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The pulsed HF chemical laser was discovered in 1966 by Deutsch. 

Early lasers had very low power outputs; it is only more recently 

that high power pulsed HF/DF lasers have emerged. This thesis is 

concerned with the development of a 10J HF laser in 1976 and subsequent 

interaction experiments. The high power HF/DF laser is a potentially 

valuable new device in view of its large gain coefficient and output 

intermediate in wavelength to the Nd:glass and CO2 laser. Information 

on interactions at this wavelength has been lacking and the solid 

target interactions presented here help to remedy this deficiency. 

In addition, certain investigations were carried out using the CO2 
laser. These experiments aided direct comparison of the interaction 

data at the two infra-red wavelengths. 

In the first chapter basic laser-plasma interaction theory is 

discussed. A vacuum environment is firstly considered, and emphasis 

is given to those models relevant to target irradiances available in 

our laboratories. Anomalous heating is only superficially treated 

as these studies were carried out below the non-linear thresholds. 

The theoretical variation of plasma parameters with laser wavelength 

is presented next, followed by a consideration of the gaseous 

environment. A brief review of pulsed HF laser design is gIven In 

chapter 2 followed by an account of our own design studies in the 

next chapter. Chapters 4 and 5 are devoted to laser-target inter­

action studies employing vacuum and gaseous environments respectively. 

The first published comprehensive vacuum interaction study, using the 

HF laser, is presented in chapter 4. The Z dependence of ion-velocity 

scaling, ion-number scaling, and reflection variation is recorded, 

together with the first x-ray temperature measurements at this wave­

length. The gaseous environment is considered in the following 

chapter, where thermal coupling and laser supported detonation wave 

observations are given. Chapter 6 deals with vacuum interaction 

studies carried out at the CO2 wavelength. The final chapters deal 

with the comparison of experimental results with theory, together 

with a general review of other published interaction investigations. 
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GIAP1ER 1 

LASER-PLASMA IN1ERACTION 1HEORY 

1.1. Introduction 

The interaction of laser radiation with solid targets in vacuum 

1S discused. Simple modelling - the self-regulating and deflagration 

models - is introduced, together with a correction for thermal 

conduction. Instability heating is briefly treated and a section on 

wavelength scaling is used to establish a regime diagram. 

Thermal coupling of laser radiation with solid targets 1n a 

gaseous environment is examined, together with the theory of laser 

supported detonation waves and gas breakdown. 

Numerical values for the irradiance levels set out below have 

not been given. Such values are meaningless unless relevant 

parameters, including laser wavelength, pulse duration and shape, 

focal spot size, target material and nature of surface, are specified. 

In the case of low irradiances, simple thermal calculations employing 

known specific and latent heats, together with thermal diffusion 

constants can be employed to obtain rough values. 

and high reg1me, Fig.I.5. can be employed. 

1.2. Very: Low Target I rradiances 

For the medi tun 

Laser radiation incident on a plane opaque target under these 

conditions is partially reflected and partially absorbed by the 

process of electron excitation. The effect is to raise the temperature 

of the target material without change of state. Three-dimensional 

thermal diffusion occurs, but to a fair approximation conduction 

normal to the surface can be assumed for ro » Ap ' where ro is the 

focal-spot radius and A is the penetration depth. The rate of 
p • 

change of surface temperature, T , has been calculated to initially 
s 

1ncrease rapidlyCl) due to the surface optical properties being a 

function of temperature. 
. 

For T large, shock waves are generated. 
s 
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1.3. Low Target Irradiances 

At slightly higher irradiances changes of state occur. At the 
melting point the reflectivity suddenly decreases. Liquid flow 

during the laser pulse duration can be ignored, although the effect 

of melting can be observed from the wave paterns produced around 

many target craters. Of far greater importance is the change into 

the vapour state. The vapour may start to strongly absorb radiation. 

Hughes(2) has pointed out that the latent heat of vapourization is 

much greater than the latent heat of fusion, and that the boiling 

point is drastically changed by the high radiation and ablation 

pressures. 

The transition from the vapour into the plasma state is also 

acompanied by a large latent heat. Ionization occurs by direct 

excitation, collisional excitation and multi-photon processes. 

The free electrons are now heated by the process of inverse 

bremsstrahlung. Multi-photon ionization involves the excitation of 

a bound electron by two or more photons, a process employing virtual 

intermediate states, as permitted by the uncertainty principle. 

Weingartshofer et al(3) have carried out single particle collision 

experiments to directly measure the differential cross-sections for 

multi-photon inverse bremsstrahlung. Theoretical expressions have 

been developed to treat the more complex multi-particle situation 

of inverse bremsstrahlung absorption in an intense laser field under 

laser produced plasma conditions (4) • The high atomic density in 

the solid and vapour phases favours a large Stark broadening and 

depresses the ionization limit. 

1.4. Medium Target Irradiances 

At still higher irradiances the plasma state is rapidly produced. 

Radiation is now absorbed by the plasma, which is heated and fans 

out into the vacuum. However, this plasma becomes optically thick, 

resulting in a decrease in the vapour and ion production at the 

target surface. This in turn decreases the optical thickness and 
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so Increases the production. The process is thus self-regulating. 

A shock wave is generated by the ablation pressure. The Se If­

Regulating (S-R) model has been developed to deal with this situation. 

1.5. High Target Irradiances 

At high irradiances the absorption occurs In a thin regIon 

near to the critical density, n . The one-dimensional situation ec 
is a deflagration wave-front following the shock wave-front. The 

Deflagration wave (OW) model is used under these conditions. 

1.6. Very High Target Irradiances 

At very high irradiances a number of non-linear effects are 

important. Resonant absorption is a major process. Instabilities 

greatly effect the plasma reflectivity and energy coupling. 

1.7. The Self-Regulating Model 

1.7.1. General Principles 
Various treatments of this model have been presented(S-ll) . 

Here we shall follow the approach of Puell. This model is particularly 

relevant to the experimental results of chapters 4 and 6, and so 

the treatment will be fairly detailed. 

At high irradiances the initial plasma production time (~lO-lOs) 
is very much shorter than the laser pulse duration, and so may be 

neglected. Puell makes the following four assumptions :-

i) The plasma is divided into three regions, as shown schematically 

In Fig.l.l. Region I represents the unperturbed solid, region II 

one-dimensional plasma flow, and region III a fan-out into the vacuum. 

Region II extends to a good approximation to a distance ro from the 

target surface(S) This region is the dominant plasma heating zone, 

as the density and the strength of the radiation field is rapidly 

decreasing in the subsequent region. The energy transfered by the 



I 

-< 

--------~----~--------------------~------~x 
o Ro 

Fig.1.1.Schematic drawing of the Plasma flow 

(after Puell 1970). 

J Undisturbed target 

II One-dimensional flow 

ID Three-dimensional flow. 
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shock wave advancing into regIon I can be neglected as the plasma 

density is very much less than the target density. 

ii) A steady-state situation has been obtained. This is true if 

the ions and electrons are in the heating zone for periods less than 

the laser pulse duration. For nanosecond pulses this situation IS 

achieved, as shown in the discussion on the model's validity. 

iii) The absorption coefficient, K, given by Dawson and Oberrnan(12) 

is used for the case n < n sothat the term (1 - n /n )-1/2 may e ec e ec 
be neglected :-

K = 

and K 

-1/2 (1 - n /n ) . e ec 

= (2w/c) (n /n - 1) 1/2 e ec ne > n ec 

n e < n ec 

•.•• . (l.la) 

•••.• (1 .lb ) 

where n k T and m are the density, temperature, and mass of 
e' e' e 

the electrons, ni and Z are the density and charge of the ions, 

c is the velocity of light, C is a constant given from the above, 

n is the critical electron density given by the plasma frequency, 
ec 2 1/2 d It' th w = (4'IT e nee/me) equalling the radiation frequency, an IS e 
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Spitzer coefficient(14) • For ne > nec K becomes very large. 

iv) Thermal conduction and radiation losses in the plasma are 

neglected, as is the plasma ionization energy. 

The continuity condition at the boundary II/III In the steady­

state gives us that the radiation flux crossing the boundary must 

equal the plasma energy flow in the reverse direction. The energy 

of a single particle is the sum of its enthalpy h and kinetic 

energy lmu2 sothat the continuity equation becomes :-

where ~ is the flux and 1 indicates the boundary II/III. 
For an ideal, monatomic gas, kinetic theory gives us that 

the internal energy, U = (3/2) kT and pV = kT, (N = 1), sothat 

h = U + pV = (5/2) kT. As the plasma is neutral, ue = ui = u and 

n - Zn - n Also, m «m. sothat (1.2) becomes :-e- i-' e 1 

.•... (1 .3) 

The ion temperature must lie between 0 and Te' thus (1.3) can be 

written :-

where a is between 1 and (1 + liZ) · 

1.7 .2. Electron Tepperature 

The mass density = ni mi = P, as me «mi' 

Ideal gas equation, pV = N k T gives :-

P = (n. + Z n.) k T as n = n· 
lIe 1 

= Zan. k T 
1 

..•.. (1.4) 
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but us' the adiabatic sound velocity, IS given by ;-

u
2 = y (!.E) 
s dP T 

.•... (1.5) 

For a monatomic gas y = 5/3, therefore, 

•.•.. (1.6) 

The plasma velocity in region II is subsonic. The expansIon 

into the vacuum results in a supersonic flow. At the boundary 

we can take ul = us. 

The absorption coefficient, K, as given In (l.la) is not 

constant as radiation moves from the boundary towards the target. 

At any point x in region II we therefore have ~-

r 
o 

~x = ~l exp -! K dx 
x 

USIng the continuity equation :-

n u = n 1 ul = nx Ux = constant 

get, 2 = n2 2 -2 we n 1 ul u 

r 
0 2 2 

so, ~x = ~ exp { - ! nl ul C Z 
1 x 

!(s ex k T 2 = n ul + m· u 
1 x I X 

from (1.4). 

••••• ( 1 • 7) 

•.•.. (1.8) 

(kT)-3/2 -2 u dx } •••.• (1.9a) 

Z-l) ••••. (1.9b) 

In order to obtain an expreSSIon for nl the approximation is 

taken that in region II u = us. Puell explains that although the 

flow velocity is overestimated, resulting in less energy being 
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available for the thermal contribution, the density is also under­

estimated by the equation of continuity, (1.8). K is proportional 

to n2 (k T ) -3/2, thus these effects tend to cance 1. 
e e 

From (1.6) :-

Therefore, (1.9a) may be rewritten as :-

r 
° 2 Z k T1 (k T)-S/2 dx ~ = ¢l exp { - f n l C 

x' x 

Substituting for ~ and ¢ from (1.9b) and (1.4) x 

r 

..... ( 1. lOa) 

\ 

..... (1.10b) 

..... C1.l0c) 

.•... (1.11) 

.•... (1.12) 

exp { - fO ni C Z k Tl (k T)-S/2 dx } 
x 

..... (1.13) 
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Substituting for u1 and Ux from (1.10a), (l.lOc) and simplifying 
we obtain :-

r 
o 2 I k Tx = k TI exp { - f n1 C Z k T1 (k T)-S 2 dx} 

x 
........ (1.14) 

On differentiating this expression with respect to x and using the 
boundary conditions :-

k T = 0 x = 0 
x ' 

we get, 

d (k Tx) 2 I 
dx = k T x n 1 C Z k T 1 (k n -5 2 

= ni C Z k T1 (k T)-3/2 •.••. (1.15) 

therefore, ~ (k T)5/2 = ni C Z k T1 x •.••• (1.16) 

••••• (1.17) 

•••.• (1.18) 

Considering region III, the plasma density is decreasing into the 

plasma by an inverse square law to a good approximation -

..... (1.19) 

(The radius of the plasma IS x at a distance x from target) • 
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For an ideal gas, PI VI / Tl = P2 V2 
For a reversible adiabatic expansion, 

combining :-

/ 
_ y-l 

Tl T2 - (V2 / VI) 
sothat the electron temperature is given by :-

Substituting from (1.20) into (l.la) and using (1.19) :-

K = C Z n2
1 (r / x)2 (k T )3/2 

o 1 

Expressing ~1 in terms of the incident flux ¢o :-

{ C Z 2 (k T
l
)-3/2 } = ~o exp - nl ro 

Substituting (1.18) :-

= ~o exp (-2/5) 

therefore, ~l = 0.67 ~o 

..... (1.20) 

•.••. (1.21) 

...•. (1.22) 

.••.. ( 1 .23) 
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Puell points out that although a significant fraction of the 

radiation is absorbed in region III, this occurs over a large 

distance compared with r , sothat it is reasonable to consider an o 
adiabatic expansion. 

Substituting the expressions for ul ' nl and ~l (1.6), (1.18), 

(1.23) into (1.4) we get :-

{ Sa k T 1 / 2 + (m. Sa Z k Tl ) I (2Z 3m.) } 
I I 

..•.. (1.24) 

simplifying '-

..... (1.2Sa) 

This final expression for the maximum electron temperature is 

In agreement with results obtained by other authors C14 ,lS) . From 

(l.la), C 0: w-
2 I.e. 

. •... (1.2Sb) 

1.7.3. Ion Te~erature 
Shkarofsky et al (16) gIve an expressIon for the equipartition 

time, t ., for the ions in the plasma to achieve the electron 
el 

temperature. For equiparti tion to occur, the ions must stay In 

the heating zone for a period at least equal to this time. Equating 

these two we can define the limiting case :-

t . < fo / u l el IV 
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Substituting for ne and ul we obtain :-

k Tth ~ 5 x 10-19 { ro Z (Z + 1) / (C A) }2/5 eV ..... (1.26a) 

where, Tth and ~th are the lirni ting temperature and radiant flux 
(W.cm-2), and A is the atomic mass of the ions. 

1.7.4. Total Number of Particles 

If N is the total number of particles produced, the particle 

flux is given by :-

From (1.6), (1.18), (1.25) we obtain :-

Assuming a Gaussian laser pulse of peak intensity $0 and FWHM 
of 2T Puell integrates this expression to obtain :-

N = 7T r2 a- l / 3 T { 97T/(20 ln2) }1/2 { 2/(3m. C ro) }2/9 ($ /5)5/9 
0 10 

....• (1.28) 

This reduces to -



N = 1.6768 (m. C)-2/ 9 
1 

and from (l.la), 

N a: A-4/ 9 
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16/9 -1/3 
rex.' T a 

1.7.5. E~ansion Energy 

~5/9 
o ..... (1.29a) 

.•••. (1 .2 9b) 

At large distances from the target the ions carry all of the 

energy that was absorbed by the particles during the heating phase. 

Here we are neglecting the mass of the electrons and assuming a 

steady-state situation. Thus, the ion expansion energy, 

where, n. u IS the lon flux leaving the target. 
1 

As n = ne = Z ni and n u = nl ul 
. -. 

Substituting (1.25) and (1.27) into (1.30) :-

from (l.la), 
2/9 

E. 'V A lon 

therefore, 

. ..... (1.30) 

.•.• . (1.3la) 

..••• (1.31b) 

.•..• (1.31c) 



- 14 -

1.7.6. Discussion on the Validitr of this Model 
a) Steady-State 

The steady-state approximation will be valid if the laser pulse 

duration T 1S large compared with the heating time t'. Using (1.6) 
and (1.25) :-

T > t' ~ r8/9 a- l / 6 (3 m. / 5 Z)1/2 (50 / (3 m. C))1/9 ¢-2/9 
o 1 1 0 

..... (1.32) 

For typical values this limits the validity to pulses longer than 
about Ins. 

b) The AbsoEPtion Coefficient 

The expression for K that was used is valid for n < n . In e ec 
this limiting case, from (1.18) and (1.25) the limiting value for 

the flux, ¢' , is given by :-
o 

¢ < ¢' = n3 25 C r {5 a 3 Z3 / (12 m.) }1/2 
o 0 ec 0 1 

..... (1.33) 

Care must be taken, especially for CO2 laser-produced plasmas, that 

this condition is met. 

The above calculations assume that the thermal conduction 

length is negligible compared with the absorption length for the 

radiation. This situation is termed a thin thermal conduction zone. 

For a thick thermal conduction zone the thermal absorption length 

is comparable with the absorption length. The scaling laws are 

modified to give :-

••••• (1.34a) 
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•.•.. (1 . 34b) 

where, p is the laser power and p !he_plasma density. 

The thermal conduction length, L, is the distance over which 

the conduction energy flux is comparable with the convection flux(17) • 

L = Z.07 x 1015 Al/Z TZ (a Z)-3/2 (n lnA)-l 
e ec 

where, T is in eVe e 
Absorption is important over lengths, £, such that 

.•... (1.35) 

.•... (1.36) 

where, Q = total energy flux, ~ = absorption coefficient, I = laser 

intensity. In the steady state the outgoing energy flux equals 

the incoming laser flux, i.e. Q ~ I. Therefore, 

•••.• (1.37) 

The thick self-regulating reglme 1S not realised in the 

experiments presented here, and so will not be further considered. 

