5 Histogram Showing the pH Distribution of Values 

While it was not expected that the pH would be effected by the change in SCI, the 

distribution (Figure 4.5) shows that a bimodal distribution does exist in the pII variable. It 

should be noted however that the distribution appears to be even, unlike the distribution 

observed in the other variables. The pH variable does not show the clear change in means 

that occurred in the other variables. The pH may have been affected by a fl rmulation change 
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in the manufacture of the raw polymer, which is known to change however no evidence is 

available to examine this possibility. Figure 4.6 shows the expected distribution for the p1I 

values 
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Figure 4.6 Histogram of the Expected pH Value Distribution 

4.2.4 Viscosity Coefficient 

The viscosity coefficient shows the same distribution as the other variables (Figure 4.7), 

though the viscosity coefficient is known to be close to the non-linear region for this type 

carhoxymethyl cellulose gel, the earlier data shows a high viscosity coefficient possibly 

within the non-linear region. Figure 4.8 shows the expected viscosity distribution for this 

data set. 
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Figure 4.7 Histogram Showing the Distribution for Fluid Absorption Values 
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Expected Distribution, Viscosity Coefficient 
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Figure 4.8 Histogram Showing Expected Distribution for Fluid Absorption Values 

4.2.5 Elasticity 

The elasticity (Figure 4.9) has the same distribution as the other variables although it is most 

similar to the viscosity coefficient (Figure 4.9) as might be expected. The expected elasticity 

distribution can be seen in figure 4.10. 
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Figure 4.9 Histogram of Elasticity Values Distribution 
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Expected Distribution, Elasticity 
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Figure 4.10 Expected Elasticity Distribution 

The fact that four of the five variables show the same apparent distribution suggests that the 

same influences are affecting each variable in a similar manner, with the exception ofthe pH. 

The bimodal distribution does not preclude the possibility of a global model for all the 

available data however it does indicate that modelling would be more straight forward if a 

section of the data were taken that has a normal distribution. The data to be examined could 

be selected on the basis of normality, or by selecting individual bulk polymer batches to 

examine. The distributions shown for the larger part of the data set, July 1994 onwards is 

normal for all variables and this segment includes three bulk polymer hatches. 

After the initial statistics had been examined the fluid absorption variable was examined in 

detai 1. 

4.3 Intrasite Experiment 3 

pH Elasticity Viscosity SCI Fluid 
Coefficient Absorption 

pH 1 
Elasticity -0.09 1 
Viscosity Coefficient -0.39 0.84 1 
SC1 -0.40 0.62 0.90 1 
Fluid Absorption -0.27 0.21 0.76 0.72 1 

Table 4.3 Correlation Coefficients Between the Analysis Variables 

At this stage the fluid absorption variable is the focus, and the correlation coefficients ('Table 

4.3) show an interesting disparity in values. The viscosity coefficient and the elasticity have 
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a relatively, high correlation to each other, however that correlation does not transfer directly 

to either SC1 or the fluid absorption. This raises that possibility that the two variables 

combined may describe a significant portion of the information contained in either SCI or in 

the fluid absorption. The relation between SC1 and the viscosity coefficient is also 

remarkably high considering the poor relationship exhibited by the other variables. This may 

indicate that a calibration may be possible between the viscosity coefficient and SC1. The 

very poor correlation between the pH and the other variables mirrors the disparity in the 

distributions. It is also possible that the correlation coefficients may be considered in a 

different way, the clear bimodal distribution may effect the correlation coefficients, as the 

two separate means could have the effect of large leverage values. This is examined by 

looking at the correlation between the variables in only the second, normal, section of the 

data (Table 4.4). 

pH Elasticity Viscosity SC1 Fluid 
Coefficient Absorption 

pH 1 
Elasticity -0.2 1 
Viscosity Coefficient -0.1 0.84 1 
SC1 -0 0.61 0.76 1 
Fluid Absorption . 0.1 0.31 0.41 0.38 1 

Table 4.4 Correlation Coefficients for Data from July 1994 - December 1997 
The new values for the correlation coefficients are strong evidence that at least part of the 

high correlation coefficients experienced before was due to some form of leverage effect. 

The correlation coefficient between the elasticity and the viscosity has remained the same 

showing that any relationship between these two variables is similar in both the whole data 

set and the small set selected. 

The correlation between the pH and SC 1 shows that no relationship exists between these two 

variables. This together with the correlations with the other variables is further evidence that 

the bimodal distribution observed in the pH variable is a coincidence and not evidence of a 

possible relationship between the pH and any of the other variables. 
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4.4 Intrasite Experiment 4, Regression Modelling 

Regression was performed against the fluid absorption variable. Fluid absorption is both the 

primary interest for assessing the properties of Intrasite Gel, it is also the variable that is 

known to contain the most error. Replacing the variable with a calculated result would 

useful. With the known error in the recorded variable, there is no expectation of a 

particularly high quality or robust model initially; the first regression calculations were 

carried out to determine whether there was any reason to continue to explore the possibility 

of calculating the fluid absorption rather than measuring it. 

Standard MLR was carried out using the full data set available. This was then repeated using 

the data set that had been elected as normal in the examination of the distribution of the data, 

and finally MLR was carried out on a single bulk batch to examine any differences between 

the results for a single batch compared with the results from several batches that appeared to 

have a common mean. 

4.4.1 MLR on the full data set 

The full data set was shuffled randomly by sample and seventy percent used for the 

regression calculations, the remaining thirty percent was used as a validation set, that is 2700 

samples used in calibration, 1200 samples used in validation. This data set spanned the 

period January 1993 through December 1997. The calculations were carried out in Matlab on 

the raw data. No smoothing is appropriate for process analysis data, and scaling methods are 

unlikely to effect the results of MLR on such an over determined data set. 
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MLR for full data set 
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Figure 4.11 Scatter Plot of Predicted Fluid Absorption Values against Actual Fluid Absorption 
Values Using Standard MLR and the Full Data Set, R of 0.7097 

The result of the MLR calculation (Figure 4.11 ) could well be influenced by leverage values. 

though an examination of the residuals tends to suggest otherwise (Figure 4.12). Although it 

looks as if there are two separate populations for the error distribution in the residuals, a 

closer examination using a distribution plot (Figure 4.13) shows that there is in tact only one 

distribution evident. In this case the R2 value is of little use, it indicates a fairly good 

calibration however this is most likely strongly influenced by the leverage effect of the two 

separate groups of data points. The residuals show normally distributed error within the two 

separate populations evident in the data. 
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Residual error between the Predicted Fluid absorption and the actual fluid 
absorption 
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Figure 4.12 Plot of the Residual Error in the MLR predictions from Figure 4.11 

The banding seen in both the prediction plot and the residual plot is the result ol' the 

measurement of the fluid absorption, which is carried out only to the nearest 5ml. 

Error Distribution for MLR Calibration 
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Figure 4.13 Residual Error Distribution Calculated from the Results for the MLR Prediction 
seen in Figure 4.11 

At median distribution the error present in the predictions is forty percent. This error level is 

expected given the information known about the solubility of the material in aqueous media 
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and the known limitations of the test carried out. The error appears to be quite low when the 

two populations are taken into account and this tends to suggest that there is a relationship 

between the fluid absorption and the other variables that exists between the bulk polymer 

batches, not just an individual batch. The residual error here is too high for any practical 

application of the calibration model, for a model to be useful as a replacement to the actual 

test the residuals would have to be considerably smaller. This model does indicate that an 

investigation of a smaller portion of the data set where the distribution of values is known to 

be normal may be useful. The error distribution is indicative of either random results, or 

fairly robust modelling. 

4.4.2 MLR on the normally distributed data 

The data set was split into sections, the largest section being the period from the end of 1995 

to the end of 1997. The selected data was shuffled by sample and divided into a training set 

and a validation set, with 1800 samples in the training set and 600 samples in the validation 

set. Earlier examination found that the data from this period follows a normal distribution. 

This can be examined using MLR to determine how the model compares to the model built 

for the whole data set. 

This calibration is nearly worthless (Figure 4.14), and indicates that the calibration using the 

full data set was distorted by the leverage effect of the two populations. If the two 

populations had come from the same overall population a calibration similar to the first 

would have been expected, if not better. This shows that the error distribution seen before is 

the effect of random results as opposed to the error from a useful model. 
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Predicted vs Actual for MLR calibration using normal section of 
data set (Oct 95 to Oct 97) 
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Figure 4.14 Scatter Plot of Predicted Fluid Absorption Values against Actual Fluid/ Absorption 
Values Using Standard MLR and the October 1995 to October 1997 Data set, R of 0.2466 

Residual Error for Fluid Absorption Prediction 
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Figure 4.15 Residual Error for the Second MLR model, October 1995 to October 1997 

The residual error shown here (Figure 4.15) is typical for a model where there is no 

relationship between the dependent and independent data matrices, the error is proportional to 
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the magnitude of the predicted value. The error distribution (Figure 4.16) is random, as 

expected when the predicted results are also random. 
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Figure 4.16 Error Distribution for Second MLR Calibration, October 1995 to October 1997 

4.4.3 MLR on a single bulk batch (data from 1996) 

A single bulk hatch of polymer was selected for calibration for comparison purposes. With 

the results from using the normal section of data indicating little relationship between the 

fluid absorption and the other variables this was not expected to make a significant difference 

and was carried out to confirm this. The data set comprised of 1000 samples, and was 

shuffled by sample and split into a training set, 700 points, and a validation set, 300 points. 

An MLR calibration was carried out using this data set, and the predicted results can be seen 

in figure 4.17. 
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Prediction for Fluid Absorption, Calibrating Using only a Single Bulk 
Batch (1997) 

90 

85 
N 

u) 
(0 80 

i C 
C 
Q 75 

C 

70 

LL 65 
ß 
6) 
Ü 

60 
6) 

a 
55 

R2 = 0.362 

yV 
70 40 50 60 70 80 90 100 110 120 

Actual Fluid Absorption Values 

Figure 4.17 Predicted Fluid Absorption Values vs. Actual Fluid Absorption Values for the 
Single Bulk Polymer Batch from 1997, R of 0.362 

This model shows a minor improvement, however not enough for use. This suggests that 

there are differences between bulk polymer batches that affect the results of the analytical 

tests carried out. It is unlikely that further work with this data will lead to an improved 

model, and for the predictive error to drop further (Figure 4.18). The error plotted against the 

fluid absorption shown is indicative of no relationship existing, and the error is randomly 

distributed (Figure 4.19). 
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Residual Error in Prediction 
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Figure 4.18 Residual Error for the Fluid Absorption MLR Model in Figure 4.17 
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Figure 4.19 Error Distribution for the MLR Model shown in Figure 4.17 

4.5 Intrasite Experiment 5, Inclusion of the Sterilisation Data 

The current results give indication that it is unlikely that a model using the fluid absorption 

variable would be possible with less than 30% error. However the best model developed 

using a single bulk batch is far short of this. This means there must be other intluences not 

described by the information available, and new information must be gained. At the time that 

this work was carried out the only sterilisation data available was for the year 1995 and 
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previous years. The data available for 1995 was copied into a spreadsheet and examined for 

its effect on the fluid absorption variabic. Some effect from the sterilisation was cxpcctcd as 

the gel is known to change when exposed to temperature, or when aged, the temperature of 

the sterilisation process may accelerate the ageing process and lead to changes in the fluid 

absorption that might be tracked using this data. The most likely reason for the fluid 

absorption to be affected is if the sterilisation affects the solubility of the finished product. If 

the variation in solubility between different batches could be accounted for then the model 

error could be reduced closer to the theoretical error produced by the mcasurcmcnt technique. 

The data that was copied into the spreadsheet was made up of the following variables (Table 

4.5) 

I Quantity Number of units in a batch 

2 Heat up The time required to reach 121°C 
Time 

3 1'ressure the Pressure in the steriliser 

4 Minimum 1. The lowest temperature the batch reached once Fo had been 
Temperature reached. If the temperature dropped below 121°C for any 

reason before sterilisation was complete then sterilisation 
had to be repeated 

S Maximum The highest temperature reached during sterilisation 
Temperature 

G Hold Time The time the batch was e at 121°C or greater 

7 Cool Time Once sterilisation as occurred the batch is allowed to cool 
slowly 

8 Fo The integral of the temperature a ve 12 1°C 

Table 4.5 Sterilisation Variables Details 
Graphs of thcsc variables can be sccn in Appcndix III. 

An MLR calibration for the data from the year 1995 was madc, to compare with the results 

when the sterilisation data was added into the data set. 
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The correlation coefficients for the new variables were determined (Table 4.6). 

QTY Heat up Pressure Minimum Maximum Hold Cool F(0) Fluid 
Time Temperature Temperature Time Time Absorption 

QTY 1.00 

Heat up Time 0.19 1.00 

Pressure -0.06 -0.08 1.00 

Minimum 0.01 -0.03 -0.01 1.00 
Temperature 
Maximum 0.06 -0.34 0.04 0.00 1.00 
Temperature 
Hold Time -0.07 0.30 0.01 -0.04 -0.10 1.00 

Cool Time 0.08 0.47 -0.03 -0,06 -0.41 0.11 1.00 

F(0) -0.01 0.38 0.00 -0.01 0.09 0.70 0.25 1.00 

Fluid 0.02 -0.13 -0.02 0.03 0.10 0.00 -0.39 -0.071.00 
Absorption 

Table 4.6 Correlation Coefficients for the Sterilisation Data 

pH Elasticity Viscosity SC1 Fluid 
Coefficient Absorption 

PH 1.00 

Elasticity 0.83 1.00 

Viscosity 0.53 0.80 1.00 
Coefficient 
SC1 0.09 0.30 0.57 1.00 

Fluid Absorption -0.45 -0.36 -0.11 0.10 1.00 

Table 4.7 Correlation Coefficients for the Analysis of Intrasite Gel During the Period from 
which the Sterilisation Data was Taken 

"These correlations are low, particularly with reference to the viscosity coefficient and SC1, 

and the correlations can also be seen to he low for the analysis data fir the same period 

(Table 4.7). A calibration will be carried out for comparison purposes, first to examine just 

the analysis variables, then to examine the effect of adding in the sterilisation data. 

