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Abstract 

 

With current electronic designs becoming more versatile and mobile, applications 

that were wired and bulky before have now seen a great reduction in size and increase in 

portability. However, the issue is that the scaling down in size and cost of electronics has 

far outpaced the scaling up of energy density in batteries. Therefore, a great deal of 

research has been carried out to search for alternative power sources that can replace or 

enhance the conventional battery. Energy harvesting (also known as energy scavenging) is 

the process whereby ambient energy is captured and stored.  The ambient energy here 

refers to energy that is pre-existing in nature, and is self-regenerating and has extended life 

time from a battery.  

 

After reviewing many possible energy scavenging methods, the conversion of 

ambient vibrations to electricity is chosen as a method for further research. There are 

plenty of different methods to transform ambient vibration to electricity, but in this 

research only piezoelectric and electromagnetic conversions are pursued. In order to 

harvest the most energy with the harvesting device, the harvester’s fundamental mode 

must be excited. However, this is not always possible due to fluctuations in the frequency 

of the vibration source. By being able to change the natural frequencies of the device, the 

harvester could be more effective in capturing ambient energy.  

 

In this thesis, the behaviour of the various types of energy sources is studied and 

the obtained information is later used to generate a vibration signal for subsequent 

simulation and experiments. A converter based on a piezoelectric bimorph is investigated. 

The resultant outputs from the design are compared to the model and the analysis is 

presented. The mechanical strain distributions on the beam’s surface for five different 
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geometric structures are compared and discussed. This is followed by a discussion of the 

feasibility of improving the strain distribution by changing the beam’s depth (height) 

along the cantilever beam length. Lastly, a novel frequency tuning method, which involves 

applying a different effective electrical damping in different quadrants of the oscillating 

cycle, is proposed. The results of this analysis are presented, along with experimental 

results that indicate that the behaviour of the system can be changed over a limited range 

by changing the effective electrical damping during the oscillation cycle.  
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Chapter 1 : Introduction 
 

Since the last century, energy has been essential in building up modern society. It 

is required everywhere and can be found from many different places in a different form. 

According to the Energy Theory, energy will never disappear. Heat, electricity, dynamic, 

chemical and biomass forms of energy are all stored differently, but they can be converted 

from one form to the other. Among many types of energy, electricity is the most 

commonly used form for modern devices [46]. Many researchers have begun investigating 

methods of obtaining electrical energy from the ambient energy surrounding the electronic 

device. There are plenty of energies wasting around the device in every single second.  For 

example the energy from a normal range of human activities (walking, jogging, 

jumping..) , solar energy in the case where the device location is expose to the sufficient 

sun light and the most interesting energy for this research: ambient vibration energy 

harvesting. Energy harvesting is the process by which energy is captured and stored. 

Frequently, this term is applied when speaking about small autonomous devices like 

wireless sensor network nodes. In typical energy harvesting, up to few miliwatt of power 

(Power is the rate of using the energy) are captured, accumulated and stored for later use. 

 

In the electronic technology, the vast reduction in size and power consumption of 

CMOS circuitry has led to a huge research on wireless sensor and communication devices.  

Furthermore, by removing wires there is the potential for embedding sensors in previously 

inaccessible locations. Although these electronic devices are very small, they still require 

power sources such as batteries to operate. These can degrade and would have to be 

replaced from time to time. This led to the large research effort to seek for alternative 

portable and long lasting energy sources, especially in applications where the replacement 

of batteries is unfeasible or costly. For instance wireless sensors used for environmental 

monitoring, animal tracking and some military application. If self-powered devices are 



2 
 

available, large amount of saving can be made in the power source replacement processes. 

For example the labour fee to pay for replacing a sensor deeply embedded under a 

concrete floor.  

 

 Recently, plenty of research has been carried out to investigate the methods of 

converting vibration energy into an electrical form. There are three main methods 

typically used to for this conversion. They are electromagnetic, electrostatic and lastly 

piezoelectric conversion. For electromagnetic conversion, a current will be induced in the 

coil when there is a relative motion between the coil and a magnetic field. The 

electrostatic generator is formed of two conductors that are separated by a dielectric. 

Electrical energy will be induced whenever the conductors move relative to each other and 

this causes the energy stored in the conductors to change. Lastly, for piezoelectric 

conversion, the strain applied on the piezoelectric material causes a charge separation 

across the material; this produces an output voltage from the electrodes of the 

piezoelectric. Each of the mechanism has their own advantages and disadvantages if 

compared to the others. However in this research, only piezoelectric and electromagnetic 

will be further discussed.  

 

Recent research has shown that the general output energy density provided by a 

cantilever beam can be improved by altering the cantilever beam’s shape (width). By 

properly adjusting the beam geometry, the strain on the cantilever beam will distribute 

more evenly and a higher average strain can be applied on the beam. This has eventually 

improved the power density of the beam as well as the shifting of the beam’s resonant 

frequency.  Apart from varying the cantilever beam’s width, this research will discuss on 

the feasibility of improving the strain distribution by changing the beam’s depth (height) 

of the cantilever beam. 
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  A vibration-based generator will generally produce an optimum output when the 

system reaches its resonant condition. In this case, the vibration energy generator has to be 

designed so that it will resonate at a frequency that matches or is somewhere close to an 

ambient vibration frequency. Therefore, it will be highly desirable if the generator can 

tune its own resonance frequency to match that of the driving vibrations. The main goal of 

this research is to investigate and demonstrate a frequency tuning methods for a generator. 

A novel approach to frequency tuning is proposed and will be demonstrated through 

simulation and experiment in the later chapters.     

 

1.1  Outline of the thesis 

 

The thesis is laid out in the following manner. Initially, a general overview of 

energy harvesting is given, discussing some potential ambient energy sources that are 

suited to energy harvesting purposes. Followed by some discussion on general vibration to 

electricity conversion model and also the comparison between the three main conversion 

mechanisms (electromagnetic, electrostatic, and piezoelectric). Although three 

mechanisms will be introduced, only piezoelectric and electromagnetic conversion will be 

further considered.  

 

Coming next is Chapter 3, the terminology explanation that is necessary to 

understand the general piezoelectric and electromagnetic concepts. Some background 

information including their historical review will be given before the technical information 

for the vibration-to-electrical conversion. This is followed by a literature review that will 

cover previous achievements in energy harvesting for piezoelectric and electromagnetic 

generators, which provides some results obtained by other researchers in both analytical 

and experimental ways. In particular frequency tuning methods for the harvesting devices 

will be reviewed.  
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In order to perform a test on an energy harvesting device, a constant vibration 

source is required. Therefore, in Chapter 5 the behaviour of the ambient vibration is 

studied and the obtained information is then converted into a useful form. After this, the 

converted information is used to generate some replica signals for further use in 

subsequent simulation and experiments.  Some examples from various vibrating sources 

will be presented and discussed. This is followed by the modelling of the piezoelectric 

converters by using Matlab in Chapter 6. All the experimental setups will be described. 

The models will be developed for validation by comparing the analytical and experimental 

outcomes.  

 

 In Chapter 7, investigations of the mechanical strain distribution for five different 

geometry beam structures will be carried out. The behaviour of the strain distribution on 

different beams structures will be discussed and the feasibility of improving the strain 

distribution by changing the cantilever beam’s depth (height) will be considered. This 

chapter will end with the experimental comparison between a triangular and rectangular 

beam structure.  

  

Last but not least, a load switching frequency tuning method will be introduced. 

The theory of changing the system resonant frequency by applying a different effective 

electrical damping at different points during the oscillating cycle will be described as well 

as the simulation and the experimental setup. Next, the resultant outcomes from the 

simulation and the experiment will be compared and analysed. Finally some conclusions 

are presented from the research, along with some discussion of reasonable future research 

directions.  
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Chapter 2 : Overview of Energy Harvesting     
  

As mentioned previously, this research will focus on the potential of vibration 

energy harvesting in applications where vibrations are present.  However, in this section, a 

range of energy sources will be discussed and compared. This is followed by a discussion 

of the potential source for vibration- based energy harvesting. Last but not least, a simple 

modelling of the general vibration conversion is presented and the three main conversion 

mechanisms (electrostatic, electromagnetic, piezoelectric) are discussed and compared.  

                                                                    

2.1 Energy sources suitable for scavenging 
 

From previous discussion, it is known that energy does not disappear but is just 

transformed from one form to another. Therefore, energy is everywhere but in order to 

capture it a suitable conversion technology must be applied. Electrochemical batteries 

have been the dominant power source for mobile electronic devices over the past century. 

However, they provide a finite amount of energy and so need to be replaced for the 

lifetime of the device. Although these ordinary batteries have improved over the years 

[24], this improvement is fairly gradual compared with other areas of electronics [62] and 

cannot satisfy all of the simultaneous demands for long life (up to 20 years), low volume 

(few mm3), low weight and limited environmental impact [21].  

 

There are many sources of energy which have been considered for energy 

harvesting and their lifetime is potentially infinite [2][49][35][53]. For example, solar 

power, electromagnetic radiation, thermal, human power, wind energy, ambient vibration 

and the like. Although not all solutions listed here are fit for electronic devices, still it is 

worthwhile to study scavenging techniques and the possible amount of energy available.  
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2.1.1 Solar energy (Photovoltaics)   

 

 Solar energy is abundant outdoors during the daytime. It is one of the favourite and 

the main clean energy source and is harvested directly from the sunlight.  In a sunny 

climate, the power density of solar radiation on the earth’s surface is roughly 100mW/cm2 

which would be sufficient to power a 100W (take the consideration of the efficiency) light 

bulb from one square meter of solar panel [51]. Silicon solar cells are a mature technology 

with efficiencies of single crystal silicon cells ranging from 15% to 20% [47]. Obviously 

solar energy outdoors during the mid day is the best for energy harvesting if the electronic 

devices are placed directly under the sun light, yet the disadvantage is that it is only 

available during the day time and it is climate dependant. On the contrary, indoor lighting 

has far lower power density than outdoor light. There is a comparison of solar power 

density measured at varying distances from a 60 watt incandescent bulb by Roundy[49] in 

Table 2.1 which shows that the indoors power density with office lighting (distance has 

not given by the author) is not generally appropriate for energy harvesting.  

 

Distance 8 inches 12 inches 18 inches Office lighting 

Power (μW/cm2 ) 503 236 111 7.2 

Table 2.1 – Available power density taken under various distance from the energy source 
 

2.1.2 Radio Frequency (RF) electromagnetic radiation 

 

Another energy capturing method is to harvest energy from ambient radio 

frequency (RF) waves. The designed antenna and the receiver are designed to pick up a 

wide range of radio frequencies and convert the electromagnetic waves into an electrical 

current.  A prototype has been developed by Nokia Research Laboratory and proved that 

the harvester was able to scavenge between 3 to 5mW from the ambient radio waves that 

emitted from mobile antennas, satellite communication, radio, TV masts and other sources 
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[26]. Moreover, radio frequency signals can be also be used to power many passive 

electronic devices, such as smart card and radio frequency identification (RFID tags). 

However, this type of energy is very low at the ambient level. In order for the harvester to 

obtain a sufficient level of energy to drive an electronic device, many strong signal 

sources from a wide range of frequencies are required. Apart from that, the antenna and 

the receiver circuit are required to design and tune to the presented RF signals. In reality 

the received energy at the receiving end falls rapidly with distance from the energy 

sources. Therefore, in these ambient conditions, a large broadband antenna is required for 

the harvesting device or a dedicated source of radio frequency can be used.   

 

2.1.3 Thermal (Temperature gradients) 

 

 Naturally, energy can be harvested during the variation of environment 

temperature. The efficiency of conversion from a thermal source is limited to the Carnot 

efficiency, which is given as: 

 

 𝑛 = 𝑇ℎ𝑖𝑔ℎ−𝑇𝑙𝑜𝑤
𝑇ℎ𝑖𝑔ℎ

  (2.1)  

 

where Thigh is the absolute higher temperate on one side and Tlow is the absolute lower 

temperate on the other side of the device. So the greater the temperature difference, the 

greater the efficiency of the energy conversion. It has been proven that the harvested 

power could eventually result in 15μW/cm3 from 10˚C temperature gradients by Stordeur 

[65]. Besides, Zhou[70] investigated the possibility of harvesting energy from a running 

processor and found that 7mW of power can be obtained from a processor running at 1 

GHz using a commercial thermoelectric generator. The maximum conversion efficiency is 

determined as about 4%. While this is promising, with a better improvement of 

thermoelectric device, the eventual captured power will be more than that.  
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2.1.4 Human Power 

 

From various researches, it is known that the human body is a tremendous store 

house of energy. Starner[63] noted that an average human body burns about 10.5 MJ of 

energy per day. This is corresponds to an average power dissipation of 121 W. A 

distinction was made between active human power and passive human power [51]. For 

active human power, it normally required the user to perform a specific power generating 

motion. On the other hand, passive human power scavenging occurs during normal 

activities. Therefore, active human power is not appropriate for most of the applications 

since it is not a wise method to generate power by performing a specific activity. A 

significant amount of work has been done on the possibility of scavenging power from the 

human body for use by wearable electronic devices, such as generating electricity from the 

compression of the shoe sole.  For this device, a generator is mounted in the shoe sole and 

energy can be captured during normal walking. Paradiso[42] has developed piezoelectric 

generators in shoes which can produce an average power of 8.3mW at the heel and 1.3mW 

at the toes during a standard walk. The shoe inserts method offers a good solution for 

energy scavenging, but the application space for this generation method is extremely 

limited. Recently, Donelan[16] developed the biomechanical energy harvester which is 

mounted at the knee and the tested subjects, walking with one device on each leg, 

produced an average of 5 watts of electricity, which is significantly more than what 

obtained from shoe-mounted devices. This method seems to be well-suited for charging 

some portable electronic devices.  
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2.1.5 Ambient vibrations 

 

Low level mechanical vibrations are present in many environments. From this 

reason, the potential of converting this mechanical vibrations energy into a useful 

electrical form is feasible and is abundant enough to be of use. The utility of this type of 

energy depends on the amplitude of the vibration and its frequency. Vibration sources 

vary considerably in amplitude and dominant frequency on different objects. Table 2.2 

shows the results of measurements on several different vibrations sources performed by 

various authors. It will be noticed that the fundamental frequency of all sources is between 

34 and 200 Hz. Acceleration amplitudes range from 0.1 to 12.3 ms-2.  Nevertheless, the 

vibration present in most environments is not made up of a single frequency but is 

typically made up of a number of fundamental frequencies and their harmonics. For 

example the vibration data shown in Figure 2.1, was taken by the author from a desktop 

computer when a CD was running, indicates a fundamental frequency of 120 Hz with an 

acceleration amplitude of 0.54 ms-2 with the 2nd and higher harmonics present at lower 

amplitudes. Since most of the vibration-based conversion devices have a relatively narrow 

range of operating frequencies (high Q-factor), it is important that the nature of the source 

be understood first so that the generator can be designed to resonate at an appropriate 

frequency peak in the vibration spectrum.  

 

 
Figure 2.1- Vibration spectra for desktop computer with CD is running 
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Vibration sources Acceleration 

A (m/s2) 

Resonant frequency 

Fre (Hz) 

Source of 

Information 

Car engine compartment 12 200 [53] 

Second floor of busy office 0.2 100 [53] 

Windows next to busy road 0.7 120 [51] 

Bread Maker 1.03 121 [51] 

Washing Machine 0.5 109 [51] 

Blender casing 6.4 121 [51],[53] 

Clothes dryer 3.5 121 [51],[53] 

Small microwave oven 2.5 121 [51],[53] 

HVAC vents 0.2-1.5 60 [51],[53] 

Desktop computer casing 

[On top of the casing] 

0.5 120 Author’s 

Experiment 

Desktop computer casing 

(with CD  running) 

[On top of the casing] 

0.54 120 Author’s 

Experiment 

Standalone fan Heater 

[On top of the casing) 

1.5 34 Author’s 

Experiment 

Mobile phone (vibrate mode) 

[At the back cover when the 

phone is horizontally] 

12.3 170 Author’s 

Experiment 

Domestic Freezer 

[On top of the Freezer] 

0.1 50 Author’s 

Experiment 

Table 2.2 – Acceleration amplitude and frequency of fundamental vibration mode for 

various sources 

 

2.1.6 Conclusions regarding energy sources suitable for scavenging 

 

Based on this survey, notice that many energy sources look promising as methods 

to scavenge power from the environment. However, this research will only focus on 

energy harvesting from a vibration source.  This is not to suggest that vibration-based 

power sources are the best energy scavenging solution, but only it is one of the most 

appropriate energy for the self-powered  microsystems. 
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2.2 Modelling of general vibration conversion 
 

 

Figure 2.2 - Schematic diagram of a vibration converter 
 

 A simple model based on the schematic in Figure 2.2 has been proposed by 

Williams[68]. The generator consists of a seismic mass, m, on a spring, k. When the 

generator is vibrated, the mass moves out of phase with the generator housing, so that 

there is a net movement between the mass and the housing. The dashpot, b, represents the 

damping coefficient that causes the loss of mechanical energy some of which transforms 

into electrical energy. This system is described by Equation (2.2). 

 

 𝑚�̈�(𝑡) + 𝑏�̇�(𝑡) + 𝑘𝑧(𝑡) = −𝑚�̈�(𝑡) (2.2)  

 

where z is the spring deflection and y the input displacement 

 

The instantaneous power transfer to the mass, P(t), is the product of the force on the mass 

and its velocity: 

 

 𝑃(𝑡) = −𝑚�̈�(𝑡)[�̇�(𝑡) + �̇�(𝑡)] (2.3)  
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For a sinusoidal excitation vibration, 𝑦(𝑡) = 𝑌 sin(𝜔𝑡), the total power generated in the 

damping element is [68]:  

 

 
𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 =

𝑚𝜉𝑇𝑌2( 𝜔
𝜔𝑛

)3𝜔3

[1−( 𝜔
𝜔𝑛

)2]2+�2𝜉𝑇
𝜔
𝜔𝑛

�
2  

(2.4)  

 

where, 𝜔𝑛 = �𝑘/𝑚  is the resonant angular frequency, 𝜉𝑇 = 𝑏/(2𝑚𝜔𝑛)  is the total 

damping ratio, Y is the amplitude of vibration and ω is the angular frequency of vibration. 

If the spring mass system frequency, ω, is matched with the resonant frequency, ωn, 

Equation (2.4) can be simplified to become Equation (2.5) and substituting the 

acceleration, A=Yω2 , into this equation yields the absolute power as in Equation (2.6). 

 

 𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 = 𝑚𝜔3𝑌2

4𝜉𝑇
2   (2.5)  

 

 �𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑� = 𝑚𝐴2

4𝜔𝜉𝑇
2  (2.6)  

 

 From Equation (2.6), it can be seen that the power is inversely proportional to 

frequency. Therefore, if the acceleration amplitude of the vibrations is constant or 

decreasing with frequency, then the converter should be designed to resonate at the lowest 

fundamental frequency.  

 

 
Figure 2.3-Schematic diagram of vibration generator (with electrical damping) 
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In Figure 2.3 that is the improved model where the damping coefficient of this 

model is separated into electrical induced damping coefficient, be, and mechanical 

damping coefficient, bm. Due to the fact that b=be+bm, therefore, the power expression for 

Equation (2.4) and Equation (2.6) can be given as Equation (2.7) and Equation (2.8) 

respectively. Where 𝜉𝑒 is the electrical damping ratio.  

 

 
𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 =

𝑚𝜉𝑒𝑌2( 𝜔
𝜔𝑛

)3𝜔3

[1−( 𝜔
𝜔𝑛

)2]2+�2𝜉𝑇
𝜔
𝜔𝑛

�
2  

(2.7)  

 

 �𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑� = 𝑚𝜉𝑒𝐴2

4𝜔𝜉𝑇
2  (2.8)  

 

The relationship in Equation (2.7) is plotted in Figure 2.4 by assuming that the 

proof mass, m and acceleration, A, are constant that the resonant frequency is 100Hz and 

that input vibration frequencies vary from 10 to 1000 Hz. By assuming that 𝜉𝑚 =  𝜉𝑒 , 

three different damping ratios (𝜉𝑇) are shown. It can be seen that a generator will provide 

its optimum output power when the vibration frequency is matched with the system 

resonant frequency ( ω = ωn ). It may also be noted that increasing the damping, 𝜉𝑇 has the 

effect of reducing the peak power but increasing the bandwidth.  

 

 

 
Figure 2.4- Generated power vs vibration frequency of the system 
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Roundy[51] showed that by using Equation (2.7), some simulation can be carried 

to investigate on the effect on the generated power of different conditions of electrical 

damping ratio, 𝜉𝑒, and mechanical damping ratio, 𝜉𝑚. Figure 2.5 show that the generated 

power will become optimum when 𝜉𝑒 = 𝜉𝑚. However, the generator will perform badly if  

𝜉𝑚 is greater than   𝜉𝑒. On the other hand, there is just a small penalty on the case when  𝜉𝑒 

is greater than 𝜉𝑚. Therefore, in order to develop a high efficient generator, the designer 

must always make sure that  𝜉𝑚 is equal to or smaller than the system  𝜉𝑒 since most of the 

damping is electrically induced (attributable to  𝜉𝑒 ).  

 

 

Figure 2.5- Simulation of generated power vs mechanical & electrical damping ratios 
 

 

 Concluding from the discussion above, in order to create a highly efficient 

generator, the generator should be designed to resonate at the lowest frequency peak in the 

vibration spectrum provided that higher frequency peaks do not have higher acceleration 

amplitude. Or more specifically, higher value of A2/ω.  Moreover, the generator needs to 

be properly designed so that the mechanical damping ratio is smaller than the electrical 

damping ratio and both of them must be as small as possible (according to Equation (2.8)) 

to provide a better output at the resonant frequency. Equation (2.8) indicates that the 

power generated will tends to infinity as  𝜉𝑇  tends to zero, but in practice it is not possible 
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to reduce the  𝜉𝑚 to an arbitrarily small value. This implies that the generated power will 

always be a finite value and depends on the design of the generator.  The amplitude of z is 

𝑍 = 𝑌/2𝜉𝑇 and so reducing the damping factor implies increasing the displacement range 

of the mass. The maximum movement range of the mass can move is limited by the size 

and the design of the resonator. Therefore, the damping ratio must be designed to be large 

enough to keep the range of movement within the limits which the resonator is capable of 

making without damage. However, from Figure 2.4 it can be seen that the output power 

can be improved by increasing the electrically induced damping at the point where the 

driving frequency does not match the resonance frequency. Thus, if the vibration source 

has a fixed frequency then a low level of damping (high Q-factor) is preferable but if the 

source frequency varies, it may give better average power to use a higher damping factor 

(low Q-factor) resonator. On the contrary, one of the main penalty for this solution is the 

power output is still less than what it would be if the resonance frequency matched the 

driving frequency.   

 

2.3 Comparing the conversion mechanisms 
 

 Practically there are three different ways to convert the vibration energy into the 

electrical form. They are electrostatic, electromagnetic, and piezoelectric. For an 

electrostatic generator, it typically involves two plates which are electrically isolated from 

each other, typically by air, vacuum or an insulator, which move relative to each other. As 

the conductors move, the energy stored in the capacitor will changes, thus providing the 

mechanism for mechanical to electrical energy conversion. Secondly, for an 

electromagnetic converter, energy is generated due to the relative motion between a coil 

and a magnetic field which will cause current flow in the coil. Lastly, for piezoelectric 

materials, mechanical strain in the material causes a charge separation across the different 

layers of the material (which is a dielectric), producing an output voltage.  
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To illustrate the principle of electrostatic energy conversion, a parallel plate 

capacitor can be used. The capacitance is approximately: 

 

 𝐶 = 𝑄
𝑉

= 𝜀 𝐴
𝑑
  (2.9)  

 

where ε is the dielectric constant of the insulating material between the plates, A is the 

area of the plates, d is the distance separated between two plates, Q and V are the charge 

and the voltage on the capacitor respectively. The energy stored in a capacitor with plate 

charge Q and potential difference V is given by:  

 

 𝐸 = 1
2
𝑄𝑉 = 1

2
𝐶𝑉2 = 1

2
𝑄2𝐶−1  (2.10)  

 

Changing the stored energy by moving the capacitor plates causes a reaction force and the 

work done against the electrostatic force between the plates provides the harvested energy. 

If the separation of a parallel plate capacitor is changed and the charge is held constant, 

the force can be given as Equation (2.11). While if the voltage is constrained, the force 

will becomes Equation (2.12) [9].  

