
1

 THE UNIVERSITY OF HULL

Integrated Application of Compositional and Behavioural Safety Analysis

being a Thesis submitted for the Degree of

Doctor of Philosophy

in the University of Hull

by

Septavera Sharvia BSc (Hons) MSc

February 2011

2

For my parents

3

Abstract

To address challenges arising in the safety assessment of critical engineering systems,

research has recently focused on automating the synthesis of predictive models of

system failure from design representations. In one approach, known as compositional

safety analysis, system failure models such as fault trees and Failure Modes and Effects

Analyses (FMEAs) are constructed from component failure models using a process of

composition. Another approach has looked into automating system safety analysis via

application of formal verification techniques such as model checking on behavioural

models of the system represented as state automata. So far, compositional safety

analysis and formal verification have been developed separately and seen as two

competing paradigms to the problem of model-based safety analysis.

This thesis shows that it is possible to move forward the terms of this debate and use the

two paradigms synergistically in the context of an advanced safety assessment process.

The thesis develops a systematic approach in which compositional safety analysis

provides the basis for the systematic construction and refinement of state-automata that

record the transition of a system from normal to degraded and failed states. These state

automata can be further enhanced and then be model-checked to verify the satisfaction

of safety properties. Note that the development of such models in current practice is ad

hoc and relies only on expert knowledge, but it being rationalised and systematised in

the proposed approach – a key contribution of this thesis.

Overall the approach combines the advantages of compositional safety analysis such as

simplicity, efficiency and scalability, with the benefits of formal verification such as the

ability for automated verification of safety requirements on dynamic models of the

system, and leads to an improved model-based safety analysis process. In the context of

this process, a novel generic mechanism is also proposed for modelling the detectability

of errors which typically arise as a result of component faults and then propagate

through the architecture. This mechanism is used to derive analyses that can aid

decisions on appropriate detection and recovery mechanisms in the system model.

The thesis starts with an investigation of the potential for useful integration of

compositional and formal safety analysis techniques. The approach is then developed in

detail and guidelines for analysis and refinement of system models are given. Finally,

4

the process is evaluated in three cases studies that were iteratively performed on

increasingly refined and improved models of aircraft and automotive braking and cruise

control systems. In the light of the results of these studies, the thesis concludes that

integration of compositional and formal safety analysis techniques is feasible and

potentially useful in the design of safety critical systems.

5

Acknowledgement

I am deeply indebted, first and foremost, to Dr Yiannis Papadopoulos. I could not have

wished for a better supervisor and mentor. Without his constant support, continuous

patience, and invaluable guidance along the way, this would not have been possible. I

have been extremely lucky to work under his supervision, and I will always be grateful

for the opportunity to embark on this journey.

I am also grateful to Dr Chandra Kambhampati and Dr Leonardo Bottaci, whom have

helped improved the project with their guidance and feedback.

Special thanks to Dr Martin Walker for all his help throughout the years. His patience in

revising the draft is very much appreciated, and I am truly grateful. Huge thanks to Dr

David Parker for his work on HiP-HOPS and for the huge help in Consensus

integration. I am also thankful to Dr Ian Wolforth for all his help, advice and friendship.

Many thanks also to my colleagues and friends Nidhal Mahmud, Amer Dheedan,

Shawulu Nggada, Mian Zhi Bao and Ernest Edifor. Their friendship (and polo mints

and biscuits) have made life in the lab a good fun.

I would also like to thank Yvonne Tang, Dr Chan Kuan Yoow, Chin Hau Khor, Ash

D‟Souza, Jessica Yeo, Sabrina Cheong, Gabrielle Lo, Daniel Low, Robert Chua, and

Kuan Siew Fong for their friendship, company, good time and good food.

Last but not least, my deepest thanks go to my mother, Helmina, and my father, Darwis.

Their endless support and sacrifice are my source of strength and inspiration. I am also

sending my love to my talented little sister, Dora Augustin. I am a very proud sister.

6

Author’s Declaration

I declare that the material contained in this thesis represents original work undertaken

solely by the author. The various aspects of the work covered in this material have been

presented in a number of international conferences and scientific publications.

Specifically:

Much of the material in Chapters 3 & 5 was presented in (Sharvia & Papadopoulos,

2009). An extended version of the above paper was published as book chapter in

(Sharvia & Papadopoulos, 2010). The material presented in chapter 6 was presented &

published in (Sharvia & Papadopoulos, 2008), and contributed to (Adachi et al., 2010).

7

Contents

CHAPTER 1. Introduction .. 17

1.1 Research Context and Scope ... 17

1.2 Research Motivation ... 20

1.3 Research Hypothesis ... 21

1.4 Research Objectives .. 21

1.5 Structure of Thesis .. 23

1.6 List of Publications ... 24

CHAPTER 2. Safety Analysis for Complex Safety-critical Embedded System 26

2.1 Modelling and Specifications .. 26

2.2 Early Functional Design.. 27

2.2.1 Functional Analysis ... 28

2.2.2 Functional Hazard Assessment (FHA) ... 30

2.2.3 Functional Failure Analysis (FFA) ... 31

2.2.4 Preliminary Systems Safety Analysis (PSSA) .. 31

2.3 Classical Safety Analysis .. 32

2.3.1 Fault Tree Analysis .. 32

2.3.2 Failure Mode and Effects Analysis .. 33

2.4 Compositional Safety Analysis ... 33

2.4.1 Component Fault Tree ... 34

2.4.2 State Event Fault Trees .. 35

2.4.3 Embedded Systems Safety and Reliability Analyser 36

2.4.4 Hierarchically Performed Hazard Origin and Propagation Studies 38

2.4.5 Summary of CSA Techniques .. 40

8

2.5 Behavioural Safety Analysis ... 40

2.5.1 Introduction to Model checking ... 41

2.5.2 FSAP/NuSMV-SA ... 44

2.5.3 ALTARICA ... 47

2.5.4 Summary of BSA Techniques .. 51

2.6 Relevant Work on Other Integrated Approaches ... 51

2.7 Chapter Summary ... 53

CHAPTER 3. A method for Integrated Application of Compositional and

Behavioural Safety Analysis (IACoB) ... 54

3.1 Introduction .. 54

3.2 Functional Model .. 58

3.3 Severity Assessment of Output Function ... 60

3.4 Local Failure Behaviour.. 62

3.5 Fault Tree and FMEA Synthesis and Analysis .. 64

3.6 Generation of State machines and Their Translation into Model Checker Input

Language... 68

3.6.1 Modelling the Dynamic Nominal Behaviour of a System 71

3.6.2 Modelling the Dynamic Failure Behaviour of a System 81

3.6.3 Translation of FMEA Results to an Abstract State Machine 87

3.6.4 Translation of HiP-HOPS Failure Annotations to a Refined State Machine

 90

3.6.5 Refinement of Events to Maintain Traceability 92

3.7 Application of Model Checking .. 104

3.7.1 Reachability ... 104

9

3.7.2 Safety .. 105

3.7.3 Liveness .. 105

3.7.4 Fairness ... 106

3.7.5 Common Errors Discovered Through Model Checking 106

3.8 Potential for Automation ... 107

3.9 Chapter Summary ... 110

CHAPTER 4. Case Study on Brake-by-wire ... 112

4.1 Introduction to Brake-By-Wire System ... 112

4.2 Analysis of System Functional Models ... 115

4.2.1 FFA ... 117

4.2.2 FMEA ... 119

4.2.3 Construction of Mode charts .. 127

4.2.4 Requirement Verification ... 132

4.2.5 Refinement of Transition Events .. 135

4.3 Architecture-allocated Functional Model .. 143

4.3.1 Analysis of Single functional failure .. 145

4.3.2 Analysis of multiple functional failures .. 147

4.4 Chapter Summary ... 159

CHAPTER 5. Case Study on Aircraft Wheel Brake System 160

5.1 Introduction to Aircraft Wheel Brake System .. 160

5.1.1 Nominal system model .. 161

5.2 FTA/FMEA .. 164

5.3 Revised Model .. 166

5.4 Construction of Mode charts ... 169

10

5.5 Model Design Evolution from Requirement Verifications 171

5.6 Chapter Summary ... 176

CHAPTER 6. Detectability ... 177

6.1 Detectability in FMEA .. 177

6.2 Detection and Response to Failures ... 179

6.3 General Modelling of Detectability ... 180

6.4 General Analysis of Detectability.. 183

6.5 Example ... 185

6.5.1 Cruise Control System ... 185

6.5.2 Detectability in Cruise Control... 189

6.6 Chapter Summary ... 196

CHAPTER 7. Conclusions .. 198

7.1 Contributions .. 198

7.2 Limitation of concepts .. 203

7.3 Future Work ... 205

APPENDIX A: Backup structure for brake-by-wire system 208

A.1. Brake Demand Input Function ... 208

A.2. Local Parameters Input Function .. 208

A.3. Vehicle Level Processing Function .. 209

A.4. Local Level Processing Function ... 209

A.5. Braking Energy Function ... 210

APPENDIX B: NuSMV model for brake-by-wire ... 211

APPENDIX C: Summary of Quantitative Analysis ... 220

Appendix D: Prime Implicants for Cruise Control System .. 222

APPENDIX E: List of Abbreviation... 225

REFERENCES ... 227

11

Figures

Figure 1: Automated Model-Based Safety Analysis (adapted from Johsi et al., 2006) . 19

Figure 2: Functional analysis process (summarized from FAA, 2006) 29

Figure 3: CEG in a Component Fault Tree .. 35

Figure 4 : SEFT fragment (source: Kaiser, 2007) .. 37

Figure 5: Main phases in HiP-HOPS ... 39

Figure 6: Commonly used temporal connectives table ... 43

Figure 7 : Execution tree showing next possible states .. 44

Figure 8: Fragment sample of NuSMV model for one-bit adder (source: Bozzano et al.,

2003) .. 45

Figure 9 : NuSMV model extended with failure mode (source: Bozzano et al., 2003) . 46

Figure 10: Sample of block ... 49

Figure 11 : Analysis phases of Altarica ... 51

Figure 12: Process outline of IACoB method .. 56

Figure 13: System development and safety assessment process (source: ARP 4754) ... 57

Figure 14: Functional model in basic block diagrams .. 58

Figure 15: Example of a functional block .. 60

Figure 16: Connection flow between functions.. 60

Figure 17: Local failure behaviour for Function F1 ... 63

Figure 18: Example of the functional architecture ... 65

file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106451
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106465
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106466
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106467
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106468

12

Figure 19: Example of generated fault trees .. 66

Figure 20: Identified critical functions based on failure propagation 67

Figure 21: Generation of state machines .. 70

Figure 22: Sample of state chart .. 72

Figure 23: Status and steps in state charts semantics (source : Harel & Naamad, 1996)

 ... 74

Figure 24: Simple state machine without hierarchy ... 78

Figure 25: Simple state machine with hierarchy .. 78

Figure 26: Relationships between static and dynamic models hierarchy of the system . 79

Figure 27: Sample state chart for S1 .. 80

Figure 28: Modules to model hierarchy in NuSMV ... 81

Figure 29: Mode charts showing high level and low level of system state transitions .. 86

Figure 30: Example of mode chart constructed from FMEA-ModeChart Assitance Table

 ... 89

Figure 31: Refinement for system A .. 94

Figure 32: Mode chart for system A .. 96

Figure 33: Refined transitions for System A .. 96

Figure 34: Mode charts for system (and subsystems of) A ... 99

Figure 35: NuSMV model for system A .. 100

Figure 36: Failure propagation for subsystem A3 .. 101

Figure 37: Failure propagation for subsystem A4 .. 102

Figure 38: Failure propagation for subsystem A1 .. 102

file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106469
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106470
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106471
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106472
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106473
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106473
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106476
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106477
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106478
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106481
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106484
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106485
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106486
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106487
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106488

13

Figure 39: Failure propagation for subsystem A2 .. 103

Figure 40: General topology of Brake-By-Wire system ... 114

Figure 41: Abstract functional model for Brake-By-Wire .. 116

Figure 42: Redundant module for Vehicle-Level Processing function 122

Figure 43: Revised model with duplex redundant mechanism 124

Figure 44: Mode chart for Brake-By-Wire .. 129

Figure 45: Brake-By-Wire revised model showing Electrical and Hydraulic sources . 130

Figure 46: Updated mode chart ... 132

Figure 47: Modified mode chart for Brake-By-Wire .. 135

Figure 48: Fault tree for Omission of Hydraulic Failure .. 136

Figure 49: Expanded mode chart with minimal cut sets mapped to transition events . 137

Figure 50: Structural model of Braking Energy ... 138

Figure.51: Mode chart for failure behaviour in ACTUATOR 139

Figure 52: Excerpt of the NuSMV model for the Braking Energy 142

Figure 53: Architecture-allocated functional model for brake by wire system 144

Figure 54: Failure propagation to BCU ... 146

Figure 55: Updated BCU for wheels with Intentional Diagonal Locking (DL) 149

Figure 56: Fault tree for L-FL_BrakingPressure .. 150

Figure 57: Mode chart for DL Controller .. 152

Figure 58: Mode chart for Wheel BCU ... 153

Figure 59: Expanded transition based on Minimal Cut Sets 154

file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106489
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106501

14

Figure 60: Mode chart for modules relating to Locking of Front Left (FL) wheel 155

Figure 61: Simulink model of wheel brake system .. 163

Figure 62: Revised model for wheel-brake system .. 168

Figure 63: Abstract state machine for wheel brake system ... 170

Figure 64: Revised model developed with assistance of model-checker..................... 175

Figure 65: Internal malfunction in Detection Module .. 182

Figure 66: Event Miss in Detection_Module ... 182

Figure 67: Cruise Control System ... 187

Figure 68: Cruise Control with Detection Module ... 191

Figure 69: Cruise Control System with Fading Brake .. 194

file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106515
file:///C:/sepWork/PhD/sepThesis/Thesis_SSharviaR2.docx%23_Toc286106516

15

Tables

Table 1: Example of FHA on car brake function (source: Johannessen et al., 2001) 30

Table 2: Example of FFA on car brake function .. 31

Table 3: Allocation of severity category based on consequences to people and service

(IEC-61508) .. 61

Table 4: Example of FMEA table .. 66

Table 5: FMEA-ModeChart Assistance Table ... 88

Table 6: Failure behaviour for System A and Subsystems A1, A2, A3, A4 95

Table 7: Functional failure analysis of Brake-By-Wire ... 117

Table 8: Functional blocks internal malfunctions ... 118

Table 9: FMEA for Basic Brake-By-Wire functions .. 119

Table 10: Direct ffects FMEA for revised model ... 125

Table 11: Further Effects FMEA for revised brake-by-wire for failure O-BasicBraking

 ... 125

Table 12: FMEA- ModeChart Assistance Table .. 128

Table 13: Updated FMEA-Mode chart Assistance Table ... 131

Table 14: Functional failures for single wheel braking function 147

Table 15: Internal failure for Wheel Brake System components 164

Table 16: FMEA Direct Effects for Wheel Brake System .. 165

Table 17: FMEA Further Effects for Wheel Brake System .. 165

Table 18: Detection Evaluation Criteria (Quality Associates, 1997) 178

Table 19: Example of FMEA Table Extended with Detectability information 178

16

Table 20: Failure information for Cruise Control functions 188

Table 21: Failure information for Detection Modules .. 192

Table 22: Failure Information for Cruise Control with Fading Brake 195

17

CHAPTER 1. Introduction

1.1 Research Context and Scope

This thesis is concerned with the integrated application of emerging safety analysis

techniques for safety-critical systems.

Safety critical systems are systems whose operational deviations can potentially lead to

catastrophic consequences or loss of human lives. These systems are widely employed

in many industries, including the automotive, aerospace, weapons and nuclear

industries. Modern safety-critical systems often incorporate numerous embedded

control components, involve various engineering disciplines, and employ distributed

architectures and complex communication structures. (Knight, 2002) discusses several

other major challenges in safety-critical systems which include the elimination of

“physical separation” due to resource sharing, and ineffective interaction between

software engineering and system engineering. These characteristics present substantial

challenges, and considering the consequences of failure in these systems, as well as the

fact that safety critical systems have become more prevalent in everyday life, it is

crucial that these systems are subjected to a rigorous safety assessment process.

Classical safety assessment techniques such as Fault Tree Analysis (FTA) and Failure

Modes and Effects Analysis (FMEA) are still employed to predict the safety of such

systems. However, classical techniques are traditionally applied in a manual process,

which in the context of a complex system become difficult, laborious, expensive and

error-prone. For this reason, FTA and FMEA are rarely performed more than once and

often at the late stage of lifecycle when the design has been finalized. This late

contribution means that results from the process miss the opportunity to influence

system design, potentially incurring extra cost and effort in late design modifications.

Problems also arise in the lack of systematic methods to capture and manage design

models and safety artefacts as in traditional practices system design models and safety

analyses are often created and handled separately. With these drawbacks, classical

18

safety analysis techniques face tremendous challenges and are no longer deemed to be

sufficiently effective in managing the rising intricacy of modern complex design.

To address some of those difficulties, recent research has been focused on investigating

and developing more-effective and robust safety assessment techniques through

automation of the analysis process. Model-Based Safety Analysis (MBSA) is a

collective body of work which introduced semi-formal and formal models in the centre

of the design and assessment process. MBSA extended the popular model-based

development approach, in which effort is focused on the construction of the formal

specification of the system model. This specification model is subsequently used as the

foundation for various development activities like visualization, code generation, testing

or prototyping (Heimdahl, 2007). Although the primary focus is placed on the

development of software (digital) systems, model-based tools and techniques can also

be used to model physical hardware components (for example, electrical or mechanical

components).

To perform a thorough safety assessment, it is crucial to understand not only how a

system behaves in its normal working condition (represented in the nominal model), but

also in the presence of failure(s). This is done by extending the nominal model with

failure information to construct the failure-augmented model, termed fault model (Johsi

et al., 2006) or error model (Walker et al., 2008).

The automated analysis of these extended models enables various safety assessments to

be performed. Such analyses typically include fault simulation and prediction of effects

of failure, proof that certain safety properties hold in the model and causal safety

analysis resulting in synthesis of fault trees which link causes to effects of failure.

Figure 1 illustrates this point and shows the type of analyses that can be performed on a

system model extended with faults in MBSA. Automated analysis of models brings

substantial benefits as it lightens the burden on designers and analysts, simplifies the

process, saves time and contributes to more reliable results. More importantly, it enables

safety analysis to be incorporated as part of an iterative design process - as new results

can be more easily generated to reflect changes – and therefore driving the design with

safety in mind.

19

The two most prominent paradigms of MBSA today are Compositional Safety Analysis

(CSA) and Behavioural Safety Analysis (BSA). Techniques which are based upon the

CSA approach include Hierarchically Performed Hazards Origin and Propagation

Studies (HiP-HOPS) (Papadopoulos & McDermid, 1999), Component Fault Trees

(Kaiser et al., 2003), and State-Event Fault trees (SEFT) (Grunske et al., 2005). CSA

uses a process of composition to construct system failure models from the topology of a

system and local failure models of its components.

BSA, on the other hand, uses exhaustive exploration of behavioural models of the

system to assess satisfaction of safety requirements. Because this approach mainly

employs model checking as its primary method of assessment, the term „model-

checking based‟ is often used interchangeably to characterise this type of safety

analysis. A model checker typically verifies conformance of the model to its safety

requirements and, if requirements are violated, it relates those violations to

combinations of causes, e.g. component failures. Prominent examples based on this

approach include Altarica (Arnold et al., 2000) and FSAP/NuSMV (Bozzano &

Villafiorita, 2006).

Model for

digital system

Model for

mechanical

system

Fault model for

digital system

+

Fault model for

mechanical

system

Proof of Safety Properties Fault Tree

Simulation

Figure 1: Automated Model-Based Safety Analysis (adapted from Johsi et al., 2006)

20

1.2 Research Motivation

CSA and BSA techniques have emerged with little integration. Both techniques are

fundamentally different in their objectives of assessment, working mechanisms, and

application process. CSA is often used to facilitate reliability engineering. For example

with techniques like HiP-HOPS, it is possible to effectively enable not only the

identification of root failures through qualitative analysis, but also advanced

probabilistic quantitative analysis. BSA on the other hand, places primary focus on the

application of model checking for validation and verification of various safety

properties. Also, while CSA relies largely on Boolean-based analysis, BSA explores all

possible system states in brute force manner. The computationally efficient and iterative

nature of CSA means that the technique can be applied from the early stages of design

and on models that have a high level of abstraction. BSA on the other hand requires

more mature and detailed behavioural models and is, therefore, applicable at later stages

of the development process. In this thesis, it is argued that understanding these

differences and exploiting each technique‟s strengths can bring substantial values to the

development process, in particular at early design stages.

Early functional design is arguably the most appropriate phases to address design

problems and take remedial measures. The volume of design information and system

complexity naturally increase as system development progresses with time. The more

complex the design artefact, the more difficult it is to identify problems within and the

more extensive the remedy required to address problems. It is therefore best to address

problems as early as possible when models are still abstract and then continue to do so

as more detail is added to the design of the system.

One of the difficulties in the current industrial practice is that among classical safety

analysis techniques, there is a lack of rigorous and effective techniques that can help

analysis of models and identification of potential problems. (Johannessen et al., 2001)

highlights that “there is still uncovered demand for early hazard analysis at functional

level”, and SAE Aerospace Recommended Practices documents ARP4761 have

21

recommended Preliminary System Safety Assessment (PSSA) to be performed at the

earliest stages together with the design activities.

1.3 Research Hypothesis

CSA and BSA have been developed as two competing paradigms in MBSA. In this

thesis it is argued that the traditional gap between the two approaches can be overcome,

as CSA and BSA are effectively combined in a novel model-based design and safety

analysis process which therefore benefits from the advantages of both approaches,

namely the flexibility, early applicability and scalability of CSA and the precision,

behavioural analysis capabilities and detailed insights offered by BSA.

In the proposed process, integration of CSA and BSA is meaningful. Traditionally, early

behavioural system models used in BSA are constructed in an ad hoc manner via human

translation of textual requirements into state-machines. In the proposed process, these

state-machines are largely constructed in a systematic manner driven by the results of a

CSA analysis of the system. The proposed MBSA process can facilitate a more

rigorous and well-rounded safety assessment at early design stages. It can therefore

increase the confidence in design models before the decision is taken to progress

towards refinement of the model or implementation.

1.4 Research Objectives

To test the hypothesis outlined above, the following overarching research aim has been

set:

“To develop a novel approach in which the combined application of CSA and BSA

can be achieved and to evaluate the benefits and limitations of this approach using

realistic examples and case studies.”

To achieve this aim the following research objectives were defined:

1. To examine CSA and BSA techniques and investigate their strengths, limitations,

and applications in different stages of design development. This thesis determines

22

complementary aspects of these techniques that can be exploited via synergistic

combined application.

2. To propose a systematic technique to utilize analysis results from CSA and BSA in

the course of design. This involves investigating how input to each technique can be

systematically constructed, in particular, how results of CSA can assist the

construction of behavioural model for BSA‟s formal verification. It is also important

to understand how these results can provide constructive feedback to designers

towards an iterative system modelling process.

3. To illustrate how a chosen CSA and a chosen BSA technique can in practice be

harmonised in the context of a method for combined application. Different MBSA

techniques assume different representations of failure information and system

modelling. In the context of combined application, it is important to explore ways

for translation of information (in particular, failure information) between relevant

models. In the context of this thesis, HiP-HOPS has been selected as a

representative example of CSA. NuSMV has been selected to perform symbolic

model checking and enable formal verification to support BSA. The thesis shows

the integration of HiP-HOPS with NuSMV and defines a process for useful semi-

automatic translation of information between the two models.

4. Overall, the thesis proposes an improved approach to MBSA. The final research

objective is to study the potential use of this approach in the design of mechanisms

for detection and recovery from failures. More specifically, we propose a generic

mechanism for modelling the Detectability (or NOT) of errors propagated among

components of an architecture within a typical CSA. We show that the inclusion of

this mechanism makes it possible to use the results of CSA as a basis for rational

decisions about the inclusion of fault tolerant mechanisms in a design.

23

1.5 Structure of Thesis

The remainder of the thesis is structured as follows:

Chapter 2: Background

The background chapter presents an overview of modelling and safety analysis

techniques. It includes a brief discussion on system modelling, and discussions on early

functional model and safety assessment techniques performed at this stage (FHA,

PSSA).

This chapter also discusses relevant safety analysis techniques, including those briefly

mentioned in the Introduction chapter. It discusses classical techniques like FTA and

FMEA, and more recent CSA developments such as HiP-HOPS, CFTs and SEFTs. In

this thesis, HiP-HOPS is representative of CSA and therefore it is discussed in more

detail. BSA and relevant techniques (Altarica and FSAP/NuSMV) are also presented

here. This chapter also explains further the distinction between the two techniques.

Chapter 3: Integrating CSA and BSA in a unified MBSA process

This chapter describes in detail a method for combined, harmonized application of CSA

and BSA techniques in the context of an improved MBSA process. HiP-HOPS and

NuSMV provide two representative CSA and BSA techniques employed here. Stages

involved in the method include: construction of system model from requirements,

failure severity analysis, local failure behaviour annotation, translation of CSA results

into the BSA model, generation of abstract state machines, and application of formal

verification through model checking. This chapter also discusses how different models

(and relevant failure information) can be obtained and translated between different

models of CSA and BSA.

Chapter 4: Case Study on Brake-by-wire System

This chapter describes a case study on a brake-by-wire system to demonstrate the

practicability and usefulness of the proposed method. Both functional and more-refined

models of the system are presented. This chapter shows how CSA is effectively applied

24

on the early functional model and facilitates early improvement of system design.

Safety artifacts from CSA are used as the basis of BSA models construction, which are

then formally verified. This chapter also highlights how model checking can be used to

verify a simple control & recovery procedure of diagonal-locking mechanism in car

wheels.

Chapter 5: Case Study on Aircraft Wheel Brake System

This chapter describes a case study on an aircraft wheel brake system, and presents a

model which was adopted from (ARP 4761, 1996). This second case study provides a

second example of the feasibility of the process and demonstrates how CSA and BSA

shape the development of design.

Chapter 6: Detectability Analysis

This chapter introduces and describes the concept of detectability analysis, and its role

in the overall modelling and analysis of the proposed method, particularly as a part of

CSA. It shows how its application can be generalized and how it can be implemented in

HiP-HOPS. A small example of a cruise control system is also presented to illustrate

these points.

Chapter 7: Conclusions

This chapter describes conclusions drawn from this work and gives recommendations

for future work

1.6 List of Publications

The following is a list of publications in which materials from this work have been

presented:

 Sharvia, S., Papadopoulos, Y., 2009. Model-based safety analysis using

compositional analysis and formal verification, ICCSIS‟09,5
th

 Int‟l Conference

on Computer Science & Information Systems, July 2009, Athens.

25

 Sharvia, S., Papadopoulos, Y., 2008. Non-coherent modelling in compositional

safety analysis, IFAC, 17
th

 World Congress, International Federation of

Automatic Control, Seoul, July, 2008, published in ifac-papersonline.net.

 Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D., Tohdo, T., 2011. An

approach to optimization of fault tolerant architectures using HiP-HOPS,

Software Practice and Experience, Wiley Interscience . DOI: 10.1002/spe.1044.

 Sharvia, S., Papadopoulos, Y., 2010. Integrating compositional safety analysis

and formal verification, Strategic Advantage of Computing Information Systems

in Enterprise Management, (ed) Majid Sarrafzadeh. Volume containing revised

selected papers from Int‟l Conference in Computer Systems and Information

Systems 2009-2010, pp. 181-201, ISBN: 978-960-6672-93-4.

26

CHAPTER 2. Safety Analysis for Complex Safety-

critical Embedded System

This chapter provides an overview of contemporary safety analysis techniques. It

focuses on CSA and BSA techniques, the two classes of model-based safety analyses

that have been identified in Chapter 1.

2.1 Modelling and Specifications

During the design of a system, a set of abstract informal specifications are typically

transformed into sets of progressively refined, more detailed models that can be used

for the implementation, production and manufacturing of the system.

Models can be classified according to several perspectives, and different modelling

notations are used to reflect the selected aspects (for example information flows, control

flows, or behaviour) of the system to be represented. Sommerville (2004) points out

that generally a system can be viewed through: an external perspective showing the

system‟s context and its relationships with its environment, a behavioural perspective

showing the behaviour of the system, or a structural perspective showing the system‟s

data architecture. Through these different perspectives, various models can be

developed during the design phase - for example: a data-flow model which shows how

data is transferred and processed at different stages; an architectural model which shows

the composing sub-systems and their interrelationships; or a stimulus/response model

(also known as a state/transition model) which shows how the system reacts to internal

and external events.

Models can also be distinguished according to their structure into conceptual,

computational and mathematical structures (Jones & Mitchell, 1987). Conceptual

models are used to capture and understand high level design concepts. Computational

models provide more detailed aspects in terms of operation between participating

agents. Mathematical models can define a system in terms of equations between terms,

or by functions that map programs to corresponding abstract values, or by logical

definitions of effects of an action to a state. While conceptual models are relatively

27

abstract, computational models and mathematical models usually fall into the category

of more-detailed specification models, and depending on the formality of the model can

be analyzed formally. Specification models usually cover device models which capture

the physical part of the system.

For complex embedded systems, model-based development is becoming an increasingly

popular approach for development. In model-based development (Davey, 2007), focus

is placed on semi-formal or formal specifications. The term „formal specification‟ is

usually used interchangeably with „formal model‟ in the literature and refers to models

with strong mathematical foundation. Although model-based tools and techniques are

primarily used to model system software components, they can also be used to model

physical components. Joshi (2006) combines models containing digital components

(hardware and software) with models of mechanical components (like pumps and

valves) which can be extended with failure information to produce extended system

models upon which various safety analysis techniques (like formal verification and fault

tree analysis) can be performed.

This thesis focuses primarily on conceptual models. In particular, early design where

abstract functional models of the system are being produced to describe functions, their

dependencies and abstract behaviour. It is being increasingly recognised that safety

assessment should start as early as possible to prevent expensive design iterations later

on. Techniques that enable safety assessment of model that describe functional designs

are therefore highly desirable (Faller, 2009).

2.2 Early Functional Design

To better understand and explore the context of functional model and early functional

design, we identify and examine several fundamental key questions relating to the

functional design environment: how early is early? What information is available at this

stage? What are the current existing analysis techniques? These questions are briefly

discussed below before being explored further in their proceeding sections.

By “early” in the design process, we mean early enough to make design changes or

incorporate new requirements without incurring excessive cost, time or effort. The

artefacts produced at this stage are often functional model, capturing system

28

requirements. Such models do not make references to specific hardware architecture and

are abstract and minimal in detail. Refinement of such models is typically necessary to

derive more detailed architectural models and system implementations.

2.2.1 Functional Analysis

Functional analysis is defined as "the process of identifying, describing, and relating the

functions a system must perform in order to fulfil its goal and objectives” (NASA,

1995). The result of this process is a functional model. A function is performed by one

or more system elements composed of hardware, software, firmware, people, and

procedures to achieve system operations. In the early stage, functional analysis plays an

important role in assisting system engineers to understand the objectives and constraints

in the process of developing and formulating system design solutions. All functional

aspects of the system are identified, organized and defined. It can be also be used to

derive requirements, which are then allocated to solutions in the form of a physical

architecture. (NASA, 1995) highlights several of its key roles especially in identifying

system requirements, identifying measures of system effectiveness and performance,

excluding design alternatives that do not meet requirements, and providing insights to

system-level model builders.

Functional analysis deals more with what the system has to deliver than how to do it. It

examines system functions and sub-functions that will accomplish system‟s goals. As

the level of details is refined and functions are decomposed into sub-functions, the

requirements associated with the functions are decomposed as well. This decomposition

increase manageability as it organizes functionalities and connections into a more easily

understood hierarchy. The process is repeated until each process is decomposed into

basic sub-functions, and until connections between functions, sub-functions, and

environment are fully defined.

This functional analysis flow process is described and summarized in (FAA, 2006) as

shown in Figure 2. The process starts off with list of requirements and constraints as

input, from which top level functions are defined. These functions can then be

organized into logical relationships, decomposed, and evaluated accordingly to produce

the functional architecture and more refined requirements and constraints.

29

Figure 2: Functional analysis process (summarized from FAA, 2006)

Complex safety critical system requires hazard analysis to be performed as early and as

often as possible to avoid costly design iteration. Therefore it is beneficial to start safety

analysis early at functional level before design solutions progress too far. Once the

functional model is established, the design is evaluated to detect design limitations and

weak points to help establish a more robust and improved design. Functional Hazard

Assessment (FHA) and Preliminary System Safety Assessment (PSSA) are classical

preliminary assessment techniques widely accepted and practiced in this role (ARP

4754, 1994). FHA looks at failure conditions associated with the system functions.

PSSA is applied after FHA to demonstrate how the system meets the qualitative and

quantitative requirements for various hazards identified. It also derives safety

requirements for subsystems, mainly using FTA. PSSA is iterative and performed

continuously throughout the system design phase.

Input:

 Requirements

 Constraints

Process tasks:

Start: Describe operational

mission, environment, and

requirements

 Define top level

functions

 Organize functions

into logical

relationship

 Decompose functions

 Evaluate alternative

decomposition

End: Deliver functional

architecture

Output:

 Functional

architecture

 Analysis

requirements

 Constraints,

concepts,

concern

30

2.2.2 Functional Hazard Assessment (FHA)

FHA identifies and classifies failures associated with system functions, covering both

functional losses and malfunctions. It can be organized according to

 System levels, for example, in the avionics system presented in (ARP 4761), the

two levels of FHA are the Aircraft level FHA and System level FHA.

 Or system operation phases and modes, for example, ground idle, landing, take

off.

Similar to the decomposition of functional models, FHA is conducted starting from

higher-level functions to lower-level functions. Failure conditions related to these

functions are considered and the effects of the failures are identified and classified.

The primary aim of FHA is to identify hazardous functional failure conditions. Its

methods are relatively direct and results are usually represented in a tabulated format as

show in Table 1. First, the function and its purpose and behaviours are defined, and

phases of the systems where functions can be performed are also recorded. Hypothetical

failure conditions (for example: loss of functions) that can occur for this function and its

effects are identified. This identification of the effects of function failures on the system

allows a representative severity class to be assigned. Lastly, a comments column

records necessary modification ideas and describes potential methods of addressing the

failures.

Table 1: Example of FHA on car brake function (source: Johannessen et al., 2001)

Function Failure

Condition

Phase Effects on

System

Severity Comments

Electric brake

force
distribution

Loss of

function

Straight dry

road

More brake

force on rear
wheels

Marginal Only affects a

loaded car,
which gain

longer braking

distance

...

31

2.2.3 Functional Failure Analysis (FFA)

FHA is extended in (Johannessen et al., 2001) and (Papadopoulos, 2001) to include

failure classes, similar to the classes used in HAZOP (Kletz, 1997). Failures are

classified, although not restricted, into „Omission‟, „Commission‟, „Timing‟, and

„Value‟. Further discussion and analysis of the meaning of these failure classes can be

found in (Bondavalli, 1990). Hazards identified in FFA can be used to represent top

events of a fault tree through HiP-HOPS. The extended FFA in (Papadopoulos, 1998)

organizes the tabulated FHA to include: function, failure type(s), effects of failure on

system, severity of failure, detection method, recovery plan, and design

recommendation. An example of FFA is presented in the Table 2.

Table 2: Example of FFA on car brake function

Function Failure

Type

Effects on

System

Severity Detection Recovery

Plan

Design

Recommendation

 Brake

Pressure

Omission No brake

force

available;
vehicle

cannot be

stopped;

driver loses

control.

Catastrophic Using

feedback

from
pressure

sensor

Not

possible

Redundant

components and

back up
mechanism should

be introduced

...

2.2.4 Preliminary Systems Safety Analysis (PSSA)

PSSA builds upon FHA to generate a complete list of updated system requirements, and

is used to demonstrate how a system will fulfil requirements for hazards identified in

FHA. In PSSA, design and architectural decisions are made and these help to generate

lower-level system requirements. Safety analysis techniques like FTA are often

employed to perform top-down analysis to determine how failures can lead to functional

hazards identified in FHA. This process also identifies remedial strategies, for example

32

by introducing fail-safe architectures, to meet the safety requirements. PSSA is iterative

and applied continuously throughout design process to derive thorough system

requirements.

