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Abstract  

To address challenges arising in the safety assessment of critical engineering systems, 

research has recently focused on automating the synthesis of predictive models of 

system failure from design representations. In one approach, known as compositional 

safety analysis, system failure models such as fault trees and Failure Modes and Effects 

Analyses (FMEAs) are constructed from component failure models using a process of 

composition. Another approach has looked into automating system safety analysis via 

application of formal verification techniques such as model checking on behavioural 

models of the system represented as state automata. So far, compositional safety 

analysis and formal verification have been developed separately and seen as two 

competing paradigms to the problem of model-based safety analysis.  

This thesis shows that it is possible to move forward the terms of this debate and use the 

two paradigms synergistically in the context of an advanced safety assessment process. 

The thesis develops a systematic approach  in which compositional safety analysis 

provides the basis for the systematic construction and refinement of state-automata that 

record the transition of a system from normal to degraded and failed states. These state 

automata can be further enhanced and then be model-checked to verify the satisfaction 

of safety properties. Note that the development of such models in current practice is ad 

hoc and relies only on expert knowledge, but it being rationalised and systematised in 

the proposed approach – a key contribution of this thesis.   

Overall the approach combines the advantages of compositional safety analysis such as 

simplicity, efficiency and scalability, with the benefits of formal verification such as the 

ability for automated verification of safety requirements on dynamic models of the 

system, and leads to an improved model-based safety analysis process. In the context of 

this process, a novel generic mechanism is also proposed for modelling the detectability 

of errors which typically arise as a result of component faults and then propagate 

through the architecture. This mechanism is used to derive analyses that can aid 

decisions on appropriate detection and recovery mechanisms in the system model.  

The thesis starts with an investigation of the potential for useful integration of 

compositional and formal safety analysis techniques. The approach is then developed in 

detail and guidelines for analysis and refinement of system models are given. Finally, 
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the process is evaluated in three cases studies that were iteratively performed on 

increasingly refined and improved models of aircraft and automotive braking and cruise 

control systems. In the light of the results of these studies, the thesis concludes that 

integration of compositional and formal safety analysis techniques is feasible and 

potentially useful in the design of safety critical systems. 
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CHAPTER 1.  Introduction  

1.1 Research Context and Scope  

This thesis is concerned with the integrated application of emerging safety analysis 

techniques for safety-critical systems.   

Safety critical systems are systems whose operational deviations can potentially lead to 

catastrophic consequences or loss of human lives. These systems are widely employed 

in many industries, including the automotive, aerospace, weapons and nuclear 

industries. Modern safety-critical systems often incorporate numerous embedded 

control components, involve various engineering disciplines, and employ distributed 

architectures and complex communication structures. (Knight, 2002) discusses several 

other major challenges in safety-critical systems which include the elimination of 

“physical separation” due to resource sharing, and ineffective interaction between 

software engineering and system engineering.  These characteristics present substantial 

challenges, and considering the consequences of failure in these systems, as well as the 

fact that safety critical systems have become more prevalent in everyday life, it is 

crucial that these systems are subjected to a rigorous safety assessment process. 

Classical safety assessment techniques such as Fault Tree Analysis (FTA) and Failure 

Modes and Effects Analysis (FMEA) are still employed to predict the safety of such 

systems. However, classical techniques are traditionally applied in a manual process, 

which in the context of a complex system become difficult, laborious, expensive and 

error-prone. For this reason, FTA and FMEA are rarely performed more than once and 

often at the late stage of lifecycle when the design has been finalized. This late 

contribution means that results from the process miss the opportunity to influence 

system design, potentially incurring extra cost and effort in late design modifications. 

Problems also arise in the lack of systematic methods to capture and manage design 

models and safety artefacts as in traditional practices system design models and safety 

analyses are often created and handled separately. With these drawbacks, classical 
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safety analysis techniques face tremendous challenges and are no longer deemed to be 

sufficiently effective in managing the rising intricacy of modern complex design.  

To address some of those difficulties, recent research has been focused on investigating 

and developing more-effective and robust safety assessment techniques through 

automation of the analysis process. Model-Based Safety Analysis (MBSA) is a 

collective body of work which introduced semi-formal and formal models in the centre 

of the design and assessment process. MBSA extended the popular model-based 

development approach, in which effort is focused on the construction of the formal 

specification of the system model. This specification model is subsequently used as the 

foundation for various development activities like visualization, code generation, testing 

or prototyping (Heimdahl, 2007). Although the primary focus is placed on the 

development of software (digital) systems, model-based tools and techniques can also 

be used to model physical hardware components (for example, electrical or mechanical 

components).  

To perform a thorough safety assessment, it is crucial to understand not only how a 

system behaves in its normal working condition (represented in the nominal model), but 

also in the presence of failure(s). This is done by extending the nominal model with 

failure information to construct the failure-augmented model, termed fault model (Johsi 

et al., 2006) or error model (Walker et al., 2008).  

The automated analysis of these extended models enables various safety assessments to 

be performed. Such analyses typically include fault simulation and prediction of effects 

of failure, proof that certain safety properties hold in the model and causal safety 

analysis resulting in synthesis of fault trees which link causes to effects of failure. 

Figure 1 illustrates this point and shows the type of analyses that can be performed on a 

system model extended with faults in MBSA. Automated analysis of models brings 

substantial benefits as it lightens the burden on designers and analysts, simplifies the 

process, saves time and contributes to more reliable results. More importantly, it enables 

safety analysis to be incorporated as part of an iterative design process - as new results 

can be more easily generated to reflect changes – and therefore driving the design with 

safety in mind. 
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The two most prominent paradigms of MBSA today are Compositional Safety Analysis 

(CSA) and Behavioural Safety Analysis (BSA). Techniques which are based upon the 

CSA approach include Hierarchically Performed Hazards Origin and Propagation 

Studies (HiP-HOPS) (Papadopoulos & McDermid, 1999), Component Fault Trees 

(Kaiser et al., 2003), and State-Event Fault trees (SEFT) (Grunske et al., 2005). CSA 

uses a process of composition to construct system failure models from the topology of a 

system and local failure models of its components.  

BSA, on the other hand, uses exhaustive exploration of behavioural models of the 

system to assess satisfaction of safety requirements. Because this approach mainly 

employs model checking as its primary method of assessment, the term „model-

checking based‟ is often used interchangeably to characterise this type of safety 

analysis.  A model checker typically verifies conformance of the model to its safety 

requirements and, if requirements are violated, it relates those violations to 

combinations of causes, e.g. component failures. Prominent examples based on this 

approach include Altarica (Arnold et al., 2000) and FSAP/NuSMV (Bozzano & 

Villafiorita, 2006).  

Model for 

digital system  

 

Model for 

mechanical 

system  

Fault model for 

digital system 

+ 

 
Fault model for 

mechanical 

system  

Proof of Safety Properties  Fault Tree  

Simulation  

Figure 1: Automated Model-Based Safety Analysis (adapted from Johsi et al., 2006) 
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1.2 Research Motivation 

CSA and BSA techniques have emerged with little integration. Both techniques are 

fundamentally different in their objectives of assessment, working mechanisms, and 

application process. CSA is often used to facilitate reliability engineering. For example 

with techniques like HiP-HOPS, it is possible to effectively enable not only the 

identification of root failures through qualitative analysis, but also advanced 

probabilistic quantitative analysis. BSA on the other hand, places primary focus on the 

application of model checking for validation and verification of various safety 

properties. Also, while CSA relies largely on Boolean-based analysis, BSA explores all 

possible system states in brute force manner. The computationally efficient and iterative 

nature of CSA means that the technique can be applied from the early stages of design 

and on models that have a high level of abstraction. BSA on the other hand requires 

more mature and detailed behavioural models and is, therefore, applicable at later stages 

of the development process. In this thesis, it is argued that understanding these 

differences and exploiting each technique‟s strengths can bring substantial values to the 

development process, in particular at early design stages.  

Early functional design is arguably the most appropriate phases to address design 

problems and take remedial measures. The volume of design information and system 

complexity naturally increase as system development progresses with time. The more 

complex the design artefact, the more difficult it is to identify problems within and the 

more extensive the remedy required to address problems. It is therefore best to address 

problems as early as possible when models are still abstract and then continue to do so 

as more detail is added to the design of the system.   

One of the difficulties in the current industrial practice is that among classical safety 

analysis techniques, there is a lack of rigorous and effective techniques that can help 

analysis of models and identification of potential problems. (Johannessen  et al., 2001) 

highlights that “there is still uncovered demand for early hazard analysis at functional 

level”, and SAE Aerospace Recommended Practices documents ARP4761 have 
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recommended Preliminary System Safety Assessment (PSSA) to be performed at the 

earliest stages together with the design activities.  

1.3 Research Hypothesis  

CSA and BSA have been developed as two competing paradigms in MBSA. In this 

thesis it is argued that the traditional gap between the two approaches can be overcome, 

as CSA and BSA are effectively combined in a novel model-based design and safety 

analysis process which therefore benefits from the advantages of both approaches, 

namely the flexibility, early applicability and scalability of CSA and the precision, 

behavioural analysis capabilities and detailed insights offered by BSA.     

In the proposed process, integration of CSA and BSA is meaningful. Traditionally, early 

behavioural system models used in BSA are constructed in an ad hoc manner via human 

translation of textual requirements into state-machines. In the proposed process, these 

state-machines are largely constructed in a systematic manner driven by the results of a 

CSA analysis of the system.  The proposed MBSA process can facilitate a more 

rigorous and well-rounded safety assessment at early design stages. It can therefore 

increase the confidence in design models before the decision is taken to progress 

towards refinement of the model or implementation.  

1.4 Research Objectives  

To test the hypothesis outlined above, the following overarching research aim has been 

set: 

“To develop a novel approach in which the combined application of CSA and BSA 

can be achieved and to evaluate the benefits and limitations of this approach using 

realistic examples and case studies.” 

To achieve this aim the following research objectives were defined: 

1. To examine CSA and BSA techniques and investigate their strengths, limitations, 

and applications in different stages of design development. This thesis determines 
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complementary aspects of these techniques that can be exploited via synergistic 

combined application. 

 

2. To propose a systematic technique to utilize analysis results from CSA and BSA in 

the course of design. This involves investigating how input to each technique can be 

systematically constructed, in particular, how results of CSA can assist the 

construction of behavioural model for BSA‟s formal verification. It is also important 

to understand how these results can provide constructive feedback to designers 

towards an iterative system modelling process.  

 

3. To illustrate how a chosen CSA and a chosen BSA technique can in practice be 

harmonised in the context of a method for combined application. Different MBSA 

techniques assume different representations of failure information and system 

modelling. In the context of combined application, it is important to explore ways 

for translation of information (in particular, failure information) between relevant 

models. In the context of this thesis, HiP-HOPS has been selected as a 

representative example of CSA. NuSMV has been selected to perform symbolic 

model checking and enable formal verification to support BSA. The thesis shows 

the integration of HiP-HOPS with NuSMV and defines a process for useful semi-

automatic translation of information between the two models. 

 

4. Overall, the thesis proposes an improved approach to MBSA. The final research 

objective is to study the potential use of this approach in the design of mechanisms 

for detection and recovery from failures. More specifically, we propose a generic 

mechanism for modelling the Detectability (or NOT) of errors propagated among 

components of an architecture within a typical CSA. We show that the inclusion of 

this mechanism makes it possible to use the results of CSA as a basis for rational 

decisions about the inclusion of fault tolerant mechanisms in a design.     
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1.5 Structure of Thesis 

The remainder of the thesis is structured as follows:  

Chapter 2: Background  

The background chapter presents an overview of modelling and safety analysis 

techniques. It includes a brief discussion on system modelling, and discussions on early 

functional model and safety assessment techniques performed at this stage (FHA, 

PSSA).  

This chapter also discusses relevant safety analysis techniques, including those briefly 

mentioned in the Introduction chapter. It discusses classical techniques like FTA and 

FMEA, and more recent CSA developments such as HiP-HOPS, CFTs and SEFTs. In 

this thesis, HiP-HOPS is representative of CSA and therefore it is discussed in more 

detail. BSA and relevant techniques (Altarica and FSAP/NuSMV) are also presented 

here. This chapter also explains further the distinction between the two techniques.  

Chapter 3: Integrating CSA and BSA in a unified MBSA process 

This chapter describes in detail a method for combined, harmonized application of CSA 

and BSA techniques in the context of an improved MBSA process. HiP-HOPS and 

NuSMV provide two representative CSA and BSA techniques employed here. Stages 

involved in the method include: construction of system model from requirements, 

failure severity analysis, local failure behaviour annotation, translation of CSA results 

into the BSA model, generation of abstract state machines, and application of formal 

verification through model checking. This chapter also discusses how different models 

(and relevant failure information) can be obtained and translated between different 

models of CSA and BSA.  

Chapter 4: Case Study on Brake-by-wire System 

This chapter describes a case study on a brake-by-wire system to demonstrate the 

practicability and usefulness of the proposed method. Both functional and more-refined 

models of the system are presented. This chapter shows how CSA is effectively applied 
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on the early functional model and facilitates early improvement of system design. 

Safety artifacts from CSA are used as the basis of BSA models construction, which are 

then formally verified. This chapter also highlights how model checking can be used to 

verify a simple control & recovery procedure of diagonal-locking mechanism in car 

wheels.  

Chapter 5: Case Study on Aircraft Wheel Brake System  

This chapter describes a case study on an aircraft wheel brake system, and presents a 

model which was adopted from (ARP 4761, 1996).  This second case study provides a 

second example of the feasibility of the process and demonstrates how CSA and BSA 

shape the development of design.   

Chapter 6: Detectability Analysis   

This chapter introduces and describes the concept of detectability analysis, and its role 

in the overall modelling and analysis of the proposed method, particularly as a part of 

CSA. It shows how its application can be generalized and how it can be implemented in 

HiP-HOPS. A small example of a cruise control system is also presented to illustrate 

these points.  

Chapter 7: Conclusions  

This chapter describes conclusions drawn from this work and gives recommendations 

for future work  
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The following is a list of publications in which materials from this work have been 

presented:  

 Sharvia, S., Papadopoulos, Y., 2009.  Model-based safety analysis using 

compositional analysis and formal verification, ICCSIS‟09,5
th

  Int‟l Conference 

on Computer Science & Information Systems, July 2009, Athens.  

 



25 

 

 Sharvia, S., Papadopoulos, Y., 2008.  Non-coherent modelling in compositional 

safety analysis, IFAC, 17
th

 World Congress, International Federation of 

Automatic Control, Seoul, July, 2008, published in ifac-papersonline.net.  

 Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D., Tohdo, T., 2011. An 

approach to optimization of fault tolerant architectures using HiP-HOPS, 

Software Practice and Experience, Wiley Interscience . DOI: 10.1002/spe.1044.  

 Sharvia, S., Papadopoulos, Y., 2010.  Integrating compositional safety analysis 

and formal verification, Strategic Advantage of Computing Information Systems 

in Enterprise Management, (ed) Majid Sarrafzadeh. Volume containing revised 

selected papers from Int‟l Conference in Computer Systems and Information 

Systems 2009-2010, pp. 181-201, ISBN: 978-960-6672-93-4.  

 

  



26 

 

CHAPTER 2. Safety Analysis for Complex Safety-

critical Embedded System 

This chapter provides an overview of contemporary safety analysis techniques. It 

focuses on CSA and BSA techniques, the two classes of model-based safety analyses 

that have been identified in Chapter 1.   

2.1 Modelling and Specifications  

During the design of  a system, a set of abstract informal specifications are typically  

transformed into sets of progressively  refined, more detailed models  that can be used 

for the implementation,  production and  manufacturing of the system.  

Models can be classified according to several perspectives, and different modelling 

notations are used to reflect the selected aspects (for example information flows, control 

flows, or behaviour) of the system to be represented.  Sommerville (2004) points out 

that generally a system can be viewed through: an external perspective showing the 

system‟s context and its relationships with its environment, a behavioural perspective 

showing the behaviour of the system, or a structural perspective showing the system‟s 

data architecture. Through these different perspectives, various models can be 

developed during the design phase - for example: a data-flow model which shows how 

data is transferred and processed at different stages; an architectural model which shows 

the composing sub-systems and their interrelationships; or a stimulus/response model 

(also known as a state/transition model) which shows how the system reacts to internal 

and external events.  

Models can also be distinguished according to their structure into conceptual, 

computational and mathematical structures (Jones & Mitchell, 1987). Conceptual 

models are used to capture and understand high level design concepts. Computational 

models provide more detailed aspects in terms of operation between participating 

agents. Mathematical models can define a system in terms of equations between terms, 

or by functions that map programs to corresponding abstract values, or by logical 

definitions of effects of an action to a state. While conceptual models are relatively 
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abstract, computational models and mathematical models usually fall into the category 

of more-detailed specification models, and depending on the formality of the model can 

be analyzed formally. Specification models usually cover device models which capture 

the physical part of the system.  

For complex embedded systems, model-based development is becoming an increasingly 

popular approach for development. In model-based development (Davey, 2007), focus 

is placed on semi-formal or formal specifications. The term „formal specification‟ is 

usually used interchangeably with „formal model‟ in the literature and refers to models 

with strong mathematical foundation.  Although model-based tools and techniques are 

primarily used to model system software components, they can also be used to model 

physical components. Joshi (2006) combines models containing digital components 

(hardware and software) with models of mechanical components (like pumps and 

valves) which can be extended with failure information to produce extended system 

models upon which various safety analysis techniques (like formal verification and fault 

tree analysis) can be performed.   

This thesis focuses primarily on conceptual models. In particular, early design where 

abstract functional models of the system are being produced to describe functions, their 

dependencies and abstract behaviour. It is being increasingly recognised that safety 

assessment should start as early as possible to prevent expensive design iterations later 

on. Techniques that enable safety assessment of model that describe functional designs 

are therefore highly desirable (Faller, 2009).  

2.2 Early Functional Design  

To better understand and explore the context of functional model and early functional 

design, we identify and examine several fundamental key questions relating to the 

functional design environment: how early is early? What information is available at this 

stage? What are the current existing analysis techniques? These questions are briefly 

discussed below before being explored further in their proceeding sections.  

By “early” in the design process, we mean early enough to make design changes or 

incorporate new requirements without incurring excessive cost, time or effort. The 

artefacts produced at this stage are often functional model, capturing system 
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requirements. Such models do not make references to specific hardware architecture and 

are abstract and minimal in detail. Refinement of such models is typically necessary to 

derive more detailed architectural models and system implementations.   

2.2.1 Functional Analysis   

Functional analysis is defined as "the process of identifying, describing, and relating the 

functions a system must perform in order to fulfil its goal and objectives” (NASA, 

1995). The result of this process is a functional model. A function is performed by one 

or more system elements composed of hardware, software, firmware, people, and 

procedures to achieve system operations. In the early stage, functional analysis plays an 

important role in assisting system engineers to understand the objectives and constraints 

in the process of developing and formulating system design solutions. All functional 

aspects of the system are identified, organized and defined. It can be also be used to 

derive requirements, which are then allocated to solutions in the form of a physical 

architecture. (NASA, 1995) highlights several of its key roles especially in identifying 

system requirements, identifying measures of system effectiveness and performance, 

excluding design alternatives that do not meet requirements, and providing insights to 

system-level model builders. 

Functional analysis deals more with what the system has to deliver than how to do it. It 

examines system functions and sub-functions that will accomplish system‟s goals. As 

the level of details is refined and functions are decomposed into sub-functions, the 

requirements associated with the functions are decomposed as well. This decomposition 

increase manageability as it organizes functionalities and connections into a more easily 

understood hierarchy. The process is repeated until each process is decomposed into 

basic sub-functions, and until connections between functions, sub-functions, and 

environment are fully defined.  

This functional analysis flow process is described and summarized in (FAA, 2006) as 

shown in Figure 2. The process starts off with list of requirements and constraints as 

input, from which top level functions are defined. These functions can then be 

organized into logical relationships, decomposed, and evaluated accordingly to produce 

the functional architecture and more refined requirements and constraints. 
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Figure 2: Functional analysis process (summarized from FAA, 2006) 

Complex safety critical system requires hazard analysis to be performed as early and as 

often as possible to avoid costly design iteration. Therefore it is beneficial to start safety 

analysis early at functional level before design solutions progress too far. Once the 

functional model is established, the design is evaluated to detect design limitations and 

weak points to help establish a more robust and improved design. Functional Hazard 

Assessment (FHA) and Preliminary System Safety Assessment (PSSA) are classical 

preliminary assessment techniques widely accepted and practiced in this role (ARP 

4754, 1994). FHA looks at failure conditions associated with the system functions. 

PSSA is applied after FHA to demonstrate how the system meets the qualitative and 

quantitative requirements for various hazards identified. It also derives safety 

requirements for subsystems, mainly using FTA. PSSA is iterative and performed 

continuously throughout the system design phase.   
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2.2.2 Functional Hazard Assessment (FHA) 

FHA identifies and classifies failures associated with system functions, covering both 

functional losses and malfunctions. It can be organized according to  

 System levels, for example, in the avionics system presented in (ARP 4761), the 

two levels of FHA are the Aircraft level FHA and System level FHA.  

 Or system operation phases and modes, for example, ground idle, landing, take 

off.  

Similar to the decomposition of functional models, FHA is conducted starting from 

higher-level functions to lower-level functions. Failure conditions related to these 

functions are considered and the effects of the failures are identified and classified.  

The primary aim of FHA is to identify hazardous functional failure conditions. Its 

methods are relatively direct and results are usually represented in a tabulated format as 

show in Table 1. First, the function and its purpose and behaviours are defined, and 

phases of the systems where functions can be performed are also recorded. Hypothetical 

failure conditions (for example: loss of functions) that can occur for this function and its 

effects are identified. This identification of the effects of function failures on the system 

allows a representative severity class to be assigned. Lastly, a comments column 

records necessary modification ideas and describes potential methods of addressing the 

failures.  

Table 1: Example of FHA on car brake function (source: Johannessen et al., 2001)  

Function Failure 

Condition 

Phase Effects on 

System 

Severity Comments 

Electric brake 

force 
distribution 

Loss of 

function 

Straight dry 

road 

More brake 

force on rear 
wheels  

Marginal Only affects a 

loaded car, 
which gain 

longer braking 

distance  

... ... ... ... ... ... 
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2.2.3 Functional Failure Analysis (FFA) 

FHA is extended in (Johannessen et al., 2001) and (Papadopoulos, 2001) to include 

failure classes, similar to the classes used in HAZOP (Kletz, 1997). Failures are 

classified, although not restricted, into „Omission‟, „Commission‟, „Timing‟, and 

„Value‟.  Further discussion and analysis of the meaning of these failure classes can be 

found in (Bondavalli, 1990). Hazards identified in FFA can be used to represent top 

events of a fault tree through HiP-HOPS. The extended FFA in (Papadopoulos, 1998) 

organizes the tabulated FHA to include: function, failure type(s), effects of failure on 

system, severity of failure, detection method, recovery plan, and design 

recommendation.  An example of FFA is presented in the Table 2.  

Table 2: Example of FFA on car brake function 

Function Failure 

Type  

Effects on 

System  

Severity Detection  Recovery 

Plan 

Design 

Recommendation   

 Brake 

Pressure 

Omission No brake 

force 

available; 
vehicle 

cannot be 

stopped; 

driver loses 

control.  

Catastrophic  Using 

feedback 

from 
pressure 

sensor  

Not  

possible  

Redundant 

components and 

back up 
mechanism should 

be introduced  

... ... ... ... ... ... ... 

2.2.4 Preliminary Systems Safety Analysis (PSSA)  

PSSA builds upon FHA to generate a complete list of updated system requirements, and 

is used to demonstrate how a system will fulfil requirements for hazards identified in 

FHA. In PSSA, design and architectural decisions are made and these help to generate 

lower-level system requirements. Safety analysis techniques like FTA are often 

employed to perform top-down analysis to determine how failures can lead to functional 

hazards identified in FHA. This process also identifies remedial strategies, for example 
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by introducing fail-safe architectures, to meet the safety requirements. PSSA is iterative 

and applied continuously throughout design process to derive thorough system 

requirements.  

FTA will be discussed along with other safety analysis techniques in the next section.   

2.3 Classical Safety Analysis  

Classical safety analysis techniques such as Fault Tree Analysis (FTA) and Failure 

Modes and Effects Analysis (FMEA) are employed to predict the safety of safety 

critical systems. However, as modern systems are becoming increasingly complex, 

employing distributed architectures and programmable electronic components, new 

approaches are being developed to meet the rising intricacy of designs. Model-Based 

Safety Analysis (MBSA) is one such recent development.  

Before further discussing the two prominent paradigms of MBSA – Compositional 

Safety Analysis (CSA) and Behavioural Safety Analysis (BSA) – we first study the 

background of several commonly used classical safety analysis techniques which 

essentially underpin the newer MBSA approaches.  

2.3.1 Fault Tree Analysis  

Fault Tree Analysis (FTA) is an approach that aims to identify the root causes of an 

undesired event by performing top-down traversal of a fault tree. A fault tree itself is a 

diagrammatic description that shows how combinations of component failures (basic 

event) can cause the undesired event (top event) to occur. These component failures are 

connected within the fault tree through logical operators (for example, AND/OR).  

Two types of analysis can be performed in FTA: quantitative and qualitative analysis. 

Quantitative analysis is performed to calculate the probability of the top event. 

Qualitative analysis is performed to identify the necessary and sufficient combination(s) 

of basic events that cause the top event. These necessary and sufficient combinations are 

called minimal cut sets (Vesely et al., 1981). The identification of minimal cut sets in a 

fault tree helps the designer to focus on the design weak points. For example, if the 

failure of component C1 is identified during FTA as being a direct cause of the failure 
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of the system, the system designer is now informed about this critical  component, and 

can reassess the design (e.g. by introducing a backup component to prevent this single 

point failure).   

2.3.2 Failure Mode and Effects Analysis  

Failure Mode and Effects Analysis (FMEA) provides an analysis that details possible 

failure modes for each component and their effects on the system. FMEA is presented in 

tabular manner and can contain additional information about the component failure (e.g. 

criticality and probability of occurrence). Classical FMEA is unable to determine 

complex failure modes resulting from multiple component failures. This limitation is 

addressed and overcome in HiP-HOPS where FTA and FMEA are automatically 

generated and analyzed from system model, in hierarchical approach, enabling it to 

determine further effects of a component failure.  

Most classical techniques operate in either an inductive or a deductive way. Inductive 

techniques attempt to determine the effects of a failure, while deductive techniques 

attempt to discover the causes of a failure. FTA is a deductive approach, whereas 

FMEA is an inductive approach. FTA and FMEA are traditionally a laborious and 

manual process.  

2.4 Compositional Safety Analysis  

In CSA, predictive models of system failure are typically produced in the form of well-

known safety artefacts like fault trees. This technique models the failure behaviour of 

the system - as opposed to the nominal (working) behaviour - by extending components 

with local failure information.  

The process starts from requirements which are translated into preliminary models. 

These models can be decomposed into structural hierarchies, and the local failure logic 

of components in these hierarchies is provided by analysts. Faults trees or FMEAs are 

then automatically produced by establishing how the local effects of component failures 

combine as they propagate through the topology of the system. The process is flexible 
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and adaptable to different stages of model development (from early functional models to 

more detailed architectural models).  

This is especially valuable as assessment can be started early in the design process when 

concrete system details are still scarce. CSA produces safety artefacts which are familiar 

to safety engineers including fault trees and FMEAs. These artefacts reveal potential 

failures and design weaknesses (e.g. single points of failure) which can guide possible 

design modifications, and help to derive and refine requirements. CSA techniques allow 

quantitative analysis and in some cases also architectural optimization.  

One key limitation of CSA is the inability to perform formal verification. Another 

limitation is the fact that FTA and FMEA are static analyses, which do not take into 

consideration the changes in system states and are therefore unable to capture dynamic 

behaviour. This limitation has been to some extent addressed in HiP-HOPS with a 

recent extension that enables assessment of sequences of failures via synthesis of 

temporal fault trees and FMEAs (Walker et al., 2006).  

Examples of techniques based on CSA are: Component Fault Tree, State Event Fault 

Tree, Embedded Systems Safety and Reliability Analyser, and Hierarchically Performed 

Hazard Origin and Propagation Studies.  

2.4.1 Component Fault Tree  

The Component Fault Tree concept (CFT) (Kaiser, 2003) is an extension to traditional 

fault trees that allows definition of partial fault trees corresponding to actual technical 

components. Although traditional fault tree allows modularization, it paths the failure 

propagations to the root causes. Component failures are often affected by other 

components, and therefore it is hard to model component independently.  

Apart from the similarities with traditional fault tree - including the analysis techniques 

- CFT also introduces the concept of a „port‟ to enable the modelling of component as 

independent entity. Each component has internal basic events, logical gates, and input 

and output ports which connect to other components. Components without input ports 

can be analysed alone. Instead of fault trees, Directed Acyclic Graphs, called “Cause 

Effect Graphs” (CEG) are used. CEGs differ from traditional fault trees in the sense that 
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repeated events are represented only once in CEG and CEG may contain several top 

events (more than one failure mode). Figure 3 shows an example of a CFT, with “BE” 

representing basic event:  

 

Figure 3: CEG in a Component Fault Tree 

2.4.2 State Event Fault Trees  

State Event Fault Trees (SEFTs) (Grunske et al., 2005) are the youngest compositional 

technique. They aim to extend traditional FT capability by distinguishing the notions of 

“states” and “events” notion to better capture sequence of action and state history. 

Traditional FTs do not differentiate states (a system condition that last over a period of 

time) from events (sudden phenomena, especially state transitions). So semantically, a 

SEFT is an extended state machine model instead of a true combinatorial model (i.e. 

like a traditional fault tree).  Like many other state machine based models, the states and 

events that appear in SEFT are not necessarily failures.  

Component C1 

AND 

Component C2 

BE1 

Internal failure 

BE2 

BE3 

TOP event 

OR OR 
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SEFTs deal with a finite state space for each component, where each component is 

exactly one state at each instant of time. The notion „state‟ in SEFTs indicates the 

condition a component is in for a given interval of time, while „event‟ indicates the 

instantaneous phenomena that do not take time to occur (e.g. state transitions). System 

failure can be represented as either top-events (which happen instantaneously) or top-

states (which last over a period of time). In SEFTs, the commonly used gates fall into 

the following categories:  

 NOT gates, which have one state input and one event output. There is no 

negation of an event;  

 OR gates, which combine either states or events (state OR state / event OR 

event). There is no OR gate that mixes states with events;  

 and lastly, AND gates, which join states and/or events (state AND state / state 

OR event). There is no simple (event AND event) except for History AND and 

Sequential AND. This is because an event is assumed to occur over {a very | an 

infinitesimally} short time interval, thus only one can occur at a time. Gates 

need to be converted to match state inputs to event outputs and vice versa. 

2.4.3 Embedded Systems Safety and Reliability Analyser  

ESSaReL (Embedded Systems Safety and Reliability Analyser ) (Kaiser et al., 2007) is 

a recent development that aims to integrate different models (Markov Chains, Fault 

Trees, State charts) and support the new State/Event Fault Tree (SEFT) approach 

(Kaiser et al., 2004). ESSaRel takes SEFT models as input and produces probabilistic 

analysis results based on Deterministic Stochastic Petri Nets (DSPNs) as output. Main 

phases for safety analysis employing SEFTs are:  

1. SEFT construction  

2. Translation of SEFT into DSPN 

3. Analysis of flattened DSPN.  

SEFTs are constructed like traditional fault trees, but just like CFT, they are organized 

by components. A SEFT enables analysts to trace back and finds out which system 
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states or events initiate, propagate, or inhibit the failure behaviour. Figure 4 shows an 

example of SEFT fragments.  

 

 

Figure 4 : SEFT fragment (source: Kaiser, 2007) 

Being a state-based model, a SEFT cannot be evaluated by traditional combinatorial 

FTA algorithms, and therefore needs to be translated into formal notation where known 

algorithms exist (Kaiser et al., 2007). Deterministic and Stochastic Petri Nets (DSPNs) 

(Ciardo & Lindermann, 1993) are chosen as they are better suited to analyzing dynamic 

models of this sort (German, 1995). Each SEFT state is mapped to a DSPN place and 

each SEFT event to a DSPN transition. SEFT gates, however, are translated as a whole 

by looking up the corresponding DSPN structure in a dictionary (Kaiser et al., 2007).  

For quantitative probabilistic analysis of SEFTs, the component SEFTs are translated 

into DSPN and then merged (flattened) into one flat net. Then an existing Petri Net 

analysis tool, like TimeNET (German & Mitzlaff, 1995) is used and it offers both 

transient and steady-state analysis. Currently the translation to DSPN and its analysis is 

carried out manually.  
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2.4.4 Hierarchically Performed Hazard Origin and Propagation 

Studies 

Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) 

(Papadopoulos et al., 2001) - on which this project/thesis is developed - is a 

compositional safety analysis technique currently being developed in the University of 

Hull, which pioneered semi-automated fault tree analysis and IF-FMEA (Interface 

focused FMEA). HiP-HOPS models the propagation of failures through the system by 

constructing hierarchical component failure logic into a network of fault trees.  

The HiP-HOPS tool can work in conjunction with commonly-used system modelling 

tools, such as Matlab Simulink or Simulation X. Failure editors can be integrated in 

these modelling tools which allow the system designers to annotate the model 

components with failure information.  

The failure information describes how the component fails and its relationship with 

other component failures in the system. HiP-HOPS then takes this information and 

examines how the component failures propagate through the system topology, 

producing sets of interrelated fault trees and eventually an FMEA. This approach also 

enables the hierarchical structure of the system to be captured neatly in the fault trees.  

HiP-HOPS consists of three main phases: a model annotation phase, a fault tree 

synthesis phase, and the generation of minimal cut sets and FMEA (the analysis phase). 

