
THE UNIVERSITY OF HULL

The Design and Control of Mechanical
Switched Mode Drives

being a thesis submitted for the degree of

Doctor of Philosophy

in the University of Hull

by

R.S. Oldaker, BSc., MSc.

September 1997



Abstract

This thesis is concerned with the design, control and performance evaluation of a
novel design for mechanical drives. This drive operates in a pulsed manner where
energy is extracted from the input, stored and then released to the output. A spring
acts as the energy store and brakes and clutches control the extraction and release of
energy. By controlling the storage and release of this energy the device's output
velocity can be controlled independently of the input velocity and since theoretically
there is no energy loss the device operates in an analogous fashion to a variable ratio
gearbox. Two design variations are presented. A step-up mechanism that is uni­
directional and capable of output velocities greater than the input, and a step-up/step­
down device that has bi-directional output velocity capabilities with no theoretical
constraint on the value of output velocity. A prototype drive for each design is
evaluated and detailed mathematical models are presented and compared to the
prototypes. In addition a detailed design methodology is put forward for step-up/step­
down devices.
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Chapter 1 Introduction

Motors and other actuators will typically have a limited range of speeds where they

produce significant levels of power. This is particularly true for cheap or light units

which are optimised to produce high power only over a narrow velocity range. If it is

required that high levels of power are supplied over a larger range of output speeds

then it' is necessary to use a gearbox with a set of different gears which allow a

different ratio of motor and output speeds for each gear. For optimum performance a

variable ratio drive should be used which will allow the motor (or prime mover) to

rotate at a constant speed at or around maximum power and the output speed

changed by varying the effective gear ratio (ratio of input to output speed). This

allows maximum power, minus losses in the drive, to be output over the range of

speeds that can be achieved from the range of ratios available. A number of different

variable ratio drives are available [1], which all have their own distinct advantages and

disadvantages for use in any particular application. This thesis puts forward a novel

design of variable ratio drive that possesses some distinct features and so adds to the

design options available to engineers.

Part of the motivation for this device has come from the design of electrical

switched mode power supplies [6,7] and works on the principle of pulsing packets of

energy from the input to the output. In the electrical domain energy packets from the

input supply are stored in an inductor and then released to the output. The extraction

and release of these packets is controlled by switches and diodes. In the mechanical

design the energy storage device is a spring and the energy packets are extracted and

released by clutches and brakes.

The concept of a pulsing mechanical drive is not new. Constantinesco, Ljungstrom

and Hobbs [8] suggested a pulsating mechanical drive and their original idea was 're-
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invented' by Williams and Tipping [9] and successfully used as a drive system in a car.

In this design a so called pulsator unit converted the constant rotation of the engine

into an alternating level of torque which was rectified and transferred to the output

shaft through two specially adapted sprag clutches. This system had draw backs in

that the pulsing frequency was fixed to the rotational speed of the engine, which

required the addition of springs to boost torque at low speeds, and the use of sprag

clutches meant that engine braking could not be utilised. The switched mode

mechanism outlined in this thesis differs from this mechanism in that the pulsing

frequency is independent of the rotational speed of the prime mover and for the case

of the step-up/step-down configuration, energy can be transferred from the prime

mover to the load and vice versa.

1.1 The Switched-mode Concept and Operation

Fig. 1.1 shows schematic diagrams of the two design variations of switched mode

mechanical drives discussed and analysed in this thesis. Fig. 1.1(a) shows the step-up

drive mechanism and Fig. 1.1(b) the step-up/step-down mechanism. As can be seen

both mechanisms consist only of a small number of basic components: a brake, a

spring and a clutch or ratchet for the step-up device, and a spring and two clutches for

the step-up/step-down device.

The basic idea behind both of these mechanisms is to keep the motor running

at a constant speed, at or around the speed for maximum power, and to repeatedly

transfer energy from the motor to the spring and then from the spring to the load.

These energy transfer cycles should be repeated many times a second and are caused

by the appropriate switching of the brake and clutch (step-up device) or both clutches

(step-up/step-down device). The energy stored in the spring during a cycle is known

as an energy packet and it can easily be seen that if the size of this packet is varied

whilst keeping the rate at which the packets are transferred constant, then the power

2



Chapter 1 1.1 The Switched-mode Concept and Operation

transferred will vary in a proportional manor. The operation of each design will now

be considered in tum.

r--------- ...... _

Load

Brake

~ Clutch.
or ratchet·,

Spring

. The step-up mechanism
... - .......... --- ...... --_ ......... ---

Motor

a)
~----------------

Spring

Motor . Clutch 1
.

Clutch 2 ', Load
.
I The step-up/step-down mechanism '
---------- 1

b)

Figure 1.1 - Schematic diagrams of a) the step-up and b) the step-up/step-down
switched mode mechanical drive mechanisms

1.1.1 The Step-Up Mechanism

In this design the motor is rigidly attached to one end of the spring and a brake is

attached to the other and either a clutch or a ratchet used to connect the output from

the brake to the load. With the brake engaged the motor will twist the spring and so

store energy. Releasing the brake will allow this energy to be transferred to the load.

The simplest arrangement is to let this energy be transferred to the load by the use of

a ratchet, but alternatively, a clutch can be used to emulate the operation of a ratchet

if the spring extension is monitored and the clutch released when all of the energy

from the spring has been transferred. With this arrangement when all of the energy has

been extracted from the spring the load must be going faster than the motor. This

means that the mechanism will only produce load velocities that are greater than the

3



Chapter 1 1.1 The Switched-mode Concept and Operation

motor velocity and is the reason for its name. It should also be noted that the velocity

of the load will always be in the same direction to that of the motor.

1.1.2 The Step-Up/Step-Down Mechanism

In this design a spring has one end attached to ground and the other attached to a

shaft. One end of the shaft is connected via a clutch to the motor and the other end

connected via a clutch to the load. When clutch 1 is engaged and clutch 2 disengaged

the motor will wind up the spring and so store energy. By disengaging clutch 1 and

engaging clutch 2 this energy can be transferred to the load. As with the step-up

device clutch 2 needs to be operated to perform like a ratchet by monitoring the

extension of the spring and disengaging the clutch when all of the energy has been

transferred. Operating in this way the load will rotate in an opposite direction to that

of the motor.

This design has some interesting features that distinguish it from the step-up

mechanism previously described. Firstly, since one end of the spring is held stationary,

the output velocity can theoretically drop to zero. Secondly, if the spring is allowed to

freely rotate through a half cycle before engaging clutch 2, the load will be able to

rotate in the same direction as the motor, thus allowing the output velocity to be

totally bi-directional. Thirdly, due to the input/output symmetry of the device, in the

same way that energy can be transferred from the motor to the load, energy can also

be transferred from the load to the motor. This third point allows the load to

decelerate at the same rate as it can accelerate with no theoretical energy loss. If the

second and third points were deemed unnecessary for a particular application then a

ratchet could be used in place of clutch 2. This design has clearly more potential than

the step-up device and so for this reason the thesis puts greater emphasis on the

design and analysis of this mechanism.

4



Chapter 1 1.1 The Switched-mode Concept and Operation

1.1.3 Analogy to Electrical Switched Mode Power Supplies

The inspiration for the design of switched-mode mechanical drives has come, in part,

from the design of electrical switched-mode power supplies. Switched-mode power

supplies (SMPS) have been successfully used for many years as energy efficient DC­

DC voltage converters. The step-up design can be thought of to be analogous to a

SMPS with a so called "boost" circuit, and the step-up-step-down design (with a

ratchet replacing clutch 2) analogous to a SMPS with "buck-boost" circuit. These two

circuits are shown in Fig. 1.2(a) ("boost") and Fig. 1.2(b) ("buck-boost").

Consider first the operation of the "boost" circuit. When the switch is closed

the current through the inductor will ramp upwards storing energy as it does so.

When the switch is open this stored energy is delivered to the output circuit through

the diode (which stops it from being reflected back). It is obvious that the output

voltage must be greater than the input voltage otherwise the inductor would not

discharge into the output circuit. This operation is analogous to that of the step-up

mechanism previously described with the switch being an analogous component to the

brake and the diode an analogous component to the ratchet.

5
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L

1.1 The Switched-mode Concept and Operation

L

a)

b)

c

c

R

R

Figure 1.2 - Circuit diagrams of a) the "boost" and b) the "buck-boost" SMPS
circuits

A similar argument can be used for the operation of the "buck-boost" circuit with the

switch being analogous to clutch 1 and the diode being analogous to clutch 2

(assuming it's operation mimics the behaviour of a ratchet). The bi-directional output

and bi-directional energy capabilities of the step-up/step-down mechanism are not

features of the "buck-boost" SMPS due to the presence of the diode.

This analogy can be taken further if we look at the differential equations

governing the operation of the "boost" SMPS circuit shown in Fig. 1.2(a) and the

"step-up" mechanical drive shown in Fig. 1.1(a). For this analysis we assume we have

a constant motor velocity and that the load energy losses are viscous.

6



Chapter 1 1.2 Current Variable Speed Drives

Switch "closed"! Switch "open"!
brake "on" brake "off'

Electrical "boost" V = L di[ .. L·
circuit ~n = LCVout + IiVour + Vout

In dt

Mechanical "step-up" 1 d't J .. B.
mechanism

00 =--- OOm =-OO[ +-OO[ +OO[
m K dt K K

where, oom - Motor angular velocity Vin - Input voltage
001 - Load angular velocity Vout - Output voltage
't - Spring torque l[ - Current through inductor
J - Load inertia C - Capacitance
K - Spring stiffness L - Inductance
B - Load viscous loss coefficient R - Resistance

We see that the forms of the differential equations are identical and by using the

analogous variables of voltage for angular velocity and current for torque we can

make the following equivalence relations,

L -
J -

R -

11K
C
liB

This suggests that an inductor is an analogous component to a spring, a capacitor is

analogous to an inertial mass and viscous losses are analogous to electrical resistance.

Making analogies between mechanical and electrical systems is not new [10]

and is perhaps best exemplified through the theory of "Bond Graphs" [11,12]. These

allow a systematic and transparent way of modelling mixed electrical/mechanical/fluid

systems through the systematic application of "flow" variables (velocity or voltage in

our analogy) and "effort" variables (torque and current in our analogy).

1.2 Current Variable Speed Drives

This section attempts to summarise currently available variable speed drives and

compares their characteristics to those of the switched-mode design. The variable

speed drives of interest are the ones where the output velocity can vary whilst keeping

the output power constant. This relationship is given below,

7
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where PI -
'to -

COo -

Input power
Output torque
Output angular velocity

1.2 Current Variable Speed Drives

Some devices which are called variable speed drives keep the output torque constant

and hence are intrinsically inefficient since there will be a difference between input and

output power. Examples of these are hydroviscous drives and magnetic couplings and

for this reason these devices are not included in the review. Also not included are

stepped ratio devices since these devices are only capable of producing a [mite

number of output speeds; a continuously variable output speed can only be achieved

by changing the velocity of the prime mover. A manual multi-speed gearbox is an

example of such a device.

Many different designs of variable speed drives have emerged and the

remarkable growth of interest in this technology can be traced to the increasing cost

of energy and the need to conserve resources. It is in this particular area that effective

speed control can make a considerable contribution. Devices of interest can be

broadly divided into three main categories: mechanical, electrical and hydraulic based

systems and they are discussed separately below.

Mechanical Devices

These devices can be divided into two groups: belt drives with coned or split pulleys

and variable speed couplings, which are also called variators. Examples of belt drives

are shown in Fig. 1.3 (a) and variable speed couplings in Fig. 1.3 (b). The first design

uses a belt which sits on either a cone or V-shaped split pulley. To achieve different

drive ratios either the belt is moved (for cone designs) or the gap between either sides

of the pulley is varied (for split pulley designs). Variable speed couplings use a freely

rotating ball or cone with the input shaft in contact with one part and the output shaft

8



Chapter 1 1.2 Current Variable Speed Drives

....
II .....

in contact with another. Ratios are varied by either physically moving the ball or cone

or changing its axis of rotation.

change ratio

\ ,..
, \

output

(a) belt drive with cones belt drive with V-belt pulleys

output
shaft

change
ratio

input
shaft

(b) mechanical couplings

Figure 1.3 - Different designs of mechanical variable ratio drives: (a) belt drives, (b)
mechanical couplings

Both of these devices rely on friction to transfer power and as a result inefficiencies

are unavoidable. Friction also limits the ratios available which is typically 8:1 for belt

drives and usually 9: 1 (1:3 to 3:1) for mechanical couplings even though the so called

Kopp design mechanical coupling can achieve 12:1 [1]. Ratio change is usually only

achievable by manual means and is slow and the output speed is always unidirectional.

The belt drive principle has been successfully used in the design of so called CVTs

(continuously variable transmissions) for use as car transmissions systems [2, 3].

9



Chapter 1 1.2 Current Variable Speed Drives

Hydraulic Drives

These can be divided into two main groups [4]: so called hydrostatic devices in which

power transfer is accomplished by fluid pressure, with no change in fluid momentum,

and hydrokinetic devices where power is transmitted by a transfer of the momentum

of the fluid.

Hydrostatic devices consist of a motor and pump combination where either

one must be of a variable displacement design. Hydrokinetic devices typically consist

of a centrifugal type pump or impeller driving a turbine in close proximity. To be truly

variable speed devices they need so called scoop control which varies the amount of

active fluid between the impeller and turbine.

As with the mechanical devices previously described the change in ratio

between input and output is a manual operation with some form of actuation device

required for automatic control. Hydrostatic systems tend to be more expensive but are

more efficient than hydrokinetic systems. One of the major advantages of using

hydrostatic systems is that the pump and motor do not need to be adjacent, they only

need to be connected via flexible hydraulic hosing. Since the motors have a very high

power to weight ratio this design of variable speed drive can be very compact and

light. Hydrokinetic drives require the input and output to be physically adjacent and

the output rotation direction the same as the input. This last point also applies to

hydrostatic drives but they can be made bi-directional by the introduction of a flow

control valve into the system.

Electrical Drives

Electrical systems can be used to transfer mechanical power in an analogous fashion

to the hydrostatic system previously described. In this system the prime mover drives

a variable voltage DC generator which then directly drives a DC motor and is

commonly called a Ward Leonard-Ilgner drive [5]. As with hydraulic systems the

prime mover and motor do not need to be physically adjacent, they only need to be

linked via wires carrying the current to the motor. The direction of rotation will

10



Chapter 1 1.2 Current Variable Speed Drives

always be that of the input but can be quite simply changed by the inclusion of a

switch.

The switched-mode mechanism, which is the subject of this thesis, is really a

mechatronic device since it needs control electronics as an integral component (to

provide the correct switching signals). The features that distinguish it from the devices

just described are it's inherent bi-directional output capabilities (without the need for a

reverse gear (mechanical devices) or flow control valve (hydraulic systems)) and that

closed loop velocity control is an integral feature for the mechanism. The effective

ratio of the device is automatically varied as part of the velocity control loop and

there is no need for manual adjustment. The other devices have manual ratio

adjustment but require extra actuator equipment to achieve automatic ratio

adjustment.

The choice of the most suitable drive will be influenced by the field of

application. An example of the sorts of questions that need to be addressed when

choosing the most appropriate drive system is given below,

•
•
•
•
•

•
•
•
•

Type of machine to be driven.

Maximum and minimum output speeds required and direction of rotation.

Maximum power and torque to be transmitted.

Nature of load, i.e., steady or fluctuating.

Operational conditions i.e., fire hazard, ambient temperature, space available

etc.

Requirement for automatic or manual speed control.

Requirement for flexible coupling between prime mover and drive motor.

Minimum acceptable efficiency over a range of output speeds.

Minimum acceptable capital and running costs of drive.

It is best from the designers perspective to have a wide range of possible drive

systems so that a drive system can be found that closely matches the requirements of

the application.
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Chapter 1 1.3 The Thesis Aim

As a summary to this section Table 1.1 compares the important features of the

drive systems mentioned and the switched mode mechanical drive which is the subject

of this thesis. The switched mode drive in question is one using the step-up/step-down

configuration and the efficiency and range of ratio figures are those taken from

experimental results on the 100 watt prototype.

Type of drive Range of Method of Output Peak Coupling
ratios ratio change velocity efficiency between

relative to input and
input output

Belt 9:1 manual Ulli- 85-90% f!Xed
directional

Mechanical up to 12:1 manual Ulli- 85-90% fixed
coupling directional
Electric variable manual bi- <80% flexible

directional
Hydrostatic variable manual bi- <80% flexible

directional

Hydro- infinite up manual Ulli- <80% fixed
kinetic to speed of directional

input

Switched 7:1 auto bi- 70-80% fixed

mode directional

Table 1.1 - Comparison of a switched mode drive with other available variable ratio

drives

1.3 The Thesis Aim

The analysis of Section 1.1 assumed the system components to be perfect. This

however is not the case in reality. Clutches, for example, will always produce limited

levels of torque, have an engagement and disengagement delay and posses inertia;

springs will only have a finite energy capacity and will also have inertia. These

imperfections in system components can easily cause serious degradation in system

performance which is usually made apparent through serious energy losses. The

relative significance and characteristics of these imperfections can be quite different

from those found in the equivalent electrical components and present the designer
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Chapter 1 1.4 Layout of Thesis

with new and challenging problems. The key to making a successful mechanical

device is to minimise the effect of these imperfections on the overall system

performance. This thesis is devoted to characterising these imperfections and coming

up with methods to minimise their effect and so construct working prototypes that

realise the theoretical ideas put forward in Section 1.1. This is achieved through novel

switching algorithms (Chapter 2) and also the construction of a detailed design

methodology that is capable of generating compatible sets of components that will

maximise the performance of the overall system (Chapter 5).

1.4 Layout of Thesis

Chapter 2 deals with the switching algorithms that have been successfully used to

control these devices and also explains the feedback structure that allows them to

perform tracking of the output velocity. Crucial to the analysis and design of these

devices is an accurate internal model. This is the subject of Chapter 3 which presents

models for both the step-up and step-up/step-down mechanisms. Chapter 4 deals

with the analysis and construction of a step-up prototype. Particular attention is paid

to fitting the model, developed in Chapter 3, to this device so that the original model

structure can be verified. Overall efficiency analysis is performed and the

mathematical model is used to attribute losses to particular constituent components.

This analysis then points the way for future system improvements.

Chapter 5 describes a design methodology and set of design tools for the

construction of step-up/step-down mechanisms. Important in this is the development

of a model which expresses the device's input/output behaviour in terms of some key

design parameters. This model can be used to generate complete families of parameter

values that will generate mechanisms with identical input/output characteristics. This

gives the designer the widest possible design choice at an early point in the design

process. This chapter then proceeds to develop an input/output model that can be

used to choose the feedback gain values and finishes with an example design.
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Chapter 1 1.4 Layout of Thesis

Chapter 6 describes the construction and analysis of the step-up/step-down

prototype. This chapter starts by describing how the design tools mentioned in

Chapter 5 were used to design this prototype and then analyses its performance and

compares it to that predicted by the design process. The rest of the chapter performs

energy efficiency analysis and also assesses its closed-loop performance. The last

chapter summarises and draws conclusions from the work described in this thesis and

points the way for further research.
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Chapter 2 Switching Algorithms and Feedback
Control Schemes

This chapter describes the switching algorithms and feedback control schemes that

have been used with each of the two mechanisms. The switching algorithms have

been designed to take account of the imperfections in system components which are

capable of seriously degrading system performance.

Consider these mechanisms with perfect components. This would be a motor

with an infinitely large inertia, spring and clutches that have no inertia and clutches

that switch infinitely fast and produce infinite torque. In this case the energy packet

transfer rate (or switching rate) could be made arbitrarily large and so make the

power throughput smooth. In addition all the energy in the spring will be transferred

to the load since the spring will have no inertia and therefore no kinetic energy after

the transfer has completed. However, a spring does have inertia (it also includes other

components rigidly attached) and so has residual kinetic energy after the energy

transfer stage has completed, and unless care is taken not to waste this residual

energy significant energy losses can result. Since clutches have inertia care must be

taken when engaging them since any velocity difference across either side will cause

a loss in kinetic energy as the clutch forcible matches the velocity of both plates.

Clutches also have engagement and disengagement delays which can limit the rate at

which energy packets can be transferred.

The first section describes two switching algorithms that have been

successfully applied to the step-up prototype. The first discussed, called PWM

switching, is commonly used in electrical switched mode power supplies and is

simple to implement but has drawbacks in terms of energy efficiency since it does

not take into account the residual kinetic energy remaining in the spring. The second

switching strategy, called resonant switching, was developed with the mechanical
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Chapter 2 2.1 Step-Up Mechanisms

device in mind to overcome the problems associated with PWM switching. Also

discussed is the method of matching the velocities of the clutch faces and the effect

this has on the performance of the device.

The second section deals with the switching algorithm and feedback control

scheme for the step-up/step-down device. This switching algorithm was developed

from that used for the step-up mechanism incorporating both the clutch matching and

resonant switching ideas. However, it also allows bi-directional energy flow and bi­

directional output velocity, which are features associated only with the step-up/step­

down device, and as a consequence this algorithm is more complicated in nature.

Also discussed is the feedback control scheme for the device.

2.1 Step-Up Mechanisms

The two switching algorithms that have been tested on the step-up prototype

mechanism will be the topic of the next two sub-sections. These switching

algorithms are PWM switching, which is simple to implement but has deficiencies in

terms of energy efficiency, and resonant switching which is an attempt to overcome

some of the deficiencies of the PWM algorithm. Also discussed is clutch matching

which attempts to prevent losses in the output clutch caused if it is engaged with

different clutch plate velocities. Lastly the feedback loop for these devices is

presented.

2.1.1 PWM Switching

This type of switching uses a fixed length of time between energy transfers and will

perform energy storage for some proportion of this time. Fig. 2.1 shows a diagram of

a few energy transfer cycles along with the signals sent to the clutch and brake. The

length of time for the energy storage stage, tk, will determine the energy packet size

and since the transfer rate is fixed (due to t), the length of time for the cycle, being

fixed) the proportion tk is of t) will ultimately determine the power output of the

mechanism (within the limitations of the motor). The time taken to transfer this
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Chapter 2 2.1 Step-Up Mechanisms

energy will vary and depends on the velocity of the load and the spring extension. To

guarantee that enough time is allowed for this transfer of energy the maximum

proportion of the cycle allowed for energy storage will be set at 50% (which is also

used in practice in the equivalent electrical circuit [6]). Justification for this

approximation can be seen when it is considered that, apart from an initial

acceleration phase, the load will normally be going faster than the motor so the time

taken to unwind the spring will always be shorter than the time to wind up the spring.

The remaining time of the energy cycle, known as dead time, is unused.

Load
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Spring
velocity

Clutch
signal

,
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· · ,

· · dead
· · tirre· ··
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Figure 2.1 - Energy transfer cycles for PWM switching

To determine the point at which all the energy has been extracted from the spring (i.e.

the point at which the energy transfer stage has been completed) the spring extension

is measured and when this is zero the clutch is turned off. This process of switching

the clutch mimics the operation of a ratchet. It can be seen from Fig. 2.1 that the

velocity of the spring when the brake is applied depends on the load velocity and the

duration of t
k

and in general will be non-zero. Engaging the brake with significant

spring velocity can mean quite high power losses since physical constraints will
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Chapter 2 2.1 Step-Up Mechanisms

mean that the spring inertia is not negligible (it will consist of the moving parts of the

spring as well as flanges connecting it to the brake and the moving brake components

themselves). Fig. 2.2 shows a flow diagram of the algorithm used by the controller

routine when performing PWM switching.
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Figure 2.2 - Flow diagram for PWM switching

This type of switching is easy to implement and, if a ratchet is used instead of a

clutch, the switching algorithm needs only minimal instrumentation since no

velocities or displacements need to be measured.

2.1.2 Resonant Switching

This type of switching is similar to PWM switching, described in the previous

section, however, it attempts to minimise the energy losses associated with engaging

the brake when the spring velocity is significant. In this algorithm the length of dead­

time is fixed instead of the complete cycle. By tuning the dead-time length. r.,

appropriately, the brake will be applied when the spring velocity is close to zero.
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Chapter 2 2.1 Step-Up Mechanisms

Even though the time taken for zero velocity will not be in general fixed (it will be a

function of the load and motor velocities) the approximation of using a fixed dead­

time produces a workable compromise which is superior to PWM switching. A

consequence of using this method of switching is that the overall energy transfer time

will not be constant. A few energy transfer cycles for this type of switching is given

in Fig. 2.3 and a flow diagram for the resonant switching algorithm is given in Fig.

2.4.
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Figure 2.3 - Energy transfer cycles for resonant switching
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Chapter 2 2.1 Step-Up Mechanisms

calculated if the resonant frequency of the spring (and attached fixings to the brake)

and the motor velocity (assumed fixed during this period) are known. The equation

defining this delay is given below and its derivation is contained in Appendix A,

where, td - Time delay
Js - Spring inertia
K - Spring rate

Be - Initial extension of spring

OJ[ - Load angular velocity

OJm - Motor angular velocity

It will be noticed that the spring rate and inertia do not need to be known separately

but can be found by measuring the resonant frequency of the spring (assuming

negligible friction) since this will be approximately _1_~ K
2n r,

Using this predictive scheme the clutch actuation delay can be taken into

account by simply taking this delay away from the figure for td previously calculated.

This is preferable to the alternative of monitoring the velocities on either side of the

clutch and engaging it when they were found to match.

A comparison of resonant switching with and without clutch matching for the

prototype step-up mechanism is given in Section 4.2.3.

2.1.4 Feedback Control Loop

This section describes the operation of the feedback control loop used for the step-up

mechanism. The controller will modify the length of the energy storage stage, tk

(which is proportional to the duty-cycle for PWM switching) which will then vary the

output velocity of the device. The output velocity is fed back to the controller and

simple PI compensation is used to generate the control signal (the time tk) given to
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Chapter 2 2.2 Step-up/Step-down Mechanisms

the switching algorithm (which can be either PWM or resonant switching). This

arrangement is shown in Fig. 2.5.
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Figure 2.5 - Feedback control loop for the step-up mechanism

An example of the prototype step-up mechanism operating under closed-loop control

is given in Section 4.2.1.