Prediction for Fluid Absorption (1995) Using Analysis Variables 
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Figure 4.20 Predicted Fluid Absorption values vs. Actual Fluid Absorption values for the MLR 
Model Using data from 1995 using only the analysis variables, R 0.2978 
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Prediction for Fluid Absorption (1995) Using all Variables, Including 
Sterilisation Information 
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Figure 4.21 Predicted Fluid Absorption Values vs. Actual Fluid Absorption values for the MLR 
Model Using Data From 1995, Including the Sterilisation Data. R 0.2238 

These two calibrations (Figure 4.20 & Figure 4.21) both show a very poor calibration. The 

comparison between the calibration using just the analysis variables and the calibration using 

all the available information shows that the addition of the new variables has contributed only 

noise. If the sterilisation variables contain any information not supplied by the analysis 

variables this is hidden by the extra noise the variables introduce into the model. 't'his 

calibration was repeated using PLS to determine whether there is any information in the 

sterilisation variables (Figure 4.22). 
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Autoscaled PLS Prediction of FLuid Absorption using Analysis Variables 
Only 
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Figure 4.22 Predicted Fluid Absorption Values vs. Actual Fluid Al3sorption Values for the PLS 
Model of Data from 1995, Analysis Variable Only, R 0.2535,2 lv's 

There is a minor improvement to the model using two latent vectors for the PLS model over 

the MLR model, this does not make the model useful however. This is then compared with 

the change in the model when the sterilisation variables are introduced (Figure 4.23). 

Although the correlation results show that there is little information about the fluid absorption 

available from the sterilisation data PLS will allow that information to be separated für the 

noise of the model. 

Autoscaled Fluid Absorption Prediction Using Full Data Set 
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Figure 4.23 Predicted Fluid Absorption Values vs. Actual Fltjd Absorption Values for the PLS 
Model of Data from 1995, all Variables, R 0.3009,5 Iv's 
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The significance of these results is that there is an improvement in the model compared with 

the attempt at modelling using MLR. With MLR the model error increased with the added 

variables as they were contributing more error than information. With the PLS model the 

error in the sterilisation data has been reduced allowing the effect of adding in the 

sterilisation information to be seen with out the masking effect of the added noise. The 

increase in the model performance is about 5%, not of sufficient quality to make the model of 

any use. The conclusion from this is that either the sterilisation data contains little useful 

information of the measurements themselves contain too much error for the information to be 

used. 

4.6 Intrasite Experiment 6, Effect of pH on Measured Fluid 

Absorption 

So far the models for fluid absorption in Intrasite Gel have fallen short of the level that 

should be theoretically possible given the expected level of error present in the measurement 

of fluid absorption. Other than the measurement error, the next known cause of error is due 

to the solubility of the material in water or aqueous solutions. If the reason for the solubility 

of Intrasite Gel could be determined this information could be used to improve the current 

model up to the theoretical level, providing that the solubility of the Intrasite Gel is the reason 

for the poor model seen so far. 

It is known that the solubility of a material is affected by the ionic strength of the solution 

into which it is dissolving. Although no link has been seen so far between the pH of the 

Intrasite Gel and the fluid absorption value measured this may be because that link is being 
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masked by the experimental error. By examining the fluid absorption results obtained over a 

wider range of pH values than normally seen any effect of the pH, and thus the ionic strength 

can be assessed. If any link between the pH and the solubility is found then the data available 

can be re-assessed to determine if that information is already available in the data set. 

Thirty experiments were carried out using five different Intrasite batches over thirteen 

different pH ranges, from 5.9 through to 9.1. pH values outside these ranges are known to 

break down the polymer chains. Initially there was intended to be only twelve sets of values, 

however by accident two sets of replicates were set up at pH 8.2 and these values were 

retained and another set produced for the missing value (9.1). The experiments were carried 

out using five batches due to the limited availability of large quantities of Intrasite Gel of a 

single batch, the information about the batches chosen for this experiment is in table 4.8. The 

results from the settling volume tests can be seen in table 4.9, this data is plotted as a graph in 

figure 4.24. The data was examined using ANOVA to determine whether the effect of the 

change in pH was greater than the effect of the change in batch, and the results of the 

ANOVA calculation can be seen in table 4.10. The batches in table 4.8 were selected on the 

basis of their original fluid absorption values and pH values being as close together as 

possible. 

Batch Data Batch Number pH Elasticity Viscosity Coefficient SCI Fluid Absorption 
2/4/97 970463 7.4 1469 210 2.2 70 
2/4/97 970465 7.4 1414 210 2.3 70 
2/4/97 970464 7.4 1419 210 2.3 70 
2/10/97 970543 7.4 1459 220 2.2 70 
2/10/97 970544 7.4 1445 230 2.2 70 
2/10/97 970546 7.4 1494 220 2.3 70 
2/10/97 970545 7.4 1601 240 2.3 70 
2/12/97 970653 7.4 1454 210 2.3 70 
2/12/97 970642 7.4 1553 230 2.3 70 
2/12/97 970623 7.4 1633 240 2.3 70 
2/14/97 970651 7.4 1469 210 2.3 70 
2/20/97 970713 7.4 1541 220 2.2 70 
2/20/97 970716 7.4 1492 220 2.3 70 

Table 4.8 Batch Information for the Samples Used In the Experiment to Determine the effects 
of pH on Fluid Absorption 
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pH Batch Number Replicate I Replicate 2 Replicate 3 Replicate 4 Replicate 5 

5.9 970463 80 90 85 75 75 

6.4 970465 85 85 75 75 90 

6.5 970464 65 70 70 75 85 

6.7 970543 75 80 75 95 80 

7.1 970544 90 85 90 90 90 
7.2 970546 85 70 75 70 75 
7.4 970545 80 75 70 80 75 
7.7 970653 70 65 70 90 75 
8.2 970642 80 85 85 100 90 

8.2 970623 85 75 80 75 80 
8.4 970651 70 75 75 65 70 
8.8 970713 75 75 75 80 75 
9.1 970716 85 80 80 80 80 

Table 4. 9 Fluid Absorption Values Using the Settling Volume Test on the Samples from Table 
4.8, Using pH Values from 5.9 through 9.1 

Fluid Absorption Values at Different pH values 

105 

100 

95 

90 
c 
0 85 
ö 

80 

0 75 
LL 

70 

65 

60 

F5 

. 
: : 
.:  . 

  .   . . 

    . . . 

" Replicate 1 

  Replicate 2 

" Replicate 3 

  Replicate 4 

* Replicate 5 

6 6.5 7 75 8 85 9 95 

pH Value 

Figure 4.24 Graph Showing the Results of the Settling Volume Fluid Absorption Test at 
Different pH Values 

The null hypothesis was that there is a significant between group difference at the 95'%, 

confidence limit, an ANOVA was carried out to examine this hypothesis. 
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ANOVA 
Source o Sum o egrees of P-value F critical 
Variation Squares Freedom 

Between Groups 1804.62 12 150.38 4.18 0.00014 1.94 

Within Groups 1870 52 35.96 

Total 3674.61 64 

Table 4.10 ANOVA Results to Show that there is no Significant Effect of pH on the Settling 
Volume Test Results 

The results of the ANOVA (Table 4.10) show that there is no between group difference at the 

95% confidence limit, and that the null hypothesis should be rejected for this data. 

This experiment has shown that the pH of the Intrasite Gel being examined is not a 

significant factor at the time that the tests are carried out and that is does not appear to affect 

the recorded fluid absorption value for a given batch of Intrasite Gel. The pH and the 

sterilisation conditions were the most likely factors that might have significantly affected the 

measured fluid absorption of Intrasite Gel. Given that these experiments have not been able 

to show where the error present in the measurement of fluid absorption arises, neither have 

they been able to show what influences the solubility of Intrasite gel, the best step forward 

from here is to determine an alternative to the fluid absorption test currently carried out. A 

new fluid absorption test could be developed that does not suffer from the flaws of the 

settling volume test. 

4.7 Intrasite Experiment 7, Examining the Process using CUSUM 

charts 

The CUSUM for each analysis variable was calculated, and the results were autoscaled to 

allow them to be easily plotted on the same graph for comparison purposes (Figure 4.25). 
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Figure 4.25 Single Point CUSUMS for the Analysis Data Set, 1993-1997 

Given the poor correlation of the raw data these graphs show a surprising degree of 

correlation, this is confirmed by examining the correlation coefficients of the CUSUM data 

(Table 4.1 1). 

Autoscaled Autoscaled 
pH Elasticity 

Autoscaled 
Viscosity 
Coefficient 

Autoscaled Autoscaled 
SC1 Fluid Absorption 

Autoscaled pH 1 
Autoscaled Elasticity -0.28 1 
Autoscaled Viscosity -0.75 0.80 1 
Coefficient 
Autoscaled SC1 -0.86 0.67 0.97 1 
Autoscaled Fluid -0.96 0.45 0-87 0.95 1 
Absorption 

Table 4.11 Correlation Coefficients for the CUSUMS from Figure 4.25 

These correlations are extremely high, and indicate that SCI, fluid absorption and viscosity 

coefficient are following the same trend. It can also be seen in figure 4.25 that the Pl I trend 

and the elasticity trend show many of the same features, although this is not seen in the raw 

data, or the correlations for the CUSUMs. The appearance is that the elasticity trend is the 
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sum of the pH trend and one of the other three parameters. This was examined by plotting 

the elasticity trend with the trend produced by adding the pH trend with the trend liar SC 1 

(Figure 4.26). 
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Figure 4.26 Comparison of the CUSUM for Elasticity and the Combined CUSUMs for SCI and 
pH 

This indicates that while the raw data shows no relationship between pH and any ofthe other 

variables, the pli is affecting the elasticity. A possible explanation for this is that the lntrasite 

gel material is broken down over long term periods at dif erent rates according to the 1-)11. 

This effect may be accelerated by the sterilisation of the material. If Intrasitc experiment 6 

had been left to equilibrate for a longer period, or had been heated, an effect from the pl i may 

have been seen. These CUSUM plots also show that there is a high degree of noise in all the 

measurements made that is masking the relationships between the variables. This raises the 

possibility that measurements made at the current frequency may he misleading. Rather than 

measuring the variables at high frequency a better method of following the control of the 

process may be to reduce the frequency of measurements and examine the ('IISUMS. the 

trends seen in the data should still be visible at much lower sampling rates. 't'his was tested 
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by examining the CUSUMS that would be produced at lower sampling frequencies. The 

CUSMUS were generated for sampling at every 2"a 5 10th and 20th point (Figure 4.27, 

4.28,4.29, and Figure 4.30). 
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Figure 4.27 CUSUMS for the Analysis Data Set, CUSUM Derived from Every Other Sample 
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Figure 4.28 CUSUMS for the Analysis Data Set, CUSUM Derived from Every Fifth Sample 
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10 Point CUSUM Values 
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Figure 4.29 CUSUMS for the Analysis Data Set, CUSUM Derived from Every Tenth Sample 
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Figure 4.30 CUSUMS for the Analysis Data Set, CUSUM Derived from Every Twentieth Sample 

These graphs all show that the trends observed in the Intrasite data set are visible at very 

reduced sampling frequencies. Despite the high random error in the measurements this 

shows that the underlying functions are all very well controlled and that change in the 

Intrasite Gel properties is a slow drift, the flat sections of each CUSIJM curve correspond 
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very well with the known dates when the bulk polymer batches changed and means that the 

process is actually stable during production for each bulk polymer batch. the majority of the 

variation in the CUSUM charts could be explained by raw material changes. 

4.8 Reference Data 

The alternatives available now are to either to replace the settling volume test altogether or 

produce a reference method that can be used to calibrate against the settling volume test to 

find the correct values. The new test can also be used to provide a reference set that its self 

can be calibrated for, allowing the test to be discontinued. The selection of method will 

determine which of these approaches is best. 

Four methods were examined for their usefulness in determining the fluid absorption of 

Intrasite Gel. The first method, examining the change in viscosity of the material as saline 

solution was added proved to be impractical. The uptake of water/saline by Intrasite gel is 

too slow for this method to be of use as an analytical experiment. The instruments available 

to carry out this work were not available for the periods of time required to get readings. The 

response of the viscometer was also critically affected by the volume of Intrasite gel, and the 

rate at which saline was added to it. Short experimental tests also showed that Intrasite Gel is 

thixotropic to quite a high degree, showing sheer thinning, and has a slow recovery. These 

factors would have made accurate testing difficult. The second method was based on the 

standard method for examining the fluid uptake by gels and foams, the material to be 

examined is placed into a sealed volume and the liquid who's uptake it to be examined is 

pumped into the gel or foam. Intrasite gel was found to be unsuitable for this as the flow rate 

of the saline would be prohibitively slow for accurate measurements to be made. The third 
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method considered was the standard method from the British Pharmacopoeia for the 

measurement of fluid uptake. Known as the tea bag method it involves immersing a known 

mass of the material in the liquid whose uptake is being examine until equilibrium is reached, 

removing the material and re-weighing it. The change in mass is related to the amount of 

fluid absorbed. This is not appropriate with Intrasite Gel as the material is known to be 

soluble in water and saline solution. 

4.9 Intrasite Experiment 8, The "Paddington Cup" Method 

The method selected for the examination of the fluid absorption of Intrasite Gel is known as 

the "Paddington Cup" method. The method was developed to examine the difference is fluid 

transfer properties of other materials designed to carry out a similar task as Intrasite Gel. The 

test was designed to examine the fluid transfer properties of materials that could have widely 

differing characteristics. Although the test takes a significant amount of time to carry out, 

much of that is waiting for equilibriums to occur and there is no need for an analyst to be 

present during this time. The test was initially carried out on a group of competing products 

for comparison purposes. 

For this test only two media were used, 30% gelatine and 2% agar; these two materials had 

been selected as the best to highlight the differences of the materials being tested. 

Insufficient material existed for the tests to be run across the full range of substrates. 

Supplies limited the number of replicates that could be carried out and some of the materials 

could only be tested with a single substrate, agar 2%. 
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4.9.1 Results for 2% Agar 

The products tested were the following materials. 
1. x Sterigel LOT SGO196A 
2. x Nu-Gel LOT 160196.18 
3. x Solosite A50905B 
4. x Curasol KKEI 
5. x Carrasyn V7/ 98 / AB 
6. x Aquaform 1194/20 
7. x Granugel 96050044 
8. x Carrasyn F 10 / 97 

Tables 4.1 la and 4.1 lb show the results of the fluid transfer test, and Table 4.12 explains the 

various column headings. All measurements were made in grams using a four figure balance. 