The only possible exception to this statement is with lead, irradiated 

with COZ laser radiation. However, in this extreme situation the 

simple model is likely to break down anyway; for heavy targets the 

failure to include the ionization energy is a serious omission. 



- 16 -

1.B. The Oeflagration Wav~ Model 

1.B.l. General Principles 

If the target irradiance 1S increased beyo~d the self-regulating 

situation, the rapidly expanding plasma becomes transparent to the 

laser radiation. The heating zone moves into the target as a 

deflagration wave (O-W) preceded by a shock front. This regime was 
initially investigated by Fauquignon and Floux ClB), and Bobin(19) . 

These authors developed a one-dimensional continuum hydrodynamic 

theory, which has been extended by Pert CZO) to include three­

dimensional flow. 

1.B.Z. Detonation Wave Theory 
Consider a laser-driven shock-wave 1n an ideal gas, moving with 

veloci ty U in the laboratory reference frame. For convenience, it 

is conventional to use the U = 0 frame of reference, Fig.l.2. 

plasma ideal gas 

_ .. e----- Vz ~hv 

_____ ~_~_.J._..~_________ ----------

Fig.l.Z. Notation for a laser-driven shock wave 1n an ideal gas. 

Thus, the velocity of the ideal undisturbed gas VI = -U. 
The equation of state and boundary conservation laws can be 

combined(Zl) to give the Hugoniot detonation equation :-

(x + 1) _ ~ + 
(X - 1) P Z 

= ------------------
(X +~ ~ - 1 
~P2 

..... (1.38) 
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where Q is the energy supplied to tmi t mass of gas on traversing 

the front. This equation can be plotted, Fig.l.3., as (PZ/P
l
) vs. 

(Pl!PZ) for Q constant. 

The continuity conditions lead to an expression for the slope 
of vI :-

therefore, 

d(PZ/P1) 

de" IIp z) 

••••• (1.39) 

•.... (1.40) 

Thus, a given value of the shock front is indicated in Fig.l.3. 

by a line passing through l~l (the tmdisturbed gas) with slope given 

by (1.40). In general there are two solutions. A unique situation 

occurs at the tangent to the Hugoniot detonation curve. This is 

termed the Chapman-Jouguet solution. Jouguet showed that at this 

point the velocity of the detonation wave relative to the heated 

matter behind the wave coincides with the local velocity of sound 

(y PI I pz)l/Z. It can also be shown that the Chapman-Jouguet 

condition is necessary for the steady-state (ZZ) • 

1.8.3. Deflagration Wave Situation 

For the detonation wave (PZ / PI) > 1. For the deflagration 

wave the reverse is true; the relevant Hugoniot curve is shown in 

Fig.l.4. The Chapman-Jouguet point is the maximum deflagration 

velocity in the frame of reference in which the solid is at rest 

(this takes into accotmt the preceding shock wave). 

Bobin(19) shows that the condition for maximum heating of a 
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freely expanding plasma by linear absorption of laser radiation 

occurs in the region of the cut-off density. For this situation, 

he derived, from an extension of self-regulating equations, that 
the peak temperature, 

...•. (1.41) 

He develops the model, taking the boundary conservation laws for 

mass, momentum and energy. Viscosi ty and thermal conduction 

corrections are applied, the former being fairly insignificant. 

For the expanding isothermal plasma, the scaling laws given by 

Fauquignon and FloliX are unchanged when the flow is considered in 

three dimensions :-

where, a. = 1 + T./ZT 
1 e ~ 1 + liZ 

•.••. (1.42) 

(Z > 3). 

.•... (1.43) 

When thermal conduction is considered, these laws are only 

valid if the conduction length is much smaller than the focal spot 

radius : - L« r. This situation is termed a thin thermal 
o 

conduction zone. For a thick thermal conduction zone L » ro' 
and thermal diffusion will dorninate(17) Bobin's relations may be 

modified to give :-

T ~ p2/ll A- 7/ ll Z a3/ ll A-4/ ll 
e 

(p ~ p , L » r) ..... (1 .44) 
c 0 
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where P 1S the total laser power. 

1,,8.4. Validity of the Deflagration-Wave Model 

Bobin obtains an expression for the minimum pulse duration 

required if the deflagration-wave approach is to be valid :-

where, 

B* = 1.98 x 10-7 (Z / v 2 m~) (3k / m.)3/2 
1 1 

Z = mean plasma ion charge, 

m· = ion mass, 
1 

v = laser frequency. 

..... (1.45) 

For the relatively long pulses encountered in the CO2 and HF 

experiments presented here this condition is fulfilled. 

1.9. Anomalous Heating of a Laser-Produced Plasma 

1.9.1. Introduction 

Anomalous absorption is a term applied to the absorption of 
radiation by instability and non-linear processes (23) • In the 

electron-ion decay instability, the e-m wave decays into a Langmuir 

(high frequency electron) wave and an ion-acoustic wave :-

photon + plasmon + ion-acoustic phonon. 

If only two Langmuir waves are produced, the decay 1S termed the 

electron-electron instability :-

photon + plasmon + plasmon. 
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In both these processes, wave vectors and energies must be conserved. 

The plasma waves are initially produced by non-linear forces. 

Collisional and Landau damping converts these plasma wave energies 

into heat .. 

Anomalous backscatter of radiation typically occurs by creating 

a Langmuir or an ion-acoustic wave. These processes are tenned 

stimulated Raman or stimulated Brillouin scattering (SRS or SBS) 

respectively .. Very little heating results. 

The instability threshold, growth rate and saturation point are 

important factors which vary with the radiation frequency. Non­

linear coupling of Langmuir and ion-acoustic waves may also occur if 

their amplitudes are large enough. 
Nishikawa(25) predicts two types of instability that occur when 

the radiation frequency is in the region of the plasma frequency. 

These are the oscillating two-stream and the parametric decay 

instabili ties. 

1.9.2. The Oscillating Two-Stream Instability 

This occurs when the radiation frequency is less than the 

Bohm-Gross frequency(2) :-

..... (1.46) 

where, wBG = W (1 + 3K2 A~) 1/2 
pe 

{ (k Te £0) / 
2 }1/2 

and, AD = (ne e ) 

2 (m £) W = (ne e ) / pe e 0 

k = Boltzmann's constant 

K = wavenumber 

£ = penni tti vi ty of free space 
0 

AD = Debye length 

wpe = electron plasma wave frequency. 



- 21 -

ni and ne distributions are usually directly coupled. However, 

In the electric field of the laser radiation the electron is gIven 

a high frequency component about the ion distribution. When the Ion 

frequency is zero we have the oscillating two-stream instability. 

1.9.3. The Parametric Decay Instability 

This occurs when the radiation frequency is greater than the 
Bohm-Gross frequency :-

..•.. (1.47) 

A plasmon and an ion-acoustic phonon are produced from the decay of 

the pump photon. 

1.9.4. Thresholds 

Yamanaka(24) estimates the thresholds at 1.06~m of the parametric 

and oscillating two-stream instabilities in the case of a deuterium 
plasma. Threshold equations are given by Nishikawa(2S) . Dyer(26) 

indicates the thresholds for 10.6~m, together with the transitions 

from self-regulating to deflagration-wave at both these wavelengths 

(deuterium target, r = 100~m). For 10 < T < 103 eV the 10.6~m 
10 0 11 -2 ~ ~ 

threshold is ~10 - 10 W.cm • By comparison, at 1.06~m and 
T ~ 102 eV the threshold is ~ 1014 W.cm- 2• Dick and Pepin(27) 

plot the parametric decay instability thresholds for Al and (CH2) at 
2 n 

10.6~m. It can be seen that for low ( < 10 eV) T the threshold 
~ e 

increases with Z, but at high ( > 102 eV) T the reverse is true. 
~ e 

They observed enhanced parametric absorption with AI ( > 3 x 1010 

W.cm- 2) and (CH2)n ( > lOll W.cm- 2). This was deduced, for example, 

from the low reflectivity, ion-velocity scaling, electron temperatures 

and a high energy x-ray component. High energy ions from a CO2 
laser-produced plasma were observed by Ehler(28) using a (CH2)n 

target at a threshold of 5 x 1012 W.cm- 2• The origin of these fast 
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Ions was considered to be a steep electron-density gradient. The 
. l' 2/3 . . . Ion energy sca lng was ~ ¢ , In agreement WIth theory, In contrast 

to the ~ ¢4/9 scaling from a thermalized plasma. These supratherrnal 

ions were resolved into their charge species with the time of flight 

detector. The ion angular distribution was also non-typical of a 
(29) thermalized plasma. Fabre et al , also using a CO

2 
laser, 

observed anomalous processes. They observed the onset of the 

parametric decay instability. In addition, the analysis of the 

backscattered radiation indicated SBS and other weaker non-linear 
processes. 

1.10. Wavelength Scaling 

1.10.1. Introduction 

In this section we are concerned with the variation of relevant 

parameters with incident laser wavelength. These parameters include 

the focal spot size, flow regime, plasma temperature, ion expansion 

velocity, total ion number, the absorption coefficient and electron 

energy distribution. The instability thresholds are given in the 

preVIOUS section. If all of the parameters are to be included in 

a single theory, the resulting complexity requires the use of computer 

modelling. 

1.10.2. The Focal Spot Size 
In the case of diffraction-limited operation, the SIne of the 

focal-spot angular radius, 8, is directly proportional to A/D, where 

D is the aperture diameter. Thus, to maximise target i rradiance for 

a given output power, a low wavelength and a large diameter beam is 

requi red" Gas lasers tend to have a large value of D, although the 

CO laser also has a relatively large wavelength. 
2 

1.10.3. The Regime Diagram 
The boundaries between the flow regImes discused in the preVIOUS 

sections are given in Fig.l.5. The figure indicates the transitions 

corresponding to Nd:glass, HF and CO2 laser radiation with a hydrogen 
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target, HF and CO2 with carbon and lead targets. The regime diagram 

is calculated assuming InA = s. As z and a for HF and Cr.2 were 

evaluated at the given irradiances, the diagram is only accurate for 

this situation, which corresponds to typical high irradiance results 

presented here. At higher irradiances, the positions change slightly 

due to the increase in z and decrease in a. The limits indicated 

approximately correspond to the spot sizes and maximum irradiances 

obtained in the present experiments. The scaling laws are :-

Self-Regulating (thin) 

T 'V A4/ 9 
e 

N tV A -4/9 

V tV Al / 9 

ne 'V A 
-2/3 

Self-Regulating (thick) 

Te 'V Al / 3 

p tV A -11/6 

Deflagration-Wave (thin) 

T 'V ,4/3 
e I\. 

Deflagration-Wave (thick) 

T tV A-4/ ll 
e 

••... (1.2Sb) 

...•. (1.29b) 

" .... (1.31b) 

..... from (1.20), (1.2Sb) 

..... (1.34a) 

•.... (1.34b) 

•.•.• (1.42) 

•...• (1.43) 

..... (1.44) 

..... ( 1 .44) 
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1.10.4. The Absorption Length, ~ 

If the electron velocity distribution is Maxwellian, the 

inverse bremsstrahlung absorption coefficient, ~, is given by(30):_ 

..... (1.48) 

where, 

~t = { 1 - w~ I wZ }1/2 lS the real refractive index of the plasma, 

wpe = electron plasma frequency 

-g = averaged Gaunt factor 

£ = permittivity of free space (8.854 x 10-12 F.m-1) 
o 

w = angular frequency of the radiation. 

This expressl0n strictly only considers free-free absorption 

by binary processes. However, this is reasonably accurate for 

wavelengths well below the electron plasma wavelength. 

If we make the approximation hw « kTe (i.e. the incident 

radiation is weak compared with the plasma temperature), and put 

n. = n = n, this expression is simplified to :-
1 e 

~ = ••••• (1.49) 
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Thus, the absorption coefficient, f.l 'V 
-2 2 w , n 

'V >. 2 , n2 

R, 'V 
-2 -2 >. , n and the absorption length, 

For rapid spatial absorption, n and >. must be maximised. The 

critical electron density, nee = 1.09 x 1013 >.-2 cm-3 (>. in em). 
Therefore, if the radiation is to penetrate into the plasma :-

.... ~(1.50) 

Applying this constraint to (1.49) we obtain R, 'V >.2. 

1.11. Gaseous Environment 

1.11.1. Thermal Coupling 

The surface absorption coefficient, as already discused for the 

vacuum environment, is not usually the most significant factor for 

high irradiance interaction in a gas. A surface plasma, or plasmotron, 

is usually produced at an irradiance threshold of 'V 107 W.cm-2 for 

HF laser radiation in atmospheric air. If this is optically dense, 

much of the radiation energy is absorbed by the plasma. Subsequently, 

the hot plasma relays much of this energy to the target, over an 
extended area, by electron conduction or U.V. radiation(31-33); a 

process with increased overall efficiency for metals with much 

higher absorptance in the ul tra-violet than in the infra-red. The 

enhanced coupling within the focal spot may be an order of magnitude 

larger than in the plasma-free situation. It is immediately 

apparent that the enhancement efficiency will increase with focal spot 

size, as, for very small spots, most of the retransmitted energy will 

be recieved outside of the region of interest. 
8 -2 As the irradiance is increased beyond 'V 10 W.cm a laser 

supported detonation (LSD) wave may be initiated(34). This is an 

optically dense plasma that moves back towards the laser at super-
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son1c velocities, being continually fed by the absorption of radiation. 

The LSD wave decouples the radiation from the target surface, and 

results in a steady decrease in thermal coupling with time and also 

with LSD wave velocity, i.e. with laser fluence~ The optimum 

thermal enhancement occurs at, or just below, the LSD wave threshold 
(35,36) • The LSD wave causes air ionization by shock compression(37) , 

as described by the laser-induced Chapman-Jouguet detonation process. 

The radiation is effectively absorbed by the ionized gas, and this 

is the origin of the effective de coup ling. 

As the LSD wave moves towards the laser, it undergoes lateral 

spreading, according to the beam cone-angle. The rate of spread 

depends upon the beam fluence, gas pressure, temporal shape of pulse, 

laser wavelength, and the cone-angle. For rapid spread, or long 

pulse duration, recoupling is possible; in extreme cases, multiple 

recoupling can occur_ 
If the irradiance is increased by about a couple of orders of 

magnitude beyond the LSD wave threshold. air breakdown will occur. 

This is also highly absorbing, but the situation will be discused 

separately. 

1.11.2. Laser Supported Detonation Waves 
. V' . b (34) The initial LSD wave ve1oc1ty, ,1S glven y :-

V = { 2 (y2 _ 1) ~ I P } 1/2 
o 

...... (1.51) 

where, y is the specific heat ratio for air behind the absorption 

wave (AW) front ('VI. 24), ~ the target i rradiance, Po the arrbient 

a1r density. 
The threshold irradiance has been derived by Allingham and 

Bishop(38) using the absorption length given by Raizer(39):-
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where, 

p / p = (y + 1) / y o 

Here, 

Y tV 1.24 

i = absorption length at relevant laser wavelength 

ro = spot or beam radius 
p = ambient gas density 

o 
p = gas density behind the AW front 

..... (1.52) 

Tmin = minimum temperature behind the IWV front to sustain the LSD wave • 

..•. • (1.53) 

where, 

P = p R T 

R = the gas cons tan t pe r lIDi t mas s 

Pe/P = the molecular electron fraction given by the Saha equation :-

•.•.• (1.54) 
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Using averaged values adopted by Raizer, G = 1.9, I = 14.4 eV, s = 0.7. 

~ and ¢. have conveniently been plotted at various laser nun 
wavelengths for values of r , T, P, and p (38) 

o 0 

The above approach considers the minimum irradiance required to 

maintain an undamped AW. 
Smith(40) has used an alternative approach that includes the 

pulse duration. He calculates the generated vapour density at the 

target surface, and then evaluates the cascade ionisation threshold. 

The density is given by :-

where, 

v = vapour velocity from the surface 

r = beam radius o 
tc = t /40 p 

laser pulse duration tp = 
q = latent heat of vaporisation 

= irradiance at wavelength A ¢ 

rk = surface defect dimension 

••••• (1.55) 

R = reflection coefficient of the target surface~ 

The breakdown irradiance, ~, IS given by :-

0.11 Vc ¢b (3.5 x 1022 A- 2 
+ v~)-l 

= (40 I/tp) + 4.6 x 10-18 (D/r~), 

= (40 I/tp) + 8.8 x 10-22 vc/M, r Iv > t ..... (1.57) o c 
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where, 

Vc = electron-atom collision frequency = 1.6 x 10- 7 N 
I = ionisation potential 

o = diffusion coefficient 

M = atomic mass 

Using t = 325ns, r 5 10-2 105 -1 -3 
P = x cm, v = on. s ,r

k 
= 10 em, 

19 _1 0 

q = 4.75 x 10- J.atom ,R = 0.95, A = 2.8vm, we Obtain for 
alwninitnn :-

N ~ 1.05 x 1012 I 
7 -2 

~b ~ 6 x 10 W.cm 

Allingharn(4l) has plotted the breakdown threshold for CO
2 

and 

Nd: glass lasers. Using the l/A threshold scaling a threshold of 

~ 5.3 x 107W•cm-2 is obtained for aluminium at 2.8~m. The two 

models are thus in agreement. 

