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SUMMARY 

This thesis develops a computer, -algorithm that approximates 

the mean and standard deviation of the throughput time 

distributioný-; in an open network of queues with any number of 

servers, general service.; time distributions and first come first 

served; queueing,, discipline. The algorithm is based on the 

complete. decomposition approach developed for a single-server 

queueingjnetwork.;. 
k: 
Using this method, all the transition processes 

of a network are assume to be renewal and the network is 

deca-aposed.,,, into its., -constituent, queues which are analysed 

individually: the-, mean and variance of the waiting time 

distribution: and, the departure time distribution of a GI/G/n queue 

are required. ,, The., _results. are recomposed to represent the 

behaviour,. of the- network as. a : whole... 

, No exact; results are known for, the variance of the departures 

from"a GI/G/n. queue,., or., the mean,;, and variance of the waiting time,. 

distribution. In this thesis easily computable approximation 

formulae are developed-for. these -quantities. The accuracy of the 

approximations is, considerd in comparisons with exact and 

simulated. results. .v,, i.,.... ý, 

The-approximation formulae are substituted in the complete 

decomposition, algorith and, -estimates given by the algorithm for 

the throughput. times., tin a -number, of networks are compared , to 

values obtained by the simulation of the netwo The effect of the 

assumption of renewal transition processes on the accuracy of the 

algorithm is discussed. 

The algorithm is applied in two case studies: it is used to 

predict he queueing times of ships unloading white fish at 

Malla. g Harbour, and to estimate the waiting times incurred in a 

job shop manufacturing Universal Joints. 
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1. INTRODUCTION 

1.1 QUEUEING NETWORKS 

Queueing networks have proved to be useful modelsofsystems 

in which jobs or customers may have to queue for more" thanäone 

type of service. Such queueing situations occur'in a number of 

fields including the traffic-flow within time-sharing" and 

multiprogramming computer systems, communications networks and 

teletraffic. The manufacturing job shop can be considered-as a 

network of queues in which the individual jobs demand operations 

from one or more machine centres before leaving the shop. A 

machine centre can be represented by a single-server or 

multiserver' queue depending on the number'of machines at the 

centre. 

In most cases, the queueing network used to-model a system is 

a simplification of the system, which adequately reflects the 

parameters that are of importance in. predicting its performance. 

The system measures often of interest are the mean number in the 

system, the 'average delay at the individual service -centres and 

the total time a customer, or job, can expect s to spend in-the 

system. 

Due to the extent of its applications, much interest has been 

shown in the development of queueing network theory over the past 

twenty five years. As yet, only networks that satisfy: the 

condition of local balance have been susceptible to exact 

analysis; consequently much of the more recent"'effort, has been 

directed towards obtaining good approximations for the parameters 

of more complex systems. 
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1.2 THEýNETWORK MODEL 

A-queueing- network is a. j collection., of -. service-r. centres 

arranged in, 
-such af. way, =that = customers proceedhfrom-one .. queue to 

another in corder :, 'tot , fulfil, . their.. service requirements. -. -Each 

centre-, has, an-associated-queue-,, in which ., jobs-may wait' prior to 

receivingiservice. The centres are characterisedsby, thecnumber, of 

servers,. theiedistribution ; of wservice }itimes; --and; -the 3, queue 

discipline; which: _determines r the, order in -which=rjobs'arriving at 

the-centre; ýreceive, service. -" Customers may be of different. classes 

with varying, prior. ity levels -and service requirements. 

y- "r.,, A, network is-termed 'open'; if rjobs" are permitted to enter or 

leave-the ±'system,, *and,: ! closed'hhif, ": the same jobstremain* in the 

network-at- all times. -Each class of job may follow a different 

route'throught the`network; -this.; canv be'-specified by-- assigning- a 

pr. obability-. toý-the -transition . of 'ar. job x'from -one centre' to -another. 

In- ý most- network 'studies; it ° ,: is -, -convenient to, assume thatz. --the 

transitionsýbetween. service'. centres occur instantaneously., 

A-queueing`ý networkkis , ysaidý'to :: be : in: the-isteady-state; . or 

equilibrium, if . its'state°. at-any particular °ýinstantý'in-"", time4. is 

independent of the time and state of the network when activities 

commenced. 

In , using , a= network, ""to, analyse a system of°. queues, closed form 

expressions . may-, ý'be . obtained i, for the equilibrium probability ', pof 

findingt: the network in- a°: given.. state, and- the-lutilisations- of the 

centrestand the -average waiting and' throughputltimes der, ivedýfrom 

these. 



3 

1.3 AREVIEW OF WORK ON'QUEUEING'NETWORKS" 

The simplest form, of a queueing''networkris the'tandem-queue; 

here two service centres are in-series-and ', customers-leaving, `the 

first queue immediately ýenter"' the, next. "Hence, the--inter-;. 

departure times of the first queue" are the winter-arrival: +times'of 

the second. Burke [10] studied, the output', process of a'queüe-with 

exponential---inter-arrival and service time °distributions; and 

proved that- for any number of servers, the departures formed a 

Poisson process with the same rate as'the arrival, process. Reich 

[60] used the concept`of reversible Markov chains'to prove Burke's 

result, and he showed that the waiting times at the. service 

centres of a tandem queue with firstucome. firsttserved queue 

disciplines are independent. 

The first indication of the product form-of"7-the`joint queue 

length distribution, derived later-for more general networks; " 

came from R. R. P. Jackson's result for exponentialiqueues-'in series 

[29]. By proving it to be the unique solution of'theý, steady-state 

equations, he showed that the joint queue length distribution was 

the product of the distributions obtained-for:: e: the corresponding 

M/M/n queues. 

J. R. Jackson 1301 examined queueing)-networks with, more 

flexible customer routings. He considered'a network. in which each 

centre consisted of a number of servers rwith"exponentially 

distributed service times, and any queueing discipline that was 

independent of a customers processing - time' and^°lroute` through ithe 

network. External arrivals to `-, rthe--.: system^°- formed-.: Poisson 

processes, and a customer's route was determined by. =a! %transition 

probability matrix. -Jackson found that,, as=with queues in series, 
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each service centre actedlas if. %it were an isolated M/M/n queue. - 

Il 'I " In a later paper- [31] 'he allowed the customer--arrival 

process` 'to depend --on the'°total' number-in'-the :: system- (thus 

including thelpossibility of closed networks) and the service"rate 

at any centre-; to°be a"function of thenumber'of'-, servers'at:: that 

centre. "The i joint queue' length distribution "was 'again proved' to ý, be 

ofi#the product '°form;, and it : showed°the queue lengths at the 

centres'to be, iindependent. when +the-, -r. ates= ofs-the' arrival --, processes 

remained1constant.. Unaware of Jackson's :, earlier work; -. Gordon, -and 

Newell x[26] "derived` a more-ispecific form of , this- result '=for, the 

special caes"of closed networks. 

Kelly [33] extended the classical Markovian queueingrnetwork 

models-of Jackson, '-and'Gordon, and'Newell; "to inclUde`networks"of 

queues, with-customers`, oftdifferent types. Theýtype of a: customer 

was-allowed for influence°his route through°. the 'system,. and: under 

certainýconditions,. his service-time°. ldistribution-. at'the-centres. 

Kelly considered`. the", -. service- centres-"to: be single, - server"but;: °by 

varying the-service rate -according-to` the number-'in', the- queue, , °a 

multiserver queue. could bemodelled: ' Under these'., conditions, a 

product, aform'. of"'theryjoint'probability distribution was shown to be 

the unique- r'solution ' of, =the ý, - local . balance-: ' equations. In 

equilibrium, d. the locale*balance=equations of-a network equate the 

rate"of'flow--into''- each-possible state'"of, -, the network'-to: -the rate 

of-- flow out ofýthat'state: 

More general. ' resdlts, werer obtained by rBaskett, Chandy, Muntz 

and -Palacios,, a: 1[4],,, and' were, ',.,,, further 'considered', by- Reiser-ý and 

Kobayashi' [621;,, -, a-variety "of customer's types''and different kind "of 

service ,ý eentres'. *were` r-, r-"included; in-, ' order , to -,, model 'central 
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processors,,. "datal , }channels;,!: terminals- - and 'routing delays "in 

computer systems. Various queue "disciplines-: were allowed and 

customers, *cöuld'. change'r'type'"on transition 'from-, one centre to 

another:: =: 'If", a"centre'hadýFCFS""queiae'discipline, °! "the only'service 

time `,, distribution'- allowed rwa'sr-r the '°; s negative 'exponential 

distribution, i'at ''centres 'using? any'° 'of the other allowed 

disciplines' any service time distribution with`a'-rational, Laplace 

transform 'couldf! be'' : considered, and represented` as" ^series ý of 

exponential'-. stages'.. By making use-of the"local`balance equations 

a product form'solution` was derived for 'the? 'joint ', queue'{length 

distribution. 

Kelly [34j proved äysimilarý'result`torbe`a"consequence of"his 

earlier-, work. -'He applied certain"constraints toitheLforms'of`'the 

allowable , queue ° °disciplinesý (thus"excluding'", the "FCFS `'case).; änd 

showed that for-; all networks; Äwithservice"time distributions that 

could-, be"'expressed-'as ä--finite cömbin'ation, of-gamma"distributions; 

there was product form solution for the queue length distribution. 

He conjectured that any general distribution could be approximated 

to: ' a" required", degree ' of `accuracy'- ° by a mixture of gamma 

distributions;, 'Barbour-[3]'-was-later, to`provelthis conjeeture. '''° 

,: -'-Using a method-of--partial decomposition; Chandy; ' Herzog and 

Woo-1[ 11 ] -showed, the state'{probabilities of a° queueing- 'network to 

be of. °the product. 7form,; -, with-parameters that' couldr be calculated 

exactly for:: -, any-network-satisfying local ýbalance, " : conditions'ýr rA 

direct' analogy with. Nortons -result. »,, "in electrical: and ~; circuit 

theory'led5them}to*, conclude that, with: regard to queue lengths and 

waiting time distributions, 'any'subsystem of'-a'"queueing'network, 

with. a-. single . node asý7input-and . ra single' nodes as output; =could be 
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considered to ber. in, anzequivalent -network in which all queues not 

in the. system were replaced by-one : composite queue. 

i ,--. ± Although", productform . solutions: can be easily :, expressed for 

many queueing networks;, the actual computation of.,: theýparameters 

can- be costly, .. duet kto .: the-°rnumber of-operations, required. =to 

evaluate the normalising-constants. -BBruell and': -Balbo, [8] "have 

developed,, algorithms .: =to analyse " all, ' multiple job y; - class;, networks 

with--the service r time'distributions and-,, queue! -disciplines-. -. for 

which=Baskett-et. al. - were ablento. prove-a-product form, solution. 

