
_ .)l	 -)l



THE UNWERSITY OF HULL

THE PERFORMANCE OF ULTRA-HARD

CUTHNG TOOL MATERIALS IN MACHINING

AEROSPACE ALLOY TA48

being a thesis submitted for degree of

DOCTOR OF PHILOSOPHY

in the University of Hull

by

FARHAD NABHANI

M.Sc (Warwick), ASM, AMIM, C.ENG

January 1991



de&cation

to my be(ovet1parents



ABSTRACT

A study has been made of the respective performance of cubic boron nitride

(CBN) and polycrystalline diamond (PCD) cutting tool materials and compared to

various coated and uncoated tungsten carbide grades when cutting titanium alloy

workpieces. Two important experimental techniques were employed during the

course of this work, firstly a quasi-static contact method was employed to establish

the workpiece/tool interfacial temperature above which strongly adherent layers

may be formed. This technique revealed that the critical temperatures which marked

adhesion and welding, were 740, 820 and 800 °C for coated and uncoated

carbides, and 760 and 900 °C for PCD and CBN tools respectively. Furthermore,

the technique has been used to study the integrity of the bulk tool material, and/or

individual coatings on their substrates, when welded junctions formed between the

tool and workpiece are separated. With regard to the latter it was observed that in

all cases fracture was initiated in the bulk of the harder tool material rather than in

the workpiece or at the welded junction interface. Secondly, a quick-stop technique

was used to study chip formation and tool wear when cutting with carbides, CBN

and PCD tools under nominally the same conditions.

The predominant wear mechanisms for each of the tool materials was found

to be based on a diffusion/dissolution process. The wear process is discussed in

detail for each of the tool materials and reasons advanced for observed differences

in performance when removing material from a titanium alloy workpiece. The wear

resistance and quality of the machined surface was found to be superior when

cutting with the ultra-hard materials than with the carbide grades and in particular

the PCD tool was found to produce exceptionally good surface finish. In the case

of coated carbide tool grades rapid removal of the coated layers occurred leaving

the substrate vulnerable to reaction with the workpiece material and this is
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considered to explain the seeming absence of beneficial effects when cutting with

these grades.
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CHAPTER 1

INTRODUCTION



1.0 INTRODUCTION

Metal Cutting is the process of removing a thin layer of work material from

the surface of metal by driving a harder wedge shaped tool symmetrically into the

workpiece material. The thin metal layer removed, known as a chip or swarf, is

deformed throughout its volume and impinges upon the rake-face of the tool, moving

over it in a direction away from the direction of motion of the workpiece. Despite the

fact that there are many different industrial metal cutting processes, such as drilling,

milling, turning, shaping, and so on, the above mentioned features are common to all

of these.

The process of cutting involves the use of a hard, sharp edge of a small

cutting area which is greater than it can support over the area to which it is applied.

The edge must therefore be harder than the metal to be cut and Tabor's study of

single point scratching suggests that if the tool is less than 1.2 tunes harder than the

metal it will cease to Cut a chip from a flat surface (1).

Today metal-cutting is a very important aspect of manufacturing industries.

The automotive industry, electrical engineering, railways, ship-building, aircraft

manufacture, production of domestic appliances and the machine tool industry itself

all rely heavily on metal cutting and have large machine shops with many thousands

of employees (2). In 1981 in the UK there were over 1 million machine tools, 85%

of which were metal cutting machines (3). It has been estimated that more than a

million people are directly engaged in machining and other related activities, and the

cost of metal cutting in the UK in 1981 was calculated at approximately £20 million

(4).

It is generally accepted that modern machining technology began with the

industrial revolution, since it is from this era that cutting tools have played a major

role in manufacturing processes which make a substantial contribution to the wealth
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upon which our society thrives. Due to the resulting importance of, and heavy

demands on, the cutting tool industry, developments have had to be made towards

producing stronger tool materials and new machine tools. As a result, development

and production of high speed steel (HSS), coated carbide, alumina ceramic, sintered

diamond, sintered cubic boron nitride, and silicon nitride tools was initiated. The aim

of these developments was to increase productivity and achieve greater precision in

the metal cutting industry.

As with coated cemented carbide and the more conventional ceramic tool

materials, the range of polycrystalline compacts based on diamond and cubic boron

nitride (CBN) has increased dramatically since their commercial introduction in the

early 1970's. Polycrystalline tooling has a cosmopolitan air with products from

major manufacturers in the USA, Japan, South Africa and the USSR. Both synthetic

and natural aggregates are used, with a number of manufacturers offering an

infrastructure of blank/insert shapes and sizes, with various grades being based on

grain size.

Like natural diamond, the synthetic diamond compact is susceptible to

temperature degradation, and it is this feature which to a large extent limits the field

of application to non-ferrous and non-metallic materials. In contrast, CBN and coated

carbide tools offer the capability to operate with tool interface temperatures of up to

1200 C with minimal oxidation effects (5). The retention of high strength at high

temperature is a particular requisite for the machining of aerospace titanium alloys,

and it is in this area that PCD, CBN and coated carbide have major application.

The successful synthesis of diamond is one of the important scientific

achievements of the latter half of the twentieth century. It has not only enabled the

economic manufacture of diamonds for industrial use, but also has made it possible

to tailor grain size, strength, and friability by controlling the pressure, temperature

and processing time during synthesis. The direct production of diamonds of a given

2



size eliminates the need for crushing, which can weaken the product by resulting in

cracking. Grains of different friability are required for different applications. In

addition, diamond synthesis has opened up a new and exciting field of high pressure,

high temperature technology capable of producing new stable phases of other

materials and cubic boron nitride (CBN) is a typical example. The commercial

availability of different types of synthetic diamonds and CBN, both in loose form

and as sintered compacts, has opened new vistas for the production engineer and

much research remains to be done before it is possible to take full advantage of these

ultra hard materials. However, there would appear to be considerable scope for the

use of these materials when machining titanium aerospace alloys.

Titanium alloys are attractive materials to aerospace designers due to their

inherent combination of strength, lightness, and resistance to corrosion. However,

they pose considerable problems in manufacturing because of its poor machinability.

Traditionally, high speed steel and solid carbide monolithic cutting tools have been

employed and a relatively short lifetime or the need for frequent cutter re-grinding has

been accepted. More recently there has been a move towards the adoption of insert

tooling based upon coated carbide systems. With the evolution of a number of new

cutting tool materials there is evidence to suggest that the use of some of the ulirahard

materials, such as those based on polycrystalline diamond or cubic boron nitride,

may be advantageous in machining of titanium alloys. However, the cost of both the

workpiece material and the tool is not trivial in these cases and, therefore, there is a

need to develop experimental techniques for evaluating new materials for cutting that

are simpler, quicker and less expensive than machining trials.

Most tool materials wear rapidly during the machining of titanium alloys,

even at moderate cutting speeds. Current machining practice limits the cutting speed

to less than 7 m/s in order to minimise tool wear. In addition, tool vibrations are

induced by the grossly inhomogeneous plastic deformation in the primary shear zone
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producing distinct chip segmentation. Such vibrations may be accentuated by

inadequate stiffness of the component parts of the machine tool structure. Together,

these factors limit the machining productivity of these materials. Unfortunately, very

little is known about the detailed mechanism of chip formation or temperatures

generated when machining these alloys. In this investigation, specific attention is

paid to the role of the interface between the workpiece and the rakeface of the tool, on

the mechanism of wear.

Two experimental techniques are employed. In the first, the effect of

temperature on the adhesion of workpiece to tool material is investigated in order to

determine the critical temperature above which there is immediate seizure on contact.

The structural and chemical nature of the interface is studied and the nature of

subsequent failure of the adhesive couple (ie at the interface; within the workpiece;

within the tool) identified. In the second technique, the 'Quick-Stop' device is used

to investigate, in a similar way, the structure of the chip and its interface with the

rakeface, during single point cutting. The principal objective is to establish the

mechanism of wear rather than the wear rate, under controlled conditions.
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CHAPTER 2

LITERATURE REVIEW



2.0 LITERATURE REVIEW

2.1 HISTORICAL BACKGROUND

Over the last 30 years or so, extensive literature has accumulated on the

machining of titanium. Firstly, titanium was employed in lockhead tests which

revealed that wear was slightly high, and finish was coarse (6).

The Massachusetts Institute of Technology (MIT) carried out low speed

turning of titanium and its alloys from 1954 to 1957. The tests were mainly

concerned with steel, for comparison, and to gain a theoretical knowledge of the

process cutting of titanium (7). The final report in 1957 (8) showed the feed force

component to cross the power force component before the point of complete failure

was reached. The outcome of these experiments was a recommendation of K25 grade

carbide. This recommendation was based upon results associated with the tool life

equation, cutting fluid tests and flank wear.

Siekmann carried out a number of tests in 1956 to obtain precise grades of

carbide with varying conditions when machining titanium alloys. In turning tests at a

feed of 0.28 mm/rev, a cast iron grade (883) was superior to a steel grade at all

speeds. However, premature failure of tools was attributed to chipping and

increasing the feed was found to reduce tool life (9).

In 1957 Loo of North American Aviation noted that, the mixture of

suiphurized oil gave longer tool life when using carbide cutters. Dripping oil was

sprayed on the cutter with compressed air to carry away the swarf and to cool the

cutter.

Michigan University produced a series of reports on high speed milling in

1961 (10). Experiments were carried out to determine whether it was possible to

increase rate of removal by milling at relatively high cutting speeds. At all high
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speeds up to 660 rn/mm, the carbide cutter tool failed immediately and surface finish

was poor.

In 1962, the US Airforce produced a comprehensive account of the

machining of heat-resistant alloys. Their recommendations were similar to those

made by the industrial concerns in the late 1950s (11) in recommending tungsten

carbide cutter (C-2 grade) for face milling.

A detailed investigation of milling conditions for titanium alloys was made by

Vaughn (12), who published his results in 1966. His experiments include varying

cutting speed, feed rate, tool material, tool geometry, machine tool set-up and cutting

fluid. His report indicated that climb milling gave greater tool life than conventional

milling, and suggested that the optimum feed rate for a given cutting speed/cut

geometry is essential when machining titanium alloys.

Two papers were presented at a conference on Machinability in 1965, and

subsequently published in 1967. One of the papers (13) deals with the metallurgical

factors affecting the machinability of titanium, and the other paper (14) promotes a

practical approach to the machining of titanium. The first of the two papers (13)

explains that the difficulties associated with machining titanium alloys cannot be

attributed to work hardening, and that the thin chip resulting from the high shear

angle, and the absence of a built-up edge to dissipate heat, combined with the very

low thermal conductivity of titanium alloys leads to a much higher surface heating of

the tool, resulting in contamination of the titanium. It was also suggested that the

higher pressure produced by the thin chip, coupled with the excessive heat generated

led to pressure welding of the chip to the tool.

The second paper (14) makes the statement that titanium is not difficult to

machine and that rigid machine tools with adequate power, speed and feed will solve

the problems with machining titanium. Surface treatments employing solid lubricants
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such as Sulfiniz, molybdenum disuiphide, graphite, etc, have not provided much

improvement, as they appear to be removed rapidly from the tool surface and are

carried away on the first few chips. Phosphates gave the best results of the

chemically active cutting fluids tried, and showed great promise as a cutting medium,

but suitable corrosion inhibitors were not found before improvements in tool

materials rendered further work on these fluids "unnecessary". Chlorinated cutting

fluids were found to be effective, but were banned because of their toxicity.

The recent interest in achieving higher metal removal rates in the machining of

titanium alloys has led General Electric to conduct extensive research in this field. In

the 1980 Annual Technical Report of GE's Advanced Machining Research

Programme, papers were presented on chip formation (15, 16), alternative tool

designs (17) and pulse laser experiments (18), and also on high-speed machining of

titanium with various tool materials in both laboratory (19) and production (20)

environments.

Komanduri performed experiments with Laser-Assisted Machining (LAM) of

a preheated billet of Ti 6A1-4V and had found that it is possible to modify the usual

periodic, catastrophic, shear-failed chip to a more continuous chip by heating the

work material ahead of the shear zone to a high temperature (16). He believes that

this facilitates an alpha (a) to beta (ii) allotropic transformation of the titanium.

Cutting forces were reduced by approximately 50% with LAM, and the continuous

chip reduced chatter. The problem of handling the preheated workpiece is difficult

enough to render this method unfeasible in production. The success of the LAM

approach depends largely on the ability to heat the work material directly ahead of the

shear zone without heating the material near to the tool tip. The high temperature near

the tool tip may cause rapid plastic deformation and accelerated wear of the tool.

All of the above mentioned research aimed to achieve higher metal removal

rates in the machining of titanium, particularly in turning. It is clear that either
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temperatures have to be reduced through a new method of cooling and/or a cutting

material must be found which can withstand the thermal and mechanical shocks, and

chemical attacks that are associated with titanium machining.

It is possible that lubricants can be found which reduce friction and

subsequently the temperature at the tool-chip interface, but lubricants will not be

effective at higher cutting speeds.

Grumman Aircraft performed cutting tests on titanium alloys with direct

nozzle application of both liquid nitrogen and liquid carbon dioxide. An increase in

tool life and cutting speed were reported, but only an abstract for this work is

available for review at this time (21).

It is known that the Technical University of Aachen in West Germany is

conducting research in the use of liquid nitrogen cooling for machining titanium. A

request for further information (22) indicated that significant increases in tool life

were obtained, but that the added cost of providing liquid nitrogen was greater than

the savings made due to increased tool life. Only limited information is available,

since details of the research are confidential.

Joshi (23) experimented with liquid nitrogen as a cryogenic coolant for the

profile milling of titanium alloys. He has found that a combination of liquid N 2 and

soluble oil reduces tool wear possibly by providing a solid lubricant action and/or

improving the rate of heat transfer. But since his tests were conducted with HSS,

cutting speeds were limited to 16 rn/mm.

If solid lubricants are to be applied, the process will have to be a continuous

one, as in Cook (24) or Veharas (25) metallizing approach. At higher cutting speeds

on titanium, however, the effect of the coating may be reduced by the forcing of the

coating from the interface. These processes emphasize the need to develop a new
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cutting tool material to achieve higher metal removal rates in machining titanium

alloys, and which maintains its mechanical integrity at high cutting speeds.

Within the past decades there have been significant developments in tool

materials used for cutting steel and cast-iron, namely the introduction of coated

carbides and aluminia-based ceramics containing stabilized zirconia. However, tools

used for machining titanium alloys have not received any specific attention. Although

extensive work has been carried out in the last thirty years in an effort to find the

limits of application of HSS and cemented WC tools for this purpose, very little

work has been done with alternative tool materials. Despite the fact that machining

titanium alloy is a major production problem, and it is very attractive to the Aerospace

industry. The most recent research in high speed machining of titanium alloys was

conducted at General Electric (26). Two ballistic test facilities were used to test a

variety of work materials. Tests were planned on titanium alloys and cutting was

achieved with cutting speed limited to 60 rn/mm. Attempts to raise the cutting speed

resulted in rapid cratering and/or plastic deformation of the cutting edge. These

failure modes are attributed to the generation of high tool temperatures.

The ability to sustain high cutting temperatures is dependent upon the

properties of the tool material used. Only a limited number of potential tool materials

are available in solid form that have the thermal-mechanical properties that are

necessary for high speed metal cutting. These materials are carbide tools (coated and

uncoated), polycrystalline diamond, and polycrystalline CBN. In the present study,

polycrystaline diamond (PCD), cubic boron nitride (CBN) and coated cemented

carbide (CVD) tools have been used in machining of titanium alloys. At the present

time only a few detailed studies of the wear mechanisms of these tool materials have

been reported (27). A substantial research programme was undertaken in an effort to

determine which of these tool materials might be the most wear-resistant and what

material properties are critical in determining the wear resistance.
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Because of the relative simplicity of the geometry of the process and the

continuous nature of the cut, the turning process was chosen. Two novel techniques;

quasi-static and quick stop, were selected as the appropriate tests to determine the

basic wear properties of the various tool materials.
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2.2 TERMINOLOGY USED IN MACHINING

Several methods of indicating the geometry employed in metal cutting are

used at present, and although standard terminology is sought by many people, this

has not been universally achieved. The following is a list of terms used in turning on

a lathe with a single point cutting tool.

Three perpendicular motions are provided by the lathe in order to generate the

finished surface on the bar. Two of these motions are given to the tool while the third

is provided by the rotation of the workpiece. The workpiece is held in the head stock

of the lathe and rotated about an axis parallel to the lathe bed. The depth of cut taken

by the tool is measured perpendicular to the axis of rotation of the workpiece and is

its decrease in radius.

The tool is moved at right angles to the depth of cut to provide the feed or

undeformed chip thickness. The velocity with which the workpiece passes the cutting

edge is referred to simply as the cutting speed. The depth of cut is measured in

millimetres, the feed in millimetres per revolution (mm/rev) and the speed in surface

metres per minute (Figs 2.1).

As machining proceeds, the chip passes over the tool and is discarded. The

face over which the chip passes is called the 'rake' face of the tool. This face may be

inclined to the axis of rotation of the workpiece so that the chip is deflected through

an angle less than a right angle. This tool is then said to have a positive rake angle,

which is measured from the axis of rotation. A negative rake angle turns the chip

through an angle greater than a right angle, causing the chip to flow back against the

rotation of the workpiece.

In order to prevent rubbing of the workpiece against the tool, clearance angles

are provided at the cutting edges of the tool. Two faces meet at every cutting edge,

one of these being the rake face. If the second face is the flank face, the cutting edge
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is known as the primary cutting edge. If the second face is the end clearance face, the

cutting edge is the secondary cutting edge. In order to strengthen the point where two

cutting edges meet, a nose radius is sometimes provided. A further clearance angle,

known as the trail angle is provided for the secondary cutting edge and this is the

angle between the axis of rotation of the workpiece and the secondary cutting edge.

In order to produce a chip, shear takes place in two zones. The first is the

primary shear zone (or plane) and this is the boundary between the unsheared work

material and the body of the chip. The second is at the interface between the tool and

the chip on the rake face. This is known as the secondary shear or flow zone of the

chip. A third feature, which is often seen as a built-up edge (BUE), is a stagnant

zone of metal on the tool, and this replaces the cutting edge.

Turning may be divided into three major categories; orthogonal,

semi-orthogonal and non-orthogonal. In the first case, only the primary cutting edge

is used and this is typified by turning on the end of a tube. The speed, feed and

primary cutting edge are all at right angles to the workpiece. In semi-orthogonal

cutting the nose radius and secondary cutting edges are also used and this is typified

by turning on the outside of a bar. The primary cutting edge speed and feed are again

mutually perpendicular to the bar. For non-orthogonal cutting any or all variables

above may be altered, but the most typical is that of using an approach angle on the

primary cutting edge which means that this edge is inclined to the axis of rotation.

2.2.1 SURFACE FINISH

In metal cutting the machined surfaces are formed by fracture under shear

stress. The new surface probably rarely originates precisely at the cutting edge of the

tool (2).
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Walibank (16) has shown that a flow zone is developed. The work material

wraps itself around a sharp cutting edge and the new surface is formed where the

work material breaks contact with the tool flank a short distance below the cutting

edge. The contact between the flank face and the new workpiece surface is

responsible for the surface roughness. Damage to the cutting edge results in a

replication of this on the newly formed surface but the effect can be modified by

further contact with the unworn flank face of the tool. The size, shape and

distribution of micro-irregularities on the newly formed surface depends on the

workpiece material as well as the flank face roughness of the tool.

The finish is dependent on the feed and nose radius of the inserts. Excessive

nose radii can give rise to vibration, which will result in a rougher finish. Cutting

edge build up which forms at certain temperatures, may also cause a rougher finish.

Each nose radius has a corresponding maximum feed which will produce the best

possible surface finish. The appropriate values are readily available from tables. The

theoretical value (53) of surface finish can easily be calculated from the following

equation.

FL =S2/8rmmineor

where: s = feed in mm/rev

r = nose radius in mm.

2.2.1.1 MEASUREMENT OF SURFACE FINISH

In order to study surface finish and its effect on the performance of the

product in operation, a number of quality control instruments have been developed.

These enable a check on tolerances to be made easily and the necessity of experience

to be minimised. Some of these instruments may be used by unskilled and
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semi-skilled operators but those of a more complex nature should be used by

qualified operators.

There are many methods used for the measurement of surface finish. These

include; the use of a mechanical stylus, microscope, reflectivity measurements, and

even some manual methods, such as visual inspection or the use of a finger nail to

trace across the surface. The latter is only acceptable in industries where the surface

finish is thought to be of secondary importance.

The Taylor-Hobson Talysurf is a typical stylus instrument which provides a

selection of roughness and waviness parameters, together with profile graphs. The

measurement data are obtained via the movement of a stylus, at constant velocity,

across the surface of the specimen. This movement is amplified electronically and the

data automatically analysed. The parameter values are then selectable at will from the

stored information.

Several different indices are used in measuring surface finish and the most

common are described here. Also, some terminology which is invariably encountered

is also defined.

a) Centre Line Average (Ra)

The Ra value is the standard adopted in Great Britain, and since 1955, in the

USA. It is defined as the average height from a mean line of all ordinates of the

surface, regardless of sign.

If an irregular surface is divided by its centre line then a number of areas are

produced which can be measured by Planimeter. Dividing the sum of these areas by

the length of the sampling line gives a centre line average of the profile height, Fig

2.2

Ra=(A1+A2+A3+... +A)/L
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Ra = (4A)/L

Where .A = sum of areas above and below the mean line in mm2

L = length of trace in mm.

b) Root mean square (RMS) value

This measure was standard until 1955 in the USA after which the standard

was changed to Ra value. It is defined as the square root of the mean of the squares

of the ordinates of the surface measured from a mean line, Fig 2.3.

If equally spaced ordinates are erected at 1, 2, 3, 4 ... n, whose heights are

h 1 ,h2,h ...h,then
3	 n

Rq	

2 2 2

n

or	 Rq=:-1-- rL h2 dL 1/2

Li0

where h is an ordinate form the centre line and L is the sampling length.

c) Roughness, Waviness and Error of form

Often some characteristics of surface geometry are not classified within the

roughness category. Two classes of these arise. "Errors of form" are generally

associated with deflection of the workpiece whereas "Waviness" is often associated

with an incorrectly set up workpiece or irregularities in the feed mechanism

"Roughness" is generally associated with chatter (Periodic tool-workpiece

deflection), feed marks (produced by impression of the nose radius of the tool on

each revolution) and fine scale surface damage to these feed marks. Most modem

surface finish measuring instruments can discriminate between these by use of a
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Figure 2.2 Graphical representation of C.L.A.

Figure 2.3 Graphical representation of R.M.S.



wavelength filter which attenuates wavelengths longer than, say, 0.8 mm in the

roughness calculations.

The information obtained from the Talysurf has the widest application in

quality control in industry. The most common parameters used are the RMS and

CLA values of the surface and these have been found to correlate well with a number

of performance criteria. It must be noted that these are not the only way of

characterising surfaces and that others may prove more advantageous, for specific

applications.
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2.3 THEORIES OF MACHINING

In most metal forming processes, the shape of the product is entirely defined

by exterior constraints, such as rolls or dies. In the case of machining, swarf is

produced which is only constrained by the tools and the chip is able to take up any

thickness it desires. From the definition of the shear plane angle, it can be seen that

this angle would define the thickness of the chip (Figure 2.4) if it could be measured

or calculated. The first attempt to define the shear plane angle for a continuous chip,

with respect to the forces on the tool and the rake angle of the tool, was made by

Ernest & Merchant (29). To do this they assumed that conditions of friction acted

between the tool and the bottom of the chip which did not vary within the contact

area. The cutting force and drag force were measured and the coefficient of friction,

hence the angles of friction () were calculated. They next assumed that the shear

plane angle would be such that the energy expenditure would be a minimum and this

led them to derive a formula:

(1)

They noticed that as the machining speed increased, the shear plane angle (0)

was also increased; to account for this it must be assumed that the angle of friction

decreases with speed. In a later paper, Merchant (30) shows that the formula is at

fault and that it gives answers for the shear plane angle that are too high. He also

gives several formulae based on geometrical considerations which can be used to

calculate the shear plane angle and the shear stress (t) on the primary shear plane. If

the chip thickness (t2) is known. The most useful of these formulae are reproduced

below:

tan 0 = (t 1/t2) cos a / [1 - (t 1/t2) sin a]	 (2)

t = cotO+tan(Ø-a)	 (3)
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The force on the shear plane (F) can also be easily calculated.

F = F cos 0 - F sin 0	 (4)
S	 C	 f

These formulae all assume that there is no chip spread perpendicular to the

direction of chip flow and parallel to the rake face; that the primary shear occurs on a

plane; and that the chip produced is rectangular in cross-section. In practice the

assumptions are found not to be true. However, the formulae are useful because a set

of data can be quickly worked through for comparison. Merchant (31) next published

a modified version of the earlier formula:

(5)

Here C was referred to as the machining constant, a constant related to the

rate of change of shear strength with compressive strength. For this equation to agree

with the earlier one, C would have to be 900; Experiments by Chang and

Hegginbotham (32) found C to have the value of 67 ° ± 5%. The reason for the

disagreement from the ideal value of 90 ° was accounted for by the fact that the

primary shear took place over a three dimensional zone rather than a two dimensional

plane, a viewpoint held by other workers (3 1-33). Hill (34) questioned the validity of

Merchant's argument for the variation of C from the expected theoretical value of

90. FIe stated that the variation of shear strength with compressive stress would

have to be excessively large to account for such a difference and questioned the

validity of the minimum energy criterion. Hill agreed with Merchant's geometric

formula and suggested a formula defining the shear plane angle from plasticity

theory:

Ø=it/4+a-6	 (6)

but continued to say that it would be invalid for high values of negative rake angle

and that the angle found for the shear plane angle would tend to be low. In a later

18



paper, Hill (35) propounded the opinion that, even for one particular geometry, a

range of shear angle values were possible and were dependent upon different initial

conditions. The assumption is still made that the coefficient of friction is constant

over the whole of the contact area (Fig 2.5). Permissible values of 0 were plotted on

a graph of against ( - a) one of the boundaries, where >> a was shown to be

equation 6. Another notable point was that the whole of the permissible region falls

below Ernest & Merchant's formula.

Lee & Schaffer (24) by assuming plane strain in an ideally plastic material,

produced a simple triangular slip line field for machining. Two of the sides of the

triangle were taken to be the primary shear plane and the contact length between the

chip and the tool. The net was constructed from straight lines, hence variations of

friction within the contact was still ignored. The formula derived was the same as

equation 6. Variation of the coefficient of friction, with varying machining

conditions, was accepted and they presumed that when the friction stress exceeded

the shear stress of the chip material, adjacent to the rake face of the tool, shear would

occur within the chip along the rake face. Shaw et al (25) reasoned that the accepted

laws of friction were not valid for the tool-chip interface in machining. They noticed

that the derived value for the coefficient of friction varied as the rake angle varied,

and therefore could not agree with the classical laws of friction. This variation was

thought to be due to the result of work hardening on the primary shear plane, and

hence the coefficient of friction was affected by the shear plane angle. They also

suggested that the shear plane was not necessarily on the line of maximum shear

stress, due to the interaction of the friction stress. The slip line field approach was

extended by Palmer and Oxley (21) to account for a shear zone rather than a primary

shear plane; the field produced was found to be admissible except at the cutting edge

where infinite accelerations would have been needed. Their expansion of the field at

the cutting tip also leaves room for improvement, in that it necessitates a gap to be

present between the cutting edge and the chip, similar to a crack going on ahead of
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the tool. The detailed development of the slip line field approach is beyond the scope

of the present work, but the work of Kudo (26) would appear to be the culmination

of this approach. As in all slip line field models, the assumptions are made that the

metal is rigid, plastic and does not work harden. The proposed models account for

straight chips, where the friction is constant across the contact area, and for curly

chips where the friction varies. The models are obtained by constructing fields using

curved lines. The varying angles at which these lines meet the rake face of the tool

demonstrate the changing conditions of friction at the chip-tool interface. The models

also allow for a curved shear plane, and are developed to include a shear zone.

Kudo's explanation that the variation of friction stress across the contact area causes

curly chips has been confirmed by the work of Childs & Richings (27), but other

explanations (24, 28) were that the chip curl was caused by residual stress and

thermal stress gradients. It is quite probable that all of these mechanisms play some

part in the final amount of curl or lack of curl in the chip. Despite the considerable

amount of effort put into the development of a slip line field to explain machining,

complete agreement with practice has never been achieved.

The failure of the slip line field approach to give a simple explanation of

machining encouraged Rowe & Spick (28) to look again at the consumed energy

approach. The object of the theory was to predict the shear plane angle. The shear

zone approaches a plane as the cutting speed increases, for a continuous,

non-hardening chip with simple shear at the shear plane. The approach was that the

shear plane angle would be such that the total energy expended at the primary shear

plane, and in the region of the tool, would be at a minimum. Assuming plane strain

conditions and no work hardening, the following equation was derived from

considering the energy required to remove a unit volume of metal:

cosa * cos(2Ø—a) - * x * sin2ø = 0	 (7)
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Where x was the ratio of the tool-chip contact length to the feed projected

onto the rake face (tl/cosa), and was the ratio of the shear strength of the chip-tool

interface to the shear strength of the metal being machined. B can vary from 0 to 1

representing the range from full sliding to full sticking at the interface. A family of

curves of cutting energy against shear plane angle was plotted for different values of

contact length (Fig 2.5). It was shown that due to the greater expenditure of energy

on the rake face of the tool, as the contact length increased, the shear plane angle

decreased. The effect of work hardening was suggested to be that of expanding the

shear plane to a fan shaped zone, hence increasing the chip thickness. Experimental

work by Williams et al (29) proved to be in agreement with the Rowe &Spick theory

(28), but the energies found in practice were higher than those predicted. It was

assumed that this discrepancy was the result of the formation of a collar when

machining. The collar formed when machining is in the form of a radial collar

existing on the bar being cut, and is formed by work material being displaced ahead

of the tool. The size of the collar increases to an equilibrium value depending upon

the work material and the cutting speed. In general the size of the collar decreases as

the cutting speed, and brittleness of the work material, increases. A technique which

utilised two tools was employed to show that substantially less energy was absorbed

when no collar was allowed to form.

As in the case of the slip line field theories, the minimum energy criterion

theories also fell short of accurately describing the machining process. Neither of the

approaches accounted for the behaviour of real metals - probably because the

assumption of ideal plasticity is unrealistic.
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2.4 FORCES IN METAL CUTTING

The forces acting on the tool are an important aspect of machining. For those

concerned with the manufacture of machine tools, a knowledge of the forces is

needed for estimation of power requirements and for design of structures adequately

rigid and free from vibration. The cutting forces vary with the tool angles, and

accurate measurement of forces is helpful in optimizing tool design. Scientific

analysis of metal cutting also requires knowledge of the forces, and in the last eighty

years, many dynamometers have been developed capable of measuring tool forces

with considerable accuracy (42).

For a semi-orthogonal cutting operation in lathe turning the force components

can be measured in three directions, (Fig 2.4), and the force relationships are

relatively simple. The component of the force acting on the rake face of the tool

normal to the cutting edge, in the direction OY is called here the "cutting force", F.

This force, which tries to bend the tool, is usually the largest of the three force

components, and acts in the direction of the cutting velocity. The force component

acting on the tool in the direction OX, which opposes the feed, is referred to as the

"feed force", Ff The third component, acting in the direction OZ, which tries to

press the tool backwards, is called the "radial force", Fr• This is the smallest of the

force components in semi-orthogonal cutting and, for purposes of analysis of cutting

forces in simple turning, it is usually ignored and often not even measured.

The magnitude of these forces depends primarily on the feed and the cutting

rake angle. In addition, the cutting force varies with the material, the depth of cut and

also, to a limited extent, the cutting speed.

Work by Heath et al indicates that there is a significant difference in radial

force, during the cutting of super alloy material while using chamfered and

unchamfered edges of square Amborite tools (Fig 2.6). Furthermore, the principal
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cutting forces acting on the workpiece can be reduced considerably by using

Amborite in place of ceramic (Fig 2.6c) (43).

For conditions where a continuous chip is formed with no built up edge, the

work is sheared in a zone close to the shear plane (OD in Fig 2.4) and, for the

purpose of this simple analysis, it is assumed that shear takes place on this plane to

form the chip. The force acting on the shear plane, F, is calculated from the

measured forces and the shear plane angle:

F = F*cosø - Ff*SiflØ

The shear stress K, required to form the chip, is:

K =F/A
S	 S S

where A5 = area of shear plane

0 = shear plane angle.

The area of the shear plane is very variable and it is this area which exerts the

dominant influence on the cutting force often more than outweighing the effect of the

change in shear strength with speed of the metal being cut (1). In orthogonal cutting

the area of the shear plane is geometrically related to the undeformed chip thickness t,

(ie the feed), to the chip width w (depth of cut), and to the shear plane angle, 0.

A =t *w/sjnØsi

The forces increase in direct proportion to increments in the feed and the

depth of cut, which are two of the major variables under the control of the machinist.

The shear plane angle, however, is not directly under the control of the machinist,

and in practice, it is found to vary greatly under different conditions of cutting.
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An increase in rake angle gives rise to a decrease in both the cutting and the

feed forces. Excessive increase in the rake angle will weaken the tool edge which

may well lead to its premature failure. The strongest tool edge is achieved by a

negative rake, and this is frequently used for harder grades of tool materials which

lack toughness. Considerable research, (44-48) has been devoted to the hypothesis

that cutting forces, or some related variable, could be used to sense tool wear during

the operation. In addition, several adaptive control machining systems have been

developed which monitor force-related variables, such as spindle deflection.

Examples of these are the Machotech and Cincinnati Milacron systems. However, the

objective of using spindle deflection as the measured variable is not to sense tool

wear. Instead, the purpose of the controller is to adjust speed and/or feed in order to

maintain spindle deflection at a certain level which is consistent with efficient

operation of the machine tool. Such a control strategy, however, also serves the

function of protecting the tool against breakage due to high peak loads.