1.11,3. Gas Breakdown 

Gas breakdown thresholds in air and_ argon at the HF and OF 

wavelengths are given by Oeka et al C42) using a similar laser and 

resonator as employed in the experiments presented in chapter 5. 

In atmospheric air, the breakdown threshold, ~t' was found to be 
~ 6 x 10 lOw ,cm-2 • Over the pressure range 300-3400 torr the break-

-0 6 down threshold scaled as ~T ~ P " With pure argon at 760 torr 

the threshold was found to be 1.6 x 101Ow.cm-2• A scaling of 

~T ~ p-0.95 was deduced. The results were compared with measurements 

at 1.06~m(43) and 10,6~m(44) wavelengths to obtain a A- 2 scaling 

with peak on-axis breakdown intensity. 
Hill et al(45) have also carried out threshold measurements at 

the 10.6~m wavelength using rare and molecular gases. 
Oeka(46) measures at 10.6~rn :-



where, 

P = ambient pressure 

T = pulse length. 
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The breakdown time Tb scales as 

••••• (1.59) 

If the leading edge of the pulse is in the form of a ramp, then 

Tb is also the transmitted pulse width, assurrrrng :-

a) breakdown occurs on the leading edge, 

b) the plasma is instantly optically dense. 
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PULSED HF LASER DEVELOP~T 

2.1. Introduction 

This chapter reviews the principal milestones in the development 

of the pulsed HF laser. Since T.F. Deutsch Cl) first reported lasing 

action for this chemical laser in 1967, various excitation schemes 

have been sucessfully employed. The different techniques and their 

corresponding parameters are considered here, although detailed 

design data has only been given where relevant, as it can be obtained 

from the references cited. No attempt has been made to provide a 

fully comprehensive list of publications relating to the use of the 

HF laser, in view of the large number available and their lack of 

direct relevance to the work presented in this thesis. 

2.2. Deutsch's Laser 

The pioneering work of Deutsch established a variety of possible 

reactants. Using H2 ' D2 ' CH4 and CH3Cl as anion sources he 
achieved lasing action with the freons CF4 ' CBrF3 ' CC1F3 and 

CC12F2. Deutsch carefully recorded the broad-band spectral wave­

lengths for HF and DF radiation, although regretably the in£ormation 

on the laser itself was very limited. A water-cooled tube 2m long 

and with an 1.0. of 32mm was utilized - the gas discharge being 

excited by 50 - 200A current pulses of about l~s duration and 

2 - 10Hz repetition. The output energy was not given, but 

presum~ably it would have been a few mJ at best. 

2.3. Oumanchin Type Construction 
Wenzel and Arnold of Los Alamos(2) built a Oumanchin(3) type 

construction of a double-discharge HF laser. In this laser, the 

pre-ionization required for glow discharge is achieved with a low 

energy discharge between glass-insulated trigger wires and adjacent 

cathode blades. This produces uniform ionization in the vicinity of 
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the cathode sothat the ensuing main breakdown is homogeneous. 

Initially, a maximum output energy of 102.5mJ was obtained by 

employing a gas mixture of SF6 + C4HlO • A marginally lower energy 

resulted from replacing the butane with hydrogen. As the discharge 

dimensions were 50.8cm x 2.5cm across a gap of 2.4cm, the energy 

density was 336mJ/1. It was fairly important that the slotted 

electrode was made the anode; a reduction in output energy resulted 

from polarity reversal. The optimum discharge potential was 80KV 

using two O.Ol].lF capacitors in a two-stage Marx bank. At a later 

date, a five-stage Marx bank was constructed giving l25J discharges. 

When operated at 250KV the maximum output energy became 560mJ. Arc 

formation was fOlmd to degrade the output. A 3sec gas change was 

employed at a total pressure of 50torr (with butane) or 8torr 

(with hydrogen) for optimum performance, the gas ratios r being 

21:1 and 16:1 respectively. Wenzel and Arnold tried adding helium 

to the mixture, but this was found to decrease the output energy. 

The electrical and chemical efficiencies were 0.6% and 0.25% when 

pumped by a l6J pulse. 

A year later, Arnold and Wenzel(4) discused improvements to 

this system. They found that chemically blackening the cathode 

and roughening of the chamber walls suppressed spurious reflections. 

Using a discharge volume of 0.331 and a low inductance (0.13].lH) 

two-stage Marx bank, they were able to extract 3.5J pulses with a 

peak power of 35MW and electrical efficiency of 1.8%. The energy 

density was 10.6J/1. With a slightly slower circuit and output 

energies about 1.4J, they achieved an electrical efficiency of 3.1%. 

2.4. Pin Construction 
In 1972, Pummer and Kompa(5) reported their construction of 

a pin HF laser. They utilized a dilute aqueous copper sulphate 

electrolyte to ballast 1000 brass pins feeding a discharge volume 

of 2m x 3cm x 3cm. With a gas mixture of SF6 + H2 at a total 

pressure of 62.5torr and ratio 24:1, they achieved 1.2J of photon 

energy and a peak power of 3M\1. The electrical efficiency was 
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about 0.8% and the energy density was 700mJ/1. No mention was 

made of the pin life-time in the publication, although we understand 

that pin corrosion rapidly occured. In agreement with Wenzel and 

Arnold, they found He to be detrimental to output energy. 

Pummer et al(6) increased the discharge volume to 3m x 5cm x 

4cm gap. Using a 3-stage Marx bank (~40KV per stage) they achieved 

an llJ output. The pulse duration was observed to be pressure 

dependent (as explained in 2.10.), being 5~s below 20torr and 

~20ns above 250torr. Considerable pulse-shortening was observed 

when this laser was used as an amplifier. It was considered likely 

that subnanosecond pulses could be obtained in this manner. The 

electrical efficiency for an IlJ output was calculated to be 3.8%. 

2.5. Lamberton-Pearson Type Construction 

In 1974, Voignier and Gastaud(7) employed the Lamberton-Pearson 

trigger-wire laser with high pressure (400-600torr) SF6 + HZ + He. 

Rogowski profiled electrodes were used with a 1.5cm gap and active 

volume of 60cm3 • The optimum gas ratio was found to be 12:1:14. 

Helium or Argon was f01.md necessary to prevent arcing. The addition 

of trace amOl.mts of C
Z
H6 increased discharge tmiformi ty. This is 

to be expected as CZH6 has a lower ionization potential than hydrogen 

and a much higher photoionization cross-section. At the optimum 

total gas pressure of 550torr a lJ, l7MW output was attained with 

a 4% electrical efficiency and l6.5J/1. Considering the small 

active volume and high energy density this was a significant 

achievement. 

2.6. U.V. Pre-ionization Construction 

Attempts have been made with most laser systems to scale 

their dimensions and 

output powers can be 

discharge volume and 

the pulse duration. 

parameters to much larger values. Higher 

achieved, for example, by increasing the 

optical gain coefficient or by decreasing 

2.6.1. Sliding-Spark Method 

One step towards achieving this goal was made by Wlodarczyk in 
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1978(9) . Previous attempts at increasing the discharge cross­

section had failed for high-pressure, continuous electrode HF lasers 

because of arc formation. The problem centers on the electrophilic 

behavour of SF6 which,depletes the free electrons needed for uniform 

glow discharge~ Wlodarczyk utilized a sliding UV pre-ionization 

atmospheric laser ~ similar to various CO
2 

lasers (10) • Atmospheric 

lasers have the great advantage of not requiring vacuum equiptment and 

so tend to be compact, as well as being simple to construct and 

operate. iN pre-ionization has su<tessfully been employed to 

condition large CO2 laser discharge volumes, and in spite of the 

added problems with SF 6 it was expected to be useful with HF. In 

this prototype system a 3 x 3cm2 glow discharge was achieved using 

significantly more UV radiation than in a similar CO2 discharge. 

The aluminium Rogowski electrode was shot-blasted to increase the 

photoemission and ion absorption area (as well as to decrease the 

parasitic output). This technique was reported by Karasikov and 

Shamir(ll) • The increase in pressure to atmospheric also has the 

beneficial effect of increasing the gain coefficient, although of 

course the parasitic problems are also increased. A brown depos it was 

observed on electrode surfaces after operation; removal of this 

coating proved to be detrimental to the discharge. One of the 

advantages of UV pre-ionization is in the good beam uniformity 

resul ting from the homogenous glow discharge. This is important 

in situations where the.beam is focused to produce maximum or known 

irradiances, although in laser-chemistry the beam quality is often 

not critical. With this iN pre-ionized laser Wlodarczyk achieved 

a maximum output energy of 425mJ and a peak power of 15. 7M\T using a 

charging voltage of 40KV and a discharge length of 26cm. The gas 

mixture employed was He (3-9 l/min), SF6 C150cm3/min), and C3H8 

(10cm3/min) giving an efficiency of 2% and 1.8J/1. 

2.6.2. Flash-Lamt Method 
Nichols et al 12), in 1976, used a flash-lamp photoinitiated 

F + H /D2 laser to achieve good performance. 
2 2 

Other experimenters, 
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for example see ref. 2.13, 2.14, had employed flashlamp initiation; 

however, the results of Nichols et al represented the largest energies 

and efficiencies. Using an active volume of 12.8 1 at atmospheric 

pressure they achieved 292J, 8.1% chemical efficiency and 29% 

electrical efficiency for HF. With OF the energy attained was 144J 

with 14% electrical efficiency. The optimum electrical efficiencies 

were achieved using a Teflon covered laser wall~ The high UV 

reflectivity of Teflon compared, for example t with aluminium gave 

significant improvement. The fluorine gas was diluted with nitrogen 

or argon before being added to the hydrogen'. Oxygen was also added 

to the mixture to inhibit pre-ignition. Argon was fOlll1d preferential 

to nitrogen as the higher temperatures attained with the monatomic 

diluent lead to a greater electrical efficiency. This factor of 

two improvement did not lead to a larger energy output, however, as 

the oxygen content had to be increased. 

2.7. Electron-Beam Excitation 

2.7.1. Hydrogen - Fluorine Reactants 
Hydrogen and fluorine are used directly in many situations 

involving sophisticated gas handling. Most of these giant lasers 

are beyond the financial scope of small establishments and so they 

tend to be found in government research laboratories such as Los 
Alamos. Parher and Stephens(15) report an electrical efficiency 

for F2/H2 of 50-100 times that for SF6/H2' There are a number of 
contributory reasons for this result. For a start, the dissociation 

energy of F2 (1.6eV) is less than that of SF6 (3.4eV). Energy is 

released in the additional reaction :-

• •••• (2 .1) 

The reactions :-

F2 + e + F + F + KE · •••• (2 .2) 

F- + e + F + e + e - 3.45eV • •.•. (2 .3) 
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produce a maximum yield of 1.81 x 1018 F atoms/J, which is to be 
d . h' 18 compare Wlt a maxlmum 3.9 x 10 F atoms/J calculated from the 

molecular disociation energy. 
for example :-

Other reactions producing F atoms, 

may also occur. 

Z.7.Z. Electron-Beam Excitation 

Greiner et al (16") describe a O. ZGW system that produces 6Ons, 
lZJ pulses from an atmospheric HZ/FZ e-beam initiated laser. The 

chemical efficiency was 0.Z5% and the electrical efficiency ~lOO%. 

Oxygen was added to the gas mixture to aid stability, and SF
6 

or 

Xe added to help e-beam energy deposition. 

A 50J, 50MW laser is described by Aprahamian et al(17). The 

active volume was ~4 ~Zl and, the electrical efficiency was only 6%. 

Bashkin et al (18) have used a ZookeV, 0.7-l.0kA, 35ns electron 

beam in a HZ:FZ:OZ:H~ mixture at 1.3 atmospheres to achieve 100J/1. 
The electrical efficiency was about 900% and the chemical efficiency 

about 4%. However, the active volume was fairly small (0.6651) 

sothat the output energy was only 66J. 

e-beam initiated HF lasers have a large number of advantages 

over the other excitation schemes : these lasers are scaleable. 

They do not suffer from the filamentation, inhomogeneities and 

parasitic oscillations of TEA lasers or the low electrical efficiencies 

of UV pre-ionized lasers (due to low UV photon absorption cross-

sections). For these reasons even larger amplifier chain e-beam 

HF lasers are being studied at Los Alamos and elsewhere, but such 

work is outside the scope of this review. It is interesting to 

note, however, that in 1975 G. Schott of Los Alamos considered the 
4 HZ + F

t 
e-beam HF laser to be scaleable to ~ 10 J and ~TW per 

litre( 9) To what extent this has been realised must, unfortunately, 

be subject to conjecture. 
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2.8. Nuclear Pum~d Lasers 

Lasing action has been successfully achieved by utilizing the 

technique of nuclear pumping. The limitation on scaling conventional 

lasers to large diameters is the constraint of uniform energy 

deposition in the pumping phase. Even electron-beam excitation is 

limited by the electron mean free path~ The potential importance 

of nuclear pumping is that far larger sizes are possible. 

One technique that has been employed involves coating the walls 

of the laser chamber with a fissile or nuclear material_ If the 

chamber is in the vicinity of a nuclear reactor, thermal neutrons 
can be used in the lnClOB,a) 7Li and InC235u,FF)FF reactionsCZO-Z4). 

This technique is not sui table for large systems as the fission energy 
is not uniformly deposited(25 ) • 

Another technique uses a fissile gas mixed with the lasing gas. 
The reaction 3He(n,p)~ has been employedCZ6-Z8). Although this 

aproach can be scaled to very large dimensions, the lasing gas is 

heavily diluted. 

Kushner(Z9) has presented a more direct system which can be 

applied to the HF chemical laser. A mixture of Z35 UF6 and HZ is 

used together with the fission reaction In(Z3S u,FF)FF. Fission 

fragments dissociate UF6 to produce fluorine atoms which in turn 

react with the hydrogen to form HF. Kushner has used a computer 

model to predict peak gains > SO%/m. In addition this system has 
f'IJ 14 Z 1 

a low neutron flux threshold «10 neutrons cm- s-) and can be 

scaled to extremely large dimentions. 

2.9, CO2 Laser P~ed HF Lasers 

HF lasers have been directly pumped using 10.6~m laser 
radiation(30-32) • One technique involves employing resonantly 

absorbing fluorine donors such as SF 6 or NZF 4' lni tiation of an 

HF laser has also been achieved with a OOz laser-produced plasma. 

Wood and Silfvast (33) obtained an output power of SOOW by cylindrically 

focusing the 10.6~m radiation onto an aluminium target surrounded by 

CF4 and HZ' 
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2.10. Short Pulse Generation 

The production of nanosecond pulses from the HF laser has been 
actively pursued at Los Alamos. One technique involves four 
essential elements :-

i) A pin-discharge 10mJ multiline oscillator constrained by 

apertures to operate on TEMoo. The output pulse is long and 
diffraction limited. 

ii) An electro-optic switch to transmit a Ins segment. 
iii) Intermediate amplifier. 

iv) High pressure electron-beam amplifier. 

Spacial filtering is employed and the laser windows are made 
of saphire. 

Details of a possible switching technique are given by 
Getzinger et al(34). Using auxiliary switched laser beams they 

were able to deplete the optical gain of the pre-amplifier on 

either side of the switched ns pulse, thus achieving minimum 

pedestal. This technique, not possible with 002 lasers, can be 

utilized as the HF gain can be rapidly re-established. 

It is possible, however, to produce short pulses without use 

of any electro-optic switch. To achieve this, the electrical 

discharge should have a rapid rise and decay time. In addition, a 

high-loss resonator is desirtable. To understand these points it 

is worth noting that the population inversion is attained when fluorine 

atoms react with hydrogen molecules. A fast electrical rise-time, 

therefore, produces fluorine atoms rapidly which in turn glves a 

rapid inversion. Rapid depopulation requires a ce s'sation of the 

production of HF*, as well as its active removal by collisional and 

other methods. In particular, the inversion is destroyed by 

stimulated emission. A high gain medium (i.e. high pressure gas) 

and high F concentration resulting from high field strengths are 

therefore requi red. High-loss resonators require higher inversion 

thresholds. The pulse length is therefore reduced as the time above 

threshold is decreased. 

3nS pulses have been achieved 1n this manner by Schilling and 
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Decker(35) who employed a transversely excited Blumlein laser at a 

maximum pressure of 200torr and field strength of 19KV/cm. The low 

power ~MW pulses were considered suitable for further amplification. 