FTA will be discussed along with other safety analysis techniques in the next section.

2.3 Classical Safety Analysis

Classical safety analysis techniques such as Fault Tree Analysis (FTA) and Failure

Modes and Effects Analysis (FMEA) are employed to predict the safety of safety

critical systems. However, as modern systems are becoming increasingly complex,

employing distributed architectures and programmable electronic components, new

approaches are being developed to meet the rising intricacy of designs. Model-Based

Safety Analysis (MBSA) is one such recent development.

Before further discussing the two prominent paradigms of MBSA – Compositional

Safety Analysis (CSA) and Behavioural Safety Analysis (BSA) – we first study the

background of several commonly used classical safety analysis techniques which

essentially underpin the newer MBSA approaches.

2.3.1 Fault Tree Analysis

Fault Tree Analysis (FTA) is an approach that aims to identify the root causes of an

undesired event by performing top-down traversal of a fault tree. A fault tree itself is a

diagrammatic description that shows how combinations of component failures (basic

event) can cause the undesired event (top event) to occur. These component failures are

connected within the fault tree through logical operators (for example, AND/OR).

Two types of analysis can be performed in FTA: quantitative and qualitative analysis.

Quantitative analysis is performed to calculate the probability of the top event.

Qualitative analysis is performed to identify the necessary and sufficient combination(s)

of basic events that cause the top event. These necessary and sufficient combinations are

called minimal cut sets (Vesely et al., 1981). The identification of minimal cut sets in a

fault tree helps the designer to focus on the design weak points. For example, if the

failure of component C1 is identified during FTA as being a direct cause of the failure

33

of the system, the system designer is now informed about this critical component, and

can reassess the design (e.g. by introducing a backup component to prevent this single

point failure).

2.3.2 Failure Mode and Effects Analysis

Failure Mode and Effects Analysis (FMEA) provides an analysis that details possible

failure modes for each component and their effects on the system. FMEA is presented in

tabular manner and can contain additional information about the component failure (e.g.

criticality and probability of occurrence). Classical FMEA is unable to determine

complex failure modes resulting from multiple component failures. This limitation is

addressed and overcome in HiP-HOPS where FTA and FMEA are automatically

generated and analyzed from system model, in hierarchical approach, enabling it to

determine further effects of a component failure.

Most classical techniques operate in either an inductive or a deductive way. Inductive

techniques attempt to determine the effects of a failure, while deductive techniques

attempt to discover the causes of a failure. FTA is a deductive approach, whereas

FMEA is an inductive approach. FTA and FMEA are traditionally a laborious and

manual process.

2.4 Compositional Safety Analysis

In CSA, predictive models of system failure are typically produced in the form of well-

known safety artefacts like fault trees. This technique models the failure behaviour of

the system - as opposed to the nominal (working) behaviour - by extending components

with local failure information.

The process starts from requirements which are translated into preliminary models.

These models can be decomposed into structural hierarchies, and the local failure logic

of components in these hierarchies is provided by analysts. Faults trees or FMEAs are

then automatically produced by establishing how the local effects of component failures

combine as they propagate through the topology of the system. The process is flexible

34

and adaptable to different stages of model development (from early functional models to

more detailed architectural models).

This is especially valuable as assessment can be started early in the design process when

concrete system details are still scarce. CSA produces safety artefacts which are familiar

to safety engineers including fault trees and FMEAs. These artefacts reveal potential

failures and design weaknesses (e.g. single points of failure) which can guide possible

design modifications, and help to derive and refine requirements. CSA techniques allow

quantitative analysis and in some cases also architectural optimization.

One key limitation of CSA is the inability to perform formal verification. Another

limitation is the fact that FTA and FMEA are static analyses, which do not take into

consideration the changes in system states and are therefore unable to capture dynamic

behaviour. This limitation has been to some extent addressed in HiP-HOPS with a

recent extension that enables assessment of sequences of failures via synthesis of

temporal fault trees and FMEAs (Walker et al., 2006).

Examples of techniques based on CSA are: Component Fault Tree, State Event Fault

Tree, Embedded Systems Safety and Reliability Analyser, and Hierarchically Performed

Hazard Origin and Propagation Studies.

2.4.1 Component Fault Tree

The Component Fault Tree concept (CFT) (Kaiser, 2003) is an extension to traditional

fault trees that allows definition of partial fault trees corresponding to actual technical

components. Although traditional fault tree allows modularization, it paths the failure

propagations to the root causes. Component failures are often affected by other

components, and therefore it is hard to model component independently.

Apart from the similarities with traditional fault tree - including the analysis techniques

- CFT also introduces the concept of a „port‟ to enable the modelling of component as

independent entity. Each component has internal basic events, logical gates, and input

and output ports which connect to other components. Components without input ports

can be analysed alone. Instead of fault trees, Directed Acyclic Graphs, called “Cause

Effect Graphs” (CEG) are used. CEGs differ from traditional fault trees in the sense that

35

repeated events are represented only once in CEG and CEG may contain several top

events (more than one failure mode). Figure 3 shows an example of a CFT, with “BE”

representing basic event:

Figure 3: CEG in a Component Fault Tree

2.4.2 State Event Fault Trees

State Event Fault Trees (SEFTs) (Grunske et al., 2005) are the youngest compositional

technique. They aim to extend traditional FT capability by distinguishing the notions of

“states” and “events” notion to better capture sequence of action and state history.

Traditional FTs do not differentiate states (a system condition that last over a period of

time) from events (sudden phenomena, especially state transitions). So semantically, a

SEFT is an extended state machine model instead of a true combinatorial model (i.e.

like a traditional fault tree). Like many other state machine based models, the states and

events that appear in SEFT are not necessarily failures.

Component C1

AND

Component C2

BE1

Internal failure

BE2

BE3

TOP event

OR OR

36

SEFTs deal with a finite state space for each component, where each component is

exactly one state at each instant of time. The notion „state‟ in SEFTs indicates the

condition a component is in for a given interval of time, while „event‟ indicates the

instantaneous phenomena that do not take time to occur (e.g. state transitions). System

failure can be represented as either top-events (which happen instantaneously) or top-

states (which last over a period of time). In SEFTs, the commonly used gates fall into

the following categories:

 NOT gates, which have one state input and one event output. There is no

negation of an event;

 OR gates, which combine either states or events (state OR state / event OR

event). There is no OR gate that mixes states with events;

 and lastly, AND gates, which join states and/or events (state AND state / state

OR event). There is no simple (event AND event) except for History AND and

Sequential AND. This is because an event is assumed to occur over {a very | an

infinitesimally} short time interval, thus only one can occur at a time. Gates

need to be converted to match state inputs to event outputs and vice versa.

2.4.3 Embedded Systems Safety and Reliability Analyser

ESSaReL (Embedded Systems Safety and Reliability Analyser) (Kaiser et al., 2007) is

a recent development that aims to integrate different models (Markov Chains, Fault

Trees, State charts) and support the new State/Event Fault Tree (SEFT) approach

(Kaiser et al., 2004). ESSaRel takes SEFT models as input and produces probabilistic

analysis results based on Deterministic Stochastic Petri Nets (DSPNs) as output. Main

phases for safety analysis employing SEFTs are:

1. SEFT construction

2. Translation of SEFT into DSPN

3. Analysis of flattened DSPN.

SEFTs are constructed like traditional fault trees, but just like CFT, they are organized

by components. A SEFT enables analysts to trace back and finds out which system

37

states or events initiate, propagate, or inhibit the failure behaviour. Figure 4 shows an

example of SEFT fragments.

Figure 4 : SEFT fragment (source: Kaiser, 2007)

Being a state-based model, a SEFT cannot be evaluated by traditional combinatorial

FTA algorithms, and therefore needs to be translated into formal notation where known

algorithms exist (Kaiser et al., 2007). Deterministic and Stochastic Petri Nets (DSPNs)

(Ciardo & Lindermann, 1993) are chosen as they are better suited to analyzing dynamic

models of this sort (German, 1995). Each SEFT state is mapped to a DSPN place and

each SEFT event to a DSPN transition. SEFT gates, however, are translated as a whole

by looking up the corresponding DSPN structure in a dictionary (Kaiser et al., 2007).

For quantitative probabilistic analysis of SEFTs, the component SEFTs are translated

into DSPN and then merged (flattened) into one flat net. Then an existing Petri Net

analysis tool, like TimeNET (German & Mitzlaff, 1995) is used and it offers both

transient and steady-state analysis. Currently the translation to DSPN and its analysis is

carried out manually.

38

2.4.4 Hierarchically Performed Hazard Origin and Propagation

Studies

Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS)

(Papadopoulos et al., 2001) - on which this project/thesis is developed - is a

compositional safety analysis technique currently being developed in the University of

Hull, which pioneered semi-automated fault tree analysis and IF-FMEA (Interface

focused FMEA). HiP-HOPS models the propagation of failures through the system by

constructing hierarchical component failure logic into a network of fault trees.

The HiP-HOPS tool can work in conjunction with commonly-used system modelling

tools, such as Matlab Simulink or Simulation X. Failure editors can be integrated in

these modelling tools which allow the system designers to annotate the model

components with failure information.

The failure information describes how the component fails and its relationship with

other component failures in the system. HiP-HOPS then takes this information and

examines how the component failures propagate through the system topology,

producing sets of interrelated fault trees and eventually an FMEA. This approach also

enables the hierarchical structure of the system to be captured neatly in the fault trees.

HiP-HOPS consists of three main phases: a model annotation phase, a fault tree

synthesis phase, and the generation of minimal cut sets and FMEA (the analysis phase).

Figure 5 illustrates the concept and steps involved in HiP-HOPS. The process starts

with the system designer (or analyst) annotating the components with failure

information. This stage provides information to HiP-HOPS on how the components can

fail. Local failure information takes the form of a set of expressions which are manually

added to each component. A failure class which occurs on a port (input or output

connections of the component) is known as deviation. These local failure expressions

describe how deviations of the component output can be caused by a combination of

deviations received at the component inputs and/or by failure modes (internal

malfunctions) of the component itself. For example, in this figure, we assume failure in

component C1 can be caused by its internal malfunction C1BE. Failure O-S1 which can

occur in S1 is said to be the system failure.

39

HiP-HOPS uses the local component failure behaviour and the topology of the model to

generate a network of fault trees that connect output deviations of the system to internal

failures of individual components. These fault trees show how the component failures

propagate from one component to another and affect the system or subsystems

individually or in combination with other component failures. Here, to maintain

simplicity, component failure C1BE is assumed to be a direct cause of system failure O-

S1.

Figure 5: Main phases in HiP-HOPS

In the analysis phase, the synthesized fault trees are analyzed and an FMEA is

generated. Both qualitative and quantitative analysis can be performed depending on the

amount of information provided. Qualitative analysis is performed through the

40

implementation of selected FTA algorithms and minimal cut sets are obtained from this

analysis. Eventually, the data is combined into a multiple failure mode FMEA which

shows both direct effects of failure modes on the system as well as the further effects of

the failure modes (i.e. the effects a failure mode can have on the system when it occurs

in conjunction with other failure modes). The resultant FMEA is presented in a table

that can be conveniently displayed through a web browser. In this example, the FMEA

table shows how component failure C1BE is a direct cause of system failure O-S1.

HiP-HOPS not only provides a consistent and robust model throughout design and

analysis, it also takes the pressure off the designer through the application of effective

analysis early in the lifecycle – by detecting potential design flaws early on, they can be

quickly remedied before they become serious problems. HiP-HOPS is flexible and

scalable, and is therefore well-suited to be performed iteratively throughout the design

phase.

2.4.5 Summary of CSA Techniques

Having reviewed the aforementioned CSA-based techniques, we have selected HiP-

HOPS to facilitate CSA in the IACoB process based on the following reasons. Firstly,

HiP-HOPS has been considerably developed in the recent years. It has been tested on

several industrial systems (Papadopoulos et al., 2005), (Hamann et al., 2008), and has

recently been extended with the capabilities to enable the analysis of temporal fault

trees (Walker, 2008) and multi-objective optimisation (Parker, 2010). HiP-HOPS also

provide tools implementation which allows practical support. In the context of this

thesis, it is also a natural choice because of the support and expertise available on site,

as well as the access provided to source code for any necessary expansion of the tool

(please see work on chapter 6).

2.5 Behavioural Safety Analysis

In the Behavioural Safety Analysis (BSA) approach, system-level effects of failures are

established by injecting faults into the formal specification of the system, and the effects

of these faults on system behaviours are observed. The BSA technique employs model

checking to allow formal verification. Model checking formally verifies safety

41

properties which represent safety requirements and enables the assessment of dynamic

behaviour. The model checking process is performed when a detailed formal model is

established. Formal models are expressed as state automata (or “finite state machines”)

in the language of the particular technique (e.g. Altarica language for Altarica and

NuSMV for FSAP/NuSMV). Model checking performs exhaustive exploration to check

whether a safety property – which is usually expressed in temporal logic – holds. The

tool produces Boolean output with a counterexample when safety properties do not hold

to show traces of „simulation‟ on how the breaching condition is reached.

The strength of this approach lies in its ability to facilitate automated formal verification

and capture the system‟s dynamic behaviours. It is also possible to differentiate between

transient and permanent failures and model the temporal ordering of failures. However,

this technique also has a number of drawbacks including the fact that most model

checker tools require the system model to be expressed in that particular model checker

input language. Valuable safety artefacts like fault trees produced from a model checker

generally have „flat‟ structures representing a disjunction of all minimal cut sets, which

can hamper understanding of the fault trees. The analysis is also typically qualitative in

nature and not probabilistic. Other challenges of model checking techniques can be

found in (Holzmann, 2005). Formal models (which are required as input to the model

checker) are only developed at later stages where designs are more mature, detailed and

stable. Lastly and perhaps most critically, model checking based approaches are

computationally expensive and inductive in nature which means that the exhaustive

assessment of the effects of combinations of component failures is infeasible in any

non-trivial system.

2.5.1 Introduction to Model checking

Model checking (Clarke & Emerson, 1980) tools explore all possible system states to

check if a condition holds true. This way, it can be shown that a system model truly

satisfies certain safety requirements (properties). If a model state is encountered that

violates the property, a counterexample is generated to show how the model could reach

the undesired state. The counterexample describes an execution path that leads from the

initial system state to a state that violates the property being verified. By studying it,

sources of the errors can be identified.

42

For a model checking tool to do this “state-exploration”, the input model needs to be

represented in the right format. Most real-time embedded or safety-critical systems are

control-oriented, and for control oriented systems, finite state machines (FSM) or finite

state automata are widely accepted as the abstract notation for defining the system

model. To model real-life complex industrial systems, the system model needs to be

represented in different level of detail (sub-systems, components) that can be combined

and integrated. Most model checking tools have their own rigorous formal language for

defining input models.

Typical safety properties that can be checked using model checking are of a qualitative

nature. For example: “Both processes can never be in their failed state simultaneously”,

“memory overflow can never occur”, or “as long as the plane is not on ground, the

engine should never stop”.

These properties (safety requirements) need to be expressed in a precise and

unambiguous statement, and temporal logic is employed to do this. Temporal logic is a

form of logic specifically tailored for statements and reasoning which involve the notion

of order in time. In model checking, it serves to formally state properties concerned with

the execution of systems. PLTL (Propositional Linear Temporal Logic) and CTL

(Computation Tree Logic) are the two most commonly used temporal logic in model

checking.

In temporal logic, classical Boolean combinators are necessary: the constants true and

false, the negation , Conjunction and , Disjunction or , logical implication , and

double implication (if and only if). These combinators enable the construction of

complex statements by relating various simpler sub-formulas.

In addition to Boolean operators, temporal logic also includes the additional temporal

connectives. The table below shows some of the common temporal connectives in CTL.

“E” (for some paths) and “A” (for all paths) are path quantifiers, while “F” (for some

states) and “G” (for all states) are state quantifiers for states in a path. “X” indicates

next.

43

Temporal Connectives Description

EX φ True if formula φ is true in at least one of the next

states

EF φ True if there exist some states in some path that

satisfies formula φ

EG φ True if every state in some path satisfies formula φ

AX φ True if formula φ is true in every one of the next

states

AF φ True if there exist some state in every path that

satisfies formula φ

AG φ True if every state in every path satisfies formula φ

Figure 6: Commonly used temporal connectives table

An example of a safety requirement specified in CTL is the statement: “AG

(ComponentA = activated)” which specifies that component A must be activated all

the time.

A system state is defined by a tuple of values for each of the variables. For example:

state1 = (componentA=off, componentB=off, level=low).

Most model checker tools convert a state model of the system provided as input into a

particular state transition model called a kripke structure (Kripke, 1963). This

conversion process removes hierarchies in the finite state machine, as well as parallel

compositions, guards and actions on transitions. Each state in a kripke structure contains

one value for each state variable, and transition in a kripke structure indicates changes

in one or more state variable values. A given property is checked against the kripke

structure, which is further unfolded into an infinite tree where each path in the tree

indicates a possible execution or behaviour of the system.

Figure 7 below shows an example of an execution tree. In an execution tree, the states

of the system are arranged so that the root is the initial system state and the children of

any state denote the next possible states. The definitions of how the system changes

from one state to another, and what states it can be in next, are defined in the input

model. If, for example, in Figure 7 the first variable of each node represents the state of

ComponentA, the second represents the state of ComponentB, and the third represents

that value of requirement AG (ComponentB = off) (level = low)), which

means: “every time component B is in its off mode, the level state is low”, then through

44

the inspection of this execution tree, a model checker can determine that the

requirement is clearly not true.

Figure 7 : Execution tree showing next possible states

2.5.2 FSAP/NuSMV-SA

FSAP/NuSMV-SA (Bozzano et al., 2003) is a safety analysis technique developed

within the ESACS project and consists of two main components: 1) FSAP (Formal

Safety Analysis Platform) which provides a graphical user interface 2) NuSMV-SA

which performs the safety assessment and is based on the NuSMV model checker.

FSAP/NuSMV-SA takes system models in NuSMV format as input and produces

analysis results as well as trace information like simulation results, counterexamples,

property verification results, minimal cut sets and fault trees as output. The following

phases describe how safety analysis is performed in FSAP/NuSMV-SA:

1. Model capturing

2. Failure mode capturing and model extension

3. Safety requirement capturing

... <off,off,

low>

<off,off, low>

<off,off, low>

<on,off,

high>

<on,off, high>

<off,off,

low>

<on, on,

high>

... … … … …

45

4. Model analysis

5. Results extraction and analysis

Model Capturing: The starting point is the formal model of the system, which can be

modelled as a system model (written by a design engineer) or a formal safety model

(written by a safety engineer). These models are written using the NuSMV (Cimatti et

al., 2000) input language and entered using a text editor. An example of simple bit

adder written in NuSMV is shown in Figure 8:

Figure 8: Fragment sample of NuSMV model for one-bit adder (source: Bozzano et al., 2003)

Failure Mode Capturing and Model Extension: Failure modes which describe how

various components of the system can fail are defined using a GUI. Here the safety

engineer can specify which nodes of the system can fail, how they fail, and with what

parameters. The failure modes can be stored and retrieved from a Generic Failure

Modes Library.

Once the failure modes are defined, they are then inserted into the models and the result

is called the extended model. “Injection” of this failure mode also produces a new piece

of NuSMV code that is automatically inserted into the extended system model. Figure 9

shows a sample of NuSMV model extended with failure modes:

MODULE bit(input)

VAR

output: {0,1};

ASSIGN

output:=input;

MODULE adder(bit1, bit2)

VAR

output: {0,1};

ASSIGN

output:=(bit1 + bit2) mod 2;

MODULE main

VAR

random1: {0,1};

random2: {0,1};

bit1: bit(random1);

bit2: bit(random2);

adder:

adder(bit1.output,bit2.output

;

46

Figure 9 : NuSMV model extended with failure mode (source: Bozzano et al., 2003)

Safety Requirement Capturing: During this stage, the design and safety engineer

define functional and safety requirement that will be used to assess safety behaviour of

the system. The safety requirements are expressed in temporal logic and the input

process is simplified through an available requirements library from which safety

patterns can be chosen and instantiated. Requirements can be subsequently verified

using the NuSMV model checking verification engine.

Model Analysis: FSAP/NuSMV performs simulation of both system model and

extended system model. The behaviour of a system is assessed against the functional

and safety requirements. The model analysis phase is performed by running the model

checker on the system properties. Two main verification tasks are performed:

1. Model checker NuSMV tests the validity of a system property and generates a

counterexample if the system property is not verified. At the moment, the model

checking tool is BDD-based.

2. FSAP/NuSMV generates fault trees. The FSAP/NuSMV-SA tool is able to

perform failure ordering analysis (Bozzano & Orita, 2003) which provides

information on timing constraints (where applicable) among the events in a

minimal cut set.

VAR

Output_nominal: {0,1};

Output_FailureMode: {no_failure, inverted};

ASSIGN

Output_nominal :=input;

DEFINE Output_inverted := !Output_nominal;

Output Output := case

 Output_FailureMode = no_failure : output_nominal;

 Output_FailureMode = inverted : output_inverted;

esac;

ASSIGN

next(output_FailureMode) := case

output_FailureMode = no_failure: {no_failure, inverted};

output_FailureMode = inverted : inverted;

esac;

47

Result Extraction and Analysis: The analysis results are displayed in formats

compatible with traditional commercial tools. Trace results obtained from a simulation

task or counterexample are bound to a system verification property or minimal cut set,

and can be displayed in textual, structural (XML), graphical (gnuplot utility) or tabular

display. Fault trees generated can be viewed in commercial tools like FaultTree+.

Joshi (Joshi et al., 2006) discuss several limitations of FSAP/NuSMV-SA which include

the “flat” structure of generated fault trees (fault trees generated are only two levels

deep and can be very broad). This might hamper the understanding of the system via the

fault trees. A normal fault tree shows multiple levels of causation, and in the CSA

approach also indicates the propagation of failures through the system. There is also

limited flexibility in defining the fault model, as there is no good way (in capturing the

hierarchy) of specifying fault propagation or simultaneous or dependent faults.

2.5.3 ALTARICA

The AltaRica language (Arnold et al., 2000) is designed to formally specify the

behaviour of a system. AltaRica models can be assessed through fault tree generators or

model checkers. The process takes in system models (AltaRica models) as input and

generates fault trees and model checker verification results as output.

The main phases for safety assessment with AltaRica are as follow (Bieber et al., 2002):

1. System Modelling

2. Formal Safety Requirements

3. Graphical Interactive Simulation

4. Safety Assessment : Fault Tree generation and Model checking

System Modelling

The AltaRica language is a hierarchical specification language based on constraint

automata used to formally model system specifications and behaviour. Formal syntax

and semantics of the language are described in (Point & Rauzy, 1999). AltaRica

48

describes complex systems consisting of interacting components with semantics

expressed in terms of an interfaced transition system. Components can be defined

hierarchically and composed together (synchronized) to create more complex

components. AltaRica provides a general synchronization mechanism and other features

like bidirectional flow, broadcast vectors and transition priorities.

An AltaRica model of a system consists of hierarchies of components called nodes. A

node gathers flows, states, events, transitions and assertions.

Flows: visible variables of the component which are used to exchange information with

the environment (other components of the system).

States: local/internal variables which are inaccessible by the environment.

Events: occurrences that change the state of a component (e.g. failures). Transitions:

describe how internal states may evolve. They are characterized by a guard, an event

name and a command part. A guard is a Boolean constraint over the component flow or

states. An event is the trigger for transition. Lastly, the command part is a set of values

assigned to some state variables, which describe the actions or results of the transition.

Assertions: Boolean formulae that describe the constraints linking flows and internal

states. These constraints express mutual dependencies on/between the states of the

components.

Consider the following example in Figure 10 of a simple component called “block”. A

block represents a basic energy provider and receives two Boolean inputs, I and A.

Input I is true every time the component receives energy and input A is true whenever

the component is activated. The component has a Boolean output O that is true

whenever it produces energy. It has an internal state S that is true whenever the

component is working properly (the safe state). Initially, S is assumed to be true. A

transition for the block can occur if the component is safe (S is true) and the event

„failure‟ occurs. After this transition, the component is no longer safe (S is false). The

block produces output O only when both of the inputs are true and the component is

safe.

49

Figure 10: Sample of block

The following shows the representation of block in the form of an AltaRica node :

Node block

 Flow

 O : bool : out ;

 I, A : bool : in ;

 State

 S : bool ;

 Event

 Failure;

 Trans

 S │- Failure → S: = false;

 Assert

 O = (I and A and S) ;

 External initial state = S = true ;

Edon

The whole system node (main node) is built by connecting basic nodes. Components are

combined together by two means: assertions and synchronizations. Global assertions

allow the definition of the flow connections (for example: stating that input flows of a

node are the output flows of another node). Connections can also be related to events

shared by a set of nodes (synchronization of events). Recently a time extension has been

introduced to AltaRica to enable the verifying of real-time AltaRica specifications

(Pagetti et al., 2003)

Formal Safety Requirements:

In this phase, the safety requirements are formalized with the use of linear temporal

logic operators (bieber et al., 2004). A library can be defined to store (and retrieve)

useful safety formulae.

A

I

<off,off,

low>

O

50

Graphical Interactive Simulation:

Safety engineers can check the effect of failure occurrences on the system architecture

using the graphical interactive simulator. It enables the safety engineer to choose an

event and the resulting state is computed by the simulator.

Safety assessment

Once a system model is specified in the AltaRica language, it can be compiled into a

lower level formalism for verification purposes. Compilers available for AltaRica could

produce automata, fault trees and stochastic Petri Nets. Figure 11 Illustrates the main

phases of Altarica and its safety artefacts.

 Automata: An AltaRica program can be compiled into a finite state automaton on

which formal verification techniques like model checking can be performed by the

MEC 5 (Arnold, 1994) model checker.

 Fault trees: another compiler could produce a fault tree on which reliability analysis

can also be carried out through the ARALIA program/tool (Groupe ARALIA,

1996). Compilation of AltaRica descriptions into Boolean formulae (i.e. a fault

tree) is discussed in (Rauzy, 2002) where a mode automaton is introduced as the

underlying mathematical model. An extended type called AltaRica Data-Flow

which is based on mode automata is introduced.

 Stochastic Petri Nets: the third compiler produces a stochastic Petri Net on which

performance analysis can be performed.

51

Figure 11 : Analysis phases of Altarica

2.5.4 Summary of BSA Techniques

NuSMV has been selected as a BSA method to complement HiP-HOPS in IACoB based

on the following considerations. Firstly, NuSMV is fundamentally a symbolic model

checker. Symbolic model checkers are generally more scalable and therefore, are

recommended for larger real-life systems. NuSMV has a strong advantage over

Altarica, as (Bieber, 2002) highlighted that Altarica‟s MEC model checker is limited on

the size of systems it can handle. NuSMV is also more suitable for Boolean-based data

(as opposed to enumerated type) (Miller, 2007). Considering that most of the failure

data obtained from HiP-HOPS are Boolean-based, NuSMV is a logical choice. The

NuSMV support tool is also available as an open-source program which allows it to be

tailored more effectively into a future integrated support tool.

2.6 Relevant Work on Other Integrated Approaches

To propose an integrated approach, it is first of all, important to understand the notion

of „integration‟ in this context. We believe that the generic primary characteristics

which constitute an integrated approach (methodology, tool, or both) include:

AltaRica model

(nodes)

Compiler

Automaton

(MEC 5)

Fault Tree

(ARALIA)

Petri Net

(MOCA-RP)

Produce:

(Analysis Tool)

52

 The application of these different techniques (CSA and BSA) within the same

process

 The link between relevant models (model representations in CSA and BSA)

should be well-established

 The integrated approach should provide better analysis capabilities (and results)

compared to a single technique

Here, we also briefly reviewed recent model-based techniques which incorporate the

critical elements of CSA and BSA, namely the capabilities to perform FTA and model

checking within its application.

Techniques like Altarica and FSAP/NuSMV are able to perform model checking and

generate fault trees. However, the primary characteristic shared between these

techniques is that they start with a BSA-based technique, and the fault trees are

produced as a result of the model checking analysis. As previously mentioned, this

approach has the drawback of having a “flat” fault tree structures.

ForMoSA (Formal Methods and Safety Analysis (Ortmeier et al., 2004b)) proposed a

combined use of traditional safety analysis (FTA) and formal verification via the use of

„failure-sensitive specification‟. Failure-sensitive specifications are used to derive more

complete failure modes by first generating all possible scenario combinations. It then

removes implausible behaviours and behaviours that do not fulfil specification rules

which govern the intended behaviour. The extracted behaviours results in a list of

failure modes, which is then separated from intended behaviour (nominal model). These

failure modes along with results obtained from independently-constructed fault trees,

are used to extend the nominal model. The main challenge this approach faces is the

state explosion problem in its generation of „failure-sensitive specification‟, in which all

combinations are first to be produced.

The “failure injection” nature of model checking in BSA can also be used to validate

results of CSA. Failure injection approach introduces failures and observes the changes

in the system behaviour in response to these failures. Lisagor (2006) recommends the

use of results from failure injection to verify the completeness of minimal cut sets

produced from FTA in CSA.

53

Here, we approach the integration from a radically different angle. Instead of starting

from a BSA process (which tends to be performed at the later stage of design

development), we believe it is possible to start the integrated process from CSA. We

also demonstrate a way in which the results of the CSA can be used for the systematic

construction and refinement of state automata that describe dynamic behaviour and can

be further subjected to BSA. In the following chapters, we discuss further the proposed

approach and demonstrate how these characteristics of integration can be achieved.

2.7 Chapter Summary

In this chapter, the background and context of this research work in system modelling

was briefly discussed. Attention was paid to the early functional design as we hope to

fill the gap in providing a more-robust safety assessment at (although not limited to) this

stage. MBSA techniques have been recently developed to cope with the rising

complexity of modern systems. The two most widely used MBSA-based techniques are

the CSA and BSA. CSA is generally based upon classical techniques like the FTA and

FMEA. It is widely used in reliability engineering, and its Boolean-based and

compositional nature makes the analysis efficient and scalable. However, CSA is

mainly limited to static analysis and is not capable of formal verification. This chapter

reviewed several CSA- based techniques, for example CFT, SEFT, and HiP-HOPS.

BSA, on the other hand, is based upon formal techniques like model checker. It relies

on exhaustive state exploration and allows formal verification of the model. BSA

limitations include the fact that it requires a relatively mature model, and therefore it is

often applied only at the later design stage. Example of BSA-based techniques reviewed

here are Altarica and FSAP/NuSMV.

This chapter provided an overview of the working mechanism, strengths, and

limitations of these techniques. We also studied the different objectives, and

complementary of aspects of CSA and BSA. In the next chapter, we proposed a method

to combine their applications.

54

CHAPTER 3. A method for Integrated Application

of Compositional and Behavioural Safety

Analysis (IACoB)

3.1 Introduction

This chapter develops a method for safety analysis which integrates the application of

CSA and BSA techniques. Its application is mainly explored in two contexts: early

functional design, and more detailed architectural design.

In early functional design, the method is applied to an early model where design details

are not yet mature. At this stage, focus is drawn to the benefits yielded by the method in

enabling systematic derivation of abstract behavioural models via CSA and then useful

application of model checking on such models. Application of the method is also

demonstrated in a later stage of design where the model includes more detail about the

architecture of the system. It is shown that the method is generic and applicable as an

iterative process that can span across the design lifecycle.

The key steps involved in IACoB analysis are illustrated in Figure 12. The method starts

with a given set of system functional requirements and safety specifications. From this,

a functional model of the system is established, which shows input processing and

output functions and dependencies among them, e.g. the data exchanged among

functions (or material and energy in the general case). In the next step, design engineers

are asked to examine further this model in order to evaluate the severity of failures of

output functions, i.e. functions provided by the system to users and its environment.

Each function is then annotated with its local failure behaviour in the style of HiP-

HOPS, enabling automated preliminary FTA to be conducted via application of CSA

analysis. The result is the generation of an FMEA of the system model. This FMEA is

then studied and interpreted, leading to recommendations for design improvements, and

additional safety measures in particular.

55

With the introduction of new safety measures, the requirements and system model are

updated. The severity of the failures of output functions and the local failure behaviour

of all functions are revised, and the next iteration of FMEA can be performed. This

might again lead to further iterations, until the design is deemed satisfactory. At this

point, results from FMEA are analyzed and interpreted to assist the further development

of the design via construction of state machines that represent system dynamic

behaviour. Model checking is then used to verify whether this dynamic system model

conforms to the requirements and specifications. If conformity is verified, the process

proceeds to either further refinement of the model and iteration of the above process or

its implementation. Otherwise, counter-examples are produced to show how the model

fails to fulfil certain requirements and to point out to useful revision of the model. Each

of these stages is discussed further in the next section.

56

Figure 12: Process outline of IACoB method

Requirements Generation

System Model

Severity Assessment

Local Failure Behaviour

Fault Tree & FMEA

Synthesis and Analysis

Translation of FMEA

Results to State Machine

State Machine

Construction

Model Checking

No - Counterexample

Yes

Further Design Refinement OR

Implementation

Safety Requirements Fulfilled?

CSA

BSA

System Requirements

Functional / Architectural Model

Criticality of Functional Failures

System Model Annotated with Failure

Information

System Dynamic Behaviour

57

Figure 13 shows how it is believed the IACoB method could fit into the traditional

safety assessment process (adapted from (ARP 4754)). The inclusion of IACoB in this

process enables techniques like FTA, FMEA and formal verification to be performed

earlier (following FHA once functions are allocated) rather than being applicable only

during or after a more detailed PSSA.

Figure 13: System development and safety assessment process (source: ARP 4754)

IACoB

58

The IACoB Process

This section presents a detailed description of IACoB. It gives a series of steps in which

various analyses and their results help to transform a basic initial functional model of

the system into a more robust, better prepared model which eventually becomes the

blueprint for system architecture and thus the foundation of development. For each step,

an accompanying table is given that summarises the input, primary activity, and output

of the processes that take place in the given step.

3.2 Functional Model

The essential element of early conceptual and preliminary design is the development of

a functional model. A functional model is the representation of the system functional

architecture that fulfils the system requirements. From a list of requirements, functions

are initially derived from the identification of „processes‟ that need to be performed by

the system. The task of identifying and organizing the system functions depends on the

application and the experience of designers. However, in general, functions would fall

into three categories: input, processing, and output functions. A Functional model can

then be seen as a function-oriented pipeline where data or control gets transformed as it

flows from input to output.

Functional models are popularly represented as functional flow block diagrams, an

example of which is shown in Figure 14.

Figure 14: Functional model in basic block diagrams

Function

F1

Input

Output Processing

Function

F2

Function

F3

Function

F4

Function

F6

Function

F5

59

An input function refers to a function that acquires the input parameters needed by the

system. In architectural designs, input functions are typically implemented with sensors

or communication controllers reading data on communication buses. A processing

function is a function that describes how the input data is processed, and finally an

output function provides function to the user or environment based on information

received from processing functions.

In situations where more information is available in the early stage, it is possible not

only to model the higher level functions of the system, but also to show hierarchical

decomposition of functions in networks of sub-functions.

One popular diagrammatic technique used in functional modelling is the Functional

Flow Block Diagram (NASA, 2007). A Functional Flow Block Diagram (FFBD), also

known as a Functional Flow Diagram or a Functional Block Diagram, is a step-by-step

flow diagram consisting blocks connected through lines, and it is used to represent

functional flow in a system.

FFBDs are a general tool and can define operational and support sequence for systems,

but also describe the processes for developing and producing systems. In FFBDs,

functions are organized according to their logical order of execution, and might depend

on the execution and completion of other functions. To manage complexity, functions

are decomposed into several levels. This functional decomposition defines the lower-

level functions and their sequential relationship allows traceability throughout.

Basic elements of a FFBD include: function blocks, directed lines and connection logic

symbols. Each function block in FFBD represents a single defined function. The block

contains information like the function name (which is generally expressed as verb) and

the function identification number (which establishes relationships and traceability

between levels). Reference functions which are denoted as bracketed blocks can also be

used to show reference to other functional diagrams. Figure 15 shows an example of a

functional block.