24



100

80
CC
C.,

60
(a

0
(5

CC 40
>

'a

20

0
AMBORITE F AMBORITE T CERAMIC T

100

(5

0

'a

(a

(5

(5
V

Feed Feed
040 040

I
Feed Feed
032 032

Feed Feed
02.2 022

100

(5
U

0

(5

-c
(5

(5
>

Ca
C,

Feed Feed
02.2 022

Feed Feed
016 016

Feed Feed
0-1	 01

Fig 2.6

T -- champher
F -- unchampher

a) Relative radial forces for round Amborite inserts

b) Relative radial forces for square Amborite inserts

c) Relative radial forces for ceramic and Amborite (43).



2.5 HEAT IN METAL CUTTING

The power consumed in metal cutting is largely converted into heat near the

cutting edge of the tool and many of the economic and technical problems of

machining are caused directly or indirectly by this heating action (49). The cost of

machining is very much dependent on the rate of metal removal, and may be reduced

by increasing the cutting speed and/or the feed rate. However, there are limits to the

speed and feed above which the life of the tool is shortened excessively, since

increasing these factors means increasing heat which is a major factor in limiting tool

life.

A large amount of heat is generated in all machining work. Some of the heat

is absorbed by the workpiece and some by the tool, but the greatest part of the heat is

retained by the chips which remove about 75% of the total (Fig 2.7). However, the

tool temperature is much higher than that of the chips, and is generally assumed to be

about twice as high.

Childs and Rowe (50) concluded that under normal cutting conditions, the

largest part of work is done in forming the chip at the shear area. They have also

developed an equation for temperature increase in the body of the chips. A reasonable

estimate of the temperature increase can be made using this model. Heat at tool/work

interface is a very important factor in relation to metal removal rates. This heat which

is the most important source of temperature rise in the tool is generated in the flow

zone.

Braiden (51) investigated the three major zones where heat is generated in

metal cutting. These zones are the primary shear zone, the secondary shear zone and

the flank face of the tool. The energy involved in plastic deformation to form the chip

is converted into heat, which is generated in the primary and secondary shear zones.
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Figures 2.8 and 2.9 illustrate how the heat generated is distributed in the tool,

work material and the chip (52, 53). The illustrations show that most of the heat

resulting from the work done on the shear plane, to form the chip remains in the chip

and is carried away with it, while only a small amount is conducted into the tool and

work material. The heat generated at the tool/chip interface is transferred to the tool

and the chip. The heat generated at the tool flank/workpiece interface is the result of

the rubbing of the freshly generated surface and the flank face of the tool. If the tool

is perfectly sharp and the clearance angle is sufficiently large, the flank face will not

be in contact with the work material and therefore no heat will be generated.

However, the tool gets dull during the cutting process, and if the clearance angle is

small, the contact area between the flank face and the workpiece could be large

enough to cause frictional heat. This could also be referred to as the heat due to

shear-strain developed at the seizure region.

The temperature of the chip remains almost constant until it is separated from

the rake face of the tool. This is so for the following reasons. First, the transfer of

heat from the chip by way of convection or radiation is minimal because of the short

exposure involved when the chip traverses from the shear plane to the rake face.

Secondly heat is not dissipated from the chip to the tool, since it is believed that the

temperature of the tool (at the rake face) is higher than that of the chip due to heat

generation in the flow zone. Heat transfer from the flow zone to the chip is also

minimal because of the short contact interval between segments of the chip and the

tool.

The above explanation is used to show that the heat carried away by the chip

does not contribute to the heating up of the tool. An increase in metal removal rate

leads to a proportional increase in temperatures which have a direct influence on tool

wear rate and tool life. Consequently the measurement of temperature distributions in
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chip, tool and workpiece and how these temperatures originate is an important area of

research despite the practical difficulties involved.

2.5.1 MEASUREMENT OF METAL CUTTING TEMPERATURES

The aim of investigating the metal cutting temperature is to be able to predict

conditions prevailing at the tool/chip interface. A lot of experimental techniques have

been employed to determine temperatures in the tool. The techniques employed are

difficult and complicated, mainly due to the inaccessibility of the tool region which is

engaged in the cutting process, and because of the very limited geometrical area of

the tool on which tests are carried out. All the experimental techniques developed for

investigating tool temperatures are based on estimation of temperatures by drawing

analogies from other forms of measurable entities.

In an attempt to measure the temperature generated at the rake and flank faces

of a cutting tool, the embedded thermocouple technique has been used by many

workers (54-57). A drawback with such a technique is that it does not give a

temperature distribution and instead an average value of the chip temperature is

recorded.

In order to explore the temperature contours outside the areas of contact,

Koch and Trent (58) made use of thermal paints and natural oxidation colours

respectively. These independent investigations reported temperatures above 500 °C

in roughing cuts.

A good means of determining temperatures developed in high-speed cutting

tools was devised by Trent and Wright (59, 60). The method relies on temperatures

in excess of 600 °C being developed at the chip/tool interface causing a series of

recognisable overtempered structures to be generated within the tool. The technique
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has had wide application and has given useful temperature data for cutting a wide

variety of ferrous (59, 61, 60) and non-ferrous (59, 62, 63) metals.

The temperatures generated when cutting with WC-Co and

Wc-(Ti,Ta,W)C-Co tools are not so easy to assess since structural changes visible on

an optical scale do not arise. Naerheim (64) estimated tool temperature, by measuring

the "quenched in" tungsten content of the cobalt binder regions lying close to the

chip/tool interface, by using an Electron Microscope Microprobe Analyser (EMMA).

On calibrating the dissolved tungsten content in these regions with temperature, this

worker demonstrated that the temperature of a WC-6% Co tool was often as high as

1050 °C ± 40 °C, within 5pm of the chip/tool interface. Although this method

works, it is too cumbersome to be employed as a regular research tool since it

requires lengthy and tedious preparation of thin foils carefully extracted from

"quick-stop" tool specimens.

Dearnley (65) has developed a technique which allows the construction of

cutting tool temperature maps representative of the distribution and magnitude of

temperature endured by cemented carbide inserts during metal cutting. The technique

uses a series of iron and non-silicon bonded carbides; each binder type transforms to

austenite at a characteristic temperature during metal cutting, subsequently forming a

transformation product which appears as a heat affected zone when metallographic

sections are etched in nital and viewed between crossed polarizers or under dark-field

illumination.

More direct methods of assessing tool temperatures have been tried. One

method, described by Boothroyd (66), relies on measuring the emf generated

between the tool and workpiece, but has the disadvantage of only giving a mean

temperature value and is incapable of resolving the steep temperature gradients

described earlier. Kusters (67) attempted to measure these gradients by inserting the

hot junction of a thermocouple into a spark eroded cavity lying just beneath the tool
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rake face contact zone. This procedure was repeated for a series of tools each having

a couple placed in a slightly different part of the chip/tool contact length. Hence, by

using an identical set of cutting conditions for each tool, it became possible to

construct isotherms from the resulting data. Although this method is fairly accurate

the tedious nature of the whole method makes it rather impracticable.

Temperatures arising at the tool flank face have been assessed by Chao et al

(68) who used a lead suiphide photoconducting infra red detector concealed within a

slotted tubular workpiece. This allows the periodic exposure of the flank face of the

tool to the detector. Although this method is reasonable, it is limited to facing

operations and the quantity of emitted radiation is likely to be affected by an adherent

work material on the flank face thereby creating some error.

2.5.2 TEMPERATURE AT THE INTERFACE

From metallographic evidence, Trent (69) concluded that on the rake face of

the tool, the temperature increased away from the cutting edge and could possibly

reach 1300 °C. Calculations by other workers (70-72) showed that this was indeed

likely. However, Chao and Trigger thought that 1300 °C was perhaps too high.

They (72) also reasoned that crater wear had little effect on the rake face temperature,

but rake temperature increased appreciably with progressive flank wear. The

distribution of temperature along the rake face was thought to be such that the

temperature increased from the cutting edge to a maximum just before the termination

of the chip-tool contact length. According to several workers (70, 73 and 74) the

change of thermal conductivity of a tool has little effect on the temperature generated

at the interface. Chao and Trigger (74) qualified this, and stated that although the

average rake face interface temperature remained the same, the distribution varied.

The variation was such that the temperatures towards the end of the chip-tool contact
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length were higher for tools of lower conductivity. Chao and Trigger (72) calculated

the temperature distribution along the flank face of the tool, and showed that the

hottest point was some distance below the cutting edge or worn flank face/workpiece

contact region. This was later proved correct experimentally by Chao et al (73) who

continued to show flank face temperatures increased with speed and artificially

reducing the contact length. Special tools were prepared with the rake face ground

such that the tool-chip interface was less than that which would naturally occur. The

peak temperature was found, by measuring the infra-red radiation, to be 100 °C

lower for the reduced contact length tools, but the temperature at the cutting edge was

found to be higher. They also gave results to show that as machining speeds were

increased, the maximum temperature approached closer to the back of the chip-tool

contact length.

The partition of heat produced during machining is also important. At the

present time, no quantitative explanation has been given, but qualitative suggestions

have been put forward. Weiner (71) demonstrated that heat evolved at the primary

shear plane would flow into the body of the workpiece as well as into the chip. The

fraction of heat passing into the workpiece tended to unity as the shear plane angle

approached zero. Reichenbach (75) calculated that when machining copper, only

1.1% of the heat produced at the tool-chip interface would flow into the tool, but

suggested when machining titanium alloys, a lot higher percentage of the heat

produced would flow into the tool; this was due to the thermal conductivity of

titanium being less than that of copper. Rapier (70) also stated that most of the heat

produced at the tool-chip interface remained in the chip, not only because the thermal

conductivity of the chip was usually higher than that of the tool, but was also due to

the temperature gradient in the chip, perpendicular to the rake face, being steeper than

that in the tool. Boothroyd (76) showed by infra red photography, that the

temperature gradients in the chip were indeed greater than those present in the tool.

30



Work carried out by Trent and Smart (77) using the technique developed by

Wright and Trent (78) has shown that the temperatures existing within the tool are

not solely dependent upon the forces, feed and speed with which the machining is

carried out. They found that when they machined Nimonic 115 alloy, the

temperatures produced led to failure of the tool at a much lower cutting speed than

when machining a titaniuun of similar room temperature strength. Also, the forces

measured when cutting the nimonic were not much different from those encountered

when cutting the titanium at a similar speed. Upon sectioning the nimonic chips and

preparing for the metallographic examination, it was seen that the secondary shear

zone of the nimonic chips was much thinner than that of the titanium chip. Therefore,

it was concluded that whilst the same amount of energy had been expended in

secondary shear in each material, the volume of the metal sheared in the case of the

nimonic was much less; hence, its temperature had been raised much more than that

of the titanium.

It is essential when considering temperatures produced in machining, to

account for the material properties, and perhaps even the chemical properties of the

tool and work material, as well as their thermal properties and the mechanical aspects

of the process. As yet, little work has been performed to include these parameters in

the study of heat evolution in metal cutting. However, recent trends seem to indicate

that their importance is being accepted since comprehensive research has been

devoted to understanding the mechanism of wear chip formation.
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2.6 CHIP AND BUILT UP EDGE FORMATION

The mode of chip formation is perhaps the most important aspect of any metal

cutting operation. This is by virtue of its effect on the nature of chip/tool and, under

certain circumstances, tool/workpiece contact. Chip formation also influences tool

forces and temperatures, tool wear, and workpiece surface finish (79). It has been

indicated by Trent (2) that the formation of all types of chip involves shearing of the

workpiece material in the region of a plane (the shear plane) extending from the tool

cutting edge to a position where the upper surface of the chip joins the workpiece

surface. Three basic chip types have been identified (80); A continuous chip, a

continuous chip associated with the presence of a BUE, and a discontinuous chip.

Whilst continuous chips are produced by steady plastic deformation and the latter by

unsteady plastic deformation accompanied by periodic fracture, the BUE has been

described as a wedge of workpiece material between the chip and tool (79).

The built up edge, or built up nose, exists as a cap of work material attached

to the rake face of the tool over which the chip passes during machining. The BUE is

not always present, its existence depending upon the machining conditions employed

and the work material being cut. Ernst and Merchant (81) thought that the built up

edge was formed due to high friction on the rake face causing shearing to produce a

triangular wedge adhering to the rake face. Shaw (82) proposed a different

mechanism, which has been accepted more generally. The assumption that Shaw

made was that as the chip passed along the rake face it would shear parallel to the

rake face along the weakest plane, not necessarily at the interface if welding between

the bottom of the chip and the tool occurred.

The BUE is therefore built up in layers; if the weakest plane is slightly above

the rake face of the tool then a stationary layer will exist adhering to the tool; if shear

then becomes more favourable on another plane slightly further away from the rake

face a second layer will become attached to the first; eventually the BUE is formed.
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The BUE is not a perfectly stable structure and exists in various forms. These shapes

were described by Trent (83), and Hegginbotham and Gogia (84), and it was decided

that they were defined by four (Fig 2.10) basic shapes:

i) the positive wedge

ii) the rectangular wedge

iii) the negative wedge

and	 iv)	 the layer type wedge.

It was also concluded by these researchers, that the BUE only existed under

certain conditions. It was decided that this was due to the temperature in the region of

the built up edge. As the temperature increased, due to increased rate of metal

removal, the form of the BUE changed, decreasing in size, from type (i) to type (iv)

and then the BUE disappeared completely. The writers also commented on the effect

of the BUIE on surface finish; when a BUE was present the surface deteriorated; as

the size of the BUIE decreased the surface finish improved. This was due to the BUE

not being a stable structure; hence, particles which broke from the BUE became

attached to the surface of the workpiece. The presence of a BUE when machining can

easily be detected by the rough appearance of the back of the swarf. Opitz and

Gappisch (85) agreed with Shaw (82) that the mode of formation of the BUE was

due to the change in strength of steels at different temperatures, and concurred with

the aforementioned researchers that the BUE disappeared at high temperature. They

suggested that the BUE could only exist at cutting speeds where the temperature at

the bottom of the chip was below the recrystallisation temperature of the work

material. Another theory concerning the formation of the BUE is proffered by Opitz

and Konig (86). They have suggested that the BUE occurs in steels due to the

phenomenon known as blue-brittleness. This is due to the increase in strength of a

steel over a range of temperature between 250 C and 400 ° C, the exact range
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depending on the steel in question. The blue-brittleness approach has accounted for

the existence of the BUE only occurring within certain limits whilst machining.

According to theory, these conditions are such that the temperature resulting within

the region of the BUE only develops when more than one phase is present in the

workpiece; also that they exist in other materials besides steels. It was found that less

than 1% of a second phase may be all that is necessary to produce a BUE; hence

many commercially pure metals may be classed as two phase with respect to their

ability to cut with a built up edge.
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2.7 THE FLOW (OR SHEAR) ZONE

Shear zones are formed when a chip moves over the cutting tool under

conditions of seizure between the underside of the chip and the tool. Seizure occurs

where the tool and workpiece surfaces are interlocked or bonded (2). In order to

produce a chip, shear takes place in two zones viz: the primary and secondary shear

zones. The boundary between the unsheared work material and the body of the chip

is known as the primary shear zone. The secondary shear zone is at the interface

between the tool and the chip on the rake face. The secondary layer is a portion of the

chip which has been rendered unusually plastic as a result of high temperatures. The

work materials do not rub together as in standard friction theories but seizure occurs

at the interface and shearing of the chip material takes place in a region close to the

rake face.

Extensive study of the flow zone has been carried out by Trent (87), Opitz

(85) and others (88-90). Zorev (88) initially proposed that there is insufficient time

for recrystallisation of the metal in the secondary shear zone even at temperatures of

about 1000 °C. Other workers (2, 89 and 90), however, believe that chip softening

and recrystallisation is possible.

When cutting mild steel at high speeds the flow zone is only 25 J.Lm thick

(50). Intense deformation occurs in this zone. Ruthermore, Opitz discovered the

important role played by certain oxides, present in steel as a result of particular

deoxidation practices, in the formation of the secondary shear zone. Oxides lower the

softening point of the chip material adjacent to the tool face thereby providing a

protective stationary secondary shear zone at lower cutting speeds. Manganese

sulphide can also have a similar influence on the secondary shear zone (91). Trent

has also shown that there is no distinct boundary separating the flow zone from the

body of the chip but rather a gradual merging of the two.
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2.8 STRESS IN METAL CUTTING (STRESSES ON THE TOOL)

In machining of metals, work pieces are found to undergo local deformation

in the vicinity of tool edge. The features of chip deformation encountered are

different depending on the deformation and fracture characteristics of the work piece

material. However, it is difficult to illustrate the relation between these characteristics

and the chip deformation involved in machining.

A large part of the cutting force required in machining is transmitted to the

work material through the tool rake face, giving rise to local plastic deformation of

work piece. To date, a large number of the useful investigations of cutting force have

been reported, but it is not yet clear what kind of stress distribution exists in the

tool-chip contact region. It is most important to know the stress distribution acting

along the tool rake face in machining in order to understand the mechanisms of chip

deformation and the relation between chip deformation and characteristics of the

workpiece.

According to Zorev (92), the normal stress distribution in tool chip contact

region may be closely represented by a power function. Alternatively, Palmer and

Oxley (93) suggested that the chip does not come in contact with tool near the edge

point, ie normal stress does not exist there.

The study of Chandrasekaran et al (94) gave the actual change in stress

distribution due to changes in tool rake angle under photoelastic experimental

conditions. Other distribution curves have been shown (95, 96). In the work by Kato

et al (97), the stress distribution was measured directly with a split tool whilst

actually machining various metals. The method of measuring of stress distribution

(98) was based on the use of a composite tool divided into two parts parallel to a

cutting edge in order to measure separately the force acting on one section of tool

(Fig 2.11). As the forces acting on the rake face 1 of the edge part T2 are transmitted
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independently to the measuring parts, the experimental determination of the forces

acting separately in that region is possible.

The extensive work of Trent (2) in a simple turning operation, indicates that

two stresses of major importance act on the tool.

1)	 The cutting force (Fe) acting on a tool with a small rake angle imposes a

stress on the rake face which is largely compressive in character (Fig 2.4).

The mean value of this stress is determined by dividing the cutting force, F

by the contact area but, since the contact area is usually not known accurately,

there is considerable error in its estimation.

ii)	 The feed force (Ff) imposes a shearing stress on the tool over the area of

contact on the rake face. The shear stress is smaller than the compressive

stress acting on the same area (since the Ff < Fe). Frequently the mean shear

stress is between 30% and 60% of the value of the mean compressive stress

(2).

When a worn surface is generated on the clearance face of a tool (flank wear)

both compressive and shear stresses act on this surface. Although the contact area on

the flank is sometimes clearly defined, it is very difficult to arrive at values for the

forces acting on it, and there are no reliable estimates for the stress on the worn flank

surface (2).
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Fig 2.11 The above devices were developed in order to facilitate the
measurements of each force. Thedetail of their construction is
shown here. The forces N and F are measured by means of the
devices (a) and (b), respectively. The changes in the force
acting on the edge part give rise to a small movement of the
edge side relative to the shank side. The displacement of point
A proportional to the applied force is detected electrically by
the measuring pieces bolted to both the side of the shank.
Resistance strain gauges are located on the inner sides of the
four thinner portions of the measuring pieces (c) and connected
to each other as a wheatstone bridge (98).



2.9 CUTTING TOOL MATERIALS

The development of tool materials for cutting applications has been

evolutionary and accomplished very largely by practical means. A very large number

of tool materials has been tried, and the successful novel tool materials which have

been proved by extensive trials, are the products of the persistent effort of thousands

of craftsmen, inventors, technologists, scientists, blacksmiths, engineers,

metallurgists and chemists. The tool materials which have survived and are

commercially available today, are those which have proved best able to satisfy the

demands put upon them in terms of the life of the tool, the rate of metal removal, the

surface finish produced, the ability to give satisfactory performance in a variety of

applications, and the cost of tools made from them. In general,the following points

must be considered when selecting a tool:

i) Adequate strength and retention of its properties at elevated

temperatures,

ii) Sufficient toughness to withstand impact,

iii) Thermal shock resistance,

iv) Chemical Stability.

Trent (2) states that the agents of this "natural selection" are the machinist,

foreman, toolroom craftsmen, tooling specialists, cost and buyers, who effectively

decide which of all potential tool materials shall survive.

The main groups of the present day cutting tool materials can be divided into

the following categories:

38



i) plain carbon steel

ii) high speed steel

iii) cemented carbide

iv) ceramic

v) diamond

vi) cubic boron nitride

2.9.1 PLAIN CARBON STEELS

Plain carbon steel, generally called carbon steel, was the earliest material used

as a cutting tool (Figs 2.12 and 2.13) and, by 1870, it had become the chief cutting

tool material. Metallurgically, these materials are alloys of iron and carbon ranging

from 0.85-1.5 percent. Their hardness ranges from 55-64 Rockwell C, but the

materials begin to soften at about 150 °C. At about 200 °C the materials lose their

hardness and become too soft to be effective.

There are many types of carbon tools steels used for many purposes, eg. for

the manufacture of punches and dies and as hand tools such as chisels, wrenches and

hammers. The use of carbon tool steels for cutting tools is, in these days, rather

limited, mainly on account of the loss of hardness beyond 150 C. However, carbon

steels have the advantage that tools made from them are easy to fabricate and acquire

a keen cutting edge. Owing to these two properties, this material is used in the

manufacture of farm tools which, because of their large line of contact with the work,

are operated at low speeds.
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2.9.2 HIGH SPEED STEEL TOOLS

Present day high speed steels fall into two main categories, those containing

tungsten and those containing molybdenum. Early high speed steels depended

entirely upon tungsten for the formation of the MgC carbides present in the matrix.

However, immediately prior to the Second World War and during it, due to

shortages of tungsten, molybdenum was added to replace part or all of the tungsten.

Only 1% of molybdenum was needed to replace 1.5 to 2% of tungsten. In general,

tool steels based on tungsten have better hot hardness than those based on

molybdenum, but those containing molybdenum have better wear resistance (99).

The carbon content of these steels is typically 0.75 to 1.4%, the carbon being

essential for the formation of the various carbides which promote wear resistance in

the high speed steels. Other alloying additions include vanadium, cobalt and

chromium. Vanadium is added to form V4C3 which increases wear resistance; cobalt

increases the hot hardness of the steel and chromium improves the hardenability as

well as the hot hardness (99-100). When producing these highly alloyed steels there

is a marked tendency for banding to occur, which is caused by carbide segregation in

the original steel ingot. To lessen the likelihood of this happening, metals are

inoculated and forging and billet rolling is carefully planned (100). Recently, high

speed steels have been produced using powder metallurgy techniques; specimens

have been examined by Dulis and Neumeyer (101). They found that the carbide

distribution within this steel was much more even and consistent than in a similar

steel produced by conventional methods. The austenitising response time was faster

than conventionally produced steels, hence decarburisation during heat treatment was

less of a problem. Also, tool-life tests showed that the tools produced from powders

had longer lives under the test conditions chosen; the tool-life increased as the

powder from which the tools had been pressed decreased in size. Dimensional

changes occurring during the heat treatment of the powder metallurgy tools was only

a third of those encountered when heat treating conventional high speed steels. The
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heat treatment of high speed steels, for optimum properties during machining,

consists of austenitising, then quenching to produce martensite. This is followed by a

single or double tempering procedure to ensure that no austenite is retained, the

martensite matrix is toughened, and most importantly, that secondary hardening has

occurred. The secondary hardening is necessary to endow the high speed steel with

good high temperature properties.

Opitz and Konig (86) found that the wear rate of high speed steel tools

increased with speed in most cases. However, when a BUE was present it protected

the rake face, and the rake face wear rate decreased. However, the flank face wear

rate was increased, due to the abrasive effect of the particles of the BUIE which

repeatedly broke away. The speed at which the tool failed was also shown to

decrease as the feed increased. Hence, the wear rate was seen to increase as the rate

of metal removal increased. Bownsword et al (102) concluded that at low speeds

adhesion and abrasion wear accounted for the wear of high speed steel tools, but at

high speeds (high rates of metal removal) plastic deformation of the tool preceded its

collapse. They found that the chip was adhering to the tool in all the cases that they

examined, and decided that at high machining speeds wear was due to the fail in the

flow stress of the steel tools, and that this was caused by the temperatures which

existed at the rake face. These high temperatures existed due to shear with the bottom

of the chip. Wright (103) agreed that wear of high speed steel tools, at high cutting

speeds, was due to plastic deformation of the tempered martensite matrix along the

rake face. He also found that deformation could be detected when machining at low

speeds if metals were being machined which possessed high strength at high

temperatures. The nose of the tool was deformed by being pushed down below the

level of the rake face, which increased the contact at the flank face and increased the

heat produced at this source. This soon led to plastic flow of the tool edge which

rapidly caused tool failure. In brief, it was possible for failure by plastic flow of the

tool material to be instigated by heat generated at the flank face though, usually, heat
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generated at the rake face was found to be the cause of tool deformation. Low speed

wear of high speed steels mostly occurred as flank wear, rake face cratering only

commencing as speed increased (86) with plastic flow then predominating. At high

cutting speeds the temperatures which existed at the rake face were sufficient to

soften the tool steel to the extent that it could be deformed by the chip material. The

zone at the bottom of the chip was able to do this due to the increase in the flow

stress of the chip material caused by the strain rate effect (102). This overcame the

decrease in flow stress of the chip caused by the high temperature in this region.

Wright (103) also showed that hard particles in the chip material ploughed along the

tool and formed grooves in the rake face.

Due to their toughness high speed steel tools are frequently used when

intermittent cutting is employed, for example when milling. Although the toughness

of high speed steels is good, hot strength properties are inferior to those of cemented

carbides; hence, they are not able to be used for machining at such high speeds as are

cemented carbides. There is still plenty of scope for the use of high speed steels in

machining, and a wide range of steels of different compositions is available for use in

varying applications, depending on the toughness or the hot hardness required.

2.9.2.1 COATED HIGH SPEED STEEL

A development which could have important repercussions on the application

of HSS cutting tools is the coating deposition method so successfully applied to

carbides. The most commonly used technique, chemical vapour deposition, involves

temperatures above those used in the heat treatment of HSS and therefore creates

difficulties and requires careful subsequent heat treatment procedures to restore

hardness and toughness. Nevertheless it can be used, and TiC and TiN treated tips

can be obtained commercially.
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Cutting trials conducted in the UK on TiN coated tools by Cutanit Ltd

indicate improvements in the order of two to three times the tool life in operations

such as form turning, facing and parting-off. Because of the inherent toughness of

HSS (103), these coated tools should be well suited to interrupted cuts in operations

such as milling. It has been found that some regrinding, on the clearance face is

possible, without performance deterioration.

2.9.3 CEMENTED CARBIDES

Cemented carbides (sometimes also called less appropriately sintered

carbides) are a group of sintered materials, the outstanding properties of which are

high hardness and wear resistance. The success of cemented carbides in practical

applications is closely related to their method of manufacture. Refractory carbides of

the transition metals (such as WC, TiC, TaC, Cr3C2 or Mo2C) are combined with a

tough binder metal (most often cobalt, but in some cases nickel or other metals from

the iron group).

Typical microstructures of commercial alloys are shown in Figure 2.14. In

these combinations the positive properties of the components are superimposed; the

main component (carbide phase) confers hardness and wear resistance, whilst the

ductile binder contributes the toughness necessary for most applications.

'Tailor-mad& composite materials in which the advantageous properties of

the components are combined have been a concept to which extensive technical and

scientific efforts have been devoted during the last decade. However, most attempts

in this direction have not lived up to expectations, owing to the fact that the negative

properties of the components are usually retained as well. Optimized properties as in

the case of cemented carbides are seldom achieved (104).
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The history of cemented carbides began in Germany during the first World

War with successful attempts to produce drawing dies from tungsten carbide. The

decisive breakthrough was achieved by Schroter in the early 1920s. Powders of

tungsten carbide and cobalt were mixed and dense parts prepared by compacting the

mixture and by heating the compacts above the melting point of the binder phase.

Today, it is practically impossible to say whether this discovery was derived from a

theoretical concept, or was essentially a result of good luck. The first patent in the

field of sintered cemented carbides was issued in 1923 followed by numerous others

(105- 108).

From the beginning, cemented carbide technology was backed up by

considerable research activity. Reviews on the achievements of basic research in the

field of hard metals were published recently (107-108). The rapid development of

WC co-alloys was expanded to other combinations. With multiple carbide alloys

based on mixtures of WC-TiC with additions of (Ta, Nb)C, high speed machining of

steel became possible. A large part of these later developments took place in the

USA, Austria and Sweden, and more recently, in Japan, although most of the key

inventions had been made in Germany. During the Second World War, because of a

shortage of tungsten, the discovery and large scale production of tungsten

carbide-free hard metals with titanium carbide as the main components was also

started in Germany. From this group, titanium carbide-nickel alloys with additions of

molybdenum carbide are still used for the shaping of materials which wear tools

rapidly (109).

As shown in Figure 2.15, the historical development of cemented carbides

follows three lines:

i) Improvements of tungsten carbide-based alloys achieved by addition of

further carbides and alloying the binder phase, by the development of

submicron tungsten carbides alloy, by hot isostatic recompaction after
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a) WC-1O wt-%Co alloy Formvar replica, electrolytic etch, x3000,

b) TiC-WC-TaC-Co alloy electron emission photograph
(Baizers Methioscope) x3200

Fig 2 14	 Microstructure of technical grades of cemented carbides (109)



Year(s)

1 92 9-3 1

193 0-3 1

1931

1931

1938

1944

1948-50

1949

1965-70

1968-70

WC-base sintered
Year(s) alloys

1922-25 WC+Co (Widia*)

1927	 Graphite-free WC+Co

1928-29 WC with stellite
binder

1931	 WC—TiC+Co
(Widia X*)

1931	 WC—TaC±Co
(Carboloy*)

1932	 WC—TiC—(Ta,Nb)
+Co (Firthite*)

1938	 WC—Cr3C2+Co

1951	 Acid-resistant
WC—Ni

1956	 WC—TiC--Ta(Nb)C-
Cr3C2+Co

1959	 WC—TiC—HfC+Co

1965	 Hot isostatic
Compaction

1967-70 Submicrometre
WC+Co

1967-70 WC—F'e, Ni, Co

1968	 WC—TiC—TaC—NbC
-fCo

TiC- (and TaC)-base
sintered alloys	 Year(s)

T1C—Mo 2 C+Ni,Cr,Mo 1909
(Titanit*)	

1914
TaC+Ni, Co
(Ramet*)	 1917
Ti C—TaC +Co

TiC+Cr, Mo, W, Ni, Co
(Bdhlerit*)	 1922

TiC—VC+Ni, Fe	 1930-31

TiC—NbC+Ni, Co

TiC—(Mo 2 C, TaC)	 1950-51+Ni, Co(Cr)

TiC—VC—NbC—Mo2C	 1952-6 1
+Ni

(TiC—Mo2C)-mixtures 1953-55
+Ni, Mo

Solid-solution and	 1955-60
precipitation-hardened
alloys (Ti, Mo)C+Ni,
Mo

1955-73

1961-70

1970

1970 to
present

These names are trade names of products

Fig 2.15	 Development of hard metals cutting tool materials (109).



liquid-phase sintering to reduce the number of flaws and porosity and by

other refined production techniques.

ii) Tungsten-free alloys are finding increased technical interest owing to their

advantages for special applications and to concern over supplies of raw

material;

iii) Important discoveries closely related to cemented carbide technology either

resulting in competitive (eg. ceramic cutting tools) or expanding and/or

improving the classic cemented carbides (eg. carbonitride and boride hard

metals or surface-treated WC-Co alloys) (109).

2.9.3.1 COATED CARBIDES

A constant problem in carbide manufacture has been to combine the crater

resistance of high titanium grades with the toughness of grades containing higher

cobalt and little or no TiC. The usual answer has been a compromise, the production

of hard metals with intermediate amounts of TiC or WC/TiC/Ta(Nb)C grades with

good toughness and reasonably high resistance to cratering.

An interesting development pushed to probably its limit of usefulness by

Wickman Wimet, was the 'Laminated' tip. In this a core of cobalt-bonded tungsten

carbide was given a sintered-on layer of a high titanium grade. Metallurgical bonding

in this class of product is good, but different expansion between the core and surface

layer sets up thermal stresses under cutting conditions where considerable heat is

generated and spalling may occur. Nevertheless, more progress with this approach

might have been made had it not been for the advent of pure TiC coatings.

Carbide and other coatings are without doubt the most important single

development in the hard metal industry in recent years. Like most technological
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achievements, it is difficult to pin them down to one particular inventor or

organisation, but much of the original work certainly seems to have come from the

Swiss Watch Research Institute (Laboratories Suisse de Recherches Horlogeres),

where vapour-deposited TiC was first intended as a wear-resistant coating on watch

cases and components. It was subsequently seized upon and developed by a number

of progressive carbide manufactures, as the answer to the perennial steel-cutting

problem.

Pure titanium carbide coatings are usually produced by reactive deposition

from the gaseous phase, whereby for example, titanium tetrachloride vapour is

converted to extremely finer-grained titanium carbide crystals. These are 'grown'

from a substrate of conventional sintered carbide, as a coating only a few

micrometres thick. Although the bond between substrate and coating was originally

thought to be stress-free, even at this scale thermal effects were found to exist, and

spalling could not be completely eliminated.

2.9.3.2 PERFORMANCE OF COATED CARBIDES

T. E. Hale and D. E. Graham (110) in a paper published on the influence of

coating thicknesses and compositions upon metal cutting performance indicate that

the popularity of multi layered carbides stems from their superior combination of

wear resistance and breakage resistance, relative to uncoated carbides. Figure 2.16

shows a 5 micron TiC coated carbide used for this comparison. It showed a bend

strength reduction of about 25% which increases the wear resistance by a factor of

2.5 to 4.0.

Figure 2.17 shows crater wear rate vs Al203 coating thickness. It can be seen

that the crater wear rate increased after the coating was penetrated. Up to 5 micron

relatively low rates were obtained and then their rates increased rapidly. Even when
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the coating was penetrated, the coating at the edge of the crater retards the crater

growth at a rate dependent upon coating thickness. The inherent crater wear

resistance of Al203 coating, which is provided by a chemical/diffusion reaction

bather at the chip contact zone, is more than twice that of TiC or TiN coating (110).