Figure 5 illustrates the concept and steps involved in HiP-HOPS. The process starts 

with the system designer (or analyst) annotating the components with failure 

information. This stage provides information to HiP-HOPS on how the components can 

fail. Local failure information takes the form of a set of expressions which are manually 

added to each component. A failure class which occurs on a port (input or output 

connections of the component) is known as deviation. These local failure expressions 

describe how deviations of the component output can be caused by a combination of 

deviations received at the component inputs and/or by failure modes (internal 

malfunctions) of the component itself. For example, in this figure, we assume failure in 

component C1 can be caused by its internal malfunction C1BE. Failure O-S1 which can 

occur in S1 is said to be the system failure.  
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HiP-HOPS uses the local component failure behaviour and the topology of the model to 

generate a network of fault trees that connect output deviations of the system to internal 

failures of individual components. These fault trees show how the component failures 

propagate from one component to another and affect the system or subsystems 

individually or in combination with other component failures. Here, to maintain 

simplicity, component failure C1BE is assumed to be a direct cause of system failure O-

S1.  

 

Figure 5: Main phases in HiP-HOPS 

In the analysis phase, the synthesized fault trees are analyzed and an FMEA is 

generated. Both qualitative and quantitative analysis can be performed depending on the 

amount of information provided. Qualitative analysis is performed through the 
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implementation of selected FTA algorithms and minimal cut sets are obtained from this 

analysis. Eventually, the data is combined into a multiple failure mode FMEA which 

shows both direct effects of failure modes on the system as well as the further effects of 

the failure modes (i.e. the effects a failure mode can have on the system when it occurs 

in conjunction with other failure modes). The resultant FMEA is presented in a table 

that can be conveniently displayed through a web browser. In this example, the FMEA 

table shows how component failure C1BE is a direct cause of system failure O-S1.  

HiP-HOPS not only provides a consistent and robust model throughout design and 

analysis, it also takes the pressure off the designer through the application of effective 

analysis early in the lifecycle – by detecting potential design flaws early on, they can be 

quickly remedied before they become serious problems. HiP-HOPS is flexible and 

scalable, and is therefore well-suited to be performed iteratively throughout the design 

phase. 

2.4.5 Summary of CSA Techniques  

Having reviewed the aforementioned CSA-based techniques, we have selected HiP-

HOPS to facilitate CSA in the IACoB process based on the following reasons. Firstly, 

HiP-HOPS has been considerably developed in the recent years. It has been tested on 

several industrial systems (Papadopoulos et al., 2005), (Hamann et al., 2008), and has 

recently been extended with the capabilities to enable the analysis of temporal fault 

trees (Walker, 2008) and multi-objective optimisation (Parker, 2010). HiP-HOPS also 

provide tools implementation which allows practical support.  In the context of this 

thesis, it is also a natural choice because of the support and expertise available on site, 

as well as the access provided to source code for any necessary expansion of the tool 

(please see work on chapter  6).  

2.5 Behavioural Safety Analysis  

In the Behavioural Safety Analysis (BSA) approach, system-level effects of failures are 

established by injecting faults into the formal specification of the system, and the effects 

of these faults on system behaviours are observed. The BSA technique employs model 

checking to allow formal verification. Model checking formally verifies safety 
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properties which represent safety requirements and enables the assessment of dynamic 

behaviour. The model checking process is performed when a detailed formal model is 

established. Formal models are expressed as state automata (or “finite state machines”) 

in the language of the particular technique (e.g. Altarica language for Altarica and 

NuSMV for FSAP/NuSMV). Model checking performs exhaustive exploration to check 

whether a safety property – which is usually expressed in temporal logic – holds. The 

tool produces Boolean output with a counterexample when safety properties do not hold 

to show traces of „simulation‟ on how the breaching condition is reached.  

The strength of this approach lies in its ability to facilitate automated formal verification 

and capture the system‟s dynamic behaviours. It is also possible to differentiate between 

transient and permanent failures and model the temporal ordering of failures. However, 

this technique also has a number of drawbacks including the fact that most model 

checker tools require the system model to be expressed in that particular model checker 

input language. Valuable safety artefacts like fault trees produced from a model checker 

generally have „flat‟ structures representing a disjunction of all minimal cut sets, which 

can hamper understanding of the fault trees. The analysis is also typically qualitative in 

nature and not probabilistic. Other challenges of model checking techniques can be 

found in (Holzmann, 2005). Formal models (which are required as input to the model 

checker) are only developed at later stages where designs are more mature, detailed and 

stable. Lastly and perhaps most critically, model checking based approaches are 

computationally expensive and inductive in nature which means that the exhaustive 

assessment of the effects of combinations of component failures is infeasible in any 

non-trivial system.  

2.5.1 Introduction to Model checking  

Model checking (Clarke & Emerson, 1980) tools explore all possible system states to 

check if a condition holds true. This way, it can be shown that a system model truly 

satisfies certain safety requirements (properties).  If a model state is encountered that 

violates the property, a counterexample is generated to show how the model could reach 

the undesired state. The counterexample describes an execution path that leads from the 

initial system state to a state that violates the property being verified. By studying it, 

sources of the errors can be identified.  
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For a model checking tool to do this “state-exploration”, the input model needs to be 

represented in the right format. Most real-time embedded or safety-critical systems are 

control-oriented, and for control oriented systems, finite state machines (FSM) or finite 

state automata are widely accepted as the abstract notation for defining the system 

model. To model real-life complex industrial systems, the system model needs to be 

represented in different level of detail (sub-systems, components) that can be combined 

and integrated. Most model checking tools have their own rigorous formal language for 

defining input models.  

Typical safety properties that can be checked using model checking are of a qualitative 

nature. For example: “Both processes can never be in their failed state simultaneously”, 

“memory overflow can never occur”, or “as long as the plane is not on ground, the 

engine should never stop”.  

These properties (safety requirements) need to be expressed in a precise and 

unambiguous statement, and temporal logic is employed to do this. Temporal logic is a 

form of logic specifically tailored for statements and reasoning which involve the notion 

of order in time. In model checking, it serves to formally state properties concerned with 

the execution of systems. PLTL (Propositional Linear Temporal Logic) and CTL 

(Computation Tree Logic) are the two most commonly used temporal logic in model 

checking.  

In temporal logic, classical Boolean combinators are necessary: the constants true and 

false, the negation , Conjunction and , Disjunction or , logical implication , and 

double implication  (if and only if). These combinators enable the construction of 

complex statements by relating various simpler sub-formulas.  

In addition to Boolean operators, temporal logic also includes the additional temporal 

connectives. The table below shows some of the common temporal connectives in CTL. 

“E” (for some paths) and “A” (for all paths) are path quantifiers, while “F” (for some 

states) and “G” (for all states) are state quantifiers for states in a path. “X” indicates 

next. 
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Temporal Connectives Description 

EX φ True if formula φ is true in at least one of the next 

states 

EF φ True if there exist some states in some path that 

satisfies formula φ 

EG φ True if every state in some path satisfies formula φ 

AX φ True if formula φ is true in every one of the next 

states 

AF φ True if there exist some state in every path that 

satisfies formula φ 

AG φ True if every state in every path satisfies formula φ 

Figure 6: Commonly used temporal connectives table 

An example of a safety requirement specified in CTL is the statement: “AG 

(ComponentA = activated)” which specifies that component A must be activated all 

the time.  

A system state is defined by a tuple of values for each of the variables. For example:  

state1 = (componentA=off, componentB=off, level=low). 

Most model checker tools convert a state model of the system provided as input into a 

particular state transition model called a kripke structure (Kripke, 1963). This 

conversion process removes hierarchies in the finite state machine, as well as parallel 

compositions, guards and actions on transitions. Each state in a kripke structure contains 

one value for each state variable, and transition in a kripke structure indicates changes 

in one or more state variable values. A given property is checked against the kripke 

structure, which is further unfolded into an infinite tree where each path in the tree 

indicates a possible execution or behaviour of the system.  

Figure 7 below shows an example of an execution tree. In an execution tree, the states 

of the system are arranged so that the root is the initial system state and the children of 

any state denote the next possible states. The definitions of how the system changes 

from one state to another, and what states it can be in next, are defined in the input 

model. If, for example, in Figure 7 the first variable of each node represents the state of 

ComponentA, the second represents the state of ComponentB, and the third represents 

that value of requirement AG (ComponentB = off) (level = low)), which 

means: “every time component B is in its off mode, the level state is low”, then through 
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the inspection of this execution tree, a model checker can determine that the 

requirement is clearly not true.  

 

Figure 7 : Execution tree showing next possible states 

2.5.2 FSAP/NuSMV-SA 

FSAP/NuSMV-SA (Bozzano et al., 2003) is a safety analysis technique developed 

within the ESACS project and consists of two main components: 1) FSAP (Formal 

Safety Analysis Platform) which provides a graphical user interface 2) NuSMV-SA 

which performs the safety assessment and is based on the NuSMV model checker.  

FSAP/NuSMV-SA takes system models in NuSMV format as input and produces 

analysis results as well as trace information like simulation results, counterexamples, 

property verification results, minimal cut sets and fault trees as output. The following 

phases describe how safety analysis is performed in FSAP/NuSMV-SA:  

1. Model capturing 

2. Failure mode capturing and model extension  

3. Safety requirement capturing  

...  <off,off, 

low>  

<off,off, low>  

<off,off, low>  

<on,off, 

high>  

<on,off, high>  

<off,off, 

low>  

<on, on,   

high>  

...   …  …   …  … 
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4. Model analysis 

5. Results extraction and analysis  

Model Capturing: The starting point is the formal model of the system, which can be 

modelled as a system model (written by a design engineer) or a formal safety model 

(written by a safety engineer). These models are written using the NuSMV (Cimatti et 

al., 2000) input language and entered using a text editor. An example of simple bit 

adder written in NuSMV is shown in Figure 8:  

 

Figure 8: Fragment sample of NuSMV model for one-bit adder (source: Bozzano et al., 2003) 

Failure Mode Capturing and Model Extension: Failure modes which describe how 

various components of the system can fail are defined using a GUI. Here the safety 

engineer can specify which nodes of the system can fail, how they fail, and with what 

parameters. The failure modes can be stored and retrieved from a Generic Failure 

Modes Library.  

Once the failure modes are defined, they are then inserted into the models and the result 

is called the extended model. “Injection” of this failure mode also produces a new piece 

of NuSMV code that is automatically inserted into the extended system model. Figure 9 

shows a sample of NuSMV model extended with failure modes:  

MODULE bit(input)  

VAR 

output: {0,1}; 

ASSIGN 

output:=input;  

 

MODULE adder(bit1, bit2) 

VAR  

output: {0,1}; 

ASSIGN 

output:=(bit1 + bit2) mod 2; 

 

  

 

MODULE main 

VAR 

random1: {0,1}; 

random2: {0,1}; 

bit1: bit(random1);  

bit2: bit(random2);  

adder: 

adder(bit1.output,bit2.output

;  
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Figure 9 : NuSMV model extended with failure mode (source: Bozzano et al., 2003) 

Safety Requirement Capturing: During this stage, the design and safety engineer 

define functional and safety requirement that will be used to assess safety behaviour of 

the system. The safety requirements are expressed in temporal logic and the input 

process is simplified through an available requirements library from which safety 

patterns can be chosen and instantiated. Requirements can be subsequently verified 

using the NuSMV model checking verification engine.  

Model Analysis: FSAP/NuSMV performs simulation of both system model and 

extended system model. The behaviour of a system is assessed against the functional 

and safety requirements. The model analysis phase is performed by running the model 

checker on the system properties. Two main verification tasks are performed:  

1.  Model checker NuSMV tests the validity of a system property and generates a 

counterexample if the system property is not verified. At the moment, the model 

checking tool is BDD-based.   

2. FSAP/NuSMV generates fault trees. The FSAP/NuSMV-SA tool is able to 

perform failure ordering analysis (Bozzano & Orita, 2003) which provides 

information on timing constraints (where applicable) among the events in a 

minimal cut set.  

VAR  

Output_nominal: {0,1};   

Output_FailureMode: {no_failure, inverted};  

ASSIGN 

Output_nominal :=input;  

DEFINE Output_inverted := !Output_nominal;  

Output Output := case 

 Output_FailureMode = no_failure : output_nominal;  

 Output_FailureMode = inverted : output_inverted;  

esac;  

 

ASSIGN 

next(output_FailureMode) := case 

output_FailureMode  = no_failure: {no_failure, inverted}; 

output_FailureMode = inverted : inverted;  

esac;   
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Result Extraction and Analysis: The analysis results are displayed in formats 

compatible with traditional commercial tools. Trace results obtained from a simulation 

task or counterexample are bound to a system verification property or minimal cut set, 

and can be displayed in textual, structural (XML), graphical (gnuplot utility) or tabular 

display. Fault trees generated can be viewed in commercial tools like FaultTree+.  

Joshi (Joshi et al., 2006) discuss several limitations of FSAP/NuSMV-SA which include 

the “flat” structure of generated fault trees (fault trees generated are only two levels 

deep and can be very broad). This might hamper the understanding of the system via the 

fault trees. A normal fault tree shows multiple levels of causation, and in the CSA 

approach also indicates the propagation of failures through the system. There is also 

limited flexibility in defining the fault model, as there is no good way (in capturing the 

hierarchy) of specifying fault propagation or simultaneous or dependent faults. 

2.5.3 ALTARICA  

The AltaRica language (Arnold et al., 2000) is designed to formally specify the 

behaviour of a system. AltaRica models can be assessed through fault tree generators or 

model checkers. The process takes in system models (AltaRica models) as input and 

generates fault trees and model checker verification results as output.  

The main phases for safety assessment with AltaRica are as follow (Bieber et al., 2002):  

1. System Modelling  

2. Formal Safety Requirements  

3. Graphical Interactive Simulation  

4. Safety Assessment : Fault Tree generation and Model checking  

System Modelling  

The AltaRica language is a hierarchical specification language based on constraint 

automata used to formally model system specifications and behaviour. Formal syntax 

and semantics of the language are described in (Point & Rauzy, 1999). AltaRica 



48 

 

describes complex systems consisting of interacting components with semantics 

expressed in terms of an interfaced transition system. Components can be defined 

hierarchically and composed together (synchronized) to create more complex 

components. AltaRica provides a general synchronization mechanism and other features 

like bidirectional flow, broadcast vectors and transition priorities.  

An AltaRica model of a system consists of hierarchies of components called nodes. A 

node gathers flows, states, events, transitions and assertions.  

Flows: visible variables of the component which are used to exchange information with 

the environment (other components of the system). 

States:  local/internal variables which are inaccessible by the environment.  

Events:  occurrences that change the state of a component (e.g. failures). Transitions: 

describe how internal states may evolve. They are characterized by a guard, an event 

name and a command part. A guard is a Boolean constraint over the component flow or 

states. An event is the trigger for transition. Lastly, the command part is a set of values 

assigned to some state variables, which describe the actions or results of the transition.  

Assertions: Boolean formulae that describe the constraints linking flows and internal 

states. These constraints express mutual dependencies on/between the states of the 

components. 

Consider the following example in Figure 10 of a simple component called “block”. A 

block represents a basic energy provider and receives two Boolean inputs, I and A. 

Input I is true every time the component receives energy and input A is true whenever 

the component is activated. The component has a Boolean output O that is true 

whenever it produces energy. It has an internal state S that is true whenever the 

component is working properly (the safe state). Initially, S is assumed to be true. A 

transition for the block can occur if the component is safe (S is true) and the event 

„failure‟ occurs. After this transition, the component is no longer safe (S is false). The 

block produces output O only when both of the inputs are true and the component is 

safe.  
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Figure 10: Sample of block 

The following shows the representation of block in the form of an AltaRica node :  

Node block  

 Flow  

  O : bool : out ;  

  I, A : bool : in ; 

 State 

  S : bool ;  

 Event  

  Failure;  

 Trans 

  S │- Failure → S: = false;  

 Assert 

  O = (I and A and S) ;  

 External initial state = S = true ;  

Edon  

The whole system node (main node) is built by connecting basic nodes. Components are 

combined together by two means: assertions and synchronizations.  Global assertions 

allow the definition of the flow connections (for example: stating that input flows of a 

node are the output flows of another node). Connections can also be related to events 

shared by a set of nodes (synchronization of events). Recently a time extension has been 

introduced to AltaRica to enable the verifying of real-time AltaRica specifications 

(Pagetti et al., 2003)  

Formal Safety Requirements:  

In this phase, the safety requirements are formalized with the use of linear temporal 

logic operators (bieber et al., 2004). A library can be defined to store (and retrieve) 

useful safety formulae.   

A 

 

I  

  

<off,off, 

low>  

 

O 
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Graphical Interactive Simulation:  

Safety engineers can check the effect of failure occurrences on the system architecture 

using the graphical interactive simulator. It enables the safety engineer to choose an 

event and the resulting state is computed by the simulator.  

Safety assessment  

Once a system model is specified in the AltaRica language, it can be compiled into a 

lower level formalism for verification purposes. Compilers available for AltaRica could 

produce automata, fault trees and stochastic Petri Nets. Figure 11 Illustrates the main 

phases of Altarica and  its safety artefacts.  

 Automata: An AltaRica program can be compiled into a finite state automaton on 

which formal verification techniques like model checking can be performed by the 

MEC 5 (Arnold, 1994) model checker.  

 Fault trees: another compiler could produce a fault tree on which reliability analysis 

can also be carried out through the ARALIA program/tool (Groupe ARALIA, 

1996). Compilation of AltaRica descriptions into Boolean formulae (i.e. a fault 

tree) is discussed in (Rauzy, 2002) where a mode automaton is introduced as the 

underlying mathematical model. An extended type called AltaRica Data-Flow 

which is based on mode automata is introduced.  

 Stochastic Petri Nets: the third compiler produces a stochastic Petri Net on which 

performance analysis can be performed. 
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Figure 11 : Analysis phases of Altarica 

2.5.4 Summary of BSA Techniques  

NuSMV has been selected as a BSA method to complement HiP-HOPS in IACoB based 

on the following considerations. Firstly, NuSMV is fundamentally a symbolic model 

checker. Symbolic model checkers are generally more scalable and therefore, are 

recommended for larger real-life systems. NuSMV has a strong advantage over 

Altarica, as (Bieber, 2002) highlighted that Altarica‟s MEC model checker is limited on 

the size of systems it can handle.  NuSMV is also more suitable for Boolean-based data 

(as opposed to enumerated type) (Miller, 2007). Considering that most of the failure 

data obtained from HiP-HOPS are Boolean-based, NuSMV is a logical choice. The 

NuSMV support tool is also available as an open-source program which allows it to be 

tailored more effectively into a future integrated support tool.  

2.6 Relevant Work on Other Integrated Approaches 

To propose an integrated approach, it is first of all, important to understand the notion 

of „integration‟ in this context. We believe that the generic primary characteristics 

which constitute an integrated approach (methodology, tool, or both) include:  

AltaRica model 

(nodes)  

Compiler  

Automaton  

(MEC 5)  

Fault Tree 

(ARALIA)  

Petri Net  

(MOCA-RP)  

Produce: 

(Analysis Tool)  
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 The application of these different techniques (CSA and BSA) within the same 

process 

 The link between relevant models (model representations in CSA and BSA) 

should be well-established  

 The integrated approach should provide better analysis capabilities (and results) 

compared to a single technique  

Here, we also briefly reviewed recent model-based techniques which incorporate the 

critical elements of CSA and BSA, namely the capabilities to perform FTA and model 

checking within its application.  

Techniques like Altarica and FSAP/NuSMV are able to perform model checking and 

generate fault trees. However, the primary characteristic shared between these 

techniques is that they start with a BSA-based technique, and the fault trees are 

produced as a result of the model checking analysis. As previously mentioned, this 

approach has the drawback of having a “flat” fault tree structures.  

ForMoSA (Formal Methods and Safety Analysis (Ortmeier et al., 2004b)) proposed a 

combined use of traditional safety analysis (FTA) and formal verification via the use of 

„failure-sensitive specification‟. Failure-sensitive specifications are used to derive more 

complete failure modes by first generating all possible scenario combinations. It then 

removes implausible behaviours and behaviours that do not fulfil specification rules 

which govern the intended behaviour. The extracted behaviours results in a list of 

failure modes, which is then separated from intended behaviour (nominal model). These 

failure modes along with results obtained from independently-constructed fault trees, 

are used to extend the nominal model. The main challenge this approach faces is the 

state explosion problem in its generation of „failure-sensitive specification‟, in which all 

combinations are first to be produced.  

The “failure injection” nature of model checking in BSA can also be used to validate 

results of CSA. Failure injection approach introduces failures and observes the changes 

in the system behaviour in response to these failures. Lisagor (2006) recommends the 

use of results from failure injection to verify the completeness of minimal cut sets 

produced from FTA in CSA. 
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Here, we approach the integration from a radically different angle. Instead of starting 

from a BSA process (which tends to be performed at the later stage of design 

development), we believe it is possible to start the integrated process from CSA. We 

also demonstrate a way in which the results of the CSA can be used for the systematic 

construction and refinement of state automata that describe dynamic behaviour and can 

be further subjected to BSA. In the following chapters, we discuss further the proposed 

approach and demonstrate how these characteristics of integration can be achieved.  

2.7 Chapter Summary  

In this chapter, the background and context of this research work in system modelling 

was briefly discussed. Attention was paid to the early functional design as we hope to 

fill the gap in providing a more-robust safety assessment at (although not limited to) this 

stage. MBSA techniques have been recently developed to cope with the rising 

complexity of modern systems. The two most widely used MBSA-based techniques are 

the CSA and BSA. CSA is generally based upon classical techniques like the FTA and 

FMEA. It is widely used in reliability engineering, and its Boolean-based and 

compositional nature makes the analysis efficient and scalable. However, CSA is 

mainly limited to static analysis and is not capable of formal verification. This chapter 

reviewed several CSA- based techniques, for example CFT, SEFT, and HiP-HOPS.  

BSA, on the other hand, is based upon formal techniques like model checker. It relies 

on exhaustive state exploration and allows formal verification of the model. BSA 

limitations include the fact that it requires a relatively mature model, and therefore it is 

often applied only at the later design stage. Example of BSA-based techniques reviewed 

here are Altarica and FSAP/NuSMV.  

This chapter provided an overview of the working mechanism, strengths, and 

limitations of these techniques. We also studied the different objectives, and 

complementary of aspects of CSA and BSA. In the next chapter, we proposed a method 

to combine their applications.  

  



54 

 

CHAPTER 3. A method for Integrated Application 

of Compositional and Behavioural Safety 

Analysis (IACoB)  

3.1 Introduction  

This chapter develops a method for safety analysis which integrates the application of 

CSA and BSA techniques. Its application is mainly explored in two contexts: early 

functional design, and more detailed architectural design.   

In early functional design, the method is applied to an early model where design details 

are not yet mature. At this stage, focus is drawn to the benefits yielded by the method in 

enabling systematic derivation of abstract behavioural models via CSA and then useful 

application of model checking on such models. Application of the method is also 

demonstrated in a later stage of design where the model includes more detail about the 

architecture of the system. It is shown that the method is generic and applicable as an 

iterative process that can span across the design lifecycle.  

The key steps involved in IACoB analysis are illustrated in Figure 12. The method starts 

with a given set of system functional requirements and safety specifications. From this, 

a functional model of the system is established, which shows input processing and 

output functions and dependencies among them, e.g. the data exchanged among 

functions (or material and energy in the general case).  In the next step, design engineers 

are asked to examine further this model in order to evaluate the severity of failures of 

output functions, i.e. functions provided by the system to users and its environment. 

Each function is then annotated with its local failure behaviour in the style of HiP-

HOPS, enabling automated preliminary FTA to be conducted via application of CSA 

analysis. The result is the generation of an FMEA of the system model. This FMEA is 

then studied and interpreted, leading to recommendations for design improvements, and 

additional safety measures in particular.  
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With the introduction of new safety measures, the requirements and system model are 

updated. The severity of the failures of output functions and the local failure behaviour 

of all functions are revised, and the next iteration of FMEA can be performed. This 

might again lead to further iterations, until the design is deemed satisfactory. At this 

point, results from FMEA are analyzed and interpreted to assist the further development 

of the design via construction of state machines that represent system dynamic 

behaviour. Model checking is then used to verify whether this dynamic system model 

conforms to the requirements and specifications. If conformity is verified, the process 

proceeds to either further refinement of the model and iteration of the above process or 

its implementation. Otherwise, counter-examples are produced to show how the model 

fails to fulfil certain requirements and to point out to useful revision of the model. Each 

of these stages is discussed further in the next section.  
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Figure 12: Process outline of IACoB method 
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Figure 13 shows how it is believed the IACoB method could fit into the traditional 

safety assessment process (adapted from (ARP 4754)). The inclusion of IACoB in this 

process enables techniques like FTA, FMEA and formal verification to be performed 

earlier (following FHA once functions are allocated) rather than being applicable only 

during or after a more detailed PSSA.  

 

Figure 13: System development and safety assessment process (source: ARP 4754) 

IACoB 
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The IACoB Process  

This section presents a detailed description of IACoB. It gives a series of steps in which 

various analyses and their results help to transform a basic initial functional model of 

the system into a more robust, better prepared model which eventually becomes the 

blueprint for system architecture and thus the foundation of development. For each step, 

an accompanying table is given that summarises the input, primary activity, and output 

of the processes that take place in the given step.  

3.2 Functional Model  

The essential element of early conceptual and preliminary design is the development of 

a functional model. A functional model is the representation of the system functional 

architecture that fulfils the system requirements. From a list of requirements, functions 

are initially derived from the identification of „processes‟ that need to be performed by 

the system. The task of identifying and organizing the system functions depends on the 

application and the experience of designers. However, in general, functions would fall 

into three categories: input, processing, and output functions. A Functional model can 

then be seen as a function-oriented pipeline where data or control gets transformed as it 

flows from input to output. 

Functional models are popularly represented as functional flow block diagrams, an 

example of which is shown in Figure 14.  

 

Figure 14: Functional model in basic block diagrams 
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An input function refers to a function that acquires the input parameters needed by the 

system. In architectural designs, input functions are typically implemented with sensors 

or communication controllers reading data on communication buses. A processing 

function is a function that describes how the input data is processed, and finally an 

output function provides function to the user or environment based on information 

received from processing functions. 

In situations where more information is available in the early stage, it is possible not 

only to model the higher level functions of the system, but also to show hierarchical 

decomposition of functions in networks of sub-functions.  

One popular diagrammatic technique used in functional modelling is the Functional 

Flow Block Diagram (NASA, 2007).  A Functional Flow Block Diagram (FFBD), also 

known as a Functional Flow Diagram or a Functional Block Diagram, is a step-by-step 

flow diagram consisting blocks connected through lines, and it is used to represent 

functional flow in a system.  

FFBDs are a general tool and can define operational and support sequence for systems, 

but also describe the processes for developing and producing systems. In FFBDs, 

functions are organized according to their logical order of execution, and might depend 

on the execution and completion of other functions. To manage complexity, functions 

are decomposed into several levels. This functional decomposition defines the lower-

level functions and their sequential relationship allows traceability throughout.  

Basic elements of a FFBD include: function blocks, directed lines and connection logic 

symbols. Each function block in FFBD represents a single defined function. The block 

contains information like the function name (which is generally expressed as verb) and 

the function identification number (which establishes relationships and traceability 

between levels). Reference functions which are denoted as bracketed blocks can also be 

used to show reference to other functional diagrams. Figure 15 shows an example of a 

functional block.  
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Function blocks are connected by directed lines, which depict function flow and flow 

direction. Usually the function blocks are structured so the flow is directed from left to 

right, as shown in Figure 16  

 

 

 

In summary, the input, process and output of this stage of the construction of functional 

model are: 

Input  Initial (textual) requirements 

Process   Identify, define and  relate functions  

 Translate requirements into functional model   

Output Functional model/ functional architecture  

3.3 Severity Assessment of Output Function  

Once the high level functional model is developed, it is important to assess the severity 

of deviations at output functions. We define an „output function‟ as the following: 

F1  

Perform calculation of 

distance 

Function number  

Function name 

Figure 15: Example of a functional block 

Function number 

Function name [Proceeding function]  [Succeeding function] 

Figure 16: Connection flow between functions  
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A function that interacts directly with the environment of the system by 

providing information material and energy.  

The „environment‟ of the system refers to the users and other external elements outside 

the system boundaries. The interaction with the external environment is not exclusive to 

output functions. An input function naturally accepts its value and „input‟ to be 

processed from its environment. Here however the focus is placed on output functions 

because of their effects on the environment and their potential contributions to hazards. 

The classification of failures is assisted through the use of guide words similar to those 

used in HAZOP, (Bonadavali & Simoncini, 1990) and (Pumfrey, 1999). These guide 

words help categorize failure classes and their use depends on the level of details 

available.  Omission and Commission are commonly used at this stage. „Omission‟ of an 

output function indicates the condition in which function output is not provided when 

expected, while „commission‟ indicates the provision of unwanted output. It is also 

possible to use more to indicate timing failures (late, early) and value failures (more, 

less).  

The categorization of failures in terms of severity is based on the IEC-61508 (IEC 

61508, 1998) and is presented in Table 3. According to this, the severity of failures can 

be classified, according to their consequences for humans (or for the quality of services 

provided in the more general sense), into the following categories: Catastrophic, 

Critical, Marginal and Negligible.  

These severity classes are assigned to the failures using simulation, testing or 

experience. The classification can be assigned as part of information presented in FFA 

(please see the example FFA in Table 2) and allows the safety analysis to be focused 

correctly, especially when there is any conflicting priority in the functional design. 

Failures at functional outputs under the „catastrophic‟ or „critical‟ categories need to 

receive higher priority compared to those which have „marginal‟ or „negligible‟ effects.  

Table 3: Allocation of severity category based on consequences to people and service (IEC-61508) 

Description  Consequence to human 

stakeholders  

Consequence to service  

 

Catastrophic  Fatalities and/or multiple - 
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severe injuries 

Critical  Single fatality or severe 

injury 

Loss of major system 

Marginal  Minor injury Severe system damage  

Negligible  Possible minor injury System damage  

In summary, the input, process and output of this severity assessment for output 

functions process stage are:  

Input  System functional model  

Process  Estimate risk and classify the severity of output function failure based on 

their consequences  

Output  Severity analysis of output functions 

 Prioritisation of output failures using severity as criterion; 

Identification of higher priority (critical) functions 

3.4 Local Failure Behaviour 

Apart from deciding the severity of failures of output functions, it is also important to 

determine the potential causes of these failures as these can be seen to arise from the 

specified functional model of the system. Qualitative analysis which identifies these 

causes could provide valuable feedback towards improvement of the functional 

architecture design by pinpointing weak parts in the system model, for example single 

points of failure that can lead to severe output failures. To achieve this, local failure 

behaviour of each function needs to be established. Failure behaviour can be described 

using deviations.   

A deviation contains information on the failure type and the „port‟ (i.e. input and/or 

output) where it occurs.  Failure of output function can be defined by output deviations. 

An output deviation describes a set of Boolean expressions that represents the causes of 

the output failure. These causes can consist of internal failures, input deviations, or 

both. When representing deviations, the dash “-“symbol is used to separate the failure 

type from the input or output parameters. Failure causes are connected by logical 

operators. Commonly used logical operators are the disjunctive operator (“OR”, “˅”, 

“+”) and the conjunctive operator (“AND”, “˄”, “.”).  
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For example, the following expression:  

Omission-Output = InternalFailure OR Omission-Input 

defines an output deviation for Function F1 (which is shown in Figure 17) where an 

internal failure (InternalFailure) of the function or an omission of the input 

(Omission-Input) can cause an omission of the output (Omission-Output) in the 

function.  

 

 

 

This annotation of failure behaviour for each function, in addition to the topology of the 

functional architecture, allows failure logic to be developed and propagation of failure 

to be subsequently established. The synthesis and analysis of fault trees are employed to 

achieve this.  

In summary, the input, process and output of this local failure behaviour annotation of 

function are:  

Input  Functional model  

Process  Establish failure information for each functional block  

Output  Functional model with failure data information 

 Establishment of causes (internal failure and failure of input) of 

function failure  

 

Input   Output  

InternalFailure   

Function F1  

Figure 17: Local failure behaviour for Function F1 
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3.5 Fault Tree and FMEA Synthesis and Analysis  

Compositional safety analysis techniques like HiP-HOPS can be applied to perform the 

automated construction and analysis of fault trees from the functional model.  

The global view of failure propagation in the functional architecture can be captured by 

traversing and following the causal links defined in each function‟s local failure 

information. The process starts from a failure in an output function and moves 

backwards progressively to record failures from other functions which contribute to this 

particular output failure. This results in a set of fault trees that represent the 

relationships between failures of output failures and their root causes in the functional 

model of the system.  

These fault trees in HiP-HOPS can be analyzed qualitatively, and the results are 

summarized in an automatically generated FMEA table. The FMEA table shows the 

direct links between potential failures of all functions in the model and the output 

function failures which represent the hazardous failures of the system. Traditional 

FMEA shows only the direct effects of a single failure on the output functions, but 

because of the way the FMEA is constructed by HiP-HOPS from a series of fault trees, 

it also captures the effects of a functional failure when it occurs in conjunction with 

failures from other functions. These are termed the further effects of the function failure.  

The FMEA table generally contains information on the list of functions, failure modes, 

effects of the function failures in terms of the failures of the output functions, and other 

contributing failures that need to occur collectively to cause failures in output functions. 

It is also possible to include information on severity of the affected output function, 

recommended treatments and other general comments.  

The FMEA table essentially shows how internal failures of functions can contribute to 

the hazardous failures of output functions. By determining these relationships between 

failures in functions and failures in output functions, it is then possible to establish the 

criticality of the function in the functional architecture.  