More, ( recent -. exact. - analysis-, of-, Markovian-rj. networks,, has 

concentrated on the flows within a: - . network. , -, Kelly l [34] and 

Beutler, ' andAelamed , [5] 'have-: = used ` the reversibility - of' Markov 

processesýto, indicate some instances when-the transition; processes 

are-? Poisson. Walrand; - andý! Varaiya 1731'. --extended-these -, results 

using-,, - the,, theory t,. of, martingales",, - toi» produce ,, inecessary -and 

sufficient-conditions for , the flows in-a}network , 
to-form. Ipoisson 

processes. : 

ApproximateýResults for Queueing Networks 

At present, only networks that satisfy local balance 

conditions°. -., can; );: 'be analysed by computationally efficient 

algorithms,: , "and. Muntz; «°° [537 - believes that=-- the -methods used' to 

develop lproduct, form solutions: have4, reached, theirylimits: t- To 

satisfy-, local balance conditions, sevice centres with,, general 

service time =; distributions; ar. e. limited-,: inýi. the type of queue 

disciplines, -that- are: allowed; - processor-sharing and,, no-queueing 

disciplines,; which are., of-use; 2in computer systems-modelling, can 

be-considered., =. If, FCFS; discipline is to=be, ýconsidered-the service 
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times'-must°be'exponentiallyidistributed. 

°ýFCFS -and ', shortest processing time (SPT) are queueing 

disciplinesiý, that' are gis' often employed ý in -the, -,. scheduling ý. of 

manufacturing job! shops, - no, ýexact- results-; are ,:, known - for: networks 

of-centres with general! service time distributions-and'these, "queue 

disciplines..: Simulation°can be used, to"estimate, the waiting times 

in-networks- that cannot. be 'analysed exactly. - However, -it-. ' is: "an 

expensive-tool-,, and attention has ; been : turned- to thefdevelopment of 

approximate-methods. oftsolutions-that demand less computer. time. ' 

Lr,, =To-obtain'exact solutions.; foriarqueueing-network model it may 

be, necessary to make questionable, assumptions about, "'the service 

time-distributions- or.. queue-disciplines, atithe.,,, service centres: 

Chandyiand-Sauer:: 1131-have-shown-. that--in many cases systems Ican° be 

modelled, -'-ý by. rqueueingrv- networks; relying, ' on ` -more, -' -: credible 

assumptions; that.. °. canxbe'solvedr. approximately. and provide good 

performance, estimates ,. " at , low, , -cost. -Three ° ma jor-: approaches* . have 

been: used to obtain approximate4,, results--for networks of-queues: 

the -methods-, of, r. diffusion, ý, partial . 
decomposition, ' and complete 

decomposition. i° -()t r, _, a,, rý º, }, E _;;., ', - f- r 

The Diffusion Approximation. 

c". The diffusion approximation was proposed by Newell [54] in 

his consideration of rush-hour queues, and it is most useful in 

situations of heavy: °`traffic: The approximation relies on the 

Central Limit theorem;; 'its basic'arguement being that the number 

of., -customers N(t), ° in' ,-a queue ; at : timet: 'will tend. °to* become 

normally. -distributed as : t. "--is increased: -, ' cThe process'N(t) ý° is 

approximated by "aý continuous-path', diffusion^'process -. with, -. a 
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distribution described ; by-a=,, diffusion equation with-appropriate 

boundary, conditions. 

Kobayashiý[46]°considered aynetwork of singleý. server'queues 

with-general'service'"time distributions and'FCFS"queue"disciplines 

and, -by ,, imposing, -treflecting' -,,, barriers1°on -{"a, multidimensional 

diffusion processs'; arrived : at an approximate 'joint : queue length 

distribution--of"-the: «product-{form. - -The queueing': theory"result for 

the-probability. of-an^ : empty queue was -used. to-modify-° the' form . of 

the' distribution-. so-Ahat it£>))provided' better-approximations in 

light-traffic^conditions. '--Reiser and Kobayashi,, [61],; assessed"the 

accuracy- of -t. the diffusion approximation, An ~a , comparison '"ofý the 

approximations with the results of the : 4tsimulations 'of- , various 

queueing networks. - The! -approximation was ' most -accurate vwhen the 

coefficients of variation of the service time distributions were 

close-to one andutilisations-werehigh. 

With'-a- different-, treatment . of-, the. boundary:, conditions, 

Gelenbe, [24]twas`rableý: -to obtain, -, fa., solution to-the-'diffusion 

equation thatvtooktinto account the distribution of the-: idleýýtime 

of a queue and did: -not} necessitate- an-modification of the--results 

for. -light traffic behaviour. t, -The- model--. yielded: some, queueing 

theory: "results exactly andiperformed well , when- utilisations were 

low. - 

-°TheýPartialrDecomposition"Approach 

4ý Partial-- decomposition, involves' the, exact,, analysis. . of'la 

subsystemvof"°a. queueing, network while regarding the rest of he 

network as .°ä', composite-queue., --The-equivalence of, )the : subsystem 

and composite- queue -to7 the original network relies on a direct 



9 

analogy with Norton's°theorem for., electrical', ý'cire6its. ""} Chandy, 

Herzog-'and, ' Woo, [11]--made userof '. this`techniquerto wobtain exact 

product- -=form results'. for°the joint'queue'clength°distributions'rfor 

networks'that'wsastified local. "balance conditions. "ý"', An iterative 

method based-on Norton's: reduction, 'was later' developed by Chandy', 

Herzog -and+, -, Woo [12] to - sapproximate performance values of closed 

queueing-networks -. of -singled server-queuesV V-with general) service 

times, distributions'and, FCFSJqueue--'disciplines: - Thise=method was 

applied? to %central-! server modelstby*;,. Sauer'and', Chandy [66]" , and 

Sevcik, Levy, Tripathi', and' Zahorjan -[67]: ' -'"z The techniquesý'of 'Sevcik 

et-al. -proved to - be , more --accurate, but. more= complex and costly, 

thani.. those , of-Sauere, and'-Chandy, but-: simper"and"' more-economical 

than, ; -though, not* as'accurate; - as ; those of", Chandy, Herzogý andtWoo: { 

The, Complete Decomposition, Approach 

._-: In the complete=decomposition approach, -4a, queueing network is 

decomposed into pits constituent: service' ° centres . andreach-°güeüer-is 

analysed, -individually: '. #=>iIn-order to do this it is necessary to 

determine the interactions between the arrival and departures 

processes within the network, obtain the mean and variance of the 

waiting times.: at ^, ithe. . queues ,, given x`- , their-, --arrival process +and 

recompose these-. results^to represent 'therbehaviour-of the network 

as-a`whole. Reiser? and-. Kobayashif'>>[61]-"combined'this. method withýa 

diffusion'-approximation for-the behaviour-of-each queue}to-analyse 

open-and- closed networks{ of zk: single -}server' queues: having -general 

service, -distributions and FCFS-queue disciplines.: 

'Shum 170]-"suggested^that: the arrival process-to each service 

centre4; inr a !- closed-network -be" approximated by a Poisson process; 
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hence each centre would act as an M/G/1-. queue , for, -which the 

moments of the waiting time distribution., are -known. This 

approximation is most useful for complex networks : which'involve 

many compositions and decompositions of traffic=streams-, as it can 

be shown that the combination of a large number of -renewal 

processes tends to produce a Poisson process. ,-, 

Kuhn [43] used the complete decomposition approach to analyse 

open networks of single server FCFS queues; he assumed' all the 

transition processes to be renewal, and used an approximation-of 

Kramer and Lagenbach-Belz [42] to evaluate the average- waiting 

times at the GI/G/1 queues and hence estimate the overall 

throughput time of the network. Shanthikumar [68] simplified the 

decomposition method, obtained a more accurate approximation for 

the mean wait in a GI/G/1 queue, and extended Kuhn's method-so 

that- queueing networks with shortest processing time,, queue 

disciplines could be modelled. A comparison with- simulation 

results showed the approximation algorithm to perform well for a 

variety of queueing networks. 

1.4 AIMS OF THE THESIS 

Good approximations now exist for networks of single server 

queues with general service time distributions and the queue 

disciplines most commonly used for the scheduling of operations. 

As yet, there are no results for a multiserver network with 

general service time distributions and FCFS queueing discipline. 

Such networks have many practical applications including the 

modelling of manufacturing job shops, and the monitoring of calls 

in a telephone switchboard system. 
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a.. The complete decomposition approach employed by Shanthikumar 

[68] to obtainr. rapproximations.,, for a,, network of single server 

queues; can,. be, applied to networks of queues with more than one 

server provided, various, chahacteristics. _of the. multiserver,., queues 

are known. Veryrfew exact results have been derived for GI/G/n 

queues, those that 
.,., 

are . 
known tend. to take,. the.., form 

, of: , upper. and 

lower bounds. - 

The aim of, this thesis 
, 

is to,, produce. a, computer algorithm, for 

the approximate, analysis of., an,,. sopen. network of, multiserver queues 

with;; general service time distributions and FCFS discipline. 

Approximations aredeveloped, for the, coefficient of -. variation4of 

the departure.,, process,, and the-mean.,, and, varianceof the_, waiting 

time distribution in, a, GI/G/n queue.. The approximations are 

incorporated 
, 
into the,, complete decomposition..,, 

halgorithm and 

estimates of the mean and variance of the throughput times in 

various networksare., compared. with, the. results o-of, simulations of 

the networks. 
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2 THE-COMPLETE DECOMPOSITION ALGORITHM>3A 

2.1- INTRODUCTION 

,. The method of, complete decomposition used by-i-Shanthikumar 

[68]: for: the approximate analysis-of'--networks=of, single server 

queues, with- general service time-distributionsr and-first come 

first served (FCFS) queueing disciplines, could be applied to 

networks of queues with more than one server, provided the first 

two moments of the departure and waiting time distributions of the 

individual queues,. were known. 

The complete decomposition, -approach consists of three steps: 

1. ý_ -The .. analysis . of. thetinteractions of, -the arrival- and 

.< departure ; streams within "the network : r: -, ý: - ý:?, =°ýea - 

- 2. -- The decomposition- of>#=, the network- and analysis of the 

individual, queues,,; 

ßr3. ' ., The recomposition:; of the-results "to:, obtain, estimates of 

rý, the mean and standard deviation of.,. the}, throughput; time 

distribution. 

Steps " land 3 were the '. same for networks of single and 

multiserver-, queues, once thewmean ; and'standard deviation 1ofothe 

departure, 4timeýand-waiting'time distributions were known. Step 2 

involved the-evaluation of-these, quantities. As-no, exact-, results 

have-yet -been-derived, - lt., was -necessary-to < develop-approximate 

expressions for the variance of the departure process and the mean 

and variance of-"the. waiting time, distribution of a GI/G/n queue. 