Figure 2.18 was obtained from the results of machining AISI 1045 steel at

300 rn/mm with 5 inserts of the same material but one with no coating, one fully

coated and three partially coated inserts. This indicates the critical region for flank

wear appears to be a narrow zone at the bottom of the flank wear scar. Coatings thus

improve the flank wear resistance.

Figure 2.19 shows the influence of coating thickness on flank wear for Al203

and TiC coatings. This proves that flank wear resistance is insensitive to coating

thickness beyond a minimum value of 5-9 microns. As cutting-speeds increase the

chemical wear increasingly dominates. Thus more abrasion resistant coatings, such

as TiC, work better at lower speeds, whilst more chemically stable coatings, such as

Al203 resist wear better at high speeds.

Schintimeister (111) investigated the effect of the geometrical parameters of

TiC and TiN coatings on their transverse rupture strength (TRS). Thick coatings

(above 5-6 microns) and the presence of the Eta phase reduces the TRS. An equiaxed

grain structure of the coated layer provides a greater TRS than a columnar or an

amorphous structure. Schintimeister and Pacher (112) observed that the composite

coatings of TiC and Ti(C,N) performed better than a single coating of TiC or TiN.

Sadahiro (113) developed a Ti(N,C,O) type coated tool to achieve better

chemical stability and wear resistance than TiC and TiN coated tools. Under suitable

conditions and sufficiently high speeds the tool had a longer life than TiC and TiC +

Al203 coated tools. Krapantek (114) carried out wear tests of coated tools and
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conventional uncoated carbide tools and observed that tools of the TiC/Al203 and

TiN/Ti (C,N)ITIN types were greatly superior to tools coated with Tic/Ti (C,N)fFiN.
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2.9.4 CERAMIC

More than 20 years ago, aluminium oxide ceramic cutting tool materials were

under active development in the UK and elsewhere, but difficulties associated with

lack of strength and toughness at the cutting edge led to the disappearance of many of

the earlier materials. More recently there has been a revival of interest, mostly in the

USA and Germany, following improvements in the properties of ceramic tools.

Improved processing techniques, include hot pressing, control of microstructure with

high purity materials and selected additives, and the use of substantial mixtures of 15

to 30% titanium carbide. These modified ceramic materials are termed cermets and

have enough strength for machining at feeds of say 0.4 mm/rev and for face milling

cast iron and perhaps even steel. Strength, thermal shock resistance and impact

resistance are still the limiting factors in the performance of ceramic tools and they are

not usually recommended for interrupted cutting (2).

Ceramic cutting tool material, made by way of sintering, offers great

resistance to wear and little tendency towards diffusion. However, low bending

fatigue strength and vulnerability to impact, as well as thermal shock leads to fracture

which often ends tool life prematurely. Sufficient rigidity of the machine, workpiece,

and tool, together with high machine power and a suitable arrangement of the cut-in

and cut-out conditions are all preconditions for an economic use of these tools.

Basically, ceramics fall into three categories:

a) Alumina based pure oxides with more than 90% purity, less than 2% porosity

and a fine grain size (6.5 microns) but with poor thermal and mechanical

shock resistance and unpredictability at certain speeds.

b) Cermets - which fall into the carboxide" category and are formed by mixing

up to 15% of TiC in a matrix of Al203 and having a very fine grain size (2
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microns). These have similar properties to alumina but with improved thermal

and mechanical shock resistance.

c)	 Sialons (Si-Al-O-N) are silicon nitride based materials with aluminium and

oxygen additions. Silicon nitride (Si3N4) has useful properties, including

high hardness (2000 Hv), bend strength better than that of alumina (900

MPa) and a low coefficient of thermal expansion (3.2 * 10-6), leading to

good thermal shock resistance. It has been tried as a cutting tool material, but

has not been used industrially, because the production of high density

accurately shaped tools requires costly hot pressing processes.

2.9.5 DIAMOND

Diamond-tipped tools have been used for fine finish machining for many

years. Because diamond reacts chemically with ferrous metals at higher cutting

speeds, diamond tools have no practical use in the machining of steels or cast iron.

However, they are suitable for machining very abrasive, non-metallic materials such

as ceramics, plastics, rubber and fibre glass. They are also useful for machining

aluminium and its alloys, including the highly abrasive silicon-aluminium alloys used

in some internal combustion engine parts. A whole range of non-ferrous metals such

as brass, bronze, copper and their alloys are also machinable with diamond tools (2).

The first reference to the use of manufactured polycrystalline diamond for

metal cutting was made by Semko et al (115) in 1970 following its use for cutting

glass reinforced plastics, which was reported by Semko et al (116) in the previous

year. He found that, in turning an aluminium alloy containing 11-13% silicon (a

typical piston alloy), ballas tools had a life 100 times greater than that of the most

suitable grade of sintered carbide tool. He also observed a difference in the cutting
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forces obtained with the two types of tool in that the forces for the ballas tool were

1.5 to 3 times lower than those for carbide.

Towards the end of 1972, the General Electric Co USA (117) announced that

it had successfully manufactured synthetic polycrystalline diamond suitable for use as

a cutting tooL The material was different from the other types so far reported in that it

consisted of a layer of diamond powder, sintered to a thicker substrate of sintered

tungsten carbide.

Various reports of successful applications of this material (called compax

diamond) and "megadiamond" appeared in technical journals during 1973 and 1974,

such as American Machinist (118). In this report, both materials were cited as

having been successful in cutting a variety of workpiece materials - including

aluminium alloys with high silicon contents. In most cases, higher cutting speeds

were being used than with sintered carbides and an increased tool life was observed.

In 1976, Bex and Wilson (119) described a new polycrystalline diamond tool

material manufactured by De Beers Industrial Diamond Division. The material, called

Syndite, was very similar in appearance to compax diamond, in that it consisted of a

synthetic diamond layer on a sintered tungsten carbide substrate. Bex reported that in

cutting aluminium/silicon alloy containing 18% silicon, Syndite had a similar

economic cutting speed to single crystal diamond and thus it could be used as a direct

substitute. Furthermore, single-crystal diamond lacks impact resistance and may

crack or chip easily under impact and, being a product of nature, it varies in

properties. Thus, its level of performance as a cutting tool is not predictable. Finally,

the wear resistance of single-crystal natural diamond is anisotropic and thus, for

minimum tool wear, the diamond must be carefully orientated. Many of these

difficulties have been overcome with the development of polycrystalline diamond tool

blanks in which small individual crystals of diamond are compacted in random

orientation, and bonded to a tungsten carbide base.
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In 1977, De Beers described machining tests on Ti-6AL-4V which compared

the performance of a Syndite tool, made from a 90 segment brazed on to a steel

shank, to that of a multi-coated carbide tool in turning a 65 mm square by 145 mm

long billet to a diameter of 64 mm (120-122). At a cutting speed of 56 rn/mm the

carbide tool was badly worn after a single pass over a length of 70 mm, representing

a total stock removal of 0.07 cm3 . The Syndite tool, under the same intermittent

cutting conditions, was able to remove 132 cm 3 of material before showing signs of

comparable wear. Excellent surface finish was obtained with the Syndite tool, which

was tested at depths of cut up to 3 mm with good results. The coated carbide tool is

not necessarily a good basis for comparison, but the results from the Syndite tool

were impressive in their own right.

De Beers published a series of reports on Syndite in 1979 that dealt with tests

of the material in various machining applications, as well as wire drawing, grinding

wheel dressing and rock drilling applications. Turning tests were performed on

Ti-6A1-4V and Syndite was shown (122) to give twice the stock removal rate of a

tungsten carbide tool in this application (under their equivalent chip thickness

criterion).

The present work showed that carbide tools lasted for a maximum of 2

minutes at high speed machining (200 rn/mm), while syndite tools were used for 24

minutes and were still capable of further use.

Haltemprice Timber (Humberside factory) recently changed from HSS to

PCD tipped cutters largely because of the excessive downtime experienced due to

frequent changing of HSS cuttters. Actual machining costs are about the same but

with HSS cutters the machine was out of action for at least one hour every eight

shifts. Following the introduction of Syndite, tool changing takes place every

fortnight, after some 4000 door panels have been machined. The HSS cutters needed
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replacing after machining only 50 panels and HT estimates that production rates have

increased by around 14%.

The idea of using diamond for machining titanium is not new in that diamond

turning tools have been used to achieve high surface finishes on space vehicle

components since as early as 1976. In an article by Milbrandt in Industrial Diamond

Review in that year, diamond turning tools were reported to give not only better

surface finish, but also to have performed operations on thin walled parts which were

difficult to perform without distortion of the part when using carbides (121). The

diamond lathe tools showed excellent life and could be used at four times the cutting

speed of carbides for the same operations.

2.9.5.1 POLYCRYSTALLINE DIAMOND (PCD)

Polycrystalline diamond tools are aggregates of randomly oriented particles,

which behave as an isotropic material in many applications. Natural diamonds have

only one large crystal unlike PCD which has thousands of randomly placed crystals

joined together. It is because of this random orientation that the problem of cleavage

or fracture is not severe. The overall performance of the tool will not be affected

when one or two crystals fracture as there are thousands of crystals which are

correctly aligned. The basic structure of the tool is a laminated one with a dense layer

of synthetic PCD bonded to a tungsten-carbide (WC) substrate with the aid of an

intermediate refractory metallic bonding layer. The WC layer provides adequate

toughness and resilience particularly during shock loading. Better performance of the

tool is ensured by the polycrystalline layer. This layer also absorbs any stresses

which may result, for instance, from the differing thermal properties of the PCD zone

and the carbide substrate. This structure can out perform natural diamond in terms of

its abrasion resistance.
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2.9.5.2 PROPERTIES OF PCD

1. High Hardness

PCD has a very high hardness approaching that of single crystal diamond.

The hardness of both single crystal diamond and PCD decreases as the temperature

increases as with other tool materials. Brookes and Lamber (123) have shown that

the high temperature hardness of diamond is much higher than that of other tool

materials, Figure 2.20.

2. Thermal Conductivity

PCD has a comparatively high thermal conductivity of about 560 w/m C.

This is slightly lower than that of natural diamond (665 w/m C).

3. Abrasion Resistance

PCD tooling has higher abrasion resistance than natural diamond. The high

abrasion resistance of PCD coupled with its high resistance to loading enables it to be

used for effective machining of non-ferrous materials.

The main advantages of sintered polycrystalline tools over natural single

crystal tools are better control over amounts of inclusions and imperfections, higher

quality, greater toughness and wear resistance resulting from the random orientation

of diamond grains and the corresponding lack of simple cleavage planes. Also,

sintered tools can be manufactured to meet strategic needs since nature or some

artificial control does not dictate their availability.

2.9.5.3 MANUFACTURING PROCESS OF PCD

Polycrystalline diamond is produced by sintering together carefully selected

fine diamond particles at very high temperatures and ultra-high pressure, a process
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first developed in the 1950s. There are two stages involved in the production of

PCD. The first stage involves the production of the diamond grit, which is widely

used as an abrasive for grinding non-ferrous and ferrous materials. This is followed

by a stage in which the grit is compacted into the required shape (124). The same

ultra-high pressure technology is employed in both processes. The sintering process

is rigidly controlled within the diamond stable region. Diamond is the metastable

cubic form of carbon while graphite (an extremely soft material) is carbon in a stable

hexagonal form. Diamond is produced from graphite by transforming the crystal

structure of carbon from hexagonal to cubic form under the appropriate conditions of

pressure and temperature, and with the aid of a suitable catalyst solvent.

Initial attempts at diamond synthesis were carried out by Bridgman (125)

who was able to maintain temperatures near 3000 K at a pressure of about 29 Kbar

for short periods of time. The time duration was too short to enable the conversion of

graphite directly to diamond. Later investigation by researchers at the General Electric

Company discovered that the presence of certain catalysts increased the rate of

conversion of graphite to diamond to a practical level at relatively low temperatures

and pressures (126, 127). Subsequently, Bundy (128) discovered that the direct

conversion of graphite to diamond without catalysts is possible, but only at extremely

high pressure (above 125 Kbar) and temperature (about 3000 °C). The graphite

collapses spontaneously into PCD under these conditions.

There are a number of elements used as catalysts in diamond synthesis. These

include chromium (Cr), manganese (Mn), tantalum (Ta), as well as all the elements

of group VIII of the periodic table (129). Carbides and compounds of these elements

that decompose at or below diamond synthesis conditions may also be used. The

catalytic elements play a dual role during diamond synthesis; as a catalyst and as a

good solvent for graphite, but poor solvent for diamond. The graphite first dissolves

into the catalyst and is then converted into diamond at the appropriate conditions of
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pressure and temperature within the diamond stable region. The diamond precipitates

since it is relatively insoluble in the molten catalyst. This phenomenon allows more

of the non-diamond form of carbon to go into the solution. Since the catalytic element

must be in the molten state, this establishes a lower temperature limit for a given

catalyst. Each catalyst has a different pressure-temperature region of effectiveness.

Nickel is the most commonly used catalyst in diamond synthesis at pressures of 75 to

95 Kbar and temperatures of about 2000 °C. The effectiveness of nickel could be due

to the fact that its unit cell is the same size as that of diamond.

The rate of diamond formation is dependent on the sintering pressure. Higher

pressure, above the equilibrium line at a given temperature increases the rate of

diamond nucleation and growth. Diamonds formed at pressures substantially above

the equilibrium line develop from many nuclei and have a skeletal structure. This type

of diamond is very friable and mainly used in resin or vitrified grinding wheels.

Large and more perfect single crystals of diamond are formed by subjecting the

reaction mixture to pressures and temperatures closer to the equilibrium for a longer

time, to develop fewer nucleation sites. A twinned structure is frequently obtained

when the growth rates (pressure) are very high. Temperature also has a major

influence on the crystal habit and colour of diamonds produced.

The PCD inserts are made up of a thin layer (0.5 to 1.55 mm) of fine grain

size diamond particles sintered together and metallurgically bonded to a cemented

carbide substrate. The firm bonding ensures extreme hardness and toughness,

excellent abrasion resistance as well as high thermal conductivity. The tool tip formed

is usually about 3 mm thick. The production process involves the initial packing of

fine diamond powder (1 to 30 pm) on a support base layer which has a dual function;

as a support and toughening agent as well as providing stability in both handling and

fabrication (130).
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The retention of diamond particles in a metal bonded tool can be improved by

holding the particles mechanically and bonding them chemically to the binding metal.

This is achieved by coating the particles with titanium which forms a carbide with

diamond and alloys with the metal used in the matrix (131). The advantage of

increased particle retention and titanized coating is the decrease in surface

graphitization at high temperatures which results in a reduction of weight loss and

increased retention. Sintered diamond tools are finished to shape, size and accuracy

by laser cutting and grinding.

The high cost of sintered PCD in comparison to cemented carbide or ceramic

tools, is mainly due to the very expensive processing technique. This involves high

temperature and high pressure sintering and finishing methods for diamond tools.

However PCD tooling is used in many applications despite its high costs because the

increased productivity, and prolonged tool life are economical on an overall cost per

part basis.

The successful synthesis of diamond has not only enabled the economic

manufacture of diamonds for industrial use but also has made it possible to tailor

grain size, strength and friability by controlling the pressure, temperature and

processing time during synthesis. The manufacture of diamond with the required size

has eliminated the need for crushing which weakens the product by leaving behind

cracks of uncontrolled size.
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2.9.5.4 AVAILABILITY AND USES OF PCD

The use of PCD in commercial quantities started in the early 1970s. PCD

tools commercially available as Compax tools were produced by the General Electric

Company, USA, and Syndite produced by De Beers. Composite tools can be

clamped or brazed to shanks, ground, lapped and polished. Worn composite tools

can be reground, the grinding taldng longer than for carbide tools.

PCD tools are suitable for fine machining cuts on non-ferrous and very

abrasive nonmetallic materials such as graphite, plastics, glass reinforced plastics,

ceramics, rubber, chip board and fibre board plastics etc (Table 2.1). They are also

used for machining abrasive wheel dresser wear parts, wire drawing dies, rotary drill

bits, presintered (green) and sintered tungsten carbide as well as gold, silver and

titanium alloys (132).

Wood materials, such as chipboard, MDF, hardboard and hard natural

woods, have always proved difficult to machine using conventional HSS or carbide

cutting tools. The toughness and enhanced wear resistance of PCD makes it the ideal

tool material for machining these types of wood materials. Not only is tool life far

greater, which in itself often justifies the high initial outlay, but savings can also be

made in reduced downtime for tool changing. This is particularly true of mass

production systems where CNC machinery is employed.

A negative rake (-5) PCD tool with suitable edge preparation is required for

effective machining of pressed and sintered tungsten carbide because PCD tools are

very brittle. However, high positive rake (+15 °) geometry is recommended when

machining softer materials like aluminium-silicon alloys, super-finishing of

aluminium or copper front surface mirrors and motor commutators. Positive rake

PCD tools are commonly used.
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Nonferrous metals	 Abrasive nonmetallics

Silicon-aluminium alloy	 Carbon

Brass Alloys

Bronze alloys

Copper & Copper alloys

Lead alloys

Manganese alloys

Precious metals

Tungsten carbide

Pre-sintered

Ceramics, unfired

Epoxy resins

Fibreglass composites

Graphite

Phenolics

Plastics

Rubber

Wood by-product

Wood

Table 2.1	 Materials suitable for machining with PCD tools.



2.9.6 CUBIC BORON NITRIDE

Cubic boron nitride can no longer be described as a new cutting tool material.

It was developed in the 1960s and has been available in the USA and UK, at least in

small quantifies, for trial purposes since the early 1970s. Polycrystalline cubic boron

nitride is manufactured by a high pressure technology similar to that required for

polycrystalline diamond and is similarly available bonded to a carbide substrate in

relatively small tips. Cubic boron nitride is said to be (apart from diamond) the

hardest and most abrasion resistant material known to man, but unlike diamond it is

impervious to chemical attack by ferrous metals and to oxidation at high machining

temperatures.

The possibility of polycrystalline boron nitride being used for single point

cutting tools was first discussed by Verschagin et al (133) in 1971. In 1972, a series

of reports emanated from the USSR about the use of this type of tool material,

mainly for cutting high strength steels. Martirosov et al (134) however, also referred

to its effective use for machining high strength irons. The form of the tool, according

to the information given by Martirosov, appeared to be similar to the carbon diamond

tools also manufactured in the USSR.

In 1972, a brief report (117) referred to the manufacture by The General

Electric Co of a cubic boron nitride tool material similar in form to their compax

diamond. In 1973 Hanneman and Hibbs (135) reported on "Borazon Compact

Cutting Tools". These were made by General Electric Co, USA, and the report

compared the properties of the new tool material with those of its competitors,

diamond and sintered carbide, and described the manufacturing process in some

detail. Its usefulness in cutting some difficult-to-machine nickel and cobalt based

superalloys was highlighted but some mention was also made of its application to the

machining of chill cast iron.
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Bakul et al (136) described the use of Ismit cutting tools (polycrystalline

cubic boron nitride) for machining cast iron (Table 2.2). It was concluded that the

use of Ismit instead of an MOZ grade sintered carbide provided an improved surface

finish in addition to a 40%-60% increase in material removal rate, and six to eight

times longer tool life.

Later in 1975 Herzog (137) reported on the use of Borazon CBN tools for

machining a variety of workpiece materials. Rough turning parameters were listed for

twenty one different materials including various steels, irons and supperalloys; some

guidelines for turning were also given in which it was suggested that the tool would

perform best at metal removal rates an order of magnitude higher than with

conventional tools.

2.9.6.1 PROPERTIES OF CBN

CBN is made up of two interpenetrating face centred cubic lattices, one of

boron atoms and the other of nitrogen atoms. The structure of CBN is very rigid,

although not all the bonds between neighbouring atoms are covalent. Twenty five per

cent of the bonding is ionic (123). This composition therefore produces CBN which

is the next hardest substance to diamond. The hardness of CBN decreases with

increments in temperature. However, the hardness value is higher than other tool

materials at any temperature. Polycrystalline CBN has a very high hot hardness. The

hardness of CBN at 750 C is approximately equal to that of oxide ceramics and

tungsten carbide at room temperature.

CBN tools can withstand edge temperatures up to 1300 °C. This is because

the lattice structure of CBN does not revert to the hexagonal form at temperatures

belwo 1200 C under atmospheric pressure (145). Polycrystalline CBN consists

of a randomly oriented intergrown mass of CBN crystals of micron size. The
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Alloy steel (Hardened) 	 Cobalt base alloys

4140 - Chrome-moly 	 Golmony

52100 - Chromium
	

Stellite

8720 - Nickel-chrome-moly Wallex

Chilled iron
	

Ni Hard (cast)

Flame-sprayed alloys
	

Stainless steel, 420

Meehanite iron	 Tempered stainless steel,440
(tempered)

Nickel base alloys	 Tool steels

Inconel	 A-2 air hardening cold work

Jncoloy
	

D-2 high carbon high chronium

K-monel (Age hardened)
	

M-2 may high speed

Rene 77
	

0-1 oil-hardening cold work

Waspalloy	 S-5 shock-resisting

Table 2.2	 Materials suitable for machining with CBN tools



anisotropic behaviour of single crystals, which easily cleave along certain lattice

directions does not occur in the polycrystalline material, which is isotropic and does

not have cleavage planes.

CBN tools have high thermal stability. The tool has no practical oxidation

below 100 °C (138). This gives the insert the hardness of boron nitride combined

with the toughness of cemented carbide. Polycrystalline CBN has higher thermal

conductivity (100 to 135 w/m °C) than tungsten carbide tools. A major advantage of

CBN when compared with diamond is its greater stability at higher temperatures in

air or in contact with iron and other metals. CBN is stable in air for long periods at

temperatures over 1000 °C and its behaviour as a cutting tool suggests that it does

not react rapidly with steel at considerably higher temperatures (2). It has high

chemical resistance to most work materials at high machining temperatures. CBN has

a lower coefficient of thermal expansion than the carbides.

2.9.6.2 MANUFACTURING PROCESS OF CBN

Hexagonal boron nitride is the starting material for producing CBN. The

crystal structures of hexagonal boron nitride and graphite are very similar. CBN has

a finer crystal structure than diamond (131). The similarities in the crystal structure of

diamond and hexagonal boron nitride prompted Wentorf to investigate the possibility

of a high temperature, high pressure, stable, cubic form of boron nitride, similar to

diamond. Initial attempts to produce CBN using the same process as that of diamond

synthesis proved unsuccessful until Wentorf (139) devised a means of producing

CBN using entirely different catalyst solvents. These catalyst solvents were found to

be the alkali metals, the alkaline earth metals, their nitrides, antimony, tin and lead or

a combination of these. They are added during production to lower the combined

pressure/temperature transition ceiling. The catalysts (or additives) govern the exact
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transition during production and are therefore a commercial necessity. Some of the

catalysts are effective only at high pressures and temperatures. Later investigations

revealed the possibility of transforming hexagonal boron nitride directly to denser

forms without a catalyst (140). The size of the resultant crystal formed with the later

method is small (1 m or less).

The larger grain size of commercial CBN crystals could only be produced in

the presence of a catalyst (preferably magnesium (129)). The higher the atomic

weight of the cataltyst, the higher the pressure necessary to effect the transformation.

The most effective catalysts were found to be nitrides of magnesium, calcium or

lithium. The presence of a small quantity of water or boric oxide (B203) greatly

reduces the efficiency of any catalyst.

The exact mechanism of transformation of the hexagonal boron nitride to

cubic form is not yet known. However, it is assumed that the catalyst metal first

converts to its nitride at the operating conditions. The nitride then reacts with some of

the boron nitride to form a loose complex compound which acts as a molten solvent,

dissolving the remaining boron nitride. Some of the boron nitride is subsequently

precipitated as CBN. The reaction conditions should be kept between 3 to 5 minutes

since the size of the CBN particles increases with time. Impurities in the CBN can be

in the form of nitrides of catallytic elements, free boron and boric oxide.

Different processes are presently being used for the production of CBN

composite materials. The products can be either polycrystalline CBN bonded onto

cemented tungsten carbide or polycrystalline CBN composite material without any

metal support. A small amount of metal is blended with the boron nitride to achieve

full density. Conventional sintered CBN contains a cobalt alloy as a bonding

material. Titanium nitride and titanium carbide are used as a bonding material for the

new type of CBN developed known as Sumiboron and Borazon respectively. The

properties and cutting performance of CBN are determined by the rigid
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polycrystalline boron nitride. The small addition of a metal plays only a minor role. it

may affect the tool properties through its action during sintering which must

influence the structure of the product. Tabuchi et al (141) have reported another

method of producing CBN tools with a special ceramic as the binder instead of metal.

The tools produced by this method have similar properties and performance

characteristics as the ones produced with a metal binder.

Substantial plastic deformation of the CBN particles occur at the areas of

contact between the CBN crystals during the extremely high pressure synthesis

process. The high pressure concentrates oniy at the contact areas between the CBN

crystals. It does not extend to crystal surfaces at points away from the contact areas

(voids). These surfaces not reached by the high pressure are quickly converted to

hexagonal boron nitride because of the very high temperature at this point where

CBN is unstable. Catalyst material is brought into the voids in the compact to

reconvert any hexagonal boron nitride to CBN, thereby completing the orientation

process between the existing crystals.

2.9.6.3 AVAILABILITY AND RECOMMENDED USE OF CBN

CBN is commercially available as Borazon and Amborite marketed by the

General Electric Company and De Beers respectively. They are produced as

unbacked inserts which are used on both sides. CBN inserts are available, chamfered

and unchamfered in round, square, triangular and rhombus shapes. They are usually

used with negative rake with chamfers on the edge similar to those on ceramic tools.

This geometry enables them to be used for interrupted cutting of hardened steels such

as the turning of bars with slots or holes or in use as milling cutters despite their

brittleness.
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The initial application of CBN was in the tool and cutter grinding of high

speed steel where there were problems with conventional abrasive tools (131). CBN

replaced synthetic and natural diamonds which are not thermally stable and readily

react with iron at high temperature. CBN has a combination of mechanical and

thermal properties which have enabled it to be used for the machining of difficult to

cut materials such as hardened steels and die steels. Martensitic cast iron (Nihard),

Chill cast iron, white iron, grey cast iron (Meehanite), superalloys excluding

titanium-based metals, etc. In short CBN tooling could be used for effective

machining of materials having a hardness greater than 55 RC (approximately 620

HV) with the exception of superalloys (130).

CBN inserts can be used for wet machining of metals which have a hardness

of above 45 RC (approximately 480 HV). An abundance of coolant is required in

these cases. The use of coolants has no effect on the tool life of polycrystalline CBN

tools during turning operations. The coolant boils before reaching the actual cutting

zone. Catastrophic tool wear due to chipping occurs when coolants are used for

milling operations. Coolants can be used to avoid thermal expansion of the

workpiece and tool holder. Direct contact of the coolant with the milling tool should

be strictly avoided in this case.

The machining of softer ferrous alloys (medium carbon and free machining

steels) is technically feasible with CBN tooling but it is uneconomical. CBN tools are

successfully used for the milling of hard ferrous materials with very high metal

removal rates when compared with grinding. Round chamfered CBN tools are

employed for milling operations because of their high geometric strength.

2.9.6.4 REQUIREMENTS

Small negative lands and honed (small radius) cutting edges are

recommended for CBN tools used for heavy interrupted cutting and milling. A
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negatively raked geometry (-5) is normally used due to the inherent brittleness of

CBN tools. CBN tools, like diamonds are thermally unstable at elevated

temperatures. Unbacked polycrystalline CBN tools are specially recommended for

roughing cuts since the inserts are solidly clamped into normal tool holders which

allow only a few microns of thermal expansion. Care must be taken to ensure that the

tool is properly supported and clamped during use to prevent premature failure.

Shear stresses are developed at the interface between the polycrystalline CBN and the

tungsten carbide substrate at high cutting temperatures due to the difference in

thermal expansion coefficients between the two components. This problem can be

minimised by the application of coolant to protect the zone. However with the use of

greater depths of cut and high cutting speeds, the coolant cannot cool the tool

sufficiently. This results in tool failure due to the separation of the local substrate

layer. This type of failure does not occur in solid polycrystalline CBN clamped into

tool holders. The tools have adequate toughness which allows them to be used for

the continuous and interrupted cutting of ferrous materials as well as in milling

operations.
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2.9.7 CONCLUSION

Polycrystalline tooling offers a very cost effective method of machining

abrasive or difficult-to-machine materials. Furthermore, its ability to maintain a keen

cutting-edge makes it very desirable for machining materials where good surface

finish is an important requirement. In fact, different grades of polycrystalline

diamond are offered to cover highly abrasive materials or materials requiring

excellent finishes.

Another benefit of polycrystalline tooling is the possibility of eliminating

potentially costly grinding operations with high hardness ferrous materials. CBN

tooling is capable of maintaining part size and stringent surface finish requirements

for extended production runs. A large cost saving may be achieved by eliminating

grinding and using hard turning for a wide range of high hardness materials.

The most significant benefit of polycrystalline tooling is realised in sustained

production during long production runs with abrasive or difficult-to-machine

materials. Poor tool selection, lack of rigidity, lack of proper tool care, or any

variable not controlled properly, are all detrimental to the economics of

polycrystalline tooling, because of the higher initial cost. An effective re-lap program

combined with proper tool care may extend polycrystalline tool life many times,

depending on tool and applications.
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2.10 WEAR MECHANISMS AND ASSOCIATED PROBLEMS IN

MACHINING

2.10.1 TOOL WEAR

Tools continue to cut efficiently only as long as the shape of the edge remains

precise. Failure of the tool by plastic deformation of the edge arid by fracture have

been investigated. The precise shape of the tool edge may also be changed more

slowly by one or more wear mechanisms by which very small changes in shape

occur progressively. If tools are properly used, tool life is determined by one or more

of these progressive wear mechanisms. Wear on cutting tools occurs at a number of

positions (Fig 2.21).

2.10.1.1 TOOL WEAR MEASUREMENTS

Wear occurs at a number of locations on a cutting tool:

1. On the flank of the tool below the cutting edge. The wear which occurs on

this surface is called the "flank wear" and results from the rubbing contact

with the work surface which has been newly created by the cutting edge of

the tool (Fig 2.21).

2. On the top or rake face of the tool. This is called "crater wear" and results

from the action of the newly created chip against the rake face. The crater is a

dished section of the tool face, which forms where we would normally expect

most wear due to the high contact stresses and high interface temperatures. At

low speed the crater curvature corresponds to the chip radius of curvature. In

general, as the crater grows, it will eventually intersect the wear land. Thus,

as wear progresses, the general tool geometry can vary considerably.
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3. Nose radius wear forms at the nose radius and near the end relief face. The

wear here is partially a continuation of the wear land around the nose radius,

and partially a series of grooves that often develop as shown. The grooves

are spaced a distance (the feed) apart (Fig 2.22), and contribute to the

increased roughness of the finished part as wear progresses.

4.	 A groove often forms at the outer diameter of the workpiece and can

become quite large compared to the other wear zones. Because it is generally not

associated with the finished surface of the workpiece, this groove is not particularly

harmful, except that it may affect regrinding time of monolitic tools.

The two zones that are most readily documented and which seem to give an

overall indication of the wear process, are the wear land length (KB) and the crater

depth (KT) (Fig 2.22).

These forms of wear will vaiy somewhat depending on the type of machining

operation (turning, milling, drilling etc). In some operations crater wear will be the

more important and lead to eventual failure of the tool. In other situations, flank wear

will be the predominant form of wear.

The conventional method of determining the wear status of a cutting tool is to

stop the machining operation, remove the tool, and examine the cutting edge under a

microscope. Unfortunately, it is time-consuming and expensive to periodically

interrupt the cutting process, take out the tool, and measure the dimensions of flank

wear or crater wear. In attempting to devise an on-line wear measuring technique, a

visual inspection of the cutting-edge during operation is clearly not feasible because

the workpiece and chip obstruct the view. To circumvent this difficulty, an indirect

method of measuring tool wear is required, in which some intermediate variable that

is directly related to wear, is measured. Almost all of the research directed at on-line

tool wear monitoring has utilized this indirect measuring approach. Such a measuring
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technique suffers from a sort of double jeopardy. First, whatever the measured

variable related to tool wear, there are possible errors involved in its direct

measurement. No measurement is free from sources of error. Second, there are

potential errors in establishing the relationship between the measured variable and

tool wear. This would commonly be referred to as the calibration for most

measurement processes. In spite of these obvious difficulties with the indirect

approach, it is a common way of dealing with measurement problems (perhaps more

common than indirect measurement). Most researchers seem to consider it the only

feasible way in which tool wear can be sensed during the machining process.

2.10.2 MECHANISM OF WEAR

All cutting tools, in order to satisfy their functional requirements, possess

relatively good mechanical, physical, and chemical properties. These normally

include, high hardness, toughness, compressive, tensile and shear strength, chemical

stability under high temperature, and thermal shock resistance. It is not, as yet,

possible to achieve all these properties in a single tool. However good the tool may

be, in terms of wear resistance, it still does wear during operation by a number of

different wear mechanisms.

It is, therefore, necessary for extensive study and research to be carried out in

this field, to exploit full benefits of different tool materials and improve their

resistance to different wear mechanisms.

The most common wear mechanisms encountered in metal cutting are

described below.
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2.10.2.1 ABRASIVE WEAR

The wear is often considered synonymous with abrasion, but this is not true

for cutting tool wear. Abrasion is a process by which material is removed from a

softer surface by harder projections or particles which remove small amounts of

material by ploughing. With cutting tools this is less likely to be a major mechanism

of wear than in other situations, because the tools are always harder than the work

material. There are machining operations in which the work material contains

particles (Table 2.3), such as non-metallic inclusions, which are harder than the tool

and these may cause abrasive wear. But, in most cases, it is unlikely that the removal

of material from the tool by the mechanical action of hard particles is a major cause of

wear. There are, however, exceptions: eg. when the surface of a casting contains

large amounts of embedded mould material, it may cause rapid wear, particularly

when using high speed steel tools. The hardness of the tool is probably, in most

cases, a good measure of its resistance to abrasive wear.