Figure 18 illustrates this point by showing a functional architecture that produces three 

output functions: Function F7, Function F8 and Function F9. For simplicity we assume 

that every function has a single output failure - omission - and that this is caused by 
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internal failure of the function or omission of its input.  For this reason, we do not 

explicitly define the obvious annotation of each function. Severity assessment 

performed during FFA identified that the severity of omission failure in output Function 

F8 is catastrophic, while the severities of Function F7 and Function F9 are marginal.  

 

 

HiP-HOPS analysis of the above model with its simple failure annotations creates the 

fault tree of Figure 19 for the failure Omission of Function F8. The fault tree is analyzed 

and an FMEA table (as partly shown in Table 4) is generated. The FMEA table 

identifies those functions (Function F2, Function F3 and Function F5) whose failures 

play a vital role in contributing to Omission of Function F8 failure. These are shown in 

shaded function blocks in Figure 20.   

Function F1  Function F4 

Function F2  

Function F5 

Function F6  

Function F7  

Function F8  

Function F3  

Function F9  

...  ...  

Figure 18: Example of the functional architecture 
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Table 4: Example of FMEA table  

Function 

  

Failure 

Mode 

Effects  Contributing 

Failure  

Severity  

Function F2 Internal 

Failure  

Omission of 

Function F8  

Internal Failure in 

Function F3 

Catastrophic 

Function F3  Internal 

Failure  

Omission of 

Function F8 

Internal Failure in 

Function F2  

Catastrophic 

Function F5  Internal 

Failure  

Omission of 

Function F8 

 Catastrophic 

... ... ... ... ... 

 

Omission of Function F8  

Internal Failure 

of Function F5  

Internal Failure 

of Function F2  

Internal Failure 

of Function F3  
OR Gate  

AND Gate  

Legend: 

Figure 19: Example of generated fault trees 
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Interpretation of the table allows the failure behaviour of the functional architecture to 

be checked against safety requirements. By examining the FMEA table, safety measures 

can be devised (for example, by revising the design structure or introducing safety 

mechanism). Focus is placed especially on functions whose failures contribute to 

hazardous effects, as they need to be prevented by design or at least have their impacts 

minimized. Further discussion on the common techniques and solutions employed to 

divert critical failures are discussed in Chapter 6.  

While the design solution ultimately relies on the engineer‟s decision and experience, 

this identification of criticality for each function offers assistance in the management of 

effort allocation and design modification. For example, apart from identifying that focus 

should be placed on Function F2, F3 and F5 due to their failure criticality, the fault tree 

also shows that Function F5 is a single-point of failure that might need additional 

attention.  

To achieve a safer design, modification of the system structure, for example through 

incorporation of backup or redundant components (in later versions of the designs) for 

fail-safe purposes, is often necessary. The introduction of these safety mechanisms 

might result in new modules (functions in an earlier design, or implementation 

Function F1  Function F4 

Function F2  

Function F5 

Function F6  

Function F7  

Function F8  

Function F3  

Function F9  

...  ...  

Figure 20: Identified critical functions based on failure propagation  
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components in a detailed design) and brings about the need to iterate the process to 

generate updated FTAs and FMEAs. 

From this process, more refined design and safety requirements can be derived. The 

identification of lower level failures leading to output failures can be evaluated, and this 

helps derive more refined design requirements. This results in fewer late design changes 

in comparison to traditional practice where assessment at this stage is often limited to 

FHA. In classical safety assessment, FTA and FMEAs are performed manually, making 

safety analysis a laborious process while often meaning it is deferred until the PSSA 

stage where the details of the design are more concrete.  

In summary, the input, process and output of fault tree and FMEA synthesis and 

analysis are:  

Input  Functional model with local failure behaviour information 

Process   Generate FTA and FMEA from functional model  (HiP-HOPS is 

applicable for this) 

 Identify weak points in system design - contributing function 

failures that leads to (severe) output function failure : by linking 

failures in output functions to their causes  

Output  Effect of functional failures on output functions 

 Better understanding of the criticality of input, processing and 

output functions in the system 

3.6 Generation of State machines and Their Translation into 

Model Checker Input Language  

One important aspect in this research is the investigation on how application of CSA 

and BSA techniques can be integrated constructively. To achieve this, we need to 

establish an effective association between the primary elements of CSA and BSA 

techniques, namely the FTA/ FMEA results (output of CSA) and state machines (input 

of BSA) respectively.  

In IACoB, the results of the FMEA are used to construct behavioural models that can be 

subjected to BSA. Indeed application of the method leads to synthesis of state machines 

that describe the dynamic behaviour of the system in conditions of failure.  Iterative 
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application of the method starts from “abstract” state machines which progressively 

become more “refined” as they contain more details about the behaviour of the system. 

In general, these state machines show how functional failures assessed in the FMEA 

move the system to degraded or failed “modes” where there is reduced function or no 

function at all.  We use the term mode as in (Papadopoulos, 2000) to indicate an abstract 

functional state in which the system delivers a set of functions. We also use the term 

“mode chart” to indicate a state machine which shows transition between modes.  

To create such mode charts, in IACoB, an FMEA-ModeChart assistance table is 

constructed to help organise state machine elements and create the “abstract” state 

machine. Transitions in this state machine are then refined to produce a more “refined” 

state machine. Traceability between abstract and refined state machines allows the 

understanding of how transition in a more-refined level affects the higher level state of 

the system. The refined state machine can also be produced directly from HiP-HOPS 

failure annotations to model system failure-related dynamic behaviour. Both abstract 

and refined state machines can be represented in the NuSMV model, and can be 

extended with nominal behaviour. Figure 21 illustrates the process of generating state 

machines from FMEA results. 

This process is further discussed in the following section. First, we investigate the 

representation of abstract state machines, their purpose and application, how they can be 

constructed based on information gathered from results of previous process, and the 

value of their analysis.  
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Failure-

extended model 

(error model)   

 

Figure 21: Generation of state machines  
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3.6.1 Modelling the Dynamic Nominal Behaviour of a System  

State machines can be used to model the dynamic behaviour of discrete event systems. 

In the early functional design stage, the state machines are usually abstract and are used 

to model high-level system behaviour. In later stages of development, they can be used 

to model more refined behaviour.  

Overview of State Machine fundamentals 

Traditional (finite) state machines are flat and sequential. Such state machines have 

proved to be a useful theoretical tool in computer science, but are unsuitable for 

representation of large or complex system. David Harel introduced state charts as a 

language to describe state machines by extending finite state machines with additional 

capabilities, including hierarchy, concurrency and priority (Harel, 1987). While the 

approach we discuss here is not tied to any particular commercial support tool, the 

modelling of state machines in this thesis is based on the general semantics of state 

charts. Being an unofficial language, many variants of state charts have been proposed 

in the literature - as reviewed in (Von der Beek, 1994). One of the most widely known 

implementations of state charts is the STATEMATE tool, the semantics of which are 

described in (Harel & Naamad, 1996).  The complete discussion of semantics and 

syntax of state charts is out of the scope of this thesis, and readers are referred to (Harel, 

1987). This section presents the key concepts of state charts and discusses how these 

foundations enable state charts to be a prominent notion in modelling complex system 

behaviour, and how its extension can be adopted as part of early design analysis.  

State  

A state is defined by Weilkiens (2007) as the representation of a set of value 

combinations for the underlying system elements. It describes the system internal 

behaviours at a given time (and when a state is active, the system is said to be „in‟ that 

state). Apart from the internal behaviour which is executed based on defined events, a 

state can have three other behaviours that are triggered by predefined events:  

1) entry behaviour – which is executed immediately once the state is entered 

2) exit behaviour – which is executed immediately before the state is exited 

3) do behaviour – which is executed while the state is active  
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Figure 22 below illustrates an example of a state chart. States are shown in rounded-

corner rectangles, and charts are shown with soft greyed dash border.  Sometimes states 

and charts are not distinctively/uniquely named, for example S1 is both a chart and a 

state. A state may itself host and contain other state charts and this creates the relations 

of „parent-chart‟/„sub-chart‟ and „parent-state‟/ „sub-state‟.  

States in state charts are categorized into two types: OR states and AND states. OR 

states (for example S1, S4 and S5) are states that have sub-states related to each other 

by „exclusive-or‟, i.e. they are mutually exclusive and are reached sequentially. Basic 

states (for example S2, S6, S7, S8, and S9) are states that are at the bottom of hierarchy 

and do not contain any sub-states. Basic states are considered OR states. AND states 

(for example S3) are states that contain at least two sub-charts that are reached 

simultaneously when the parent-state is activated, and thus AND states are used to 

model concurrency.  

 

 

 

 

Transition 

Transition (t1..t5) defines the trigger and condition of the directed relationship between 

states. These are expressed by a „transition label‟ which can be defined in the form of 

Figure 22: Sample of state chart  
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„e[c]/ac‟, where e is the event that triggers the transition, c is the condition that guards 

the transition, and ac is the action that is performed when and if the transition occurs. A 

default transition defines the state that is entered once the chart is active. In the Figure 

22, the defaults are the transitions to S2, S6 and S8, and are denoted by the circle-ended 

arrow. 

Events can be generated externally or inside the same sub-chart. Additionally, events 

can also be predefined (as mentioned earlier) and be generated when a state is entered 

“en(s)” or exited “ex(s)”or when the value of a Boolean variable “variable” becomes 

true “true(variable)” , false “false(variable)” or changes “change(variable)”.  

Conditions are used to guard the transitions. A condition can contain expressions on 

data values or expressions on elements of state charts. The combination of events and 

conditions is called the trigger of the transition, and the trigger is fired only when the 

Boolean combination of these events and conditions are true. A condition persists until 

the instance when the inverse condition holds. 

Transitions can generate actions which control other charts. These actions are 

categorized into basic actions, which form basic events, and compound actions, which 

modify state chart elements (i.e. data variables). Referring to the Figure 22 for example, 

transition t3 which is triggered by event „c‟, will cause action „d‟ to be fired, which in 

turn triggers transition t4 and causes a transition from state S8 to S9.  Transition actions 

will be executed after the source state is deactivated, but before the target state is 

activated. Similar to events, actions can also be executed when a state is entered or 

exited in addition to appearing along transitions.  

The following is an excerpt of the transition label syntax grammar customized from 

(Loer, 2003):  
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<label>  ::= [<event>]/{<action>;} 

<event> ::= E    event variable  

  | (<event>and<event>) Boolean combination 
  | (<event>or <event>)  

  | not(<event>)  negation 

  | en(<state>)  chart entered state 
  | ex(<state>)  chart left state  

  | [<condition>]  condition is true 

   tr(<condition>)  condition became true 

  | fs(<condition>)  condition became false 
  |  ch(<condition>)  condition changed 

<condition> ::= C     condition variable (Boolean) 

  | not <condition>  negation  
  | (<condition>) and (<condition>) Boolean combination 

  | (<condition>) or (<condition>)  

  | in(<state>)  chart is in „state‟ 

<action> ::= E     event variable  
  |  tr!(C)    set  C to true 

  | fs!(C)   set C to false 

  |  C:=<condition>  assign the value of (Boolean) condition to C  
  |D:=   <condition> assign the value of (data) <arithmetic expression> to D   

 

In the state chart semantics system behaviour is described as a set of possible runs 

(Harel & Naamad, 1996). Runs represent the system responses to external stimuli, and 

consist of a sequence of status. A status is the set of all currently visited model states 

and may contain information on: active states, values of data items, conditions, 

generated events and scheduled actions. The transition from one status to the next is 

defined by steps.  In addition to external stimuli, changes occurring during and since 

previous steps would trigger transitions between states and as a result the system moves 

to a new status, as illustrated in the figure below:  

 

Status 

(initial)  

..... Status  Status Status  

Step  Step  Step  Step  

Status  

Figure 23: Status and steps in state charts semantics (source : Harel & Naamad, 1996 ) 



75 

 

General Principles and Language Restrictions 

Although currently there is no agreed common standard that defines formal semantics 

for state charts, (Harel & Naamad 1996) describe the general principles to define the 

semantics of state charts:  

1) Changes that occur in a step, and reactions to internal and external events, can 

only be sensed after completion of the step 

2) Events „live‟ for duration of one step only and are not remembered in 

subsequent steps  

3) Calculations in one step are based on the situation at the beginning of the step 

(i.e. the states the system is in and the value of data items) 

4) Greediness property: the maximal subset of non-conflicting transitions are 

always executed 

5) Execution of a step takes 0 instances of time, i.e. it is instantaneous 

3.6.1.1  Overview of NuSMV  

As introduced earlier in Chapter 2, NuSMV is a newer version of Symbolic Model 

Verifier (SMV, (McMillan, 1993)). It automatically verifies if a system (which is 

expressed as a finite state machine) satisfies its specifications.  

A NuSMV model describes system behaviour by declaring a set of variables. The initial 

values for these variables and how the variables change are explicitly defined. This 

description can be grouped into a set of modules with one main module. Modules are 

generally used to define or distinguish separate physical (sub) systems. A NuSMV 

module can consist of a set of variable declarations, assignments of variable initial 

values and definitions, and property assertions. The variable declaration section contains 

the local variables names and their types in the form „variable_name : 

variable_type‟. Variables type can generally be of Boolean, numerical or enumerated 

types. The assignment section contains a set of assignments of variables into their initial 

value or its value in the next execution step, describing how a variable can change 

value. This can be expressed in the form „variable_name := value‟. Various 

operators are available for variable assignments, including Boolean logic operators 

(and, or, not), conditional operators (case, switch), arithmetic (+, -, *, /), and 
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comparison (=, <, >, <=, >=). To assign a value of a variable in its initial and next 

execution step, operators init and next are used. The next value of a variable is 

defined using operators and constants from the range of values that the variable can 

have, as described in the declaration. Variables that do not have an assignment change 

non-deterministically. The assertion section is where safety properties (written in LTL 

or CTL) are defined, and these properties should hold over all executions.  

Each module can also have input parameters (which are assigned outside the module) 

and output parameters (which are assigned inside the module). An excerpt of an 

example NuSMV model is presented below, showing relationship between input 

parameters and how they affect the internal variables:  

MODULE functionF1 (inputParam1, inputParam2) 

VAR 

functionStates: {state1, state2, state3 }; 

functionEvent1: boolean;  

functionEvent2: boolean;  

ASSIGN 

init (functionEvent1):= 0;  

functionEvent2 := !functionEvent1;  

functionStates := case 

functionEvent1 & inputParam1 : state1;  

functionEvent2 & inputParam2 : state2;  

1: state3;  

esac;  

next(functionEvent1):=case  

functionEvent1 = 1: 1; 

1: {1,0}; 

esac;  

 

AND states, however, require each of the state values to be defined independently as 

separate variables to allow the states to run simultaneously. For example:  

VAR  

state1: ... 

state2: ...  

state3: ... 

defines that state1, state2 and state3 run in parallel, and each can hold value of its 

own (i.e. sub-modes, which will be discussed in the next section).  
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3.6.1.2 Hierarchical Modelling in State Machines 

Contemporary systems are often required to perform large and complex functions in 

different stages of operation. For example, functions in an aircraft may vary from 

critical functions such as flight management, communications, and engine control to 

secondary electrical domestic and comfort/entertainment facilities. These functions 

involve large numbers of behavioural states, transitions, structural configurations, and 

interactions, and managing them is no trivial task.  

One way to help the management of this large complex labyrinth of dynamic behaviour 

is through hierarchical modelling. Hierarchical modelling manages the decomposition 

of a state machine relating to a system by breaking it down into smaller parts, similar to 

those in static decomposition of systems and subsystems.  

The activity of a state depends on the hierarchy of its parent-state. Hierarchy enables the 

states to nest, allowing the parent-state and sub-state relationships. (Drusinsky, 2006) 

outlines roles of hierarchy, mainly:  

1) Refinement of states in a top-down manner 

2) Reduction of transition clutter  

3) Maintaining orthogonality, where parent-states are to be place holders for 

independent, irredundant activities (concurrency)  

4) Enabling shared actions, where all sub-states shares the action of parent-state 

Consider the example in the figures below. State machines in Figure 24 and Figure 25 

describe the states and transitions in System S1. Both figures are semantically 

equivalent, but Figure 25, in which states belonging to State 3 are grouped, is more 

readable and less cluttered. Transition triggered by Event 8 in State 3.1 is required to be 

represented once in the parent-state State 3, as opposed to every sub-state in Figure 24.  

This significance is especially clear when there is need for the decomposition to be 

constructed into several levels (e.g. State 3.1.1, State 3.1.2 ...).   
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Figure 24: Simple state machine without hierarchy  

 

Figure 25: Simple state machine with hierarchy  

Decomposition of states into sub-states is useful, but a state machine hierarchy should 

ideally also capture the physical and logical decomposition of the system into 

subsystems and components, which as mentioned earlier, can be represented in the 

functional model in the early stage or architectural model in the later stage of 

development.  (Papadopoulos, 2000) describes how decomposition of a dynamic model 
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can be framed around the decomposition of its static structural model. For each (sub) 

system in the static hierarchy, a state machine is constructed to describe their 

behavioural transformations. For example, Figure 26 illustrates this relationship 

between static hierarchical model of System S and its subsystems, and their dynamic 

hierarchical model in state machines. System S can be structurally decomposed into 

subsystems S1, S2 and S3; while subsystem S1 is further decomposed into component 

C1, C2 and C3. The top level of the dynamic model represents the main operational 

states of the system S1, and transitions between them; the second level represents the 

behavioural states of the subsystems S1, S2, and S3.  And the lowest level represents 

behavioural states of component C1, C2 and C3.  

 

 

 

 

 

 

   

System S  

S1 

S2 

S3 

System S  S

1 

Static model for system and 

subsystem s 

Dynamic model for system and 

subsystem s 

S 

S1 
S2 

S3 

Subsystem S1  

C1 

C2 

C3 

C1 
C2 

C3 

Figure 26: Relationships between static and dynamic models hierarchy of the system 
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3.6.1.3 Hierarchical Modelling in NuSMV  

Hierarchy and decomposition in NuSMV models are managed through modules. The 

top-most module of the hierarchy needs to be declared as the main module. Modules, 

except for the main module, can instantiate multiple modules; and likewise a module 

can be instantiated by one or more other modules. Variables in a module can be local or 

global, and they can be accessed globally using path names.  

For example, Figure 28 shows an excerpt of a NuSMV model representing the state 

machine shown in Figure 27. Sub-state St1 is modelled in a separate module, and sub-

state St1a can be referenced as St1.St1a. Events can be managed locally or globally. 

Events which are managed by other modules can be passed to corresponding modules as 

input parameters. Other parameters can be included to allow management of transitions 

and control. For example, additional variables can be assigned to manage activation of 

states (i.e. to inform sub-states whether parent-state is active) or to define which sub-

state becomes active initially when the parent-state is activated. These allow transitions 

and control in AND/OR states to be managed accordingly.  

Further discussion on semantics of NuSMV can be found in (Cavada et al., 2005).  

 

Figure 27: Sample state chart for S1 
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3.6.2 Modelling the Dynamic Failure Behaviour of a System 

The ability to capture system dynamic behaviour as part of the overall safety analysis 

process is vital because we need to understand how the system behaves not only during 

its normal operational conditions, but also in the presence of failures. In this section, we 

explore further the dynamic modelling of system failure behaviour, particularly in the 

construction of dynamic failure models and the information that can be obtained from 

their analysis. 

Depending on the level of detail that they contain and their position in the IACoB 

design lifecycle, state machines in this discussion can be loosely grouped into two 

types: “abstract” state machine and more “refined” state machines. Abstract state 

machines are generally used to refer to the state machines that are created at early 

design stage (e.g. during development of functional model). Refined state machines 

refer to the state machines constructed at later stage (e.g. during development of 

architectural model). Construction of an abstract state machine generally focuses on 

modelling the delivery of the system functions. Construction of a refined state machine, 

MODULE S1 (...) 

VAR  

state : {St1,St2}; 

E1: boolean;  

E2: boolean; 

E3: boolean; 

E4: boolean; 

 

St1: Sub_St1(E3,E4,...); 

 

... 

 

ASSIGN  

init (state):= St1; 

next(state):=case  

state = St1 & E1: St2;  

state = St2 & E2: St1;  

1: state;  

esac;  

 

... 

 

MODULE Sub_St1 (E3, E4, ...) 

VAR 

state: {St1a, St1b}; 

ASSIGN 

init (state):= St1a;  

next(state):=case 

state = St1a & E3: St1b;  

state = St1b & E4: St1a;  

1: state; 

esac;  

... 

Figure 28: Modules to model hierarchy in NuSMV 
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on the other hand, focuses more on exploiting hierarchical links and the topology of the 

system to manage the failure-related transition triggers between state machines of the 

components. These are also discussed further in the following sections.  

3.6.2.1 Abstract Functional State Machine  

Early development process revolves around the construction and analysis of the 

functional model. At this stage, dynamic behaviour can be expressed as a set of different 

functional states of the system and transitions between them. A functional state in turn 

is defined by the set of functions delivered by the system in this state. (Papadopoulos, 

2000) calls such states “modes” and defines a process for the construction and analysis 

of abstract state machines (or mode charts) that contain transitions among such modes.  

This type of abstract state machine modelling plays a major part in the IACoB process 

as the introduction of safety-driven system mechanisms assisted by interpretation of the 

FMEA table brings new challenges in its safety analysis process.  Failure in a function 

can cause occurrence of failure in other functions, or trigger the activation of other 

dormant functions. This in turn, changes the structure, interrelations and dependencies 

between the functions, and inevitably the failure propagation. The modelling and study 

of these new system dynamics pose new challenges for static assessment techniques like 

FTA. To address these problems and help model the dynamic behaviour, abstract state 

machines are used to describe the transition of the system from one state to another as 

the functional characteristics change. The advantage of including state machines here is 

twofold: 

 Firstly, it helps to identify the fault tolerance mechanisms that can be introduced 

to the design by showing how the system can experience transition gracefully 

into the non-critical states after experiencing failures.  

 Secondly, the abstract state machine captures dynamic system behaviour in a 

higher level manner. It retains the state/transitions information that enables it to 

provide input to formal verification/model checker tools.  
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3.6.2.2 Mode chart to Represent Abstract State Machine  

Mode 

In this thesis, the term mode is adopted to define the notion of a “functional state in 

which the system maintains a stable functional profile” as in (Papadopoulos, 2000). 

Mode is thus used to describe different phases of operations, in which the system 

behaves and functions in different ways. In a similar way, „mode‟ is a more precise term 

that can be used to replace „state‟ in an abstract state machine. Therefore it is adopted in 

this section to describe the application of an abstract state machine. The term „mode 

chart‟ is subsequently used instead of state chart to more precisely represent this type of 

state machine.  

General types of mode that are used in the modelling of abstract state machines can be 

categorized as into the following:  

1. Normal mode  

2. Degraded mode 

3. Failed mode  

The system is said to be in normal mode when it delivers its predefined set of functions. 

Degraded mode describes the condition where a system delivers part of the intended 

functionality safely, whereas failed mode refers to the condition where there is complete 

loss of function or the system behaves in an unpredictable and hazardous manner. This 

implies that in cases when the system loses even only one of its many functions, if the 

lost function happens to be critical and has catastrophic effects on the system as a 

whole, the system is said to be in failed mode.  

Modes and Their Roles in Fault Tolerance  

Although this general classification of system modes is based upon delivery of 

functions, degraded and failed modes can be further divided into sub-categories as there 

are several well-established ways to categorize failures (and subsequently how these 

modes can possibly be further classified in relation to the response or nature of 

causative failures). For example, the general fault classification table presented in (Suri, 

1995) outlines different types of faults according to different criteria such as: activity 
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(latent and active), duration (transient and permanent), causes (random and generic) and 

so forth. Here however, focus is placed on time-based classification. Degraded and 

failed modes can be categorized into temporary and permanent. A system is said to be 

in temporary degraded or temporary failed mode when the system has lost its normal 

functionality, but action can be taken to restore the normal mode. The system is said to 

be in permanent degraded or failed mode when it is no longer recoverable.   

This classification and introduction of degraded modes is part of the effort to gain better 

understanding of the implementation of fault tolerance in early designs. Failures in (sub) 

systems should be compensated and managed in such way that their impacts leading to 

hazardous system failure are minimized. An abstract state machine is therefore designed 

to capture how degraded modes can act as potential buffers to divert hazardous failures.  

One way to achieve this goal of fault tolerance is through introduction of redundant 

structures. In a more detailed design, redundancy can be implemented in the hardware, 

software, or information domain. For early design, we assume these are encapsulated as 

a more generic entity referred to as a module, which represents a function that can be 

refined accordingly into a system or component at a later stage.  

Basic approaches to redundancy can be classified into static and dynamic redundancy. 

Static (also known as passive) redundancy does not detect or perform active action to 

control failures, but rather masks the failures to prevent failure propagation. Dynamic 

(also known as active) redundancy employs fault detection, diagnosis and 

reconfigurations. Hybrid redundancy combines both static and dynamic where masking 

is used to prevent propagation of failures and error detections, diagnosis and 

reconfigurations are also used to handle faulty components.  

In static redundancy, modules are replicated according to the desired fault tolerance 

capability. Majority voting is typically used as the selection mechanism to decide on the 

correct output. To avoid single points of failure, voters can be duplicated and moved to 

the inputs of the modules.  

Dynamic redundancy, on the other hand, uses less module duplication at the cost of 

heavier information processing. A minimal configuration consists of two modules (one 

main module and one standby module) performing the same functions. Fault detection 

and reconfiguration modules can be included for support. A fault detection module 
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monitors the outputs and when failure is detected in the main module, a reconfiguration 

module switches from delivering the output of the main module to delivering the output 

of the backup module. There are two types of standby in dynamic redundancy: hot 

standby (where standby module is continuously active) and cold standby (where 

standby module is activated only when needed).  

In the context of the IACoB process, these fault tolerant mechanisms are often 

formulated after the CSA phase (FTA/FMEA). The construction of abstract state 

machines (and subsequently identification of degraded modes) essentially provides a 

state where these fault-tolerance strategies can be considered and taken into account into 

the overall system behaviour, and these strategies can be refined within the design 

progress.   

Events and Transitions 

Transitions between modes can be caused by:  

 Normal events that cause the system to deliver different sets of functions. Such 

events cause a phase change in a phased-mission system. 

 Failure events that causes the system to lose part or all of its functionality (e.g. 

normal transforming to degraded mode).  

 Event that indicates restoration of functionality following failure (degraded modes 

back to normal mode).  

Note that transitions are not only triggered by external events, i.e. stimuli from users 

and the environment. A transformation at a higher level of a mode chart can occur 

because of an event that occurs in the lower level, or by the occurrence of logical 

combinations of lower-level transitions. This allows us to capture the failure 

propagation of the system because as we move upwards from the lower level to the 

higher level, the mode charts capture how deviations or failure in the lower level (sub 

systems) affects the mode changes in higher level. Figure 29 illustrates this type of 

transitions triggered by internal events.  At the higher level (level 1), the system 

changes its mode from normal to degraded when failure in subsystem S1 occur 
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(S1_Fail). Lower-level (level 2) state machines looks into how subsystem S1 reaches its 

fail mode after failure in C1 and C2 occur. 

 

Figure 29:  Mode charts showing high level and low level of system state transitions 

Communications between mode charts can be established between different levels in 

these ways:  

 Horizontal communication (peer charts) – transition results in an action that 

triggers other transitions in the same level of the chart.  

 Vertical communication (Parents and sub charts) – transition in lower level 

mode chart triggers a transition in the higher level charts, and vice versa. 

Upwards communication where lower level charts can initiate an event that acts 

as the trigger for an action that activates a transition in higher level charts is 

common when the model aims to show how failures in subsystem trigger higher-

level system failures.  

One benefit of this organization technique is the ability to efficiently identify the 

relationship between transitions. Transition labels can be categorized according to the 

failure propagation points. One systematic method to identify possible failure-related 

(Level 1) System S Mode chart  

(Level 2) System S1 Mode chart  
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events that trigger transitions from one mode of a system to another is through the 

observation of the system‟s:  

1. Peer-system‟s failure (same level) – a transition event in an immediate structural 

(input) block can trigger a transition event in another block.  

2. Subsystem‟s failure (lower level) – a transition event in a lower level subsystem 

can trigger a transition event in a higher level system  

3. Internal failure – internal malfunction of a block itself can be the basic cause of 

the transition.  

3.6.3 Translation of FMEA Results to an Abstract State Machine  

To construct system modes at an early functional level we need to identify system 

functional configurations and their possible transformations. To construct the events, we 

need to determine possible transitions between these configurations. At the same time, 

the FTA/FMEA results derived from previous stages provide information on failure 

relationship between functions. These results allow us to establish failure propagation 

and shows the effects (and criticality) of a failure event on the output function.  

3.6.3.1 FMEA-MODECHART Assistance Table  

Here we propose the construction of an assistance table to effectively identify and 

capture significant variables from the FMEA results for the main elements of mode 

chart. The table aims to organize information gathering from FTA/FMEA into a more 

systematic process of mode chart construction, as opposed to the traditional ad-hoc 

process.  This assistance table is organized to identify:  system modes, severity of each 

mode, output functions delivered in that mode, failure event(s) causing transition, and 

target mode(s) this transition leads to. 

This information can be obtained from the previous IACoB processes. “Modes” are 

derived from previous FHA analysis where output function failures have been 

categorized according to their failure severity. The severity assessment process allows 

us to establish which function failures are tolerable, and which function failures are 

intolerable. It is then possible to categorize the delivery (or not) of these functions into 
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different modes. Failure to deliver functions that do not lead to hazardous effects is 

tolerable, and generally leads to degraded mode. Hazardous failure is intolerable and 

leads to a failed mode. This essentially allows us to establish graceful degradation for 

the system in the presence of failures. 

The “Functions Delivered” column outlines lists of (output) functions delivered in the 

particular mode. This information can be obtained during the grouping of modes 

according to the functions delivered. “Functional Failure Causing Transition” describes 

the type of failure event that can occur (i.e. deviation in each of the corresponding 

output function). This information can be obtained from each of the output function 

which has been annotated with failure behaviour. Finally, “Target Mode” defines the 

mode a particular failure event leads to during a transition.  

With this key information (modes and events which trigger transformations) now 

gathered in the assistance table, the process of constructing the abstract state machine is 

relatively straightforward.  

Table 5 shows an example of an assistance table for the sample system presented in 

Figure 18. The first mode identified is System_Normal, where all output functions 

(Function F7, F8 and F9) are delivered. Each output function is susceptible to an 

omission failure which results in the inability of the system to deliver the particular 

function. From the earlier FFA, Function F8 is identified as a critical function, and this 

brings us to the second mode, System_Degraded. In System_Degraded mode, output 

function F8 is delivered regardless of the condition of function F7 or F9. System mode 

goes to System_Fail when omission in Function F8 occurs. Please note that even in the 

System_Degraded or System_Fail mode, Function F7 and/or Function F9 can still be 

delivered. It is also possible to include other degraded modes to further define the 

delivery (or not) of Function F7 or Function F9 if necessary.  

Table 5: FMEA-ModeChart Assistance Table   

Mode  Severity  Functions 

Delivered  

Functional 

Failure Causing 

Transition  

Target  Mode  

System_Normal - Function F7 Omission of 

Function F7 (O-

F7) 

System_Degraded 

Function F8  Omission of System_Fail  
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Function F8 (O-

F8) 

Function F9 Omission of 

Function F9 (O-

F9)  

System_Degraded 

System_Degraded Marginal  Function F8  Omission of 

Function F8  

System_Fail  

System_Fail Hazardous - - - 

Figure 30 illustrates an example of the mode chart which can be constructed based on 

the assistance Table 5 above.  

 

Figure 30: Example of mode chart constructed from FMEA-ModeChart Assitance Table  

It is important to note that events that can occur in a mode are not limited to the ones 

listed in “Functional Failure Causing Transition”.  This column helps to draw focus on 

events that are significant enough to affect delivery of functions (thus causing transition 

between modes). In some cases, it is possible to have dormant failures in a mode where 

occurrence of a failure doesn‟t cause transition from a mode until another failure occurs. 

This can potentially cause almost-immediate transition from normal mode to fail mode.  

One way to manage this is by fully taking into account all possible failure occurrence in 

a mode and if necessary, by creating another intermediate degraded mode to manage 

dormant failure (for example, where alarm was raised) so that system does not move 

from normal to fail mode in succession. An example of this is shown in Chapter 4.  
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3.6.4 Translation of HiP-HOPS Failure Annotations to a Refined State 

Machine  

Once the information on lower level components become more available, it is possible 

to refine transition triggers in the once-abstract mode charts. At this stage, it is no longer 

as significant, although it is still possible, to define the „modes‟ based on delivery of 

component outputs (compared to the definition of mode according to the delivery of 

system functions earlier).  

While the analysis of FTA/FMEA in earlier stages and the use of assistances table can 

help in the generation of an abstract state machine, the generation of a more refined 

state machine at a later stage involves a slightly different approach. This is because, 

unlike abstract state machines, most information required for failure-relevant transitions 

in more refined state machines can be obtained directly from HiP-HOPS component 

failure annotations.  

It is important to note that our mode charts are not tied to any commercial state chart 

tool. It is possible to use available commercial tools like Matlab Stateflow or Statemate 

to provide graphical description. Converter tools are available (sf2smv 

(Banphawatthanarak et al., 1999), (Bobbie, 2001), stm2smv (Loer, 2003), or mdl2smv 

(Juarez-Dominguez et al., 2008)) to convert state machine models from these 

commercial tools into model checking input models. While the use of intuitive interface 

(Barfield, 2004) and graphical tools is helpful for acceptance, (Schatz et al., 2002) 

highlights that it is not essential for the concept. Also, to perform model checking, the 

state machines eventually need to be converted into model checking input models.  

For these reasons, here we explore how the more refined mode-charts representing 

behaviours of lower-level designs can be expressed directly as a NuSMV model.  

Each component block is represented as a module in NuSMV. Information flow 

between blocks of components can be modelled through the use of module parameters. 