2.2 Step-up/Step-down Mechanisms

These mechanisms require a more sophisticated switching algorithm than step-up

devices due to their design allowing bi-directional output velocity and bi-directional

energy transfer capabilities. This switching algorithm incorporates both the clutch

matching and resonant switching ideas developed for the step-up mechanism.

2.2.1 Resonant switching Algorithm

Since the spring and its rigidly attached components (including connecting rod and

clutch rotors etc.) will have finite inertia, energy will always be left over after the

spring has transferred energy to the load. Allowances for this residual energy must be

made otherwise significant energy losses can result. For the step-up mechanism the

resonant switching algorithm introduced a fixed delay between the disengagement of

the clutch (the completion of energy transfer) and the engagement of the brake (the

start of energy storage). This allowed the spring velocity to return to zero and so not

waste its kinetic energy when the brake was applied. For the step-up/step-down

mechanism this delay must be such that the spring velocity matches the motor

velocity and, in fact, can be correctly calculated if the resonant frequency of the
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Chapter 2 2.2 Step-up/Step-down Mechanisms

spring system is known. This is the same as the clutch matching algorithm described

for the step-up mechanism but operated on the input clutch instead of the output

clutch. The equation used to calculate the delay is slightly simpler since one end of

the spring is held stationary, and this equation can also be used for the velocity

matching of the output clutch due to the symmetry of the device. This equation is

given below,

t =2~J, tan -1 [ - .fK(Je ±~~. (J; - ( iJs + (J)e ) ( iJs - (J)e) + ]
d K . - ntr

((Js+(J)e)

where, td - Time taken for spring to reach target velocity
K - Spring rate

is - Spring inertia
(Je - Initial spring extension

we - Initial spring angular velocity

(Js - Target spring angular velocity (load or motor)

(2.2)

This equation will find the time taken for an oscillating spring, with finite inertia and

a generally non-zero initial velocity and spring extension, to achieve a target velocity.

The target velocity will be either the motor velocity, to calculate the correct delay

prior to energy storage, or the load velocity, to calculate the correct delay prior to

energy transfer. What is more this equation also allows the bi-directional capabilities

of the device to be realised since this equation will generate the correct clutch delays

when the load and motor are going in the same and opposite directions. It can also

handle bi-directional energy transfer by reversing the interpretation of the load and

motor. The derivation of this equation is given in Appendix B. Also explained in this

appendix is how to efficiently choose the correct solution (Eq. (2.2) has multiple

solutions) for a particular operational mode of the device (direction of energy transfer

and direction of rotation of motor and load). As with the step-up device it will be

noticed that neither the spring rate, K, or the spring inertia, is, need to be known

separately, only the square root of their ratio and is simply found as being 21t times

the natural frequency of the spring. It is important that the time taken for the
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Chapter 2 2.2 Step-up/Step-down Mechanisms

velocities to match can be calculated in advance since it means that the clutch

actuation delay can be taken into account by simply taking it away from the result

found in Eq. (2.2). Typical energy transfer cycles are shown in Fig. 2.6(a) (positive

load velocity) and Fig. 2.6(b) (negative load velocity).

I I

I •

I I

I I

I I

I Energy I I Energy

transfer' if transfer
delay I I

I

\~
• t I

......--~I I

t I

Fner~y :
storage­

Energy
storage
delayClutch 1

signal

Load
velocity

Motor
velocity

Spring
velocity

- I
,..-

I I

- -
Clutch 2
signal

-

Figure 2.6(a) - Energy transfer cycles producing positive load velocity

24



Chapter 2 2.2 Step-up/Step-down Mechanisms
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Figure 2.6(b) - Energy transfer cycles producing negative load velocity

2.2.2 Feedback control loop

So that the mechanism can follow a given velocity trajectory a feedback control loop

is required. This loop controls the size of the energy packet used by the switching

algorithm and is different to the feedback loop for the step-up mechanism which

simply controlled the energy storage time. The feedback loop for step-up/step-down

mechanisms is shown in Fig. 2.7.

e I .. Energy... packet ... Switching Clutch .. Step-upstep-dowm
Controller ~.. size .. Algorithm Signals .. Mechanism...

~~

Load velocity Motor, spring and load velocities

Reference
v locity

plus spnng extension

Figure 2.7 - Schematic diagram of control loop for the step-up/step-down
mechanism

To decide on an appropriate form of controller let us first consider the open loop

model for this system. If we assume the switching rate to be fast compared to the

output dynamics (defined by the output load inertia and load torque) then the

25
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Chapter 2 2.2 Step-up/Step-down Mechanisms

following continuous differential equation can be used to approximate the open-loop

system,

where,

.. .
'tm =118 1 + Btotal81 + 't l

'tm - Average torque produced by mechanism
1I - Load inertia

Btotal - Term representing viscous losses
't I - Load torque

(2.3)

If we multiply through by 8 1 we have,

(2.4)

Noting that the left-hand side is the output power of the device and substituting x for

9; into this equation then we have,

P - 1 1 • B ~
- -x + totalX + 'tlx

2
(2.S)

The output power (P) can be thought of as the energy packet size (tp) divided by the

energy switching time for the device and so we have,

(2.6)

which describes the dynamics of the device in terms of the control variable e r: This

equation is non-linear due to the square-root term and to be able to analyse it, it is

best to linearise it about an operating point. Hence applying this equation around an

operating point e p =e pO and x =X o and considering incremental changes ~t p and

& we have,
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Chapter 2

and using the Taylor expansion,

we have finally,

for

2.2 Step-up/Step-down Mechanisms

0< 8« 1

it ( t.t JSe =_l_s M+ B t + Is Llx
p 2 total s 2 ~

Xo
(2.8)

This is a linear model of the system which shows that the open-loop dynamics of the

mechanism approximates to that of a first-order system.

Taking Laplace transforms of both sides we have the open loop transfer function,

where,

A
G(s)=--

s+B

and 1 ( t, JB =- 2Btotal+~t, X o

(2.9)

Let us consider this system being controlled by a proportional feedback control
k

scheme. In this case the steady-state errors to an input of the form !..- are, using the
k!

final value theorem,

«; = lim~(l- res))
s~o s

where T(s) is the closed loop transfer function. This shows that,

«;
B

-
B+KA
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Chapter 2 2.2 Step-up/Step-down Mechanisms

- infinity for k>O

This shows the system to be of type 0 and would require a feedback gain (K) such

that B+K»B to achieve low steady-state errors to step inputs, with errors to ramp

inputs being unbounded. However changing the system type to 1 by adding integral

control is the preferred control strategy since it will have zero errors to step inputs

and constant errors to ramp inputs. Following the same analysis as that just outlined

for proportional control it is straightforward to see that errors to ramp inputs for this

system are given by,

B
e.\·s = K A

r

where K, is the proportional gain.

(2.10)

The analysis so far suggests usmg a PI (proportional plus integral) feedback

controller with the velocity squared as the feedback variable should produce a

feedback system which is of type 1. This feedback scheme is shown below,

Reference
velocity

t-----i~ Switching t--....... Mechanism 1--.....,
Algorithm

Figure 2.8 - PI controller feedback scheme with velocity squared feedback

It is interesting to note that using the velocity squared as the control variable really

means that the device is controlling a quantity that is proportional to the kinetic

energy of the load. Since the device is capable of driving the load in both forward and

reverse directions the controller must be such that the sign information of the

reference signal is not lost. The switching controller must be aware of the sign of the
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Chapter 2 2.2 Step-up/Step-down Mechanisms

reference signal so that the output direction of the load can be chosen correctly. In

addition a sign needs to be associated with the level of energy so that the controller

can distinguish the case where the signs of the reference and output velocities are

different. An example of what would happen if the sign was ignored would be where

the reference velocity suddenly switched sign whilst maintaining the same

magnitude, the controller would in fact do nothing since the kinetic energies

matched. To overcome this problem the feedback error is defined as,

feedback error = signer) X (Irlr -Irolro)
where,

r - Reference angular velocity
QJ - Output angular velocity

Using this modification the feedback structure now becomes,

Reference
velocity

Reference direction

PI
Controller I----~

energy
packet size

Mechanism

Load velocity

Figure 2.9 - Modified PI feedback scheme for bi-directional output

The choice of the controller gains (proportional and integral) and stability issues

arising from the inherent switching action of the device are discussed in Section 5.3

since the CAD tools developed are used in this selection.

The feedback scheme just described is not the only one that could be used

with step-up/step-down mechanisms, however, it is the one that has been successfully

used for the prototype (see Section 6.6).
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2.3 Conclusions

2.3 Conclusions

This chapter has dealt with the switching algorithms and feedback control schemes

used for each mechanism. For the step-up mechanism a simple PWM switching

algorithm is first explained which is a simple scheme to implement and has its direct

counter part in the electrical domain. This algorithm has a drawback, however, in that

it creates energy losses by switching on the brake when, generally, the spring has

significant kinetic energy. A second algorithm, called resonant switching, attempts to

minimise these energy losses by switching the brake when the spring velocity is close

to its minimum value. Also discussed in this chapter is an enhancement that can be

made to both algorithms that significantly improves the overall performance. This

enhancement involves delaying the actuation of the clutch until the velocity of the

spring matches that of the load and means that less energy would be wasted in the

clutch and also reduces its wear characteristics. A simple feedback structure for the

step-up mechanism has also been introduced.

The switching algorithm for the step-up/step-down mechanism encompasses

the ideas of clutch matching and resonant switching first introduced for the step-up

mechanism, but is more complicated due to the step-up/step-down mechanism's bi­

directional output velocity and bi-directional energy transfer capabilities. The

feedback structure for the step-up/step-down mechanism is also more complicated

for similar reasons.
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Chapter 3 The Modelling and Simulation of
Flexible Drive Mechanisms

This chapter attempts to develop mathematical models for both step-up and step­

up/step-down mechanisms. These models must be as accurate as possible whilst still

remaining tractable and be physically intuitive. Ideally they should take into account

the engagement and disengagement delay inherent in mechanical clutches and brakes,

and the finite amount of torque they can provide. In addition the spring's inertia

should not be ignored since this has a significant effect on the overall system

behaviour. These simulations would then help in further system development, help to

pinpoint areas that cause significant energy losses and help controller design and

parameter selection. The first section describes the model itself, gives the coupled

second order equations that can be used to model step-up mechanisms, and the

modified versions that can be used to model step-up/step-down mechanisms. The

next section describes the method for the model's numerical solution and also

discusses a common problem with simulating switching systems such as these and

how this problem can be overcome. The final section describes how the models can

be used for efficiency analysis and how energy losses can be attributed to particular

components of the device.

3.1 Mathematical Models

An appropriate method of modelling these systems is to divide them into three main

components: the motor, spring and load. Each component will have a second order

equation associated with it and these equations will be coupled through the operation

of the clutches and/or brake.
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Chapter 3 3.1 Mathematical Models

Since each of the main components has bearings associated with them the model for

bearing friction will be considered first. This is a simple viscous and coulomb fit [13]

with separate viscous and coulomb parameter pairs used for each bearing. This

friction model is shown in Fig. 3.1.

Force

Velocity

Figure 3.1 - Force vs. velocity characteristic used to model bearings

Mathematically this function can be expressed as,

F = Bto « Csign(m)

Where, F - Frictional force of bearing
OJ - Relative angular velocity of inner and outer races
B - Viscous friction coefficient
C - Coulomb friction coefficient

and the sign function is defined as,

{

+1 x ~ 0
sign(x) =

-1 x<O

The clutches and brakes are simply modelled, in their "on-state", as coulomb friction

devices with the level of friction being the rated dynamic torque, and, in their "off-
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Chapter 3 3.1 Mathematical Models

state", as devices with no friction. The "on-state" force vs. velocity characteristic is

shown in Fig. 3.2.

Torque

Relative velocity
of clutch or brake faces

Figure 3.2 - Torque vs. velocity characteristic for clutch and brake model in the "on­
state"

Mathematically this can be expressed as follows,

F(t) =u(t- Cd)'rssign(OJ)

Where, F - Force applied by clutch or brake
'r s - Rated dynamic torque of clutch or brake

ill - Relative angular velocity between faces of clutch or brake
u - State of clutch or brake (1 for "on" and 0 for "off')

Cd - Delay of clutch or brake

It should be noted how the clutch or brake delay is achieved by simply delaying the

operation of the state variable u by the delay of the clutch or brake (Cd)·

The model of the motor is simply defined as an inertia providing a source of torque

as a function of velocity. This is a purposefully general model since the mechanism

can work with any design of motor.
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Chapter 3 3.1 Mathematical Models

3.1.1 Three-mass model for the step-up mechanism

Fig. 3.3 shows a schematic diagram of a step-up mechanism and how it is divided

into its three components; the motor, spring and load. The motor component contains

the motor plus flanges etc. up to the start of the spring, the spring component the

spring and all parts of the clutch and brake that are rigidly attached, and the load

component contains the load mass plus parts of the clutch that are rigidly attached.

~bearingS~

c::J

.,A
brake ?:

clutch I

Motor Spring Load

Figure 3.3 - Three mass model representation of step-up mechanism

Combining the equations of motion of each component with the mathematical model

of the clutch and brake previously defined we can construct the complete model for

the step-up mechanism which is given in Eqs. (3.1, 3.2 and 3.3),

o= i.~e." + Bs8 .,. + C,sign (8.1, ) + K(S", - em)

+U'tbsign(8.~) + v't csign(8.,. - 8 t )

Where, em' e.,,, e.~ - Motor, load and spring positions

i m ? i; it - Motor, load and spring inertias

Bm,B.,.,Bt - Viscous friction coefficients

c..c..c, - Coulomb friction coefficients

K - Spring stiffness

'tm - Torque generated by motor

't[ - Load torque

'tb - Rated dynamic brake torque
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'tc - Rated dynamic clutch torque

u - Brake state Cl=on, Oeoff)
v - Clutch state C1=on, Oeoff)

3.1 Mathematical Models

3.1.2 Three-mass model for the step-up/step-down mechanism

A schematic diagram of the three mass model for step-up/step-down mechanisms is

shown in Fig. 3.4. This, as with the step-up mechanism, consists of three

components, the motor, spring and load. The motor contains the motor plus

components of clutch 1 rigidly attached, the spring term contains the spring,

connecting rod and all parts of both clutches that are rigidly attached, and the load

component contains the load mass and parts of clutch 2 rigidly attached.

/1 bearings~

I I

I

~I
clutch 1 I

I

Motor Spring Load

Figure 3.4 -Three mass model representation of the step-up/step-down mechanism

Combining the equations of motion of each component with the mathematical model

of the clutch previously defined, we can construct the complete model for the step­

up/step-down mechanism which is given in Eqs, C3.4, 3.5 and 3.6),

't C8 )=18 +B8 +CmsignC8m)+ul'tclsignC8m-8J C3.4)
m m mm mm .

0= 1
J
8

J
+ B.

f8 J
+ CJsignC8",) + K8 s +

+U1't cl signC8 s - 8 m ) + U2'tc2signC8 s - 8 I) C3.5)

Where, 8 8 8 - Motor, load and spring positions
m' s' I
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Jm, i, J[ -
n; BS' B[ -
c; c, C[ -

K -
'tm -

't[ -
'tcJ -
'te2 -
UJ -
U2 -

3.2 The Numerical Solution

Motor, load and spring inertias
Viscous friction coefficients
Coulomb friction coefficients
Spring rate

Torque generated by motor (as a function of motor
velocity)
Load torque
Rated dynamic torque of clutch 1
Rated dynamic torque of clutch 2
Clutch 1 state (1 =on, 0 =off)
Clutch 2 state (1 =on, 0 =off)

3.2 The Numerical Solution

To find the solution to these equations numerical methods must be used and this is

most conveniently done if they are converted to state-space form. The obvious states

to choose are the motor position and velocity, the spring position and velocity, and

the load position and velocity. The state-space equations for the step-up mechanism

are shown in Eqs. (3.7 to 3.13) and for the step-up/step-down mechanism in Eqs.

(3.14 to 3.20).

State-space model for the step-up mechanism

X
2

= ; ['tm - Bmx2 - Cmsign(x2 ) - K(x, - x,)]
m

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

x. =+[-B,x. - (C, + 't, )sign(x.) - v't,sign(x. - x.)]
I
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State space model for the step-up/step-down mechanism

Xz = ; [Tm- BmxZ - C; sign(xz) - ut Tclsign(xz - x.)]
m

3.2 The Numerical Solution

(3.14)

(3.15)

(3.16)

(3.17)

x. = ; [- B,x. - C,sign(x.) - Kx 3-ut Tclsign(x. - x 6 ) - UzT,z sign(x. - x.)]
s

(3.18)

X6 = ; [- B,x6 - (C, + T, )sign(x6 ) - UzT,zsign(x6 - x.)]
I

(3.19)

(3.20)

There exists a problem when integrating these systems of equations due to the

singularities associated with the clutch, brake and bearing models. These singularities

are caused by the sign function (see Figs. 3.1 and 3.2). If the equations are solved, as

is, with a variable step method the integration algorithm will fall into an infinite loop

trying to force the time step to zero in an attempt to overcome this singularity. To

solve this problem a tolerance is put on the width of the singularity. If the variable

associated with the sign function goes inside this tolerance, and the terms forcing the

change in this variable are less then the magnitude of the sign term, then the variable

should be "locked" at its current value (by putting the variable's derivative to zero).

The variable should only be "unlocked" from this state when the sum of terms

affecting its change are greater than the coefficient of its sign function.

Consider Eq. (3.9), this defines the derivative of state x2 (the motor velocity)

and this equation has a singularity caused by the model of motor bearing. To

overcome the numerical problems found when the value of X 2 approaches this

singularity, simply test for the value of x2 being less than a small value, around the

singularity, and then test the sum of the other terms are less than the magnitude of the
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sign function. If this is the case then "lock" its value by setting its derivative to zero,

i.e.,

IF (x2 < velocity tolerance) AND ABS( 'l'm - Bmx2 - K(x
1

- x
3
» < em)

x2 =0 / * locked */
ELSE

END

Obviously the same procedure needs to be carried out for all the other sign terms in

the set of state-space equations.

The numerical method employed was a 2nd13rd order variable step Runge-Kutta

method [16] and was chosen since it was relatively easy to program. This algorithm

was implemented using the "C" programming language and interfaced with the

popular mathematical analysis tool MATLAB [17] for plotting and further analysis

work. An overview of the simulation software is shown in Fig. 3.5.

Reference
signal(s)

. .. controllert)
u X.....~

X models)
r

- SIMULATOR .-

--- Continous signals

Discrete signals

Figure 3.5 - Overview of software to perform numerical simulation

The software is divided into three parts; the first part (called the Sllv.lULATOR)

implements the Runge-Kutta algorithm, the second, a function called model()

implements the above state-space equations, and the third a controller function

(called controller() performs the appropriate switching algorithm and feedback

control if required. The model() subroutine is called at every integration time step by
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the simulator with the current states (x) and defines the state-space derivatives (x).

At the sample frequency for the system the controller() subroutine is called with the

current states and provides the inputs to the model (these are the clutch and/or brake

signals). Appendices C and D show print-outs of the "C" code used to define the

physical models for the step-up and step-up/step-down systems and Appendices E

and F show the "C" code used to define the controllers for the step-up and step­

up/step-down mechanisms.

3.3 Efficiency Analysis

The mathematical models can be used to perform efficiency and power loss analysis

using the data from open loop simulations over a range of different output load

torques. These simulations will produce a range of different output steady-state

velocities and the results of these simulations can be used to estimate power losses in

key components of the device as a function of output velocity. A list of these

components is shown below,

1. Motor bearing
2. Spring bearing
3. Load bearing
4. Input clutch (step-up mechanism) or brake (step-

up/step-down mechanism)
5. Output clutch

The mathematical models assume the spring to be a 100% efficient device and so for

this analysis this will be the case as well. The following equations can be used to

estimate power losses,

Input power

where,

input power =J'Tm X OJm dt

'tm - Motor torque
QJ

m
- Motor angular velocity
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Output power

output power = f t, X '". dt

3.4 Conclusion

(3.22)

where, 'tl - Load torque
WI - Load angular velocity

Motor, spring and load bearing power

bearing power =f(Bro+sign(ro)C)rodt (3.23)

where, B - Viscous friction coefficient
C - Coulomb friction coefficient
W - Load, spring or motor angular velocity

Clutch or brake power

power =f 'fc xu(t-Cd)x(8 j -(0
)dt

where, 'fc - Clutch or brake torque
u - Clutch or brake signal (0 for off, 1 for on)

Cd - Clutch or brake delay
8. - Clutch or brake input angular velocity

I

8
0 - Clutch or brake output angular velocity

(3.24)

The equations outlined above can also be used with experimental data and form the

basis of the efficiency analysis performed on both of the test prototypes.
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3.4 Conclusion

3.4 Conclusion

This chapter has outlined a three mass mathematical model for each of the step-up

and step-up/step-down mechanisms. The method of its numerical solution and how

this model can be used to predict the amount of energy loss in particular system

components has also been discussed. These models proved an invaluable tool in the

analysis and development of the two prototypes and the model of the step-up/step­

down mechanism and the simulation software form a crucial part of the CAD

software discussed in Chapter 5.
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Chapter 4 The Design and Performance of a
Prototype Step-up Drive System

In order to prove that the concept of the step-up mechanism works in practice a

prototype was constructed. This chapter describes its construction and analyses its

performance. Practical comparisons between the different types of switching

algorithms (PWM and resonant) introduced in Section 2.1 are made and the effects

of clutch matching and increasing the motor inertia are assessed. The general

mathematical model described in Chapter 3 is further refined through inclusion of a

model for the motor. Methods for the estimation of some key parameters such as the

clutch delay and spring inertia etc. are also described and the results presented. The

model is verified by comparing the results of open loop tests performed on the

prototype with identical tests performed using the model. Overall power efficiency

tests are performed on the device and, by using the mathematical model, these losses

are attributed to the various components of the mechanism.

4.1 Prototype Construction and Instrumentation

A schematic diagram of the test prototype with its associated instrumentation is

shown in Fig. 4.1,
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Chapter 4 4.1 Prototype Construction and Instrumentation

d

Clutch/brake
driver

Clutchlbrake unit

Encoder
counter

Motor
aI11>lifier

Optical encoders ---__

r---------"'" I ~

33MHz

386PC

PC 30I/O card

Figure 4.1 - Schematic diagram of prototype with instrumentation

There was no rigorous design procedure undertaken to choose the mechanisms

constituent components, they were chosen on the basis of engineering judgement

alone. The prototype included the following off-the-shelf components,

Component Model Specification
Motor Printed Motors Ltd, torque constant = 0.11 Nm/amp

Model G12M4
Clutch & brake Clarke, Model CB 175 static torque = 1.1 Nm
Spring Lewis spring products torsional spnng rate - 0.22

LS 80038 Nm/rad

Table 4.1 - List of Components for the Step-up Prototype

The data sheets for these components are given in Appendix G. The motor amplifier,

clutch/brake driver and encoder counting electronics were all produced in-house at

the university. A photograph of the completed prototype is shown in Appendix H.

A PC was used to control the mechanism and log results. This sensed the

positions and velocities of the motor, spring and load and produced signals to control

the clutch and brake. The motor was always run with a constant input voltage. The

PC operated at a sample rate of 500 Hz and implemented a simple Euler

differentiation technique to provide velocity signals from the displacement signals

provided by the encoders. Using a PC to produce the control signals gave flexibility

when testing and implementing various switching algorithms. The controller function
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Chapter 4 4.2 Prototype Results

used to control the prototype is shown in Appendix E and is in fact identical to the

one used in the three-mass mathematical model. This routine was called once at

every time step and could provide either PWM or resonant switching and also

produced the PI feedback control.

4.2 Prototype Results

This section presents test results from the prototype, compares the two switching

algorithms and shows the effect of matching the clutch plate velocities prior to

engagement and increasing the motor inertia.

4.2.1 Open and closed loop tests

Results of an open-loop test which accelerated the load mass from rest is given in

Fig. 4.2. This test used the PWM switching algorithm with a fixed duty cycle of 0.5

and a cycle time of 0.2 seconds. Various cycle times (t1) were tried and 0.2 seconds

was found to produce the highest load velocity. A constant motor voltage of 12 volts

was used, much more than this and it was found that either the spring failed or the

brake and/or clutch slipped. It can be seen that the load velocity reaches a value

almost three times that of the mean motor speed. This result shows that the

theoretical idea behind the device works in practice.

The next test performed was varying the duty cycle of the switching

algorithm. Fig. 4.3 shows the load mass being accelerated with six different duty

cycles ranging from 0.05 to 0.5.
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Figure 4.2 - Accelerating a mass from rest using PWM switching
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Figure 4.3 - Accelerating a mass from rest using duty cycles of 0.05 to 0.5

As theoretically predicted the steady-state output velocity increases with the duty

cycle and the output velocity can be controlled by manipulation of this parameter.

Fig. 4.4 shows the mechanism working in closed loop with a reference velocity of
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287 rad/s. The feedback gains were tuned manually and the final values chosen were

Kp=O.12 s2/rad and Kr=4.4e-5 s/rad. As can be seen the reference velocity was

attained with no overshoot and no detectable steady-state error.

300r-----,----""""t"'----,------,r------r----...,
287t---~~=:..r_~~:rpo..If""_o;H~'""+'+..p...p..~~-..Ja...p.....J_.~

250

200
-.

VJ-!
>. 150

.'l:l
o
.9
~

100

50

OL.....L-__---L ---L --L- ...L- ..L.--__--J

o 1 2 3 4 5 6
Titre (sees)

Figure 4.4 - Step-up prototype under closed-loop control with a reference velocity of
287 rad/s

4.2.2 Comparison of PWM and resonant switching

A comparison of between resonant and PWM switching algorithms is given in Fig.