2.10.2.2 ATTRITION WEAR

Attrition describes a wear process in which the tool shape is changed by the

periodic removal of distinct small fragments of the tool material. These fragments are

usually a few microns in size, or possibly just less than a micron. To understand this

process in metal cutting, it is necessary to consider the condition at the interface

between the tool and work material. The high contact stresses and the high

temperatures generated at this interface have already been emphasized (142) and these

conditions alone would make it difficult to prevent seizure between tool and work

materials at the interface. The relative speed between tool and work material and the

contact stresses are often much more severe than those used in friction welding. In

addition, the tool is cutting continuously into clean metal, so it is not surprising that
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observation shows the two surfaces are often completely bonded together during the

cutting operation over large parts of the interface (142).

In many operations, conditions are such that the two surfaces are not

completely bonded together for the whole cutting time, but are periodically separated

over part of the interface. This is particularly true if the tool is plunging in and out of

the work material, if a built-up edge is formed on the tool and is periodically broken

away, or if the machine tool lacks rigidity so that vibration occurs. Under these

conditions, small fragments are frequently removed from the tool surface as work

material bonded to it is pulled away or flows unevenly across the tool. This is most

likely to occur at relatively low speeds and it subjects very small local areas of the

tool to tensile stresses. High speed steel tools are found to resist attrition wear better

than cemented carbides in many conditions (142). The very high hardness of

cemented carbide tools does not give them superior resistance to attrition wear, and

there are many cases where the life of high speed steel tools is greater than that of

cemented carbides under the same conditions of cutting. This is particularly true at

relatively low cutting speeds (142). For example, cemented carbides are rarely used

for drills for this reason, and a continued market for high speed steel tools is likely to

exist for operations where attrition is the principal wear mechanism. If, however,

cemented carbides are used under conditions of attrition wear the carbides with a

grain of 1 micron or less have been shown to be much superior to coarse grained

carbide (142).

2.10.2.3 DIFFUSION WEAR

When cutting steel, cast iron and other high melting point materials at high

speed high temperatures are generated at the interface between tool and work material

(1). When cutting steel with high speed steel tools at 30-50 rn/mm the interface
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temperature at the hottest part often exceeds 800 C. At higher speed using cemented

carbides,temperatures over 800 °C at the interface were recorded by Trent et al

(143-144). At such temperatures, diffusion rates are relatively high and it has been

demonstrated that the tool and work material are normally in metallic contact on large

parts of the contact area so that there are no barriers for diffusion between the two. A

variety of interactions between tool and work materials is possible under these

conditions. A major cause of wear in tools used to cut high melting point metals at

high speed is diffusion of metals and carbon atoms from the tool into the stream of

work material flowing over the tool surface, thus, dissolving the tool into the work

material just as a block of salt dissolved by a stream of water running over its

surface.

The rate of diffusion wear depends on temperature and also on the rate of

solution of the tool in work material. This is particularly important for cemented

carbides tools. Tungsten carbide (WC) is dissolved easily in hot steel and for this

reason WC-Co alloy tools fail as a result of rapid crater wear when cutting steel at

high speeds. TiC and TaC are much less readily dissolved and the rate of crater wear

of cemented carbides based on these two materials is much lower (142). TiC or TaC

bonded with nickel or cobalt are however much less tough than WC-Co alloys and a

compromise has been adopted.

While diffusion wear is most clearly demonstrated in relation to cratering at

the hottest part of the tool it is probably also a major factor in flank wear during the

high speed cutting of cast iron and steel. As the cutting speed is raised, the rate of

flank wear increases and the rate of flank wear also can be reduced by addition of

TiC and TaC to WC-Co alloy tools. Where tool life depends on diffusion wear, the

chemical composition of the tool material is of more importance in relation to wear

resistance than mechanical properties such as hardness. But the rate of wear by

diffusion depends both on the tool and the work materials.
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Loladze (145) has obtained an equation for predicting theoretical tool life

under conditions of diffusion wear when machining steels and other alloys with

cemented carbide tools. He assumed that all the material removed from the tool in

the contact zone resulted from diffusion, dissolution, and material transfer into the

work material flowing over its surface. Satisfactoiy agreement with his practical data

was demonstrated.

Other authors (146-148) have suggested that diffusion and chemical reaction

between tool and work material results in structural changes in the tool weakening it

and allowing fragments of the tool to be mechanically removed from the tool surface

by the moving chip. Hartung and Kramer (146) have studied tool wear when

machining titanium alloys. Their conclusion is that tool materials with the greatest

potential, either dissolve in or chemically react with titanium alloys during

machining. When a chemical reaction occurs, a layer forms with a thickness which is

determined by the balance between the rate of diffusion of tool material through the

layer and the rate of solution of the reaction layer in the workpiece.

2.10.2.4 ADHESIVE WEAR

When surfaces rub together, particularly in the absence of lubricant films,

some adhesion occurs at the points of rubbing contact. The friction is primarily the

force required to shear the junctions so formed. There is no basic mystery about

inter-facial adhesion; if the surfaces touch so that they support a normal force, the

atoms must be in contact and interatomic forces will become appreciable. The

extreme case is when clean surfaces of similar metals make contact to form a solid

junction. Although this junction may be full of imperfections, its strength may be

comparable with that of the bulk material This process occurs even at room

temperature (cold welding) but it will be more marked at higher temperatures where
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interfacial diffusion will be accelerated (149). Since high temperatures may be

generated at the surface by the sliding process itself, the interfacial interaction may be

even more marked. The friction force breaks these interfacial junctions and often is

responsible for the plucking of a piece of material out of one or both of the surfaces

(149).

Adhesive wear in machining operations is a relatively straightforward

concept. The tool is invariably chosen to be harder than the work and if a junction is

formed at the metal/work interface, the tool will generally pluck Out a fragment from

the work. The process of plucking-out will leave the fragment in a very

work-hardened condition and it may well be hard enough to score or groove the

work. The accumulation of transferred material from the work to the tip of the tool is,

of course, the origin of the BUE. This nose acts as an extension of the tools, and to

some extent protects the tool from wear. However the built-up edge may occasionally

break-away with a small portion of the tool itself. This is particularly likely if the tool

is heterogeneous in structure so that local regions may be appreciably weaker in

tension or shear than the overall strength.

Adhesive wear of the tool is therefore likely to be most marked if the tool is

of non-uniform strength. Another factor is the effect of the rate of deformation on the

relative strength properties of tool and work. High cutting rates will have two

opposing effects; frictional heating will tend to soften both the work and the tool,

making them more ductile, but, on the other hand, high rates of strain will tend to

make them more brittle. If the rate at which adhesion junctions are broken is such that

the tool material ceases to be ductile, a relatively large fragment may be removed

from the tool by fracture. One example of this is the interaction between a soft metal

like copper and a hard brittle material like sapphire (149). Buckley (1967) (150) has

shown that under conditions of strong adhesion the copper can pluck pieces of

sapphire out of the harder surface.
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The best way of minimizing adhesive wear is by reducing the amount of

adhesion. The most common method to reduce adhesive wear is by using a lubricant.

However, it is not clear whether the lubricant acts mainly as a coolant or as a means

of reducing friction and adhesion. If it acts as a true lubricant it is highly desirable to

know how the lubricant gets into the work/tool interface and how quickly it can

interact to be effective. Another approach is to make the work relatively brittle so that

the removed chip easily fragments and breaks away from the tool face.

2.10.2.5 PLASTIC DEFORMATION

Plastic deformation is classified as a permanent change in shape or size of a

solid body without fracture. This process is a direct result of the application of

sustained stress beyond the elastic limit. It differs from tool wear in that no tool

material is actually removed. Plastic deformation occurs when there is a high

concentration of compressive stress at the tool rake face (close to the cutting edge)

making the tool edge deform downwards causing an acceleration of various wear

processes which ultimately reduce the life of the tool.

Many workers agree that, during cutting, the compressive stress acting on the

rake face of tool is a maximum at, or close to, the cutting edge. When the stress is

too high it may cause the tool to deform downwards. When cutting materials like

steels, the cutting edge stays relatively cool and may not be permanently deformed by

high compressive stresses. However machining of titanium based alloys generate

high temperatures and hence tools are more likely to be damaged by deformation.

Loladze (151) states that, if the hardness of the tool material at the melting

point of the work material is greater than six times the shear stress in the shear plane

then the cutting tool will under no practical condition experience plastic failure.
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According to Trent, deformation could be detected at an early stage in

laboratory tool tests by polishing the clearance face of the tool optically flat before

conducting the tests, and observing the face after the cutting test using optical

interferomeiry. Any deformation in the form of a bulge on the clearance face could be

observed and measured as a contour map formed by the interference pattern.

2.10.2.6 WEAR DUE TO CHEMICAL INSTABILITY

In contrast to the wear processes controlled by the mechanical behaviour of

materials, cutting tools can wear by the chemical dissociation of hard materials and

the chemical dissolution of the dissociated materials in the workpiece. This process

has been investigated extensively at MiT by Suh and his associates. (152-157).

In the early phase of the MIT work the chemical stability hypothesis was

supported by a variety of experimental results, the most convincing being the

correlation between the wear rates of various tool materials and the free energy of

formation (see Fig 2.23 for free energies of formation). According to this hypothesis

it was reasoned that oxides and nitrides are, in general, superior to carbides as cutting

tool materials owing to their low free energy of formation, although there are

exceptions due to exceptional solubiity of a particular tool material in the workpiece.

Among the group Nb and Yb carbides, hafnium carbide is the most chemically stable

material. It also has the highest melting point of all known solids, ie 7050 °F (3885

C), which indicates that its hot hardness must also be superior to that of many other

substances.

Recently, Kramer (155) showed that the wear of various group Nb and Vb

carbides could not be explained in terms of the diffusion of elements from the cutting

tool into the chip since the diffusion rate is of orders of magnitude smaller than the

observed wear rate. Therefore a hypothesis was made that once tool materials are
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dissociated in the chip, they are transported by "convective" mass transfer due to the

velocity component perpendicular to the tool surface. This velocity component must

be present in order to satisfy the mass continuity relation because of the slowing of

the chip as it traverses the tool face. The solubility of the tool materials was then

computed analytically from equilibrium thermodynamic considerations. This analysis

accurately predicted the experimentally observed wear rates of group IVb and Vb

carbides.

For the tool material to dissolve in the workpiece the tool material must first

dissociate - which is supported by the strong correlation between the experimentally

observed wear rates and the free energy of formation. Then at equilibrium

G.. =Gm+ G.m	
(1)

ii	 i	 J

where G.. is the free energy of formation of the tool material, G.m the relative

partial molar free energy of solution of component i and Gm the relative partial molar

free energy of solution of component j. The relative partial molar free energy of

solution of component i of the solute is related to the concentration C 1 of the

component by

G .m = G.XS + RTlnc.
1	 i	 1	 (2)

The excess free energy GXS is a measure of the departure of the solution of

component i in the workpiece from ideality (R is the universal gas constant and T is

the absolute temperature). Once the excess free energies are known the

concentrations of the elements in the tool can be computed from eqns (1) and (2).

Table 2.3 shows the estimated equilibrium concentrations computed by Kramer

(155). The wear rates are then computed relative to the wear rate of hafnium carbide.

These predictions are shown in Table 2.4. The agreement between the experimental
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Potential tool	 Free energy of	 Estimated equilibrium Experimental
material	 formation	 concentration	 results

(cal mol 1)	 (solubility)	 extrapolated
to 1600 K

Zi02	-190300	 3.60*108

Al203	-278300	 555*107

Ti203	-260800	 8.22*107

Ti02	-156300	 1.52*106

TiO	 -90020	 1.40*10-5
HfN	 -52604	 1.53*10'

HfC	 -49122	 1.97*10

ZrN	 -51356	 2.93*10

TiC0 750025	 -52395	 5.42*10

ZrC	 -42714	 8.42*10

TiN	 -45150	 1.04*103

TaC	 -34604	 1.41*10-3	 2.1*103
TiC (iron)	 -39520	 1.86*10-3	 6.1*10
NbC	 -32236	 2.01*10-3	 6.8*10-3

BN (graphitic)	 -26100	 9.65*10-3

WC	 -8144	 -	 2.6*102

VC	 -23416	 -	 3.2*102

TiC (nickel)	 -39520	 2.24*102	 6.3*102

Diamond	 -	 9.30*10.2

Si3N4	-51850	 9.50*102

B-SiC	 -14548	 4.30*101

Data from Ref 155.

Table 2.3	 Estimated and reported solubiities of potential tool materials in
alpha-iron at 1600 K.



Carbide	 Relative wear rate

1600 K	 1500K	 1400K	 1300 K	 Test
results

HfC	 1	 1	 1	 1	 1

TiC	 7.65	 8.82	 10.6	 12.8	 2.75

T1C0750025 2.26	 2.41	 2.61	 2.86	 -

ZrC	 4.44	 4.87	 5.47	 6.20	 5.51

TaC*	 6.33	 7.19	 8.39	 9.98	 10.6
(9.43)	 (10.7)	 (12.5)	 (14.9)

NbC*	 9.13	 10.6	 12.7	 15.6	 23.7
(31.0)	 (36.0)	 (43.1)	 (52.8)

WC	 (107.0)	 (153.0)	 (215.0)	 (332.0)	 237.0

Data from Ref 155.

* Terms without parentheses are calculated on the basis of the
solubility estimated from thermodynamic properties. Terms in
parentheses are calculated using the reported solubiities
(see Table 2.3).

Table 2.4	 Comparison of theoretical predictions with test results: predicted
relative wear rates at various temperatures (V(HfC) = 1)



results was obtained using coated cemented carbide tools which were prepared by a

chemical vapour deposition technique (158-159).

The only exception to the generally good agreement is the wear rate of TiC

which is lower than that predicted. It appears that this is caused by the formation of

the oxycarbides TiCXOY as a result of the diffusion of oxygen into the TiC lattice as is

indicated by the good agreement between the wear rate predicted for TiC 0 750025

and TiC-coated tools. This finding is consistent with the earlier work of Carson et a!

(156). They created titanium oxycarbides from powders of TiO and TiC so as to

lower the free energy of formation without significantly affecting the hardness of the

carbide. As shown in Fig 2.23b the lattice parameter of the TiO-TiC solid solution

does not vary linearly with the volume fraction of TIC which indicates that the solid

solution is not ideal. The hardness variation is shown in Fig 2.23c. Cemented

carbide tools were sputter coated for wear tests using the T1C O5005 and

TjO Ø25 C Ø75 samples prepared in this manner. It was found that the

oxycarbide-coated tools wore at about the same rate as the TiC-coated tools. At the

time the work was done it was speculated that the loss of oxygen during sputtering

might also have contributed to the observation of a wear resistance which was less

than expected. Since then experimental evidence (160) has indicated that

stoichiometric oxycarbides do improve wear resistance. These facts reinforce the

view that oxycarbides can increase the chemical resistance and that even TiC can be

transformed into oxycarbides during cutting provided that there is sufficient oxygen

dissolved in the workpiece.
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2.11 MACHINING OF TITANIUM AEROSPACE ALLOYS

Many papers were written on the machining of titanium in the early 1950s.

Before this time, titanium was not commercially available and little was known about

its machining characteristics. These early papers dealt mostly with what were the best

machining speeds, feeds, tool geometries and coolants to use when producing

titanium components, and were generally based on experience in the production of

actual components (Table 2.5 and 2.6). Some recommended negative rake angles

(161) whilst others claimed that positive rake angles improved machinability

(162-163). It was found that heavy feeds would give longer tool lives than fine feeds

(164-165) if flank wear was the controlling factor (ie. at lower speeds). Also, it was

generally agreed that carbide tools were superior to high speed steel tools unless

chipping was likely to determine tool life.

Boston (166) observed that the chips produced when machining titanium

were thin and that the contact area between the chip and tool was small; therefore,

high stresses would exist at the rake face. He also stated that there was no evidence

for a BEE being present, and that the temperatures produced in the tool were higher

than those found when machining stainless steels or low carbon steels. The thin

chips produced when machining titanium were found to be typical, with the shear

plane angle usually approaching 45. Distortion within the titanium chips was seen to

occur along distinct planes, the regions between these planes being relatively

undistorted (166-167).

Despite the low cutting forces when cutting titanium and its alloys, compared

with steels of similar strengths the tool life is less than with steel. This apparent

anomaly can be explained when the stress on the tool is considered. The contact areas

existing between titanium chips and the tools are much smaller than those existing

between the steel chips and the tools. Therefore, the energy expended, per unit area,

is often greater when machining titanium and temperatures are higher, as a
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Code Tool	 Hardness,	 Typical	 ISO rating, Application
material	 VPN	 composition where

applicable

SS1 HSS 835 0.75%C-18%W DriIls,reamers,
milling cutters,
broaches

SS2 Super HSS 850 mi	 l.5%C-12.5%W,	 Milhingcutters,
5%Co-5%V-5%Cr	 parting tools

SS3 Super HSS 900 mm. 	 1.3%C-9.5%W	 Miffing cutters

SS4 Cobalt HSS 835

1	 Tungsten	 -	 -	 P40
carbide

2	 Tungsten	 -	 -	 K05
carbide

3	 Tungsten	 -	 -	 K10
carbide	 K20

l0%Co-3.5%V
4%Mo-4.5 %Cr

0.8%C-18%W
4%Cr-1%V
5%Co

Milling cutters

Heavy rough
turning

Form tools

General
turning,milling,
and automatics

Table 2.5	 Various tool materials used for turning Aerospace alloys.



Code	 Type	 Application

A	 Chlorinated neat oil	 Automatics

TM1	 Heavy duty EP soluble	 General turning and
oil, 20-35:1	 milling

TM2
	

Synthetic soluble
fluid, 40:1

BL
	

Chlorinated and Suipho-
chlorinated neat oils

Gi	 Translucent soluble
oil, 50:1 Nitrite-amine
rust inhibitor, 40-60:1
dilution

Finish, turning and
milling

Drilling, reaming
broaching, and tapping

Grinding with aluminium
oxide wheels

G2	 Heavily chlorinated	 Grinding with silicon
neat oil light viscosity 	 carbide wheels

Table 2.6	 Various cutting fluids used for turning Aerospace alloys



consequence (166-169). Another reason for temperatures being high in tools used to

cut titanium has been advanced; the low thermal conductivity and low thermal

capacity of titanium leads to a greater proportion of heat flowing into the tool than

with most other metals. This also causes higher temperatures to be produced at the

base of the titanium chip (161, 168-170).

When using cemented carbides to machine titanium, it was found better to cut

with those grades containing tungsten carbide with a cobalt binder. Tools containing

additions of titanium carbide had a shorter life (168). Loladze (171) has suggested

that this was due to the titanium carbide in the tool dissolving in the titanium chip,

where as Hollis (163) considered that the lower thermal conductivity of tools

containing titanium carbide led to higher interface temperatures and hence faster tool

wear.

Fersing & Smith (172) found that the feed load for tools containing no

titanium carbide was less than that measured for tools containing a percentage of

titanium carbide. They also noticed that a set of chips produced using tools

containing titanium carbide were discoloured whereas chips produced under the same

conditions using wholly tungsten carbide tools were bright - implying that the first

set of chips was hotter than the second set. Merchant et al (168) found that, if they

heated blocks of titanium and cemented carbides together, a brittle layer formed at the

interface when titanium carbide was present in the cemented carbide block, but the

interface was strongly joined when the block consisted only if tungsten carbide with

cobalt as the binder.

Early workers often assumed that difficulties arose when machining titanium

due to its supposedly high rate of work hardening (161), which caused hardened

surface layers to be formed. Holt and Purcell (162) accounted for hardness variations

at the surface of titanium castings being due to absorbed oxygen and nitrogen. They

stated that titanium forgings had appreciable work hardening rates and concluded that
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both of these phenomena combined to create problems when machining. Boston

(166) and later workers (169) have shown that the work hardening rates of titanium

and its alloys are less than those of steels and nickel, hence the earlier assumption for

the lack of machinability of titanium is invalid. Child and Dalton (169) considered the

problem, and concluded that short tool lives occurred when machining titanium due

to interstitially absorbed oxygen and nitrogen hardening the surface of components.

This hardened surface is often found after forging and is removed abrasively and/or

by pickling before machining is carried out (165, 168).

When titanium or its alloys are machined commercially the tool geometry is

arranged such that, for a given depth of cut and feed, the metal is removed over a

lengthened cutting edge. For turning tools, this usually entails employing an

approach angle of 
450 

a large nose radius, and a small positive rake angle. The

machining of titanium is not difficult, providing rigid machines are used, and speeds

are kept low with respect to those used for machining steels. Active extreme pressure

lubricants have been found to be the most effective when machining titanium, but

care must be taken to protect machine tools from their corrosive effects (165-172).

The high initial cost of the metal, combined with the low cutting speeds for optimum

machining, ensures that titanium components are expensive and limited to special

applications.

Work by Kreiss (173) on the machining of a titanium alloy, showed several

interesting effects when the cutting forces were measured such that their variation

with respect to time could be recorded. It was found that the vertical cutting force on

the tool varied periodically, as may be expected from the saw tooth form of the chips

produced, but the horizontal force remained almost constant. This he explained by

assuming that the friction between the chip and tool was constant and the chip moved

continuously across the contact area of the tool. Metallographic evidence suggested

that a layer of work material formed on the tool over which the chip slid at cutting
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speeds below 80 rn/mm. The reason put forward for the absence of this layer above

80 ni/mm depended upon the effect of temperature on the bond strength between the

work material and tool material. He suggested that the bond between the work

material and the tool was stronger than the cohesion of the work material at low

temperatures However, weakening of the tool/work material bond occurred when

high cutting speeds generated high temperatures thus enabling the layer to be

removed by the chip. Tool wear was considered to be due to friction, combined with

temperature and pressure, with the force variations also inducing wear by fatigue.

High speed steels were shown to be plastically deformed due to the temperatures and

pressures acting on the tools. Kreiss pointed out that, despite the layer, tool wear still

occurred due to the temperature and pressure variations experienced by the tool acting

through the work material layer. He also suggested that the variation of stress levels

in tools could be caused by temperature, the levels of stress in a tool increasing as its

thermal conductivity decreases.
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CHAPTER 3

EXPERIMENTAL PROCEDURES



3.0 EXPERIMENTAL PROCEDURES

3.1 INTRODUCTION

The cutting of titanium alloys remains a problem despite many recent

developments in cutting tool materials. In the current work, specific attention is paid

to the role of the interface, between the workpiece and the rake face of the tool, on

the mechanism of wear. Two experimental techniques are employed. First, the effect

of temperature on the adhesion of workpiece to tool material is investigated in order

to determine the critical temperature above which there is immediate seizure on

contact. The structural and chemical nature of the interface is studied and the nature

of subsequent failure of the adhesive couple (ie at the interface within the workpiece

or within the tool) identified. In the second, the 'quick stop' technique is used to

investigate in a similar way the structure of the chip and its interface with the rake

face during single point cutting.
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3.3 CUTTING TOOLS

Selection from a large number of commercially-available indexable inserts is

rarely done on a scientifically correct basis and assessment of the widely different

grades of uncoated and coated cutting tools is a difficult task. However, the carbide

cutting tools used during this work were based on those grades which are currently

being used in the aerospace industry.

Although there are several large manufacturers of uncoated and coated

tungsten carbide indexable inserts, and a wide variation in their grades, machining

optimization is unlikely to be attainable by selection between products from different

manufacturing companies. This is due to the fact that, every manufacturer produces a

range of insert grades which can be utilized for particular cutting operations.

Consequently, it seems more logical to concentrate on a number of options offered

by one manufacturer.

There are many considerations in optimising the selection of a cutting tool

material for a particular workpiece material, but here we shall concentrate on the

ultra-hard materials.

3.3.1 TOOL MATERIALS

The metal cutting tests were carried out on Kennametal grades KC850,

KC91O and K68 and De Beers PCD and CBN (polyciystalline diamond, cubic boron

nitride). The K68 is uncoated tungsten carbide and the other two Kennametal grades

were tungsten carbide substrates coated with double and triple layers of different

coatings deposited by chemical vapour deposition (CVD) processes, the KC850 is

triple coated layers (TiC-TiC/N-TiN) the outer layer TiN, middle Ti (C,N) and inner
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TiC, with the coating thickness of 4, 3, 3 micron respectively. The KC91O had a TiC

coating 6 micron thick with an outer layer of Al 203 to a thickness of 3 micron.

The uncoated tools and substrates of the coated tools were fabricated from

tungsten carbide as the main constituent, and a small amount of cobalt as binder, with

variable but small additions of titanium carbide, tantalum carbide and niobium

carbide.

The aggregate of cubic boron nitride (Amborite), consists of particles of

about 1.2 micron in size with a filler or matrix phase comprising aluminium

compounds (boride and nitride) with a HK1 hardness of approximately 3100

Kg/mm2 (30.1 GPa). Amborite is produced by De Beers from cubic boron nitride by

sintering together carefully selected particles. The tools are cut from the basic sintered

discs and diamond ground to the final ISO standard in the form of an indexable

square insert.

Polycrystalline diamond (PCD) tools manufactured by De Beers were also

used. This proprietary range of tool materials is known as Syndite. Syndite is

produced by hot pressing high quality synthetic diamond powder, with a typical

grain size of 10 micron, in the presence of a metallic phase at temperatures above

1400 ° C and at pressure of the order of 60 bar. The hot pressing process is rigidly

controlled and results in a final product that is an intergrown mass of randomly

orientated diamonds in a metal matrix. The diamond is not merely bonded in the

metal, but also considerable intergrowth has taken place between the diamond

particles.

The hot-pressed diamond composite is then brazed onto a tungsten carbide

substrate at temperatures in the region of 700-750 °C for one minute. The brazing

materials are based on silver and copper and consequently the process is known as

silver brazing or silver alloy brazing.
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The configuration of the coatings and designations of the experimental tools

are given in Table 3.1.

3.3.2 WORK MATERIAL

The workpiece material used throughout all these experiments was an as

rolled and annealed titanium alloy with a nominal composition specification (in

weight percentage) given as Al 5; Mo 4; Sn 2-2.5; Si 6-7; Fe 2.0 max; H 0.0 15; 0

0.25; N 0.05; Ti remainder. It had a Knoop hardness (2 kg load) of 440 kg/mm2

(4.31 Gpa) and the microstructure consisted of an elongated alpha phase in a fine,

dark etching, beta matrix.

At room temperature the structure of titanium is closed packed hexagonal with

a c/a ratio of 1.587; this structure is known as the alpha phase and exists up to 882

C, above which there is a phase transformation to a body centred cubic structure

known as the beta phase. This phase is more easily worked than the alpha phase.

Oxygen, nitrogen and carbon dissolve interstitially in titanium, stabilising the alpha

phase and increasing the strength appreciably.

3.3.3 TOOL GEOMETRY

All the inserts used were of square shape, 3 mm thick, with 9 mm cutting

edge length and a 0.8 mm nose radius.

The inserts were classified according to the international standards

organization (ISO) system and designated by the producer's own numbering system

in conjunction with the ISO grading number (Table 3.1).
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To reduce plastic deformation of the cutting edge at high cutting speed, and to

optimize the number of available cutting edges per tool, square negative rake inserts

of cubic boron nitride (Amborite) were chosen for the tests.
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Tool Materials	 Commercial ISO	 Tool holders
giades

Polycrystalline
	

Syndite	 R123-90/O1O	 CRDNN 2525 M09
diamond

Cubic boron
nitride

Coated carbide
(TiCITi(C,N)fTiN)

Coated carbide
(TiC/Al203)

Amborite

KC850

KC91O

SNMN 090308F

SPGN 090308

SPUN 090308

CSDNN 2525 M09

CSDNN 2525 M12-1D

CSDNN 2525 M12-1D

Uncoated carbide	 K68	 SPGN 090308	 CSDNN 2525 M12-1D

Table 3.1	 Cutting tool materials used for machining TA48



3.4 MACHINING PROCEDURE

3.4.1 CNC LATHE

A series of single point turning tests were conducted using a Churchill

'Computurn' 290 CNC lathe, with all tool materials, at a surface speed of 100

rn/mm, a feed rate of 0.25 mm/rev; a depth of cut of 1.0 mm and without a lubricant.

These conditions were chosen to maximize rake face temperature and to conserve the

limited workpiece material. In addition to the principal surface speed of 100 rn/mm,

several different speeds ranging from 25 to 200 rn/mm (in 25 rn/mm steps) were used

after a series of preliminary tests. The CNC lathe was the main machine tool used for

the major part of the experimental turning work.

The machine spindle was driven by a 16 kw d.c motor via a separate gearbox

and had an operating speed range of 20-5000 rev/mm. The carriage and cross slide

were located in front of the spindle with the carriage above the cross-slide. The lathe

was equipped with a hydraulically indexing tool post with double tool holding

fixtures, and each unit accommodated eight tools. The spindle speed was displayed

on a speed indicator and the control panel was mounted on a fixed external

attachment where the computer programme was displayed and controlled according

to the operator's instruction.

3.4.2 QUICK STOP

In order to observe the chip formation process during machining, it is

necessary to 'freeze' the cutting action by means of a suitable quick stopping

technique.
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At present, the most successful quick stopping devices depend on the rapid

acceleration of the tool away from the work by means of an explosive charge. A

quick stopping device based on a design reported by Williams et a! (41) has been

constructed and is shown in Figure 3.4. The principle of operation depends on a tool

holder, pivoted about its end with a tool tip retained at the correct lathe centre height

by a shear pin below and retaining spring above. Some modification on the tool

holder and lathe were made in order to achieve the optimum performance.

The Quick-stop (QS) device, as shown in Figure 3.4 consists of a humane

killer gun positioned above the tool holder which is supported by a notched shear pin

of heat treated silver steel or brass. The gun consists of a solid captive bolt which is

projected at a high speed when the gun is fired. The captive bolt strikes against the

tool holder breaking the shear pin and the tool accelerates rapidly away from the

cutting position. The tool holder allows the tool to clear the workpiece at an angle of

8 ° as it moves downwards. This avoids any contact between the tool and the

workpiece once the pin is broken. The hollow cavity of the quick-stop block is

packed with plasticine so that it traps the broken shear pin pieces and the tool holder

when the gun is fired. This also prevents the tool holder from rebounding back into

the workpiece.

The type of quick-stop device used has been analysed by Williams et al (41)

who showed the mean acceleration of the tool from the chip bottom to be 32.5 * i0

mm/sec. Hence for a feed of 0.2 mm/rev and cutting speed of test, the removal of the

tool no longer affects the chip flow after a distance of 0.375 mm from the chip root.

3.4.3 FORCE MEASURING SYSTEM

The accurate measurement of the forces acting on a cutting tool is one of the

difficulties experienced in metal cutting research that remained unsolved for a long

time until the development of suitable force and torque dynamometers. The advent of
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Fig 3.4 The "Quick-stop" device utilising a humane killer to disengage
the tool from the workpiece rapidly leaving the flow of metal in
the chip undisturbed.



these devices led to a more quantitative understanding of cutting tool performance.

The dynamometers were designed to meet certain requirements in order to measure

the force components to high accuracy. The primary requirements are high sensitivity

and good stability. Cutting forces should not be influenced by external vibration and

no interference between different force components should occur during a machining

operation.

The forces involved in the cutting operations performed on the Churchill lathe

were measured by a Kistler Type 925A-SN 40505 turning dynamometer It was

mounted to the tool holder and attached firmly to the lathe saddle.

The measurements were carried out directly from the tool deflections

produced as traces against cutting time. The deflections were measured in millimetres

and multiplied by the sensitivity indices which were pre-set in Newtons per

millimetre. The sensitivity adjustments were made according to the magnitude of each

force component, ie increased sensitivity for low force and reduced sensitivity for

high force. After measurement the force values were given as Newtons.

3.4.4 THE RANK TAYLOR-HOBSON TALYSURF

The surface measuring instrument employed to assess the quality after the

finish machining operation was a Model 3 Rank-Taylor-Hobson 'Talysurf. It had a

pick up unit with a stylus of small radius of curvature that traversed across the

surface by means of a motorised driving unit. The vertical movements of the stylus

were converted into corresponding changes in an electric current which was

amplified and then used to drive the Roughness Average meter which shows the

centre line average (CLA) index of all irregularities within a standard length of

surface.
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The surface quality of the machined workpieces was tested after every

finishing operation using the Talysurf. Due to the variation in the surface quality of

the workpieces that were usually observed during most of the cutting operations, a

careful method of measuring the surface finish was adopted. Readings were taken at

three different distances along the workpiece, and at each distance three readings

were taken circumferentially by rotating the workpiece at each sampling location. The

average readings at each of the three locations were added together and the overall

average was considered to represent the surface finish.

3.4.5 SCANNING ELECTRON MICROSCOPY

During the current work, investigation of microstructures was carried out by

a Scanning Electron Microscope (Cambridge Instrument's Models 200 and 360),

from which information regarding texture, porosity, size and shape were obtained.

The relationships between different phases were studied and where possible

identification of phases was carried out.

3.4.5.1 SAMPLE PREPARATION

Scanning Electron Microscope (SEM) studies were made on the polished QS

specimens. The specimens were then coated with a conductive material, either carbon

or gold, in the evaporative coater. Coating was carried out for two reasons:

i)	 Non-conducting specimens build up a surface charge through which

secondary electrons are unable to penetrate, which could affect the image at

both levels (ie either at signal level or at image form).
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ii)	 To provide a surface layer that produces a higher secondary electron yield

than the specimen material.

Normally the coating is very thin (up to 200 A), and does not hinder the

identification of specific phases.

3.4.5.2 INSTRUMENTATION

The SEM consists of an electron optical column and an electronics console.

The coated specimen is placed in the sample chamber and which is then evacuated to

high vacuum (10 bar). Instead of light (as the case in optical reflected light

microscope), the SEM image is formed by an internally generated electron beam.

This beam is produced by heating a very thin tungsten filament in the electron gun

until it emits the electrons. The electrons are accelerated through the column by a

0.2-40 KY accelerating voltage. They are then demagnified and focussed through a

series of electromagnetic lenses into a finely focussed beam, which bombards the

sample. Final diameter of the beam is typically 100 A in most commercial SEM's.