These parameters provide links between the output (port) of a source component to the 

input (port) of a target component. In a similar manner, these input parameters are also 

used to relay and model the failure propagation between components. It is important to 
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note that because multiple failure types could occur at one output, all of the deviations 

need to be passed to the target component input parameters.  

The basic of HiP-HOPS failure expression can be represented as:  

Output_deviation = Internal_malfunction AND/OR Input_Deviation 

 

This expression can be incorporated into the NuSMV model by assigning the output 

deviations as the corresponding module internal variables. These output deviations are 

passed along as module parameters to other components/modules at the receiving end of 

the information flow. Internal malfunctions are defined within modules too, and once an 

internal malfunction occurs, it is assumed to be persistent throughout the entire run, 

unless correcting event is specified and triggered. Input deviations for failures 

propagated by other components are defined through the modules input variables.  

For example, given HiP-HOPS failure expression:  O-O.out = O-in1 + BEA1 + BEA2, 

the generated NuSMV model from the annotated HiP-HOPS model can be seen in the 

following NuSMV model excerpt. Output deviations and each component basic events 

are declared as Boolean data types. All basic events are initialised to hold value 0 as the 

system starts operation in normal mode. Lastly, as basic events are assumed to be 

permanent, its next value will remain as „1‟ if the current value is „1‟. 
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It is perhaps important to note that the current translation from HiP-HOPS annotation to 

NuSMV model is performed manually. And because the extracted behaviour is based on 

failure annotation, the NuSMV module produced is essentially a failure-extended model 

(error model). This model can eventually be extended to include further relevant 

nominal behaviour, or be integrated with nominal model if the nominal model was 

developed in parallel (please see chapter on future work).  

3.6.5 Refinement of Events to Maintain Traceability  

Refinement refers to the process of providing a system solution with more details or 

precision in an incremental development process. This includes the process of adding 

more constraints and developing details of system/component attributes. Refinement of 

a design often traverses abstraction levels and captures sub systems. In a later design 

phase, these subsystems are further refined by adding more constraints, including non-

functional aspects, and by improving the model solutions.  

The refinement process will affect both structural and behavioural elements of a system. 

Dynamic behavioural models need to reflect and capture refinement of behavioural 

decomposition. Structural refinement is captured through the decomposition of the 

physical system into sub-systems. As discussed earlier, structural decomposition in a 

MODULE module1(O-in1,...)  

 

VAR 

O-O.out: boolean ; 

BEA1 : boolean ; 

BEA2 : boolean ; 

... 

ASSIGN 

init (BEA1) := 0 ; 

init (BEA2) := 0 ; 

O-O.out := O-in1 | BEA1 | BEA2  ;  

next (BEA1) := case  

BEA1 =1 : 1 ; 

1 : {1,0} ;  

esac;  

next (BEA2) := case  

BEA2 =1 : 1 ; 

1 : {1,0} ;  

esac; 

 

... 

 

Input Deviation  

Internal 

Malfunction  

Failure 

Expression for O-

O.out   



93 

 

NuSMV model is represented as individual NuSMV modules. Similarly, refinement for 

behavioural models can be achieved through the decomposition of modes into sub-

modes.  

A systematic management of the decomposition process helps to provide good 

traceability. Traceability refers to the ability to maintain and navigate the relations 

between different stages of the model and manage that information. Such relations 

should allow designers/analysts to follow the evolution of the design more closely and 

establish connections between earlier and later design models.  

We believe that - in addition to facilitating decomposition - a systematic process of 

event refinement (especially those events relating to failure behaviours) contributes to 

better traceability. One way to achieve this is through clear communication and linking 

between events in earlier abstract design models and more detailed events in later 

models. Well-established traceability between early and later models is particularly 

useful in situations where errors are discovered through model checking, in which case 

it is possible to trace errors to earlier design decisions and eventually investigate and re-

evaluate their effects on high-level design assumptions and goals.  

Here we aim to provide methodological guidelines to assist event refinement 

systematically. This can be achieved by two main approaches: 1) refinement of events 

through minimal cut sets and 2) refinement of events through compositional annotation.  

They are discussed further in the following sections.  

3.6.5.1 Refinement of events through minimal cut sets 

The first possible way to refine a state machine is by replacing the transition event 

expression with its causing events. As the transition events are losses of functions or 

malfunctions which form top events of fault trees in HiP-HOPS, the causing events can 

be effectively obtained and mapped from HiP-HOPS FTA/FMEA results. For each top 

event, its minimal cut sets can essentially be used to form the replacement expressions.  

This approach works well in several scenarios. It is appropriate for situations where 

focus is placed more on the verification of behavioural modes in higher level abstract 

systems compared to behavioural modes in refined individual subsystems. This usually 
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means that the verification process aims to explore the effects of the lower level 

subsystem failures on the modes changes at the higher level, instead of exploring the 

nominal dynamic behaviour for each of the subsystem.  

The following example is presented to illustrate this further. Figure 31  presents an 

abstract model that describes system A. System A is then gradually refined into 

subsystems A1, A2, A3, and A4. The refinement allows us to update the abstract 

dynamic model for system A to take into account failure events occurring in the lower 

level subsystems.  

 

 

  

Abstract system A (in earlier stage)   

Refined subsystems of A (in later stage)   

Figure 31: Refinement for system A  
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Presented in the following is the failure information of system A and subsystems A1, 

A2, A3, A4. Subsystems A1,A2 and A4 are assumed to simply have one failure type, 

Omission (O-A1, O-A2, O-A4 respectively) caused by corresponding internal failures 

BEA1, BEA2, BEA4. Subsystem A3 has both Omission and Value failure types which 

are caused by internal failures BEA3 and VBEA3 respectively.  The following table 

summarizes the failure behaviour:  

Table 6: Failure behaviour for System A and Subsystems A1, A2, A3, A4  

System / 

Subsystem  

Internal 

Malfunctions  

Output 

Deviations  

Description of Output 

Deviation  

Causes of Output 

Deviation (Output 
Deviation Failure 

Expression)  

A  - O-A.out1 Omission deviation in output 

1 (out1) of system A  

O-A3.out 

O-A.out2  Omission deviation in output 

2 (out2) of system A 

O-A4.out  

  V-A.out1  Value deviation in output 

1(out 1) of system A 

V-A3.out 

A1 BEA1 O-A1.out Omission deviation in output 

(out) of subsystem A1  

BEA1 

A2 BEA2 O-A2.out Omission deviation in output 

(out) of subsystem A2 

BEA2 

A3  BEA3 O-A3.out Omission deviation in output 

(out) of subsystem A3  

BEA3 OR (O-A3.in1 

AND O-A3.in2) 

 VBEA3 V-A3.out  Value deviation in output 

(out) of subsystem A3 

VBEA3 

A4  BEA4 O-A4.out Omission deviation in output 

(out) of subsystem A4  

O-A4.in1 AND 

BEA4 

System A can be operated in several abstract functional modes, namely Mode1, Mode2, 

Mode3, Mode 4 and Mode5. System A starts with nominal Mode1 when there is no 

failure occurrence. From Mode1, it either moves to Mode2 when O-A.out1 occurs, or 

moves to Mode3 when O-A.out2 occurs. If both O-A.out1 and O-A.out2 occur, it 

moves to Mode4.  Mode5 occurs when system A experiences a V-A.out1 failure.  We 

assume that the severity analysis process has identified Mode4 to be hazardous. The 

abstract mode chart for this abstract model can be seen in Figure 32:  
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Figure 32: Mode chart for system A 

From the tabulated failure information in Table 6, HiP-HOPS produces the following 

minimal cut sets for each of the system output failures:  

O-A.out1 = {BEA1.BEA2 , BEA3}  

O-A.out2 = {BEA2.BEA4}  

V-A.out1 = {VBEA3} 

These analysis results allow us to refine the abstract state machine of system A (Figure 

32) into a more refined state machine (Figure 33) which takes into account failure 

propagations of its subsystems in the event transitions. The event transit ions are now 

expressed fully in terms of the components internal malfunctions.  

 

Figure 33: Refined transitions for System A 
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Subsequently, the expression of mode charts in the NuSMV input language enables us 

to verify various (generic) requirement specifications , for example “If failure in 

subsystem A4 does not occur, hazardous Mode4 shall not occur”, which in this 

example, is relatively straightforward. 

AG(!BEA4 → !(SystemMode = Mode4)); 

The checking of this property can also be arguably performed through manual analysis 

of FMEA results table to establish the effects of causing events (and their combinations) 

on the corresponding output deviations. For example, by manually working through the 

FMEA table to decide if any combination of all basic events without BEA4 can lead to 

failure “O-A.out1 AND O-A.out2” (Mode4). It is also possible to perform this via FTA 

by studying the minimal cut sets. However, this could become inconvenient for larger 

systems with more complicated modes. The translation into the model checking input 

language allows verification to be done more quickly and automatically.  In addition to 

that, this formal analysis via model-checking is also able to take into consideration other 

nominal behaviour which is not captured by the FMEA. 

With this approach, focus is placed on the abstract high-level system mode chart, which 

is often sufficiently contained within the NuSMV Main Module. One of the advantages 

of adopting the results from CSA is the easy representation of both deviations and 

component basic events in NuSMV as Boolean data types. Here, failure logic is used 

instead of success logic, meaning that instead of defining output(s) of the system 

according to the outputs of subsystems, output deviations are defined by failures in 

subsystems. This is done by assigning to it the corresponding minimal cut sets.  

One downside of this approach is the fact that focus is placed on the abstract mode chart 

and how the occurrence of internal malfunctions affects the abstract system modes. 

Little attention is placed on the other non-failure relevant behaviour of subsystems 

(although they can be included if necessary). Also, these internal malfunctions are 

modelled within the main module (therefore not benefiting from any hierarchical 

structure). An example of the generated NuSMV model from an annotated HiP-HOPS 

model can be seen in the following NuSMV model excerpt:  

MODULE main 

 

VAR 
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BEA1 : boolean ; 

BEA2 : boolean ; 

BEA3 : boolean ; 

Mode : {Mode1, Mode2 };  

... 

ASSIGN 

init (BEA1) := 0 ; 

init (BEA2) := 0 ; 

init (BEA3) := 0 ; 

... 

init (Mode) := Mode1;  

O-O.out := BEA3 | BEA2 & BEA1  ;  

next (BEA1) := case  

BEA1 =1 : 1 ; 

1 : {1,0} ;  

esac;  

next (BEA2) := case  

BEA2 =1 : 1 ; 

1 : {1,0} ;  

esac; 

next (BEA3) := case  

BEA3 =1 : 1 ; 

1 : {1,0} ;  

esac; 

next (Mode):= case  

Mode = Mode1 & O-O.out : Mode2; 

1: Mode;  

... 

3.6.5.2 Refinement of Events through Compositional Annotation  

This approach extends the previous approach by focusing not only on the abstract high 

level mode chart, but also by modelling each subsystem‟s behaviour in its own module. 

It captures and reflects the functional hierarchy by constructing independent mode 

charts and NuSMV modules for each function (subsystem), which in turn allows non-

failure related behaviours of each subsystem to be effectively modelled and considered 

in their roles of contributing to system failures.  

To effectively link failure behaviour to input modules and capture the structural 

topology, transition events (labels) are maintained in a similar structure similar to the 

ones in HiP-HOPS failure annotations for system and subsystem output deviations. This 

means they are expressed in terms of input deviations and internal malfunction events.  

To illustrate this approach using the previous example (Figure 31), the failure behaviour 

for System A and Subsystem A1, A2, A3, A4 can be modelled in the following mode 

charts, each capturing their failure expressions in the transition labels:   



99 

 

 

 

The compositional failure annotation in HiP-HOPS also allows systematic generation of 

a NuSMV model for the system and subsystems. Each NuSMV module contains 

information about internal malfunctions, input deviations and the definition of output 

deviations, all of which are obtainable from component failure annotations. Like HiP-

HOPS, flow of information is obtained through the structural topology. The „higher-

level‟ module SystemA manages these connections and the flow of information between 

subsystems by passing the output variables of a source subsystem to the input 

parameters of target subsystem during module initiation. This allows linking between 

components to be established and subsequently connect input deviation to 

corresponding output deviations.  

Figure 35 to Figure 39 illustrates the connection between components annotated with 

HiP-HOPS failure data and their corresponding NuSMV models which shows the 

hierarchical structure and failure propagations of these subsystems:   

 

Figure 34: Mode charts for system (and subsystems of) A 
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MODULE SystemA    

 

VAR 

A1: SubsystemA1; 

A2: SubsystemA2; 

A3: SubsystemA3 (A1.O-A1.out, A2.O-

A2.out); 

A4: SubsystemA4 (A2.O-A2.out);  

Mode : {Mode1, Mode2, Mode3, Mode4, 

Mode5};  

O-A.out1 : boolean; 

O-A.out2 : boolean; 

V-A.out1 : boolean; 

 

ASSIGN 

init (Mode) :=Mode1; 

O-A.out1 := A3.O-A3.out;  

O-A.out2 := A4.O-A4.out;  

V-A.out1 := A3.V-A3.out;  

 

next(Mode) := case 

Mode = Mode1 & O-A.out1 : Mode2;  

Mode = Mode1 & O-A.out2 : Mode3;  

Mode = Mode1 & V-A.out1 : Mode5;  

Mode = Mode2 & O-A.out2 : Mode4;  

Mode = Mode3 & O-A.out1 : Mode4;  

Mode = Mode3 & V-A.out1 : Mode5;  

Mode = Mode5 & O-A.out1 : Mode2;  

1: Mode;  

esac; 

... 

Figure 35: NuSMV model for system A   
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MODULE SubsystemA3 (O-in1, O-

in2)  

 

VAR 

O-A3.out: boolean ; 

V-A3.out: boolean; 

BEA3 : boolean ; 

VBEA3 : boolean ; 

Mode: {Normal, Fail};  

 

ASSIGN 

 

init (BEA3) := 0 ; 

init (VBEA3):= 0 ; 

init (Mode) := Normal;  

O-A3.out := BEA3 | (O-in1 & O-

in2) ; 

V-A3.out := VBEA3 ;  

 

next (BEA3) := case  

BEA3 =1 : 1 ; 

1 : {1,0} ;  

esac;  

 

next (VBEA3) := case  

BEA3 =1 : 1 ; 

1 : {1,0} ;  

esac;  

 

next(Mode) := case 

Mode = Normal & O-A3.out : 

Fail;  

1: Mode;  

esac; 

 

O-in1  

O-in2  

Failure propagation of 

SubsystemA3  

O-A3.out  

V-A3.out  

BEA3  

O-A1.out 

O-A2.out 

Figure 36: Failure propagation for subsystem A3 
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MODULE SubsystemA1 

 

VAR 

O-A1.out: boolean ; 

BEA1 : boolean ; 

Mode: {Normal, Fail};  

 

ASSIGN 

init (BEA1) := 0 ; 

init (Mode) := Normal;  

O-A1.out := BEA1;  

 

next (BEA1) := case  

BEA1 =1 : 1 ; 

1 : {1,0} ;  

esac;  

 

next(Mode) := case 

Mode = Normal & O-A1.out : Fail;  

1: Mode;  

esac; 

 

 

O-A1.out  

BEA1 

Failure propagation of 

SubsystemA1 

 

MODULE SubsystemA4 (O-in1)  

 

VAR 

O-A4.out: boolean; 

BEA4: boolean; 

Mode: {Normal, Fail};  

 

ASSIGN 

init (BEA4) := 0 ; 

init (Mode) := Normal;  

O-A4.out := BEA4 & O-in1;  

 

next (BEA4) := case  

BEA4 =1 : 1 ; 

1 : {1,0} ;  

esac;  

 

next(Mode) := case 

Mode = Normal & O-A4.out : 

Fail;  

1: Mode;  

esac; 

 

 

O-in1  
O-A4.out  

BEA4  

O-A2.out 

Failure propagation of 

SubsystemA4 

Figure 37: Failure propagation for subsystem A4 

Figure 38: Failure propagation for subsystem A1 
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One of the benefits of systematic establishment of connections and failure propagation 

is a better traceability between design models.  It allows the designer to visit earlier 

models to see if they are still correct and re-examine any design decisions that were 

made based on the analyses of these systems. This subsequently enables verification of 

early hypotheses as details become more available. If errors are discovered during 

model checking on these NuSMV models, it is possible to trace the errors to earlier 

design decisions and investigate the effects of early assumptions.  

In summary, the input, process and output of this process are:  

Input   Functional model annotated with failure information  

 FMEA results showing relationship between failures   

Process   Identification of modes (states) and events  

 Construction of state machines from FTA/FMEA results  

Output  System state machines  

 NuSMV model  

MODULE SubsystemA1 

 

VAR 

O-A2.out: boolean ; 

BEA2 : boolean ; 

Mode: {Normal, Fail};  

 

ASSIGN 

init (BEA2) := 0 ; 

init (Mode) := Normal;  

O-A2.out := BEA2;  

 

next (BEA2) := case  

BEA2 =1 : 1 ; 

1 : {1,0} ;  

esac;  

 

next(Mode) := case 

Mode = Normal & O-A1.out : Fail;  

1: Mode;  

esac; 

 

 

O-A2.out  

BEA2 

Failure propagation of 

SubsystemA2 

 

Figure 39: Failure propagation for subsystem A2  
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3.7 Application of Model Checking  

Once state machines are constructed and translated into the model checking input 

language, formal methods can be used to validate system requirements.  

The background of model checking has been introduced in chapter 2. In this section, 

attention is primarily drawn to the value of model checking as part of IACoB in early 

design stages; classes of requirements and properties that can be verified; and common 

errors discovered through early application of model checking.  

General steps involved in this process are:  

1. Generation of a NuSMV model  

2. Creation of a specification that defines a property which is required of 

the model  

3. Running of model checker 

4. Model checker produces confirmation statement if the property holds or  

produces a counter example if the property is breached 

5. Based on the results of the model checker, analysis takes place to 

determine whether modifications are required for: 

i. Design of model  

ii. Formulation of properties  

System specifications and requirements which are expressed in temporal logic can 

generally be classified into different categories.  (Bérard et al., 2001) distinguishes these 

properties that can be verified by a model checker into: reachability, safety, liveness and 

fairness properties. 

3.7.1  Reachability 

Reachability properties define that a particular configuration φ (a state in the Kripke 

structure) of the model can be reached. Three possible variations of such properties can 

be distinguished, as shown in the following CTL logic:  

 Reachability from the current state: EF φ 
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 Reachability from any execution state: AG EF φ 

 Reachability from under some condition σ: E[σ U φ]  

3.7.2 Safety  

Safety properties define that under certain conditions, configuration φ never occurs. 

This can only be proven if all execution paths are explored, therefore a CTL logic that 

can be used to specify this is:  

AG (! φ) 

 

A common application of a safety property is the analysis of mutual exclusions. For 

example, a CTL expression that specifies σ and φ are to be mutually exclusive:  

AG !(σ ˄ φ) 

 

Safety properties can also be used to formulate configurations where a desired property 

holds:  

AG φ 

 

3.7.3 Liveness  

Liveness properties define that under certain conditions, a Kripke state where 

configuration φ holds will eventually be reached.  

One common application of a liveness property is the analysis of response to 

configurations. For example, a specification which states that whenever σ holds, 

eventually a state must be reached where φ holds:  

AG (σ -> AF φ) 
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It is also possible to specify in a liveness property that whenever σ holds, some 

responding state where φ holds will be visited within m to n time units. Time in 

NuSMV can only be measured qualitatively in terms of execution steps. Abounded 

liveness property specifies when some response is required.  In NuSVM, this bounded 

liveness properties can be formulated in CTL:  

AG (σ -> ABF m..n φ) 

 

3.7.4 Fairness 

Fairness properties define that under certain conditions, states where some property φ 

holds will occur infinitely often.  

Fairness properties are expressed in LTL, and are not expressible in CTL format 

because it is not possible to specify that some expression holds repeatedly (Huth &  

Ryan,2000). In NuSMV, fairness constraints can be introduced with the inclusion of 

“FAIRNESS φ;” which corresponds to  

GF φ 

 

in LTL, this expression defines that state φ holds continuously without interruption.  

3.7.5 Common Errors Discovered Through Model Checking  

Considering the fact that the general application of model checking has been primarily 

targeted at mature design models, it is important to understand and determine its values 

at earlier design stages. (Miller et al., 2003) and (Tribble & Miller, 2003) presented case 

studies which demonstrate that formal models can be effectively used to find errors 

before implementation of the system. One common error found through model checking 

is inaccuracy in the original requirements (or how it was phrased). This generally leads 

to modifications to refine the requirements to be more specific and accurate.  

Other errors could involve situations where more than one input arriving at the same 

time and in combination drives the model into an unsafe state.  There are several ways 
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to deal with simultaneous input events, for example: stating a rule whereby only one 

input variable can change in any step (Miller et al., 2003). Additional logic is included 

to assign priority to multiple events, and when simultaneous input events occurs, lower 

level priority events can either be discarded or stored in a queue for processing in 

succeeding steps.  

(Juarez-Dominiguez, 2008) also highlights the importance of model checking in 

detecting hazardous interactions between system features (e.g. software components). 

These software components which control mechanical components are often developed 

in isolation, and their combination can sometimes cause unexpected or undesired 

system behaviour. Model checking can be used to detect these hazardous combinations 

in a design.  

In chapter 4 and 5, we demonstrate how in practice model-checking can be usefully 

employed to verify or not the satisfaction of properties on behavioural models 

constructed using IACoB method.  

3.8 Potential for Automation 

Currently, the translation process between the different models in IACoB is performed 

manually. In the context of a larger, more complex system, this can become an error-

prone process. To address this, we note the potential for automation in IACoB. The key 

aspects of the process which can be automated include the translation from HiP-HOPS 

annotated model to NuSMV model.   

The construction of NuSMV models from HiP-HOPS annotated model can be achieved 

by mapping the failure information as discussed in section 3.6.4. As mentioned 

previously, this results in a failure-extended NuSMV model (error model). Basic states 

and transitions can be assigned by default for each module. The basic states generally 

include Normal state to describe states where component functions as intended, and Fail 

state(s) to describe states where failure(s) of component occurs. The default transitions 

between these basic states are described using the corresponding events which are the 

causes of the failure.  
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The following is a sketch of hips2smv algorithm. It presents steps which can be used to 

describe the translation process from HiP-HOPS annotation to the NuSMV model. 

For each component, a NuSMV module is created within which the following steps are 

performed: 

 Step 1: Identify input parameters  

The input parameters of a NuSMV module are the input deviations of that component. 

To identify these input deviations, we use HiP-HOPS fault tree synthesis algorithm 

which provides a record of the deviations for each input port of the component.  

 Step 2: Declare the internal variables  

Internal variables which can be assigned automatically from HiP-HOPS models 

typically include the internal malfunctions, output, and output deviations. These are 

declared as Boolean data type.  

 Step 3: Specify initial values for the internal variables  

Initial value of internal malfunction and output deviations are set to 0 by default, 

reflecting the assumption that the system starts from normal state.  

 Step 4: Define output deviation  

Output deviation is defined according to the failure expression provided in HiP-HOPS 

annotation. It is described in terms of basic events and input deviations.  

 Step 5: Specify next value for internal variables  

The „next‟ notion in NuSMV relates current and next state variables to express 

transitions. As mentioned previously, once internal variables occur (set to 1), the next 

value stays at 1 as it is persistent throughout the entire run. Next value of output 

deviation can also be defined here in relation to current value of internal malfunction 

and input deviations.  
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In addition to modules which represent components in the system, a MAIN module is 

also constructed for each NuSMV model to:  

 Construct instances of all component modules.  

 Define the connections between components modules. This is achieved by 

connecting the parameters of each component module‟s input ports (and 

supplying them as input parameters) to the corresponding output ports of other 

module which is connected to it.  

Refinement of these state machine transitions (using ways described in sections 3.6.3 

and 3.6.4) can also be automated. The algorithm for refinement through minimal cut 

sets works by constructing one main NuSMV module to model the internal 

malfunctions of all components. The initial state of the system is set to Normal, and all 

internal malfunctions are set to be absent. The output deviation is defined in terms of its 

minimal cut sets generated from the FTA, as opposed to defining it in terms of input 

deviation and internal malfunctions.  

The refinement through compositional annotation can be achieved using the algorithm 

described above where one NuSMV module is constructed for each component. This 

way, the structural, hierarchical and failure propagation information are retained.   

This automation is particularly useful for refined state machine when establishing 

failure connections between components are more crucial than describing system states 

and therefore it is sufficient to use basic states and transitions.   

However, there are also several aspects of the process that require human intervention.  

In general, human intervention is required to obtain information on the system dynamic 

behaviour which is not captured in the initial CSA model. This may include:  

1) Description of system states  

In addition to the basic states (Normal and Fail states) which are automatically 

assigned, other classifications of system states (for example, degradation states) 

may be required. These inputs need to be manually specified and defined. This is 

particularly important in the early abstract state machines where degradation 

states play important roles in the understanding of system high-level behaviour, 

which are not captured in CSA‟s HiP-HOPS model.  
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2) Description of system transitions  

In addition to basic transitions (from normal to fail states), specification on how 

the system moves from one state to another (for example, to a degraded mode) 

also need to be specified.  

3) Requirement specification  

Requirement specification needs to be manually provided by the analysts in 

terms of CTL.   

These processes which require human intervention can be assisted with improved 

support tool, for example, by extending current editor tool, storing frequently-used 

specifications in a library, or by introducing graphical tool for state machine (please see 

future work session).  

3.9 Chapter Summary  

In summary, this chapter describes the IACoB process which consists of a number of 

key phases, along with the following main activities involved in each phase:  

Phase  Input  Process  Output  

Construction of 

system 

functional 

model 

Or in later 

stage, 

architectural 

model  

Requirements  

Or in later 

stage, a less-

refined model  

Identify, define and relate 

functions  

Translate requirements into 

functional model 

Or in later stage, refinement of 

model 

Functional model 

Or architectural 

model 

Severity 

assessment of 

output function 

(or component)    

System 

functional 

model  

(or 

architectural)   

Estimate risk and classify the 

severity of output function (or 

component) failures based on 

their consequences  

Severity analysis 

of output 

functions 

(components)  

Narrowed focus 

on higher priority 

functions (or 

components)   

Establishing 

local failure 

behaviour  

System model  Establish failure information 

for each functional (or 

architectural) block  

Functional model 

with data 

information  
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Establish causes 

of output failure 

Fault tree and 

FMEA 

synthesis and 

analysis  

System model 

with local 

failure 

behaviour  

Generate FTA and FMEA for 

system model  

Identify weak points in system 

design 

Effects of failure  

on output function 

(or component)  

Better 

understanding of 

the criticality of 

function (or 

component)  

Generation of 

state machine  

System model 

annotated with 

failure 

information  

FMEA results 

showing 

relationship 

between 

failures 

Identify modes and events  

Construct state machine from 

FTA/FMEA results  

System (abstract) 

state machines 

NuSMV models  

Model 

Checking  

NuSMV model  Apply model checking to 

verify system 

Affirmation or 

counterexample  

The application of the whole process is illustrated in the next chapter. 

Overall, IACoB combines the advantages of compositional safety analysis such as 

simplicity, efficiency and scalability, with the benefits of formal verification such as the 

ability to perform verification of safety requirements on dynamic models of the system. 

This helps increase confidence in the design and leads to an improved model-based 

safety analysis process compared to the reliance of only one technique. In terms of 

identifying potential failures, the part of IACoB which employs CSA focuses on the 

relationship (causes and effects) of failures between components. The application of 

BSA can potentially further uncover errors as it takes into consideration component 

dynamic nominal behaviour (and their interaction with failures).This can potentially 

uncover new failures which have not been anticipated in CSA. For example, weakness 

in the design of logical connections or flow of information between components. This is 

illustrated in the case study presented in Chapter 5.  
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CHAPTER 4. Case Study on Brake-by-wire 

Functional and Behavioural Analysis of a Brake-by-

wire System 

This chapter demonstrates application of the IACoB method. We present a case study 

which explores the design and analysis of a simplified brake-by-wire system for cars. 

The study produces safety analyses which help us to gain better understanding of this 

system. The analysis deliberately starts from a simple model, where fault-tolerant 

functions and other well-established heuristics for good design in such systems have 

been omitted. The idea is to demonstrate how the proposed process could systematically 

help designers arrive at such measures.  

The case study consists of two main system models, namely a purely functional model 

and a model where functions have been allocated to an architecture of components, to 

exemplify different application stages for the process.  

The case study is structured as follows: in section 4.1, the vehicle brake-by-wire system 

is introduced. The safety assessment of this system is discussed in 4.2. Section 4.2.1 to 

4.2.2 describe the construction and analysis of fault trees, FMEA and a mode chart for 

the design. Safety requirement properties are discussed in section 4.2.4 and the system 

design is checked against the predefined list of properties. Section 4.2.5 discusses the 

ways to refine transition events in the mode chart by exploiting results from FMEA. 

This is followed by section 4.3, which presents a scenario where a more detailed 

architectural model for the system is derived. In sections 4.3.1 and 4.3.2, both single 

failure and multiple failures FFA, FTA/FMEA are performed for this revised model, the 

relevant mode chart is constructed and the system is again verified against safety 

requirements.  

4.1 Introduction to Brake-By-Wire System 

Brake-by-wire systems are a recent drive-by-wire technology in the automotive 

industry. Drive-by-wire technology employs electronic control systems which use 
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electromechnical actuators to replace traditional hydraulic and mechanical control 

systems. Brake-by-wire systems replace traditional automotive braking components 

(like brake boosters, pumps, and master cylinders) with electronic sensors and actuators. 

Although the application of brake-by-wire is not as widely commercialized in relative 

comparison to its x-by-wire counterparts (x representing commanded action) like 

throttle-by-wire, or steer-by-wire (Langenwalter, 2004), many experts believe that 

brake-by-wire systems will eventually become common in the future (Carley, 2004).  

Nossal and Lang (2002) presented a model-based approach to building an x-by-wire 

application.  

Brake-by-wire systems can be classified into two types: brake-by-wire with hydraulic 

backup and brake-by-wire without hydraulic backup. Brake-by-wire with hydraulic 

backup, also called Electric Hydraulic Brake (EHB) is realized through hydraulic pumps 

and additional electrically controlled valves. If the electronic control fails, the complete 

electric hydraulic system will be deactivated and the brake system will behave like a 

pure hydraulic system which delivers only emergency brake function with reduced 

brake force.  Brake-by-wire without hydraulic backup is often known as Electric 

Mechanical Brake (EMB). EMB transfers electrical commands generated through the 

driver to computer controlled electro-mechanical actuators. EMB does not possess the 

fail-safe mechanics of hydraulic backup, and therefore must be developed with strict 

fault tolerant properties.   

The brake-by-wire system used in this case study is based upon a model provided by 

Daimler, but also draws from designs in (Hedenetz & Belschner, 2008) and (Colombo, 

2008).  The system consists of one vehicle-level processor and four local-level wheel 

processors. The vehicle-level processor reads in brake command input from the driver, 

communicated through a human-machine interface (for example, the brake pedal or 

parking brake interface), and subsequently generates braking command for each local-

level wheel processor based on high-level advanced brake functions such as an Anti-

Lock Brake System (ABS) or Electronic Stability Program (ESP). This braking 

command is broadcasted using two replicated data buses. Local-level wheel processors 

are located physically close to the wheels. Upon receiving braking command from the 

vehicle-level processor, each local-level processor calculates the value of braking 

pressure, taking into consideration various local-level information including actuator 
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position and speed. This value of braking pressure is then fed to an actuator which then 

applies the actual braking pressure on the corresponding wheel of the car. These 

functions are distributed using the Time-Triggered Communication Protocol (TTP) 

(Hedenetz & Belschner, 2008) which is especially designed for safety-related 

applications. The system is usually powered by two independent power supply units.  

To maintain the simplicity of this example, communication architecture and power 

supply units are not included in the discussion.  The physical configuration of the brake-

by-wire system is illustrated in Figure 40, which depicts the system general topology.  

 

Figure 40: General topology of Brake-By-Wire system 
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4.2 Analysis of System Functional Models  

In accordance with the IACoB method, we start the safety assessment process from a 

high-level functional model. For this simplified system, two initial main functions can 

be delivered: 1) Function which delivers basic braking 2) Function which delivers 

braking with driving assistance anti-lock (ABS). These two functions can arguably be 

combined into one as they are not physically distinct. In this early model, however, they 

are free from architectural detail and are modelled as two separate logical functions to 

facilitate the illustration of function delivery. If required, these functions can be 

combined with a conjoining function.   

The Matlab Simulink model illustrated in Figure 41 represents a high-level abstraction 

of the brake-by-wire system. It is simplified to consist of input functions, braking 

command processing functions (vehicle-level and local-level), ABS command 

processing function, and output functions. As local-level processing provides identical 

function for each wheel of the vehicle, we assume it is sufficient to discuss and analyze 

one (instead of all four) in this initial model. There are four input blocks which read in  

driver‟s initiated braking demand from brake pedal (Input_brakeDemand), readings for 

wheels‟ speed ( Input_wheelSpeed), external  variable readings (Input_external)  , and 

local-level feedback (Input_local). Information on brake demand, wheel speed and 

external environment is passed to the vehicle-level processing function 

(VehicleLevelProcessing) which calculates and generates the independent brake 

commands for each local-level processing (LocalLevelProcessing). It also relays the 

information needed for ABS calculation to the ABSProcessing function. The wheel 

local-level processing controls the output functions which provide basic braking or ABS 

braking. This early model does not yet incorporate any fault tolerance mechanisms.  
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Figure 41: Abstract functional model for Brake-By-Wire 
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4.2.1 FFA   

Once the model is constructed, we proceed to perform the FFA on the system. The main 

aim of this process is to classify and analyse the effects and severity of failures in the 

output functions, BasicBraking and ABSBraking. In this case the focus is placed on the 

omission and commission failure types, although it is also possible to perform analysis 

on value or timing failures. The following Table 7 presents an extended FFA which 

includes identification of detection, potential recovery plan and recommendation 

columns for each failure.  