4.5. It will be seen that the terminal velocity is higher using resonant switching

inferring that this type of switching produces higher levels of output power and

reduces the losses in the device.
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Figure 4.5 - A comparison of resonant and PWM switching accelerating a mass from
rest

4.2.3 Effect of clutch matching

A comparison of resonant switching with and without clutch matching is given in

Fig. 4.6(a), a snapshot of this test showing a few cycles is given in Fig. 4.6(b). As

can be seen the dips in velocity just prior to energy transfer have been removed and a

significant increase in output velocity has been achieved.
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Figure 4.6(a) - Comparison of resonant switching with and without clutch matching
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Figure 4.6(b) - Snapshot of comparison of resonant switching with and without
clutch matching
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4.2.4 Increased Motor Inertia

Fig. 4.2 showed the motor and load velocities for the step-up device with no added

motor inertia. As can be seen, the motor velocity varies considerably, from about 140

rad/s to almost O. Since the motor is being driven by a constant voltage (12 volts) its

output power, as a function of velocity, can easily be found by using the motors

mathematical model (see Section 4.3.1). This power vs. velocity characteristic is

given in Fig. 4.7. From this graph we can see that when the motor velocity varies

from 0-110 rad/s the power output from the motor is seriously compromised. If the

motor velocity can be kept constant, at or around the velocity which provides peak

power (about 55 rad/s), the input power to the device will be increased considerably.

An obvious way to achieve this is to increase the motor inertia. This will keep the

motor velocity steadier and so allow the motor to store energy even when it is not

transferring energy directly to the spring. The inertia added took the form of a steel

disc 90 mm in diameter and 30 mm in length representing an added inertia of

1.42xl0-3 kg m-. This resulted in a 10 fold increase in the effective motor inertia and

the results of using this increased motor inertia can be seen in Fig. 4.8.

35 ..-------,..---...,..----~--___r---_,_--____,

. . ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... . .

. . ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... . .

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..,... .. .. .. .. .. .. . .. .. .. .. .. ..

............. ,'" , , "'," .. .. .. t ..

. . . ............... ,'" ~ ; "'." ..

5

25 · · · · · · · ·· · ... ···· .. ············ .. ···········:······
• • I , ,

30

W ~ W W 100 1W
Velocity (rad/s)

Figure 4.7 - Power/velocity characteristic of motor driven with a constant 12 volts

49



Chapter 4 4.3 Mathematical Model
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Figure 4.8 - Comparison of device with and without added motor inertia

It is apparent that the motor velocity ripple has been reduced significantly and that its

average velocity is at or around the velocity of peak power (55 rad/s). This increased

input power has resulted in a considerable increase in load velocity (about 50%) even

though there is a slight reduction in initial acceleration because the motor is

accelerated from rest at time zero and this takes longer with the increased inertia.

This result demonstrates that, when the motor has only a narrow velocity band where

it produces significant power, it is essential that it possess a large enough inertia to

keep its velocity within these limits.

4.3 Mathematical Model

This section develops the model outlined in Section 3.1.1 specifically for this

prototype. It defines the motor model used with this prototype and also describes how

the values of the various parameters were arrived at.

The motor used with this prototype is a printed armature DC permanent

magnet electric motor (see Appendix G for data sheet) and the classical model for
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this type of motor is given below. Note that the armature inductance is neglected

since it is very small.

't = K t CV~ - K e 8m )

m R

where, ~. - Motor supply voltage

x, - Motor emf constant

Kt - Motor torque constant
R - Motor resistance

(4.1)

This model (Eq. (4.1)) combined with the three-mass model defined in Section 3.1.1

represents the complete model of the system. Before this model can be simulated

values for the model parameters must be obtained. Some of them can be found from

manufacturer's data but others must be found using experimentation. Parameters

found from manufacture's data include Ke , K" R, Jm' 'tb and 'tc ' with all other

parameters requiring experimentation. The following sub-sections describe these

experiments in detail.

4.3.1 The Motor Bearing Friction and Motor Model

This experiment attempts to find the motor bearing friction coefficients and also

performs some simple tests to verify the motor model. The experiment simply

measured the motor current at different unloaded steady-state motor velocities. At

this steady-state the motor acceleration is zero and so the model (Eq, (4.1)) becomes,

where,

. .
't m =KJm =Bm8m+ Cmsign(8 m)

1m = Motor current
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Since K, is a constant Eq. (4.2) should produce the friction characteristic shown in

Fig. 3.1. A graph of the measured current vs. velocity data is show in Fig. 4.9. Along

with the measured points a line of best fit has also been plotted.
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Figure 4.9 - Motor current vs. steady-state unloaded motor velocity

As can be seen the results justify the original choice of bearing model and from this

graph the friction coefficients can easily be found. Using an average of the gradients

in the positive and negative directions the value of viscous coefficient is,

Bm = 7.95e-5 Nm s/rad

and using an average of the y axis intercepts the coulomb friction can easily be found

as,

em = 0.0246 Nm

These values were found using the manufacturers supplied value for Kt of 0.1101

Nmlamp.

To verify the complete motor model different open-loop step tests were performed

using four different input voltages of 12, 15, 18 and 21 volts and the inertia of
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1.42x10-3 kg m? attached. The comparison between the model and experiment is

shown in Fig. 4.10 below,
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Figure 4.10 - Comparison of motor model at four different input voltages

As can be seen the fit between the model and real system is very good both in terms

of its steady-state velocity and transient behaviour.

4.3.2 Spring Stiffness and the Clutch and Spring Inertia

These experiments attempt to find the spring stiffness, the inertia of the spring and

the clutch/brake components that are rigidly attached to it (Js) , and in addition, the

inertia of the clutch components (Jc) that are attached to the load. The motor end of

the spring was rigidly held and with the clutch engaged and the brake disengaged the

load mass was allowed to freely oscillate. Tests were performed with two different

load masses (called "A" and "B") with inertia's JA and JB and two different springs

(called "C" and "D") which had different spring rates Kc and KD• Another test was

performed with the clutch disengaged so that only I, would oscillate. These tests

together would produce five values of the ratio of spring stiffness to effective inertia

and from these equations the required parameters could be found.
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A schematic diagram of this set-up is shown in Fig. 4.11,

4.3 Mathematical Model

c:::J

",.
brake (off) ?

clutch (on)

()

Figure 4.11 - Schematic diagram of clutch and spring inertia experiment

With this arrangement the system will obey the following differential equations,

lS + Be + KS + Csign(e) = 0

where, S - Displacement of oscillating mass
1 - Inertia of oscillating mass
B - Total viscous friction term for bearings
K - Spring rate
C - Total coulomb friction term for bearings

Re-arranging this in terms of the acceleration we have,

.. B· K C .
S=-S+-S+-sign(S)

J 1 1

(4.3)

(4.4)

By measuring the displacement of the oscillating mass, and differentiating to achieve

velocity and acceleration signals, the parameters BIl, Kll and Cil can all be found by

using a simple least-squared estimator [14]. However before this can be achieved

something needs to be done about the non-linear function sign appearing in Eq. (4.4).

This can be accomplished by separating the data between those points for which

e> 0 and those for which e< o. In this case we will have two equations with each
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equation having its own set of experimental points. These equations are shown

below,

where,

.. B· K Ce =- e +- e +-
+ J + J + J

+ + +

.. B· K C
() =- () +- ()- J - J - 1

.. .e+ , e+ , ()+ - Set of experimental points where e~ 0

()_,e_,e_ - Set of experimental points where e< 0

(4.5)

(4.6)

We will now achieve two estimates of Bll, Kll and Cll, one for the B+ data and

another for the B_ data. If the original model (Eq. (4.3» was correct then these

estimates should be identical. In practice this was not the case but the deviation was

very small and as a consequence the mean of the two parameter estimates was used

as the "best" estimate. For the purposes of this analysis the values of Bll and Cll are

superfluous. However they are required when comparing the model (Eq, (4.4») to the

experimental data. This is achieved by performing an analytical time series solution

to Eq, (4.4) and comparing the displacements, velocities and accelerations with the

original data.

Five oscillation tests were performed. The first four had the brake disengaged and the

clutch engaged and used all combinations of both springs and both load masses, and

the last one had the clutch disengaged, so only the brake inertia was oscillating, and

used spring "D". Fig. 4.12 compares the experimental data with that of the fitted

model using the displacement, velocity and acceleration data from the test using

spring "D" and load mass "A". As can be seen the quality of fit is very good and was

equally as good for all the other test performed.
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Figure 4.12 - Experimental and fitted data for spring "D" and load mass "A"

For the five tests the following values of KlJ were found,

/I.

Kc = 837.9
J, + J, + J A

/I.

Kc = 1961
t, + r, + J B

/I.

KD = 340.1r, + t, + J A

(4.7)

(4.8)

(4.9)

/I.

(4.10)

/I.

KD =4252
J s

(4.11)

Since J
A

and J
B

are known (JA is a metal disk 90 mm in diameter and 13.5 mm thick

giving an inertia of 6.76xIO-4 kg m2 and JB an aluminium disk of the same size

having an inertia of 2.44x10-4 kg m2 ) these five equations have five unknowns and

hence are solvable. In fact Eqs, (4.7, 4.8 and 4.11) provide three equations in three

unknowns but having the extra equations (provided by using a different spring) will
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provide extra confidence that the final result is correct. Solving for J
s

+ J
c

gave the

results,

J, + Jc = 7.854xl0-5 kg m2 (using Eqs. (4.7,4.8))

and

Js + J, =7.851xl0-5 kg m2 (using Eqs. (4.9,4.10))

The closeness of these two results is encouraging and gives confidence to the result

as a whole. Using the mean of these two values and solving Eqs. (4.9, 4.10 and 4.11)

yields these values for i; Js' Kc and KD,

J, =1.81 X 10-5 kg m?

Kc =0.63 Nm/rad

I, = 6.04 X 10-5 kg m?

KD = 0.26 Nm/rad

which will be those used in the mathematical model.

4.3.3 Clutch and Brake Bearing Friction Coefficients

The clutchlbrake unit used in this mechanism has identical bearings for both its

clutch and brake sides. Thus only one experiment was performed, which found the

clutch bearing coefficients, and these coefficients used for the brake. To find these

coefficients a load mass of known inertia was connected to the output shaft and was

accelerated to a high speed and allowed to coast to a halt (the clutch and brake were

both disengaged). An optical encoder measured the output displacement and this

signal was differentiated twice to achieve acceleration data. Since the inertia of the

output mass was known the frictional force applied could easily be found. Due to the

problems of discretisation noise from the optical encoder data, the following

procedure was followed to estimate the acceleration,

i) Obtain velocity data from the displacement data using a normal Euler

approximation.
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ii) Group together sets of velocity points and choose a representative

acceleration point as the gradient of the line of best fit and a

representative velocity point as the mean velocity.

This approach gives a reasonable approximation since the velocity is only changing

slowly. The test had approximately 1000 velocity points and sets of forty points were

grouped together. This test is shown in Fig. 4.13.
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Figure 4.13 - Grouping of velocity points: representative acceleration taken as
gradient of line of best fit and representative velocity as the mean

This grouping of points produced a set of 25 acceleration/velocity values.

Multiplying the acceleration values by the load inertia produced the graph shown in

Fig. 4.14. Also shown on this graph is the line of best fit and shows that the original

choice of a viscous and coulomb fit to be a good one. The viscous coefficient was

taken to be the gradient of the line of best fit and the coulomb coefficient as the

intercept with the velocity = 0 line. These are quoted below,

Coulomb coefficient = 0.0075 Nm

Viscous coefficient = 3.32xIO-5 Nm s/rad
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The data shown in Fig. 4.14 is particularly interesting since it also shows the effect of

so called Stribeck friction [15] a well known phenomenon found in lubricated metal

surfaces as a rise in the level of friction at low speeds.
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Figure 4.14 - Set of 25 frictional force/velocity points plotted with line of best fit

4.3.4 Clutch and Brake Delay.

To estimate the clutch and brake delay steady-state data from the actual operation of

the device was used. The engagement delay was measured by comparing the signal

sent to the brake and velocity trajectory of the spring, and the disengagement delay

by looking at the signal sent to the clutch and the velocities of the load and spring.

These signals are shown in Fig. 4.15. It is clear that no noticeable effect in terms of a

reduction in spring velocity is apparent until approximately 6 ms after the brake

engagement signal was applied. In a similar way it can be seen that the load and

spring velocities were found not to differ significantly until at least 6 ms after the

clutch disengagement signal was sent.

Since identical electrical drives and almost identical components are used for

both the clutch and brake then it is quite easy to justify using the engagement delay,
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calculated for the brake, for the clutch also, and the disengagement delay, calculated

for the clutch, for the brake as well.

Fig. 4.16 shows the voltage and current signals emanating from the

clutchlbrake drivers during a single engagement/disengagement cycle. These drivers

have current feedback and a maximum supply voltage of +50 volts. Since the current

rise takes at least 5 ms, due to the coil inductance and limited supply voltage, the

delay until full torque is applied will be expected to take at least this long. Also note

the voltage signal to the driver. Initially it shoots up to almost 50 volts (the supply

voltage) and stays between 45-50 volts until the correct supply current is reached

(and shoots to -50 volts when the clutch/brake is released). It is obvious that the

drivers are doing the best they can, within the confines of the supply voltage, to

achieve the fastest engagement and disengagement times for this clutch/brake unit.
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Figure 4.15 - Estimation of brake engagement delay and clutch disengagement delay
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Figure 4.16 - Voltage and current supplied to clutch/brake unit through a single
engagement/disengagement cycle

4.3.5 Comparison of Model with Real System

Table 4.2 summarises the results of the previous four sub-sections and lists the

values of all the coefficients and their sources as used in the model of the step-up

mechanism. In the simulations, the same controller "C" code was used as that in the

real system. This ensured that errors between the model and the real system were

purely in the physical system model and not in the controller implementation.
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Parameter Description Source Value
M-manufacturers data
E-Exoeriment

K, Torque constant M 0.1101 Nm/amp
«. EMF constant M 0.1043 Vs/rad
Jm Motor inertia M 1.4xIO-4 kg m?
R Motor resistance M 1.1 ohms
s.; Motor amplifier E 2.94

gain
Cm Motor friction E 0.0246 Nm

coeff.
Bm Motor friction E 7.95xIO-s kg m?

coeff.
K Spring rate E 0.26
Js Spring inertia E 6.04xI0-s kg m?

Cs Spring friction E 0.0075
coeff.

Bs Spring friction E 3.33xI0-s kg m?
coeff.

J(" Clutch inertia E 1.81x10-s kg m2

J[ Load inertia E 6.76xI0-s kg m2

C[ Load friction E 0.0075
coeff.

B[ Load friction E 3.33xI0-s kg m?

coeff.

'tl, Brake torque M 1.lNm

BA Brake delay E 0.006 ms

'th
Clutch torque M 1.lNm

CA Clutch delay E 0.006 ms

Table 4.2 - Summary of coefficients used in the model of the step-up prototype

Fig. 4.17(a) shows a comparison between the model and the real system for an open

loop test using PWM switching, and Fig. 4.17(b) shows a comparison between them

using resonant switching.
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Figure 4.17(a) - Comparison of Model and Real System using PWM Switching