60

Function blocks are connected by directed lines, which depict function flow and flow

direction. Usually the function blocks are structured so the flow is directed from left to

right, as shown in Figure 16

In summary, the input, process and output of this stage of the construction of functional

model are:

Input Initial (textual) requirements

Process Identify, define and relate functions

 Translate requirements into functional model

Output Functional model/ functional architecture

3.3 Severity Assessment of Output Function

Once the high level functional model is developed, it is important to assess the severity

of deviations at output functions. We define an „output function‟ as the following:

F1

Perform calculation of

distance

Function number

Function name

Figure 15: Example of a functional block

Function number

Function name [Proceeding function] [Succeeding function]

Figure 16: Connection flow between functions

61

A function that interacts directly with the environment of the system by

providing information material and energy.

The „environment‟ of the system refers to the users and other external elements outside

the system boundaries. The interaction with the external environment is not exclusive to

output functions. An input function naturally accepts its value and „input‟ to be

processed from its environment. Here however the focus is placed on output functions

because of their effects on the environment and their potential contributions to hazards.

The classification of failures is assisted through the use of guide words similar to those

used in HAZOP, (Bonadavali & Simoncini, 1990) and (Pumfrey, 1999). These guide

words help categorize failure classes and their use depends on the level of details

available. Omission and Commission are commonly used at this stage. „Omission‟ of an

output function indicates the condition in which function output is not provided when

expected, while „commission‟ indicates the provision of unwanted output. It is also

possible to use more to indicate timing failures (late, early) and value failures (more,

less).

The categorization of failures in terms of severity is based on the IEC-61508 (IEC

61508, 1998) and is presented in Table 3. According to this, the severity of failures can

be classified, according to their consequences for humans (or for the quality of services

provided in the more general sense), into the following categories: Catastrophic,

Critical, Marginal and Negligible.

These severity classes are assigned to the failures using simulation, testing or

experience. The classification can be assigned as part of information presented in FFA

(please see the example FFA in Table 2) and allows the safety analysis to be focused

correctly, especially when there is any conflicting priority in the functional design.

Failures at functional outputs under the „catastrophic‟ or „critical‟ categories need to

receive higher priority compared to those which have „marginal‟ or „negligible‟ effects.

Table 3: Allocation of severity category based on consequences to people and service (IEC-61508)

Description Consequence to human

stakeholders

Consequence to service

Catastrophic Fatalities and/or multiple -

62

severe injuries

Critical Single fatality or severe

injury

Loss of major system

Marginal Minor injury Severe system damage

Negligible Possible minor injury System damage

In summary, the input, process and output of this severity assessment for output

functions process stage are:

Input System functional model

Process Estimate risk and classify the severity of output function failure based on

their consequences

Output Severity analysis of output functions

 Prioritisation of output failures using severity as criterion;

Identification of higher priority (critical) functions

3.4 Local Failure Behaviour

Apart from deciding the severity of failures of output functions, it is also important to

determine the potential causes of these failures as these can be seen to arise from the

specified functional model of the system. Qualitative analysis which identifies these

causes could provide valuable feedback towards improvement of the functional

architecture design by pinpointing weak parts in the system model, for example single

points of failure that can lead to severe output failures. To achieve this, local failure

behaviour of each function needs to be established. Failure behaviour can be described

using deviations.

A deviation contains information on the failure type and the „port‟ (i.e. input and/or

output) where it occurs. Failure of output function can be defined by output deviations.

An output deviation describes a set of Boolean expressions that represents the causes of

the output failure. These causes can consist of internal failures, input deviations, or

both. When representing deviations, the dash “-“symbol is used to separate the failure

type from the input or output parameters. Failure causes are connected by logical

operators. Commonly used logical operators are the disjunctive operator (“OR”, “˅”,

“+”) and the conjunctive operator (“AND”, “˄”, “.”).

63

For example, the following expression:

Omission-Output = InternalFailure OR Omission-Input

defines an output deviation for Function F1 (which is shown in Figure 17) where an

internal failure (InternalFailure) of the function or an omission of the input

(Omission-Input) can cause an omission of the output (Omission-Output) in the

function.

This annotation of failure behaviour for each function, in addition to the topology of the

functional architecture, allows failure logic to be developed and propagation of failure

to be subsequently established. The synthesis and analysis of fault trees are employed to

achieve this.

In summary, the input, process and output of this local failure behaviour annotation of

function are:

Input Functional model

Process Establish failure information for each functional block

Output Functional model with failure data information

 Establishment of causes (internal failure and failure of input) of

function failure

Input Output

InternalFailure

Function F1

Figure 17: Local failure behaviour for Function F1

64

3.5 Fault Tree and FMEA Synthesis and Analysis

Compositional safety analysis techniques like HiP-HOPS can be applied to perform the

automated construction and analysis of fault trees from the functional model.

The global view of failure propagation in the functional architecture can be captured by

traversing and following the causal links defined in each function‟s local failure

information. The process starts from a failure in an output function and moves

backwards progressively to record failures from other functions which contribute to this

particular output failure. This results in a set of fault trees that represent the

relationships between failures of output failures and their root causes in the functional

model of the system.

These fault trees in HiP-HOPS can be analyzed qualitatively, and the results are

summarized in an automatically generated FMEA table. The FMEA table shows the

direct links between potential failures of all functions in the model and the output

function failures which represent the hazardous failures of the system. Traditional

FMEA shows only the direct effects of a single failure on the output functions, but

because of the way the FMEA is constructed by HiP-HOPS from a series of fault trees,

it also captures the effects of a functional failure when it occurs in conjunction with

failures from other functions. These are termed the further effects of the function failure.

The FMEA table generally contains information on the list of functions, failure modes,

effects of the function failures in terms of the failures of the output functions, and other

contributing failures that need to occur collectively to cause failures in output functions.

It is also possible to include information on severity of the affected output function,

recommended treatments and other general comments.

The FMEA table essentially shows how internal failures of functions can contribute to

the hazardous failures of output functions. By determining these relationships between

failures in functions and failures in output functions, it is then possible to establish the

criticality of the function in the functional architecture.

Figure 18 illustrates this point by showing a functional architecture that produces three

output functions: Function F7, Function F8 and Function F9. For simplicity we assume

that every function has a single output failure - omission - and that this is caused by

65

internal failure of the function or omission of its input. For this reason, we do not

explicitly define the obvious annotation of each function. Severity assessment

performed during FFA identified that the severity of omission failure in output Function

F8 is catastrophic, while the severities of Function F7 and Function F9 are marginal.

HiP-HOPS analysis of the above model with its simple failure annotations creates the

fault tree of Figure 19 for the failure Omission of Function F8. The fault tree is analyzed

and an FMEA table (as partly shown in Table 4) is generated. The FMEA table

identifies those functions (Function F2, Function F3 and Function F5) whose failures

play a vital role in contributing to Omission of Function F8 failure. These are shown in

shaded function blocks in Figure 20.

Function F1 Function F4

Function F2

Function F5

Function F6

Function F7

Function F8

Function F3

Function F9

... ...

Figure 18: Example of the functional architecture

66

Table 4: Example of FMEA table

Function

Failure

Mode

Effects Contributing

Failure

Severity

Function F2 Internal

Failure

Omission of

Function F8

Internal Failure in

Function F3

Catastrophic

Function F3 Internal

Failure

Omission of

Function F8

Internal Failure in

Function F2

Catastrophic

Function F5 Internal

Failure

Omission of

Function F8

 Catastrophic

...

Omission of Function F8

Internal Failure

of Function F5

Internal Failure

of Function F2

Internal Failure

of Function F3
OR Gate

AND Gate

Legend:

Figure 19: Example of generated fault trees

67

Interpretation of the table allows the failure behaviour of the functional architecture to

be checked against safety requirements. By examining the FMEA table, safety measures

can be devised (for example, by revising the design structure or introducing safety

mechanism). Focus is placed especially on functions whose failures contribute to

hazardous effects, as they need to be prevented by design or at least have their impacts

minimized. Further discussion on the common techniques and solutions employed to

divert critical failures are discussed in Chapter 6.

While the design solution ultimately relies on the engineer‟s decision and experience,

this identification of criticality for each function offers assistance in the management of

effort allocation and design modification. For example, apart from identifying that focus

should be placed on Function F2, F3 and F5 due to their failure criticality, the fault tree

also shows that Function F5 is a single-point of failure that might need additional

attention.

To achieve a safer design, modification of the system structure, for example through

incorporation of backup or redundant components (in later versions of the designs) for

fail-safe purposes, is often necessary. The introduction of these safety mechanisms

might result in new modules (functions in an earlier design, or implementation

Function F1 Function F4

Function F2

Function F5

Function F6

Function F7

Function F8

Function F3

Function F9

... ...

Figure 20: Identified critical functions based on failure propagation

68

components in a detailed design) and brings about the need to iterate the process to

generate updated FTAs and FMEAs.

From this process, more refined design and safety requirements can be derived. The

identification of lower level failures leading to output failures can be evaluated, and this

helps derive more refined design requirements. This results in fewer late design changes

in comparison to traditional practice where assessment at this stage is often limited to

FHA. In classical safety assessment, FTA and FMEAs are performed manually, making

safety analysis a laborious process while often meaning it is deferred until the PSSA

stage where the details of the design are more concrete.

In summary, the input, process and output of fault tree and FMEA synthesis and

analysis are:

Input Functional model with local failure behaviour information

Process Generate FTA and FMEA from functional model (HiP-HOPS is

applicable for this)

 Identify weak points in system design - contributing function

failures that leads to (severe) output function failure : by linking

failures in output functions to their causes

Output Effect of functional failures on output functions

 Better understanding of the criticality of input, processing and

output functions in the system

3.6 Generation of State machines and Their Translation into

Model Checker Input Language

One important aspect in this research is the investigation on how application of CSA

and BSA techniques can be integrated constructively. To achieve this, we need to

establish an effective association between the primary elements of CSA and BSA

techniques, namely the FTA/ FMEA results (output of CSA) and state machines (input

of BSA) respectively.

In IACoB, the results of the FMEA are used to construct behavioural models that can be

subjected to BSA. Indeed application of the method leads to synthesis of state machines

that describe the dynamic behaviour of the system in conditions of failure. Iterative

69

application of the method starts from “abstract” state machines which progressively

become more “refined” as they contain more details about the behaviour of the system.

In general, these state machines show how functional failures assessed in the FMEA

move the system to degraded or failed “modes” where there is reduced function or no

function at all. We use the term mode as in (Papadopoulos, 2000) to indicate an abstract

functional state in which the system delivers a set of functions. We also use the term

“mode chart” to indicate a state machine which shows transition between modes.

To create such mode charts, in IACoB, an FMEA-ModeChart assistance table is

constructed to help organise state machine elements and create the “abstract” state

machine. Transitions in this state machine are then refined to produce a more “refined”

state machine. Traceability between abstract and refined state machines allows the

understanding of how transition in a more-refined level affects the higher level state of

the system. The refined state machine can also be produced directly from HiP-HOPS

failure annotations to model system failure-related dynamic behaviour. Both abstract

and refined state machines can be represented in the NuSMV model, and can be

extended with nominal behaviour. Figure 21 illustrates the process of generating state

machines from FMEA results.

This process is further discussed in the following section. First, we investigate the

representation of abstract state machines, their purpose and application, how they can be

constructed based on information gathered from results of previous process, and the

value of their analysis.

70

Failure-

extended model

(error model)

Figure 21: Generation of state machines

Fault Tree & FMEA

Synthesis and Analysis

FMEA-ModeChart

Assistance Table

Abstract State

Machine

HiP-HOPS Annotated

Model

Refined State

Machine

NuSMV

Model

HiP-HOPS analysis

Extend with

nominal dynamic

behaviour

Represented in

NuSMV

Represented in

NuSMV

Nominal dynamic

behaviour

Refine

transitions

Linking failure

 to causes

Traceability

Extend with

nominal dynamic

behaviour

71

3.6.1 Modelling the Dynamic Nominal Behaviour of a System

State machines can be used to model the dynamic behaviour of discrete event systems.

In the early functional design stage, the state machines are usually abstract and are used

to model high-level system behaviour. In later stages of development, they can be used

to model more refined behaviour.

Overview of State Machine fundamentals

Traditional (finite) state machines are flat and sequential. Such state machines have

proved to be a useful theoretical tool in computer science, but are unsuitable for

representation of large or complex system. David Harel introduced state charts as a

language to describe state machines by extending finite state machines with additional

capabilities, including hierarchy, concurrency and priority (Harel, 1987). While the

approach we discuss here is not tied to any particular commercial support tool, the

modelling of state machines in this thesis is based on the general semantics of state

charts. Being an unofficial language, many variants of state charts have been proposed

in the literature - as reviewed in (Von der Beek, 1994). One of the most widely known

implementations of state charts is the STATEMATE tool, the semantics of which are

described in (Harel & Naamad, 1996). The complete discussion of semantics and

syntax of state charts is out of the scope of this thesis, and readers are referred to (Harel,

1987). This section presents the key concepts of state charts and discusses how these

foundations enable state charts to be a prominent notion in modelling complex system

behaviour, and how its extension can be adopted as part of early design analysis.

State

A state is defined by Weilkiens (2007) as the representation of a set of value

combinations for the underlying system elements. It describes the system internal

behaviours at a given time (and when a state is active, the system is said to be „in‟ that

state). Apart from the internal behaviour which is executed based on defined events, a

state can have three other behaviours that are triggered by predefined events:

1) entry behaviour – which is executed immediately once the state is entered

2) exit behaviour – which is executed immediately before the state is exited

3) do behaviour – which is executed while the state is active

72

Figure 22 below illustrates an example of a state chart. States are shown in rounded-

corner rectangles, and charts are shown with soft greyed dash border. Sometimes states

and charts are not distinctively/uniquely named, for example S1 is both a chart and a

state. A state may itself host and contain other state charts and this creates the relations

of „parent-chart‟/„sub-chart‟ and „parent-state‟/ „sub-state‟.

States in state charts are categorized into two types: OR states and AND states. OR

states (for example S1, S4 and S5) are states that have sub-states related to each other

by „exclusive-or‟, i.e. they are mutually exclusive and are reached sequentially. Basic

states (for example S2, S6, S7, S8, and S9) are states that are at the bottom of hierarchy

and do not contain any sub-states. Basic states are considered OR states. AND states

(for example S3) are states that contain at least two sub-charts that are reached

simultaneously when the parent-state is activated, and thus AND states are used to

model concurrency.

Transition

Transition (t1..t5) defines the trigger and condition of the directed relationship between

states. These are expressed by a „transition label‟ which can be defined in the form of

Figure 22: Sample of state chart

73

„e[c]/ac‟, where e is the event that triggers the transition, c is the condition that guards

the transition, and ac is the action that is performed when and if the transition occurs. A

default transition defines the state that is entered once the chart is active. In the Figure

22, the defaults are the transitions to S2, S6 and S8, and are denoted by the circle-ended

arrow.

Events can be generated externally or inside the same sub-chart. Additionally, events

can also be predefined (as mentioned earlier) and be generated when a state is entered

“en(s)” or exited “ex(s)”or when the value of a Boolean variable “variable” becomes

true “true(variable)” , false “false(variable)” or changes “change(variable)”.

Conditions are used to guard the transitions. A condition can contain expressions on

data values or expressions on elements of state charts. The combination of events and

conditions is called the trigger of the transition, and the trigger is fired only when the

Boolean combination of these events and conditions are true. A condition persists until

the instance when the inverse condition holds.

Transitions can generate actions which control other charts. These actions are

categorized into basic actions, which form basic events, and compound actions, which

modify state chart elements (i.e. data variables). Referring to the Figure 22 for example,

transition t3 which is triggered by event „c‟, will cause action „d‟ to be fired, which in

turn triggers transition t4 and causes a transition from state S8 to S9. Transition actions

will be executed after the source state is deactivated, but before the target state is

activated. Similar to events, actions can also be executed when a state is entered or

exited in addition to appearing along transitions.

The following is an excerpt of the transition label syntax grammar customized from

(Loer, 2003):

74

<label> ::= [<event>]/{<action>;}

<event> ::= E event variable

 | (<event>and<event>) Boolean combination
 | (<event>or <event>)

 | not(<event>) negation

 | en(<state>) chart entered state
 | ex(<state>) chart left state

 | [<condition>] condition is true

 tr(<condition>) condition became true

 | fs(<condition>) condition became false
 | ch(<condition>) condition changed

<condition> ::= C condition variable (Boolean)

 | not <condition> negation
 | (<condition>) and (<condition>) Boolean combination

 | (<condition>) or (<condition>)

 | in(<state>) chart is in „state‟

<action> ::= E event variable
 | tr!(C) set C to true

 | fs!(C) set C to false

 | C:=<condition> assign the value of (Boolean) condition to C
 |D:= <condition> assign the value of (data) <arithmetic expression> to D

In the state chart semantics system behaviour is described as a set of possible runs

(Harel & Naamad, 1996). Runs represent the system responses to external stimuli, and

consist of a sequence of status. A status is the set of all currently visited model states

and may contain information on: active states, values of data items, conditions,

generated events and scheduled actions. The transition from one status to the next is

defined by steps. In addition to external stimuli, changes occurring during and since

previous steps would trigger transitions between states and as a result the system moves

to a new status, as illustrated in the figure below:

Status

(initial)

..... Status Status Status

Step Step Step Step

Status

Figure 23: Status and steps in state charts semantics (source : Harel & Naamad, 1996)

75

General Principles and Language Restrictions

Although currently there is no agreed common standard that defines formal semantics

for state charts, (Harel & Naamad 1996) describe the general principles to define the

semantics of state charts:

1) Changes that occur in a step, and reactions to internal and external events, can

only be sensed after completion of the step

2) Events „live‟ for duration of one step only and are not remembered in

subsequent steps

3) Calculations in one step are based on the situation at the beginning of the step

(i.e. the states the system is in and the value of data items)

4) Greediness property: the maximal subset of non-conflicting transitions are

always executed

5) Execution of a step takes 0 instances of time, i.e. it is instantaneous

3.6.1.1 Overview of NuSMV

As introduced earlier in Chapter 2, NuSMV is a newer version of Symbolic Model

Verifier (SMV, (McMillan, 1993)). It automatically verifies if a system (which is

expressed as a finite state machine) satisfies its specifications.

A NuSMV model describes system behaviour by declaring a set of variables. The initial

values for these variables and how the variables change are explicitly defined. This

description can be grouped into a set of modules with one main module. Modules are

generally used to define or distinguish separate physical (sub) systems. A NuSMV

module can consist of a set of variable declarations, assignments of variable initial

values and definitions, and property assertions. The variable declaration section contains

the local variables names and their types in the form „variable_name :

variable_type‟. Variables type can generally be of Boolean, numerical or enumerated

types. The assignment section contains a set of assignments of variables into their initial

value or its value in the next execution step, describing how a variable can change

value. This can be expressed in the form „variable_name := value‟. Various

operators are available for variable assignments, including Boolean logic operators

(and, or, not), conditional operators (case, switch), arithmetic (+, -, *, /), and

76

comparison (=, <, >, <=, >=). To assign a value of a variable in its initial and next

execution step, operators init and next are used. The next value of a variable is

defined using operators and constants from the range of values that the variable can

have, as described in the declaration. Variables that do not have an assignment change

non-deterministically. The assertion section is where safety properties (written in LTL

or CTL) are defined, and these properties should hold over all executions.

Each module can also have input parameters (which are assigned outside the module)

and output parameters (which are assigned inside the module). An excerpt of an

example NuSMV model is presented below, showing relationship between input

parameters and how they affect the internal variables:

MODULE functionF1 (inputParam1, inputParam2)

VAR

functionStates: {state1, state2, state3 };

functionEvent1: boolean;

functionEvent2: boolean;

ASSIGN

init (functionEvent1):= 0;

functionEvent2 := !functionEvent1;

functionStates := case

functionEvent1 & inputParam1 : state1;

functionEvent2 & inputParam2 : state2;

1: state3;

esac;

next(functionEvent1):=case

functionEvent1 = 1: 1;

1: {1,0};

esac;

AND states, however, require each of the state values to be defined independently as

separate variables to allow the states to run simultaneously. For example:

VAR

state1: ...

state2: ...

state3: ...

defines that state1, state2 and state3 run in parallel, and each can hold value of its

own (i.e. sub-modes, which will be discussed in the next section).

77

3.6.1.2 Hierarchical Modelling in State Machines

Contemporary systems are often required to perform large and complex functions in

different stages of operation. For example, functions in an aircraft may vary from

critical functions such as flight management, communications, and engine control to

secondary electrical domestic and comfort/entertainment facilities. These functions

involve large numbers of behavioural states, transitions, structural configurations, and

interactions, and managing them is no trivial task.

One way to help the management of this large complex labyrinth of dynamic behaviour

is through hierarchical modelling. Hierarchical modelling manages the decomposition

of a state machine relating to a system by breaking it down into smaller parts, similar to

those in static decomposition of systems and subsystems.

The activity of a state depends on the hierarchy of its parent-state. Hierarchy enables the

states to nest, allowing the parent-state and sub-state relationships. (Drusinsky, 2006)

outlines roles of hierarchy, mainly:

1) Refinement of states in a top-down manner

2) Reduction of transition clutter

3) Maintaining orthogonality, where parent-states are to be place holders for

independent, irredundant activities (concurrency)

4) Enabling shared actions, where all sub-states shares the action of parent-state

Consider the example in the figures below. State machines in Figure 24 and Figure 25

describe the states and transitions in System S1. Both figures are semantically

equivalent, but Figure 25, in which states belonging to State 3 are grouped, is more

readable and less cluttered. Transition triggered by Event 8 in State 3.1 is required to be

represented once in the parent-state State 3, as opposed to every sub-state in Figure 24.

This significance is especially clear when there is need for the decomposition to be

constructed into several levels (e.g. State 3.1.1, State 3.1.2 ...).

78

Figure 24: Simple state machine without hierarchy

Figure 25: Simple state machine with hierarchy

Decomposition of states into sub-states is useful, but a state machine hierarchy should

ideally also capture the physical and logical decomposition of the system into

subsystems and components, which as mentioned earlier, can be represented in the

functional model in the early stage or architectural model in the later stage of

development. (Papadopoulos, 2000) describes how decomposition of a dynamic model

79

can be framed around the decomposition of its static structural model. For each (sub)

system in the static hierarchy, a state machine is constructed to describe their

behavioural transformations. For example, Figure 26 illustrates this relationship

between static hierarchical model of System S and its subsystems, and their dynamic

hierarchical model in state machines. System S can be structurally decomposed into

subsystems S1, S2 and S3; while subsystem S1 is further decomposed into component

C1, C2 and C3. The top level of the dynamic model represents the main operational

states of the system S1, and transitions between them; the second level represents the

behavioural states of the subsystems S1, S2, and S3. And the lowest level represents

behavioural states of component C1, C2 and C3.

System S

S1

S2

S3

System S S

1

Static model for system and

subsystem s

Dynamic model for system and

subsystem s

S

S1
S2

S3

Subsystem S1

C1

C2

C3

C1
C2

C3

Figure 26: Relationships between static and dynamic models hierarchy of the system

80

3.6.1.3 Hierarchical Modelling in NuSMV

Hierarchy and decomposition in NuSMV models are managed through modules. The

top-most module of the hierarchy needs to be declared as the main module. Modules,

except for the main module, can instantiate multiple modules; and likewise a module

can be instantiated by one or more other modules. Variables in a module can be local or

global, and they can be accessed globally using path names.

For example, Figure 28 shows an excerpt of a NuSMV model representing the state

machine shown in Figure 27. Sub-state St1 is modelled in a separate module, and sub-

state St1a can be referenced as St1.St1a. Events can be managed locally or globally.

Events which are managed by other modules can be passed to corresponding modules as

input parameters. Other parameters can be included to allow management of transitions

and control. For example, additional variables can be assigned to manage activation of

states (i.e. to inform sub-states whether parent-state is active) or to define which sub-

state becomes active initially when the parent-state is activated. These allow transitions

and control in AND/OR states to be managed accordingly.

Further discussion on semantics of NuSMV can be found in (Cavada et al., 2005).

Figure 27: Sample state chart for S1

81

3.6.2 Modelling the Dynamic Failure Behaviour of a System

The ability to capture system dynamic behaviour as part of the overall safety analysis

process is vital because we need to understand how the system behaves not only during

its normal operational conditions, but also in the presence of failures. In this section, we

explore further the dynamic modelling of system failure behaviour, particularly in the

construction of dynamic failure models and the information that can be obtained from

their analysis.

Depending on the level of detail that they contain and their position in the IACoB

design lifecycle, state machines in this discussion can be loosely grouped into two

types: “abstract” state machine and more “refined” state machines. Abstract state

machines are generally used to refer to the state machines that are created at early

design stage (e.g. during development of functional model). Refined state machines

refer to the state machines constructed at later stage (e.g. during development of

architectural model). Construction of an abstract state machine generally focuses on

modelling the delivery of the system functions. Construction of a refined state machine,

MODULE S1 (...)

VAR

state : {St1,St2};

E1: boolean;

E2: boolean;

E3: boolean;

E4: boolean;

St1: Sub_St1(E3,E4,...);

...

ASSIGN

init (state):= St1;

next(state):=case

state = St1 & E1: St2;

state = St2 & E2: St1;

1: state;

esac;

...

MODULE Sub_St1 (E3, E4, ...)

VAR

state: {St1a, St1b};

ASSIGN

init (state):= St1a;

next(state):=case

state = St1a & E3: St1b;

state = St1b & E4: St1a;

1: state;

esac;

...

Figure 28: Modules to model hierarchy in NuSMV

82

on the other hand, focuses more on exploiting hierarchical links and the topology of the

system to manage the failure-related transition triggers between state machines of the

components. These are also discussed further in the following sections.

3.6.2.1 Abstract Functional State Machine

Early development process revolves around the construction and analysis of the

functional model. At this stage, dynamic behaviour can be expressed as a set of different

functional states of the system and transitions between them. A functional state in turn

is defined by the set of functions delivered by the system in this state. (Papadopoulos,

2000) calls such states “modes” and defines a process for the construction and analysis

of abstract state machines (or mode charts) that contain transitions among such modes.

This type of abstract state machine modelling plays a major part in the IACoB process

as the introduction of safety-driven system mechanisms assisted by interpretation of the

FMEA table brings new challenges in its safety analysis process. Failure in a function

can cause occurrence of failure in other functions, or trigger the activation of other

dormant functions. This in turn, changes the structure, interrelations and dependencies

between the functions, and inevitably the failure propagation. The modelling and study

of these new system dynamics pose new challenges for static assessment techniques like

FTA. To address these problems and help model the dynamic behaviour, abstract state

machines are used to describe the transition of the system from one state to another as

the functional characteristics change. The advantage of including state machines here is

twofold:

 Firstly, it helps to identify the fault tolerance mechanisms that can be introduced

to the design by showing how the system can experience transition gracefully

into the non-critical states after experiencing failures.

 Secondly, the abstract state machine captures dynamic system behaviour in a

higher level manner. It retains the state/transitions information that enables it to

provide input to formal verification/model checker tools.

83

3.6.2.2 Mode chart to Represent Abstract State Machine

Mode

In this thesis, the term mode is adopted to define the notion of a “functional state in

which the system maintains a stable functional profile” as in (Papadopoulos, 2000).

Mode is thus used to describe different phases of operations, in which the system

behaves and functions in different ways. In a similar way, „mode‟ is a more precise term

that can be used to replace „state‟ in an abstract state machine. Therefore it is adopted in

this section to describe the application of an abstract state machine. The term „mode

chart‟ is subsequently used instead of state chart to more precisely represent this type of

state machine.

General types of mode that are used in the modelling of abstract state machines can be

categorized as into the following:

1. Normal mode

2. Degraded mode

3. Failed mode

The system is said to be in normal mode when it delivers its predefined set of functions.

Degraded mode describes the condition where a system delivers part of the intended

functionality safely, whereas failed mode refers to the condition where there is complete

loss of function or the system behaves in an unpredictable and hazardous manner. This

implies that in cases when the system loses even only one of its many functions, if the

lost function happens to be critical and has catastrophic effects on the system as a

whole, the system is said to be in failed mode.

Modes and Their Roles in Fault Tolerance

Although this general classification of system modes is based upon delivery of

functions, degraded and failed modes can be further divided into sub-categories as there

are several well-established ways to categorize failures (and subsequently how these

modes can possibly be further classified in relation to the response or nature of

causative failures). For example, the general fault classification table presented in (Suri,

1995) outlines different types of faults according to different criteria such as: activity

84

(latent and active), duration (transient and permanent), causes (random and generic) and

so forth. Here however, focus is placed on time-based classification. Degraded and

failed modes can be categorized into temporary and permanent. A system is said to be

in temporary degraded or temporary failed mode when the system has lost its normal

functionality, but action can be taken to restore the normal mode. The system is said to

be in permanent degraded or failed mode when it is no longer recoverable.

This classification and introduction of degraded modes is part of the effort to gain better

understanding of the implementation of fault tolerance in early designs. Failures in (sub)

systems should be compensated and managed in such way that their impacts leading to

hazardous system failure are minimized. An abstract state machine is therefore designed

to capture how degraded modes can act as potential buffers to divert hazardous failures.

One way to achieve this goal of fault tolerance is through introduction of redundant

structures. In a more detailed design, redundancy can be implemented in the hardware,

software, or information domain. For early design, we assume these are encapsulated as

a more generic entity referred to as a module, which represents a function that can be

refined accordingly into a system or component at a later stage.

Basic approaches to redundancy can be classified into static and dynamic redundancy.

Static (also known as passive) redundancy does not detect or perform active action to

control failures, but rather masks the failures to prevent failure propagation. Dynamic

(also known as active) redundancy employs fault detection, diagnosis and

reconfigurations. Hybrid redundancy combines both static and dynamic where masking

is used to prevent propagation of failures and error detections, diagnosis and

reconfigurations are also used to handle faulty components.

In static redundancy, modules are replicated according to the desired fault tolerance

capability. Majority voting is typically used as the selection mechanism to decide on the

correct output. To avoid single points of failure, voters can be duplicated and moved to

the inputs of the modules.

Dynamic redundancy, on the other hand, uses less module duplication at the cost of

heavier information processing. A minimal configuration consists of two modules (one

main module and one standby module) performing the same functions. Fault detection

and reconfiguration modules can be included for support. A fault detection module

85

monitors the outputs and when failure is detected in the main module, a reconfiguration

module switches from delivering the output of the main module to delivering the output

of the backup module. There are two types of standby in dynamic redundancy: hot

standby (where standby module is continuously active) and cold standby (where

standby module is activated only when needed).

In the context of the IACoB process, these fault tolerant mechanisms are often

formulated after the CSA phase (FTA/FMEA). The construction of abstract state

machines (and subsequently identification of degraded modes) essentially provides a

state where these fault-tolerance strategies can be considered and taken into account into

the overall system behaviour, and these strategies can be refined within the design

progress.

Events and Transitions

Transitions between modes can be caused by:

 Normal events that cause the system to deliver different sets of functions. Such

events cause a phase change in a phased-mission system.

 Failure events that causes the system to lose part or all of its functionality (e.g.

normal transforming to degraded mode).

 Event that indicates restoration of functionality following failure (degraded modes

back to normal mode).

Note that transitions are not only triggered by external events, i.e. stimuli from users

and the environment. A transformation at a higher level of a mode chart can occur

because of an event that occurs in the lower level, or by the occurrence of logical

combinations of lower-level transitions. This allows us to capture the failure

propagation of the system because as we move upwards from the lower level to the

higher level, the mode charts capture how deviations or failure in the lower level (sub

systems) affects the mode changes in higher level. Figure 29 illustrates this type of

transitions triggered by internal events. At the higher level (level 1), the system

changes its mode from normal to degraded when failure in subsystem S1 occur

86

(S1_Fail). Lower-level (level 2) state machines looks into how subsystem S1 reaches its

fail mode after failure in C1 and C2 occur.

Figure 29: Mode charts showing high level and low level of system state transitions

Communications between mode charts can be established between different levels in

these ways:

 Horizontal communication (peer charts) – transition results in an action that

triggers other transitions in the same level of the chart.

 Vertical communication (Parents and sub charts) – transition in lower level

mode chart triggers a transition in the higher level charts, and vice versa.

Upwards communication where lower level charts can initiate an event that acts

as the trigger for an action that activates a transition in higher level charts is

common when the model aims to show how failures in subsystem trigger higher-

level system failures.

One benefit of this organization technique is the ability to efficiently identify the

relationship between transitions. Transition labels can be categorized according to the

failure propagation points. One systematic method to identify possible failure-related

(Level 1) System S Mode chart

(Level 2) System S1 Mode chart

87

events that trigger transitions from one mode of a system to another is through the

observation of the system‟s:

1. Peer-system‟s failure (same level) – a transition event in an immediate structural

(input) block can trigger a transition event in another block.

2. Subsystem‟s failure (lower level) – a transition event in a lower level subsystem

can trigger a transition event in a higher level system

3. Internal failure – internal malfunction of a block itself can be the basic cause of

the transition.

3.6.3 Translation of FMEA Results to an Abstract State Machine

To construct system modes at an early functional level we need to identify system

functional configurations and their possible transformations. To construct the events, we

need to determine possible transitions between these configurations. At the same time,

the FTA/FMEA results derived from previous stages provide information on failure

relationship between functions. These results allow us to establish failure propagation

and shows the effects (and criticality) of a failure event on the output function.

3.6.3.1 FMEA-MODECHART Assistance Table

Here we propose the construction of an assistance table to effectively identify and

capture significant variables from the FMEA results for the main elements of mode

chart. The table aims to organize information gathering from FTA/FMEA into a more

systematic process of mode chart construction, as opposed to the traditional ad-hoc

process. This assistance table is organized to identify: system modes, severity of each

mode, output functions delivered in that mode, failure event(s) causing transition, and

target mode(s) this transition leads to.

This information can be obtained from the previous IACoB processes. “Modes” are

derived from previous FHA analysis where output function failures have been

categorized according to their failure severity. The severity assessment process allows

us to establish which function failures are tolerable, and which function failures are

intolerable. It is then possible to categorize the delivery (or not) of these functions into

88

different modes. Failure to deliver functions that do not lead to hazardous effects is

tolerable, and generally leads to degraded mode. Hazardous failure is intolerable and

leads to a failed mode. This essentially allows us to establish graceful degradation for

the system in the presence of failures.

The “Functions Delivered” column outlines lists of (output) functions delivered in the

particular mode. This information can be obtained during the grouping of modes

according to the functions delivered. “Functional Failure Causing Transition” describes

the type of failure event that can occur (i.e. deviation in each of the corresponding

output function). This information can be obtained from each of the output function

which has been annotated with failure behaviour. Finally, “Target Mode” defines the

mode a particular failure event leads to during a transition.

With this key information (modes and events which trigger transformations) now

gathered in the assistance table, the process of constructing the abstract state machine is

relatively straightforward.

Table 5 shows an example of an assistance table for the sample system presented in

Figure 18. The first mode identified is System_Normal, where all output functions

(Function F7, F8 and F9) are delivered. Each output function is susceptible to an

omission failure which results in the inability of the system to deliver the particular

function. From the earlier FFA, Function F8 is identified as a critical function, and this

brings us to the second mode, System_Degraded. In System_Degraded mode, output

function F8 is delivered regardless of the condition of function F7 or F9. System mode

goes to System_Fail when omission in Function F8 occurs. Please note that even in the

System_Degraded or System_Fail mode, Function F7 and/or Function F9 can still be

delivered. It is also possible to include other degraded modes to further define the

delivery (or not) of Function F7 or Function F9 if necessary.

Table 5: FMEA-ModeChart Assistance Table

Mode Severity Functions

Delivered

Functional

Failure Causing

Transition

Target Mode

System_Normal - Function F7 Omission of

Function F7 (O-

F7)

System_Degraded

Function F8 Omission of System_Fail

89

Function F8 (O-

F8)

Function F9 Omission of

Function F9 (O-

F9)

System_Degraded

System_Degraded Marginal Function F8 Omission of

Function F8

System_Fail

System_Fail Hazardous - - -

Figure 30 illustrates an example of the mode chart which can be constructed based on

the assistance Table 5 above.

Figure 30: Example of mode chart constructed from FMEA-ModeChart Assitance Table

It is important to note that events that can occur in a mode are not limited to the ones

listed in “Functional Failure Causing Transition”. This column helps to draw focus on

events that are significant enough to affect delivery of functions (thus causing transition

between modes). In some cases, it is possible to have dormant failures in a mode where

occurrence of a failure doesn‟t cause transition from a mode until another failure occurs.

This can potentially cause almost-immediate transition from normal mode to fail mode.