Table 7:  Functional failure analysis of Brake-By-Wire 

Function Failure 

Type  

Effects on 

System  

Severity Detection  Recovery 

Plan 

Design 

Recommendation   

BasicBraking Omission No brake 

force ; 

vehicle 

cannot be 
stopped; 

driver loses 

control.  

Catastrophic  Using 

pressure 

feedback 

Not 

possible  

Redundant back 

up mechanism 

should be 

introduced  

BasicBraking Commission  Vehicle 

tends to 

drift; loss 

of stability  

Critical  Comparing 

pedal input 

(demand) 

and 

pressure 

feedback 

Release 

Pressure   

Commission 

failure should not 

be allowed to 

propagate 

ABSBraking Omission  Loss of 

steerability

; less 
efficient 

brake  

Marginal  Using 

feedback on 

wheel 
speed and 

pressure  

Not 

possible  

Situation can be 

compensated by 

driver 

ABSBraking Commission  No brake 

force 

available  

Catastrophic  Comparing 

wheel 

speed and 

pressure 

feedback 

 Switch 

off ABS 

function  

Commission 

failure should not 

be allowed to 

propagate  

 

From the examination of this FFA table, it can be seen that the severity of an omission 

failure of function BasicBraking (O-BasicBraking) is categorized as having a 

catastrophic effect, and therefore should be mitigated with fault tolerant design.  The 

second functional failure related to the provision of braking pressure is commission. 
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The commission failure in BasicBraking function (C-BasicBraking) is identified as 

having critical consequences and therefore should not be allowed to propagate and 

influence other functions in the wrong way. One way to achieve this is by detecting the 

commission failure, forcing the system to fail silent and then handling the omission 

accordingly by putting a fault-tolerant mechanism in place. The failure for the 

ABSBraking function is categorized as having catastrophic severity in its commission 

failure and marginal effects in its omission failure. This is due to the nature of the 

ABSBraking function which provides driving assistance rather than those of imperative 

role in braking. This suggests that it is more favourable for the function to fail in 

omission, and therefore the function should fail-silent when commission failure is 

detected.   

To perform FTA and FMEA, these functional blocks are annotated with failure 

behaviour before being analyzed by HiP-HOPS. Table 8 summarizes the internal 

malfunction of each of the function. To maintain the simplicity of this example, output 

blocks are modelled to be free from internal malfunctions, and instead can only 

propagate failures. 

Table 8:  Functional blocks internal malfunctions 

Function Failure Mode   Description  

Input_brakeDemand  BDBE Internal malfunction in function which reads 

in brake demand, causing Omission failure.  

Input_wheelSpeed  WSBE Internal malfunction in function which reads 

in wheel speed, causing Omission failure. 

Input_external  ESBE Internal malfunction in function which reads 

in external measurements, causing Omission 

failure. 

Input_local LSBE Internal malfunction in function which reads 

in local actuator measurements, causing 

Omission failure. 

VehicleLevelProcessing VLPBE Internal malfunction in vehicle-level 
processing function or which causes 

Omission failure. Most probably a hardware 

failure.   

VLPBEc Internal malfunction in vehicle-level 

processing function which causes 

Commission failure. Most probably a 

software failure.   

VLPBEabs Internal malfunction in vehicle-level 

processing function which causes ABS to be 

absent.  



119 

 

 VLPBEabsC Internal malfunction in vehicle-level 

processing function which causes anti-lock 

ABS to be instantiated without intention. 

ABSProcessing ABSBE Internal malfunction ABS processing 

function which causes anti-lock ABS to be 

absent.  

LocalLevelProcessing LLPBE Internal malfunction in wheel local-level 

processing function which causes Omission 

failure.  

LLPBEc Internal malfunction in wheel local-level 

processing function which causes 

Commission failure. 

Braking Energy  ActBE Internal malfunction in Braking Energy  

which causes Omission failure. 

ActBEc Internal malfunction in  BrakingEnergy  
causes Commission failure. 

 

4.2.2 FMEA  

As discussed in the earlier chapter, once the model has been annotated with its local 

failure information, fault trees can be generated and analyzed, and an FMEA can be 

obtained automatically using HiP-HOPS tool. The following Table 9 summarizes the 

FMEA results. The table defines how failures in other functional blocks propagate and 

contribute to failure O-BasicBraking, O-ABSBraking, C-BasicBraking and C-

ABSBraking. As the initial design does not include any fault-tolerant strategies, the 

table shows us how each internal malfunction in every function can become direct 

contributors to the omission and commission failures of the braking and ABS functions.  

Table 9: FMEA for Basic Brake-By-Wire functions 

Function  Failure 

Mode  

Direct Effect Severity  Comments/ 

Recommendation 

Input_brakeDemand BDBE O-

BasicBraking  

Catastrophic  Redundancy required   

Input_external ESBE O-

ABSBraking 

Marginal  

Input_local LSBE O-

BasicBraking 

Catastrophic  Redundancy required  

Input_wheelSpeed WSBE O-

ABSBraking 

Marginal - 

VehicleLevelProcessing VLPBEabs O-

ABSBraking 

Marginal - 
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VLPBE O-

BasicBraking  

Catastrophic  Redundancy required 

VLPBEc C-

BasicBraking  

Critical  Should fail silent 

 VLPBEabsC C-

ABSBraking 

Catastrophic VLPBE should not 

propagate and when 

detected, ABS should be 

deactivated.   

LocalLevelProcessing LLPBE O-

BasicBraking 

Catastrophic  Redundancy required 

LLPBEc C-

BasicBraking 

Critical Should fail silent  

BrakingEnergy  ActBE O-

BasicBraking  

Catastrophic Redundancy required 

 ActBEc C-

BasicBraking  

Critical  Should fail silent 

ABSProcessing  ABSBE O-
ABSBraking 

Marginal - 

To implement a more robust design, several advisable design changes can also be 

determined from an analysis of the FMEA table above. These are recorded in the 

recommendation column. Recommendation and Severity for each function correspond 

and reflect the severity and recommendation of the output function failures they cause.   

One important (and most obvious) technique to achieve fault-tolerance is the 

introduction of redundancy in the „module‟. Module here refers to function for 

functional model or components for the more refined architectural model.   

As an industry common practice,  fault tolerant design for brake-by-wire systems can be 

implemented through either the inclusion of a hydraulic system (in an EHB system) or 

through replicated electronic components (in an EMB system). For this example, we 

introduce a hybrid system which implements both hydraulic as well as redundant 

electronic modules (with lower numbers of redundant modules compared to a pure 

electronic EMB). Due to the cost and space constraints in automotive x-by-wire 

systems, it is often important to reach a compromise between the degree of fault 

tolerance and the number of redundant components (Isermann, 2004). For this example, 

it is assumed that it is sufficient for us to adopt duplex (i.e. consisting of two elements) 

redundant structure, which would enable a system to tolerate single-point failures.  

The analysis of FMEA in Table 9 therefore provides an insight that assists us in 

distinguishing critical functional failures that contribute to failures which have 
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catastrophic or critical consequences (O-BasicBraking, C-BasicBraking, C-

ABSBraking) from those that contribute to failures with marginal effects (O-

ABSBraking). This knowledge subsequently allows us to establish the appropriate 

resource management priority and design improvement. For example, we learnt that the 

failure in input blocks that detects braking demand (Input_brakeDemand) could have 

more severe consequences (causing O-BasicBraking) than other input blocks 

(Input_external) which failure only lead to O-ABSBraking. 

First we examine the input blocks. Two input blocks, the Input_brakeDemand function 

and the Input_local function, are identified to be the contributing causes to O-

BasicBraking which is catastrophic, and therefore it is necessary to configure these 

functions to be at least fail-operational by introducing a redundant module to backup 

each function. As mentioned earlier, failure in Input_external and Input_wheelSpeed 

only lead to O-ABSBraking and therefore in this example, will be tolerated. We also 

identified that there is a need to introduce redundant function for 

VehicleLevelProcessing as its failure also leads to O-BasicBraking. Additionally, 

LocalLevelProcessing can be connected directly to the function Input_brakeDemand to 

read raw braking command. This way, in the occurrence of a failure in the 

VehicleLevelProcessing function, basic braking command can still be obtained. 

Similarly, an omission failure in basic braking caused by internal malfunction in 

LocalLevelProcessing and BrakingEnergy can be mitigated by introducing redundant 

functions to support these critical functions.  

In addition to this independent redundancy for individual modules, we could also 

include a hydraulic function which acts as the group backup mechanism to provide 

emergency braking in the presence of failures that affect the electrical-based functions.  

Commission failures on both braking and ABS functions have been identified as critical 

and catastrophic respectively. It is therefore recommended that any function which leads 

to commission failure should fail-silent instead. This can be achieved by deactivating or 

switching off the function whenever commission failure is detected. This, in turn, 

transforms the commission failure into omission failure, which will then be treated 

accordingly.   



122 

 

To manage the redundancy for omission failure, we look into the redundancy technique 

mentioned earlier in Chapter 3. In our case, duplex dynamic redundancy configuration 

is adopted for two of the input functions, the vehicle-level processing, the local-level 

processing, and the braking energy functions. Figure 42 shows an example of redundant 

configuration for VehicleLevelProcessing which consists of main function VLP A and 

backup function VLP B. Third module VLP O is used to monitor their outputs, and in 

the case of failure, select to relay the correct output. To maintain the simplicity of this 

example, VLP O is assumed to be reliable enough to only propagate failures; and 

therefore their failure behaviours are not modelled. In practice, safety monitoring 

components like VLP O, although practically more reliable (with lower failure rate 

compared to modules they monitored), possess their own failure behaviours. More 

discussion on failure behaviours of fault-monitoring modules and detectability 

properties are presented in the chapter 6.   

   

 

Figure 42: Redundant module for Vehicle-Level Processing function 

The complete backup scheme structure for each function can be found in Appendix A.   

Figure 43 illustrates the revised model with backup components incorporated. Dark-

coloured blocks signify redundancy. To summarize, several key changes as a result of 

the examination of FMEA in Table 9 are:  

 Inclusion of redundant functions employing duplex configuration for input 

functions, VehicleLevelProcessing, LocalLevelProcessing, and BrakingEnergy 
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 Transformation of commission failure to omission failure in 

VehicleLevelProcessing, LocalLevelProcessing, and BrakingEnergy.  

 LocalLevelProcessing can be connected directly to Input_brakeDemand 

  Introduction of hydraulic backup mechanism.  

These key changes illustrate the strength and contribution of CSA towards the 

improvement of the system design, in particular, the identification of the system critical 

points. By identifying and addressing design weakness in these critical points early, a 

more robust revised design can be formulated before the design progresses further.  
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Figure 43: Revised model with duplex redundant mechanism   
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The inclusion of these new redundant mechanisms results in the introduction of new 

failure behaviours, which requires the FTA and FMEA to be updated. The new fault-

tolerant redundant structure means that there are no longer any single-point failures 

which directly cause O-BasicBraking.  As there is no backup for functions 

Input_external ,Input_wheelSpeed, and ABSProcessing  they are shown to directly 

cause direct effect to O-ABSBraking in the updated FMEA table. The rest of the 

functional failures which causes O-BasicBraking in combination with other functional 

failures are recorded in FMEA Table 11:   

   

Table 10: Direct ffects FMEA for revised model 

Function  Failure Mode  Direct Effects 

ABSProcessing ABSBE O-ABSBraking 

Input_external ESBE O-ABSBraking 

Input_wheelSpeed WSBE O-ABSBraking 

 

Table 11: Further Effects FMEA for revised brake-by-wire for failure O-BasicBraking  

Function  Failure 

Mode  

Further Effects Contributing Failure  

ACT A ActBEc O-BasicBraking ActB.ActBEc AND 

HydraulicBackup. HBBE 

ActB.ActBE AND HydraulicBackup. 

HBBE 

ActBE O-BasicBraking  ActB.ActBEc AND 

HydraulicBackup. HBBE 

ActB.ActBE AND HydraulicBackup. 

HBBE 

ACT B ActBEc O-BasicBraking ActA.ActBEc AND 

HydraulicBackup. HBBE 

 ActA.ActBE AND HydraulicBackup. 

HBBE 

ActBE O-BasicBraking  ActA.ActBEc AND 
HydraulicBackup. HBBE 

 ActA.ActBE AND HydraulicBackup. 

HBBE 

HydraulicBackup HBBE O-BasicBraking  ActA.ActBE AND 

ActB.ActBE 

ActA.ActBE AND 
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ActB.ActBEc 

ActA.ActBEc AND 

ActB.ActBE 

ActA.ActBEc AND 

ActB.ActBEc 

Input_local1.LSBEa AND 

Input_local1.LSBEb 

LLPA.LLPBE AND LLPB.LLPBE 

LLPA.LLPBEc AND LLPB.LLPBE 

LLPA.LLPBE AND LLPB.LLPBEc 

LLPA.LLPBEc AND LLPB.LLPBEc 

Input_brakeDema

nd.IBDA 

BDBEa O-BasicBraking  Input_brakeDemand.IBDB. BDBEb 

Input_brakeDema

nd.IBDB 

BDBEb O-BasicBraking  Input_brakeDemand.IBDA. BDBEa 

Input_local.LSA LSBEa O-BasicBraking Input.localSensor.LSB.LSBEb AND 

HydraulicBackup.HBBE 

Input_local.LSB LSBEb O-BasicBraking Input.localSensor.LSA.LSBEa AND 

HydraulicBackup.HBBE 

LLP A  LLPABE O-BasicBraking  LLPB.LLPBE AND 

HydraulicBackup.HBBE 

 

 LLPB.LLPBEc AND 

HydraulicBackup.HBBE 

 

LLPABEc O-BasicBraking  LLPB.LLPBE AND 

HydraulicBackup.HBBE 

 

 LLPB.LLPBEc AND 

HydraulicBackup.HBBE 

 

LLP B LLPBBE O-BasicBraking  LLPA.LLPBE AND 

HydraulicBackup.HBBE 

 

 LLPA.LLPBEc AND 

HydraulicBackup.HBBE 

 

LLPBBEc O-BasicBraking  LLPA.LLPBE AND 

HydraulicBackup.HBBE 

 

 LLPA.LLPBEc AND 

HydraulicBackup.HBBE 
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4.2.3 Construction of Mode charts 

 FTA and FMEA can be iterated until the design model meets early predefined 

requirements, for example until a satisfactory level of redundancy configuration is 

achieved (i.e. system tolerant to n number of failures). In this case study, we assume 

that elimination of single point failures for O-BasicBraking is sufficient. As FTA and 

FMEA results have shown this, the design is deemed to be acceptable for the next stage 

of the process. This allows us to proceed and model the design dynamic behaviour by 

constructing an abstract state machine.  

To construct the state machine, it is first of all, important to identify the primary 

elements: abstract states (as discussed in previous Chapter 3, referred to as „modes‟) and 

transition events. Modes are derived based upon provision of system functions, which in 

this case are the BasicBraking function and the ABSBraking function. Each of the 

functional failures in the Table 7 then causes a transition to degraded or failed modes. 

Corrective measures can be identified through FFA or the fault trees which explore the 

causes of the failure. In general, these potential treatments can be classified into three 

categories: untreatable failures, failures that always require identical treatments, failures 

that require different treatments depending on root causes. In this example at this stage, 

the recovery plan is not taken into consideration, and therefore is not modelled in the 

mode chart. 

1) Normal (BBW_Normal) mode where both Braking and ABS functions are delivered  

2) Permanent Degraded (BBW_PD) mode where basic Braking is delivered, but ABS 

function can no longer be delivered  

3) Fail (BBW_Fail) mode where no braking pressure is delivered.  

The table summarizes system modes, related severity (whether mode is hazardous), 

functions delivered, potential functional failures that could occur in that mode, 

transition these failure could cause and the target mode after transition.  

Transitions can be formulated according to the failures that could occur to each of the 

functions; in this case, all such failures are of omission type as commission failures 

have been transformed into omissions by design. As explained in section 3.8, default 
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modes (BBW_Normal and Fail) can be automatically assigned. Degraded mode 

BBW_PD and its corresponding transitions, however, need to be manually described.  

Table 12 summarizes three modes the system that can be derived by considering the 

delivery of functions in which:  

1) Normal (BBW_Normal) mode where both Braking and ABS functions are delivered  

2) Permanent Degraded (BBW_PD) mode where basic Braking is delivered, but ABS 

function can no longer be delivered  

3) Fail (BBW_Fail) mode where no braking pressure is delivered.  

The table summarizes system modes, related severity (whether mode is hazardous), 

functions delivered, potential functional failures that could occur in that mode, 

transition these failure could cause and the target mode after transition.  

Transitions can be formulated according to the failures that could occur to each of the 

functions; in this case, all such failures are of omission type as commission failures 

have been transformed into omissions by design. As explained in section 3.8, default 

modes (BBW_Normal and Fail) can be automatically assigned. Degraded mode 

BBW_PD and its corresponding transitions, however, need to be manually described.  

Table 12: FMEA- ModeChart Assistance Table  

Mode  Severity  Functions Delivered  Functional Failure 

Causing Transition  
Target  Mode  

BBW_Normal  ABSBraking O-ABSBraking PD 

BasicBraking   O-BasicBraking Fail   

BBW_PD Marginal  BasicBraking  O-BasicBraking Fail  

Fail  Hazardous  - - - 

 

Based on this assistance table, we compose an abstract mode chart depicted in Figure 44 

which models the system dynamic behaviour at this early stage:  
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Figure 44: Mode chart for Brake-By-Wire  

The level of safety assessment (requirements verification) depends on the level of detail 

provided in the mode chart. For this reason, it can be useful to refine the abstracted 

mode chart.  Here, for example, to more closely reflect the inclusion of different type of 

pressure source, we could refine the function BasicBraking into Electrical and 

Hydraulic. This is made possible by the fact that we could utilize the current HiP-HOPS 

Matlab interface to set Electrical and Hydraulic blocks as „system outport‟ therefore 

allowing fault trees and FMEA to be constructed for these functions. In the following 

Figure 45, additional blocks Electrical and Hydraulic are placed to illustrate this. For 

this reason, Electrical and Hydraulic blocks do not have failures of their own and only 

propagate failures. This break-down allows a more transparent functional distribution. 
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Figure 45: Brake-By-Wire revised model showing Electrical and Hydraulic sources 
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In response to this, the original Normal and Degraded modes are now extended to 

reflect the modelling of Electrical and Hydraulic modules. Subsequently, dynamic 

behaviour can now be modelled in the following modes:  

1) BBW_Normal mode where both basic braking and ABS braking functions are 

delivered. Braking function in normal mode is delivered through the primary source, 

Electrical module.  

2) Permanent Degraded 1 (BBW_PD1) mode where braking function is delivered by 

the Electrical module, but the ABS braking function can no longer be delivered.  

3) Permanent_Degraded2 (BBW_PD2) mode where braking pressure is delivered by 

Hydraulic module, ABS function is not delivered.  

4) Fail mode where no braking pressure is delivered. These are summarized in the 

updated FMEA-Mode chart assistance Table 13, and depicted in the following Figure 

46 mode chart.  

Table 13: Updated FMEA-Mode chart Assistance Table 

Mode  Severity  Functions Delivered  Functional Failure 

Causing Transition  
Target  Mode  

BBW_Normal  ABSBraking O-ABSBraking PD_1  

BasicBraking  

(Electrical)  
O-Electrical  PD_2  

 BBW_PD1 Marginal  BasicBraking 

(Electrical)  
O-Electrical PD_2  

 

BBW_PD2 

Marginal  BasicBraking   

(Hydraulic)  
O-Hydraulic  Fail  

Fail  Hazardous  - - - 
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Figure 46: Updated mode chart  

4.2.4 Requirement Verification 

In keeping with the proposed process and to enable the verification of requirement 

properties, once the mode chart is constructed, it is converted into a NuSMV input 

model.  For this high level NuSMV model, four modules are constructed to represent 

the system main module and each functional module (ABSBraking, Electrical, and 

Hydraulic). The complete NuSMV model can be found in Appendix B.1.  

Among the requirement properties, safety requirements are often of primary concerns in 

this case study. The verification process here aims to investigate and verify that the 

design goals are achieved, while ensuring that the model conforms to the safety 

requirements.   In this scenario, designers are provided with a list of „safety 

requirement‟ (SR). These are presented and analysed throughout this section to 

exemplify the set of possible requirement properties. Possible general SRs which are 

expected to hold through the design are as follows:  

SR1:  Driving assistance function(s) shall never hazardously interfere with the system 

state.  

SR2: The system shall be able to withstand the occurrence of n failures, without 

entering a hazardous state.   
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SR3: Dormant functions shall only be activated when needed 

These requirements first have to be interpreted in terms of the behaviour specified in the 

mode chart model. One possible translation of SR1 for this model is that the driving 

assistance ABSBraking function, in its presence or absence, shall not cause the system to 

move into a hazardous mode. These can be expressed as the following SR1.1 and 

SR1.2:  

SR1.1: “The presence of the ABSBraking function shall not lead the system into Fail 

mode” 

SR1.2:  “The absence of the ABSBraking function shall not lead the system into Fail 

mode”  

Property SR1.1 can be interpreted as situation must not occur where the presence of 

driving assistance always results in the system entering Fail mode. Although relatively 

straightforward, this helps ensure the ABSBraking does not behave hazardously when 

selected. CTL property for this can be written as:  

!(AG(absB.Output = 1 -> SystemMode = BBW_Fail)); 

 

Apart from assuring that ABSBraking function behaves as expected in its normal mode, 

SR1.2 property can be interpreted as situation must not occur where omission failure in 

ABSBraking function always results in the system entering Fail mode. The CTL 

property can be written as:  

! (AG (absB.Output = 0 -> SystemMode = BBW_Fail)); 

 

The model checker confirms that these properties hold, and therefore we can be assured 

that as a non-critical function, failure in driving assistance ABSBraking will not dictate 

system failure.   

Next, the SR2 requirements can be investigated. SR2 checks the robustness of the 

system and aims to ensure that the system can tolerate a certain number of failures. For 

this, SR2 can be further refined into:  

SR2.1: “If the system is in normal mode, a single functional failure shall not cause it to 

move directly into hazardous mode”  
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This property aims to ensure that when a single functional failure occurs while the 

system is operating in its normal mode, the next state will be one of the degraded modes 

instead of the fail mode.  To model this, a failure counter is introduced in the NuSMV 

model to record the number of functional failure occurrences. The highest possible 

number of the counter is three as at this stage we are keeping track of three functions 

(the ABS function, the Electrical function and the Hydraulic function), and failures are 

assumed to be permanent. This can be expressed in CTL as:  

AG (((SystemMode = BBW_Normal) & (counter = 1)) -> AX !(SystemMode = 

BBW_Fail)); 

This property is also verified to be true by the model checker.  

One important thing to note is how inclusive the transition definitions are when 

modelling dormant functions. For example, the mode chart in Figure 46 is inclusive 

enough for the updated model if the hydraulic backup is a dynamic „cold standby‟, 

where the hydraulic back up is only activated when O-Electrical is detected. However, 

for dynamic „hot standby‟ where the hydraulic backup is continuously active, the 

transition definitions are no longer sufficient. This is because of the fact that if hydraulic 

backup is continuously active, it is possible for the system to experience a malfunction 

in the Hydraulic system (O-Hydraulic) when it is operating in BBW_Normal mode. If 

O-Hydraulic occurs in BBW_Normal, according to the mode chart in Figure 46, the 

system mode will stay in BBW_Normal, and when O-Electrical eventually occurs, the 

system will move to BBW_PD2 for one execution step before swiftly moving to 

BBW_Fail mode in the next step.  Although it is not technically wrong, this could create 

a false sense of security because the system is not expected to fail by the occurrence of 

O-Electrical in BBW_Normal mode, especially as the mode chart aims to show a 

systematic degradation phase. For this reason, it can be helpful to take into 

consideration Hydraulic functional failures (if it is activated) in modes where Hydraulic 

output is not expected (in this case BBW_Normal and BBW_PD1).  

One possible way to better address this is by introducing an additional temporary mode 

(BBW_TD1), to model the failures in the Hydraulic function when basic braking is 

provided correctly through Electrical system. This degraded BBW_TD1 mode could 

serves as a potential warning that the backup function has failed before the primary 
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function, a state in which potential recovery steps can also be included and performed. 

This can be illustrated in the mode chart in Figure 47 below. 

 

 

Figure 47: Modified mode chart for Brake-By-Wire 

SR3, however, works with the assumption that the Hydraulic backup function is 

activated only when Electrical module does not supply any output presssure (Figure 46). 

It aims to ensure only either one or another is activated at the same time. This 

interpreation and its CTL specification can be expressed as follow:  

SR3.1: “Both Hydraulic and Electrical power shall not be activated at the same time” 

AG !((Hydraulic.state = ON) & (Electric.state = ON)); 

4.2.5 Refinement of Transition Events  

As explained in the previous chapter, the level of detail in the verification is also 

dependent on the level of detail in the model itself. This phase of the process allows the 

brake-by-wire abstract mode chart (Figure 47) to be refined.  The refinement of 

transition labels of this mode chart can be derived from either the FMEA directly or 

hierarchically through the model failure behaviour described in the failure annotations.  
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4.2.5.1 Refinement of Transition Events through Minimal Cut Sets  

The first possible way to refine this mode chart is by replacing the transition event 

expression with its causing events, where the causing events can be effectively obtained 

and mapped from the HiP-HOPS FTA results. For each top event, its minimal cut sets 

can essentially be used to form the replacement expressions. In this case, Figure 48 

presents the fault tree for the condition failure “O-Hydraulic”. Figure 49 presents the 

accompanying mode chart incorporating the corresponding root causes as transition 

events. Compared to mode chart in Figure 47, the examination of this expanded mode 

chart allows analysts to establish direct links between internal module malfunctions and 

the effects of their occurrence on the system mode transitions. The expanded mode chart 

is considerably more informative and allows more verification properties to be checked 

(i.e. checking whether certain malfunctions or their combinations would lead to changes 

in system functionality modes). For example, instead of only being able to check the 

effects of O-ABSBraking, O-Hydraulic, and O-Electrical, this expanded mode chart 

allows us to ensure that malfunction events LSBEa and LSBEb will not always cause a 

transition to a hazardous state: “!(AG(LSBEa & LSBEb) -> (States = BBW_Fail));”  

One of the main advantages of composing the transition events directly from their root 

causes is the fact that the mode chart and NuSMV models can be build without the need 

to model every level of the component or module behaviour. This is useful for effective 

iteration of abstract verification before details of module behaviours become available. 

Once details for each module are available and more dynamic behaviours are to be 

modelled (for example, to include non-failure related transitions), the mode chart can be 

refined as described in section 4.3.2.  

 

Figure 48: Fault tree for Omission of Hydraulic Failure  
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Figure 49: Expanded mode chart with minimal cut sets mapped to transition events 
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4.2.5.2 Refinement of Transition Events through Model Failure Annotation  

As discussed in the previous chapter, it is also possible to construct the mode chart 

which captures and reflects the functional hierarchy by constructing independent mode 

chart and SMV modules for each function. To effectively link failure behaviour to input 

modules and capture the structural topology, transition events retain a similar structure 

to the ones of HiP-HOPS failure annotation. This means they are expressed only in 

terms of input functions and internal malfunction events. To illustrate this, Figure 50 

presents the structural model of BrakingEnergy (ACT) module which consists of 

primary and backup modules ACT A and ACT B. ACT receives its input from 

localLevelProcessings (LLP), and outputs the results of the process through ACT O. 

ACT O serves as the output module and only propagates failures.  

 

 

Figure 50: Structural model of Braking Energy 

As with all other HiP-HOPS models, it is annotated with failure information which 

describes its failure behaviour. The failure annotation for ACT A (which is identical 

ACT B) for describes the causes of omission failure O-Out as:   

O-Out = ActBE OR ActBEc OR O-in1 

This failure behaviour is identical for ACT B. This can be mapped into the mode chart 

and subsequently the NuSMV model. The following Figure.51 illustrates how the 
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failure annotation can be represented as the mode chart transition. As ACT A receives its 

input from LLP which is in the same hierarchical level as ACT A, O-LLP can be used to 

directly replace O-in1 in the mode chart.  ACT A can hold two failure-relevant modes: 

ActA_Normal (when it delivers its output) and ActA_Fail (when O-Out occurs and it 

fails to deliver its output). Once ACT A enters its ActA_Fail mode, it sends the 

appropriate global broadcast signal (“/O-ActA”) to announce the occurrence of O-Out 

in ACT A.  

 

  

Figure.51: Mode chart for failure behaviour in ACTUATOR 
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The translation of this failure behaviour in HiP-HOPS to a NuSMV model can also be 

done in a structured way. Module ACT A input variables are used to represent input 

deviations, while its internal malfunctions are defined locally. This way, failure 

expression can be directly represented in the local definition of O-Out which is then 

used to affect the outcome of Out. Module ACT B can be constructed in a similar way. 

And as ACT A and ACT B are subsystems of ACT, output deviations O-ActA and O-

ActB are passed as input deviation variables for module ACT. Main module manages 

the global architecture of the network and the broadcasting of events which enable 

transitions between modules. These are illustrated in the excerpt of a NuSMV model for 

an actuator module presented in the Figure 52:  

 

MODULE ACTA (O-in1)  

VAR  

O-Out: boolean;  

Out: boolean;  

ActBE: boolean;  

ActBEc: boolean;  

 

ASSIGN 

init(ActABE) := 0; 

O-Out := O-in1 | ActBE | ActBEc;    

Out := !O-Out; 

 

next(ActABE):=case 

ActABE = 1 : 1;  

1: {1,0};  

esac;  

 

next(ActABE):=case 

ActABE = 1 : 1;  

1: {1,0};  

esac;  

 

ACT A   
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MODULE ACT (O-ActAOut, O-ActBOut)  

VAR  

O-Out: boolean;  

Out: boolean;  

 

ASSIGN 

 

O-Out := O-ActAOut & O-ActBOut;    

Out := !O-Out; 

 

 

ACT  

MODULE ACTB (O-in1)  

VAR  

O-Out: boolean;  

Out: boolean;  

ActBE: boolean;  

ActBEc: boolean;  

 

ASSIGN 

init(ActABE) := 0; 

O-Out := O-in1 | ActBE | ActBEc;    

Out := !O-Out; 

 

next(ActABE):=case 

ActABE = 1 : 1;  

1: {1,0};  

esac;  

 

next(ActABE):=case 

ActABE = 1 : 1;  

1: {1,0};  

esac;  

 

ACT B 
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Figure 52: Excerpt of the NuSMV model for the Braking Energy 

This refinement of the NuSMV model captures and retains the hierarchical composition 

of the model and allows more detailed verification to be performed. By examining the 

relationships between the dynamic behaviour of modules it is now possible to verify 

more safety related requirements, from more straight-forward ones like “As long as 

Braking Energy ACT A is functioning, the Braking Energy function shall be present”, or 

for a cold-standby system which examines the electrical and hydraulic modules: “Only 

either Electrical pressure or Hydraulic pressure shall be supplied at one time”, to the 

 

MODULE main  

 

VAR  

 

llp: LLP;  

acta : ACTA(LLP.O-Out);  

actb : ACTB(LLP.O-Out);  

act: Actuator(acta.O-Out, actb.O-Out); 

 

Other_local_variables ... 

Other_definitions... 

... 

MAIN 

MODULE LLP( LLP_inputDeviation_variables...)  

 

VAR 

Out: boolean;  

O-Out : boolean;  

C-Out : boolean;  

LLPBE : boolean;  

LLPBEc: boolean; 

 

ASSIGN 

init(LLPBE) := 0; 

O-Out := LLPBE;  

Out := !O-Out;  

C-Out := LLPBEc;  

 

next(LLPBE) := case 

LLPBE = 1: 1; 

1: {1,0};  

esac; 

 

LLP  
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effects of this function behaviour on the system modes: “ System shall not be allowed to 

enter hazardous mode when Electrical system is functioning”.  

Although the processes of construction and refinement of state machines are currently 

manual, the potential for future automation has been outlined in Chapter 3.8. With 

IACoB, the construction of these state machines (presented in Figure 44, Figure 46, 

Figure 47, Figure 49, Figure.51, and NuSMV excerpt in Figure 52)  are no longer ad 

hoc, but made systematic with the help of FTA/FMEA results. The ability to verify 

listed safety requirements (SR 1.1 to SR 3.1) also highlights the benefits of the 

application of BSA at this early stage. 

4.3  Architecture-allocated Functional Model 

To illustrate the iterative application of the IACoB process in a more detailed design, 

we present another phase of analysis in an architecture-allocated functional model of the 

BBW system. The architecture-allocated functional model extends the purely functional 

model by taking into account early system architecture and concisely represents 

allocation of functions to architectural elements without going into fine details of the 

architecture. Figure 53 illustrates the architecture-allocated model of the system for the 

corresponding four wheels of the vehicle. This model is developed based upon the 

earlier functional model (Figure 45) and allocates functions to components.  

VehicleLevelProcessing function is assigned to (and therefore from now onwards 

referred to as) an ECU (electronic control unit). Similarly, each LocalLevelProcessings 

function is allocated to a BCU (Brake Control Unit) which, together with an actuator, 

are assigned for each wheel. It is common that multiple architectural components are 

assigned to perform a single function, or for a single components to be shared between 

multiple functions. Here ABSBraking function is realized by sharing BCU and actuators. 

ABS command is fed directly from ABS processing components to the BCUs to reflect 

the correct value of braking pressure applied by each actuator.  
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Figure 53: Architecture-allocated functional model for brake by wire system 
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In accordance with our proposed process, the iterative analysis begins again from the 

construction and analysis of an FFA, followed by an FTA and FMEA. At this phase of 

analysis, we place the focus on the BCU and the delivery of each wheel braking 

pressure as part of the whole brake-by-wire structure, and explore the relationship 

between the delivery (and absence) of this function from different wheels, as opposed to 

the independent analysis performed previously in section 4.2.  