The results are graphed in figure 4.31. The experiment was straight forward to carry out 

however there are various stages during the experiment where experimental error is expected 

to have a significant effect. The hydrogel must be in clear contact with the substrate for good 

fluid transfer to take place and with these materials it is often difficult to ensure that no air is 

trapped. Also removing the hydrogel after equilibrium is also expected to introduce error 

since all the hydrogel must be removed and recovered for accurate results, this can sometimes 

be difficult due to the fragile nature of the agar substrate. 
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Reference Calculation Meaning 

WI Weight of Syringe (g) 

W2 Weight of Syringe + Substrate (g) 

W3 Weight of Syringe + Substrate + Hydrogel (g) 

W4 Weight after Equilibrium (48 Hours) (g) 

W5 Weight of Syringe + Substrate (g) 

W6 (W2-W 1) Mass of Substrate in Syringe 

W7 (W3-W2) Mass of Hydrogel Added 

W8 (W4-W3) Change in Mass of Whole Syringe After Equilibrium 

W9 (W5-W2) Change in Mass of Substrate After Equilibrium 

W10 (W9/W6* 100) Percentage Change in Substrate Mass 

w il (((W4-W5)- 

W7)* I 00)/W7) 

Percentage Change in Hydrogel Mass 

Table 4.12 Index to Explain The Column Heading for Fluid Transfer Test Results 

2% Agar Results for Different Hydrogel Products 
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Figure 4.31 Graph Displaying the Results for the 2% Agar Fluid Transfer Test 
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Although there is no data regarding the expected results, the results clearly show that 

there are differences in the fluid transfer properties of the various materials tested 

(Figure 4.31). The results for Sterigel and the two Carrasyn products are due to the 

materials being very moist, and not absorbing fluid to any significant amount. Where 

the materials do absorb fluid, there are clear differences between the various products. 

4.9.2 Results for 30% Gelatine 

Due to limitation of available product not all the materials tested using 2% agar could 

be tested on the 30% gelatine, and only 3 replicates were possible per material. 

Unfortunately, of the products that showed no absorption using 2% agar, only 

Carrasyn V was available in sufficient quantity to test with 30% gelatine. 

1. x Solosite A50905B 
2. x Carrasyn V7/98/AB 
3. x Curasol KKEI 
4. x Aquaform 1194 / 20 
5. x Granugel96050044 

Table 4.13 shows the results for the fluid transfer test using 30% gelatine on these 

materials, and the results are graphed in figure 4.32. Gelatine is a more structurally 

robust material compared to agar and this is expected to reduce slightly the 

experimental error involved in removing the hydrogel from the substrate. 
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30% Gelatine Results for Different Hydrogel Products 

1500 

1000 

5.00 

CC f0 

0.00 

rn 

500 

1000 

15 0C 

-20 oc 

Solosite "" Curasol Aquaform Granugel 

A50905B KKEI 1194/20 96050044 
" 

"" Carrasyn 

" 
V7/98/AB 

  

e e eee eee pQp e°e e 

  

  

123456789 10 11 12 13 14 15 

Sample Number 

" Change in Gelatine 
" Change in Hydrogel 

e Difference 

Figure 4.32 Graph Plotting the Results from Table 4.13, Fluid Transfer Test Results for 
Different Hydrogels on 30% Gelatine 

This experiment shows the differences in fluid donation properties between the 

various products (Figure 4.32). Carrasyn clearly is a fluid donator under these 

conditions, as is Solosite. Solosite appears from these tests to have fluid tränst r 

properties that fit between the fluid transfer properties of the 2% Agar, and the 30% 

Gelatine. Curasol, Aquaform and Granugel may possibly he fluid donators under 

these conditions, however it is not clear from these results. The overall response to 

gelatine produces fluid transfer values of a smaller magnitude to the values shown 

using 2% agar; this might be expected to effect the relative error of these 

measurements as the other factors are constant 

The "Paddington Cup" test was designed to be used with four grades of agar, and tour 

grades of gelatine, using all these materials would probably enable the various 

materials to be completely separated in terms of their fluid transfer properties. The 

possibility also exists that this test could he used to identify the various gels, however 

the test is not physically practical for that, and easier methods exist to do that task. 
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Intrasite Gel was not examined during the first series of tests for practical reasons, the 

resources available to carry out the tests were limited and Intrasite could easily he 

tested at another time when there were more resources available. 

4.9.3 Results for 2% agar, second series 

Another selection of Hydrogel products became available and tests were carried out 

on them, Intrasite was included in this test as there were few other materials to test, 

and a control sample of ionic solution was added for comparison purposes. 

l. x Nu-Gel Serial No. 23019629 

2. x Sterigel Serial No. SG1295a 

3. x Serial No. 920900 

4. x Intrasite Gel Serial No. 941215 

5. x Ionic Solution (Control) 

Table Appendix 111.2 shows the results for this series of experiments and the results 

are plotted in figure 4.33. 

2% Agar Results for Different Hydrogel Products 

40 00 

30 00 

20 00 
0 

cm m 1000 
L 
U 
rn 0 00 

-10 00 
a 

20 00 

-30 00 

-4000 

Nu-Gel Stengel 920900 Intrasite Gel Ionic Solution 
23019629 SG1295a 941215 

ee 
Q4p2 

eeee eeeee CÖö" 
e 0 

e e 

  

123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 
Sample Number 

*Cr u., i, AU 

Chenpe in GMnune 

Figure 4.33 Graph Showing the Results from Table 3.14, Results of Second Series of 2% Agar Tests Using Different Hydrogels 
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The Nu-Gel and the Stengel behaved in a similar manner to that seen before (Figure 

4.33 cf. Figure 4.31), the variation could be put down to either variation in batches, or 

experimental error, no evidence exists to support one of these over the other. The 

spike in the Ionic Solution sample was produced by experimental error, some of the 

ionic solution leaked beneath the agar plug, and was weighed with the agar, not the 

rest of the ionic solution. This is not expected to be the reason for any great error with 

the other materials since they are viscous materials. The agar plug does shrink as 

fluid is removed from it, and this allows hydrogel to surround the plug. This may 

account for some of the variation seen with the more absorbent materials, including 

Intrasite Gel, as there is more surface area available for fluid transfer. 

4. l0intrasite Experiment 9, Selecting the Correct Substrate 

The substrate selected has a significant effect on the performance of the test however 

the selection of material is also affected by practical considerations. 1% agar has the 

greatest response however it is also the most fragile material, the agar disintegrates 

quite easily, especially when the hydrogel is being removed from it. 2% Agar is also 

fragile, however not to the extent that it is unusable. Although gelatine is 

mechanically superior to the agar its fluid transfer is lower than agar, and it is more 

difficult and time consuming to prepare. Overall 2% agar appears to be the material 

that is most appropriate to use in the Intrasite reference data test series. 

4.11 intrasite Experiment 10, Generating the Reference Data 

Set 
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Over a five-week period 45 Intrasite Gel samples were tested using the fluid transfer 

test. Each Sample was carried out using three replicates, except the first four samples 

for which there was only sufficient material for two replicates. The tests were run 

concurrently with the normal Intrasite tests, as material was also required for archival 

purposes, this limited the number of replicates that were possible. 

The samples taken and the results for the standard Intrasite tests show that this period 

was quite stable for all the variables, this information can be found in table 4.15, and 

the results for the fluid transfer tests can be seen in table 4.16. This data was plotted 

by individual sample in figure 4.34, and then plotted again as the average of the 

replicates in figure 4.35. 
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Date Batch 
Number 

Elasticity Viscosity SCI k uluid 
Absorption 

28/01/97 
28/01/97 

970355 
970356 

7.4 
7.3 

1637 
1606 

240 
230 

2.5 
2.4 

80 
70 

28/01/97 970365 7.4 1771 240 2.3 85 

28/01/97 970366 7.4 1612 230 2.3 70 
29/01/97 970373 7.3 1333 200 2.2 60 
29/01/97 970374 7.4 1392 210 2.2 70 
29/01/97 970375 7.4 1515 220 2.2 70 
31/01/97 970431 7.4 1358 200 2.2 70 
31/01/97 970432 7.5 1400 200 2.2 70 
01/02/97 970435 7.4 1431 210 2.2 60 
31/01/97 970442 7.4 1414 210 2.2 60 
31/01/97 970451 7.5 1583 220 2.3 70 
01/02/97 970452 7.4 1514 220 2.3 60 
10/02/97 970546 7.4 1494 220 2.3 70 
10/04/97 971354 7.2 1218 190 2.1 60 
10/04/97 971361 7.3 1154 180 2.1 60 
10/04/97 971362 7.1 990 170 2.0 60 
10/04/97 971363. 7.4 1014 170 2.0 60 
10/04/97 971364 7.4 1045 170 2.0 60 
10/04/97 971412 7.1 1154 190 2.1 60 
10/04/97 971413 7.3 1252 190 2.1 60 
10/04/97 971425 7.4 1562 230 2.3 60 
10/04/97 971511 7.4 1476 220 2.3 70 
15/04/97 971513 7.3 1402 210 2.1 60 
15/04/97 971521 7.2 1690 240 2.3 80 
15/04/97 971522 7.5 1532 230 2.3 70 
15/04/97 971523 7.3 1578 230 2.3 70 
16/04/97 971531 7.5 1641 230 2.3 70 
16/04/97 971533 7.1 1375 210 2.2 70 
16/04/97 971541 7.4 1623 240 2.4 80 
16/04/97 971543 7.4 1521 220 2.3 75 
19/04/97 971612 7.3 1303 200 2.2 75 
19/04/97 971613 7.4 1296 200 2.1 60 
21/04/97 971614 7.4 1265 190 2.1 60 
19/04/97 971615 7.4 1302 200 2.2 60 
18/04/97 971621 7.3 1884 230 2.3 60 
19/04/97 971622 7.3 1418 220 2.2 60 
19/04/97 971623 7.3 1419 220 2.3 65 
19/04/97 971624 7.4 1488 220 2.3 60 
24/04/97 971633 7.2 1459 210 2.2 70 
24/04/97 971634 7.3 1529 220 2.3 70 
24/04/97 971635 7.4 1377 210 2.3 70 
24/04/97 971641 7.3 972 170 1.9 50 
24/04/97 971642 7.4 1006 170 2.0 60 
24/04/97 971643 7.3 1316 200 2.1 70 

Table 4.13 Batch Information for the Samples Used In the 2% Agar Fluid Transfer Tests 
to Generate Reference Data 
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2% Agar Results for Different Batches of Intrasite Gel 
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Figure 4.34 Graph Showing Results from Fluid Transfer Tests for Reference Data, 
Individual Values Plotted 

Average Results for 2% Agar Intrasite Batch Samples 
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Ilke large variations seen in the initial results is not explained, though a possible 

reason is that the Intrasite is introduced to the substrate via a syringe, and in the first 
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affecting the available surface are for the fluid transfer to take place. From the graphs 

(Figures 4.34 & 4.35) it is difficult to determine whether the variation seen in the 

results is greater between batches than between replicates so an ANOVA was carried 

out to examine this. 

The ANOVA examined the within sample variation compared to the between sample 

variation, this required a single factor ANOVA. The results of the ANOVA can be 

seen in table 4.14. The null hypothesis is that there is no variation between the groups 

of data, indicating that any variation in the results between the groups is entirely 

random variation and not the result of real differences in fluid transfer values. 

ANOVA 
Source of Variation SS df MS F P-value F crit 
Between Groups 846.31 44 19.23 12.53 1.68 E-23 1.51 
Within Groups 138.14 90 1.53 

Table 4.14 ANOVA Evaluating the Hypothesis that there Is no Difference between the 
Within Batch Variation and the Between Batch Variation, Including Outlying Value 

The ANOVA could have been influenced by the inclusion of the sample with the 

extreme variation (the second replicate of batch 356), so the ANOVA was repeated 

with this sample removed (Table 4.15) 

ANOVA 
Source of Variation SS df MS F P-value F crit 
Between Groups 846.01 43 19.67 22.57 1.79 E-32 1.51 
Within Groups 76.70 88 0.87 

Table 4.15 ANOVA Evaluating the Hypothesis that there Is no Difference between the 
Within Batch Variation and the Between Batch Variation, Excluding Outlying Value 

In both cases the F value exceeds the Fcnt value and the null hypothesis must be 

rejected, that is the variation between samples is greater than the variation between 

the replicates. This results indicates that the test is sensitive enough to detect the 

187 



differences in fluid absorption between different samples of Intrasite Gel. This test 

uses mass change not eye measurement of a graduated cylinder, and there is no 

chance of the gel being examined passing into solution, this means that the two 

biggest sources of error in the settling volume test are not present in this new test. 

This test is however time consuming to carry out, and is probably not a suitable 

replacement to the settling volume test by itself. An alternative is to change the 

registered test for fluid absorption to the fluid transfer test and then calibrate for this 

test, using the predicted values instead of the measured values. 

The earlier calibration attempts have shown that the data set contains a high degree of 

noise, so for this examination PLS was selected as the calibration method 

immediately. 

The variance captured by the PLS model is shown in table 4.16 

----- X-Block----- -----Y-Block----- 

LV # This LV % Total % This LV % Total % 

1 73.68 73.68 63.29 63.29 
2 23.42 97.10 2.03 65.33 
3 0.77 97.87 0.67 66.00 
4 2.13 100.00 0.11 66.11 

Table 4.16 Table to Show the Information Captured by PLS using the Fluid Transfer 
Test Results and the Analysis Results 

From this two LVs were selected as the appropriate number of factors to model with, 

the modelling was carried out twice, with two randomly selected data sets of thirty 

points used for the training set, and the remaining fifteen points used for validation. 

The results for the PLS modelling of the two test sets can be seen in figure 4.36 and 

4.37. 
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Predicted Fluid Transfer Results against Measured Values 
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Figure 4.36 Predicted Fluid Transfer Results vs. Actual Fluid Transfer Results for the 
PLS Calibration of the Reference Data Set, First Random Selection of Samples, 

R =0.6093 
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Figure 4.37 Predicted Fluid Transfer Results vs. Actual Fluid Transfer Results for the 
PLS Calibration of the Reference Data Set, Second Random Selection of Samples, 

R =0.6765 
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These correspond to an RSD of 11.8% (Figure 4.36) and 10.8% (Figure 4.37) 

respectively. These errors are large and do not suggest a particularly robust model. 

The sources of the error in the model require further investigation, it is likely that 

experimental error in the Y block is a big factor, the known variation between the 

replicates is ± 4.5%. This could account for a large fraction of the error present in the 

model. The error present in the method is mostly in the material handling, the fragile 

nature of the 2% agar substrate is one cause for concern, the material fragments easily 

and any fragmentation would give rise to significant variation in the results. The 

conditions of the test need to be more tightly controlled, temperature was monitored 

by not controlled for this experiment and may well be a big factor. 