One way to manage this is by fully taking into account all possible failure occurrence in

a mode and if necessary, by creating another intermediate degraded mode to manage

dormant failure (for example, where alarm was raised) so that system does not move

from normal to fail mode in succession. An example of this is shown in Chapter 4.

90

3.6.4 Translation of HiP-HOPS Failure Annotations to a Refined State

Machine

Once the information on lower level components become more available, it is possible

to refine transition triggers in the once-abstract mode charts. At this stage, it is no longer

as significant, although it is still possible, to define the „modes‟ based on delivery of

component outputs (compared to the definition of mode according to the delivery of

system functions earlier).

While the analysis of FTA/FMEA in earlier stages and the use of assistances table can

help in the generation of an abstract state machine, the generation of a more refined

state machine at a later stage involves a slightly different approach. This is because,

unlike abstract state machines, most information required for failure-relevant transitions

in more refined state machines can be obtained directly from HiP-HOPS component

failure annotations.

It is important to note that our mode charts are not tied to any commercial state chart

tool. It is possible to use available commercial tools like Matlab Stateflow or Statemate

to provide graphical description. Converter tools are available (sf2smv

(Banphawatthanarak et al., 1999), (Bobbie, 2001), stm2smv (Loer, 2003), or mdl2smv

(Juarez-Dominguez et al., 2008)) to convert state machine models from these

commercial tools into model checking input models. While the use of intuitive interface

(Barfield, 2004) and graphical tools is helpful for acceptance, (Schatz et al., 2002)

highlights that it is not essential for the concept. Also, to perform model checking, the

state machines eventually need to be converted into model checking input models.

For these reasons, here we explore how the more refined mode-charts representing

behaviours of lower-level designs can be expressed directly as a NuSMV model.

Each component block is represented as a module in NuSMV. Information flow

between blocks of components can be modelled through the use of module parameters.

These parameters provide links between the output (port) of a source component to the

input (port) of a target component. In a similar manner, these input parameters are also

used to relay and model the failure propagation between components. It is important to

91

note that because multiple failure types could occur at one output, all of the deviations

need to be passed to the target component input parameters.

The basic of HiP-HOPS failure expression can be represented as:

Output_deviation = Internal_malfunction AND/OR Input_Deviation

This expression can be incorporated into the NuSMV model by assigning the output

deviations as the corresponding module internal variables. These output deviations are

passed along as module parameters to other components/modules at the receiving end of

the information flow. Internal malfunctions are defined within modules too, and once an

internal malfunction occurs, it is assumed to be persistent throughout the entire run,

unless correcting event is specified and triggered. Input deviations for failures

propagated by other components are defined through the modules input variables.

For example, given HiP-HOPS failure expression: O-O.out = O-in1 + BEA1 + BEA2,

the generated NuSMV model from the annotated HiP-HOPS model can be seen in the

following NuSMV model excerpt. Output deviations and each component basic events

are declared as Boolean data types. All basic events are initialised to hold value 0 as the

system starts operation in normal mode. Lastly, as basic events are assumed to be

permanent, its next value will remain as „1‟ if the current value is „1‟.

92

It is perhaps important to note that the current translation from HiP-HOPS annotation to

NuSMV model is performed manually. And because the extracted behaviour is based on

failure annotation, the NuSMV module produced is essentially a failure-extended model

(error model). This model can eventually be extended to include further relevant

nominal behaviour, or be integrated with nominal model if the nominal model was

developed in parallel (please see chapter on future work).

3.6.5 Refinement of Events to Maintain Traceability

Refinement refers to the process of providing a system solution with more details or

precision in an incremental development process. This includes the process of adding

more constraints and developing details of system/component attributes. Refinement of

a design often traverses abstraction levels and captures sub systems. In a later design

phase, these subsystems are further refined by adding more constraints, including non-

functional aspects, and by improving the model solutions.

The refinement process will affect both structural and behavioural elements of a system.

Dynamic behavioural models need to reflect and capture refinement of behavioural

decomposition. Structural refinement is captured through the decomposition of the

physical system into sub-systems. As discussed earlier, structural decomposition in a

MODULE module1(O-in1,...)

VAR

O-O.out: boolean ;

BEA1 : boolean ;

BEA2 : boolean ;

...

ASSIGN

init (BEA1) := 0 ;

init (BEA2) := 0 ;

O-O.out := O-in1 | BEA1 | BEA2 ;

next (BEA1) := case

BEA1 =1 : 1 ;

1 : {1,0} ;

esac;

next (BEA2) := case

BEA2 =1 : 1 ;

1 : {1,0} ;

esac;

...

Input Deviation

Internal

Malfunction

Failure

Expression for O-

O.out

93

NuSMV model is represented as individual NuSMV modules. Similarly, refinement for

behavioural models can be achieved through the decomposition of modes into sub-

modes.

A systematic management of the decomposition process helps to provide good

traceability. Traceability refers to the ability to maintain and navigate the relations

between different stages of the model and manage that information. Such relations

should allow designers/analysts to follow the evolution of the design more closely and

establish connections between earlier and later design models.

We believe that - in addition to facilitating decomposition - a systematic process of

event refinement (especially those events relating to failure behaviours) contributes to

better traceability. One way to achieve this is through clear communication and linking

between events in earlier abstract design models and more detailed events in later

models. Well-established traceability between early and later models is particularly

useful in situations where errors are discovered through model checking, in which case

it is possible to trace errors to earlier design decisions and eventually investigate and re-

evaluate their effects on high-level design assumptions and goals.

Here we aim to provide methodological guidelines to assist event refinement

systematically. This can be achieved by two main approaches: 1) refinement of events

through minimal cut sets and 2) refinement of events through compositional annotation.

They are discussed further in the following sections.

3.6.5.1 Refinement of events through minimal cut sets

The first possible way to refine a state machine is by replacing the transition event

expression with its causing events. As the transition events are losses of functions or

malfunctions which form top events of fault trees in HiP-HOPS, the causing events can

be effectively obtained and mapped from HiP-HOPS FTA/FMEA results. For each top

event, its minimal cut sets can essentially be used to form the replacement expressions.

This approach works well in several scenarios. It is appropriate for situations where

focus is placed more on the verification of behavioural modes in higher level abstract

systems compared to behavioural modes in refined individual subsystems. This usually

94

means that the verification process aims to explore the effects of the lower level

subsystem failures on the modes changes at the higher level, instead of exploring the

nominal dynamic behaviour for each of the subsystem.

The following example is presented to illustrate this further. Figure 31 presents an

abstract model that describes system A. System A is then gradually refined into

subsystems A1, A2, A3, and A4. The refinement allows us to update the abstract

dynamic model for system A to take into account failure events occurring in the lower

level subsystems.

Abstract system A (in earlier stage)

Refined subsystems of A (in later stage)

Figure 31: Refinement for system A

95

Presented in the following is the failure information of system A and subsystems A1,

A2, A3, A4. Subsystems A1,A2 and A4 are assumed to simply have one failure type,

Omission (O-A1, O-A2, O-A4 respectively) caused by corresponding internal failures

BEA1, BEA2, BEA4. Subsystem A3 has both Omission and Value failure types which

are caused by internal failures BEA3 and VBEA3 respectively. The following table

summarizes the failure behaviour:

Table 6: Failure behaviour for System A and Subsystems A1, A2, A3, A4

System /

Subsystem

Internal

Malfunctions

Output

Deviations

Description of Output

Deviation

Causes of Output

Deviation (Output
Deviation Failure

Expression)

A - O-A.out1 Omission deviation in output

1 (out1) of system A

O-A3.out

O-A.out2 Omission deviation in output

2 (out2) of system A

O-A4.out

 V-A.out1 Value deviation in output

1(out 1) of system A

V-A3.out

A1 BEA1 O-A1.out Omission deviation in output

(out) of subsystem A1

BEA1

A2 BEA2 O-A2.out Omission deviation in output

(out) of subsystem A2

BEA2

A3 BEA3 O-A3.out Omission deviation in output

(out) of subsystem A3

BEA3 OR (O-A3.in1

AND O-A3.in2)

 VBEA3 V-A3.out Value deviation in output

(out) of subsystem A3

VBEA3

A4 BEA4 O-A4.out Omission deviation in output

(out) of subsystem A4

O-A4.in1 AND

BEA4

System A can be operated in several abstract functional modes, namely Mode1, Mode2,

Mode3, Mode 4 and Mode5. System A starts with nominal Mode1 when there is no

failure occurrence. From Mode1, it either moves to Mode2 when O-A.out1 occurs, or

moves to Mode3 when O-A.out2 occurs. If both O-A.out1 and O-A.out2 occur, it

moves to Mode4. Mode5 occurs when system A experiences a V-A.out1 failure. We

assume that the severity analysis process has identified Mode4 to be hazardous. The

abstract mode chart for this abstract model can be seen in Figure 32:

96

Figure 32: Mode chart for system A

From the tabulated failure information in Table 6, HiP-HOPS produces the following

minimal cut sets for each of the system output failures:

O-A.out1 = {BEA1.BEA2 , BEA3}

O-A.out2 = {BEA2.BEA4}

V-A.out1 = {VBEA3}

These analysis results allow us to refine the abstract state machine of system A (Figure

32) into a more refined state machine (Figure 33) which takes into account failure

propagations of its subsystems in the event transitions. The event transit ions are now

expressed fully in terms of the components internal malfunctions.

Figure 33: Refined transitions for System A

97

Subsequently, the expression of mode charts in the NuSMV input language enables us

to verify various (generic) requirement specifications , for example “If failure in

subsystem A4 does not occur, hazardous Mode4 shall not occur”, which in this

example, is relatively straightforward.

AG(!BEA4 → !(SystemMode = Mode4));

The checking of this property can also be arguably performed through manual analysis

of FMEA results table to establish the effects of causing events (and their combinations)

on the corresponding output deviations. For example, by manually working through the

FMEA table to decide if any combination of all basic events without BEA4 can lead to

failure “O-A.out1 AND O-A.out2” (Mode4). It is also possible to perform this via FTA

by studying the minimal cut sets. However, this could become inconvenient for larger

systems with more complicated modes. The translation into the model checking input

language allows verification to be done more quickly and automatically. In addition to

that, this formal analysis via model-checking is also able to take into consideration other

nominal behaviour which is not captured by the FMEA.

With this approach, focus is placed on the abstract high-level system mode chart, which

is often sufficiently contained within the NuSMV Main Module. One of the advantages

of adopting the results from CSA is the easy representation of both deviations and

component basic events in NuSMV as Boolean data types. Here, failure logic is used

instead of success logic, meaning that instead of defining output(s) of the system

according to the outputs of subsystems, output deviations are defined by failures in

subsystems. This is done by assigning to it the corresponding minimal cut sets.

One downside of this approach is the fact that focus is placed on the abstract mode chart

and how the occurrence of internal malfunctions affects the abstract system modes.

Little attention is placed on the other non-failure relevant behaviour of subsystems

(although they can be included if necessary). Also, these internal malfunctions are

modelled within the main module (therefore not benefiting from any hierarchical

structure). An example of the generated NuSMV model from an annotated HiP-HOPS

model can be seen in the following NuSMV model excerpt:

MODULE main

VAR

98

BEA1 : boolean ;

BEA2 : boolean ;

BEA3 : boolean ;

Mode : {Mode1, Mode2 };

...

ASSIGN

init (BEA1) := 0 ;

init (BEA2) := 0 ;

init (BEA3) := 0 ;

...

init (Mode) := Mode1;

O-O.out := BEA3 | BEA2 & BEA1 ;

next (BEA1) := case

BEA1 =1 : 1 ;

1 : {1,0} ;

esac;

next (BEA2) := case

BEA2 =1 : 1 ;

1 : {1,0} ;

esac;

next (BEA3) := case

BEA3 =1 : 1 ;

1 : {1,0} ;

esac;

next (Mode):= case

Mode = Mode1 & O-O.out : Mode2;

1: Mode;

...

3.6.5.2 Refinement of Events through Compositional Annotation

This approach extends the previous approach by focusing not only on the abstract high

level mode chart, but also by modelling each subsystem‟s behaviour in its own module.

It captures and reflects the functional hierarchy by constructing independent mode

charts and NuSMV modules for each function (subsystem), which in turn allows non-

failure related behaviours of each subsystem to be effectively modelled and considered

in their roles of contributing to system failures.

To effectively link failure behaviour to input modules and capture the structural

topology, transition events (labels) are maintained in a similar structure similar to the

ones in HiP-HOPS failure annotations for system and subsystem output deviations. This

means they are expressed in terms of input deviations and internal malfunction events.

To illustrate this approach using the previous example (Figure 31), the failure behaviour

for System A and Subsystem A1, A2, A3, A4 can be modelled in the following mode

charts, each capturing their failure expressions in the transition labels:

99

The compositional failure annotation in HiP-HOPS also allows systematic generation of

a NuSMV model for the system and subsystems. Each NuSMV module contains

information about internal malfunctions, input deviations and the definition of output

deviations, all of which are obtainable from component failure annotations. Like HiP-

HOPS, flow of information is obtained through the structural topology. The „higher-

level‟ module SystemA manages these connections and the flow of information between

subsystems by passing the output variables of a source subsystem to the input

parameters of target subsystem during module initiation. This allows linking between

components to be established and subsequently connect input deviation to

corresponding output deviations.

Figure 35 to Figure 39 illustrates the connection between components annotated with

HiP-HOPS failure data and their corresponding NuSMV models which shows the

hierarchical structure and failure propagations of these subsystems:

Figure 34: Mode charts for system (and subsystems of) A

100

MODULE SystemA

VAR

A1: SubsystemA1;

A2: SubsystemA2;

A3: SubsystemA3 (A1.O-A1.out, A2.O-

A2.out);

A4: SubsystemA4 (A2.O-A2.out);

Mode : {Mode1, Mode2, Mode3, Mode4,

Mode5};

O-A.out1 : boolean;

O-A.out2 : boolean;

V-A.out1 : boolean;

ASSIGN

init (Mode) :=Mode1;

O-A.out1 := A3.O-A3.out;

O-A.out2 := A4.O-A4.out;

V-A.out1 := A3.V-A3.out;

next(Mode) := case

Mode = Mode1 & O-A.out1 : Mode2;

Mode = Mode1 & O-A.out2 : Mode3;

Mode = Mode1 & V-A.out1 : Mode5;

Mode = Mode2 & O-A.out2 : Mode4;

Mode = Mode3 & O-A.out1 : Mode4;

Mode = Mode3 & V-A.out1 : Mode5;

Mode = Mode5 & O-A.out1 : Mode2;

1: Mode;

esac;

...

Figure 35: NuSMV model for system A

101

MODULE SubsystemA3 (O-in1, O-

in2)

VAR

O-A3.out: boolean ;

V-A3.out: boolean;

BEA3 : boolean ;

VBEA3 : boolean ;

Mode: {Normal, Fail};

ASSIGN

init (BEA3) := 0 ;

init (VBEA3):= 0 ;

init (Mode) := Normal;

O-A3.out := BEA3 | (O-in1 & O-

in2) ;

V-A3.out := VBEA3 ;

next (BEA3) := case

BEA3 =1 : 1 ;

1 : {1,0} ;

esac;

next (VBEA3) := case

BEA3 =1 : 1 ;

1 : {1,0} ;

esac;

next(Mode) := case

Mode = Normal & O-A3.out :

Fail;

1: Mode;

esac;

O-in1

O-in2

Failure propagation of

SubsystemA3

O-A3.out

V-A3.out

BEA3

O-A1.out

O-A2.out

Figure 36: Failure propagation for subsystem A3

102

MODULE SubsystemA1

VAR

O-A1.out: boolean ;

BEA1 : boolean ;

Mode: {Normal, Fail};

ASSIGN

init (BEA1) := 0 ;

init (Mode) := Normal;

O-A1.out := BEA1;

next (BEA1) := case

BEA1 =1 : 1 ;

1 : {1,0} ;

esac;

next(Mode) := case

Mode = Normal & O-A1.out : Fail;

1: Mode;

esac;

O-A1.out

BEA1

Failure propagation of

SubsystemA1

MODULE SubsystemA4 (O-in1)

VAR

O-A4.out: boolean;

BEA4: boolean;

Mode: {Normal, Fail};

ASSIGN

init (BEA4) := 0 ;

init (Mode) := Normal;

O-A4.out := BEA4 & O-in1;

next (BEA4) := case

BEA4 =1 : 1 ;

1 : {1,0} ;

esac;

next(Mode) := case

Mode = Normal & O-A4.out :

Fail;

1: Mode;

esac;

O-in1
O-A4.out

BEA4

O-A2.out

Failure propagation of

SubsystemA4

Figure 37: Failure propagation for subsystem A4

Figure 38: Failure propagation for subsystem A1

103

One of the benefits of systematic establishment of connections and failure propagation

is a better traceability between design models. It allows the designer to visit earlier

models to see if they are still correct and re-examine any design decisions that were

made based on the analyses of these systems. This subsequently enables verification of

early hypotheses as details become more available. If errors are discovered during

model checking on these NuSMV models, it is possible to trace the errors to earlier

design decisions and investigate the effects of early assumptions.

In summary, the input, process and output of this process are:

Input Functional model annotated with failure information

 FMEA results showing relationship between failures

Process Identification of modes (states) and events

 Construction of state machines from FTA/FMEA results

Output System state machines

 NuSMV model

MODULE SubsystemA1

VAR

O-A2.out: boolean ;

BEA2 : boolean ;

Mode: {Normal, Fail};

ASSIGN

init (BEA2) := 0 ;

init (Mode) := Normal;

O-A2.out := BEA2;

next (BEA2) := case

BEA2 =1 : 1 ;

1 : {1,0} ;

esac;

next(Mode) := case

Mode = Normal & O-A1.out : Fail;

1: Mode;

esac;

O-A2.out

BEA2

Failure propagation of

SubsystemA2

Figure 39: Failure propagation for subsystem A2

104

3.7 Application of Model Checking

Once state machines are constructed and translated into the model checking input

language, formal methods can be used to validate system requirements.

The background of model checking has been introduced in chapter 2. In this section,

attention is primarily drawn to the value of model checking as part of IACoB in early

design stages; classes of requirements and properties that can be verified; and common

errors discovered through early application of model checking.

General steps involved in this process are:

1. Generation of a NuSMV model

2. Creation of a specification that defines a property which is required of

the model

3. Running of model checker

4. Model checker produces confirmation statement if the property holds or

produces a counter example if the property is breached

5. Based on the results of the model checker, analysis takes place to

determine whether modifications are required for:

i. Design of model

ii. Formulation of properties

System specifications and requirements which are expressed in temporal logic can

generally be classified into different categories. (Bérard et al., 2001) distinguishes these

properties that can be verified by a model checker into: reachability, safety, liveness and

fairness properties.

3.7.1 Reachability

Reachability properties define that a particular configuration φ (a state in the Kripke

structure) of the model can be reached. Three possible variations of such properties can

be distinguished, as shown in the following CTL logic:

 Reachability from the current state: EF φ

105

 Reachability from any execution state: AG EF φ

 Reachability from under some condition σ: E[σ U φ]

3.7.2 Safety

Safety properties define that under certain conditions, configuration φ never occurs.

This can only be proven if all execution paths are explored, therefore a CTL logic that

can be used to specify this is:

AG (! φ)

A common application of a safety property is the analysis of mutual exclusions. For

example, a CTL expression that specifies σ and φ are to be mutually exclusive:

AG !(σ ˄ φ)

Safety properties can also be used to formulate configurations where a desired property

holds:

AG φ

3.7.3 Liveness

Liveness properties define that under certain conditions, a Kripke state where

configuration φ holds will eventually be reached.

One common application of a liveness property is the analysis of response to

configurations. For example, a specification which states that whenever σ holds,

eventually a state must be reached where φ holds:

AG (σ -> AF φ)

106

It is also possible to specify in a liveness property that whenever σ holds, some

responding state where φ holds will be visited within m to n time units. Time in

NuSMV can only be measured qualitatively in terms of execution steps. Abounded

liveness property specifies when some response is required. In NuSVM, this bounded

liveness properties can be formulated in CTL:

AG (σ -> ABF m..n φ)

3.7.4 Fairness

Fairness properties define that under certain conditions, states where some property φ

holds will occur infinitely often.

Fairness properties are expressed in LTL, and are not expressible in CTL format

because it is not possible to specify that some expression holds repeatedly (Huth &

Ryan,2000). In NuSMV, fairness constraints can be introduced with the inclusion of

“FAIRNESS φ;” which corresponds to

GF φ

in LTL, this expression defines that state φ holds continuously without interruption.

3.7.5 Common Errors Discovered Through Model Checking

Considering the fact that the general application of model checking has been primarily

targeted at mature design models, it is important to understand and determine its values

at earlier design stages. (Miller et al., 2003) and (Tribble & Miller, 2003) presented case

studies which demonstrate that formal models can be effectively used to find errors

before implementation of the system. One common error found through model checking

is inaccuracy in the original requirements (or how it was phrased). This generally leads

to modifications to refine the requirements to be more specific and accurate.

Other errors could involve situations where more than one input arriving at the same

time and in combination drives the model into an unsafe state. There are several ways

107

to deal with simultaneous input events, for example: stating a rule whereby only one

input variable can change in any step (Miller et al., 2003). Additional logic is included

to assign priority to multiple events, and when simultaneous input events occurs, lower

level priority events can either be discarded or stored in a queue for processing in

succeeding steps.

(Juarez-Dominiguez, 2008) also highlights the importance of model checking in

detecting hazardous interactions between system features (e.g. software components).

These software components which control mechanical components are often developed

in isolation, and their combination can sometimes cause unexpected or undesired

system behaviour. Model checking can be used to detect these hazardous combinations

in a design.

In chapter 4 and 5, we demonstrate how in practice model-checking can be usefully

employed to verify or not the satisfaction of properties on behavioural models

constructed using IACoB method.

3.8 Potential for Automation

Currently, the translation process between the different models in IACoB is performed

manually. In the context of a larger, more complex system, this can become an error-

prone process. To address this, we note the potential for automation in IACoB. The key

aspects of the process which can be automated include the translation from HiP-HOPS

annotated model to NuSMV model.

The construction of NuSMV models from HiP-HOPS annotated model can be achieved

by mapping the failure information as discussed in section 3.6.4. As mentioned

previously, this results in a failure-extended NuSMV model (error model). Basic states

and transitions can be assigned by default for each module. The basic states generally

include Normal state to describe states where component functions as intended, and Fail

state(s) to describe states where failure(s) of component occurs. The default transitions

between these basic states are described using the corresponding events which are the

causes of the failure.

108

The following is a sketch of hips2smv algorithm. It presents steps which can be used to

describe the translation process from HiP-HOPS annotation to the NuSMV model.

For each component, a NuSMV module is created within which the following steps are

performed:

 Step 1: Identify input parameters

The input parameters of a NuSMV module are the input deviations of that component.

To identify these input deviations, we use HiP-HOPS fault tree synthesis algorithm

which provides a record of the deviations for each input port of the component.

 Step 2: Declare the internal variables

Internal variables which can be assigned automatically from HiP-HOPS models

typically include the internal malfunctions, output, and output deviations. These are

declared as Boolean data type.

 Step 3: Specify initial values for the internal variables

Initial value of internal malfunction and output deviations are set to 0 by default,

reflecting the assumption that the system starts from normal state.

 Step 4: Define output deviation

Output deviation is defined according to the failure expression provided in HiP-HOPS

annotation. It is described in terms of basic events and input deviations.

 Step 5: Specify next value for internal variables

The „next‟ notion in NuSMV relates current and next state variables to express

transitions. As mentioned previously, once internal variables occur (set to 1), the next

value stays at 1 as it is persistent throughout the entire run. Next value of output

deviation can also be defined here in relation to current value of internal malfunction

and input deviations.

109

In addition to modules which represent components in the system, a MAIN module is

also constructed for each NuSMV model to:

 Construct instances of all component modules.

 Define the connections between components modules. This is achieved by

connecting the parameters of each component module‟s input ports (and

supplying them as input parameters) to the corresponding output ports of other

module which is connected to it.

Refinement of these state machine transitions (using ways described in sections 3.6.3

and 3.6.4) can also be automated. The algorithm for refinement through minimal cut

sets works by constructing one main NuSMV module to model the internal

malfunctions of all components. The initial state of the system is set to Normal, and all

internal malfunctions are set to be absent. The output deviation is defined in terms of its

minimal cut sets generated from the FTA, as opposed to defining it in terms of input

deviation and internal malfunctions.

The refinement through compositional annotation can be achieved using the algorithm

described above where one NuSMV module is constructed for each component. This

way, the structural, hierarchical and failure propagation information are retained.

This automation is particularly useful for refined state machine when establishing

failure connections between components are more crucial than describing system states

and therefore it is sufficient to use basic states and transitions.

However, there are also several aspects of the process that require human intervention.

In general, human intervention is required to obtain information on the system dynamic

behaviour which is not captured in the initial CSA model. This may include:

1) Description of system states

In addition to the basic states (Normal and Fail states) which are automatically

assigned, other classifications of system states (for example, degradation states)

may be required. These inputs need to be manually specified and defined. This is

particularly important in the early abstract state machines where degradation

states play important roles in the understanding of system high-level behaviour,

which are not captured in CSA‟s HiP-HOPS model.

110

2) Description of system transitions

In addition to basic transitions (from normal to fail states), specification on how

the system moves from one state to another (for example, to a degraded mode)

also need to be specified.

3) Requirement specification

Requirement specification needs to be manually provided by the analysts in

terms of CTL.

These processes which require human intervention can be assisted with improved

support tool, for example, by extending current editor tool, storing frequently-used

specifications in a library, or by introducing graphical tool for state machine (please see

future work session).

3.9 Chapter Summary

In summary, this chapter describes the IACoB process which consists of a number of

key phases, along with the following main activities involved in each phase:

Phase Input Process Output

Construction of

system

functional

model

Or in later

stage,

architectural

model

Requirements

Or in later

stage, a less-

refined model

Identify, define and relate

functions

Translate requirements into

functional model

Or in later stage, refinement of

model

Functional model

Or architectural

model

Severity

assessment of

output function

(or component)

System

functional

model

(or

architectural)

Estimate risk and classify the

severity of output function (or

component) failures based on

their consequences

Severity analysis

of output

functions

(components)

Narrowed focus

on higher priority

functions (or

components)

Establishing

local failure

behaviour

System model Establish failure information

for each functional (or

architectural) block

Functional model

with data

information

111

Establish causes

of output failure

Fault tree and

FMEA

synthesis and

analysis

System model

with local

failure

behaviour

Generate FTA and FMEA for

system model

Identify weak points in system

design

Effects of failure

on output function

(or component)

Better

understanding of

the criticality of

function (or

component)

Generation of

state machine

System model

annotated with

failure

information

FMEA results

showing

relationship

between

failures

Identify modes and events

Construct state machine from

FTA/FMEA results

System (abstract)

state machines

NuSMV models

Model

Checking

NuSMV model Apply model checking to

verify system

Affirmation or

counterexample

The application of the whole process is illustrated in the next chapter.

Overall, IACoB combines the advantages of compositional safety analysis such as

simplicity, efficiency and scalability, with the benefits of formal verification such as the

ability to perform verification of safety requirements on dynamic models of the system.

This helps increase confidence in the design and leads to an improved model-based

safety analysis process compared to the reliance of only one technique. In terms of

identifying potential failures, the part of IACoB which employs CSA focuses on the

relationship (causes and effects) of failures between components. The application of

BSA can potentially further uncover errors as it takes into consideration component

dynamic nominal behaviour (and their interaction with failures).This can potentially

uncover new failures which have not been anticipated in CSA. For example, weakness

in the design of logical connections or flow of information between components. This is

illustrated in the case study presented in Chapter 5.

112

CHAPTER 4. Case Study on Brake-by-wire

Functional and Behavioural Analysis of a Brake-by-

wire System

This chapter demonstrates application of the IACoB method. We present a case study

which explores the design and analysis of a simplified brake-by-wire system for cars.

The study produces safety analyses which help us to gain better understanding of this

system. The analysis deliberately starts from a simple model, where fault-tolerant

functions and other well-established heuristics for good design in such systems have

been omitted. The idea is to demonstrate how the proposed process could systematically

help designers arrive at such measures.

The case study consists of two main system models, namely a purely functional model

and a model where functions have been allocated to an architecture of components, to

exemplify different application stages for the process.

The case study is structured as follows: in section 4.1, the vehicle brake-by-wire system

is introduced. The safety assessment of this system is discussed in 4.2. Section 4.2.1 to

4.2.2 describe the construction and analysis of fault trees, FMEA and a mode chart for

the design. Safety requirement properties are discussed in section 4.2.4 and the system

design is checked against the predefined list of properties. Section 4.2.5 discusses the

ways to refine transition events in the mode chart by exploiting results from FMEA.

This is followed by section 4.3, which presents a scenario where a more detailed

architectural model for the system is derived. In sections 4.3.1 and 4.3.2, both single

failure and multiple failures FFA, FTA/FMEA are performed for this revised model, the

relevant mode chart is constructed and the system is again verified against safety

requirements.

4.1 Introduction to Brake-By-Wire System

Brake-by-wire systems are a recent drive-by-wire technology in the automotive

industry. Drive-by-wire technology employs electronic control systems which use

113

electromechnical actuators to replace traditional hydraulic and mechanical control

systems. Brake-by-wire systems replace traditional automotive braking components

(like brake boosters, pumps, and master cylinders) with electronic sensors and actuators.

Although the application of brake-by-wire is not as widely commercialized in relative

comparison to its x-by-wire counterparts (x representing commanded action) like

throttle-by-wire, or steer-by-wire (Langenwalter, 2004), many experts believe that

brake-by-wire systems will eventually become common in the future (Carley, 2004).

Nossal and Lang (2002) presented a model-based approach to building an x-by-wire

application.

Brake-by-wire systems can be classified into two types: brake-by-wire with hydraulic

backup and brake-by-wire without hydraulic backup. Brake-by-wire with hydraulic

backup, also called Electric Hydraulic Brake (EHB) is realized through hydraulic pumps

and additional electrically controlled valves. If the electronic control fails, the complete

electric hydraulic system will be deactivated and the brake system will behave like a

pure hydraulic system which delivers only emergency brake function with reduced

brake force. Brake-by-wire without hydraulic backup is often known as Electric

Mechanical Brake (EMB). EMB transfers electrical commands generated through the

driver to computer controlled electro-mechanical actuators. EMB does not possess the

fail-safe mechanics of hydraulic backup, and therefore must be developed with strict

fault tolerant properties.

The brake-by-wire system used in this case study is based upon a model provided by

Daimler, but also draws from designs in (Hedenetz & Belschner, 2008) and (Colombo,

2008). The system consists of one vehicle-level processor and four local-level wheel

processors. The vehicle-level processor reads in brake command input from the driver,

communicated through a human-machine interface (for example, the brake pedal or

parking brake interface), and subsequently generates braking command for each local-

level wheel processor based on high-level advanced brake functions such as an Anti-

Lock Brake System (ABS) or Electronic Stability Program (ESP). This braking

command is broadcasted using two replicated data buses. Local-level wheel processors

are located physically close to the wheels. Upon receiving braking command from the

vehicle-level processor, each local-level processor calculates the value of braking

pressure, taking into consideration various local-level information including actuator

114

position and speed. This value of braking pressure is then fed to an actuator which then

applies the actual braking pressure on the corresponding wheel of the car. These

functions are distributed using the Time-Triggered Communication Protocol (TTP)

(Hedenetz & Belschner, 2008) which is especially designed for safety-related

applications. The system is usually powered by two independent power supply units.

To maintain the simplicity of this example, communication architecture and power

supply units are not included in the discussion. The physical configuration of the brake-

by-wire system is illustrated in Figure 40, which depicts the system general topology.

Figure 40: General topology of Brake-By-Wire system

115

4.2 Analysis of System Functional Models

In accordance with the IACoB method, we start the safety assessment process from a

high-level functional model. For this simplified system, two initial main functions can

be delivered: 1) Function which delivers basic braking 2) Function which delivers

braking with driving assistance anti-lock (ABS). These two functions can arguably be

combined into one as they are not physically distinct. In this early model, however, they

are free from architectural detail and are modelled as two separate logical functions to

facilitate the illustration of function delivery. If required, these functions can be

combined with a conjoining function.

The Matlab Simulink model illustrated in Figure 41 represents a high-level abstraction

of the brake-by-wire system. It is simplified to consist of input functions, braking

command processing functions (vehicle-level and local-level), ABS command

processing function, and output functions. As local-level processing provides identical

function for each wheel of the vehicle, we assume it is sufficient to discuss and analyze

one (instead of all four) in this initial model. There are four input blocks which read in

driver‟s initiated braking demand from brake pedal (Input_brakeDemand), readings for

wheels‟ speed (Input_wheelSpeed), external variable readings (Input_external) , and

local-level feedback (Input_local). Information on brake demand, wheel speed and

external environment is passed to the vehicle-level processing function

(VehicleLevelProcessing) which calculates and generates the independent brake

commands for each local-level processing (LocalLevelProcessing). It also relays the

information needed for ABS calculation to the ABSProcessing function. The wheel

local-level processing controls the output functions which provide basic braking or ABS

braking. This early model does not yet incorporate any fault tolerance mechanisms.

116

Figure 41: Abstract functional model for Brake-By-Wire

117

4.2.1 FFA

Once the model is constructed, we proceed to perform the FFA on the system. The main

aim of this process is to classify and analyse the effects and severity of failures in the

output functions, BasicBraking and ABSBraking. In this case the focus is placed on the

omission and commission failure types, although it is also possible to perform analysis

on value or timing failures. The following Table 7 presents an extended FFA which

includes identification of detection, potential recovery plan and recommendation

columns for each failure.

Table 7: Functional failure analysis of Brake-By-Wire

Function Failure

Type

Effects on

System

Severity Detection Recovery

Plan

Design

Recommendation

BasicBraking Omission No brake

force ;

vehicle

cannot be
stopped;

driver loses

control.

Catastrophic Using

pressure

feedback

Not

possible

Redundant back

up mechanism

should be

introduced

BasicBraking Commission Vehicle

tends to

drift; loss

of stability

Critical Comparing

pedal input

(demand)

and

pressure

feedback

Release

Pressure

Commission

failure should not

be allowed to

propagate

ABSBraking Omission Loss of

steerability

; less
efficient

brake

Marginal Using

feedback on

wheel
speed and

pressure

Not

possible

Situation can be

compensated by

driver

ABSBraking Commission No brake

force

available

Catastrophic Comparing

wheel

speed and

pressure

feedback

 Switch

off ABS

function

Commission

failure should not

be allowed to

propagate

From the examination of this FFA table, it can be seen that the severity of an omission

failure of function BasicBraking (O-BasicBraking) is categorized as having a

catastrophic effect, and therefore should be mitigated with fault tolerant design. The

second functional failure related to the provision of braking pressure is commission.

118

The commission failure in BasicBraking function (C-BasicBraking) is identified as

having critical consequences and therefore should not be allowed to propagate and

influence other functions in the wrong way. One way to achieve this is by detecting the

commission failure, forcing the system to fail silent and then handling the omission

accordingly by putting a fault-tolerant mechanism in place. The failure for the

ABSBraking function is categorized as having catastrophic severity in its commission

failure and marginal effects in its omission failure. This is due to the nature of the

ABSBraking function which provides driving assistance rather than those of imperative

role in braking. This suggests that it is more favourable for the function to fail in

omission, and therefore the function should fail-silent when commission failure is

detected.

To perform FTA and FMEA, these functional blocks are annotated with failure

behaviour before being analyzed by HiP-HOPS. Table 8 summarizes the internal

malfunction of each of the function. To maintain the simplicity of this example, output

blocks are modelled to be free from internal malfunctions, and instead can only

propagate failures.

Table 8: Functional blocks internal malfunctions

Function Failure Mode Description

Input_brakeDemand BDBE Internal malfunction in function which reads

in brake demand, causing Omission failure.

Input_wheelSpeed WSBE Internal malfunction in function which reads

in wheel speed, causing Omission failure.

Input_external ESBE Internal malfunction in function which reads

in external measurements, causing Omission

failure.

Input_local LSBE Internal malfunction in function which reads

in local actuator measurements, causing

Omission failure.

VehicleLevelProcessing VLPBE Internal malfunction in vehicle-level
processing function or which causes

Omission failure. Most probably a hardware

failure.