In, "the --complete'decompositionialgorithm only-the,, -first, -two 

moments, of, all'' processes involved-were' considered. . 
It was 

therefore implicitly-'assumed°that*"the. r, shapes of.. the arrival and 
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serviceitime distributions, described-by, -, their higher moments had 

little influence'on queueing times. -1, This 
�assumption 

has been 

shown=*to'be true for the M/G/1 queue; the exact value of the mean 

waiting time is given by the Pollaczek-Khintchine equation and is 
' 

dependent only on the mean and variance of the service time 

distribution 

2.2 -,. THE- QUEUEINGI NETWORK 

ý': The general model considered-was'an M-nodet: network; "each. node 

corresponding to'a service-centrefi with ni servers. `-The service 

time distribution=at- "each'centre"ýwas-represented by -'"itstmean"si, 

and''- `coefficient of variation C-°; all"f" queue'-disciplines 'r were 

assumed to-be FCFS. -> External -arrivals. to'r centre ' i" rwere 

characterised' by the '"mean arrival rate4j, " and 'coefficient 'of 

variation-C 
,. 

Ont"'completion'öf service at centre, at""`centre'A, "ä 

customer, proceeded'to' centre ! j`, with probability . piý: `g&It``'was 

convenient-, to=. -'assume' pii_O""for i=1,2,...., M: ̀  cases'of"{'"feedback 

could°be" included by, increasing the service time requirement of 

the customer in question ([71]). 

A'1 customer' left`the network after completion of service at 
M 

centre i with'probability 1- pij, 
j=1 

represented the totalarrival''rate''tofcentre i; -°, including 

external"+and linternal arrivals, and was f defined ` ([30]) s by the set 

of equations: 

)9'j+ 
J, 

±Ajp 
ji i_1,2...... M. 

In an-open queueing network, , >, i is independent''of, ther"service'. time 

distribution andýequal-. to -therproduct of , 
E[Ni], -the expected 

M 
number of-visits made by a customer tokcentre i, and ýý, the 

J'Al 
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total rate, of external`arrivals to the network, that is 
b 

°>j=E[Ni];. 
bdýj=AE[Ni]r. 

a>1: 1 ; 2;: .. M"' 
Jý 

where 
'I. P4 

;1 �I 

2.3 THE RENEWAL"ASSUMPTION 

The deve1opmentot the complete decomposition was based on 

the assumption that, the external arrivals to the network and all 

customer transition processes within the network were renewal, and 
ý a.. 

-. "0!., N'_1111 I I- fl i 

hence each service centre could be represented by a. GI/G/n queue. 

This was only true in a limited number of cases, and a necessary 

condition was that all departure processes from the service 

centres were themselves renewal processes. In most instances 

successive departures from a GI/G/n queue are correlated and the 

validity of the renewal assumption is questionable. The extent of 

the correlation present in the transition processes and its effect 

on the accuracy of the complete decomposition approximation 'are 

-discussed in Chapter 4. 

2.4 THE COMPLETE DECOMPOSITION APPROACH"'" 

Step: 1 

Seveik et al. [67] suggested expressions for the coefficients 

of variation of the composition and decomposition of renewal 

processes: 

Decomposition 

If Cj is the coefficient of variation of an arrival stream J , r. y ;ýsr 

created by choosing jobs with probability qj>O from an original 

stream with coefficient of variation C, then 
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Cj2_gjC2+(1=qji. 

The-result, is"exaet when'. the original "stream"is Ya , renewal 

process and-a'-comparison with °` simulationýresultsý-([u3))`has shown 

itnto tbe' a `good' approximation'ifor'non-renewal4+processes: M 

'Composition, --. 

The' coefficient! of, variation C of the compositon of M renewal 

processes can be approximated by 

ý'r M 
C sý1_ 

where Ci is the coefficient of variation of the jtn component 

stream, is the arrival rate of stream j, and X 

This result is only exact when all the component streams are 

Poisson processes. 

Combining the results for the decomposition and composition 

of renewal processes; let Ce the coefficient of variation of dj 
"ý aq nip j' 

the departures from centre j in an M-node network then, if Ca-is 

ý uni .'ý,. ". ,s , ti; ., 
the coefficient of variation of the arrivals to centre i, the 

transitions from centre i to centre j will be of rate jpi, and 

C2 ýP-j L( p ji Cd +(1-pji))+ Ce i=1,2,...., M, (1) 

the termCecorresponding the external arrivals to centre i. 

ý. 
ý`i 

Step 2. 

Under the renewal assumption, each service centre of the 

network was cörisidered', to . form, a ,- GI/G/n-, queue l and 'the' variance of 

the inter-arrival distribution was evaluated using the expression 

obtained in Step, 1.: , For, `the 
, setrof equations 3: (1) 'rýto be solved, 

an approximation formula ifor'the'coefficient"of-. 'variation of the 

(2 

z r 

n 

1ý 

V 
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departures was required, and in order to implement Step 3, 

expressions were-required' forithe"mean-and''standard deviation of 

the-rowaiting time, cin a -GI/G/n queue. Approximations that', were 

dependent. on'only the first two moments of the arrival and service 

time distributions were developed for these quantities; these are 

discussed 'in'TChapters u; 6= änd"?: 

A-k 
Step 

ý{w 
-' , The recomposition-, I, method employed by Shanthikumar [68] was 

applicable . to networks-of queues' with more than, öne } -, server : 'the 

location, ' of va' customer--! after leach - transition was"represented 'by a 

finite`. state'Markov. -, ehainý'with"transition" and' absorption-states, 

and 'an '. expression' was , derived Nforý, the"distribution .! of Nj ý'-"the 

number- ofc. visits', made°to centre: - j-by, an arbitrary customer before 

leaving the network, and Nij, the number of visits made to a 

centre. 'j by ,. a'customer whose-first service was at centre i. It 

was assumed'that, the times spent at"'a service-centreron-each visit 

were. -independently>'and, -identically. rdistributed, '. with, - mean E[Ti] 

and' itýwas : shown that, df T- is- : the total.. stime spent by, a customer 

in the network, then 

fý. -. f 4 E[T]=E[Ni]E[Ti]r' t 

where' 

. -ý E[Ni"]_ 

and 

Var[T]= ` E[Ni]Var[Ti]+ýCov[Ni, Ný]E[Ti]E[Tý] 

where 

Cov[Ni, Nj]=E[Nj]E[Nji]+E[Ni]E[Nij]-E[Ni]E[Nj] isj 

Cov[Ni, Ni]_Var[Nj]=E[Ni](2E[Nii]-E[Ni]-1) 
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and .:.. 

(E[Nirj])=(I-p) !",, 
K: i, j=1,2,...., M; 

I being the identity,, matrix, 4and P the matrix of transition 

probabilities. 

*f- , 

2.5 THE-DISTRIBUTION OF THE"TIME, IN THESYSTEM ; "., 

Shanthikumar, [68] conjectured, that the distribution of the 

throughput time-T could, be approximated. by, -, a truncated normal 

distribution-'with mean and variance 'given by the complete 

decomposition algorithm. He, offered the justification that T 

could be considered= as, the sum of a large number of random 

variables and consequently the Central Limit Theorem could be 

applied. This,, kapproximation to the throughput time distribution 

is therefore most reasonable for large networks. 

r ry .. 

2.6 THE-APPROXIMATION ALGORITHM 
. 

The steps used to develop the computer algorithm for the 

approximate . -analysis;, of-, -; a,,.; multiserver, - queueing . network are 

outlined; below. , -, The --approximation program-is listed An . Appendix 

2. The program was used to evaluate queueing times in the case 

studies described in Chapters 9 and 10. The input data required 

was:. - .- 'M;,.,, F_-the., number of service centres, 

,: ni -the`number, of servemat centre i, 

i -the rate of external arrivals to centre i, 

Ce, -the coefficient of variation of the external arrivals to 

-., centre i, 

sir. -the, mean service time at-centre i, 11 11 

C 
sz 7-the-coefficent of variation of the service times at 
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centre i, 

(Pij) -the matrix of transition probabilities, 

Step 1. 

Evaluation-, of '- Chi, the-coefficient, ^of -variation, ° of the 

arrivals to centre i,, for each i, by: 
I 

a) Evaluation of 
'i, the arrival rate to centre i 

öi+ )jp ji i=1,2...... M 
jVj 

Defining the 1xM matrices: 

-A=(bi) and 'C=(öi) 

then 

A=C+A*P 

" therefore 

A_C*(I-P)-1' 

where I is the identity matrix. 

b) Evaluation of an approximate expression for Cthe 

coefficient of variation of the departures from cent 

each J. 

coefficient of variation of the departures from centre j, for 

c) Substitution of the expression for Cd-in the set of equations 

(1) to obtain C for each i. 
W 

Step 2 

Evaluation of the approximations for E[Wi], the mean waiting 

time at centre i, and Var[Wi], the variance of the waiting time at 

centre i, for each i. 
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Step 3 

Approximation of E[T], the mean throughput time, and Var[T], 

the varainceof, the throughput - time- distribution, . -by:. --- 

a) Evaluation-of E[Ti], °the mean throughput time, °.. and'-Var[T1], 

°" , r. the-, variance of,, the-throughput time at centre i, -using: 

Var[Tj]=Var[Wj]+Cs 32 i=1,2...... M. 

ý, .da_. i, ýý" 

b)tf. Evaluation of E[Ni], the expected numbertof. visits: made to 

rF', r centre i by an : arbitrary customer: 

E[Ni]=_i`f 

Evaluation of E[Nij], the expected number of visits made to 
', a , 

`t, ` 
,, ýs ý. k"' , tat � , ýi '"t' ý"r ° 

.. 
iýfi ; n°ý ýw. ,. �k 

centre j by a customer whose first service was at centre i: 

W=(E[N i3])=(I-P)-tý 
,.. 

c) Evaluation of Cov[Ni, N1], the covariance of Nifrom equations 

(2), for each i and J. 

t I- 

d) Evaluation of E[T] and Var[T] from the equations: 

E[T]= E[N ]E[Ti] 

Var[T]-L E[Ni]Var(Tj]+ Cov[Nj, N]E[Ti]E[T]. 
Awl 
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3, -VALIDATION--OF THE,. SIMULATION.. PROGRAMS 

3.1 INTRODUCTION: 

.. Verytfew exactiresults'arerknown for ' the characteristics of a 

GI/G/n queue; ror. "; -for'networksýof such-, queues. ° . Consequently,, the 

accuracy of =_ the approximations :- to the mean ¢" and -variance = '. of -, the 

thröughput times; °t. given by,, the-complete - decomposition algorithm, 

were; rassessed by 'ar comparison with simulation results;,. -and 

approximationýformulae`-¢for the' coefficient'of- variation of. >4the 

departure's process -: land the -'variance of the waiting time 

distribution of a GI/G/n queue were obtained by applying linear 

regression techniqües't6 the data obtained from simulations of the 

queue. 

rye, - A`simulation :, of aGI/G/n queue, with first' come, first. served 

(FCFS)ý, queüeing-diseipline? was' written in ýFORTRAN77 . ands°run=on the 

Harris, °; "S135. " This ''simulatioü ' was.. ' incorporated , into, `-at larger 

program which modelled-a network of`GI/G/n queues; `withqthe routes 

of', jobsAn' the' "network determined by° a^= matrix of, ' transition 

probabilities. 