 

 𝐹 = 𝑄2

2𝜀𝐴
  (2.11)  

 

 𝐹 = 𝜀𝐴𝑉2

2𝑑2
  (2.12)  

 

There are three types of electrostatic generator classified by Roundy[51], they are 

In-plane overlap varying in which the overlap area of interdigitated fingers varies; In-

plane gap closing in which the separation of interdigitated fingers varies and Out-of-plane 

gap closing in which the separation of a simple parallel plate capacitor varies in response 
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to the vibration. There are many researches carried out in recent year for this type of 

conversion technology.  Again Roundy[53] states that in-plane gap closing offers the 

highest power output with an optimized design producing 100μW/cm3, out-of-plane gap 

closing is second highest, followed by the in-plane overlap varying. The maximum power 

generation occurs for very small dielectric gaps. Meninger[36] have simulated an in-plane 

overlap varying electrostatic generator based on a comb-driven structure and 8 μW was 

successfully obtained from 2.5 kHz input vibration motion. Miyazak[39] carried out some 

investigation on the out-of-plane cantilever-based generator. The device resonated at 45 

Hz and tested on a wall with a 1μm displacement up to 100 Hz. 120nW was harvested for 

the wall acceleration of 0.08 ms-2.  

 

For the electrostatic converter, the primary disadvantage of this kind of converter 

is that they need an external voltage source during the initiate stage of the conversion 

process because the capacitor must be charged up to an initial voltage (initial separated 

voltage) for the conversion process to start. Another disadvantage is that for many design 

configurations mechanical limit stops must be included to ensure that the capacitor 

electrodes do not come into contact and short the circuit.  The resulting mechanical 

contact could cause reliability problem as well as increase the amount of mechanical 

damping and presumable it would removes the initial charge. On the contrary, the great 

advantage of electrostatic converters is that MEMS (Micro-Electro-Mechanical-System) 

processing technology offers an effective method to obtain close integration with 

electronics. Besides, the potential to scale down to much smaller sizes is greater for 

electrostatic converters.  

 

For electromagnetic converters, there are a couple of significant strengths for this 

implementation other than its simplicity. First of all, it does not require a separate voltage 
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source to get the process started as in electrostatic conversion. Secondly, the system can 

be easily designed without the necessity of mechanical contact between any part, which 

improves reliability and reduces mechanical damping that would cause a reduction in the 

output power.  However, the disadvantage is that it is not easy to integrate coils into 

micro-fabrication processes due to its size.  In recent years, the practical volume of the 

electromagnetic generator has been greatly reduced to 0.15 cm3 but still delivering 30% of 

the power supplied from the environment [6]. Besides, in order to improve the generated 

power for this type of generator, a stronger magnetic field can be used to provide more 

current flow during the motion between the magnet and the coil. Furthermore, by 

implementing a better conducting material as the coil, this will also improve the output 

power by reducing the internal resistance and power loss for the system.  

 

Lastly for piezoelectric converters, it requires no separate voltage during the initial 

stage of the conversion process and is able to generate appropriate voltage directly. 

Besides, there is generally no need for mechanical limit stops and hence these devices can 

be designed to exhibit very little mechanical damping. It may be said that piezoelectric 

converters combine most of the advantages of both electromagnetic and electrostatic 

converters [41]. On the contrary, the only disadvantage of piezoelectric conversion is the 

difficulty of implementation on the micro-scale and integration with microelectronics due 

to its size. However, it is true that a thin film piezoelectric was successfully integrated into 

MEMS processing but the piezoelectric coupling (efficiency) is greatly reduced [28].  In a 

study conducted to investigate the feasibility of three different vibration conversion 

mechanisms, the energy densities provided by these converters were compared. Table 2.3 

summarizes the energy density for all three types of converters. However, Roundy[51] 

seem to restrain their material properties more strictly on both electromagnetic and 

piezoelectric mechanisms, hence smaller densities were obtained.  
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Mechanism 
Energy Density Energy Density 

Roundy [51] Marzencki [33] 

Electrostatic 4mJ/cm3 4mJ/cm3 

Electromagnetic 4mJ/cm3 24.8mJ/cm3 

Piezoelectric 17.7mJ/cm3 35.4mJ/cm3 

Table 2.3- Summary of maximum energy density of three types of transducers 
 

Mechanism Advantages Disadvantages 

Electrostatic - Easier to integrate in  

microsystems. 

- Separate voltage source needed. 

- Mechanical stops needed. 

Electromagnetic - No started voltage source 

needed. 

- No mechanical stops. 

 

- Output voltage is Low (can be 

increased by number of turn in the 

coil but will increase the size of 

the generator and system loss). 

Piezoelectric - No started voltage source 

needed. 

- Output voltage is large 

- No mechanical stops 

- High energy density 

- Hard to integrate in microsystems 

and piezo thin films have poor 

coupling. 

- The material characteristic and 

behaviour are more complex and 

sophisticated. 

-  low output current. 

Table 2.4 – Comparison of the three types of converters 
 

The above discussion of the merits and disadvantages of the three different 

methods of power conversion serves as a basis for narrowing the range of design 

possibilities before performing detailed analysis, design and optimization. The primary 

advantages and disadvantages of each type of converter based on those comparisons are 

summarized in Table 2.4 above. From this table, it can be noticed that piezoelectric 

converters exhibit all of the advantages of electromagnetic converters while additionally 

directly providing useful voltages. On the contrary, the behaviour and material 

characteristic of an electromagnetic converter are less complex and unsophisticated. These 

also led to the decision that the electromagnetic converter would be used as the conversion 
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technology in the frequency tuning device investigated in Chapter 8.  Though three types 

of converters have been introduced here, only piezoelectric and electromagnetic 

converters will be considered in more details in the following chapters.  
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Chapter 3 : Background information for piezoelectric and 

electromagnetic harvester 
 

In the previous chapter, a qualitative comparison of electrostatic, piezoelectric and 

electromagnetic conversion mechanism was presented. However in this chapter, only 

piezoelectric and electromagnetic will be further discussed. First of all, some terminology 

of both piezoelectric and electromagnetic will be looked at. This followed by the 

background information including their historical review and the technical information for 

the vibration-to-electrical conversion. 

 

3.1 Piezoelectric power conversion 

 

Piezoelectricity is the ability of crystals and certain ceramic materials to generate a 

voltage in response to applied mechanical stress. Piezoelectricity was discovered by Pierre 

Curie and the word is derived from the Greek piezein, which means to squeeze or press. 

The piezoelectric effect is reversible in that piezoelectric crystals, when subjected to an 

externally applied voltage, can change shape by a small amount. The effect finds useful 

applications such as the production and detection of sound, generation of high voltages, 

electronic frequency generation, microbalance, and ultra fine focusing of optical 

assemblies. 

 

There are twenty natural crystal classes such as tourmaline, quartz, topaz, cane 

sugar and Rochelle salt which exhibit direct piezoelectricity. Among the crystals, quartz 

and Rochelle salt exhibited the most piezoelectricity. Apart from that, piezoelectricity can 

also be observed in ceramics with the perovskite or tungsten–bronze structures (BaTiO3, 

KNbO3, LiNbO3, LiTaO3, BiFeO3, NaxWO3, Ba2NaNb5O15, Pb2KNb5O15). Polymer 

materials like rubber, wool, hair, wood fiber, and silk exhibit piezoelectricity to some 

extent [59].  
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3.1.1 Historical review 

 

In the year 1880, during experiments on quartz, the brothers Pierre and Jacques 

Curie discovered an unusual characteristic of certain type of crystalline minerals. The 

crystals became electrically polarized when they were subjected to a mechanical force. 

Tension and compression generated voltages of opposite polarity, and in proportional to 

the applied force. Subsequently, the converse of this relationship was mathematically 

deduced from fundamental thermodynamic principles by Lippmann in 1881. If one of 

these voltage-generating crystals was exposed to an electrical field, it lengthened or 

shortened according to the polarity of the field, and proportional to the strength of the field. 

A year later (1882), the Curie brothers verified experimentally this phenomenon by 

showing that the coefficients for both direct and reverse effects were identical. These 

behaviours were named the piezoelectric effect and the inverse piezoelectric effect 

respectively [44]. 

 

Added to the above, in 1917 (during World War I), in France, Paul Langevin and 

his co-workers developed an ultrasonic submarine detector by using a quartz piezoelectric 

material to generate and detect sound waves in water. The detector consisted of a 

transducer, made of thin quartz crystals carefully glued between two steel plates, and a 

hydrophone to detect the returned echo. By emitting a high-frequency chirp from the 

transducer, and measuring the time taken to hear an echo from the sound waves bouncing 

off an object, one can calculate the distance to that object. The use of piezoelectricity in 

sonar, and the success of that project, created intense development interest in piezoelectric 

devices. Over the next few decades, new piezoelectric materials and new applications for 

those materials were explored and developed [45]. 
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3.1.2 Piezoelectric vibration-to-electrical conversion 

 

 Piezoelectric materials are materials that physically deform in the presence of an 

electric field, or conversely, produce an electrical charge when mechanically deformed. 

When mechanical stress is applied on a piezoelectric material, an open circuit voltage (a 

charge separation) appears across the material. Likewise, if a voltage is put across the 

material, a mechanical stress develops in the material. These relationships are described 

by the piezoelectric strain coefficient, d, which gives the relationship between the electric 

field and stress, while the electro-mechanical coupling coefficient, kco, describes the 

efficiency with which energy is converted by the material between mechanical and 

electrical forms. The electro-mechanical coupling coefficient can be functionally related to 

the piezoelectric strain coefficient by Equation (3.1)[51] which clearly indicate that 

materials with larger strain and electro-mechanical coupling coefficients have a higher 

potential for energy conversion.  

 

 
kco = �Y

ε
d  

(3.1)  

 

where Y is the material Young’s modulus 

           ε is the dielectric constant of the piezoelectric material 

  

There are two different modes that commonly used in piezoelectric material which 

are illustrated in Figure 3.1. The x, y, and z axes are labelled as 1,2, and 3 and the material 

is poled in the 3 direction. The first mode, called 33 mode, in which the stress is applied 

on the same side as the voltage and the other is called 31 mode, meaning that the voltage 

acts in the direction 3 and the mechanical stress acts in direction 1. Though the electrical 

coupling (kco) for mode 31 is lower than mode 33, there is still a key advantage for using 

mode 31 in energy harvesting. The 31 system is much more compliant, thus larger strains 
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can be produced with smaller input forces. Besides, the resonant frequency is much lower 

which will be beneficial to the energy harvesting application. 

 

 
           Figure 3.1 a) 33 mode piezoelectric                 b) 31 mode piezoelectric [51] 

 

 The cantilever beam is a commonly used structure for an actuator or generator. 

The cantilever is able to create relatively large deflections, takes up less space and also 

resonates at low dominant frequency than in 33 mode. Some of the piezoelectric materials 

are brittle, so it is very common that manufacturers add stiffness by putting some non-

piezoelectric layer attached to the piezo material.  The non-piezoelectric layer is used to 

improve the stiffness of the device while the piezoelectric layer is used to produce the 

energy. The device is known as a unimorph when one layer of piezoelectric is attached to 

a non-piezoelectric material. Moreover, when a non-piezoelectric layer is sandwiched 

between two piezoelectric materials, this device is known as bimorph. These structures are 

depicted as Figure 3.2.  

 

 

Figure 3.2 a) Unimorph Piezoelectric bender    b) Bimorph Piezoelectric bender 
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For 31 mode piezoelectric materials, the most common type elements are bimorphs 

as depicted in Figure 3.2(b). As the element bends, one layer is in tension and another is in 

compression or vice versa. Besides, there are two different ways to connect the layers, 

Series and Parallel type. The cantilever mounted bimorphs are illustrated in Figure 3.3, 

which shows the poling and signal fields as well as direction of strain and deflection. For 

series operation the two plates must be polarized in the same direction with respect to the 

centre shim (not shown in the figure) either positive or negative. Conversely, for parallel 

type, the two plates need to be polarized in opposite directions with respect to the centre 

shim.  The electrical connections for the series type are made to the two outer electrodes 

with no connection to the centre. On the other hand, for the parallel type one connection is 

required to connect to the centre shim and the other lead to both outer electrodes.  

 

 

Figure 3.3 – Cantilever mounted bimorphs [40] 
 

 Although there is a wide range of materials that exhibit piezoelectric behaviour, 

PZT (lead zirconate titanate) is probably the most commonly used piezoelectric material 

in vibration based energy harvesting devices at the current time because of its stiffness and 

high electro-mechanical coupling coefficient (kco) value. There are several types of PZT 

available that all have similar but slightly different properties. The specific material used 

in this entire research is a commonly available PSI-5A4E [43] unless otherwise stated.  
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3.2 Electromagnetic (induction) power conversion 

 

Electromagnetic induction is the phenomenon of production of an Electromotive 

force (emf) either by motion of a conductor through a magnetic field in such a manner as 

to cut across the magnetic flux or by change in the magnetic flux that threads a conductor. 

If the flux threading a coil is produced by a current in the coil, any change in that current 

will cause a change in flux, and thus there will be an induced emf while the current is 

changing. This process is called self-induction. The emf of self-induction is proportional 

to the rate at which flux is linked as shown in Equation (3.2). The phenomenon of 

electromagnetic induction has a great many important applications in modern technology 

especially in the micro-sensors area that has been developed in recent years.  

 

 |𝜖| = �𝑑Φ𝐵
𝑑𝑡
�  (3.2)  

 

where: 

 |𝜖| is the magnitude of the electromotive force (emf) in volts 

 Φ𝐵 is the magnetic flux through the circuit 

 

3.2.1 Historical review 

 

Faraday’s law was first investigated in 1830-1831 by Michael Faraday. The effect 

was also discovered by Joseph Henry at about the same time; however Faraday was the 

first person who published. They discovered that an electric current could be detected 

from a conductor when the magnetic field around an electromagnet near to the conductor 

was changing. Apart from that, they found that a current can also be induced by moving a 

permanent magnet in and out of a coil of wire, or by moving a conductor near a stationary 

permanent magnet. This led to the discovery of induced electromotive force. 
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Michael Faraday hypothesized that a changing magnetic field is necessary to 

induce a current in a nearby circuit. In late 1831, Michael Faraday proposed three laws of 

electromagnetic induction which are the basic of modern electromagnetic generator 

nowadays. Those laws are:   

 

1) A changing magnetic field induces an electromagnetic force in a conductor. 

2) The electromagnetic force is proportional to the rate of change of the magnetic field. 

3) The direction of the induced electromagnetic force depends on the orientation of the 

field.  

 

3.2.2 Electromagnetic vibration-to-electrical conversion 

 

An Electromagnetic generator is based on the generation of electric current in a 

conductor located within a magnetic field. Electricity is generated by either the relative 

movement of the magnet and coil, or due to the changes in the magnetic field. According 

to William[68], the amount of electrical power generated depends upon the strength of the 

magnetic field produced by the magnet, relative velocity of magnet (ż) and coil and the 

practical coil length. The induced open-circuit voltage υg can be expressed as: 

 

 υ𝑔 = 𝑘𝑒ż (3.3)  

 

 𝑘𝑒 = 𝐵𝐿 (3.4)  

 

where 𝜐𝑔 is the induced open-circuit emf 

           𝑘𝑒 is the emf constant 

           B is the magnetic field produced by the magnet 

           L is the practical coil length 

 

 Currently, there are two general designs for vibration-based electromagnetic 

generators for energy harvesting. The first design involves mounting a group of permanent 

magnets on a resonating cantilever beam and a coil fixed at the base as shown in Figure 
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3.4. Conversely for the second design, the group of permanent magnets are fixed at the 

common base and the copper coil is attached at the end of the cantilever beam as in Figure 

8.8 in Chapter 8. Practically, either the magnets or the conductor (coil) can be chosen to be 

mounted on the cantilever beam while the other remains fixed. For the fixed coil design, it 

makes the system wiring easier since the conductor is fixed to the common base. On the 

contrary, for the fixed magnets design, it makes the wiring more difficult while the beam 

is oscillating. Yet, if a different magnet or multiple magnets is required in the experiment, 

the fixed magnets design is more appropriate. This is due to the fact that the magnets act 

as the inertial mass if they are attached on the beam and this will vary the beam’s 

mechanical behaviour for the fixed coil design. On the other hand, for the fixed magnet 

design, the beam behaviour will remain unchanged even if the initial set of magnets has 

been replaced with bigger or heavier magnet. Therefore, this concludes that both designs 

have their pros and cons, also the best design will be the design that suits the applications 

and objectives the most.  

 

 

Figure 3.4 – Fixed coil electromagnetic generator 
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Chapter 4 : Literature Review 

 

For the last decade, vibration-based generators have received increasing levels of 

attention. Therefore, there has been increasing research effort in the area of power or 

energy harvesting from vibration.  This chapter will review some of the work that has 

been done previously in this energy scavenging area. It will begin with a look at the 

piezoelectric based harvester and this will be followed by a review of the electromagnetic 

based harvester. To end with this chapter, some works and concepts of frequency tuning in 

energy harvesting devices are discussed.   

  

4.1 Piezoelectric energy harvester 

 

 There has been an increasing interest in the investigation of piezoelectric 

generators in the recent year due to the capability of producing higher output power for a 

given size than an electromagnetic generator. This section will review some of the work 

that has been previously done in energy harvesting using piezoelectric material.  

 

There are lots of different applications for the energy harvesting device and also 

piezoelectric materials can be configured in many different ways that prove useful in 

power harvesting applications.  For example numerous studies involving energy 

harvesting with piezoelectric material in different disciplines, Starner[63] investigated the 

possibility of using human daily activities to generate power to run an electronic device. 

Many possible energy sources have been discussed such as blood pressure, body heat and 

breathing. Kymissis[27] investigated the use of capturing energy parasitically while 

walking. They also concluded that magnetic rotary  generator can produces 2 orders of 

magnitude (0.23Watt) more power than either piezoelectric systems they tested (Average 

power for their PZT & PVDF system are  1.8mW and 1.1mW respectively). However, it is 
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much harder to integrate smoothly into the design of conventional shoes without 

interfering with the form factor of the footwear. Besides, a test had been done to prove 

that by using PVDF stave and PZT unimorph, it was sufficient to power up an active 

RFID tag by accumulate the energy from several steps. 

 

 Moreover research done by Sodano[60][61] comparing several composite 

actuators for power generation. Three different materials were assessed on their 

effectiveness in power-harvesting applications.  Quick Pack, PZT and MFC (Mico-Fiber 

Composite) were mounted to a cantilever beam which was tested at 12 different resonant 

frequencies. The Quick Pack actuator is a bimorph piezoelectric device that uses 

monolithic piezoceramic material embedded in an epoxy matrix and PZT is the 

traditionally used monolithic piezoceramic material. Lastly, the MFC actuator is 

constructed using piezofibers surrounded in an epoxy matrix and covered with an epoxy 

shell. From the experiment, the MFC performed poorly compared to the Quick Pack and 

PZT in term of conversion efficiency. It was believed that the poor performance of the 

MFC is caused by the increased impedance due to the use of interdigitated electrodes in its 

structure. Additionally, Quick Pack was found to perform very well at resonance but was 

less effective when excited with a range of frequencies. On the other hand, PZT was 

shown to be more effective in the random vibration environments that are usually 

encountered when dealing with ambient vibrations.  

 

 Cho[13] analytically optimizing the coupling coefficient in a piezoelectric power 

harvesting system. The analysis showed that for a given substrate material and thickness 

an optimum piezoelectric thickness can be found to achieve the maximum coupling 

coefficient that can be obtained. The coverage of the electrode was found to be important 

to the electromechanical coupling. Their model predicted that the coupling coefficient 

increases with the electrode size and reaches its maximum when the electrode covers 42% 
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of the membrane area. Later on, they further investigate the same idea and found that 

electrode coverage about 60% produces the optimum coupling and application of a dc bias 

also leads to an increase in coupling [14].  

 

Jiang [25] also investigated methods of increasing the efficiency of a piezoelectric 

bimorph. They analyzed the performance of a piezoelectric bimorph in the flexural mode 

for scavenging ambient vibration and determined the relationship between performance 

and physical and geometrical parameters. They had shown that by reducing the thickness 

of the bimorph and the centre shim, or increase the proof mass at the end of the cantilever, 

the resonant frequency of the system will substantially decreased. The maximum power 

harvested was shown to be greater for lower a resonant frequency described in Equation 

(2.6). 

 

Mateu[34] proposed an analytical comparison between a rectangular and triangular 

shaped cantilever. It was proven mathematically that a triangular cantilever with the same 

beam volume as a rectangular beam will have a higher average strain and maximum 

deflection for a given load. Therefore, they concluded that a triangular cantilever beam 

will produce more power per unit volume than a normal rectangular beam. At almost the 

same time, Roundy[52] proposed that with an increasingly trapezoidal (a transformation 

process from a rectangular to a triangular geometry)  shaped cantilever, the strain will be 

distributed more evenly. He also stated that a trapezoidal cantilever can generate more 

than twice the energy than a rectangular beam provided the volumes of both cantilevers 

are equal. He also concluded that by changing the configuration of the cantilever, the cost 

and the size of the generation can be reduced significantly by using less material but still 

satisfying the given power requirement. More details about the alternative beam structure 

will be discussed in Chapter 7.  
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Minazara[38] focused on the development of piezoelectric generators to convert 

mechanical power to electrical power from vibrations in dynamic environment. The 

experimental setup used is shown in Figure 4.1. The membrane transducer is rigidly fixed 

on the piezoelectric actuator. The mechanical vibration force (F) which causes an 

oscillating motion of the macroscopic 25mm diameter piezoelectric membrane, resulting 

in strain on the piezoelectric layer and generating a low-frequency voltage signal. Their 

experimental results shown that 1.7mW power was generated at the resonance frequency 

of 1.71kHz across a 47kΩ optimal resistor and for a 80 N force.  

 

 

Figure 4.1- Experimental setup of a membrane transducer [38] 
 

Leland[30] carried out an exercise to verify the feasibility of powering an 

electronic device in a real-world deployment situation. They successfully produced 30μW 

from the vibration generated by a wooden staircase at 27 Hz. The piezoelectric generator 

which was mounted on the staircase used a piezoelectric bimorph to generate the electrical 

energy which was sufficiently to power a temperature sensor and radio hardware. The 

prototype required 50 minutes of continuous staircase foot traffic from two people to take 

and transmit a set of two temperature readings.  

 

Shen[58] presented a MEMS PZT energy harvesting cantilever device with an 

integrated Si (Silicon) proof mass for low frequency (hundreds of hertz) and high 

amplitude (>1g) vibration applications. The piezoelectric cantilever device in this research 
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consists of multi-layers films deposited on a Si substrate as in Figure 4.2. The Si is used as 

the proof mass at the tip to reduce the resonant frequency and to improve the beam’s 

mechanical strength. The silicon oxide (SiO2) is used as the insulator between the 

electrode and Si. The interlayer titanium (Ti) is used to improve the adhesion between the 

PZT and platinum (Pt). The top and bottom layer of Pt are used as the electrodes. The 

prototype successfully produced 2.15μW with an optimal load of 6kΩ from 2g 

acceleration at its resonant frequency of 461.15Hz. The effective volume (beam plus the 

proof mass) is about 0.6520mm3.  

 

 
Figure 4.2- Side view of a piezoelectric energy harvesting cantilever [58] 

 

It has been reported that common environmental vibrations such as those found in 

a building exhibit at lower frequencies (50-200 Hz) [53]. Therefore a year later, the multi-

layers cantilever design was further improved by the some author using an SOI (silicon on 

insulator) structure [57]. With the use of a layered silicon-insulator-silicon substrate as 

depicted in Figure 4.3, the whole structure becomes more flat and the cantilever exhibited 

a much smaller curvature as preferred. Apart from is, the SiO2 layer in the SOI wafer can 

be used to precisely control the thickness of the silicon supporting layer in the cantilever 

beam. Therefore, the resonant frequency for the beam can be easily altered. The average 

power was measured as 0.32μW across the optimum load of 16kΩ when the cantilever 

was excited at 0.75g acceleration amplitude at its resonant frequency of 183.8Hz. The 

effective beam plus mass volume for this generator was reported as 0.7690mm3.  
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Figure 4.3- Side view of piezoelectric energy harvesting cantilever [57] 

 

4.2 Electromagnetic energy harvester  

 

Apart from the piezoelectric generator, an electromagnetic energy converter is 

another vastly investigated topic for researchers in recently years. Williams [68] proposed 

a device, which generated electricity when embedded in a vibrating environment. For their 

investigation, an electromagnetic transducer was chosen. The microgenerator has 

dimensions of around 5×5×1mm and the power generation of 1μW at an excitation 

frequency of 70 Hz and 0.1mW at 330 Hz (assuming a deflection of 50μm). It was also 

determined that a low damping factor was required to maximize power generation.  