The indications are that this test produces more reproducible results than the settling 

volume test, and depending on the sources of error present in the analytical 

procedures as a whole a strong possibility exists for improving this method and 

model. 
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5. Conclusions 

This thesis is broken down into two parts, the first aim of this document is to describe 

the development of a variable selection procedure for Projected Latent Structures 

(PLS), using MATLAB TM and the PLS Toolbox (Barry Wise, Eigenvector Research) 

[77]. The development of this variable selection algorithm is broken down into five 

stages showing the important changes and decisions made during the development 

process. The second aim of this thesis is to record the examination of Intrasite Gel for 

Smith & Nephew, Hull. Intrasite gel is a Sodium Carboxymethyl Cellulose gel made 

with water and propylene glycol, and is registered in most countries of the world as a 

medical device. As a medical device there is a requirement that certain properties of 

the material are measured regularly to assess the suitability of the material to its 

intended purpose, and to ensure that it meets the specifications by which it is sold. An 

investigation was called for into the relationships between the various parameters 

recorded, and an investigation was required to examine the stability of the process 

used to manufacture Intrasite Gel. 

5.1. Variable Selection Projected Latent Structures (VS-PLS) 

This work was begun with the premise that the work that had been carried out on 

variable selection MLR [1] could be applied to PLS. There are strong reasons for 

variable selection using MLR, most important is the fact that most MLR systems will 

be underdetermined. PLS is often thought to removed most of the problems 

associated with MLR, and thus might be considered a poor candidate for variable 

selection, however in the calibration of a system to predict the concentrations of a 
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component there can be no reason to include in the model variables that provide 

absolutely no information to the model. In modem analytical instruments many 

thousands of variables can be recorded simultaneously, and only a very small 

percentage of these will have any information to provide. PLS uses coefficients to 

weight input variables into groups according to their importance towards the systems 

being calibrated. PLS requires that all variables have a weight, and thus all variables 

have a contribution towards the overall model however small. The greater the number 

of latent vectors that are included in the model the greater the overall contribution 

from variables with no information. This suggests that variables be removed from a 

data set to leave only those required to model the system being examined. 

The procedure that is used to select these variables will have a large impact on the 

quality of the model produced and its ability to produce robust answers during 

prediction. This work looks at an iterative procedure that examined the effect on the 

prediction results for a model when the variables used to produce the model are 

changed. 

The starting point for the development of the VS-PLS algorithm was the current state 

of the VS-MLR algorithm, a single variable addition procedure (SVA-MLR), which 

was an iterative method based on adding a randomly selected variables into a model 

to determine whether the added variable has a positive or a negative effect. The 

reason for random addition is to reduce the problems associated with collinearity, if 

two collinear variables are presented to the model one after the other there can be 

unpredictable effects, either both variables may be selected leading to redundancy in 

the model or the second variable, which may be superior to the first, will be rejected, 
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leaving a less robust model. This method was transferred directly to PLS to become 

single variable addition PLS (SVA-PLS) This method used a single stage, starting 

with a single variable and adding variables individually, testing the model after each 

addition to examine how the model performance had changed. This method was not 

expected to produce particularly good results with variable selection PLS as the initial 

starting position was with a single variable which would produce an unstable and poor 

PLS model. The result of this would be that the model would accept the addition of 

any variable added to the model until the point at which sufficient variables had been 

added to the model to produce a stable solution. If by chance the variables added to 

the model were all unsuitable in the early stages of modelling then a particularly poor 

model would be produced with a large number of variables added, it would be 

possible for such a model to perform worse than an ordinary PLS model. The tests 

using the three data sets showed that these expectations were true, and that while the 

models produced were often superior to the ordinary PLS models, there was evidence 

that there was significant levels of redundancy in the variable selected. 

The failings of this first attempt (SVA-PLS), the unstable original model, and the 

large number of redundant variables, required that the method be improved. This was 

addressed by correcting the initial unstable model produced with a single variable. 

The new method started the modelling procedure with a number of randomly selected 

variables equal to the number of components in the Y-Block, and then adding in a 

number of variables in each iteration equal to the number of variables started with, 

this became multiple variable addition PLS (MVA-PLS). This method was found to 

be particularly poor. This is because the random addition of a group of variables just 

simulated the first few additions in the original method (SVA-PLS) without the option 
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of rejecting variables that were particularly poor, this was compounded by the 

addition of multiple variables after this, allowing variables to be accepted or rejected 

only in blocks. This led to the situation that several poor variables could be selected 

to allow the inclusion of a single good variable. This method produced models with 

more variables than SVA-PLS and was rejected immediately. 

Following the failings of this second attempt the problem as approached from a 

different angle, SVA-PLS could produce reasonable models however they often 

contained variable that were unsuitable because they were selected in the early 

modelling stages when the model was unstable. The solution to this was to allow the 

opportunity for unsuitable variable to be removed. This was carried out by including 

a removal stage subsequent to the addition stage, once "candidate" variable had been 

selected they were tested by examining the model performance when these variables 

were removed individually. This became single variable addition single variable 

removal PLS (SVA-SVR-PLS). SVA-SVR-PLS appeared to solve many of the 

problems associated with the original methods, SVA-PLS and MVA-PLS, the 

prediction errors were smaller, and there was a significant reduction in the number of 

variable selected. 

This method (SVA-SVR-PLS) performed well, improving over ordinary PLS, and the 

two previous variable selection methods, however this raised the question as to 

whether the use of the addition stage initially was actually improving the model or 

whether the algorithm would perform as well without the initial per-selection. This 

was tested by removing the addition stage entirely and writing the algorithm using 

only the single removal stage - singe variable removal PLS (SVR-PLS). As expected 

"I 
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when this method was used it was found there was very little change in the models 

produced. This confirmed that the initial variable addition stage was unnecessary and 

that the routine would perform well without it. 

The original premise for variable selection was to remove variables with noise and 

variable containing only highly correlated information, SVR-PLS appeared to do this 

fairly well. There was still an issue regarding collinear variables however. 

Consider two highly correlated variables, variable 1 contains information that is very 

useful to the model, variable 2 contains information that is slightly better than variable 

1. If variable 1 is presented to the model first (random chance) then it will be selected. 

If variable 2 is subsequently presented, it will also be selected as a produces a slight 

improvement into the model. Thus there are now two collinear variables in the 

model, which is supposed to be produced without any collinear variables. The 

solution to this is to repeat the selection procedure on the variables that have already 

been selected, shuffling them again randomly. This reduces the chance that variables 

1&2 will again be presented in the same order, thereby eliminating variable 1 from 

the model. This situation could occur with many collinear variables in spectral data, 

so several redundant variables could be selected. This method was referred to as 

single variable removal dual pass PLS (SVR-DP-PLS). As this algorithm was being 

developed a second method to deal with the selection of collinear variables was 

considered, that of a squashing function (mathematically a cost function). This would 

allow the addition of a variable to proceed only with a significantly smaller predictive 

error rather than a mathematically smaller error. The selection of an appropriate 

squashing function requires considerable thought, but was considered to be an overall 
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improvement in the model since it allows a large decrease in the number of selected 

variables at only a small penalty in increased predictive error. The squashing function 

was applied to both removal stages. SVR-DP-PLS showed significant performance 

improvements over the previous methods examined, producing improvements in both 

the number of variables selected and reducing the predictive error in the model. As 

the final algorithm was being developed some of the information generated during the 

procedures was also considered. While many iterations will be run, only one will be 

selected as producing the best result, however this does not mean that the other 

iterations do not have any information to provide. By recording the variables that are 

selected during each iteration a history can be built up of how frequently a variable 

has been selected and its position in the spectra. This provides information about the 

relative importance of particular sections of the spectra towards the model. This 

information was generated for each of the preceding methods, and charted. The 

histograms showed that with each successive generation of algorithm the location of 

the variable selected stabilised. Initially the frequency of variable selection showed a 

highly random pattern, however by the final method (SVR-DP-PLS), the histograms 

were showing that the variables selected were coming from quite rigidly defined 

sections of the spectra. This showed that frequently common sense when applied to 

variable selection would give misleading results as to the best variable to select, the 

variable selection methods tend to select variable that provide information about 

overlapping areas of the spectra, allowing individual peaks to be resolved. This 

histogram information could be used as a weighting method of for variables in 

situation where variable selection may be unsuitable or unwanted. 
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5.2. Intrasite Gel 

Intrasite Gel is a Sodium Carboxymethyl Cellulose Gel, known as Sodium Carmallose 

in the British Pharmacopoeia. This material starts off as a powdered cross-linked 

polymer and is mixed with water and propylene glycol to produce the gel. The gel is 

sold in several different packs, flat sachets of lOg and 20g, and appli-packs, plastic 

bulbs that are designed to allow the gel to be dispensed with one hand; these come in 

three sizes, 8g, 15g and 25g. The containers of Intrasite Gel are sealed and sterilised, 

following the British Pharmacopoeia guidelines in Appendix XIII for steam 

sterilisation. The raw polymer is bought into Smith & Nephew according to 

specification, and the only analysis carried out on the polymer at this stage is 

identification tests to determine whether the material meets the specification. Once 

the polymer is made into the gel it is tested for SC1 [69], and if the batch meets the 

specification it is packed in the appropriate containers and sterilised. 

The contents of sterilised batches are randomly sampled and the containers opened 

and analysed. The contents are required to meet the appropriate specifications [70] or 

[71] depending on whether the batch is appli-packs or sachets. Smith & Nephew 

wanted an overall examination of the Gel, and a closer examination of the fluid 

absorption test [63]. The variables were examined initially with respect to the amount 

of variation, the distribution of the samples within each variable and the correlations 

between the variables. The data produced during sterilisation was also considered for 

its relationship with the analysis, variables and finally there was an attempt to model 

the fluid absorption variable from the other available data. 
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The initial findings were that there was a large degree of variability in the various 

variables, (section 4.1) and that the variables showed a binomial distribution (section 

4.2). The variability and the binomial distribution were put down to the same cause, 

that of changes in the raw material, which is produced externally to Smith & Nephew 

once a year. The initial correlations between the variables (section 4.3) showed that 

there were fairly strong relationships between the elasticity, the viscosity coefficient 

and SCI, with a lesser relationship between these variables and the fluid absorption 

measurement. When these variables were examined on sections of the data that 

showed normal distribution these correlations all decreased significantly, showing that 

part of the correlation seen earlier was due to leverage effects from the step changes 

in raw material properties. It should however be considered that with an infinite 

number of points any relationship greater than ±26 is significant (the Intrasite Gel 

data set contains in excess of 3000 points, which puts the calculation for the t-stat in 

the range of an infinite population). This shows that there are relationships between 

all the variables except pH, however they are not strong enough to suggest that a 

model could be built predict any one of them from the others with any precision and 

accuracy. The lack of a relationship between the pH and any of the other variables 

was of little surprise, the measured variables are all physical properties except the pH. 

Since the pH varies between 6.4 and 7.4 only very small variations in the cross- 

linking are required to produce changes in the free hydrogen ion concentration in this 

range. 

The fluid absorption variable was of special interest at this point, the test for fluid 

absorption was known to contain up to 40% error, due to both the solubility of the 

material in saline solution [73] and the error associated with the test itself [72]. 
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Modelling of this variable was carried out to determine whether the other variables 

could provide information about the source of the error in the fluid absorption test 

initially this was done on the whole data set for the analysis variables, then the 

sections of the data set where the data was normally distributed, and finally on data 

where information about the sterilisation process was also available. These models all 

showed error as great as the error already known to be in the measurement of the fluid 

absorption suggesting that the data available did not contain any information about the 

variability and error in the fluid absorption test. Although the pH variation is small 

this was considered as a possible reason for the error; pH is a representation of ionic 

concentration, and ionic concentration will effect solubility of materials. A series of 

tests were carried out on Intrasite Gal at different pH values, the range extending 

considerably outside the normal range of the pH. When these results were examined 

(section 4.6) it was found that there was no effect of the pH value on the fluid 

absorption value. 

The overall relationships between the variable was still of interest, and there was also 

concern about the sampling rate for the analysis of Intrasite Gel. Given that there was 

no strong relationship between the raw variables the data was examined using 

CUSUM charts. The CUSUMs were calculated as normal however they were then 

autoscaled to allow direct comparison between the different CUSUM charts with very 

different magnitudes. When the CUSUMs were examined (section 4.7) a surprising 

degree of correlation was found between the variables, showing that despite the low 

correlations between the individual samples, the overall process trends were related. 

This is likely to be due to the high noise in the raw data that masks any relationship, 

once the aviation from the average is considered (CUSUMs) the relationships become 
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more evident. The fluid absorption can be seen to follow the same trends as both the 

viscosity coefficient and SCI, and there is a very strong negative correlation with the 

pH. It can be seen also that that there is a possible interaction between the elasticity 

and the pH. When the Elasticity CUSUM is plotted against the summation of the pH 

CUSUM and the SCI CUSUM it can be seen that the elasticity follows a very highly 

correlated trend. This can also be seen with the pH CUSUM added to either the fluid 

absorption trend or the viscosity trend. It was thought that the evident relation ship 

between the pH and either the fluid absorption or the viscosity coefficient was a 

symptom rather than a cause and the true relationship is with SCI. 

The hypothesis is that although experiments into the effect of the pH on fluid 

absorption showed no effect under the conditions used, it is likely that this is due to 

insufficient time or temperature. Thus if the experiments had been carried out at 

either an elevated temperature (as would occur during sterilisation) or for a 

significantly longer period of time, a relation ship between the pH and the fluid 

absorption would have been seen. The pH is likely to effect the cross-linking of the 

polymer, thus effecting the other measured variables. 

The CUSUM calculations were used in the consideration of the sampling frequency 

for Intrasite Gel, they earlier plots had shown that despite the apparent lack of 

correlation in the raw data there was a very pronounced correlation between some of 

the variables in the CUSUM charts. This suggests that the process to produce 

Intrasite is actually far more stable than the analytical evidence suggests, the stability 

is masked by high error in the analytical measurements. The effect of reducing 

sampling on the process monitoring was investigated by plotting CUSUMs calculated 
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from different sampling rates. Rates of every point, every second point, every fifth, 

every tenth and every twentieth point were considered. When the charts were scaled 

appropriately, it was immediately apparent that the process trend could be seen to be 

identical in all the different sampling rates. The overall process trends were clearly 

visible in all the charts. This suggests that the current high sampling rate may give 

misleading information about the stability of the process due to high noise in the 

measurement. A reduced sampling rate together with process monitoring with 

CUSUMs could give much greater confidence in the performance of the process than 

examination of the individual measurements. 

The fluid absorption test by the settling volume method [38] was still of interest, there 

was some doubt that the test was giving a true measure of the fluid absorption of the 

material. The other data available did not provide the information needed to 

determine the reasons for the high error in the test, so another approach was needed. 