The='generalý'arrival and, servied, time4 distributions 'of the 

queues') were "represented "r-; byw°igamma , t' distributions- with, the 

appropriatesmeans-and, standard 'deviations., ": ' In the development°of 

the : complete decomposition algorithm,, no'°, assumptions'Mwere" made 

about-ithe4shape of the'arrivaland-service time. distributions; ithe 

algorithm was dependent, only on-the first two, -moments of 'the 

distributions`, and it'was', 'conjectured that-the higher moments had 

little influence'on `queueing-times: However, inaryapplications'it 

is' common °=`'to ""have -4unimodalr, frequency , distributions, - with 

coefficients ` of ', 'variation'' between -0 and, 1,, : °g that can -4 be) readily 

I 
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approximated by gamma typeýfrequeney curves. -- 

` ',, rh The''regenerative' imethod" ý of ° -`- simulations and a; =' sequential 

stopping^ruleawereýused2to`determdine the ` number' of'departures=in' 

single run pof the, simulations; in the''interests'"of`economy' an 

upper i limit' was 'imposed-, `on' the`,. number " "of departures '4alloi4ed. 

Confidence intervals- were'estimated for'the. values of the mean 

waiting times in the systems. Flow diagrams of the queueing 

systems'are"'given in-Figbres 3.1 and 3.2. The simulation programs 

are listed in, 'Appendices= 1.1 and 1.2. ' ' 

3.2 -' THE- PROCESS : GENERATORS 

,,,, e%, -, The gammaz°'idistributed-' inter-arriva'and``service ý t, 'times"were 

generated using-an' algorithm- developed Iby-nAtkinsonlý[2]'. ' The 

algorithm is',, based-on, a composition/rejection method in;; whichgthe 

range of: the . random , variables,, isý'split4 into -two'parts at 'the: -mode 

of , the distribution. It is most efficientrfor gamma distribütiöns 

withrsquared coefficients of variation "between-O. 25'and 1. " 

-'Uniformly distributed°, ýrandom variables'were required "bi'the 

algorithm`-and were also used"Ito determineý-. the`roüte` of`a `job 

through the-, network, f,, from'the'transition probability- matrix., The 

NAG'. library subroutine , G05CAF° was used' to h generate'. 'these 

variables. - The:. subroutine used* a multiplicative -congruential 

method and had 'a '° cycle Nlength ° of the ° order 'of,, 257. To' ° avoid 

impairing the-statistical'-properties , of* a sequence of'. 'random 

variables;,, ' it was'1. recommended that the number in the sequence 

should not exceed the square root of the cycle length. The 

subroutine G05CCF was called to provide an initial value for each 

sequence, and this yielded different subsequent sequences of 
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random numbers in different runs of the calling program. The 

number of uniform random variables required for each of the 

simulation runs was recorded. The maximum value observed, of 

3,302,393, was leäs'4than 222 and it therefore seemed reasonable to 
. 11 .1 

assume that the lengths of all the sequences 'generated were less 

than the square route of their cycle lengths. 

3.3 REGENERATIVE SIMULATION . 

Two major problems exist in estimating the parameters of the 

steady state behaviour of a queueing system by means of 

simulation; these being the statistical dependence between 

successive observations'and"'the inability öf"'the simulator to 

begin the system'in he steädytäte. Kräne and Iglehart [18] 

suggested the regenerative method"of simulation to avoid such 

difficulties. This necessitated finding a random grouping of 

observations which provided independently and identically 

distributed blocks from the'start' of the simulation. The key 

requirement in obtaining the blocks was that the system simulated 

returned to a single" state infinitely often, and that the mean 

time between returns was finite. In a multiserver queueing 

network theýbusy* period structure 'provided such a sequence of 

blocks. The simulation was start? 
with 

the system in the empty 

state, and a regenerative cycle'was completed on each return to 

the empty state; all observations were averaged within the 

regenerative cycles. 

t 
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Figure 3.1 Flow Diagram for the Simulation of a FCFS Multiserver 
Queue 

START 

Read input data 
Initialise the system parameters 

Calculate the parameters for the 
sequential stopping rule 

houl 
the simulation 

inish? 

"NA 

Find the next server to be free 
Sample the next arrival and service 
times 
Evaluate the departure time of the 
current arrival 
Update the system parameters 

sthe 
next event an 

rrival? 
N 

Update the times, of _the . next departures 
Update the system parameters - 

Is 

, the system 
empty? ,., 

s the 
no. of departures 

100,000 

LCalculate 
the system statistics 

Print out the results 

FINISH 



f 

24 

Figure 3.2 Flow Diagram for the Simulation of a Network of FCFS 
Multiserver Queues 
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3.4 THE-: SEQUENTIAL STOPPING RULE 
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When simulating a system it is desirable to obtain both point 

and confidence intervals for the parameters of interest. The 

width of the, confidenceintervalsrshould be sufficiently small for 

useful conclusions to be drawn from the simulation results. 

Lavenberg and Sauer [44] developed a sequential stopping rule to 

control the width of the estimated confidence intervals when using 

the regenerative method of simulation. The rule allows a 

simulation to terminate when simulated parameter has achieved a 

confidence interval of a specified relative width (the ratio of 

the width of, theäintervalito"its mid-point) with approximately the 

percentage confidence'required. 

The sequential stopping rule determines a minimum value for 

the number N(oC') of regenerative cycles necessary to approximate 

a 100xok%5confidence intervalof relative width ý. Considering the 

confidence : -, interval for-the mean, waiting z 
time=; in - ga , 'queueing 

network,. -. define: 

Xi-- =the duration s of -. the : ith, regenerative, cycle,, 

Yi =the sum of the waiting times occurring in the ith 

-regenerative, cycle, , 

f X(n)=^ýý Xý 
n 

Y(n)=_ Yi_ 

r (n) =Y (n) 
X(n) 

If r is the mean waiting time, Lavenberg and Saur have shown 

that 

l im r(n)=r 
n ->. oo Un1vetsitY 

Library 
Hull 



26 

Let 

SZ (n [Xi-X(ri) 12 
x `='n-1 

Z(n)= [Y; -Y(n)]2 yS 
"n 

SXy(n) ^ý[Xi-X(n)](Yi-Y(n)]; 

and 

S2(n)=S Z(n)-2r(n)Sxy(n)+r2(n)SX (n). 
'YM' fyfta 

Then, if 

N(d, ö)=min {n: n>2; S(n)>O; 2cs(n, o(X6), 
r(n) 

where ,.. 

nX(n) 

and \---ý 

`(fi(t)= 1 exp -u2 du, 

Lavenberg and Sauer proved-that ý "" 

I(o(, 6): (r(N(«, ö))- (N(o(, ö), cc r(N(c(, %))+_}(N(0(, ö), oQ) , "r*, . 

is-approximately z an 100x co confidence interval for .ý the mean 

waiting time and the relative width of the interval, is less than 

X 
Lavenberg. - and '- Sauer,,, experimented. with'. -. regenerative 

simulations. of' various 

level-.;, of, confidence°'i 

sufficiently. small . -to 

cases:. 

, queueing systems and-found-that for the 90% 

considered; a' relativer Mwidth ofd" 

, 
0.1' was 

°yield, valid`confidencery'intervals in most 
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. 
ý. ' l 

.. _f.: 
ý 

.. ... 3.5 _.. THE- ACCURACY OF THE -. SIMULATION. 

Thexsimulations were run using the sequential stopping rule 

with o 0.95, 
, -, and , 

''0.1; being considered. as a. fraction of the,., 

mean waiting time in the systems. The number of departures per 

cycle, and_the. number-of cycles required by the rule varied, with 

some very large values arising, for networks with high utilisations,,, 

and ''numbers of servers. In order to control the amount of 

computer. time, needed, an upper limit of 100,000 was imposed on the 

number of, departures allowed ., in a single run of the simulations. 

The estimates of various system parameters provided by the 

simulations,, 'Iwere compared with exact 
values" 'calculate by 

Sakasegawa; [65]., for Ej/E2/n, queues. Exact results,. evaluated by 

Shanthikumar [68] for networks of FCFS single-server queues, with-- 

two and four. service centres,. were used to: -test the accuracy of 

the network simulation. Results -werergiven for.. flow shops; fin, 

which,. 
yall 

jobs follow the;, same route through the network and visit, -,. 

each service centre once, and symmetric shops; in which, on 

completion of a, service, *the probabilities of a job visiting any 

of , 
the other service . centres . or . 

leaving the network. are equal. ,. A.. - '1 7. 

ra 

Tables 3.3-3.6 show that in all cases, the exact values of 

the mean waiting' times in the systems ' fiere 'contained in the 95%~': 

confidence intervals estimated. for the 
. simulated, values, and the, 

estimates of the other parameters were close to their exact 

values. 
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Table 3.3 Simulation and Exact Results for E. /Jýk/1 `Queues _CJ 
--- -- Eý/E2/1 E5/E2/1 

Simulation Exact Simulation "ý-Exact 

Utilisation 0.6009 0.6000 0.5999 0.6000 

Squared coefficient of 0.5034 0.5000 
variation of arrivals 

Average wait (in units 0.6484±0.0323 0.6306 
of mean service time) 

Mean number in the 0.3693 0.3784 
system 

0.2006 0.2000 

0.3446±0.0172 0.3488 

0.2058 

Standard deviation of 1.0673 1.1011 0.8235 
number in system 

Probability of no 0.5332 0.5254 0.6503 
wait 

Probability all 0.5957 0.6000 0.5949 

0.2094 

0.8336 

0.6511 

0.6000 
servers busy 

Number of departures 47585 44115 A" - 

Table 3.4 Simulation and Exact Results for E /E /5 Queues 
E /E2/5 

Simula ion Exact 
E /E2/5 

Simula ion Exact 

Utilisation 0.5989 0.6000' 0.5985 0.6000- 

Squared coefficient of 0.4998 0.5000 0.2010' : =, 't, 0.2000' 
variation of arrivals 

Average wait (in units 0.2035±0.0133 0.1994 0.084210.0064 0.0837" 
of mean service time) 

Mean number in the 0.1263 0.1196 0.0518"' 0.0502, 
system 

Standard deviation of 1.6076 1.5903 1.3189 1.3111 
number in system 

Probability of no 0.8623 0.8612 0.9244 0.9242 
wait 

Probability all 0.1719 0.1741 0.1276 0.1275 
servers busy 

Number of departures 100000 - 100000 - 
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TABLE 3.5 Simulation and Exact Results for M-centre Flow Shops,,.. 