Yet another method commonly used to achieve short pulses involves 
mode-locking. This was first achieved with the HF laser by Simonis(36) 

who utilized a diffraction grating to obtain single line action. 

An unstable optical cavity, together with an inter-cavity saturable 

absorber, were used to passively mode-lock, resulting in a train of 

multikilowatt pulses separated by the cavity round-trip time or 

simple multiples of this period. The saturable absorber was HF 

gas itself at a pressure of ~ltorr. Even without the HF cell mode­

locking tended to occur. Shortest pulse durations were ~5ns and 

these occured in trains of ~l~s. Although ns interaction experiments 

with a mode-locked train are not completely excluded, it is possible 

to switch out single pulses. 

2.11. l6~m Emission 
GUrs et al(37) have developed a TE HF laser giving emission 

lines of wavelengths 12.7 to l7~m originating from pure rotational 

transitions. Concentrating on a l6.02~m line they presented a 

parameter study optimising on a gas composit~on of He,SF6 and butane 

at pressures between 20 and l50mbar. Hydrogen was not a suitable 

H donor, as it tended to eliminate rotational transitions (as did 

02' HCl, CO and N2). The l6.02~m line had a pulse energy of about 
5~J. This is of potential importance in the laser isotope separation 

of uranium from UF6 ' 

2.12. Compact Lasers 
One of the major problems in developing cumpact powerful HF 

lasers is the restriction that the system has to be operated at low 

partial pressures. This limitation is imposed by the strong electro-

negative nature of the fluorine donor. 
Brink and Hasson(38) have partially overcome this problem, 

achieving compact atmospheric operation of a helium-free mixture. 
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The attachment losses are reduced by using corona (high field) UV 

pre-ionization with nanosecond delay before the main discharge. 

The corona and discharge electrodes are actually connected in parallel 

sothat pre-ionization occurs on the rising edge of the voltage pulse. 
U . . 1 1 3 3 -3 SIng an actIve vo ume 'V 0 nnn an output energy of 20 x 10 mJ has 

been obtained for a 20ns pulse, 

Deutsch (39), using Rogowski electrodes in SF6:HZ:He mixtures, 

was able to achieve glow discharge without pre-ionization, This 

was accomplished by using resistive graphite as the electrode material. 

Gibson (40) used a soonmm germanium cathode, together with a brass 

anode, to obtain the same result. Resistive material tends to limit 

transverse currents in the electrodes and thus the probability of 
arc formation. Hatch(41) has developed the theme by employing 

germanium for both electrodes. With an active volume of 42 x 10
3 

mm
3 

a maximum multiline output of 167mJ and 2MW was achieved for a gas 

flow rate of 1 1 min-I. 
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GfAP1ER 3 

HF LASER DESI~ .AND PARAMETER STUDIES 

3.1. Introduction 

The development of a pulsed transversely excited HF laser, 

together with a parametric study of the lasing medium and discharge 

vol tage, is presented. This laser was used in certain target inter­
action experiments presented in chapter 4. 

3.Z. First Oesi~ 

A lOJ 'IE pin laser system, built at Garching(l) , was used as a 

basis for the first design. Our discharge chamber consisted of two 

80cm modules wi th active cross-sections 4.5 x 4. Scm2 ~ Both modules 

had 1000 Ni plated pins serving as the cathode, resistively coupled 

by a saturated copper sulphate solution. An oil emersed voltage 

doubling circuit was employed, as shown in Fig.3.1. 

With the cavity shown in Fig.3.Z., chosen for ease of alignment, 

the output characteristics were obtained by sampling energy (with a 

Lumonics ZOO pyroelectric joulemeter) and pulse shape (with a fast 

gold-doped Ge detector), back-reflected from a NaCl beam-splitter. 

Parameters varied to obtain optimum output included the charging 

voltage, Vc ' hydrogen donating gas, HX, total gas pressure, Ptot ' 

and relative composition of gases, r = SF6/HX. 
HZ' CH4, CZH6, C3H8, C4H10 were substituted for HX, Vc was 

varied up to 70KV and Ptot up to lOOtorr. In the case of Vc ~ 60KV 

a trace of SF6 was required to hold the spark-gap from self-triggering. 

It was ascertained that HZ and C!Hs gave the highest output powers, 
with energies up to 7J. However, it was apparent that a good fraction 

of this was parasitic - as might be expected in view of the high optical 
galn of HF lasers CZ ,3) . It is possible that diffuse parasitics(4) 

were partly responsible for the parasitic output. 

~asurements at far-field were hampered by atmospheric attenuation 

of the HF laser beam. This attenuation is largely due to water 
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vapour, and to a lesser extent to carbon-dioxide. A dry-nitrogen 

cell was used to determine an absorption coefficient, K, of the 

order O.l/m : Eout = Ein e-KX
, dependent upon atmospheric conditions. 

As the windows of such cells were likely to introduce aberrations, 
the beam was piped over silica gel. 

It is worth noting that the production of fluorine in the 

chamber is likely to damage the gold mirror and salt output window. 
For this reason, the waste gas is removed from the centre of the 

chamber and the optical element positioned well away from the 
discharge volume. The waste gas is highly toxic, especially if 
water from the CuS04 resistor has leaked into the chamber, and 

appropriate safety precautions must be taken. When SF 6 is used 

in spark-gaps a highly toxic gas is also produced and such gaps 
should be well flushed out before opening. 

The chamber was extensivly modified to overcome pin corrosion 

(from the resistive solution), parasitics and electrical tracking 
down the sides of the chamber wall. 

3.3 Second Design 

3.3.1. Discharge Chamber 

A plastic tube of i .. d_ 4!" was used as the basis for the new 

chamber. 300 x 330r2!2W solid carbon resistors were used in a 

random array to give a discharge cross-section of Scm x Scm and 

length 7Ocm. Solid resistors suffer from the disadvantage that 

they occasionally explode or breakdown. Reliable resistors are 

very expensIve. In this design cheap(Radio-Spares) resistors were 

chosen, sothat component failure was experienced every few weeks. 

Liquid resistors are self-healing. However, the pins and electrolytes, 

as used above, caused serious corrosion prob lerns . Subsequent to the 

present construction, it was fotmd that hard-drawn stainless steel 

and either ammonium sulphate or potassium carbonate aqueous solutions 

would have proved suitable for the pins and electrolyte. This new 

combination is worth serious consideration for any future design. 

An alurrrrnium electrode Scm x 7lcm, with rounded corners, was 
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engraved to remove the specular surface. Six electrical connections 

were soldered onto the lower surface. These were fed through the tube, 

to present a vacuum seal. The inside of the tube was covered in two 

layers of fibre-glass and the end-plates were sprayed with ~extel 
optical matt-black paint. 

3 .. 3 .. 2 .. Electrical Circuit 

The electrical cireui t was identical with the half of the 
prev10us circuit that fed one module. 

3.3.3. Qetical Resonator 

Initially, the resonator shown 1n Fig.3.3.,which was designed 

for component convenience, was tried. On focusing the output, 

us1ng a 4m radius mirror, rings were obtained, although there was 

still a small parasitic background originating from the aperture 

edges. The output energy was also low (1.2J) and it is clear that 

a large fraction of the active volume is not included in this cavity. 

The use of infrasil has the advantages of higher optical qua Ii ty and 

1S less susceptable to damage, but is more expensive than salt. 

In order to decrease aberrations the Brewster output window was 

replaced by the cavity mirror, as shown in Fig.3.4. The energy was 

also increased by use of the confocal trrlstable resonator shown in 

the same figure. A typical output bum is given in Fig. 3 .5 . The 

output energy was found to be in excess of 2J and highly stable. 

3.3.4. Operating Parameters 

The optimum value for r was found to be 10 for hydrogen and 30 

for propane. A marginally higher energy and power were obtained at 

V > 60KV for propane. The reverse was found to be true for lower c tV 

charging voltages. The energy and power outputs for these two gases 

at optimum value of r, using the resonator shown in Fig.3 .. 3., is 

given in Fig.3.6.,3.7. 

3.4. HF Parameter Studies 
A parametric study of the HF chemical laser described above was 
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carried out at room temperature using hydrogen, propane or butane 

as the hydrogen donor. Obara and Fujioka(5) give the following 
as the maIn reactions :-

SF6 + e ~ F + SF5 + e- - 71.4 to 75.9 Kcal.mole- l 

F + HX ~ HF(V) + X + energy (chemical pumping reaction) 

HF(V) + M ~ HF(V-l) + M 

where, HF(V) = vibrationally excited HF 

HX = hydrogen donor 

M = collisional deactivators of HF(V) 

with HZ and CH4 V ~ 3, for C4HlO V < 4. 

In these studies we define :-

r = partial pressure SF6/partial pressure hydrocarbon 
y = partial pressure hydrocarbon/pressure (hydrocarbon + SF6) 

Ptot = total pressure 

Vc = charging voltage 

Vd = discharge voltage 

Eout = output energy 

Pout = output power 
d = inter-electrode gap spaCIng 

PSF = partial pressure of SF6 
6 

In order to determine the optimum value of r, E t was measured, ou 
USIng a Lumonics ZOO pyroelectric joulemeter, as a function of r, 

keeping Ptot and Vc constant. An example for hydrogen, using the 
confocal unstable resonator, is shown in Fig.3.8. indicating an 

optimum value of r ~ 10 under the stated conditions. The variation 

of r with Vc is indicated for butane in Fig.3.9. The peak of these 
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curves 1S relatively insensitive to V and also P and thus we can 
c tot' 

justify the detailed investigations at r = 10 for hydrogen and r = 30 

for propane and butane. E t and P for various V are given as a ou out c 
function of Ptot in Fig.3.6.,3.7. It has been shown by Obara and 
F .. k (5) th . . UJ10 a at a slm1lar plot of peak power versus P

tot 
for various 

Vd gives a constant value for the ratio Vd!Ptot • Vd!(PSF .d) is 
therefore also a constant. indicating that the mean electr8n - SF

6 
collision energy is approximately constant for the maximum peak 

powers. As the mean free path (m.f.p.) of electrons in SF
6 

gas is 

C Z )-1 h Z. h 11"' . f TIr n , w ere TIr 1S t e co 1Slon cross-sect10n or neutral SF
6 

and n is the SF6 gas density (which can be estimated from Loschmidtts 

number for a perfect gas), Obara and Fujioka obtain the mean electron 

collision energy to be slightly less than the disociation energy 

SF6 + SF5 + F, This result has also been verified by Dcka and 
Dyer(6) • 

The variation of Eout with P tot and Vd for C3HS and HZ are given 
in Fig.3.10.-3.13. The variation of peak power with Ptot and Vd is 

given in Fig.3.14.,3.15. for hydrogen, using the pulse lengths shown 

in Fig. 3 .16 • ,3 .17 • As expected, the maximum pe ak powe r inc rease s 

wi th V c. The output energy depends upon the number of SF 6 disociations, 

whereas the output power depends upon the rate of disociation. At 

low pressures the electron mean free path is large, giving efficient 

disociation. Eout is therefore proportional to PSF
6

" At high 
pressures, the short electron mean free path reduces the number of 

electrons with the disociation energy, and so Eout is inversely 

proportional to PSF' The increase in peak power with Vd gives a 
small dependance fo~ the low pressures, in agreement with the results 

of Obara and Fujioka, and they explain this as being due to the high 

mean electron collision energy. It can be seen that, tmder conditions 

of optimum r, the highest power outputs are achieved at high Vd and 

Ptot ' 
The variation of output energy with y for various Ptot is given 

in Fig.3.l8. for propane. The peak output energy occurs at smaller 

y as P is increased up to a limit of 70 torr. tot 
Above this pressure 
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the ou~put energy fell, and did not peak in the region investigated. 

As P tot is increased, the increase in the SF 6 partial pressure 
increases the amotmt of disociation, and thus the output energy. 

A low y means a lack of the hydrogen donor, and therefore an incomplete 
chemical pumping process ~ At high y, the excess of the hydrogen 

donor deactivates HF(I) and thus decreases output (5 ) • The optimum 

y for energy was f01md to occur at lower values than for power, in 

agreement with Deka and Dyer(6) - the expla/nation being that although 

the HF production rate decreases, vibrational relaxation of HF by the 

hydrogen donor is reduced, leading to longer duration pulses. 
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CHAPTER 4 

HF LASER-TARGET INTERACTICN STUDIES (VACUUM ENVIRO~1ENT) 

4.1. Introduction 

There is an absence of data available on the interaction of 

high-power HF laser radiation with solid targets in a vacuum. This 

IS to be regretted, as, for this laser, the critical plasma density 

is intermediate to that obtained using CO
2 

and Nd:glass lasers :_ 

LASER WAVELENGlliICRiTI~CAL ELECTRON DENSITY 
C -3 ~m) ~ ~ec ~_Lgn _) __ ~._ ~ _~._~._ 

0.6943 2.313 x 1021 Ruby 

Neodymium: glass 1.06 9.92 x 1020 

~2.87 ~1.36 x 1020 Hydrogen Fluoride* i 
* i 

Deuterium Fluoride I ~3.8 

Carbon Dioxide ~0.6 

~7 .. 73 x 1019 

9.92 x 1018 
, - ---

* HF and OF lasers are broad-band, the wavelength gIven 
corresponds to the line with maximum energyCl) • 

TABLE 4.1. 

The use of the HF laser thus allows plasma production to be 

investigated in a new and potentially interesting regime. It is 

hoped that the high power and efficiency of modern HF lasers (2) 

might lead to the possibility of producing very high target 

irradiances. This work demonstrates that good beam quality can be 

extracted from modest systems and useful irradiances achieved. In 

addition, characteristics of plasmas produced by a pulsed unstable­

resonator HF laser are presented and scaling laws for the interaction 

established. Soft x-ray emISSIon from an HF nlasma is reported for 
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the first time~ permitting a determination of the plasma temperature. 

4.2. Laser Applications 

The 2.2J laser system, described on p48, was used primarily to 

study specular reflection from tilted plane polished targets, and 

to provide ion-velocity scaling data at ~ 2 x 1010W.cm-2 for a 
range of targets. 

A ~ 0.7J, 5MW high-radiance, unstable resonator HF laserCl) 

was employed to irradiate aluminium and carbon targets in a vacuum 

«10-4torr), using the experimental configuration shown schematically 

in Fig.4.l. This system was used primarily for x-ray and Ion­

velocity scaling measurements at ~ 7 x lOlOW.cm- 2• It is to be 

noted that the lower energy laser gave the highest power on target. 

To a large extent this was a direct consequence of the focal-spot 
radius <I 

4.3. Focusing 

4.3.1. Low Power System CA) 

The laser output, Fig.4.2., was directed by a 45° turning 

mirror onto a 4" diameter 22" focal length plano-convex lens. The 

appearance of the beam at this stage is shown in Fig.4.3. The 

beam was now focused onto the target via a vacuum NaCl entry window 

of high optical quality. It is worth pointing out here that the 

diffraction limited spot SIze is ~ 70~m (diameter of the first dark 

ring), and spherical aberration blurr diameter is ~ 40~m. This 

gives a total theoretical diameter of ~ 80~m, which is to be compared 

with the 200~m actually measured according to the Polaroid burn spot 

(which is likely to give an over estimate) and ~ 120~m calculated 

from an extrapolation of diagnostic results from the high power 

system (where the spot size was more accurately determined). 

4.3.2. High Power System (B) 

Fig.4.l. shows how a 25cm focal length mirror at an effective 

aperture ratio of ~ 6.5 was used to focus the beam in this system. 

The calculated diameter of the central lobe of the focused unstable 
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Fig.4.1. Schematic experimental configuration. 



Fig.4.2. Output burn on exposed Pola roid, system A. 

Fig.4.3. Burn on exposed Polaroid incident on focusing lens 1·5m from 

output, system A. 

Fig.4.4. Magnified far-field distribution, system B. 
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resonator beam was ~ 4O~m and, based on the known energy distribution 

in the focal plane Cl), the average irradiance, ¢ , over the central 
1 b · In_ -2 p o e was estlmated to be 7 x 10 -W.cm The anuearance of the . :. ~ 

output beam burnt on exposed Polaroid 410 film was uniform, but only 

just visible. The far-field distribution of the laser was monitored 

using auxiliary focusing optics, as shown in Fig.4.1., sothat any 

misalignment of the resonator could be observed and corrected as 

necessary during the experiments. The distribution is given In 

Fig.4.4. 

4.4. Target Chambers 

4.4.1. Low Power System 

A photograph of the target chamber is given ln Fig.4.S. An 
ultimate vacuum of 10-6torr is achieved by use of a rotary/diffusion 

pump combination without a cold-trap. Clement et al(3) have shown 

that higher pressures influence ion measurements by the process of 

charge exchange. A fast cycle time Ci>etter than 20min to 10-Storr) 

for a clean system aided experiments that involved change of targets 

etc. The vacuum system was built "fail-safe" sothat it could be 

kept running over-night. 