250-~ 200
~
'-" 150
~.-=:
to) 100..9
~ 50

o

I

~

~
Load"""'"~ 1-Real system I

- SiIrulation

~
~~~ IMoton I
II ~\

I

~ ~
1\ ~1f J . r... V " ,''f

~ 4
~
c:
.~ 2
(/l

c:
~
~ 0
b.O
.§
~-2

~
.~ ~

!

!

I~

~ \II

I
,

I I.
65421o 3

Titre (s)

Figure 4.17(b) - Comparison of Model and Real System using Resonant Switching

As can be seen for the conditions given they both show a remarkable level of

agreement. It will be noticed that the exact timing of the energy transfer cycles varies

slightly in the resonant switching example. This is hardly surprising since the overall
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cycle time is dependent upon the time taken to transfer the energy from the spring to

the load, and any small errors in the modelling of this will have a cumulative effect.

Having said this the simulation and real system are less than one cycle different after

35 cycles.

4.4 Efficiency Analysis

This section describes the efficiency tests performed on the device. For these

experiments a torque transducer was attached to the output shaft of the device and a

variable friction mechanism attached to the output shaft of the torque transducer.

This set up is shown in Fig. 4.18 .

torque trans due er

variable friction
.r' device

~ step-up
: mechanism

to PC
---+

Figure 4.18 - Step-up mechanism with output power measuring equipment

Repeated open loop step tests, similar to those shown in Fig. 4.2, were performed

with the variable friction mechanism being adjusted for each run. The motor had the

extra inertia attached and the device was operating using the resonant switching

algorithm with clutch matching enabled. These runs created a different load torque

and hence a different steady-state load velocity for each run. Twenty-five runs were

performed with steady-state load velocities ranging from about 115 to 320 rad/s .

From this data the output power could easily be calcul ated as the following,

power = f t»: OJ dt
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where, 't - Output torque

OJ - Load angular velocity

The output power of the motor (and hence input power to the step-up mechanism)

was also measured in a similar way. In this case the friction device and torque

transducer were connected directly to the output shaft of the motor and a set of

steady-state torque vs. velocity readings were measured. The data produced from this

test was used to generate a table from where the torque produced by the motor, at a

given motor velocity, could be linearly interpolated.

Fig. 4.19 shows the level of input and output power and also shown is the percentage

efficiency ( lOOx(input power/output power» for the mechanism.
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Figure 4.19 - Measured input power, output power and overall efficiency for step-up
mechanism

As can be seen surprisingly high efficiencies are apparent at velocities below about

160 rad/s (>60%) and from then on trail off linearly to zero at about 320 rad/s, It

would be now very beneficial to know what component or components are the cause
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of this apparent power loss. The step-up mechanism can be divided into four main

components that each cause known power losses and these are listed below,

i) The spring bearing (due to friction)
ii) The brake (due to slipping)
iii) The clutch (due to slipping)
iv) The load bearing (due to friction)

The next stage in the analysis is to use the mathematical model developed in Section

3.1 to find out what amount of the power loss can be apportioned to these

components. The previous section. found accurate physical parameters for this device

and when used in the three-mass model produced surprisingly comparable results to

the prototype. Using these parameters the power losses can be apportioned to the

listed components as outlined in Section 3.3. Results of using this procedure on the

25 efficiency runs given in Fig. 4.19 are shown in Fig. 4.20. Also shown is the so

called unmodelled loss which is the difference between the total power loss and the

total losses attributed to the four components listed.
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Figure 4.20 _Calculated losses attributed to the various components of step-up
mechanism
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It can be seen that the losses associated with the clutch and brake are relatively low

(under 3 watts) also roughly constant or at least not dependent on the output velocity.

This low value is the result of using the clutch matching algorithm, which delays

clutch actuation until the velocity of the mating faces match, and the resonant

switching algorithm, which delays brake actuation until the spring velocity is close to

zero.

As can be seen the unmodelled loss constitutes a very high proportion of the

total losses from about 160 radls onwards, and almost matches the level of power

loss caused by the load bearing. This discrepancy between the model and the real

system needs to be investigated since Figs. 4.17(a) and 4.17(b) show excellent

agreement. The first efficiency run (with a 320 radls output velocity) had no friction

and a large value of unmodelled power loss and so is a good candidate to compare in

more detail with the model.

When this comparison was first done it was obvious that senous brake

slippage occurred in the model which was not present in the real system. For this

reason the static torque of the brake was measured using a calibrated torque

transducer and found to be in the region of 1.7 to 2 Nm (dependent on the relative

orientation of the faces) which was significantly larger than the torque quoted in the

manufacturer's data (1.1 Nm as used in the model). The torque of the clutch was also

measured and found to be between 1 and 1.1 Nm and so roughly agrees with the

manufacturer's data. For this reason the model's value of brake torque was set to 1.7

and the simulation repeated. The results of this are shown in Fig. 4.21 which shows

that there is a significant difference in output velocity (about 70 radls) between the

simulation and the real system. In addition, there is also a large discrepancy in both

the spring extension and the motor velocity.
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Figure 4.21 - Discrepancy between model and real system for 320 radls efficiency
test

This discrepancy suggests that some unmodelled behaviour has crept into the system

between the comparisons shown in Figs. 4.17(a) and 4.17(b) and that shown in the

figure above. This must mean that either the model parameters or the model structure

or both need changing. The most obvious difference between these comparisons is

the addition of the extra inertia to the motor. This has the effect of keeping the motor

velocity more constant and as a consequence allow more power to be extracted. As a

result of this the maximum spring extension increases from about 4.7 radians in Figs.

4.17(a) and 4.17(b) to about 6.7 radians in Fig. 4.21. The spring is modelled as a

device having no energy loss whatsoever which in practice is not the case and as the

extension increases the losses can also be expected to increase. Fig. 4.22 shows the

spring vs. displacement curve for the spring used in these tests. A torque transducer

was used to measure torque and an optical encoder used for the displacement.
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This figure shows a very good linear fit up to about five radians at which point the

measured torque tails off. This is an important result since it shows that the spring

must be entering its plastic deformation region where energy is lost to heat and the

break down of its molecular structure. Fig. 4.23 shows the maximum spring

extension for each of the efficiency runs,
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Figure 4.23 - Maximum spring extension for the 25 efficiency runs

This graph clearly shows that where the step-up mechanism showed acceptable

efficiencies and a good fit to the model (approximately 160 radls and below) the

spring was always within its linear region but when it entered its plastic deformation

region significant and unmodelled power losses were introduced. It is also apparent

that the unmodelled loss is roughly proportional to the maximum spring extension. It

is important that as the speed of the load increases the part of the spring used to

transfer energy shifts from about 1.3 to 4.8 radians, for the 115 radls test, to about 4.8

to 6.7 radians for the 320 radls test. An example of this is shown in Figs. 4.24(a) and

4.24(b). This result is significant since for the higher speed test 1.8 out of the 2.9

radians of spring extension, used to transfer energy (about 62%), is inside the plastic

deformation region. As the load velocity increased from 160 to 320 radls the

percentage of the spring extension used to transfer energy increases from 0 to about

62% and so this would clearly account for the linear relationship between

unmodelled loss and steady-state load velocity.

To try and simulate losses in the spring the VISCOUS friction term was

increased. This will have a more pronounced effect at higher spring velocities which
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also means higher spring extensions. A comparison of the model and the real system

using a viscous friction term, Bs' of 3.5e-4 Nm s/rad is shown in Fig. 4.25. Even

though the load velocity is slightly higher it is still noticeable that agreement is

shown in both the motor velocity and spring extension.
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Figure 4.25 - Model and real system using a larger spring friction term

Using the enlarged figure for spring viscous friction the power losses can now be re­

calculated and these are shown in Fig. 4.26. The spring power loss has now

significantly increased but the unmodelled power loss has reduced by roughly the
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same amount. Even though we cannot be sure that the spring is a major contributor to

power losses when operated outside its linear region, the model agreement shown in

Fig. 4.25 strongly suggests this. Assuming this to be the case we can use the

mathematical model to predict the performance of the device assuming that a larger

capacity spring was used which did not enter its plastic deformation region. The

predicted efficiency plot is shown in Fig. 4.27 and the calculated losses attributed to

the step-up mechanism's various components are shown in Fig. 4.28. It is obvious

now that although the overall efficiency has improved the power losses caused by the

brake have increased dramatically. This is because the brake is slipping due to the

larger spring extensions, found at velocities greater than 320 rad/s, and means the

mechanism needs a more powerful brake if it is to run efficiently at these speeds and

powers.
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Figure 4.26 - Calculated losses attributed to various components using a larger
spring friction term
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4.5 Conclusions

4.5 Conclusions

The operation of a prototype switched mode step up mechanism has been described

and it has been shown that the concept can be made to work in practice. Output

velocities greater than the input can be achieved and closed loop control of output

velocity is possible. By taking account of the imperfections of the system

components and modifying the controller appropriately, it is possible to greatly

improve the performance. In particular, resonant switching and clutch matching

largely eliminate clutch and brake slip and the associated losses, whilst increasing the

motor inertia ensures that energy is extracted from the drive motor in an efficient

manner.

The three mass mathematical model developed in Section 3.1 showed

surprisingly good agreement with the actual device when operating under both PWM

and resonant switching strategies. Increasing the motor inertia and performing

efficiency tests showed that the device had a disappointing overall efficiency curve

even though there was a narrow band of output velocities (115 to 160 rad/s) where

the efficiency was an acceptable 75-80%. However by using the mathematical model

it was possible to assign the losses to the various components of the device and in

particular show that the device was loosing a lot of power which was not accounted

for in the model. It was also shown that the most likely candidate for this was the

spring since it was being used well within its the plastic deformation region when the

losses were greatest.

Using the mathematical model and assuming the mechanism had a larger

capacity spring, that always stayed within its linear region, a revised efficiency curve

was put forward. This had an improved range of acceptable output velocities (115 to

240 rad/s) but also showed that these improvements could only be realised if the

torque of the brake was increased.

The construction of this prototype has highlighted the need for some form of

design methodology to aid the design process. It is vital, for a given system
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performance, (max. power, max. velocity etc.) to know what capacity and rate of

spring is required and also what size the brake and clutch need to be. The interaction

between component parameters is not straightforward e.g. increasing the spring

capacity will then change its inertia which might mean a larger brake is needed,

which will also change the effective spring inertia, and affect the energy packet

transfer rate etc. etc. The designer can never be sure that a given configuration is

optimum or even whether a required system performance is attainable from the

components available. Even though a design methodology does not exist for step-up

devices it does exist for step-up/step-down devices and is the subject of Chapter 5.
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Chapter 5 The Computer Aided Design of
Step-Up/Step-Down Mechanisms

The component parameters in switched mode mechanisms have complex and

interacting relationships with regard to system performance. It is the purpose of

computer aided design to come up with combinations of components that give the

required system performance without having to perform the painstaking task of

building prototypes. The design process, as outlined in this chapter, consists of three

main elements: component selection, feedback gain selection and system simulation.

A schematic diagram of how these elements are combined to produce the overall

design process is given in Fig. 5.1.

The starting point is to decide on the specification required of the device,

usually in terms of maximum power and output speed etc. The next stage is to select

system components, this is achieved by determining families of component

parameters that can produce the same system performance and to select the most

appropriate set. It might well be that at this stage no components exist that possess

the required properties in which case the specification will have to be amended if

further progress is to be made. Assuming a set of parameters has been chosen then

the open-loop simulation can take place. This simulation is based on the three-mass

model developed in Section 3.1 and allows the designer to take account of clutch

delay and sample rate on the performance of the system. If appropriate data is

available then the effect of bearing friction and spring losses can be assessed on the

overall efficiency of the device. If the designer is happy with the open-loop

performance then the feedback gains can be selected and the simulation software

used to assess the closed-loop performance of the system. When the designer is

happy with the closed-loop performance, construction of the prototype can take

place.
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A MATLAB [17] toolbox has been developed to perform many of the tasks in

the design of these devices. This chapter describes how to use the relevant routines in

the toolbox in a sub-section at the end of each section describing a separate stage in

the design process. Section 5.1 deals with component selection, Section 5.2 system

simulation and efficiency analysis, Section 5.3 controller design and feedback gain

selection and Section 5.4 runs through an example design to summarise the ideas put

forward in this chapter. Appendix I gives a functional description of all the routines

contained in the MATLAB toolbox.

Develop
specification

+
Select

component """'lJ

parameters

~ t
Simulate

open loop
performance

t J~

Design
feedback -....
controller

~~ +
Simulate

closed loop
performance

+
Build I

Figure 5.1 - Schematic diagram of the design process

5.1 Component Selection

The three most important parameters that determine system performance are: the

maximum clutch torque, the rate of the spring and the inertia of the spring plus all

components that are rigidly attached. The spring plus components that are rigidly
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attached (i.e. the clutch rotors and connecting rod etc.) will frequently be referred to

as the spring system. The mathematical procedure outlined is capable of constructing

families of parameter values that all produce the same system performance. In this

way the designer can have the maximum choice in component selection at an early

stage in the design process. This analysis also allows the feasibility of the design to

be assessed given the spring and clutch technology that is currently available. The

analysis assumes the device to be controlled by the resonant switching algorithm as

described in Section 2.2.

As with most design processes the starting point is the desired specification for the

device and for the purposes of this analysis must be defined using the following

quantities,

• a maximum motor power (P) and mean motor speed (Vm) ,

• a maximum output speed (COmax) ,

and either,

• a nominal output velocity ripple, corip defined at a nominal minimum velocity,

comin and load inertia, J1,

or,

• a minimum energy switching rate, Srmin for the device

It should be noted that this specification is only one way to express the performance

of the device. It may be that an alternative specification will be of more use to a

particular designer, and that an alternative procedure can be found to generate

suitable parameters which may be better or worse in different circumstances.

5.1.1 Mathematical Analysis

To formulate a mathematical model suitable for this analysis the following

assumptions are made.

• All bearings are frictionless
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• Clutch switching times are negligible

• Motor velocity is constant

5.1 Component Selection

• Output power = input power (i.e. the device is 100% efficient)

One of the most important design specifications for these devices is the amount of

steady-state velocity ripple produced. This is defined in Fig. 5.2. The factors

affecting steady-state ripple are the energy switching rate for the device (that is the

rate at which energy packets are transferred from the motor to the load), the average

output velocity, the output inertia and the total power transferred.

_1_
~ Slfnill~

LOAD
VFLOCITY

0).mm

---------- r

- - - - - - - - - - - - - - - - - - - - - - - -

TIME

Figure 5.2 - Definition of steady-state velocity ripple

The mean deceleration over one energy transfer cycle is,

deceleration =O)rip x Srmin

and from torque = inertiaxangular acceleration we have,

load torque =0). x sr.;
J np

I

The output power can be approximated by load torque xaverage output velocity and

so we have that the switching rate at the velocity O)min is defined by the equation,
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(5.1)
p

Sr. =----nun
(0 min(0 rip JI

where, Srmin - Minimum switching rate
P - Output power of device (= power of motor assuming

100% efficiency)
(Omin - Nominal minimum output velocity
(Orip - Output velocity ripple

J, - Output inertia

It must be realised however that this equation shows that the higher the output

velocity the smaller the amount of ripple. Hence it is better to define (Omin as small as

practicable and then (Orip will be, in effect, a maximum for operating range of the

device.

Let us now consider the time taken for the device to complete one energy

transfer cycle. This will consist of an energy storage stage plus an energy transfer

stage and is shown in Fig. 5.3.

+---load--.....,.~-r--r---.....,....~....-----~"""

VElOCITY

SPRING xs

EXTENSION

TIME

Figure 5.3 - Approximation for the time to complete one cycle

The time taken for the energy storage stage is the displacement moved by the spring

divided by the velocity of the motor and so we have,
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(5.2)

and the time taken for the energy transfer stage can be approximated by the time

taken for one complete free oscillation of the spring and so,

t =21t~ J,
et ~

(5.3)

Combining these two results we have an approximation for the time taken to

complete one cycle which is given by Eq. (5.4) below,

Pi (x -xJ
t =t + t =21t _s + f '

es et K V
m

where, t - Time taken to complete one cycle
tc - Spring rate

J,~ - Spring system inertia

-. ,X,I' - Start and finish extension of spring during energy

storage phase
Vm - Velocity of motor

(5.4)

The switching rate will simply be one over the time taken for one cycle which from

Eq. (5.4) is the following,

(5.5)

Now let us consider the power that is actually transferred. This can be approximated

as the energy packet size x switching rate. The energy packet size will simply be the

energy stored in the spring immediately after the energy storage phase has completed.

These ideas are expressed mathematically in Eq. (5.6) below,
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where E p = Energy packet size

5.1 Component Selection

(5.6)

An approximation for Xs (the extension in the spring at the start of the energy storage

phase) can be found if we consider the total energy in the spring at the finish of the

energy transfer phase. Assuming zero losses in the spring and bearings this energy

can be equated to the total energy just prior to the start of the next energy storage

phase and so we have,

where, rot = Load velocity

(5.7)

Re-arranging we have,

and substituting Eq, (5.8) into Eq. (5.6)we have,

(5.8)

(5.9)

Now xI will represent the maximum extension of the spring during a cycle and hence

the maximum torque seen by the input clutch for this cycle is,

2PK 2 V2
't c =Kx f = Sr + KJ s (coI - m) (5.10)

We now require an expression defining the switching rate, Sr, in terms of K and Js'

Substituting for xI (from Eq. (5.9)) and Xs (from Eq. (5.8)) into Eq. (5.5) and after

much re-arrangement we have,
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K =[Sr.JJ."{Vm 21t-~(J); - V; ) +~2PSr + J,CJl;Sr'r
V2

m

(5.11)

This equation is capable of generating values of K and is that will produce a chosen

value of switching rate only needing the known variables P, Vm and (0[. This equation

can be re-arranged so that is and Sr are the explicit variables, i.e. is is the solution to

the quadratic equation,

aJ.; «bl, +c = 0

where,

a=Sr 4 «(O : -V"; _A 2
) 2

b=2Sr 2
«(0 2 _V 2 -A2)B-4A2V 2K

[ m m

c= B2

where A = Vm21t - ~(O: -V,,; and B = 2PSr - V;; K

and Sr is the solution to the quadratic equation,

aSr 2 +bSr +c = 0

(5.12)

where,

b =Vm~KisA+2P

c =-KV 2
m

(5.13)

where

Eqs. (5.11 and 5.12) are very important since they generate two of the key design

parameters (K and is) that will generate a guaranteed minimum switching rate (Sr =

Srmin) at the given load velocity «(0/ = (Omin)' motor power P and motor velocity Vm"
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The maximum spring extension can be found using Eq. (5.9). From this equation it

can be seen that the spring extension will have a maximum value when the load

velocity is a maximum (w/ = wmax ) ' The switching rate at this velocity will increase

but can be determined using the values of K and Js already found and Eq. (5.13).

Once the maximum spring extension has been determined the input clutch torque can

easily be found from Eq. (5.10). One last thing to note about component selection is

that from symmetry arguments the torque of the output clutch should be the same as

that found for the input clutch.

5.1.2 Sizing the spring

The mathematical analysis so far described only characterises the spring in terms of

its spring rate and maximum extension. Nothing has been said about the size of the

spring, that is, the dimensions it must be to efficiently hold the required energy. The

following analysis assumes the designer wishes to use a torsional helical spring of

circular cross-section and constant coil diameter. The key dimensions of this type of

spring are shown in Fig. 5.4.

~d:--..

Figure 5.4 - Key dimensions of torsional helical spring

For these springs the torsional spring rate is defined as,

(5.14)

and the volume of the spring is,
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v =n2 DNd 2
(5.15)

where, d - Wire diameter
D - Coil diameter
K - Torsional spring rate
N - Number of active coils
V - Spring volume

A torsional helical spring is subject to bending stresses and so a standard design

equation relating the ratio of maximum energy to volume [18] can be used and is

given below,

E 8~-=u-
V E

(5.16)

where, E - Energy capacity of spring
8f - Yield stress (maximum stress without permanent set)
U - 1/8 (for round cross sections in uniform circular

bending)

This formula indicates that the spring capacity increases with the square of the yield

stress for the material. Re-arranging this formula in terms of the energy capacity we

have,

82

E=VU-f
E

(5.17)

The energy capacity of the spring can be defined in terms of the design parameters K

and X max (maximum spring extension) as,

- 1//(x2
E - 12 max

Substituting Eq. (5.18) into Eq. (5.17) we have,
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V=~[I/Kx2 ]U8 2 72 max
f

5.1 Component Selection

(5.19)

Equating the l.h.s of this equation with that of Eq. (5.15) we have,

(5.20)

Substituting this result into Eq. (5.14) we have, finally,

(5.21)

This equation will give a wire diameter for a given torsional spnng rate and

maximum spring extension. Using the wire diameter and Eq, (5.14) families of

values of D (coil diameter) and N (no. of coils) can be generated.

Eq. (5.16) defines the volume of a spring capable of taking the yield stress for

the material. However this equation does not take into account the repeated nature of

the stresses applied to the spring in this application. Failure of a spring under these

conditions is known as fatigue. Much work has been done in testing springs under

these conditions [19] and a typical plot of the number of cycles to failure vs.

endurance factor (level of stress divided by tensile stress) for a cyclically loaded

spring is shown in Fig. 5.5,

This graph also shows the effect on the fatigue life of springs of shot peening.

Shot peening is the process of subjecting the spring to a stream of shot moving at

high velocity. The peening action of the shot sets up beneficial biaxial compressive

stresses in a thin surface layer which, by preventing surface cracks from propagating

into the material, help greatly in extending the spring's fatigue life.

From this graph it can be seen that the maximum cyclical stress must be

approximately 1/4 of the tensile strength for the material to produce an infinite life
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for a shot peened spring. This means that the value for yield stress used in Eq. (5.16)

must be reduced by this amount to allow for the fatigue life of the spring. Due to the

squared relationship between stress and volume this means that making allowances

for infinite fatigue life of a spring means increasing its volume by 16.

10
4 io' 10

6

Life of spring as no. of cycles

Figure 5.5 - Typical S-n plot for helical springs
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5.1.3 Using the MATLAB Toolbox for Component Selection

Three "m-file" routines are available for the component selection stage of the design

and they perform the following functions,

1. SRMIN

2. CADJS

3. CADK

Generates a minimum switching rate based on motor power, a
nominal minimum velocity, a nominal velocity ripple and load

inertia (implements Eq. (5.1)).
Generates values of clutch torques, spring rates and maximum
spring extensions given a range of spring system inertias, motor
power, minimum switching rate and a minimum and maximum

output velocity (implements Eq. (5.11)).
As CADJS but generates values of spring system inertia given
spring rates instead of spring rates given values of spring system

inertia (implements Eq. (5.12)).
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4. SPRINGSZ

5.1 Component Selection

Determines the wire diameter (d) and families of coil diameter
(D) and no. of coils (N) for a helical torsion spring (implements
Eq. (5.21))

If the designer has no idea of the required energy switching rate then it can be

determined based on the maximum motor power (P), the maximum acceptable ripple

(ffi rip) at a minimum velocity (ffimin) for a load inertia (ll) using the routine SRMIN.

Then the designer has two choices he can either define an initial search range of

spring rates and use routine CADK, or define an initial search range of spring inertias

and use routine CADJS. In either case the result will be a family of compatible spring

rates, spring system inertias and minimum clutch torques that should all generate

systems giving the required performance. When the routines CADK and CADJS are

used without left-hand side arguments it will force the generation of a plot showing

spring rate and spring system inertia as a function of clutch torque. In addition the

plot will also show the maximum spring extension and maximum switching rates for

the system which are also important design parameters. Using left-hand side

arguments extracts the results of the routines into MATLAB matrices for further

analysis and suppresses the display of the plot.

An example of using CADJS is given below,

» cadjs(lOO,18,lOO,500,lOO, [le-5:1e-5:1e-4]);

where the parameters are, in the order that they are given:

Motor power = l00W
Maximum switching rate = 18 Hz
Minimum output velocity = 100 radls
Maximum output velocity = 500 radls
Motor velocity = 100 radls
Spring system inertia between 10-5 and 10-4 kg m? in steps of

10-5kgm2

This will generate the plot given in Fig. 5.6,
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Figure 5.6 - Example of graphical output from routine CADIS

The designer now has many combinations of the key design components which will

all generate similar system performance. In addition, if more than one value is given

for anyone of the parameters Srmin' P, QJmin' QJmax or Vm then multiple graphs will be

generated showing how the families of spring rates, spring system inertias etc. vary

with this parameter. An example of this is given below,

»cadjs(100,18,100, [300 400 500 600],100, [le-5:1e-5:1e-4]);

This command will generate separate curves for cornax = 300, 400, 500 and 600, as

shown in Fig. 5.7 ,
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Figure 5.7 - Using CADJS with multiple valued input parameters

Values can be read off and displayed on the screen using the mouse (or crosshair);

the left-hand mouse button (or spacebar) giving the current cursor position and the

right-hand mouse button (or insert key) giving the closest point on the curve to the

current cursor position.

From these graphs the designer is able to select suitable clutch and spring

parameters. The curves for maximum switching rate and spring system inertia against

clutch torque are compared with clutch manufacturers' data to determine a clutch

with the appropriate actuation speed and inertia. It should be noted that the spring

system inertia is made up of the inertias of the components of the two clutches rigidly