M=2 M=4 
Simulation Exact'' Simulation Exact 

Ütilisation '. 0.5982 0.6000" 0.5996 0.6000 

Squared coefficient of 0.9978 1.0000 0.9989.1.0000 
variation'of arrivals 

Mean throighput time'" 4: 9025±0.2407 5.0000 10.1209±0.4527'10.0000 
(in units of mean 
service time) 
Standard deviation of 3.50.13 3.5355 4.9792 5.0000 
throughput time 

Mean -number in '2: 9304 3.0000 5.9070 6.0000 
system 

Number. of departures 14149 - 20136 - 

I' 
- 

Table 3.6 tSimüläti&«and Exact ResLilts'for M=centre, Symmetric Shops 

Simulation Exact Simulation Exact 

Utilisation 0.5991 0.6000 0.6002 0.6000 

Squared coefficient of"" 1*'0754 X1.0000 "1.0797 1.0000 
variation of, arrivals 'l 

, tea.. ,. iti: r '. +7 
.,, ., r" r yý' 

Mean throughput time 5.0096±0.2432 5.9000 9.817710.4260 10.0000 
(in units of mean' 
service time) 
Mean number 3.0541 3.0000 5.9268 6.0000 
system 

Number of departures 18963 - 11940 - 
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4. AN APPROXIMATION FOR THE COEFFICIENT OF VARIATION OF THE 
-- j- - 

DEPARTURES' FROM <A GI/G/N QUEUE 

4.1 INTRODUCTION 

In order to apply the complete decomposition algorithm to a 

network of multiserver queues, an expression was required for-the 

coefficient of variation of the departures from a GI/G/n queue. 

There are few exact results known for the departure processes of 

queueing systems. Burke [10] showed that the departures from an 

M/M/n queue formed a Poisson stream. A simple proof of this 

result was also produced by Reich [60], who went on to show that 

the departures from an E2/E2/1 system did not have an E2 

distribution. Mirasol [51] proved that the output of an M/G/00 

queue was Poisson, and the very limiting conditions necessary for 

the departures of an M/G/1 queue to form a renewal process were 

established by Disney, Farell and De Morais [22]. Cox [16] used 

renewal theory to show that as the number of servers was increased 

the output of a queue tended to form a Poisson process. 

The following expression for the squared coefficient of 
" r-I 

variation (SCV) of the departure process Cd 2 
of a GI/G/1 queue was 

derived by Marshall [48]: 

Cd2=Cý ±2u 
2 s2-2u (1-u)7(w) PIK awj ý#ý 

. 
A/1, 

where Ca-and Cs were the coefficients, of-variation of'the arrival 

and service time distributions'respectively, s was the, mean 

service time, u the utilisation, and E(W) was the 'mean waiting 

time of a-customer in the queue., Kuhn substituted the-Kramer-and 

Lagenbach-Beiz [42] approximation for E(W) 

E (W)= su (Ca +Cs ) g(u, Ca? ', cs) 
2(1 u) 

I 
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where 

g(u, Ca'2Cs2)_exp -2(1_x)(1-C 
Z)2 Ca2<1 

3u Ca +C) 

to obtain the expression 

2,2. U(C 
_ 

+Cj 
)gtliu. C 

ZT , ý, 
C_ _Cä +2u sasas 

)" From this he 

produced the simplified approximation formula 

2-ý .. ' 22 C -u 
2)C 

+u C das 

used by Shanthikumar [68] in the complete decomposition algorithm 

for a single-server network, 

Due to the complexity of the output process of a queueing 

system with more than one server, no simple form has been derived 

for the coefficient of variation of the departures from a GI/G/n 

queue. To obtain an expression for substitution in the complete 

decomposition algorithm, a statistical analysis was performed on 

the coefficients of variation of the departures of a range of 
'a 

iC 
" ,. r , cam "i°}". pr 

GI/G/n queues. The data was produced by the simulation program 

listed in Appendix 1.1. 

X4.2 GLIM 
A rcýrcý, -n The statistical package GLIM (Generalised Linear Interactive 

Modelling) was used to fit a regression model which explained the 

variation in the squared coefficient of variation of the 
'MI 

departures from a GI/G/n queue in terms of its utilisation, number 

of servers, and coefficients of variation of its arrival and 

service time distributions. GLIM could be operated interactively 

and was useful for exploratary work; allowing rapid adaptation of 

the experimental models fitted to the data. 
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Fitting 'a, Model` with GLIM 

''+, A dependent y-variate was declared along with, a number of 

explanatory'x-variables. ; -the generalised, linear model fitted was 

of 'the <-'form 

It'"° consisted' of-!, a, - systematic'' component wti', and ' one -random 

compftnent `Ei ; -the ' distribution of q being a =member ', of 'an 

exponential family that included the normal, - binomial, Poisson, 

J chi-squared ands gamma distributions. " The-explanatory-'variables 

entered'as a sum°of, =their effects 

The mean was functionally related to, i 

g could-be defined as the identity link or one the other 

available link-functions including -log andlreciprocal. 

-. Thelmethod' of maximum likelihood-was usedito , estimate the 

linear. ' parameters,, , and hence the-linear-,. -predictors X11, and 

fitted, =value's^, -The problem was there to obtain, the -bestl'trade- 

off! between the,, number of-explanatory variables-to'be,,, included in 

the linear structure; 'and -the ability of the model to.. r, epresent 

the data. This- was done`by an analysis of the residuals of the 

model in question and-acomparison of'the deviances of different 

models. The 1-deviance~=of' a modelWwas calculated for each 

regression7'fitted, and. °~in-thercase of"multiple regression.. with-a 

normallerror`'distribution` and'identity-link function, it was the 

residuälC'sum of squares. ' 
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4.3 OBTAINING THE APPROXIMATION FORMULAE 

Values of the squared coefficient of variation of the 

departures from GI/G/n queues were obtained by simulating the 

systems with squared coefficients of variation of arrival and 

service time distributions in the range (0,1); combinations of the 

values 0.1,0.3,0.5,0.7 and 0.9 being considered to produce a 

sample of twenty-five for each utilisation andý'number of servers. 

Utilisations were increased from 0.1 to 0.9 in steps of 0.1, the 

values 0.15,0.85 and 0.95 were included laterto 'give a clearer 

picture of the behaviour of the coefficient of `variation of 

departures at the extremes of utilisation. Queues with up to ten 

servers were simulated. On examination, the values of, Ca2. showed 

little variation in form for values of n exceeding seven. Systems 

with twenty servers were also simulated to ensure that the results 

remained consistent for large n. 

When using GLIM to fit regression models to the data, a 

normal error structure and identity link structure were"assumed. 

For each instance of u and n, Cd2 was declared the dependent fy- 

variate and various products of Ca'and Cs were considered``as the 

explanatory x-variables for the models. Analysis of the'resultart 

deviances indicated that the variation in Cd could be adequately 

explained by a model of the form 

Cd _k+fCa+gCs? hCaCs+iCs (1) 

k, f, g, h and i being dependent on the values of u and n. 

The effect of u on the coefficients of (1) was examined for 

each value of n, and a model of the form 

1-Cd =f(n)(1-u)(1-Cä )+g(n)u2(1-Cs )+h(u)(1-u)Cs(1-Cý (2) 

seemed to best represent the data. 
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An investigation into the dependence of the coefficients of 

(2) on n, provided the following expression 

1-Cd(1.60-0.09n)(1-u)(1-Cä )+1.. 7u2(1-Cs ) 
n 

+(1.03-0.03n)(1-u)Cs(1-Ca) (Fl) 

The standard deviations'of error produced on fitting (Fl) were 

calculated for each instance of u and n. Table 4.1 shows that the 

standard errors were less than 0.05, for values of n in the range 

(2,10], and utilisations >0.2. However, for utilisations <0.2, 

and all utilisations when n took the value one or twenty, standard 

errors of up to 0.40 indicated that (Fl) could not always be 

considered a good estimator Of C 

The forms of the coefficients of (1) were re-examined: a 

simultaneous consideration of u and n as explanatory variables for 

the coefficients 
f, 

g, h, and i resulted in the model 

l)+1.13u2(1-C2) 1-Cä =(1.37-0.0Z4n)(1. ßa)(1-C as 

-0.65(1-u)Cs(1-Ca); (F2) 

an expression similar in form to (Fl). The standard deviations of 

error of the model given in Table 4.2 showed it to be slightly 

less accurate than (Fl) for utilisations in the range [0.2,0.6] 

when n took values from five to ten, but to have a lower overall 

average. 
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Table 4.1 Estimated Standard Deviätioris of Error of (Fl) 

0.1 0.15 0.2 0.3 0.4 

ü 

0.5 0.6 0.7 0.8 0.85 0.9 0.95 

1 0.09 0.09 0.09 0.09 0.08 0.09 0.11 0.15 0.18 0.21 0.24 0.22 

2 0.08 0.07 0.06 0.05 0.05 0.04 0i oü 0; 03 0; 03 0: 03 0.03 0: 04 " 

3 0.08 0.06 0: Ö5 0: 05 6.04 0.64 o: 03 0.03 0; ö2 0.62 0; 03 0.06 

4 Ö: 08 0.05 0.04 0; 04 0.04 0.05 0.04 b. 03 o: 02 ö: 03 0; Ö3 0.05 

5 0.08 0.05 0.03 6; 04, 0.05 0.04 0.05 0.04 0; 02 0.03 0.03 0.05 

n6 0.10 0.06 0.03 0: 04 0. Ö5 0.05 0.05 0.04 0.02 0.02 0.03 0.05 

7 0; 11 0.06 0.03 0.03 0.05 0.05 0.05 0.03 0.02 0.02 0.03 0.04 

8 0.12 O. 07. 0.04 0.03 "0.04 0.04 0.04 0.03 0.02 0.02' 0.03 0.04 

9 0.14 0.09 Ö. 05 0.03 0.03 0.04 0.04 0.03 0.02 0; Ö2 0.02 0. Ö3 

10 0.16 0.10 0.06 0: 03 Ö; 03 0.03 0.03 0: 03 0: 02 0: 03 0.03 0.04 

20 Ö. 40 0.33 0: 30 0: 23 Ö: 18 0: 15 0: 12 0; 10 0 06 0.06 0: 04 0-. 04 

Average standard deviation of error-0.061 4 
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Table 4.2 Estimated Standard Deviations of Error of (F2) 