The chamber i tse I f was of internal diameter 60cm and had a 

number of side ports which could be used to hold windows, diagnostics 

etc. The base of the chamber was designed to take magnetic clamps. 

The whole system was made moveable, and diagnostic cables were 

triaxially piped into a doubly-scneened room to lessen noise pick-up. 

The salt entry window was protected by a resistive heater that gave 

uniform heating. It also had the advantage of involving no 

lighting and of a dust cover. The window was found to suffer far 

less damage from the atmosphere than other NaCl optics protected 

with a lamp or plastic cover. 

4.4.2. High Power Srstem 

A, compact chamber employing high quality optics was used, enabling 

a large solid angle for x-ray and streak detection to be achieved. 



Fig.4.S. Photograph of the target chamber. 
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An ultimate vacuum of la-Storr was achieved using a low capacity 

rotary/diffusion pump combination. 

4.5. Resul ts 

4.5.1. Low Power Slstem 

a) Ion Measurements 

Faraday-cup charge-collecting probes were positioned in the 

target chamber and biased at -70V to collect positive ions. A 

typical bias characteristic curve is given in Fig.4.6. As the 

ion-signal at large distances was small, especially for low target 

irradiances, the laser pulse itself was used as a time-marker in 

the determination of the asymptotic ion expansion velocity. Fig.4.7., 

4.8. shows typical ion-probe signals from polyethylene and copper. 

Photoelectric signals were not seen under these conditions. The 

incident energy was monitored using a Lumonics 20D pyroelectric 

joulemeter and the laser pulse-shape obtained with a high-sneed, 

liquid-nitrogen cooled, gold-doped germanium detector. A typical 

pulse-shape is given in Fig.4.9. 
The ion-velocity was measured as a flIDction of target irradiance, 

material and azimuth - the target itself being inclined at 10° to 

prevent specular feedback to the laser system. The target irradiance 

was varied from 5 x 1010 to 3.5 x 108W.cm-2 by use of Inconel on 

Infrasil substrate at tenuato rs (4,5) • These give an approximately 

wavelength independent attenuation. Target materials used were: 

polyethylene, carbon, aluminium, copper, silver and lead. These 

were in the form of 'Specpure' rods, which were freshly machined, 

polished and cleaned prior to use. 
Results showing the ion-velocity scaling for the six targets at 

15° and 40° from the beam axis, and in the horizontal plane, are 

shown in Fig.4.l0.-2l. 2/9 scaling, as predicted by the self 

regulating model, was obtained at 15 ° for polyethylene, carbon, 

aluminium, copper (approximately) and at 40° for polyethylene and 

lead. In other cases, a lower scaling was achieved. The higher Z 

materials tended to give multiple ion species, the predominant ones 

being included in the previous graphs. 
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top: laser pulse time marker. 

bottom: ion signal. 

Fig.4.7. Polyethylene ion time of flight oscilloscope trace. 

<l> = 1·6 X 109 W.cm-:- 2 III sId iv. 

top: laser pulse time marker. 

bottom: ion signal. 

F ig.4.8. Copper ion time of f light osci Iloscope trace. 

<l> = 5'4 X 10
9 

W. cm:- 2 llls/div. 

Fig.4.9. Laser pulse shape. 100ns/div. 
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Fig.4.10. Asymptotic ion expansion velocity (15°) versus target 

irradiance (polyethylene). 

POLYETHYLENE 

TARGET IRRADIANCE cS> (W.cm-
2

) 

Fig.4.11. Asymptotic ion expansion velocity (40j versus ta rget 

irradiance (polyethylene). 



c: 
o -> 

'"' -I 
'" . 
E 
'" """'" 
c: 
o ... 

> 

CARBON 

TARGET I R RADIANCE cs> (W. cm- 2) 

Fig.4.12. Asymptotic ion expansion velocity (15°) versus 

target irradiance (carbon). 

CARBON 

• 
'" V _ cs> 0-15 

TARGET IRRADIANCE cs> (W.cm- 2
) 

Fig.4.13. Asymptotic ion expansion velocity (40°) versus 

target irradiance (carbon). 



. 
E 
'" -
c: 
o .-

> 

. 
E 
~ 

c: 
o -> 

ALUMINIUM 

TARGET IRRADIANCE ~ (W.cm- 2
) 

Fig.4.14. Asymptotic ion expansion velocity (15°) versus target 

irradiance (aluminium). 

ALUMINIUM 

TARGET IRRADIANCE ~ (W.cm-2
) 
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Fig.4.22. shows a polar plot of ion-velocity for carbon: it 

is seen to peak in the forward direction as found by Bykovskii et 

al(6) at I.06~m. A polar plot of total number of ions collected 

per unit solid angle (dn/dn) is shown in Fig.4.23. 

The ion number was obtained by manually integrating the ion 

signals. This gives nZ, where Z is the mean charge. Z was estillJated 

using the following expression for a coronal ionization equilibrium 
(Dick et aI (7

), Shearer and Barnes(8)) :-

Z = 26 {CIO-3 T ) / (1 + 10-3 T 
e e 

(26/Z ))} 1/2 
n ..... (4.1) 

where, Zn IS the nuclear charge of the element and Te is the electron 

temperature in eVe Te was obtained using Puell's energy balance 
. (9 10) expressl0n' :-

where, E. is the ion expansion energy. 
10n 

..•.. (4.2) 

Graphs incorporating these expressions for the SlX targets 

have been plotted; the one for carbon is shown in Fig.4.24. 

Ion number scaling for polyethylene, carbon and aluminium at 

IS°, and also carbon at 40°, are shown in Fig.4.2S.-28. The complex 

structure of the signals from high Z materials makes interpretation 

of number difficult. It can be seen that a change in slope was 

generally observed. The self regulating model predicts a 5/9 scaling 

for total ion number. From the results for carbon at IS° and 40°, 

a much higher scaling was observed - the scaling possibly tending to 

5/9 at fluxes slightly higher than those used. 

Plots of Ion expanslon energy versus target atomic weight are 

shown for the two angles in Fig.4.29,30. at a target irradiance of 

2 x 101Ow.cm-2. These are seen in general to rise to a maximum 

about atomic weights 'V 100. 
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A surrunary of estimated electron temperatures and target irradiance 

scaling from these measurements is presented in Table 4.2. 

b) Qptical Streak Photography 

A John Hadland (P.I.) Ltd. Irnacon streak camera fitted with a 

type P856 image converter tube (English Electric Valve Co.) was used 

to obtain optical streak photographs of the laser-produced-plasrna 

(l.p.p.) A lOOA/V current probe was connected round one of the two 

laser voltage lead-throughs to obtain a positive 60V trigger signal 

for streak plug-in type MS146. This plug-in was capable of speeds : 

1,2,5,IOns/rnrn of film. The camera was fitted with a ~~m slit 

and placed on its side to be normal to the target. Focusing was 

carried out using a fine metallic rule. This also gave the magnific­

ation. 

Streak photographs were taken for carbon and aluminium targets. 

The measured expansion velocity was fOlmd to depend upon the cmrera 

aperture, i.e. exposure and depth of field. In general, the 

velocities measured were smaller than those obtained using the lon­

collectors, although the maximum velocities obtained are in agreement. 

This result is not surprising, as the ions are being emitted into 2TI 

steradians sothat the projected velocity along the imaged slit will 

in general be less than its true velocity. In the optical system 

used, the depth of field was fairly large, enabling such ions to be 

seen. The angular velocity and number distribution will also affect 

the exposure for a given velocity. In addition, the ions are in the 

acceleration phase and so have not achieved the asymptotic value. 

Boland et al(ll) have also observed that ions in the lower ionization 

states are more copious emitters of visible photons. 

c) Specular Reflectivity 
Specular reflection measurements for the SlX targets oriented 

at 20° to the incident beam are given in Fig.4.3l-34. For the metals 

the reflectivity is high at low irradiance levels, due, presumably, 
to direct reflection from the target surface (12) . This is reinforced 



TARGET ELECTRON 1EMPERATURE DERIVED 1EMPERATURE 

CeV) IRRADIANCE SCALING 

CGl2)n 16t T "v ~0.3"9 
e 

C 21 ~0.3S 

A1 34 ~01l32 

Cu 63 <]>0.43 

Ag 60 <]>-'0,.16 

Pb "v 32 <]>0.32 

- ---

t Using average nuclear charge and mass for (CH2)n 

Summary of estimated electron temperature and target irradiance 

scaling from charge-collector probe measurements at 3 x 101Ow.cm-2 (HF). 

TABLE 4.2. 
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by the observation of the spatial distribution on reflection, which 

was not ftmdamentally changed, although some aberration was observed. 

The reflectivity decreases steadily as ~ is increased. Under high 

irradiance conditions the reflected and incident laser pulse shapes 

were observed to have similar time histories. 

4.S.2. High Power Srstem 

a) X-ral Continuum Emission 

Elton (13) has extended calculations of the total integrated 

bremsstrahlung radiation passing through absorbing foils, including 

beryllium, for a plasma energy range of about SOeV to lOOKeV. 

Using his calculations, together with ion-velocity measurements, 

calculations showed that x-rays could only be observed using thin 

foils ~ Smg/cm2). Even tmder these C'ondi tions the detection of 

x-rays was predicted to be tmcertain. Considerable care was 

therefore used to obtain optimum target i rradiances by using a high 

quality beam. The x-ray detector was set at a very high gain, and 

signals were collected over a large solid angle. Electrical noise 

was reduced by careful screening. 

Using an EMIT 9813KB photomultiplier, operated at an EHT of 

2.6KV, together with an NE 104 plastic scintillator, x-ray signals 

were obtained. Be foils of mass per unit area 4.S0 and 2.06 mg.cm-2, 

and of areas 0.S67 and 0.722 cm2, were employed 6.9cm from the 

plasmas to limit the range of x-ray wavelengths detected, and to 

remove optical detection. The immunity of the system to stray 

light was confirmed by using a laser produced gas break-down sparkCS) 

as an intense light source at the laser focus. 

The signals were obviously subject to statistics but other­

Wlse reproducible. They were displayed on a Tektronix 7844 

oscilloscope, time synchronised with the laser pulse. The shot-to­

shot fluctuations were reduced by using a 20M-lz bandwidth amrlifier 

to provide some integration. The strongest emission was obtained 

with aluminium, in agreement with results using a CO2 laser as 

presented in chapter 7. Wi th both aluminium and carbon the emission 
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intensity decreased rapidly as the target irradiance was decreased, 

as predicted from Elton's calculations (13) • Fig.4.3S. shows typical 

x-ray signals for optimum conditions, together with the incident 

laser pulse shapes. The emission durations for Al and C were found 

to be ~ 60ns and ~ 40ns (FWHM) respectively; after allowing for the 

transit delays, the emission was found to begin concurrent with the 
main-spike of the laser pulse. 

Approximate electron temperatures,were obtainable using the 

two-foil absorber ratio technique (14) • However, a more accurate 

determination results from a technique based on the absolute sensitivity 

of the detectorClS). This method has significant advantages over 

the absorber ratio technique,when low temperatures «lOOeV) and 

weak emission signals are encountered, because of the high sensitivity 

of the signal to T variations CIS) • To estimate the temperature, e 
the radiating plasma volume, V, was assumed to be V = ! TI r3, with 

o 
r = 20~m, and the average electron density, n , within this volume, 

o e 
half the critical density (n ~ 5 x 1019cm-3). Contributions from e ~ 
free-free and free-bound transitions were considered when calculating 

the radiated power, with a coronal equilibrium model being used to 

determine the density of different ionization stages in the Al and C 

plasmas (16) • The T deduced from these measurements are given in 
e 

Table 4.3. The limits on temperature given correspond to a factor 

of ~ 10 error in the term n2 V used to calculate the power emitted e 
by the plasma, and indicate that the temperature is insensitive to the 

precise value of this parameter. 

b) Ion Emission 

A negatively biased charge collector probe motmted axially in 

the vacuum chamber, and located lScm from the target surface, Fig.4.l., 

was used to determine the asymptotic ion expansion velocity. 

For both Al and C targets, ion probe signals consisting of a 

single, temporally smooth, pulse were obtained, similar to those 

reported previously for ruby(17) and gain-switched CO2(10) laser-

solid target experiments. Under sensitive conditions a photoelectric 
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Fig.4.35. Typical x-ray signals for optimum conditions , 

together with incident laser pulse shape. 2·06 mg cm- l 

Be foil, polished AI target. 
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signal was clearly obtained, Fig.4.36. The time delay between the 

peak of the laser pulse and the peak of the ion pulse was used to 

derive the asymptotic ion expansion velocity, V ; results of V 
h "d" P P versus t e target lrra lance, ~p' are included in Fig,4,11,13, for 

C and AI targets. In both cases, a Yp " p~/9 scaling law gave a 
reasonably good description of the experimental data, An estimate 

of the plasma electron temperature, T , was obtained from the e 
asymptotic ion expansion energy, E. ,using the energy balance lon 
relationship as before. Electron temperatures derived in this 

" " b 1(1. -2 manner are glven ln Ta Ie 4.3, for ~ = 7 x 10 ~W,cm and are seen ~p , 
to be approximately a factor of two lower than those derived from 
the x-ray measurements. 

c) Streak Camera Measurements 

In Fig. 4,37. the laser pulse shape is shown together with a time 

synchronised streak photograph of the plasma produced from a carbon 

target at 7 x 101OW.cm- 2 • The temporal structure exhibited by the 

laser pulse was reproducib Ie and resulted from J -line switching and 

vibrational cascading in the multiline HF laser(18), The streak 

photograph shows that plasma production is initiated by the first, 

fast rising, low amplitude, component of the pulse, with a small 

step in the luminous front occurring upon the arrival of the main 

'spike' on the pulse. During the latter stages of the interaction 

(> lOOns), when the laser intensity is approximately constant, the rv 
luminous plasma boundary appears to be stationary and extends to 

rv lmm from the target surface. The overall laser pulse width and 

the period of luminous emission are seen to be comparable (rv40Ons). 

d) Beam Quality 
The presence of the target and focussing optics did not signifi-

cantly change the beam properties from those determined off target. 

For example, no noticeable difference in either the laser pulse delay 

time or pulse-shape was observed with the target present, indicating low 

reflective laser-target coupling. Optical and e lee-tron-mic ros cope 



Fig.4.36. Photoelectric signal preceding main carbon ion pulse. 

500 ns/div, 0·2 V/div. 

LASER 

mm 

~u \\\\\ targ.et 

--- LI --"L.-..L-~-----""'~~ - '> 
10 2 4' .~ 6 ( 100 n 5 ) 

Fig.4.37. Laser pulse shape time synchronised with a streak 

photograph of the plasma produced from a carbon target at 

an irradiance of 7xl010 W.cm-:2 



TARGET EXPERIMENTAL TEMPERATURE (eV) CALCULA1ED lEMPERATURE (eV) , 

I 

~ = 7 x 101OW.cm -2 lOw -2 
I 

I 

~ = 7 x 10 .cm I 

Ion Probe X-Ray ~ < ~ > 

C 30 65 + 20 - 12 72 34 

Al 38 75 + 25 - 17 87 40 

__ ~L-.. 

Experimental and calculated electron temperatures (HF). 

Table 4.3. 
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inspection of the laser damage sites on the Al targets showed the 

presence of deep central craters of 'V 4011m diameter with peripheral 

damage out to diameters of ~ 1lOllm, Fig.4.38,39., which was consistent 

with, diffraction limited perfomJance of the lIDstable resonator(l). 

4.6. Discusion of the Results from Both Systems 

4.6.1. The Interaction 

For the irradiance levels and pulse lengths used, the steady-
state self-regulating model(9,19,chl), should provide a good description 

of the interaction. This model assumes that laser radiation is 

absorbed primarily in the lIDder-dense plasma zone, an assumption 

which can be shown to be valid providing ¢ < ¢ , where(9):-p '\., 0 

...•. (4.3) 

Here, A (llm) is the laser wavelength, r (llm) is the characteristic 
. 0 

focal spot radius, and A the atomic weight of the target material. 