VLPBEc Internal malfunction in vehicle-level

processing function which causes

Commission failure. Most probably a

software failure.

VLPBEabs Internal malfunction in vehicle-level

processing function which causes ABS to be

absent.

119

 VLPBEabsC Internal malfunction in vehicle-level

processing function which causes anti-lock

ABS to be instantiated without intention.

ABSProcessing ABSBE Internal malfunction ABS processing

function which causes anti-lock ABS to be

absent.

LocalLevelProcessing LLPBE Internal malfunction in wheel local-level

processing function which causes Omission

failure.

LLPBEc Internal malfunction in wheel local-level

processing function which causes

Commission failure.

Braking Energy ActBE Internal malfunction in Braking Energy

which causes Omission failure.

ActBEc Internal malfunction in BrakingEnergy
causes Commission failure.

4.2.2 FMEA

As discussed in the earlier chapter, once the model has been annotated with its local

failure information, fault trees can be generated and analyzed, and an FMEA can be

obtained automatically using HiP-HOPS tool. The following Table 9 summarizes the

FMEA results. The table defines how failures in other functional blocks propagate and

contribute to failure O-BasicBraking, O-ABSBraking, C-BasicBraking and C-

ABSBraking. As the initial design does not include any fault-tolerant strategies, the

table shows us how each internal malfunction in every function can become direct

contributors to the omission and commission failures of the braking and ABS functions.

Table 9: FMEA for Basic Brake-By-Wire functions

Function Failure

Mode

Direct Effect Severity Comments/

Recommendation

Input_brakeDemand BDBE O-

BasicBraking

Catastrophic Redundancy required

Input_external ESBE O-

ABSBraking

Marginal

Input_local LSBE O-

BasicBraking

Catastrophic Redundancy required

Input_wheelSpeed WSBE O-

ABSBraking

Marginal -

VehicleLevelProcessing VLPBEabs O-

ABSBraking

Marginal -

120

VLPBE O-

BasicBraking

Catastrophic Redundancy required

VLPBEc C-

BasicBraking

Critical Should fail silent

 VLPBEabsC C-

ABSBraking

Catastrophic VLPBE should not

propagate and when

detected, ABS should be

deactivated.

LocalLevelProcessing LLPBE O-

BasicBraking

Catastrophic Redundancy required

LLPBEc C-

BasicBraking

Critical Should fail silent

BrakingEnergy ActBE O-

BasicBraking

Catastrophic Redundancy required

 ActBEc C-

BasicBraking

Critical Should fail silent

ABSProcessing ABSBE O-
ABSBraking

Marginal -

To implement a more robust design, several advisable design changes can also be

determined from an analysis of the FMEA table above. These are recorded in the

recommendation column. Recommendation and Severity for each function correspond

and reflect the severity and recommendation of the output function failures they cause.

One important (and most obvious) technique to achieve fault-tolerance is the

introduction of redundancy in the „module‟. Module here refers to function for

functional model or components for the more refined architectural model.

As an industry common practice, fault tolerant design for brake-by-wire systems can be

implemented through either the inclusion of a hydraulic system (in an EHB system) or

through replicated electronic components (in an EMB system). For this example, we

introduce a hybrid system which implements both hydraulic as well as redundant

electronic modules (with lower numbers of redundant modules compared to a pure

electronic EMB). Due to the cost and space constraints in automotive x-by-wire

systems, it is often important to reach a compromise between the degree of fault

tolerance and the number of redundant components (Isermann, 2004). For this example,

it is assumed that it is sufficient for us to adopt duplex (i.e. consisting of two elements)

redundant structure, which would enable a system to tolerate single-point failures.

The analysis of FMEA in Table 9 therefore provides an insight that assists us in

distinguishing critical functional failures that contribute to failures which have

121

catastrophic or critical consequences (O-BasicBraking, C-BasicBraking, C-

ABSBraking) from those that contribute to failures with marginal effects (O-

ABSBraking). This knowledge subsequently allows us to establish the appropriate

resource management priority and design improvement. For example, we learnt that the

failure in input blocks that detects braking demand (Input_brakeDemand) could have

more severe consequences (causing O-BasicBraking) than other input blocks

(Input_external) which failure only lead to O-ABSBraking.

First we examine the input blocks. Two input blocks, the Input_brakeDemand function

and the Input_local function, are identified to be the contributing causes to O-

BasicBraking which is catastrophic, and therefore it is necessary to configure these

functions to be at least fail-operational by introducing a redundant module to backup

each function. As mentioned earlier, failure in Input_external and Input_wheelSpeed

only lead to O-ABSBraking and therefore in this example, will be tolerated. We also

identified that there is a need to introduce redundant function for

VehicleLevelProcessing as its failure also leads to O-BasicBraking. Additionally,

LocalLevelProcessing can be connected directly to the function Input_brakeDemand to

read raw braking command. This way, in the occurrence of a failure in the

VehicleLevelProcessing function, basic braking command can still be obtained.

Similarly, an omission failure in basic braking caused by internal malfunction in

LocalLevelProcessing and BrakingEnergy can be mitigated by introducing redundant

functions to support these critical functions.

In addition to this independent redundancy for individual modules, we could also

include a hydraulic function which acts as the group backup mechanism to provide

emergency braking in the presence of failures that affect the electrical-based functions.

Commission failures on both braking and ABS functions have been identified as critical

and catastrophic respectively. It is therefore recommended that any function which leads

to commission failure should fail-silent instead. This can be achieved by deactivating or

switching off the function whenever commission failure is detected. This, in turn,

transforms the commission failure into omission failure, which will then be treated

accordingly.

122

To manage the redundancy for omission failure, we look into the redundancy technique

mentioned earlier in Chapter 3. In our case, duplex dynamic redundancy configuration

is adopted for two of the input functions, the vehicle-level processing, the local-level

processing, and the braking energy functions. Figure 42 shows an example of redundant

configuration for VehicleLevelProcessing which consists of main function VLP A and

backup function VLP B. Third module VLP O is used to monitor their outputs, and in

the case of failure, select to relay the correct output. To maintain the simplicity of this

example, VLP O is assumed to be reliable enough to only propagate failures; and

therefore their failure behaviours are not modelled. In practice, safety monitoring

components like VLP O, although practically more reliable (with lower failure rate

compared to modules they monitored), possess their own failure behaviours. More

discussion on failure behaviours of fault-monitoring modules and detectability

properties are presented in the chapter 6.

Figure 42: Redundant module for Vehicle-Level Processing function

The complete backup scheme structure for each function can be found in Appendix A.

Figure 43 illustrates the revised model with backup components incorporated. Dark-

coloured blocks signify redundancy. To summarize, several key changes as a result of

the examination of FMEA in Table 9 are:

 Inclusion of redundant functions employing duplex configuration for input

functions, VehicleLevelProcessing, LocalLevelProcessing, and BrakingEnergy

123

 Transformation of commission failure to omission failure in

VehicleLevelProcessing, LocalLevelProcessing, and BrakingEnergy.

 LocalLevelProcessing can be connected directly to Input_brakeDemand

 Introduction of hydraulic backup mechanism.

These key changes illustrate the strength and contribution of CSA towards the

improvement of the system design, in particular, the identification of the system critical

points. By identifying and addressing design weakness in these critical points early, a

more robust revised design can be formulated before the design progresses further.

124

Figure 43: Revised model with duplex redundant mechanism

125

The inclusion of these new redundant mechanisms results in the introduction of new

failure behaviours, which requires the FTA and FMEA to be updated. The new fault-

tolerant redundant structure means that there are no longer any single-point failures

which directly cause O-BasicBraking. As there is no backup for functions

Input_external ,Input_wheelSpeed, and ABSProcessing they are shown to directly

cause direct effect to O-ABSBraking in the updated FMEA table. The rest of the

functional failures which causes O-BasicBraking in combination with other functional

failures are recorded in FMEA Table 11:

Table 10: Direct ffects FMEA for revised model

Function Failure Mode Direct Effects

ABSProcessing ABSBE O-ABSBraking

Input_external ESBE O-ABSBraking

Input_wheelSpeed WSBE O-ABSBraking

Table 11: Further Effects FMEA for revised brake-by-wire for failure O-BasicBraking

Function Failure

Mode

Further Effects Contributing Failure

ACT A ActBEc O-BasicBraking ActB.ActBEc AND

HydraulicBackup. HBBE

ActB.ActBE AND HydraulicBackup.

HBBE

ActBE O-BasicBraking ActB.ActBEc AND

HydraulicBackup. HBBE

ActB.ActBE AND HydraulicBackup.

HBBE

ACT B ActBEc O-BasicBraking ActA.ActBEc AND

HydraulicBackup. HBBE

 ActA.ActBE AND HydraulicBackup.

HBBE

ActBE O-BasicBraking ActA.ActBEc AND
HydraulicBackup. HBBE

 ActA.ActBE AND HydraulicBackup.

HBBE

HydraulicBackup HBBE O-BasicBraking ActA.ActBE AND

ActB.ActBE

ActA.ActBE AND

126

ActB.ActBEc

ActA.ActBEc AND

ActB.ActBE

ActA.ActBEc AND

ActB.ActBEc

Input_local1.LSBEa AND

Input_local1.LSBEb

LLPA.LLPBE AND LLPB.LLPBE

LLPA.LLPBEc AND LLPB.LLPBE

LLPA.LLPBE AND LLPB.LLPBEc

LLPA.LLPBEc AND LLPB.LLPBEc

Input_brakeDema

nd.IBDA

BDBEa O-BasicBraking Input_brakeDemand.IBDB. BDBEb

Input_brakeDema

nd.IBDB

BDBEb O-BasicBraking Input_brakeDemand.IBDA. BDBEa

Input_local.LSA LSBEa O-BasicBraking Input.localSensor.LSB.LSBEb AND

HydraulicBackup.HBBE

Input_local.LSB LSBEb O-BasicBraking Input.localSensor.LSA.LSBEa AND

HydraulicBackup.HBBE

LLP A LLPABE O-BasicBraking LLPB.LLPBE AND

HydraulicBackup.HBBE

 LLPB.LLPBEc AND

HydraulicBackup.HBBE

LLPABEc O-BasicBraking LLPB.LLPBE AND

HydraulicBackup.HBBE

 LLPB.LLPBEc AND

HydraulicBackup.HBBE

LLP B LLPBBE O-BasicBraking LLPA.LLPBE AND

HydraulicBackup.HBBE

 LLPA.LLPBEc AND

HydraulicBackup.HBBE

LLPBBEc O-BasicBraking LLPA.LLPBE AND

HydraulicBackup.HBBE

 LLPA.LLPBEc AND

HydraulicBackup.HBBE

127

4.2.3 Construction of Mode charts

 FTA and FMEA can be iterated until the design model meets early predefined

requirements, for example until a satisfactory level of redundancy configuration is

achieved (i.e. system tolerant to n number of failures). In this case study, we assume

that elimination of single point failures for O-BasicBraking is sufficient. As FTA and

FMEA results have shown this, the design is deemed to be acceptable for the next stage

of the process. This allows us to proceed and model the design dynamic behaviour by

constructing an abstract state machine.

To construct the state machine, it is first of all, important to identify the primary

elements: abstract states (as discussed in previous Chapter 3, referred to as „modes‟) and

transition events. Modes are derived based upon provision of system functions, which in

this case are the BasicBraking function and the ABSBraking function. Each of the

functional failures in the Table 7 then causes a transition to degraded or failed modes.

Corrective measures can be identified through FFA or the fault trees which explore the

causes of the failure. In general, these potential treatments can be classified into three

categories: untreatable failures, failures that always require identical treatments, failures

that require different treatments depending on root causes. In this example at this stage,

the recovery plan is not taken into consideration, and therefore is not modelled in the

mode chart.

1) Normal (BBW_Normal) mode where both Braking and ABS functions are delivered

2) Permanent Degraded (BBW_PD) mode where basic Braking is delivered, but ABS

function can no longer be delivered

3) Fail (BBW_Fail) mode where no braking pressure is delivered.

The table summarizes system modes, related severity (whether mode is hazardous),

functions delivered, potential functional failures that could occur in that mode,

transition these failure could cause and the target mode after transition.

Transitions can be formulated according to the failures that could occur to each of the

functions; in this case, all such failures are of omission type as commission failures

have been transformed into omissions by design. As explained in section 3.8, default

128

modes (BBW_Normal and Fail) can be automatically assigned. Degraded mode

BBW_PD and its corresponding transitions, however, need to be manually described.

Table 12 summarizes three modes the system that can be derived by considering the

delivery of functions in which:

1) Normal (BBW_Normal) mode where both Braking and ABS functions are delivered

2) Permanent Degraded (BBW_PD) mode where basic Braking is delivered, but ABS

function can no longer be delivered

3) Fail (BBW_Fail) mode where no braking pressure is delivered.

The table summarizes system modes, related severity (whether mode is hazardous),

functions delivered, potential functional failures that could occur in that mode,

transition these failure could cause and the target mode after transition.

Transitions can be formulated according to the failures that could occur to each of the

functions; in this case, all such failures are of omission type as commission failures

have been transformed into omissions by design. As explained in section 3.8, default

modes (BBW_Normal and Fail) can be automatically assigned. Degraded mode

BBW_PD and its corresponding transitions, however, need to be manually described.

Table 12: FMEA- ModeChart Assistance Table

Mode Severity Functions Delivered Functional Failure

Causing Transition
Target Mode

BBW_Normal ABSBraking O-ABSBraking PD

BasicBraking O-BasicBraking Fail

BBW_PD Marginal BasicBraking O-BasicBraking Fail

Fail Hazardous - - -

Based on this assistance table, we compose an abstract mode chart depicted in Figure 44

which models the system dynamic behaviour at this early stage:

129

Figure 44: Mode chart for Brake-By-Wire

The level of safety assessment (requirements verification) depends on the level of detail

provided in the mode chart. For this reason, it can be useful to refine the abstracted

mode chart. Here, for example, to more closely reflect the inclusion of different type of

pressure source, we could refine the function BasicBraking into Electrical and

Hydraulic. This is made possible by the fact that we could utilize the current HiP-HOPS

Matlab interface to set Electrical and Hydraulic blocks as „system outport‟ therefore

allowing fault trees and FMEA to be constructed for these functions. In the following

Figure 45, additional blocks Electrical and Hydraulic are placed to illustrate this. For

this reason, Electrical and Hydraulic blocks do not have failures of their own and only

propagate failures. This break-down allows a more transparent functional distribution.

130

Figure 45: Brake-By-Wire revised model showing Electrical and Hydraulic sources

131

In response to this, the original Normal and Degraded modes are now extended to

reflect the modelling of Electrical and Hydraulic modules. Subsequently, dynamic

behaviour can now be modelled in the following modes:

1) BBW_Normal mode where both basic braking and ABS braking functions are

delivered. Braking function in normal mode is delivered through the primary source,

Electrical module.

2) Permanent Degraded 1 (BBW_PD1) mode where braking function is delivered by

the Electrical module, but the ABS braking function can no longer be delivered.

3) Permanent_Degraded2 (BBW_PD2) mode where braking pressure is delivered by

Hydraulic module, ABS function is not delivered.

4) Fail mode where no braking pressure is delivered. These are summarized in the

updated FMEA-Mode chart assistance Table 13, and depicted in the following Figure

46 mode chart.

Table 13: Updated FMEA-Mode chart Assistance Table

Mode Severity Functions Delivered Functional Failure

Causing Transition
Target Mode

BBW_Normal ABSBraking O-ABSBraking PD_1

BasicBraking

(Electrical)
O-Electrical PD_2

 BBW_PD1 Marginal BasicBraking

(Electrical)
O-Electrical PD_2

BBW_PD2

Marginal BasicBraking

(Hydraulic)
O-Hydraulic Fail

Fail Hazardous - - -

132

Figure 46: Updated mode chart

4.2.4 Requirement Verification

In keeping with the proposed process and to enable the verification of requirement

properties, once the mode chart is constructed, it is converted into a NuSMV input

model. For this high level NuSMV model, four modules are constructed to represent

the system main module and each functional module (ABSBraking, Electrical, and

Hydraulic). The complete NuSMV model can be found in Appendix B.1.

Among the requirement properties, safety requirements are often of primary concerns in

this case study. The verification process here aims to investigate and verify that the

design goals are achieved, while ensuring that the model conforms to the safety

requirements. In this scenario, designers are provided with a list of „safety

requirement‟ (SR). These are presented and analysed throughout this section to

exemplify the set of possible requirement properties. Possible general SRs which are

expected to hold through the design are as follows:

SR1: Driving assistance function(s) shall never hazardously interfere with the system

state.

SR2: The system shall be able to withstand the occurrence of n failures, without

entering a hazardous state.

133

SR3: Dormant functions shall only be activated when needed

These requirements first have to be interpreted in terms of the behaviour specified in the

mode chart model. One possible translation of SR1 for this model is that the driving

assistance ABSBraking function, in its presence or absence, shall not cause the system to

move into a hazardous mode. These can be expressed as the following SR1.1 and

SR1.2:

SR1.1: “The presence of the ABSBraking function shall not lead the system into Fail

mode”

SR1.2: “The absence of the ABSBraking function shall not lead the system into Fail

mode”

Property SR1.1 can be interpreted as situation must not occur where the presence of

driving assistance always results in the system entering Fail mode. Although relatively

straightforward, this helps ensure the ABSBraking does not behave hazardously when

selected. CTL property for this can be written as:

!(AG(absB.Output = 1 -> SystemMode = BBW_Fail));

Apart from assuring that ABSBraking function behaves as expected in its normal mode,

SR1.2 property can be interpreted as situation must not occur where omission failure in

ABSBraking function always results in the system entering Fail mode. The CTL

property can be written as:

! (AG (absB.Output = 0 -> SystemMode = BBW_Fail));

The model checker confirms that these properties hold, and therefore we can be assured

that as a non-critical function, failure in driving assistance ABSBraking will not dictate

system failure.

Next, the SR2 requirements can be investigated. SR2 checks the robustness of the

system and aims to ensure that the system can tolerate a certain number of failures. For

this, SR2 can be further refined into:

SR2.1: “If the system is in normal mode, a single functional failure shall not cause it to

move directly into hazardous mode”

134

This property aims to ensure that when a single functional failure occurs while the

system is operating in its normal mode, the next state will be one of the degraded modes

instead of the fail mode. To model this, a failure counter is introduced in the NuSMV

model to record the number of functional failure occurrences. The highest possible

number of the counter is three as at this stage we are keeping track of three functions

(the ABS function, the Electrical function and the Hydraulic function), and failures are

assumed to be permanent. This can be expressed in CTL as:

AG (((SystemMode = BBW_Normal) & (counter = 1)) -> AX !(SystemMode =

BBW_Fail));

This property is also verified to be true by the model checker.

One important thing to note is how inclusive the transition definitions are when

modelling dormant functions. For example, the mode chart in Figure 46 is inclusive

enough for the updated model if the hydraulic backup is a dynamic „cold standby‟,

where the hydraulic back up is only activated when O-Electrical is detected. However,

for dynamic „hot standby‟ where the hydraulic backup is continuously active, the

transition definitions are no longer sufficient. This is because of the fact that if hydraulic

backup is continuously active, it is possible for the system to experience a malfunction

in the Hydraulic system (O-Hydraulic) when it is operating in BBW_Normal mode. If

O-Hydraulic occurs in BBW_Normal, according to the mode chart in Figure 46, the

system mode will stay in BBW_Normal, and when O-Electrical eventually occurs, the

system will move to BBW_PD2 for one execution step before swiftly moving to

BBW_Fail mode in the next step. Although it is not technically wrong, this could create

a false sense of security because the system is not expected to fail by the occurrence of

O-Electrical in BBW_Normal mode, especially as the mode chart aims to show a

systematic degradation phase. For this reason, it can be helpful to take into

consideration Hydraulic functional failures (if it is activated) in modes where Hydraulic

output is not expected (in this case BBW_Normal and BBW_PD1).

One possible way to better address this is by introducing an additional temporary mode

(BBW_TD1), to model the failures in the Hydraulic function when basic braking is

provided correctly through Electrical system. This degraded BBW_TD1 mode could

serves as a potential warning that the backup function has failed before the primary

135

function, a state in which potential recovery steps can also be included and performed.

This can be illustrated in the mode chart in Figure 47 below.

Figure 47: Modified mode chart for Brake-By-Wire

SR3, however, works with the assumption that the Hydraulic backup function is

activated only when Electrical module does not supply any output presssure (Figure 46).

It aims to ensure only either one or another is activated at the same time. This

interpreation and its CTL specification can be expressed as follow:

SR3.1: “Both Hydraulic and Electrical power shall not be activated at the same time”

AG !((Hydraulic.state = ON) & (Electric.state = ON));

4.2.5 Refinement of Transition Events

As explained in the previous chapter, the level of detail in the verification is also

dependent on the level of detail in the model itself. This phase of the process allows the

brake-by-wire abstract mode chart (Figure 47) to be refined. The refinement of

transition labels of this mode chart can be derived from either the FMEA directly or

hierarchically through the model failure behaviour described in the failure annotations.

136

4.2.5.1 Refinement of Transition Events through Minimal Cut Sets

The first possible way to refine this mode chart is by replacing the transition event

expression with its causing events, where the causing events can be effectively obtained

and mapped from the HiP-HOPS FTA results. For each top event, its minimal cut sets

can essentially be used to form the replacement expressions. In this case, Figure 48

presents the fault tree for the condition failure “O-Hydraulic”. Figure 49 presents the

accompanying mode chart incorporating the corresponding root causes as transition

events. Compared to mode chart in Figure 47, the examination of this expanded mode

chart allows analysts to establish direct links between internal module malfunctions and

the effects of their occurrence on the system mode transitions. The expanded mode chart

is considerably more informative and allows more verification properties to be checked

(i.e. checking whether certain malfunctions or their combinations would lead to changes

in system functionality modes). For example, instead of only being able to check the

effects of O-ABSBraking, O-Hydraulic, and O-Electrical, this expanded mode chart

allows us to ensure that malfunction events LSBEa and LSBEb will not always cause a

transition to a hazardous state: “!(AG(LSBEa & LSBEb) -> (States = BBW_Fail));”

One of the main advantages of composing the transition events directly from their root

causes is the fact that the mode chart and NuSMV models can be build without the need

to model every level of the component or module behaviour. This is useful for effective

iteration of abstract verification before details of module behaviours become available.

Once details for each module are available and more dynamic behaviours are to be

modelled (for example, to include non-failure related transitions), the mode chart can be

refined as described in section 4.3.2.

Figure 48: Fault tree for Omission of Hydraulic Failure

137

Figure 49: Expanded mode chart with minimal cut sets mapped to transition events

138

4.2.5.2 Refinement of Transition Events through Model Failure Annotation

As discussed in the previous chapter, it is also possible to construct the mode chart

which captures and reflects the functional hierarchy by constructing independent mode

chart and SMV modules for each function. To effectively link failure behaviour to input

modules and capture the structural topology, transition events retain a similar structure

to the ones of HiP-HOPS failure annotation. This means they are expressed only in

terms of input functions and internal malfunction events. To illustrate this, Figure 50

presents the structural model of BrakingEnergy (ACT) module which consists of

primary and backup modules ACT A and ACT B. ACT receives its input from

localLevelProcessings (LLP), and outputs the results of the process through ACT O.

ACT O serves as the output module and only propagates failures.

Figure 50: Structural model of Braking Energy

As with all other HiP-HOPS models, it is annotated with failure information which

describes its failure behaviour. The failure annotation for ACT A (which is identical

ACT B) for describes the causes of omission failure O-Out as:

O-Out = ActBE OR ActBEc OR O-in1

This failure behaviour is identical for ACT B. This can be mapped into the mode chart

and subsequently the NuSMV model. The following Figure.51 illustrates how the

139

failure annotation can be represented as the mode chart transition. As ACT A receives its

input from LLP which is in the same hierarchical level as ACT A, O-LLP can be used to

directly replace O-in1 in the mode chart. ACT A can hold two failure-relevant modes:

ActA_Normal (when it delivers its output) and ActA_Fail (when O-Out occurs and it

fails to deliver its output). Once ACT A enters its ActA_Fail mode, it sends the

appropriate global broadcast signal (“/O-ActA”) to announce the occurrence of O-Out

in ACT A.

Figure.51: Mode chart for failure behaviour in ACTUATOR

140

The translation of this failure behaviour in HiP-HOPS to a NuSMV model can also be

done in a structured way. Module ACT A input variables are used to represent input

deviations, while its internal malfunctions are defined locally. This way, failure

expression can be directly represented in the local definition of O-Out which is then

used to affect the outcome of Out. Module ACT B can be constructed in a similar way.

And as ACT A and ACT B are subsystems of ACT, output deviations O-ActA and O-

ActB are passed as input deviation variables for module ACT. Main module manages

the global architecture of the network and the broadcasting of events which enable

transitions between modules. These are illustrated in the excerpt of a NuSMV model for

an actuator module presented in the Figure 52:

MODULE ACTA (O-in1)

VAR

O-Out: boolean;

Out: boolean;

ActBE: boolean;

ActBEc: boolean;

ASSIGN

init(ActABE) := 0;

O-Out := O-in1 | ActBE | ActBEc;

Out := !O-Out;

next(ActABE):=case

ActABE = 1 : 1;

1: {1,0};

esac;

next(ActABE):=case

ActABE = 1 : 1;

1: {1,0};

esac;

ACT A

141

MODULE ACT (O-ActAOut, O-ActBOut)

VAR

O-Out: boolean;

Out: boolean;

ASSIGN

O-Out := O-ActAOut & O-ActBOut;

Out := !O-Out;

ACT

MODULE ACTB (O-in1)

VAR

O-Out: boolean;

Out: boolean;

ActBE: boolean;

ActBEc: boolean;

ASSIGN

init(ActABE) := 0;

O-Out := O-in1 | ActBE | ActBEc;

Out := !O-Out;

next(ActABE):=case

ActABE = 1 : 1;

1: {1,0};

esac;

next(ActABE):=case

ActABE = 1 : 1;

1: {1,0};

esac;

ACT B

142

Figure 52: Excerpt of the NuSMV model for the Braking Energy

This refinement of the NuSMV model captures and retains the hierarchical composition

of the model and allows more detailed verification to be performed. By examining the

relationships between the dynamic behaviour of modules it is now possible to verify

more safety related requirements, from more straight-forward ones like “As long as

Braking Energy ACT A is functioning, the Braking Energy function shall be present”, or

for a cold-standby system which examines the electrical and hydraulic modules: “Only

either Electrical pressure or Hydraulic pressure shall be supplied at one time”, to the

MODULE main

VAR

llp: LLP;

acta : ACTA(LLP.O-Out);

actb : ACTB(LLP.O-Out);

act: Actuator(acta.O-Out, actb.O-Out);

Other_local_variables ...

Other_definitions...

...

MAIN

MODULE LLP(LLP_inputDeviation_variables...)

VAR

Out: boolean;

O-Out : boolean;

C-Out : boolean;

LLPBE : boolean;

LLPBEc: boolean;

ASSIGN

init(LLPBE) := 0;

O-Out := LLPBE;

Out := !O-Out;

C-Out := LLPBEc;

next(LLPBE) := case

LLPBE = 1: 1;

1: {1,0};

esac;

LLP

143

effects of this function behaviour on the system modes: “ System shall not be allowed to

enter hazardous mode when Electrical system is functioning”.

Although the processes of construction and refinement of state machines are currently

manual, the potential for future automation has been outlined in Chapter 3.8. With

IACoB, the construction of these state machines (presented in Figure 44, Figure 46,

Figure 47, Figure 49, Figure.51, and NuSMV excerpt in Figure 52) are no longer ad

hoc, but made systematic with the help of FTA/FMEA results. The ability to verify

listed safety requirements (SR 1.1 to SR 3.1) also highlights the benefits of the

application of BSA at this early stage.

4.3 Architecture-allocated Functional Model

To illustrate the iterative application of the IACoB process in a more detailed design,

we present another phase of analysis in an architecture-allocated functional model of the

BBW system. The architecture-allocated functional model extends the purely functional

model by taking into account early system architecture and concisely represents

allocation of functions to architectural elements without going into fine details of the

architecture. Figure 53 illustrates the architecture-allocated model of the system for the

corresponding four wheels of the vehicle. This model is developed based upon the

earlier functional model (Figure 45) and allocates functions to components.

VehicleLevelProcessing function is assigned to (and therefore from now onwards

referred to as) an ECU (electronic control unit). Similarly, each LocalLevelProcessings

function is allocated to a BCU (Brake Control Unit) which, together with an actuator,

are assigned for each wheel. It is common that multiple architectural components are

assigned to perform a single function, or for a single components to be shared between

multiple functions. Here ABSBraking function is realized by sharing BCU and actuators.

ABS command is fed directly from ABS processing components to the BCUs to reflect

the correct value of braking pressure applied by each actuator.

144

Figure 53: Architecture-allocated functional model for brake by wire system

145

In accordance with our proposed process, the iterative analysis begins again from the

construction and analysis of an FFA, followed by an FTA and FMEA. At this phase of

analysis, we place the focus on the BCU and the delivery of each wheel braking

pressure as part of the whole brake-by-wire structure, and explore the relationship

between the delivery (and absence) of this function from different wheels, as opposed to

the independent analysis performed previously in section 4.2.

The system delivers four braking functions, each handled by a BCU delivering

commands to actuator for each wheel. The longitudinal symmetry of this functional

design means that the potential single functional failures on each side of the car and

their effects of the systems are similar to those on the other side of the car. For this

analysis, single functional failure and multiple combinatorial failures will be

investigated.

4.3.1 Analysis of Single functional failure

The first part of the FFA identifies potential single functional failures of the wheel

braking function. Here we introduce a new type of failure, LockedWheel, and

investigate the effects of this failure on the system. The LockedWheel failure occurs

when a wheel experiences rapid deceleration (causing it to „lock‟) and stop much more

quickly than the vehicle could. This is usually prevented by the ABS anti-lock function

which alternately reduces the pressure to the brake until it sees acceleration, and

increases pressure until it sees deceleration again. This is performed within a very short

period of time, resulting in the slowing down of the wheel matching deceleration rate of

the vehicle.

In this example, the supervision of relevant parameters (e.g. wheel speed reading) and

the processing of ABS commands are shared between ECU and ABS processing

component. To maintain simplicity, we assume that the ABS processing component only

propagates failure, and the failure in ECU is enough to cause failure in producing

correct ABS command. The LockedWheel (L-BrakingPressure) failure occurs when the

new internal malfunction LockBE occurs in the BCU and at the same time the ECU fails

to produce necessary command/information to instruct the ABS to prevent locking

(Omission of ABS command or O-ABScmd). LockBE could represent an internal

146

failure in the BCU algorithm causing maximum brake pressure to be applied. This can

be expressed in the following failure logic for the BCU:

L-BrakingPressure = O-ABScmd AND LockBE

Figure 54 presents a fragment of the architecture-allocated functional model to illustrate

how failure can be propagated through the topology, eventually causing front-left (FL)

wheel to lock:

Figure 54: Failure propagation to BCU

147

Table 14 presents the FFA for single wheel braking function for front left wheel.

Omission and commission failures were as addressed and treated in previous chapter

(section 4.2), and the effects of wheel locking with or without braking intention are

examined:

Table 14: Functional failures for single wheel braking function

Function Failure Type Effects on

System

Severity Detection Recovery Recommenda

tion

FL_Braking

Pressure

Locking-Com.

Permanent

wheel lock

when there is

no braking

intention

Vehicle

tends to drift

to side.

Severe lost

of control as

maximum

brake is

applied

Critical Comparison

of pedal

input and

pressure

sensor

feedback

- Assume

commission of

brake pressure

is transformed

to omission of

brake

pressure.

FL_Braking

Pressure

Locking-Om.

Permanent

wheel lock

when there is

braking

intention

Vehicle

tends to drift
to side.

Severe lost

of control as

maximum

brake is

applied

Critical Comparison

of pedal
input and

pressure

sensor

feedback

- ABS

algorithm to
prevent

permanent

locking.

*Additionally,

intentional

locking of

diagonal

wheel

4.3.2 Analysis of multiple functional failures

Apart from single functional failure analysis, the effects of combinations of multiple

functional failures in the vehicle wheels can also be examined. The analysis involves

conjunctions of two to four functional failures, and combinations of failures that require

further examination are identified. As the system incorporates four braking functions

(one for each wheel) and there are six corresponding failure modes for each function,

there appears to be a large number of possible combinations. However, a systematic

analysis of unique combinations yields a relatively small number. The reason is that due

to the symmetry of the brake-by-wire system, only certain combinations are unique.

Certain failure combinations are also inapplicable because they can only occur in

mutually exclusive modes, for example, braking and absence of braking. Here, analysis

of the L-BrakingPressure failure is performed in a scenario where the locking occurs

148

when brake pressure is required. The full analysis of the FFA is too long to include and

will not contribute much to this discussion. We focus on the analysis regarding wheel

locking which shows that:

 Severity of single wheel locking failure is critical and affects the stability and

steeribility of the vehicle.

 Severity of two locking failures in diagonal wheels is marginal because stability

is improved.

 Severity of three locking failures is critical.

 Locking in all four wheels is identified as less severe than locking in three, or in

some cases, two wheels.

From these FFA results, we are able to identify recovery mechanisms against such types

of failures by incorporating the ability to perform intentional locking: the intentional

locking of a diagonal wheel can be performed in response to a single wheel locking

failure, and intentional locking of all four wheels can be used as recovery mechanism to

reduce the severity of a failure of three wheels.

Working with the assumption that the recovery plan to unlock the wheel (e.g. by

releasing pressure in time) is not possible, it is decided that the ability to intentionally

lock the wheel can be incorporated as an additional function to each BCU. This new

function enables intentional locking by applying maximum braking pressure to the

wheel. An additional module (DL) is used to monitor the output of each BCU to detect

locking failure (L-BrakingPressure) and subsequently activates the locking of

corresponding diagonal wheel. This DL module can be implemented as part of the ECU

or as a separate independent module. It is also possible to further analyse the failure to

provide this intentional locking (omission and commission failure of DL). To maintain

the simplicity of this example however, we assume DL only propagates failures and

focus the analysis on the degradation phases the system experiences in the occurrence of

wheel locking, and ensuring required safety properties hold during these phases. The

revised functional model of the BCU can be seen illustrated in the figure below. FL

indicates Front-Left wheel, FR indicates Front-Right wheel, RL indicates Rear-Left

wheel, and RR indicates Rear-Right wheel.

149

Figure 55: Updated BCU for wheels with Intentional Diagonal Locking (DL)

Following the introduction of the new function to enable intentional diagonal locking,

we aim to analyze and verify that the system holds true the key safety requirements in

its degraded mode. And as with the earlier example, FTA and FMEA results are used to

assist in the construction of a mode chart where this dynamic behaviour can be

analyzed. FTA/FMEA results are used to derive root causes of locking L-

BrakingPressure for each wheel. This in turn enables us to study the how failures from

different wheel propagates to cause the locking of the diagonal wheel, and if safety

requirements still hold.

Figure 56 presents the fault tree for L-BrakingPressure for FL wheel and the list

minimal cut sets derived:

150

Minimal Cut Sets For L-FL_BrakingPressure:

 FL_BCU.LockBE AND Input_wheelSpeedSensor.WSBE

 FL_BCU.LockBE AND Input_externalSensors.ESBE

 ECU.ECUA.ECUBEabsC AND ECU.ECUB.ECUBEabsC AND

FL_BCU.LockBE

 ECU.ECUA.ECUBEabsC AND ECU.ECUB.ECUBEabs AND

FL_BCU.LockBE

 ECU.ECUA.ECUBEabs AND ECU.ECUB.ECUBEabsC AND

FL_BCU.LockBE

 ECU.ECUA.ECUBEabs AND ECU.ECUB.ECUBEabs AND

FL_BCU.LockBE

Figure 56: Fault tree for L-FL_BrakingPressure

To understand how these root causes affect the changes in system modes and the

activation of newly introduced intentional diagonal locking, we examine the dynamic

behaviour of the DL module. In its normal mode, the DL module's function is to monitor

for the occurrence of locking in any wheel and (when detected) instantiate the locking

of the diagonal wheel. As mentioned earlier, the DL only propagates failures and

therefore would only respond to external failures. So instead of modelling how it

degrades in response to the failure of delivery of its monitoring and activating function,

the modes are decided based upon the condition of locking of each wheel. The

following modes are possible:

151

1) Normal: when there is no wheel locking occurring

2) TDn_Critical_ X : Temporary degraded mode when locking occurs in wheel(s) X

with total n number of locking occur in the vehicle.