connected to the spring, the spring itself and the various mounting components

including the connecting rod.

It may be found at this stage that a suitable clutch and/or spring cannot be

found that will satisfy the specification, in which case the specification must be

modified. Once an acceptable combination of spring rate, spring system inertia and
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clutch torque has been chosen the designer will be ready to simulate the system's

performance in open loop, which will be the topic of the next section.

5.2 Simulation and Efficiency Analysis

The simulation stage of the CAD process is important as it allows the designer to

examine the effects of bearing friction, clutch delays and motor dynamics; all these

factors having not been considered at the component selection stage. It may also be

the case that these simulations show that component parameters must be altered to

meet the specification. The same simulation routines can also used when applying

closed loop control. Efficiency analysis can also be performed by using multiple

simulation runs at different loads, generating efficiency data for a range of output

velocities.

5.2.1 Mathematical Model

The mathematical model used in the simulation software is that presented in Section

3.1.2 and the numerical solution implemented is the same as that discussed in

Section 3.2. The same controller as that discussed in Section 2.2.1 is used for the

simulation.

5.2.2 Analysis of power losses

To perform efficiency and power loss analysis the data from open loop simulations

using a range of different load torques is used. These simulations will produce a

range of different steady-state output velocities and the results of these simulations

can be used to estimate power losses, as a function of output velocity, in key

components of the device. A list of these components is shown below,

1. Motor bearing
2. Spring bearing
3. Load bearing
4. Input clutch
5. Output clutch
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The simulation assumes the spring to be a 100% efficient device and so for this

analysis this will be the case as well. The equations implemented in the software are

those given in Section 3.3.

5.2.3 Using the MATLAB toolbox for Simulation and Efficiency

Analysis

The simulation part of the design process uses the following three routines from the

MATLAB toolbox,

1. NEWSUSD
2. SIMSUSD
3. EFFSUSD

Creates a new simulation model
Performs simulation
Performs efficiency and power loss analysis

Before the simulation part of the design process can start a simulation model must be

created. A simulation model will consist of a MATLAB m-file that defines the

parameters used in the subsequent simulation. The name of the model can have up to

six letters identifying it and if this is "xxxxxx" then the name for this parameter

definition file will be "xxxxxx.m",

This file will contain three distinct sets of parameters: "physical" parameters of the

model such as inertias, friction coefficients and the spring rate etc., "controller"

parameters that consist of an open loop flag and feedback gains and reference signals

etc. (if required), and lastly "simulation" parameters which include parameters such

as the minimum and maximum time steps and integration tolerance etc.

The function NEWSUSD will automatically create this file given the model name.

Where appropriate, default values will be given for parameters but otherwise the

parameters will have blank values which will need to be filled in by the user. An

example of using NEWSUSD is given below,
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»newsusd ( I susd 1 ) i

This will create the following file,

susd.m

5.2 Simulation and Efficiencv Analvsis
+ b

and will have to be completed with appropriate values filled in by the user using a

suitable text editor.

To simulate the system the function SIMSUSD should be used with the model name

as an input parameter. If no left hand side arguments are given then the results of the

simulation will be plotted. An example of using SIMSUSD is given below,

»simsusd ( I susd I) i

This will generate a plot similar to that given in Fig. 5.8.
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The user can make changes to any parameters at "run-time" without having to edit the

parameter file by simply adding the parameter names and values as extra right-hand

side arguments to the simulator. This is shown below,

»stustd('susd', 'K',0.9, 'Jrn',O.Ol)i

This will perform the simulation with spring rate set to 0.9 Nm and motor inertia set

to 0.01 kg m2.

To find out the efficiency of the system for a range of different output velocities the

function EFFSUSD can be used which will perform multiple runs of the simulator

over a given range of output load torques. This will calculate not only the

input/output efficiency but also the power lost to the bearings and the power lost to

both of the clutches. An example of using EFFSUSD is given below,

»effsusd( 'susd', [0:0.05:5]) i
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This will simulate the model "susd" using equally spaced load torques from 0 to 5

Nm.

If no left hand side arguments are given then a plot will be produced which will give

the overall input/output efficiency as a function of output velocity. Included in this

plot is the power lost to the three bearings in the system and that lost to the switching

of the clutches. An example of this graphical output is given in Fig. 5.9.
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Figure 5.9 - Example of graphical output from routine EFFSUSD

A typical simulation run can be accomplished in real-time (using a 66 MHz PC) and

an efficiency run will take the time for a single simulation run multiplied by the

number of load torque values used. All of the software is designed to be used

interactively and all plots can be "zoomed" in so, for example, single energy cycles

can be examined.
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5.3 Feedback Controller Design

5.3 Feedback Controller Design

In Section 2.2.2 a feedback control law was constructed by starting with an

approximate continuous open-loop model. This model was first order and by using a

PI feedback loop the analysis suggested that the overall system should be of type 1.

This would mean having zero steady-state error to step velocity inputs and constant

errors to constant acceleration inputs. This section suggests how to choose the

controller parameters, Kp and K1, and in addition takes into account stability issues

raised by the mechanism's inherent switching characteristics. This is achieved by

introducing an equivalent discrete model of the system based on the energy transfer

of the mechanism.

5.3.1 Discrete Controller Model

Consider the energy change over one energy transfer cycle. Some of the energy

packet goes to an increase in the kinetic energy of the load, some gets dissipated

through the viscous term (representing the bearings etc.) and the rest to drive the load

torque. This is represented in the following equation,

(5.22)

where,
ek - Energy packet for step k

OJ
k

- Average load velocity for step k
ts - Time to complete one energy transfer cycle

(1/switching rate)
B - Term representing viscous losses

total
t, - Load torque

Let x =OJ; and so we have,

(5.23)
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The form of this equation is almost identical to that given in Eq, (2.6) for the

continuous model. Eq. (5.23) can be linearised by following a similar procedure as

that used for the continuous model. This leads to the following linear model about an

operating point, xo'

(5.24)

So that we can perform control systems analysis it is necessary to take Z transforms

of both sides. It should be noted, however, that if the resonant type switching

algorithm is used, the switching rate will not be constant over the full range of output

velocities and so that taking Z transforms will be an approximation. After taking Z

transforms on both sides we have the following equation,

and re-arranging we have,

X(Z) _ 1

£(Z) i,l ( t, J
/2 (Z -1) + t, Btotal + 2x~

which means the discrete transfer function, G(Z) is given by,

G(Z) = X (Z) = }';,
£(Z) ts ( B t, JZ - 1+- 2 total + --:g-

t, Xo

(5.25)

Since we are using foward differences it is worth verifying that this transfer function

is stable and hence we have, for poles of G(Z) to be outside the unit circle,
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This equation states that the dissipative energy cannot be greater than the current

kinetic energy of the load plus the energy provided by the energy packet, i.e. Eq,

(5.26) implies that,

(5.27)

and multiplying Eq. (5.24) by ~l we have,

and assuming equality for Eq. (5.27) (the point of marginal stability) implies,

(5.28)

This difference equation IS shown graphically in Fig. 5.10 (with zero initial

conditions). The situation in this figure clearly shows that all the energy provided by

the energy packet is dissipated before the next energy cycle can begin. However a

system using components which gave such a behaviour would not have been

developed at this stage as such a high level of ripple would not be acceptable. Hence

we will assume the system is designed correctly and therefore assume the open-loop

linearised system (Eq. (5.25)) to be unconditionally stable. Note however that this

does not necessarily mean that the non-linear model (Eq. (5.23)) is unconditionally

stable.
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does not necessarily mean that the non-linear model (Eq, (5.23)) is unconditionally

stable.

.. .. .. .. .. .. .. .. ..-

k

Figure 5.10 - Graphical representation of point of marginal stability for the open­
loop discrete model of the mechanism

Let us now look at the discrete closed-loop model of the system including the

controller. This is shown in Fig. 5.11 below,

r +
Q;(Z)

controller rrechanism

x

Figure 5.11- Discrete feedback model

Section 2.2.2 showed that using a PI controller for the continuous model created a

type 1 system. Using this controller for the discrete model we can easily derive the Z

transform (using an Euler approximation) for the controller as,

Kp(Z-C)
G(Z)---'----

C C(Z-l)
where,

100
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5.3.2 Choosing the Controller Gains

5.3 Feedback Controller Design

We can combine Eqs. (5.25) and (5.29) to find the open-loop transfer function for the

system (controller plus mechanism),

(5.30)

The closed-loop response of the system can be considered by looking at the root­

locus of GcG to changes in the controller gain Kp' The root locus is dependent on the

position of the zero at C, the pole at I-B and the pole at (1,0). Four pertinent cases,

(a) to (d) are shown in Fig. 5.12 below,

o

1-B •

. c

(a)

o zeros
X poles

1-B

(b)

1 Re

~) W)

Figure 5.12 - Root locus trajectories for four different locations of the pole and the
zero
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Case a) has the zero (at C) to the right of the pole (at I-B) where cases b) to d) have

the zero to the left of the pole. The loci never leave the real axis in case a), re-join the

real axis to the right of the origin in case b), re-join to the left of the origin in case c),

and directly at the origin for case d). In case a) the maximum speed of response is

dominated by the zero at Z = C, in case b) increasing the gain will cause overshoot

but if this gain is increased further both of the poles can still be positioned on the

positive real-axis and so produce no overshoot. In the third case, c), it is not possible

to position the poles on the real axis after they have left it. Case d) is the most

advantageous case since the point where the trajectories re-join the real axis is at the

origin and so the system will have, theoretically, an infinite speed of response with

no overshoot. However it must be realised that in practice the speed of response will

be finite due to the finite power output of the device.

The object of the gain selection will be to position the open-loop zero (C) as

close as possible to the origin such that case c) or d) exists i.e. one pole can be

positioned at the origin and the other can be positioned arbitrarily close on the

positive real axis. Considering the closed-loop poles we have,

which from Eq. (5.30) means,

Gel (Z) = K A(Z - C) + C(Z -1)(Z -1 + B)
p

Therefore for the closed-loop poles, we have, after manipulation of the denominator,

(5.31)

102



Chapter 5

For one pole at the origin we have,

I-B-K A=Op

K =_I_B
P A

and the other on positive the real axis,

KA
B-2+ p ~O

C

5.3 Feedback Controller Design

(5.32)

(5.33)

Equality of this equation would mean the other root being on the origin. Substituting

for A, Band C from Eq. (5.30) would mean,

and (5.34)

These equations would generate values for K p and K1 such that one pole was at the

origin with the other was on the positive real axis, generating arbitrarily fast response

with no overshoot.

We can also use Eq. (5.31) to assess the stability of the system. Let us consider the

situation where Z = -1. This is the only case we need to consider since from Fig. 5.12

it can be seen for positive C and positive (I-B) this is the only route out of the unit

circle. In this case we have,

(5.35)

and substituting for C we have,
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K =2-B_KJ ts

p A 2

5.3 Feedback Controller Design

(5.36)

This is a straight line with points above the straight line producing values of K
p

and

K J that are unstable and points below it that are stable. Fig. 5.13 graphically

summarises the ideas put forward in this sub-section and shows as a function of K
, p

and K[, the regions of system stability and instability and the line of system response

with no overshoot (one pole at the origin and the other close by on the positive real

axis).

\

.l:B. point with both
A ~-t--e:,- poles at the origin

line with poles at origin
and +ve real axis

STABLE

-L
Ats

KI
Figure 5.13 - Closed loop system as a function of Kp and K[ .

The feedback gain selection guidelines so far presented assume the designer has

knowledge of the relevant system parameters and that they will not change. In

practise the parameter variation that the controller has to deal with (in particular the

load inertia and load torque) will be quite large and so the designer must base his

gain selection calculations on the worst case. This will inevitably result in a

compromise between closed-loop performance and robustness to parameter changes.

In addition to parameter changes, the designer must also be aware that the model
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used in the analysis is linearised about an operating point, Xo and so the closed-loop

performance will degrade to some degree as the system moves from this point.

The analysis presented also assumes the control action to be unlimited but

obviously this will be finite for the real mechanism. This will lead to a degradation in

closed-loop performance due to the effective feedback gain being reduced as the

demand power exceeds that can be supplied.

As a further step in the feedback gain selection the designer should now use

simulation so that such effects as finite control action, parameter variation and

changes in the linearisation point can be assessed. The steps to accomplish

simulation using the MATLAB toolbox have already been explained in Section

5.2.3. In that explanation the simulations were performed open-loop but now the

designer can explicitly set values for Kp and K[ and perform simulations of the

closed-loop system.

5.4 Example Design

This section runs through an example design to show how the design process will

work in practice and also acts as a summary of the previous four sections. Let us

assume the specification of the device to be that given in Table 5.1 shown below,

Motor power 500 watts
Motor velocity 100radls (:::::960 rpm)
Output velocity range + 500 radls (:::::4800 rpm)
Switching rate > 5 cycles/s

Table 5.1 - Example specification

The target switching rate for this design is not really known but it is assumed to be a

minimum of 5 energy cycles/s but will be designed such that it has the largest value

that the design constraints will allow.

The first step in the design process is to find values for the clutch torque and

the stiffness and physical size of the spring. To achieve this we will use the routine
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CADJS which will solve the component design equations (Eqs. 5.9, 5.10, 5.11 and

5.13) and produce families of component values which will meet the design

specification. This routine was called with four different values of switching rate

(5,10 15 and 20) so that the price paid, in terms of design restrictions, could be

assessed as the switching rate was increased. A initial choice of spring system inertia

of Ix lOr' to lxl0-3 kg m2 was chosen based on experience of typical clutches. The

MATLAB command line is given below,

» cadjs(500, [5 10 15 20] ,0,500,100, [le-4:1e-4:1e-3]);

The corresponding graphical output is shown in Fig. 5.14,

--- X 10-4

NlO
1=
~ 8
eu.-t:
Q) 6.S
a
Q)

4....
c;I)

>-
c;I)

bI) 2'2
0..

r:.n

-Snnin=5
. .' ... -Snnin=lO

. -Snnin=15
..' .... -Snnin=20

30 .....-....--.....---.---~-...,

. ... .. .. .. .. .. .. .. .. ... .

'V~s-z
~.

\ " ' .
'-,.........---. I •· . . ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

• • I I

• I • •.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..· . . .

Four separate families of parameters are shown, one family for each value of

switching rate. The value of maximum switching rate shown in this graph is the

expected switching rate at the maximum velocity given in the design specification.

Assuming no other criteria need to be applied it is best to choose the minimum value
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of clutch torque that gives the full range of switching rates since a smaller clutch will

be cheaper and will normally switch faster. From this figure the value of clutch

torque is 20 Nm. At this value of clutch torque we can read off the values of the other

design parameters. These values are given Table 5.2. Also shown in this table is the

required energy capacity of the spring which can be trivially calculated from the

maximum extension and spring rate.

Switching Spring Maximum Maximum Spring rate Spring
rate system switching spring (Nmlrad) capacity
(cycles/s) inertia rate extension (joules)

(ke:m2) (cycles/s) (radians)

5 3.94 X 10-4 7.52 11.5 1.71 113.07
10 2.03 x 10-4 15.07 5.88 3.43 59.29
15 1.32 x 10-4 22.63 3.81 5.36 38.90
20 1.00 X 10-4 30.0 2.86 7.07 28.91

Table 5.2 - Design parameters with clutch torque = 20 Nm

From this data we can see the effect on the design parameters when the switching rate

is increased: Both the spring system inertia, and the spring capacity decreases. These

trends are quite intuitive since to increase the switching rate the natural frequency of

the spring system needs to be increased (implying a reduction in its inertia or an

increase in its stiffness) and having an increased switching rate implies a smaller

energy packet size (assuming constant power). It can be seen why the design of the

spring assembly is very important. Having a larger switching rate will always be

advantageous since it means that there will be less ripple in the output velocity.

However this is at the cost of much lower spring inertia and means that the design of

these components must be such that their inertia must be kept at an absolute

minimum. It might mean the design, in terms of a specified switching rate, is

unrealisable for just this reason alone. The inverse relationship between switching

rate and spring system inertia would help in this respect (a smaller spring capacity

implies a smaller spring), however, in many practical systems the spring system

inertia will be dominated by the inertia of the clutch components and connecting rod

etc.
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Assuming that the designer is confident that the spnng system inertia

restrictions can be met then he can go forward and simulate the system in open-loop

so that the performance specification can be verified. By performing a simulation the

designer can see the effects of so far unmodelled effects such as clutch delay, finite

motor inertia, bearing losses and sample rate.

For our example we will assume that the worst spring system inertia case can

be met and so use a switching rate of 20 energy cycles per second and a target spring

system inertia of 1 x 10-4 kg m2. Another important parameter to select at this stage is

the sample rate of the system (the rate at which the controller samples the

mechanism). This must be large enough such that enough points are sampled over

one energy transfer cycle of the system thus allowing accurate switching of the

clutches to be achieved. Table 5.2 shows that the switching rate will increase to 30

energy cycles/s at the maximum output velocity and so choosing a sample rate of

1000 samples/s would give the system at least 30 sampled points per energy cycle.

Assuming friction data for bearings of an appropriate size and the clutch switching

delay is known a simulation of the device's open-loop response can be done. For the

purposes of this example identical data to that used for the 100 watt prototype was

used. To produce this simulation the routine SIMSUSD was used and the associated

parameter file for this simulation is contained in Appendix J. The open loop

simulation of the system in both forward and reverse output velocities using a

constant load torque of 0.8 Nm (which always opposed movement) and a load inertia

of 0.005 kg m2 is shown in Fig. 5.15.
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Figure 5.15 - Open loop simulation in both forward and reverse directions with a
constant load torque of 0.8 Nm and load inertia of 0.005 kg m2
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As can be seen the maximum and minimum velocities, as defined in the original

specification, have been met and at the same time the maximum spring extension

never goes significantly beyond the design maximum of 2.86 radians. This latter
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point is quite important since it ensures that when the design of the spring is done the

maximum stresses that the spring is subjected to is known. The load torque of 0.8

Nm also suggest that significant power levels (at least 400 watts) are being

transferred at this velocity. Fig. 5.16 shows a half-second snap shot of this test close

to its steady-state and it can be seen that the predicted maximum switching rate of 30

cycles/sec is a good estimate (the maximum switching rate will occur at the

maximum output velocity).

Now that the open-loop performance criteria have been met let us now calculate

appropriate feedback gains for the device and test its closed-loop performance. The

equations defining the feedback gains giving the fastest speed of response with no

overshoot were derived in Section 5.3.2 and are repeated here,

and K <!L
I - 2t

s

(5.37)

Consider first the maximum velocity (500 rad/s) as the operating point. At this

velocity the open-loop test showed a torque of 0.8 Nm gave an almost steady output

velocity. The viscous friction coefficient, Btata1, representing the overall efficiency is

not known but can be estimated using the load torque and the input power of the

device. The torque generating power losses will be the torque assuming 100%

efficiency minus the actual load torque and so we have, at the operating point,

B x~ - pi -'t
total 0 - / X~ 1

(5.38)

Since the input power is 500 watts and the operating velocity is 500 rad/s we have the

following estimate for Btatal,

B at = 4 X 10-4 Nm s/rad
tot
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The value of ts is 1130 s since the switching rate at this velocity is of 30 cycles/so

Bringing these values together we have the following values for K and Kp I'

and

Kp = !J... - t s (Btotal + 't 1(/ )
2 2x72

o

=0.0025 - 0.00004

=0.00246

K -!J...I - u,
=0.075

(5.39)

(5.40)

Consider now the feedback gains at a very much lower operating point, say, 50 rad/s.

At this operating point K1 is unaffected but the value Kp is reduced to,

K
p

=0.0025-0.00028

=0.00222

As can be seen the value of Kp is not greatly affected by the operating point but is far

more dominated by the value of load inertia. Choosing the lower value of Kp and the

value of K
1

already calculated we can simulate the system under closed-loop control.

A 400 radls step input is shown in Fig. 5.17.
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Figure 5.17 - Closed-loop test with a 400 radls step input

As can be seen the reference velocity has been achieved with negligible steady-state

error and almost non-existent overshoot. It should also be noted that the peak spring

extension (representing the amount of power transferred) is very close to its design

maximum (2.86 radians) right up to the point where the output velocity matches the

reference velocity. This implies that the system is performing close to its maximum

speed of response within the power limitations of the device.

Let us now look at how the system can track ramp reference signals and switch from

positive to negative output velocities. Fig. 5.18 shows a mixed step and ramp test in

both positive and negative directions. It can be seen that the tracking error to ramp

reference signals is perfectly acceptable given the inherent switching nature of the

device.
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Figure 5.18 - Closed loop performance with mixed step and ramp reference signals
for positive and negative output directions

To complete the closed-loop design process the effects of changes III particular

system parameters will be investigated. This will show how robust the controller is to

parameter variations and it is essential to know this for any practical controller. The

most obvious candidates to test are variations in the load torque and variations in the

load inertia since these are likely to occur in an everyday situation. Fig. 5.19(a)

shows the 400 rad/s step test repeated with different load torques (0.4, 0.8 and 1.0

Nm) with the load inertia kept at 0.005 kg m-, and Fig. 5.19(b) shows the same test

with different load inertias (0.002 0.005 0.01 and 0.02 kg m-) with the load torque

fixed at 0.8 Nm.
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Figure 5.19(a) - 400 radls step test with four different values of load torque (all
figures quoted in Nm)
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Figure 5.19(b) - 400 radls step test with four different values of load inertia (all
values quoted in kg m-)

Let us first consider variations in the load torque. We can see that the

reference velocity has been met with very little overshoot in all cases. This result fits
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in with what was expected, since, from Eqs. (5.39) and (5.40), it can be seen that K
p

is not greatly dependent on load torque.

For the case of variations in the load inertia it can be seen that decreasing the

load inertia from the design point of 0.005 kg m2 to 0.002 kg m2 caused large

amplitude oscillations to be introduced implying the closed-loop system is unstable.

Note that the run with load inertia of 0.002 kg m2 has been deliberately not plotted

after 2 sec. so that the shapes of the other runs could be seen, its oscillatory response

from 1 to 2 sec. in fact continues ad infinitum. This is to be expected, however, since

as can be seen from Eqs. (5.39) and (5.40) the value of the feedback gains are

dominated by the load inertia and decreasing the load inertia will mean the feedback

gains will be larger than required and produce closed-loop poles that are quite likely

to be outside the unit circle (see Fig. 5.12). Increasing the load inertia meant that

small amplitude damped oscillations were introduced which is also to be expected,

since, having feedback gains lower than required implies closed-loop poles inside the

unit circle with a lightly damped oscillatory response.

Obviously if the system is to be used with a load inertia less than that it is

designed for (in this case 0.005 kg m-) then the feedback gains must be changed.

Using the system with larger inertias (within limits) only causes the system response

to slow down and introduces small damped oscillations. It is up to the designer to

balance the needs for fast response with those of robustness to parameter variations.

There is also the potential for the application of more advanced control

algorithms which could use the dynamics of the spring and load inertia system to

effect some form of parameter estimation but this is considered to be beyond the

scope of this thesis.

5.5 Conclusions

This chapter has described a method for the design of step-up/step-down mechanisms

which will produce a desired system performance. This work covers both component
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selection and suggests a feedback scheme to allow output velocity control and gives

guidelines for the selection of feedback gains.

The basis of the design approach has been the three different mathematical

models that were used. The first model allowed mathematical analysis to be

undertaken that generated complete families of components capable of generating the

same system performance. The power of this result, from a design perspective, is

great since the designer can see, early on, whether the design was feasible for the

application and also know exactly how much flexibility there is in the choice of

particular components. The second model, which was quite different to the first in

that it used a discrete time input/output representation, allowed the design and

analysis of the feedback scheme to be achieved and allowed appropriate selection of

feedback gains. The third model, based on the internal dynamics of the mechanism,

was the most sophisticated and was designed to be the basis for simulations of the

mechanism. Simulation of these mechanism is very important since it allows the

designer to assess the effects of characteristics such as the dynamics of the motor,

clutch delay and bearing losses, not included in the other two models.

A suite of programs, designed to work within the popular control systems

design package MATLAB, have been written which will give significant aid to the

design process. These programs help the designer in component selection by visually

displaying the component families and will also perform the simulation and use the

extensive plotting capabilities of MATLAB to display the results. Together these

tools, along with manual guides and manufacturer's data, allow the rapid design, to a

high degree of accuracy, of these complex machines.
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Chapter 6 The Design & Performance of a
Prototype Step-Up/Step-Down
Mechanism

6.1 Introduction

This chapter describes the design and performance analysis of a step-up/step-down

prototype mechanism. This prototype was constructed to see what problems a

practical implementation of the device would reveal and to also test the theoretical

design methodology discussed in Chapter 5. Section 6.2 describes the computer

aided design work that was undertaken before the prototype was built. Section 6.3

describes the initial parameter identification tests performed on the device which

determine parameter values required by the controller. Section 6.4 performs further

parameter identification tests required by the simulation model and compares both

the 3-mass model and the controller model to the prototype. Section 6.5 looks at the

overall efficiency of the device and also, with the aid of the mathematical model,

apportions power losses to the device's various constituent components. Section 6.6

considers the prototype's closed loop response and the last section draws conclusions