 

A few years later, El-hami[18] carried out some simulation and modelling of a 

electromagnetic transducer based on the relative movement of a magnet pole with respect 

to a coil. Their demonstration also proved that the generation of practical amounts of 

power within a reasonable space is possible. Power generation of more than 1mW within a 

volume of 240 mm3 at a vibration frequency of 320Hz has been obtained. Following the 

work, Glynne-Jone [22] assessed two prototypes based on cantilever structures, but having 

different combinations of magnets and coils structure.  The first prototypes based on the 

moving coil between two fixed magnets and the second prototypes based on moving two 

magnets with fixed coil (improving the magnetic coupling between the magnets and the 

coil). The first prototype generated power levels up to 180 μW (with 0.85 mm 
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displacement) and the second prototype generated more than four times higher power than 

the first one.  

 

Beeby[8] developed a silicon-based generator that consisted of a silicon paddle 

beam, four magnets and a wire-wound coil. The design is shown in Figure 4.4. Two 

magnets are located within etched recesses in the Pyrex wafers and two Pyrex wafers are 

bonded to each face of the silicon wafer. The bonding process is aligned to ensure correct 

placement of the coil relative to the magnets. The coil is located on a silicon cantilevered 

paddle designed to vibrate laterally in the plane of the wafer. In the same year, Beeby[7]  

carried out finite element analysis using ANSYS to determine the resonance frequency 

and the material stress. They found that levels of 4 to 9V can be achieved from a single 

beam generator design in their simulation and emphasise the importance of reducing 

unwanted loss mechanisms such as air damping in order to improve the generator 

performance. Under normal atmospheric pressure, they experimentally showed that this 

device has a resonant frequency of 9.5 kHz and generated 0.5 µW into a matched load at 

9.81 ms-2.  

 

 
Figure 4.4- Micromachined Silicon generator design [8] 
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 A few years later, a micro electromagnetic generator with a practical volume of 

0.15cm3 was presented by Beeby[6] as in Figure 4.5. This generator uses four high density 

energy density sintered rare earth neodymium iron boron (NdFeB) magnets arranged on 

an etched cantilever with a wound coil located within the moving magnetic field. A Zintec 

keeper was used to concentrate the flux gradient through the copper coil during the 

oscillation.  A double polished wafer with thickness of 50μm was selected as the 

cantilever beam to give resonant frequencies between 50-60 Hz. The beam was clamped 

onto the high performance plastic base (Tecatron GF40) using a steel washer. From their 

experiment, it was reported that the final device was able to produce 46μW from just 0.59 

ms-2 acceleration levels at its resonant frequency of 52Hz across the 4kΩ optimum 

resistance.  

 

 

Figure 4.5 – A micro cantilever generator [6] 
 
 

Wang[67] presented an electromagnetic energy harvester that consists of an 

electroplated copper planar spring, a permanent magnet and a copper planar coil with high 

aspect ratio, as depicted in Figure 4.6. Their electromagnetic simulation indicated that the 

peak to peak open circuit voltage of the optimized structure is 42.6mV and the maximal 

output power is 0.7 µW. On the other hand, their prototype testing result shows that the 

prototype could only generated an open circuit voltage of 18mV and output power of 0.61 

µW. However the prototype model tested was not in an optimized structure. Therefore, 
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they believed that by further optimizing the dimensions of the permanent magnet, the 

output voltage and power could be improved.  

 

 
Figure 4.6 – Schematic structure of electromagnetic generator [67] 

 

 Added to the above, Bedekar [5] had successfully developed a pulse rate sensor 

with a vibration energy harvester integrated inside a pen to capture energy from normal 

human activities. An electromagnetic energy harvesting was selected in order to achieve 

high power at lower frequencies. The fabricated pen harvester prototype (placed in the test 

subject’s pocket) was connected across an optimum load of 22Ω and was found to 

generate a constant 3.7μW, 0.46mW and 0.66mW under regular walking, jumping and 

jogging respectively.  Although the power generated under regular walking from the test 

subject was very low, the prototype was found able to generate a continuous power of 

0.46-0.66mW (during jumping and jogging) which was enough to power a small scale 

pulse rate sensor.  

 

4.3 Frequency tuning in energy harvesting devices 

 

Practically, as the frequency of ambient vibrations typically varies over time, it is 

not possible to guarantee that a fixed frequency generator will always work at resonance 

and produce the maximum output power. Therefore, research on frequency tuning has 

been carried out to overcome this problem.  
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Agah[1] investigates the effect of the natural frequency of a piezo element when 

the physical structure or the internal material properties were changed.  They predicted 

that the output power of the system is maximized when the mechanical damping in the 

system is minimized. A three-beam microgenerator, which exhibit natural resonance 

frequencies of 400Hz, 800Hz and 1500Hz, was tested. This generator is proposed to cover 

a wider range of frequencies and proved that for an operating frequency of 400Hz, power 

of 1-5μW can be delivered to the output. They also suggested that to reduce the 

mechanical damping in order to maximize the power efficiency, it may require to operate 

the device in a vacuum-sealed package. Then the damping ratio can be easily controlled 

by the air pressure inside the package.  

 

Shahruz [55] later used the multiple beams method to design a mechanical band-

pass filter for use in energy scavenging. The filter contains an ensemble of multi cantilever 

beams. Some beams come with proof masses at their ends but some were left free. By 

appropriately choosing the length of the beams and the size of the mass, a wide frequency 

band can be harvested and is not limited to just one. Figure 4.7 show the ensemble of 

cantilever beams with proof masses at theirs tips and the Bode magnitude plots from the 

band-pass filter. However, it proved hard to determine the dimension and the proof mass 

value of the cantilevers in order to get the best possible performance from the filter. 

Therefore, the author proposed a method called the “limits of performance” to optimize 

the mechanical filter. The knowledge of such limits leads to a systematic procedure for 

determining dimensions of the beams and masses of the proof masses of band-pass filters 

with best possible performance [56]. The main disadvantages for multi cantilever beams 

system is that the power density will go down as the number of beams goes up. This is due 

to the power from the multiple cantilevers must be effectively combined and if there is any 
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of the beams has lower output power, the total output power density of the system will be 

affected.  

 

 
Figure 4.7 - An ensemble of cantilever beams and the Bode magnitude plots [55] 

 

A year after, Liu[31] investigated a micro-power generator array utilizing PZT 

film as the transducer to harvest ambient low-level vibration. The generator was 

successfully fabricated by the MEMS process. The generator produced 3.98 μW of 

effective electrical power and 3.93 DC output voltage from the multi AC-DC rectification. 

Theirs concepts is depicted as Figure 4.8. Their experiment showed that the arrayed device 

is promising in improving operation bandwidth and power output of the generator.  

 

 

Figure 4.8 – Electrical connection of piezoelectric power generator [31] 
 

The same multiple beams concept may be applied to electromagnetic generators as 

well as piezoelectric devices. Sari[54] have reported an electromagnetic generator that 

consists of an array of cantilevers with varying lengths and resonance frequencies to solve 

the bandwidth problem. By carefully adjusting the length of the cantilevers, those 

cantilevers will have an overlapping frequency spectrum with the peak powers at close but 
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different frequencies. The proposed multi cantilever generator and the resultant frequency 

response are shown as Figure 4.9. By utilizing 35 cantilevers, this fabricated device can 

generates 10 mV voltage and 0.4 µW power continuously within a frequency band of 800 

Hz (4.2-5 kHz). Besides the generated output, they found that by using Parylene as the 

structural material, larger deflection are allowed before mechanical failure compare to 

silicon. Thus, larger power can be obtained.  

 

 
Figure 4.9 – Proposed electromagnetic generators and the resultant frequency response [54] 

 

Bin [11] proposed another type of multi-frequency energy harvester which consists 

of three permanent magnets, three sets of two-layer copper coils and a supported beam of 

acrylic. These coils were made of thin fire resistant (FR4) substrates using a standard 

printed circuit board (PCB) as shown in Figure 4.10. They noted that PCB with multiple 

Cu coils could easily be fabricated at much lower cost than piezo cantilevers. Therefore, 

this method not only provides multiple frequency generation but also a less expensive 

energy converter.  The energy under the first, second and third resonant modes can be 

harvested, corresponding to resonant frequencies of 369 Hz, 938Hz and 1184Hz 

respectively. A total output power of 1.157 µW can be obtained when three sets of coils 

are connected in series in the case of 14 µm exciting vibration amplitude and 0.4 mm gap 

between the magnet and the coils. The generated power is not an outstanding one 

compared to the others multi frequency generator, but the major advantage of this device 

is low cost and capability of capturing a range of different vibration frequencies.  
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Figure 4.10 – Multiple frequency generator design[11] 

 

Qi [46] demonstrated a new form of multiple cantilever beam structure as shown in 

Figure 4.11. All the side mounted cantilevers were designed with different tip masses and 

beam lengths which created many resonant frequencies.  During the excitation, the central 

clamped-clamped beam will accelerate equally at both of its clamped ends and the strains 

will be produced at every side cantilevers at their own resonant frequencies. All the strains 

were then summated within the clamped-clamped beam and converted to an electrical 

energy by the central piezoelectric fibre composite (PFC). The prototype was reported to 

produce 18 V pk-pk and 0.01mA pk-pk respectively when both of the clamped supports 

are subjected to an excitation level of 10.47ms-2 pk-pk. It was noted that this was higher 

than it would be met in practice but this was used to ensure the maximum output. 

However, the driving frequency for this data was not reported. Added to the above, they 

claimed that this multiple side mounted generator can produce a better output power than 

a generator which comprising several individual piezo cantilevers because of the out-of-

phase effect from multi individual piezo cantilevers can be simply avoided. Apart from the 

output power, this generator was believed to be more cost effective than an ordinary array 

cantilever generator.  
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Figure 4.11- Clamped-clamped beam with multiple side mounted cantilever [46] 

 

 Cottone[15] proposed a new method based on the exploitation of the dynamical 

features of stochastic nonlinear oscillators. In this method, consider two permanent 

magnets with opposite polarities, respectively on the cantilever tip and on an external 

fixed support at a distance ∆ along the beam axis. A repulsive force acts between the two 

magnets which decrease in magnitude with increased distance ∆. Under the action of the 

excitation and when the external magnet is far away, the cantilever beam behaves like a 

linear oscillator whose dynamics are resonant with a resonance frequency determined by 

the system parameters. On the contrary, when ∆ is small enough, the cantilever beam can 

show two different types of behaviours as a function of the distance of ∆ and the 

cantilever bounces between two stable states.  This similar idea was then used by Ferrari 

[20] as in Figure 4.12, where x  and Vp represents the vertical displacement of the mass 

and the generated voltage respectively during the excitation. Their experimental results 

showed a good agreement with their simulation analyses. The experimental outcomes 

showed that the nonlinear bistable case can provides a spectrum with a wider bandwidth 

compare to the resonant behaviour of the linear case and so is expected to produce an 

improved effectiveness in converting wide-spectrum vibration, especially at frequencies 

below the initial resonance.  Figure 4.13 shown the experimental frequency amplitude 

spectra of the output voltage Vp measured from different values of the distance ∆ (legend 

in Figure 4.13) under an acceleration of 0.3g (1g=9.81ms-2). The experimental results 
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showed the reducing of resonant frequency of the system with the reduced distance 

between the magnets ∆, as long as the system maintains the linear oscillation behaviour. 

On the other hand, when the distance ∆ reduces to a lower value, a bistable system wi ll be 

created and bouncing between two stable states can occur. In this condition, the cantilever 

converter will produces a marked improvement in the output voltage over a wider 

bandwidth with respect to the linear behaviour.  

 

 

Figure 4.12 – Setup for a nonlinear generator [20] 
 

 
Figure 4.13- Frequency amplitude spectra of the output voltage Vp [20] 

 

After an increasing amount of research on frequency tuning generators, Roundy[50] 

started to examined the possibility of ‘actively’ tuning a device’s resonance characteristics 

and presented a design that used electrical feedback to alter the resonance frequency of a 

piezoelectric bimorph. Apart from that, a distinction was made between ‘active’ tuning 
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actuators that must continuously supply power to alter the system resonance frequency, 

and ‘passive’ tuning actuators that supply power initially to tune the frequency, and they 

are able to ‘turn off’ while maintaining the new resonance frequency. An “active” 

tuneable piezoelectric bending generator was built and their experimental data suggested 

that “passive” tuning generators are better than the “active” tuning generator because the 

latter will never result in a net increase in electrical power output. However, recently Zhu 

[72] had claimed that this conclusion was not correct. They stated that only the situation 

where the tuning force is proportional to the generator’s displacement or acceleration was 

studied in [50], but for most cases the tuning force is not linked to the generator’s 

movement and methods of calculating actuation power may be different. Therefore, they 

claimed that the analysis made by Roundy[50] should not apply to all situations. Yet, they 

agree to that “passive” tuning mechanism has an advantage over an “active” tuning 

mechanism in term of energy consumption at the points when the device was already 

resonating at the ambient frequency. However, this still depend on how often the ambient 

vibration frequency changes. If the vibration frequency of the environment changes 

periodically, a “passive” tuning will become practically unfeasible due to its inflexibility.  

On the contrary, an “active” tuning will be more appropriate in this situation. Therefore, it 

can be concluded that the suitability of different tuning approaches will depend upon the 

application and there will be no party that should be considered better or worse than the 

other.  

 

The idea of this “smart scavenger” was then implemented by Wu [69]. A real-time 

resonant frequency tuning system was presented by using a microcontroller to sample the 

external frequency and adjust the variable capacitive load to shift the gain curve of the 

cantilever beam so that the system natural frequency will matched with the external 

vibration frequency in real-time (active tuning) as depicted in Figure 4.14. The upper 
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panel of the bimorph was used in the frequency tuning purpose and the lower panel on the 

beam is then used to harvest energy and generate a dc voltage to the electronic device.  

 

 
Figure 4.14 – Power Harvesting Device Experimental Setup [69] 

 

Roundy[48] investigated the self and adaptive-tuning energy generator. They 

modelled a beam as a simply supported beam with a proof mass in the middle and the 

beam’s stiffness is a function of the axial compressive preload. The preload can be easily 

applied by set of screws that push on the clamps at either end of the beam.  They 

successfully reduced the resonance frequency by approximately 40% by using a preload 

equal to half of the critical buckling load. However, no output power was reported by this 

author. The structure of their model is depicted in Figure 4.15.  

 

 

Figure 4.15- A Supported piezoelectric beam scavenger with an axial preload [48] 
 

 Leland [29] later used this method to adjust the natural frequency of an energy 

harvester. A simply supported piezoelectric bimorph was used to evaluate harvester 
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performance. They determined that an axial pre-load can lower the resonance frequency 

by up to 24% and the coupling coefficient can be increased by up to 25%. Prototypes were 

developed that produced 300-400μW of power at an acceleration of 9.8 ms-2 and the 

operating range was from 200 to 250 Hz. The piezoelectric bimorph had dimensions of 

31.7mm×12.7mm×0.509mm and the weight of the proof mass was 7.1g. They concluded 

that by using this method, a harvesting device can be tuned across a bandwidth of 

frequencies.  

 

 

Figure 4.16- Schematic diagram of the test device designed [17] 

 

 This axial preload principle was further developed by Eichhom [17] as in Figure 

4.16. This design consists of a piezo-polymer cantilever beam with arms on both sides to 

enable the application of an axial force (compressive or tensile) to the free end of the 

beam. The tuning force was applied by a screw and a steel spring. Their resultant data 

showed that by applying a compressive axial preload, a frequency shift of 22% (380 to 

292Hz) was reached while a tensile preload led to a frequency shift of about 4% (440 to 

460Hz). Apart from that, their experimental outcomes also indicated that for the 

compressive load, the quality factor (Q-factor) decreases, which indicates a higher 

damping coefficient. On the other hand, the quality factor was augmented slightly by 

applying a tensile load to the tip of the beam.  
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Another way to tune the resonance frequency of the piezoelectric beam has been 

proposed by Challa[12]. By using the magnetic force from a permanent magnet, the 

effective stiffness of the beam can be tuned. Four permanent magnets are used: instead of 

placing the magnets axially to each other, two magnets are fixed at the free end of the 

cantilever beam, while the other two magnets are fixed to the enclosure of the device at 

the top and bottom, vertically aligned with the magnets on the beam as depicted in Figure 

4.17. Those magnets were placed such that attractive and repulsive magnetic forces can be 

applied on each side of the beam. The cantilever beam was fixed on a clamp that can be 

vertically displaced using a screw-spring mechanism so that the distance between the 

magnets can be controlled to alter the magnetic force that exists between the magnets on 

the beam and the enclosure. Approximately 240-280 μW was generated over the 

frequencies between 22-32 Hz for this experiment at 0.8 ms-2 acceleration.  

 

 
Figure 4.17 –Resonance tunable energy harvesting device [12] 

 

Another magnetic force tuning method of applying an axial load to a cantilever-

based generator was reported by Zhu[71] who presented a tunable electromagnetic 

vibration-based generator with closed loop frequency tuning. The frequency tuning was 

realized by applying an axial tensile magnetic force to the micro-generator as in Figure 

4.18. The tuning force was provided by the attractive force between those tuning magnets 
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with opposite poles facing each other. The magnet attached on the linear actuator can be 

adjusted and placed axially in line with the cantilever so that the axial force acting on the 

cantilever can be altered. Experimentally the resonant frequency had been successfully 

tuned from 67.6 to 98 Hz by changing the distance between two tuning magnets from 5 to 

1.2mm respectively. The generator produced a power of 61.6 to 156.6μW over the tuning 

range when it was excited at constant vibration acceleration level of 0.588 ms-2.  

 

 
Figure 4.18- Schematic diagram of the tuning mechanism [71] 

  

A similar frequency tuning approach was implemented by Mansour [32]. However, 

their harvester utilized piezoelectric instead of electromagnetic energy transduction. As in 

Figure 4.19, a cantilever beam provided with a top piezoelectric (PVDF) sheet is mounted 

on a shaker. The beam carries a tip mass in the form of a permanent magnet placed in a 

holder which is attached to the beam tip. An opposite magnet is firmly attached to the 

common base and is allowed to traverse axially using a screw to alter the tensile force 

applied to the beam. By altering the stiffening effect of the attractive magnetic forces 

provided by the interaction of a tip magnet and the adjacent magnet fixed on the common 

base, this generator was reported that able to tune the fundamental natural frequency from 

3.19 to 12 Hz. Nevertheless, their experimental results also reported that the tuning range 

comes at the expense of reduced output voltage for higher magnetic tensile force.  
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Figure 4.19- Schematic of the resonator proposed by Mansour [32] 

 

 From the above discussion, all the tuning methods can be categorised as in the 

“tree” structure proposed in Figure 4.20. It can be seen that there are typically two 

possible solutions to match the generators resonance to the ambient vibration. The first 

solution is widening the generator’s bandwidth. This solution can be further categorising 

into two approaches: Multiple Generators and Nonlinear Generators. Multiple generators 

involves the designing of a generator consisting of an array of elements each of which 

resonates at a different frequency [1][11][31][46][54][55][56]. The nonlinear generators, 

involves the design of a generator having a nonlinear behaviour during the excitation 

[15][20].  On the other hand, the second solution is to tune the resonant frequency of the 

generator so that it matches the frequency of the ambient vibration. This approach consists 

of an active tuning (Active Generator) that is defined as a tuning mechanism that is 

continuously applied even if the resonant frequency equals the ambient vibration 

frequency and a passive tuning (Passive Generator) that is defined as a tuning mechanism 

that operates periodically. The active tuning consists of Capacitive Tuning which involves 

tuning the resonant frequency by altering the capacitive load of the system [69]. This is 

followed by a novel load switching method proposed by this research author. More 

information regarding the load switching tuning will be further described in the later 

chapter.   On the other hand, there are two tuning methods available for passive tuning in 
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this review, which are named as Mechanical Tuning and Magnetic Tuning.  The earlier 

approach involves pre-stressing the cantilever and axial preload beam using a mechanical 

force [17][48]. Similarly for the latter approach, it involves applying stress to the 

generator beam, however magnetic force will be used instead for this approach 

[12][32][71]. Although there may be other methods which also perform the frequency 

altering effect, in order to avoid confusion, only those methods that fit into this 

categorisation were included.  

 

 

 
Figure 4.20 - Tree structure for frequency tuning methods 

  

[1][11][31][46] 

[54][55][56] 

[15][20] 

[69] [17][48][29] [12][32][71] 
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Chapter 5 : Generation and capture of a vibration sources 

 

This chapter presents two different methods for capturing vibration sources from 

varies objects using an accelerometer. The captured signal will then be converted into a 

frequency spectrum for better illustration. After the capturing section, this chapter 

discusses a method to generate a vibration signal to the vibrator through an amplifier so 

that a reliable vibration signal can be used for subsequent experiments. The main objective 

for this chapter is to illustrate the behaviour of the ambient vibration and also demonstrate 

a suitable ways to convert the vibration signal into a useful information form. This 

information is then used to generate some replicate signals for further use in subsequent 

simulation and experiments.   

 

5.1 Capture of a vibration source 

  

As proposed, in order to extract the maximum output power from an energy 

harvesting generator, the generator has to be designed so that it will oscillate in its 

resonant mode. Therefore the frequency spectra from potential vibration sources need to 

be examined in advance so that the generator can be designed to match the desired 

ambient frequency. Therefore, the vibration spectrum for a number of household objects 

was measured. In this section, two types of spectrum capturing methods will be 

demonstrated. The first method is called Oscilloscope capturing and followed by the 

second method called Data Acquisition Toolbox Adapter (DAQ 2205) capturing.  

 

An accelerometer (MTN1800) with a sensitivity of 991.5mV/g was selected in this 

capturing. This allows a measurement range of ±10g and a wide frequency response from 

5Hz to 14 kHz. However, to ensure that the accelerometer will perform at its best accuracy, 

a constant and sufficient current is required to supply the accelerometer during the 
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measuring process. The operating circuitry for the accelerometer is attached as Figure 5.1. 

The transistor in this circuit will behave like a current regulator to ensure that there is 

constant current supply for the accelerometer (approximately 6mA). The Op-amp acts as a 

differential amplifier to step down the DC level of the output generated from the 

accelerometer to ensure that the captured vibration signal swing is in the range of ±10V, 

which is the maximum rating for the data acquisition adapter (DAQ-2205).  

 

 
Figure 5.1- An operation circuitry for an accelerometer (MTN 1800) 

 

5.1.1 Oscilloscope Capturing 

 

An oscilloscope capturing method is the way of obtaining the vibration signal by 

using the oscilloscope (Agilent MSO-6054A). The different stages for this process are 

depicted in Figure 5.2. The vibration source taken from the object of interest is captured 

by using an Accelerometer (MTN1800). The obtained voltage is then measured using the 

oscilloscope (Agilent MSO-6054A) and records into USB flash drive. The data is then 
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transferred to the Matlab workspace (through a function file from Agilent Technologies) 

from the USB drive and the frequency spectrum of the captured data is plotted. The 

Matlab source code for this method is attached as Appendix A.  

 

 

Figure 5.2 – Process of oscilloscope capturing 
 

 

5.1.2 Data Acquisition Toolbox Adapter (DAQ2205) Capturing 

  

 For data acquisition toolbox capturing, the only difference in this process is the 

captured data from the accelerometer is transferred into the Matlab workspace directly 

instead of going through another storage medium. A 16-bits (500kS/s) multi-function 

acquisition adapter (DAQ2205) converts the analogue signal from the accelerometer into a 

digital form and Matlab will then work out the FFT (Fast Fourier Transform) of the data 

and the frequency spectrum is plotted. The processes are depicted as Figure 5.3 and the 

Matlab source code for this acquisition adapter is attached as Appendix B.  
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Figure 5.3 – Process of data acquisition toolbox adapter capturing 
 

5.2 Generation of a vibration source 

 

Naturally, most of the ambient vibrations are non-deterministic, meaning that its 

future behaviour cannot be precisely predicted. This is a so called random vibration.  