3) PDn_ X: Permanent degraded mode when locking occurs in wheel(s) X with

total n number of locking occur in the vehicle

X here represents vehicle wheel(s): FL, FR, RL, RR. X ⊆ {FL, FR, RL, RR}. The states

are mainly categorized based upon the n number of wheels locked (intentionally or not).

Temporary degraded (TD) modes are marked as critical because they are only assigned

to occurrence where either one or three wheels are locked, the occurrence of which has

critical effects. These modes are temporary because the entry behaviour (which is

executed immediately once the mode is entered) triggers event “/X DiagonalLock”

which locks the corresponding diagonal wheel X, and therefore causes the system to

move to a non-critical permanent degraded mode. Permanent degraded (PD) modes are

not critical as they occur when two diagonal wheels or all four wheels are locked.

Figure 57 below describes this relationship and the transitions between modes. Here

assumption is made that DL is designed in such way that it processes one locked wheel

signal at a time. In a real-life scenario, it is possible for locking of multiple wheels to

occur within a time period so close to one another it appears to be occurring

simultaneously. To handle this, the DL is assumed to be able to register the time

difference and sequence of occurrence. This allows appropriate action to be taken (i.e.

intentionally activating the locking of diagonal wheel if necessary) before processing

the next locked wheel(s).

152

Figure 57: Mode chart for DL Controller

The events that trigger the mode transitions are signals from individual BCUs to

indicate wheel locking. This locking can be caused by an intentional locking command

from DL or unintentionally as a result of L-BrakingPressure. Figure 58 presents the

mode chart for the wheel BCUs.

Front Left (FL) BCU

Front Right (FR) BCU

153

Rear Left (RL) BCU

Rear Right (RR) BCU

Figure 58: Mode chart for Wheel BCU

Similar to the previous process at this stage in section 4.2, we are able to extend the

mode charts here by mapping the failure “L-X_BrakingPressure” to its minimal cut sets

identified through FTA/FMEA (Figure 59 for FL wheel):

154

Figure 59: Expanded transition based on Minimal Cut Sets

At this stage we could also construct the mode chart to reflect the hierarchical structure,

and enable generation of a NuSMV model which captures all the relevant modules that

trigger corresponding transition events in BCU. The figure below depicts the mode

charts for the FL_BCU, ECU, and two input sensors relating to the failure O-ABScmd:

155

Figure 60: Mode chart for modules relating to Locking of Front Left (FL) wheel

The corresponding NuSMV model for the FL_BCU is presented below. As the

FL_BCU receives its input from the ABS module (please see Figure 53), the propagated

input deviation O-ABScmd gets passed as its input variable. It also receives the

command to intentionally lock its wheel from the DL, FLDiagonalLock (Figure 55),

which is also passed as an input variable. Its internal malfunction LockBE is also

included as part a local variable. These allow the forming of its output deviation failure

expression:

LockBE AND O-ABScmd OR FLDiagonalLock

The complete SMV model can be found in Appendix B.2.

MODULE FL(O-ABScmd, FLDiagonalLock)

VAR

States : {Normal, Locked} ;

LockBE : boolean;

counter : 0..1;

FLlockSig : boolean;

locked: boolean;

ASSIGN

init(States) := Normal;

init(LockBE) := 0;

init(counter) := 0;

locked := (LockBE & O-ABScmd)| FLDiagonalLock;

FLlockSig := case

States = Normal : 0;

1: 1;

esac;

next(States):=case

States = Normal & locked = 1 : Locked;

1: States;

esac;

next(LockBE) := case

LockBE = 1 : 1;

1: {0,1} ;

156

esac;

next(counter):=case

States = Locked : 1;

1: counter;

esac;

This case, again, demonstrates how CSA assists the identification of root causes (of

locking failure in a wheel), and its role in the construction of the system state machines.

The modelling of the intentional locking (nominal behaviour) of diagonal wheels by DL

Controller in response to the locking failure of other wheels highlights the role of BSA.

By enabling the modelling of these different aspects of the system, IACoB allows a

better understanding of the system dynamic behaviour and enables verification of safety

properties in this context.

For example, with this introduction of an intentional locking function, it is important to

ensure that the system still adheres to the list of safety requirements (SR1 – SR3)

defined in section 4.2.4. This modelling of modules and DL controller in behaviour in

NuSMV subsequently allows verification of these safety properties for the extended

model. Possible scenarios for safety and reachability of the control for intentional

locking function can be examined. First we investigate SR1: “Driving assistance

function(s) must never hazardously interfere with basic critical function(s)”. This is

adapted into SR1.3 to reflect the fact that the driving assistance function (anti-lock) to

be investigated here refers to intentional diagonal locking, and in addition to

investigating whether it affects the braking pressure, we aim to ensure that the activation

of diagonal locking will not cause unintentional locking which lead to hazardous states.

SR1.3: “Intentional locking of diagonal wheel should not lead to hazardous state”

To do this, “hazardous state” is defined as the condition either where one wheel locks or

where three wheels lock, i.e. the occurrence of either TD1_Critical_ X or TD3_Critical_

X respectively:

Hazardous := case

States = TD1_Critical_FR |States = TD1_Critical_RL | States =

TD1_Critical_FL | States = TD1_Critical_RR |States =

TD3_Critical_FRRLRR |States = TD3_Critical_FLRRFR | States =

TD3_Critical_FLRRRL : 1;

1: 0;

esac;

157

The activation of DL (DLActive) is defined as the condition when any of the wheels has

been diagonally locked intentionally:

DLActive := FLdiagonalLock | RLdiagonalLock | FRdiagonalLock |

RRdiagonalLock;

We aim to verify that the diagonal locking function itself will not lead to or always be

the cause of the system entering this hazardous state. This can be expressed in CTL as:

SPEC !AG(DLActive -> Hazardous);

As this property is verified to be true by the model checker, the next SR2 - “The system

shall be able to withstand the occurrence of n failures, without entering a hazardous

state. ” - can be investigated. Instead of counting the number of failures, the Counter

variable is assigned to keep record of the number of locked wheels (whether intentional

or caused by a failure). For this scenario, the initial aim here is to ensure that when the

number of locked wheels is not one or three, the system should not reach the Hazardous

state. This can be specified in the following SR2.2 and the accompanying CTL

expressions:

SR2.2: “In situations where the number of wheels locked is not one or three, the system

shall not enter the hazardous mode”

SPEC AG((!(Counter = 1) & !(Counter = 3))->!Hazardous));

This property does not hold and the model checking traces demonstrate that the locking

of two non-diagonal wheels at one point leads to locking of three wheels, which is

Hazardous. With the current arrangement of DL, however, this means that the locking of

two non-diagonal wheels should always eventually lead to the locking of all four

wheels. Variable TwoParallelWheelsLocked is assigned to represent the locking of two

non-diagonal wheels. This state of reachability can be verified through the following

modified properties:

SR2.2: “In situation where two non-diagonal (parallel) wheels are locked, all four

wheels shall eventually be locked”

TwoParallelWheelsLocked =(flw.States = Locked & rlw.States = Locked)|(

frw.States = Locked & rrw.States = Locked) | (flw.States = Locked &

frw.States = Locked) | (rlw.States = Locked & rrw.States = Locked)

158

AG(TwoParallelWheelsLocked -> AF(States = PD4_AllWheelsLocked));

This property is verified to be true by the model checker, and therefore we are assured

that non-diagonal locking of two wheels will also lead to locking of all four wheels

(non-hazardous state).

Next we continue to check the requirement SR3: “Dormant functions shall only be

activated when needed”. In this scenario, intentional diagonal locking should only be

instantiated when the ABS function is not working, as in its presence, the ABS would be

expected to manage the prevention of wheel locking:

SR3.2: “Intentional locking of diagonal wheel shall not be instantiated when ABS

function is working”

For this, we need to again define the condition ALLOFF where no diagonal locking is

taking place. For every situation where the ABS is working (therefore omission O-

ABScmd = 0), ALLOFF should be true. This can be expressed in CTL as:

SPEC AG((O-ABScmd = 0)-> ALLOFF) ;

This is also verified to be true by the model checker.

Additional properties to check system robustness and failure recoverability could

include the verification of whether intentional diagonal locking will always eventually

result in the system moving from the hazardous state to a non-hazardous state. This

aims to ensure that the DL fulfils its function as a fail-safe mechanism. Non-hazardous

states refer to the condition where either only two diagonal wheels are locked or all four

wheels are locked, which brings us to the next requirement to verify, SR4:

SR 4: “Intentional locking of wheels shall always eventually lead the system to non-

hazardous states”

This can be modelled in CTL as:

SPEC AF (DLActive ->! Hazardous);

159

This property aims to ensure that DLActive is performing its task to ensure system

moves from a hazardous state to a non-hazardous state. This is also verified to be true

by the model checker.

4.4 Chapter Summary

This chapter explored the application of the IACoB process in a vehicle brake-by-wire

system. It investigated how the approach utilizes CSA and BSA to help perform safety

assessment and influence system design in the early phase of the system development.

Two main models were presented to highlight different discussion elements. The first

model described high level system functional design where FFA and FTA/FMEA

(CSA) were used to effectively identify root causes of hazardous functional failures (i.e.

absence of braking pressure). Appropriate design modification and improvements,

including introduction of backup mechanisms for critical functions, were then made to

reduce or avert risk of failure. This was followed by formal verification (BSA) via the

NuSMV model checker to verify that the design adheres to safety requirement

specifications. The second model provided more details about allocation of functions to

architectural elements. It explored a further particular failure (i.e. wheel locking) and

subsequently recommended an additional new function (diagonal locking) to help the

system respond to this failure. The integration of this function into the design and

whether or not the predefined safety requirements specifications still hold were then

analyzed.

The proposed approach provides assistance in evaluating the design and allows both

CSA and BSA to exploits analysis results from previous stages to help with the safety

assessment. In particular, generation of the mode chart in order to enable BSA utilizes

results from FTA/FMEA in the composition of its event transitions. The process also

allows verification to be performed early on an abstract mode chart before more

concrete details are available.

160

CHAPTER 5. Case Study on Aircraft Wheel Brake

System

5.1 Introduction to Aircraft Wheel Brake System

This second case study aims to explore further the role of BSA in influencing the

system design. It investigates the application of IACoB process to an aircraft wheel

brake system. The model presented here is mainly an adaptation from the (ARP 4761)

aircraft wheel brake system, which is also referenced in (Joshi et al., 2006).

The main function of the wheel brake system is to provide safe braking function for

aircraft during the taxiing and landing. This mainly involves supplying correct pressure

and preventing skidding. Secondary functions of the wheel brake system also include

preventing unintended aircraft motion when parked, and stopping main gear wheel

rotation upon gear retraction.

The braking system consists of two primary hydraulic pumps: GreenPump and

BluePump. On Normal braking mode, GreenPump provides the required hydraulic

pressure and the Alternate mode, which is powered by BluePump, is held on standby.

When failure occurs on normal system, the brake is driven by hydraulic power

generated by BluePump.

In the original (ARP 4761) example, another backup mechanism was in place lest both

of the pumps fail. Here, however it has been deliberately excluded in the beginning of

this discussion to demonstrate how our process arrives to the conclusions for the need of

the safety measures. Therefore in the initial system model of this example, it is assumed

that one backup hydraulic pump (Blue Pump) is sufficient.

In normal mode, BSCU (Brake System Control Unit) receives brake pedal positions as

input and processes this information to produce control signals to the brakes. BSCU also

monitors various input signals that indicate certain critical aircraft and system states to

provide correct brake functions and improve fault tolerance mechanism, generate

warnings, indications, and maintenance information to other systems.

161

5.1.1 Nominal system model

The brake system used in this study is a modified version of the one used in ARP4761.

Its architecture is illustrated in Figure 61.

The system consists of the following main components: BSCU (Brake System Control

Unit), two hydraulic pressure lines, mechanical components, and an output component.

BSCU (Brake System Control Unit) is the digital controller in the system which accepts

inputs to compute braking and anti-skid commands. Aircraft speed and deceleration rate

are used when auto brake is true. For brevity, the auto brake function has been excluded

from discussion. The BSCU itself consists of two redundant Command and Monitor

units. The Command units perform the computation to output the required braking

command as well as the anti-skid command. The Monitor units supervise their

corresponding Command units, and when deviation is detected in the first Command

unit, the second unit is selected. When both Command units are detected to be invalid,

BSCU is said to be invalid.

Two hydraulic pressure lines - Normal (green line powered by GreenPump) and

Alternate (blue line powered by BluePump) - are used. The GreenValve and the

BlueValve are used to control the pressure from the GreenPump and the BluePump

respectively. In normal working condition, GreenValve and BlueValve are both open to

provide constant stream of pressure to SelectorValve. The SelectorValve selects only

one of the two redundant hydraulic systems to prevent a situation where both the green

and blue system provide pressure to the brake, with the green line selected by default.

This pressure is relayed to corresponding meter valves which adjust the valve position

to output the required amount of pressure based on the command from BSCU. WBS is

an output function which outputs the pressure.

The system switches to Alternate when one of these conditions occurs:

1) GreenPump produces pressure below threshold (or omitted)

2) Or when any other failures occur along the green line causing normal line output

to fall below threshold (or omitted).

Once BSCU decides that Alternate line should be activated, it sends an OnAlternate

signal which informs SelectorValve to inhibit any pressure from GreenValve. The

162

SelectorValve in turn engages the Alternate mode and relay pressure from BlueValve.

Once the system switches to Alternate, it will not revert back to Normal. Figure 61

shows the basic system system structure. NormalP, AlternateP and WBS blocks are

intermediate blocks which only propagate failures.

163

Figure 61: Simulink model of wheel brake system

164

5.2 FTA/FMEA

Once constructed, the system model is extended with failure information. To maintain

simplicity, each component is assumed to carry one internal malfunction which directly

causes omission of the component‟s output. BSCU, however, has two types of internal

malfunction, which are related to the Monitor and Command units. Inputs to the BSCU

are assumed to be supplied as intended. Table 15 summarizes the failure information for

each component. Although the analysis has been largely focused on omission failures,

other failure types like „valve stuck at open‟ (causing commission failure) and „valve

stuck at value‟ can also be included.

Table 15: Internal failure for Wheel Brake System components

Component Failure Mode Description

GreenPump GreenPumpBE Internal malfunction in Green

Pump which causes omission

failure

GreenValve GreenValveBE Internal malfunction in Green
Valve which causes omission

failure

BluePump BluePumpBE Internal malfunction in Blue

Pump which causes omission

failure

BlueValve BlueValveBE Internal malfunction in Blue

Valve which causes omission

failure

CMD/Anti-SkidMeterValveG GCMDASBE Internal malfunction in the

command/ anti-skid green line

meter valve which causes

omission failure

CMD/Anti-SkidMeterValveB BCMDASBE Internal malfunction in the

command/ anti-skid blue line

meter valve which causes
omission failure

SelectorValve selValveBE Internal malfunction in the

Selector valve which causes

omission failure

BSCU CMDBE Internal malfunction in the

BSCU which causes omission

failure in both BSCU command

units

 MonitorBE Internal malfunction in the

BSCU which causes omission

failure in both BSCU both

monitor units

165

Once failure extension of the model was completed, FTA and FMEA were

automatically performed by HiP-HOPS. The derived FMEA shows how component

failures contribute to the omission of pressure failure in WBS. As in the previous case

study, the effects of component failures are distinguished between direct effects and

further effects. The direct effect in Table 16 indicates that omission of the BSCU

Command unit or the SelectorValve will directly contribute to the absence of WBS

pressure. Additionally, the further effects table Table 17 shows that failures in hydraulic

pumps, valves, and meter valves lead to omission of WBS pressure but only in

combination with other failures.

Table 16: FMEA Direct Effects for Wheel Brake System

Components Failure Mode Direct Effects Severity Comments/

Recommendation

SelectorValve selValveBE O-WBS.pressure Catastrophic System should
move to degraded

mode. Failure

should at most

affect only anti-skid

command.

Introduce backup

that read pedal

positions

separately.

BSCU CMDBE O-WBS.Pressure Catastrophic Backup mechanism

should be

introduced to
provide pressure in

the event of

SelectorValve

failure

Table 17: FMEA Further Effects for Wheel Brake System

Components Failure Mode Effects Severity Contributing

Failure Modes

BluePump BluePumpBE O-WBS.pressure Catastrophic GCMDASBE

GreenValveBE

GreenPumpBE

BlueValve BlueValveBE O-WBS.pressure Catastrophic GCMDASBE

GreenValveBE

GreenPumpBE

166

CMD/AS

MeterValveB
BCMDASBE O-WBS.pressure Catastrophic GCMDASBE

GreenValveBE

GreenPumpBE

CMD/AS Meter

ValveG
GCMDASBE O-WBS.pressure Catastrophic BluePumpBE

BlueValveBE

BCMDASBE

GreenPump GreenPumpBE O-WBS.pressure Catastrophic BluePumpBE

BlueValveBE

BCMDASBE

GreenValve GreenValveBE O-WBS.pressure Catastrophic BluePumpBE

BlueValveBE

BCMDASBE

Direct reading of the FMEA shows that omission of either the BSCU Command unit or

the SelectorValve directly lead to omission of pressure on the wheel-brake system. This

absence of brake pressure is identified as a failure with catastrophic severity, and

therefore single-points of failure CMDBE and selValveBE should be prevented. This

can be achieved via introduction of backup mechanisms.

In this case, an AccumulatorPump and a ManualMeterValve are introduced to support

the hydraulic system. An Accumulator is an energy storage device which contains built

up pressure that can be released when both Green line and Blue line fail. The

Accumulator supports the Alternate pressure line, and when activated the system is said

to be in Emergency braking mode.

5.3 Revised Model

As shown in the revised model illustrated in Figure 62, the AccumulatorValve is

introduced and placed between SelectorValve and ManualMeterValve. It receives and

regulates pressure inputs from SelectorValve and AccumulatorPump. The

AccumulatorValve also receives a signal from BSCU to indicate the activation of

Alternate mode. When the system is running under Alternate mode and the

SelectorValve is providing pressure, the AccumulatorValve does not produce any

output. But in the case where Alternate mode is on and pressure from the SelectorValve

is absent or falls under threshold, pressure from AccumulatorPump is released and

supplied instead.

167

The second critical single-point of failure identified by the FMEA of the initial model is

the combined failure of BSCU command units, denoted as CMDBE; this is a single

failure representing the internal malfunction in both primary and secondary command

units. CMDBE results in omission of the braking command signal being fed to the

CMD/ASMeterValves, which are designed to supply correct value of pressure according

to braking command. This subsequently results in the omission of both normal and

alternate pressure lines. One solution to avert this failure is by enabling the system to

also obtain the braking commands directly from mechanical pedal position of brake

pedals. This way, failure in BSCU braking command units will only result in the

absence of skidding prevention instead of complete loss of pressure. ManualMeterValve

obtains the basic braking command from MechanicalPedal, which reads the pedal

position input directly. If pressure is provided from AccumulatorValve,

ManualMeterValve supplies the braking pressure for the system in emergency mode.

The introduction of new mechanism means that FTA and FMEA analysis need to be

updated. Iteration of the analyses is made efficient with the semi-automated nature of

FTA and FMEA facilitated by HiP-HOPS. The results of HiP-HOPS analysis of the

improved model which includes new components (AccumulatorPump,

AccumulatorValve, ManualMeterValve and MechanicalPedal) and their failure

annotations (partly adapted from (Johsi et al., 2006) show that there is no longer any

single-point of failure. We assume that elimination of single point failure is sufficient

and the design is deemed to be acceptable for the next stage of the process.

The process continues with the construction of state machines that can be used for the

purposes of a BSA. These should record normal modes where the system delivers its

main function of delivering brake pressure and degraded modes where assistance

function like anti-skid have been lost or sacrificed. Anti-skid feature is only provided

when the system is operated under normal or alternate condition. This is done with the

simplified assumption that the pedal position command does not propagate any failure.

NormalP, AlternateP and EmergencyP are intermediate blocks which only propagates

failures.

168

Figure 62: Revised model for wheel-brake system

169

5.4 Construction of Mode charts

The process proceeds to formulate system states based on delivery of functions. As

mentioned earlier, WBS produces two different functions: provision of pressure and

anti-skid. Although it is seemingly similar to the Brake-by-wire study presented in

Chapter 4 (provision of brake pressure and ABS functions), we take slightly a different

approach in grouping system modes according to the different way the model is

presented.

Based on the delivery of these functions and the different hydraulic lines through which

pressure can be supplied, one possible way to categorize system modes is as the

following:

1) Normal (WBS_Normal) mode: where hydraulic pressure is provided by Green

line, and anti-skid function is present.

2) Degraded1 (WBSD1_ALTERNATE): where hydraulic pressure is provided by

Blue line, and anti-skid function is present.

3) Degraded2 (WBSD2_EMERGENCY): where hydraulic pressure is provided by

Accumulator pump and anti-skid function is absent.

4) Fail (WBS_FAIL): where there is no hydraulic pressure provided.

Transitions between these modes can be formulated with the help of FMEA-ModeChart

assistance table:

Mode Severity Functions

Delivered

Functional

Failure

Causing

Transition

Target Mode

WBS_Normal - Hydraulic

pressure

supplied

through normal

(green) line and
anti-skid

function is

delivered

O-NormalP WBSD1_ALTERNATE

170

WBSD1_ALTERNATE Marginal Hydraulic

pressure

supplied

through

alternate(blue)

line and anti-

skid function is

delivered

O-AlternateP WBSD2_EMERGENCY

WBSD2_EMERGENCY Critical Hydraulic

pressure

supplied
through

emergency line

O-

EmergencyP
WBS_FAIL

WBS_FAIL Catastrophic No pressure

supplied
- -

Mode chart for WBS can be constructed based on the information from assistance table,

which is shown in Figure 63 below:

Figure 63: Abstract state machine for wheel brake system

171

5.5 Model Design Evolution from Requirement Verifications

Having constructed the abstract mode chart, we could then refine the state machines to

engage the component behaviour. Translation from HiP-HOPS model to NuSMV

automata model can be performed as described previously (please see section 3.8). This

subsequently allows us to perform verifications on system model to ensure that it

satisfies certain safety properties. As the design advances, both the formal model and

safety properties are further refined to facilitate necessary lower level verification. It is

then common to refine the state machine by including more specific parameter values

(e.g. WBS pressure threshold in this case).

Verification can be performed with or without constraints on the maximum number of

faults that can occur. A scenario for this example can be the verification of the property

that: “When there is omission of normal pressure, alternate will always replace it”. This

property will not hold because after a certain number of component failures, alternate

line will eventually fail. The specification can be revised by including specific

assumptions, for example denoting the number of individual component failures

deemed acceptable.

Another interesting aspect of model-checking of this system can be discovered during

the verification of simple properties like:

SR5: “When output is not supplied by Normal Line, and there is no failure accounted in

Alternate line, pressure shall be supplied from Alternate line”

This property does not hold, and NuSMV produces a counterexample trace that

demonstrates how the condition is breached. The counter example describes a scenario

where although omission in output from CMD/ASMeterValveG (Normal line) is 0, input

deviation and internal malfunction in CMD/ASMeterValveB (Alternate line) is 0, output

for Alternate line – which is expected to be 1 in this situation – is also 0.

Upon quick inspection, it is identified that the cause lies in the fact that the system

employs dynamic cold standby. This information has been added manually to the

NuSMV (state machine) models to reflect the different types of pressure line, and that

only one can be active at one time. This means that the backup component is activated

only when the primary component fails. To model this, we incorporate „activation‟

172

control as part of the dynamic behaviour modelling of the backup component.

Activation signal is essentially used to indicate whether the component is expected to

provide output. This is particularly useful to accurately describe an omission failure. In

describing an omission failure, it is important to distinguish between absence of

component output due to the component being not activated (not needed) or due to

actual failures. Therefore, it is no longer sufficient to define the output of a component

exclusively based on the negation of omission output, but to also take into consideration

whether the component is activated. Manual intervention is required to include this

additional information on as it was not contained in the CSA model.

To ensure that activation signal is taken into consideration within the modelling of

CMD/ASMeterValveB for Alternate line, the following simple description exemplifies

how output and omission of output can be described:

Omission-Output = Omission-Input OR internal_malfunction

Output = Active AND NOT(Omission-Output)

Activation properties can be introduced to describe a set of conditions related to the

component(s) activation. This helps outline the assumptions needed for verification of a

safety properties, e.g. to check whether a specification holds when a certain component,

or a set of components, are activated. For example, we could define activation of

BackupComponents as the activation of either meter valve in Alternate line or the

activation of accumulator valve. This enables us to verify properties such as the

following safety requirement:

SR6: When Normal line is functioning, no backup mechanism shall be activated.

Which can be expressed in the following CTL statements, where Backup_Active

representing condition when either green or blue meter valves are active:

Backup_Active := CMD/ASMeterValveB.Active OR AccumulatorValve.Active

AG((WBS.Status = Normal) -> NOT(Backup_Active))

Information to describe assumptions and activation control like this requires manual

intervention, as they are not captured in the initial CSA annotated model.

Further examples of how component activation (or their deactivation) can affect the

modelling and analysis assumptions in Altarica models can be found in (Bieber et al.,

2002).

173

In NuSMV automata model, an activation signal can be passed as an independent input

parameter or can be assigned from the observation of other relevant input parameters

(for example, the absence of specific component input). It is also possible to model the

failure in the activation signal itself. However, in this example, the activation signal is

assumed to be reliable and not associated with any failure.

Verification is also useful to uncover overlooked flaws in design. For example, another

counterexample is produced when we are trying to verify the following properties:

SR7: When both Normal line and Alternate line are not producing output, as long as

there is no failure accounted along the emergency line, the system shall not fail.

This property, again, does not hold and NuSMV returns a counterexample. The

counterexample indicates that it is possible for a situation to occur such that: when

internal malfunction CMDBE occurs in BSCU command units – resulting in omission

failure in both Normal and Alternate lines due to the absence of braking command – the

AccumulatorValve does not produce output. This subsequently leads to the omission of

output in the Emergency line, causing the system to fail.

Upon closer inspection on the counterexample, it is revealed that this is because

AccumulatorValve is assigned to monitor output from SelectorValve. It is designed only

to produce output when SelectorValve fails to supply pressure when system is in

Alternate mode. In this situation, however, SelectorValve is functioning correctly by

supplying pressure, and therefore AccumulatorValve does not output any pressure. This

result in the absence of pressure supplied to ManualMeterValve, and subsequently

absence of emergency line which lead to system failure.

In comparison to an analysis performed based on CSA alone, this weakness would not

have been detected. For example, we assume that condition „system fails‟ refers to the

top event Omission of WBS system, which could be modelled as:

O-WBS = O-NormalP AND O-AlternateP AND O-EmergencyP

For the analysis of requirement SR7, assumption is made that all the minimal cut sets

for O-EmergencyP are false. The following presents list of minimal cut sets for O-

EmergencyP:

174

MechanicalPedal.MPedalBE

ManualMeterValve.ManualMBE

BSCU.MonitorBE

AccumulatorValve.AccValveBE

AccumulatorPump.AccumPumpBE AND SelectorValve.selValveBE

AccumulatorPump.AccumPumpBE AND BlueValve.BlueValveBE

AccumulatorPump.AccumPumpBE AND BluePump.BluePumpBE

In the occurrence of BSCU.CMDBE failure which causes omission in both O-Normal

and O-Alternate, if all these minimal cut sets for O-EmergencyP are false, O-

EmergencyP is false. This implies that failure O-WBS will be false, indicating that the

system will not fail. This could lead to a false belief that the design fulfilled SR7.

Model checker has demonstrated how weakness in logical connection like this can be

uncovered.

One way to rectify this design weakness is by assigning AccumulatorValve to monitor

output directly from CMD/ASMeterValveB. If output is not produced when system is on

Alternate mode, AccumulatorValve should be activated and supply the required

pressure. The following Figure 64 illustrates the revised model, which is assumed to

have fulfilled the hypothetical list of safety requirements.

175

Figure 64: Revised model developed with assistance of model-checker

176

In summary, the application of IACoB and corresponding analysis results could help to

either increase confidence about the safety of the design or identify design weaknesses

that stimulate design iterations.

As it has been demonstrated in this case study, CSA and BSA techniques described can

be iterated as the design evolves and undergoes changes and refinements. Overall, the

process can contribute towards a more controlled approach towards safety, which does

not allow safety properties simply to emerge at the end, but attempts to guide the design

using the result of a continuous safety assessment.

5.6 Chapter Summary

This chapter presented a second case study on an aircraft wheel-brake system. To

demonstrate the application of IACoB at a later stage, an architectural model of the

system was presented. This case study focused mainly on the value of the model

checking and how it influences the evolution of the design. IACoB starts with the FTA

and FMEA performed on the initial model. This provided an assessment of the fault

tolerant level of the system, and the identification of the system critical points. The

model was revised based on these analysis results, before model checking was

performed to verify safety properties or functional correctness of the components.

Through the model checking, we discovered several behavioural aspects of the model

which can be improved, which otherwise, could not be detected through the use of

FTA/FMEA alone. These mainly involved control logic (for example, the activation

control of a component).

177

CHAPTER 6. Detectability

Chapter 3 and Chapter 4 discussed the potential contribution of IACoB in fault tolerant

design. The discussion so far has been focused on identifying critical points in the

design, e.g. single points of hazardous failure, and on producing recommendations e.g.

on location of functional and architectural redundancies. This chapter explores another

aspect of fault tolerant design, that of “fault detection”.

The term fault detection typically describes the process of identifying disturbances in

processes and deviations from intended behaviour typically caused by component

failures. Successful early fault detection means that measures can be taken to prevent

the propagation of such disturbances. Fault detection has become increasingly important

in many technical processes.

Components often incorporate mechanisms for detecting errors propagated through a

system. These mechanisms, in practice, can also fail to detect the faults. The notion of

detectability used in this thesis precisely refers to the probability of fault detection to be

performed correctly.

6.1 Detectability in FMEA

In the current industrial practice, it is possible to extend an FMEA table with an

additional column to allow description of the „Detectability‟ of each failure. This can be

done by identifying the means of detection, typically a monitoring mechanism that

relies on observation of system parameters or an internal testing mechanism that

constantly checks the health of a component. By studying this information, it is

subsequently possible to establish how likely it is that the corresponding failure is

detected. A detectability number can be assigned to rank the ability of these inspection

techniques to detect failure modes. Detectability table, for example one that is presented

in the Table 18 can be used to associate detection likelihood and the detection number.

The assigned detectability number measures the probability of the failure goes

undetected, which means a higher detection number signifies a higher probability that

the failure goes undetected and therefore a lower probability of detection.

178

 Table 18: Detection Evaluation Criteria (Quality Associates, 1997)

Detection Criteria Rank

Absolute

Uncertainty

Design control will not and/or detect failure model; or there is no

design control

10

Very Remote Design control has very remote chance to detect failure mode 9

Remote Design control has remote chance to detect failure mode 8

Very Low Design control has very low chance to detect failure mode 7

Low Design control has low chance to detect failure mode 6

Moderate Design control has moderate chance to detect failure mode 5

Moderately High Design control has moderately high chance to detect failure mode 4

High Design control has high chance to detect failure mode 3

Very High Design control has very high chance to detect failure mode 2

Almost Certain Design control will almost certainly detect failure mode 1

An example fragment from the FMEA table of a vehicle braking system is given in

Table 19. Failure of function to provide Pressure (Primary and Backup) leads to

omission of braking. This failure can be detected with a pressure sensor, with a high

likelihood of correct detection.

Table 19: Example of FMEA Table Extended with Detectability information

Function

Failure

Mode

Effects Contributing

Failure

Severity Detection

Method

Detectability

Number

Primary

Pressure

Internal

Failure

Omission of

Braking

Backup

Pressure

Catastrophic Can be detected

locally using

feedback from

pressure sensor

2

...

This calculation of detectability numbers in the FMEA is often used as part of the

calculation for a Risk Priority Number (RPN). The RPN in a FMEA serves as a

threshold value for evaluation of an action (or recommendation) against failure modes.

An RPN is determined by calculating the product of severity, occurrence and

detectability rankings. Recommended evaluation criteria for severity and occurrence can

be found in (Quality Associates, 1997). Similar to severity ranking (discussed in

Chapter 3), RPNs can be used to assist prioritisation of failure management.

179

6.2 Detection and Response to Failures

At the level of system architecture, fault detection commonly involves monitoring

functions which check variables against anticipated behaviour and generate alarms

when necessary. Related functions often include automatic protection functions which

initiate counteractions in response to detected hazardous failure; and fault diagnostic

functions that locate the root causes of detected faults. For simplicity, we use the term

detection module to represent the collection of these fault detection and response

mechanisms, and the term target module to represent the systems or components it

supervises.

In practice, „detection modules‟ can be refined into several different types. (Adachi et

al., 2010) and (Torres-Pomales, 2000) discuss four different types of common

(particularly in software) fault detection and fault tolerance techniques: self-protection,

self-checking, checkpoint-restart, and process-pair. Each technique uses a different

approach in detecting and handling failure, e.g. by blocking or mitigating input failures

to prevent them from reaching the target module, or by preventing a failure in its target

module from propagating.

Self-protection aims to protect the target module by ensuring that it is protected from

external disturbances. This is done by detecting failures propagated from other (input)

modules. Self-protection is able to detect all failure modes, but does not possess any

mechanism to recover from detected failures. Therefore self-protection is often assumed

to fail-silent when it detects failure.

Self-checking enables detection of an internal error within the target module itself, and

aims to block or mitigate the propagation of this failure. It requires internal information

of the target module, and ports are established to enable this communication. When an

internal failure occurs in the target module, the information will be sent to the self-

checking module. If the self-checking module successfully detects the failure, it blocks

or reduces the failure. For instance, by, replacing the missing value with default

parameter value and feeding it back to target module. This allows the target module to

continue to work appropriately, unless when self-checking experiences failure itself.

180

The Checkpoint-restart technique detects failures and enables recovery by restarting the

target module to a predefined restore-point. The Process-pair technique, on the other

hand, employs redundancy which includes two identical modules. Its detection and

recovery mechanisms are similar to those of checkpoint-restart but when failure is

detected, a process-pair can complete execution without returning to stored check-

points. Instead, it uses redundant secondary module and when failure is detected, it

switches from primary module to the secondary module.

Logically, these fault tolerant techniques could perform their different mitigation

strategies only after they successfully detect anomalies in target modules. Traditional

limit-value based supervision methods of monitoring and automatic protection is often

done by checking the measurable output variables against allowed limits. Although this

is a simple and reliable technique, Isermann (Isermann, 2004) highlights its main

limitation in that they often rely on relatively large change in the measurements, either

after a large sudden failure or longer-lasting gradually increasing failure. It further

discusses model-based fault detection techniques (for example, methods which are

based on parameter estimation, parity equations, and state observers). Although these

techniques improve classical fault detection methods, in practice there are cases where

the detection module experience subtle failure and these failures affect the effectiveness

of detection. Consequently, there is a need to represent and take into consideration the

failure of the “detection module” itself during the modelling of the system failure

behaviour. This is precisely an area where this thesis has hoped to make a contribution.

6.3 General Modelling of Detectability

The inability of a detection module to correctly detect failure of the target module also

means inability to take corrective action. Further analysis shows a number of common

scenarios:

1) Case 1: The detection module fails to detect, and the failure of the target module is

simply propagated to other parts of the system.

2) Case 2: The detection module wrongly signals detected failure and inadvertently

acts in the absence of failure in the target component.

181

3) Case 3: The detection module correctly detects failure, but then malfunctions and

corrective measures fail to correct the failure of the target component.

These scenarios highlight the different situations where a failure in detection module

does not only cause the inability to prevent failure (through provision of counteraction),

but also potentially affect the transformation between different failure types, or even

the occurrence of new failures stemming from the detection module itself.

Transformation between different failure types can also sometimes be part of the

nominal behaviour of the detection module. In some scenarios, it is regarded as

acceptable to transform one hazardous failure into different type of failure which has

less hazardous consequences. For example, in a fail-silent scheme, the detection module

is responsible for transforming value or commission failures into omission failures. But

this failure transformation can only occur after the detection module has successfully

detected the value or commission failure. Note that to model this, it is no longer

sufficient to represent failure behaviour because the “success” of the detection module

can also contribute to a different more benign failure effect. In this case, failure of the

detection module means propagation of hazardous commission and value failures, while

its success means transformation of these hazardous failures to more benign omissions.