Additional components include a stigmata for controlling the shape of the beam and

an aperture to minimize the lens defects (aberrations), which severely limit resolution

in optical light microscope. The interaction of the primary electron beam with the

sample produces various forms of radiation; eg. secondary electrons, characteristic

X-rays, Auger electrons and back scattered electrons. All these reactions occur

simultaneously, and it is therefore possible to both observe and analyse the elemental

composition of an isolated phase in a matter of seconds.

3.4.5.3 USE OF SCANNING ELECTRON MICROSCOPE

The most widely used technique to study microstructures of different phases

is a reflected light optical microscopy. In case of industrial diamonds the reflectivity
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of various phases is very similar and especially so in pure industrial diamonds. Some

of the minor phases are very small in size, and higher magnification than the optical

microscope range is necessary. The actual three dimensional grain relationships and

details of the microstructure were outside the range of the optical microscopes. The

introduction of the SEM has enabled us to identify minor impurity phases and to

examine their distribution as well as their microstructures. Apart from significantly

higher magnification other advantages of the electron microscopes are the greater

depth of field and resolution.

3.4.5.4 SECONDARY ELECTRON (SE) EMISSION

Free electrons which leave the specimen, liberated by the elastic scattering

reaction, are known as secondary electrons. These electrons do not have any

relationship with the material from which they were liberated and have an energy less

than 50 electron volts. The energy of the incident electron beam, at conventional

scanning electron microscope accelerating voltage does not play any part in relation to

the number of secondary electrons emitted by the elastic scattering reaction. At these

high voltage levels the relationship between the material making up the specimen and

the emission of secondary electrons is fairly constant. Only at very low atomic

numbers does the secondary emission relate to atomic number.

3.4.5.5 BACKSCATTERED ELECTRON (BSE) EMISSION

Backscattered electrons are incident beam electrons that have been re-emitted

from the specimen through multiple scattering. They have an energy up to the

incident beam energy, and are usually very near to that energy. The emission of

backscattered electrons from a specimen is related to the atomic number of the
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material involved. The higher the atomic number, the higher is the backscattered

coefficient. The emission of backscattered electrons also relates to the energy of the

incident electron beam. The higher energy of the incident electron energy, the greater

is its ability to move through the specimen material, and the higher is the probability

of it emerging as a backscattered electron.

3.4.5.6 THE SCANNING ELECTRON MICROSCOPE

MICROGRAPHS

The three dimensional image (SEM micrograph) is formed by collecting the

secondary electrons generated by the primary beam. These are low energy electrons,

so only those formed near surface (50-500 A deep for insulating materials such as

rocks) are able to escape. The electrons emitted are collected by a secondary electron

detector mounted in the SEM (sample) chamber and subsequently processed into the

familiar SEM image. This image is either continuously displayed on a VDU screen or

photographed with an attached camera. The backscattered mode works on a similar

principle, but the images obtained are the microstructures in only two dimensions.

3.4.5.7 PREPARATION AND EXAMINATION OF SPECIMENS

The specimens which were examined, fall into two categories, the chips and

the tool, and the investigation has dealt with both these categories. The chips have

been inspected so that the interpretation of the tool results may become more

obvious. The preparation of the tool for examination varies depending upon whether

the tool is of carbide or ultra-hard (polycrystalline diamond (PCD) or cubic boron

nitride (CBN)) type.
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After the carbide tools had been used for cutting, the tools were now

encapsulated in Araldite cold curing resin such that the cutting edge was vertical and

the tool nose uppermost. After the Araldite had hardened, the top surface of the

specimen was ground away on a coarse diamond impregnated copper lap, until 0.5

mm had been removed from the tool. This creates a section halfway along the depth

of cut of the tool perpendicular to the cutting edge. By sectioning the tool in this

manner it was hoped that a chip flow pattern approaching that produced by

machining would be revealed. The specimen has then lapped on a finer copper lap,

with final polishing being carried out on flat plate vibratory polishers using nylon

clothes impregnated with diamond paste and a suitable lubricant. This method of

specimen preparation has been found to give a minimum of rounding at the edges of

the tools. The carbide tools were etched for 2 to 4 minutes in an aqueous solution of

alkaline potassium ferricyanide, freshly made up from equal parts of 20% aqueous

solutions of sodium hydroxide and potassium ferricyanide. The etched tools were

then examined by optical microscopy and photographs taken at various

magnifications to illustrate any salient features.

The titanium chips which have been examined have either been those found to

be attached to the tools after the termination of cutting, or those specially produced by

the Quick Stop technique. Chips attached to the tools were already sectioned along

their centre line and therefore only had to be polished and etched. The Quick Stop

chips were removed from the parent bar together with a part of the bar. These were

then examined using the SEM or mounted in Araldite so that they could later be

sectioned. The chips were sectioned halfway through their width, parallel to their

direction of travel in a plane perpendicular to the bottom of the chip; this was done by

grinding away excess Araldite and chip material using a surface grinder. Preparation

was completed by grinding on finer papers ranging from 250 to 600 grade, followed

by hand polishing on cloths impregnated with 6 .tm and 1 1m diamond paste. The

polished chips were etched in a solution of 0.5 ml hydrofluoric acid, 0.5 ml nitric
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acid and 99 ml of water. Great care was necessary when handling the etchant, due to

the highly corrosive properties of hydrofluoric acid. The etched chip sections were

examined and photographed to illustrate the formation of the chips and the built up

edge.

After cutting titanium, some of the worn tools were examined under the SEM

but it was clear that the wear features were masked by adherent iron and other

machining impurities. Consequently, it was decided to carry out light chemical

cleaning of the tool surfaces. Before cleaning all the tools, a trial was undertaken to

ensure the stability of the structures. All the tools were then cleaned in 50% diluted

HCL in an ultrasonic bath for 5 minutes and then they were prepared for

examination.
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CHAPTER 4

PRESENTATION OF RESULTS



4.0 PRESENTATION OF RESULTS

4.1 INTRODUCTION

This chapter contains the results of the two experimental techniques used for

the present investigation. The first section has the data obtained by the quasi-static

technique during the point loading, while the second section has the results collected

from the machining process.

4.2 QUASI-STATIC ADHESION RESULTS

4.2.1 INTRODUCTION

In recent years, a modified indentation technique has been developed to study

the deformation of hard materials by softer 'indenters' (174). For example, it has

been shown that tungsten carbide single crystal can be plastically deformed, ie slip

lines are produced, due to the contact pressure developed beneath a copper cone at

low temperature (174). In this work, the 'soft indenter' technique has been applied

using cone made from the titanium alloy to deform the various tool materials over a

range of temperatures. Above a certain critical temperature, strongly welded

junctions were formed. In Table 4.1 the critical adhesion temperatures determined in

this way are summarised, together with the relevant contact pressure developed over

the contact area, for these materials.

Invariably, when these welded junctions were separated the fracture face was

through the cutting tool material. The following sections give further detail and the

relevant micrographs represent additional evidence in support of that observation. It

should be noted that this measured contact pressure is not simply related to the
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Tool material 	 Critical temperature 	 Nominal contact
(0c	 presure (GPa)

Polycrystalline	 760	 0.142
diamond

Cubic boron
	

900
	

0.146
nitride Amborite

Coated carbide
	

740
	

0.234
(KC850)

Coated carbide
	

820
	

0.267
(KC9 10)

Uncoated carbide	 800	 0.294
(K68)

Table 4.1	 Critical adhesion temperatures



hardness of the metal cone but it is also influenced by the friction at the metal ceramic

interface.

4.2.1.1 POLYCRYSTALLINE DIAMOND (PCD)

As a result of separation strongly adhered PCD cutting tool material remains

attached to the titanium alloy cone (Fig 4.1) and the corresponding pit on the rake

face of the cutting tool is shown in Figure 4.2. The obvious roughness of the

fractured surface indicates that failure has occurred around particles rather than

through them but this needs to be verified. A longitudinal section of the ground and

polished indenter (Fig 4.3) shows the adhered layer which is 8 - 10 microns thick

(Fig 4.4).

4.2.1.2 CUBIC BORON NITRIDE (CBN)

A difference in the behaviour between the rake and flank faces of CBN is

apparent in the table. The following observations reinforce that evidence:

(a) Rake Face

Once the adhesion test was completed, the separation of the welded junction

was made. Figure 4.5 shows the result of separation of a junction formed between

the titanium alloy and the cubic boron nitride such that a pit has formed in the original

surface where a hemispherical fragment was removed with the titanium cone (Fig

4.6). It is apparent that the fracture surface is somewhat less rough than the

corresponding PCD surface (Fig 4.1) and this observation is consistent with the size

of particles - ie 1-2 microns and 10 microns respectively. Finally, after the separation

99



....

,.f....

•	 '---i'.-'t_.

•t.• •b •	 3,. -

Fig 4.1	 Crater formed in polycrystalline diamond tool
after separation of welded junction.
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Fig 4.2 Titanium alloy indenter with strongly adherent
polycrystalline dianiond after fracture within
bulk of tool material.
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Fig 4.3	 An enlarged view of area shown in Fig 4.2.

Fig 4.4 Longitudinal section through titanium
alloy:tool welded junction showing toolpiece
particles from PCD. X400
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Fig 4.5	 Crater formed in cubic boron nitride tool after
separation of welded junction.

Fig 4.6 Titanium alloy indenter with strongly-adherent
cubic boron nitride after fracture within bulk
tool material.



of welded junction, the indenter was ground and polished to show the entire welded

junction (Fig 4.7) in to the cutting tool attachment.

(b) Flank Face

Because of the marked difference in the behaviour of the flank face a large

number of indentation tests were carried out on this. The same detailed procedures as

of rake face was adopted for all the tests which were carried out on the flank face.

After completion of each test, the indenter was removed and it was discovered that

the indenter was severely deformed without the normal welded junction being

formed. (Fig 4.8). Even at higher temperatures, with a corresponding increase in the

extent of deformation, there was no evidence of significant adhesion (Fig 4.9).

Whilst an explanation of this particular effect is now possible at the time, there are

three points which should be made.

This observation underlines the importance of the role of friction at the

interface. Here, due to lack of adhesion, the contact pressure becomes remarkably

low and so residual impressions are made on the tool face - the flow of con material

is such as to accurate replicate surface features and structure on the hard material, ie

note scratch marks on rake face replicated on blunt end of con in Figure 4.8.

Differences in the cutting performance for rake and flank faces of CBN are

discussed in Chapter 5.

4.2.1.3 COATED CARBIDE KC850

Due to point loading after the removal of welded junction, a large crater was

found on the rake face of toolpiece (Fig 4.10). This crater is roughly circular in

shape and encompasses areas of uneven thickness. Depth of indentation is clearly

visible which shows three distinct coatings and the material from the substratum (Fig
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Fig 4.7 Longitudinal section through titanium
alloy:tool welded junction showing toolpiece
particles from CBN.

Fig 4.8 Titanium alloy indenter on the flank face of
cubic boron nitride tool, showing no sign of
adhesion.
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Fig 4.9	 Titanium alloy indenter on the flank face of
cubic boron nitride tool at high temperature.
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Fig 4.10	 Crater formed in coated carbide tool (KC8SO)
after separation of welded junction.



4.12). This crater is approximately 17 microns deep while the total thickness of all

three coatings is 12 microns. From this, it is evident that all three layers were

removed along with some parts of substratum, thus, exposing tungsten carbide

particles (Fig 4.12). Cracks and fractures were also developed around the perimeter

of the pit. The cracks range from 2-4 microns in width and may have been caused

during the point load process (Fig 4.13). The surface of the cone was flattened after

the separation of welded junction, and was seen to closely resemble the shape of

impression made on the tool. The cone had adhered strongly to the material of the

carbide tool (Fig 4.14). A closer view of the cone reveals a coating of titanium

carbide layer in association with a few tungsten carbide particles scattered randomly

over it (Fig 4.15). To elucidate the nature of the welded junction, a cone was first

sectioned, and then ground and polished (Fig 4.16). Results of X-Ray analysis

confirmed the presence of tool and workpiece material.

4.2.1.4 COATED CARBIDE KC91O

Upon separation of the welded junction, a pit in the original tool surface was

formed as the hemispherical fragment was plucked out by the titanium con (Figs

4.17, 4.18). The periphery of the pit is somewhat broken and cracked, and enlarged

view of this shows the presence of microcracks and microfractures (Fig 4.19).

Finally, an indenter with adhering tool material was ground and polished to show the

coated layers and substratum (Fig 4.20). Also to confirm the composition of

particles from the tool, several X-Ray analyses were made at various places on the

welded junction. In all the cases, analysis confirmed the presence of elements similar

to that of tool.
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Fig 4.11 SEM micrograph of carbide tool (KC850) rake
face showing the exposed coated layers &
substrate particles.
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Fig 4.12	 SEM micrograph of exposed carbide substrate
after fracture of welded junction (ref Fig 4.13).
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Fig 4.13	 Formation of crater during the point loading
on the carbide rake face (KC850).
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Fig 4.14 Titanium alloy indenter with strongly-adherent
carbide (KC8SO) after fracture within bulk tool
material.
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Coated layers of carbide tool (KC850) attached
to a titanium alloy indenter.
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Fig 4.16 Longitudinal section through titanium
alloy:tool welded junction showing layers from
coated carbide (KC850) specimen.
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Fig 4.17	 Crater formed in coated carbide (KC91O) tool
after separation of welded junction.
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Fig 4.18 Titanium alloy indenter with strongly-adherent
coated carbide (KC91O) tool after fracture
within bulk tool material.
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Fig 4.19	 An enlarged view of Fig 4.17.

Fig 4.20 Longitudinal section through titanium
alloy: tool welded junction showing toolpiece
particles of coated carbide (KC91O) tool.



4.2.1.5 UNCOATED CARBIDE K68

The observations on this tool material were virtually the same as those for

coated tools. First, a shallow depression formed on the rake face of the cutting tool

(Fig 4.21) which was the result of separation of the welded junction. Removal of

tool material by the cone is illustrated in Figure 4.22. An enlarged view of the same

is given in Figure 4.23, where the plucked out tool material extends beyond the edge

of the cone. A sectioned an polished view of this cone indicates strong welding

between it and the tool (Fig 4.24).

4.2.2 RELEVANCE OF QUASI-STATIC TESTS TO METAL
CUTTING EVALUATION

At this stage two important aspects of the method can be identified as being

important to the subsequent metal cutting tests.

First, that the critical temperatures for adhesion and welding will generally be

exceeded at the interface during metal cutting conditions. Second, that once formed,

the welded attachment of workpiece to tool withstands forces of separation and

failure invariably takes place within the bulk of the tool.
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Crater formed in carbide (1(68) after
separation of welded junction.

Fig 4.22 Titanium alloy indenter with strongly-adherent
carbide tool (K68) after fracture within bulk
tool material.
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Fig 4.23	 An enlarged view of Fig 4.22.

S.

•	 -

Fig 4.24 Longitudinal section through titanium
alloy:tool welded junction showing toolpiece
particles of carbide (KC68) tool.



4.3 SURFACE MORPHOLOGY AND STRUCTURE OF CARBIDE
TOOLS

4.3.1 SURFACE MORPHOLOGY

4.3.1.1 CARBIDE TOOLS

Figure 4.25 shows a typical surface of KC91O consists of a three dimensional

array of 'hilis' and 'valieys'. The vertical distance between 'hill' peak and 'valley'

floor, for each of these coatings varied from 2-3 microns whilst the horizontal

distance between individual spheroids was nearly 1 micron.

Some of the KC91O inserts used in the early parts of this research contained

additional blister-like features which stood nearly 6 microns above the main surface

of the insert and were nearly 10-15 microns in diameter. Such features (which were

approximately hemispherical in shape) were found to be hollow and were quickly

worn through revealing small voids after cutting at 100 rn/mm for 60 seconds (Fig

4.26). These blister features were observed on most of the coated specimens and it

may be presumed that they represent unsatisfactory coating technique.

The KC850 inserts also had a similar hill and valley topography but the

surface was found to comprise a random array of fine rectangular shaped protrusions

approximately 4-5 microns in size. The Al203 coated inserts were found to have an

irregular surface consisting of numerous elliptical nodules, whose dimensions were

about twice those of the spheroids seen in KC91O surface. Furthermore, no finer

surface features were observed.

The KC91O inserts had a dark grey surface which on lightly polishing,

revealed the bulk of the TiC and Al203 layers having a white/silver grey and light

grey colours respectively. The surface of the KC850 inserts were also lightly

polished and the original yellow appearance of the TIN layer was found to be slightly
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Fig 4.25	 SEM micrograph of coated carbide tool rake
face surface.
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Fig 4.26	 Appearance of small voids on the rake face of
coated carbide (KC91O) at speed of 100 nVmin.



darker than the bulk of other layers. These observations suggest that the surfaces of

these coatings are contaminated, perhaps by oxygen or carbon, after the deposition

process was completed.

4.3.2 STRUCTURAL ASPECTS OF COATED CARBIDE TOOLS

4.3.2.1 CARBIDE TOOL

A similar metallographic section through KC850 is shown in Figure 4.27

and, again, the individual layers of the coating are clearly seen (Figs 4.27 and 4.28).

The grains which were quite small in size were visible in the as polished condition.

The reason for this phenomenon is not clearly understood but it is possible that the

TiC grain boundaries become outlined by the carbon and other debris collected during

the preparation process. However only a small proportion of the TIC layers were

outlined in this fashion and it is not thought that this constitutes porosity detrimental

to its preformance.

The whole substrate of KC850, including the TiN layer, successfully etched

in an acid/water mixture [5% HF, 20% HCL, 20% HNO3 , and 55% water (by

volume)].

Longitudinal sections through the Al 203 coated inserts (Fig 4.28) clearly

revealed the two layers of coating as shown in Figure 4.28 and also presence of an

intermediate layer between the TiC and the substrate. Closer examination of this layer

showed that it is comprised of many crystals nearly 2 microns across, which

appeared to have a similar colour to that of the mixed carbide phase in the substrate

and was often contiguous with that phase.
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Fig 4.27 Longitudinal section through coated carbide
tool (KC850) showing the interface of coated
layers & the substrate.
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Fig 4.28 Longitudinal section through coated carbide
tool (KC91O) showing the interface of coated
layers & the substrate.



The observed wide variations in the constitution of the coating/substrate

interface suggests a poor control of carbon level in the substrate prior to, and during,

deposition of the coatings.

4.3.2.2 STRUCTURE OF PCD AND CBN TOOL MATERIAL

The surfaces of these materials were prepared by mechanical polishing and

reflect the structure of the sintered aggregates.

Syndite polycrystalline diamond consists of fully dense, sintered diamond

powder with bonding between adjacent diamond crystals via a cobalt binder phase.

This cobalt binder plays an important role in the synthesis of PCD at temperatures in

the region of 1400 °C and applied pressure of the order of 60 Kbar. Without the

presence of the cobalt, the intergrowth between diamond grains, which gives

polycrystalline diamond its toughness, would not be as extensive. However, if the

composite is over-heated during tool manufacture, the cobalt will have an adverse

effect on the material's resistance to thermal degradation.

Figure 4.29 is a micrograph of a polished and unetched diamond aggregate.

In this micrograph cobalt phase can be distinguished as the lighter phase.

Figure 4.30 is an aqua-regia etched scanning electron micrograph of a

diamond aggregate at a higher magnification. This micrograph mostly shows the

microstructure of the etched diamond aggregate and also the diamond-diamond

intergrowth and bridging. The cobalt, which is the matrix material, had been leached

out by the etching to reveal the continuous skeleton of the compact. The diamond

particles which form most of the material are not attacked by the etching and are seen

to be quite large and well bonded to each other, both by direct sintering and by

significant diamond to diamond bridging.
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Fig 4.29	 SEM micrograph of polished surface of
aggregate diamond tool.
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Fig 430	 Microstructure of aqua-regia etched diamond
aggregate	 showing	 diamond-diamond
intergrowth and bridging.



Figure 4.31 is a scanning electron micrograph of the etched diamond

aggregate, revealing the close network of fine grained diamond aggregate. The

skeleton shows porosity of some degree, which throws light on the durability of this

diamond aggregate as cutting tools.

Cubic boron nitride is manufactured by using very fine, randomly oriented,

and carefully graded boron nitride particles at high temperature and pressure in the

presence of metal to form a ceramic binder phase. Under these conditions the

composite mass of particles develops into a dense polycrystalline structure. Amborite

is an aggregate of synthetic cubic boron nitride in which the boron nitride particles are

surrounded by a thin case of aluminium nitride in a continuous matrix consisting of

aluminium diboride.

The micrographs of polycrystalline tools are similar to those presented in the

work carried out by Brookes et.al (123). Figure 4.32, is a micrograph of CBN

structure in which some grains have broken into two or more fragments between

which the binder has penetrated. In the regions between the larger distinct CBN

grains, smaller CBN fragments are present. In some cases these are grouped together

in such a way that they are remnants of a larger grains which have completely

shattered during consolidation. Some may be single fragments from the grains that

have otherwise remained intact.

There are two particularly important differences in the microstructure of

material based on diamond when comparisons are made with other tool material

aggregates (ie. tungsten carbide, cermet). Firstly, the particle size is much larger than

the 1-5 microns conm-ionly used in cermets. Diamond aggregates are available with

particles sizes ranging from 10 to 25 microns, whilst the average size of boron nitride

particles is 10 microns. Secondly, junctions are formed by the secondary diamond

growth during the manufacture of this material. This will ensure the formation of a
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Fig 4.31	 SEM micrograph of polished diamond
aggregate tool etched with acid.
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Fig 432	 SEM micrograph of cubic boron nitride tool.



formation of a continuous skeleton of the particle phase and the certainty of its

deformation or fracture when sufficiently high stresses are developed.

In the case of CBN tool material, again the particle size is larger than for

conventional tool materials, eg. 10 microns. But it should be noted that, as in the case

of WC:CO cermets, primary particles are separated by the second phase, in this case

aluminium nitride.
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4.4 TOOL WEAR

4.4.1 INTRODUCTION

The results which were obtained by the aforementioned experimental

techniques are presented in two sections. The first contains the results when

machining with different tool materials and their performance. The second section the

results obtained from the chip produced when machining in conjunction with the

Quick Stop Tests.

4.4.1.1 COATED CARBIDE TOOLS

There is much published evidence that chemical vapour deposition (CVD)

coatings greatly increase the resistance to wear of carbide tools. This evidence has

normally been presented in the form of measurements of the depth of wear on the tool

flank and the depth of crater formed on the rake face of tool (similar to the procedure

used for measuring wear of uncoated tool) as function of cutting speed, or cutting

time for different types of coating. In the present work attention is focused on the

mechanisms which operate to cause wear of the tools, in the main regions shown in

Figure 4.33.

In general, wear in the main rake face contact area is most rapid at its centre.

On the flank face the coatings are first worn through below the tool edge. Deep

grooves are often worn through the coatings at both extremities of the depth of cut

(regions C & D; Fig 4.33). Coatings are first worn through precisely on the tool

edges, with the wear extending along the rake and end clearance faces as cutting is

continued.
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These features of wear, established in previous studies, were essetially

observed in this work. More details of the wear for individual cutting tools are given

in the following sections.

4.4.1.2 CUTTING PERFORMANCE OF KC850

At a cutting speed of 50 rn/mm, measurable flank wear began after 30

seconds of machining the TA48 grade with KC850 tools. The first sign of crater

formation was distinguishable, at 'A' in Figure 4.34, the surface layers coating

having been removed. At the cutting edge, each of the layers in coating were exposed

-- see position 'B', 'C' and 'D' in Figure 4.34. Therefore, there are regions where

the TiN layer is still intact ('B'); the intermediate layer TiCIFiN is exposed ('C'); and

the TiC layer is visible ('D'). The flank face had undergone a mixed wear process

due to diffusion and attrition resulting in both smooth wear and irregular surfaces. On

the flank wear land some faint ridges can be seen running away from the cutting

edge, apparently caused by the removal of TiN and Ti(C,N) particles resulting in

attrition.

After cutting for a period of 2 minutes, the irregular surface of flank land

became completely smooth, exposing the TiN/TiC layer and the deterioration of the

cutting edge sharply increased (Fig 4.35). The failure of the cutting edge took the

form of flaking and chipping as a result of the increased stress in this zone due to

increased cutting forces. The nose deformation and rake face wear were considerably

accelerated with the increase in contact area between the tool and chip on the rake face

(Fig 4.36).

After cutting for 8 minutes the tool was completely worn at both extremities

of the depth of cut. Figure 4.37 illustrates a large notch which formed on the

clearance face of the tool. The surface of this notch was smooth due to diffusion
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Fig 4.35 Chipping off portions from the cutting edge of KC8SO.
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Worn surface on the rake face of KC850.

Fig 4.37	 Formation of notch wear at the clearance face
of the coated carbide tool (KC850).



mechanisms dominanting, but with some evidence of attrition wear. At this stage of

wear the tool would have been rejected due to the rough surface finishing.

After cutting at the speed of 75 rn/mm for 4 minutes, the flank and the rake

face of the tool showed similar patterns of wear to the ones already observed at low

speed (Fig 4.38). The wear of the coating around the cutting edge in region 'C' zone

(Fig 4.33) was much higher than that of those found in region D' (Fig 4.33) and

were formed exclusively by a smooth wear process. The flank and rake surfaces

which were similar in appearance to those described earlier which were worn by a

diffusion/dissolution process . However, in contrast to the earlier case, cracks were

running normal to the chip flow direction. The craters were formed as a conseqence

of undermining of the coating and exposure of large material substrates (Fig 4.39).

Two mechanisms of wear are thought to operate on the rake face of the tool. The

condition of rake face is consistent with wear occuring by the initial removal of the

coating , followed by diffusion wear on the exposed substrate. The other process is

that of attrition wear as a result of large fragments being frequently broken away and

adhering to the underside of the swarf and subsequently carried away along the rake

face.

When cutting TA48 at the speed of 100 rn/mm for 1 minute, the coatings were

found to be rapidly removed. Once the coating was undermined and the substrate

exposed, wear proceeded by a diffusion/dissolution mechanism. Evidence for the

latter can be seen in Figure 4.40, which shows typical tool wear. The figure shows

that the triple coated layers on the rake face have been removed leaving behind the

exposed WC substrate. The TiN and intermediate Ti(C,N) layers were also removed

from the flank face exposing the underlying layer of TiC. Numerous ridges were

seen to be present on the flank face running normal to the rake cutting surface. Close

examination of these ridges at high magnification (Fig 4.41) shows the smooth worn
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Fig 4.38 Wear on the rake face of coated carbide tool
(KC850) as a result of attrition at speed of 75
rn/mm.
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Fig 4.39	 Formation of crater on the rake face of coated
tool (KC850).
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Fig 4.40	 PLucking at the rake face, while the cutting
edge still intact.

Fig 4.41	 Ridges formed on the rake face of KC850 tool.



surface of these ridges. The lighter area of this region indicates exposure of the

substrate while the darker area represents the intact TIC layer.

After cutting for a period of 2 minutes, the wear on the flank face occurred at

rates comparable with those seen on the coated KC9 10 inserts. On the flank face

blister features were observed. Such features (which were approximately

hemispherical in shape) were found to be hollow and were quickly worn through

revealing small voids (Fig 4.42). It was surprising to observe that the coating was

still firmly attached to the substrate in a few places at the cutting edge, with the

original surface topography ie. the 'hills and valleys', still visible (Fig 4.43).

Examination of this tool after 6 minutes cutting shows a crater within which there are

remains of some metallic surface layers (Fig 4.44). Close examination of this crater at

high magnification (Fig 4.45) shows the surface to be smoothly ridged. The pitch of

the ridge is approximately 20 microns, and their surface appearance is consistent with

a fine scale progressive wear of the carbide substrate. This wear is manufect by

parallel scoring in the direction of chip flow. The pitch of the ridges is significant

larger than carbide substrate. This is felt to represent evidence for the ridges being

produced solely by the movement of workpiece material over the tool substrate, and

not by carbide being carried over the tool by the workpiece.

Figure 4.46 shows a magnified view of severe notching at the end of the

depth of cut. This figure also shows some tool material being plucked out at the

notched region. This notch could be responsible for the rapid deterioration of the

surface fmish of the machined workpiece.

After cutting at the speed of 150 rn/mm for 60 seconds all the coated layers

were removed from the rake face of the tool. On the flank face the coated layers of

TiN and Ti(C,N) were removed leaving the TiC layer exposed (Fig 4.47). This

figure shows the regular and smoothly worn surface of flank face, while the rake face
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Fig 4.42	 Regions of exposed WC particles on the flank
face.
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Fig 4.43	 Chipping at the periphery of intact coated
layers.



Fig 4.44 View of coated carbide tool (KC850) with
smooth rake face crater and remains of
adherent metal layer.
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Fig 4.45 Close-up view of rake face crater wear showing
smooth ridges with fine scoring in the direction
of chip flow.



Fig 4.46	 Formation of notch wear at the end of depth of
cut.
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Fig 4.47	 Exposed coated layers on the flank face.



shows the formation of a crater which is worn by mechanisms based on attrition.

Although evidence of smooth light wear was observed at high magnification, the

wear on cutting edge was similar to the previous tool at lower speed (Fig 4.48). This

figure shows the coating at the edge still firmly adhering to the substrate, with a large

region of exposed substrate (white zone) observable along the adjacent flank land.

After 6 minutes cutting, this tool was rapidly worn at both extremities of the depth of

cut (regions 'C' & 'D', Fig 4.33). The wear grooves, which were formed during

cutting, were found to have been formed by a smooth wear process. However, the

wear grooves later widened due to a diffusion/dissolution mechanism. This type of

mechanism is clearly visible on the regions of the exposed substrate lying adjacent to

main contact area (in the vicinity of the side cutting edge), where a fine surface

texture is visible (region 'D'; Fig 4.49). The groove at the outer-most edge shows the

similar fmely worn surface (Fig 4.50).

After cutting for 30 seconds at a speed of 200 rn/mm, the tool was severely

worn on the cutting edge, whilst the flank and rake experienced a fine smooth wear

due to diffusion/dissolution as a result of high temperature operation. Figure 4.51

illustrates a regularly worn surface on the flank land with the absence of all coated

layers. Similarly a smooth surface could be observed in the crater formed on the rake

face, where numerous fine ridges are running parallel to the direction of chip flow.

This worn pattern appears to be a result of a process in which particles from the tool

have diffused into the workpiece material and are carried away in the workpiece or

swarf as they pass over the tool.

When cutting time was increased to 2 minutes, rapid and severe wear was

observed with the nose radius plastically deformed (Fig 4.52). This figure illustrates

cracks which are running normal to the direction of the newly formed workpiece

surface. Mixed particles (mainly WC and TiC) are seen to have moved down from

the flank face away from the cutting edge (Fig 4.53). These large and small
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Fig 4.49	 Formation of notch wear at the end of depth of
cut.
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Fig 4.50
	

Formation of smooth ridges on the rake face of
coated carbide tool (KC850).

Fig 4.51	 Smoothly	 worn	 crater	 surface	 by
diffusion/dissolution wear.
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Fig 4.52	 Severe wear on the flank face.

Fig 4.53	 Magnified view of ridges formed on the rake
face of KC8SO tool.



fragments which have been broken and pulled out of the tool would be due to the

intermittent action between the flank face and newly cut surface.

Figure 4.54 shows two different types of worn surface on the rake face. The

first is surface in which very large fragments of tool coating have been removed in

the region at the end of depth of cut, outside the crater. The surface of this area

suggests that attrition wear was dominant in this region. The second surface is a

classical form of crater wear, where the surface has formed as a result of plucking out

particles adhering to the underside of the swarf and then carried away in the chip flow

direction. This surface is smoothly worn and ridged.

After 4 minutes machining, the cutting was stopped due to imminent

catastrophic failure of the tool and formation of large size notch, at the side cutting

edge (Fig 4.55).

4.4.1.3 CUTTING PERFORMANCE OF KC91O

After cutting TA 48 for 30 seconds at a speed of 100 rn/mm, the Al 203 layer

on the flank face was removed by a smooth wear process, whilst all the coated layers

on the rake face around the cutting edges were removed and dragged along the

surface of the crater region (Fig 4.56). Ridges were observed on the undulation

formed on the rake face which lay parallel to chip flow direction. At some distance

away from the tool edge traces of exposed TiC ridges (ie. the whiter regions) could

be detected.

After cutting for 2 minutes the entire Al203 coating layer on the flank face

was removed from a substantial part of the contact zone thus exposing the TiC layer

beneath. Both layers were smoothly worn (Fig 4.57 at 'A') on the flank face, yet the

mixed coating of Al 203/TiC is still present on the cutting edge (Fig 4.57 at 'B'). The
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Fig 4.55	 Notch	 surface	 wear	 indication	 of
diffusion/attrition.
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Fig 4.56	 Smoothly worn flank face of KC91O tool.
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Fig 4.57	 Removal of coated layers from the cutting edge.



exposed TiC coating layer on the flank face is still attached to the substrate, even

though slight deformation of the tool edge has occurred.

After cutting for 5 minutes the entire cutting edge experienced severe wear

becoming very blunt. Figure 4.58 shows the severity of this damage on the rake face.

As the cutting time was extended to 7 minutes, the substrate which had previously

been exposed showed a fine smooth surface with WC grains on the rake surface

surrounding a cluster of tool piece. A large piece of tool material has been removed

from the rake face of the tool near the cutting edge (Fig 4.59). The tool particles were

then dragged along the rest of the rake face where the contact is made with the chip

during the cutting operation. The cutting was then continued for a further 1 minute,

during which time the crater surface developed a rough surface in association with

cracks which ran parallel to the tool edge. Typical of these cracks is the one shown in

Figure 4.60.

After machining for 9 minutes the trend towards notch wear became far more

noticeable and as a result, the flank face was found to be extensively deformed and

the tool failed catastrophically (Fig 4.61). This notch has appeared on the side cutting

edge of zone 'C' (Fig 4.33). Within the surface of the smoothly worn notch, the

cobalt phases and protruding mixed carbide grains were also seen. Thus, the worn

tool rake and flank surfaces were consistent with those which are generally accepted

to be formed due to atomic diffusion of the WC and cobalt phases (2, 143).