The method considered was replacing the fluid absorption tests with another method 

to produce a reference data set, this reference data set could then be modelled to allow 

the prediction of the new test results from the other variables. Various methods were 

considered, and finally a fluid transfer test was selected as the most appropriate, this 

test went under the name "The Paddington Cup" method, for historical reasons. This 

method measured the fluid transferred from a hydrogel to a substrate of either gelatine 

or agar, of varying concentrations. As originally designed the test was used to 

measure the difference in fluid transfer properties between many different types of 

hydrogel wound dressings. The various substrates were required to differentiate 

between products that could have widely varying properties, as in this case the only 

material of interest was Intrasite Gel the test was used with only a single substrate. 
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The appropriate substrate was selected by experimentation to be the most suitable to 

characterise Intrasite Gel, which was found to be 2% agar, for the magnitude of the 

fluid transfer that occurred, and the structural stability of the agar. A series of 

experiments were carried out to measure the fluid transfer rates of a number of 

different batches of Intrasite Gel (section 4.11) and the results examined to determine 

whether the tests showed a significant difference between the batches. The results 

showed that the tests did show a significant difference between the batches, and this 

data was then modelled. Although the model was not particularly good it was 

significantly better than the models built using the old fluid absorption test. It was 

also considered that the test was moderately difficult to carry out. Experimental error 

in the physical measurement could account for a significant amount of the error, and 

better experimental techniques, with a more rigorously controlled environment might 

reduce this. Overall this method appeared to avoid many of the drawbacks of the 

settling volume test, but at the expense of greater testing time, and a more difficult 

experimental procedure. It was proposed that the settling volume test be replaced 

with the paddington cup method, that a suitably sized data set be generated and that 

the results of this test be predicted from the other variables rather than measured. 

5.3. Future Work 

5.3.1. Variable Selection 

There are several areas from this work that need further investigation. Possibly the 

most interesting are the histograms generated during training iterations. The 

histograms show that the conventional wisdom that the peaks of a spectra are the most 

important may be misleading in many cases, and that the information found in the 
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overlap areas may be more useful. The histograms developed could be examined 

further to look into the possibility of using them as weighting criteria for use with 

spectral analysis where variable selection is not appropriate, they may also be of use 

in initialising weights for neural network training. 

The squashing (cost) function used in SVR-DP-PLS also needs further investigation, 

selecting the correct quashing functions is a task that requires many attempts at 

optimisation for each data set and problem, some form of experimental design may be 

useful to examine the best values for these functions. 

Variable selection has been show to be useful for both MLR and PLS, there is reason 

to believe that this may be true for other methods as well, the most likely candidate 

immediately is ridge regression. Ridge regression is a very useful technique that has 

bee shown to-outperform both MLR and PLS [38], and a comparison with variable 

selection methods would be useful. Ridge regression is very time consuming to carry 

out on large data sets, some form of variable selection may not only improve the 

predictive results but also reduce the time required to carry out the calculations. 

There are other methods to look at, orthogonal signal correction, OSC [45], is one 

example and although this method looks like it has strong advantages, an 

investigation into the benefits of variable selection may be worthwhile. 

5.3.2. Intrasite Gel 

Intrasite Gel still has not been investigated fully, of critical interest is the relationship 

between the pH and the physical properties, an investigation is needed into the 
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possible effect of pH over long periods and at elevated temperatures. This is of 

special interest as the future of Intrasite gel may include the addition of a medicament, 

this will add further unknowns to the equation, and any interference from the p must 

be understood first. 

The fluid transfer test needs further work, the experimental technique need to be 

refined to reduce experimental error, and a suitably sized reference data set needs to 

be generated to allow the settling volume test to be replaced. 
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Appendices 

Appendix I 

A. FO Test 

Appendix XIII of the 1998 British Pharmacopoeia deals with standards for 

sterilisation, two methods are recognised as first choice methods, steam sterilisation 

and gamma irradiation. These are the preferred method when they can be carried out 

on the sealed product (terminal sterilisation). Sterilisation can also be carried out 

using ethylene oxide, but this is only suggested when the other two methods are not 

suitable. When steam sterilisation is carried out a standard method is required to 

determine the level of sterilisation, this is monitored using the FO value. 

The Fo value indicates the lethality of a process express as minutes at a temperature of 

121°C, delivered by a process to a product in its final container. 

The total FO figure takes into account the heating up and cooling down tha occurs 

during the process. 

Fo =D121 logNo-logN)=D, 2, logIF 

where D121= D value of the reference spoors at 12 1°C 

No = initial number of viable micro-organisms 

final number of viable micro-organisms 

IF= inactivation factor 

IF =No-N =1011° 
D= D value of micro-organism in exposure conditions 
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B. Structure of Carboxymethyl Cellulose 
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Figure LI Structure of Carboxymethyl Cellulose polymer repeat unit 
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Appendix ll, Matlab Code for the Final VS-PLS Method 

The following code is the final algorithm used in the VS-PLS method, this code will 

run under Matlab 5.2 using the PLS Toolbox 1, providing that CCCV. m is also 

available. This code will not run under Matlab 4.2 without modification as the use of 

the "Find" function changed between these two versions of Matlab. Although it is 

believed that this code will run with PLS Toolbox 2 this has not been validated. 

function [ypred, pressl, press2, selected, p, q, w, t, u, 
b, ssqdif, mainselected, bestpress] = rempls(t_spect, 
t_con, v_spect, v_con, iterations, squashl, squash2, lvs) 

This PLS function removes N 
training matrix in 

order to improve the fit of tt 
on PRESS. 
% I/O [ypred, pressl, press2, SE 
ssqdif, mainselected, bestpre 
t_conc, v_spectra, v_conc, iter 
lvs) ; 

Copyright 07/07/98 J. R. Moffatt 
v2.5 

input 

fit of the validation model, based 

press2, selected, 
bestpress] = 

: onc, iterations, 

p, q, w, t, u, b, 
rempis(t_spectra, 
squashl, squash2, 

% ypred = prediction results for the validation data set 
% pressl = the PRESS value for ordinary PLS 
% presst = lowest PRESS produced during modelling 

selected = variables used to produce the best model 
% p, q, w, t, u = matrices used in the calculation of PLS 
% ssqdif = information about model error 
% mainselected = history information about variables 
selected for all the iterations 
% bestpress = history of PRESS 

. values produced during 
each iteration 
öt_spectra, v_spectra, t_conc, v_conc, data sets for 
modelling 
% iterations = number of iterations to carry out 
% squashi, squash2, values used for the squashing 
functions 

removes variables from the 
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lvs = number of latent vectors to use in the PLS 
calculations 

format long e 

-----------Check Inputs------------- 

arguments = nargin; 

if arguments <7 
lvs=size(t_spect, 2); 

end 

if arguments <6 
squash=l; 

end 

if arguments <5 
iterations = ceil(sgrt(size(t_spect, 2))); 

end 

if arguments <4 
[t_spect, t_con, v_spect, v_con] = cccv(t_spect, 

t_con); 
disp('Cross Validation used in model building'); 

end 

cols = size(t_spect, 2); 

-----------End Check Inputs------------- 

-----------Full PLS--------------------- 

[p, q, w, t, u, b, ssgdif] = pls(t_spect, t con, lvs); 
ypred = plspred(v_spect, b, p, q, w, lvs); 

residuals = v_con - ypred; 
residuals = residuals .* residuals; 
basepress = sum(sum(residuals)); 
pressl= sum(sum(residuals)); 
%-----------End Full PLS--------------------- 

ö-----------Start Main Loop--------------------- 
mainselected=[]; 
for mainloop = 1: iterations 

%-----------Reset Matrices----------------- 

cols = size(t_spect, 2); 
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order = randperm(cols) ; 
[Y, resort] = sort(order); 
t_spectra = t_spect(:, [order]); 

v_spectra = v_spect(:, [order]); 
t_conc = t_con; 
vconc = v_con; 
t_pls = []; 
v_pls = 
t_var = []; 
v_var = []; 
selected = []; 
newlastpress = basepress; 

currentlvs = lvs; 

%-----------End Reset Matrices------------- 

txt = sprintf('Now working on iteration %d', mainloop); 
disp(txt); 

-----------Variable Removal Loop------------ 

for loop = l: cols-1 

t_spectra2 = [t_spectra(:, 1: (cols-loop)) t_var); 
v_spectra2 = [v_spectra(:, 1: (cols-loop)) v_var]; 

if size(t_spectra2,2) < currentlvs 
currentlvs = size(t_spectra2,2); 
txt = sprintf('Number of LVs is now %d 

', currentlvs); 
disp (txt) ; 

end 

[p, q, w, t, u, b, ssgdif ] 
pls(t_spectra2, t_conc, currentlvs, l); 

ypred = plspred(v_spectra2, b, p, q, w, currentlvs); 

residuals = v_conc - ypred; 
residuals = residuals .* residuals; 
newpress(loop) = sum(sum(residuals)); 

if newpress(loop) > newlastpress/squashl 
t_var = [t_spectra(:, (cols-loop+l)) t_var]; 
v_var = [v_spectra(:, (cols-loop+l)) v_var]; 
selected(cols-loop+l) = 1; 

else 
selected(cols-loop+l) = 0; 
newlastpress=newpress(loop); 

end 
disp(loop) 
disp(size(t_var, 2)) 
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disp(newpress(loop)) 

end 
subplot (2,1,1) 
plot(newpress) 
drawnow 
txt = sprintf('Iteration %d of %d', mainloop, iterations) 
title(txt) 
drawnow 

mainselected(mainloop,: )=selected(resort); 
bestpress(mainloop) = newlastpress; 

-----------End Variable Removal Loop------------ 

----------Repeat Variable Removal------------- 

[Y I] = find(mainselected(mainloop,: )); 
t_var=[]; 

v_var=[]; 
t_spectra2=[]; 
v_spectra2=[]; 
cols=size(I, 2); 

neworder=randperm(cols); 
. [Y resort]=sort(neworder); 
I2=I(neworder); 
t_spectra2=t_spect(:, I2); 

v_spectra2=v_spect(:, I2); 
newpress=[]; 
selected4=[]; 

for loop = 1: cols-1 

t_spectra3 = [t_spectra2(:, 1: (cols-loop)) t_var]; 
v_spectra3 = [v_spectra2(:, 1: (cols-loop)) v_var]; 

if size(t_spectra3,2) < currentlvs 
currentlvs = size(t_spectra3,2); 
txt = sprintf('Number of LVs is now %d 

, currentlvs); 
disp(txt); 

end 

[p, q, w, t, u, b, ssgdif j 
pls(t_spectra3, t_conc, currentlvs, l); 

ypred = plspred(v_spectra3, b, p, q, w, currentlvs); 

residuals = v_conc - ypred; 
residuals = residuals .* residuals; 
newpress(loop) = sum(sum(residuals)); 
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if newpress(loop) > newlastpress/squash2 
t_var = [t_spectra2(:, (cols-loop+l)) t_var]; 
v_var = [v_spectra2(:, (cols-loop+l)) v_var]; 

selected4(cols-loop+l) = 1; 

else 

selected4(cols-loop+l) = 0; 
newlastpress=newpress(loop); 

end 

end 
disp(loop) 
disp (size (t_var, 2) ) 
disp(newpress(loop)) 
subplot (2,1,2) 
plot(newpress) 
drawnow 

%put selected4 into mainselected(mainloop) 
X=[]; 

y=[]; 
x=size(t_spect, 2)-size(I2,2); 
x=zeros(1, x); 
y=(I2. *selected4); 
x=[y x]; 
mainselected(mainloop,: )=x; 

bestpress(mainloop) = newlastpress; 
end 

%-----------End Main Loop--------------------- 

-----------Find Best Run--------------------- 

[lowestpress, indexlowestpress] = min(bestpress); 
selected = mainselected(indexlowestpress,: ); 
(Y I selected] = find(selected); 

numberselected=size(selected); 

if numberselected < lvs 
currentlvs=numberselected; 

else 
currentlvs=lvs; 

end 

[mx, nx]=size(mainselected); 
location=zeros(mx, nx); 
for x=l: mx; 

[i, j, k]=find(mainselected(x,: )); 
location (x, k) =1; 
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end 
bar(sum(location)) 
title('Postion of Most Frerquently Selected Variables') 
drawnow 

[p, q, w, t, u, b, ssgdif] 
pls(t_spect(:, selected), t_con, lvs, l); 

ypred = plspred(v_spect(:, selected), b, p, q, w, lvs); 
figure 
plot(v_con, ypred, '+'); 
title('Predicted vs Actual for VS-PLS Model') 
dp; 

residuals = v_con - ypred; 
residuals = residuals .* residuals; 
press2 = sum(sum(residuals)); 

txt = sprintf('Minimum Press %f in run %d using %d 
variables', press2, indexlowestpress, size(selected, 2)); 
disp(txt); 
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Appendix V, communication with McKelvey & Wold 

Subject: PLS Code 
Date: Wed, 2 Dec 1998 21: 44: 31 -0600 
From: John McKelvey <mckelvey@NCSA. UIUC. EDU> 

Reply-To: International Chemometrics Society <ICS-L@UMDD. UMD. EDU> 
To: ICS-L@UMDD. UMD. EDU 

Hello.. A first timer here.. so if i don't do it right please me know.. 

I am looking for a PLS procedure for use in fitting when the independent variables are more than a 
little collinear. Any suggestions would be appreciated. 

Thanks! 

John McKelvey 
NCSA 

Subject: Re: PLS Code 
Date: Mon, 25 Jan 1999 12: 14: 34 +0000 
From: James Moffatt <j. r. moffatt@chem. hull. ac. uk> 
Organization: University of Hull 
To: International Chemometrics Society <ICS-L@UMDD. UMD. EDU> 

Hmmm, 
I may get shot down in flames for this, but with collinear independent variables you really need some 
form of variable selection routine if you intend to use PLS, or use some method that is more robust 
towards rank deficient matrices, possibly a (p orb) Spline method. 

One possibility that has worked quite well in the past without variable 
selection is to use Ridge Regression, this can give good results with this sort of data as the first step 
involves increasing the rank of the matrices. 

Depending on the size of the data set another option is to put the collinear variables into the model as 
interations rather than the original variables. 

I think more information about the data set you are considering might be useful to give a better answer 

James Moffatt 

Subject: Re: PLS Code 
Date: Mon, 25 Jan 1999 08: 20: 39 -0600 
From: John McKelvey <mckelvey@NCSA. UIUC. EDU> 
Reply-To: International Chemometrics Society <ICS-L@UMDD. UMD. EDU> 
To: 

I had good luck in variable selection by using Ponder's QSAR code... I 
used his simulated annealing with his PLS. 

John McKelvey 
NCSA 

Dear All: 
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To my great surprise I got the following message from our discussion group (NAmICS), where a 
gentleman called James Moffatt wrote: 

>Hmmm, 
>I may get shot down in flames for this, but with collinear independent >variables you really 
need some form of variable selection routine if you intend to use >PLS, or use some method that is 
more robust towards rank deficient matrices, >possibly a (p orb) Spline method. 