In order to describe such situations in the context of CSA, and more specifically in HiP-

HOPS analysis, we introduce the following general representation to describe the

behaviour of a detection module:

1) Event Failure (representing internal malfunction): An internal malfunction of a

detection module can affect failure behaviour just like any other component

malfunction, and can be treated and analyzed as such. Figure 65 below illustrates an

example of how internal malfunction Failure in detection module can play a part in

the modelling of system failure. Detection_Module supervises the output of

Target_Module. In the occurrence of internal malfunction BE, which causes

omission failure, Detection_Module performs counteraction and provides correct

output. However, Failure in Detection_Module alone is enough to cause omission

failure. The omission failure expression of Detection_Module can be summarized

as:

182

O-Detection_Module.Out = Failure

2) Event Miss: We assign a separate event to represent the occurrence of situations

where the detection module fails to detect target module failure. Event Miss causes

the failure of the target module failure to go undetected. For example, Figure 66

illustrates a situation where omission in Detection_Module can also be caused by it

failing to detect omission in input deviation from Target_Module. This can be

expressed as:

O-Detection_Module.Out = Failure OR (Miss AND O-In1)

3) Event NOT Miss (¬Miss): To describe situations where detection module in its

working condition causes a failure, the complement event Not Miss is introduced. One

common use of Not Miss is in the representation of failure transformation. For

example, in Figure 66, a timing failure in Detection_Module can be caused by it

detecting an omission failure in Target_Module. This happens when it tries to recover

Target

_Module

Detection_

Module

Failure BE

Out In

Target

_Module

Detection_

Module

Failure BE

Out In

Miss

Figure 66: Event Miss in Detection_Module

Figure 65: Internal malfunction in Detection Module

183

(e.g. provide) the omitted parameter, and in doing so, become late in the timing. This

can be expressed as:

T-Detection_Module.Out= ¬Miss & (O-In)

Classical HiP-HOPS modelling only uses coherent failure logic that uses AND and OR

gates. The proposed type of modelling which also incorporates NOT gates enables to

distinguish between success and failure and represent different effects in these two

circumstances. With this modelling, it is now possible to represent all scenarios of

failure presented in Cases 1 to 3 above.

6.4 General Analysis of Detectability

In HiP-HOPS analysis, events Failure and event Miss are treated like any other

component internal malfunctions. In fault tree synthesis these are regarded as basic

events. Consequently, the HiP-HOPS analysis techniques presented in Chapter 2, more

specifically the MICSUP algorithm, can be used in fault tree analysis.

The inclusion of the complement ¬Miss, however, creates some complications. ¬Miss

is implemented with the use of the NOT operator in fault trees. Traditionally, the use of

negation of a failure event in failure modelling has generally been discouraged for

several reasons. Firstly, it is often assumed that a component in its working condition

should not contribute to system failure. In cases where it does, traditional solutions

often suggest design modification to prevent it. It is also a common notion that the

probability of the negation of failure event is almost always close to 1 which means it

can be safely ignored in quantitative analysis. The inclusion of „NOT‟ also results in the

introduction of non-coherent structure which increases the complexity of analysis.

Despite these arguments, (Johnston & Mathews, 1983) and (Sharvia & Papadopoulos,

2008) reviewed several scenarios where inclusion of NOT benefits failure modelling.

These include conditions where the failure probability of a component becomes

significant enough for the working probability to be included in quantitative analysis.

This is often true in conditions that exceed the operation specification for a component.

The NOT operator is also important in the failure modelling of some multitasking and

184

phased-mission systems. In other cases, the use of negation operator also assists the

development of repair schedule for components.

In addition to these, we also argue that the use of negated event is required to allow

more accurate representation of detectability in a model.

One alternative to using negated events is by treating the absence of failure Miss as a

separate independent event. For example, by using new event Catch to represent this

case instead of ¬Miss, which subsequently allows the model to maintain coherent

structure. This, however, has been known to cause inaccuracy in the quantitative

analysis (for example, calculation of failure probability), as demonstrated later in the

example section. This is very likely due to the way quantitative analysis is performed in

non-coherent structure, where „hidden‟ cut sets (termed prime implicants in non-

coherent structure) can potentially be produced.

To facilitate this type of modelling for detectability, HiP-HOPS has been extended with

the ability to perform non-coherent analysis (Sharvia, 2008). The analysis of non-

coherent fault trees in HiP-HOPS is implemented through an extension to MICSUP

algorithm to allow iterated Consensus. The Consensus Law states that:

A.B + ¬A.C = A.B + ¬A.C + B.C

Which describes that if event B causes system failure when event A fails, and event C

causes system failure when event A works, then the combination of event B and event C

will inevitably causes system failure regardless the state of A. In such circumstances,

then B.C is known as a „hidden‟ prime implicant set that can be identified by the

application of consensus.

To enable quantitative analysis, quantitative information can be assigned to each of

these detectability parameters. For example, for the calculation of probability of events

in the model, failure rate can be assigned for internal malfunctions of type Failure,

and a fixed probability value can be assigned for events Miss and ¬Miss. In practice, the

assignment of this detectability probability often relies on the degree of dependence.

For a module with higher dependence on other modules (for example, because it

requires information processed by other modules), the probability of Miss is likely to be

high.

185

In an NuSMV model, detectability information can be translated to and treated as part

of the module internal variable.

6.5 Example

6.5.1 Cruise Control System

This section presents a simplified adaptive cruise control system to demonstrate the

application of detectability analysis. The system assists the driver by automatically

adjusting vehicle speed to maintain safe following distance. It typically uses a radar

sensor to monitor the vehicle in front and adjust vehicle speed to keep it at a pre-set

following distance. The system is also extended with a brake support function.

Figure 67 illustrates the functional structure of the basic adaptive cruise system. It is an

adaptation of a related driving assistance system, pre-collision detection system,

presented in (Adachi et al., 2010). The system gets its input from a set of sensors

including Radar_Sensor, Speed_Sensor, Pedal_Sensor, Switch_Sensor. Radar_Sensor

provides reading from the wave radar. Speed_Sensor provides information about the

current speed of the vehicle. Pedal_Sensor provides information on the driver‟s

operation (for example, input in accelerator or brake pedals). Switch_Sensor provides

information on the selection of modes (for example whether cruise control is activated).

And Memory provides information on pre-stored data.

Monitoring_Module gathers information from several sensors and provides signals

regarding distance and relative speed of the vehicle ahead. This pre-processed

information is then passed to Logic_Module which computes the distance between the

vehicles and determines how fast the vehicle is approaching the vehicle ahead. Based on

the pre-set desired following distance, it determines the appropriate time to start

deceleration (or acceleration when the traffic is cleared). Brake_Support system aims to

provide effective braking and assistance in cases when collision is imminent. For

example, in design discussed in (Ford, 2010), if pressure on accelerator pedal is released

quickly, indicating driver‟s desire to slow down, the system can apply brake pads

against the brake disk even before the driver presses the brake pedal. This decelerates

186

the vehicle faster than the driver can move their foot to the brake pedal. In doing so, it

shortens braking reaction time and braking distance. This information is supplied to

Cruise_Control, which coordinates the information and decides on appropriate actions.

It sends signals to corresponding Actuator_Module (i.e. brake or throttle) to perform

appropriate actions.

187

Figure 67: Cruise Control System

188

One way to demonstrate the contribution of detectability modelling is through

quantitative analysis of the effect of detection of component failures to the failure

probability (or unreliability) of the system. Before quantitative data is assigned, we

annotate the cruise control system with failure information. To maintain simplicity, each

input sensor is assigned with a uniform internal malfunction BE and each of the other

main modules is assigned with two internal malfunctions, BE1 and BE2. BE1 is a

failure that is generically related to omission and value failure (for example, failure in

physical or hardware), while BE2 is a failure that is generically related to timing and

commission failure (for example, failure in software algorithm).

Hypothetical failure rates are assigned for each of the internal malfunction to illustrate

the validity of approach. The failure rate for internal malfunction in sensors and

memory (BE) is assigned at = 1.15×10
−7

 and failure rates of internal malfunction in

other modules (BE1 and BE2) are assigned at 4.6×10
−7

 and = 1.12×10
−6

respectively.

The following table presents the summary of failure expressions for the output

deviations in the cruise control system modules. Omission, commission and value

failures at module outputs are discussed:

Table 20: Failure information for Cruise Control functions

Function Output Deviation Failure Expression

(All) Sensors O-out BE

C-out BE

V-out BE

Monitoring_Module O-out BE1 OR O-in1 OR O-in2

C-out BE2 OR C-in1 OR C-in2

V-out BE1 OR V-in1 OR V-in2

Logic_Module O-out BE1 OR O-in1 OR O-in2

C-out BE2 OR C-in1 OR V-in1 OR V-in2

V-out BE1 OR V-in1 OR V-in2

Brake_Support O-out BE1 OR (O-in1 AND O-in2) OR O-

in3

C-out BE2 OR C-in1 OR C-in2 OR V-in1

OR V-in2

V-out BE1 OR V-in1 OR V-in2 OR V-in3

Cruise_Control O-out BE1 OR O-in1 OR O-in2 OR O-in3

189

OR O-in4

C-out BE2 OR C-in1 OR C-in2 OR C-in3

OR C-in4

V-out BE1 OR V-in1 OR V-in2 OR V-in3

OR V-in4

Actuator_Module O-out BE1 or O-in1

C-out BE2 or C-in1

V-out BE1 or V-in1

6.5.2 Detectability in Cruise Control

Once the model is annotated, we perform analysis on the cruise control system without

the inclusion of any fault tolerance technique. For the purposes of this discussion, the

quantitative analysis is performed examining omission, commission and value failures

of Actuator_Module (which can be expressed as O-Actuator_Module.out, C-

Actuator_Module.out, and V-Actuator_Module.out respectively) which form the top

event if fault trees and effects in FMEAs produced by HiP-HOPS. With the failure rates

provided, the probability of these events can be calculated.

We assume that in the earlier stage of analysis, C-Actuator_Module.out has been

identified as being more critical than the other failure types. The process to identify

critical points in the system contributing to this failure can be performed (as discussed

previously in Chapter 3 and Chapter 4), and detection modules can be assigned

accordingly to address this. To maintain the simplicity of this example, although there

are a number of contributing internal malfunctions that can contribute to C-

Actuator_Module (for example, BE in input sensors or BE2 in Logic_Module among

others), we place focus on Monitoring_Module and Brake_Support.

The detection modules to be added in this architecture can be realized in various

implementations, adopting different structures and characteristics. In practice, multi-

objective optimisation techniques can be employed to help determine the optimal

solutions. HiP-HOPS itself incorporates multi-objective optimisation capabilities

(Parker, 2010), but their use was deemed out of scope in this work.

Here we arbitrarily select one possible implementation of detection modules. It is

presented as a basis for evaluating detectability and therefore by no means represents an

optimal design solution. Although in practice each detection module might possess

190

different configuration and fault tolerant characteristic, all detection modules in this

example are identical in their function, they all enforce fail-silence in response to

detected commission failures. Figure 68 illustrates the design of the system with

detection modules incorporated. The detection module placed between

Monitoring_Module and Logic_Module, DM_LM, aims to prevent further failure

propagation from Monitoring_Module. To achieve this, detection module DM_LM

transforms commission and value failure into omission failure. The detection module

placed between Brake_Support and Cruise_Control modules, DM_CC, has the same

objective and causes failure propagated from Brake_Support to fail silent.

With the rationale that fault tolerant components are reasonably more reliable than its

target modules, the failure rates for internal malfunctions Failure in DM_LM and

DM_CC are both assigned a lower failure rate of = 1.12×10
−7

. The probability of

event Miss in detection modules is assigned a fixed probability of

191

Figure 68: Cruise Control with Detection Module

192

Table 21 summarizes the failure expression of detection modules DM_LM and DM_CC.

Table 21: Failure information for Detection Modules

Function Output Deviation Failure Expression

DM_LM O-out Failure OR O-in OR (¬Miss AND (C-in OR V-

in))

C-out Miss AND C-in

V-out Miss AND V-in

DM_CC O-out Failure OR O-in OR (¬Miss AND (C-in OR V-

in))

C-out Miss AND C-in

V-out Miss AND V-in

One obvious effect of the introduction of detection modules is the improvement in

system reliability. For example, for top event C-Actuator_Module.out, probability

declines from 0.064 to 0.039 with the use of detection modules. Probability for top

event V-Actuator_Module.out also decreases from 0.028 to 0.018. This is compensated

by the increase in probability for top event O-Actuator_Module from 0.028 to 0.058 as

other failure types are transformed into omission failure. But since omission is deemed

more benign than inadvertent application of function, this is acceptable.

To show the significance of detectability modelling, we also compare the analysis

between situations where detection modules are assumed to model only internal

malfunction that represents its own failure behaviour (Failure) and situations where in

addition to this, they also models scenarios where they fail to detect failures of the

target module (Miss). As expected, the probability for all top events of fault trees

increase as Miss is introduced. A Summary of tabulated analysis results is presented in

APPENDIX C.

The significance of the inclusion of detectability modelling in enabling a more accurate

qualitative analysis should also be highlighted. For example, the transformation of

commission and value failures to omission failure requires the Miss event not to occur.

To accurately model omission failure DM_LM which expresses this condition, the Not

Miss event is employed. This allows the failure expression to be written as:

O-DM_LM.out = failure OR O-in OR (¬miss AND (C-in OR V-in))

193

As mentioned earlier, the inclusion of the NOT operator results in a non-coherent

analysis. To maintain a coherent fault tree structure, ¬Miss event can be replaced with

an independent catch event.

The incorporation of the NOT operator in the failure expression of the detection module

can have a significant quantitative effect on the probabilities of system-level output

deviation (Actuator_Module). It can either increase or decrease the probability of

system failure according to the (different) sets of prime implicants produced compared

to the use Catch.

To examine this option of treating ¬Miss as an independent new event Catch, we will

use a revised version of the model. We now introduce a new processing module and an

additional detection module into the cruise control system as shown in Figure 69. The

new processing module, Fading_Brake (Autopressnews, 2006) aims to gradually build

up the braking pressure in conjunction with constantly hard braking to help reduce the

risk of wear and retained pedal feeling. It supplies information to achieve this to

Brake_Support module. Fading_Brake possesses identical internal malfunctions (BE1

and BE2) and failure rates to the other main processing modules.

The detection module DM_FB is attached to Fading_Brake and operates in a similar

way to a backup structure or a check-point-restart technique described in (Adachi et al.,

2010). When Fading_Brake experiences failure, DM_FB restarts the module to a pre-

stored reset checkpoint. This subsequently causes transformation between different

failure types. For example, when DM_FB detects omission or failure in Fading_Brake

and resets the module, a value failure will inevitably occur as parameters reset into (and

execution continue from) their pre-stored point. Similar to previous detection modules,

the failure of DM_FB is assigned at = 1.12×10
−7

 with probability of event Miss

.

194

Figure 69: Cruise Control System with Fading Brake

195

Table 22 summarizes the failure information for Fading_Brake module, detection

module DM_FB and updated Brake_Support. Based on this failure information, the

system model is updated and analyzed.

Table 22: Failure Information for Cruise Control with Fading Brake

Function Output Deviation Failure Expression

Fading_Brake O-Out BE1

C-Out BE2

V-Out BE1

DM_FB O-Out Failure OR (Miss AND O-in)

C-Out Miss AND C-in

V-Out (NOT Miss AND (C-in OR O-in)) OR V-in

Brake_Support O-out BE1 OR (O-in1 AND O-in2) OR O-in3 OR O-in4

C-out BE2 OR C-in1 OR C-in2 OR V-in1 OR V-in2

V-out BE1 OR V-in1 OR V-in2 OR V-in3 OR V-in4

To demonstrate the role of non-coherent structure, we replace ¬Miss event with an

independent Catch event in the expression. This time the analysis produces more

interesting results. The probability for top event O-Actuator_Module.Out with the use

of ¬Miss in all detection modules is 0.072, and when Catch is used as replacement the

probability changes into 0.064. This is a substantial disparity in probability which can

mislead designers into accepting models which do not meet reliability requirements.

This disparity in probability calculation can be attributed (as explained previously) to

hidden prime implicants generated through Consensus algorithm. This is demonstrated

by further studying the resultant prime implicant sets. Although the analysis of both

fault trees produces the same number (19) of prime implicant sets, the sets are not

completely identical.

The full prime implicant sets for both fault trees are included in the Appendix D. We

compare the prime implicant sets produced by both fault trees (NOT Miss and Catch

regarded as interchangeable accordingly) and the following differences are highlighted:

1) The following prime implicant is produced by analysis of non-coherent fault tree

(uses NOT Miss), but is not contained within the coherent fault tree (uses Catch):

Monitoring_Module.BE2 AND DM_CC.NOT_Miss (exp.1)

196

2) The following prime implicant is produced by analysis of coherent fault tree but

contained within the non-coherent fault tree:

Monitoring_Module.BE2 AND DM_CC.Catch AND DM_LM.Miss (exp.2)

To understand these differences, we studied the rest of the prime implicant sets which

are identical between the fault trees. Upon closer inspection, it is identified that prime

implicant MonitoringModule.BE2 AND DM_LM.NOT_Miss and

Monitoring_Module.BE2 AND DM_CC.NOT_Miss AND DM_LM.Miss (or

Monitoring_Module.BE2 AND DM_CC.Catch AND DM_LM.Miss) are originally

produced from the analysis of both fault trees. The difference is that in the analysis of

the non-coherent fault tree, these prime implicants produce a new hidden prime

implicant through Consensus (exp.1): Monitoring_Module.BE2 AND

DM_CC.NOT_Miss. Occurence of the latter is sufficient to cause system-level failure

regardless of the presence of DM_LM.NOT_Miss or DM_LM. Miss. This in turns

eliminates Monitoring_Module.BE2 AND DM_CC.Catch AND DM_LM.Miss (exp.2)

which becomes redundant. On the other hand, the coherent fault tree is not able to

establish the link between event Miss and Catch, and is therefore unable to produce the

hidden prime implicant in (exp.1). It subsequently retains (exp.2).

This demonstrates that the use of NOT operator (and non-coherent analysis) helps

produce a more accurate result in detectability analysis. In the translation process of a

model to NuSMV, the parameters for detectability can be included in the module

internal variables like other basic events.

6.6 Chapter Summary

This chapter introduced the concept of detectability in the context of CSA, which

describes the ability of a module to correctly detect errors. Its role within fault tolerant

design is explored. The method introduces failure-relevant parameters, which model the

events where errors are correctly detected (or not) in addition to the internal malfunction

of the detection module. These parameters can be modelled as part of the failure

information in HiP-HOPS.

197

The general analysis of these parameters can be performed as a part of the CSA

analysis. Commonly-used fault tree analysis algorithms can be used, except for the

events where errors are detected (i.e. it is NOT missed by detection module). This

notion of detecting error correctly leads to the inclusion of NOT operator, and

subsequently a non-coherent fault tree structure. To enable the analysis of non-coherent

fault tree, HiP-HOPS synthesis and analysis algorithms were extended, and Consensus

algorithm was implemented.

The use of NOT operator in a fault tree has been long debated. Here in the context of

detectability, we showed how it affects the accuracy of quantitative analysis. A small

example of cruise control system is presented to show the application of detectability. In

an effort to maintain a coherent structure of the fault tree, an alternative was explored.

The use of NOT operator has been shown to contribute to a more accurate top-event

probability calculation.

198

CHAPTER 7. Conclusions

7.1 Contributions

Compositional Safety Analysis and behavioural safety analysis techniques have

emerged as two separate and competing paradigms for performing model-based safety

analysis.

This thesis argued that the traditional gap between the two approaches can be overcome,

as CSA and BSA are effectively combined in a novel model-based design and safety

analysis process which therefore benefits from the advantages of both approaches,

namely the flexibility, early applicability and scalability of CSA and the precision,

behavioural analysis capabilities and detailed insights offered by BSA (see also

statement of “hypothesis” in Introduction).

To assess and support this research hypothesis, several objectives were defined. In the

following discussion, we revisit these objectives and summarize how, and to what

extent, they have been achieved:

Objective 1. To examine CSA and BSA techniques and investigate their strengths,

limitations, and application in different stages of design development. This thesis

determines complementary aspects of these techniques that can be exploited via

synergistic combined application.

This thesis investigated CSA and BSA characteristics and identified potential for

integration. The review of several prominent CSA and BSA techniques presented in

Chapter 2 provides insight into the different characteristics, working mechanisms and

applicability of each technique.

The strength of CSA lies in the simplicity of its Boolean-based analysis approach. This

makes it possible for safety analysis to be performed in a quick and iterative manner.

Fault tree synthesis can be performed in linear time and overall the analysis scales up to

large and complex models. CSA also facilitates a „divide-and-conquer‟ approach which

becomes the basis of its compositional nature. The failure analysis of a complex system

199

can be constructed based on the composition of failure analyses of its components. This

subsequently makes the process easily manageable. CSA also produces safety artefacts,

namely fault trees and FMEA, which are familiar to safety analysts and therefore eases

their engagement. CSA is generally used for reliability engineering and it is possible to

extend this with advanced capabilities for design optimization. Fundamental limitations

for CSA include the fact that there is no support for formal verification of safety

properties and that CSA facilitates mostly analysis of static models.

BSA, on the other hand, uses brute-force exploration to assess system behaviour. This

exhaustive exploration provides explicit assurance of model correctness with respect to

safety specifications. BSA often employs model-checking to perform this verification.

Despite these strengths, BSA can only be applied at a later stage of the design, where

the design model is relatively mature. This is unfortunate because changes at later stages

are often costly, and the technique misses opportunities to effectively influence design

process earlier.

From the study of these characteristics, we identified the complementary aspects which

lend themselves to the foundation of integration. First, we looked into the different

stages of the system development where each technique can be employed. CSA is

generally applicable from the early PSSA stage up until the end of the design. It is

applicable to early, experimental models and can be iterated as the design becomes

more detailed. BSA, in contrast, is generally applicable towards the end of the PSSA,

and requires formal and more detailed mature models.

CSA and BSA also aim to achieve different assessment objectives. Although both can

be used to analyze possible causes for failures, CSA aims to identify safety problems

early in the design by showing the causes of system failure; while BSA provides

verification of formal models with regard to safety properties. A combined application

allows us to achieve wider analysis coverage and a more robust assessment. The ability

to introduce BSA verification capabilities early in the development stage is particularly

valuable.

In this thesis, we have shown that CSA and BSA have different objectives and different,

complementary strengths and weaknesses. We have therefore made a case for their

synergistic combined application. “Synergistic combined application” refers to the

200

process of harnessing analysis results (or safety artefacts) from CSA and BSA for the

benefit of both techniques in an incremental and continuous manner. The process and

the activities involved are explained further in the next objectives.

Objective 2. To propose a systematic method to utilize analysis results from CSA and

BSA in the course of design. This involves investigating how input to each

technique can be systematically constructed, in particular, how results of CSA

can assist the construction of behavioural model for BSA‟s formal verification.

It is also important to understand how these results can provide constructive

feedback to designers towards an iterative system modelling process.

This thesis has developed, IACoB, a novel method for combined synergistic application

of CSA and BSA. Following the review of prominent CSA-based and BSA-based

techniques, we have decided to select HiP-HOPS to facilitate CSA and NuSMV model

checker to facilitate BSA, based on the arguments considered in Chapter 2. In Chapter

3, the IACoB safety analysis process has been introduced and developed to describe the

integrated application. IACoB was developed as a process method which allows BSA to

be performed following CSA by building upon its analysis results and safety artefacts.

The process starts with a system model, which can be an early functional model or a

more detailed architectural model. Model construction is followed by an analysis of

effects of failure or a severity assessment phase, in which the severity level of failures

of output functions or components is determined. To enable CSA, the elements of the

system model are then annotated with local failure behaviour. This allows the HiP-

HOPS tool to automatically perform fault tree and FMEA synthesis and analysis. The

results of CSA offer constructive feedback for designers by providing them with

information on failure causes and assisting the quick identification of weak points in the

design. This ultimately helps contribute to a better revised design.

Once designers are assured by the CSA results, FTA and FMEA results are used to

assist the construction of a behavioural model of the system for BSA. Behavioural

models for BSA can be classified in two generic groups according to the stage of design

where these models are developed. In early functional design where information on

dynamic behaviour is not widely available, an abstract mode chart can be constructed

from FMEA results. An FMEA-ModeChart Assistance Table is used to help organize

201

the core elements of the mode chart. The mode chart captures transitions of the system

from normal to degraded and failed modes in response to the failures predicted in the

FMEA.

Note that in this approach FMEA results become directly useful in the construction of

behavioural models that can be used in the design and BSA of the system. This is a

novel contribution of this thesis. In a typical industrial practice, FMEAs are employed at

the end of design for certification purposes, while in IACoB FMEA becomes a design

tool for assessing, and refining the behaviour of the system. In the later stages of

development where more design information is available, abstract mode charts of

IACoB can be refined to make reference to components and their behaviour. These

mode charts can be enhanced by analysts to show detailed nominal and failure

behaviour. Model checking performed on these models can be used to verify whether

the specified system behaviour conform to safety requirements.

In Chapter 3, we have shown how close ties can be derived and maintained between

abstract and refined mode charts. This subsequently improves traceability of

relationships between failures, which is made possible via exploitation of the

hierarchical mechanism of FTA/FMEA generation in HiP-HOPS.

Objective 3. To illustrate how a chosen CSA and a chosen BSA technique can in

practice be harmonised in the context of a method for combined application.

Different MBSA techniques assume different representations of failure

information and system modelling. In the context of combined application, it is

important to explore ways for translation of information (in particular, failure

information) between relevant models. The thesis shows the integration of HiP-

HOPS with NuSMV and defines a process for useful semi-automatic

translation of information between the two models.

This thesis harmonised the representation of failure information between two different

techniques that presently define the state-of-the-art in their respective areas. In the later

part of Chapter 3, we described ways of translating information from HiP-HOPS into

NuSMV. Failure behaviour in HiP-HOPS is captured within the failure annotation of

components. We have shown that it is possible to preserve this information and

incorporate it as part of the failure-relevant behaviour in a NuSMV model. HiP-HOPS

202

failure annotations typically contain information on the failure modes (output

deviations) and their „failure expression‟ which explains the failure causes (described in

terms of internal malfunctions and input deviations). The translation process involves

mapping this information into NuSMV variables and defining state transitions relating

to these failures. In contrast to techniques like FSAP/NuSMV (Bozzano et al., 2003b)

which is largely based on success-logic, the relationship between failures here can be

defined and managed as failure-logic. This means that the description of component

output is determined by the condition of output deviations, and corresponding input

deviations are assigned and passed accordingly.

In addition to harmonising and passing failure logic, the system hierarchies and

propagation of failure effects can also be neatly captured and transferred from HiP-

HOPS into the NuSMV model. We have also shown that this allows connections

between mode charts to be systematically established, and this eventually enables a

more-manageable refinement of transitions, and helps to guarantee consistency in the

model as it evolves.

Chapter 4 and Chapter 5 presented case studies on automotive brake-by wire and

aircraft wheel-brake system in which we demonstrated the value of combined iterative

application of CSA and BSA to the design, how the IACoB process can be applied, and

how analysis results from one technique can be exploited for the benefit of the other

technique. These case studies ultimately show how the IACoB offers significant

benefits over using only a single analysis approach.

Objective 4. The final research objective is to study the potential use of this approach in

the design of mechanisms for detection and recovery from failures. More

specifically, we propose a generic mechanism for modelling the Detectability (or

NOT) of errors propagated among components of an architecture within a

typical CSA. We show that the inclusion of this mechanism makes it possible to

use the results of CSA as a basis for rational decisions about the inclusion of

fault tolerant mechanisms in a design.

This thesis developed a novel concept for modelling the detectability of failures in CSA.

The study of detectability in the context of CSA was presented in Chapter 6. We started

the discussion with the concept of detectability in FMEA, where the detection

203

likelihood of failure modes is evaluated. We then explored further the use of

detectability in system architecture and its role within fault tolerant design. Detectability

in this context refers to the ability to correctly detect errors, and this ability is generally

assigned to a component as part of its fault-detection and fault-tolerance mechanisms. A

generic method to model detectability was subsequently proposed.

The method introduced failure-relevant parameters that model not only the internal

malfunction of the component which performs detection, but also probabilities that

errors are either correctly detected or go undetected by detection modules. The

implication of these occurrences is modelled as part of the failure information in HiP-

HOPS.

Because this concept is introduced as a part of CSA, we also studied how the general

analysis on detectability can be performed. These parameters can be analysed using

common fault tree analysis algorithms, with the exception of events where errors are

detected (i.e. NOT missed by the detection module). The notion of events where errors

are detected (and handled) leads to inclusion of NOT gates and a non-coherent fault tree

structure. To enable the analysis of non-coherent fault trees, HiP-HOPS synthesis and

analysis algorithms were extended, and a Consensus algorithm was implemented.

The use of non-coherent fault trees (and the inclusion of NOT gate for that matter) has

been long debated. In this thesis, we presented a case in support of this argument and

showed how the inclusion of NOT gate enables a more accurate modelling of

detectability. For a practical demonstration of this, we presented a small case study on

an automotive cruise control system and showed how detectability can be applied.

Alternatives were also explored in an effort to maintain coherency of the fault trees and

the analysis results were compared. From this, it was demonstrated that the inclusion of

NOT gates have a significant role to play in system analysis, particularly in the correct

quantification of system reliability.

7.2 Limitation of concepts

IACoB inherits the limitations of CSA and BSA. One challenge lies in the limited

information on dynamic behaviour it initially captures. This is due to the fact that the

initial failure information is directly obtained from a CSA-based technique, where focus

204

is placed on effectively capturing the failure propagation and hierarchy, rather than the

dynamic behaviour. In certain circumstances, for example in the analysis of a phased

mission system, more information on dynamic behaviour might be required than what is

captured in CSA models. This can be addressed by independently extending the BSA

model produced.

The extent of formal verification that can be performed largely depends on the level of

information contained within the model. For a large complex system, model checking

faces the challenge of state-space explosion, and this is a challenge that IACoB inherits

from BSA. Abstraction techniques in model checking (Bérard, et al., 2001) can be

further investigated in the future to address this issue.

Another issue with IACoB is the fact that, currently, the integration process is mainly

manual. This can be potentially labour-intensive and error-prone when performed

repeatedly on a larger system. However, there is automation in both CSA and BSA, and

it is also possible, to a large extent, automate the integration. Another related problem is

the manual process of assigning failure expressions, which brings about the new kinds

of manual errors compared to failure-injection methods. Recent development towards a

language for describing failure patterns (Wolforth, 2010) is one way to improve the

process. There is also the lack of support for specifying requirement properties. Errors

are common during the conversion of safety properties from natural language to CTL.

We believe it can be beneficial to develop tool support that can assist this process.

Challenges which are related to the nature of manual processing can be potentially

resolved with automation. We hope supporting tools can be developed in the future to

ease the task of conversion between models, and improve the process of storing and

retrieving failure information and safety specifications.

IACoB is also mainly performed to assess and verify the design, interaction of functions

or components, and control logic of an early design model. Therefore, another limitation

of IACoB is that it does not address errors that arise later on in the development

lifecycle (for example, coding and implementation errors).

One main problem of the detectability concept is the additional computational expense

introduced by the analysis of computationally-extensive non-coherent fault tree analysis

algorithm.

205

7.3 Future Work

The aim of establishing a framework to allow combined application of CSA and BSA

has been achieved to a certain extent. The results of this work on the IACoB approach

provide the foundation for potential future work in the following directions:

1. Improvement on modelling experience

In addition to the guidelines on translation of failure information between HiP-HOPS

and NuSMV models outlined in Chapter 3, we believe it is beneficial to develop an

automated translation support tool. Although the manual construction of the NuSMV

model is manageable for smaller systems explored in this thesis, an automated translator

would ease the process and increase its scalability. Behavioural information (for

example, description of model states) which is not included within HiP-HOPS

annotations can be obtained by extending the failure editor.

Support for graphical representation of sate machines can also be introduced to assist

behavioural modelling. Various translator tools like sf2smv (Banphawatthanarak et al.,

1999), stm2smv (Loer, 2003), or mdl2smv (Juarez-Dominguez et al., 2008) have been

developed to convert commercial graphical behavioural tool like Stateflow or Statemate

into SMV model. We believe that similar capabilities for the HiP-HOPS failure editor

might be beneficial in making the behavioural modelling process more intuitive.

Alternatively, future work that looks into the integration of these established graphical

tools with HiP-HOPS failure editor could be investigated.

2. Improvement on integration with nominal behavioural model

The NuSMV models produced from the HiP-HOPS annotated models are essentially a

formal functional „error-model‟. Although the extension to include description of

nominal behaviour can be relatively straight forward, we believe a degree of automation

in this process will be helpful. This is particularly useful if the formal nominal

behavioural model is developed in parallel with the HiP-HOPS model. One possible

way to achieve this is by enforcing common references to states and events in the two

state machines that describe nominal and failure behaviour, and then by automatically

parsing and combination of both models into a single combined representation. Further

research can be done in this aspect as it is currently a manual process.

206

3. Support for formal requirement properties and visualization of traces

The translation of requirements from natural language to temporal-logic formulae is not

a trivial process. With the reference of general classification of properties from (Bérard,

et al., 2001), it is beneficial to have a set of generic templates to define the property

specifications. This template should allow frequently-used property patterns to be saved

into pattern library, and instantiated whenever needed. Comprehensive review of

property specification patterns and their hierarchy was presented in (Dwyer et al.,

1999), and example of this specification pattern support is presented in IFADIS (Loer,

2003).

Traces are usually produced to show counterexamples. A trace is a sequence of

execution steps that leads from system initial state to the state that violates safety

properties. Each step in between describes value changes in the variables. These traces

produced from NuSMV counterexamples are in textual form. A graphical viewer for

these traces, for example traces chart illustrated in (Peikenkamp, 2006), can provide a

more intuitive outlet for display and analysis.

4. Failure modes completeness and harmonisation

The concept of failure modes is central to both CSA and BSA approaches. In IACoB,

we employ generalized failure modes which belong to four categories: omission,

commission, value or timing failures. These are reflected in the structural as well as

behavioural models. In occasions where we need to derive an explicit list of failure

modes and validate its completeness, (Ortmeier, 2004a) describes a method that uses

failure-sensitive specifications. This method defines an initial chaotic model which

describes all possible combinations between inputs and outputs. It then extracts the

combinations which violate specification rules, which are made into a list of failure

modes, and eliminates ones that are not relevant. The remaining „good‟ combinations

(those that conform to the specification rules) are validated against the nominal model,

which is constructed separately. Lastly this model is integrated again with the failure

modes to form the „error model‟. This technique yields the benefits of being able to

generate a more complete specification of failure modes and validation of the nominal

formal model. However it does suffer from the exponential size of the sets used.

Therefore, one area that we could look into in the future is the potential of applying this

207

approach as part of IACoB for selected critical components, as opposed to the whole

system.

208

APPENDIX A: Backup structure for brake-by-wire

system

The following figures show the backup structure scheme for brake-by-wire system

presented in Chapter 4.