For the HF laser, with A = 2.811m and r = 2011m, equation 4.3. gives o 
¢ '\., lOllW.cm-2 for Al and C targets, which is somewhat higher than 

o ~ 
the maximum irradiance levels employed. Under steady-state 

conditions, the dependences of the electron temperature, Te' and the 

ion velocity, V, on r , A and ¢ can be shown to be
(19

):_ 
o 

T = a r 2/ 9 A4/ 9 ~4/9 
e 0 

..... C4.4) 

..•.. C4.5) 

where a and b are coefficients depending upon Z and A, which can be 

derived from Puell's analysis (9) • It should be noted that the 

applicability of these scaling laws to our results is supported by 

the ion velocity measurements which show good agreement with the 

V ~ ¢2/9 dependence predicted by equation 4.5. 
p 



Fig. 4 . 38 . Electron microscope photograph of the laser damage site on an aluminium target (~lOlOW.cm-2) 



Fig . 4. 39 . Elect ron microscope photograph of the laser damage site on an aluminium target C~lOlOW.cm-2) 
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4.6.2. Comparison with TheoEY 

gIven 
and A 

In Table 4.3., temperatures calculated using equation 4.5. are 

for Al and C targets with ~ = ~ = 7 x IOIOW.crn-2 2r = 4011m p '0 ~ 

= 2.811m. It can be seen that the temperatures predicted 

using the maximtun irradiance, ¢ , are consistently higher than those p 
derived experimentally from the ion probe data, but are in broad 

agreement with the x-ray measurements. Since the x-ray detection 

technique provides a measurement of the highest temperature(17) 

achieved (in both space ruld time) during the laser pulse, it is 

reasonable to suppose that this temperature relates to localised heating 

produced by the main lobe of the focused unstable resonator beam, which 

is characterised by ~. In contrast, since the ion probe detectors 
p 

yield space and time averaged values for Te' it is more appropriate 

in this case to compare the results with predictions based on an average 

value for the irradiance, <~>. This is done in Table 4.3., where 
9 -2 Te values are given for ~ = 7 x 10 W.cm ,which corresponds to a 

spot-size of 2r = 1101lm, as determined experimentally from the 
o 

overall damage crater diameter, and a time averaged (rather than 

peak) value for the incident laser power. Te values calculated 

In this way agree well with the ion probe measurements. 

A comparison of the reflectivity measurements with predictions 
based on the optical thickness of the underdense plasma (20,21) shows, Table t. L 

that the experimental results are much higher than would be expected. 

Thus, it IS likely that reflection from the target surface dominates 

the results over the entire range studied; this explanation would 

also account for the significant difference in reflection observed 

for Al and C targets. 



TARGET R (0/0) 

cP =109 Wcm-2 cP = 1 0 IOW.cm-2 

( CH2)n < 1.88 0.29 

C 0.01 0.13 

Al 0.04 0.61 

Cu 0.05 1.28 

Ag 0.60 1.59 

Pb 0.02 0.11 
- - -- .- - - - -

Total reflection coefficient calculated(21) assuming an isothermal p]asma with a 

linear density gradient. 

Table 4.4. 

I 
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CHAPTER 5 

HF LASER-TARGET INTEAACTION STIJDIES (GASEOUS ENVIRONMENT) . 

5.1. Introduction 

The interaction of HF laser radiation, with certain solid targets 

in a gaseous environment, is briefly studied. Platinum, stainless 

steel and aluminium targets are used in air at atmospheric or reduced 

pressures. ~asurements on thermal coupling, reflectance, plasmotron 

threshold, laser supported detonation wave threshold and velocity are 

presented, together with transmission studies through a laser-induced 

gas-breakdown plasma. 

5.2. Themal Coupling 

5.2.1. Introduction 
For many industrial and military applications, the optimum transfer 

of radiation energy to a surface, in a gaseous environment, is required. 

Typical conditions are :-

ambient p~ssure 

ambient gas 

surface 

laser 

focal spot diameter 

0-760 torr. 

air, sometimes argon 

(polished) metals, such as steel, 

titanium and alurrdnium alloys 

CO2, DF, Nd:glass, ruby 

< 5mm 
'V 

The coupling coefficient, Q, 1S defined as the ratio of the thermal 

energy absorbed by the target to the radiation energy incident on it. 
a has been measured Cl- 4) at the CO2 and Nd:glass wavelengths as functions 

of target material, ambient conditions, laser intensity and fluence 

(energy/spot area), pulse duration, and focal spot size. In this 

section, we present measurements at the HF wavelength, using polished 

platinum targets in air at an ambient pressure of 0-760 torr. 
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5.2.2. Experimental Procedure 

The schematic layout for the thermal coupling measurements is 

shown in Fig.5.l. The ~ 300ns HF laser radiation intensity was 

varied using the Inconel on Infrasil attenuators. Pulse-shapes and 

energy were measured using a liquid nitrogen cooled, Au doped Ge 

photoconductive detector and a calibrated Lumonics 20n pyroelectric 

joulemeter. Chromel-alumel thennocouples were symmetrically spot­

weded on the rear surface of thin polished platintuTl discs. As 0.1 °c 
absolute accuracy was not necessary in these experiments, known 

calibration data for these pure metals was assumed, and is shown In 

Fig.5 .. 2.. The output signal was monitored using a 083 Telequipment 

oscilloscope with a V3 high-gain amplifier. A typical signal is 

shown in Fig.5.3. The target and detection system were screened in 

a Faraday cage to remove radiative noise pick-up from the laser 

system. A time-averaged value of a was obtained using the relation-

ship :-

M C e 
a = E 

..... (5.1) 

where, M is the target mass (interaction loss negligible), E the 

mean specific heat over the temperature variation, e the temperature 

rise from room temperature, and E the incident laser energy. In the 

case of pre-fabricated targets, the mass was calculated using 

dimensions and target density. For some experiments, the target 

was positioned in an evacuable cell. 

The spot size was defined as follows. The irradiance was 

decreased tmti 1 the threshold burn condition on exposed, uncoated 

410 Polaroid film was achieved. The irradiance was now increased by 

a factor of two, and the spot size accurately measured. Allowance 

was made for the thickness of the Polaroid film. The single crater 

SIzes on the targets showed agreement with these values. 

The incident energy was recorded for each thennocouple measure-
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Flg.5.1. Schematic configuration for thermal coupling measurements. 
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ment, and an average of five or more results was taken for each 

reading. The laser was fired at regular intervals, and the values 

for a given graph obtained in a consecutive run. In each case the 
ini tial result was repe3'.ted at the end of the sequence. 

5.2.3. Experimental Results 

Fig.5.4. shows the variation of a with fluence for three platinum 

target and spot sizes. A ZOcm focal-length plano-convex NaCl lens 

was used to partially focus the beam. In all cases, the target was 

on the lens side of the focus. The curves are of the same general 

shape as predicted, and as obtained at the COZ and Nd:glass 
wavelengths (Z-4) • In each case, the peak thennal coupling is 

obtained about the LSD wave fluence threshold. Progressive enhanced 

coupling is observed below this threshold, and progressive decoupling 
is observed above the threshold. The peak value of the thermal 

coupling coefficient obtained was in the range 10.5-16.5%. 

Fig.5.5. shows results obtained using a 50cm focal-length, 
plano-convex NaCl lens. Consider the following table, which 
summarises these two graphs :-

TARGET DrA FOCAL-LENGTI-I SPOT AREA SPOT /TARGET AREA PEAK a 

3.0rnm 20cm O.OlOcmZ 14.1% 16% 

3.5rnm 50cm 0.032cm Z 33.3% 11% 

4.8rnm ZOcm 0.OZ4cm Z 13.3% 10.5 % 

4.8rnm 50cm 0.036cm Z 19.9% 14 % 

8.1rnm ZOcm 0.066cm Z 1Z.8 % lZ % 

8.1rnm 50cm 0.088cm 2 17.1% 19% 
~----- -

TABLE 5.1. 
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For the larger targets, an enhanced thermal coupling is to be 

noted with the longer focal-length lens. In both these cases, the 

focal spot also covers a larger fraction of the target. Thus, the 

enhancement cannot be due to plasma spread outside the spot. In 

contrast, the smaller targets indicate the reverse situation. This 
can be explained by assuming significant plasma spread beyond the 

target in the case of the 3.Smm diameter target. The explanation 

for the enhancement with the larger targets is not immediately 

apparent. 

The peak coupling does not follow an obvious trend with spot 

Slze. Measurements at larger spot sizes were not possible, un­

fortunately, because of the available laser output energy. This 

would have been desirable to clarify the situation. 

Conflicting results have been obtained at the CO2 wavelength(2,4), 
as the spot size was increased, Marcus et ale observed a marginal 

enhancement, but Maher et ale observed the reverse. 

The minimum beam intensity requi red to support an LSD wave is 

calculated in ref.S.S.,S.6. and plotted as a function of spot radius 

in Fig.S.6. Experimental peak coupling values are also indicated to 

show their equivalence. The LSD wave threshold for O.S-lmm radius 

spots was found to be ~ (2-3) x 108W•cm-2. 
The thermal coupling coefficient - fluence dependence was also 

measured at reduced air pressure. Fig.S.7. shows the dependence at 
760 and 100 torr in the case of a 3mm diameter target and ~ lmm 

diameter spot. The two curves are similar, although the increased LSD 

wave velocity at 100 torr (see next section) is made apparent by the 

slightly reduced coupling. These results are in general agreement 
. (2 4) (3) wlth measurements at the CO2 ' and Nd:glass wavelengths. 

Peak coupling coefficients presented here at the HF wavelength 

for platinum targets, (12-18%), are relatively low when compared with 

values for other metals at the CO2 wavelength, (~2S-3S%). This 

variation may be partly due to a target dependence, but the increased 

plasma absorption length at ~ 2.8~m is likely to be significant. 

Breakdown plasma transmission experiments at the HF wavelength are 

described in section 5.4. and compared with CO2 results. 
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5.3. Ignition and Propagation of LSD Waves 
5.3.1. Introduction 

High speed (streak) photography has been employed to determine 

LSD wave velocity and threshold irradiance when HF laser radiation IS 

focused onto metal targets in air. Targets used were polished 

stainless steel and aluminium, and unpolished platinum. Ambient 
. d f -3 pressure was varle rom 10 torr to atmospheric. The reflection 

coefficient was measured on both sides of the LSD wave threshold 

irradiance in order to investigate the decoupling effects. 

5.3.2. Experimental Procedure 

A photograph of the experimental configuration is shown in Fig.S.B. 

This is similar to the configuration used for thermal coupling. 

Incident energy and pulse shape were monitored as before. In addition 
the specularly reflected radiation, from the tilted target, was 

collected and partially focused, with a concave mirror, onto another 

calibrated joulemeter. The Hadland streak camera, as previously 

described, was positioned to view luminous plasma that expanded back 

towards the laser. The tilting of the target ensured that specular 

'blow-off' was insignificantly observed (because of the camera's depth 

of field) and reflective coupling, with the laser itself, was minimised. 
An observation NaCl side window was incorporated into the vacuum chamber, 

to enable the procurement of streak measurements at reduced pressure. 

Both stable and unstable resonators were used in these experiments. 

For the latter situation, the laser output was regularly checked by 

observing the far-field distribution. The distribution also enabled 

an estimate of the target irradiance to be made. When operated in the 

multi-mode stable configuration, a maximum irradiance of ~ 109W.cm-2 

was possible for spot sizes ~ lmm. With the unstable resonator, 

the maximum irradia,ce was ~ lOlOw .cn:- 2 for a spot size of ~ lOO~m. 

5.3.3. Ex~rimental Results 

a) Aluminium Target 
Fig.5.9. shows a typical streak photograph at an irradiance of 

~ ~.6 x 107W.cm-2. This clearly indicates a plasmotron situation, as 



Fig.5 .8. Photograph of the experimental configuration used for atmospheric high-speed photography. 
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Fig.S.9. Streak photograph of an aluminium plasmotron in 

at mosp heric air at ani r radiance of _ 9·6 x 107 W.cm: 2 Camera 

aperture f/22. 
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Fig.S.10. Streak photograph of an aluminium LSD wave in 

atmospheric air at an irradiance of - 3·5 x 10
8 

W.cm-.
2 

(a) Camera aperture f/22, 10dB neutral density filter. 

(b) Camera aperture f/22, 12 dB neutral density filter. 
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also observed at the CO2 wavelength. At a threshold of ~ 1.6 -
8 -2 2.0 x 10 W.cm an LSD wave was observed. For the given spot size, 

this is in good agreement with the theoretical value given in ref.S.6. 

Fig.S.lO shows a typical streak photograph at an irradiance of 
8 -2 

~ 3.5 x 10 W.cm • 

recoupling apparent. 
This is clearly an LSD wave situation without any 

The expansion velocity of ~ 1.17 x 106cm.sec-l 

is in fair agreement with the predicted value, obtained from 5.2., of 

1.46 x 106cm.sec-l (using Po = 1.2047 x 10-3g .cm-3 at 20°C and ¢ = 
15 -1-2 3.5 x 10 erg.sec cm). The difference can be explained by the 

decreased irradiance, at the absorption front, due to the cone angle. 

For example, at Imm from the surface the irradiance has decreased by 

a factor of 1.465, resulting in a theoretical velocity of 1.29 x 106 

-1 em.sec • Under similar conditions, TEA CO2 laser radiation produces 

recoupling, in contrast to these results. 

In Fig.S.ll. the initial plasma expansion velocity/irradiance 

scaling is shown to obey the one third law above the LSD wave 

threshold. 
The reflection coefficient is given in Fig.S.12. as a function 

of irradiance. 

a good mirror. 

steadily; above 

reflected. 

For very low irradiance values, the surface acts as 

As the irradiance is increased the reflectance falls 

the LSD wave threshold < 10% of the radiation was 
~ 

b) Stainless Steel and Platinum Tar~ts 
The plasmotron threshold for polished stainless steel was found 

to be ~ 1 x 108W•cm-2. This is higher than the threshold for 

aluminium. A typical streak photograph of a stainless steel plasmotron 

IS shown in Fig.S.13. at an irradiance of 1 x 108W.cm-2. 

LSD wave initiation for stainless steel occured at an irradiance 

of ~ 2.3 x 108W•cm-2, which is at a similar level to that of aluminium. 

Typical streak photographs at this threshold irradiance are shown in 

Fig.S.14a-b. The initial LSD wave expansion velocity again obeyed 

the ¢1/3 dependence as given in Fig.S.ll. The velocities for stainless 

steel and aluminium were very similar. 
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Fig.S.13. Streak photograph of a stainless steel plasmotron in 

atmospheric air at an irradiance of -1 x 108 W.cm-:2 Camera 
aperture f/22. 
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Fig.S.14. Streak photograph of a stainless steel plasma in 

atmospheric air at an irradiance of_2·3xl08 W.cm-. 2 

(a) Camera aperture f/22, SdB neutral density filter. 

(b) Camera aperture f/22, 10 dB neutral density filter. 
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Using the unstable resonator configuration high irradiances 
In.. - 2 ' 

( ~ 10 ~w .cm ) at small spot areas were available to study the plasma 

behaviour. Fig.S.lS. shows a streak photograph taken at an irradiance 
8 -2. . 

of ~ 4.6 x 10 W.cm • A rapId, strong decoupling is seen to be 

followed by a weaker recoupling ~ 280ns from the initial LSD wave 

production. This behaviour has also been observed at the CO laser 
1 h (7 8) Ab "d" f 9 _ '7 2 wave engt '. ove an lrra lance 0 ~ 3 x 10 W.em - no recoupling 

was observed. Fig.S.16. shows the initial expansion velocity scaling 

with irradiance. In this case a low (~¢O.lS) scaling was observed. 

It is likely that radial losses are important for the small spot areas 

employed here. Thus, the lowered effective irradiance would decrease 
the scaling from the ¢1/3 given by theory. 

The plasmotron threshold was found to decrease slightly with 

ambient air pressure. For example, with stainless steel, the threshold 
8 -2 was approximately constant at 1.1 x 10 W.cm above 400 torr, but at 

100 torr it was ~ 7 x 107W•cm-2. The LSD wave threshold was found 

to be approximately constant in the pressure range 20-760 torr. 

Fig.S.17. shows the relationship b~tween the initial plasma 

expansion velocity and ambient pressure. Three different irradiance 

levels are indicated; as expected the higher irradiance gives the higher 

expansion velocity. For low pressures the velocity is independent 

of pressure; above ~ 100 torr the velocity was found to scale as 
p-O.32 in good agreement with the p-l/3 predicted by theory. Fig.S.18. 

shows the expansion velocity as a function of irradiance at ambient 

h 1/3 I" pressures of 20, 100 and 400 torr. For eac pressure, a ¢ sca Ing 

was observed above the LSD wave threshold. 

With platinum, the velocity dependence, as shown in Fig.S.ll.,S.19., 

was found to be similar to those of stainless steel and aluminium. 
8 -2 The platinum plasmotron threshold was found to be ~ 1.2 x 10 W.cm . 

Fig.S.20., at ~ 1.3 x 108W.cm- 2, shows a combined LSD wave and weak 
8 -2 b d plasmotron. Above about 1.S x 10 W.cm only an LSD wave was 0 serve, 

for example, as shown in Fig.S.2l. 
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o 2 4 6 8 10 (100 ns) 

Fig.S.1S. Streak photograph of plasma production from stainless 

steel in air at atmospheric pressure. Target irradiance _ 4.6 x 108 

W.cm-
2 

(unstable resonator configuration). Camera aperture f/2. 

10 5 L-__________________ ~ __________________ J_ ________________ ~ 

1010 

TARGET IRRADIANCE 4> 

1011 

(W.cm-2). 