from the work described in this chapter.

6.2 Computer Aided Design

To start the computer aided design process, as outlined in Chapter 5, a specification

had to be agreed. This specification is quite straightforward and is quoted in Table

6.1,
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Motor power 100 watts
Motor velocity 100 rad/s
Output velocity range + 400 rad/s
Switching rate > 5 cycles/s

Table 6.1 - Example specification for step-up/step-down prototype

It was required, if possible, to use 5 Nm clutches manufactured by ZF (Zahnradfabrik

Friedrichshafen AG, Germany) since, after consultation with the manufacturers, it

was known that these devices could reliably provide high frequency switching and

had relatively low armature inertia (lx10-5 kg m-), The driving motor used was a

servo motor, model G12M4 manufactured by Printed Motors Ltd and was the same

motor used for the step-up prototype. This unit could easily provide the required 100

watts of input power. Driving with a constant 21 volts it has a peak power of 105

watts at a speed of approximately 96 rad/s. The complete power vs. velocity

characteristic for this input voltage is given in Fig. 6.1.

120......---...,.--~---r----r---,--,.----r---,--..---,

,
_ -I __ - ~ - - -l - - - ,- - - .. - - - ,- - - • - - -,- - -

, I , I

, , , ,
- - -, - - - r - - ~ - - - ~ - - , - - -,- - - ~ - -

I

20 -

, , , , , , I ,

40 - - -I - - - - - - - - - - - - - -, - - -.- - - ~ - - -.-

-­~....
~

Z-60...
~
o
c,...
o....
o:s

, , I , , I , I I

o - - -. - - - ,- - - -, - - - ,- - - -. - - - ,- - - i - - -, - - - i - -

, ,
100 - - -, - - - ,- - - -, - -

80 - - -' - - - '- - -' - - - '- - - -' - - - '- - - - - -' - - - !. - -
, I , ,

4020
-20L_.J..-_~_-J-_--J....-~_--L_-.L----J~-~~

o 60 80 100 120 140 160 180 200
Motor velocity(rad/s)

Figure 6.1 _Power vs. velocity characteristic for motor driven at a constant 21 volts

It can be seen that the motor power drops off considerably above and below its peak

power velocity.
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There still remained two important parameters that were required at this stage

In the design: the stiffness and inertia of the spring system. To help size these

parameters the MATLAB design toolbox routine CADJS was used with three choices

of switching rate (10,15 and 20) and an initial spring system inertia search range of

1x10-5 to 1x10-4 kg m2 (representing one to ten times the clutch arrnature inertia).

The maximum specified output speed of 400 radls was also given. The command line

used to call this routine is given below,

»cadjs(100, [1015 20],0,400,96, [le-5:1e-5:1e-4]);

This generated the corresponding graphical output shown in Fig. 6.2,
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Figure 6.2 - Graphical output from routine CADJS
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It can be seen from these graphs that for the torque level of the chosen clutches (5

Nm) three choices of spring rate and spring system inertia are possible. Also shown

in these graphs are the maximum spring extension and maximum switching rate.

Table 6.2 gives the values for the three sets of available parameters.
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Min. switching Spring system Max. switching Max. spring Spring stiffness
rate (cvcles/s) inertia (kg m2) rate (cycles/s) extension (rad) (Nm/rad)

10 7.3 X 10-5 14.20 5.09 0.98
15 4.8 X 10-5 21.20 3.36 1.48
20 3.5 X 10-5 28.32 2.56 1.95

Table 6.2 - Calculated parameter choices for clutch torque of 5 Nm

This result was encouraging since it suggested that the design was definitely feasible,

with the switching rate of the device dependent on how low the inertia of the spring

system could be made.

The next stage in the design process was to create drawings of the physical

prototype, bearing in mind the requirement that the spring system inertia be as small

as possible. For this reason the flanges holding the clutch armatures and the

connecting rod were all made of aluminium. The engineering drawing of the

prototype is given in Appendix K. From this drawing it is quite easy to make an

estimate of the spring system inertia by dividing the connecting rod and clutch

flanges etc. into a set of cylinders. This estimate came to 8.5e-5 kg m2 but was

considered to be, if anything, an over estimate due to the approximations made. This

suggested it was a feasible design if the set of parameters corresponding to a

switching rate of 10 (spring stiffness = 0.98, spring system inertia = 7.3e-5 kg m-)

was used and assumed the estimated inertia to be on the large side. Obviously when

choosing a spring care must be taken to make sure the spring has sufficient energy

storage capacity. From Table 6.2 we can see that the maximum spring extension is

5.09 radians and so the chosen spring must be able to reliably extend, in either

direction, to this amount.

After the drawing was complete the next step was to simulate the open loop

performance to check that the specification can still be met when clutch switching

times, bearing friction and motor inertia are taken into account. The switching time

of the ZF clutches were measured at approximately 4-5 ms (see Section 6.3) and for

the bearing friction data, data from the step-up prototype were used but doubled in

value due to the larger bearings that would be required for this device. Since the
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motor used for this prototype is the same as that for the step-up device (the voltage it

was operating at is different) the same mathematical model can be used for this

simulation. The additional motor inertia (1.6 x 10-3 kg m2) used for the step-up

prototype was used as well, and a load torque of 0.15 Nm was applied. This level of

load torque was chosen since it was found to be the largest value that allowed the

output velocity requirements (+400 radls) to be met. The simulation was performed

using routine SIMSUSD from the MATLAB design toolbox. The results are shown

in Fig. 6.3 with a load inertia of 0.0023 kgrn" for both forward and reverse output

directions.
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Figure 6.3 - Open-loop simulation of step-up/step-down prototype in both forward
and reverse directions with an applied output torque of 0.15 Nm

As can be seen the maximum velocity of 400 radls quoted in the original

specification has been met and the output load torque of 0.15 Nm represents an

acceptable power output of 63 watts at this speed. We can also see that the motor

inertia is acceptable since the motor velocity varies from about 80 to 120 radls

representing a average input power of about 100 watts (see Fig. 6.1).
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Let us now consider the maximum spring extension and the maximum

switching rate for the device. Fig. 6.4 shows a 1 second snap shot of the simulation at

the maximum load velocity (in the reverse direction), showing motor, spring and load

velocities.
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Figure 6.4 - One second snap-shot at maximum load velocity

As can be observed the switching rate is approximately 14.5 energy transfer cycles

per second and the maximum spring extension is 5 radians. These compare very

favourably with the predicted values in the previous component selection analysis

(Table 6.2), showing about a 2% difference in both maximum switching rate and

maximum spring extension.

The next stage in the design is to consider the device's closed-loop performance. This

requires determination of the controller parameters Kp and K[ and guidelines for

selecting these values were outlined in Section 5.3.2. This selection involved two

design equations (Eq, (5.34)) and the implementation of these equations requires an

operating velocity to be chosen and values for load torque ("I)' total viscous damping
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(Biotal)' load inertia (Jm) and switching time (ts) to be selected. By choosing an

operating point of 400 radls the previously described open-loop simulation can be

used and so we have 'tl = 0.15 Nm, Jm =0.0023 kg m? and ts = 1/14.5 (l/switching

rate). This only leaves the total viscous damping which can easily be found by

considering the total output torque assuming no losses (which at 400 rad/s = 100/400

= 0.25 Nm) and the actual load torque (=0.15 Nm) and so we have,

B _ load torque asswning no power losses- actual load torque
total - operating velocity

0.25-0.15

400
=0.00025

and so using the design equations we have the following values for the feedback

gams,

and (6.1)

Fig. 6.5 shows a simulation of the device under closed loop control following a

mixed step and ramp reference trajectory. As can be seen the device shows perfectly

acceptable closed-loop performance with the gains calculated. This is perhaps to be

expected however since the design parameters used in the simulation are exactly

those used to calculate the feedback gains. However it should be realised that the

simulation operates away from the operating point used in the feedback design.
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Figure 6.5 - Simulation of closed-loop response for a mixed step and ramp reference
trajectory

This simulation completed the initial design phase for the device and a prototype

based on the drawings in Appendix K was built. A photograph of the completed

prototype is shown in Appendix L.

6.3 Initial Test Results

When the prototype was being designed the spring design guidelines, as described in

Section 5.1.2, were not mature and sizing the spring was a case of guesswork and

engineering judgement. This unfortunately led to the first springs being tried either

breaking or twisting beyond their elastic limit well before the design power of 100

watts was applied. In hindsight this was hardly surprising since the springs had a

volume (and hence an energy capacity) well below that recommended by the

guidelines. For infinite fatigue life the design equations suggest a spring volume of

1.58 x 10-4 m3 but unfortunately the prototype was already built before this

information was available and the prototype was such that the spring was limited to

124



Chapter 6 6.3 Initial Test Results

have a coil diameter of roughly 3 em and a maximum length of 9 em. This restriction

meant that the volume and stiffness criteria could not be met with commercially

available springs. To significantly increase the volume under these conditions meant

that the stiffness had to be increased as well. The spring chosen had a stiffness of

1.32 Nm/rad and a volume of 3.97 x 10-5 m' which was still 1/4 of the volume

recommended by the design guidelines. However this spring was such that the

maximum stress applied would only be half its tensile stress and this should give a

fatigue life of a few thousand cycles (see Fig. 5.5). The important design parameters

and dimensions for the spring used are shown in Table 6.3,

Coil diameter Wire No. of coils Stiffness Volume (mJ )
(mm) diameter (Nm/rad)

(mm)

27.81 3.43 12.3 1.32 3.97 x 10-5

Table 6.3 - Design parameters for spring used in step-up/step-down prototype

The device was found to operate at the design power even though the spring was

found not to have a significant fatigue life (the prediction of a few thousand cycles

was about right).

Before open-loop tests could be performed certain parameters needed to be identified

for use by the controller. These parameters are,

1. Value of ..[i7; (square root of ratio of spring stiffness to spring system

inertia)
2. Clutch delay

A good approximation of ..[i7; can readily be found from the natural

oscillation of the spring since the damping will be very low. This oscillation was

measured at 21 Hz which gave,

.[i); = 21tx 21 = 132 rad / s

The clutch delay could not be accurately deduced from the manufacturer's data since

the drivers used were different to those usually supplied by the manufacturers. These
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Chapter 6 6.3 Initial Test Results

drivers were designed to minimise the engagement and disengagement time of these

clutches and were built especially for this project. When engaging the clutch, the

clutch driver would give a short initial burst of +100 volts to overcome the clutches

inductance and build up the magnetic field, and after this initial burst the voltage

would reduce to the normally rated voltage of 24 volts. When disengaging the clutch

the driver would apply a short burst of -100 volts to quickly suppress the magnetic

field before returning to avolts. The output voltage signals from these drivers for a

single engagement/disengagement cycle is given in Fig. 6.6.
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Figure 6.6 - Output voltage waveform for specially designed clutch drivers

The widths of the high voltage bursts could be finely adjusted and in this way the

clutch and driver combination could be tuned to mmumse the

engagement/disengagement times.

To measure the clutch delay and also tune its response the clutch was

removed from the prototype mechanism and the two sides of the clutch were

electrically insulated from one another. Small plastic bolts were used for this purpose

and allowed the correct air gap to be maintained between the plates. An electrical
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circuit was created by attaching wires to either sides of the clutch and, with a resistor

in series, connecting the other ends of the wires to a voltage supply. This meant that

when the clutch faces meet an electrical connection is made (the plates are made of

metal) and a current will flow. This arrangement is shown in Fig. 6.7

Resistor

Resistor

To PC

Fro m PCClutch
Driver:::::::::::::::::::::::::

Clutch

Insulators

Figure 6.7 - Experimental set-up to measure clutch delay

The voltage across the resistor was monitored by a PC which also drove the clutch

through the clutch driver. When the voltage across the resistor reached a threshold

value the clutch faces were assumed to be making contact and when the voltage was

close to zero the contact was assumed to be broken. In addition the current through

the clutch was monitored by using a resistor in series with the supply to the clutch.

Fig. 6.8 shows the clutch driver signal , clutch contact signal and clutch current for a

single engagement/disengagement cycle.
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As can be seen the engagement delay is approximately 4 ms and the disengagement

delay 4-5 ms. It should be realised however that the engagement time only shows the

delay until clutch plate contact is made, it does not necessarily imply full torque is

being applied. However it can be seen that the clutch current, and by implication the

attractive force on the plates, reaches its steady-state value before the plates actually

make contact.

It should be realised that this value of clutch delay (4-5 ms) is considerably

faster than that quoted in the manufacturer's data (30 ms engagement time and a 15

ms disengagement time using a standard 24v supply) and this type of driver is crucial

if these clutches are to be used successfully in these drives.

This experiment completed the identification of the parameters required by the

controller to operate the device in open-loop. The list of parameters required by the

controller and their values are summarised below,
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spring stiffness

.JKfJ
clutch delay

=1.32 Nmlrad
= 132 rad/s
=4ms

The results of the initial 100 watt tests, with no load torque applied, for both forward

and reverse output directions are shown in Fig. 6.9.
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Figure 6.9 - Initial 100 watt tests for forward and reverse load directions

These results are encouraging since they show the concept can be made to work in

practice. The shape of the load trajectory is almost identical to that shown in the

original simulation (see Fig. 6.3), the motor takes longer to accelerate but this is

because its input signal was ramped upwards (to limit the current) whereas in the

simulation it was a step. It will be noticed that the original specified velocity of +400

rad/s has been easily met on the negative direction and almost met in the positive

direction (even though it eventually makes -400 rad/s when it reaches its steady­

state). It is apparent that less power is being transmitted in the positive direction (the

acceleration is less) but this is not surprising since the average spring velocity and

hence the viscous losses will be greater in this case (this is also true but to a lesser

extent in original simulation). These results were performed without any load torque
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but the original simulation of the device had a load torque of 0.15 Nm (representing

an output power of 63 watts) and still managed to attain these output velocities. This

means there is a discrepancy with the original mathematical model and the actual

prototype. The next section improves the model by performing further parameter

identification tests and pinpoints the deficiency in the original model.

6.4 Mathematical Model of Prototype

This section attempts to improve the model for the prototype so that a more detailed

analysis of its performance can be undertaken. Section 3.1 developed a three mass

model for this device and this model was used when designing the prototype (see

Fig. 6.3). This initial model made certain assumptions concerning the parameters of

the device (in particular the exact spring system inertia and the bearing friction). This

section will describe experiments performed to identify the uncertain model

parameters and to help verify whether the original model structure is adequate at

modelling these devices. The first sub-section deals with the bearings, finds accurate

friction parameters for them and also verifies that the bearing alignment is correct.

The second sub-section deals with the spring and performs experiments to obtain the

stiffness, hysteresis curve and spring system inertia (which includes all components

rigidly attached). The third sub-section compares the model to the prototype and

raises issues concerning the modelling of the spring.

The model of the motor used with this mechanism has already been verified

in Section 4.3.1 since it was the motor used with the step-up mechanism.

6.4.1 Bearing Friction Coefficients

The bearings used in this mechanism were double row angular contact roller

bearings. These bearings were configured as opposed pairs and meant that axial as

well as shear loads could be withstood. This is important since the spring and the

clutches apply axial loads on the bearings. With reference to the engineering drawing
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(see Appendix K) it will be noticed that one pair of bearings was used on the motor

side of the device, two pairs in the spring section and one pair on the load side.

The same parameter identification experiment used for the step-up prototype

was applied i.e. the load inertia was accelerated to a high velocity and allowed to

coast to a halt (the output clutch was disengaged). The output encoder measured the

load displacement and this data was differentiated to obtain velocity and acceleration

data. The data was heavily averaged so that the discretisation and sampling effects

could be minimised. Twenty velocity vs. acceleration points were obtained and since

the load inertia was known (0.0023 kg m2) the frictional torque could be found. The

results for the output bearing is shown in Fig. 6.10.
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Figure 6.10 - Velocity vs. friction data for the output bearing
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This is an acceptable linear fit and the viscous and coulomb coefficients are easily

obtained from the gradient and the intercept with the friction axis and are quoted

below,

viscous coefficient - 5.95 x 10-5 Nm s/rad
coulomb coefficient - 0.0025 Nm
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The next experiment attempted to see if there was a problem with the bearing

alignment which would show up as increased bearing friction when any of the

clutches were engaged. Two tests were performed, the first to test alignment between

the output and spring bearings and the second the alignment between the input and

the spring bearings. The first test innvolved removing the spring and repeating the

previous experiment with the input clutch disengaged and the output clutch engaged,

the second test involved removing the spring, replacing the motor with the load

inertia and repeating the experiment with the input clutch engaged and the output

clutch disengaged. To obtain the frictional torque from the acceleration data an

estimate of the inertia of the spring components (i.e. the clutch rotor inertia and

connecting rod) had to be made. The clutch rotor inertia was available from the

manufacturer's data and the connecting rod could be approximated by a cylinder. The

result obtained was about 6 x 10-5 kg m? but this was insignificant compared to the

load inertia (0.0023 kg m-) and so any inaccuracy in its value would make very little

difference to the final result. The results of these experiments are shown in Fig.

6.11(a) and Fig. 6.11(b).
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Figure 6.11(a) - Velocity vs. friction data for the spring and output bearings
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Figure 6.11(b) - Velocity vs. friction data for the spring and input bearings

The corresponding friction coefficients are,

Spring and output bearing
viscous coefficient - 16.1 x 10-5 Nm s/rad

coulomb coefficient - 0.0078 Nm

Spring and input bearing
viscous coefficient - 14.05 x 10-5 Nm s/rad

coulomb coefficient - 0.009 Nm

Assuming the bearings to be perfectly aligned these results should be about three

times that found for the output bearing alone since now three sets of bearings will be

contributing friction. Both the viscous coefficients shown above are below one third

and the coulomb coefficients are only slightly over. This result is encouraging since it

suggests that no significant friction has appeared when either of the clutches are

engaged, showing that there is no problem with bearing alignment.
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6.4.2 Spring stiffness and spring system inertia

The method used to measure the spring system inertia was to get an accurate value of

K/J (ratio of stiffness to inertia) from a free vibration test, to independently measure

the spring stiffness and use these two results to find the spring system inertia. This is

similar to the approach used for the step-up prototype, that approach was slightly

different in that the spring stiffness was not independently measured but two different

inertias were used in the free vibration response tests.

It was important to measure the spring stiffness when it is installed in the

device since the clips holding either side of it will reduce the number of active coils

and so the theoretical stiffness will be slightly inaccurate. To measure the stiffness a

torque transducer was attached to the output shaft, the output clutch engaged and the

output shaft rotated whilst measuring the spring displacement and torque. Results for

both positive and negative output directions are shown in Fig. 6.12(a) and Fig.

6.12(b). Along with the raw data, lines of best fit have been added.
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Figure 6.12(a) - Displacement vs. torque data (positive direction) for spring used in
the step-up!step-down prototype
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Figure 6.12(b) - Displacement vs. torque data (negative direction) for spring used in
the step-up/step-down prototype

The spring stiffness will be the gradient of the line of best fit which is 1.43 Nmlrad

for the positive direction and 1.37 Nmlrad in the negative direction. The average of

these two results, which is 1.40 Nmlrad, will be used as the representative stiffness.

As is apparent this value is higher than that calculated (see Table 6.3) due to the

effect of the clips reducing the number of active coils.

With an accurate measure of stiffness now found an accurate measure of K/J

needs to be obtained. The previous section of this chapter found approximate value

for JKj; by simply finding the natural frequency of the spring system. The

experiment considered here will improve this estimate by fitting a combined coulomb

and viscous model to the free vibration response and so take into account damping

effects. Fig. 6.13 shows the free vibration response with the model fitted for

displacement, velocity and acceleration data.
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Figure 6.13 - Measured free vibration response of the spring with the fitted model

The fitted model had a value of K/J equal to 18038 which, using the previously

measured spring stiffness, implies a spring system inertia of 7.76 x 10-5 kg m-, This

value is very close to the original design specification of 7.3 x 10-5 kg m2 and the

value of .jKl; is 134.3 radls which is less than 2% different from the value found

from considering the natural frequency.

The next experiment attempted to look at the hysteresis curve for the spring. The

mathematical model developed in Section 3.1 assumed the spring to be 100%

efficient which, in practice, is not the case and this could be where the model has

some deficiencies. Fig. 6.14 shows three hysteresis curves for the spring, the first

extends the spring to 3 radians, the second to 3.3 and the third to 4 radians. This last

value is just about the largest extension that the spring will be subjected to in

operation since it required a torque of almost 5 Nm (the maximum torque of the

clutches).
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Figure 6.14 - Three hysteresis curves for the spring
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As can be seen the spring is obviously not 100% efficient and the efficiency IS

seriously degraded as the maximum extension is reached. The ratio of area under the

return path to the area under the forward path will show the energy efficiency of the

spring. This can be found by numerical integration and the results for the three curves

are shown below,

Maximum extension Energy efficiency
(rad) (%)

3 91
3.3 89
4 84

Table 6.4 - Energy efficiency for the different hysteresis curves

Steidel in his book on mechanical vibrations [21] investigates hysteric damping and

shows that classical hysteretic damping will have an energy loss proportional to

extension squared. He also goes on to show that this is also the case for viscous

damping. Where they differ is that viscous losses will always increase with frequency

where as hysteretic damping is invariably independent of frequency or only decreases

137



Chapter 6 6.4 Mathematical Model of Prototype

slightly with frequency. Since the free vibration test has almost constant frequency

there will be no significant difference between viscous and hysteritic damping. A

method of determining the damping that a system is subjected to is to look at how the

natural log of the peak amplitude varies with the cycle number of free vibration. If

the damping is viscous or hysteretic (energy dissipation proportional to position

squared) then the plot will be linear, if the damping is coulombic then the curve will

be a downward concave shape. The plot of the log of peak amplitude vs. cycle

number for Fig. 6.13 is shown in Fig. 6.15.
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Figure 6.15 - Log of peak amplitude vs. cycle no for free vibration test

As can be seen, at higher extensions (and velocities) the response is dominated by

viscous or hysteretic damping but at lower extensions (and velocities) the damping

becomes coulombic in nature. This is what is intuitively expected since coulomb

damping becomes dominant at lower velocities and viscous damping at higher

velocities. This result is very important since it shows that hysteretic damping can be

modelled by simply increasing the viscous friction term. This is what was done for

the step-up mechanism (see Section 4.4) and this result gives justification for doing

so.
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6.4.3 Comparison of Model and Real System

The previous section found accurate values for the spring system inertia and spring

stiffness but highlighted a problem with the previous model, namely, that

inefficiencies in the spring were not taken into account. However, it was proposed

that theoretically this can be modelled by simply increasing the viscous friction

coefficient used for the spring. To find a viscous coefficient that takes into account

these extra losses the first cycle of the free vibration test (see Fig. 6.13) will be

considered and a viscous only fit will be applied (coulombic forces will be negligible

at these higher velocities). This can be justified since when the device is operating

the spring will only ever move through one free oscillation before being loaded up

with more energy. The maximum extension of the spring will be typically 3 radians

when transferring 50 watts and close to 4 radians when transferring 100 watts. Fig.

6.16 shows a viscous only fit for the first cycle from the free vibration test of Fig.

6.13.
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Figure 6.16 - Viscous fit for the first cycle of the free vibration test
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This gave a value of BIl equal to 8.71 which, using the previously calculated value

for 1 (7.76 x 10-5 kg m-), gives the following value for the spring viscous friction

coefficient,

B, - 67.6 X 10-5 Nm s/rad

The extension from this cycle varied from about 3 to 2.5 radians but running the

device at 100 watts would mean having spring extensions of nearly 4 radians and

from the hysteretic losses, given in Table 6.4, it will be observed that losses are

greater at these higher extensions. Running the device at 50 watts input power gives a

maximum extension of 3.2 radians and so the viscous coefficient just found would be

more applicable in this case. Fig. 6.17(a) compares the open-loop response of the

device and the equivalent simulation using the previously calculated value for Bs' and

Fig. 6.17(b) shows a small snap-shot of this test showing the spring extension as

well.
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Figure 6.17(a) - Comparison of model and real system wi~h input power of 50 watts
power and Bs = 67.6 x 10-5 kg m-
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Figure 6.17(b) - Snap-shot of above showing spring extension as well

This result shows the model to be very accurate, both when considering the device's

overall performance and the device's internal dynamics, that is, the spring extension

and variations in motor velocity etc. over a single energy cycle. This shows the

structure of the original 3-mass model to be perfectly acceptable but care must taken

in choosing the correct level of spring viscous friction so that inefficiencies in the

spring are taken into account. This later point is important since the value of viscous

friction needs to be multiplied by six to account for losses in the spring.

A good fit between the model and real system running at 100 watts can be

made if the spring viscous term is increased still further to a value of 107 Nm s/rad

and the spring stiffness reduced from 1.4 to 1.2 Nm/rad (taking into account the

degradation in stiffness found at higher extensions). This result is shown in Figs.

6.18 (a) and (b),
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Figure 6.18(b) - Snap-shot of above showing spring extension as well

The further increase in the viscous coefficient is caused here by the increase in the

spring's inefficiency as the spring extension approaches 4 radians. Table 6.4 shows

that the proportionate spring losses almost double when the spring extension is