A.1. Brake Demand Input Function

A.2. Local Parameters Input Function

209

A.3. Vehicle Level Processing Function

A.4. Local Level Processing Function

210

A.5. Braking Energy Function

211

APPENDIX B: NuSMV model for brake-by-wire

B.1. The following shows an example of how the abstract mode chart for brake-by-wire

system can be represented in NuSMV model:

MODULE ABS

VAR

O-Output: boolean;

Output: boolean;

counter: 0..1;

ASSIGN

init(O-Output) := 0;

Output := !O-Output;

counter :=case

O-Output : 1;

1: 0;

esac;

next(O-Output):=

case

O-Output = 1: 1;

1: {1,0};

esac;

--

MODULE ELEC

VAR

O-Output: boolean;

Output: boolean;

counter: 0..1;

ASSIGN

init(O-Output) := 0;

Output := !O-Output;

counter :=case

O-Output : 1;

1: 0;

esac;

next(O-Output):=

case

O-Output = 1: 1;

1: {1,0};

esac;

--

MODULE HYDRAULIC

VAR

O-Output: boolean;

212

Output: boolean;

counter: 0..1;

ASSIGN

init(O-Output) := 0;

Output := !O-Output;

counter :=case

O-Output : 1;

1: 0;

esac;

next(O-Output):=

case

O-Output = 1: 1;

1: {1,0};

esac;

--

MODULE main

VAR

SystemMode: {BBW_Normal, BBW_PD1, BBW_PD2, BBW_Fail};

counter: 0..3;

absB: ABS;

elec: ELEC;

hydraulic : HYDRAULIC;

ASSIGN

init(SystemMode) := BBW_Normal;

next(SystemMode):=case

SystemMode = BBW_Normal & elec.O-Output = 1 : BBW_PD2;

SystemMode = BBW_Normal & absB.O-Output = 1 : BBW_PD1;

SystemMode = BBW_Normal & elec.O-Output = 1 & hydraulic.O-Output = 1 :

BBW_Fail;

SystemMode = BBW_PD1 & elec.O-Output = 1 & hydraulic.O-Output = 1 :

BBW_Fail;

SystemMode = BBW_PD1 & elec.O-Output = 1 : BBW_PD2;

SystemMode = BBW_PD2 & hydraulic.O-Output = 1 : BBW_Fail;

1: SystemMode;

esac;

counter := absB.counter + elec.counter + hydraulic.counter;

213

B.2.The following shows an example of how the refined mode chart can be constructed

for brake-by-wire system:

MODULE FL(O-ABScmd, FLDiagonalLock)

VAR

States : {Normal, Locked} ;

LockBE : boolean;

counter : 0..1;

FLlockSig : boolean;

locked: boolean;

ASSIGN

init(States) := Normal;

init(LockBE) := 0;

locked := (LockBE & O-ABScmd)| FLDiagonalLock;

FLlockSig := case

States = Normal: 0;

1: 1;

esac;

next(States):=case

States = Normal & locked = 1: Locked;

1: States;

esac;

next(LockBE) := case

LockBE = 1 : 1;

1: {0,1} ;

esac;

counter:=case

States = Locked : 1;

1: 0;

esac;

MODULE FR(O-ABScmd, FRDiagonalLock)

VAR

States : {Normal, Locked} ;

LockBE : boolean;

counter : 0..1;

FRlockSig : boolean;

locked: boolean;

ASSIGN

init(States) := Normal;

init(LockBE) := 0;

locked := (LockBE & O-ABScmd)| FRDiagonalLock;

FRlockSig := case

States = Normal : 0;

1: 1;

esac;

next(States):=case

States = Normal & locked = 1 : Locked;

1: States;

214

esac;

next(LockBE) := case

LockBE = 1 : 1;

1: {0,1} ;

esac;

counter:=case

States = Locked : 1;

1: 0;

esac;

MODULE RL(O-ABScmd, RLDiagonalLock)

VAR

States : {Normal, Locked} ;

LockBE : boolean;

counter : 0..1;

RLlockSig : boolean;

locked: boolean;

ASSIGN

init(States) := Normal;

init(LockBE) := 0;

locked := (LockBE & O-ABScmd)| RLDiagonalLock;

RLlockSig := case

States = Normal : 0;

1: 1;

esac;

next(States):=case

States = Normal & locked = 1 : Locked;

1: States;

esac;

next(LockBE) := case

LockBE = 1 : 1;

1: {0,1} ;

esac;

counter:=case

States = Locked : 1;

1: 0;

esac;

MODULE RR(O-ABScmd, RRDiagonalLock)

VAR

States : {Normal, Locked} ;

LockBE : boolean;

counter : 0..1;

RRlockSig : boolean;

locked: boolean;

ASSIGN

init(States) := Normal;

init(LockBE) := 0;

215

locked := (LockBE & O-ABScmd)| RRDiagonalLock;

RRlockSig := case

States = Normal : 0;

1: 1;

esac;

next(States):=case

States = Normal & locked = 1 : Locked;

1: States;

esac;

next(LockBE) := case

LockBE = 1 : 1;

1: {0,1} ;

esac;

counter:=case

States = Locked : 1;

1: 0;

esac;

MODULE ABS (O-ECUabs)

VAR

States : {Normal, Fail} ;

O-ABScmd: boolean;

ASSIGN

init(States) := Normal;

next(States):=case

O-ECUabs = 1 : Fail;

1: Normal;

esac;

O-ABScmd := case

States = Normal : 0;

1: 1;

esac;

MODULE ECU (O-WS, O-ES)

VAR

States : {Normal, Fail} ;

O-ECUabs: boolean;

ECUABEabs: boolean;

ECUABEabsC: boolean;

ECUBBEabs: boolean;

ECUBBEabsC: boolean;

ASSIGN

init(States) := Normal;

next(States):=case

O-WS | O-ES | (ECUABEabsC & ECUBBEabsC) | (ECUABEabsC & ECUBBEabs) |

(ECUABEabs & ECUBBEabsC) | (ECUABEabs & ECUBBEabs) : Fail;

1: Normal;

esac;

216

O-ECUabs := case

States = Normal : 0;

1: 1;

esac;

next(ECUABEabs):=case

ECUABEabs = 1 : 1;

1: {1,0};

esac;

next(ECUABEabsC):=case

ECUABEabsC = 1 : 1;

1: {1,0};

esac;

next(ECUBBEabs):=case

ECUBBEabs = 1 : 1;

1: {1,0};

esac;

next(ECUBBEabsC):=case

ECUBBEabsC = 1 : 1;

1: {1,0};

esac;

MODULE WS

VAR

States : {Normal, Fail} ;

WSBE : boolean;

O-WS : boolean;

ASSIGN

init(States) := Normal;

init(WSBE) := 0;

next(WSBE) :=case

WSBE = 1 : 1;

1: {1,0};

esac;

next(States):=case

WSBE : Fail;

1: Normal;

esac;

O-WS:= case

States = Normal : 0;

1: 1;

esac;

MODULE ES

VAR

States : {Normal, Fail} ;

ESBE : boolean;

O-ES : boolean;

217

ASSIGN

init(States) := Normal;

init (ESBE) := 0;

next(ESBE) :=case

ESBE = 1 : 1;

1: {1,0};

esac;

next(States):=case

ESBE : Fail;

1: Normal;

esac;

O-ES:= case

States = Normal : 0;

1: 1;

esac;

MODULE main

VAR

States: {Normal,TD1_Critical_FR,TD1_Critical_RL,

TD1_Critical_FL, TD1_Critical_RR, PD2_FR-RLDiagonalLock,

PD2_FL-RRDiagonalLock, TD3_Critical_FRRLFL,TD3_Critical_FRRLRR,

TD3_Critical_FLRRFR,TD3_Critical_FLRRRL,PD4_AllWheelsLocked};

counter: 0..4;

FLdiagonalLock: boolean;

FRdiagonalLock: boolean;

RLdiagonalLock: boolean;

RRdiagonalLock: boolean;

O-ABScmd : boolean;

FRlockSig : boolean;

RLlockSig : boolean;

RRlockSig : boolean;

FLlockSig : boolean;

ALLOFF: boolean;

DLActive: boolean;

Hazardous : boolean;

TwoParallelWheelsLocked : boolean;

flw : FL(O-ABScmd, FLdiagonalLock);

frw : FR(O-ABScmd, FRdiagonalLock);

rlw : RL(O-ABScmd, RLdiagonalLock);

rrw : RR(O-ABScmd, RRdiagonalLock);

ws: WS;

es: ES;

ecu : ECU (ws.O-WS, es.O-ES);

abs : ABS(ecu.O-ECUabs);

ASSIGN

init(States) := Normal;

O-ABScmd := abs.O-ABScmd;

counter := flw.counter + frw.counter + rlw.counter + rrw.counter ;

FRlockSig := frw.FRlockSig;

218

RLlockSig := rlw.RLlockSig;

RRlockSig := rrw.RRlockSig;

FLlockSig := flw.FLlockSig;

init (TwoParallelWheelsLocked) := 0;

FLdiagonalLock:= case

States = TD1_Critical_RR | States = TD3_Critical_FRRLRR : 1;

1: 0;

esac;

FRdiagonalLock:= case

States = TD1_Critical_RL | States = TD3_Critical_FLRRRL: 1;

1: 0;

esac;

RRdiagonalLock:= case

States = TD1_Critical_FL | States = TD3_Critical_FRRLFL : 1;

1: 0;

esac;

RLdiagonalLock:= case

States = TD1_Critical_FR | States = TD3_Critical_FLRRFR : 1;

1: 0;

esac;

ALLOFF := !FLdiagonalLock & !RLdiagonalLock & !FRdiagonalLock &

!RRdiagonalLock;

DLActive := FLdiagonalLock | RLdiagonalLock | FRdiagonalLock |

RRdiagonalLock;

Hazardous := case

States = TD1_Critical_FR |States = TD1_Critical_RL | States =

TD1_Critical_FL | States = TD1_Critical_RR |States =

TD3_Critical_FRRLRR|States = TD3_Critical_FLRRFR | States =

TD3_Critical_FLRRRL : 1;

1: 0;

esac;

next(TwoParallelWheelsLocked):=case

TwoParallelWheelsLocked = 1: 1;

1 : ((flw.States = Locked & rlw.States = Locked)|(frw.States = Locked

& rrw.States = Locked) | (flw.States = Locked & frw.States = Locked) |

(rlw.States = Locked & rrw.States = Locked)) & counter = 2;

esac;

next(States) := case

States = Normal & FRlockSig : TD1_Critical_FR;

States = Normal & RLlockSig : TD1_Critical_RL;

States = Normal & FLlockSig : TD1_Critical_FL;

States = Normal & RRlockSig : TD1_Critical_RR;

States = TD1_Critical_FR & RLlockSig : PD2_FR-RLDiagonalLock;

States = TD1_Critical_RL & FRlockSig : PD2_FR-RLDiagonalLock;

States = TD1_Critical_FL & RRlockSig : PD2_FL-RRDiagonalLock;

States = TD1_Critical_RR & FLlockSig : PD2_FL-RRDiagonalLock;

States = PD2_FR-RLDiagonalLock & FLlockSig : TD3_Critical_FRRLFL;

States = PD2_FR-RLDiagonalLock & RRlockSig : TD3_Critical_FRRLRR;

States = PD2_FL-RRDiagonalLock & FRlockSig : TD3_Critical_FLRRFR;

States = PD2_FL-RRDiagonalLock & RLlockSig : TD3_Critical_FLRRRL;

States = TD3_Critical_FRRLFL | States = TD3_Critical_FRRLRR | States =

TD3_Critical_FLRRFR | States = TD3_Critical_FLRRRL :

PD4_AllWheelsLocked;

219

1: States;

esac;

220

APPENDIX C: Summary of Quantitative Analysis

The effects of detectability parameters on system probability for top event C-

Actuator_Module.Out:

Cruise Control System without activation of any detection module:

Minimal Cut sets Produced Probability

11 0.064

Cruise Control System with activated detection module:

Detectability Parameters Minimal Cut sets Produced Probability

Internal Malfunction Failure 6 0.036

Internal Malfunction Failure,

Event Miss, ¬ Miss

11 0.039

Detectability Parameters Prime Implicants Produced Probability

Event ¬ Miss 11 0.039

Event Catch 11 0.039

221

Cruise Control System with Fading Brake for top event C-Actuator_Module.Out:

Detectability Parameters Prime Implicants Produced Probability

Event ¬ Miss 11 0.039

Event Catch 11 0.039

Cruise Control System with Fading Brake for top event O-Actuator_Module.Out:

Detectability Parameters Prime Implicants Produced Probability

Event ¬ Miss 19 0.072

Event Catch 19 0.064

222

Appendix D: Prime Implicants for Cruise Control

System

Prime implicant results for O-Actuator_Module (Cruise Control System with Fading

Brake) with the use of ¬ Miss:

13 x Cut Sets of Order Probability

Monitoring_Module.BE1 0.00458944

Logic_Module.BE1 0.00458944

Cruise_Control.BE1 0.00458944

Brake_Support.BE1 0.00458944

Actuator_Module.BE1 0.00458944

Switch_Sensor.BE 0.00114934

Speed_Sensor.BE 0.00114934

Radar_Sensor.BE 0.00114934

Pedal_Sensor.BE 0.00114934

Memory.BE 0.00114934

DM_LM.failure 0.00111937

DM_FB.failure 0.00111937

DM_CC.failure 0.00111937

5 x Cut Sets of Order Probability

Monitoring_Module.BE2

DM_CC.NOT_miss

0.00980101

Monitoring_Module.BE2

DM_LM.NOT_miss

0.00980101

223

Brake_Support.BE2

DM_CC.NOT_miss

0.00980101

Fading_Brake.BE1

DM_CC.NOT_miss

0.0040387

DM_FB.miss

Fading_Brake.BE1

0.000550732

1 x Cut Sets of Order Probability

Fading_Brake.BE2

DM_CC.NOT_miss

DM_FB.NOT_miss

0.00862489

Prime implicant results for O-Actuator_Module (Cruise Control System with Fading

Brake) with the use of Catch:

13 x Cut Sets of Order Probability

Monitoring_Module.BE1 0.00458944

Logic_Module.BE1 0.00458944

Cruise_Control.BE1 0.00458944

Brake_Support.BE1 0.00458944

Actuator_Module.BE1 0.00458944

Switch_Sensor.BE 0.00114934

Speed_Sensor.BE 0.00114934

Radar_Sensor.BE 0.00114934

Pedal_Sensor.BE 0.00114934

Memory.BE 0.00114934

DM_LM.failure 0.00111937

224

DM_FB.failure 0.00111937

DM_CC.failure 0.00111937

4 x Cut Sets of Order Probability

DM_LM.catch

Monitoring_Module.BE2

0.00980101

Brake_Support.BE2

DM_CC.catch

0.00980101

DM_CC.catch

Fading_Brake.BE1

0.0040387

DM_FB.miss

Fading_Brake.BE1

0.000550732

2 x Cut Sets of Order Probability

DM_CC.catch

DM_FB.catch

Fading_Brake.BE2

0.00862489

DM_CC.catch

DM_LM.miss

Monitoring_Module.BE2

0.00117612

225

APPENDIX E: List of Abbreviation

ABS Anti-lock Brake System

BBW Brake-by-wire

BDD Binary Decision Diagram

BSA Behavioural Safety Analysis

BSCU Brake System Control Unit

CEG Cause Effect Graphs

CFT Component Fault Trees

CSA Compositional Safety Analysis

CTL Computational Tree Logic

DSPN Deterministic and Stochastic Petri Nets

EHB Electrical Hydraulic Brake

EMB Electrical Mechanical Brake

ESP Electronic Stability Program

ESSaReL Embedded Systems Safety and Reliability Analyser

FFA Functional Failure Analysis

FFBD Functional Flow Block Diagram

FHA Functional Hazard Assessment

FMEA Failure Modes and Effects Analysis

ForMoSA Formal Methods and Safety Analysis

FSAP/NuSMV Formal Safety Analysis Platform/NuSMV

226

FSM Finite State Machine

FTA Fault Tree Analysis

HAZOP Hazard and Operability Study

HiP-HOPS Hierarchically Performed Hazards Origin and Propagation

Studies

IACoB Integrated Application of Compositional and Behavioural

IF-FMEA Interface Focussed FMEA

LTL Linear Temporal Logic

MBSA Model-based Safety Analysis

MICSUP Minimal Cut Set UPward

NuSMV New Symbolic Model Verifier

PLTL Propositional LTL

PSSA Preliminary Safety Assessment

RPN Risk Priority Number

SEFT State-Event Fault Trees

SMV Symbolic Model Verifier

TTP Time-triggered Communication Protocol

WBS Wheel-brake system

227

REFERENCES

Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D., Tohdo, T., 2010. An approach to

optimization of fault tolerant architectures using HiP-HOPS. Software Practice and

Experience. Wiley Interscience. DOI: 10.1002/spe.1044.

Arnold, A., Begay, D., Crubille, P., 1994. Construction and analysis of transition

systems with MEC. World Scientific: Singapore. ISBN: 981-02-1922-9.

Arnold, A., Gerald, P., Griffault, A., Rauzy.A., 2000. The Altarica formalism for

describing concurrent systems . Fundamenta Informaticae, 34, pp 109-124.

ARP 4754, 1994. Aerospace recommended practice: Certification considerations for

highly-integrated or complex aircraft systems . Society of Automotive Engineering.

Warrendale, PA: SAE.

ARP 4761, 1996. Aerospace Recommended Practice: Guidelines and methods for

conducting the safety assessment process on civil airborne systems and equipment.

Society of Automotive Engineering. Warrendale, PA: SAE.

Autopressnews, 2006. All new Volvo S80 safety systems. Available through:

Autopressnews <

http://www.autopressnews.com/2006/2006csm/m03/volvo/volvo_s80_safety_systems.s

html> [Accessed at: 11/12/2010].

Banphawatthanarak, C., Krogh, B.H., 1999. Verification of Stateflow diagrams using

SMV: sf2smv 2.0.Pittsburgh: Carnegie Mellon University.

Barfield, L., 2004. The user interface concept and design. Addison Wesley, pp 43- 72.

ISBN: 0954723902, 9780954723903.

Berard, B. Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci., L., Schnoebelen,

McKenzie, P.,1999. System and software verification: model-checking techniques and

tools. Germany: Springer-Verlarg. ISBN: 3540415238, 9783540415237.

228

Bieber, P., Bougnol, C., Castel, C., Heckmann, J., Kehren, C., Metge, S., Seguin, C.,

2004. Safety assessment with Altarica – Lessons learnt based on two aircraft case

studies, in Proceedings of 18th IFIP World Computer Congress, Topical Day on New

Methods for Avionics Certification, pp 505-510.

Bieber, P., Castel, C., Seguin, C., 2002. Combination of fault tree analysis and model

checking for safety assessment of complex system, in Proceedings of the 4
th

 European

Dependable Computing Conference, Lecture Notes in Computer Science, 2485, pp 624-

628.

Blanchard, B.S., 1998. System engineering management. New York: John Willey&Son.

ISBN: 0471291765, 9780471291763.

Bobbie, O., Buggineni, V., JI, Y.M., 2001. Model checking with sf2smv/SMV and

simulation of parallel systems, in Proceedings of the Hunstville Simulation Conference

(Society of Computer Simulation – SCS), pp 159-166. Hunstville, USA.

Bondavalli, A., Simoncini, L., 1990. Failure classification with respect to detection.

Esprit Project Nr 3092 (PDCS: Predictably Dependable Computing Systems).

Bozzano, M. et al, 2003b. ESACS: an integrated methodology for design and safety

analysis of complex systems, in Proceedings of the 22nd International Conference on

Computer Safety, Reliability and Security (SAFECOMP), pp 237-245. Springer.

Bozzano, M., Cavallo, A., Cifaldi, M., 2003a. Improving safety assessment of complex

systems: an industrial case study. Lecture Notes in Computer Science, 2805, pp 208-

222.

Bozzano, M., Villafiorita, A., 2006. The FSAP/NuSMV-SA safety analysis platform.

International Journal on Software Tools for Technology Transfer (STTT), 9, pp 5-24.

Carley, L., 2004. Brake-by-wire. Brake&Front End Magazine. Available through:

http://www.brakeandfrontend.com/.

Cavada, R. et al., 2005. NuSMV 2.3 Manual. Italy: IRST. Available through:

http://nusmv.fbk.eu/NuSMV/userman/v23/nusmv.pdf. Accessed at : [10/12/2010].

229

Ciardo, G., Lindermann, C., 1993. Analysis of deterministic and stochastic Petri nets, in

Proceedings of the 5th International Workshop on Petri nets and Performance models

(PNPM 1993), pp 160 – 169.

Cimatti, A. et al., 1998. Formal verification of a railway interlocking system using

model checking. Formal Aspects of Computing, 10, pp 361-380.

Cimatti, A., Clarke, E., Giuchiglia, F., Roveri, M., 1999. NuSMV: a new symbolic

model verifier, in Proceedings of Computer-aided Verification (CAV‟99). Lecture Notes

in Computer Science, 1633, pp 495-499. Springer-Verlag, London.

Clarke, E.M., Emerson, A., 1980. Characterizing correctness properties of parallel

programs using fixpoints. Automata, Languages and Programming, pp 169-181.

Springer-Verlag, Lodon.

Clarke, E.M., Wing, J.M., 1996. Formal Methods: state of the art and future

directions.ACM Computer Surveys, 28(4), pp 626-643.

Colombo, D., 2007. Brake-by-wire system development: Technology and development

process. FIAT Group, Torino. Available through:

<http://staff.polito.it/enrico.canuto/Home_page/pdf/Incontro18gen2008/DColombo.pdf

> . Accessed at: [16/02/2011].

Davey, C., Friedman, J., 2007. Software systems engineering with model-based design,

in Proceedings of 4th International Workshop on Software Engineering for Automotive

Systems (SEAS‟07), pp 7. IEEE. DOI: 10.1109/SEAS.2007.9.

Drusinksy, D., 2006. Modeling and verification using UML Statecharts. Oxford:

Newnes. ISBN: 0750679492, 9780750679497.

Dwyer, M.B., Avrunin, G.S. Corbett, J.C., 1999. Patterns in property specifications for

finite-state verification. In GARLAN, D., and KRMAER, J., eds., 21st International

Conference on Software Engineering, Lost Angeles, California, pp 411-420.

FAA, 2006. NAS System Engineering Manual. Available through: Federal Aviation

Administration <

230

http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/operations/

sysengsaf/seman/SEM3.1/Section%204.4.pdf> [Accessed at: 10/12/2010].

Faller, R., 2009. Importance of Functional Safety and IEC 61508. Exida. Available

through: <

http://www2.dke.de/de/Wirueberuns/MitteilungenderDKEGeschaeftstelle/documents/vd

e%20dke%20-

%20tagung%20zur%20iec%2061508%20_%20pr%C3%A4sentationen/importance%20

of%20functional%20safety%20and%20iec%2061508.pdf> [Accessed at: 14/02/2011].

Ford, 2010. Adaptive cruise control and collision warning with brake support.

Available through : Ford Media <

http://media.ford.com/images/10031/Adaptive_Cruise.pdf> [Accessed at: 09/12/2010].

German, R., Mitzlaff, J., 1995. Transient analysis of deterministic and stochastic Petri

nets with TimeNET, Proceedings of the 8
th

 International Conference on Computer

Performance Evaluation, Modelling Techniques, and Tools and MMB (Lecture Notes in

Computer Science, vol. 977), pp 209-223.

Grunske, L., Kaiser, B., Papadopoulos, Y., 2005. Model-driven safety evaluation with

state-event-based component failure annotation. Lecture notes in computer science,

3489, pp 33-48.

Hamann, R., Uhlig, A., Papadopoulos, Y., Rüde,E., Grätzu., Lien, R., 2008. Derivation

of Ship System Safety Criteria by means of Risk-Based Ship System Safety Analysis,

ASME 27
th
 International Conference on Offshore Mechanics and Arctic Engineering

(OMAE‟08), Estoril, Portugal. Proceedings on CD.

Harel, D., 1987. Statecharts: a visual formalism for complex systems. Science of

Computer Programming, 8, pp 231-274.

Harel, D., Namad, A., 1996. The STATEMATE semantics of Statecharts. ACM

Transactions on Software Engineering and Methodology, 5(4), pp 293-333.

Hedenetz, B., Belschner, R., 1998. Brake-by-wire without mechanical backup using a

TTP-communication network. Society of automotive engineering International

231

Congress, SAE 981109. Available through: <

http://www.vmars.tuwien.ac.at/projects/xbywire/projects/new-BBW.html>. Accessed

at: [21/02/2011].

Heimdahl, M.P.E., 2007. Formal model-based development in aerospace systems:

challenges to adoption, Lecture notes. University of Minnesota.

Holzmann, G., Joshi, R., Groce, A., 2005. New challenges in model checking. Lecture

Notes in Computer Science, 5000. DOI: 10.1007/978-3-540-69850-0_4

Huth, M., Ryan, M., 2000. Logic in computer science – modelling and reasoning about

systems. Cambridge University Press. ISBN: 052154310.

IEC 61508, 1998. Functional safety of electrical/electronic/programmable electronic

safety-related systems. International Electrotechnical Commission. Geneva.

Isermann, I., 2004. Fault-tolerant ddrive-by-wire systems. Available through: <

http://www.apca.pt/~apca_docs/CONTROLO2004/controlo2004/papers/pdf0098.pdf>.

Accessed at: [10/12/2010].

Isermann, R., 2002. Fault-tolerant drive-by-wire systems. Control Systems Magazine.

IEEE, 5(2), pp 64-81.

Isermann, R., 2004. Model-based fault detection and diagnosis: status and application,

in Proceedings of the 16
th
 IFAC Symposium on Automatic Control in Aerospace, pp 71-

85. DOI:10.1016/j.arcontrol.2004.12.002.

Johannessen, P., Grante, C., Alminger, C., Eklund, U., 2001. Hazard analysis in object

oriented design of dependable systems. Proceedings of the International Conference on

Dependable Systems and Networks (DSN‟01), pp 507-512. DOI:

10.1109/DSN.2001.941436.

Johnston, B.D., Matthews, R.H., 1993. Non-coherent structure theory: a review and its

role in fault tree analysis. United Kingdom: UK Atomic Energy Authority.

http://dx.doi.org/10.1016/j.arcontrol.2004.12.002

232

Jones, P.M., Mitchell, C.M., 1987. Operator modelling: conceptual and methodological

distinctions, in Proceeddings of the 31
st
 Annual Meeting of the Human Factors Society,

1, pp 31-35.

Joshi, A. Heimdahl, M., Miller, S,. Whalen, M., 2006. Model-Based safety analysis.

University of Minnesota. Advanced Technology Center.

Joshi, A. Heimdahl, M.P.E, 2005. Model-based safety analysis of Simulink models

using SCADE design verifier, in Proceedings of the 24th International Conference on

Computer Safety, Reliability and Security (SAFECOMP), pp 122-135. Springer.

Juarez-Domiguez, A.L., Nancy, A.D., Joyce, J.J., 2008. Modelling feature interactions

in the automotive domain, in Proceedings of the 2008 International Workshop on

Models in Software Engineering (MiSE‟08), pp 45-50. DOI:

10.1145/1370731.1370743.

Kaiser, B., Gramlich C., Forster M., 2007. State/event fault trees - A safety analysis

model for software-controlled systems. Reliability Engineering and System Safety,

92(11), pp 1521-1537.

Kaiser, B., Gramlich, C., 2004. State-Event-Fault-Trees A safety Analysis Model for

Software Controlled Systems. Computer Safety, Reliability, and security, 3219, pp 195-

209.

Kaiser, B., Liggesmeyer, P., Mackel, O., 2003. A New Component Concept for Fault

Trees. SCS‟03 Australia.

Katoen, J.P., 2002. Principles of model checking. Lecture Notes in Computer Science,

pp 16-35. University of Twente.

Kehren, C., Sequin, C., Bieber, P., Castel, C., Bougnol,C., Heckmann. J-P., Metge, S.,

2000. Safety Assessment with AltaRica. IFIPInternational Federation of Information

Processing, 156, pp 505-510.

Kletz, T. A., 1997., HAZOP – Past and Future, Reliability Engineering and System

Safety, 55(3), pp 263-266.

http://dx.doi.org/10.1145/1370731.1370743

233

Knight, J.C., 2002. Safety critical systems: challenges and directions (summary of state-

of-the-art presentation), in Proceedings of International Conference on Software

Engineering, pp 547-550. Orlando, Florida.

Kripke, S.A., 1963. Semantical considerations on modal logic. Acta Philosophica

Fennica, 16, pp 83-94.

Langenwalter, J., Erkkinen, T., 2004. Embedded steer-by-wire system development.

Embedded World. Germany: MathWorks.

Lisagor, O. McDermid, A.J., Pumfrey, D.J., 2006. Towards a practicable process of

automated safety analysis, in Proceedings of the 24th International System Safety

Conference (ISSC). Albuquerque, New Mexico, USA.

Lisagor, O., McDermid, J.A., Pumrey, D., 2003. Safety analysis of software

architecture – lightweight PSSA. University of York.

Loer, K., 2003. Model-based automated analysis for dependable interactive systems.

Computer Science Department, University of York. UK.

McMillan, K.L., 1993. Symbolic model checking. Kluwer. ISBN:0792393805.

Miller, S.P., Tribble, A., Whalen, M., Heimdahl, M., 2003A. Proving the shalls: early

validation of requirements through formal models. International Journal on Software

Tools for Technology Transfer (STTT), 8(4), pp 303-319. Springer-Verlag.

NASA, 1995. NASA systems engineering handbook. SP-610S. Available through: MIT

< http://snebulos.mit.edu/projects/reference/NASA-Generic/NASA-STD-8739-8.pdf>

[Accessed: 10/12/2010].

NASA, 2007. NASA system engineering handbook. Washington DC. Available through:

NASA STI < http://education.ksc.nasa.gov/esmdspacegrant/Documents/NASA%20SP-

2007-6105%20Rev%201%20Final%2031Dec2007.pdf> [Accessed: 10/12/2010].

Nossal, R., Lang, R., 2002. Model-based system development: An approach to building

x-by-wire application. IEEE Micro, 22(4), pp 56-63.

234

Ortmeier, F , Thums, A., Schellhorn, G., Reif, W., 2004b. Combining formal methods

and safety analysis – the ForMoSA approach, in Proceedings of Softspez Final Report,

pp 474-493.

Ortmeier, F., Reif, W., 2004a. Failure-sensitive specification: a formal method for

finding failure modes. Institut fur Informatik, Augsburg.

Pagetti, C., Cassezf., Roux, O., 2003. Hierarchical modelling and verification of timed

systems in timed AltaRica, in Proceedings of FACS the First Workshop on Formal

Aspects of Component Software, pp 63-80.

Palshikar, G.V., 2004. An Introduction to Model Checking. Available through : <

www.embedded.com>. Accessed at: [12/11/2010].

Papadopoulos, Y., 2003. Model-Based System Monitoring and Diagnosis of Failures

using Statecharts and Fault Trees. Reliability Engineering and System Safety, 81, pp

325-341.

Papadopoulos, Y., 1998. Safety analysis of a distributed brake by wire system for cars.

ESPRIT 23396 (TTA) Deliverable. University of York.

Papadopoulos, Y., 2000. Safety-directed system monitoring using safety cases. PhD

Thesis. University of York.

Papadopoulos, Y., Grante C., 2005. Evolving car designs using model-based automated

safety analysis and optimisation techniques. Journal of Systems and Software, Elsevier

Science, 76(1), pp 77-89.

Papadopoulos, Y., Maruhn, M., 2001. Model-Based automated synthesis of fault trees

from Matlab-Simulink models. International Conference on Dependable Systems and

Networks, pp 77-82.

Papadopoulos, Y., McDermid, J.A., 1999. The potential for a generic approach to

certification of safety-critical systems in the transportation sector. Reliability

Engineering and System Safety, 63(1), pp 47-66. Elsevier Science.

235

Papadopoulos, Y., McDermid, J.A., SASSE, R., HEINER, G., 2001. Analysis and

synthesis of the behaviour of complex programmable electronic systems in conditions

of failure. Reliability Engineering and System Safety, 71, pp 229-247.

Papadopoulos, Y., Parker, D., Walker, M., Petersen, U., Hamann, R., Wu, Q., Uhlig, A.,

2005. Automated failure modes and effects analysis of systems on-board ship.

International Conference on Marine Research and Transportation, Ischia, Italy.

Proceedings on CD.

Parker, D. 2010. Multi-objective optimisation of safety-critical hierarchical system. PhD

Thesis. University of Hull.

Parker, D., Papadopoulos, Y., Walker, M., 2006. Component-based, automated FMEA

of advanced active safety systems, 31st World Automotive Congress. Published by

JSAE, Yokohama, Japan. ISBN: 4-915219-83-6, 2006.

Parker, D., Papadopoulos, Y., 2007. Optimization of networked controlled systems

using model-based safety analysis techniques. in Proceedings of IEEE International

Conference on Networking, Sensing and Control, pp 425-430. London.

Peikenkamp, T., 2006. Application of traditional and new safety analysis techniques in

model-oriented design. Germany: OFFIS .

Point, G., Rauzy.A., 1999. Constraint automata as a description language. European

Journal on Automation, 33(8-9), pp 1033-1052.

Pumfrey, D., 1999. The principled design of computer system safety analyses. PhD

Thesis. University of York, UK.

Quality associates, 1997. Severity, occurrence and detection criteria for design FMEA.

Available through: <

http://www.fmeainfocentre.com/guides/DesignPktNewRating.pdf> . Accessed at:

[10/12/2010].

Rauzy,A., 2002. Mode automata and their compilation into fault trees. Reliabilty

Eingeering and System Safety, 78(1), pp 1-12. Elsevier Science.

236

SafeProd, 2005. Safety requirements specification guideline. Process Industry IEC

61511. Available through: SafeProd<

http://www.sp.se/sv/index/services/functionalsafety/Documents/Safety%20requirements

%20specification%20guideline.pdf> [Accessed: 10/12/2010].

Schatz, B., Pretschener, A., Huber, F., Phillips, J., 2002. Model-based development of

embedded systems, in Proceedings of the Workshops on Advances in Object-Oriented

Information Systems, pp 298-312.

SEF, 2001. Sytems engineering fundamentals. Department of Defense. Virginia:

Defense Acquisition University Press. Available through:

<http://spacese.spacegrant.org/SEModules/Reference%20Docs/DAU_SE_Fundamental

s.pdf>. Accessed at: [11/12/2010].

Seguin, C., Bieber, P., Castel, C., Kehren, C., 2006. Formal assessment techniques for

embedded safety critical system.

Sharvia, S., 2007. Extending fault tree synthesis with negative logic operator. MSc

Thesis. University of Hull, UK.

Sharvia, S., Papadopoulos, Y., 2008. Non-coherent modelling in compositional safety

analysis, in Proceedings of the 17th World Congress, International Federation of

Automatic Control (IFAC WC‟08). Seoul, Korea. Paper available from ifac-

papersonline.net

Sharvia, S., Papadopoulos, Y., 2009. Model-based safety analysis using compositional

analysis and formal verification, 5th International Conference on Computer Science and

Information Systems (ICCSIS‟09). Athens, Greece.

Sharvia, S., Papadopoulos, Y., 2010. Integrating compositional safety analysis and

formal verification. Strategic Advantage of Computing Information Systems in

Enterprise Management, pp 181-201.

Sommerville, I., 2004. Software engineering. London: Addison Wesley. ISBN: 978-

0321210265.

237

Suri, N., Walter, C., Hugue, M.M., 1995. Advances in ultra-dependable distribute

systems. IEEE Computer Society Press. ISBN: 0818662875.

Torres-Pomales, W., 2000. Software Fault Tolerance: A Tutorial. Virginia: NASA

Langley Research Center. Technical report: NASA-2000-tm210616.

Tribble, A.C., Miller, S.P., 2003. Software safety analysis of a flight management – a

status report, 22
nd

 Digital Avionics Systems Conference (DASC‟03).

Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F., 1981. Fault tree handbook.

Washington D.C., USA: US Nuclear Regulatory Commission, III1-V-3.

Visser, W., 2002. Software model checking. Research Institue for Advanced Computer

Science. NASA Ames Research Center.

Von Der Beek, M., 1994. A comparison of statecharts variants. In Langmaack, H., de

Roever, W.P., Vytopil, J., eds, Formal techniques in real-time and fault-tolerant

systems. Lecture Notes in Computer Science, 863, pp 128-148. Springer-Verlag.

Walker, M. and Papadopoulos, Y., 2006. PANDORA: The time of Priority-AND gates.

INCOM 2006, France, pp 237-242.

Walker, M. et al., 2008. Review of relevant safety analysis techniques. Traffic

Efficiency and Safety through Software Technology Phase 2 (ATESST2).

Weilkiens, T., 2007. Systems engineering with SysML/UML – modelling , analysis,

design. London: Elsevier, Morgan Kaufmann. ISBN: 0123742749.

Wilkinson, P.J., Kelly, T.P., 1997. Functional hazard analysis for highly integrated

aerospace system, in Proceedings of Certification of Ground/Air Systems Seminar, pp

41-46. DOI: 10.1049/ic:19980312

Wolforth , I.P., 2010. Specification and use of component failure patterns. PhD Thesis,

University of Hull.

http://dx.doi.org/10.1049/ic:19980312