0.1 0.15 0.2 0.3 0.4 

U 

0.5 0.6 0.7 0.8 0.85 0.9 0.95 

1 0., 07 0.07 0.07 0.09 0.09 0.08 0.07 0.05 0.04 0.04 0.05 0.07 

2 0.06 0.06 0.05 0.04 0.04 0.04 0.04 0.05 0.06 0.07 0.07 0.08 

3 0.05 0.04 0.03 0,. 03 0.03 0.03 0.03 0.03 0.05 0.06 0.08 0.09 
, ti z '., rä 

4 0.04 0.02 0.03 0.05 0.06 0.05 0.04 0.03 0.04 0.05 0.07 0.09 

5 0.03 0.03 0.04 0.07 0.08 0.06 0.06 0.04 0.03 0.04 0.06 0.09 

n6 0.03 0.03 0.06 0.08 0.09 0.08 0.07 0.04 0.02 0.03 0.050.08 

7 0.03 0.04 0.06 0.09 0.10 0.09 0.07 0.05 0.03 0.03 0.04 0.07 
.-i. y. ., .#.. - . ._ .-g -. r" .. "! ° ;.. . '- G f" , .. 1- 

8 0.03 0.04 0.07 0.10 0.10 0.09 0.07 0.05 0.03 0.02 0.04 0.06 

9 0.03 6.04 0.07' 0.10 0.10 0.09 *ý 0.08 0.05 0.02 0.02 0.03 0.06 

10 X0.04 0.04, 0.07, 0.10 0.10 
, "0.09 0.07- 0.05tO. 03 1M2 0.04x'0,05 

20 0.12 0.06 0.04 0.03 0.04 0.014'0,03.0.03- ; 0.030.03' -: 0.03'0.03 

Average standa rd. de viation °-of, error_0: 054-. 



37 

4: 4: 'SUBSTITUTION OF THE. APPROXIMATION FORMULAE IN THE,. ALGORITHM, 5.. 

e -Estimates'-of-Ca, the squared coefficient of variation of the 

arrivals: toethe} ith centre"in an<, M-centre---queueing": network, -were 

obtained by, substituting each. of -three , approximation formulae for 

Cd-' (J=1,2 ....., M), , in,, the complete decompositioný, algorithm, ",. - 
J 
ýý-t=The : first, -.. approximation 4considered was the one developed by 

" Kuhn and used by Shanthikumar in the analysis of single-server 

networks: 

Cd2=(1-u2)Ca +u2Cs (K) 

The other, n, two, formulae were (Fl) and (F2), obtained in the 

previous section. 

The expressions were substituted in the set of equations 2 

Cat=''" j i(PýiCd +(1-pii))± e2. 
i_1,2,..., M (3) 

i 
derived in Chapter 2, and the equations were solved for the Ca?. 

i 

Substitution of (K) gave a linear matrix eauation which was 

solved by matrix inversion. Substitution of (Fl) and (F2) produced 

quadratic matrix equations, and it was necessary to use an 

iterative method to find solutions. 

The approximate squared coefficients of variation of arrival 

streams given by the algorithm, using each of the formulae, were 

compared with values obtained by simulating various types of 

networks. 

The Networks 

Queueing networks with two and three service centres and 

varying numbers of servers and transition probabilities were 

simulated. All the the service centres of a network were 

considered to have the same number of servers and average service 
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times. External arrivals to the networks were assumed to be 

Poisson distributed. 

Networks-. of two'single-server centres with average service 

times of 0.6 and 0.8, -and two three-server centres with average 

service times of 1.8 and 2.4, were simulated with the following 

transition probability matrices: 

Flow= W0l = 

\io) 

Symmetric ('0= 

0, - 

' Asymmetric; *0?, (3 

V3 0 

-; ", `Three-centre networks =of single-servercentresf" with average 

service { times: of_, i, 0.6' and° 0.8, and of, six-server, t centres,. - with 

average service times , of . 3: and----4.8 were considered }with -the 

transition iprobabilityr matrices: 

Flow p 40 

0 -0 1 

11 0 "0 

Symmetric F -0 'Y3 )t, 

10 
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Asymmetric 0 

lot- 
(ov2\ 

V4_ 0 

Accuracy of the, Approximations 

The percentage errors given, on comparison of the., 

approximations produced by the algorithm, using each of the three 

formulae for Cdt; with the , simulated values of- the -squared, 

coefficients, ofwvariation of-the arrival streams of the networks- 

are shown. in Tables 4.3-4.5. In networks with single-server. 

centres, the errors given by substitution of (K) and (F2) were of 

similar magnitude, and in general less than those given by (Fl). 

In the networks, with more than one server . at the, centres, 

substitution of. (Fl) and . 
(F2) provided estimates of the squared. 

coefficients of. var; iation., of the. arrival streams, that were, within, 

5% of the simulation results, errors of up to 65% were observed 

when (K) was used as the approximation for Cdz 4 

The means of, the. absolute percentage errors for each type of. 

network are listed in Table 4.6. Substitution. of the,, 

approximation formula (F2) appeared to - produce the most 

consistently accurate results. (F2) was therefore selected as the 

optimum formula for use in the complete decomposition analysis of 

multiserver networks. 

11 
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Table 4.3 % Errors. of the Approximations to the SCV of the arrivals 

to the Mth Centre of an M-Centre Flow Shop 

No. of 
M Servers 

u_0.6 
Simulated*, % Errors 
Value (K) (Fl) (F2) 

.. u_0.8 
Simulated, * % Errors' "'F` 
Value (K) (Fl) (F2) 

0.2 0.71 -0.14 -19.21 -5.46 0.49 0.41 -48.97 -13.17 

1 0.5 0.84 -2.03 -12.19 -4.90 0.68 0.00 -22.05 -6.03 

1.0 0.99 0.81 0.81 0.81 0.99 -0.60 -0.60 -0.60 

2 

0.2 0.88 -18.63 -1.83 1.83 0.75 -34.67 0.27 8.03 

3 0.5 0.92 -11.26 -1.29 0.87 0.84 -18.75 0.72 4.78 

1.0 1.01 -1.19 -1.19 -1.19 0.98 2.35 2.35 2.35 

0.2 0.64 -18.04 -43.39 -18.81 0.42 -27.96 -84.60 -31.75 

1 0.5 0.76 -7.73 -19.40 -7.21 0.62 -9.46 -31.57 -10.10 

1.0 0.99 1.32 1.32 1.32 0.99 0.91 0.91 0.91 

3 

0.2 0.94 -43.64 -3.42 -1.38 0.85 -64.07 0.83 4.41 

-6- . 0.5 0.98 -27.69 --3.28 -2.15 0.93 -65.13 -2.47 --0.43 

1.0 1.00 0.40 0.40 0.40 1.01 1.09 1.09 1.09 
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Table 4.4 % Errors of the Approximations, tofthe: SCV_. of_the. arrivals 

to the Mth Centre of anM-Centre Symmetric Shop 

No. of 
M Servers C. -- 

u=0.6 
Simulated`' % Errors 
Value (K) (F1)- (F2) 

u_0.8 
Simulated % Errors 
Value (K) (Fl)' (F2) 

0.2 1.03 -10.92 
-14.32 -11.50 0.90 -4.02 

-10.73 -5.74 

1 0.5 1.07 -11.75 -13.71 -12.03 0.94 -3.00 -6.91 -3.83 

1.0 1.11 -10.23 -10.23 -10.23 1.02 -2.15 -2.15 -2.15 

2 

0.2 0.98 -6.45 -1.74 -0.82 0.92 -6.32 1.85 3.49 

3 0.5 0.99 -4.35 -1.31 -0.81 0.95 -3.70 1.27 2.22 

1.0 1.04 -3.75 -3.75 -3.75 1.02 -1.57 -1.57 -1.57 

0.2 1.01 -8.14 -11.22 -8.74 0.92 -4.26 -11.17 -5.90 

1 0.5 1.04 -8.36 -10.19 -8.65 0.95 -2.94 -6,41 -3.68 

"0 1.12 -10.95 -10.95 -10.95 0.99 1.21 1.21 1.21 

3 

0.2 0.98 -5.32 0.61 1.02 0.97 -9.22 0.62 1.35 

6 0.5 1.01 -5.27 -1.69 -1.41 0.98 -5.91 0.10 0.51 

1.0 0.99 0.70 0.70 0.70 1.01 0.79 0.79 0.79 

I 
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Table 4.5 % Errors of the Approximation to the SCV of the arrivals 

to, the Mth Centre of an M-Centre Asymmetric shop 

u-0.45 u-0.6 
No. of Simulated. 

.. 
% Errors Simulated, % Errors 

M Servers C'2- Value , M' '(Fl) (F2) Value (K) (Fl) (F2) 

0.2 1.03 -8.09 -10.42 -8.48 0.89 1.57 -2.81 0.90 

1 0.5 11;; 02 -5.67 =6.95 -5.77 0.95 =1.16 -3.47 -1.37 

1.0 1.07 -6.47 =6.37 -6.37 1 . 01 ' -1.19 -1.19 -1.19 

2 

0.2 -3.16 0.98 =7.37 -2.05 -1.02 

3 0.5 1.01 -4.27 -2.28 ' -1.89 0.98 '-3.58 -0.21 0.41 

1.0 1.04 -3.38 -3.38 -3.38 1.00 -0.60 -0.60 -0.60 

0.2 1.04 -10.39 -12.90'-10.78 
0.88 -1.13 -7.48 -2.61 

0.5 1.03 -7.47 -8.53 -7.57 0.92 -0.33 -4.01 -1.08 

1.0 1.14"-13. -2Ö -12.94'-12.94 ' 1.02 '=1.96 
-1.96 -1.96 

3 

0.2 1.02 -8.99 -4.01 -3.71 0.96 -9.54 0.62 1.34 

6 0.5 0.98 -2.95 0.51 0.61 0.98 6.31 -0.10 0.41 

II 1.0 1 1.02 -3.03 -2.64 -2.54 1 1.00 0.30 0.30 0.301 

7 
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Table 4.6 Average Absolute % Errors of the Approximation's to the 

0,1 SCV of Arrivals 

- -- j. -- -- 

Type�of Network uu, (K).,,, 
v(F1),. _ '(F2)Y 

Flow. 0.6, 11.07 8.98 . 3-86- 

0.8 18.78 16.376.97.. 