Fig.S.16. Initial plasma expansion velocity versus target irradiance 

for stainless steel. 
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Fig.5.20. Streak photograph of plasma production from platinum 

in atmospheric air. Irradiance _1·3 x 10 8 W.cm-.2 Camera aperture 

f/22, 20dB neutral density filter. 
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Fig.5.21. Streak photograph of plasma production from platinum 

in atmosperic air. Irradiance_l·S xlO'W.cm-.2 Camera aperture 

f /2 2, 2 5 d B n e u t r a Ide n 5 i t y f iI t e r. 
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5 .4. HF Laser Transmission Through a Gas Breakdown Plasma 
5.4.1. Introduction 

The reduced thermal coupling of HF laser radiation, compared with 

CO2 laser radiation, suggests that the plasma absorption length is 

large. To investigate this, an argon breakdown plasma was used In 

the configuration shown in Fig.5.22. Deka(9) has studied argon 

breakdown plasma transmission at the 'co2 wavelength. Thus, a direct 
comparison was available. Pure argon was chosen, as it gives 

reproduceable results; air breakdown thresholds vary slightly according 

to composition. Transmitted energy and pulse shape through a break­

down plasma are studied as a function of argon pressure. 

5.4.2. Experimental Procedure 

The experimental configuration is shown in Fig.S .22. A IV lJ 

unstable resonator HF laser(lO) giving IV l60ns FWHM pulses was focused 

usIng an f/lO, 30cm NaCl lens into the high pressure argon cell. 

Transmitted radiation was collected and focused with a second f/lO 

lens over a H20- and CO2-free path, produced using flowing dry nitrogen 

gas (H20 and 002 are highly absorbing to HF radiation). The pulse 
shape was measured, using the liquid nitrogen cooled Au-doped Ge 

detector, for the radiation scattered from a ground NaCl plate. The 

transmitted energy was measured using a calibrated 'Gen-Tec. t pyro­

electric joulemeter. 

5.4.3. Experimental Results 

In Fig.S.23. the transmitted energy and pulse duration (FWHM) 

are given as a function of gas pressure. The transmission coefficient 

is seen to steadily decrease with increasing pressure, falling from 

IV 1.0 below the breakdown threshold to 'V 0.16 at 2460 torr. 'fhe 

corresponding decrease in pulse width is l60ns to 'V 7ns. At atmos-

pheric pressure the transmission was determined to be IV 3S%, which 

is high when compared with ~ 10% for air at lO.6~m wavelength. 

The large absorption length for HF radiation is probably due to 

the breakdown plasma density being sub-critical. /ls the pressure is 
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increased, the increased density increases absorption and decreases 

the breakdown time; both these factors decrease the transmission. 

For pressures ~ 1000 torr, breakdown occurs on the rising edge of 

the incident pulse. Thus, the pulse width is given by 5.9. Indeed, 

Fig.5.23. shows experimental agreement with this theoretical scaling. 

5.5. Conclusions 

The coupling coefficient for platinum has been investigated as 

a function of target and spot size, cone angle, fluence and ambient 

pressure using HF laser radiation in air. The maximum coupling 

obtained was ~ 15-18%. Peak coupling irradiance was found to be In 

the region of the LSD wave threshold in agreement with measurements 

at other wavelengths. There was no obvious thermal coupling trend 

as the spot size was varied. LSD wave thresholds and velocities for 

platinum, stainless steel and aluminium were found to agree with theory. 

The weak coupling at the HF wavelength for platinum is likely to be 

a direct result of inefficient energy transfer to a sub-critical density 

plasma. This is also indicated by the argon gas breakdown studies, 

where HF radiation was found to have a high transmi ttance compared 

wi th longer wave length radiation. Further studies, using a target­

induced breakdown and a transparent solid target would be desinable, 

al though similar results are likely. The plasmotron thresholds for 

the three targets were determined. For irradiances above the LSD wave 

threshold, rapid thermal decoupling was obtained. In contrast to the 

case of CO2 laser inter~ction, subsequent recoupling was not observed 

with the large spots irradiated with the multimode stable resonator. 

Recoupling was observed under certain conditions, however, for small 

spots using the unstable resonator. Large spot measurements, although 

desirable, were not carried out due to the unavailability of a suitable 

laser. 



5.6. 

1) 

- 76 -

References 

Marcus S., Lowder J.E., Manlief S. and Mooney D.L. 

Quant. Elect. QE-l1, 49D, 1975. 
. -

IEEE J. 

2) Marcus S., Lowder J.E. and tvboney D.L. J. Appl. Phys. 47, 
2966-68, 1976. 

3) Hettche L.R., Tucker T.R., Schriempf J.T., Stegman R.L. and 

Metz S.A. J. App1. Phys. 47, 1415-1421, 1976. 

4) Maher W.E. and Hall R.B. J. App1. Phys. 49, 2254-2261, 1978. 

5) Raizer Yu.P. Zh. Eksp. i Teor. Fiz., Pis'ma 2, 73-6, 1968. 

Trans1: Sov. Phys. JETP Lett. 2, 55-7, 1968. 
6) Allingham C.O. and Bishop H.V.H. AWRE report LDPN/12/77. 

7) Maher W.E., Hall R.B. and Johnson R.R. J. App1. Phys. ~, 

2138-45, 1974. 
8) Barchukov A.I., Bunkin F.V., Konov V.I. and Lyubin A.A. Sov. 

Phys. JETP, 39, 469-77, 1974. 
9) Deka B.K. PhD Thesis, University of Hull, 1977. 

10) Deka B.K. and Dyer P.E. IEEE J. Quant. Elect., QE-14, 661-73, 

1978. 



- 77 -

CHAP1ER 6 

CO2 LASER-TARGET IN'lERACTION STUDIES (VACUUM ENVIRONM:NT) 

6.1. Introduction 

A gain-switched 'lEA CO2 laser was used to irradiate vanous solid 
targets in a vacuum(l). Target irradiances between 108 and 1.2 x lOll 

-2 . 
W.cm , wIth 60ns (FWHM) pulses, enabled ion and x-ray scaling laws to 

be deduced and the backscattered laser radiation to be measured. The 

results indicate the existence of a high energy electron component In 

the plasma and the onset of an instability heating mechanism at 
~ 2 x 1010W.cm-2• 

6 .. 2. Experimental Arrangement 

6.2.1. Oscillator 

A double-discharge 'lEA oscillator(2), compnslTIg of eight 48cm 
2 modules with a cross-section of 5 x Scm, was operated in two modes. 

In the first mode the molecular gas flow ratio y = oo2/(C02 + N2), 
with 80% helium, was optimised at 0.6 for power and 0.5 for energy(2,3) 

This results in a low amplitude C~ l~s) tail following the high 
intensity spike(4), Fig.6.l. In the second mode y = 1. Although 

this reduced the energy to under a third of the optimum, the tail 

amplitude was considerably decreased, Fig.6.l. 
An unstable resonator Cs ) was used to obtain single mode operation 

without significant energy loss compared with the multimode output. 

6.2.2. Target Chamber 
Pulses were focused using a bi-convex NaCl lens designed to 

minimimize coma and spherical aberration. The lens had a focal length 

of 2scm and was used at f/6. Calibrated CaF2 flats were employed to 

attenuate the beam, as shown in Fig.6.2. The craters and bums fonned 

at low irradiances indicated a focal spot radius of about 2m~m. 

'Spec-pure' target rods of polyethylene, carbon, aluminium, copper, 

silver and lead were polished and mounted at 80° to the beam axis to 
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prevent specular feedback to the oscillator. 
to < 10-5 torr. 

6.3. Dia~ostics 

6.3.1. Pulse Shape ~asurements 

The chambe r was evacuated 

The incident and reflected pulse shapes were measured usIng Rofin 

7411 photon-drag detectors, as shown in the schematic diagram, Fig.6.2. 

6.3.2. Charge-Collector Measurements 

Ion velocities were obtained by the time of flight technique, as 

wi th the HF system. In this case, the probes were separated by 48.7 

cm and mounted in the forward direction, inclined at 20° to the optical 

axis, sothat they were sighted along the direction of specular reflection. 

The solid angles presented by the two probes were made equal. Ion 

number was obtained by electronic integration of the ion pulse. 

6.3.3. X-ray Continuum _Measurements 

The soft x-ray emission from the plasmas under these conditions 

is far more copious than with HF, enabling the two-foil ratio technique 

(6,7) to be employed. High and medium gain photomultipliers (EMIT 

98l3KB and 98l4KB) were used, together with a plastic scintillator 

(NE104), depending upon the x-ray intensity. The former combination 

resulted in a statistical spread of the signal amplitude, but had far 

greater sensitivity. The soft x-rays were filtered through foil 

combinations that included 25, 125 and 250~m thick light-tight 

beryllium. Signals were displayed on a Tektronix 7904 oscilloscone 

using a 20MHz limited amplifier to introduce some integration. 

It has been pointed out(l) that line radiation was not si,gnificant 

in our situation in view of the relatively low plasma temperature 

deduced from probe measurements, and the probable failure to reach 

coronal ionization equilibrium in the plasma. 

6.3.4. Backscatter Measurements 
The laser radiation reflected and collected by the lens, a solid 
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angle of 0.06Sr, was directed onto the pyroelectric 

a NaCl beam-splitter and lens as shown in Fig.6.2. 
j oulemeter, using 

This was normalized 
using a second joulemeter to monitor the incident energy. 

6.4. Resul ts 

6.4.1. Charge-Collector 

A strong photo-electric signal was obtained in the majority of 

measurements. This acted as a useful time-marker. Velocities were 
therefore obtained using this signal for the two probes in addition 

to ti~ing between the probes. In the presence of the low amplitude 

tail to the laser pulse, the photoelectric signal overlapped with the 

fastest ion signals on the near probe. The tail also produced multiple 

ion species, especially for the heavier targets. This will, in part, 

be due to the tail interacting with a pre-conditioned plasma. The 

ion velocity scaling laws deduced using the initial ion pulse were the 

same in both modes of operation, although this was not true if the 

largest ion pulse was considered. In order to tmambiguously interpret 

the scaling, NZ-free gas mixtures were employed. Typical ion signals 
for these two situations are shown in Fig.6.l., and presented in ref.6.l. 

Fig.6.3-8. show the ion-velocity scaling for the six targets 

studied using a N2-free gas mixture. Velocity measurements were 

taken representing the most abundant ion species. The effect of 

the residual tail in producing secondary peaks was established. In 

general, the scaling was lower than 2/9, except at ~ 109w.cm-2, with 

some further decrease at the higher target irradiances. Mul tiple 

peaks were observed with the heavier targets, in agreement with 

Beverly(8) (using low Z targets in two-beam experiments) and Ehler(9) 

(in high power, short-pulse experiments) • The asymptotic ion-expansion 

energy at 8 x 10lOW.cm-2 for the six targets is shown in Fig.6.9. 

Table 6.1. gives the electron temperature, calculated as with HF. 

The temperature-flux dependence, also given in Table 6.1., indicates 

a low scaling. 
The ion-nUITber scaling with' irradiance for the six targets steadi 1;: 

changes from ~ 1 to ~ 0.5 as ¢ is increased. The self-regulating 
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model predicts a scaling of 5/9 and thus this was only obtained at the 

higher fluxes, in agreement with results using the HF laser. 

TARGET ELECTRON TEMPERATURE (eV) DERIVED 1EMPERATURE IRRADlftNCE I 
~ = 8 x 101OW.cm-2 SCALING, 

2 x 108 
< ¢ < 1.2 x 1011W.cm-2 

(CH2)n 50 t ¢0.37 
I 

T i 
'V e 

C 70 ¢0.30 

Al 105 ! 
¢0.31 

I 

i 

Cu 145 : ¢0.20 
i 

! 
I 

Ag 'V 180 I ¢0.25 tt 
I 

Pb 'V 160 ¢0.21 I 

I 
-------_.- --~ 

t 

tt 

using average nuclear charge and mass for (CH2) 
8 lrr. -2 n 

over the range 2 x 10 ; ¢ ; 2 x 10 ~w.cm . 

---

Summary of estimated electron temperature and target irradiance 

scaling from charge-collector probe measurements (C02). 

TABLE 6.1. 

The ion number, N, was observed to decrease rapidly with increasing 

atomic weight at an irradiance of 1011W.cm-2 . For the lightest 
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elements, a scaling of N ~ m. was achieved at irradiances of 109 
11 -2 . 1 

and 10 W.cm • ThIS was also observed with HF radiation at 109w .cm -2 . 
For the 
~ m4/9 

i · 
As C is 

intermediate mass elements, the scaling was in the order of 

The self-regulating model predicts (1.29a) that ~ ~ (miC)-2/9. 

roughly proportional to m., an approximate -4/9 scaling is to 
(10) 1 

be expected. Dyer et al have, however, warned that the continuum 

fluid mechanics used IS only valid for scale lengths much greater than 

the mean free path. For hydrogen, the thermal conduction length is 

only 4 Ae , and possibly this accounts for the high scaling in the 

region of polyethylene. In the region of lead, at the lower irradiance 

only, a slightly lower scaling was obtained. This is possibly due to the 

neglect of the ionization energy dependence in the simple model. At 

the higher irradiance a -4/9 scaling was, however, achieved, in 
agreement with the model. 

With nitrogen in the gas mixture, the ion data was complicated 

by the appearance of additional peaks due to the significant laser 

tail. Over the target irradiance range 2 x 108 to 2 x 1011W.cm-2 

the scaling laws are given in Table 6.2. 

With the exception of copper and lead, the first-pulse scaling 

and the ion energies are comparable with the y = 1 situation. It 

is possible that the high ion energies for copper and lead are a direct 

result of the tail interacting with a preconditioned plasma. 

6.4.2. Soft X-ray 

The soft x-ray continuum emission gave an electron temperature 

which was either considerably In excess of that determined from the 

ion-probe measurements or was strongly dependent upon the foil absorber 

combinations used to filter the x-rays. 

Table 6.3. gives a summary of the results for the six targets 
11 -2 . 1 1 at a target irradiance of 1.2 x 10 W.cm . The equlva ent e ectron 

temperatures are in the kilovolt range, and are a function of the foi 1 

combinations. The electron temperature exhibits only a weak flux 

scaling; in contrast, the x-ray signal intensity is highly flux depend­

ent, as shown in ref.6.1. The equivalent electron temperatures are 
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TARGET ION PULSE SCALING 

I 

(CH2)n 1st V tV <1>0.22 I 
I 

2nd <1>0.21 

C 1st <1>0.24-0.16 

2nd <1>0.50-0.19 

Al 1st <1>0 .21 

2nd <1>0.24 

Cu 1st <1>0.24 

2nd <1>0.13 

Ag 1st <1>0.17 t 

2nd <1>0.21 

Pb 1st <1>0.23 

dominant, 

<I> 2 x 108 - 5 x 1010 <1>0.07 

<I> > 5 x 101OW.cm-2 
tV 

<1>0.24 

t plus a new 'hot' group ~ 1011W.cm-2• 

Ion velocity scaling for 2 x 108 ~ <I> ~ 2 x 1011W.cm-
2

• 

TABLE 6.2. 
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TARGET Be FOILS Be FOILS Be FOILS 
2511m/5011m 2511m/125llffi 2511m/25011m 

(CH2)n 'V 0.5 KeV 'V 1 KeV 'V 1.5 Ke V 

C 'V 1 'V 1 'V 3 

Al 0.23 0.34 0.39 

, 

Cu 0.17 0.44 0.6 I 
I 
I 

I I 
I 

Ag 0.28 0.90 1 .1 

Pb 0.17 0.82 1.1 I 

Electron temperature (KeV) from soft x-ray measurements using 

the three Be foil combinations indicated, at a target irradiance of 
1.2 x 1011W.cm- 2. 

TABLE 6.3. 

calculated assuming a bremsstrahlung plasma. Any variation in this 

temperature with foil combination indicates deviations from this distri­

bution. Our results, therefore, indicate the presence of a non-thermal 

electron distribution at high irradiances. 

Under most conditions, the x-ray emission from the plasma was 

found to be associated with the main pulse of the laser. However, 

at high irradiances ('V 1011W.cm- 2) there appeared to be considerable 

interaction between the target and laser, as shown in ref.6.1. The 

spiking in the tail appears to be due to induced mode-locking and may 

give significant x-ray production, as shown in the same reference. 
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The interaction between laser and plasma is particularly strong for 

some targets and seems to correlate with the fraction of energy back­

scattered by the plasma. This plasma mirror effect has been observed 
using a Nd:glass laserCll). 

The x-ray emission duration varied only slightly with atomic 

weight, being ~ SOns for all targets except lead, which was slightly 

longer (~6Sns). The x-ray signal amplitudes are given in ref.6.l. 

As with HF, aluminium gave a signal which was an order of magnitude 

higher than for carbon. 