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increased from 3.3 radians (that found in the 50 watt test) to 4 radians (that found the

100 watt test) so it is not surprising this would require a large increase in the viscous

term when the mechanism operates at this increased power.

As a conclusion to this section we will now consider the model used to design the

feedback controller. This model was defined as Eq. (2.5) and is repeated here,

(6.2)

When no additional load is put on the device the load torque will not be zero but will

represent the total coulombic losses in the mechanism and so we have,

P - !..L · B C ~- x + total X + totalX
2

(6.3)

The input power to the device (P) is known, as is the load inertia (1) and, using a trial

and error approach, the values for B rotal and Ctotal were found that fitted Eq. (6.3) for

the 50 and 100 watt open loop tests. The following coefficients were found to give a

good fit,

50 watt test
Btotal - 2.0 x 10-4 Nm s/rad

<: - 0.046Nm

100 watt test
«: - 1.72 x 10-4 Nm s/rad

c.: - 0.12 Nm

The comparison between the model and the real tests are shown in Fig. 6.19(a) (50

watt test) and Fig. 6.19(b) (l00 watt test),
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Figure 6.19(b) - Controller design model and real system for input power of 100
watts

This result is again encouraging since it shows the structure of the controller model

to be perfectly adequate at modelling the device's input/output response. However, as
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can be seen, the coulomb terms are much greater than those expected from

considering the bearings alone, and the viscous term is much less than that used for

the spring in the previous 3-mass model. This is to be expected however since a

viscous loss in the spring part of the 3-mass model will show it self as a power loss

proportional to velocity in the input/output model. Since x in Eq. (6.3) is the velocity

squared it is the coulomb coefficient that will produce power losses proportional to

load velocity, whereas the viscous coefficient produces losses proportional to

velocity squared.

The quality of this fit suggests that the structure of the controller model is

acceptable but the total losses need to be modelled by both a coulomb and viscous

loss term. This means that the structure of the equation can remain unchanged but the

load torque term should also include the coulomb loss, and hence the revised

controller equation is,

P - J[. B ( C) X
- -x + tota[x + 't[ + total X

2

6.5 Efficiency Analysis

(6.4)

This section describes the efficiency tests performed on the device. These are almost

identical to those performed on the step-up prototype as described in Section 4.4. A

torque transducer was attached to the output shaft of the drive and a variable friction

device was attached to the output shaft of the torque transducer which allowed

different load torques to be applied. The device was driven open loop and by

adjusting the load torque different steady-state output speeds would result. Since both

the output torque and velocity were measured the steady-state output power could

easily be found.

Even though a good mathematical model of the motor is available the input

power vs. speed characteristic was still measured so that losses in the torque

transducer and its attachments could be taken into account. This was done by
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attaching the torque transducer directly to the output shaft of the motor and obtaining

steady-state torque and velocity measurements. As it turned out the difference

between the powers predicted by the model and that found by measurement was only

about 1 to 3 %. The input and output powers were found by integrating the torque x

velocity measurements with respect to time.

Twenty-seven separate open-loop tests were performed over a 60 to 430 radls output

velocity range and the percentage efficiency (100 x output power/input power) results

are shown in Fig. 6.20
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Figure 6.20 - Percentage efficiency for step-up/step-down prototype operating with
an input power = 100 watts

As can be seen the percentage efficiency is between 70 and 80% for a speed range of

about 60 to 260 radls representing a effective ratio range of 0.6:1 to 1:2.6. Above 260

rad/s the efficiency drops off until, at the maximum design speed of 400 radls, it is

about 40%. However it must be stressed that these efficiency figures are obtained

with the load velocity moving in the opposite direction to the motor (the slightly

more efficient output direction) and do not include the power consumption of the
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electro-magnetic clutches. These clutches consume 10 watts each when on

continuously and a reasonable approximation is that they are each on for half the time

suggesting a total additional loss of 10 watts. This efficiency curve may be compared

with the equivalent curve for a typical commercial variator [22] as shown in Fig.

6.21,
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Figure 6.21 - Typical variator efficiency
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The next stage in the efficiency analysis is to apportion the power losses to the

various components to see whether improvements can be made to the design. The

previous section of this chapter found accurate physical parameters for this device

and went on to show that it was an acceptable model for both the internal and

external behaviour of the device. Using these parameters the power losses can be

apportioned as outlined in Section 3.3. The calculated power losses, attributed to the

input and output bearings, the total losses of the spring (both friction losses to the

bearing and hysteretic losses in the spring) and the losses to the input and output

clutches are shown in Fig. 6.22.
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Figure 6.22 - Losses attributed to the individual components of the step-up/step­
down prototype

As can be seen the spring losses are by far the greatest which is not surprising

considering the high level of spring viscous friction required to obtain a good fit

between the model and the real system. However it should be realised that the spring

is somewhat undersized (the volume is half what it should be) for the power

throughput that the device is handling. The hysteresis curves for the spring shown in

Fig. 6.14 suggest that using a larger spring would make the energy efficiency greater.

Table 6.4 suggests at least 90% should be achievable which would be almost twice

as efficient as the current spring and having a more efficient spring would

significantly reduce the losses at higher velocities.

Another important feature of Fig. 6.22 is the relatively small power losses attributed

to the clutches. This is undoubtedly due to the switching algorithm which time the

clutch engagements so that velocity differences across the faces are minimised. This

is important since low power loss implies a low wear rate of the clutch faces. This is
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important when assessing the long term reliability and maintenance costs of these

devices.

It will also be noticed that below about 100 radls the input clutch power loss

increases (causing a decrease in the overall efficiency). Further investigation showed

this to be a problem with the switching algorithm when the load is rotating more

slowly than the motor (the average motor velocity was 100 rad/s). In this situation the

spring will not have enough energy to attain the motor velocity and the controller

realises this and so switches on the clutch immediately thus causing energy losses

since the clutch face velocities are unmatched. However what it should do is one of

two things; i) wait until the spring attains its maximum velocity (i.e. closest to the

motor velocity), or ii), leave residual energy in the spring so that it can always attain

the motor velocity. The latter solution would be preferable since it would eliminate

clutch slipping at these lower load velocities.

6.6 Closed Loop Results

Fig. 6.24(a) shows the result of a closed-loop test using the feedback gain values, Kp

=0.00112 and KJ =0.0161 which were calculated as part of the design procedure.

Fig. 6.24(b) shows the error between the reference and the load velocity for the same

test.
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Figure 6.24(b) - Error between reference and load velocities for closed loop test

As can be seen the velocity tracking error, though not perfect lies within 8.5% of the

maximum velocity (this is after it reaches the reference velocity which is

approximately 2 seconds into the test). This is acceptable for many applications and
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can be achieved for both forward and reverse reference directions. In fact Fig.

6.24(b) shows that the error is often much lower than that (under 5% or <10 rad/s)

for a great part of the test.

It will also be seen that when the load is decelerating (2.5<t<4 s) the speed of

the motor increases and the additional kinetic energy which this represents gives the

load a boost in power when accelerating in the opposite direction (4<t<5.5 s). This

shows one of the important features of the device: its bi-directional power transfer

capabilities. This means it can as easily transfer energy from the motor to the load as

transfer energy from the load to the motor. This is important since it means energy

extracted from the load is not wasted, as would be the case for a some kind of brake

or a conventional direct drive, but is stored as kinetic energy in the motor and can be

immediately used again to accelerate the load if needed. If a single motor were used

to drive multiple loads it could transfer energy from one decelerating load to another

accelerating one.

6.7 Conclusion

The construction of the prototype has showed that the step-up/step-down mechanism

can be designed to work in practice and shows remarkable agreement with the

original design model.

The prototype also highlighted the inefficiencies in the spring which turned

out to be the dominant power loss and was unaccounted for in the original design.

However it was shown that, by simply increasing the spring viscous friction

coefficient, this extra power loss could be adequately modelled, as verified by the

subsequent quality of fit between the model and the prototype. In fact the structure of

both the three-mass model (used in simulations) and the controller model (used for

controller design) were shown to be perfectly acceptable at modelling the behaviour

of these devices .
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It was unfortunate that the largest spring that could be accommodated within

the device was still only half the capacity of that required by the design guidelines

(due to physical constraints built in before the spring design guidelines were known).

This meant that the fatigue life was severely compromised and its energy efficiency

was found to degrade as the spring's maximum extension was reached. Even with this

problem the mechanism's efficiency was still between 70 and 80% for an output

velocity range of 60 to 200 rad/s and the specified velocity range of +400 rad/s was

still attained, all with an input velocity of 100 rad/s. This velocity range extends

beyond the velocity range of the motor and also generates faster accelerations than

could be achieved by using the motor with a fixed gear ratio. Analysis of the power

losses attributed to the device's constituent components highlighted the dominant

losses found in the spring and showed that the clutches contributed relatively little

(for most velocities this was under 5 watts). This latter point is encouraging since it

shows the effectiveness of the switching algorithm and, since low power loss implies

low clutch plate ware, this will have important implications when considering the

reliability and maintenance costs of these devices.

Lastly the closed-loop performance of the device was assessed. It showed that

the closed-loop performance was very close to that expected from the simulations

and gave acceptable performance in both forward and reverse directions (under 5%

for the majority of the test, peaking to 8.5%). This test also showed the device was

capable of bi-directional energy transfer, i.e. energy could be transferred from the

load to the motor as well as from the motor to the load.
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This thesis has shown that mechanical switched mode drives can be made to work in

practice and potentially offer benefits to system performance that cannot be easily

obtained with current variable drive technology. Two design variations have been

presented: the step-up design, which allows an increase in velocity from input to

output, and the step-up/step-down design, which allows both an increase and a

decrease in velocity from input to output. The latter design has, in addition, the

capabilities of forward and reverse output directions as well as forward and reverse

energy directions and so has greater suitability for practical applications.

The operation of these mechanisms can be thought of analogous to electrical

switched-mode power supplies (SMPS) and it was obvious that the control strategies

used in SMPSs would not work well for these devices and that new control schemes,

that consider the problems peculiar to the mechanical devices, were required.

To help in the understanding of the internal dynamics of these devices,

separate three-mass models were developed for each device. These models were

designed to produce accurate simulations that took account of both the input/output

and internal behaviour. These models could predict the onset of clutch or brake slip

and model the engagement and disengagement delays associated with electro­

mechanical clutchlbrakes. Both of these aspects of clutchlbrake behaviour were of

crucial importance to the performance of these mechanisms.

The construction of the step-up prototype showed the device worked in

practice and, after performing parameter identification experiments, remarkable

agreement between the three-mass model and the prototype was apparent. However a

deficiency in the model was pin-pointed in that losses in the spring were inadequately

modelled. These became significant when the spring was being stressed close to its

elastic limit. The model was then used to assess the amount of energy loss
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attributable to each component. This information could then be used for further

system development. The construction of this prototype also highlighted the need for

some form of design aids due to the complex relationship between system parameters

and system performance.

The next issue to be addressed was how these devices should be designed so

that a particular design specification was fulfilled. This work concentrated on the

step-up/step-down design due to its perceived greater suitability for practical

applications. A design methodology was presented and, crucial to this, was the

development of a new model that can predict the performance of these devices in

terms of physically meaningful performance measures. The design equations allow

the construction of complete families of compatible design parameters that create

devices with identical performance characteristics. A set of user friendly tools,

working within the popular MATLAB computer package, have been developed to aid

in the design process and the use of these have been outlined.

The final chapter dealt with the construction and analysis of a step-up/step­

down prototype. This prototype was developed using many of the design tools

described in Chapter 5 so it would not only show if the drive concept would work in

practice it would also show how well the design tools could predict the device's

performance. The prototype showed that the concept would work in practice and it's

predicted bi-directional output velocity and bi-directional energy transfer capabilities

were realisable. These latter two features were shown succinctly when the device was

used to track an output waveform that had both step and ramp trajectories in both

positive and negative directions. When the load decelerated the motor was seen to

accelerate as the energy from the load was transferred to the motor. Where the

device's performance differed from that predicted was in its energy efficiency at high

output velocities. Analysis showed this to be the result of an undersized spring. In

fact, if the design guidelines were adhered to then this mistake would not have

occurred. This point shows the importance of the design tools since it is very easy to

get the design of these devices wrong with subsequent inefficient operation. As with
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the step-up mechanism the three-mass model was fitted to this prototype and showed

excellent agreement.

The performance of the step-up/step-down prototype indicates that such

drives have considerable potential for applications where rapid acceleration is

required. The velocity range is greater than a direct drive motor and the acceleration

is also better than fixed gear systems. The efficiency is comparable to, but not yet as

good as, available variators but has the additional advantages of allowing very rapid

ratio change, a bi-directional output capability and even a zero ratio is available (by

disengaging the output clutch). Closed-loop velocity control is an inherent feature of

the device requiring no extra electronics and instrumentation which is not the case for

conventional variable ratio drives. These characteristics make it particularly useful

for applications where large accelerations coupled with a large range of output

velocities are required. Its bi-directional energy capabilities is a particularly useful

feature if system energy efficiency is important.

7.1 Further work

One important analysis task, not so far carried out on the prototypes, was an

assessment of their reliability. Of particular concern is the reliability of the electro­

magnetic clutches. Clutch performance could easily degrade with time and it is not

inconceivable that the return springs could fail or soften, thus affecting their

engagement/disengagement times.

Of crucial importance to the overall performance of step-up/step-down

devices is the armature inertia to torque ratio of the clutches. Since the armatures are

directly connected to the spring, and will often contribute a significant proportion of

the spring system inertia, it is critical to get the clutch armature inertia as low as

possible. The clutches used in the prototype are designed to allow slipping and

forcibly equalise the velocity across both plates. However, it has been shown that the

switching algorithm used with the prototype has almost eliminated the need for
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slipping since the face velocities are almost always identical when the clutches are

actuated. This would allow clutches with serrations or some form of teeth to be

considered [23,24]. These devices would produce considerably higher levels of

torque for little gain in inertia and so allow better performance drives to be realised.

Looking a little further into the future there is much promising research in the

development of novel clutch designs. Of particular note are piezo-electric clutches

[28,29,30] and electro-rheological clutches [31,32,33]. Both of these technologies

offer a lot of potential for use in switched-mode drives due to their low inertia, fast

actuation capabilities and quite operation.

The PI feedback controller described in the design of these devices is not the

only form of controller that could be used with these mechanisms. In fact it is shown

that the controller performance is sensitive to changes in load inertia, and that these

changes are even capable of causing instability. A better controller to use would be

some form of robust controller such as an adaptive of self-tuning controller [25] that

attempts to identify changes in system performance and modify the controller

accordingly. The pulsed nature of the drive would provide an excellent signal to

excite the system dynamics and so allow their identification. Another example of a

robust controller, that could be applied to these mechanisms, is a so called variable

structure controller [26,27]. These controllers are simple to implement and are

generally very robust to parameter changes but since they are switching controllers

they have the undesirable feature of adding noise to a system. Since switched-mode

mechanisms are inherently switching systems a variable structure controller would be

well suited to this application.
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Appendix A - Calculating the timing of the
clutch for the step-up mechanism

This appendix describes how the controller for the step-up mechanism calculates the

actuation timing of the clutch so that the velocity differences across the faces of the

clutch are minimised. This timing takes the form of a delay between the brake release

and the clutch actuation to allow the spring to accelerate to the velocity of the load.

The correct delay time can be calculated if the resonant frequency of the spring (and

all rigidly attached fixings) and the motor velocity (assumed fixed during this period)

are known. Neglecting bearing friction the following differential equaion will define

the spring's motion.

where K - Spring rate
em - Motor position
es - Spring position
J, - Spring inertia

(A.I)

differentiating with respect to time we have,

J/iJs + KOJs =KOJm
(A.2)

where OJ
m

- Motor angular velocity (assumed fixed)

aJs - Spring angular velocity

leading to the solution,

OJ s (t) = C\ cos(~~Jt) + C2 sin(~~Jt) + OJ m

and

(A.3)

(A.4)

The inital conditions are,
Kef!

cO (0)=-
s J

s
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where Be is the initial extension of the spring. Substituting Eq. (A.5) in Eq. (A.4) we

have,

ms(t) =~~.8e sin(~~J)-mm cos(~~J)+mm (A.6)

Which is the time series solution for the movement of the spring immediately after

the brake has been released. The required solution is to find the time when wit)

equals mlt) so that the velocities on either side of the clutch match. This means that

Eq, (A.6) must be solved for time explicitly. This can be acheived by performing the

following procedure:

Let tanC%) =u which then implies sine8) = 2u 2 and cos( 8) =1- u:, and
l+u l+u

substituting into Eq. (A.6) we obtain the following quadratic equation in u,

(A.7)

Solving this equation and substittuting back for t we have,

This equation will allow the explicit calculation of the time it takes for the spring

velocity to reach the load velocity and will also allow compensation for the clutch

actuation delay. If this is known then it can be simply taken away from the time

calculated from Eq. (A.8).
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Appendix B - Calculating the timing of the
clutches for the step-up/step­
down mechanism

This appendix describes how the controller calculates the timing of the clutches for

the step-up/step-down mechanism. Two delay times are required a delay time

between turning "off' the input clutch and turning "on" the output clutch (which is

called the transfer delay) and a delay between turning "off' the output clutch and

turning "on" the input clutch (which is called the extraction delay). These timings are

shown, for the case of a positive output velocity, in Fig. B.l below,

VELOCITY

Transfer delay

TIME

Figure B.l - Transfer and extraction delay times for positive load velocity

These timings can be calculated very accurately since in these periods both the

clutches are "off' and the spring (with its attached components) is oscillating freely.

The problem can be thought of as finding the time taken for the spring to

reach a target velocity (the motor or load velocity dependent on energy direction)
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given an initial extension and velocity. For the extraction delay this initial extension

will normally be close to zero but for the transfer delay it will be generally be non­

zero. If we assume bearing friction to be negligible then the following differential

equation will define the springs motion during these times,

(B.9)

Which has the solution,

(B.10)

and
(B.11)

where,
Bs - Spring position
Be - Initial spring position (at t = 0)
me - Initial spring angular velocity (at t = 0)
K - Spring rate
is - Inertia of spring (plus attached components)

This equation can be solved by using the following procedure:

2u
Let tan(%) =u which then implies sine8) = 1+ u'

substituting in Eqs. (B.lO) and (B.ll) we have,

l-u2

and cos( 8) = 2 '
l+u

u2 (iJ s+ (J) e) +u2~~f8e+ (iJ s- (J) e)

which is a quadratic equation with solution,

160

(B.12)

(B.13)

(B.14)



u = -2g;/J, ±~4~,e; -4(0, +co,XO, -co,)

(Os +COe)

Appendix B

(B.IS)

(B.16)

Let the target velocity be OJt and so the required time delay (t ) will be when 0 = co
d s t

and so we have,

(B.17)

This equation has two solutions generated by the '+' and '-' sign of the square root

term and an infinity of solutions generated by the ±n1l term. This equation is the basis

for the calculation of the timing delays and must be interpreted correctly so that the

correct solution is chosen for both positive and negative load velocities.

Since this equation needs to be solved on-line by the microprocessor it is

crucial that this calculation takes a minimal amount of processing time. The

calculation of the tan:' argument will be dominant in terms of processing time ([20]

gives and idea of how many processing steps these maths functions will take in

practice) and so if prior knowledge of whether the '+' or '-' solution is the correct

solution would almost halve the processing time required.

Let us first consider energy extraction. Fig. B.2 shows the correct quadrant for the

target velocity (OJ
t
) when it is greater than zero and the correct quadrant when it is

less than zero.
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SPRING
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,

, • • TIME,

• 1-

Figure B.2 - Quadrants containing correct solution for extraction delay

The correct quadrants will be when the sign of the spring extension equals the sign of

target velocity and will mean that the force applied by the spring will be in the

opposite direction to the movement of the target mass (either the motor or the load

dependent on the energy direction).

Also shown on this graph are the positions of the '+' and '-' solutions for

different target velocities. From this graph it is obvious that when COt > 0 the '+'

solution needs to be chosen and when COt < 0 the '-' solution plus 1t needs to be

chosen. This figure shows the case where ro, > 0 and from symmetry arguments the

opposite solutions to the ones just mentioned are required when ro, < O. In summary

it can be concluded that correct the choice of solution can be found simply from the

sign of the initial spring velocity (coe) and the sign of the target velocity (COt)· These

solutions are shown in Table B.l,
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COD> 0 COD < 0

COt ~ 0 '+' '+' + 1t

COt < 0 '-' + 1t ' I-

Table B.I - Choice of solution for energy extraction as a function of the sign of co,

and COt

Let us now consider the case of energy transfer. Fig. B.3 shows the equivalent

quadrants for energy transfer to that shown for energy extraction in Fig. B.2 .

TIME

r- -, -; - -.... '+'
I - + 1t 0 TO. +1t

~ ,
, '+'+o 1t

\

I

l,oot>O,

,, ,

I
, , rl
-I + 1t ~

I

SPRING
VEl.DCITY

SPRING
EXTENSIO

,,
,

,

'TIME,

• .l '- - - - - ~

Figure B.3 - Quadrants containing correct solution for transfer delay

For this situation the quadrants containing the correct solutions are the ones where

the sign of the spring extension is opposite to the sign of the spring velocity. From

this figure it can be seen that the correct solutions are the '+' solution for COt > 0 and

the ,_, solution for COt < o. Again using symmetry arguments for the case of ro, < 0 we

arrive at the equivalent table for energy transfer i.e.,
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(Op~O (0,,<0

(Ot~O I_I + 1t ' ,

(0,<0 '+' '+' +1t

Table B.2 - Choice of solution for energy transfer as a function of the sign of oi, and

(Ot

This table along with Table B.1 allows the choice of solution to be made to Eq.

(B.17) and without calling the tan:' function first. The extra processing time in terms

of the evaluation of two sign functions and a small look-up table is negligible to the

processing time for an extra call to the tan:' function.
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Appendix C - Model file used for the simulation
of step-up mechamisms

/*
STEPUP_M.C
Flexible drive rig states space equations
(of the step-up variety)
RSO 10/02/94

*/
#include "clubra.h"
#include "control.h"
#include "cmex.h"

double sign (double) ;
double fabs(double);

static double sample_rate;

/* pointers to channels */
static double *x_data,*xd_data,*u_data;
static double *a_data,*d_data,*e_data,*ev_data;

/* define default physical parameters */
static double Kt,Ke,Jm,R,Vc,Kcm,K;
static double Cm,Bm,Jl,Js,Cs;
static double Bs,Cl,Bl,tb,tc;
static double N;

/* more of an integration parameter really */
static double velocity_tol=O.Ol;

/* needed for clutch and brake initialisation */
static double Cd,Bd;
static int brake_count, clutch_count;

double get-param( char *);
double get_sr( void);

/* initialisation routine */
void model_init( void)
{

/* get sample rate */
sample_rate=get_sr();

/* get parameters from list */
Kt=get-pa r am( II Kt II ) ;

Ke=get-param ( II Ke II ) ;

Jm=get-pa r a m( II Jm II ) ;

R=get-.param ( II R II ) ;

Kcm=get-.param ( II Kcm II ) ;

K=get-.pa r am ( II K II ) ;

Bm=get-param( "Bm") ;
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x_data =
xd_data =
u data =-
d data =-
e_data =
ev_data =

}

Appendix C

Cm=get..J)aram ( II Cm II ) i
Jl=get..J)aram ( II J11I ) i

Js=get..J)aram ( II Js II ) i

Cs=get..J)aram( IICSII) ;
Bs=get..J)aram ( IIBs" ) i

Cl=get..J)aram ( "Cl" ) i
Bl=get..J)aram ( IIB1 1I ) ;
tb=get..J)aram ( II tb II ) ;
tc=get..J)aram ( II tc II) ;
N=get..J)aram ( liN") i

/* initailise clutch and brake software */
Bd=get..J)aram ( II Bd II ) i

Cd=get..J)aram ( II Cd II) ;
brake_count=(int) (Bd*sarnple_rate);
clutch_count=(int) (Cd*sample_rate);
init_brake( brake_count , 1 );
init_clutch( clutch_count, 0 );

/* now for the state space pointers */
assign_channel (STATE, 1) ;
assign_channel (STATE_DERIVATIVE, 1) ;
assign_channel(INPUT,l)i
assign_channel (DAC,1) ;
assign_channel (ENCODER_DIS, 1) ;
assign_channel (ENCODER_VEL, 1) ;

void model_input ( void
{
/* motor voltage */

u_data[OJ=d_data[OJi
/* clutch */

u_data[lJ=d_data[lJ;
/* brake */

u_data[2J=d_data[2J;
}

void model ( void
{

int i;
int c_on,b_oni

Vc= u_data[OJ i

/* clutch state */
c_on = (int) u_data[lJ;

/* brake state */
b_on = (int) u_data[2J;

/* test for motor locked */
xd data[OJ=x_data[lJi
if-( (fabs(x_data[lJ)<velocity_tol) &&

( fabs((Kt*Vc*Kcm*N)/R-K*(x_data[OJ-x_data[2])) <
Cm) {

xd_data [1] =0;
} else {

xd_data[l]=(l/Jm)*( (Kt*vc*Kcm*N)/R-
(Kt*Ke*x_data[l]*N*N)/R
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- Cm*sign(x_data[lJ)
- Bm*x_data[lJ
- K*(x_data[OJ-x_data[2J) );

}

/* test for clutch locked */
xd_data[2J=x_data[3J;
xd_data[4J=x_data[5J;
if ( (fabs(x_data[3J-x_data[5J)<velocity_tol) &&

( fabs( K*(x_data[2]­
x_data[OJ)+(b_on*tb+Cs)*sign(x_data[3J)

+Bs*x_data[3J-Cl*sign(x_data[5J)-
Bl*x_data [5J )

< c_on*tc )) {
xd_data[5J=1/(Js+Jl)*( -K*(x_data[2J-x_data[0]) ­

(Cs+Cl)*sign(x_data[3J)
- (Bl+Bs)*x_data[3J
- b_on*tb*sign(x_data[3J) );

xd_data[3]=xd_data[5J;
/* Now see if brake locked */

if ( (fabs(x_data[3J)<velocity_tol) &&
( fabs(K*(x_data[2]-x_data[OJ)) <