> One possibility that has worked quite well in the past without variable >selection is to use 
Ridge Regression, this can give good results with this sort of data >as the first step involves increasing 
the rank of the matrices. 

My question to James Moffatt: Have you ever tried PLS ? 

According to the chemometrics literature and also a number of papers in the statistics literature, PLS 
(correctly implemented) is together with Ridge Regression the best available method to deal with 
collinear predictor variables in a regression situation. Don't call these X-variables "independent" since 
they obviously are not. 

A good comparison is the Frank and Friedman paper in Technometrics: 
I. E. Frank and J. H. Friedman. A Statistical View of some Chemometrics Regression Tools. With 
discussion. Technometrics 35 (1993) 109-148. 

Read also: 

A. Burnham, R. Viveros, and J. F. MacGregor 
Frameworks for Latent Variable Multivariate Regression. 
J. Chemometrics 10 (1996) 31-45 

All the best, Yours 
Svante Wold, Umea University 

I guess I should reply to this, 

I think I should state first that I have no interest in getting involved in a flame war about various 
regression methods, particularly with you Svante, since your experience and knowledge in this area 
greatly exceeds my own. Also I believe that any discussion about which method is always the best is 
meaningless since in chemometrics situation is everything. 

I have read the papers you mentioned and I agree with many of their points in the context in which 
they are made, interestingly enough the I. E. Frank and J. H. Friedman paper clearly states that ridge 
regression is superior to PLS for this situation, for the reasons I stated in my original post, that of rank deficiency of the X-variables. 

Yes I have tried PLS, certainly wouldnt have recommended a PLS variable selection approach 
without trying it first, and yes I still prefer ordinary PLS over some other methods. 

Yes I agree that calling a group of collinear variables "Independent" is wrong, however in the 
context of the original posting (which I quoted) this is not what was said, the data set referred to was the Independent one, I assume this convention of calling the X-Block the Independent data set and the Y-Block the Dependent data set stems from the chemical engineering side of chemometrics, but that does not make it 
wrong, just different. These terms of reference are used by many of the chemometric packages that 
come supplied with modem instruments. Pirouette, Spectracalc and Buhler's software are among those 
with this convention, and if memory serves, "Arthur" does as well. 
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As to PLS or ridge regression being the "best" I imagine this is true when you are comparing PLS to 
MLR or PCR, or where there are strong reasons for retaining the sections of a data set that contain 
relatively little information relating to the calibration, such as in process analysis where the background 
noise is often considered as important as the component information. However in a spectral calibration 
where the priority is the ability to predict the concentration of a component, using the full data set with 
collinear variables is not always the best choice. The same "Chemometrics literature" agrees with me 
on this, so I guess we must be both right. I would point out that a quick use of Rasmus Bro's web page 
search engine (http: //www. optimax. dk/) with the arguments PLS & Variable Selection will return 25 
hits with about 50% saying PLS or ridge regression is as good as variable selection, and 50% saying 
that variable selection is best, and if you refine your search you can make that balance come out 
anyway you wish. 

Regards, 

James Moffatt 

Dear James: 

With these qualifications in your answer, I get much less upset. You must forgive me, but I tend to get 
high blood pressure is somebody says that one needs to perform variable selection before PLS. 

In various types of spectroscopy one indeed fords that sometimes variable selection before PLS (or 
PCR) gives better predictions, but sometimes not. It would be interesting to see whether ridge 
regression works better with variable selection for the same data sets. 

Recently we have been looking at alternatives such as orthogonal signal correction (OSC) and that 
seems to reduce the need for variable selection substantially. 

All the best // Sincerely // Svante 

Svante Wold, Umea Univ. 
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Appendix Vl, Enhancements to PLS Using Prediction Based 
Variable Selection. 

James R. Moffatt and Anthony D. Walmsley* 
Department of Chemistry, Faculty of Science and the Environment, University of 

Hull, Cottingham Rd. HULL, HU6 7RX 

*To whom correspondence should be addressed 

Abstract 

This paper describes a method for reducing the number of variables required to 

perform a spectral calibration using Projected Latent Structures (PLS). The predictive 

error is reduced, producing a more robust calibration. This method has been 

compared to ordinary PLS and Principal Component Regression (PCR) and was 

found to improve on both in terms of predictive ability of the resulting model. 

The approach used is an iterative one, each variable is tested to examine whether its 

inclusion in the data set reduces the predicted error. The technique is excellent for 

data sets with a large number of variables, such as spectral data. More than one 

iteration is required to find the best error, but a consistent minimum error is obtained 

relatively quickly. 

The procedure is computationally expensive, and so is unlikely to find uses in on-line 

spectral analysis, however for at-line or off-line data processing the results can be a 

significant improvement over the use of the full spectra. 

Keywords 

Chemometrics, Variable Selection, PLS, PCR, Spectroscopy, Multivariate 

Calibration, 
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Introduction 

Chemometrics has been applied to spectroscopy for many years, with the recent rapid 

advance in computer power and the corresponding increase in spectroscopic 

technology data sets are becoming larger all the time. The chemometric tools 

commonly used in spectroscopy include linear regression (1), 
, multivariate linear 

regression (1), principal component analysis (1), and projected latent structures (2). 

Partial Least Squares (PLS) is a fairly old technique, it can be traced back to 1923, 

when R. Fisher & W. MacKenzie (3) first published an algorithm that was the 

precursor to the PLS normally used today. Some years later in 1966 H. Wold (4) 

published the paper that directly lead to PLS, this paper was later modified and 

improved by S. Wold in 1983 (5). PLS provides both predictive information, 

allowing calibration of an x-block against a y-block, and it also provides descriptive 

information about how the x-block data affects the y-block data. This diagnostic 

information is useful for fault diagnosis and error detection. One of the faults of any 

variable selection process is the loss of descriptive information in the x-block and that 

relationship with the y-block, and a consequent loss of fault detection. The routine for 

variable selection presented in this paper is less susceptible to this problem than many 

other techniques because it does not concentrate on highly correlated variables or 

variables at the centre of peaks as most of the other techniques tend to do. A good 

paper describing reasons why variable selection might not be appropriate in a 

particular case can be seen by S. Wold (6), and the importance of selecting the correct 

type of model is cover by E. Ronchetti (7). 
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Projected Latent Structures (PLS) is a method of decomposing an X block matrix and 

aY block matrix into vectors such that the resultant vectors from the X block are 

highly correlated with the vectors from the Y block. 

The result of this is that the coefficients of the X block variables that provide 

information relating to the Y block increase, while the coefficients for variable with 

no information tend towards zero. 

NIPALS (2) relies on the mathematical fact that 

Dj= 2]ujsjv'j 

Where D is the Data matrix, u&v are vectors, and s is a scalar for all D where D is 

non-singular (A singular matrix has no inverse, and so cannot be used for these 

calculations).. 

This expression can be expressed as: - 

Dvl = ulsl 

Here a randomly selected vector vl is selected and used to calculate sl & ul. 

this is an approximation of ul, a better approximation can then be found by recreating 

vl: - 

u1'D = 51vil 

This is repeated until convergence for a value of vl. This allows the 

calculation of Dl the first approximation. The residual matrix is then calculated from 

this: 

El =D- D1 
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The next eigenvector v2 can then be extracted from the residual matrix. In 

each stage of the calculation of the vectors uj and vj the vectors are normalised to 

unit length to ensure orthogonality between the vectors. 

NIPALS describes the decomposition of a matrix into eigenvalues and 

eigenvectors however this is for one matrix and does not allow for a relationship 

between two matrices. NIPALS can effectively be used to carryout PCA however this 

can more effectively be done using SVD. NIPALS is useful in that it allows for the 

possibility of relationship between two matrices. If the eigenvectors are calculated 

simultaneously for two different matrices, 

Ypi = 4iai 

Dvi = uisi 

then a relationship can be found between pi & vi and qi & ui 

such as 

wi 4i = ui 

ti Pi = Vi 

thus for the first latent variable, an estimation of vi would be made, then an 

estimation of pi, then an estimation of ti, and so on, this process is cycled until 

convergence. The residual matrices are then calculated and the next eigenvector 

generated. This process can be stopped when the required amount of information has 

been extracted from the matrices. One of the major advantages of PLS is that this 

process can be carried out for more than one Y Block vector, this process needs to be 

carried out for each Y Block vector, producing a vector of weights for each. This can 

increase the time taken for the calculations considerably, the number of calculations 

required is multiplied by the number of Y Block variables. 
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It is the contribution from the unwanted variables that introduces a large proportion of 

the error in the calibration model, although the coefficients of unwanted variable tend 

to zero, they are rarely actually at zero. Thus in data sets with large errors, or samples 

with large matrix effects the contribution from unwanted variable can introduce a 

significant quantity of error. Removing these sources of error greatly reduces the 

predictive error of the model. 

Several methods have been proposed to improve PLS, 
_the 

three most common are 

variable selection by examining the correlation's between the variables of the 

independent matrix and the target matrix (8,9), examining the magnitude of the 

loadings coefficients (10,11), and using genetic algorithms to select variables 

(12,13,14). These methods are workable under certain circumstances, however they 

all have flaws. 

Selecting variables by correlation is only useful were there is only one dependant (y- 

block) variable. Where the number of variables is greater than this there is no benefit 

obtained since a large number of variables will be selected, and many will have large 

quantities of noise associated with one or more of the other dependant variables. 

Even in the case of only one dependant variable this is quite an inefficient method as 

the variables selected in spectra tend to be from the centre of peaks, which captures 

little information about contaminants, and often leads to poor performance in 

prediction. 

Selecting variables by examining the loading coefficients makes the assumption that a 

small coefficient indicates a variable that adds nothing to the model. This is often an 
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invalid assumption as variables with small coefficients can contain information about 

contaminants and noise that will improve the predictive ability of a model. In general 

models produced b this method tends to lack predictive robustness and are easily 

affected by unexpected contaminants or unusually high noise for a sample. 

Using genetic algorithms to select variables is potentially a very good approach 

however in most approaches there is some trouble identifying the variables that are 

selected to produce the best model. Genetic algorithms also do not have very positive 

discrimination towards retaining a variable that is useful to a model, any selected 

variables can be discarded during the modelling process regardless of its usefulness, 

and there is no certainty that it will register as an important variables and be re- 

selected later. 

Many of these approaches use leave-one-out cross validation, this approach can be 

misleading with regards to the error in the model, usually suggesting a lower number 

of latent vectors and a better predictive error than is found using a pure test/validation 

set. For this reason cross validation has not been used in this paper, instead a 

validation data set is used. Much of this work can be seen applied to Multivariate 

Linear Regression in the paper by Anthony Walmsley (15) 

This paper suggests that a possible approach to the problem of calibration error is to 

force the coefficients for unwanted variables to zero. Removing 'these variables from 

the data set has the same effect. The problem remains of how to effectively remove 

unwanted variables from the model, quite often an attempt of this is made in the data 

pre-treatment stage, many spectral calibration software packages offer the chance to 
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exclude portions of the spectra that are known to be unimportant for the calibration. 

This approach risks the removal of variable important to the model, and also leaves a 

large proportion of the data set untouched. A better approach would be to find a 

method of selectively eliminating each variable on the basis of merit. The method 

outlined here uses the approach of including a variable in the data set only if it 

actually reduces the error in the predictive ability of the model, not just the error in 

the modelling of the training set. 

Matrix singularity can be a problem with factor analysis techniques, especially where 

a lot of co-linear variables are present, it is quite easy to produce a singular or near 

singular matrix. By removing surplus variables, often co-linear ones, this problem 

can be minimised, and even ill conditioned or poorly scaled data can be used to 

produce low error models. 

All the data sets used were pre-treated with autoscaling, the function for autoscaling 

can be seen below and is taken from Chemometrics: A textbook (2). The autoscaling 

was carried out by variable, such that the mean of each variable is zero and the 

standard deviation is one. The number of latent variables required for the models 

were determined in advance using cross validation, it was found that the optimum 

number of latent variables were unchanged by the variable reduction. This was 

expected since the model improvement is based on removing error contributed by 

unwanted variables. 

Autoscaling. 

X-z NP 
2 

]112 

x1 
ix = .xx where SK =E 

(xIK 
- XK 

) 

SK NP -1 1=1 
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Experimental 

The Data Sets: 

Three data sets were used, one UV spectra data set, and two synthetic data sets. 

The UV Data set: 

The data consisted of 52 spectra of 4 transition metal ions (Fe, Co, Ni and Cu) run on 

a UV/VIS spectrometer, over the 190-890 nm range, at a varied concentration range 

The entire spectra range was digitised, with a data spacing of 3.3nm, giving 211 

spectral points. The data was then split to give 40 training samples and 12 ̀ unknowns' 

Figure 1 in the appendix shows a plot of the spectra before any pre-treatment, figure 

10 shows the data set after autoscaling. 

Synthetic Data Set 1 

Sixty samples of two hundred and fifty points with four overlapping peaks of random 

concentration, 4% normally distributed random noise added to each data point, 100% 

peak height systematic noise added to first 40 points, three non-linear response 

components, one linear response component. The non-linear response components 

were two squared terms, and a logarithmic term. 

Figure 2 in the appendix shows a plot of the data set before any pre-treatment, figure 

11 shows the data set after autoscaling. 

Synthetic Data Set 2 

Eighty samples of two hundred and fifty points with four overlapping components of 

random concentration. Up to 10% randomly distributed noise added to each data 

point. 
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Figure 3 in the appendix shows a plot of the data set before any pre-treatment, figure 

12 shows the data set after autoscaling. 

Data Pre-treatment 

Data was treated using autoscaling, producing data sets where the variance in the 

variables has a mean of zero. 

The algorithm 

j is the number of rows 
i is the number of columns 
k is the number of variables 
r is the number of components being predicted 
q is the number of samples 
h is the loop number 
Nis the matrix of actual values 
P is the matrix of predicted values 
T is matrix of training data 
V is matrix of validation data 
C' is matrix of training concentration information 
C' is matrix of validation concentration information 
S is matrix of selected variables (initially is empty) 
s is the number of selected variables 

Calculate PLS using Tqk and C'qr (1) 

Predict using Vqk and C2qr (2) 

BASEPRESS =E (N; ý - P, ß)2 (3) 
i=1 j=1 

Start loop (h) 

Calculate PLS using [Sqs Tgk_h] and C'qr (4) 

Predict using [Sqs Vgk_h] and C2gr (5) 

PRESS = 2: t(Nu_1)2 

1=1 j=1 
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If BASEPRESS < PRESS then add the removed variable to S and 
BASEPRESS changes to PRESS 

Stop loop when h is equal to k 
Loop 

Randomly shuffle the variables in S 

Repeat the above loop, replacing the contents of T with S and setting S to 
empty 

Record the variables in S and the final value for BASEPRESS 

Repeat the whole process at least J times 

Determine the iteration with the lowest BASEPRESS 

A flow chart of the variable removal procedure can be seen in Diagram 1 in the 

appendix. 