Upon increasing the speed to 150 rn/mm the wear of the tool became visible

after machining for only 30 seconds. The wear which developed on the rake face

caused the surface hills to become smoothly worn, whilst the valley regions in this

zone were slightly worn. Examination of wear zones after cutting with the same tool

for a further 30 seconds revealed that both hill and valley were worn through, and
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Plucking about to take place on the rake face of
carbide coated tool.

•1

p.	 /-ck	 •..
._$	

:. •.

...,,—'	 /	 ''	 •,

J.

- -

-

'.:

__,iituipIIP;?'1 	...-	 " 

,*. .

4

Fig 4.59	 Crater smoothly worn with the remains of
adherent metal layer.
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Fig 4.60
	

Crack on the worn rake face of coated carbide
tool (KC91O).

Fig 4.61	 Notch wear produced on the flank face KC91O.



plucking out of the coated layers at the tool edge had taken place (Fig 4.62).

Furthermore, the exposed substrate could easily be seen in certain regions.

On cutting with this tool for a further 1 minute the flank face was smoothly

worn and the coated layers were gradually worn through on the flank face leaving

behind the exposed substrate (Fig 4.63). This photograph shows severe and irregular

wear on the rake face, especially near the cutting edge. Also seen is a piece of the

coating (A) which has been plucked out and moved towards the back of rake face, in

the area where the crater formation can be distinguished. It was notable that, within a

limited area along the rake face, the coating has been practically unworn and the

original topography is still intact.

Upon examining this region of the rake face of the tool after cutting for a

further 4 minutes, the crater was seen to be smoothly worn (probably as a result of

dissolution) compared to that of relatively unevenly worn flank land (Fig 4.64).

After the total machining time was increased to 7 minutes, it was found that the shape

of the tool edge was further deformed and the size of the wear notch (Fig 4.65) at the

side cutting edge was far more pronounced than with the similar tool at lower speed.

As the cutting speed increased to 200 rn/mm, so did the rate of tool wear. The

coating was removed and nose deformation and the flank wear became measurable

after 30 seconds accompanied by an increase in crater size (Fig 4.66), relatively

higher than the one noticed previously for the same period cutting time at the lower

speed (Fig 4.56). Wear increased when cutting was continued for another 30

seconds, and a close examination of the crater region indicated that numerous ridges

existed running parallel to the chip flow direction. Although the worn surfaces on

both sides of the crater rake face appeared similar, the region adjacent to the leading

edge experienced severe wear (Fig 4.67). After increasing the total cutting time to 2

minutes it was not surprising to observe that the tool became heavily worn in several
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Removal of coated layers from the rake face
surface.
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Fig 4.63	 Smoothly worn flank face with plucking at the
rake face.
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Fig 4.64 Smoothly worn crater surface by
diffusion/dissolution with remains of adherent
metallic layer.

Fig 4.65	 Enlarged view of wear at the end of the depth
of cut.
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Fig 4.66	 A severely worn crater surface on the rake face
of KC91O carbide insert.
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Fig 4.67 A worn flank face of KC91O carbide insert
after machining for 30 secs at speed of 200
rn/ni in.



places in the crater zone with elongated fragmentation on the rake face in the direction

of chip flow (Fig 4.68). An enlarged crater was observed on the rake face of the tool

after cutting for a further 3 minutes. A magnified view of the crater showed an area

which had smoothly worn as the result of diffusion wear at high temperatures (Fig

4.69). From this micrograph it can be seen that a large piece of tool debris has been

removed from the rake face, ready to be swept away by the next cut. The notch at the

side cutting edge showed an increase in size with prolonged cutting time (total of 4

minutes). Figure 4.70 shows the region in which tool material has been plucked out

from the notch zone. The exposed substrate within the wear notch revealed the mixed

crystal phase which stood out prominently on the notch surface. An enlarged view of

this area is shown in Figure 4.71.

After cutting TA48 with KC91O at a speed of 250 rn/mm, the mechanism of

wear and the nature of the worn surface were directly comparable with those

observed at the lower cutting speeds but the rate of wear accelerated. Figure 4.72

shows wear on the flank face and particularly noticable are the numerous voids

produced on the substrate of the tool. At a point such as 'A' in this figure it is

apparent that a void is about to be produced. Figure 4.73, which should be compared

with Figure 4.68, illustrates smooth diffusional wear on the rake face together with

firmly adherent workpiece material.

4.4.1.4 CUTTING PERFORMANCE OF K68

At the speed of 50 rn/mm after 6 minutes, an uneven wear pattern was

observed on the flank face (as a result of a increase in cutting forces), which then led

to the sudden failure of the tool by fracture as cutting continued for further 1 minute.

Figure 4.74 shows a crack produced under these conditions. Fragments of the tool,
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Fig 4.68
	

Formation of grooves on the rake face running
parallel to chip flow direction.
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Fig 4.69	 Smoothly worn rake face with evidence of
plucking.



Fig 4.70
	

Enlarged section of notch wear on the flank
face of the KC91O insert.
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Fig 4.71	 Enlarged view of smoothly notch wear surface.
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Fig 4.72	 Appearance of viods on the flank face of KC91O
insert machining at high speed.

Fig 4.73 View of KC91O carbide insert with smooth
ridged crater surface & remains of adherent
metal layer.



plucked out during cutting, were seen towards the bottom of the worn region on the

flank face (ie. 'A' on Fig 4.74).

Figure 4.75 shows the K68 tool after 4 minutes cutting at the speed of 75

rn/mm, showing the flank face surface has worn unevenly developing equal sized

grooves. The light coloured particles are WC and have been dragged away off the

cutting edge.

As the cutting time increased for a further 4 minutes, the flank face was

severely worn. At this point the tool life was terminated as the rake face crater

intersected with the grooves formed at the cutting edge. By this time the tool began to

plastically deform and chipping near the tool edge, at the nose radius, took place (Fig

4.76).

In Figure 4.77 grooves or ridges can be seen on the worn flank face and

holes are apparent in the zone close to the grooves where the WC particles were

plucked out due to removal of either microscopic grains or aggregates of them.

Severe plucking out has occurred on the nose radius resulting in several ridges

running away from the cutting edge. The nature of this wear surface is consistent

with a high level of adhesion and partial seizure.

A significant crater was observed on the rake face of the tool at a speed of 100

rn/mm after machining for 4 minutes. A considerable amount of the workpiece

material was firmly attached to both the crater and flank wear lands. In addition, the

bottom of the crater is grooved presumably by plucked out tool particles as they were

swept away in the formation of the chip. Chipping may have taken place as a result of

K68 hard tool particles which were plucked out and moved into the tool/chip

interface. Figure 4.78 illustrates typical removal of hard particles into the worn areas

at the bottom of the crater zone.
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Fig 4.74 Crack on the worn flank face of K68 after
cutting at speed of SO rn/mm. Note that the
cutting edge is at the top of the micrograph.

Fig 4.75	 Showing WC particles detached from the
cutting edge on to the flank face.



Fig 4.76	 Enlarged section view of flank face wear.

Fig 4.77	 Plucking Off microscopic particles and
formation of ridges on the flank face.



Fig 4.78a	 Crater surface smoothly worn as a result of
diffusion/dissolution wear.
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Fig 4.78b	 General view of tool wear with evidence of
plucking.



The worn rake face of K68 after machining at the speed of 100 rn/mm for a

further 2 minutes was not significantly different to Figure 4.78a, but here (Fig 4.78b)

the worn rake face has a typical plucked appearance and a few clusters of tool

particles standing prominently ready to be plucked out are evident. The plucked out

particles have gathered at the crater formed around the tool nose from where they

descend through the notch via the tool nose into the interface between the tool and

work material.

As the cutting speed increased to 125 rn/mm for 4 minutes, so did the flank

wear and the extent of edge deformation. In addition, pronounced notching wear

became evident. Figure 4.79 shows this effect and also evidence of tool particles

moving out of the plucked zone on the flank face and into the rake face, with signs of

severe deformation and wear. When the cutting time was increased by a further 1

minute the rate of wear also increased rapidly (Fig 4.80). Both the rake crater and the

flank wear land were then rapidly developed and grooves were produced at the both

extremities of the depth of the cut (Figs 4.81 & 4.82). These figures show the cutting

edge intact which suggests that the chip formed some distance away from the cutting

edge. High magnification of the notched wear of Figure 4.80 revealed the surface

appears to have be worn by a mechanism of diffusion/dissolution (Fig 4.83).

Under this condition, particularly smooth crater wear occurred on the rake

face at the cutting edge of the uncoated carbide tool (Fig 4.84). Figure 4.84 is an

enlarged view of the crater showing the smooth wear on the rake face connecting the

flank face to form a joint where the crater meets the wear notch. The smoothly worn

surfaces are the result of dissolution and diffusion of the tool material into the

workpiece material.

An enlarged view of the rake face of the K68 tool at the cutting speed of 150

rn/mm after 4 minutes shows loosely bound tool particles which are sandwiched
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Fig 4.79	 Development notch wear at clearance face with
chipping at the cutting edge.

Fig 4.80	 Smoothly worn surface ridges within the notch.
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Fig 4.81
	

Development of notchs at the both extremities
of the depth of cut on the flank face.

Fig 4.82 Formation of notch wear at the end of the
depth of cut with evidence of plucking of
microscopic tool particles on the flank face.



Fig 4.83	 Enlarged view of smoothly worn of notch
surface.

Fig 4.84	 Smoothly worn crater surface evidence of
diffusion/dissolution wear.



between the tool rake face and fast-moving swarf. These particles mostly stick at the

under side of the chip surface and are swept along the rest of the rake face. They

remain in contact with the swarf during the cutting until deposited at the trailing edge

of the crater (Fig 4.85). This type of wear is accelerated by the high temperatures

which are generated during high speed machining. Further machining with this tool

could lead to enlargement of the crater as the trailing edge breaks down further. The

premature failure of the tool under these conditions may be the reason for the poor

surface finish which has been recorded at high speed (Figs 4.160 and 4.161).

As the cutting time was increased by further 1 minute, the crater became

somewhat broader and deeper but the grooved surface remained similar in appearance

(illustrated in Figure 4.86). It is interesting to note, by comparison with Figure 4.84,

that cutting at this higher speed deepens and extends the crater, but that the

pronounced notching formed at 125 rn/mm was not developed.

As the cutting speed was increased to 200 rn/mm, the crater was again

broadened and deepened within for 2.5 minutes (Fig 4.87), and the substrate was

exposed to revealing a smooth surface. Further increase in cutting speed resulted in

futher increase in flank wear with massive adhesion of workpiece material to the

flank face. Figure 4.88a shows flank wear of K68 at a speed of 250 rn/mm and after

machining for 1 minute. The wear on the flank face was extremely uneven rough and

extensive. Plucking out of the tool material was observed on the worn flank face and

smooth grooves were also produced in this zone.

When cutting time was increased to 2 minutes, a very large notch was

developed (Fig 4.88b). At this point, the tool was found to be severely deformed

and the surface finish of the workpiece had completely deteriorated (see Fig 4.160).
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Fig 4.85 Crater surface smoothly worn within remains
of loosely bound tool particles at the bottom of
the rake face.
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Fig 4.86	 Rake face crater smoothly ridged by
diffusion/dissolution wear process.



Fig 4.87
	

Crater rapidly broaden & deepen while
machining at high speed (200 rn/mm).
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Fig 4.88a	 Rapid wear on the flank face of K68 insert with
appearance of plucking.



4.4.1.5	 CUTTING PERFORMANCE OF CBN

a) CBN WITH NORMAL ORIENTATION

The S.E.M. examination of the tool used for cutting at a speed of 50 rn/mm is

presented in Figure 4.89, which shows the rake face and cutting edge of an Amborite

tool after cutting for 3 minutes. The worn surface exhibites severe wear, suggesting

that in the wear region a high normal stress was present. The rake and flank face

show numerous grooves with an approximate width 10 microns. This suggests that

these grooves were formed as a result of particles from the cutting edge adhering to

the underside of swarf (possibly due to intense contact at the interface), and

subsequently sliding over the crater.

Figure 4.90 shows the flank wear surface of the CBN tool, revealing many

grooves and an appreciable amount of adhered workpiece as verified by SEM/EDX.

Upon further cutting for 6 minutes, the CBN tool has undergone severe

chipping wear at the side of the cutting edge in a scalloped form (Fig 4.91). This

scalloped type of rake wear is seen in diamond tools (120), but it is rather unusual in

CBN tools. The worn zone appeared to be abraded and the discontinuous, scalloped

form of wear can be seen clearly in Figure 4.91. As the cutting time increased, so did

the rate of wear (Fig 4.92).

A large amount of wear took place on the rake face with prolonged cutting (ie.

8 minutes) and a relatively rough and chipped cutting edge was formed. Evidence of

fragmentation was seen from where the tool particles had been removed. The worn

rake surface exhibites regions which have been worn consistent with a process of

etching and attrition wear (Fig 4.93). The process of etching wear involves an

increased rate of chemical attack of those highly dislocated areas which are

continuously developed on the rake face and their subsequent removal as oxides
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Fig 4.88b	 Formation of large size notch wear at the flank
face.

Fig 4.89	 General view of cubic boron nitride tool wear.



Fig 4.90	 Enlarged view of flank face wear.

Fig 4.91	 Chipping at the cutting edge of cubic boron
nitride insert.



a----

Fig 4.92	 View of tool wear on the rake face of cubic
boron nitride tool.

Fig 4.93	 The rake surface Amborite exhibit regions
worn by a process of etching & attrition wear.



(175-176). This chemically based process tends to produce a smooth surface (region

'A'). Attrition shows characteristics of a wear process in which microscopic

fragments of tool material are torn away adhering to the rake face (region 'B') and to

the swarf. Further evidence to support this suggestion is given later (Fig 4.153).

As the cutting time was raised to 10 minutes, the tool completely failed at the

cutting edge (Fig 4.94).

Examination of tool inserts after cutting at a speed of 100 rn/mm, revealed a

pattern of wear similar to that observed with PCD tools and described in the next

section, where a metallic layer was seen on the rake face of the tools. Figure 4.95

shows the rake face of a CBN tool, after 2 minutes of cutting, which is entirely

covered with a thin metallic layer. Energy dispersive X-ray (EDAX) analysis of this

layer has shown that it contains the components of the titanium workpiece alloy.

These layers did not prove to be strongly bonded to the top surface of the tool.

Furthermore, their formation is time dependent. After 4 minutes of machining, the

layer was found to be adhered to the underside of the swarf, and subsequently this

process of uneven wear in the contact region between tool/chip, which contributed to

the wear of the tool by attrition (Fig 4.96), became severe. Prolonging the machining

time to 6 minutes revealed a scalloped form of wear on the rake face of the tool where

numerous ridges have developed into the flank region (Fig 4.97).

After cuuing for 8 minutes, a classic form of crater was formed on the rake

face of the tool, similar to the crater formed on the carbide tools. The process of wear

leading to formation of this crater is thought to involve dissolution of tool material by

diffusion into the adjacent zone of the chip and workpiece (177), (Fig 4.98). Again

plucking out of the tool material can also be seen to have occurred on parts of the

worn rake face.
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Fig 4.94	 Plastic deformation of cubic boron nitride tool
at the cutting edge.

Fig 4.95	 Deposited metallic layer on the rake face of
cubic boron nitride tool.
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Fig 4.96	 Evidence of chipping at the cutting edge of
cubic boron nitride tool.
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Fig 4.97	 Worn surface of flank & rake faces of
Amborite machining at speed of 100 rn/mm.



Figure 4.99 shows the condition of the rake face of a CBN insert after cutting

for 10 minutes. Although gross wear of the insert has occurred due to fracture, it is

still possible to clearly see part of a smooth worn crater on the rake face. Such wear,

which is clearly similar in form to that of carbide tools, was most likely due to

dissolution wear. The combined effects of the flank and rake face wear gave rise to

an unsupported section of the cutting edge which lead to subsequent plastic

deformation of the tool with increased cutting time (Fig 4.100). At this point the tool

was rejected due to fracture after 11 minutes of cutting.

Figure 4.10 1 illustrates an Amborite cutting tool which has been used for the

machining of the titanium alloy, at the speed of 150 rn/mm for 2 minutes. Several

layers of workpiece material have been deposited on the rake face, and the surface of

these adhered layers is smoothly ridged as a result of tool fragments which have been

chipped out of the cutting edge and travelled through the crater zone.

The edge depression continued to increase with time and the build up material

was greatest in the vicinity of nose radius (Fig 4.102), whilst the flank land is evenly

worn. Higher magnification of worn regions on the rake face, illustrate the adherent

layer is ready to be moved by the next cut and, beneath it, the surface is smoothly

grooved (Fig 4.103). An increase in cutting time led to the introduction of several

types of wear. Essentially three regions (Fig 4.104) on the rake face of this tool were

identified as follows:

Region 'A' spattered with molten material from the workpiece. This region is

extremely smooth as the result of the diffusion/dissolution wear process.

Region 'B' in which an adhered layer covered the entire cutting edge. The

surface of this layer is smoothly worn (not as smooth as region 'A'), within it

there are numerous fine streaks running in the direction of chip flow.
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Fig 4.98	 A plucked area on the rake face of Amborite
within the smooth crater surface.
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Fig 4.99	 Close-up views of rake face crater wear of cubic

boron nitride tool.
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Fig 4.100	 Chipping off portion of the rake face of cubic
boron nitride tool.

Fig 4.101	 Smoothly ridged surface of adhered layers on
the rake face of Amborite tool.
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Fig 4.102	 Built up material in the vicinity of cubic boron
nitride tool.
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Fig 4.103	 Smoothly ridged surface beneath the adhered
layer on the rake face of Amborite tool.



Region 'C', a fluted surface in the crater similar to the wear observed in

carbide tools. No evidence of the adhered workpiece material was found.

The tool was removed after 10 minutes machining in order to avoid

catastrophic failure by fracture. Based on the earlier experience, this type of wear will

certainly lead to complete failure of the tool.

As the cutting speed was increased to 200 rn/mm for 1 minute, cratering

became more evident. Temperatures in excess of 1000 °C had apparently been

produced over part of the tool/chip interface during the machining. A white-etching

region close to the cutting edge, could be detected (Fig 4.105). In this figure the

crater zone is smoothly worn, suggesting a mechanism of diffusion/dissolution is

active at this region. Furthermore, build up of material in small quantity could be seen

adhering to the cutting edge. Upon increasing the machining time to 6 minutes, it was

found that the crater slowly broadened and deepened, while the flank face was evenly

and smoothly worn. A similar smooth type of wear was observed in the crater zone

(Fig 4.106). This figure illustrates a similar pattern of wear to that of the carbide

tools, where the crater area is smoothly grooved.

Figure 4.107 shows a details from Figure 4.106 at higher magnification. The

tool particles could be seen on the rake face which have been removed from the

region close to the cutting edge. These particles were loosely attached and their

periodic removal by adhesion to the chip has contributed to the wear of the tool by

attrition. It might be noted that edge retention was surprisingly good despite

significant wear of both the rake and flank faces.

The CBN tool was rejected after machining for 3 minutes at a speed of 250

rn/mm. A micrograph of the worn tool suggests that the plastic deformation of the
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Fig 4.104	 Rake face of cubic boron nitride tool showing
regions of wear.

Fig 4.105	 Smoothly worn rake face of cubic boron nitride
insert evidence of diffusion/dissolution wear.
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Fig 4.106	 Worn surface of flank & rake faces of cubic
boron nitride tool.

Fig 4.107	 Close-up views of flank & rake face wear of
cubic boron nitride tool.



cutting edge led to the catastrophic failure. Furthermore, it is possible that large

particles of tool were being removed mechanically at the contact area (Fig 4.108).

b) MODIFIED CBN TOOL

The remarkable behaviour of the flank face of the Amborite tool in the earlier

quasi-static adhesion tests prompted examination of its use as the rake face of a tool

during the cutting process.

Upon using the modified Amborite tool (CBN2), for machining titanium alloy

at the speed of 100 rn/mm, the mechanism of wear was seen to be very different from

that of normally oriented (CBN1) tools. Figure 4.109 is an SEM micrograph of the

cutting tool which has been used for the duration of 2 minutes and should be

compared with the corrosponding micrograph in Figure 4.95. There is hardly any

wear established on the rake face and a relatively sharp cutting edge is retained with

no evidence of fragmentation or chipping.

The overall rate of wear was far less than that of the normal CBN tool under

similar cutting conditions. Consequently, the cutting time required to produce an

equivalent amount of wear was much longer. After 6 minutes cutting, the crater

region was still intact, whilst on the flank face, adhered layers were developed in the

vicinity of cutting edge (Fig 4.110). These adhered layers were found to be unstable

and their periodic removal by adhesion caused a deterioration in the surface finish of

the workpiece (Fig 4.160).

A wear groove formed around the cutting edge after 12 minutes is shown in

Figure 4.111. It seems that this wear notch was caused by fracture. Although the

surface of the wear had formed at a relatively large flank land, the nose radius was
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Fig 4.108
	

Plastic deformation at the cutting edge of cubic
boron nitride tool.
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Fig 4.109	 Minimum wear observed on the modified cubic
boron nitride insert.



Fig 4.110	 Metallic layer on flank & rake face of tool near
cutting edge.
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Fig 4.11	 Wear grooves formed around the cutting edge
of modified tool wear.



found to be smoothly grooved (Fig 4.112). The extent of wear never approached that

of the normally oriented CBN1 tools (see Fig 4.98 for a comparison).

Neither the flank face nor the rake face of the modified CBN tool showed any

appreciable grooving wear after 16 minutes cutting. There was no indication of

cracking. Furthermore, there was only little evidence of severe wear upon increasing

the cutting time to 18 minutes (Fig 4.113). On closer examination at higher

magnification (Fig 4.114) it was evident that the present flank face (that is normally

the rake face) had undergone greater wear than the rake face. It also shows less

resistance to attrition wear. The difference in behaviour of these two faces may well

be attributable to adhesion as indicated by the quasi-static method described in earlier

section.

The workpiece surface finish obtained with the CBN2 tool was extremely

rough and deteriorated during all the cutting procedures. Nevertheless, the recorded

tool life was twice that of the normally oriented cubic boron nitride. This unusual

orientation-dependent behaviour of polycrystalline CBN material has not been

reported previously. However, manufacturing processing involving hot pressing

tends to induce a degree of preformed orientation in the resultant microstructure

which may then lead to anistropic effects.

4.4.1.6 CUTTING PERFORMANCE OF PCD TOOLS

Figures 4.115-4.117, illustrate the PCD used to cut titanium alloy at the speed

of 50 rn/mm for a duration of 10 minutes. These figures, whilst representing the

condition when disengaging the tool, consistently indicate the high level of adhesion

between the workpiece and the tool that is developed under these particular

conditions. Figure 4.115 shows the most extreme case of build up with the

workpiece material smearing over the relief surface. Figure 4.117 illustrates the
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Fig 4.112	 General view of CBN modified toolwear.
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Fig 4.113	 View of surface worn of modifIed CBN insert.
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Fig 4.114	 Severe wear observed after 18 mins cutting
with CBN modified tool at speed of 100 m/min.

Fig 4.115	 Build up of workpiece material smearing on the
relief surface of PCD insert.
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Fig 4.116	 Irregular wear on the flank face of PCD insert
machining at low speed (50 rn/mm).

I
-

C:

Fig 4.117	 Formation of smoothly ridged deposited layer
of workpiece on the rake face of PCD insert.



formation of a metal layer of workpiece adhering to the rake face of the tool. This

layer occurred in the area of engagement of tool/chip interface.

After cutting for 20 minutes, fracture occurred at the cutting edge and the

formation of cracks running parallel to the direction of swarf can be seen in Figure

4.118.

At the speed of 100 rn/mm the PCD tool showed a similar wear pattern to the

one earlier observed at lower speed. Figure 4.119 shows the built-up material of

workpiece smearing on the rake face of the tool, and this material has completely

covered the edge clearance face. Higher magnification of this built-up material

revealed that it comprised adhered layers deposited on top of one another (Fig

4.120). Upon further cutting for 16 minutes, the size of the layers was seen to have

increased (Fig 4.121).

As a result of increasing the cutting time by a further 2 minutes, the built-up

layers were removed from the top surface leaving behind a very stable and thin

adhered layer. Figure 4.122 shows such an adhered layer of titanium alloy

workpiece on the rake face. From this figure it can be seen that the surface of this

layer becomes very smoothly grooved. This is probably the result of particles

breaking loose from the metal layer at the cutting edge, adhering to the underside of

the chip, and being dragged away in the direction of swarf flow. A further 2 minutes

cutting results in breaking of the adhered layer and removal of tool material from the

cutting edge. Examination of the worn surface at higher magnification (Fig 4.123)

indicates that small scale chipping has taken place at the edge of cut.

A significant change in behaviour became obvious after cutting for a total of

22 minutes. Cracks were developed on the face of brazed WC material substrate,

initiating normal to the cutting edge, and the size of these cracks increased with

cutting time. Figure 4.124a illustrates the formation of these cracks on the flank face
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Fig 4.118 Development of cracks running parallel to the
direction of chip flow on rake face of PCD
insert.

Fig 4.119	 Formation of protective layer on the rake face
of PCP insert.
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Fig 4.120	 Further increase of protective layers on the
cutting edge of PCD insert.
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Fig 4.121a	 Formation of adhered layers deposited on rake
face of PCD insert at speed of lOOmJmin.
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Fig 4.121b	 Close-up view of Fig 4.121a.
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Fig 4.122	 Formation of thin deposited layer of workpiece
on the rake-face of PCD insert.
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Fig 4.123	 Chipping at the cutting edge of PCD insert
machining at speed of 100 rn/mm.

Fig 4.124a	 Development of cracks on the flank face of
brazed WC material.



of brazed carbide which have been unable to penetrate through the diamond layer

situated above it, and are deflected along the interface. The mechanism responsible

for these cracks is considered to involve diffrential thermal expansion. This crack

formation mechanism rapidly increased at the higher temperature, and the evidence

for this hypothesis is collated and discussed in the following section.

After machining for a total of 24 minutes at the speed of 100 rn/mm, the

cracks which were earlier seen on the WC brazed material have penetrated through

the diamond layer, running towards the cutting edge (Fig 4.124b). At this point it

was decided to stop the cutting, even though the tool still could be used.

Profile traces across the flank face of the tool showed no apparent tool wear

after 5 minutes cutting at the speed of 150 rn/mm (Fig 4.125). A micrograph (Fig

4.126) of the rake face illustrates an adherent layer of titanium alloy which appears to

be covering the entire surface (Fig 4.126). As the cutting proceeds up to 9 minutes,

the sharp edge of adhered layer becomes flattened on the rake face (Fig 4.127).

Furthermore, small fractures of the tool have occurred close to the nose radius. After

extending the machining process a further 8 minutes, there was no significant

increase in wear of the flank or rake face, apart from the crack development on the

flank face (Fig 4.128). No doubt this cracking was initiated in the brazed material and

then extended to the diamond layer as a result of thermal effects. The cracking is

running normal to the chip flow direction in a wavy line and it could be due to the

crack propagating between the primary particles. From this time onwards, crack

development was relatively rapid. Figure 4.129 shows multiple cracks on the flank

wear surface 50 microns and 100 microns below the cutting edge. Chipping has

taken place on the end clearance face edge (Fig 4.130). Higher magnification of the

worn surface reveals that a large portion of tool/workpiece has been plucked out of

the cutting edge (Fig 4.13 1).
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Fig 4.124b	 Penetration of cracks from brazed WC
material into the PCD layer.
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Fig 4.125 Formation of protective layer on the rake face
of PCD insert machining at speed of 150
rn/rn in.
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Fig 4.126
	

Deposition of adhered layers covering the entire
surface of the rake face.
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Fig 4.127 Section views showing the PCD insert
machining at the speed of 150 rn/mm after 14
mins cutting.
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Fig 4.128
	

Development of crack on the flank face of PCD
insert.
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Fig 4.129	 Formation of cracks on the flank face parallel
to the cutting edge.
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Fig 4.13 1	 Close-up views of PCD insert shown in Fig
4.130.



After cutting for a total 20 minutes, a large portion of tool has been plucked

out in the area where cracks have previously existed. This wear phenomenon is a

result of widening of the crack (high temperature, high speed) and thereby weakening

of the edge, followed by subsequent fracture (Fig 4.132). Examination of the wear

surface at higher magnification showed evidence of relatively smooth wear (Fig

4.133).

Upon increasing the cutting speed to 200 rn/mm, similar wear to that

observed earlier at the lower speed developed. Adhered layers of workpiece material

were deposited on the rake face of tool. After 8 minutes cutting, the adhered

workpiece layers on the top surface were flattened, and close examination of this

region showed the presence of fine scale grooves which ran parallel with the direction

of chip travel (Fig 4.134).

The adhered layers thickened and became more stable as a result of prolonged

cutting time (total 16 minutes). Figure 4.135 is a micrograph of these layers and

illustrates a fine surface with slight development of grooves.

After 20 minutes cutting, a fracture wear surface formed around the end

cutting edge in the vicinity of tool nose radius, this was found to have formed by

three distinct wear processes (Fig 4.136). The first zone indicated by 'A' was quite

smoothly worn, while the region in zone 'B' is smoother than that of 'A'. The third

zone 'C' showed a similar form of wear produced by attrition This type of wear

could be clearly seen in Figure 4.137. Within the worn area a large portion of

workpiece material could be seen ready to be lifted off by the next cut. Furthermore,

fragments of workpiece material were seen adhering to the exposed substrate. At this

stage of cutting, the tool was withdrawn in order to conserve the limited amount of

workpiece material.
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Fig 4.132
	

Evidence of fracture at the cutting edge of PCD
insert.
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Fig 4.133 SEM image of fractured surface at high
magnification showing evidence of smooth
wear.
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Fig 4.134	 Presence of fine scale ridges on the rake face
running parallel to the chip flow direction.
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Fig 4.135	 Evidence of smooth wear on the rake face of
PCD insert.
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Fig 4.136	 Micrograph showing regions of wear on the
rake face of PCD insert.
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Fig 4.13 7	 Enlarged view of Fig 4.136.



The overall rate of wear at the speed of 250 rn/mm was slightly greater than at

200 rn/mm, and consequently the cutting times required to produce an equivalent

amount of wear were shorter. After 3 minutes cutting, a smooth topography was

visible in the crater zone, where workpiece material is adhered to form a protective

layer (Fig 4.138).

After cutting for 10 minutes, the tool produced identical patterns of wear to

that observed on a tool at lower speed, where the previously formed metallic layers

flattened over the entire contact area (Fig 4.139). The layers of workpiece material

have elongated in the direction of chip flow. Further increases in cutting time (total 17

minutes) lead to the removal of the adhered layer with fractured particles of tool and

workpiece being dragged away along the rake face (Fig 4.140).

Again it was decided to terminate the cutting procedure after 22 minutes

cutting in order to conserve the limited amount of workpiece and to avoid the failure

of tool by fracturing since numerous cracks were developed in the brazed material

(Fig 4.141).

129



Fig 4.138 Formation of deposited layers on the rake face
of PCD insert machining at the speed of 250
rn/rn in.

FIg 4.13 9	 Flattening of deposited layers on the rake face
of PCD insert.
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Fig 4.140	 Smooth wear observed on the rake face of PCD
insert.
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4.5 QUICK STOP RESULTS

4.5.1 INTRODUCTION

The majority of quick stop samples were taken whilst cutting titanium alloy at

a speed of 100 rn/mm with carbide and polycrystalline inserts. Quick stop swarf

samples were examined in addition to the swarf collected during the normal

machining.

Both quick stop samples and conesponding chip specimens were examined

by S.E.M and optical microscopy so that adhesion conditions obtaining in the

chip/tool interface could be assessed. Furthermore, special attention was paid to the

nature of chip segments.

4.5.2 EXAMINATION OF CHIPS PRODUCED WHEN
MACHINING TA48

In this work many representative chips were examined to establish a possible

explanation of tool wear mechanisms by the form and flow of the chip. All but one

chip sections illustrated in this work were produced with the quick stop technique

(see Chapter 3). The remaining one (as shown in Figure 4.142) was obtained by

sectioning pieces of swarf, produced during normal machining. It was not easy to

produce good quick stop chip specimens when cutting titanium alloys. The chip had

a tendency to remain adhered to the tool and be torn away from its root on the

workpiece. The chip sometimes also became detached from the tool. In some cases, it

was necessary to repeat the tests, because of these problems.

When machining titanium alloys, samples of the chips were produced by

sawing to measure the average thickness. The thickness of chips was measured only

approximately due to their complex curly forms. A second characteristic of the
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titanium alloy was the saw-tooth shape, especially visible at the top of the chips. The

estimation of the thickness of the chips was carried out by averaging several values

obtained from the measurement of chips with a micrometer. This method did not

seem to be very accurate, with the thickness varying between 0.2 and 0.3 mm (0.25

mm being the most frequent value). There is however, a tendency for chips to

become slightly thinner with increasing cutting speeds. The chips formed by PCD

were curly and long, and remained the same throughout the cutting ('A' at Fig

4.143). While using carbide and CBN tools the chips remained straight ('B' and 'C'

at Fig 4.143), with only a small amount of curling at low cutting speeds, in terms of

the speed range of the titanium alloy being machined. At higher speeds (100 rn/mm),

the curl was still slight, but the swarf took the form of the chip, curling away from

the tool nose. With a further increase in machining speed for the titanium alloy, the

chips tended to be tangled in form and, at very high speeds above 200 rn/mm, they

became flat and straight. Reasonably flat and straight chips were again subjected to

thickness measurement by using optical microscopy. This method gave similar values

to those obtained with the micrometer. The general chip form is segmented

comprising narrow bands of intense shear between which there is deformation of the

structure, such that the Alpha (a) grains are elongated in the direction of chip flow

(Fig 4.144).

Quick stop experiments conducted on all of the tool inserts used in this work

caused the tips to fracture such that the cutting edge and part of rake face of the tool

remained bonded to the chip underside (Figs 4.145-4.148).