The system delivers four braking functions, each handled by a BCU delivering 

commands to actuator for each wheel. The longitudinal symmetry of this functional 

design means that the potential single functional failures on each side of the car and 

their effects of the systems are similar to those on the other side of the car. For this 

analysis, single functional failure and multiple combinatorial failures will be 

investigated. 

4.3.1 Analysis of Single functional failure  

The first part of the FFA identifies potential single functional failures of the wheel 

braking function. Here we introduce a new type of failure, LockedWheel, and 

investigate the effects of this failure on the system. The LockedWheel failure occurs 

when a wheel experiences rapid deceleration (causing it to „lock‟) and stop much more 

quickly than the vehicle could. This is usually prevented by the ABS anti-lock function 

which alternately reduces the pressure to the brake until it sees acceleration, and 

increases pressure until it sees deceleration again. This is performed within a very short 

period of time, resulting in the slowing down of the wheel matching deceleration rate of 

the vehicle.   

In this example, the supervision of relevant parameters (e.g. wheel speed reading) and 

the processing of ABS commands are shared between ECU and ABS processing 

component. To maintain simplicity, we assume that the ABS processing component only 

propagates failure, and the failure in ECU is enough to cause failure in producing 

correct ABS command.  The LockedWheel (L-BrakingPressure) failure occurs when the 

new internal malfunction LockBE occurs in the BCU and at the same time the ECU fails 

to produce necessary command/information to instruct the ABS to prevent locking 

(Omission of ABS command or O-ABScmd). LockBE could represent an internal 
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failure in the BCU algorithm causing maximum brake pressure to be applied. This can 

be expressed in the following failure logic for the BCU:  

L-BrakingPressure = O-ABScmd AND LockBE 

Figure 54 presents a fragment of the architecture-allocated functional model to illustrate 

how failure can be propagated through the topology, eventually causing front-left (FL) 

wheel to lock:  

 

 

Figure 54: Failure propagation to BCU  
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Table 14 presents the FFA for single wheel braking function for front left wheel. 

Omission and commission failures were as addressed and treated in previous chapter 

(section 4.2), and the effects of wheel locking with or without braking intention are 

examined: 

Table 14: Functional failures for single wheel braking function 

Function Failure Type  Effects on 

System  

Severity Detection  Recovery Recommenda

tion 

FL_Braking

Pressure 

 

 

Locking-Com. 

 

Permanent 

wheel lock 

when there is 

no braking 

intention 

Vehicle 

tends to drift 

to side. 

Severe lost 

of control as 

maximum 

brake is 

applied  

Critical  Comparison 

of pedal 

input and 

pressure 

sensor 

feedback 

- Assume 

commission of 

brake pressure 

is transformed 

to omission of 

brake 

pressure. 

FL_Braking

Pressure 

 

 

Locking-Om.  

 

Permanent 

wheel lock 

when there is 

braking 

intention 

Vehicle 

tends to drift 
to side. 

Severe lost 

of control as 

maximum 

brake is 

applied 

Critical  Comparison 

of pedal 
input and 

pressure 

sensor 

feedback 

- ABS 

algorithm to 
prevent 

permanent 

locking.  

*Additionally, 

intentional 

locking of 

diagonal 

wheel  

4.3.2 Analysis of multiple functional failures  

Apart from single functional failure analysis, the effects of combinations of multiple 

functional failures in the vehicle wheels can also be examined. The analysis involves 

conjunctions of two to four functional failures, and combinations of failures that require 

further examination are identified. As the system incorporates four braking functions 

(one for each wheel) and there are six corresponding failure modes for each function, 

there appears to be a large number of possible combinations. However, a systematic 

analysis of unique combinations yields a relatively small number. The reason is that due 

to the symmetry of the brake-by-wire system, only certain combinations are unique. 

Certain failure combinations are also inapplicable because they can only occur in 

mutually exclusive modes, for example, braking and absence of braking. Here, analysis 

of the L-BrakingPressure failure is performed in a scenario where the locking occurs 
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when brake pressure is required. The full analysis of the FFA is too long to include and 

will not contribute much to this discussion. We focus on the analysis regarding wheel 

locking which shows that:  

 Severity of single wheel locking failure is critical and affects the stability and 

steeribility of the vehicle.  

 Severity of two locking failures in diagonal wheels is marginal because stability 

is improved. 

 Severity of three locking failures is critical.  

 Locking in all four wheels is identified as less severe than locking in three, or in 

some cases, two wheels.  

From these FFA results, we are able to identify recovery mechanisms against such types 

of failures by incorporating the ability to perform intentional locking: the intentional 

locking of a diagonal wheel can be performed in response to a single wheel locking 

failure, and intentional locking of all four wheels can be used as recovery mechanism to 

reduce the severity of a failure of three wheels.   

Working with the assumption that the recovery plan to unlock the wheel (e.g. by 

releasing pressure in time) is not possible, it is decided that the ability to intentionally 

lock the wheel can be incorporated as an additional function to each BCU. This new 

function enables intentional locking by applying maximum braking pressure to the 

wheel. An additional module (DL) is used to monitor the output of each BCU to detect 

locking failure (L-BrakingPressure) and subsequently activates the locking of 

corresponding diagonal wheel. This DL module can be implemented as part of the ECU 

or as a separate independent module. It is also possible to further analyse the failure to 

provide this intentional locking (omission and commission failure of DL). To maintain 

the simplicity of this example however, we assume DL only propagates failures and 

focus the analysis on the degradation phases the system experiences in the occurrence of 

wheel locking, and ensuring required safety properties hold during these phases. The 

revised functional model of the BCU can be seen illustrated in the figure below. FL 

indicates Front-Left wheel, FR indicates Front-Right wheel, RL indicates Rear-Left 

wheel, and RR indicates Rear-Right wheel.  
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Figure 55: Updated BCU for wheels with Intentional Diagonal Locking (DL)  

Following the introduction of the new function to enable intentional diagonal locking, 

we aim to analyze and verify that the system holds true the key safety requirements in 

its degraded mode.  And as with the earlier example, FTA and FMEA results are used to 

assist in the construction of a mode chart where this dynamic behaviour can be 

analyzed. FTA/FMEA results are used to derive root causes of locking L-

BrakingPressure for each wheel. This in turn enables us to study the how failures from 

different wheel propagates to cause the locking of the diagonal wheel, and if safety 

requirements still hold. 

Figure 56  presents the fault tree for L-BrakingPressure for FL wheel and the list 

minimal cut sets derived:  
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Minimal Cut Sets For L-FL_BrakingPressure:  

 FL_BCU.LockBE AND Input_wheelSpeedSensor.WSBE 

 FL_BCU.LockBE AND Input_externalSensors.ESBE 

 ECU.ECUA.ECUBEabsC  AND ECU.ECUB.ECUBEabsC  AND 

FL_BCU.LockBE 

 ECU.ECUA.ECUBEabsC  AND ECU.ECUB.ECUBEabs  AND 

FL_BCU.LockBE 

 ECU.ECUA.ECUBEabs AND ECU.ECUB.ECUBEabsC  AND 

FL_BCU.LockBE 

 ECU.ECUA.ECUBEabs  AND ECU.ECUB.ECUBEabs  AND 

FL_BCU.LockBE 

Figure 56: Fault tree for L-FL_BrakingPressure 

To understand how these root causes affect the changes in system modes and the 

activation of newly introduced intentional diagonal locking, we examine the dynamic 

behaviour of the DL module. In its normal mode, the DL module's function is to monitor 

for the occurrence of locking in any wheel and (when detected) instantiate the locking 

of the diagonal wheel. As mentioned earlier, the DL only propagates failures and 

therefore would only respond to external failures. So instead of modelling how it 

degrades in response to the failure of delivery of its monitoring and activating function, 

the modes are decided based upon the condition of locking of each wheel. The 

following modes are possible:  
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1) Normal:  when there is no wheel locking occurring 

2) TDn_Critical_ X : Temporary degraded mode when locking occurs in wheel(s) X 

with total n number of locking occur in the vehicle.  

3) PDn_ X:  Permanent degraded mode when locking occurs in wheel(s) X with 

total n number of locking occur in the vehicle 

X  here represents vehicle wheel(s): FL, FR, RL, RR. X ⊆ {FL, FR, RL, RR}. The states 

are mainly categorized based upon the n number of wheels locked (intentionally or not). 

Temporary degraded (TD) modes are marked as critical because they are only assigned 

to occurrence where either one or three wheels are locked, the occurrence of which has 

critical effects. These modes are temporary because the entry behaviour (which is 

executed immediately once the mode is entered) triggers event “/X DiagonalLock” 

which locks the corresponding diagonal wheel X, and therefore causes the system to 

move to a non-critical permanent degraded mode. Permanent degraded (PD) modes are 

not critical as they occur when two diagonal wheels or all four wheels are locked.  

Figure 57 below describes this relationship and the transitions between modes. Here 

assumption is made that DL is designed in such way that it processes one locked wheel 

signal at a time. In a real-life scenario, it is possible for locking of multiple wheels to 

occur within a time period so close to one another it appears to be occurring 

simultaneously. To handle this, the DL is assumed to be able to register the time 

difference and sequence of occurrence. This allows appropriate action to be taken (i.e. 

intentionally activating the locking of diagonal wheel if necessary) before processing 

the next locked wheel(s). 
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Figure 57: Mode chart for DL Controller  

  

The events that trigger the mode transitions are signals from individual BCUs to 

indicate wheel locking. This locking can be caused by an intentional locking command 

from DL or unintentionally as a result of L-BrakingPressure. Figure 58 presents the 

mode chart for the wheel BCUs.  

Front Left (FL) BCU  

 

Front Right (FR) BCU  
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Rear Left (RL) BCU  

 

Rear Right (RR) BCU  

 

Figure 58: Mode chart for Wheel BCU  

Similar to the previous process at this stage in section 4.2, we are able to extend the 

mode charts here by mapping the failure “L-X_BrakingPressure” to its minimal cut sets 

identified through FTA/FMEA (Figure 59 for FL wheel):  
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Figure 59: Expanded transition based on Minimal Cut Sets  

At this stage we could also construct the mode chart to reflect the hierarchical structure, 

and enable generation of a NuSMV model which captures all the relevant modules that 

trigger corresponding transition events in BCU. The figure below depicts the mode 

charts for the FL_BCU, ECU, and two input sensors relating to the failure O-ABScmd:  
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Figure 60: Mode chart for modules relating to Locking of Front Left (FL) wheel  

The corresponding NuSMV model for the FL_BCU is presented below. As the 

FL_BCU receives its input from the ABS module (please see Figure 53), the propagated 

input deviation O-ABScmd gets passed as its input variable. It also receives the 

command to intentionally lock its wheel from the DL, FLDiagonalLock (Figure 55), 

which is also passed as an input variable. Its internal malfunction LockBE is also 

included as part a local variable. These allow the forming of its output deviation failure 

expression: 

LockBE AND O-ABScmd OR FLDiagonalLock 

The complete SMV model can be found in Appendix B.2. 

MODULE FL(O-ABScmd, FLDiagonalLock) 

VAR  

States : {Normal, Locked} ; 

LockBE : boolean;  

counter : 0..1; 

FLlockSig : boolean;  

locked: boolean;  

 

ASSIGN  

init(States) := Normal; 

init(LockBE) := 0; 

init(counter) := 0; 

 

locked := (LockBE & O-ABScmd)| FLDiagonalLock;  

FLlockSig := case 

States = Normal : 0; 

1: 1;  

esac; 

 

next(States):=case 

States = Normal & locked = 1 : Locked;  

1: States;  

esac; 

 

next(LockBE) := case  

LockBE = 1 : 1;  

1: {0,1} ;  
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esac;  

 

next(counter):=case  

States = Locked : 1;  

1: counter;  

esac; 

 

This case, again, demonstrates how CSA assists the identification of root causes (of 

locking failure in a wheel), and its role in the construction of the system state machines. 

The modelling of the intentional locking (nominal behaviour) of diagonal wheels by DL 

Controller in response to the locking failure of other wheels highlights the role of BSA. 

By enabling the modelling of these different aspects of the system, IACoB allows a 

better understanding of the system dynamic behaviour and enables verification of safety 

properties in this context.  

For example, with this introduction of an intentional locking function, it is important to 

ensure that the system still adheres to the list of safety requirements (SR1 – SR3) 

defined in section 4.2.4. This modelling of modules and DL controller in behaviour in 

NuSMV subsequently allows verification of these safety properties for the extended 

model. Possible scenarios for safety and reachability of the control for intentional 

locking function can be examined. First we investigate SR1: “Driving assistance 

function(s) must never hazardously interfere with basic critical function(s)”. This is 

adapted into SR1.3 to reflect the fact that the driving assistance function (anti-lock) to 

be investigated here refers to intentional diagonal locking, and in addition to 

investigating whether it affects the braking pressure, we aim to ensure that the activation 

of diagonal locking will not cause unintentional locking which lead to hazardous states.    

SR1.3: “Intentional locking of diagonal wheel should not lead to hazardous state” 

To do this, “hazardous state” is defined as the condition either where one wheel locks or 

where three wheels lock, i.e. the occurrence of either TD1_Critical_ X or TD3_Critical_ 

X respectively:  

Hazardous := case 

States = TD1_Critical_FR |States = TD1_Critical_RL | States = 

TD1_Critical_FL | States = TD1_Critical_RR |States = 

TD3_Critical_FRRLRR |States =  TD3_Critical_FLRRFR | States = 

TD3_Critical_FLRRRL : 1; 

1: 0;  

esac;   
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The activation of DL (DLActive) is defined as the condition when any of the wheels has 

been diagonally locked intentionally:   

DLActive := FLdiagonalLock |  RLdiagonalLock |  FRdiagonalLock  | 

RRdiagonalLock; 

 

We aim to verify that the diagonal locking function itself will not lead to or always be 

the cause of the system entering this hazardous state. This can be expressed in CTL as:  

SPEC !AG(DLActive -> Hazardous); 

As this property is verified to be true by the model checker, the next SR2 - “The system 

shall be able to withstand the occurrence of n failures, without entering a hazardous 

state.  ” - can be investigated. Instead of counting the number of failures, the Counter 

variable is assigned to keep record of the number of locked wheels (whether intentional 

or caused by a failure). For this scenario, the initial aim here is to ensure that when the 

number of locked wheels is not one or three, the system should not reach the Hazardous 

state. This can be specified in the following SR2.2 and the accompanying CTL 

expressions:  

SR2.2:  “In situations where the number of wheels locked is not one or three, the system 

shall not enter the hazardous mode”  

SPEC AG((!(Counter = 1) & !(Counter = 3))->!Hazardous)); 

This property does not hold and the model checking traces demonstrate that the locking 

of two non-diagonal wheels at one point leads to locking of three wheels, which is 

Hazardous. With the current arrangement of DL, however, this means that the locking of 

two non-diagonal wheels should always eventually lead to the locking of all four 

wheels. Variable TwoParallelWheelsLocked is assigned to represent the locking of two 

non-diagonal wheels. This state of reachability can be verified through the following 

modified properties:  

SR2.2: “In situation where two non-diagonal (parallel) wheels are locked, all four 

wheels shall eventually be locked”  

TwoParallelWheelsLocked =(flw.States = Locked & rlw.States = Locked)|( 

frw.States = Locked & rrw.States = Locked) | (flw.States = Locked & 

frw.States = Locked) | (rlw.States = Locked & rrw.States = Locked) 
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AG(TwoParallelWheelsLocked -> AF(States =  PD4_AllWheelsLocked)); 

 

This property is verified to be true by the model checker, and therefore we are assured 

that non-diagonal locking of two wheels will also lead to locking of all four wheels 

(non-hazardous state).   

Next we continue to check the requirement SR3: “Dormant functions shall only be 

activated when needed”. In this scenario, intentional diagonal locking should only be 

instantiated when the ABS function is not working, as in its presence, the ABS would be 

expected to manage the prevention of wheel locking:  

SR3.2:  “Intentional locking of diagonal wheel shall not be instantiated when ABS 

function is working”  

For this, we need to again define the condition ALLOFF where no diagonal locking is 

taking place. For every situation where the ABS is working (therefore omission O-

ABScmd = 0), ALLOFF should be true. This can be expressed in CTL as:  

 

SPEC AG((O-ABScmd = 0)-> ALLOFF) ; 

 

This is also verified to be true by the model checker.  

Additional properties to check system robustness and failure recoverability could 

include the verification of whether intentional diagonal locking will always eventually 

result in the system moving from the hazardous state to a non-hazardous state. This 

aims to ensure that the DL fulfils its function as a fail-safe mechanism.  Non-hazardous 

states refer to the condition where either only two diagonal wheels are locked or all four 

wheels are locked, which brings us to the next requirement to verify, SR4:  

SR 4: “Intentional locking of wheels shall always eventually lead the system to non-

hazardous states”  

This can be modelled in CTL as:  

SPEC AF (DLActive ->! Hazardous); 
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This property aims to ensure that DLActive is performing its task to ensure system 

moves from a hazardous state to a non-hazardous state. This is also verified to be true 

by the model checker.  

4.4 Chapter Summary  

This chapter explored the application of the IACoB process in a vehicle brake-by-wire 

system. It investigated how the approach utilizes CSA and BSA to help perform safety 

assessment and influence system design in the early phase of the system development.  

Two main models were presented to highlight different discussion elements. The first 

model described high level system functional design where FFA and FTA/FMEA 

(CSA) were used to effectively identify root causes of hazardous functional failures (i.e. 

absence of braking pressure). Appropriate design modification and improvements, 

including introduction of backup mechanisms for critical functions, were then made to 

reduce or avert risk of failure. This was followed by formal verification (BSA) via the 

NuSMV model checker to verify that the design adheres to safety requirement 

specifications. The second model provided more details about allocation of functions to 

architectural elements. It explored a further particular failure (i.e. wheel locking) and 

subsequently recommended an additional new function (diagonal locking) to help the 

system respond to this failure. The integration of this function into the design and 

whether or not the predefined safety requirements specifications still hold were then 

analyzed.  

The proposed approach provides assistance in evaluating the design and allows both 

CSA and BSA to exploits analysis results from previous stages to help with the safety 

assessment. In particular, generation of the mode chart in order to enable BSA utilizes 

results from FTA/FMEA in the composition of its event transitions. The process also 

allows verification to be performed early on an abstract mode chart before more 

concrete details are available. 
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CHAPTER 5. Case Study on Aircraft Wheel Brake 

System  

5.1 Introduction to Aircraft Wheel Brake System  

This second case study aims to explore further the role of BSA in influencing the 

system design. It investigates the application of IACoB process to an aircraft wheel 

brake system. The model presented here is mainly an adaptation from the (ARP 4761) 

aircraft wheel brake system, which is also referenced in (Joshi et al., 2006).  

The main function of the wheel brake system is to provide safe braking function for 

aircraft during the taxiing and landing. This mainly involves supplying correct pressure 

and preventing skidding. Secondary functions of the wheel brake system also include 

preventing unintended aircraft motion when parked, and stopping main gear wheel 

rotation upon gear retraction.  

The braking system consists of two primary hydraulic pumps: GreenPump and 

BluePump. On Normal braking mode, GreenPump provides the required hydraulic 

pressure and the Alternate mode, which is powered by BluePump, is held on standby. 

When failure occurs on normal system, the brake is driven by hydraulic power 

generated by BluePump.  

In the original (ARP 4761) example, another backup mechanism was in place lest both 

of the pumps fail. Here, however it has been deliberately excluded in the beginning of 

this discussion to demonstrate how our process arrives to the conclusions for the need of 

the safety measures. Therefore in the initial system model of this example, it is assumed 

that one backup hydraulic pump (Blue Pump) is sufficient.  

In normal mode, BSCU (Brake System Control Unit) receives brake pedal positions as 

input and processes this information to produce control signals to the brakes. BSCU also 

monitors various input signals that indicate certain critical aircraft and system states to 

provide correct brake functions and improve fault tolerance mechanism, generate 

warnings, indications, and maintenance information to other systems.   
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5.1.1 Nominal system model  

The brake system used in this study is a modified version of the one used in ARP4761. 

Its architecture is illustrated in Figure 61.   

The system consists of the following main components: BSCU (Brake System Control 

Unit), two hydraulic pressure lines, mechanical components, and an output component. 

BSCU (Brake System Control Unit) is the digital controller in the system which accepts 

inputs to compute braking and anti-skid commands. Aircraft speed and deceleration rate 

are used when auto brake is true. For brevity, the auto brake function has been excluded 

from discussion. The BSCU itself consists of two redundant Command and Monitor 

units. The Command units perform the computation to output the required braking 

command as well as the anti-skid command. The Monitor units supervise their 

corresponding Command units, and when deviation is detected in the first Command 

unit, the second unit is selected. When both Command units are detected to be invalid, 

BSCU is said to be invalid. 

Two hydraulic pressure lines - Normal (green line powered by GreenPump) and 

Alternate (blue line powered by BluePump) - are used. The GreenValve and the 

BlueValve are used to control the pressure from the GreenPump and the BluePump 

respectively. In normal working condition, GreenValve and BlueValve are both open to 

provide constant stream of pressure to SelectorValve. The SelectorValve selects only 

one of the two redundant hydraulic systems to prevent a situation where both the green 

and blue system provide pressure to the brake, with the green line selected by default. 

This pressure is relayed to corresponding meter valves which adjust the valve position 

to output the required amount of pressure based on the command from BSCU. WBS is 

an output function which outputs the pressure.  

The system switches to Alternate when one of these conditions occurs:  

1) GreenPump produces pressure below threshold (or omitted) 

2) Or when any other failures occur along the green line causing normal line output 

to fall below threshold (or omitted).  

Once BSCU decides that Alternate line should be activated, it sends an OnAlternate 

signal which   informs SelectorValve to inhibit any pressure from GreenValve.  The 
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SelectorValve in turn engages the Alternate mode and relay pressure from BlueValve. 

Once the system switches to Alternate, it will not revert back to Normal. Figure 61 

shows the basic system system structure. NormalP, AlternateP and WBS blocks are 

intermediate blocks which only propagate failures.  
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Figure 61: Simulink model of wheel brake system  
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5.2 FTA/FMEA  

Once constructed, the system model is extended with failure information. To maintain 

simplicity, each component is assumed to carry one internal malfunction which directly 

causes omission of the component‟s output. BSCU, however, has two types of internal 

malfunction, which are related to the Monitor and Command units. Inputs to the BSCU 

are assumed to be supplied as intended. Table 15 summarizes the failure information for 

each component. Although the analysis has been largely focused on omission failures, 

other failure types like „valve stuck at open‟ (causing commission failure) and „valve 

stuck at value‟ can also be included.  

Table 15: Internal failure for Wheel Brake System components  

Component  Failure Mode  Description  

GreenPump GreenPumpBE Internal malfunction in Green 

Pump which causes omission 

failure  

GreenValve GreenValveBE Internal malfunction in Green 
Valve which causes omission 

failure 

BluePump BluePumpBE Internal malfunction in Blue 

Pump which causes omission 

failure 

BlueValve BlueValveBE Internal malfunction in Blue 

Valve which causes omission 

failure 

CMD/Anti-SkidMeterValveG GCMDASBE  Internal malfunction in the 

command/ anti-skid green line 

meter valve which causes 

omission failure 

CMD/Anti-SkidMeterValveB BCMDASBE Internal malfunction in the 

command/ anti-skid blue line 

meter valve which causes 
omission failure 

SelectorValve selValveBE Internal malfunction in the 

Selector valve which causes 

omission failure 

BSCU CMDBE Internal malfunction in the 

BSCU which causes omission 

failure in both BSCU command 

units  

 MonitorBE Internal malfunction in the 

BSCU which causes omission 

failure in both BSCU both 

monitor units 
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Once failure extension of the model was completed, FTA and FMEA were 

automatically performed by HiP-HOPS. The derived FMEA shows how component 

failures contribute to the omission of pressure failure in WBS. As in the previous case 

study, the effects of component failures are distinguished between direct effects and 

further effects. The direct effect in Table 16 indicates that omission of the BSCU 

Command unit or the SelectorValve will directly contribute to the absence of WBS 

pressure. Additionally, the further effects table Table 17 shows that failures in hydraulic 

pumps, valves, and meter valves lead to omission of WBS pressure but only in 

combination with other failures.  

Table 16: FMEA Direct Effects for Wheel Brake System  

Components Failure Mode Direct Effects Severity Comments/ 

Recommendation  

SelectorValve selValveBE O-WBS.pressure Catastrophic  System should 
move to degraded 

mode. Failure 

should at most 

affect only anti-skid 

command. 

Introduce backup 

that read pedal 

positions 

separately.  

BSCU CMDBE O-WBS.Pressure Catastrophic Backup mechanism  

should be 

introduced to 
provide pressure in 

the event of 

SelectorValve 

failure  

 

Table 17: FMEA Further Effects for Wheel Brake System  

Components Failure Mode Effects Severity Contributing 

Failure Modes 

BluePump  BluePumpBE O-WBS.pressure Catastrophic  GCMDASBE 

GreenValveBE 

GreenPumpBE 

BlueValve BlueValveBE O-WBS.pressure Catastrophic  GCMDASBE 

GreenValveBE 

GreenPumpBE 
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CMD/AS 

MeterValveB 
BCMDASBE O-WBS.pressure Catastrophic  GCMDASBE 

GreenValveBE 

GreenPumpBE 

CMD/AS Meter 

ValveG 
GCMDASBE O-WBS.pressure Catastrophic  BluePumpBE 

BlueValveBE 

BCMDASBE 

GreenPump GreenPumpBE O-WBS.pressure Catastrophic  BluePumpBE 

BlueValveBE 

BCMDASBE 

GreenValve GreenValveBE O-WBS.pressure Catastrophic  BluePumpBE 

BlueValveBE 

BCMDASBE 

Direct reading of the FMEA shows that omission of either the BSCU Command unit or 

the SelectorValve directly lead to omission of pressure on the wheel-brake system. This 

absence of brake pressure is identified as a failure with catastrophic severity, and 

therefore single-points of failure CMDBE and selValveBE should be prevented. This 

can be achieved via introduction of backup mechanisms.  

In this case, an AccumulatorPump and a ManualMeterValve are introduced to support 

the hydraulic system. An Accumulator is an energy storage device which contains built 

up pressure that can be released when both Green line and Blue line fail.  The 

Accumulator supports the Alternate pressure line, and when activated the system is said 

to be in Emergency braking mode.  

5.3 Revised Model 

As shown in the revised model illustrated in Figure 62, the AccumulatorValve is 

introduced and placed between SelectorValve and ManualMeterValve. It receives and 

regulates pressure inputs from SelectorValve and AccumulatorPump. The 

AccumulatorValve also receives a signal from BSCU to indicate the activation of 

Alternate mode. When the system is running under Alternate mode and the 

SelectorValve is providing pressure, the AccumulatorValve does not produce any 

output. But in the case where Alternate mode is on and pressure from the SelectorValve 

is absent or falls under threshold, pressure from AccumulatorPump is released and 

supplied instead.  
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The second critical single-point of failure identified by the FMEA of the initial model is 

the combined failure of BSCU command units, denoted as CMDBE; this is a single 

failure representing the internal malfunction in both primary and secondary command 

units. CMDBE results in omission of the braking command signal being fed to the 

CMD/ASMeterValves, which are designed to supply correct value of pressure according 

to braking command. This subsequently results in the omission of both normal and 

alternate pressure lines. One solution to avert this failure is by enabling the system to 

also obtain the braking commands directly from mechanical pedal position of brake 

pedals. This way, failure in BSCU braking command units will only result in the 

absence of skidding prevention instead of complete loss of pressure. ManualMeterValve 

obtains the basic braking command from MechanicalPedal, which reads the pedal 

position input directly. If pressure is provided from AccumulatorValve, 

ManualMeterValve supplies the braking pressure for the system in emergency mode.  

The introduction of new mechanism means that FTA and FMEA analysis need to be 

updated. Iteration of the analyses is made efficient with the semi-automated nature of 

FTA and FMEA facilitated by HiP-HOPS. The results of HiP-HOPS analysis of the 

improved model which includes new components (AccumulatorPump, 

AccumulatorValve, ManualMeterValve and MechanicalPedal) and their failure 

annotations (partly adapted from (Johsi et al., 2006) show that there is no longer any 

single-point of failure. We assume that elimination of single point failure is sufficient 

and the design is deemed to be acceptable for the next stage of the process.  

The process continues with the construction of state machines that can be used for the 

purposes of a BSA.  These should record normal modes where the system delivers its 

main function of delivering brake pressure and degraded modes where assistance 

function like anti-skid have been lost or sacrificed. Anti-skid feature is only provided 

when the system is operated under normal or alternate condition. This is done with the 

simplified assumption that the pedal position command does not propagate any failure. 

NormalP, AlternateP and EmergencyP are intermediate blocks which only propagates 

failures.  
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Figure 62: Revised model for wheel-brake system 
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5.4 Construction of Mode charts  

The process proceeds to formulate system states based on delivery of functions. As 

mentioned earlier, WBS produces two different functions: provision of pressure and 

anti-skid. Although it is seemingly similar to the Brake-by-wire study presented in 

Chapter 4 (provision of brake pressure and ABS functions), we take slightly a different 

approach in grouping system modes according to the different way the model is 

presented.  

Based on the delivery of these functions and the different hydraulic lines through which 

pressure can be supplied, one possible way to categorize system modes is as the 

following:  

1) Normal (WBS_Normal) mode: where hydraulic pressure is provided by Green 

line, and anti-skid function is present.  

2) Degraded1 (WBSD1_ALTERNATE): where hydraulic pressure is provided by 

Blue line, and anti-skid function is present.  

3) Degraded2 (WBSD2_EMERGENCY): where hydraulic pressure is provided by 

Accumulator pump and anti-skid function is absent.  

4) Fail (WBS_FAIL): where there is no hydraulic pressure provided.  

Transitions between these modes can be formulated with the help of FMEA-ModeChart 

assistance table:  

Mode  Severity  Functions 

Delivered  

Functional 

Failure 

Causing 

Transition  

Target  Mode  

WBS_Normal - Hydraulic 

pressure 

supplied 

through normal 

(green) line and 
anti-skid 

function  is 

delivered  

O-NormalP WBSD1_ALTERNATE 
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WBSD1_ALTERNATE Marginal  Hydraulic 

pressure 

supplied 

through 

alternate(blue) 

line and anti-

skid function is 

delivered   

O-AlternateP WBSD2_EMERGENCY  

WBSD2_EMERGENCY Critical Hydraulic 

pressure 

supplied 
through 

emergency line  

O-

EmergencyP 
WBS_FAIL  

WBS_FAIL Catastrophic  No pressure 

supplied  
- - 

 

Mode chart for WBS can be constructed based on the information from assistance table, 

which is shown in Figure 63 below:  

 

Figure 63: Abstract state machine for wheel brake system   



171 

 

5.5 Model Design Evolution from Requirement Verifications  

Having constructed the abstract mode chart, we could then refine the state machines to 

engage the component behaviour. Translation from HiP-HOPS model to NuSMV 

automata model can be performed as described previously (please see section 3.8). This 

subsequently allows us to perform verifications on system model to ensure that it 

satisfies certain safety properties. As the design advances, both the formal model and 

safety properties are further refined to facilitate necessary lower level verification. It is 

then common to refine the state machine by including more specific parameter values 

(e.g. WBS pressure threshold in this case). 

Verification can be performed with or without constraints on the maximum number of 

faults that can occur. A scenario for this example can be the verification of the property 

that: “When there is omission of normal pressure, alternate will always replace it”. This 

property will not hold because after a certain number of component failures, alternate 

line will eventually fail. The specification can be revised by including specific 

assumptions, for example denoting the number of individual component failures 

deemed acceptable. 

Another interesting aspect of model-checking of this system can be discovered during 

the verification of simple properties like:  

SR5: “When output is not supplied by Normal Line, and there is no failure accounted in 

Alternate line, pressure shall be supplied from Alternate line” 

This property does not hold, and NuSMV produces a counterexample trace that 

demonstrates how the condition is breached. The counter example describes a scenario 

where although omission in output from CMD/ASMeterValveG (Normal line) is 0, input 

deviation and internal malfunction in CMD/ASMeterValveB (Alternate line) is 0, output 

for Alternate line – which is expected to be 1 in this situation – is also 0.   

Upon quick inspection, it is identified that the cause lies in the fact that the system 

employs dynamic cold standby. This information has been added manually to the 

NuSMV (state machine) models to reflect the different types of pressure line, and that 

only one can be active at one time. This means that the backup component is activated 

only when the primary component fails. To model this, we incorporate „activation‟ 
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control as part of the dynamic behaviour modelling of the backup component. 

Activation signal is essentially used to indicate whether the component is expected to 

provide output. This is particularly useful to accurately describe an omission failure. In 

describing an omission failure, it is important to distinguish between absence of 

component output due to the component being not activated (not needed) or due to 

actual failures. Therefore, it is no longer sufficient to define the output of a component 

exclusively based on the negation of omission output, but to also take into consideration 

whether the component is activated. Manual intervention is required to include this 

additional information on as it was not contained in the CSA model.  

To ensure that activation signal is taken into consideration within the modelling of 

CMD/ASMeterValveB for Alternate line, the following simple description exemplifies 

how output and omission of output can be described:  

Omission-Output = Omission-Input OR internal_malfunction 

Output = Active AND NOT(Omission-Output) 

Activation properties can be introduced to describe a set of conditions related to the 

component(s) activation. This helps outline the assumptions needed for verification of a 

safety properties, e.g. to check whether a specification holds when a certain component, 

or a set of components, are activated. For example, we could define activation of 

BackupComponents as the activation of either meter valve in Alternate line or the 

activation of accumulator valve. This enables us to verify properties such as the 

following safety requirement: 

SR6: When Normal line is functioning, no backup mechanism shall be activated.  