SET-UP 

Set-up involves randomly sorting the samples, then splitting them into a training set 

and a test set, then randomly shuffling the variables. PLS is carried out on all the 

variables in the training set (1) and a prediction produced on the test set (2). The 

PRESS (3) from this prediction is used as a BASEPRESS (3) for the model. 

FIRST TRAINING STAGE 

Initially only one training stage was used with no squashing function, but this resulted 

in an excessive retention of variables. A squashing function was then added, this 

reduced this problem, however the algorithm was found to be very sensitive to the 

squashing function and several attempts were needed with each training set to find an 

appropriate value. A second training stage together with a second squashing function 
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were added with the result that the number of final variables was reduced and the 

algorithm became less sensitive to picking a correct squashing function. 

One variable is removed from the data set, a new model produced, and the test set 

used to produce a PRESS(3). The new PRESS is compared to the BASEPRESS. If 

the PRESS is greater, the model is producing more error in prediction, the variable is 

re-introduced into the data set (4), is marked as important to the model and the base 

PRESS changed to this new lower PRESS. If the PRESS is smaller the model is 

producing less error on prediction and the variable is discarded. The way in which the 

BASEPRESS and the new calculated PRESS is compared is determined by a 

squashing function. A squashing function of 1 means the two values are compared 

directly, there is no bias towards removing or keeping variables. If the squashing 

function is less than one the new PRESS must be a significant improvement over the 

BASEPRESS (the significance determined by the actual value of the squashing 

function), this will cause variables to be discarded more frequently. A squashing 

function greater than one will cause variables to be retained because the new PRESS 

will have to be significantly smaller than the BASEPRESS. In practice a squashing 

function smaller than one is normally used. 

This process is repeated until all variables have been tested. After all the variables 

have been tested the variables that have been marked as important to the model are 

passed onto the second stage. 

SECOND TRAINING STAGE 

The remaining variables are again shuffled randomly and variables are removed 

individually from the remaining data set to determine whether they are important to 

the model, again a squashing function is used to gauge the significance of a variable 
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to the model. Once this second stage is completed the lowest press produced is 

recorded, together with the identity of the variables that produced it. This is the end 

of one iteration. 

REPEAT ITERATIONS 

The whole loop is repeated, the variables are shuffled each time, the samples are not. 

Once the required number of iterations has been carried out the best PRESS is 

determined from all the iterations and the variables that produced that PRESS are 

displayed. A number of iterations are required to find a statistical minimum PRESS, 

the actual number is dependent on the size of the data set. 

Results & Discussion 

For the variable selection stage of model development the PRESS is used to calculate 

the model error, however as this is not a useful comparison of the ability to model 

different components so the percentage error of prediction (PEP) is used for this. This 

enables the comparison of different components and different models. 

The two stage variable removal is required for two purposes. First it improves the 

selection of a suitable squashing function. Secondly, during the initial selection 

procedure a variable may be selected that reduces the error in the model, but later a 

second variable may be retained which provides the same information to the model 

but with less error, only one of the two would be required. The second step serves to 

remove these surplus variables. 

UV Data 
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The concentration of Fe in this data set was known to be at or below the limit of 

detection, this means that the spectral information referring to the Fe is almost entirely 

noise. The other three components contain a far higher signal to noise ratio. These 

results show a comparison between ordinary SIMPLS and variable selection PLS. 

Both the PRESS and the PEP are shown for the whole model and for the individual 

components. In all cases it can be seen that variable selection PLS outperforms 

ordinary PLS. Also shown is a histogram for the PRESS obtained in each iteration of 

the variable selection routine, and the number of variables used for each iteration. 

Table 1 shows the comparison between the two PLS methods. 

, TA 7 LV 

Base PRESS 23.3374 
PRESS Mean PEP 

Fe 21.8267 79.3353 
Co 0.7054 32.7349 
Ni 0.5974 15.9384 
Cu 0.2126 9.0851 

Base PRESS 3.7366 
PRESS Mean PEP 

Fe 3.7648 62.7932 
Co 0.0440 19.6281 
Ni 0.1563 12.1503 
Cu 0.0046 3.6246 
Table 1: Comnarison of PLS and VS-Pt 

Base PRESS is the PRESS for al four components together, the PEP and PRESS were 

then calculated for each individual component. Figure 4 shows the histogram of 

PRESS, the graph shows normal distribution, so the chance of getting a lower PRESS 

than any already achieved can be calculated. 

Figure 5 shows the number of variables used in each iteration to produce the 

minimum error for that iteration. 
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Synthetic Data Set 1 

This data set provided the most problems, three of the four components are non- 

linear, a logarithmic term, and two squared terms were used to define the way the 

concentration varied with the spectra. In this case table 2 shows that using variable 

selection PLS was inferior to ordinary PLS for all but the linear component. As with 

the previous case the four components were calculated simultaneously, here the 

algorithm could best reduce the press in each iteration by ignoring the contribution 

from the three non-linear components can only reducing the error for the linear 

component. This is illustrated by figure 6, where the PRESS remains constant for a 

majority of the iterations, any improvement in the PRESS for the third component is 

masked by the large error in the other four components. 

Figure 7 shows the number of variables required to produce minimum errors for each 

iteration. 

When the data set was recalculated for individual components, variable selection PLS 

was superior to ordinary PLS. 
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Base PRESS 6.5669 
PRESS Mean PEP 

Comp 1 2.3795 57.2687 
Comp 2 2.2962 137.7124 
Comp 3 . 21709 1.79 
Comp 4 1.8912 23.2486 

VS-PLS 
Base PRESS 45.7136 

PRESS Mean PEP 
Comp 1 4.1828 60.4518 
Comp 2 16.9242 240.7574 
Comp 3 0.0002 . 001 
Comp 4 24.6406 101.0593 

PRESS Mean PEP 
Comp 1 2.1345 45.1 2 
Comp 2 1.9810 113.11 
Comp 3 . 21652 1.54 
Comp 4 1.7714 21.41 

Comp 1 2.1345 45.12 
Comp 2 1.9810 113.11 
Comp 3 . 21652 1.54 
Comp 4 1.7714 21.45 

Base PRESS 45.7136 
PRESS Mean PEP 

Comp 1 2.0004 33.8901 
Comp 2 1.1105 103.1035 
Comp 3 2.16E-28 1.08E-12 
Comp 4 1.1908 18.1123 

Synthetic Data Set 2 

Four latent structures were required to model this data with minimum error. This is 
J 

expected as the data set is linear and does not contain any irregularities. 

The data used here has no non-linearity, the error added is normally distributed. This 

means that the PEP shown for all but the third of the four components using variable 

selection PLS is at the minimum possible for this data set. 

With all components the variable selection PLS performed better than the ordinary 

PLS. 
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Synthetic Data Set 2 4 LV'S 
PLS Model 
Base PRESS 1.1056 

PRESS Mean PEP 
Comp 1 0.16282 25.059 
Comp 2 0.36906 30.546 
Comp 3 0.39796 40.955 
Comp 4 0.1758 9.8782 

VS-PLS 
Base PRESS 

PRESS Mean PEP 
Comp 1 0.004063 2.2349 
Comp 2 0.003111 2.9662 
Comp 3 0.003802 8.2871 
Comp 4 0.004823 2.4565 
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Figure 1: UV Data Set 
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Figure 2: Synthetic Data Set 1 
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Figure 6: Histogram of PRESS for Synthetic Data Set 1 
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Figure 9: Histogram Showing Number of Variables Selected for Synthetic Data Set 2 
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Figure 10: Autoscaled UV Data Set 
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Figure 11: Autoscalled Synthetic Data Set 1 
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YES NO 

4 

Discard Variable 
Return Variable 
to Data Set 

Have all Variables been Removed? 

NO 

YES 

Remove 1 Variable 

Record New PRESS 

Is New PRESS Smaller than Old PRESS? 

YES NO 

1 
Discard Variable Return Variable 

to Data Set 

Have all Variables been Removed? 

Y. ES NO 

Record the Variables that 
produced the smallest PRESS 

Exit loop when you have 
a statistically low PRESS 

tnagram i: rlow '. narr ºur the variawe Selection Process.. 
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Appendix VII 

Intrasite Study Results 

Abstract 

This report is a detailed description of the analysis of the data produced during the 

routine testing of Intrasite Gel. The report looks at the currently available analysis 

data (the results generated by the daily batch analysis of Intrasite gel) and the data 

generated using the Paddington cup method. The data sets were examined to 

determine their reliability and error, the degree to which the process is under control 

was looked at, with particular attention to the issue of over sampling. The measured 

variable fluid absorption was also examined in detail to determine its value as an 

analytical measurement. 

Introduction 

Intrasite Gel is a carboxymethyl cellulose polymer gel, 2.3% by weight the remainder 

being water and propylene glycol. Intrasite Gel is made up from the powdered 

polymer slurried with propylene glycol and then mixed with water. The powdered 

polymer is produced in large quantities, and one batch is sufficient for at least a year's 

production. The powder is made up into smaller batches of the gel on a daily basis, 

and these small batches are further divided into six or so sub-batches. These small 

batches are then packaged into the delivery system (sachets or "appli-packs") and 

sterilised. Following sterilisation samples are taken for analysis. The current 

formulation of Intrasite has been used for several years and there is a significant 

quantity of data going back four years concerning the analysis of this formulation. 
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The measurements made on Intrasite Gel are two identities, identification of 

propylene glycol and the identification of sodium carboxymethyl cellulose, and 

measurements of pH, elasticity, viscosity, solids content, and fluid absorption. 

The details of the tests carried out can be found in the following documents, 

obtainable from Smith & Nephew Ltd. Hull. 

Identification of propylene glycol: SOP/QGM/029 

Identification of carboxymethyl cellulose: SOP/QGM/135 

pH: SOP/QGMJO1 

Elasticity: SOP/QGM/038 

Viscosity: SOP/QGM/039 

Solids Content: SOP/QGM/136 

Fluid Absorption: SOP/QGM/028 

The data set examined was for the X181 formulation of Intrasite Gel, and covers the 

time period from the 18th January 1995 through to the 10th December 1997. Most of 

the data was supplied on a spreadsheet, some had to be entered into a spreadsheet 

manually. The two identities were ignored for this analysis as all samples complied 

with these tests. The solids content test is carried out twice for each sample due to 

repeatability problems. 

Work Carried Out 

Initially the data set was examined for correlation between the variables, and for 

autocorrelation (7) within each variable, this was done both for the entire data set, and 
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for sections of the data set corresponding to individual polymer batches. Initially 

attempts were made to calibrate the data set against the fluid absorption variable. It 

was determined that this measurement (fluid absorption) was the one with the highest 

degree of error, and was thus providing the least information when analysed. The aim 

was to be able to predict future values of fluid absorption from the other variables, 

and thus have a degree of confidence that the fluid absorption of the product was 

within the specification range. A new method of determining the fluid absorption of 

Intrasite Gel was also developed as the quality of any calibration model is only as 

good as the errors in the reference data, and clearly these errors were initially quite 

high. The stability and control of the process were also examined using Cusum charts 

(7) and control charts (7) and the sampling frequency was examined to determine 

whether the material was being over or under sampled with respect to process control. 

The sampling frequency was considered using the Cusums, autocorrelations and 

control charts. 

The Fluid Transfer Test 

The current fluid absorption test (SOP/QGM/028) is the settling volume method, 

which involves monitoring the change in volume of a quantity of Intrasite Gel once a 

quantity of saline solution has been added to it. This test produces very poor results 

both from the issue of solubility and because of problems associated with 

reproducible measurement. One possible solution is to replace it with a fluid transfer 

test (also known as the Paddington cup method). 

The fluid transfer test involves using weight measurements to monitor the transfer of 

fluid between two competing mediums. The test was originally developed to compare 

the hydrogels produced by different companies, this means that the test has some 

redundancies that were removed for testing just one material. Because the test was 
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developed to test the fluid transfer of a range of different hydrogels two different fluid 

transfer mediums were used, at different concentrations. The full test involves 

comparing the fluid transfers of each hydrogel between 30% gelatine, 20% gelatine, 

10% gelatine, 4% agar, 3% agar, 2% agar and 1% agar. These materials range from 

strongly fluid absorbing (the 30% gelatine) which measures the ability of the hydrogel 

to donate water, and strongly fluid donating (1% agar) which measures the ability of 

the hydrogel to absorb fluid. These variations are required in order to compare 

different hydrogels, which might have widely different fluid transfer rates. When 

testing only one type of hydrogel there is no requirement to compare different fluid 

transfer mediums. Prior to running the full series of tests the correct medium to use 

was determined by testing each to determine maximum response. Intrasite gel is quite 

balanced between donating and accepting fluid in comparison with many other 

hydrogels available and thus either the high concentrating gelatine or the low 

concentrating agar would have been suitable. The 2% agar solution was selected as 

the best medium to use. An agar base was selected because preparing the agar was 

easier and faster operation compared with setting up the gelatine. The 1% agar would 

theoretically have given a better response, however 1% agar is a very fragile material, 

and physical distortion has a large effect on the results. This leads to larger levels of 

experimental error that outweighs the gain from the improved response. 

The test operates by allowing a layer of Intrasite gel of known mass to equilibrate 

with a layer of 2% agar of known mass, in a sealed environment. After equilibrium 

the agar layer is re-weighed and the change in weight is expressed as a percentage 

change. Either layer could be weighed as a measure of change, however the agar 

layer is solid and is easier to handle during the experiment. The test was carried out 

on three replicates for each batch of gel and the results can be seen in figure 46, the 
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replicate variation can be seen in figure 47. An ANOVA was performed and showed 

that the variation between sample was more significant than the variation between 

replicates despite the large variation in the replicates. The very large initial values are 

due to inexperience with the fluid transfer test. If the test were to be introduced as a 

standard test the variation between replicates could be reduced significantly by better 

control of the environment the test is carried out in and better preparation of the agar. 

Results & Discussion 

The data Set 

The solids content property of Intrasite Gel is measured twice. Due to the low 

variability, low standard deviation, high correlation between the two replicates, and 

poor correlation between these variables and the others in the data set, no advantage 

was seen for including both variables in the analysis and the variable with the fewest 

missing values was taken. 