The quick stop experiments confirmed that bonding across the majority of the

chip/tool interface was essentially similar for carbides (coated and uncoated) and

CBN tools. Metallographic sections of the carbide and CBN tools revealed a

continuous segmented chip form, with a well developed flow zone adjacent to the
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Fig 4.142	 Section through forming titanium alloy chip,
showing saw-tooth type of chip mode.
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Fig 4.143	 Chip shapes produced during machining of
titanium alloy.



chip underside (Figs 4.144, 4.145c, 4.146b and 4.147b). The bond strength across

the chip/tool interface is less for the polycrystalline insert than for the carbide tools.

Examination of the newly-formed workpiece surface which had been in

contact with the flank face revealed a rougher surface than that of the PCD insert

quick stops. There was obvious evidence of flank contact area with carbide tools

(Figs 4.145b and 4.147b).

A normal section cut back to half the depth of cut from the quick stop between

CBN and titanium alloy, revealed that a substantial part of the chip flow zone had

been removed by the separation of the tool, confirming that separation between chip

and tool occurred at the interface rather than above it. Evidence of loss of workpiece

material from the secondary new surface was seen, which indicates a strong bonding

between flank face and the workpiece (Figs 4.147b,c).

The PCD chips were continuous but they fractured with little area of contact

between the tool/chip since the contact length remains at a low level. Thus the

machining will take place at low energy consumption, and from the practical

machining point of view, PCD is probably the most satisfactory tool material. It

machines with low energy consumption, gives form of chips, which is important in

chip disposal, and produces an excellent workpiece surface finish.

Figure 4.142 reveals the structure of the chip more clearly, where the saw-

tooth form of the top of the chip is typical. The grains of the workpiece material have

been stretched out at an angle of about 15 to the bottom of the chip. While the

adiabatic bands of intense shear are elongated at an angle of 45 However, a close

examination revealed certain regions to be more deformed than others. Notably an

apparently structureless layer at the bottom of the chip has experienced intense shear.

A layer of material rich in titanium exists between the tool and chip in the region of

contact (Figs 4. 145c and 4. 147b).
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Fig 4.144 Alpha (a) grain elongated in direction of
chip flOw (1000X).

Fig 4.145a Section through 'quick stop' specimen
showing part of coated carbide (KC850)
tool adhering to underside of chip (bOX).
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Fig 4.144 Alpha (cx) grain elongated in direction of
chip flOw (1000X).

Fig 4.145a Section through 'quick stop' specimen
showing part of coated carbide (KC8SO)
tool adhering to underside of chip (bOX).



Fig 4.145b Enlarged view of (a) showing tool particles
attached to the newly surface formed
(400X).

Fig 4.145c Flow zone on the rake face of coated
Carbide (KC8SO) tool (200X)
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Fig 4.145b Enlarged view of (a) showing tool particles
attached to the newly surface formed
(400X).
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Fig 4.145c Flow zone on the rake face of coated
carbide (KC850) tool (200X)
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Fig 4.147a Section through 'quick stop' specimen
showing part of cubic boron nitride tool
adhering to underside of chip (100X).

Fig 4.14Th Enlarged view of (a) showing CBN tool
particles attached to the newly surfac
formed (400X).



Fig 4.147a Section through 'quick stop' specimen
showing part of cubic boron nitride tool
adhering to underside of chip (bOX).
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Fig 4.14Th Enlarged view of (a) showing CBN tool
particles attached to the newly surfac
formed (400X).
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Fig 4.148a Section through 'quick stop' specimen
showing fragments of PCD tool adhering to
underside of chip (50X).

Fig 4.148b Close-up view of (a) (200X).
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Fig 4.148a Section through 'quick stop' specimen
showing fragments of PCD tool adhering to
underside of chip (SOX).

Fig 4.148b Close-up view of (a) (200X).



The examination of coated carbide tools after quick stop tests indicates that the

coated layers were rapidly removed after cutting for only 10 seconds. It seems that,

due to the effect of high temperature, the coated layers were removed by the

underside of swarf leaving the WC substrate vulnerable for cratering wear.

Furthermore, the TiC layer did not act as a diffusion barrier as earlier reported (2). In

order to observe the coated layer more clearly, the specimen of carbide with double-

coated layers was produced, using the quick stop technique. This specimen was

photographed in the unetched state, and Figure 4.149 illustrates the strong bond

between the chip and tool rake face, where the workpiece chip is penetrating the rake

face, forming a crater. This was done after removal of coated layers and exposing the

substrate, at a distance away from the cutting edge. A similar pattern of wear was

observed with KC850 carbide triple coated layers.

Upon increasing the depth of cut at a higher speed (100 ni/mm), the form and

shape of chip changed. While using the PCD tool it remained the same as that of one

observed at lower speed and lower depth of Cut, where the chip was curling and long

(see Figure 4.150). The CBN tool showed an almost identical form of chip to the one

produced at the lower depth of cut.

There were significant differences in the performance of the carbide tools in

term of chip formation as the depth of cut was increased. Due to the existence of high

interface temperatures the swarf becomes very brittle and then becomes friable, after

only 10 seconds cutting. This behaviour is clearly illustrated in Figure 4.15 1.

The newly generated underside of the chip surfaces were also examined for

evidence of detached carbides or polycrystalline tool material. In Figures 4.152 and

4.153 such particles of carbide and Amborite could be seen adhering to the underside

of swarf, aligned in the direction of chip flow.
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Fig 4.149 Section through 'quick stop' unetched
specimen showing part of KC91O tool
adhering to underside of chip(400X).
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Fig 4.150 Chip formby cutting tools under high
speed & large depth of cut.

Fig 4.151 Chip formation of Carbide tools at higb
speed (high temperature).
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Fig 4.151 Chip formation of Carbide tools at high
speed (high temperature).



Fig 4.152 Clusters of CBN particles adhering to
underside of chip form during cutting.

Fig 4.153 Carbide tool particles adhering to underside
of chip form during machining.
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Fig 4.152 Clusters of CBN partides adhering to
underside of chip form during cutting.
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Fig 4.153 Carbide tool particles adhering to underside
of chip form during machining.



4.6 FORCES GENERATED DURING MACHINING

Three components of force were recorded during the machining tests, the

normal force, feed force and radial force (Fig 4.1 54a).

A plot of the recorded components of force at various cutting speeds when

machining titanium alloy with all cutting tools are presented in Figures 4.154-4.159.

These figures show that the normal force is greater than the feed and radial forces

under all the cutting conditions (Figure 4.154-4.156). The radial force is always

higher then the feed force but lower than the normal force. All the forces increased

with cutting speed up to 50 rn/mm and then either decreased significantly, or (less

often) remained constant.

The highest values of cutting forces were recorded at the speed of 50 rn/mm

when using coated and uncoated carbide tools (Figure 4.154-4.156). The increase in

the forces at the cutting speed of 50 rn/mm compared to speed of 25 rn/mm, could be

due to the presence of a built up edge.

The lowest forces were recorded when using PCD at all cutting speeds, and

it was followed by KC850 up to the speed of 100 rn/mm, where further increase in

speed resulted in the reduction forces for CBN tool, and an increase for the KC850

insert. This is followed by KC91O and K68 carbide tools. Close values of cutting

forces were recorded for coated and uncoated tools at the speed of 200 ni/mm. This

effect could be due to the removal of coated layers, and cutting with direct contact

with substrate.

Figures 4.157-4.159 illustrate the cutting forces which were generated at the

speed of 100 rn/mm, after 30 seconds machining. Again the PCD showed the lowest

cutting forces.
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Fig 4.154a Cutting forces in conventional turning
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There was a significant difference in forces when carbide tools were used in

contrast to polycrystalline tools. The cutting forces generated when cutting with

carbide tools is far more than those obtained when cutting with the polycrystalline

tools. This means that the power consumption by the lathe when cutting with the

PCD and CBN is significantly lower than that when cutting with carbide.
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4.7 SURFACE ROUGHNESS

The roughness of a machined surface can be of importance due to its direct

influence on the fatigue performance of stressed components and the wear of counter

faces. Surface finish, measured as a function of the cutting speed was determined

along the workpiece as described in Chapter 3, for carbide (coated and uncoated) and

polycrystalline tools (PCD and CBN). The tests were carried out with the feed of

0.25 mm/rev and depth of cut of 1 mm. The results are presented in Figure 4.160.

This graph shows that high surface finish values were recorded at low cutting speeds

with K68 at speed of 25 rn/mm.

The effect of cutting speed on the surface finish generated when machining

titanium with PCD can be seen in Figure 4.160. Increasing the cutting speed led to

gradual improvements in the surface roughness as the speed increased from 25 to 200

ni/mm.

Cubic boron nitride (CBN) shows a similar pattern to PCD, and the best

surface finish value of 2 micron (Ra) was recorded at the speed of 200 rn/mm. There

was a gradual improvement in the surface fmish as the speed increased.

Coated carbide tools gave a relatively poor surface finish at low speeds (Fig

4.160). The surface quality was improved with the increase in speed. The best

surface finish of 3.6 microns (Ra) was recorded at the speed of 175 rn/mm with

KC850, and further increase in speed (200 rn/mm) resulted in deterioration of the

surface finish. Double coated layer carbide tools (KC9 10) showed a gradual

improvement in surface roughness as the speed increased from 25 to 200 rn/mm.

Uncoated carbide tools showed a sharp deterioration in the surface finish as the

speeds were increased from 150 to 200 rn/mm.
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Summarizing the data shown in Figure 4.160, it can be seen that the best

finish of 1 p.m (Ra) was observed at speed of 200 rn/mm for PCD and the

corresponding values for the other tools were:

CBN .........2 p.m at speed of 200 nilmin.

KC 850 ..... . 4 p.m at speed of 150 rn/mm.

KC 910 ...... 5 p.m at speed of 150 ni/mm.

K 68 .........6p.matspeedofl50nilmin.

Figure 4.161 shows the deterioration of surface quality in response to

increasing cutting time. In this figure, a graph of surface finish against cutting time at

the speed of 100 rn/mm is plotted. From these curves it can be observed that the PCD

produced a better surface finish compared with other inserts at the same speed. Cubic

boron nitride is the second best to the diamond in producing a good surface finish.

As the cutting continued, the PCD and CBN showed an increasing and constant rate

of surface deterioration whilst the carbide tools have an accelerating rate after about 4

minutes cutting time.
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CHAPTER 5

DISCUSSIONS



5.0 DISCUSSIONS

5.1 WELDED JUNCTIONS

The use of workpiece:tool adhesion tests to evaluate candidate cutting tool

materials appears promising in that both the critical welding temperature and the

failure of the bulk or substrate material were identified. It also enables detailed

chemical analysis of interfacial reaction between tool and workpiece to be carried out

using SEMIEDX techniques.

When the junctions formed between the workpiece and polycrystalline tools

are subsequently broken, there are three possible routes for crack propagation - ie

through the workpiece, the interface or the bulk of the tool material. However, there

are a greater number of possibilities for the coated carbide tool since failure might

also take place within the coating or at its interface with the substrate. In the event, in

this work, failure was always through the bulk of the polycrystalline or tungsten

carbide tools (Figs 4.1, 4.5, 4.10 and 4.21). At higher magnifications (Fig 4.13) it

can be seen that the cracks in the tungsten carbide had propagated around the hard

particles - presumably through the cobalt phase. In other work in this laboratory,

primarily designed to measure the critical resolved shear stress of ceramic crystals,

the incidence of sub-surface lateral cracking (sometimes referred to as 'venting') in

the bulk of the harder crystal is quite common - even at temperatures in the region of

1000 °C. In normal indentation studies, such cracks are thought to be formed at the

elastic:plastic boundary as a result of tensile stresses developed by the recovery of

compressive plastic strain as the load is removed. On the assumption that the critical

resolved shear stress of tungsten carbide is comparable with that of titanium carbide

at 800 °C, ie 0.25 GPa (178), the contact pressure applied by the titanium alloy cone

might have been sufficient to produce a degree of plastic deformation. Therefore it is

possible that, under the conditions obtaining in this study, lateral cracks are initiated
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during unloading at the welding temperature and are then propagated through to the

surface when the junction is pulled apart at room temperature. Such crack formation

with PCD or CBN is less likely since the critical resolved shear stress would be

considerably higher - eg. about 1 GPa for diamond (179).

A more likely crack initiation mechanism is now thought to be associated with

the differential thermal contraction of the titanium and the cutting tool materials.

When the weld cools from the critical temperature, tensile stresses will be induced in

the tool materials around the periphery of the weld contact area due to the greater rate

of contraction of the titanium. This situation is cunently being modelled to determine

whether these tensile stresses could be of sufficient magnitude to account for the

observed fracture (180).

It is considered significant that the failure of the substrate material, as

observed using this technique, was consistently reflected in failure of the bulk

material during the quick stop investigation (see Section 4.5).
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5.2 TOOL WEAR

5.2.1 PRE-MACHINING STUDIES OF TOOLS

5.2.1.1 CARBIDE TOOLS

The substrates of two types of coated tungsten carbide tools, and the substrate

of an uncoated tool, were examined. The examination revealed that the most

distinguishable features which were expected to affect tool performance were as

follows:

i) Size and distribution of porosity

ii) Grain size, distribution and uniformity of microstructure

iii) Size and distribution of carbide particles in the binder (cobalt), and

iv) Chemical composition.

All the above factors may have an influence on tool performance and thus

contribute to variations in tool wear. The first three factors were detected easily by the

scanning electron micrographs of cross-sections through each tool, while the

chemical composition revealed by the EDX analysis gave semi-quantitative results

with considerable inaccuracy due to the wide variation in composition from area to

another.

A cutting tool substrate must be strong and tough. Strength is needed for

wear-resistance and toughness for resistance to fracture by thermal shock and

mechanical impacts. It is worth noting that these two basic requirements usually tend

to be mutually exclusive such that one can only be achieved at the expense of the

other. Consequently, an adequate balance must be achieved by a compromise

between the two properties. This is one of the main factors that has led to the alloying

of the substrates and to the advancement of surface coating technology.
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It is known that the toughest tungsten carbides are those of large particle size

alioyed with a high percentage of cobalt, and the most wear resistant are those with

small particles and a low percentage of cobalt. Turning insert users and researchers

are used to practice machining and investigating tool performance in the absence of

reliable information, for a large number of commercially available tools. The lack of

hard information in the technical data supplied by the various manufacturers may be

deliberate in order to avoid disclosing proprietory aspects of production techniques,

or it may be due to ignorance about the behaviour of their products in wide and ill-

defmed fields of application. It should be emphasised that this imprecise information

may provide an adequate guide for production engineers, but is not satisfactary for

research purposes (181-183).

The structure of the substrates of the KC9 10 and KC850 grades were

expected to be similar but porosity was much in evidence in the former and less so in

the latter.

The effect of the bulk material properties of the tool on the machining

performance is more likely to be apparent either in very rough operations, or in later

stages of a normal cutting operation. However, wear may be accelerated if substrate

defects are close to the interface with the coating layers, or a localised defect lies

under them.

The part of the tool that comes into direct contact with the work material and

which is subjected to the high heat generation and frictional force is obviously its

surface, and this needs to be protected from the wearing conditions encountered in

metal cutting. Coated or uncoated, the surface of the tool must have the minimum

number of defects because almost any kind of surface defect can have an effect on

wear, and consequently on the cutting performance and tool life.
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Pre-machining inspection of the surfaces of the experimental tools revealed

significant surface defects. These were related to the topography of the rake face, the

cutting edge and the nose radius condition.

The uncoated tools were generally free of defects other than the scattered

voids on the nodular surfaces. On the other hand, the coated tools showed more than

one type of surface defect. These included voids, nodules, surface irregularities,

microcracks, surface inclusions and roughness.

The quality of the coating systems and the conditions of the coating/substrate

interface of the coated tools are important aspects that contribute directly to the

performance of the coating and life of the tool. Irrespective of the properties of a

specific coating material, performance of coated tools will be influenced largely by

the existence of defects within the coating layers or at the interface with the substrate.

Such defects usually occur as a result of inadequate preparation of the substrate prior

to the coating process, or as a result of chemical interaction during the process which

should be operated under careful control.

The scanning electron microscopy study carried out on the carefully prepared

cross-sections of the coated tools has revealed various defects which could have a

significant influence on tool wear during machining.

All the coated tools appeared to have an additional layer between the substrate

and the bottom layer of TiC. This layer, which could easily be mistaken for the TiC

layer on top of it, was shown by chemical analysis to consist of tungsten and cobalt,

the main constituents of the base material, in addition to titanium. This layer is termed

the 'eta' phase and has been discussed by several investigators (184-186). It is a

brittle layer which is formed due to the decarburization of the substrate surface during

the early stages of the deposition of TiC coatings. Besides the occurrence of this

brittle decarburization phase at the base material/coating interface, regions of
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microporosity and localities of high void concentration were also evident in some

tools. The zones of void concentration represent weak areas under the brittle layers

where damage to the coating may be initiated and accelerated to result in total tool

failure at early stages of machining. However, coating defects may be present even

before commencing a cutting operation. Microscopic examination has revealed

different forms of serious cracking of some coatings, mainly in the brittle layer zone

at the coating/substrate interface. The KC91O tool had the highest frequency of these

defects and was the one with most surface defects, as mentioned earlier. The tool

with the least number of defects was KC850 which was coated with thin layers of

TiC/Ti(C,N)flTiN. The coating itself seemed to have some porosity.

5.2.1.2 PCD AND CBN TOOLS

Generally, the integrity and microstructure of these materials were

consistently free of significant defects.

5.2.2 WEAR OF CARBIDE TOOLS

5.2.2.1 FAILURE OF COATINGS

The coating and/or substrate wear processes that occurred during turning tests

are illustrated in Fig 5.1. During the initial stage of cutting (inset (a) of Fig 5.1) the

chip slides across the coated insert. The temperature is sufficiently low during the

initial stage that the substrate is not softened and the coated insert can support the

loads imposed by the cutting process. The wear at this stage is due to abrasion or

dissolution. With time, however, the heat generated from the shearing of the

workpiece, and from the sliding friction that occurs between the chip and coating,

softens the substrate to an extent that the coating and underlying substrate cannot
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support the cutting loads. At this point (as illustrated in inset (b) of Fig 5.1) the

coating fractures as the substrate is plastically deformed in a manner similar to that

observed in HSS inserts with CVD coatings (187). The fractured coating is

eventually transported away with the moving tool chip (Figs 4.43, 4.51 and 4.58),

leaving the underlying substrate exposed to the tool chip. The heat generated

continues to soften the substrate and consequently the region of softened substrate

expands to underlying regions of coating that are still intact. Eventually, the substrate

under the coating adjacent to the crater is softened to such a degree that it cannot

support the cutting forces, and the coating at the edge of the crater fractures (inset (c)

in Fig 5.1). In this manner, the coating is gradually chipped away to expose more

and more substrate giving way to crater formation. An example of this "chipping"

effect is seen in Figures 4.40, 4.59 and 4.64.

5.2.2.2 RAKE FACE AND CRATERING

Cratering was relatively more significant when cutting with the K68 tools as

can be seen from the Figures 4.78, 4.84 and 4.87. The effect of the significant crater

observed on the K68 tools is to undermine the cutting edge and eventually cause its

collapse (Fig 4.78). It has been suggested that the TiC in the mixed phase of K68 has

a dual effect on the tool in that it increases the wear resistance of the tool and also

moves the crater closer to the cutting edge (110). The increase in resistance to crater

wear is to some extent counteracted by the crater being closer to the cutting edge.

Then less wear can be withstood before the cutting edge is undermined and collapses.

Rake face wear was of major importance in causing failure when machining titanium

with the K68 tools. The weakening and subsequent collapse of the tool edge caused

by increased cratering explains why a high flank wear rate was recorded when cutting

with the K68 at higher speeds. The collapse of the cutting edge tends to eliminate the

clearance angle and increases the area of the flank face in contact with the work
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material (Figs 4.76 and 4.77). The high flank wear rate may also be due to the strong

affinity of TiC present in the mixed phase of the tool material to the workpiece - since

it has been shown that a similar affinity is demonstrated in ferrous materials (110). It

is therefore reasonable to suggest that TiC in carbide tools promotes diffusion. The

TiC makes the tool material more susceptible to chipping and to subsequent failure of

the cutting edge. Plucking out also occurred on the rake face of the K68 tools when

cutting at low and high speeds (Figs 4.79 and 4.88). This effect may perhaps be

aggravated with intermittent contact and also unstable cutting conditions. Grooves

were observed on the rake face of the K68 tools when cutting at the speed of 100

rn/mm (Fig 4.77). Plucking out of tool particles was also observed at the periphery of

the chip-tool contact length on the rake and flank faces when cutting at high speeds

(Fig 4.79). The severe plucking of tool material suggests plastic deformation as the

major wear mechanism under such conditions.

The formation of the crater on the rake face initiates from numerous small

voids in the coatings at the chip/tool interface (Figs 4.37, 4.62 and 4.67). These

small voids are the result of plucking out of tool material by the chip (Figs 4.63 and

4.69) flowing over the surface at high temperatures. They then join up and form a

line of craters parallel to the cutting edge with further cutting (Figs 4.44 and 4.45).

These will then taper to a wear pocket by a smooth wear mechanism. Once the

coating(s) is penetrated at the centre of the crater, the rate of wear increases rapidly

due to the higher solubility of the substrate in the workpiece (ie. dissolution). Coating

fragments can then be broken off the crater on each side of the chip and taken away

with it. This process of crater formation is illustrated in Figures 4.73 and 4.85.

Numerous grooves running parallel to the chip flow direction and craters running

parallel to the primary cutting edge can be seen in this figure. The size of these

grooves differ being the largest on K68 and on the Al 203 layer of KC91O and

shallowest on the TiC layer, with TiN of KC850 lying intermediate. In this context it
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may be noted that TiC is harder than TiN which in turn is harder than Al 203, ie. TiC

3300--4000 HV, TiN 2500--3000 HV, and Al203 1900--2400 HV (188). More

grooves and cracks were observed at higher speeds, and the existence of the smooth

and shiny craters, numerous ridges, cracks and grooving wear are illustrated in

Figures 4.41, 4.50 and 4.60.

When machining titanium, discontinuous chips are formed. The location of

the highest temperature exposure is on the rake face where the chip runs over and

across the surface. These temperatures have been reported to be as high as 1000 °C

(189). Based on extensive study of the topographical features of the carbide inserts

employed in this work, it can be seen that crater wear takes place by a combination of

chemical (diffusion) and attrition wear, the atoms of the coatings being dissolved in

the work material flowing over them. At times, the mixed crystal particles, present in

carbide tool materials, which do not wear as rapidly as the WC and cobalt, are

plucked out and dragged across the flank face of the tools causing grooves (Fig

4.66). More abrasive wear can be caused by fragments of the coating broken off the

tool by the workpiece material.

Grooves may also be formed by a combination of oxidation and attrition. The

larger grooves (notchings) at the two extremities of the depth of cut suggest wear

under sliding conditions at these places allowing oxygen to penetrate in the area of

work/tool interface. The penetrated oxygen is believed to react with the work/tool

material causing an oxide film of the tool material on the rake face which is then

mechanically removed by the work material. The smaller ridges in between the two

extremities of the depth of cut give evidence of seizure taking place at this area. It can

be seen that the ridges start at the cutting edge, where numerous small holes are

present, and extend across the width of the crater (Fig 4.68). The deepest and

shallowest parts of the ridges are on Al 203 and TiC layers respectively. This

suggests that these are formed by hard particles of the coatings, which have least
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effect on the harder TiC and greatest effect on the softer Al 203. This can clearly be

seen in Figure 4.58.

Close examination of established grooves revealed that they often tapered to a

point, which always pointed in the direction of chip travel (Figs 4.45 and 4.68). This

evidence, coupled with plastic deformation of the original surface asperities (Fig

4.25), suggests that the grooves may be formed as schematically depicted in Figure

5.2, sequence 1-4. Groove formation involves plastic deformation only of the near

surface and probably does not extend further than about a few microns beneath the

surface. For this reason, the term "discrete plastic deformation" has been ascribed to

this process. It is postulated that groove formation culminates in ductile fracture of

the ridge towards its tail end (position 4 in Fig 5.2), resulting in the tapered groove

shown in Figure 4.45. The fracture fragment is then removed by the adherent chip.

The extent of groove formation was more marked when cutting with KC850

than when cutting with KC91O. This suggests that rake face shear stresses may have

been higher with the former, since rake face temperatures were similar for the coated

tools when cutting TA48 material. It is not known whether higher temperatures or

higher stresses were responsible for the more marked groove formation when cutting

with KC850.

Although no tests were made to measure the temperature on the rake face of

the tools, it is expected that the magnitude of the maximum rake face temperature and

size of heat affected zone would be larger for uncoated rather than for coated carbide

tools. The maximum rake face temperatures of 900 and 1200 °C were recorded with

coated and uncoated tools when cutting steel at 150 rn/mm (190). The poor thermal

conductivity of TA48 will enhance rake face temperature and will lead to higher

temperatures than those experienced when cutting steel. Furthermore, the temperature

distribution for KC91O coated tools would not differ significantly from that of
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KC850, since all the coated tools had more or less similar chip/tool contact lengths

regardless of the coating material (Fig 5.3). This is a further indicator of temperature

similarity since it was demonstrated (191) that temperature distribution and magnitude

is proportional to the chip/tool contact length.

It has been previously reported that the improved behaviour of coated inserts

continued after the coating had worn away in the crater region (192-193). Two

mechanisms have been proposed to explain this phenomenon. Colding (192)

suggested that the bulk of the stress on the insert in the crater region was supported

by the sides of the crater which remain coated after the substrate had been exposed at

the crater base, and, additionally, the flow of swarf over the crater enabled some TiC

to flow from the coated regions into the uncoated areas thus prolonging life. Sproul

and Richman (193) disagreed with this explanation and suggested that the ' phase

beneath the coating acted as an additional diffusion barrier hence prolonging insert

life. The current work has shown no significant difference in the crater wear

behaviour of inserts with differing amounts of 6 phase and no evidence has been

found to suggest that in commercial inserts the 6 phase prolongs life after the coating

has been removed. Similarly, with the indication of coating removal in the form of

small particles, the explanation in terms of flow of TiC into the crater where it acts as

a diffusion barrier is also unlikely.

5.2.2.3 FLANK FACE GROOVING

The flank wear in coated tools appeared to be an abrasion process similar to

that in uncoated tools. In general the flank wear of the coated inserts appeared to

develop less quickly than did the rake face crater. Occasionally a piece of the flank

coating would chip after short cutting times and this may be one of the reasons for the

reported inconsistent performance of coated inserts. In Figures 4.34 and 4.43 an
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insert shows how most of the coating on the flank is intact whereas the coating in the

crater has been completely removed. The only two areas where the coating had been

removed on the flank were probably the result of chipping of the coating in that

region.

The coating on the flank face wore by an abrasive mechanism due to the

rubbing of the flank on the workpiece. Breakdown of the coating in this region was

slower than in the crater and one of the reasons for this was the absence of thermal

cracking. The coating of the flank broke through just below the cutting edge probably

because of slight bulging in this region as the result of plastic deformation of the

insert. Once the coating had been removed from the flank the mechanism of wear

appeared to be based on attrition and diffusion/dissolution.

A combination of attrition (Figs 4.36, 4.38 and 4.49) and diffusion (Figs

4.47 and 4.56) wear mechanisms do take place when cutting at intermediate speeds.

This can be shown by the smoothly worn and plucked surfaces observed on the

carbide tools under such conditions. A diffusion wear mechanism is highly probable

at higher speeds because of the large diffusible surface area in the lattice of the

carbide tools (Figs 4.47 and 4.56). There seems to be metallic attraction of carbide to

the titanium work material and the forces holding the surface grains in place are

lessened by the heat generated at high speeds. The carbon in the workpiece may be

likely to dissolve in the TiC of the mixed phase and thus weaken it by causing a

volume change.

The mechanism based on diffusion increased the flank wear rate of coated

carbide tools rapidly as the cutting speed and temperature increased, thus forming a

smooth surface. Various workers (194-195) have shown diffusion as being the

dominant wear mechanism at high temperatures. This suggests that the increased

smooth wear on the flank face of the coated carbide tools is probably controlled by
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temperature generated during machining and the chemical reaction at the interface.

For example, Ham and Narutald (196) have reported the existence of diffusion wear

on the flank surface of coated carbide tools when machining AISI-4340 steel due to

the diffusion of some elements such as calcium and silicon from the workpiece. The

diffused elements react with the atmosphere to form their oxides (CaO, Si0 2, etc)

which in turn react with the alumina (Al 203) to form an unstable glass-like composite

(spinel) which has a low melting point (19 1-192). This reaction would weaken both

the flank and rake faces of the carbide tools thus accelerating wear.

Diffusion wear on the KC91O tools used for machining titanium may well

occur when iron (Fe) and silicon (Si) diffuse from the work material into the chip-

tool interface where they oxidize to form FeO and Si02 . However, there was no

evidence to suggest that these oxides react with the alumina (Al203) to form spinels,

since the coated layer of Al203 was rapidly removed at high speed. Some of the Fe

and Si in the interface which did not oxidize will invade the tools by diffusion and

may soften the tool matrix. This action would weaken the coated tools and accelerate

wear.

The hole(s) observed on the flank face of the KC850 and KC91O tools (Figs

4.42 and 4.72) after cutting at very high speed suggest plucking out of WC particles

from the flank surface at high temperature. The hard WC particles are plucked out of

the flank face leaving voids behind and move out to the interface between the flank

face and the freshly cut surface causing rapid deterioration of the surface finish

generated. Furthermore, they tend to weaken the tool nose and may further cause the

deformation at the cutting edge. Plastic deformation does not necessarily depend on

the extent of the rake face (and flank) wear but does depend on the conditions of

temperature and stress acting on the tool nose. Bond strength is the controlling factor

in this process; the bond energy between the WC and the mixed phase must be

exceeded before this type of wear can take place.
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5.2.2.4 NOTCHING WEAR

Notching was observed when machining titanium with the carbide tools. This

type of failure mode was the cause of tool rejection when cutting with the KC850 and

K68 at the speed of 100 rn/mm and at higher speed of 200 rn/mm (Figs 4.37, 4.55

and 4.86b).

The formation of notch wear starts off by breakage and plucking of bits of the

coating/coatings from the flank face at the tool edges. These were then dragged by the

workpiece along the surface of the tool, giving rise to small shallow grooves (Figs

4.37, 4.79 and 4.82). The breakage of the coating/coatings is helped by the cracks on

the rake face, as can be seen in Figure 4.60. The propagation of the grooves then

involves oxidation and attrition taldng place simultaneously, with the alumina coating

(KC91O) probably wearing totally by attrition. Interaction between the tool and the

oxygen in the surrounding atmosphere, under sliding conditions, produces an oxide

film which is rapidly removed mechanically by the workpiece. This is accompanied

by continuous plucking of the coating/coatings which takes place at the bottom of the

notches giving rise to more voids (Figs 4.46 and 4.61). Finally, diffusion is held

responsible for the smooth and shiny surfaces produced. The above process is

illustrated in Figures 4.80 and 4.83.

Sharp increases in the depth of notch occurred throughout the cutting periods.

Topographical examination of the tools at these points showed that a rapid increase in

the notch depth occurred when the crater band on the rake face joined up with the

groove at the end of the depth of cut (Fig 4.79). This often resulted in weakening of

the tool edge at this point with consequent chipping taking place (Figs 4.80 and

4.84). Thus, more room was provided for oxygen to penetrate giving rise to severe

notching by accelerated oxidation.
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The amount and rate of notch wear was higher for the K68 than the

TiC/Al203 coated KC91O. The superiority of KC91O over K68 is marked at high

speed, where the highest temperatures are produced. Furthermore, when cutting with

K68, notches consistently occurred in zone C (Fig 4.33) of the flank faces of which

there were only small traces when cutting with KC91O. Having established that

oxidation is the cause for notch wear and is generally more severe at higher speeds

where higher temperatures are produced, it is tempting to suggest that the superiority

of KC91O over K68 is because of the aluminium 'oxide' (Al 203 or alumina) coating

overlay. It is easy to appreciate that Al203 would be unaffected by an oxidation

process, since it would simply not be oxidized. The rates of notch wear at 50 rn/mm,

where an abrasive wear mechanism is more likely, were approximately the same for

K68 and KC91O. This suggests that Al203 layer on KC91O was probably worn

through by a mechanical wear mechanism.

Generally notch wear was most marked at the outside edge of the depth of cut

(zone 'C' in Fig 4.33). This was observed with all carbide tools (Figs 4.46 and

4.55), and the notch sizes were greater with the uncoated carbide tool (Figs 4.81 and

4.88b). The sliding conditions prevailing at the periphery of the tool-chip interface

seem the likely cause of the notching. It has been mentioned by various authors that

notching is worse at slow speeds since sliding action between the tool and the chip is

prevalent under such conditions, and sufficient time is available for chemical reaction

to take place. Results obtained from the experiments did not agree with this view

since the notch at the depth of cut increased steadily with speed. This trend may be

caused by the high temperature generated when cutting at higher speeds, which may

have accelerated chemical reaction (dissolution wear) at regions of intermittent contact

around the periphery of the tool-chip interface in a shorter time than when cutting at

slower speeds. Titanium always produces a discontinuous chip and thus atmospheric

attack could always occur. The explanation therefore shows that notching could take
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place when cutting at high speeds due to the acceleration of chemical reaction

(diffusion/dissolution) enhanced by high temperatures generated under such

conditions, despite the lesser time available for the tool/chip interface to be exposed to

atmospheric air. The notch observed at the tool nose when cutting with the K68 at

various speeds is always smaller than the ones at the end of depth of cut (Figs 4.82

and 4.83). This may be due to the inaccessibility of the tool nose to sufficient

atmospheric air since it is always buried in the work material during the cutting

operation. The limited access or complete absence of air at the tool nose might

prevent chemical reaction at this zone, and hence cause a reduction in the length of the

notch formed. Significant notches observed when cutting with the carbide tools did,

however, govern the tool life indirectly by affecting the surface finish generated on

the work material.