Which can be expressed in the following CTL statements, where Backup_Active 

representing condition when either green or blue meter valves are active:  

Backup_Active := CMD/ASMeterValveB.Active  OR AccumulatorValve.Active 

AG((WBS.Status = Normal) -> NOT(Backup_Active)) 

Information to describe assumptions and activation control like this requires manual 

intervention, as they are not captured in the initial CSA annotated model.  

Further examples of how component activation (or their deactivation) can affect the 

modelling and analysis assumptions in Altarica models can be found in (Bieber et al., 

2002).  
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In NuSMV automata model, an activation signal can be passed as an independent input 

parameter or can be assigned from the observation of other relevant input parameters 

(for example, the absence of specific component input). It is also possible to model the 

failure in the activation signal itself. However, in this example, the activation signal is 

assumed to be reliable and not associated with any failure.  

Verification is also useful to uncover overlooked flaws in design. For example, another 

counterexample is produced when we are trying to verify the following properties:  

SR7: When both Normal line and Alternate line are not producing output, as long as 

there is no failure accounted along the emergency line, the system shall not fail. 

This property, again, does not hold and NuSMV returns a counterexample. The 

counterexample indicates that it is possible for a situation to occur such that: when 

internal malfunction CMDBE occurs in BSCU command units – resulting in omission 

failure in both Normal and Alternate lines due to the absence of braking command – the 

AccumulatorValve does not produce output. This subsequently leads to the omission of 

output in the Emergency line, causing the system to fail.  

Upon closer inspection on the counterexample, it is revealed that this is because 

AccumulatorValve is assigned to monitor output from SelectorValve.  It is designed only 

to produce output when SelectorValve fails to supply pressure when system is in 

Alternate mode. In this situation, however, SelectorValve is functioning correctly by 

supplying pressure, and therefore AccumulatorValve does not output any pressure. This 

result in the absence of pressure supplied to ManualMeterValve, and subsequently 

absence of emergency line which lead to system failure.  

In comparison to an analysis performed based on CSA alone, this weakness would not 

have been detected. For example, we assume that condition „system fails‟ refers to the 

top event Omission of WBS system, which could be modelled as:  

O-WBS = O-NormalP AND O-AlternateP AND O-EmergencyP 

For the analysis of requirement SR7, assumption is made that all the minimal cut sets 

for O-EmergencyP are false. The following presents list of minimal cut sets for O-

EmergencyP: 
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MechanicalPedal.MPedalBE 

ManualMeterValve.ManualMBE 

BSCU.MonitorBE 

AccumulatorValve.AccValveBE 

AccumulatorPump.AccumPumpBE AND SelectorValve.selValveBE 

AccumulatorPump.AccumPumpBE AND BlueValve.BlueValveBE 

AccumulatorPump.AccumPumpBE AND BluePump.BluePumpBE 

In the occurrence of BSCU.CMDBE failure which causes omission in both O-Normal 

and O-Alternate, if all these minimal cut sets for O-EmergencyP are false, O-

EmergencyP is false. This implies that failure O-WBS will be false, indicating that the 

system will not fail. This could lead to a false belief that the design fulfilled SR7.  

Model checker has demonstrated how weakness in logical connection like this can be 

uncovered.  

One way to rectify this design weakness is by assigning AccumulatorValve to monitor 

output directly from CMD/ASMeterValveB. If output is not produced when system is on 

Alternate mode, AccumulatorValve should be activated and supply the required 

pressure. The following Figure 64 illustrates the revised model, which is assumed to 

have fulfilled the hypothetical list of safety requirements.  
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Figure 64: Revised model developed with assistance of model-checker  
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In summary, the application of IACoB and corresponding analysis results could help to 

either increase confidence about the safety of the design or identify design weaknesses 

that stimulate design iterations.  

As it has been demonstrated in this case study, CSA and BSA techniques described can 

be iterated as the design evolves and undergoes changes and refinements. Overall, the 

process can contribute towards a more controlled approach towards safety, which does 

not allow safety properties simply to emerge at the end, but attempts to guide the design 

using the result of a continuous safety assessment.  

5.6 Chapter Summary  

This chapter presented a second case study on an aircraft wheel-brake system. To 

demonstrate the application of IACoB at a later stage, an architectural model of the 

system was presented. This case study focused mainly on the value of the model 

checking and how it influences the evolution of the design. IACoB starts with the FTA 

and FMEA performed on the initial model. This provided an assessment of the fault 

tolerant level of the system, and the identification of the system critical points. The 

model was revised based on these analysis results, before model checking was 

performed to verify safety properties or functional correctness of the components. 

Through the model checking, we discovered several behavioural aspects of the model 

which can be improved, which otherwise, could not be detected through the use of 

FTA/FMEA alone. These mainly involved control logic (for example, the activation 

control of a component).  
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CHAPTER 6. Detectability   

Chapter 3 and Chapter 4 discussed the potential contribution of IACoB in fault tolerant 

design. The discussion so far has been focused on identifying critical points in the 

design, e.g. single points of hazardous failure, and on producing recommendations e.g. 

on location of functional and architectural redundancies. This chapter explores another 

aspect of fault tolerant design, that of “fault detection”.   

The term fault detection typically describes the process of identifying disturbances in 

processes and deviations from intended behaviour typically caused by component 

failures. Successful early fault detection means that measures can be taken to prevent 

the propagation of such disturbances. Fault detection has become increasingly important 

in many technical processes. 

Components often incorporate mechanisms for detecting errors propagated through a 

system. These mechanisms, in practice, can also fail to detect the faults. The notion of 

detectability used in this thesis precisely refers to the probability of fault detection to be 

performed correctly.  

6.1 Detectability in FMEA  

In the current industrial practice, it is possible to extend an FMEA table with an 

additional column to allow description of the „Detectability‟ of each failure. This can be 

done by identifying the means of detection, typically a monitoring mechanism that 

relies on observation of system parameters or an internal testing mechanism that 

constantly checks the health of a component. By studying this information, it is 

subsequently possible to establish how likely it is that the corresponding failure is 

detected. A detectability number can be assigned to rank the ability of these inspection 

techniques to detect failure modes. Detectability table, for example one that is presented 

in the Table 18 can be used to associate detection likelihood and the detection number. 

The assigned detectability number measures the probability of the failure goes 

undetected, which means a higher detection number signifies a higher probability that 

the failure goes undetected and therefore a lower probability of detection.  
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 Table 18: Detection Evaluation Criteria (Quality Associates, 1997) 

Detection  Criteria  Rank 

Absolute 

Uncertainty 

Design control will not and/or detect failure model; or there is no 

design control  

10 

 

Very Remote  Design control has very remote chance to detect failure mode  9  

Remote Design control has remote chance to detect failure mode  8 

Very Low  Design control has very low chance to detect failure mode  7 

Low  Design control has low chance to detect failure mode  6 

Moderate Design control has moderate chance to detect failure mode 5 

Moderately High  Design control has moderately high chance to detect failure mode  4 

High  Design control has high chance to detect failure mode  3 

Very High  Design control has very high chance to detect failure mode  2 

Almost Certain  Design control will almost certainly detect failure mode  1 

An example fragment from the FMEA table of a vehicle braking system is given in 

Table 19. Failure of function to provide Pressure (Primary and Backup) leads to 

omission of braking. This failure can be detected with a pressure sensor, with a high 

likelihood of correct detection.  

Table 19: Example of FMEA Table Extended with Detectability information  

Function 

  

Failure 

Mode 

Effects  Contributing 

Failure  

Severity  Detection 

Method  

Detectability 

Number  

Primary 

Pressure 

Internal 

Failure  

Omission of 

Braking   

Backup 

Pressure  

Catastrophic Can be detected 

locally using 

feedback from 

pressure sensor  

2 

... ... ... ... ... ... ... 

 

This calculation of detectability numbers in the FMEA is often used as part of the 

calculation for a Risk Priority Number (RPN). The RPN in a FMEA serves as a 

threshold value for evaluation of an action (or recommendation) against failure modes. 

An RPN is determined by calculating the product of severity, occurrence and 

detectability rankings. Recommended evaluation criteria for severity and occurrence can 

be found in (Quality Associates, 1997). Similar to severity ranking (discussed in 

Chapter 3), RPNs can be used to assist prioritisation of failure management.  
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6.2 Detection and Response to Failures  

At the level of system architecture, fault detection commonly involves monitoring 

functions which check variables against anticipated behaviour and generate alarms 

when necessary. Related functions often include automatic protection functions which 

initiate counteractions in response to detected hazardous failure; and fault diagnostic 

functions that locate the root causes of detected faults. For simplicity, we use the term 

detection module to represent the collection of these fault detection and response 

mechanisms, and the term target module to represent the systems or components it 

supervises.   

In practice, „detection modules‟ can be refined into several different types. (Adachi et 

al., 2010) and (Torres-Pomales, 2000) discuss four different types of common 

(particularly in software) fault detection and fault tolerance techniques: self-protection, 

self-checking, checkpoint-restart, and process-pair. Each technique uses a different 

approach in detecting and handling failure, e.g. by blocking or mitigating input failures 

to prevent them from reaching the target module, or by preventing a failure in its target 

module from propagating. 

Self-protection aims to protect the target module by ensuring that it is protected from 

external disturbances. This is done by detecting failures propagated from other (input) 

modules. Self-protection is able to detect all failure modes, but does not possess any 

mechanism to recover from detected failures. Therefore self-protection is often assumed 

to fail-silent when it detects failure.  

Self-checking enables detection of an internal error within the target module itself, and 

aims to block or mitigate the propagation of this failure. It requires internal information 

of the target module, and ports are established to enable this communication. When an 

internal failure occurs in the target module, the information will be sent to the self-

checking module. If the self-checking module successfully detects the failure, it blocks 

or reduces the failure. For instance, by, replacing the missing value with default 

parameter value and feeding it back to target module. This allows the target module to 

continue to work appropriately, unless when self-checking experiences failure itself. 
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The Checkpoint-restart technique detects failures and enables recovery by restarting the 

target module to a predefined restore-point. The Process-pair technique, on the other 

hand, employs redundancy which includes two identical modules. Its detection and 

recovery mechanisms are similar to those of checkpoint-restart but when failure is 

detected, a process-pair can complete execution without returning to stored check-

points. Instead, it uses redundant secondary module and when failure is detected, it 

switches from primary module to the secondary module.  

Logically, these fault tolerant techniques could perform their different mitigation 

strategies only after they successfully detect anomalies in target modules. Traditional 

limit-value based supervision methods of monitoring and automatic protection is often 

done by checking the measurable output variables against allowed limits. Although this 

is a simple and reliable technique, Isermann (Isermann, 2004) highlights its main 

limitation in that they often rely on relatively large change in the measurements, either 

after a large sudden failure or longer-lasting gradually increasing failure. It further 

discusses model-based fault detection techniques (for example, methods which are 

based on parameter estimation, parity equations, and state observers). Although these 

techniques improve classical fault detection methods, in practice there are cases where 

the detection module experience subtle failure and these failures affect the effectiveness 

of detection. Consequently, there is a need to represent and take into consideration the 

failure of the “detection module” itself during the modelling of the system failure 

behaviour.  This is precisely an area where this thesis has hoped to make a contribution. 

6.3 General Modelling of Detectability  

The inability of a detection module to correctly detect failure of the target module also 

means inability to take corrective action.  Further analysis shows a number of common 

scenarios:  

1) Case 1: The detection module fails to detect, and the failure of the target module is 

simply propagated to other parts of the system.  

2) Case 2: The detection module wrongly signals detected failure and inadvertently 

acts in the absence of failure in the target component.  
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3) Case 3: The detection module correctly detects failure, but then malfunctions and 

corrective measures fail to correct the failure of the target component.  

These scenarios highlight the different situations where a failure in detection module 

does not only cause the inability to prevent failure (through provision of counteraction), 

but also potentially affect the transformation between different failure types, or even 

the occurrence of new failures stemming from the detection module itself.  

Transformation between different failure types can also sometimes be part of the 

nominal behaviour of the detection module. In some scenarios, it is regarded as 

acceptable to transform one hazardous failure into different type of failure which has 

less hazardous consequences. For example, in a fail-silent scheme, the detection module 

is responsible for transforming value or commission failures into omission failures. But 

this failure transformation can only occur after the detection module has successfully 

detected the value or commission failure.  Note that to model this, it is no longer 

sufficient to represent failure behaviour because the “success” of the detection module 

can also contribute to a different more benign failure effect.  In this case, failure of the 

detection module means propagation of hazardous commission and value failures, while 

its success means transformation of these hazardous failures to more benign omissions. 

In order to describe such situations in the context of CSA, and more specifically in HiP-

HOPS analysis, we introduce the following general representation to describe the 

behaviour of a detection module:  

1) Event Failure (representing internal malfunction):  An internal malfunction of a 

detection module can affect failure behaviour just like any other component 

malfunction, and can be treated and analyzed as such. Figure 65 below illustrates an 

example of how internal malfunction Failure in detection module can play a part in 

the modelling of system failure. Detection_Module supervises the output of 

Target_Module. In the occurrence of internal malfunction BE, which causes 

omission failure, Detection_Module performs counteraction and provides correct 

output. However, Failure in Detection_Module alone is enough to cause omission 

failure. The omission failure expression of Detection_Module can be summarized 

as: 
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O-Detection_Module.Out = Failure 

 

 

2) Event Miss: We assign a separate event to represent the occurrence of situations 

where the detection module fails to detect target module failure. Event Miss causes 

the failure of the target module failure to go undetected. For example, Figure 66 

illustrates a situation where omission in Detection_Module can also be caused by it 

failing to detect omission in input deviation from Target_Module. This can be 

expressed as:  

 

O-Detection_Module.Out = Failure OR (Miss AND O-In1)

 

 

 

 

3) Event NOT Miss (¬Miss): To describe situations where detection module in its 

working condition causes a failure, the complement event Not Miss is introduced. One 

common use of Not Miss is in the representation of failure transformation. For 

example, in Figure 66, a timing failure in Detection_Module can be caused by it 

detecting an omission failure in Target_Module. This happens when it tries to recover 

Target 

_Module  

Detection_

Module  

Failure  BE  

Out In 

Target 

_Module  

Detection_

Module  

Failure  BE  

Out In 

Miss 

Figure 66: Event Miss in Detection_Module  

Figure 65: Internal malfunction in Detection Module  
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(e.g. provide) the omitted parameter, and in doing so, become late in the timing. This 

can be expressed as:  

 

T-Detection_Module.Out= ¬Miss & (O-In) 

Classical HiP-HOPS modelling only uses coherent failure logic that uses AND and OR 

gates. The proposed type of modelling which also incorporates NOT gates enables to 

distinguish between success and failure and represent different effects in these two 

circumstances. With this modelling, it is now possible to represent all scenarios of 

failure presented in Cases 1 to 3 above.  

6.4 General Analysis of Detectability  

In HiP-HOPS analysis, events Failure and event Miss are treated like any other 

component internal malfunctions. In fault tree synthesis these are regarded as basic 

events. Consequently, the HiP-HOPS analysis techniques presented in Chapter 2, more 

specifically the MICSUP algorithm, can be used in fault tree analysis.  

The inclusion of the complement ¬Miss, however, creates some complications. ¬Miss 

is implemented with the use of the NOT operator in fault trees. Traditionally, the use of 

negation of a failure event in failure modelling has generally been discouraged for 

several reasons. Firstly, it is often assumed that a component in its working condition 

should not contribute to system failure. In cases where it does, traditional solutions 

often suggest design modification to prevent it. It is also a common notion that the 

probability of the negation of failure event is almost always close to 1 which means it 

can be safely ignored in quantitative analysis. The inclusion of „NOT‟ also results in the 

introduction of non-coherent structure which increases the complexity of analysis. 

Despite these arguments, (Johnston & Mathews, 1983) and (Sharvia & Papadopoulos, 

2008) reviewed several scenarios where inclusion of NOT benefits failure modelling. 

These include conditions where the failure probability of a component becomes 

significant enough for the working probability to be included in quantitative analysis. 

This is often true in conditions that exceed the operation specification for a component. 

The NOT operator is also important in the failure modelling of some multitasking and 
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phased-mission systems. In other cases, the use of negation operator also assists the 

development of repair schedule for components.  

In addition to these, we also argue that the use of negated event is required to allow 

more accurate representation of detectability in a model.  

One alternative to using negated events is by treating the absence of failure Miss as a 

separate independent event. For example, by using new event Catch to represent this 

case instead of ¬Miss, which subsequently allows the model to maintain coherent 

structure. This, however, has been known to cause inaccuracy in the quantitative 

analysis (for example, calculation of failure probability), as demonstrated later in the 

example section. This is very likely due to the way quantitative analysis is performed in 

non-coherent structure, where „hidden‟ cut sets (termed prime implicants in non-

coherent structure) can potentially be produced.   

To facilitate this type of modelling for detectability, HiP-HOPS has been extended with 

the ability to perform non-coherent analysis (Sharvia, 2008). The analysis of non-

coherent fault trees in HiP-HOPS is implemented through an extension to MICSUP 

algorithm to allow iterated Consensus. The Consensus Law states that:  

A.B  + ¬A.C = A.B  + ¬A.C + B.C 

Which describes that if event B causes system failure when event A fails, and event C 

causes system failure when event A works, then the combination of event B and event C 

will inevitably causes system failure regardless the state of A. In such circumstances, 

then B.C is known as a „hidden‟ prime implicant set that can be identified by the 

application of consensus.  

To enable quantitative analysis, quantitative information can be assigned to each of 

these detectability parameters. For example, for the calculation of probability of events 

in the model, failure rate can be assigned for internal malfunctions of type Failure, 

and a fixed probability value can be assigned for events Miss and ¬Miss. In practice, the 

assignment of this detectability probability often relies on the degree of dependence. 

For a module with higher dependence on other modules (for example, because it 

requires information processed by other modules), the probability of Miss is likely to be 

high.  
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In an NuSMV model, detectability information can be translated to and treated as part 

of the module internal variable.  

  

6.5 Example  

6.5.1 Cruise Control System  

This section presents a simplified adaptive cruise control system to demonstrate the 

application of detectability analysis. The system assists the driver by automatically 

adjusting vehicle speed to maintain safe following distance. It typically uses a radar 

sensor to monitor the vehicle in front and adjust vehicle speed to keep it at a pre-set 

following distance. The system is also extended with a brake support function.  

Figure 67 illustrates the functional structure of the basic adaptive cruise system. It is an 

adaptation of a related driving assistance system, pre-collision detection system, 

presented in (Adachi et al., 2010). The system gets its input from a set of sensors 

including Radar_Sensor, Speed_Sensor, Pedal_Sensor, Switch_Sensor. Radar_Sensor 

provides reading from the wave radar. Speed_Sensor provides information about the 

current speed of the vehicle. Pedal_Sensor provides information on the driver‟s 

operation (for example, input in accelerator or brake pedals). Switch_Sensor provides 

information on the selection of modes (for example whether cruise control is activated). 

And Memory provides information on pre-stored data.  

Monitoring_Module gathers information from several sensors and provides signals 

regarding distance and relative speed of the vehicle ahead. This pre-processed 

information is then passed to Logic_Module which computes the distance between the 

vehicles and determines how fast the vehicle is approaching the vehicle ahead. Based on 

the pre-set desired following distance, it determines the appropriate time to start 

deceleration (or acceleration when the traffic is cleared).  Brake_Support system aims to 

provide effective braking and assistance in cases when collision is imminent. For 

example, in design discussed in (Ford, 2010), if pressure on accelerator pedal is released 

quickly, indicating driver‟s desire to slow down, the system can apply brake pads 

against the brake disk even before the driver presses the brake pedal.  This decelerates 
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the vehicle faster than the driver can move their foot to the brake pedal. In doing so, it 

shortens braking reaction time and braking distance. This information is supplied to 

Cruise_Control, which coordinates the information and decides on appropriate actions. 

It sends signals to corresponding Actuator_Module (i.e. brake or throttle) to perform 

appropriate actions.  
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Figure 67: Cruise Control System 
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One way to demonstrate the contribution of detectability modelling is through 

quantitative analysis of the effect of detection of component failures to the failure 

probability (or unreliability) of the system. Before quantitative data is assigned, we 

annotate the cruise control system with failure information. To maintain simplicity, each 

input sensor is assigned with a uniform internal malfunction BE and each of the other 

main modules is assigned with two internal malfunctions, BE1 and BE2.   BE1 is a 

failure that is generically related to omission and value failure (for example, failure in 

physical or hardware), while BE2 is a failure that is generically related to timing and 

commission failure (for example, failure in software algorithm).  

Hypothetical failure rates are assigned for each of the internal malfunction to illustrate 

the validity of approach. The failure rate for internal malfunction in sensors and 

memory (BE) is assigned at  = 1.15×10
−7

 and failure rates of internal malfunction in 

other modules (BE1 and BE2) are assigned at  4.6×10
−7

 and  = 1.12×10
−6

 

respectively.  

The following table presents the summary of failure expressions for the output 

deviations in the cruise control system modules. Omission, commission and value 

failures at module outputs are discussed:   

Table 20: Failure information for Cruise Control functions 

Function Output Deviation Failure Expression  

(All) Sensors O-out  BE 

C-out  BE 

V-out  BE 

Monitoring_Module  O-out BE1 OR O-in1 OR O-in2  

C-out BE2  OR C-in1 OR C-in2  

V-out  BE1 OR V-in1 OR V-in2 

Logic_Module O-out BE1 OR O-in1 OR O-in2 

C-out BE2 OR C-in1 OR V-in1 OR V-in2 

V-out BE1 OR V-in1 OR V-in2 

Brake_Support  O-out BE1 OR (O-in1 AND O-in2) OR O-

in3 

C-out BE2 OR C-in1 OR C-in2 OR V-in1 

OR V-in2  

V-out BE1 OR V-in1 OR V-in2 OR V-in3  

Cruise_Control O-out  BE1 OR O-in1 OR O-in2 OR O-in3 
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OR O-in4 

C-out  BE2 OR C-in1 OR C-in2 OR C-in3 

OR C-in4  

V-out  BE1 OR V-in1 OR V-in2 OR V-in3 

OR V-in4  

Actuator_Module  O-out  BE1 or O-in1 

C-out  BE2 or C-in1 

V-out  BE1 or V-in1 

6.5.2 Detectability in Cruise Control  

Once the model is annotated, we perform analysis on the cruise control system without 

the inclusion of any fault tolerance technique. For the purposes of this discussion, the 

quantitative analysis is performed examining omission, commission and value failures 

of Actuator_Module (which can be expressed as O-Actuator_Module.out, C-

Actuator_Module.out, and V-Actuator_Module.out respectively) which form the top 

event if fault trees and effects in FMEAs produced by HiP-HOPS. With the failure rates 

provided, the probability of these events can be calculated.  

We assume that in the earlier stage of analysis, C-Actuator_Module.out has been 

identified as being more critical than the other failure types. The process to identify 

critical points in the system contributing to this failure can be performed (as discussed 

previously in Chapter 3 and Chapter 4), and detection modules can be assigned 

accordingly to address this.  To maintain the simplicity of this example, although there 

are a number of contributing internal malfunctions that can contribute to C-

Actuator_Module (for example, BE in input sensors or BE2 in Logic_Module among 

others), we place focus on Monitoring_Module and Brake_Support.  

The detection modules to be added in this architecture can be realized in various 

implementations, adopting different structures and characteristics.  In practice, multi-

objective optimisation techniques can be employed to help determine the optimal 

solutions. HiP-HOPS itself incorporates multi-objective optimisation capabilities 

(Parker, 2010), but their use was deemed out of scope in this work.   

Here we arbitrarily select one possible implementation of detection modules. It is 

presented as a basis for evaluating detectability and therefore by no means represents an 

optimal design solution. Although in practice each detection module might possess 
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different configuration and fault tolerant characteristic, all detection modules in this 

example are identical in their function, they all enforce fail-silence in response to 

detected commission failures. Figure 68 illustrates the design of the system with 

detection modules incorporated. The detection module placed between 

Monitoring_Module and Logic_Module, DM_LM, aims to prevent further failure 

propagation from Monitoring_Module. To achieve this, detection module DM_LM 

transforms commission and value failure into omission failure. The detection module 

placed between Brake_Support and Cruise_Control modules, DM_CC, has the same 

objective and causes failure propagated from Brake_Support to fail silent.  

With the rationale that fault tolerant components are reasonably more reliable than its 

target modules, the failure rates for internal malfunctions Failure in DM_LM and 

DM_CC are both assigned a lower failure rate of  = 1.12×10
−7

. The probability of 

event Miss in detection modules is assigned a fixed probability of   
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Figure 68: Cruise Control with Detection Module  
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Table 21 summarizes the failure expression of detection modules DM_LM and DM_CC. 

Table 21: Failure information for Detection Modules  

Function Output Deviation Failure Expression  

DM_LM O-out  Failure OR  O-in OR (¬Miss AND (C-in OR V-

in)) 

C-out  Miss AND C-in 

V-out  Miss AND V-in 

DM_CC  O-out  Failure OR  O-in OR (¬Miss AND (C-in OR V-

in)) 

C-out  Miss AND C-in 

V-out  Miss AND V-in 

One obvious effect of the introduction of detection modules is the improvement in 

system reliability. For example, for top event C-Actuator_Module.out, probability 

declines from 0.064 to 0.039 with the use of detection modules. Probability for top 

event V-Actuator_Module.out also decreases from 0.028 to 0.018. This is compensated 

by the increase in probability for top event O-Actuator_Module from 0.028 to 0.058 as 

other failure types are transformed into omission failure. But since omission is deemed 

more benign than inadvertent application of function, this is acceptable.  

To show the significance of detectability modelling, we also compare the analysis 

between situations where detection modules are assumed to model only internal 

malfunction that represents its own failure behaviour (Failure) and situations where in 

addition to this, they also models scenarios where they fail to detect failures of the 

target module (Miss). As expected, the probability for all top events of fault trees 

increase as Miss is introduced. A Summary of tabulated analysis results is presented in 

APPENDIX C.    

The significance of the inclusion of detectability modelling in enabling a more accurate 

qualitative analysis should also be highlighted. For example, the transformation of 

commission and value failures to omission failure requires the Miss event not to occur. 

To accurately model omission failure DM_LM which expresses this condition, the Not 

Miss event is employed. This allows the failure expression to be written as:  

O-DM_LM.out = failure OR O-in OR (¬miss AND (C-in OR V-in)) 
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As mentioned earlier, the inclusion of the NOT operator results in a non-coherent 

analysis. To maintain a coherent fault tree structure, ¬Miss event can be replaced with 

an independent catch event.  

The incorporation of the NOT operator in the failure expression of the detection module 

can have a significant quantitative effect on the probabilities of system-level output 

deviation (Actuator_Module). It can either increase or decrease the probability of 

system failure according to the (different) sets of prime implicants produced compared 

to the use Catch.  

To examine this option of treating ¬Miss as an independent new event Catch, we will 

use a revised version of the model. We now introduce a new processing module and an 

additional detection module into the cruise control system as shown in Figure 69. The 

new processing module, Fading_Brake (Autopressnews, 2006) aims to gradually build 

up the braking pressure in conjunction with constantly hard braking to help reduce the 

risk of wear and retained pedal feeling. It supplies information to achieve this to 

Brake_Support module. Fading_Brake possesses identical internal malfunctions (BE1 

and BE2) and failure rates to the other main processing modules.  

The detection module DM_FB is attached to Fading_Brake and operates in a similar 

way to a backup structure or a check-point-restart technique described in (Adachi et al., 

2010). When Fading_Brake experiences failure, DM_FB restarts the module to a pre-

stored reset checkpoint. This subsequently causes transformation between different 

failure types. For example, when DM_FB detects omission or failure in Fading_Brake 

and resets the module, a value failure will inevitably occur as parameters reset into (and 

execution continue from) their pre-stored point. Similar to previous detection modules, 

the failure of DM_FB is assigned at  = 1.12×10
−7

 with probability of event Miss 

.  
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Figure 69: Cruise Control System with Fading Brake 
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Table 22 summarizes the failure information for Fading_Brake module, detection 

module DM_FB and updated Brake_Support. Based on this failure information, the 

system model is updated and analyzed.  

Table 22: Failure Information for Cruise Control with Fading Brake  

Function Output Deviation Failure Expression  

Fading_Brake O-Out  BE1 

C-Out BE2 

V-Out BE1 

DM_FB O-Out  Failure OR (Miss AND O-in)  

C-Out Miss AND C-in  

V-Out (NOT Miss AND (C-in OR O-in) ) OR V-in  

Brake_Support  O-out BE1 OR (O-in1 AND O-in2) OR O-in3 OR O-in4 

C-out BE2 OR C-in1 OR C-in2 OR V-in1 OR V-in2  

V-out BE1 OR V-in1 OR V-in2 OR V-in3 OR V-in4 

To demonstrate the role of non-coherent structure, we replace ¬Miss event with an 

independent Catch event in the expression. This time the analysis produces more 

interesting results. The probability for top event O-Actuator_Module.Out with the use 

of ¬Miss in all detection modules is 0.072, and when Catch is used as replacement the 

probability changes into 0.064. This is a substantial disparity in probability which can 

mislead designers into accepting models which do not meet reliability requirements.  

This disparity in probability calculation can be attributed (as explained previously) to 

hidden prime implicants generated through Consensus algorithm. This is demonstrated 

by further studying the resultant prime implicant sets. Although the analysis of both 

fault trees produces the same number (19) of prime implicant sets, the sets are not 

completely identical.  

The full prime implicant sets for both fault trees are included in the Appendix D. We 

compare the prime implicant sets produced by both fault trees (NOT Miss and Catch 

regarded as interchangeable accordingly) and the following differences are highlighted:  

1) The following prime implicant is produced by analysis of non-coherent fault tree 

(uses NOT Miss), but is not contained within the coherent fault tree (uses Catch):  

Monitoring_Module.BE2 AND DM_CC.NOT_Miss  (exp.1)  
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2) The following prime implicant is produced by analysis of coherent fault tree but 

contained within the non-coherent fault tree:  

Monitoring_Module.BE2 AND DM_CC.Catch AND DM_LM.Miss    (exp.2)   

To understand these differences, we studied the rest of the prime implicant sets which 

are identical between the fault trees. Upon closer inspection, it is identified that prime 

implicant MonitoringModule.BE2 AND DM_LM.NOT_Miss and 

Monitoring_Module.BE2 AND DM_CC.NOT_Miss AND DM_LM.Miss (or 

Monitoring_Module.BE2 AND DM_CC.Catch AND DM_LM.Miss) are originally 

produced from the analysis of both fault trees. The difference is that in the analysis of 

the non-coherent fault tree, these prime implicants produce a new hidden prime 

implicant through Consensus (exp.1): Monitoring_Module.BE2 AND 

DM_CC.NOT_Miss. Occurence of the latter is sufficient to cause system-level failure 

regardless of the presence of  DM_LM.NOT_Miss or DM_LM. Miss. This in turns 

eliminates Monitoring_Module.BE2 AND DM_CC.Catch AND DM_LM.Miss (exp.2) 

which becomes redundant. On the other hand, the coherent fault tree is not able to 

establish the link between event Miss and Catch, and is therefore unable to produce the 

hidden prime implicant in (exp.1). It subsequently retains (exp.2).  

This demonstrates that the use of NOT operator (and non-coherent analysis) helps 

produce a more accurate result in detectability analysis. In the translation process of a 

model to NuSMV, the parameters for detectability can be included in the module 

internal variables like other basic events.  

6.6 Chapter Summary  

This chapter introduced the concept of detectability in the context of CSA, which 

describes the ability of a module to correctly detect errors.  Its role within fault tolerant 

design is explored. The method introduces failure-relevant parameters, which model the 

events where errors are correctly detected (or not) in addition to the internal malfunction 

of the detection module. These parameters can be modelled as part of the failure 

information in HiP-HOPS.  
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The general analysis of these parameters can be performed as a part of the CSA 

analysis. Commonly-used fault tree analysis algorithms can be used, except for the 

events where errors are detected (i.e. it is NOT missed by detection module). This 

notion of detecting error correctly leads to the inclusion of NOT operator, and 

subsequently a non-coherent fault tree structure.  To enable the analysis of non-coherent 

fault tree, HiP-HOPS synthesis and analysis algorithms were extended, and Consensus 

algorithm was implemented.  

The use of NOT operator in a fault tree has been long debated. Here in the context of 

detectability, we showed how it affects the accuracy of quantitative analysis. A small 

example of cruise control system is presented to show the application of detectability. In 

an effort to maintain a coherent structure of the fault tree, an alternative was explored. 

The use of NOT operator has been shown to contribute to a more accurate top-event 

probability calculation.  
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CHAPTER 7. Conclusions  

7.1 Contributions  

Compositional Safety Analysis and behavioural safety analysis techniques have 

emerged as two separate and competing paradigms for performing model-based safety 

analysis.  

This thesis argued that the traditional gap between the two approaches can be overcome, 

as CSA and BSA are effectively combined in a novel model-based design and safety 

analysis process which therefore benefits from the advantages of both approaches, 

namely the flexibility, early applicability and scalability of CSA and the precision, 

behavioural analysis capabilities and detailed insights offered by BSA (see also 

statement of “hypothesis” in Introduction).     

To assess and support this research hypothesis, several objectives were defined. In the 

following discussion, we revisit these objectives and summarize how, and to what 

extent, they have been achieved: 

Objective 1. To examine CSA and BSA techniques and investigate their strengths, 

limitations, and application in different stages of design development. This thesis 

determines complementary aspects of these techniques that can be exploited via 

synergistic combined application. 

This thesis investigated CSA and BSA characteristics and identified potential for 

integration. The review of several prominent CSA and BSA techniques presented in 

Chapter 2 provides insight into the different characteristics, working mechanisms and 

applicability of each technique.  

The strength of CSA lies in the simplicity of its Boolean-based analysis approach. This 

makes it possible for safety analysis to be performed in a quick and iterative manner. 