6.4.3. Backscatter 

The backscattered laser radiation energy is shown in Fig.6.10. 

for the six targets using the two modes of laser operation. The 

significant difference for these two modes with silver and lead is 

to be correlated with the plasma mirror effect, which was particularly 
strong for these targets. The large amplitude spikes results in 

higher plasma reflectivity, which is consistent with the observation 

that the nonspecular backscattered radiation increases with target 

irradiance in the case of polyethylene (12) . 
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CHAPTER 7 

DISCUSSION 

7 .1. Target Interaction (Vacuwn Environment) 

7.1.1. Ion Measurements 

Low Z targets were found to follow the self-regulating model 

scaling for both HF arid CO2 laser wavelengths in the relevant flow 

regime indicated in Fig.l.S. For high Z targets, a lower scaling IS 

to be expected when the effects of ionization are included in the 

simple model. This expectation was confirmed in the case of silver 

and lead. Although the simple self-regulating (and indeed, the 

deflagration wave) model was primarily developed for Nd:glass laser­

plasma interaction, this result is indicative of a more general 

validity. In agreement with Montes et al(l), even at the more extreme 

wavelength of the CO2 laser (10.6~m) the simple self-regulating model 

was obeyed over the same irradiance band, although departures were 

observed from the deflagration wave model at higher irradiances(2,3) . 

This weaker scaling at high irradiances and long wavelength may be 

explained by including a correction term to take into account thermal 

conduction broadening of the plasma. This effect is insignificant for 

Nd:glass in the irradiance band considered here, and also for short 

pulse (~ ns) CO
2 

interactions(4,S) at the irradiance range considered 

in ref. 7 .2. ,7 .3. 
It is of interest to compare the temperature scalings, as deduced 

from the ion measurements, given in Tables 4.2. and 6.1. Very similar 

scalings are achieved at these two wavelengths for the lighter targets, 

copper and lead give a much higher scaling with HF, whereas the reverse 

is true in the case of silver. Of special note is the low temperature 

achieved by lead with HF. 
The low scaling at 10.6~m of electron temperature with target 

irradiance (~ ¢0.20-0.37) has been verified in part by Dick and Pepin(3) . 
. d' l' f T 4/9 The simple self-regulatlng model pre lcts a sca Ing 0 e ~ ¢ , 

whereas the deflagration wave model predicts Te ~ ¢2/3 The latter 
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would not in any case be expected here, as shown by the regime diagram, 

For the heavier targets, good agreement is obtained Kith theory if 

thermal conduction broadening of the plasma is considered(6) . Thermal 

conduction broadening occurs when the conduction scale length approaches 

or exceeds the characteristic laser spot size. This occurs at about 

Te ~ lKeV for Nd:glass(7) and ~ lOOeV for CO
2

, In the limit where 

thermal conduction broadening dominates the heating process, simple 

steady state modelling(6) predicts a scaling of Te ~ ¢2/ll. The 

simple model does not take into account ionization energy, which may 

be relevant for the heavier targets. 

Measurements made by Skipper(4) (using Sns pulses), and Ehler(S) 

(using 1.Sns pulses), with low Z materials irradiated at 10,6~m, gave 

a somewhat high ion irradiance scaling. This is consistent with a 
decreased importance of thermal conduction. Skipper has found that 

the energy carried by the total number of ions produced in the inter­

action accounts, within accuracy of measurement, for the laser pulse 

energy absorbed. No fast ions were observed in the measurements 

presented here, or by Skipper for Sns pulses at an irradiance of 
1.Z x 101ZW.cm-Z• Ehler, on the other hand, obtained a high energy 
lon current for irradiances above 5 x 1012W.cm-2• At 2 x 1014W•cm-2 

90% of the total ion energy was due to fast ions. 

7.1.2. X-ray Measurements 
X-ray emission at the HF wavelength was, as expected from Elton's 

calculations (8) , less copious than with COZ laser radiation. Bleach 

and Nagel(9) have measured the x-ray emission versus atomic number 
"d" f 1012W -2 using a Q-switched zOns ruby laser at an lrra lance 0 ~ .cm 

Peaks in this plot were obtained for elements with atomic numbers such 

that shell ionization energies were 20-30 times the average electron 

energy in the plasma ClO) • Bleach and Nagel argue that the lower 

critical density of CO
Z 

radiation compared with that of ruby and ~d:glass 

is partially offset by the higher temperature attainment with CO2 for 

x-ray production. (There are less electrons available to carry the 

absorbed energy), The situation with HF radiation is, of course, 
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intennediate. 

Thus, x-ray peaks are likely to be observed, although they may 

well be increasingly weaker as the laser wavelength is increased. 

Pepin et al (11) observed x-ray peaking at an irradiance of 7 x 1012 \\1 .cm- 2 

using Ins CO2 pulses. However, to achieve this, oxide-free targets 

were necessary. The x-ray yield was fOlD1d to scale approximate ly as 

~ ¢2.5 for carbon, alurrdnium, iron, tin and lead. This is consistent 

with the approximately ~ ¢3 scaling achieved in the previous chapter 

with 60ns pulses and a lower irradiance. UnfortlD1ately, the available 
HF irradiance was too small to observe peaking or i rradiance scaling. 

In view of the results at spanning wavelengths, it is, however, very 

probable that peaking occurs and that the x-ray signal amplitude remains 

strongly dependent upon the target irradiance at higher irradiances 

(as predicted by Elton's calculations). Nagel et al(12) showed that 

the x-ray peaks are due to transitions to the principal atomic shells. 

The results here are not inconsistent with those of Pepin, although, 

unfortunately, six points are not adequate to indicate the trend. 

Above about 1012W•cm-2 non-thermal x-ray and fast Ion production, 

consistent with the onset of the parametric decay instability, are 

to be expected. Al thou,~h our i rradiances with HF were too low to 

observe this, the theoretical expectation is backed up by observations 
. Nd 1 (13) d CO (11 and for example 14,15) lasers USIng :g ass an 2 · 

The high-energy tail to the non-thennal electron distribution at 

high CO2 irradiances is probably due to a laser-driven instability. 

The most likely instability is the parametric decay instability, which 
10 -2 (16 17) has a threshold above 10 W.cm for CO2 ' 

7.1.3. Backscatter Measurements 
The specular reflectivities of the metal targets at the HF wave­

length were shown in chapter 4 to fall from nearly 100% at low irradi-

ances to a much lower value (~ 30%) at 1010W.cm-2 Lead was an 
8 -2 ~ exception, however, falling from ~ 2.5% at 10 W.cm to ~ 0.4b at 

1010W.cm-2• Both polyethylene and carbon had very low specular 

reflectivities, amolD1ting to only a fraction of a percent, solely 
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measurab Ie at the hi~hest irradiances achieved. These results can 

be compared with those at the spanning wavelengths of CO? and ~d:glass 
Dy t 1 ( 1 S ) d h' h ff' . -er e a measure a 19 er coo lClent for a m

2 
radiated ca mon 

plasma which was fairly constant at the measured values between 108 

d 1 12 -2 an 0 W.cm • Weak reflection has also been observed at all angles 

by Martineau et al (18) using a deuteriwn target and a 6Ons, 300"-1v en, 
TEA laser. Mitchell et al(19), using a slab polyethylene target -

irradiated at 10.61lm at the high irradiance range of In13_lnlSW.cm-~ 

obtained a backscatter of ~ S%. Slightly higher reflectivity has 
been observed at 1.061lm(20~2l). Ripin observed the reflectivities 

and angular distribution of radiation at the high irradiances of 

101S-1016w.cm-2 and found the process to be highly complex. Donaldson 

et aI, using a sOns CO2 laser, have studied the reflectivity of a carbon 
target over the intensity range 1011_lOl3w.cm-2. Total reflectivity 

was found to be < 8%. In agreement with Dyer et al(2), the absolute 
rv 

reflectivity was found to be insensitive to target material and irradiance 
over the range 3 x 1011_1013w.cm-2. 

Yamanaka et al(20), using 10.61lm radiation, observed a 60% peak 

reflectance at 4 x 101OW.cm-2, and this has been verified by Hall and 

Negrn(22) • This peak is interpreted as indicating the on-set of the 

parametric decay instability. As this instability occurs at higher 

irradiances as the laser wavelength is decreased, no reflection peak 

is to be expected for the HF measurements given here. This expectation 

has been verified. 
Apart from instability indication, the reflection data IS important 

ln determination of radiation cou~ling to the target. 

7.2. Tar&e,t Interaction (Gaseous Environment) 

7.2.1. Thermal Coupling 
Thennal deposition experiments presented in S.2. and in ref.7.23-

26. were carried out at nonnal or near normal beam incidence. \1(: Kay 

et al(27), using lOllS CO
2 

laser pulses on sheet aluminium targets in 

air, measured the thennal coupling as a function of target angle, 8. 

They found that the plasma ignition was only dependent on the beam 
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intensity, 10 , whereas the coupling varied as 10 cosS. Walters et 
1(28) 1· 1 . o. . 

a exp aln p asma 19n1 tlon as beIng due to the surface defects 
rapidly attaining thermionic emission temperatures. The thermionic 

electrons then gain energy by the process of inverse-bremsstrahltmg. 

These two steps depend on the fluence and flux respectively. The above 

experimental results suggest that the second criterion dominates the 
overall process. 

Mahler et al(29) have performed multiple-pulse thermal-coupling 

experiments in air using a photo-initiated OF laser. Aluminium targets 
were methonal cleaned and irradiated with a 1.9 x 1.9cm2 focused beam 

at a fluence of 67J.cm-2, the plasma ignition threshold being 31J .cm- 2 • 

Under these conditions the absorbed fluence was a maximum of 5-7T.cm-2 

for a first exposure, rising to a value of approximately 13.5.1 .cm- 2 

after multiple exposures. As the time between laser pulses was long, 

being several minutes, the target attained ambient temperature before 

subsequent exposures. This increase in thermal coupling has not yet 

been observed using higher wavelength lasers. It is believed that the 

effect is due to the increase in surface damage with multiple exposures. 

Such damage is expected to enhance both direct absorption and shorter­
wavelength re-radiated energy from the plasma. 

7.2.2. Ignition and Propagation of LSD Waves 

When comparing pulsed interactions at the HF/DF wavelengths with 

those at the 002 wavelength, it is important to consider the effects 

of the different pulse shapes. 

With 10.6~m interaction an air plasma may be formed by the high 

intensity gain-switched spike at the leading edge of the pulse. At 

this stage in time the surface has not attained the vaporization 

d f 0 0 (28,30) temperature; ignition has originated from surface e e:; vapOYlZatlon 

In the case of aluminium at an intensity of 10-30MW.cm -, the threshold 
o o. 0 btl 7 J - 2 ( 3 1) Fo 11 ow 10 n g fluence for this prompt IgnItIon IS a ou .' .cm 

the formation of a surface plasma, the high energy, low intensity laser 

tail interacts by forming an LSC or LSD wave - the LSD wave threshold 

being about 8MW.cm- 2 (32,33) In the absence of prompt ignition, 
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absorption is by the process of inverse Bremsstrahltmg. This occurs 

at the target surface in the case of metals, but for many non-metals 

absorption is integrated over a finite depth. 

The HF/DF laser pulses lack the gain-switched spike and rapid 

rise time of the CO2 laser pulse. In consequence, plasma ignition 
occurs in the middle of the pulse(34-36) The initial direct surface 

absorption is much larger than with 

rapidly rises. This increases the 

duces the possibility of mass loss. 

CD2, sothat the surface temperature 

absorption coefficient and intro­

Plasma ignition is possible by 

two mechanisms: bulk surface evaporation or from surface defects as 

before. The former process is more likely than with CO2, as the bulk 

heating rate is larger; the latter process is less likely, as the 

inverse bremsstrahltmg absorption increases with A 
2 . Higher intens i ties 

are needed to maintain LSC waves than with CO2, thus hot, high pressure 

plasmas are formed. Radiative transfer to the target is therefore 

much larger. The LSD wave threshold fluences are, as expected, 

ordered inversely with wavelength - the threshold for HF being much 

higher than with CO2, the threshold for OF being intermediate. 
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CHAPTER 8 

CONCLUSION 

8.1 • Sunnna!y 

Characteristics of plasmas, produced by a pulsed unstable-resonator 

HF laser, with a range of solid targets in a vacuum h~ve been presented. 

For this laser, the critical plasma density (n ~ l020cm-3) is inter-
ec 

mediate to that obtained using CO2 and Nd:glass lasers, allowing plasma 

production to be investigated in a potentially interesting new regime. 

Measurements employing soft x-ray detectors, charge collector probes 

and high-speed photography, together with the results of specular 

reflectivity, have been reported for target irradiances in the range 

108 - lOIIW.cm-2. Scaling laws for the interaction have been 

established and in geneTcd found to agree with established theories 

and other experimental work. However, lack of data at 2.8~m has 

necessitated frequent references to experiments carried out at other 

wavelengths. To aid comparison and to establish wavelength scaling 

data, a gain-switched TEA CO2 laser was used to study the interaction 

by employing the same diagnostic techniques as with the HF laser. 

Using 60ns FWHM pulses and irradiances upto 1.2 x IOllW.cm-2, the 

existence of a high energy electron component in the plasma was 

noted, probably as a result of the onset of a laser driven instability 

such as the parametric decay instability. 

The formation and propagation of laser supported detonation waves 

has been studied for various targets in a gaseous environment using 

high speed photography. rveasurements on plasrnotron threshold, thennal 

coupling, reflectance and transmission through a laser-induced gas­

breakdown plasma have also been perfonned and the resul ts compared 

with existing theories and data. 

8.2. Other Important Plasma Diagnostics 
Measurements have been obtained elsewhere using ion mass spec­

trometry(l-4), W(2,S-lO), optical(R, 10:'13) ~nd X-TaY ~pectrns('op)' 
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(2,5-8,14-18) . rf (19-25) (14 17 26 j"",) , lnte erometry , x-ray pin-hole ' , ,_1 d 
(27) . an 

zone-plate photography , lmpulse measurements(28,29) and thin-foil 
transml' SSl" on(20,30-32) Th . " • ese lnvestlgations have been used to 

characterize various plasmas in order to study the interaction mechanism. 
Only for the very high irradiance situation are neutron(33-37) and 

alpha(37) emission an important diagnostic. 

8.3. Suggestions for Future Work 

8.3.1. Vacuum interaction focal-spot size 

The focal-spot dimension affects the hydrodynamic flow of the 

laser produced plasma. Plasma spread from very small areas reserrbles 

point source expansion. The resulting steep plasma density gradients 
in the under-dense region are likely to suppress instabilities(38). 

Hot electrons rapidly escape from the very localized heating zone. 

Donaldson et al(39) note apparent inconsistencies between the 

temperature and reflectivity measurements of several workers at 0.694, 

1.06 and 10.6~m laser wavelengths. They point out, however, that the 

focal spot size is an important variable that should be considered. 

Using large focal spot diameters and 35ps 1.06~m laser pulses focused 

onto plane Perspex target~J they obtained temperature and reflectivity 

scaling at irradiances between 2 x lOll and 2 x 1014W.cm-2. The 

reflectivity results were consistent with classical inverse bremsstrah­

lung absorption, and their one-dimensional code predictions of the 

coronal electron temperature. The x-ray emission results were 
interpreted as giving the temperature of the cooler overdense plasma 

(the emission from this region dominates because of its n; dependence). 

Donaldson et al conclude that their large-spot results are consistent 

with a plane isodensity surface interaction; small spot interactions 

are expected to involve curved surfaces, where both refraction losses 

and resonance absorption are significant. 
Unfortunately, the scaling laws obtained here were limited hy the 

slze of the lasers to small spot areas. It is suggested that, as 

higher power lasers are now becoming available, the scaling laws at 

the HF and CO
2 

laser wavelengths be measured as a function of spot SIze. 
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This should clarify the situation and aid direct comparison with other 
workers' results. 

8.3.2. Extension of Data 

In the interest of extending the available data on HF and DF 

laser interactions, it is advisable to extend the measurements carried 

out in this thesis and elsewhere. The diagnostic methods employed in 

section 8.2. can be utilized and the target irradiances extended into 

the non-linear regime. In order to understand more fully the conflict 

between atomic number and shell ionization energies in x-ray production, 

it would be valuable to investigate a wider range of target materials 

and surfaces. X-ray emission peaking with HF and OF radiation is 
expected to occur at irradiances an order of magnitude higher than 

employed here. Ion spectroscopic measurements, together with bond 

energies, are necessary to clarify the irregularities in the ion scaling 

reported here. For the gaseous environment, the effects of varying 

the background gas should be more fully investigated. It would also 

be instructive to measure thermal coupling as a function of target 

angle. Two processes are important for plasma ignition at a surface: 

thermionic emission from surface defects followed by inverse-bremsstrah­

lung absorption. These two stages depend upon the surface fluence and the 

radiant flux respectively. With microsecond CO2 laser radiation in air, 

the flux criterion has been found to dominate even at oblique incidence 

(40) • This situation needs clarifying for HF radiation and other 
parameters such as pulse length, ambient gas and target. 
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