Symmetric ; 0.6 7.18 . ., 
6.70.. . 5.88, 

0.8. - 3.76 3.73 2.70 

Asymmetric,, 
- , 

0.45 6.72� 6.22, 
' 5.61 

0.6 2.92, 2.07-1.10,, 

Overall, average. ,; 
8.41.,, ,, 7.35 . 

'4.35,,. b 

Jw7 

. i. 



44 

, 
4.5 THE RENEWAL ASSUMPTION 

A fundamental assumption in obtaining-the equations for the 

squared coefficients of the arrival streams in a network was that 

all the transitions between the centres of the network formed 

renewal. processes. However, the-departures from most queues, with 

the exception of the M/M/n sytem, are correlated to some extent. 

Correlation of the arrival streams can also result from the 

patterns of the transitions within a network -the simulation 

results listed in Appendix 3 show that the arrival streams in 

networks of M/M/n queues were significantly correlated when the 

transition probabilities were symmetric. 

Tables 4.7-4.9 give the lag one correlations of the simulated 

arrivals to the Mth service centre of a number of M-server 

networks, and the percentage errors of the estimates given by the 

algorithm, with (F2) estimating the coefficients of variation of 

the departures. Box and Jenkins [6] have shown autocorrelations to 

be significant if they exceed 1.96/%/N, where Nis the number of 

observations. The number of arrivals generated in each run of the 

simulation was determined by a sequential stoppping rule, and 

varied from 20,000 to the imposed upper 

case of the, least number of arrivals 

exceeding 0.014 were significant, hence, 
aMr. 

any correlations-of more than 0.014 were 

Limit of 100,000. In the 

simulated, correlations 

in all the simulations 

-considered, -significant. 

It can be seen from Tables 4.7-4.9 that percentage errors greater 

than 5% only arose when the arrival streams exhibited significant 

correlations. The approximation algorithm appeared to over- 

estimate the coefficients of variation of arrival streams which 

were negatively correlated, and under-estimate it when significant 

positive correlations were evident. ' 
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4.5 THE RENEWAL ASSUMPTION 

A fundamental assumption in obtaining-the equations for the 

squared coefficients of the arrival streams in a network was that 

all the transitions between the centres of the network formed 

renewal processes. However, the departures from most queues, with 

the'exception of the M/M/n sytem,, are correlated to some extent. 

Correlation of the arrival streams can also result from the 

patterns of the transitions within a network -the simulation 

results listed in Appendix 3 show that the arrival streams in 

networks of M/M/n queues were significantly correlated when the 

transition probabilities were symmetric. 

Tables 4.7-4.9 give the lag one correlations of the simulated 

arrivals to the Mth service centre of a number of M-server 

networks, and the percentage errors of the estimates given by the 

algorithm, with (F2) estimating the coefficients of variation of 

the departures. Box and Jenkins [6] have shown autocorrelations to 

be significant if they exceed 1.961JN, where Nis the number of 

observations. The number of arrivals generated in each run of the 

simulation was determined by a sequential stoppping rule, and 

varied from 20,000 to, the imposed upper limit of 100,000. In the 

case of the least number of arrivals simulated, correlations 

exceeding 0.014 were significant, hence, in all the simulations 

any correlations-of more than 0.014 were considered-significant. 

It can be seen from Tables 4.7-4. g that percentage-errors greater 

than 5% only arose when the arrival streams exhibited significant 

correlations. The approximation algorithm appeared to over- 

estimate the coefficients of variation of arrival streams which 

were negatively correlated, and under-estimate it when significant 

positive correlations were evident. 
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Table 4.7 Correlation and the % Errors of the Approximation to 

the SCV of the Arrivals to the Mn Centre in an 

M-Centre Flow . Shop 

u=0.6 u=0.8 
No. of 

M Servers C2 Correlation % Error Correlation % Error 

0.2 0.049 -=5.46 0.076 -13.17 

1 0.5 0.029 -4.90 0.027 -6.03 

1.0 -0.008 - 0.81 -0,007 -0.60 

12 

0.2 -0.022 -1.83 -0.097 8.03 

3 0.5 -0.022 0.87 -0: 045 4: 78 

1.0 -0.006 -1.119 0.009 "2.35 

0.2 0: 06 4 -18.81 o: Ö61 
-31: 37 

1 0.5 0.024 -7.21 0: 025 
-10: 10 

1.0 0.000 ' 14 32 -0. 
Ö02 0: 91 

3 

0.2 -0.026 -1.38 -0.071 4.41 

6 0.5 -0.025 -2.15 -0.046 -0.43 

1.0 0.004 0.40 -0.007 1.09 
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Table 4.8 Correlation and the % Errors of the Approximation to 

the SCV of the Arrivals to the Mth Centre in an 

M-Centre Symmetrie Shop ',., 

u_O. 6 u_O. 8 
No. of 

M Servers C2 Correlation % Error Correlation % Error 

0.2 0.051 -11.50 0.029 -5.74 

1 0.5 0.044 -12.03 0.016 -3.83 

1,0 0.035 -10.23 0.015 -2.15 

12 

0.2 

3 0.5 

1.0 

0.0144 -0.82 -0.004 

0.018 -0.81 0.012 

0.030 -3.75 0.013 

-3.49 

2.22 

-1.57 

0.2 

1 0.5 

1.0 

13 

0.053 --8.74 0.021 -5.90 

0.054 -8.65 0.006 -3.68 
0.034 -10.95 0.019 -1.21 

0.2 -0.017 1.02 -0.025 1.35 

6 0.5 0.091 -1.41 -0.005 0,51 

1.0 0.020 
.. 0.70 ,. 0.007 0,79 
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Table 4.9 Correlation and the % Errors of the Approximation to 

the SCV of the Arrivals to the M- Centre in an 
9 

M-Centre Asymmetric Shop 
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4.6 CONCLUSIONS 

Substitution of the formulä 1(F2) in the complete 

decomposition algorithm provides good approximations to the 

squared coefficients of variation of the arrival streams in most 

multiserver networks. However, the renewal assumption implicit in 

the algorithm is not always valid, and a consideration of the 

correlation of the transition processes within a network may 

`result in a greater degree of äccuracy'being attained. 

.3 
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5 CORRELATIONS IN QUEUEING NETWORKS 

5.1 INTRODUCTION 

An arrival stream to a service centre of a queueing network 

may consist of external arrivals to the system and departures from 

other centres of the network. The characteristics of an arrival 

stream are thus dependent on those of its component transition 

streams. The complete decomposition algorithm relies on the 

assumption that all the transition processes within a network are 

renewal: the expressions for the composition and decomposition of 

the transition streams given by Sevcik et al. [671 are only exact 

for some renewal processes, and the approximations for the 

parameters of the individual queues of the network were developed 

for GI/G/n queues. A necessary though, as was observed in the 

previous chapter (p. 44), not always sufficient condition for the 

transition streams of a network to form renewal processes is that 

all the departures from a service centre be uncorrelated. 

5.2 CORRELATION OF DEPARTURE PROCESSES 

It is only in a limited number of circumstances that the 

output of a queue forms a renewal process. Burke [10] showed that 

the departure process of an M/M/n queue was Poisson. Disney, 

Farell and De Morals [22] considered GI/G/1 queues and proved 

independent departures were only produced by M/M/1 queues, M/D/1 

queues with waiting space for one customer, and M/G/1 queues with 

no waiting space or all service times zero. Cox [17] showed that 

for an M/Ek/1 queue, correlation of the departure process was 

positive for k>1, and negative for k<1. An upper bound for the 

correlations of an M/Ek/1 queue was given by Jenkins [32]; he 
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found"that the highest. "-correlations were ''produced by: the, M/D/1 

system, 4 "and proved,, -, 0.5e-10.183 to"be ' an 'upper limit for-'all 

values'of -k and utilisations. Considering the M/G/1-'queue, "Daley 

[21], concluded, that'"correlations were either'positive', 'and'small; 

or negative'. ,! -He showed' that`I 0.5e-! formed an' Tapper bound, "but 

found no lower- bound ý greater , than -1. 

Shimshak and'-Sphicas°' [69] : studied the 'effect of the 

correlation of, 'the arrival, -; procession, the waiting time of"a queue 

with-exponentially 'distributed service times) the arrivals were 

the departures from an M/Ek/1 system. In an comparison of the 

exact numerical results for the'-average wait'in°the second queue, 

when its arrival were assumed to be independent; ' with the values 

obtained--from'a simiilation-of the'system, it became clear that the 

independence assumpti'on`-caused "an under-estimation of the "waiting 

time. - The discrepancy', increased with the degree of"correlation"of 

the arrival process; '=and was greatest when both queues' had-high 

utilisations and 'k was-` large. °Errors'in the'estimation 6f'the 

mean waiting `time 'of '. 'up to 50% 'occurred under "-- the "independence 

assumption. 

'' In 'developing the complete 'decomposition)'älgorithmlforl! a 

single-server network, ' Shanthikumar [681-was'-concerned "-with-'the 

correlation'of the ' ouput 'of GI/G/1-, queues.. Due1to'rthe difficulty 

in obtaining numerical results; 'he used'simulation to=investigate 

the departure processes'of GI/G/1 ; queues-, with shortest processing 

time "queueing"'' disciplines: ' It ° was"'' -föund"l", thatýj-in"°"general; 

correlation increased'with utilisation: 'correlations"were'"low"'for 

queueswith ryPoisson-"arrivals and '""low-titilisatiöns;, "in'"-all''other 

cases the'validity of'the renewal assumption was questionable. 
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Shanthikumar simulated ;. single-server'flow, andsymmetric job 

shops °1-with r- various 11 parameters >and e° i FCFS and YF SPT queueing 

disciplines; "For, `both`-` disciplines, ', correlations, between 

successive departuresý4were seen to be'highertin, ' symmetric shops 

than flow shops; °, when°a11'service centres, had'utilisations of 0.6, 

but with`. utilisations, "rof'0 8'the4flow`shops 'exhibited the larger 

correlations; `while'symmetric -shops('with many service =centres 

produced every small correlations, "so proving it-, to'be, -a case-where 

the renewal assumption would hold good. 