However, to cut down the complexity of the generation coding, only a simple way to 

generate the sinusoidal wave is proposed here.  A vibration can be generated from a 

vibrator shaker and a driving signal is required. The driving signal used to drive the shaker 

needs to be calibrated in advance to ensure that the acceleration of the generated vibration 

is consistent over a range of frequencies. This procedure ensures that these results 

obtained from different generators in the next few chapters under this vibrator shaker are 

comparable.  

 

To ensure the generated signal is adaptable and behaves closely to the real ambient 

vibration, the vibrating amplitude and frequency must be adjustable. Figure 5.4 shows a 

block diagram for the generation of a sinusoidal vibration. The form of the signal is 

created in a signal generator (in this case the Matlab platform), where the amplitude of the 
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acceleration and frequency can be adaptively adjusted. The generated signal is then 

converted into an analogue form by sending it through the data acquisition adapter 

(ADLINK DAQ-2205) before the amplification process in the amplifier (LDS-PA100E).  

Finally the amplified signal will be sent to the vibrator shaker (LDS-V406/8) and 

transformed into a mechanical vibration.   

 

 

Figure 5.4- Block diagram for the generation of a vibration 
 

To create the signal in Matlab, the basic sinusoid wave form as a function of time (t) is use: 

 

 𝑦(𝑡) = 𝑌𝑠𝑖𝑛(𝜔𝑡 + ∅) (5.1)  

 

where Y is the amplitude or the peak deviation of the function from its centre position 

           ω is the angular frequency for the signal 

           ∅ is the phase shift  

 

In order to make Equation (5.1) to be more specific for this vibration generation, the 

amplitude Y can be substituted with acceleration (A) and gravity (g = 9.81ms-2) terms as:  

 

 𝑦(𝑡) = 𝐴
𝑔
𝑠𝑖𝑛(𝜔𝑡 + ∅)  (5.2)  

 

Practically, every machine has its own natural frequency. The vibrator shaker 

(LDS-V406/8) that is used in this research is no exception. In order to ensure that the 

designed system will provides a constant acceleration driving vibration to the vibrator 

under a range of different frequencies, a calibration test using an accelerometer has been 

carried to determine the calibration constant Kc(ω) for this system and the Equation (5.2) 

can be further modified as: 
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 𝑦𝑐(𝑡) = 𝐾𝑐(𝜔) 𝐴
𝑔
𝑠𝑖𝑛(𝜔𝑡 + ∅)  (5.3)  

 

 

Figure 5.5- Vibrator shaker calibration setup 
 

The configuration of the calibration setup is depicted as Figure 5.5. This 

configuration shows a feedback system in which the output from the generator (Matlab) 

will be tuned accordingly to its feedback input obtained from the accelerometer on the 

vibrator through an A/D converter. The calibration constant Kc is the variable given by the 

system in order to tune the generated signal to ensure that the acceleration of the driving 

vibration is constant over the desired range of frequencies. The value for the calibration 

constant against frequency is plotted as Figure 5.6.  

 

 

Figure 5.6 - The calibration constant under a range of different frequencies 
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 To generate a constant vibration signal, the signal generator (in this case the 

Matlab platform) will retrieve the user input such as the desired acceleration of the output, 

frequency, and repeating loops, followed by the system calibration to obtain the 

appropriate value of Kc. From Figure 5.6 the calibration plot, it can be clearly seen that 

under different driving frequencies, a different calibration constants (Kc) is requires to be 

multiplied with the original signal to ensure that the acceleration on the vibrator shaker is 

consistent. Finally, the signal generator will generate the output with the number of 

repetition entered by the user before it stops.  The flow chart of the code is shows as 

Figure 5.7 and the Matlab coding for this signal generation is attached as Appendix C.  

 

 

Figure 5.7 -  Flow chart of the Matlab vibration signal generation 
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5.3 Discussion on generation and capture of vibration sources 

 
(a) – Spectra measured from the back of mobile phone case 

 
(b) – Spectra measured from the top of a domestic freezer 

 
(c) – Spectra measured from the top of a desktop computer with CD is resting 

Figure 5.8 – Vibration spectra for a number of household objects by author’s experiments 
 

For vibration sources capturing, although both capturing methods will provide a 

similar frequency spectrum as in Figure 5.8, both have their pros and cons. The advantage 

of using the oscilloscope capturing is the mobility. Some outdoor vibration readings, for 
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example the vibration of a tunnel, can be obtained by just using the accelerometer, 

oscilloscope and USB flash drive. The data in the USB flash memory is then transfer to 

the machine back in the lab and the frequency spectrum can be obtained easily in the 

Matlab workspace. However, on the contrary, if the vibrating source is close to the 

workspace, for example the vibration on the table fan in the office, then the data 

acquisition toolbox adapter capturing is more appropriate to use in this case. The vibration 

signal will be transferred into the machine directly from the data acquisition adapter and 

the frequency spectrum can then be plotted by using Matlab workspace.  

 

For the generation of the vibration source, though most of the objects of interest 

oscillate at random and unpredicted frequencies, it is still a good way to emulate the 

vibration source. Moreover, a constant driving frequency can be used to obtain the 

matched load resistance for the generator which will be further discussed later. Apart from 

that, a random vibration source can be easily created by doing some minor modification in 

this design since the initial concept was frequency adaptable generation. One of the 

examples is creating a function code that will randomly change the driving frequency of 

the system and apply it to the sinusoidal wave equation in Section 5.2 instead of taking the 

input from the user.  
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Chapter 6 :  Piezoelectric Converter Modelling 
 

In Chapter 3 and Chapter 4 some comparisons and up-to-date works were 

discussed between electromagnetic and piezoelectric converters. Chapter 6 will consider 

the analytical modelling of the piezoelectric converters. The models are then developed 

and validated. Both analytical and practical outcomes were compared to verify that the 

modelling is sufficient to use for design and output estimation purposes. 

 

6.1 Setting up the Prototype  

 

A piezoelectric cantilever bender can operate in one of two modes, 31 and 33 

modes.  Although the coupling for Mode 31 is much lower than the coupling in Mode 33, 

there are still many advantages to using Mode 31. Larger strain can be produced with 

smaller input force for Mode 31 and the resonant frequency for this type of operation is 

much lower. Roundy[51] suggested that the piezoelectric bender can be mounted as a 

fixed end cantilever as Figure 6.1 with a mass, M, placed at the free end of the cantilever. 

This can produce a larger strain effect to the piezoelectric material than in Mode 33 when 

a similar input is applied 

 

 

Figure 6.1 - Piezoelectric cantilever operation 
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 The piezoelectric bender used here is a bimorph made of PZT (T220-A4-303Y) 

supplied by Piezo System Inc [43] in parallel. The thickness of the centre shim is 0.13mm 

and the total thickness for the bimorph with two ceramic layers as 0.51mm. Both the upper 

and lower ceramic sheets are connected and the centre shim connected separately. A mass 

of 4.1 gram is attached at the free end of the piezoelectric beam as depicted in Figure 6.2 

and Figure 6.3. The piezoelectric is then clipped in between two sets of hard PVC, 

modelling a cantilever beam form. The piezoelectric prototype is then screwed to the 

surface of a vibrator which will be driven by a designed signal from Matlab via a Digital-

to-Analogue interface card.  

 
 

 
Figure 6.2- Parallel bimorph piezoelectric setup 

 

6.2 Analytical and experimental power with varying load resistance 

 

For an optimum power output from the generator circuit, the load needs to be 

matched to the effective internal resistance of the generator. Therefore, the effective 

internal resistance of the generator needs to be determined in order to select a suitable load.   
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Figure 6.3- Schematic of piezoelectric bender 
 

Figure 6.3 shows the schematic setup for the piezoelectric generator. The electrode 

length (Ie not shown in the figure) is the total length for the piezoelectric bender in this 

case. The interface block diagram is shown in Figure 6.4. A set of varying resistance 

values within the range of 6kΩ to 600kΩ is applied as the load for the generator. The 

initial tip mass is chosen as 4.1gram.  The 0.5g driving signal generated from the Matlab is 

set at a fixed frequency of 73Hz, the measured resonant frequency of the beam. The 

generated power from the piezoelectric bender is then recorded along with the different 

resistive loads through the DAQ (Data Acquisition Adapter).  

 

 

Figure 6.4 – Interface block diagram for varying load resistance 
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Again Roundy [51] showed that the magnitude of power transferred to the load for 

a piezoelectric bender can be given as Equation (6.1) assuming that the driving frequency 

is matches with the natural frequency.  

 

 𝑃 = 1
2𝜔2

𝑅𝐶𝑝2�
𝑌𝑐𝑑𝑡𝑐𝑏∗

𝜖 �
2
𝐴2

�4𝜉𝑚2 +𝑘𝑐𝑜4 ��𝑅𝐶𝑝𝜔�
2
+4𝜉𝑚𝑘𝑐𝑜2 �𝑅𝐶𝑝𝜔�+(2𝜉𝑚)2

  (6.1)  

 

and 

 

 𝑏∗ = 3𝑏
𝑙𝑏
2  (2𝑙𝑏+𝑙𝑚+𝑙𝑒)

(2𝑙𝑏+
3
2𝑙𝑚)

  (6.2)  

 

where  R is the load resistance 

Cp is the capacitance of the piezoelectric device 

Yc is the Young’s modulus for the piezoelectric ceramic 

d is the piezoelectric strain coefficient 

tc is the thickness of an individual piezoelectric ceramic layer 

ϵ is the dielectric constant of the piezoelectric material 

ω is the driving frequency 

𝜉𝑚 is the mechanical damping ratio 

kco is the electro-mechanical coupling coefficient 

A is the acceleration of the vibration 

b is the distance from the centre of the shim to the centre of the piezo layers 

            𝑙𝑏 , 𝑙𝑒 , 𝑙𝑚 are the lengths of the beam setup 

 

Analytical modelling has been carried out by using Matlab based on Equation (6.1) 

and Equation (6.2). Figure 6.5 is a comparison of the prototyping output and the simulated 

output power from the piezoelectric bender for a range of load resistances. All the 

parameters used to substitute the variables in Equation (6.1) are show in Table 6.1. All the 

measured variables are labelled with (ϻ) and the rest are taken from Piezo System data 

catalog. Refer to Appendix D for the Matlab code.  
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Figure 6.5 - Comparison of prototype output and simulated output for varying resistance 

 

Variables in  

Equation (6.1) 

Variables 

in Program 

Values Units 

R R (ϻ) 6k to 600k Ω 

Cp C (ϻ) 51x10-9 F 

Yc Y 66x109 N/m-2 

D d -190x10-12 m/V 

𝑡𝑐 tc 0.19x10-3 m 

b* b1 Equation (6.2) m-1 

ϵ e 1.594x10-8 - 

ω w (ϻ) 2*pi*73 Hz 

𝜉𝑚 s (ϻ ) 0.02858 - 

kco k 0.29 - 

A A (ϻ ) 4.905 ms-2 

b b 0.16x10-3 m 

𝑙𝑏 lb (ϻ ) 21.5 x10-3 m 

𝑙𝑒 le (ϻ ) 31.5 x10-3 m 

𝑙𝑚 lm (ϻ ) 2 x10-3 m 

Table 6.1- Values for variables in Equation (6.1) 
 

This experiment is basically done to find out the optimum value of the load 

resistance. From Figure 6.5 the result shows that the optimum value of the load resistance 
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for prototype output (blue) is approximately 30 kΩ in order to provide the maximum 

output power (approximately 0.53mW) with the driving frequency of 73Hz.  On the other 

hand, for the simulated output (red line), the optimum value of the load resistance is 

approximately 25 kΩ and the optimum power at that point is approximately 0.621mW. 

Despite these small differences, the most important aspect of the behaviour is that both 

plots looked similar, indicating good agreement between the experiments and simulations, 

this suggests that Equation (6.1) is sufficient to use for modelling a simple piezoelectric 

beam.  

 

6.3 Analytical and experimental power with varying driving frequency  

 

For an optimum generator circuit, the environment vibration frequency needs to be 

matched to the system natural frequency. A similar prototype is tested in this experiment 

as depicted in Figure 6.6. But instead of varing the resistive output load; the driving 

frequency will be varied. A sinusoidal wave with acceleration amplitude of 0.5g and 

frequency between 50Hz to 90 Hz is used as the driving signal to the vibrator and the 

voltage generated from the bender is then recorded, along with the varying driving 

frequencies.  

 

 

Figure 6.6 - Interface block diagram for varying driving frequency 
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However in order to analytically model the piezoelectric beam in varying driving 

frequency mode, Equation (6.1) is not sufficient to be used here.  From Equation (6.4), the 

magnitude of the voltage transferred to the load for a piezoelectric bender can be given as 

Equation (6.3) [51] as below which can be simplified to Equation (6.1) if the driving 

frequency is matches with the system natural frequency.  

 

 
𝑉 =

−𝑗𝜔𝑌𝑐𝑑𝑡𝑐𝑏∗

𝜖

� 1
𝑅𝐶𝑝

𝜔𝑛
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𝑅𝐶𝑝
+2𝜉𝑚𝜔𝑛�𝜔2�+𝑗𝜔�𝜔𝑛

2�1+𝑘𝑐𝑜2 �+2𝜉𝑚𝜔𝑛
𝑅𝐶𝑝

−𝜔2�
𝐴  

(6.3)  

 

where  𝜔𝑛 is the natural frequency for the system 
 

and 
 

 𝑃 = 𝑉2

2𝑅
  (6.4)  

 

An analytical model has been developed using Matlab based on Equation (6.3) and 

Equation (6.4) with a set of different fixed resistive output loads. The lowest fixed 

resistive load is chosen as 6kΩ and gradually increases to 600kΩ. All the parameters used 

to substitute the variables in Equation (6.3) are as given in Table 6.1, except for the load 

resistance above.  Figure 6.7 shows the 3D comparison between the generated power from 

the simulation and prototype generators followed by Figure 6.8 which shows their contour 

behaviour. Both 3D and the contour plots illustrate that the simulated and prototype 

generator are having a similar behaviour, only the overall magnitude of the generated 

power and rate of resonant frequency shifting are different between them.  

 

As in Figure 6.7, the generated power from the simulated generator increases faster 

than the power generated from the prototype generator when the applied load is close to 

the measured internal matched resistance (30kΩ). From Figure 6.8, it can be seen that 

altering the output load will affect the natural frequency of the system. However, the 



67 
 

shifting which occurs in the simulated generator seems to be more orderly than the 

shifting that occurs in prototype generator. This may be caused by the circuitry and 

environment noises during the data capturing process. More details on frequency shifting 

by altering the output load will be discussed in the later chapter.  

 

a) Simulation output                           b) Prototype output 

Figure 6.7 – 3D comparison of simulation and prototype generated power 

 

 
a) Simulation output                             b) Prototype output 

Figure 6.8- Contours for the simulation and prototype 3D plots 

 

Added to the above, to further verify the good agreement between the two, a 

multiple frequency response is plotted on the same axis with some modification on axis-x. 

In Figure 6.9, there are eleven sets of data being compared (n=1,2,3...11). All 

experimental results show the resonant frequency (fre) at around 73 Hz. However they are 
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separated by an offset frequency (foff = 20Hz) in order to fit into the same graph. The 

resultant frequencies on the axis-x for each set of data can be then express as: 

 

 𝑓𝑛 = 𝑓𝑟𝑒 + 𝑓𝑜𝑓𝑓 × 𝑛 (6.5)  

 

 

Figure 6.9 - Simulated and prototype frequency responses with a fixed resistive load 
 

 In Figure 6.9, the blue lines are the simulated output from the model and the red 

lines are the real practical prototype outputs. Both outputs have a similar behaviour; the 

output power differs slightly when the fixed resistive load is close to the measured internal 

matched resistance (30kΩ). However, the power drops significantly when the load 

resistance divergences from the matched value. Added to the above, the simulated output 

gives power that can be obtained only from a perfect beam. On the other hand, the 

prototype output shows lower output power being generated compared to the simulation, 

this is believed to be due to the fact the damping coefficient behave non-linearly against 

the load resistance. Plus there are some measurement, setup and circuitry loss during the 

practical experiment.  Refer to Appendix E for more detail regarding the coding of the 

simulation.  
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6.4 Analytical and experimental power with varying tip mass 

 

Williams [68] modelled a cantilever beam by a simple spring-mass system. This 

model was then modified by Challa [12] for the multilayered beam where the resonant 

frequency of the system can be expressed as:  

 

 𝜔𝑏𝑒𝑎𝑚 = �
𝐾𝑏𝑒𝑎𝑚
𝑚𝑒𝑓𝑓

  (6.6)  

 

the effective stiffness of a multilayered cantilevered beam can be written as: 

 

 𝐾𝑏𝑒𝑎𝑚 = 𝑤
4𝐿3

�∑ 𝑛𝑐𝑌𝑐ℎ𝑐3 +𝑛1
𝑐=1 ∑ 𝑛𝑠𝑌𝑠ℎ𝑠3

𝑛2
𝑠=1 �  (6.7)  

 

where  w is the width of the beam 

 L is the length of the beam 

 n1 and n2 are the numbers of ceramic and shim layers 

 Yc and hc are the Young’s modulus and height of each piezo ceramic layer 

 Ys and hs are the Young’s modulus and height of each shim layer 

 

and the effective mass of a multilayered cantilever beam with a tip mass can be 

approximated as: 

 

 𝑚𝑒𝑓𝑓 = 0.23𝑚𝑏𝑒𝑎𝑚 + 𝑚𝑡𝑖𝑝 (6.8)  

 

where mtip and mbeam are tip mass and the cantilever beam mass respectively 

 

Equation (6.6) clearly indicates that the resonant frequency of the system will 

change according to the effective stiffness and the effective mass. When the stiffness of 

the beam increases, the natural frequency will increase. On the other hand, when the beam 

effective mass is increased, the natural frequency of the system will be decreased and vice 
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versa. A similar prototype is tested in this experiment but the fixed mass will be varied 

here. A sinusoidal wave with an acceleration amplitude of 0.5g is being use as the driving 

frequency to the vibrator and the power generated from the generator is then recorded 

along with the varying driving frequencies. The tip mass can be increased by increasing 

the number of screw attached at the free-end mass. The first initial tip mass (Mass1) is 

chosen as 4.1gram (single screw), followed by Mass2 = 4.87 gram (2x screws), Mass3= 

5.64 gram (3x screws) and Mass4= 6.41 gram (4x screws).  

 

 𝑃 =
𝑚𝑒𝑓𝑓𝜉𝑒( 𝜔2

𝜔𝑏𝑒𝑎𝑚
3 )𝐴2

[1−( 𝜔
𝜔𝑏𝑒𝑎𝑚

)2]2+�2𝜉𝑇
𝜔

𝜔𝑏𝑒𝑎𝑚
�
2  (6.9)  

 

 

 

Figure 6.10 - Simulated and experimental frequency response for varying tip mass 
generator  

 

 Figure 6.10 illustrates the frequency response for four different tip mass generators 

based on the power statement in Equation (6.9) and experimental data. The dotted lines 

are the experimental data and smooth lines are the simulated data. By looking at both 

simulated and experimental data, there is a drastic change in terms of the natural 
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frequency of the system when the mass of the system has changed. The natural frequency 

increases by approximately 5.5 Hz averagely when the mass of the system decreases by 

0.77 grams. This phenomenon agrees well with Equation (6.9) where the natural 

frequency of the system is inversely proportional to the tip mass. As a result, the mass is 

strongly recommended to be taken as an adjustable criterion if a system is to be designed 

in order to match the natural frequency of the system with the varying environment 

fundamental frequencies. However, it is worth noting that the system itself basically limits 

the maximum mass that could be applied for a given acceleration level to avoid 

mechanical breakage.  

 

  



72 
 

Chapter 7 : Alternative geometry of beam structures  

 

 A piezoelectric bender produces an electric charge through deformation of the 

piezoelectric material and the charge generated is proportional to the strain. Besides, the 

peak strain must be limited to avoid damage to the cantilever. Therefore, it means that 

maximizing the average strain of the beam should maximize the output energy. In order to 

maximize the average strain, the strain on each point on the cantilever beam must be 

uniform and as large as possible without exceeding the material breakage limit. In recent 

years, many researchers [4][23][37] have focused on the performance of a cantilever beam 

with alternative geometries and they found that potential design geometries can increase 

the performance of the scavengers in term of output power density. However, the recent 

research appears to assume that the strain across the width of the cantilever beam was 

constant, whereas the strain distribution on a real cantilever beam does not behave 

accordingly in practical case. In this chapter, practical behaviour of the strain distribution 

was studied and the outcome was compared to an analytical modelling.  

 

In this chapter, to reduce the complexity of the task, only five single layer beams 

with different geometry structures will be compared in term of their strain distributions by 

using analytical and numerical methods. These structures consist of ordinary rectangular 

beam, triangular trapezoidal beam, and some elliptical beams. They were first compared 

by using a simple analytical model and followed by a more complex numerical model 

using ANSYS [3] (a general-purpose finite element analysis software). Added to the 

above, the feasibility of improving the energy density from the cantilever bender by 

changing the beam’s depth (height) was assessed. This chapter will conclude with an 

experimental comparison of output power between the practical rectangular and triangular 

cantilever beams. 
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7.1 Analytical modelling of alternative beam structure 

 

 
Figure 7.1– Cantilever beam carrying a concentrated load 

 

For a massless cantilever with one end fixed and another end free as shown in 

Figure 7.1, the bending moment (M) at point x along the cantilever and the moment of 

inertia (I) of a beam from point A to point B (L) can be expressed as below [10]: 

 

 𝑀 = 𝐹(𝐿 − 𝑥)  (7.1)  

 

 𝐼 = 𝑏ℎ3

12
  (7.2)  

 

where  F is the free end force 

x is the position along the beam which  is counted from point A to point B 

   b and h are the width and height dimension of the cantilever beam respectively 

 

For this derivation, it will be assumed that the strain across the width of the 

cantilever is constant and that the deflection is small. From Equation (7.1), it is clear that 

when x=L, the bending moment, M, will become zero. This indicates that ideally there is 

no Bending Moment at the free end of the cantilever (point B). Generally, the tensile stress 

experienced by the beam can be expressed as Equation (7.3) as below: 

 

 𝜎 = 𝑀𝑐
𝐼

= 𝐸𝑐 𝜕
2𝑢
𝜕𝑥2

  (7.3)  
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where    c is distance from the neutral axis to a point of interest 

              𝜕
2𝑢
𝜕𝑥2

  is the second derivative of the beam deflection, u.  

     E is the Young’s Modulus for the beam material 

 

It is known that the relationship which gives the bending strain at any locations as a 

function of beam curvature (R) and the distance from the neutral axis can be given as   

[19]: 

 

 𝜀 = 𝑐
𝑅
  (7.4)  

 

Substituting Equation (7.3) into the general form of material Young’s Modulus, 𝐸 =  𝜎
𝜀
 

and comparing it to Equation (7.4) will give the axial strain above the neutral axis as: 

 

 𝜀 = 𝑐 𝜕
2𝑢
𝜕𝑥2 =  Mc

IE
  (7.5)  

 

This indicates that the second derivative of the beam deflection is given as inversion of the 

radius of curvature,  𝜕
2𝑢
𝜕𝑥2

= 1
𝑅
. Refer to Appendix F for more detail of the proof. Equation 

(7.5) will then be used to generate the relative strain from the different structure in this 

analytical modelling.  

 

 
Figure 7.2 - Alternative beam geometry structures 

 

Figure 7.2 shows the five different alternative beam structures that were used in 

this modelling. Structure 1 is an ordinary rectangular beam, Structure 2 is a trapezoidal 

beam and Structure 3 is the triangular beam (ultimate trapezoidal condition). Elliptical 
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beams (Structure 4 and Structure 5) were included in the modelling to further investigate 

the effect of beam strain while the geometry varies elliptically. Only the strain on the 

centre line (only shown in Structure 3 but applies to all structures in the figure) from each 

structure will be considered and compared. All structures are fixed on their left end and a 

tip force is applied on their free end. The beam length (L) and the beam height (h not 

shows in the figure) are fixed for all the structures as 30mm and 2mm respectively. All the 

fixed and free end widths are shown in Table 7.1. The manually defined curves in 

Structure 4 and Structure 5 together with the model algorithm are attached in Appendix G.  