(Cl+Cs+b_on*tb)) ) {
xd_data [5J =0;
xd_data[3J=0;

}

} else {
/* check for brake being locked with clutch un locked ?? */

if ( (fabs(x_data[3J)<velocity_tol) &&
( fabs( K*(x_data[2J­

x_data[OJ)+c_on*tc*sign(x_data[3J-x_data[5])
< (Cs+b_on*tb) ) ) {

xd data[3J=0;
} else {

xd data[3J=(1/Js)*( -K*(x_data[2J-x_data[O])
- Cs*sign(x_data[3])

- Bs*x data[3]
- b_on*tb*sign(x_data[3])
- c_on*tc*sign(x_data[3J-x_data[5]) ) i

}
xd_data[5]=(1/Jl) * (-c_on*tc*sign(x_data[5]-

x data[3J)
-Bl*x_data[5J
-Cl*sign(x_data[5]));

}

return;
}

void model_output ( void
{
/* motor position */

e_data[OJ =x_data[OJi
/* motor velocity */

ev_data[O]=x_data[lJi
/* spring position */

e_data[lJ =x_data[2J;
/* spring velocity */

ev_data[lJ=x_data[3];
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/* load position */
e_data[2J =x_data[4Ji

/* load velocity */
ev_data[2J=x_data[SJi

}

double sign( x )
double Xi

{
if (x== (double) 0.0 ) return O.Oi
if (x < (double) 0.0) return -1.0i
else return 1.0 i

}
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Appendix D - Model file used for the simulation
of step-up/step-down mechanisms

/*
STUSTD_M.C
Flexible drive rig states space equations
step-up/step-down configuration
RSO 30/07/94

*/
#include <math.h>
#include "control.h"
#include "clubra.h"
#include "cmex.h"

double sign (double) ;

/* simulation params */
static double sample_rate;

/* define default physical parameters */
static double Kt,Ke,Jm,R,Vc,Kcm;
static double K;
static double Jm,Bm,Cm,Js,Bs,Cs,Jl,Bl,Cl;
static double ta,Cad,Car,tb,Cbd,Cbr;
static double velocity_tol=O.Ol;
static double tm,Jm_acc,Jl_acc,Js_acc;

/* channel pointers */
static double
*x_data,*xd_data,*u_data,*e_data,*ev_data,*d_data;

/* initialisation routine */
void model_init( void)
{

int 1;
int delay_counta,delay_countb;
int rise_counta,rise_countb;

/* get sample rate */
sample_rate=get_sr();

/* get parameters from list */
Kt=get.-J)aram ( "Kt" ) ;
Ke=get.-J)aram ( "Ke" ) ;
Jm=ge t.-J)a ram ( "Jm" ) ;
R=get.-J)aram ( "R" ) ;
Kcm=get.-J)aram ( "Kcm" ) ;
K=get.-J)aram ( "K" ) ;
Bm=get.-J)aram ( "Bm" ) ;
Cm=get.-J)aram ( "Cm" ) ;
Jl=get.-J)aram ( "Jl" ) ;
Js=get.-J)aram( "Js") ;
Cs=get.-J)aram( "Cs") ;
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x data =-
xd_data =
u_data =
d_data =
e data =-
ev_data =

Bs=get-param( IIBs II) ;
CI=get-param( IICIII) ;
BI=get-param( IIBIII) ;
ta=get-param ( II ta II) ;
Cad=get-param ( II Cad II ) ;
Car=get-param ( II Car II ) ;
tb=get-param ( II tb II ) ;
Cbd=get-param ( II Cbd II ) ;
Cbr=get-param ( II Cbr II) ;

/* assign channels */
assign_channel(STATE,l) ;
assign_channel(STATE_DERIVATIVE,l);
assign_channel (INPUT, 1) ;
assign_channel(DAC,l);
assign_channel (ENCODER_DIS, 1) ;
assign_channel (ENCODER_VEL, 1) ;

/* initialise clutches */
delay_counta=Cad*sample_rate;
rise_counta=Car*sample_rate;
delay_countb=Cbd*sample_rate;
rise_countb=Cbr*sample_rate;

init_clutcha( delay_counta , rise counta , 0 );
init_clutchb( delay_countb , rise_countb , 0 );

}

void model_input ( void
{

/* motor voltage */
u_data[O]=d_data[O] ;

/* clutcha */
u_data[l]=d_data[l] ;

/* clutchb */
u_data[2]=d_data[2] ;

}

void model ( void
{

int i;
double ca_on,cb_on;
int clutcha_locked,clutchb_locked;
double m-pos,m_vel,m_acc;
double s-pos,s_vel,s_acc;
double l-pos, I_vel, l_acc;

/* motor voltage */
Vc = u_data[O];

/* clutch a on/off */
ca_on = u_data[l];

/* clutch bon/off */
cb_on = u_data[2];

m-pos=x_data[O] ;
m_vel=x_data[l] ;
s-pos=x_data[2];
s_vel=x_data[3] ;
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l-pos=x_data[4] ;
1_vel=x_data[5] ;

/* define rnotor torque */
trn=Kt*(Vc*Kcrn/R - Ke*rn_vel)/R;

set_diag( (float) trn);
/*

define state equations initially as
inertia*acc's

*/
Jrn_acc=
(trn-Brn*rn_vel-Crn*sign(rn_vel) -ca_on*ta*sign(rn_vel-

s_vel)) ;
Js_acc=
( -Bs*s_vel-Cs*sign(s_vel)-K*s-pos-ca_on*ta*sign(s_vel­

rn_vel)

Jl acc=
( -Bl*l_vel-Cl*sign(l_vel)

svel) );

/* check for clutcha locked */
clutcha_locked=O;
if ( fabs(rn_vel-s_vel)<velocity_tol ) {

if ( fabs( ( trn-Brn*rn_vel
-Crn*sign(rn_vel) )/Jrn +

( Bs*s_vel
+Cs *sign (s_vel)

+K*s-pos
+cb_on*tb*sign(s_vel-l_vel) )/Js )

< (ca_on*ta/Js+ca_on*ta/Jrn) )
clutcha_locked=l;

}

/* check for clutchb locked */
clutchb_locked=O;
if ( fabs(s_vel-l_vel)<velocity_tol ) {

if (fabs( ( -Bs*s_vel
-Cs *sign (s_vel)
-ca on*ta*sign(s_vel-rn_vel) )/Js +
Bl*l_vel

+Cl*sign(l_vel) )/Jl ) <
(cb on*tb/Js+cb_on*tb/Jl) )

- clutchb_locked=l;
}

/* define default solution */
rn_acc=Jrn_acc/Jrn;
s_acc=Js_acc/Js;
1 acc=Jl acc/Jl;

/* Change solution if clutches are locked */
if (clutcha_locked) {

rn_acc=(Jrn_acc+Js_acc)/(Jrn+Js) ;
s_acc=rn_acc;
s_vel=rn_vel;

}
if (clutchb_locked) {

s_acc=(Js_acc+Jl_acc)/(Jl+JS) ;
l_acc=s_acc;
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}

if (clutcha_locked && clutchb_locked) {
m_acc=(Jm_acc+Js_acc+Jl_acc)/(Jm+Js+Jl);
s_acc=m_acc;
l_acc=m_acc;
s_vel=m_vel;
l_vel=m_vel;

}

/* now store results */
xd_data[O]=m_vel;
xd_data[l]=m_acc;
xd_data[2]=s_vel;
xd_data[3]=s_acc;
xd_data [4] =l_vel;
xd_data[5]=1_acc;

return;
}

void model_output ( void
{

/* motor position */
e_data[O] =x_data[O];

/* motor velocity */
ev_data[O]=x_data[l];

/* spring position */
e_data[l] =x_data[2];

/* spring velocity */
ev_data[1]=x_data[3];

/* load position */
e_data[2] =x_data[4];

/* load velocity */
ev_data[2]=x_data[5];

}

double sign( x )
double x;
{

if (x== (double) 0.0 ) return 0.0;
if (x < (double) 0.0) return -1.0;
else return 1.0;

}
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Appendix E Controller function used in step­
up prototype and simulation

1*
II STEPUP C.C file for use with "control.c" to perform PWM
control
II of the flexible drive system.
II PWM control with proportional and integral feedback
II with resonant switching
II With delayed clutch on time until spring and load
velocities are matched
II RSO 09/09/93
*1
#include <math.h>
#include <float.h>
#include "clubra.h"
#include "control.h"

1* channel pointers *1
static double *e_data,*ev_data,*r_data,*d_data;

static int tkcount,tlcount,tccount,tncount;
static int tki,tli,tci,tni;
static int state, c_on, switching;
static float Kp,Ki;
static float vel_error,vel_error-prev;
static float tk,tk-prev;
static float max_tk,tl,twist_tol,tn;
static float
motor-pos,spring-pos,spring_vel,load-pos,load_vel,motor_vel;
static float
ref_vel,motor_voltage,clutch_state,brake_state,ref_voltage;

1* clutch time estimation variables *1
static float Vs,Vm,thetae,rootkoj,tv;
static double argl,arg2,arg3;
static int tvi,tvc;
static float Vsm2Vm;
static int clutch_time;
static float c_time;
static float sample_rate;
static float min_vel,max_vel;
static int clutch_matching=l;

1* switching subroutines *1
void switch-pwm( void);
void switch fdt( void );
void switch mv( void );

1* clutch loitering routines *1
void set clutch_loiter ( void );
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void controller_init( void)
{

/* get sample rate */
sample_rate=(float) get_sr();

/* controller gains */
Kp= (float) get-param( "Kp") ;
Ki= (float) get-param( "Ki ") ;

/* twist tol */
twist_tol=(float) get-param("twist_tol");

/* clutch_matching */
clutch_matching=(int) get-param("clutch_matching");

/* root koj */
rootkoj=(float) get-param("rootkoj");

/* clutch actuation time */
c_time=get-param ( II clutch_time II ) ;

clutch_time=(int) (c_time*sample_rate);
/* type of switching */

switching=(int) get-param("switching");
/* PWM switching */

if (switching==l) {
/* max value for tk */

max_tk= (float) get-param ( "max_tk ") ;
/* tl */

tl=(float) get-param("tl");
tlcount=(int) (tl*sample_rate);

} else if (switching==2) {
/* RESONANT switching */
/* max value for tk */

max_tk= (float) get-pa r am ( "max_tk ") ;
/* tn */

tn= (float) get-param( "tn") ;
tncount=(int) (tn*sample_rate);

} else if (switching==3) {
/* MOTOR RESONANT switching */

min_vel= (float) get-param ("min_vel" ) ;
max_vel= (float) get-param( II max_vel II );

/* tn */
tn= (float) get-pa r am ( II tn ") ;
tncount=(int) (tn*sample_rate);

}
/* assign channels */

e_data = assign_channel(ENCODER_DIS,l);
ev data = assign_channel(ENCODER_VEL,l);
r data = assign_channel(REFERENCE,l);
d data = assign_channel(DAC,l);

/* set initial conditions */
state=l;
tki=O; tli=O;
brake_on () ;
clutch_off();
vel_error=vel_error-prev=O;
tk=tk-prev=O;

}

void controller( void)
{

int i;
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/* set DAC 0 to reference channel 0 */
d_data[O)=r_data[l);

/* put other channel data into meaningful variables */
ref_vel = (float) r_data[O);
motor-pos = (float) e_data[O);
motor_vel = (float) ev_data[O);
spring-pos= (float) e_data[l);
spring_vel= (float) ev_data[l);
load-pos = (float) e_data[2);
load_vel = (float) ev_data[2);

/* velocity error */
vel_error=ref_vel-Ioad_vel;

/* PI control */
tk= tk-prev+Kp* (vel_error-vel_error-prev)+Ki*vel_error;
tk-prev=tk;
if (tk>max_tk) tk=max_tk;
vel_error-prev=vel_error;

/* convert tk to a number of samples */
tkcount=(int) (tk*sample_rate);

/* set up diagnostic to be value of tk */
/* diag=tk;*/
/* call different routines dependent on form of switching */

if (switching==l) switch-pwm();
if (switching==2) switch_fdt();
if (switching==3) switch_mv();

d_data[l) = (double) check_clutch();
d_data[2) = (double) check_brake();

return;
}

void user_fin( void
{

brake_off();
clutch_off();

}

void switch-pwm( void )
{

tli++;
if (state==l) {

tki++;
if (tki>=tkcount) {

brake_off();
state=2;

set_clutch_loiter() ;
tccount= (-1) ;

(float) tccount );

if (clutch_matching)
else
set diag(
tci=O;

/*
** calculate estimated time taken to achieve load velocity

*/

}

}
if (state==2) {

tci++;
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if ( tci>=tccount ) {
clutch_on() ;
state=3;
c_on=l;

}
}

if (state==3) {
if (tli>=tlcount) {

clutch_off();
brake_on ( ) ;
tki=O;
tli=O;
state=l;

}

if (c_on) {
if ( (motor-pos-spring-pos)<twist_tol ) {

clutch_off();
c_on=O;

}
}

}
}

void switch_fdt( void
{

if (state==l) {
tki++;
if ( tki>=tkcount ) {

brake off();
state=2;

/*
** calculate estimated time taken to achieve load velocity
*/

if (clutch_matching) set_clutch_loiter();
else tccount=(-l);
tci=O;

}
}

if (state==2) {
tci++;
if ( tci>tccount ) {

clutch on();
state=3;

}
}
if (state==3) {

if ( (motor-pos-spring-pos) < twist tol ) {
clutch_off();
state=4;
tni=O;

}
}
if (state==4) {

tni++;
if ( tni>tncount ) {

brake_on() ;
state=l;
tki=O;
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double vs,vm,thetae,arg1,arg2,arg3,tt,Vsm2vmi

AppendixE

}
}

}

void switch mv( void
{

if (state==l) {
if ( motor_vel<min_vel ) {

brake_off() ;
state=2;

/*
** calculate estimated time taken to achieve load velocity
*/

if (clutch_matching) set_clutch_loiter();
else tccount= (-1);
tci=O;

}
}
if (state==2) {

tci++;
if ( tci>tccount ) {

clutch_on() ;
state=3;

}
}
if (state==3) {

if ( (motor-pos-spring-pos)<twist tol ) {
clutch_off();
state=4;
tni=O;

}

}
if (state==4) {

tni++;
if ( tni>tncount && motor_vel>max_vel ) {

brake_on() ;
state=l;
tki=O;

}

}

}

void set_clutch_loiter( void)
{

Vs=load_vel;
Vm=motor_vel;
thetae=motor-pos-spring-pos;
if (Vs>O.O) {

Vsm2Vm=Vs-2.0*Vm;
if (fabs(Vsm2Vm)<DBL_EPSILON) Vsm2Vm=le-30i
arg1=rootkoj*rootkoj*thetae*thetae-vs*vsm2vmi
if (arg1<O.O) arg1=O.Oi
arg2=sqrt(arg1) ;
arg3=(rootkoj*thetae-arg2)/vsm2vm i
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}

tt=(2.0/rootkoj)*atan(arg3) ;
tccount=tt*sample_rate;
tccount=tccount-clutch_time;

} else {
tccount=O

}
return;
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Appendix F Controller function used in step­
up/step-down prototype and
simulation

/*
** Controller for Flexible drive system (step-up/step-down
config )
** Performing various switching strategies with PI feedback
** RSO 01/08/94
*/
#include <math.h>
#include "control.h"
#include "clubra.h"
#include "cmex.h"

static int start_test, sample_no;

static double sample_rate;
static double *r_data,*d_data,*e_data,*ev_data;

static double m-pos,m_vel,s-pos,s_vel,l-pos,l_vel;
static double s-pos-prev;

static double K,Js;
static double max_tk,tl,tm=0.12,tn;
static double Kp,Ki;
static double tk,vel_error;
static double tk-prev,vel_error-prev;
static int state;
static double twist tol;
static int tkcount,tlcount,tmcount,tncount,tccount;
static int tki,tli,tmi,tni,tci;
static int switching;
static int direction=(+l);
static double rootkoj;
static int change_state, no_crosses;

static int con;
static double switch_vel,min_vel,max_vel;
static double s_vel-prev;

static double ES,Ess,Es-prev,K,Es-pos;
static int first-point;
static double motor_acc,m_vel-prev,motor_time,Cad;
static int tai,tacount;
static double clutch_delay;
static int cdcount;

static int E_direction,ttcount,tecount,tti,tei;
static int output_direction;
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static double tt,te;
static double max_sp,pi=3.14159265358979;
static double min_motor_vel,min_load_vel;
static double t_vel;

#define START_OF CYCLE 1
#define WAIT_ENERGY_EXTRACTION 2
#define ENERGY_EXTRACTION 3
#define WAIT_ENERGY_TRANSFER 4
#define ENERGY_TRANSFER 5

void switchJ)wm( void ) ;

void switchJ)rs( void ) ;

void switch_mrs ( void ) ;

void switch eds( void ) ;

void switch_bds( void ) ;

void set_clutch_loiter( void ) ;

int isign( double);
double extraction_wait (double, double, double );
double transfer_wait (double, double, double, double, int );

void controller init( void)
{

int i;

/* need sampe rate */
sample_rate=get_sr() ;

/* set those parameters appearing int the p_strings list */
Kp = getJ)aram ( "Kp" ) ;
Ki = getJ)aram ( "Ki ") ;
rootkoj = getJ)aram ( "rootkoj " ) ;
twist_tol = getJ)aram (" twist_tol") ;
clutch_delay = getJ)aram( "clutch_delay") ;
swi tching = (in t.) getJ)aram ( "swi tching" ) ;
if (switching==l) {

max_tk = getJ)aram ( "max_tk") ;
tl = getJ)aram("tl");

} else if (switching==2) {
max_tk = getJ)aram ( "max_tk" ) ;
tn = getJ)aram ( "tn" ) ;
switch_vel = getJ)aram("switch_vel");

} else if (switching==3) {
min_vel = getJ)aram ("min_vel") ;
tn = getJ)aram ( "tn" ) ;
swi tch vel = getJ)aram ( "swi tch_vel" ) ;

} else if (switching==4) {
tn = getJ)aram ( "tn" ) ;
min vel = getJ)aram ("min_vel") ;
K - = getJ)aram ( "K" ) ;

} else if (switching==5) {
min motor vel = get.-param ("min_motor_vel") ;
min-load vel = getJ)aram ("min_load_vel") ;
K - - = getJ)aram( "K") ;

}

/* assign channels */
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r_data = ass~gn_channel(REFERENCE,l);

d_data = asslgn_channel(DAC, 1) ;
e_data = ass~gn_channel(ENCODER_DIS,l);

ev_data = asslgn_channel(ENCODER_VEL,l);

/* set other parameters that need to be initialised */
state=l;
tki=O;
tli=O;

/* controller parameters */
vel_error=vel_error-prev=O;
tk-prev=O;
tlcount=tl*sample_rate;
tmcount=tm*sample_rate;
tncount=tn*sample_rate;
tacount=Cad*sample_rate;
cdcount=clutch_delay*sample_rate;
s_vel-prev=O. 0;

Es-prev=O;
first-point=l;

start_test=l;
sample_no=O;

/* diagnostic */
clutcha_off() ;
clutchb_off() ;

}

void controller()
{
/* set DAC 0 to reference channel 0 */

d_data[O]=r_data[l] ;
/* put other channel data into meaningful variables */

m-pos = e_data[O];
m_vel = ev_data[O];
s-pos = e_data[l];
s_vel = ev_data[l];
l-pos = e_data[2];
l_vel = ev_data[2];

/* initially lets start the motor */
if (start test) {

if (fabs(m_vel»(min_motor_vel*1.3)) start_test=Oi
return;

}

/* call different routines dependent on form of switching */
if (switching==l) switch-pwm();

/* normal resonant switching */
if (switching==2) switch-prs();

/* motor resonant switching *f
if (switching==3) switch_mrs();

/* energy demand motor resonant switching */
if (switching==4) switch_eds();

/* bi-directional energy demand motor resonant switching */
if (switching==5) switch_bds();
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s_vel-prev=s_vel;
m_vel-prev=m_vel;

d_data[lJ= (double) check_clutcha();
d_data[2J= (double) check_clutchb();

}

void switch bds( void)
{

double Kpp;
/* velocity error */

if (r_data[OJ>O) vel_error = r_data[O]-l_vel;
else vel_error = l_vel-r_data[OJ;

/* bodge to find out whas going on */
if (r_data[OJ==O) {
Es-prev=O.O;
vel_error-prev=O.O;
}
/* PI control */

Kpp=Kp*fabs(r_data[OJ);
/* Es=Es-prev+Kpp*(vel_error-vel_error-prev)+Ki*vel_error;

Es-prev=Es;
vel_error-prev=vel_error;*/

Es=Kpp*vel_error;
/* determine energy direction! */

if (state==START_OF_CYCLE) {
/* determine energy direction and size of energy packet */

if (Es>=O) {
E_direction=l;
Ess=Es;
te=extraction_wait(rootkoj,s_vel,ffi_vel) ;
min_vel=min_ffiotor_vel;
} else {

E_direction=-l;
Ess=-Es;
te=extraction_wait(rootkoj,s_vel,l_vel);
min_vel=min_load_vel;

/* bodge
/*

}
tecount=(int) (te*sample_rate);
tecount=tecount-cdcount;
if (tecount<O) tecount=O;
tei=O;
state=WAIT_ENERGY_EXTRACTION;

so that it might go at slow speeds? */
if (fabs(Es)<O.5) state=START_OF_CYCLE;*/

}
if (state==WAIT_ENERGY_EXTRACTION) {

tei++;
if (tei>tecount) {

/* this calculates the required spring extension for the
required energy packet */

Es-pos=sqrt(2*Ess/K + s-pos*s-pos);
if (E_direction==l) clutcha_on();
else clutchb_on();
state=ENERGY_EXTRACTION;

}
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}
if (state==ENERGY_EXTRACTION) {

if (E_direction==l) t_vel=m_vel;
else t_vel=l_vel;
if ( fabs(s-pos) >= Es-pos I I fabs(t_vel}<min_vel

if (E_direction==l) {
clutcha_off(} ;

} else {
clutchb_off(} ;

}

/* calculalate time for velocity matching */
if (E_direction==l) {

/* determine ouput power direction from reference velocity */
if (r_data[O]>O) output_direction=l;
else output_direction=-l;

ion} ;
} else {

output_direction=l;

ion} ;
}
ttcount=(int} (tt*sample_rate);
state=WAIT_ENERGY_TRANSFER;
tti=O;

}
}
if (state==WAIT_ENERGY_TRANSFER) {

tti++;
if (tti>ttcount) {

if (E direction==l) clutchb_on(};
else clutcha_on(};
state=ENERGY_TRANSFER;

}

}
if (state==ENERGY_TRANSFER) {

if (output_direction==l) s-pos=-s-pos;
if ( fabs(s-pos)<=fabs(s_vel*clutch_delay} } {

if (E direction==l) clutchb_off(};
else clutcha_off(};
state=START_OF_CYCLE;

}

}

}

double extraction_wait(rootkoj,spring_vel,input_vel}
double rootkoj,spring_vel,input_vel;
{

double argl,arg2;

if (fabs(Spring_vel}<=fabs(input_vel}) return 0.0;
argl=sqrt((spring_vel-

input_vel}*(spring_vel+inpu~_vel}};
arg2=argl/(spring_vel+lnput_v~1~;. __
if (isign(spring_vel}==-l && lSlgn(lnput_vel}--l ) {

183



Appendix F

return (2.0/rootkoj)*(atan(arg2)+pi);
} else if (isign(spring_vel)==l && isign(input_vel)==-l

) {
return (2.0/rootkoj)*(atan(-arg2)+pi);

} else {
return (2.0/rootkoj)*(atan(arg2));

}
}

double
transfer_wait(rootkoj,spring-pos,spring_vel,output_vel,output_
direction)
double rootkoj,spring-pos,spring_vel,output_vel;
int output_direction;
{

double argl,arg2,argp,argn,sargl,argmax,argmin,argret;

argl=(rootkoj*rootkoj*spring-pos*spring-pos)­
(output_vel+spring_vel) * (output_vel-spring_vel) ;
/* this means there's not enough energy to match velocities */

if (argl<=O) {
if (output_direction==l) {

/* this should be the time the time taken for the spring
veloity to reverse sign */

argret=(atan(spring-pos*rootkoj/spring_vel)+pi)/rootkoj;
return argret;

} else {
return 0;

}

}

/* calculate both arguments */
sargl=sqrt(argl) ;

arg2=(output_vel+spring_vel);
if (arg2==0) return 0.0;
argp=atan((-rootkoj*spring-pos+sargl)/arg2) ;
argn=atan((-rootkoj*spring-pos-sargl)/arg2) ;

/* add pi if any negative */
if (argp<O) argp=argp+pi;
if (argn<O) argn=argn+pi;

argmax=argp;
argmin=argn;
if (argmax<argmin) {

argmax=argn;
argmin=argp;

}

argret=argmin;
if (output_direction==l) {

if (spring_vel>output_vel) argret=argmax;

} '.
return (2.0/rootkoJ)*argret,

}

int isign( value
double value;
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{
if (value>=O. 0) return 1;
else return -1;

}

void controller_fin ( void )
{

clutcha off();
clutchb_off() ;

}
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Appendix G - Component data sheets for step­
up prototype
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ALL
BRITISH

COMPANY

·· COMPOSITE
ELECTROMAGNETIC

CLUTCHBRAKE

DATA
SHEET

MODEL
CB 175

TORQUE 1.1 Nm. (10 lb.ins.) MAXIMUM
UP TO Va H.P. AT 1440 R.P.M.

CYCLE RATES CAN EXCEED 10,000 STARTS/STOPS
PER HOUR WHERE LOAD INERTIA PERMITS
FULLY SELF-ADJUSTING NO MAINTENANCE REQUIRED
CHOICE OF SHAFT DIAMETERS 5A~' or ammo

The Clark Composite Clutchbrake unit is a combinat ion asse mb ly of the well proven Clark
model 175 Clutch and Brake. Integral input and output shafts running in substant ial sealed
bearings reduce fitting to the ultimate in simplic ity and low cost .

The Clutch and Brake torque may be fixed at maximum or preset to a reduced value . For
exceptionally smooth starting, the Clark Power Unit type 1 0 2 4 /2R incorporates an
inexpensive "Silkstart" electronic control wh ich ra ises the c lutch voltage from zero to 24V over
a period which can be preset between 1/4 second and 10 seconds. "Boost" circu its can provide
very high acceleration and stopping rates i.e. for h igh cycle rate indexing drives.

Comprehensive applications advice from address overleaf.
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General Specification

Maximum Static Torque
Maximum Speed
Standard Coil Windings

Other Voltages available
Weight
Maximum Heat
Dissipation (Slipping)

Input Speed 0 -500 r.p.m.
1000 r.p.m.
1500 r.p.m .
3000 r.p.m.

1.1 Nm (1 0 lb. ins.).
8,000 r.p.m.
24 volts D.C. 0 .25 Amp.
97 Ohms. Continuously rated .
6, 12, 50, 90 Volts D.C.
0 .9 Kg (21b)

870 Nm/m in (640 ft .lb/min)
1333 Nm/m in (980 ft .lb / min)
1500 Nm/ m in (1100 ft .lb /min)
1800 Nm/min (1 325 ft .lb/min)

•

CLARK ELECTRIC CLUTCH & CONTROLS Ltd .. Bourne Works. Whyte leafe Hi ll . W hyteleaf e. Surrey CR3 aYD
Tel : 01 -668 1763 Telex : 946962 CLARK G.
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I

lprinted Armature
I DC Servo Motor

G12M4

MOTOR RATINGS
Cont inuous torcce at ratec speed
Pu lse tcrcue (~ O ms a: 1: 'e c u t·(
cyc :e l
Ratee sceeo
Ratee vc ttage ' "
Power cut put at rareo speed
Ratec curre n t
Maximum con t inuous srau curren t
Te rmina l res istance

MOTOR CONSTANTS
Torque constant (KJ
Emf cons tant (K~)

Damping constant (K o)
Total i nertia (J or)
Regulat ion at cons tant vouace
(Rrr) '<l
Armature inductance (l.J
Ave rage fr ict ion torque (T ,)
Mechanical t ime constaruF'
Powe r rate ,J;

THERMAL RESISTANCE
Uncooled
Armatu re -to -case It • .d
Case-to -arnti ieru (t :.J
W ith 8 x 16 x i in alum inium
nea : sin k
Wit h 14 x 14 x i in alumin ium
hea t sin k

Forced cooling
Ar rnature-to-arntne nt (t ,)
W ith mass air fl ow of 0.4 Ib /mln
W ith mass air no w of 0 .6 Ib /m in
W i th mass air flow ot 2.0 Ib /m in

Tr.e !;qures c uc tec azove fo r tn e meter
ccns tent s e re tvc«:e. eco :a'1r:c r c e
q:.Ja ra f):ee a ur:;ess = :e::.,,:nICa'
sz ez .t.cet.cn !la S ce e» r.ecousi ec:

~5 oz in
12000z in

3650 rev/m in
48 Vee
147 W
4.4 A
7.5 A
0.75n

15.6 o z in/ A
11.5 V/l000 rev /m in
3.1 oz in/ l 000 re v/m in
0 .020 oz in s2
5.85 re v/m ln /o z in

< 100 "H
4.0 oz in
0.0126 S
~ 07 kWis

1.15 de g cv,

0 .87 ce g (,'W

0 .70 oe g CNI

0 .8 Oeq CM '
0 .51 de q C,w
0 .28 deq CNI

WEIGH T
8 Ib (3.63 kg )

NOTES
1. Motor is test ed at th is vOlt ac;e fo r co nve nience. O the r

voltages ma y be used prov id ed m ax im um arma ture
d iss ipat ion is not excee ded . (Pm• • =P,n - Pout =const ant ).

2. The sceec -rcrc ce c urve is-obtained by uSing th e m aximum
te rm inal res is ta nce o f the motor at 150 ·C arm ature
temperature (.....o rst cond it io n).

3. Ca lcu tate o ' rom the fo rmu la:
6 (Pulse to rQuel2

7.01 x 10 - x Inerti a

GE NERA L
1. Max imum auo wa ore arma ture c issioaucn:

150 ·C - T,mc" nl I·C)
P"'.• , = e + esc c ,

2. The curve s fo r tcr cec cool ing opera t ion were obta ined by
mOOi fy ing the m ec ha nica l c on f ig ura t io n o f the motor to
accep t the requ ired all now . These rr.otors are ava ila b le o n
soec iai requ es t.
The ma xim um auowa oie arma tu re c .ss.ca no n in Ih rS cas e
is c arcu tateo as rcuo ws:

150 · C - T. ", c ,~ n ' ( ' CI
P'="' I = 81

3. Mass all I I O '~ (Ib/ml n l = Air vo lume (f t 3/m rn) x ce ns u v (1t: : 11 1)

All nomi na l val ue s at 25 ' C am bien t exc ep t whe re or ne r-.... .se
s ta te d .
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Appendix H - Photograph of step-up prototype
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Appendix I - Reference Guide to the MATLAB
CAD toolbox of step-up/step­
down mechanisms

List of functions

cadjs

cadk

effsusd

newsusd

simsusd

spnngsz

srrnm
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CADJS

Purpose

To perform initial component selection for flexible drive systems.

Synopsis

[tca,K,xf,Sr]=cadjs(P,Srmin,wmin,wmax,Vrn,Js)

cadjs(P,Srmin,wmin,wmax,Vrn,Js)

[tca,K,xf,Sr]=cadjs(p,Srmin,wmin,wmax,Vrn)

cadjs(P,Srmin,wmin,wmax,Vrn)

Description

This routine will generate vectors containing clutch torques ("tea"), spring K

factors ("K"), maximum spring extensions ("xf') and maximum switching

rates ("Sr"). The size of these vectors will be the same as the size of the "Js"

vector. If no "Js" vector is given then a default vector will be used ([le-5: le­

5:1e-4]). If no left hand arguments are used the results will be plotted. Any

one of the parameters "P", "Srmin", "wmin", "wmax" or "Vm" can be a vector

and in which case multiple plots will be produced (no left hand arguments)

See also

CADK, SRMIN
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CADK

Purpose

To perform initial component selection for flexible drive systems.

Synopsis

[tca,K,xf,Sr]=cadk(P,Srmin,wmin,wmax,Vm,K)

cadk(P,Srmin,wmin,wmax,Vm,K)

[tca,K,xf,Sr]=cadk(P,Srmin,wmin,wmax,K)

cadk(P,Srmin,wmin,wmax,K)

Description

This routine will generate vectors containing clutch torques C'tca"), spring

inertias C'Js"), maximum spring extensions ("xf') and maximum switching

rates ("Sr"). The size of these vectors will be the same as the size of the K

vector. If no K vector is given then a default vector will be used. If no left

hand arguments are used the results will be plotted. Anyone of the parameters

"P", "Srmin", "wmin","wmax" or "Vm" can be a vector and in which case

multiple plots will be produced (with no left hand arguments).

See also

CADJS, SRMIN
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EFFSUSD

Purpose

To perform efficiency analysis on flexible drive systems

Synopsis

[vel,input-power,ouputpower,perc_eff,input_bearing,

spring_bearing, output_bearing, input_clutch,

output_clutch] = effsusd(model, load_torque)

Description

This function will perform multiple simulation runs using model file "model"

performing a separate run for each of the values in the load torque vector

"load_torque". If left hand side arguments are given then matrices showing

the steady state velocities reached ("vel"), the percentage input/output

efficiency ("perc_eff") and the power lost to the three bearings

("input_bearing", "spring_bearing" and "output_bearing") and the two

clutches("input_clutch" and "output clutch"). If no left hand side arguments

are given then the results will be plotted on the screen.

Example

ef f esusd ( I susd I , [0: 0 .1: 1] ) ;

This will perform efficiency analysis usemg parameter definition file

"susd.m" and eleven ouput load torques ranging from 0 to 1 Nm. The results

will be automaically plotted on the screen.

196



See also

NEVVSUSD,SIMSUSD
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Appendix I

NEWSUSD

Purpose

To create a new parameter file in preparation for the simulation of a step­

up/step-down flexible drive system.

Synopsis

newsusd (model)

Description

This function will create a parameter file in preparation for a simulation of a

step-up/step-down mechanism. IT the string entered was "xxxxxx" then the

file produced will be a MATLAB script file called "xxxxxx.m". This model

file will be used by SIMSUSD and EFFSUSD for perform simulations and

efficiency analysis.

Some parameters will be set to default values and others will be left blank to

be filled in by the user using any convenient text editor.

Example

newsusd ( I susd I )

will create a parameter file called "susd.m"

See also

NEVVSUSD,EFFSUSD
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SIMSUSD

Purpose

To simulate step-up/step-down flexible drive mechanisms

Synopsis

[t,m-pos,m_vel,s-pos,s_vel,l-pos,l_vel,clutcha,clutchb]

=simsusd(model,strl,vall,str2,va12, .... str12,val12)

Description

This function will use the parameter definitions held in the three m-files

defined by the model name "model" to simulate a step-up/step-down flexible

drive system. If no left hand side arguments are given then the results will be

plotted. If extra right hand side arguments are given then these can be used to

overwrite parameters held in the model parameter file.

Example

simsusd('susdl');

will simulate model'susdl ' and plot the results

susd ( I susdl ' , 'K' , 0 . 9, 'Jm' , 0 .01)

will simulate mode1'susdl ' using K=O.9Nm and Jm=O.Ol and plot the results

See also

NEWSUSD, EFFSUSD
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SRMIN

Purpose

To calculate minimum switching rate necessary to achieve a desired velocity

output ripple

Synopsis

Sr=Srmin(P,wmin,wrip,Jl)

Description

Defining the motor power, "P" a nominal output velocity "wmin", velocity

ripple "wrip" and load inertia "Jl" the user can find the necessary minimum

switching rate, "Sr". It is based on the following equation

p
Sr . =----

mm Jwmin w rip I

See also

CADJS, CADK, SPRINGSZ
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SPRINGSZ

Purpose

To help size a torsional helical spring of constant wire and coil diameter.

Synopsis

[d,DN,V]=springsz(K,xmax,fatigue)

Description

The user has to provide a sprmg K-factor("K") and maximum spnng

extension "xmax". This function will provide "d" the wire diameter and "DN"

the product of the number of active coils and the coil diameter. Hence this

routine will provide a family of springs all having the same "K" factor and

able to withstand the maximum spring extension. "fatigue" is a factor between

o and 1 that is multiplied by the ultimate tensile stress to form the working

stess for these calculations. "fatigue" equal to 0.25 (the default) will allow the

spring to have infinite fatigue life.

See also

CADJS, CADK, SRMIN
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Appendix J - Parameter model file used in
simulation of 500 watt example
design

% MODEL PARAMETERS
% Example simulation of a 500watt device
%

% define motor model as a motor velocity vs. torque
characteristic
%
Vm=[O 200];
% power is torque X velocity
Trn=10-0.05*Vm;
% Motor inertia
Jm=0.005;
% Input bearing
Cm=0.0025;
Bm=8.ge-5;
% Spring K factor (C1100 112 2250 SS)
K=7.07;
% load inertia (use LARGE MASS)
Jl=0.005;
% brake center inertia (latest measured value)
%Js=ge-5;
Js=le-4;
% spring friction (from MSD data)
% same as load friction
% for the spring use double the output load bearing values
Bs=8.ge-5*2; Cs=0.0025*2;
% load friction
Cl=O.0025i Bl=8.ge-5i
% Torque of brake (had to beef this up a bit from manu's
data)
ta=20;
% Torque of clutch (had to beef this up a bit from manu's
data)
tb=20;
% brake and clutch delay (secs)
Cad=O.004; Cbd=0.004;
% Load torque
tl=0.8;

% CONTROLLER PARAMETERS
sample rate=lOOO;
closed-loop=l; % 1 for closed loop 0 for open loop
Kp=Jl/2-(1/30)*((1-tl)/400+tl/(2*400));
%KP=Jl/2-(1/30)*((1-0.8)/400+0.8/(2*400));
Ki=Jl/2;
rootkoj =sqrt (K/Js) ; % approx of root (K/J) .
spring max=2.86; % maximum spring extenslon ln radians
clutch_delay=0.004; % clutch matching delay
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min_motor_vel=70;
anti_windup=l;

% min motor velocity
% integral anti-windup action

Appendix J

% SIMULATION PARAMETERS
% set up default simulation parameters
start_time=O;
ref_signal=[O +400;3 +400;3.01 -400; 6 -400;10 +400; 11 400;
120; 130];
min_step=le-7;
max_step=0.0019;
tol=le-3;
mode=2;
% initial conditions with motor velocity=100
xO=[O 0 0 000];
uO=[O 0];

end
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Appendix K - Engineering drawing of step­
up/step-down mechanism
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Appendix L - Photograph of step-up/step-down
prototype
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