The full data set can be seen graphed in figures 1 through 5 in the appendix (only one 

of the solids contents variables is graphed). The table of correlation between the full 

variables in the data set can be seen in table 1, and the correlation between the 

variables for the time period of January 1997 through to December 1997 can be seen 

in table 2. With the possible exception of viscosity and elasticity there is a very poor 

correlation between the variables, and it should be noted that the correlations are 

worse when the shorter time span is selected. The poor correlation for the shorter 

period of time is due to the high error in each measurement, this acts to mask any 

correlation, with the longer time series the underlying trend is more apparent and the 

correlations can be seen. 
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The autocorrelation for each variable can be seen in figures 6 through 10. 

Autocorrelation is a technique that looks at the correlation between any one current 

point in a series and compares it to neighbouring points and short series of 

neighbouring points. Autocorrelation is useful for showing periodic trends in a time 

series, as an example, autocorrelation would highlight the seasonal variation in 

recorded air temperature as a periodic cycle. With Intrasite Gel the autocorrelation 

over thirty points show that there is little immediate correlation between any two 

neighbouring readings, however the level of correlation is quite high and does not 

change rapidly over time. This shows in all cases that the process is stable over the 

sixty-day window examined with only random noise distorting the autocorrelation. 

The autocorrelations shown in figure 6 through 10 are typical for a stable process with 

a high degree of random noise in the measurements. This indication of stability is 

also displayed in the Cusum charts where the effects of sampling frequency have been 

examined (figures 26 through 45), reducing sampling frequency has no effect on the 

process shown in the Cusum charts. 

Process Control and Stability 

The process stability for the production of Intrasite has been examined for the period 

of January 1997 through December 1997. The control stability was examined using 

control charts. The charts for each variable can be seen in figures 11 through 15. 

The control limits set on the graphs represent two and three times the standard 

deviations of the data set, and even at the points where the readings have passed the 

action limit the material being tested is still well within the specification of the 

product. All the control charts show good stability except the pH chart. The periods 

where the control charts show instability match the periods when the analyst carrying 
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out the measurement changes. This is most clear at about the end of june 1997 and 

the end of august 1997. 

The Cusum charts that can be seen in figures 16 through 20 show the general trend of 

the process, with large amounts of random variability in a measurement it can be 

difficult to determine trends in the process, but these can be more easily determined 

by looking at Cusums. The Cusums for the measurements made on Intrasite Gel all 

show the same trend. The process can be seen to change in the second half of the 

control charts, and this is mirrored in the Cusum charts where it can be seen that the 

process appears to change significantly. This change can actually be seen to be linked 

to a change in analyst at Smith & Nephew, and not to a real change in the process. 

The process appears to be less stable in the second half of the Cusum and control 

charts, this is likely to be due to the fact that the analyst changes quite frequently after 

this time, where before the analyst was constant for a large period of time. If the 

Cusum charts are compared for the period of time where the analyst was constant 

(figures 21 through 25) they can be clearly seen to be very similar. It should be noted 

that this is not in any way an indication of the quality of the analyst carrying out these 

tests, this merely indicated that there is a slight difference in the way in which each 

analyst reads and records results. It is also likely that the period where the process 

appears out of control on the control charts is caused by the change of analysts as 

well, towards the end of 1997 the analyst changes frequently. When the Cusum charts 

are examined in this manor the solids content chart, the elasticity chart and the 

viscosity chart are all very closely matched. The pH chart and the fluid absorption 

charts are not, this is due to these charts showing variation within the test, not 

displaying any real variation the process. 
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The sampling frequency for each variable has been examined by reducing the number 

of points used in each Cusum, as can be seen from figures 26 through 45. The trend 

shown by each Cusum shows the same features as the Cusums constructed using all 

the available data points. Obviously this technique is not appropriate to control charts 

where it is the individual values that are of interest, not the process trend. 

Conclusions and Recommendations 

From examining the autocorrelations, Cusums and control charts it is apparent that the 

process to produce Intrasite Gel is fairly stable over the long term, however due to 

error introduced from the measurement procedures, and variation introduced from 

different operators, predictions of future values are inaccurate. The measurement 

containing the greatest degree of error is the fluid absorption measurement (6). The 

measurement of pH also contains a large amount of random error. While the solids 

content, elasticity and viscosity reading also contain error these measurements all 

show a good indication of the general trend of the production process, as shown when 

comparing the Cusum charts produced when examining measurements made by a 

single operator at a time (Figures 21 through 25). 

Process Recommendations 

If the process to produce Intrasite Gel can be kept stable and under full control there is 

no reason to expect that the product will leave specification, to this end it is important 

to know how the process is behaving on an individual batch basis. The process for 

the production of Intrasite Gel appears to be under good control, based on both the 

control charts (figures 11 through 15) and the respective Cusum charts (Figures 16 

through 20). There are two groups of recommendations that can be made from this 
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Medium Risk Proposal 

The process control for the production of Intrasite Gel can be followed using the 

elasticity measurement, with the exception of the pH of the product the other 

properties follow the same trend as the elasticity. The basis for this is that the 

measurement for elasticity also shows the state of the other variables, when elasticity 

is within specification all the other measurements are in specification as well. The 

elasticity test is a fast test to carry out and could be carried out at line, giving a fast 

feedback as to process problems. Measurement of elasticity should be made for each 

batch produced (estimated at 4 to 6 measurements a day). If the elasticity control 

chart indicates that elasticity has moved into the action zone (which is still within the 

product specification) the other measurements should be carried out to ensure that no 

other problems exist. Measurements of viscosity, solids content and fluid absorption 

and pH should still be made every 20th measurement of elasticity. The Cusums for 

these variables should then be compared on a regular basis with the Cusum for 

elasticity, with a marked deviation all measurements should resume at their previous 

frequency (one made per batch). 

Low Risk Proposal 

Measurement of elasticity and pH should be made for every batch, off line. When a 

measurement for either property moves into the warning zone of the control chart, 

measurements of the other properties should be resumed. If pH and elasticity remain 

stable then measurements of viscosity, solids content and fluid absorption should be 

made for every tenth sample. The Cusums for all variables should be compared at 

regular intervals to ensure that the process trends remain constant between the 

variables (the trend for all variables remain the same). 
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Specification Recommendations 

The issue of specification is more difficult to address. It is not possible currently to 

predict individual measurements of analysis results based on any of the other analysis 

results, however this is due in the main part to the high random error in each of the 

measurements. This inability to predict measurements could cause problems as far as 

meeting requirements for reporting. From the data recorded for 1997 it is clear that 

with the exception of pH all the measurements follow the same trend. From this it 

can be assumed that if one measurement is out of specification or breaches the action 

limits then it is likely that other measurements will also fall out of limits. However 

without the ability to accurately predict individual measurements this assumption is 

difficult to prove in terms of analytical reported results. What is clear however is that 

for any one reported analytical result, the reported value is more likely to exceed 

specification due to error in measurement than it is due to real variation. Thus a more 

reliable way of assessing product quality could be by monitoring process trends not 

analytical results. 

High Risk Proposal 

None of the measurements currently made can show with any certainty exactly what 

the true value for any one of the properties really is. Thus it would be more efficient 

to follow the production of Intrasite Gel to determine that the production is under 

control, and select another measurement to ensure the product meats specification. A 

possible option is to stop the current testing and switch to an entirely new test for 

elasticity. It is quite possible to measure the elasticity of Intrasite gel without 

removing it from the apli-pack or sachet, several sonic interments for measuring 

elasticity are currently available, and these would appear to be clearly suited to the 
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task of measuring the elasticity of Intrasite Gel. The process is fast and is non- 
1 

destructive. A much larger sampling rate could be taken, in a shorter period of time, 

and specification limits could be observed. Much of the work on elasticity 

determination using ultrasonic has been in the medical field relating to tissue 

elasticity, there is no reason why this work might not be adapted to examine the 

elasticity of Intrasite gel. 

Medium Risk Proposal 

The process trend can be used to determine product quality. The pH of Intrasite Gel 

will need to be monitored following the standard SOP. The pH does not follow the 

trend of the other properties, and is potentially the most critical in terms of health and 

safety, however the stability of the other parameters can be assessed using just the 

elasticity measurement. If the Cusum for elasticity suggests that the process leaving 

control then measurement of the other variables should be resumed until the process 

becomes stable again. 

Low Risk Proposal 

The low risk proposal assumes that analytical measurement can be reduced without 

compromising the required reporting level for Intrasite Gel. The frequency of 

analytical reporting for viscosity, fluid absorption, and solids content should be 

reduced to one-tenth their current level, measurement of elasticity and pH should 

remain at their current levels. 

Appendix 

References 

References 1,2,3,4, &5 refer to internal Smith & Nephew reports 
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Fluid Absorption Values for March 1993 through December 1997 
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Figure 1: Plot of Fluid Absorption, full data set 

pH Values for March 1993 through December 1997 
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Figure 2: Plot of pH values, full data set 

Solids Content Values for March 1993 through December 1997 
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Figure 3: Plot of Solids Content Values, full data set 
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Elasticity Values for March 1993 through December 1997 
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Figure 4: Plot of Elasticity Values, full data set 

Viscosity Coefficient Values for March 1993 through December 
1997 
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Figure 5: Plot of Viscosity Coefficients, full data set 
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pH Elasticity Viscosity 
Coefficient 

Solids 
Content 

Fluid 
Absorption 

pH 1.00 
Elasticit -0.08 1.00 
Viscosity Coefficient -0.39 0.84 1.00 
Solids Content -0.42 0.70 0.90 1.00 
Fluid Absorption -0.55 0.47 0.76 0.79 1.00 

Table 1: Correlation Values of full Intrasite Data set 

pH Elasticity Viscosity 
Coefficient 

Solids 
Content 

Fluid 
Absorption 

pH 1.00 
Elasticit -0.48 1.00 
Viscosit Coefficient -0.30 0.88 1.00 
Solids Content -0.15 0.72 0.85 1.00 
Fluid Absorption 0.14 0.26 0.46 0.50 1.00 

Table 2: Correlation Values for Intrasite Data set, 1997 
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Figure 6. Autocorrelation for Fluid 



Edit window HeIP 

00 

0.6 

04 

C 0.2 
U- U 

`z a c 

-02 t 

. 0.4 

-06 

-0.8 

Figure 7: Autocorrelation for pH 
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Figure 8: Autocorrelation for Solids Content 

275 

"ut -Luf-i. inon for Solids Content 



jLtndu"' L Ip 

Aulocorrelation for Elasticity 

0 

Ii. 
0 
Q_ 

C 

.0 
u 

-0 

Signal Time Shift (Tau) 

Figure 9: Autocorrelation for Elasticity 
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Control Chart for Fluid Absorption 
Jan 97 - Dec 97 
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Figure 11: Control Chart for Fluid Absorption, Jan 97 - Dec 97 
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Figure 12: Control Chart for pH, Jan 97 - Dec 97 
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Control Chart for Solids Content 
Jan 97 " Dec 97 
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Figure 13: Control Chart for Solids Content, Jan 97 - Dec 97 
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Control Chart for Elasticity 
Jan 97 - Dec 97 
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Figure 14: Control Chart for Elasticity, Jan 97 - Dec 97 
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Control Chart for Viscocity 
Jan97-Dec97 
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Figure 15: Control Chart for Viscosity, Jan 97 - Dec 97 
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Figure 16: Cusum for Fluid Absorption, Jan 97 - Dcc 97 
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I Point pH CUSUM 

Jan 97 - Dec 97 

411 0 

I0 Ii 

AI L 

I 3B i1l Of; 141 1 78 211 ? 46 281 316 351 386 421 456 491 526 561 596 631 666 701 736 771 806 841 876 911 

Figure 17: Cusum for pH, Jan 97 - Dec 97 
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Figure 18: Cusum for Solids Content, Jan 97 - Dec 97 
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Figure 19: Cusum for Viscosity, Jan 97 - Dec 97 

I Point Elasticity CUSUM 
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Figure 20: Cusum for Elasticity, Jan 97 - Ucc 97 
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Fluid Absorption Cusum for 1st half 1997 
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Figure 21: Cusum for Fluid Absorption, Ist half 1997 

Solids Content Cusum for 1st half 1997 
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Figure 22: Cusum for Solids Content, 1st half 1997 
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Figure 23: Cusum for pH, Ist half 1997 

Viscocity Cusum for 1st half 1997 
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Figure 24: Cusum for Viscosity, 1st half 1997 
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Elasticity Cusum for 1st half 1997 
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Figure 25: Cusum for Elasticity, Ist half 1997 
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Figure 26: 2 Point Cusum for Fluid Absorption, Jan 97 - Dec 97 
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5 Point Fluid CUSUM 
Jan 97 - Dec 97 
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Figure 27: 5 Point Cusum for Fluid Absorption, Jan 97 - Dec 97 
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Figure 28: 10 Point Cusum for Fluid Absorption, Jan 97 - Dec 97 
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20 Point Fluid CUSUM 
Jan 97 - Dec 97 
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Figure 29: 20 Point Cusum for Fluid Absorption, Jan 97 - Dec 97 
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Figure 30: 2 Point Cusum for pH, Jan 97 - Dec 97 
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5 Point pH CUSUM 
Jan 97 - Dec 97 
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Figure 31: 5 Point Cusum for pH, Jan 97 - Dec 97 
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Figure 32: 10 Point Cusum for pH, Jan 97 - Dec 97 
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Figure 34: 2 Point Cusum for Solids Content, Jan 97 - Dec 97 
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Figure 35: 5 Point Cusum for Solids Content, Jan 97 - Dec 97 
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Figure 36: 10 Point Cusum for Solids Content, Jan 97 - Dec 97 



20 Point Solids CUSUM 
Jan 97 - Dec 97 

lq 

02 

il- 

-0 
el 

_O 8 

_1 

Figure 37: 20 Point Cusum for Solids Content, . Ian 97 - Dec 97 
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Figure 38: 2 Point Cusum for Elasticity, Jan 97 - Dec 97 
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5 Point Elasticity CUSUM 
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Figure 39: 5 Point Cusum for Elasticity, Jan 97 - Dec 97 
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Figure 40: 10 Point Cusum for Elasticity, Jan 97 - Dec 97 
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Figure 41: 20 Point Cusum for Elasticity, Jan 97 - Dec 97 
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Figure 42: 2 Point Cusum for Viscosity, Jan 97 - Dec 97 
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5 Point Viscocity CUSUM 
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Figure 43: 5 Point Cusum for Viscosity, Jan 97 - Dec 97 
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Figure 44: 10 Point Cusum for Viscosity, Jan 97 - Dec 97 
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Figure 45: 20 Point Cusum for Viscosity, Jan 97 - Dec 97 
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Figure 46: Fluid Transfer Test Results 
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Replicate variation 

Figure 47: Variation between fluid transfer test replicates 
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