 

Structure (s) Fixed end width, bo (mm) Free end width, bfree (mm) 

1 10 10 

2 15 5 

3 15 very small <1 

4 16 4 

5 16 4 

Table 7.1- Width dimensions of the alternative beam geometries 
 

Each structure is equally split into nL nodes (ηL=3000) along the centre line along 

the beam length (L). By substituting all the variables according to the geometry into 

Equation (7.2) and Equation (7.5), the strain may be calculated at each node. Modelling 

has been carried out in the Matlab workspace and the relative strain ratios against the 

beam length are plotted as in Figure 7.3. To normalise all the relative strain from the 

different structures, the obtained strain values from each node in the structures are divided 

by the maximum strain of that particular structure to obtain the Strain ratio (εratio). This is 

to ensure that all data obtained from the different geometry structures is comparable with 

each other regardless of their maximum and minimum strain value.  

 

 𝜀𝑟𝑎𝑡𝑖𝑜 [𝒾] = 𝜀[𝒾]

𝜀𝑀
  (7.6)  
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where  𝒾 is the index number of the node in the structure 

𝜀[𝒾] is the strain on node 𝒾 

𝜀𝑀 is the maximum strain of the structure 
 

 
Figure 7.3 - Relative strain (analytical) along the centre of the beams 
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Figure 7.3 shows the normalised relative strain ratio along the centre line of the 

cantilever beam for the five alternative geometries. It is known that the strain needs to 

remain almost constant along the beam so that a constant strain distribution can exist on 

the beam structure. For Structure 1, an ordinary cantilever beam which exhibits a 

rectangular profile, a strain concentration at the clamped end where the bending moment 

(M) is at a maximum will be created. The strain ratio will decrease linearly from the 

maximum to minimum along the cantilever beam. Followed by the increasingly triangular 

trapezoidal profile Structure 2, the normalised strain start to decrease from the maximum 

and the rate of decrease is linearly increasing until it reach the minimum at the free end of 

the cantilever. Apart from that, for the triangular geometry in Structure 3, the strain energy 

curve is almost perfect, with constant strain along the beam’s length and a dramatic 

decrease to the minimum when it reaches the free end of the beam.  

 

Added to the above, for Structure 4, the average strain curve for this structure is 

above the curve provided by Structure 1. At the early stage, the strain energy starts to 

reduce slowly from a similar maximum value but its rate of decrease increases during the 

later stage before it reaches the minimum at the free end. Lastly, on Structure 5, the 

normalised strain does not decrease at the beginning stage; however it begins to increase 

from a certain value to its maximum while it proceeds to the middle stage.  After the 

middle stage, the rate of decrease of the curve will gradually increase until the strain ratio 

reaches zero.  

 

Figure 7.3 shows the relative strain ratios along the centre line of the beam. 

However, the volume of material experiencing a particular strain ratio is what we are 

interested. This can be estimated by assigning the strain ratios obtained from the centre 

line of the beam to the entire nodes available on each beam structure and by assuming that 

the strain across the width of the cantilever beam is constant. Due to the fact that the cross 
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section of the tested beam structures are vary along the beam, therefore the total number 

of available nodes across the width at every x position on each structure are assigned 

accordingly to their beam width at that x position. The general equation of the total nodes 

available across the beam width at x position for those tested structures can be given as:  

 

 𝜂𝑏(𝑥) = � 𝑏(𝑥)
𝑏𝑓𝑟𝑒𝑒(3)

�  (7.7)  

 

where the b(x) is the beam width of the tested structure at x and bfree(3) is the free end width 

in the Structure 3 (smallest beam width among the structures). The value of the Strain 

ratio εratio(x)  is then applies to the available nodes obtained from Equation (7.7) 

according to the x position. By taking the sum of the total nodes available across the beam 

width for the entire x positions along the beam, the total available nodes on the structure 

can be expressed as: 

 

 𝜂𝑡𝑜𝑡𝑎𝑙 = ∑  𝜂𝑏(𝑥)L
𝑥=0 = 𝜂𝑏(0) + 𝜂𝑏(1) + ⋯+ 𝜂𝑏(L)  (7.8)  

 

 In order to make the comparison more effectively, the assigned strain ratios are 

plotted into a histogram according to an equally split set of bins. The data is normalised 

into the number of nodes in percentage by  𝜂%# = 𝜂#
𝜂total

× 100% as in Figure 7.4, where 

the 𝜂# is the number of nodes available in that particular bin (#=0, 0.05, 0.1, 0.15, ..., 1). 

The percentages of the nodes for the five different geometries are summarised in Table 7.2. 

Only the percentage of nodes, having the Strain ratio that is larger than 0.5 (η%>0.5)and 

0.75 (η%>0.75)are listed. According to the data from the table, the best strain distribution 

structure can easily be determined.  
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Beam 

Structures 

Percentage of nodes with 

Strain ratio > 0.5 (η%>0.5) 

Percentage of nodes with 

Strain ratio > 0.75 (η%>0.75) 

Structure 1 50.00% 25.00% 

Structure 2 84.32% 62.44% 

Structure 3 100.00% 100.00% 

Structure 4 78.15% 38.88% 

Structure 5 91.78% 85.55% 

Table 7.2 - The percentage of the strain ratio (analytical) for the investigated structures 

 

In Figure 7.4, it can be seen that the Structure 1 have almost equal amount of 

nodes in each level of strain ratio.  Follow by Structure 2 for which the number of nodes 

increases when the level of the strain ratio goes from low to high. For Structure 3, it shows 

an almost perfect strain distribution with almost all the available nodes highly strained at 

the highest level of the strain ratio.  For Structure 4, most of the nodes are distributed 

around the middle range of the level of the strain ratio. Finally, for Structure 5, though 

most of its available nodes are highly strained, it is still less efficient if compared to the 

Structure 3. In Table 7.2, it clearly indicates that Structure 3 gives the best strain 

distribution among the structures in Figure 7.2 according to the strain ratio percentage. It 

consist of 100% of the nodes that having the strain ratio which is larger than 0.5 and 0.75.  
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Figure 7.4 - Strain distribution (analytical) according to the number of nodes 

 

The above analysis shows that the strain distribution in a beam can be improved by 

carefully altering the structure of the cantilever beam. To further this modelling, the height 

(depth) of the beam can be changed. Figure 7.5 shows three types of cantilever structures 

which have the total beam length, L=30mm. The first structure is the beam with width 

varying along the cantilever (similar to Structure 3 in Figure 7.2), the second structure is 
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the beam with height varying along the cantilever (from 6mm at the fixed end to 2mm at 

the free end), and lastly the third structure is the beam with both height (similar to the 

second structure) and width (from 15mm at the fixed end to 4mm at the free end) varying 

along the cantilever.  

 

 
Figure 7.5 - Cantilever beams with width, height varying  

 

By assume that the strain concentration for the material through the height (near 

the neutral axis line) of the beam is very low. The resultant strain ratio curves along the 

centre line of the cantilever beam for those structures shown in Figure 7.5 are depicted as 

Figure 7.6. It is clearly seen that by varying the height (depth) of the beams as in Figure 

7.6b) and Figure 7.6c), the normalised strain will increase to its maximum from a certain 

value and drop significantly at the free end. This behaviour is similar as in the Structure 5 

that was compared previously in Figure 7.3. From these analyse, it is known that height 

varying cantilever beam can be replaced by carefully adjusting the curvature along the 

cantilever beam in Structure 5, which is much easier to be manufactured if compared to 

the height varying structure.   

 

Although a higher maximum strain is obtained by using height varying structures 

under an equal amount of input force, this will cause breakage of the beam if the average 

strain of the beam is pushed to the limit for optimisation purposes.  By assuming that the 

dotted lines shown in the figures are the material breakage limit for the piezoelectric 
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cantilevers, both structures with varying height will fail if the averages strains of the 

beams are the main concern because their maximum strain will exceed the maximum limit 

of the material if the average strain is pushed to the limit. On the other hand, for the 

triangular geometry as in Figure 7.6a), the average strain can be pushed to the level just 

slightly below the material technical failure limit to improve the performance in terms of 

energy generation. Therefore, alternating the height of the beam is not a helpful way for 

output energy improvement. 

 

 
Figure 7.6 - Relative strain for width and height varying structures 
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7.2 Numerical modelling of alternative beam structure by ANSYS 

 

In the previous modelling, the strain across the width of the cantilever was 

assumed to be constant. However, practically it is not the case. Therefore, modelling has 

been carried out on similar structures as shown in Figure 7.2 using ANSYS to compare the 

strain distribution for a single layer piezoelectric (PZT-5A4E) cantilever. The Young’s 

Modulus and Poisson’s ratio for this type of 5A4E material are 66Nm-2 and 0.31 

respectively [43]. All the structures are fixed on their left end and have a block of tip mass 

(10×5×2mm) applied on the free end on the right. A constant force is applied on the 

striped surface of the block as shown in Figure 7.7. The tested structures are discretized 

(Meshed) with a constant element size of 1mm in length as depicted in Figure 7.8. The red 

dashes lines show the location where the tip mass have been placed on each structure.  

 

 
Figure 7.7 -  Tip mass with a constant force applied on the striped surface 

 

By applying an equal amount of force to all the tested structures using the tip mass 

which is placed at the free end of each structure, the strain distribution for these beam 

geometries can be calculated as illustrated in Figure 7.9. The colour zones on each 

structure indicate the differences of the strain level at that point. To ensure that the 

maximum strain for each structure is limited before the material breaking limit, take 

Structure 1 as an example: this structure will possess the highest strain at the left end 

(RED) of the structure and the strain will gradually decrease to the lowest level at the right 

end (BLUE) of the structure. Due to the fact that the maximum strain for every structure is 
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altered when the geometry has changed, it is necessary to normalised the obtained data; 

the Strain ratio ( 𝜀𝑟𝑎𝑡𝑖𝑜 ) from each element in the structures are determined. This 

normalisation is not only to ensure that all data obtained from the different geometries are 

comparable within this modelling, but also comparable with those obtained from the 

previous analytical model. 

 

 
Figure 7.8 – Discretization of the alternative beam structures 
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Figure 7.9 - Strain distribution (ANSYS) for alternative beam geometries 

 

As depicted in Figure 7.9, the strain distribution on each structure differs when the 

beam geometry varies from Structure 1 to Structure 5 and is not uniform across the beam 

width. However, it is hard to determine which structure provides the most even strain 

distribution by just observing their colour zone. Therefore, the relative strain along the 

beam centre line (refer to Figure 7.2) and the histogram according to the number of nodes 

in percentage for each structure are plotted as in Figure 7.10 and Figure 7.11 respectively. 

Moreover, due to the strain across the width of the cantilever is not constant on each 
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geometry, therefore the data shows in Figure 7.10 and Figure 7.11 looked more disordered 

than those shown in Figure 7.3 and Figure 7.4. Nonetheless, they are similar in the sense 

of their behaviour. 

 

 

Figure 7.10 - Relative strain (numerical) along the centre of the beam 
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Figure 7.11- Strain distribution (numerical) according to the number of nodes 

 

 As illustrated in Figure 7.9, there is a region of material that is highly strained 

which is located next to the fixed end at the left end on each structure. Similarly in Figure 

7.10, the relative strain plots shown that all the tested structures have a spike at 

approximately x=1mm, which imply a high stress concentration at that beam section. 
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Subsequently, this has reduced the maximum strain which allowed to be applied on each 

structure before the material breakage. On the contrary for Structure 5, the stress 

concentration at the middle part of the beam seems to be higher than the one near the fixed 

end. As described previously in the structures width & height varying section, this kind of 

strain distribution pattern will fail if the average strain of the beam is the main concern. 

This is because the maximum strain provided by this beam will exceed the maximum limit 

of the material first if the average strain is pushed to the limit.  

 

Beam 

Structures 

Percentage of nodes with 

Strain Ratio > 0.5 (η%>0.5) 

Percentage of nodes with 

Strain Ratio > 0.75 (η%>0.75) 

Structure 1 42.09% 20.45% 

Structure 2 65.57% 38.75% 

Structure 3 81.02% 68.22% 

Structure 4 61.08% 21.98% 

Structure 5 69.16% 57.86% 

Table 7.3- The percentage of the strain ratio (numerical) for the investigated structures 
 

The percentages of the nodes with a particular strain ratio for the numerical 

simulation are summarised in Table 7.3. Only the percentage of nodes, having the strain 

ratio that larger than 0.5 (η%>0.5) and 0.75 (η%>0.75) are listed. Although the overall 

resultant numbers shown are less than those obtained in Table 7.2, it clearly indicates that 

Structure 3 still gives the best strain distribution according to the nodes percentage. It 

consist of 81.02% of the nodes that having the strain ratio which is larger than 0.5 and 

68.22% for the nodes that having the strain ratio which is larger than 0.75. Refer to 

Appendix H for the complete Matlab coding.  
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7.3 Experimental comparison of triangular and rectangular cantilevers 

 

In this section, an experimental comparison between a triangular and rectangular 

beams with the same tip mass (4.1gram) was carried out and the actual output power 

obtained for both cases. Figure 7.12 shows a bigger rectangular bender (Q220-A4-503Y) 

and a bender that is carefully cut into a triangular shape from a smaller rectangular bender 

(T220-A4-303Y as in Chapter 6). Using a similar setup configuration as in Section 6.3, 

both benders are connected to their optimum matched resistances (71kΩ for triangular and 

22kΩ for rectangular respectively). A sinusoidal wave with acceleration amplitude of 0.5g 

was used as the driving frequency to the vibrator and the power generated from the 

generator was then recorded for a range of driving frequencies (40Hz to 60Hz). The 

generated power was then calculated as 𝑃 = 𝑉2

𝑅
 where V is the peak voltage transferred to 

the resistive load for the system R.   

 

 

Figure 7.12 - Rectangular and triangular piezo bender 
 

Figure 7.13 illustrates the frequency response for both triangular and rectangular 

beams. It can be seen that the optimum power generated by the rectangular beam is higher 

than the triangular beam. The rectangular beam achieved 1.581mW at 43.7 Hz and 

triangular beam only achieved 0.227mW 45.5Hz. However, in this case the beams 

volumes are different. The effective volume used for the rectangular bender is 721mm3 
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(44.5×31.8×0.51mm) and on the other hand, the effective volume for the triangular beam 

is only 56.1mm3 (0.5×20×11×0.51mm).  Therefore, it is unfair to compare two different 

shapes of bender in different beam’s volume. Hence, both readings are normalised to the 

same beam volume as depicted in Figure 7.14.  

 

 
Figure 7.13 - Frequency response with different beam’s volume 

 

 
Figure 7.14- Frequency response normalised to the same beam volume 
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As in Figure 7.14, after normalising the data, the frequency response shows that 

the triangular bender can provide better power density than the rectangular bender. The 

Normalised Power Densities (NPD, µW/mm3) are obtained as 2.193µW/mm3 and 

4.046µW/mm3 for the rectangular and triangular bender respectively. Apart from this, it 

may be noticed that the optimum frequencies for both beams are different. This verifies 

that geometry structure can be used as an adjustable criterion for natural frequency tuning 

for the generator system. However, in this case, the resonance frequencies are not the main 

aspect to consider. In order to improve the clarity of the comparison, Table 7.4 is created 

to summarise the optimum powers, volume, optimum frequencies and Normalised Power 

Density (NPD, µW/mm3 ) of the beams. 

 

Beam’s shape Optimum Power 

(mW) 

Beam 

volume (mm3) 

Resonant 

Frequency 

(Hz) 

NPD 

(μW/mm3) 

Rectangular 1.581 721 43.7 2.193 

Triangular 0.227 56.1 45.5 4.046 

Table 7.4 - Comparison between Triangular and Rectangular beams 
 

 

7.4 Discussion on alternative geometry of beam structures 

 

From the analysis in the analytical modelling, it indicates that the trapezoidal 

geometry can definitely supply more energy than the ordinary rectangular geometry for a 

given volume. Besides, this analytically proved that by changing the width and height of 

the cantilever beam, the resultant maximum strain can be improved. However, due to the 

material breakage limit of the bender, alternating the height of the beam is not 

recommended if the average strain is the main term to be concerned. Added to the above, 

it is difficult to manufacture a beam with varying height (depth) due to the fact that the 

current practical commercial benders come in a thin sheet form. On the contrary, though 
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the maximum strain provided by the beam with width varying is lower than those with 

height varying, the width varying structure (Structure 3) can provide a better average 

strain that just slightly falls below the maximum material breakage limit by carefully 

adjusting the applied driving frequency and amplitude. Furthermore, it is much easier to 

produce and more cost effective than the height varying structure. Apart from that, it is 

also worth mentioning that for the application where the maximum strain is the main 

concern, Structure 5 can be used to replace those height varying cantilever benders by 

carefully adjusting the curvature along the structure so that the maximum strain value can 

be achieved.  As a conclusion, a triangle width varying beam is still the preferable solution 

if the average strain is the main concern. On the other hand, if the maximum strain is the 

primary concern, Structure 5 with a proper curvature adjustment along the beam is 

preferable over the height varying structures.  

   

 From results shown in numerical modelling, Structure 5 provides a better strain 

distribution if compared to the ordinary rectangular beam (Structure 1), however it still 

look imperfect if compared to the Structure 3. Plus, the shape of this structure is more 

difficult to manufacture. For the traditional rectangular beam (Structure 1), 20.45% of its 

material will have the strain ratio that is more than 0.75 for a given input force. Compared 

with the solution Structure 3, 68.22% of its material will have the strain ratio that is larger 

than 0.75 for the same amount of input force. However this is 31.78% less than analytical 

model (100%). This imperfection is caused by the strain concentration at the fixed end and 

the inconsistent strain across the width of the cantilever. Nonetheless, though there is an 

imperfection caused by the practical material behaviour, this still clearly verifies that 

Structure 3 will be the best solution to improve the power output for vibration-based 

energy scavengers with alternative geometry structure. The triangular structure can 

maximize the material’s average strain for a given input and improves the scavenger 
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robustness by reducing stress concentration. With this improvement, both the generator’s 

size and cost can be reduced.  

 

 Added to the above, assuming that the average strain ratio is proportional to the 

maximum power the cantilever could generate without breaking, the comparison in Table 

7.2 and Table 7.3 can be further improved by calculating the average strain (εaverage) and 

normalised strain (εnormal) as in Table 7.5 and Table 7.6, in which the average strain for 

the structure is the division of the sum of the strain ratio ( given in Equation (7.9) ) by the 

total number of nodes in the structure (ηtotal) as expressed in Equation (7.10); and the 

normalised strain is the normalised average strain against the analytical structure 1 as 

given in Equation (7.11).  

 

 𝜀𝑡𝑜𝑡𝑎𝑙 = ∑  𝜀𝑟𝑎𝑡𝑖𝑜(𝒾)𝜂total
𝒾=0 = 𝜀𝑟𝑎𝑡𝑖𝑜(0) + 𝜀𝑟𝑎𝑡𝑖𝑜(1) + ⋯+ 𝜀𝑟𝑎𝑡𝑖𝑜(𝜂total)  (7.9)  

 

where  εtotal the sum of the strain ratio in the structure 

 𝒾 is the index number of the node in the structure 

 εratio(𝒾) is the strain ratio from node 𝒾 

  

 𝜀𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝜀𝑡𝑜𝑡𝑎𝑙
𝜂𝑡𝑜𝑡𝑎𝑙

 (7.10)  

 

 𝜀𝑛𝑜𝑟𝑚𝑎𝑙 =
𝜀𝑎𝑣𝑒𝑟𝑎𝑔𝑒

0.5
 (7.11)  

 

 From Table 7.5, it can be seen that the analytical Structure 3 is the best solution 

and twice (εnormal =2) as good as analytical Structure 1. Followed by Structure 5 and 

Structure 2 with εnormal =1.59 and εnormal =1.351 respectively. Lastly, for Structure 4, it 

suggested that approximately 18.7% extra power can be obtained with this structure 

analytically compared to Structure 1. On the other hand from, for the non uniform cross 
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section strain distribution (numerical) models from Table 7.6, it suggests that only 75.4% 

of the power that predicted by the analytical model is obtained in the numerical model of 

Structure 3 and only 50.8% extra power can be obtained compared to 100% as suggested 

by the analytical Structure 3 in Table 7.5.  

 

Beam 

Structures 

Average Strain  

(εaverage) 

Normalised Average Strain 

(against analytical structure 1) 

(εnormal) 

Structure 1 0.5 1 

Structure 2 0.676 1.351 

Structure 3 1 2 

Structure 4 0.594 1.187 

Structure 5 0.795 1.590 

Table 7.5 – Average and normalised strain (analytical) for the investigated structures 
 

Beam 

Structures 

Average Strain  

(εaverage) 

Normalised Average Strain 

(against analytical structure 1) 

(εnormal) 

Structure 1 0.417 0.835 

Structure 2 0.565 1.131 

Structure 3 0.754 1.508 

Structure 4 0.526 1.052 

Structure 5 0.649 1.298 

Table 7.6- Average and normalised strain (numerical) for the investigated structures 
 

 Lastly in the experimental comparison between the triangular and rectangular 

beam, it is clearly proved that the trapezoidal geometry can definitely supply more energy 

(per unit volume) than the ordinary rectangular geometry due the varying of the damping 

factor and the strain distribution of the beam.  Roundy [48] found that with the same 

volume of lead zirconium titanate (PZT) and an increasingly triangular trapezoidal profile, 

the strain distribution can be made more even. A trapezoidal geometry can supply twice 
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the energy (per unit volume PZT) than the rectangular geometry. However in this 

experiment, less than twice energy was obtained from the triangular profile structure 

( 4.046µW/mm3

2.193µW/mm3 = 1.845). This may be caused by the imperfectness of the triangular profile 

of the structure during the shearing process. Apart from the energy varying, it may also be 

noticed that the geometry of the structure can be used as an adjustable criterion for the 

natural frequency tuning on a generator system. More resonant frequency shifting methods 

will be discussed next.  
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Chapter 8 : Load switching frequency tuning generator 
 
 

As commonly known, vibration-based energy generator devices will provide the 

optimum power when their resonant frequency matches the ambient driving frequency. 

Under many circumstances, the driving frequency is known before the actually energy-

scavenging device has been designed. However, in other situations the frequencies present 

in a particular location may not be well known or may vary over time. For instance, the 

dominant vibration frequency on a domestic fan changes when the air flow is partially or 

fully obstructed by an object. Therefore, it would clearly be advantageous to have a single 

design that operates effectively over a range of vibration frequencies.  

 

 Many groups of people are currently working on altering the effective stiffness or 

effective mass on the vibrating beam to shift the dominant frequency of the system. 

However, it is worthwhile considering whether changing the effective electrical damping 

during the oscillation cycle will change the behaviour of the system. In this chapter, a 

novel load switching method is proposed to switch the electrical damping coefficient at 

different points during the oscillating cycle. First of all, some overview of load switching 

frequency tuning will be discussed. This is followed by the design, simulation and 

experimental works of a load switching electromagnetic generator. Simulation will first be 

discussed and the models are then developed and validated by comparing the experimental 

outcomes with the simulated outcomes.  
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8.1 Overview of load switching frequency tuning 

 

 
Figure 8.1- Schematic diagram of vibration generator (with electrical damping) 

 

 As mentioned previously, a vibration based energy harvester device can be 

modelled as mass, spring, damper systems of the type illustrated in Figure 8.1. The 

equations of motion may be then written as:  

 

 𝑚�̈� + (𝑏𝑒 + 𝑏𝑚)�̇� + 𝑘𝑧 = −𝑚�̈�  (8.1)  

 

where z is the spring deflection  

            y is the input displacement  

m is the mass 

be is the electrical induced damping coefficient  

bm is the mechanical damping coefficient 

k is the spring constant.  

 

 In order to simplify this experiment, an electromagnetic conversion is chosen 

instead of piezoelectric conversion due to its unsophisticated practical and modelling setup. 

Figure 8.2 shows a schematic of an electromagnetic generator that will be used in this 

experiment. One end of the cantilever beam is fixed to the base and copper coils are 

attached at the other end. Magnets are attached on both side of the panel to create an 
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electromagnetic effect when the coil in between the magnets oscillates up and down while 

a driving vibration is applied to the generator.  

 

 

Figure 8.2– Schematic of an electromagnetic energy scavenging device 
 

For electromagnetic conversion device, the voltage generated in a coil due to its motion 

through the magnetic field (B) may be written as Equation (8.2).  