Ansel and Taylor (197) have reported that notching at the tool nose and depth

of cut is, among other things, caused by stress concentration at the edges of the tool

during the cutting operation. The stress concentration at the boundaries of the loaded

surface is independent of the cutting conditions (i.e. whether a BUE is present or not)

and can be increased by the work hardening of a surface layer on the work material

from a previous cut leading to an increase in the notch wear. Solaja (198) has related

the severity of notch wear to the hardness of the tool when machining 0.25 %C steel

with carbide tools at a speed of 150 rn/mm, whilst harder tool materials tend to have

an increased resistance to notching. The relatively high hardness of carbides therefore

explains the cause of the notch wear which occuffed when machining at high speeds

since the work hardened layer can abrade the tool at the periphery of the chip-tool

interface.
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5.2.3 WEAR OF POLYCRYSTALLINE TOOLS

5.2.3.1 PCD TOOLS

Within the time scale of these cutting tests, no significant wear due to

cratering, notching attrition or plastic deformation was observed. The absence of

such wear processes is consistent with the excellent cutting performance described in

Chapter 3.

PCD has a low thermal conductivity coefficient in the temperature range

typically achieved during high speed machining. Investigations carried out by Bex

(199) when machining AISI-1045 steel with carbide tools show that thermal

conductivity of a cutting tool material plays a significant role in the wear rate. The

absence of fracture or catastrophic failure when cutting with PCD at slower speeds

(Figs 4.117 and 4.118) may be due to the low temperatures generated under such

conditions since PCD tools are known to resist thermal shock, due to their extremely

low coefficient of thermal expansion. This means that the PCD tools have greater

ability to resist heat transfer from the cutting zone, resulting in lower temperatures of

the inserts and therefore minimal and evenly distributed stress on the cutting edge.

The low cutting force imposes a relatively low compressive stress on the rake face of

the tool when cutting at very high speeds thus minimising the level of stress

concentration which might lead to the catastrophic failure of the tool, by fracture.

Following a high speed (200 rn/mm) cutting test with PCD inserts on a

titanium alloy workpiece, two striking structural defects were observed. Firstly, a

number of small cracks typically 15 .tm in length were seen in the bulk of the PCD

layer and, secondly, longer more continuous cracks were found at the PCDIWC

interface. Both types of cracks are thought to occur as a consequence of disparities in

the coefficients of expansion of material constituents in the inserts (199). For

example, the coefficient of volume expansion of Co is about five times that of
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diamond at over temperature range 20-- 1000 °C (Fig 5.4). At the high temperatures

involved in the present tests (>1000 °C) this is thought to be particularly significant.

The small cracks within the PCD for instance are thought to develop as a

consequence of the expansion of the Co binder phase forcing apart the diamond

grains (Fig 5.6). A contributory factor may also be the increase in volume associated

with the diamond to graphite transformation, which is also possible at these

temperatures.

Konig (200) relates the formation of such cracks in a PCD tool during

rubbing of titanium to the thermal over-loading of the PCD compound. The PCD

aggregate structure is characterized by diamond grains connected with each other by

various diamond bridges which are created under the catalytic influence of cobalt

during the synthesis process as described in Chapter 3. The spaces between the

diamond grains and bridges are filled chiefly by the binder phase (cobalt). When the

compound is heated the cobalt tends to expand, due to the difference in thermal

expansivity. At about 900 C, the fracture forces apparently exceed the strength limit

of diamond, i.e. 3.92 GN, and the bridges crack (201).

For the larger cracks at the PCD/WC interface a similar argument can be

applied. The disparity between the linear thermal expansion of the WC substrate and

the PCD is approximately 2 (Fig 5.5) and it is thought likely that at these high

temperatures this effect will produce sufficient mechanical stress at the PCD/WC

interface to cause subsequent cracking. Figures 4.124, 4.129 and 4.141 show an

example of a crack which has propagated along the briged interface. In some cases

the thermal over-loading cracks have run into the WC substrate itself.

The better performance and high resistance of the polycrystalline tools in

comparison to that of carbide tools (Figs 5.7, 5.8) during machining titanium

aerospace alloy could be due, in part, to their higher thermal shock resistance.
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However, it is considered most probable that the superior performance of PCD is due

to the formation of a protective surface layer on the rake face, which is predominantly

titanium carbide. X-ray analysis has confirmed the presence of this kind of layer on

the rake face of the diamond tool (Fig 4.119, 4.121 and 4.122). This possibility has

been suggested, but not previously demonstrated, by Kramer (202) and Adelsbery

(203). Similarly, Kroll has found that graphite crucibles are able to withstand the

attack of liquid titanium metal by forming a stable layer of titanium carbide (TiC) on

the surface, which prevents direct contact between the melt and crucible. The

dissolution of carbon in the liquid titanium is slow, since it can only occur by

diffusion through the carbide layer (204).

Dissolution wear, occurring by diffusion of atoms from the tool material in to

the swarf, is generally thought to be the reason for high rates of wear when diamond

tools are used to cut ferrous materials - due to the high solubiity of carbon in iron. A

similar effect might have been expected when cutting titanium alloys with PCD. In

fact, the presence of the titanium carbide layer on the rake face appears to serve as a

diffusion barrier and restricts dissolution wear under these conditions. If this is

correct, then the dissolution wear rate of tool materials will be very dependent on the

formation and integrity of the protective surface layers. It should also be noted that

concentration gradients will be important - ie. the composition of both tool and

workpiece material will be significant

5.2.3.2 CBN TOOLS

Within the the time scale of these cutting tests, CBN showed much higher

resistance to wear (ie. less cratering and notching) than carbide tools and in term of

performance was second best of diamond tools.
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Figures 4.108 and 4.111 show the fracture failure modes when cutting with

the CBN. Fracture or catastrophic failure occurred mainly at speeds between 50

rn/mm and 250 rn/mm. This may be due to the relatively low strength and toughness

of the CBN in addition to the chemical reaction operating at these speeds. The

fracture observed in many instances must have been due to the stress concentration

along the cutting edge of the tools. Some workers have shown that the compressive

stress is highest near the cutting edge of a tool, diminishing across the rake face to

zero where the chips breaks contact with the tool and that the shear stress acting on

the rake face may be less variable across the contact area (205-206).

The 'scalloped' appearance of the rake face wear observed on the diamond

tools can also be seen quite clearly on the CBN tools (Figs 4.92 and 4.104). This

effect is unusual and might be limited to wear of these ultra-hard solids since it has

not been discussed in the metal cutting literature previously. Certainly coated and

uncoated carbide tools do not show this discontinuous, scalloped form of wear,

when machining titanium, but crater in a more conventional manner.

An explanation of why rapid wear can occur in one region of the crater while

essentially no wear is present in an adjacent region (Fig 4.104) may be based on

different interfacial conditions developing during the cut. It is possible that, under

certain conditions, titanium adheres to the tool and no relative sliding occurs at the

tool-chip interface (Figs 4.101 and 4.103). Therefore, an interfacial layer of

workpiece forms, and the relative motion between the tool and chip is generated by

shear within the titanium chip material. This 'stagnant' boundary layer might become

saturated with tool constituents thereby limiting the mass transport of tool

constituents from the tool surface, similar to the formation of TiC when using PCD

tools. The stability of this layer is unlikely to be the same over the entire contact zone,

due to local variations in presure and/or temperature, leading to dissimilar rates of

wear across that region. Probably the most significant example of this uneven wear is
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in Figure 4.104. In this case there has been essentially no wear in one region of its

crater area and a 200 micron deep pit in another.

The fracture(s) and the type of wear observed when cutting with the CBN at

high speeds suggest that there is a degree of plastic deformation taking place at these

elevated temperatures. Whilst there is no direct evidence with cubic boron nitride, it

has been shown that diamond is capable of extensive plastic deformation and creep,

at 1000 °C, when subjected to modest contact presures - ie. 4/5 GPa. Since at that

temperature diamond is about twice as hard as CBN, the relevant presure would be in

the region of 2-3 GPa (207). Plastic deformation may lead to cracking on the worn

flank face and the subsquent failure of the tool by fracture. The possible result of

plastic deformation is shown by the nose of the CBN tool in Figure 4.108.

A hypothesis for the wear of CBN tools, when cutting steels, combines the

effect of defect density (ie. dislocation) and a consequently enhanced chemical

activity in what has been called "etching wear" (208-209).

It was suggested that the dislocated zones are attacked rapidly by atmospheric

oxygen leading to the formation of boron oxides. This mechanism of wear is thought

to be akin to that of chemical polishing resulting in the smooth grooved appearance of

the tool tips.

There is a strong evidence obtained in this work to propose that the etching

mechanism of wear is applicable to the cutting of titanium with CBN tools at high

speeds. Thus, it is considered that there are two major components, ie:

i) 'Chemical wear' is produced by a chemical interaction of the tool with its

environment, including the workpiece and the atmosphere. Then, the

combination of a high dislocation density with atmospheric oxidation leads to

etching wear of the CBN tool.
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ii) Under these circumstance a thin protective layer of similar composition to the

workpiece forms at the interface of tool/chip (Figs 4.95 and 4.101). The

stability of this protective layer then becomes the controlling influence on the

wear of the tool. At lower cutting speeds, and hence temperatures, the layer

becomes unstable with respect to the tool and is lost, exposing the surfaces of

the tool to further chemical wear. The wear of the rake face is also increased

by adhesion of the layer to the base of the chips, and attrition as fragments of

the tool are pulled away with the layer (210).

Tool wear is dependent upon the temperature generated by energy expenditure

on both the rake and flank faces, but flank wear was the most significant failure mode

when machining titanium with CBN tools. Plucking out occurred on the flank faces,

mainly at the lower speeds, and the attrition type of wear mechanism appeared to be

dominant under these conditions. An enlarged view of the flank face showing

attrition type of wear is given in Figure 4.90. Relative movement between the

plucked out particles and the flank face can cause further dislodging of grains of the

tool material continuing the process of attrition.

Increased flank wear occurred as the cutting speed increased beyond 100

rn/mm (Figs 4.106 and 4.107), and this increase of wear was almost certainly due to

higher temperatures at the chip-tool interface generated by the fast flowing chip under

these high speed conditions. Work carried out by others (194-195) has shown

diffusion to be the dominant wear mechanism at high temperatures (Fig 4.105), and

the behaviour observed here is consistent with that view. Whilst CBN tool materials

are known to be more inert than most to diffusion wear, chemical reaction - or

diffusion of elements between the tool and workpiece - will occur under these

conditions.
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In general, cratering was low when cutting titanium with the CBN (Figs 4.99

and 4.106), but chipping occurred on the rake face of the tools. For example, Figure

4.91 shows CBN particles from the chipped area on the rake face moving down the

flank face. Some of the plucked tool particles remain on the rake face and are carried

away by the underside of the chip where they cause further damage to the rake face

within a subsequent contact area as shown in Figures 4.98 and 4.99. Similar

observations have been reported when cutting steel with CBN tools (211, 212).

However, the detrimental effect of tool particles at the flank face in scoring the

machined surface is probably of greater significance.

5.2.4 WEAR BY DISSOLUTION

In all cases, the process of wear leading to formation of craters is thought to

involve dissolution of material from the tool by diffusion into the adjacent zones of

the chip and the workpiece (213). A simple model relating the factors involved in the

dissolution-diffusion process has been recently described by Dearnley (214). The

most important of these factors is the solubility limit of the tool material in the

workpiece which determines the magnitude of the concentration gradient in the shear

zone and hence the diffusion flux. The intimate contact between the tool and the

chip/workpiece at temperatures above 700 °C provides an ideal environment for

diffusion of tool material atoms across the tool/chip and the tool/workpiece interfaces

(215). The better wear resistance of cubic boron nitride when cutting titanium at high

speed may be attributable in part to the relatively low solubility of boron in titanium.

From these and other cutting tests (215), it has been possible to show that, when

conditions for dissolution-diffusion wear predominate, wear with polycrystalline

diamond and cubic boron nitride tools is less than with carbide tools.

160



The estimated solubilities of tool materials in titanium at various temperatures

are given in Table 5.1 (216), and these values may be taken as estimates of the

maximum possible solubilities based on chemical properties alone. While estimates

based on chemical properties may be quite accurate when the predicted solubilities are

small, physical and geometric effects become significant when large concentrations of

solute atoms must be taken into solution. If the wear of cutting tool materials in the

machining of titanium proceeds by dissolution of the tool material by the titanium,

then it seems reasonable that the solubility of the tool material will be limited by the

solubility of the least soluble component. That is, if tungsten carbide is being

employed as a tool material, it is possible to assume the solubility of WC will be no

greater than the solubility of C, since the solubility of tungsten in titanium is much

greater than that of carbon. Table 5.1 lists the solubilities of the tool constituents in

titanium, obtained from phase diagrams (217-220). Comparison of Table 5.1 with

Table 5.2 reveals that all of the tool materials (except HfN, Hf02, La203) have

predicted solubilities in titanium that are greater than that of at least one of their

constituents. In all of these cases, the solubility of the tool material may be

approximated by the solubility of the least soluble component divided by the number

of atoms of that component per molecule of tool material. It seems that predictions

based on the solubility argument agree well with the test results. In particular the

analysis does explain the high wear rates and shorter tool lives (Figs 5.7, 5.8, 5.10,

5.11) of carbide tools relative to that of polycrystalline PCD and CBN tools.

Furthermore, any chemical wear mechanism would be affected by changes in the

cutting temperature. Since the cutting temperature for carbide tools is much higher

(215) than for polycrystalline tools, an increase in wear rate of carbide tools over that

of the polycrystalline might be anticipated.
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Tool	 Solubility (mole %)
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HfC	 1.27
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SiC	 *
TaC	 16.03
TiC	 7.75
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ZrC	 4.23
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TiN	 48.58
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11102	 7.85
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La203	0.033
TiB2	 *

* Chemical reaction occurs

Table 5.1	 Estimated Solubilities of Tool Materials in Titanium at Various
Temperature
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5.2.5 CHIP-TOOL INTERACTION

A feature of the quick-stop tests, with both the carbide and the polycrystalline

tools, was the fact that fracture of the inserts occurred leaving part of the cutting edge

bonded to the underside of the chip (Figs 4.145-4.147), although this was less

obvious with PCD (Fig 4.148). This clearly demonstrates the strength of the

chip/tool interface bonding with titanium alloys, and is consistent with the failure of

the corresponding welded junctions as described in Section 5.1. It also implies that

the temperature of the rake face was above the critical level measured in those

experiments.

The quick stop experiments also indicated that bonding across the majority of

the chip/tool interface was essentially similar. Figures 4.145-4.147 show that

workpiece material has been removed from the chip underside by the carbide and

CBN tools. In these cases, the strong bonding across the chip/tool interface caused

the tool to fracture and the cutting edge to remain dislodged in chip/workpiece root.

Metallogrophic sections of quick stop specimens made with all the cutting

tools revealed a segmented chip with a well developed flow zone adjacent to the chip

underside, blending into the shear zone lying adjacent to the new surface of the

workpiece (Figs 4. 145b, c and 4. 147b, c). The thickness of the latter shear zone was

less than the chip flow zone (Fig 4.146b). The sections show that a thinner chip is

produced by the PCD tools, which result from the shorter chip/tool contact length.

Furthermore, the stress required to shear the bond strength across the chip/tool

interface is less for polycrystalline PCD tools than for the other tools tested, because

it is a shorter contact length. This suggests that the interfacial movement over the

PCD rake face contact area (including the cutting edge) is less than with the majority

of the tools.
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It is reported that (221), the lower the interfacial bond strength, the shorter is

the final chip/tool contact length. Hence, PCD and CBN inserts have a shorter

chip/tool contact length than carbide inserts because the inherent chip/tool bond

strength is lower for these materials than for the carbide inserts, as recorded during

the cutting experiments.

Examination of the quick stop specimens showed that the chip flow zone (or

secondary shear zone) thickness was about the same for coated and uncoated inserts

when cutting a TA48 workpiece (Figs 4.145c and 4.146b). Consequently, the

reduced chip/tool contact length of the coated inserts reduces the total shear strain in

the chip flow zone, resulting in a reduced heat output. Since the rake face of the

inserts is in intimate contact with the chip flow zone, the rake face is heated to

temperatures equivalent to those in the flow zone. Hence, the reduced rake face

temperatures reported for the coated inserts (221) is probably caused by reduced

shear strain in the chip flow zone, as a result of the shorter chip/tool contact length

(Fig 5.3), rather than because the coating is acting as a thermal barrier as has been

reported previously (222).

A tracing of Figures 4. 145a and 4. 146a is shown in Figure 5.9 and gives the

position of the primary and secondary shear zones. The maximum chip thickness

(0.31 mm) is small compared with workpiece materials such as plain carbon steel,

reflecting the large shear plane angle (0), and the small chip/tool contact length

observed (215). As a result, the maximum rake face temperature occurs close to the

cutting edge.

The general chip form was geometrically segmented, with narrow bands of

intense shear separated by relatively undeformed regions in which the alpha grains

are elongated in the direction of chip travel. Thus it would appear that the primary

shear is not continuous but rather proceeds in discrete 'bursts' of catastrophic shear
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(223). Freeman (224) working with conmiercially pure titanium observed sub-micron

alpha grains in the shear bands indicating that sufficient heat is generated during the

intense primary shear to promote dynamic recrystallisation. During the short periods

of intense catastrophic shear, the chip is displaced across the surface of the tool by

plastic deformation within the flow (or secondary shear) zone. For a chip thickness

of 0.31 mm at a surface speed of 100 ni/mm, the effective chip velocity is 64 rn/mm

(222) and, if it is assumed that the bottom surface of the chip is welded to the upper

surface of the stationary tool, the average values of strain and strain rate within the

flow zone are of the order of 27 and 5.35x10 6s 1 respectively. These conditions are

quite sufficient to raise local temperatures above 900 C and give rise to dynamic

recrystallisation, as indicated by the presence of fine grains within the flow zone.

The sequence of events leading to cyclic chip formation when machining

titanium has been described by Komanduri and von Turkovich (225) based on their

detailed study of video tapes of low-speed machining within an SEM and high speed

photography of machining under workshop conditions, and microscopic

examination of sections through chips. Insofar as the actual mechanism of chip

formation is concerned, cutting speed appears to have no significant effect. However,

it is an important factor in determining tool temperature, tool wear, and surface

finish.
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5.3 CUTTING FORCES

The influence of tool material on the normal force (Fe), feed force (Ff) and

radial (Fr) components of cutting force is shown in Figures 4.144-4.159, where the

forces are plotted as a function of the cutting speed, at a feed 0.25 mm/rev and depth

of cut of 2 mm.

Increasing the cutting speed from 25 to 50 rn/mm increases the forces

required for chip formation with all tool materials, and the rapid increase in these

forces is an indication of the changes that take place at the surface of the tool. When

excessive wear occurs at the flank face, cutting edge and nose radius, an increase in

the cutting force is likely to occur. When excessive wear takes place at the rake face,

the feed force will rapidly increase. The radial force, which is the resultant of forces

that acts against the tool, will increase as a result of excessive vibration or chatter, or

as a result of nose wear or deformation. The initial increase in tool forces with

carbide tools is thought to be due to the rapidly developing crater bringing about an

increase in the effective rake angle. However, the crater length will also increase and

it is thought that this effect causes the forces, especially the normal and feed forces,

to increase also. Furthermore, the rapid fall in cutting forces with increasing speeds

(beyond 50 rn/mm) is due to the reduction in shear strength in the flow zone, brought

about by increasing temperature and by reduction in tool/chip contact length. The

most rapid force drop can be seen with the CBN tool (Figs 4.154-4.156) and this is

due to its relatively short 'run in' period and the rapid attainment of steady state

cutting conditions.

Significant reductions in all three components of cutting force are brought

about by the use of PCD tools. This reduction could be due to the formation of a

protective layer (see Section 5.2.3) on the surface of the tool acting to reduce friction
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forces. The effect is most apparent at higher cutting speeds, that is, in the region

where PCD achieves its maximum economic advantage over the rest of the tools.

It is evident from Figures 4.154-4.159, which show variation of normal, feed

and radial tool forces of all the inserts, that forces with coated carbide tools were

lower than those without coatings. This observation holds even though the coating in

the region of the crater is rapidly removed.

Some workers have reported that cutting forces are lower when cutting steel

with coated tools than with uncoated tools (226-229) and attribute this to a lowering

of friction between chip and tool. This conclusion is probably not completely correct

because the present study has indicated that, although bonding across the uncoated

tool/chip interface is stronger than across the coated tool/chip interface, intimate

contact between chip and tool occurred for both types of tool. This resulted in the

generation of chip flow zones of equivalent thickness. No evidence of sliding over

the majority of the chip/tool contact area was observed, and it is likely that the

reported differences in tool forces were not due to differences in interfacial friction.

Whittle (230) has recorded lower forces for coated then uncoated carbide

tools when machining steel, and attributed this to an initial resistance of coated tools

to crater wear. In fact, this is due to the smaller length of chip/tool contact on the

coated inserts - ie. the less crater wear, the smaller the contact length. Similar results

have also been presented by Snell (231) for coated and uncoated H.S.S. inserts. It

was found that the presence of coating layers significantly reduces the normal, feed

and radial tool forces, with the specific cutting force (i.e. vertical force divided by

chip cross-section) being reduced by some 20 to 25%. It was also found that for

coated inserts, the forces reached a maximum at a speed of 60 rn/mm, then decreased

to a minimum value upon further increase in speed, before finally increasing again at

higher speed. These changes in tool force were suggested to be due to coating
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higher speed. These changes in tool force were suggested to be due to coating

penetration and subsequent crater development, effecting an increase in the rake

angle.

Schintlemeister et a! (232) reported that tool forces were lower when cutting a

steel (with a relatively high calcium content of 0.0033%) with (TiC/Al203 and

TiC/Ti(C,N)/TiN) coated carbide tools than with uncoated carbide tools. These

workers attribute this effect to the preferential deposition of calcium-aluminosilicate

layers adhering to the rake faces of the coated tools. Such a layer might lower the

stresses experienced by the coated tools machining steel, but these workers did not

measure the rake face contact area and, since the initial cutting of titanium resulted in

rapid removal of the coated layers (TiC, Al203), it is not possible to draw similar

conclusions about the existence and role of the layer. However, formation of a

protective layer on the face of CBN and PCD has already been observed and it is a

fact that forces with these tools were lower than those with carbide tools. These

layers must have brought about the reduction of the contact length and hence the tool

face drag forces. According to Raw and Spick (233), a reduction in the tool face drag

causes a reduction in the total cutting energy and the cutting forces. The decrease in

the normal and feed forces when cuthng at higher speeds is due to the reduction in the

chip/tool contact length and a drop in the shear strength in the flow zone as the

temperature rises with increasing speed. The small contact length and high

temperature near the tool edge may result in plastic deformation of the tools at high

speeds. Recorded force readings generally show that the component forces increased

with prolonged cutting time under all the conditions tested. This is because the

clearance angle of the cutting tools is destroyed by wear with prolonged cutting time

and the area of contact on the clearance face is increased by the flank wear.
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5.4 SURFACE FINISH

The surface finish generated on a workpiece during the cutting operation has

been considered as the sum of two independent effects: the 'ideal' surface roughness

and the 'natural' surface roughness (234). The ideal surface roughness is as a result

of the geometry of the tool and the feed whereas the natural surface roughness is

caused by the irregularities in the machining operation. The type of chip produced

during the machining operation has a significant effect on the surface finish

produced. Poor surface finish can be caused by concentrated tool wear, localized

upon the boundaries of the areas of contact between the flank face and the workpiece.

Poor surfaces are generally associated with one or more of the following: chatter,

feedmarks, and microchips. Chatter is caused by the periodic vibration of the tool

and/or workpiece. Feedmarks are produced by the impression of the tool nose radius

on each revolution of the workpiece. A microchip forms at the flank face of a tool and

is the counterpart of the BUE which normally forms on the rake face of a tool.

Microchips occur through a process of shear with the development of a primary

deformation zone similar to that normally associated with chip production at the tool

rake face. High stresses and deformation do occur before microchips are formed

(184). The size of the microchips are dependent on the stability of the system and, for

example, a relatively small build up is expected in a rigid machine tool. Another

factor which exacerbates the deterioration of surface finish is the formation of a

series of notches (or grooves) on the cutting edge of worn tools. The distance

between these notches being equal to the feed rate (235). Formation of the notches on

the cutting edge of tool causes the surface finish produced on the workpiece to

deteriorate. Pekelharing (236) has shown that these notches are funnels which

channel metal in the opposite direction to the feed marks and that it was this action

that resulted in the feed marks being extended.
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The deterioration of surface finish can also be caused by the geometry of the

cutting tool and the extent of its wear. It has been reported that the relative motion at

the interface between the tool nose region and smooth areas of the freshly machined

workpiece surface generates frictional and adhesive forces because of the interaction

of contacting surface asperities (237). This action obviously worsens the surface

finish generated. The nose radius of the carbide tools used in this project was 1.2

mm. This means that a large area of the tool nose region will be in contact with the

freshly machined workpiece surface resulting in an increased tendency for the

interface between the tool nose and the freshly machined workpiece to contact surface

asperities - this increases the surface roughness.

Figure 4.160 and 4.161 show a general deterioration of surface finish with an

increase in cutting time when machining at all speeds. This is due to an increase in the

flank wear land with prolonged cutting time. An increase in the flank face wear leads

to an increase in the tool-chip contact length, tending to increase the temperature and

the compressive stress at the tool nose. A zone of intense shear will therefore be

developed on the worn flank face. These developments might lead to the removal of

tool particles at the tool nose and such particles tend to weld themselves on the

freshly generated work surface resulting in the subsequent deterioration of the surface

finish. It is known that carbide tools are expected to weld or adhere easily to TA48

work materials. The quasi-static studies on coated carbide tools have shown that they

(KC91O and KC850) have a pronounced tendency towards welding with the work

material. The poor surface finish generated when cutting with the carbide tools is

therefore due, in part, to the welding of the chipped tool material from the tool nose

onto the freshly machined surface (Figs 4.145b and 4.147b). Ham and Narutaki

(196) have reported that round honed tools tend to produce more chipping on the

cutting edge when machining titanium with ceramic tools.
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The adherence of work material on the worn flank face of the tool when

cutting at higher speeds can also increase the surface roughness. It has been reported

by Brookes et al that the adherence of titanium to the flank face of carbide tools can

take place at a temperature of about 780 °C (238). This temperature was attained

when adhesion tests were carried out with carbide tools and TA48.

Notching at the tool nose can also lead to the generation of poor surface finish

on the machined surface at high speed conditions. The notch observed on the tool

nose and the end of depth of cut could be caused by the work-hardened workpiece

material which has moved out of the flank area. Hoshi (239) has reported a

significant increase in the hardness of the work hardened layer when investigating

BUIE during the machining of low carbon steel with carbide tool. The increase in

hardness is about three times higher than that of the original workpiece material. The

increased hardness could therefore lead to the notching at the tool nose, and end of

depth of cut, when cutting steel at high speeds with the carbide tools. This may be

true in the case of machining low carbon steel, but in machining of TA48 notching

was caused by chemical reaction between the tool and the workpiece material - see

Section 5.2.2.4. Notching at the tool nose, or the end of depth of cut, has a

deleterious effect on the surface finish generated since the work-hardened or slow

moving zone of metal tends to protect the active part of the cutting edge thereby

forming an integral part of the cutting process. The notches also act as funnels which

channel the metal in the opposite direction to the feedmarks resulting in extended

feedmarks and an increase in the surface roughness values. Plucked out tool particles

can also move down the notch at the tool nose to the tool-work piece interface, still

further worsening the surface finish generated.

High surface roughness values were recorded when cutting titanium

workpiece materials with the carbide tools at slower speeds. The rapid deterioration

of surface finish under these conditions may be as a result of the rough cutting edge
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caused by attrition wear. With the disappearance of the attrition type of wear at higher

speeds, the cutting edge geometty should be better maintained. This does not happen

with the coated tools at higher speeds since these tools generate a poor surface finish

(Figures 4.160 and 4.161). The cause of the poor surface finish is probably due to

the notch formation as mentioned previously. Another reason for the rapid

deterioration of surface finish during machining operation may be due to the

microstructure of the carbide tools. Carbide tools have coarse grain sizes and large

pore diameters. Wear by attrition is more severe on tools with coarse grain size

producing rough cutting edges and ultimately adversely affecting the surface finish

generated.
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6.0 CONCLUSIONS

The following conclusions are based on studies of machining a titanium alloy

(TA48) with a wide variety of hard cutting tools ie. carbide (coated and uncoated),

polycrystalline diamond (PCD) and cubic boron nitride (CBN).

i) A simple quasi-static contact method has been developed to identify the

workpiece tool interfacial temperature above which strongly adherent surface

layers were formed on the rake face. These temperatures were 740, 800,

820, 760 and 900 C for carbide grades of KC850, K68, KC91O,

polycrystalline Syndite and Amborite tools respectively. The method allows

for a detailed study of the microstructure and composition of interfacial layers

formed by reaction between the two materials. Furthermore, it can be used to

study the integrity of the bulk material, and/or individual coatings on

substrates, when welded junctions were subsequently separated at room

temperature. Generally, fracture was initiated in the bulk of the harder tool

material, rather than in the workpiece or at the welded junction interface.

ii) Quick stop tests showed that under actual cutting conditions these critical

temperatures were reached or exceeded.

iii) Analysis of the contact length between the chip and tool showed that the

contact length is dependent on cutting speed. Increased cutting speeds were

associated with shorter contact length between the chip and the tool.

iv) The thin chips produced when machining TA48 (hence the high chip

velocities), combined with the thin flow shear zone and short chip-tool

contact lengths, cause higher temperatures to be produced closer to the cutting

edge of the tool than when other metals. This has encouraged the use of low

cutting speeds ie. <100 rn/mm, to obtain acceptable tool life in practice.
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However, here it has been demonstrated that significantly higher cutting

speeds (ie. 250 rn/mm) could be achieved with PCD tools.

v) Swarf characterised by the sawtooth wave form of the top of the chips is

typical of that produced when machining titanium alloys over a wide range of

cutting speeds. This form of chip is probably produced by catastrophic shear

occurring intermittently in the primary shear zone.

vi) A mechanism of wear based on diffusion and dissolution of the tool materials

predominates. The poor thermal conductivity of the titanium alloy workpiece

further encourages the development of high rake face temperatures. Thus, the

formation of a crater in this region undermines the integrity of the cutting edge

resulting in fracture and an accelerated wear rate.

vii) Most potential tool materials either rapidly dissolve in or chemically react with

titanium alloy work pieces. In this work, a coherent metallic layer is formed

on the rake face by a chemical reaction. The thickness of this layer is thought

to be determined by the balance between the rate of diffusion of tool material

through the layer and the rate of dissolution of the reaction layer in the

workpiece. Furthermore, the stability of this protective layer will become the

controlling influence on the wear of the tools.

viii) Rake and flank face wear for all the tool materials tested resulted from the

combination of two wear mechanisms: dissolution-diffusion and attrition. The

former mechanism produced smoothly worn surfaces. Attrition, probably due

to detached tool particles adhering to the swarf, causes irregularly and scarred

worn surfaces.

ix) Failure of carbide tools occurred due to the plastic deformation of the tool

nose caused by the high temperatures close to the cutting edge, and the
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inability of the tools to support the high compressive stress in this region.

Deformed carbides were often carried off in streamers attached to the back of

the chip, illustrating that the bond between these carbide tools and the titanium

in the region of the tool-chip contact length was intimate and strong.

x) The presence of coated layers on the carbide tools appears to have had no

beneficial effect on their performance since those layers were rapidly removed

leaving the tungsten carbide substrate vulnerable to cratering. However this

presumes that the quality of the coated layers and their adhesion to substrate

material was consistantly good.

xi) Significant numbers of the carbide and cubic boron nitride tools were

unsatisfactory due to the poor surface finish generated on the workpiece. It

was found that the poor surface fmish was a result of chipping at the cutting

edge but this effect was not observed with PCD tools.

xii) Whilst the wear mechanisms were the same for CBN and carbide tools, the

wear rate of cubic boron nitride tools was less than that of the carbide (coated

and uncoated) tools - and the surface finish was better. It is considered

probable that the greater wear resistance is due not so much to its higher

hardness and melting temperature, but rather to a slower rate of chemical

reaction with the titanium alloy workpiece.

xiii) Analysis of the cutting forces showed that PCD tools had the lowest recorded

values of cutting forces with CBN at intermediate level and the carbide tools

had the highest.

xiv) Polycrystalline diamond is the most suitable tool material commercially

available for machining titanium alloys. Out of all tools tested, the PCD tool

gave the best performance and the longest tool life. It is considered that this

was due to the formation of a thin protective surface layer, esentially titanium
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carbide, formed between the rake face and swarf. Once formed this layer

provides a barrier to further dissolution of carbon from the tool, thus reducing

dissolution wear. Additionally, PCD produced the best surface finish and

swarf which was better suited, in term of form and condition, for recovery.
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7.0 FUTURE WORK

Extensive work needs to be undertaken using SEM/EDAX techniques, to

accurately determine the structure of protective layers which form on the rake face of

the tool, since the formation of these layers appearse to be crucial to the overall wear

rate of the tool.

Although chemical effects are dominant in the wear of cubic boron nitride

tools in the machining of titanium alloys, fracture in the form of chipping contributed

to the early deterioration of the tools. The indentation hardness/fracture technique (ie.

indentation creep and fracture measurements) should be used to investigate and

assess the mechanical properties of these materials under conditions similar to those

encountered in service. Furthermore, the apparent anisotropic behaviour of Amborite

should be carefully examined (ie. sliding friction tests on the rake and flank face of

CBN should be carried out).

Detailed studies of carbide tool test samples should be conducted, with the aid

of SEM/EDAX techniques to examine the surface morphology, and metallographic

sections of the coating/substrate interface to ensure a good control of the carbon level

in the substrate prior to, and during deposition of the coatings.

A greater range of coated and uncoated carbide tools should be employed in

machining titanium and its alloy to determine the extent which the findings of the

present work are applicable to other carbide tool materials. Variations of binder

content and composition should be examined, as well as variations in the

composition of the carbide phase.

Further work using the transmission electron microscopy (TEM) technique

should lead to a greater understanding of the saw-tooth chip formation, which

appearse to be a charecteristic of titanium alloys.
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