Fault tree synthesis can be performed in linear time and overall the analysis scales up to 

large and complex models. CSA also facilitates a „divide-and-conquer‟ approach which 

becomes the basis of its compositional nature. The failure analysis of a complex system 
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can be constructed based on the composition of failure analyses of its components. This 

subsequently makes the process easily manageable. CSA also produces safety artefacts, 

namely fault trees and FMEA, which are familiar to safety analysts and therefore eases 

their engagement. CSA is generally used for reliability engineering and it is possible to 

extend this with advanced capabilities for design optimization. Fundamental limitations 

for CSA include the fact that there is no support for formal verification of safety 

properties and that CSA facilitates mostly analysis of static models.  

BSA, on the other hand, uses brute-force exploration to assess system behaviour. This 

exhaustive exploration provides explicit assurance of model correctness with respect to 

safety specifications. BSA often employs model-checking to perform this verification. 

Despite these strengths, BSA can only be applied at a later stage of the design, where 

the design model is relatively mature. This is unfortunate because changes at later stages 

are often costly, and the technique misses opportunities to effectively influence design 

process earlier.  

From the study of these characteristics, we identified the complementary aspects which 

lend themselves to the foundation of integration. First, we looked into the different 

stages of the system development where each technique can be employed. CSA is 

generally applicable from the early PSSA stage up until the end of the design. It is 

applicable to early, experimental models and can be iterated as the design becomes 

more detailed. BSA, in contrast, is generally applicable towards the end of the PSSA, 

and requires formal and more detailed mature models.  

CSA and BSA also aim to achieve different assessment objectives. Although both can 

be used to analyze possible causes for failures, CSA aims to identify safety problems 

early in the design by showing the causes of system failure; while BSA provides 

verification of formal models with regard to safety properties. A combined application 

allows us to achieve wider analysis coverage and a more robust assessment. The ability 

to introduce BSA verification capabilities early in the development stage is particularly 

valuable.  

In this thesis, we have shown that CSA and BSA have different objectives and different, 

complementary strengths and weaknesses. We have therefore made a case for their 

synergistic combined application. “Synergistic combined application” refers to the 
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process of harnessing analysis results (or safety artefacts) from CSA and BSA for the 

benefit of both techniques in an incremental and continuous manner. The process and 

the activities involved are explained further in the next objectives.  

Objective 2. To propose a systematic method to utilize analysis results from CSA and 

BSA in the course of design. This involves investigating how input to each 

technique can be systematically constructed, in particular, how results of CSA 

can assist the construction of behavioural model for BSA‟s formal verification. 

It is also important to understand how these results can provide constructive 

feedback to designers towards an iterative system modelling process.  

This thesis has developed, IACoB, a novel method for combined synergistic application 

of CSA and BSA. Following the review of prominent CSA-based and BSA-based 

techniques, we have decided to select HiP-HOPS to facilitate CSA and NuSMV model 

checker to facilitate BSA, based on the arguments considered in Chapter 2. In Chapter 

3, the IACoB safety analysis process has been introduced and developed to describe the 

integrated application. IACoB was developed as a process method which allows BSA to 

be performed following CSA by building upon its analysis results and safety artefacts.  

The process starts with a system model, which can be an early functional model or a 

more detailed architectural model. Model construction is followed by an analysis of 

effects of failure or a severity assessment phase, in which the severity level of failures 

of output functions or components is determined. To enable CSA, the elements of the 

system model are then annotated with local failure behaviour. This allows the HiP-

HOPS tool to automatically perform fault tree and FMEA synthesis and analysis. The 

results of CSA offer constructive feedback for designers by providing them with 

information on failure causes and assisting the quick identification of weak points in the 

design. This ultimately helps contribute to a better revised design.  

Once designers are assured by the CSA results, FTA and FMEA results are used to 

assist the construction of a behavioural model of the system for BSA. Behavioural 

models for BSA can be classified in two generic groups according to the stage of design 

where these models are developed. In early functional design where information on 

dynamic behaviour is not widely available, an abstract mode chart can be constructed 

from FMEA results. An FMEA-ModeChart Assistance Table is used to help organize 
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the core elements of the mode chart. The mode chart captures transitions of the system 

from normal to degraded and failed modes in response to the failures predicted in the 

FMEA.  

Note that in this approach FMEA results become directly useful in the construction of 

behavioural models that can be used in the design and BSA of the system. This is a 

novel contribution of this thesis. In a typical industrial practice, FMEAs are employed at 

the end of design for certification purposes, while in IACoB FMEA becomes a design 

tool for assessing, and refining the behaviour of the system. In the later stages of 

development where more design information is available, abstract mode charts of 

IACoB can be refined to make reference to components and their behaviour. These 

mode charts can be enhanced by analysts to show detailed nominal and failure 

behaviour. Model checking performed on these models can be used to verify whether 

the specified system behaviour conform to safety requirements.  

In Chapter 3, we have shown how close ties can be derived and maintained between 

abstract and refined mode charts. This subsequently improves traceability of 

relationships between failures, which is made possible via exploitation of the 

hierarchical mechanism of FTA/FMEA generation in HiP-HOPS.  

Objective 3. To illustrate how a chosen CSA and a chosen BSA technique can in 

practice be harmonised in the context of a method for combined application. 

Different MBSA techniques assume different representations of failure 

information and system modelling. In the context of combined application, it is 

important to explore ways for translation of information (in particular, failure 

information) between relevant models. The thesis shows the integration of HiP-

HOPS with NuSMV and defines a process for useful semi-automatic 

translation of information between the two models.  

This thesis harmonised the representation of failure information between two different 

techniques that presently define the state-of-the-art in their respective areas. In the later 

part of Chapter 3, we described ways of translating information from HiP-HOPS into 

NuSMV. Failure behaviour in HiP-HOPS is captured within the failure annotation of 

components. We have shown that it is possible to preserve this information and 

incorporate it as part of the failure-relevant behaviour in a NuSMV model. HiP-HOPS 
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failure annotations typically contain information on the failure modes (output 

deviations) and their „failure expression‟ which explains the failure causes (described in 

terms of internal malfunctions and input deviations). The translation process involves 

mapping this information into NuSMV variables and defining state transitions relating 

to these failures. In contrast to techniques like FSAP/NuSMV (Bozzano et al., 2003b) 

which is largely based on success-logic, the relationship between failures here can be 

defined and managed as failure-logic. This means that the description of component 

output is determined by the condition of output deviations, and corresponding input 

deviations are assigned and passed accordingly.  

In addition to harmonising and passing failure logic, the system hierarchies and 

propagation of failure effects can also be neatly captured and transferred from HiP-

HOPS into the NuSMV model. We have also shown that this allows connections 

between mode charts to be systematically established, and this eventually enables a 

more-manageable refinement of transitions, and helps to guarantee consistency in the 

model as it evolves.  

Chapter 4 and Chapter 5 presented case studies on automotive brake-by wire and 

aircraft wheel-brake system in which we demonstrated the value of combined iterative 

application of CSA and BSA to the design, how the IACoB process can be applied, and 

how analysis results from one technique can be exploited for the benefit of the other 

technique. These case studies ultimately show how the IACoB offers significant 

benefits over using only a single analysis approach.  

Objective 4. The final research objective is to study the potential use of this approach in 

the design of mechanisms for detection and recovery from failures. More 

specifically, we propose a generic mechanism for modelling the Detectability (or 

NOT) of errors propagated among components of an architecture within a 

typical CSA. We show that the inclusion of this mechanism makes it possible to 

use the results of CSA as a basis for rational decisions about the inclusion of 

fault tolerant mechanisms in a design.     

This thesis developed a novel concept for modelling the detectability of failures in CSA. 

The study of detectability in the context of CSA was presented in Chapter 6. We started 

the discussion with the concept of detectability in FMEA, where the detection 
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likelihood of failure modes is evaluated. We then explored further the use of 

detectability in system architecture and its role within fault tolerant design. Detectability 

in this context refers to the ability to correctly detect errors, and this ability is generally 

assigned to a component as part of its fault-detection and fault-tolerance mechanisms. A 

generic method to model detectability was subsequently proposed.  

The method introduced failure-relevant parameters that model not only the internal 

malfunction of the component which performs detection, but also probabilities that 

errors are either correctly detected or go undetected by detection modules. The 

implication of these occurrences is modelled as part of the failure information in HiP-

HOPS.  

Because this concept is introduced as a part of CSA, we also studied how the general 

analysis on detectability can be performed. These parameters can be analysed using 

common fault tree analysis algorithms, with the exception of events where errors are 

detected (i.e. NOT missed by the detection module). The notion of events where errors 

are detected (and handled) leads to inclusion of NOT gates and a non-coherent fault tree 

structure. To enable the analysis of non-coherent fault trees, HiP-HOPS synthesis and 

analysis algorithms were extended, and a Consensus algorithm was implemented.   

The use of non-coherent fault trees (and the inclusion of NOT gate for that matter) has 

been long debated. In this thesis, we presented a case in support of this argument and 

showed how the inclusion of NOT gate enables a more accurate modelling of 

detectability. For a practical demonstration of this, we presented a small case study on 

an automotive cruise control system and showed how detectability can be applied. 

Alternatives were also explored in an effort to maintain coherency of the fault trees and 

the analysis results were compared. From this, it was demonstrated that the inclusion of 

NOT gates have a significant role to play in system analysis, particularly in the correct 

quantification of system reliability.  

7.2 Limitation of concepts  

IACoB inherits the limitations of CSA and BSA. One challenge lies in the limited 

information on dynamic behaviour it initially captures. This is due to the fact that the 

initial failure information is directly obtained from a CSA-based technique, where focus 
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is placed on effectively capturing the failure propagation and hierarchy, rather than the 

dynamic behaviour. In certain circumstances, for example in the analysis of a phased 

mission system, more information on dynamic behaviour might be required than what is 

captured in CSA models. This can be addressed by independently extending the BSA 

model produced.   

The extent of formal verification that can be performed largely depends on the level of 

information contained within the model. For a large complex system, model checking 

faces the challenge of state-space explosion, and this is a challenge that IACoB inherits 

from BSA. Abstraction techniques in model checking ( Bérard, et al., 2001) can be 

further investigated in the future to address this issue.  

Another issue with IACoB is the fact that, currently, the integration process is mainly 

manual. This can be potentially labour-intensive and error-prone when performed 

repeatedly on a larger system. However, there is automation in both CSA and BSA, and 

it is also possible, to a large extent, automate the integration. Another related problem is 

the manual process of assigning failure expressions, which brings about the new kinds 

of manual errors compared to failure-injection methods. Recent development towards a 

language for describing failure patterns (Wolforth, 2010) is one way to improve the 

process. There is also the lack of support for specifying requirement properties. Errors 

are common during the conversion of safety properties from natural language to CTL. 

We believe it can be beneficial to develop tool support that can assist this process.  

Challenges which are related to the nature of manual processing can be potentially 

resolved with automation. We hope supporting tools can be developed in the future to 

ease the task of conversion between models, and improve the process of storing and 

retrieving failure information and safety specifications.  

IACoB is also mainly performed to assess and verify the design, interaction of functions 

or components, and control logic of an early design model. Therefore, another limitation 

of IACoB is that it does not address errors that arise later on in the development 

lifecycle (for example, coding and implementation errors).  

One main problem of the detectability concept is the additional computational expense 

introduced by the analysis of computationally-extensive non-coherent fault tree analysis 

algorithm.  
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7.3 Future Work  

The aim of establishing a framework to allow combined application of CSA and BSA 

has been achieved to a certain extent. The results of this work on the IACoB approach 

provide the foundation for potential future work in the following directions:  

1. Improvement on modelling experience  

In addition to the guidelines on translation of failure information between HiP-HOPS 

and NuSMV models outlined in Chapter 3, we believe it is beneficial to develop an 

automated translation support tool. Although the manual construction of the NuSMV 

model is manageable for smaller systems explored in this thesis, an automated translator 

would ease the process and increase its scalability. Behavioural information (for 

example, description of model states) which is not included within HiP-HOPS 

annotations can be obtained by extending the failure editor.   

Support for graphical representation of sate machines can also be introduced to assist 

behavioural modelling. Various translator tools like sf2smv (Banphawatthanarak et al., 

1999), stm2smv (Loer, 2003), or mdl2smv (Juarez-Dominguez et al., 2008) have been 

developed to convert commercial graphical behavioural tool like Stateflow or Statemate 

into SMV model. We believe that similar capabilities for the HiP-HOPS failure editor 

might be beneficial in making the behavioural modelling process more intuitive. 

Alternatively, future work that looks into the integration of these established graphical 

tools with HiP-HOPS failure editor could be investigated. 

2. Improvement on integration with nominal behavioural model 

The NuSMV models produced from the HiP-HOPS annotated models are essentially a 

formal functional „error-model‟. Although the extension to include description of 

nominal behaviour can be relatively straight forward, we believe a degree of automation 

in this process will be helpful. This is particularly useful if the formal nominal 

behavioural model is developed in parallel with the HiP-HOPS model. One possible 

way to achieve this is by enforcing common references to states and events in the two 

state machines that describe nominal and failure behaviour, and then by automatically 

parsing and combination of both models into a single combined representation. Further 

research can be done in this aspect as it is currently a manual process.  
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3. Support for formal requirement properties and visualization of traces  

The translation of requirements from natural language to temporal-logic formulae is not 

a trivial process. With the reference of general classification of properties from (Bérard, 

et al., 2001), it is beneficial to have a set of generic templates to define the property 

specifications. This template should allow frequently-used property patterns to be saved 

into pattern library, and instantiated whenever needed. Comprehensive review of 

property specification patterns and their hierarchy was presented in (Dwyer et al., 

1999), and example of this specification pattern support is presented in IFADIS (Loer, 

2003).  

Traces are usually produced to show counterexamples. A trace is a sequence of 

execution steps that leads from system initial state to the state that violates safety 

properties. Each step in between describes value changes in the variables. These traces 

produced from NuSMV counterexamples are in textual form. A graphical viewer for 

these traces, for example traces chart illustrated in (Peikenkamp, 2006), can provide a 

more intuitive outlet for display and analysis.  

4. Failure modes completeness and harmonisation  

The concept of failure modes is central to both CSA and BSA approaches. In IACoB, 

we employ generalized failure modes which belong to four categories: omission, 

commission, value or timing failures. These are reflected in the structural as well as 

behavioural models. In occasions where we need to derive an explicit list of failure 

modes and validate its completeness, (Ortmeier, 2004a) describes a method that uses 

failure-sensitive specifications. This method defines an initial chaotic model which 

describes all possible combinations between inputs and outputs. It then extracts the 

combinations which violate specification rules, which are made into a list of failure 

modes, and eliminates ones that are not relevant. The remaining „good‟ combinations 

(those that conform to the specification rules) are validated against the nominal model, 

which is constructed separately. Lastly this model is integrated again with the failure 

modes to form the „error model‟. This technique yields the benefits of being able to 

generate a more complete specification of failure modes and validation of the nominal 

formal model. However it does suffer from the exponential size of the sets used. 

Therefore, one area that we could look into in the future is the potential of applying this 
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approach as part of IACoB for selected critical components, as opposed to the whole 

system.  
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APPENDIX A: Backup structure for brake-by-wire 

system  

The following figures show the backup structure scheme for brake-by-wire system 

presented in Chapter 4.  

A.1. Brake Demand Input Function  

 

A.2. Local Parameters Input Function 
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A.3. Vehicle Level Processing Function  

 

A.4. Local Level Processing Function  
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A.5. Braking Energy Function 
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APPENDIX B: NuSMV model for brake-by-wire 

B.1. The following shows an example of how the abstract mode chart for brake-by-wire 

system can be represented in NuSMV model:  

MODULE ABS  

VAR  

O-Output: boolean;  

Output: boolean;  

counter: 0..1;  

 

ASSIGN 

init(O-Output) := 0;   

Output := !O-Output; 

 

counter :=case 

O-Output : 1;  

1: 0;  

esac;  

 

next(O-Output):= 

case 

O-Output = 1: 1;  

1: {1,0};  

esac;  

 

---------------------------------------------- 

 

MODULE ELEC 

 

VAR  

O-Output: boolean;  

Output: boolean;  

counter: 0..1;  

 

ASSIGN 

init(O-Output) := 0;   

Output := !O-Output; 

 

counter :=case 

O-Output : 1;  

1: 0;  

esac;  

 

next(O-Output):= 

case 

O-Output = 1: 1;  

1: {1,0};  

esac;  

 

---------------------------------------------- 

 

MODULE HYDRAULIC  

 

VAR  

O-Output: boolean;  
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Output: boolean;  

counter: 0..1;  

 

ASSIGN 

init(O-Output) := 0;   

Output := !O-Output; 

 

counter :=case 

O-Output : 1;  

1: 0;  

esac;  

 

next(O-Output):= 

case 

O-Output = 1: 1;  

1: {1,0};  

esac;  

 

---------------------------------------------- 

 

MODULE main  

 

VAR  

SystemMode: {BBW_Normal, BBW_PD1, BBW_PD2, BBW_Fail};  

counter: 0..3; 

 

absB: ABS; 

elec: ELEC;  

hydraulic : HYDRAULIC;  

 

ASSIGN 

 

init(SystemMode) := BBW_Normal;  

next(SystemMode):=case 

SystemMode = BBW_Normal & elec.O-Output = 1 : BBW_PD2;  

SystemMode = BBW_Normal & absB.O-Output = 1 : BBW_PD1; 

SystemMode = BBW_Normal & elec.O-Output = 1 & hydraulic.O-Output = 1 : 

BBW_Fail;  

SystemMode = BBW_PD1 & elec.O-Output = 1 & hydraulic.O-Output = 1 : 

BBW_Fail; 

SystemMode = BBW_PD1 & elec.O-Output = 1 : BBW_PD2; 

SystemMode = BBW_PD2 & hydraulic.O-Output = 1 : BBW_Fail;  

1: SystemMode;  

esac; 

 

counter := absB.counter + elec.counter + hydraulic.counter; 
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B.2.The following shows an example of how the refined mode chart can be constructed 

for brake-by-wire system:   

 

MODULE FL(O-ABScmd, FLDiagonalLock) 

VAR  

States : {Normal, Locked} ; 

LockBE : boolean;  

counter : 0..1; 

FLlockSig : boolean;  

locked: boolean;  

 

ASSIGN  

init(States) := Normal; 

init(LockBE) := 0; 

 

locked := (LockBE & O-ABScmd)| FLDiagonalLock;  

FLlockSig := case 

States = Normal: 0; 

1: 1;  

esac; 

 

next(States):=case 

States = Normal & locked = 1: Locked;  

1: States;  

esac; 

 

next(LockBE) := case  

LockBE = 1 : 1;  

1: {0,1} ;  

esac;  

 

counter:=case  

States = Locked : 1;  

1: 0;  

esac; 

 

------------------------------------ 

MODULE FR(O-ABScmd, FRDiagonalLock) 

VAR  

States : {Normal, Locked} ; 

LockBE : boolean;  

counter : 0..1; 

FRlockSig : boolean;  

locked: boolean;  

 

ASSIGN  

init(States) := Normal; 

init(LockBE) := 0; 

 

locked := (LockBE & O-ABScmd)| FRDiagonalLock;  

FRlockSig := case 

States = Normal : 0; 

1: 1;  

esac; 

 

next(States):=case 

States = Normal & locked = 1 : Locked;  

1: States;  



214 

 

esac; 

 

next(LockBE) := case  

LockBE = 1 : 1;  

1: {0,1} ;  

esac;  

 

counter:=case  

States = Locked : 1;  

1: 0;  

esac; 

 

------------------------------------ 

MODULE RL(O-ABScmd, RLDiagonalLock) 

VAR  

States : {Normal, Locked} ; 

LockBE : boolean;  

counter : 0..1; 

RLlockSig : boolean;  

locked: boolean;  

 

ASSIGN  

init(States) := Normal; 

init(LockBE) := 0; 

 

locked := (LockBE & O-ABScmd)| RLDiagonalLock;  

RLlockSig := case 

States = Normal : 0; 

1: 1;  

esac; 

 

next(States):=case 

States = Normal & locked = 1 : Locked;  

1: States;  

esac; 

 

next(LockBE) := case  

LockBE = 1 : 1;  

1: {0,1} ;  

esac;  

 

counter:=case  

States = Locked : 1;  

1: 0;  

esac; 

------------------------------------ 

 

MODULE RR(O-ABScmd, RRDiagonalLock) 

VAR  

States : {Normal, Locked} ; 

LockBE : boolean;  

counter : 0..1; 

RRlockSig : boolean;  

locked: boolean;  

 

 

ASSIGN  

init(States) := Normal; 

init(LockBE) := 0; 
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locked := (LockBE & O-ABScmd)| RRDiagonalLock;  

 

RRlockSig := case 

States = Normal : 0; 

1: 1;  

esac; 

 

next(States):=case 

States = Normal & locked = 1 : Locked;  

1: States;  

esac; 

 

next(LockBE) := case  

LockBE = 1 : 1;  

1: {0,1} ;  

esac;  

 

counter:=case  

States = Locked : 1;  

1: 0;  

esac; 

------------------------------------ 

 

MODULE ABS (O-ECUabs)  

VAR  

States : {Normal, Fail} ; 

O-ABScmd: boolean; 

 

ASSIGN  

init(States) := Normal; 

 

next(States):=case 

O-ECUabs = 1 : Fail;  

1: Normal;  

esac; 

 

O-ABScmd := case  

States = Normal : 0;  

1: 1;  

esac;  

 

------------------------------------ 

 

MODULE ECU (O-WS, O-ES)  

VAR  

States : {Normal, Fail} ; 

O-ECUabs: boolean; 

ECUABEabs: boolean;  

ECUABEabsC: boolean;  

ECUBBEabs: boolean;  

ECUBBEabsC: boolean;  

 

ASSIGN  

init(States) := Normal; 

 

next(States):=case 

O-WS | O-ES | (ECUABEabsC & ECUBBEabsC) | (ECUABEabsC & ECUBBEabs) | 

(ECUABEabs & ECUBBEabsC) | (ECUABEabs & ECUBBEabs)  : Fail;  

1: Normal;  

esac; 
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O-ECUabs := case  

States = Normal : 0;  

1: 1;  

esac;  

 

next(ECUABEabs):=case 

ECUABEabs = 1 : 1;  

1: {1,0};  

esac;  

 

next(ECUABEabsC):=case 

ECUABEabsC = 1 : 1;  

1: {1,0};  

esac;  

 

next(ECUBBEabs):=case 

ECUBBEabs = 1 : 1;  

1: {1,0};  

esac;  

 

next(ECUBBEabsC):=case 

ECUBBEabsC = 1 : 1;  

1: {1,0};  

esac;  

 

------------------------------------ 

 

 

MODULE WS  

VAR  

States : {Normal, Fail} ; 

WSBE : boolean;  

O-WS : boolean;  

 

ASSIGN  

init(States) := Normal; 

init(WSBE) := 0; 

 

next(WSBE) :=case 

WSBE = 1 : 1;  

1: {1,0};  

esac;  

 

next(States):=case 

WSBE  : Fail;  

1: Normal;  

esac; 

 

O-WS:= case 

States = Normal : 0;  

1: 1;  

esac;  

 

 

------------------------------------ 

 

MODULE ES  

VAR  

States : {Normal, Fail} ; 

ESBE : boolean;  

O-ES : boolean;  
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ASSIGN  

init(States) := Normal; 

init (ESBE) := 0; 

 

next(ESBE) :=case 

ESBE = 1 : 1;  

1: {1,0};  

esac;  

 

next(States):=case 

ESBE  : Fail;  

1: Normal;  

esac; 

 

O-ES:= case 

States = Normal : 0;  

1: 1;  

esac;  

 

 

------------------------------------ 

MODULE main  

 

VAR  

States: {Normal,TD1_Critical_FR,TD1_Critical_RL, 

TD1_Critical_FL, TD1_Critical_RR, PD2_FR-RLDiagonalLock,  

PD2_FL-RRDiagonalLock, TD3_Critical_FRRLFL,TD3_Critical_FRRLRR, 

TD3_Critical_FLRRFR,TD3_Critical_FLRRRL,PD4_AllWheelsLocked};  

counter: 0..4; 

FLdiagonalLock: boolean;  

FRdiagonalLock: boolean;  

RLdiagonalLock: boolean;  

RRdiagonalLock: boolean;  

O-ABScmd : boolean; 

FRlockSig : boolean;  

RLlockSig : boolean;  

RRlockSig : boolean;  

FLlockSig : boolean;  

 

ALLOFF: boolean;  

DLActive: boolean;  

Hazardous : boolean;  

TwoParallelWheelsLocked : boolean;  

 

 

flw : FL(O-ABScmd, FLdiagonalLock); 

frw : FR(O-ABScmd, FRdiagonalLock);  

rlw : RL(O-ABScmd, RLdiagonalLock);  

rrw : RR(O-ABScmd, RRdiagonalLock);  

ws: WS; 

es: ES; 

ecu : ECU (ws.O-WS, es.O-ES);  

abs : ABS(ecu.O-ECUabs);  

 

ASSIGN 

init(States) := Normal;  

O-ABScmd := abs.O-ABScmd;  

 

counter := flw.counter + frw.counter + rlw.counter + rrw.counter ;  

FRlockSig := frw.FRlockSig; 
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RLlockSig := rlw.RLlockSig; 

RRlockSig := rrw.RRlockSig; 

FLlockSig := flw.FLlockSig;  

init (TwoParallelWheelsLocked) := 0;  

 

 

FLdiagonalLock:= case 

States = TD1_Critical_RR | States = TD3_Critical_FRRLRR : 1;  

1: 0;  

esac;  

 

FRdiagonalLock:= case 

States = TD1_Critical_RL | States = TD3_Critical_FLRRRL: 1;  

1: 0;  

esac;  

 

RRdiagonalLock:= case 

States = TD1_Critical_FL | States = TD3_Critical_FRRLFL : 1;  

1: 0;  

esac;  

 

RLdiagonalLock:= case 

States = TD1_Critical_FR | States = TD3_Critical_FLRRFR : 1;  

1: 0;  

esac;  

 

ALLOFF := !FLdiagonalLock &  !RLdiagonalLock &  !FRdiagonalLock  & 

!RRdiagonalLock;  

DLActive := FLdiagonalLock |  RLdiagonalLock |  FRdiagonalLock  | 

RRdiagonalLock;  

Hazardous := case 

States = TD1_Critical_FR |States = TD1_Critical_RL | States = 

TD1_Critical_FL | States = TD1_Critical_RR |States =  

TD3_Critical_FRRLRR|States =  TD3_Critical_FLRRFR | States = 

TD3_Critical_FLRRRL : 1; 

1: 0;  

esac;   

 

next(TwoParallelWheelsLocked):=case 

TwoParallelWheelsLocked = 1: 1;  

1 : ((flw.States = Locked & rlw.States = Locked)|( frw.States = Locked 

& rrw.States = Locked) | (flw.States = Locked & frw.States = Locked) | 

(rlw.States = Locked & rrw.States = Locked)) & counter = 2;  

esac;  

 

next(States) := case 

States = Normal & FRlockSig : TD1_Critical_FR;  

States = Normal & RLlockSig : TD1_Critical_RL;  

States = Normal & FLlockSig : TD1_Critical_FL;  

States = Normal & RRlockSig : TD1_Critical_RR;  

States = TD1_Critical_FR & RLlockSig : PD2_FR-RLDiagonalLock;  

States = TD1_Critical_RL & FRlockSig : PD2_FR-RLDiagonalLock; 

States = TD1_Critical_FL & RRlockSig : PD2_FL-RRDiagonalLock; 

States = TD1_Critical_RR & FLlockSig : PD2_FL-RRDiagonalLock; 

States = PD2_FR-RLDiagonalLock & FLlockSig : TD3_Critical_FRRLFL;  

States = PD2_FR-RLDiagonalLock & RRlockSig : TD3_Critical_FRRLRR;  

States = PD2_FL-RRDiagonalLock & FRlockSig : TD3_Critical_FLRRFR;  

States = PD2_FL-RRDiagonalLock & RLlockSig : TD3_Critical_FLRRRL;  

States = TD3_Critical_FRRLFL | States = TD3_Critical_FRRLRR | States = 

TD3_Critical_FLRRFR | States = TD3_Critical_FLRRRL : 

PD4_AllWheelsLocked;  



219 

 

1: States;  

esac; 
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APPENDIX C: Summary of Quantitative Analysis  

The effects of detectability parameters on system probability for top event C-

Actuator_Module.Out: 

Cruise Control System without activation of any detection module:  

Minimal Cut sets Produced  Probability  

11 0.064 

 

Cruise Control System with activated detection module:  

Detectability Parameters  Minimal Cut sets Produced  Probability  

Internal Malfunction Failure  6 0.036 

Internal Malfunction Failure, 

Event Miss, ¬ Miss 

11 0.039 

 

Detectability Parameters  Prime Implicants Produced  Probability 

Event ¬ Miss 11 0.039 

Event Catch  11 0.039 

 



221 

 

 

 

Cruise Control System with Fading Brake for top event C-Actuator_Module.Out:  

Detectability Parameters  Prime Implicants Produced  Probability 

Event ¬ Miss 11 0.039 

Event Catch  11 0.039 

 

Cruise Control System with Fading Brake for top event O-Actuator_Module.Out:  

Detectability Parameters  Prime Implicants Produced  Probability 

Event ¬ Miss 19 0.072 

Event Catch  19 0.064 
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Appendix D: Prime Implicants for Cruise Control 

System 

Prime implicant results for O-Actuator_Module (Cruise Control System with Fading 

Brake) with the use of ¬ Miss:  

13 x Cut Sets of Order  Probability 

Monitoring_Module.BE1 0.00458944 

Logic_Module.BE1 0.00458944 

Cruise_Control.BE1 0.00458944 

Brake_Support.BE1 0.00458944 

Actuator_Module.BE1 0.00458944 

Switch_Sensor.BE 0.00114934 

Speed_Sensor.BE 0.00114934 

Radar_Sensor.BE 0.00114934 

Pedal_Sensor.BE 0.00114934 

Memory.BE 0.00114934 

DM_LM.failure 0.00111937 

DM_FB.failure 0.00111937 

DM_CC.failure 0.00111937 
 

5 x Cut Sets of Order  Probability 

Monitoring_Module.BE2 

DM_CC.NOT_miss 

0.00980101 

Monitoring_Module.BE2 

DM_LM.NOT_miss 

0.00980101 
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Brake_Support.BE2 

DM_CC.NOT_miss 

0.00980101 

Fading_Brake.BE1 

DM_CC.NOT_miss 

0.0040387 

DM_FB.miss 

Fading_Brake.BE1 

0.000550732 

 

1 x Cut Sets of Order  Probability 

Fading_Brake.BE2 

DM_CC.NOT_miss 

DM_FB.NOT_miss 

0.00862489 

 

 

Prime implicant results for O-Actuator_Module (Cruise Control System with Fading 

Brake) with the use of Catch:  

13 x Cut Sets of Order  Probability 

Monitoring_Module.BE1 0.00458944 

Logic_Module.BE1 0.00458944 

Cruise_Control.BE1 0.00458944 

Brake_Support.BE1 0.00458944 

Actuator_Module.BE1 0.00458944 

Switch_Sensor.BE 0.00114934 

Speed_Sensor.BE 0.00114934 

Radar_Sensor.BE 0.00114934 

Pedal_Sensor.BE 0.00114934 

Memory.BE 0.00114934 

DM_LM.failure 0.00111937 
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DM_FB.failure 0.00111937 

DM_CC.failure 0.00111937 
 

4 x Cut Sets of Order  Probability 

DM_LM.catch 

Monitoring_Module.BE2 

0.00980101 

Brake_Support.BE2 

DM_CC.catch 

0.00980101 

DM_CC.catch 

Fading_Brake.BE1 

0.0040387 

DM_FB.miss 

Fading_Brake.BE1 

0.000550732 

 

2 x Cut Sets of Order  Probability 

DM_CC.catch 

DM_FB.catch 

Fading_Brake.BE2 

0.00862489 

DM_CC.catch 

DM_LM.miss 

Monitoring_Module.BE2 

0.00117612 
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APPENDIX E:  List of Abbreviation  

ABS   Anti-lock Brake System  

BBW   Brake-by-wire 

BDD    Binary Decision Diagram  

BSA   Behavioural Safety Analysis 

BSCU    Brake System Control Unit 

CEG   Cause Effect Graphs 

CFT   Component Fault Trees 

CSA   Compositional Safety Analysis  

CTL    Computational Tree Logic  

DSPN   Deterministic and Stochastic Petri Nets 

EHB   Electrical Hydraulic Brake  

EMB   Electrical Mechanical Brake 

ESP    Electronic Stability Program 

ESSaReL   Embedded Systems Safety and Reliability Analyser 

FFA    Functional Failure Analysis  

FFBD   Functional Flow Block Diagram  

FHA   Functional Hazard Assessment 

FMEA   Failure Modes and Effects Analysis  

ForMoSA  Formal Methods and Safety Analysis 

FSAP/NuSMV Formal Safety Analysis Platform/NuSMV 
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FSM   Finite State Machine  

FTA   Fault Tree Analysis 

HAZOP   Hazard and Operability Study  

HiP-HOPS  Hierarchically Performed Hazards Origin and Propagation 

Studies 

IACoB   Integrated Application of Compositional and Behavioural  

IF-FMEA  Interface Focussed FMEA  

LTL    Linear Temporal Logic  

MBSA   Model-based Safety Analysis  

MICSUP  Minimal Cut Set UPward 

NuSMV  New Symbolic Model Verifier  

PLTL    Propositional LTL  

PSSA    Preliminary Safety Assessment  

RPN   Risk Priority Number  

SEFT   State-Event Fault Trees 

SMV   Symbolic Model Verifier 

TTP   Time-triggered Communication Protocol 

WBS   Wheel-brake system  
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