 

 𝜐𝑔 = 𝑘𝑒�̇� (8.2)  

 

 𝑘𝑒 = 𝐵𝐿 (8.3)  

 

where  𝜐𝑔 is the induced open-circuit emf voltage 

 ke is the emf constant 

 B is the magnetic field produced by the magnets 

 L is the practical coil length 

 

Assuming that the electromagnetic conversion device is connected to a load resistance RL 

with the internal coil resistance RC, and then the voltage drop across the load resistance 

will become: 

 

 𝜐L =
𝑅𝐿

𝑅𝐶 + 𝑅𝐿
𝜐𝑔 (8.4)  

 

and by simply applying Ohm Law, the current flowing through the coil and load is then:  

 

 𝑖𝑙𝑜𝑎𝑑 = 𝜐𝑔
𝑅𝐶+𝑅𝐿

  (8.5)  
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This current will causes a reaction force in the spring mass system which is equal to Fe=kti 

where kt is the force constant and kt = ke. By substituting Equation (8.2) and (8.5) into 

Fe=kti, electrical induced damping coefficient be can be derived as:  

 

 𝑏𝑒 = 𝑘𝑒2

𝑅𝐶+𝑅𝐿
  (8.6)  

 

From Equation (8.1), the electrical power can be written as Equation (8.7) where A is the 

amplitude of the acceleration. Where the element  𝜉𝑒 representing the energy converted to 

electrical energy and element  𝜉𝑚 representing the mechanical & parasitic losses and the 

total damping ratio 𝜉𝑇 = 𝜉𝑒 + 𝜉𝑚 . When the vibrating frequency (ω) matches with the 

resonant frequency (ωn), the power equation can be further reduced to Equation (8.8). 

 

 𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 =
𝑚𝜉𝑒𝐴2(𝜔

2

𝜔𝑛
3 )

[1−( 𝜔
𝜔𝑛

)2]2+�2𝜉𝑇
𝜔
𝜔𝑛

�
2  (8.7)  

 

 �𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑� = 𝑚𝜉𝑒𝐴2

4𝜔𝜉𝑇
2  (8.8)  

 

 Total damping coefficient for this model can be derived as bT = 2mωnξT where 

bT=be+bm. Therefore, the electrical damping ratio can be written as Equation (8.9). This 

clearly indicates that changes in damping can be simply accomplished by altering the load 

resistance RL.  

 

 𝜉𝑒 = 𝑘𝑒2

2𝑚𝜔𝑛(𝑅𝐶+𝑅𝐿)
  (8.9)  

 

 After analysing the electrically induced damping ratio term, the switching regimes 

need to be determined. A number of switching regimes may be considered but because the 

nonlinear system analysis becomes complex, only a simple case will initially be 

investigated. Consider the case where the damping is switched according to:  
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 𝑏𝑒 = �𝑏𝑒1, 𝑧�̇� < 0
𝑏𝑒2, 𝑧�̇� ≥ 0

� 

 

where  be1 is the electrical damping coefficient for Quadrant I and III 

 be2 is the electrical damping coefficient for Quadrant II and IV 

 z is the displacement of the beam 

 �̇� is the velocity of the beam 

 

As depicted in Figure 8.3, when the cantilever is moving downward from its initial 

resting point, this process is happening in Quadrant II. Follow by Quadrant III when the 

cantilever moves upward back to the initial resting point from the lowest position. 

Quadrant IV will then take place when the cantilever moving upward to the highest 

position and this is followed by Quadrant I when the beam moving back to the initial 

resting point. This process will keep repeating itself until the vibration source is taken 

away from the generator device.  

 

 
Figure 8.3 - Movement directions of the cantilever beam accordingly to Quadrant number 

 

The quadrants I to IV are illustrated in the motion of the cantilever beam in Figure 

8.3. However, this may also conveniently be visualised as phase plane plots as in Figure 

8.4.These phase plane plots shows the differences between higher damping, lower 

damping and switching damping systems for the case where be1>be2.   
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a)                                                    b) 

 
    c) 

Figure 8.4- Phase plots for switched damping system a) higher damping, b) lower damping, c) switched 

damping 

 

 The feasibility of shifting the natural frequency of the system by changing the 

effective load of the system during the oscillation cycle can be proved analytically. In 

order to calculate the natural frequency of this system, the time to complete each quadrant 

may be calculated in the absence of a driving input. Since the behaviour is the same in 

quadrants I and III and in II and IV it is only necessary to consider quadrant I  (𝑧 > 0, �̇� <

0) and quadrant II (𝑧 < 0, �̇� < 0). 

 

Quadrant I 

 

The equations of motion in the absence of an input vibration may be then written as: 

 

 𝑚�̈�(𝑡) + (𝑏𝑚 + 𝑏𝑒1)�̇�(𝑡) + 𝑘𝑧(𝑡) = 0  (8.10)  
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with initial conditions 𝑧(0) = 𝑧0 and �̇�(0) = 0 which may solved to give 

 

 
𝑧(𝑡) = 𝑧0𝑒−𝜔𝑛𝜉1𝑡 � 𝜉1

�1−𝜉12
sin �𝑡𝜔𝑛�1− 𝜉12� + cos �𝑡𝜔𝑛�1− 𝜉12��       (8.11)  

 

where 𝜔𝑛 = �𝑘
𝑚

 and 𝜉1 = 𝑏𝑚+𝑏𝑒1
2𝜔𝑛𝑚

 

 

The trajectory leaves quadrant I when z(t)=0 which occurs at a time:  

 

 

𝑡1 = 𝑡|𝑧(𝑡)=0 =
𝜋−tan−1�

�1−𝜉1
2

𝜉1
�

𝜔𝑛�1−𝜉12
  (8.12)  

 

Quadrant II 

 

The behaviour in this case may be treated in a similar manner except that be1 in Equation 

(8.10) is replaced by be2. The initial conditions are 𝑧(0) = 0,  �̇�(0) = �̇�0. When the time is 

starting from zero, the solution for �̇�(𝑡) is: 

 

 
�̇�(𝑡) = �̇�0𝑒−𝜔𝑛𝜉2𝑡  �cos �𝑡𝜔𝑛�1 − 𝜉22� −

𝜉2

�1−𝜉22
sin �𝑡𝜔𝑛�1− 𝜉22��   (8.13)  

 

where  𝜉2 = 𝑏𝑚+𝑏𝑒2
2𝜔𝑛𝑚

 

 

The trajectory leaves quadrant II when �̇�(𝑡) = 0 which occurs at the time:  

 

 𝑡2 = 𝑡|�̇�(𝑡)=0 =
tan−1�

�1−𝜉2
2

𝜉2
�

𝜔𝑛�1−𝜉22
  (8.14)  
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The period, T, for a complete cycle through the four quadrants is:  

 

 𝑇 = 2(𝑡1 + 𝑡2) = 2
𝜔𝑛

⎣
⎢
⎢
⎢
⎡𝜋−tan−1�

�1−𝜉1
2

𝜉1
�

�1−𝜉12
+

tan−1�
�1−𝜉2

2

𝜉2
�

�1−𝜉22

⎦
⎥
⎥
⎥
⎤

  (8.15)  

 

It may be noted that if 𝜉1 = 𝜉2 =  𝜉  then this simplifies to 𝑇 = 2𝜋
𝜔𝑛�1−𝜉2

 which is the 

period for a system with fixed damping or 𝜔𝑑 = 𝜔𝑛�1 − 𝜉2 which is the damped natural 

frequency.  

 

 

Figure 8.5– Simulated Electro Motive Force constant ( ke ) response with a fixed damping 
 

The values for 𝜉1 and 𝜉2 may be selected in a number of ways. In order to avoid 

some complex analysis, only a simple case like percentage varying on system matched 

resistance will initially be considered. However, to do this, the optimum electrical 

damping ratio (𝜉𝑒) for the fixed damping system need to be determined in advance. A 
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Simulink model based on Equation (8.1) is used to simulate the system matched resistance 

(Rmatched) for a given emf constant (ke) within the range of 1 to 50 N.s/C and a fix constant 

𝜉𝑚 = 0.04. This simulation is repeated for a range of values of Rmatched and the value 

which give the peak output power identified. The electrical damping ratio (𝜉𝑒) and the 

system total damping ratio (𝜉𝑇) are then calculated and recorded along with the different 

ke. According to the simulated outcome from this designed electromagnetic generator as 

depicted in Figure 8.5, the electrical damping ratio (𝜉𝑒) will match with the mechanical 

damping ratio ( 𝜉𝑚 = 𝜉𝑇 − 𝜉𝑒)  when the system emf constant (ke) reaches a certain 

significant level.  This effect was fully supported by Roundy [51] as described in Section 

2.2 which stated that generated power will be optimum when 𝜉𝑚 = 𝜉𝑒.   To ensure this 

happen, the emf constant is assumed relatively high in this case (ke = 45 N.s/C). However, 

due to some environment limitations in the practical situation, the pragmatic emf constant 

will eventually bring the electrical damping ratio down and gives 𝜉𝑒1& 𝜉𝑒2 < 𝜉𝑚. This will 

be further explained later in this chapter.  

 

By making some slight modifications to Equation (8.9) gives 

 

𝜉𝑒1 = 𝑘𝑒2

2𝑚𝜔𝑛(𝑅𝐶+𝑅𝐿1)
  and  𝜉𝑒2 = 𝑘𝑒2

2𝑚𝜔𝑛(𝑅𝐶+𝑅𝐿2)
    

 

where RL1 is the load resistance to produce 𝜉𝑒1  
          RL2 is the load resistance to produce 𝜉𝑒2 

 

RL1 and RL2 can be then categorized into three cases by properly adjusting the system 

matched resistance (Rmatched) according to the percentage varying factor (KR). To further 

simplify the analysis, the percentage varying factor KR is chosen as 0%,10%, 

20%,30%.......90%.  
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Case 1 is when RL1 > RL2, this can be achieved by adding the varying matched resistance 

to Rmatched for RL1 and deducting it from Rmatched for RL2 as: 

 

 Load resistances for Case 1 �   𝑅𝐿1 = 𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑 + [𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑 × 𝐾𝑅] 
  𝑅𝐿2 = 𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑 − [𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑 × 𝐾𝑅]

�  (8.16)  

 

this lead to: 

 

 𝜉𝑒1 = 𝑘𝑒2

2𝑚𝜔𝑛[𝑅𝐶+𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑+(𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑×𝐾𝑅)]
  

 

(8.17)  

 𝜉𝑒2 = 𝑘𝑒2

2𝑚𝜔𝑛[𝑅𝐶+𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑−(𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑×𝐾𝑅)]
  (8.18)  

 

Case 2 is when RL1 <  RL2, this can be achieved by deducting the varying matched 

resistance from Rmatched for RL1 and adding it to Rmatched for RL2 as: 

 

 Load resistances for Case 2 �   RL1 = Rmatched − [Rmatched × KR] 
  RL2 = Rmatched + [Rmatched × KR]

�   

 

(8.19)  

this lead to: 

 

 𝜉𝑒1 = 𝑘𝑒2

2𝑚𝜔𝑛[𝑅𝐶+𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑−(𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑×𝐾𝑅)]
  (8.20)  

 

 𝜉𝑒2 = 𝑘𝑒2

2𝑚𝜔𝑛[𝑅𝐶+𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑+(𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑×𝐾𝑅)]
  (8.21)  

 

and finally Case 3 is when  KR=0% and RL1 =  RL2 = Rmatched,  

 

 𝜉𝑒1 = 𝜉𝑒2 = 𝑘𝑒2

2𝑚𝜔𝑛[𝑅𝐶+𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑]
  (8.22)  
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If the emf constant is assumed relatively high then in Case 3 when RL= Rmatched, this will 

lead to  𝜉𝑒1 = 𝜉𝑒2 = 𝜉𝑚. After deciding the proper way to determine the shifting electrical 

damping ratios (𝜉𝑒1 &  𝜉𝑒2) , the values for 𝜉1 and 𝜉2 can be then easily obtained by:  

 

 𝜉1 = 𝜉𝑚 + 𝜉𝑒1 (8.23)  

 

 𝜉2 = 𝜉𝑚 + 𝜉𝑒2  (8.24)  

 

and the natural frequency for the load switching device will be: 

 

 𝜔 = 2𝜋
𝑇

  (8.25)  

 

The natural frequency derived from Equation (8.15) as a function of RL1 and RL2 for 

𝜉𝑚 = 0.04 is as shown in Figure 8.6. The normalized natural frequency,  𝜔𝑁 = 𝜔
𝜔𝑛

  where 

ω is the shifted natural frequency and 𝜔𝑛 is the initial natural frequency of the system.  All 

relevant simulated and assumed variables are shown in Table 8.1. 

 
 

 

Figure 8.6 - Effect of relative load resistances RL1 & RL2 on natural frequency 
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Descriptions Variables Simulated* & Assumed values Units 

Load resistance for 𝜉𝑒1 RL1 343.5 to 6526.5 (*) Ω 

Load resistance for 𝜉𝑒2 RL2 6526.5 to 343.5 (*) Ω 

Internal coil resistance RC 29.2 Ω 

System Matched resistance Rmatched 3435 (*) Ω 

Percentage varying factor KR 0  to  90 (step of 10) % 

System mechanical damping ratio 𝜉𝑚 0.04 - 

Total damping ratio for load one 𝜉1 0.0608 to 0.4064 (*) - 

Total damping ratio for load two 𝜉2 0.4064 to 0.068 (*) - 

Initial natural frequency 𝜔𝑛 248.8 rad/sec 

Electro Motive Force Constant ke 45(*) Vs/m 

System Spring Constant k 4.8x10-7 Vs/m 

System effective mass m 0.0297 Kg 

Table 8.1- Simulated and assumed variables used in the simulation 
 

It may be seen that the natural frequency may be adjusted above or below the 

natural frequency for the fixed damping system and that a reasonably large range of 

frequencies can be achieved. To further explain this frequency altering method 

descriptively, Figure 8.7 shows the phase plots for switched damping system for Case 

1(left figure) in which be1<be2 and Case 2 (right figure) in which be1>be2. Where d is the 

distance between point A and point B. Assume that the beam cantilever is moving from 

point A to point B for both cases. In Case 1, the system will goes into the lower damping 

quadrant first and then goes into a higher damping quadrant later. On the other hand, in 

Case 2, the system does it oppositely by going into higher damping quadrant before the 

lower damping quadrant. It can be seen that although the distance travelled by both system 

are the same, the average velocity (�̇�) of Case 1 is higher than the one in Case 2. Therefore, 

Case 1 required lesser time for the cantilever to travel from point A to point B, meaning 

that the natural frequency is shifted above the initial natural frequency. On the contrary, 

for system Case 2, it required a longer time for the cantilever to move from point A to 
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point B, so the natural frequency is adjusted below the initial natural frequency for the 

fixed damping system.  

 

 
Figure 8.7 - Phase plots for switched damping system Case 1(Left) and Case 2 (Right) 

 

It should however be noted that altering the damping may affect the peak output 

power as well as the natural frequency. In order to calculate the average power of this 

system, the energy for each quadrant may be calculated. Similar to the time derivation 

previously, only quadrants I and quadrant II will be considered here.  

 

Quadrant I 

 

The constitutive equation for the voltage drop across the load resistance was presented as 

Equation (8.4) in the last section. However, it will be repeated here as Equation (8.26) 

with RL1 as the load resistance for convenience.  

 

 𝜐L =
𝑅𝐿1

𝑅𝐶 + 𝑅𝐿1
𝜐𝑔 (8.26)  

 

where 𝜐𝑔 = 𝑘𝑒�̇�,  is the voltage generated in a coil 

 

For the given 𝜐L, the instantaneous power for Quadrant I can be derived as 

 

 
𝑝𝑄1(𝑡) =

𝜐L2

𝑅𝐿1
=

𝑅𝐿1
(𝑅𝐶 + 𝑅𝐿1)2  (𝑘𝑒�̇�)2 (8.27)  
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The displacement solution 𝑧(𝑡) was given in Equation (8.11). By differentiating 𝑧(𝑡) with 

respect to t gives the �̇�(𝑡) solution as: 

 

 
�̇�(𝑡) = −𝜔𝑛𝑧0𝑒−𝜔𝑛𝜉1𝑡 �

sin�𝑡𝜔𝑛�1−𝜉12�

�1−𝜉12
�       (8.28)  

 

By substituting the �̇�(𝑡) into Equation (8.27) gives 𝑝𝑄1(𝑡) as: 

 

 
𝑝𝑄1(𝑡) = 𝑘𝑒

2𝜔𝑛2𝑧02𝑒−2𝜔𝑛𝜉1𝑡 �
RL1

(RC + RL1)2� �
sin2 �tωn�1− 𝜉12�

1 − 𝜉12
� (8.29)  

 

By integrating Equation (8.29) from 0 to t1, the energy delivered to the load in this 

quadrant can be obtained as:  

 

 𝐸𝑄1 = ∫ 𝑝𝑄1(𝑡)𝑑𝑡𝑡1
0 = 𝜔𝑛𝑘𝑒

2𝑧02 �
RL1

(RC+RL1)2� �
1−𝑒−∝1

4𝜉1
�    (8.30)  

 

where ∝1= 2𝜉1(𝛽)

�1−𝜉1
2
  and 𝛽 = π − tan−1 �

�1−𝜉12

𝜉1
� 

 

Quadrant II 

 

Similar to Quadrant I except that RL1 in Equation (8.27) is replaced by RL2 and the 

solution of �̇�(𝑡)  from Equation (8.13) is used instead of Equation (8.28). The 

instantaneous power for Quadrant II can be derived as:  

 

 
𝑝𝑄2(𝑡) = 𝑘𝑒

2�̇�02𝑒−2𝜔𝑛𝜉2𝑡 �
RL2

(RC + RL2)2� �cos�𝑡𝜔𝑛�1− 𝜉22�

−
𝜉2

�1 − 𝜉22
sin�𝑡𝜔𝑛�1 − 𝜉22��

2

 

(8.31)  
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By integrating Equation (8.31) from 0 to t2, the energy in this quadrant can be obtained as:  

 

 𝐸𝑄2 = ∫ 𝑝𝑄2(𝑡)𝑑𝑡𝑡2
0 = 𝑘𝑒

2�̇�02 �
RL2

(RC+RL2)2� �
1−𝑒−∝2

4𝜉2𝜔𝑛
�    (8.32)  

 

where ∝2= 2𝜉2𝛾

�1−𝜉2
2
  and 𝛾 = tan−1 �

�1−𝜉22

𝜉2
� 

 

The total energy, 𝐸𝑇, for a complete cycle through the four quadrants is :  

 

 𝐸𝑇 = 2(𝐸𝑄1 + 𝐸𝑄2) = 𝑘𝑒2

2
  �𝜔𝑛𝑧02(1−𝑒−∝1)RL1

𝜉1(RC+RL1)2 + �̇�0
2(1−𝑒−∝2)RL2

𝜉2𝜔𝑛(RC+RL2)2�  (8.33)  

 

And the average power for a complete cycle can be given as:  

 

 

𝑃𝑇 = 𝐸𝑇
𝑇

= 𝜔𝑛𝑘𝑒2

4
�
𝜔𝑛𝑧02�1−𝑒−∝1�RL1

𝜉1�RC+RL1�
2 +�̇�0

2�1−𝑒−∝2�RL2
𝜉2𝜔𝑛�RC+RL2�

2

𝛽

�1−𝜉1
2
+ 𝛾

�1−𝜉2
2

�    (8.34)  

 

where the period, T, from Equation (8.15) is restructured as Equation (8.35).   

 

 𝑇 = 2
𝜔𝑛
� 𝛽

�1−𝜉12
+ 𝛾

�1−𝜉22
�  (8.35)  

 

 From discussion, Equation (8.34) gives the average power for a complete cycle for 

a switching system. However, it was derived in the absence of a driving input. With a 

driving input force, the equation of motion may be then written as: 

 

 �̈�(𝑡) + 2𝜔𝑛𝜉1�̇�(𝑡) + 𝜔𝑛2𝑧(𝑡) = Y sin(𝜔𝑡 + 𝜙)    (8.36)  

 

where 𝜙 is the phase of oscillation relative to the driving force.  
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However, it has not proved possible to derive a closed form expression for the 

power generated using Equation (8.36) due to the complexity of the mathematical 

solutions. Therefore, it is necessary to resort to numerical simulation (Matlab Simulink) 

for particular device parameters. The results of these numerical simulations will be 

discussed later. 

 

8.2 Design, Simulation and Experiment of Electromagnetic Generator 
 

An electromagnetic prototype has been designed using SolidWork CAD software 

as illustrated in Figure 8.8. The main body of this generator is made up of aluminium to 

reduce the total weight. The spring steel cantilever beam (53×19×0.9mm) attached has a 

copper coil as the free end mass.   The attached coil is made up by two separate spirals, the 

first spiral or generating coil (1000 turns) will generate the voltage υG for the switching 

device and the second spiral or sensing coil (1000 turns) will generate another signal (υS) 

for sensing purpose. Groups of Neodymium permanent magnets (25×10×3mm) are fixed 

at the common base where they can be shifted inward or outward relatively to the coils by 

altering the distance between the two magnet holders.  

 

 
Figure 8.8 - CAD design and the real prototype of an electromagnetic generator 
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This prototype has a natural frequency of 39.6 Hz and was mounted on the vibrator 

and driven by magnitude of 0.5g signal within the range of frequencies from 35 Hz (220 

rad/sec) to 45 Hz (282 rad/sec). The generated output voltage was measured using a range 

of different load resistances to determine the matched resistance for the system. The 

output power was then determined by the general power equation, P=V2/R. Where V is the 

generated RMS voltage and R is the output load resistance applied to the system. The 

measured and simulated output power versus load resistance is plotted in Figure 8.9.  

 

 The good agreement between experiments and simulations results in Figure 8.9 

verifies that the simulation modelling is sufficiently accurate to model the electromagnetic 

generator. From the plot, it may be seen that the experimental and simulated matched 

resistance is 74.43Ω and 69.5Ω respectively. By referring to the emf constant (ke) 

response in Figure 8.10, the simulated emf constant and electrical damping ratio can be 

obtained as ke = 5.2 Vs/m and 𝜉𝑒 = 0.01761.  

 

 

Figure 8.9 – Simulated and experimental output power against resistive load 
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Figure 8.10 - Simulated Electro Motive Force constant ( ke ) response with a Fixed damping 
  

The total damping ratio 𝜉𝑇 and mechanical damping ratio 𝜉𝑚 were measured as 0.057 

and 0.04 respectively with the resistive load resistance of 69.5Ω (Rmatched) for the system. 

Therefore, the measured electrical damping ratio can be calculated as 0.017 from Equation 

(8.37). By replacing those values in Table 8.1 into Equation (8.38) except the Rmatched and 

𝜉𝑒 , the measured ke is then obtained as 4.988 Vs/m. It indicates that practically the 

electrical damping ratio will be always less than the mechanical damping ratio (𝜉𝑒 < 𝜉𝑚). 

This condition is due to the imperfection of the coil having internal resistance (Rc) and the 

magnetic flux density (B) provided by the permanent magnets.  In order to achieve the 

domain matching condition (𝜉𝑒 = 𝜉𝑚), Rc should be as small as possible (Rc→0) and ke 

should tend to be very large (ke→∞), which was noted by Stephen [64]. 

 

 𝜉𝑒 =  𝜉𝑇 − 𝜉𝑚 (8.37)  

 

 𝑘𝑒 = �2𝑚𝜔𝑛(𝜉𝑒)(𝑅𝐶 + 𝑅𝑚𝑎𝑡𝑐ℎ𝑒𝑑) (8.38)  
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 In order to achieve the quadrants switching practically, an external loads switching 

device is required along with a switching control system. As depicted in Figure 8.11, a 

switching device may be constructed by combining two MOSFETs which act as switches. 

The status of Switch 1 will be controlled by the signal from Drive 1 and the status of 

Switch 2 will be managed by the signal from Drive 2.  

 

 
Figure 8.11- Designed switching device 

 

The waveforms on the right hand side illustrate the status of the load resistance 

during the oscillating cycle. Switch 1 will be turned ON when the signal from Drive 1 is 

triggered from low to high and this will make the RL1 to become the load resistance for 

Quadrant I and III. On the other hand, the signal from Drive 1 will go low and deactivates 

Switch 1 at Quadrant II and IV. However, at these quadrants, Drive 2 will then activate the 

Switch 2 and make RL2 as their load resistance. The voltage υG (shown as VG in the figure) 

is the output voltage generated directly from the generating coil. However, it is 

worthwhile to mention that a simple resistive load is not a very good approximation of a 

real electrical load. In reality, the RL1 and RL2 are needed to be replaced by some power 

conditioning circuits which provide a constant output voltage. Yet, it is beneficial to begin 

the modelling in a simple and less complex form before the simulation gets more and 

more complicated.  
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 As described previously, the load switching device is controlled by two square 

wave signals (Drive 1 and Drive 2). Therefore, another device is required to provide a real 

time square wave signal accordingly to the generated voltage from the generator. Figure 

8.13 shows the design of real time sinusoidal to square wave’s convertor device. This 

device will take the input from the generator’s sensing coil directly as υS (shown as VS in 

the figure) and converts it into two identical square waves (Drive 1 and Drive 2) that have 

a 90 degree phase difference. Note that the oscillation of the sensing coil is used rather 

than the generating coil because the voltage produced by the generating coil varies due to 

the load switching. These outputs drive the switching device in Figure 8.11 for the 

purpose of load switching. The fixed voltage supplies device (Figure 8.12) is designed to 

provide a constant voltage (± 15V, +5V) to ensure that the real time convertor is taking 

stable power supplies during the conversion processes. The power rating for the voltage 

supplies device was measured to be 1.35W. Although it seem to be not a good practice to 

propose an energy harvester that taking more power in the frequency tuning mechanism 

than the available output power from the generator, at this stage only the feasibility of the 

concept will be tested. The concept of load switching need to be validated in advance or 

else a more extensive round of tests would seem to be fruitless. More solutions on this 

issue will be proposed in the Chapter 9.  

 

 
Figure 8.12- Fixed voltage sources supply 
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Figure 8.13- Real time sinusoidal to square waves converter device 
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Figure 8.14 shows the block diagram of the real time sinusoidal to square wave 

convertor device. As mentioned, it will convert a sinusoidal signal captured from the 

electromagnetic generator into two identical square waves but with 90 degree phase 

difference. Therefore in this design, it consists of two convertors. The first one will 

convert the sinusoidal wave directly into a square wave and the second one will shift the 

original input signal by 90 degree using an integrator before the square wave conversion.  

For both cases, the input signal will be amplifier in advance before the precision half wave 

rectifier to ensure that those signals are rectified accurately.  After the rectification, both 

signals will then be converted to a square wave by a Schmitt Trigger. Lastly, both of them 

will drive an Exclusive OR logic gate and inverter to create a proper square wave for each 

quadrant during the oscillating cycle. 

  

 

Figure 8.14 – Block diagram for real time sinusoidal to square wave convertor device 
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a)Generated voltage for fixed resistive load, RL1=RL2 (Case 3) 

 

b)Generated voltage for resistive load when RL1 < RL2 (Case 2) 

 

c) Generated voltage for resistive load when RL1 > RL2 (Case 1) 

Figure 8.15 -Generated voltage with different resistive loads 
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Figure 8.15 represents the voltage generated by the electromagnetic generator for a 

range of different resistive loads. Figure a) shows the ordinary induced voltage generated 

from the device if the load resistance is fixed, RL1=RL2 (Case 3). For the fixed load, a pure 

sinusoidal wave is obtained. On the other hand, if the load resistance is switching 

according to the quadrants, different induced voltage will be obtained as depicted in figure 

b) when RL1 < RL2 (Case 2) and Figure c) when the RL1> RL2 (Case 1).    

 

 

Figure 8.16 – Frequency response with a constant load of 69.5 Ω 
 

 In Figure 8.16, it showed the frequency response of the simulated and experimental 

electromagnetic generator with a constant resistive load of 69.5 Ω (Case 3). The resonant 

frequency was determined by driving the generator into resonance over a wide range of 

frequency (220 rad/sec to 282 rad/sec) and the natural frequency for the system was found 

to be 249.2 rad/sec and 248.8 rad/sec for simulated and experimental respectively. It also 

indicates that the generated power at frequencies far away from the resonance is 

significantly lower than the power at the resonant mode. The recorded powers at the 

resonant mode were 2.67 mW for simulated response and 2.623 mW for the experimental 

response.  
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 Apart from that, the resonant frequencies and optimum powers for different loads 

combination in Case 1 and Case 2 is what this experiment concern most. By taking the 

system matched resistance (Rmatched) as 69.5 Ω, each loads combination in Case 1 and Case 

2 can be determined from Equation (8.16) and Equation (8.19) as attached in Table 8.2 . 

The resonant frequency and optimal power for each different load combination in Case 1 

and Case 2 were determined by using the same process as in  Case 3 and were recorded for 

further comparison with the simulated outcome.  

 

 

KR ( % ) 

Case 1 (RL1 >RL2) Case 2 (RL1<RL2) 

RL1 (Ω) RL2 (Ω) RL1 (Ω) RL2 (Ω) 

10 76.45 62.55 62.55 76.45 

20 83.4 55.6 55.6 83.4 

30 90.35 48.65 48.65 90.35 

40 97.3 41.7 41.7 97.3 

50 104.25 34.75 34.75 104.25 

60 111.2 27.8 27.8 111.2 

70 118.15 20.85 20.85 118.15 

80 125.1 13.9 13.9 125.1 

90 132.05 6.95 6.95 132.05 

0 (Case 3) 69.5 69.5 69.5 69.5 

Table 8.2 – Suggested load resistance for RL1 and RL2 with different weight on percentage 
varying factor (KR) 
 

The comparison of simulation and experimental natural frequency as a function of 

RL1 and RL2 is depicted in Figure 8.17. This clearly indicates that both simulation and 

experimental outcomes have the same behaviour. However it shows that the shifting rate 

for the resonant frequency is reduced as compared to the previous simulation in Figure 8.6 

as a smaller emf constant (ke) is used in this system. The natural frequency of the system 

is shifted to a higher value in Case 1 when RL1 > RL2 and on the contrary the system’s 

resonance is shifted to a lower value in Case 2 when RL1 < RL2. However, due to the 



121 
 

practical limitation on the resolution of the driving frequency (smallest step = ±0.1Hz), 

some of the experimental points are obtained at the same frequency. Therefore, to solve 

this problem, Polynomial curve fitting method is used. Few different order of Polynomial 

curve fitting has been tested and 3rd order seems to give the best fit for all the points.   

 

 
Figure 8.17 –Effect of relative loads resistance RL1 & RL2 on natural frequency 

 

 
Figure 8.18 – Comparison of the effect of relative load resistance RL1 & RL2 on output power 
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It should however be noted that altering the damping will affect the peak output 

power as well as the natural frequency. In Figure 8.18, it shows the effect of the relative 

load resistance on the output power for both simulation and experimental. The normalized 

optimum power,  𝑃𝑁 = 𝑃
𝑃𝑖

  where P is the shifted optimum power and 𝑃𝑖  is the initial 

optimum power of the system.  All relevant variables used in this simulation are shown in 

Table 8.3. In addition, there are practical limitations on the range of values of RL1 and RL2 

which may be used. For instance, the maximum electrical damping is limited by the 

resistance of the pick-up coil.  

 

Descriptions Variables Practical values Units 

Load resistance for 𝜉𝑒1 RL1 6.95 to 132.05 Ω 

Load resistance for 𝜉𝑒2 RL2 132.05 to 6.95 Ω 

Internal coil resistance RC 29.2 Ω 

System Matched resistance Rmatched 69.5 Ω 

Percentage varying factor KR 0  to  90 (step of 10) % 

System mechanical damping ratio 𝜉𝑚 0.04 - 

Total damping ratio for load one 𝜉1 0.0504 to 0.0864 - 

Total damping ratio for load two 𝜉2 0.0864 to 0.0504 - 

Initial natural frequency 𝜔𝑛 248.8 rad/sec 

Electro Motive Force Constant ke 4.988 Vs/m 

System Spring Constant k 4.8x10-7 N/m 

System effective mass m 0.0297 Kg 

Table 8.3 – Practical variables used in the simulation 
 

The good agreement between the experiment and simulation outcome verify that 

the simulation model ( based on Equation (8.1) ) shown in Figure 8.19 is sufficiently 

accurate to use for design and optimization purposes. Furthermore, the model can also be 

used to obtain relatively accurate estimates of the shifted resonant frequency and power 

generation.  For a more details of the Matlab coding and Simulink simulation, consult to 

Appendix I.   
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Figure 8.19 – Simulink model for Electromagnetic loads switching generator 

 

8.3 Discussion of Load Switching Frequency Tuning Generator 
 

As mentioned in this chapter, it has been demonstrated that by changing the 

effective electrical damping during the oscillation cycle it is possible to change the 

behaviour of the whole system. It may be seen that the natural frequency of the system 

may be adjusted above or below the initial natural frequency for a fixed damping system. 

From the simulated plot in Figure 8.20, it can be seen that the range of shifted resonant 

frequency is related to the emf constant (ke) and also the percentage varying factor (KR). 

Yet, to improve the readability, this plotting only shows the emf constant up to a value of 

20Vs/m. This simulated plot clearly shows that the percentage of shifted resonance is 

dependent to the ke and KR, the range of shifted resonant frequency can be improved by 

increasing the ke and KR to theirs practical limit. This indicates that a reasonably large 

range of shifted resonant frequencies can be achieved by using the load switching 

frequency tuning method.  
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Figure 8.20 - Simulated shifted resonant frequency vs emf constant (ke) and percentage 
varying factor (KR) 
 

Nevertheless, as commented previously, the peak output power will be affected as 

well as the natural frequency by altering the electrical damping of the system. Figure 8.21 

indicates the power loss in percentage versus emf constant (ke) and percentage varying 

factor (KR). Unfortunately, by increase the KR of the system the power loss for the system 

will rise as the end effect. However, the percentage of the power loss will be fixed for 

each step of the KR regardless of ke when the latter exceeds a certain value. This implies 

that there is a maximum limitation for the power loss in this system. As a result, by 

altering the electrical damping of the system a reasonably large range (±1%) of resonant 

frequency can be achieved with a fixed maximum power loss on the condition that a 

greater value of ke is achievable practically. 

 

There are always some practical limitations on the emf constant ke. As stated in 

Equation 8.3, ke is limited by the coil length and the permanent magnetic field strength. 

The magnetic field can be increased by using multiple-layer of permanent magnets, as in 

this experiment there are 3 layers of permanent magnets used on both side of the pick-up 

coil. On the other hand, the coil length can be practically increased by increasing the 
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number of turn of the pick-up coil. However, this will eventually increase the coil 

resistance for the circuit which will reduce the maximum limitation for the electrical 

damping. Added to the above, increasing the number of turn of the coil will eventually 

increase the area of coil as the end result. This will require a bigger magnet to be used in 

the generator and the generator will become less cost efficient. Therefore, to increase the 

ke, a thinner super-conductor is suggested to be used in the pick-up coil instead of 

increasing the number of turn of the coil.  

 

 

Figure 8.21- Simulated power loss vs emf constant (ke) and percentage varying factor (KR) 
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Chapter 9 : Conclusions and Future work 

 

This work mainly aimed to assess the feasibility of changing the system natural 

frequency by applying different effective electrical damping to the system in different 

quadrants of the oscillation cycle. Some reviews of possible energy sources were 

performed and vibration-based energy was chosen as the main focus area for this research. 

Three main vibration-based conversion mechanisms were reviewed, but only piezoelectric 

and electromagnetic were selected for further consideration. Brief histories of 

piezoelectric materials and electromagnetic harvesters were given, followed by the 

fundamental information on the conversion mechanism in term of vibration-to-electricity 

energy. Literature reviews of research done in both piezoelectric and electromagnetic 

harvesters were presented. Previous achievements and methods of capturing or harvesting 

the vibration energy for both conversion mechanisms were presented separately, followed 

by some discussions on other methods of tuning the natural frequency of the energy 

harvesters by some others research groups in recent years.  

 

Next, two methods to capture the ambient vibration information from various 

domestic appliances were presented. The behaviour of the ambient vibration was studied 

and the obtained information was then converted into a useful form. That information was 

then used to generate replica signals for further use in subsequent simulation and 

experiments. These two methods were Oscilloscope capturing and DAQ capturing.   The 

earlier was method seen to be more flexible and mobilizable and the latter method seen to 

be more straight forward in term of the capturing process and programming algorithm.  

 

 Some of the piezoelectric bimorph tests had been carried out to validate the effect 

of the frequency response when the load resistance, frequency and mass placed at the free 

end were changed respectively. With the varying resistance experiment, the optimum 
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power will be obtained when the load resistance matched with the impedance of the 

piezoelectric bender. An analytical model (Equation (6.1)) suggested by Roundy[51] was 

used as the basic for simulation and the result was experimentally validated by the author. 

The optimum load resistance was obtained as 25kΩ from analytical model with 0.621mW 

generated power and 33kΩ from the author’s experiments with 0.53mW generated power.   

In the frequency varying tests, results showed that maximum output power will be 

generated by the beam when the driving frequency of the vibrator matches the natural 

frequency of the energy harvester device. The generated power at the dominant frequency 

was significantly higher than the power generated when the frequency falls further away 

from the natural frequency of the device. Some frequency responses obtained from the 

analytical model (Equation (6.3) & (6.4)) were experimentally validated and compared. 

The results showed the good agreement between the simulation and experimental model. 

Apart from that, it is worth mentioning that the natural frequency can be tuned by altering 

the output load, which will eventually change the effective damping coefficient of the 

system.  Finally, the end mass changing method was experimentally validated. With 

different masses place at the free end of the bender, there is a change in the resonance 

frequency for the system. Results confirmed that with an increase in the weight of the end 

mass (from 4.1gram to 6.41gram), the resonance frequency of the system will decrease 

approximately 5.5Hz when the weight was increased by around 0.77gram and vice versa. 

Added to the above, it can be seen that the generated power can be improved by increasing 

the effective mass (meff) of the system, which was well model by Equation (2.8) in 

Chapter 2.  

 

 The alternative geometry structures of the cantilever bender were next introduced 

to improve the generated power density from the harvester. All experimental structures 

were compared in both analytical and numerical methods. The models created by ANSYS 
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showed that the strain across the width of the cantilever was not constant as assumed in 

the analytical modelling. However, it showed that there was always a region of material 

that was highly strained located next to the fixed end of the cantilever beam structure. 

Furthermore, this concentration will limit the allowable maximum strain applied on the 

cantilever, reducing the allowable average strain produced by the beam. The resultant data 

from both platforms demonstrated that the triangular structure provided the best strain 

distribution (most evenly distributed form) on the cantilever beam and this will lead to a 

higher output power for a given input force. Besides, a test on finding out the feasibility of 

improving the energy density from the cantilever bender by changing the beam’s depth 

(height) was carried out analytically. It was found that varying the beam’s depth was not 

the best way to improve the mechanical strain distribution if the average strain from the 

beam was the main term to be concerned. Added to the above, it was less cost efficient to 

produce a depth varying beam than the width varying beam structure. Therefore, the 

triangle width varying beam was still the preferable solution if the average strain was the 

main concern. Lastly, outputs from a real rectangular and triangular piezoelectric bender 

were compared to verify the outcome. It revealed that a triangular beam provided a higher 

energy density (NPD=4.046μW/mm3) than the ordinary rectangular beam 

(NPD=2.193μW/mm3).  

 

 Finally, novel load switching methods were proposed to verify the feasibility of 

tuning the dominant frequency of the energy harvester device using a fast load switching 

concept. The concept of applying a different effective electrical damping into the system 

at different oscillating quadrant was discussed and the feasibility of tuning the resonant 

frequency by applying a different load during different quadrants of the oscillating cycle 

was analytically proved in Figure 8.6. A prototype electromagnetic load switching 

generator has been developed and the analytically simulated results are verified 
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experimentally. Both analytical and experimental results confirmed that this method can 

adjust the system’s natural frequency above or below the initial natural frequency for a 

fixed damping system. The experimental results from Figure 8.17 showed the resonant 

frequency can be shifted around 1% above or below the initial resonance dependant on the 

system percentage varying factor (Rv) at the emf constant ke=4.988Vs/m. . However the 

range of the shifted frequency was highly related to the emf constant (ke) which can only 

be increased to certain level of value due to practical limitations. It should however be 

noted that altering the load during the oscillation may affect the peak output power as well 

as the natural frequency but it has not proved possible to derive a closed form expression 

for the power generated using an input driven motion equation for this switched damping 

system. Therefore, it is necessary to resort to numerical simulation for particular device 

parameters. The lack of an analytical solution means that there is limited insight into 

methods which might make it is possible to tune the frequency using load switching 

without sacrificing output power. 

 

9.1 Recommendations for future work 

 

From the experience of this research, several suggestions for future work can be 

recommended.  

 
 

• In the piezoelectric converter modelling, many variables were assumed and taken 

from the product datasheet directly. To more accurately describe the models, those 

variables could be measured experimentally.  
 

• In the alternative geometry test, in order to simplify the modelling, a single layer 

piezoelectric (5A4E) was chosen as the property for the simulation. However, a 

bimorph piezoelectric material could behave differently due to the difference of their 
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Poisson’s ratio. In order to improve the resultant outcome, a multi-layer piezoelectric 

beam property can be included into the simulation.  

• As discussed in Chapter 8, the power required to perform the tuning mechanism, 

Ptuning, is reported as 1.35W which is not suitable for any energy harvester device.  It 

is commonly known that for any adaptive/frequency tuning energy harvester, the 

power required to perform the tuning mechanism (Ptuning) must be less than the 

available power from the generator which results in a net output power. However as 

mentioned; only the feasibility of this concept has been investigated by the author. As 

the modelling and experiment presented here do validate that this concept is feasible, 

therefore further extensive tests are required in order to minimise the Ptuning. Some 

suggestion proposed by the author are as below:  

1) Replace the load tuning device as in Figure 8.13 with a more efficient CMOS 

circuitry device (typical power consumption only up few milliWatt).   

2) Or replace it with an extreme low power microcontrollers  (up to few 

nanoWatt) 
 

• As in the fast load switching device, the loads on both switches were controlled by 

two manually tuned variable resistors. Therefore, the resultant resistive load could be 

less precise. To improve the flexibility and precision of the resistive loads, a digital 

potentiometer could be used. A microcontroller could be then programmed to control 

the digital potentiometer in order to provide a desired resistive value to the device 

while the switching process takes place. Apart from that, a microcontroller can be 

also used to control the switching process.  

 

           𝑏𝑒 = �𝑏𝑒1, 𝑧�̇� < 0
𝑏𝑒2, 𝑧�̇� ≥ 0

� 
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Instead of switch the damping according to the simple form, a more complicated 

switching function could be performed by the microcontroller switching controller. 

One of the examples is depicted as in Figure 9.1. A number of variations on these 

switching regimes may be envisaged, but it is not clear how these would offset the 

resonant frequency or the generated power. Nevertheless, the above analysis is based 

on a simple resistive load which is no very realistic approximation of a real electrical 

load. In reality, the electrical system would be something like a DC-DC converter or 

capacitor storage which acts like a variable resistance. Yet, it is beneficial to start up 

modelling in a simple and less complex form before carry out a more sophisticated 

model.  

 

 
Figure 9.1- Suggested switching phase plane 

 

• After verifying the behaviour of the pure resistance circuit in the load switching device, 

it is worthwhile to investigate the behaviour of the system when an inductor (L) and/or  

a capacitor (C) have been added as the load, as in the circuit illustrated in Figure 9.2. 

In this case, the effective inductance (XL) and capacitance (XC) of the system will be 

switched accordingly to the oscillating cycle instead of the resistive load. It is believed 

that different kinds of frequency response will be obtained from this switching system 

because of the behaviour provided by the capacitor and inductor components. In a 
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capacitor, the current is 90 degrees ahead of the voltage in phase; on the other hand, 

the current through an inductor lags behind the voltage by a phase angle of 90 degrees. 

Both impedances are also frequency dependent as the impedance of the capacitor, 

𝑋𝐶 = 1
𝜔𝐶

, and impedance of the inductor is  𝑋𝐿 =  𝜔𝐿, where ω = 2πf.  

 

 
Figure 9.2- Concept of LRC circuit connected to the energy harvesting device 

 

• After the load switching system has been verified using the improved method 

mentioning above, this idea can be then implemented in a piezoelectric converter and 

the behaviour of the circuit could be investigated in minute detail. The behaviour of 

these piezo based system are more complex since the piezo material itself is modelled 

as a 3rd order system and so it cannot be visualised in the 2D phase planes used in 

Figure 9.1. Similarly, the LC fast switching design too could be applied to the 

piezoelectric converter if it performs outstandingly in the electromagnetic converter 

and is proven that it is worthwhile to do so.  
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Appendix A  Source code for Oscilloscope Capturing 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This is the function created by Agilent Technologies for model  
% MSO- 6054A. This function will import the binary data from the USB 
% drive and transfer it into Matlab for further process.    
% This function can be downloaded from  
% http://www.home.agilent.com/agilent                                        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [timeVector, voltageVector] = importAgilentBin(inputFilename, 
varargin) 
% ImportAgilentBin reads the Agilent Binary Waveform filetype. 
% [timeVector, voltageVector] = importAgilentBin(inputFilename) 
% [timeVector, voltageVector] = importAgilentBin(inputFilename, 
waveform_index) 
% if waveformIndex is not provided, the first waveform will be read 
% voltageVector may contain two columns [MIN, MAX] 
  
 if (~exist(inputFilename)) 
    error('inputFilename missing.'); 
end 
  
fileId = fopen(inputFilename, 'r'); 
  
fileCookie = fread(fileId, 2, 'char');      % read file header 
fileVersion = fread(fileId, 2, 'char'); 
fileSize = fread(fileId, 1, 'int32'); 
nWaveforms = fread(fileId, 1, 'int32'); 
  
fileCookie = char(fileCookie');         % verify cookie 
if (~strcmp(fileCookie, 'AG')) 
    fclose(fileId); 
    error('Unrecognized file format.'); 
end 
  
waveformSelect = 1;                 % determine which waveform to read 
if (size(varargin) == 1 & varargin{1} <= nWaveforms) 
    waveformSelect = varargin{1}; 
end 
  
for waveformIndex = 1:nWaveforms        % read waveform header 
    headerSize = fread(fileId, 1, 'int32'); bytesLeft = headerSize - 4; 
    waveformType = fread(fileId, 1, 'int32'); bytesLeft = bytesLeft - 4; 
    nWaveformBuffers = fread(fileId, 1, 'int32'); bytesLeft = bytesLeft 
- 4; 
    nPoints = fread(fileId, 1, 'int32'); bytesLeft = bytesLeft - 4; 
    count = fread(fileId, 1, 'int32');  bytesLeft = bytesLeft - 4; 
    xDisplayRange = fread(fileId, 1, 'float32');  bytesLeft = bytesLeft 
- 4; 
    xDisplayOrigin = fread(fileId, 1, 'double');  bytesLeft = bytesLeft 
- 8; 
    xIncrement = fread(fileId, 1, 'double');  bytesLeft = bytesLeft - 8; 
    xOrigin = fread(fileId, 1, 'double');  bytesLeft = bytesLeft - 8; 
    xUnits = fread(fileId, 1, 'int32');  bytesLeft = bytesLeft - 4; 
    yUnits = fread(fileId, 1, 'int32');  bytesLeft = bytesLeft - 4; 
    dateString = fread(fileId, 16, 'char'); bytesLeft = bytesLeft - 16; 
    timeString = fread(fileId, 16, 'char'); bytesLeft = bytesLeft - 16; 
    frameString = fread(fileId, 24, 'char'); bytesLeft = bytesLeft - 24; 
    waveformString = fread(fileId, 16, 'char'); bytesLeft = bytesLeft - 
16; 
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    timeTag = fread(fileId, 1, 'double'); bytesLeft = bytesLeft - 8; 
    segmentIndex = fread(fileId, 1, 'uint32'); bytesLeft = bytesLeft - 4; 
  
    % skip over any remaining data in the header 
    fseek(fileId, bytesLeft, 'cof'); 
  
    % generate time vector from xIncrement and xOrigin values 
    if (waveformIndex == waveformSelect) 
        timeVector = (xIncrement * [0:(nPoints-1)]') + xOrigin; 
    end 
  
   for bufferIndex = 1:nWaveformBuffers 
     % read waveform buffer header 
    headerSize = fread(fileId, 1, 'int32'); bytesLeft = headerSize - 4; 
    bufferType = fread(fileId, 1, 'int16'); bytesLeft = bytesLeft - 2; 
    bytesPerPoint = fread(fileId, 1, 'int16'); bytesLeft = bytesLeft - 2; 
    bufferSize = fread(fileId, 1, 'int32'); bytesLeft = bytesLeft - 4; 
  
        % skip over any remaining data in the header 
        fseek(fileId, bytesLeft, 'cof'); 
  
      if (waveformIndex == waveformSelect) 
        if ((bufferType == 1) | (bufferType == 2) | (bufferType == 3)) 
     % bufferType is PB_DATA_NORMAL, PB_DATA_MIN, or PB_DATA_MAX (float) 
        voltageVector(:, bufferIndex) = fread(fileId, nPoints, 'float'); 
        elseif (bufferType == 4) 
            % bufferType is PB_DATA_COUNTS (int32) 
        voltageVector(:, bufferIndex) = fread(fileId, nPoints, '*int32'); 
        elseif (bufferType == 5) 
            % bufferType is PB_DATA_LOGIC (int8) 
        voltageVector(:, bufferIndex) = fread(fileId, nPoints, '*uint8'); 
        else 
            % unrecognized bufferType read as unformated bytes 
     voltageVector(:, bufferIndex) = fread(fileId, bufferSize, '*uint8'); 
            end 
        else 
            fseek(fileId, bufferSize, 'cof'); 
        end 
    end 
end 
fclose(fileId); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program will read the data out the USB drive and work out the 
% the FFT with frequency spectrum plotting            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
[xX,yX]=importAgilentBin('print_07.bin',1);     
% import data from the USB drive 
sample_frequencyX=1/abs(xX(1)-xX(2));           
% calculate the sampling frequency by getting the period between two 
sampling points 
dtX=1/sample_frequencyX;            % calculate the sampling period  
g=9.81;                             % g= 9.81 m/s^2 
k=0.9915;                           % accelerometer output voltage: 
991.5mV/g 
AX=(yX-mean(yX))*g/k;               % convert the output voltage to 
acceleration  
magAX=abs(fft(AX-mean(AX),length(AX)))/length(AX);    
% get the FFT for the Acceleration 
frX=(0:length(AX)-1)/(length(AX)*dtX);                
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% create the freqeuncy axis 
magAX(1:5)=0; 
magAX(length(magAX))=0;        
% make the first 5 values and last value of magA become 0 to avoid the 
value divide by zero for displacement 
  
dX=magAX./((2*pi).*frX').^2;  
% find the displacement from Acceleration (A/w^2), w=2*pi*f 
  
n=1:round(length(magAX)/2); 
Half_Maximum_AccelerationX=max(magAX(n)); 
Maximum_AccelerationX=2*Half_Maximum_AccelerationX; 
indiceX=min(find(Half_Maximum_AccelerationX==magAX)); 
MaximumY_AFrequencyX=indiceX/length(magAX)*sample_frequencyX ;     
%find the Frequency value on Maximum Y value 
  
n=1:round(length(dX)/2); 
Half_Maximum_DisplacementX=max(dX(n)); 
Maximum_DisplacementX=2*Half_Maximum_DisplacementX; 
indiceX=min(find(Half_Maximum_DisplacementX==dX)); 
MaximumY_dFrequencyX=indiceX/length(dX)*sample_frequencyX;         
%find the Displacement value on Maximum Y value 
  
semilogy(frX (1:1000),2*dX(1:1000))              
% plot the semilogy for y axis 
title('Displacement over Frequency (X)') 
xlabel('Frequency (Hz)') 
ylabel('Displacement (m)') 
axis([0 500 1e-10 1e-4])                 
grid 
figure 
  
semilogy(frX (1:1000),2*magAX(1:1000))      % plot the semilog for y 
axis 
axis([0 500 0 10])                         % set the scale axis 
title('Acceleration over Frequency (X)') 
xlabel('Frequency (Hz)')                 
ylabel('Acceleration (m/s^2)') 
grid 
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Appendix B  Source Code for Data Acquisition Toolbox 

Adapter Capturing 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This code will take the data directly from the DAQ2205 card and the  
% the matlab is then work out the fft of the data and a frequency 
% spectrum is plotted.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
ai_device=analoginput('mwadlink',0)     % set the analogue device 
ai1=addchannel(ai_device, 0)            % add a channel for the device 
set(ai_device, 'InputType','Differential')       
% chose the differential mode for the measurement 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% General setting for the DAQ-2205 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
duration =1;                                             
% set the duration of data 
set(ai_device, 'SampleRate', 10000)             % set the sample rate 
per second 
ActualRate= get(ai_device,'SampleRate'); 
set(ai_device, 'SamplesPerTrigger',duration*ActualRate) 
set (ai_device, 'TriggerType', 'Manual')            % set trigger as 
manual mode 
blocksize=get (ai_device, 'SamplesPerTrigger'); 
Fs= ActualRate; 
start(ai_device)                    % start the capturing process 
trigger(ai_device)                  % trigger the channel 
wait(ai_device,duration+2)                   
% wait for duration + 2seconds 
olddata = getdata(ai_device);           % get the data from the DAQ card 
delete (ai_device)                      % delete the device 
clear ai_device 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
g=9.81;                     % gravity = 9.81 m/s^2 
k=0.9915;                   % accelerometer output voltage: 991.5mV/g 
data=(olddata-mean(olddata))*g/k;           
% convert the output voltage to acceleration 
xfft=abs(fft(data-mean(data),length(data)))/length(data);    
% get the fft of the data 
xfft(1:5)=0; 
xfft(length(xfft))=0;        
mag = xfft;              
mag=mag(1:floor(blocksize/2)); 
f= (0:length(mag)-1)*Fs/blocksize;      % get the frequency scale 
f=f(:); 
semilogy(f,2*mag)                        
% plot the graph, mag*2 because second harmonic 
grid on 
ylabel ('Acceleration (m/s^2)') 
xlabel ('Frequency (Hz)') 
title ('Vibration Spectrum') 
axis ( [0 500 0 10]) 
[ymax,maxindex]=max (mag); 
maxfreq = f(maxindex) 
ymaximum=ymax*2 
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Appendix C Vibration source generating code 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This coding will generate the sine wave with particular frequency and  
% acceleration according to the user input.         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
close all; 
clc; 
clear all; 
format short; 
Vrms=1; 
SampleRateValue=20000;              %Sampling Rate (DON CHANGE) 
output_duration=20;                 %Output duration in second 
Acceleration =9.81/2;               %Acceleration in ms-2 
Output_Frequency =40;              %Output Frequency in Hz 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% General setting for DAQ-2205 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
ao_device = analogoutput('mwadlink',0);   
ao=addchannel(ao_device,0);     
set(ao_device,'SampleRate',SampleRateValue);  
set(ao_device,'TriggerType','Manual');   
ActualRate_ao=get(ao_device,'SampleRate');  
AO_Rate=ActualRate_ao;      
set(ao_device,'RepeatOutput',0); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% System calibration 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Data_Matrix=xlsread('Calibrate.xls'); 
Frequency= Data_Matrix(:,1); 
Scale=Data_Matrix(:,2); 
Frequency_Interp = 20:0.1:200;  
Scale_Interp = interp1(Frequency,Scale,Frequency_Interp,'spline');  
Frequency_Interp=(round(Frequency_Interp*10))/10; 
n=find(Frequency_Interp==Output_Frequency); 
Vibrator_Scale=Scale_Interp(1,n); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Signal generation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Vpp=Acceleration*2/(9.81); 
Vpeak=Vibrator_Scale*(Vpp/2); 
repeat=output_duration-1; 
data=Vpeak*sin(linspace(0,2*pi*Output_Frequency,AO_Rate)); 
oris=data; 
full=length(data); 
control=Output_Frequency-floor(Output_Frequency); 
if (control>0 && control<0.5) 
    ind=find(data<0); 
    lastnegative=ind(1,end); 
    offset=full-lastnegative; 
    data=data(1:lastnegative); 
    oris=circshift(oris,[1,offset]); 
    coun=[1:1:offset]; 
    oris(1,coun)=0; 
elseif (control>0.4) 
    ind=find(data>0); 
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    lastpositive=ind(1,end); 
    offset=full-lastpositive; 
    data=data(1:lastpositive); 
    ind=find(data<0); 
    lastnegative=ind(1,end); 
    offset=offset+(lastpositive-lastnegative); 
    data=data(1:lastnegative); 
    oris=circshift(oris,[1,offset]); 
    coun=[1:1:offset]; 
    oris(1,coun)=0; 
else 
    offset=0; 
    coun=[1:1:offset]; 
end 
  
if (output_duration >1) 
    for mt=1:repeat 
    zeroarray=zeros(1,offset); 
    oris=cat(2,zeroarray,oris); 
    oris=cat(2,oris,data); 
    end 
end 
%%%% 
putdata(ao_device,oris'); 
  
start(ao_device); 
trigger(ao_device); 
wait(ao_device,output_duration+2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
delete(ao_device) % clear the device 
clear ao_device; 
 

  



143 
 

Appendix D Analytical modelling for varying load resistance 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program creating an analytical modelling of the piezo generator 
% with varying load resistance. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
close all 
syms w R C Y d tc b1 e s k A b lb lm le lc width 
C=51e-9;        % set the capacitance of the beam 
b1=(3*b*(2*lb+lm-le))/(lb^2*(2*lb+(3*lm/2))); 
P=1/(2*w^2)*(A^2*R*C^2*(Y*d*tc*b1/e)^2)/((4*s^2+k^4)*(R*C*w)^2+4*s*k^2*R
*C*w+4*s^2); 
% Power equation 
A=4.905;        % driving acceleration 
w=2*pi*73;      % driving frequency 
d=-190e-12;     % piezoelectric strain coefficient 
e=1.594e-8;     % dielectric constant of the piezoelectric material 
Y=66e9;         % material Young's Modulus 
k=0.29;         % coupling coefficient 
width=12.7e-3;  % beam width 
lb=21.5e-3; 
lm=2e-3; 
le=31.5e-3; 
tc=0.19e-3; 
tsh=0.13e-3; 
b=0.16e-3; 
s=0.02858;      % damping ratio 
C=subs(C); 
b1=subs(b1); 
  
Rv=6000:600000/100:600000; 
P=subs(P); 
se=subs(se); 
Pv=subs(P,R,Rv); 
sev=subs(se,R,Rv); 
Data_Matrix=xlsread('PowerVsResistanceRec'); 
  
xlabel('Resistance Ohm') 
ylabel('Power (watt)') 
plot(Rv/1000,Pv*1000,'r',Data_Matrix(:,3)/1000,Data_Matrix(:,4)*1000,'b'
,Data_Matrix(:,3)/1000,Data_Matrix(:,4)*1000,'*') 
legend('Simulation Output','Prototype Output','Prototype Output Points') 
xlabel('Resistance (KOhm)') 
ylabel('Power (miliwatt)') 
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Appendix E Analytical modelling for varying driving 

frequency 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program creating an analytical modelling of piezo generator with 
% of varying driving frequency.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear all 
hold off 
RR=[6 10 15 30 50 60 80 100 200 400 600]; 
  
for i=1:length(RR) 
syms w wn R C Y d tc b1 e s k A b lb lm le lc width real 
V1=(A*Y*w*d*tc*b1/e)*-j; 
V2=((wn^2/(R*C)-(1/(R*C)+2*s*wn)*w^2))^2+(w*(wn^2*(1+k^2)+2*s*wn/(R*C)-
w^2))^2; 
V3=sqrt(((wn^2/(R*C)-(1/(R*C)+2*s*wn)*w^2))^2+(w*(wn^2*(1+k^2)+ 
2*s*wn/(R*C)-w^2))^2); 
V=(V1*V3)/V2; 
P=V^2/(2*R);    % Power Equation 
Data=xlsread(['Resistance' num2str(RR(i)) 'K']);    
Prms=Data(:,4); 
Fre=Data(:,1); 
ind=find(Prms==max(Prms)); 
optf=Fre(ind,1); 
optf=73; 
R=RR(i)*1000;                          
C=51e-9;        % set the beam capacitance 
b1=(3*b*(2*lb+lm-le))/(lb^2*(2*lb+(3*lm/2))); 
P=abs(P); 
A=4.905;        % driving acceleration 
wn=2*pi*optf;   % driving frequency 
d=-190e-12;     % strain coefficient 
e=1.594e-8;     % dielectric constant 
Y=66e9;         % material Young's Modulus 
k=0.29;         % coupling coefficient 
width=12.7e-3;  % beam width 
lb=21.5e-3; 
lm=2e-3; 
le=31.5e-3; 
tc=0.19e-3; 
tsh=0.13e-3; 
b=0.16e-3; 
b1=subs(b1); 
fv=40:0.3:200; 
wv=fv.*pi*2; 
s=0.029;        % damping ratio 
P10k=subs(P); 
P10k=subs(P10k,w,wv); 
plot(fv+20*i,P10k*1000,'b',Fre+20*i+1,Prms*1000,'r') 
xlabel('Xscale') 
ylabel('Power (miliwatt)') 
text(optf+20*i,max(P10k*1000)+0.01,[num2str(RR(i)) 'k']) 
axis([40 350 0 0.7]) 
drawnow 
legend('Simulation Output','Prototype Output') 
hold on 
end 
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Appendix F   Analyzing the relationship for radius of curvature  

 

Chapter 7 indicates that the second derivative of the beam deflection is given as 

inversion of the radius of curvature, 𝜕
2𝑢
𝜕𝑥2

= 1
𝑅
. However to improve the readability in that 

chapter, many of details were left out. The objective for this appendix is to provide the full 

details of the all the derivation of the analytical proofs. 

 

 

Figure F1- Small section of beam in bending 
 

Figure F1 shows a small section of beam in initial and bent configuration. Recall 

the basic definition of normal strain is: 

 

𝜀 = 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

= 𝐿−𝐿𝑜
𝐿𝑜

                Equation F1 

 

Therefore, the magnitude of axial strain above the neutral axis is given by: 

 

|𝜀| = 𝜃(𝑅−𝑐)−𝜃𝑅
𝜃𝑅

= 𝑐
𝑅
                                           Equation F2 

 

where  R is the radius to the neutral axis 

 θ is the bending angle 

 c is the distance from the neutral axis to a point of interest 
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The strain can be converted into stress by using Hooke’s law where the bending stress is 

the product of the material Young’s Modulus (E) and the beam strain (ε). This gives the 

bending stress as: 

 

|𝜎| = 𝐸𝑐
𝑅

                           Equation F3 

 

 

Figure F2- Section cut of a beam 
 

To find out the relationship of the beam bending moment (M) and the radius of curvature 

(R), equating the moment due to the normal stresses on an arbitrary beam cross section 

area as depicted in Figure F2: 

 

𝑀 = ∫ 𝑐 𝑑𝐹 = ∫ 𝑐𝜎 𝑑𝐴               Equation F4 

 

Substituting Equation F3 into Equation F4 gives: 

 

𝑀 = 𝐸
𝑅 ∫ 𝑐

2 𝑑𝐴          Equation F5 

 

Recalling that the integral in this relation is the area moment of inertial (I) about the 

neutral axis, therefore the relation between the bending moment and the radius of 

curvature of the neutral axis of the beam becomes: 
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𝑀 = 𝐸𝐼
𝑅

         Equation F6 

 

Generally, the tensile stress experienced by the beam can be expressed as Equation F7 

where  𝜕
2𝑢
𝜕𝑥2

  is the second derivative of the beam deflection.  

 

𝜎 = 𝑀𝑐
𝐼

= 𝐸𝑐 𝜕
2𝑢
𝜕𝑥2

              Equation F7 

 

by carefully comparing both Equation F6 and Equation F7, it proves that the second 

derivative of the beam deflection is given as inversion of the radius of curvature. 

 

𝜕2𝑢
𝜕𝑥2

= 1
𝑅
              Equation F8 
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Appendix G Analytical modelling for different beam 
structure  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
% A supported cantilever beam which a concentrated load at the free end 
% will be analytically modeled, 5 different structure will be considered. 
% This program will define the strain equation analytically, then all  
% others terms will be substitute into this equation according to their 
% beam shape, the resultant strain will then be normalized and plotted.    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
syms x W E I b b0 b1 h u L M U y h0  
  
structure=5;        % structure to be simulated 
M=W*(L-x); 
  
if (structure<4)            % Use for Structure 1,2,3 
   b=b0+(b1*(x*1000));     
  
elseif (structure<5)        % use for structure 4 
   p1 = -5.1112e-005; 
   p2 = -0.011261; 
   p3 = 0.011548; 
   p4 = 15.972; 
   b=p1*(x*1000+1).^3+p2*(x*1000+1).^2+p3*(x*1000+1)+p4; 
   % manually defined curved for structure 4 
else                        % use for structure 5 
   p1 = -5.1112e-005; 
   p2 = 0.016168; 
   p3 = -0.86617; 
   p4 = 16.85; 
   b=p1*(x*1000+1).^3+p2*(x*1000+1).^2+p3*(x*1000+1)+p4;   
   % manually defined curved for structure 5 
end 
  
h=h0; 
y=h; 
I=(b*h^3)/12;               % moment of Inertia 
d2u=(W*L-W*x)/(E*I);                 
% General equation for cantilever beam for concentration load at the end 
strain=d2u*y;       % Strain on bending beam 
y=0.001;            % a distance from the neutral axis 
L=0.03;             % set the dimension of the beam 
  
if (structure<2) 
  b0=0.01;           % Original width for case 1 
  b1=0;              % variable width for Structure 1 
elseif (structure<4) 
  b0=0.015;          % Original width for case 2 & 3 
  if (structure==2) 
     b1=-3.33e-4;    % variable width for Structure 2 
  else 
     b1=-4.9999e-4;  % variable width for Structure 3 
  end 
else 
  b0=0.016;          % Original width for case 4 & 5 
end 
  
h0=0.0002;          % depth of the beam 
W=1;                % ending force (newton) 
E=200e9;            % material young’s modulus (304 Stainless Steel) 
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b=subs(b); 
I=subs(I); 
y=subs(y); 
h=subs(h); 
M=subs(M); 
d2uv=subs(d2u); 
xv=0:0.00001:L; 
  
strain=subs(strain); 
strainv=subs(strain,x,xv); 
ratio=strainv./max(strainv); 
bv=subs(b,x,xv); 
tempo=ones(1,length(xv)); 
tempo(1,1:length(xv))=bv; 
bv=tempo; 
 
plot(xv,ratio)   
% plot the normalized strain 
title(['Stucture ' num2str(structure) '']) 
ylabel('Normalised Strain') 
xlabel('Beam length [x] (m)') 
axis([0 0.032 0 1.1]) 
 
display('Average of the total of strain ratio') 
Average=sum(ratio)/length(ratio)   %Average of strain ratio 
 
% plot the histogram for strain distribution 
bin=linspace(0,1,21); 
if(structure==1) 
    bc=1e-6;     % Structure 1 
elseif (structure==2) 
    bc=0.5e-6;    % Structure 2 
elseif (structure==3) 
   bc=3e-7;   % Structure 3 
else 
    bc=8e-7;    % Structure 4 & 5 
    bv=bv./1000; 
end 
  
beam=-ones(round((bv(1)/bc)/10),length(xv)); 
  
for i=1:length(xv) 
    eratio=ratio(i); 
    beam(1:round((bv(i)/bc)/10),i)=eratio; 
end 
  
% generate the histogram 
 j=find(beam>=0); 
 number=hist(beam(j),bin); 
 numberp=(number./length(j))*100; 
 figure 
 bar(bin,numberp,1) 
  
n75=find(beam(j)>=0.75);  % find the index which higher than 0.75 
n50=find(beam(j)>=0.50);  % find the index which higher than 0.5 
format short 
Percentage75=length(n75)/length(j)*100 
% Get the percentage value for 0.75 strain ratio 
Percentage50=length(n50)/length(j)*100  
% Get the percentage value for 0.50 strain ratio 
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Appendix H Numerical modelling for different beam 

structure  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
% A supported cantilever beam which a concentrated load at the free end 
% will be analytically modeled, 5 different structure will be consider. 
% This program will read in ANSYS data, normalizes the data, and plot  
% those data as histogram. Number of nodes that having the strain ratio 
% more than 0.5 and 0.75 are also calculated.   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
close all 
clear all 
format short e 
structure=5; % select the structure to be displayed 
   
list=xlsread(['nStrain' num2str(structure) '.xls']); 
%import the ansys data into matlab 
maximum=max(list); 
minimum=min(list); 
ratio = list./maximum;  % creating the strain ration 
bin=linspace(minimum/maximum,maximum/maximum,21); 
% creating the bin space 
 
display('Average of the total of strain ratio') 
Average=sum(ratio)/length(ratio)   %Average of strain ratio 
  
number= hist(ratio,bin);     
% getting the number of nodes for each strain ratio 
numberp=(number./length(list))*100; 
% convert the number of nodes into percentage 
figure 
bar(bin,numberp,1) 
% plot the histogram 
title(['Structure ' num2str(structure) '']) 
xlabel('Strain Ratio') 
ylabel('Number of Nodes in Percent (%)') 
  
count75=0; 
count50=0; 
l=length (ratio); 
  
for n = 1:l 
    if (ratio(n) >=0.75)       % i=find (ratio>0.5) 
        count75 = count75+1;   % count the number of number >0.75  
    end 
    if (ratio(n) >=0.5)       % i=find (ratio>0.5) 
        count50 = count50+1;  % count the number of number >0.5  
    end 
end 
  
format short 
Percentage75=(count75/l)*100    % display the number in percent 
Percentage50=(count50/l)*100 
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Appendix I Simulink Model for loads switching tuning 

method 
 

In order to improve the readability in Chapter 8, many of the details were left out 

regarding the Matlab Simulink model for the load switching tuning method. However, in 

this appendix, more detail of the all the Matlab coding and the Simulink simulation in that 

chapter is provided.  

 

 

Figure I1 - Simulink model for Electromagnetic loads switching generator 
 

 Figure I1 shows the entire Simulink model for Electromagnetic load switching 

generator. This model can be separated into four parts, the first part is the governing 

equation model for the system which is shown in Figure I2 and the governing equation is 

given as: 

 

𝑚�̈� + (𝑏𝑒 + 𝑏𝑚)�̇� + 𝑘𝑧 = −𝑚�̈�     Equation I1 

 

rearrange this equation gives 
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𝑚�̈� = −𝑚�̈� − (𝑏𝑒 + 𝑏𝑚)�̇� − 𝑘𝑧     Equation I2 

 

where �̈� is the driving acceleration amplitude which equal to 0.5g and g is the standard 

gravity that is established as 9.81 m/s2.  There are two total damping coefficients that will 

be used in turn here according to the oscillating quadrant. They are 𝑏1 = 𝑏𝑒1 + 𝑏𝑚 which 

is used in quadrant I and III and 𝑏2 = 𝑏𝑒2 + 𝑏𝑚 which is used in quadrant II and IV.  

 

 

Figure I2 - Governing equation model 
 

Added to the above, in this model a selecting device that is responsible for 

deciding which damping value should be used during the simulation. Therefore, the 

second part of the system will be the “decision maker” as shown in Figure I3. This model 

will multiply the system’s Displacement (z) and Velocity (�̇�). The product in quadrant I 

and III will be below zero but on the other hand the product in quadrant II and IV will be 

above zero. This allow the Relational Operation in this model to create two set of outputs, 

True for quadrant I and III and False for quadrant II and IV. The True and False outputs 

will then be sent to the switches to decide which damping coefficients and velocity-to-

power conversations need to be applied during the oscillation at that particular time.  
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Figure I3- “Decision maker” model 
 

 Figure I4 is the controller for the total damping coefficients also the third part of 

the system. It decides which damping coefficient is to be used during the different 

quadrant. It takes the True and False signal generated from the “decision maker” model 

and decides what its output according to the conditional input. Switch 1 will send out the 

first damping coefficient (b1) when the conditional input is True and on the other hand it 

will send out the second damping coefficient (b2) when the conditional input is False.  

 

 

Figure I4- switch controller for the total damping coefficient 
 

 In Figure I5, it shows the final part for this modelling. This model is responsible 

for the velocity-to-power conversion by using the general power equation, 𝑃 = 𝑉2

𝑅
. Similar 

to the damping coefficient controller, this model takes the True and False signal generated 

from the “decision maker” model and decides which converter going to be used to 

transform the velocity into power. Switch 2 will use the first converter if conditional input 

is True and in the contrary second converter will be used if the conditional input is False. 
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The embedded Matlab function “Vel  fcn  PL1” translates velocity into power using the 

following code shown in Figure I6.  The code for embedded Matlab function “Vel  fcn 

PL2” is similar to the first one except the variables PL1,VL1 and RL1 are replaced by PL2, 

VL2 and RL2 respectively as shown in Figure I7.  

 

 

Figure I5 - switch controller for the velocity-to-power conversion 
 

 

Figure I6 -  Embedded Matlab function code for velocity to power conversion 1 
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Figure I7 – Embedded Matlab function code for velocity to power conversion 2 
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