5.3 CORRELATION IN. A MULTISERVER, QUEUEING-NETWORK:, - 

The_. consideration of, the. accuracy.:, of the estimation of the 

coefficient of -, variation`of the arrival ° streams of, ar network, in 

Chapter Z3indicated that-the (presence of significant correlations 

had.. an adverse influence onthe°performance. . ofnthe approximation 

algorithm. In, all caseswhere, the approximation over-estimated Ca 

by more, ' than "5%, '--the " arrivals were,, negatively. correlated; 

similarly, "under-estimations, of Ca occurred when large positive 

correlationsýwere. evident. It-wouldr therefore"be an, advantage"to 

be-able-to predict when such significant`correlationsýwould arise 

in the transition streams, of; a; network, and incorporate this, �as-a 
factor-An the complete decomposition model. , -Howeyer,,, relaxation 

of the-renewal assumption greatly, increases.. the, complexity, of. an 

analytical investigations of ,,, queueing - properties,,... and .a 
comprehensive-studyýof the effecttof correlation oný. theAparamaters 

of a queueing, -network using simulation and,.. linear regression 

techniques. -is made-Impractical by the number of_different=types, of 

network- to beiconsidered.: ýý' .a,, ý x ý. "ý:, ..,: -. <. -t : ýs.. 
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4, '; ßa The-largest correlations were observed in the-arrival streams 

of flow shops.: - Here the departures-from one service centre formed 

the arrivaly stream, to the next, -and the correlation. -of the 

arrivals-were those of the-output---of-the preceeding queue. - For 

this reason;. the correlation of - the. departure processes, -of. some 

GI/G/n, queues -has been examined-to-establish, -at least4pfor*. f1ow 

shops,. when the . approximation is <ý'1ikely, to over-or.. under-estimate 

the' coefficients of variation of the, arrival' streams , of a: -network. 

-"5.4 -CORRELATION-OF--THE-OUTPUT OF-E /E ,, /n QUEUES`, 

in"'A range of Ej/Ek/n queues were simulated, and the lag one 

autocorrelations of the departure processes were estimated and are 

shown' in-Figures "5.1-5.7. Both positive and negative values 

resulted, the 7 , maximum-value of ' 0: 123 ' was observed , for , ,: an". M/Ek/1 

queue,., with 'atutilisation of 0.9, : and, -the,, minimum'of""=0.398 was 

given 4by -an ýE2/E10/2 'system; with u=0.9; .; The dependence' of the 

degree of correlation; in!; the "output of the queues"on'the_values "of 

n, u, j and-k was investigated: 

.1 i-Positive correlations-, ronly arose-:. when single-server 'queues 

were ' simulated. - Figure 5.1 ! shows' that all-the correlations"given 

by M/Ek/1'systems`were"positive. This was'the result proved by Cox 

[17] 'for all M/Eý. k/1 'queues `with k>1 : ,- Some 'positive correlations 

were'also: -evident_in, the- departure processes-of., --, E 2/Ek/1 systems 

when-. k' ., was -large (Figure ' 5.2) . -'-,, In ,: all. other! r" instances -the 

departure 4rstreams.. were -"°negatively correlated, z with ithe ,,. minimum 

values occurring when: -'n >was"=°equal -to""two,. '-and the- output 

approaching ,a renewal-process as-. the number". of'serversiincreased 

(Figures 5: 2 and 5; 3):, Cox [16]r'used"renewalrvtheoryrrto-show that 
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the-=departure process? ofra queue tended-to , form - a- Poissonaýstream 

asr the numb er°. of-servers '. was. inereased. ` -°-- , -o -- .... ý: t. 

For-Ej/Ek/n-, queues-with j; ", less-than, k, the correlation of the 

departure processes generally increased as the utilisation of the 

queue was increased (Figures 5.4 and 5.5). When j was equal to k, 

increasing u had little affect on the dependence of the departures 

(Figures 5.5 and 5.6). When j was greater than k, the correlation 

decreased as the utilisation was increased (Figures 5.6 and 5.7). 

In all instances the magnitude of the correlation of the 

output of an Ej/Ek/n queue was increased when either j or k was 

increased. 

5.5 CONCLUSIONS 

When large correlations were evident in the arrival streams 

of queueing networks, the complete decomposition algorithm did not 

provide accurate estimates of the squared coefficients of 

variation of the arrivals. The greatest degree of correlation was 

observed in the transition processes of flow shops where the level 

of interaction between service centres was low. In such cases 

knowledge of the correlation of the output processes of the 

individual queues can give some insight into whether the 

coefficients of variation of the arrival streams will be over or 

under-estimated by the algorithm: if the arrival stream to a 

centre is composed of departures from single-server queues, with 

little variation in service times and high utilisations, then 

correlations will be positive, and the coefficient of variation is 

likely to be under-estimated by more than 5%, conversely, queues 

with two or more servers and fairly constant inter-arrival or 
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service times will produce negatively correlated arrival streams 

and the approximation algorithm will tend to over-estimate the 

coefficients of variation of the arrivals. 
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Figure 5.1 
Correlation of departures From an M'EK/1 queue 
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Figure 5.2 
Correlation of departures From an Ez'EKin queue 
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Figure 5.3 
Correlation of departures From an Eý/E2/n queue 
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Figure 5,4 
Correlation of departures From an Ej/M/2 queue 
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Figure 5.5 
Correlation of departures From an E, 'Ezi2 queue 

0 

-0,0 
c- 
O 

-C-' -0,1 CZ$ 

Oi L 

0 
Gi Ir- 

0 Qý 

-ý -0.2 

-0.2 

-0.3 

-1 

.0 
Utilisation 



---- --- --- 
___ 

a 

Figure 5.6 
Correlation of departures From an Ez/E '2 queue 
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Figure 5.7 
Correlation of departures From an M/EK/2 queue 
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6 APPROXIMATIONS FOR THE MEAN WAIT IN A GI/G/n QUEUE, 

6.1 INTRODUCTION 

The complete decmposition algorithm provides approximations 

for the throughput time distribution in a multiserver° queueing 

network`by a composition of the mean and variance of the queueing 

times at the individual service centres. The centres were assumed 

to' form GI/G/n queues, and only the first two moments of the 

arrival time distribution were known. An expression was therefore 

required for the mean waiting time in a GI/G/n queue which was 

dependent only on the mean and standard deviation of the inter- 

arrival times. 

6.2 THE MEAN WAIT IN A SINGLE-SERVER QUEUE 

Exact results for the average waiting time in a single-server 

queue are well-known and can be easily calculated for the M/M/1 

and M/D/1 systems but there is no closed form result for D/M/1. 

The Pollazcek-Khintehine formula evaluates the mean wait in, an 

M/G/1 queue. Kendall [35] derived the conditional distribution of 

the waiting time in a GI/M/n queue, given the queue is not empty; 

and Prabhu [59] developed a method of solution for the GI/Ek/1 

system. Lindley [46] obtained an- integral equation forýý'ythe 

waiting time of a customer in a steady-state GI/G/1 queue. 'The 

equation does not yield easily calculable results, and, 

consequently, approximations to the mean wait in a GI/G/1 queue 

have been developed. Approximation formulae have the advantage of 

providing explicit solutions for complex systems without resort to 

tedious numerical-methods or simulation. 

-- To' obtain an expression for the average wait" at the 
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individual, service centres`Iin a'single-server queueing network, 

Shanthikümar , [681 ,. --compared^": the '. -accuracy= of -°- a number, °. ýof 

approximations,, for , the meant wait in,, a GI/G/1 r.,. system, ' with exact 

results-available for GEk/Ei/1 queues. `' He 'concluded that, for 

greatest ., " accuracy, t the ° form ,t of the approximation rv°used, 'Pshould 

change rwith -the values of the-coefficients of variation vtofAhe 

arrival rand service. time s: distributions;,,,, ' and produced: -a. table 

recommending the approximations for use in different cases. 

6.3 
. THE =MEAN WAIT - IN A" MULTISERVER QUEUE 

Exact expressions for thetmean wait in, queues with more than 

one"server have been established in- some cases; these'include the 

M/M/n, queue; a complicated expression for - the '. WD/wsystem [19], ' 

Kendall's `derivation for'the"tGI/M/n queue 'and the result of 

Mirasol [51] for the M/G/bo system. By considering the steady- 

state probability equations, Mayhugh and McCormick [50] obtained 

numerical results for-M/E3/2; and Poyntz'' and'Jackson)r158] have 

given*a method of solution for the-Ek/El/n queue though, except in 

the"most`trivial cases, a good deal of computer time is needed to 

obtain the{results. a, Sakasegawa [65] used this method to tabulate 

a number of performance values of E /E /n systems, with n and k k 
12 

ranging from one to twenty. All other exact results for GI/G/n 

queues take the form of inequalities such as the upper and lower 

bounds derived by Kingman [38] and Brumelle [9]. 

Recently a number of good approximations to the mean wait in 
dl. 

an M/G/n queue have been proposed. Nozaki and Sheldon [55] and 

Hokstad [28] independently arrived at the same expression by a 

consideration of the differential difference equations of the 
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joint equilibrium pobability distribution. Boxma, Cohen and 

Huffels 171 introduced a quantity termed 'the normed cooperation 

coefficient; ', order - 'tö develop, , an'ý` accurate, though i` complex; 

approximation; ` ý By applying,, ' a =i recursive . scheme "and -. "the 

consideration of different'rcases. Tijms, Van Hoorn and Federgruen 

1721 produced 'a' set of, approximations, ' ,, 'one of iwhich ''agreed with 

thatrof. Boxma et al., and another with'Hokstad! s expression. -i, 

6.4 APPROXIMATIONS FOR THE GI/G/n QUEUE 

ý"_'Severa1Kapproximation formulae have been suggested for the 

mean =wait - : in, '= an l GI/G/n *;. system; ý. - , these x : tend'-to be -,,, Y euristic 

adaptations -of' , . -results '-for, less .r -complex,,, _ -systems. `- The 

approximations` knownrto, therauthor'-are presented below, and their 

accuracy and -ease of computation are considered. 

Kingman 'ý . 

Kingman [37] derived a heavy traffic approximation for the 

average wait in a GI/M/n system, and conjectured that the 

expression 

gnu 1-u) 

where -. s'was the, -,, mean-service-, time,, u' the utilisati'on; - Fand C--'and 

CS 'the `°cdefficientsý-of, the inter-arrival and service time 

distributionse, respectively, should also hold for a generalised 

service-time distribution. 

by Kollerstrom,, [41]. 

This -conjecture, was, later established 
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I- 

Page .rt 

Page-[561-, Suggested linear interpolation onnthe coefficients 

of variation of the arrival and service time, distributionsý, of an 

Ej/Ek/n queue to produce the formula-,,,., �: x 

Wp=(1-Cä )Cs 2WD/M/n+Ca (1-Cs2)WM/D/n +Ca Cs WM/M/n 

where WD/M/n, WM/D/n and WM/M/n are the average waiting times in 

D/M/n, M/D/n and M/M/n queues respectively. 
Jr rLr, 

.F. 

Rosenshine and Chandra 

An approximation developed by Fraker [23] for (rd 
Z, 

the 

variance; of:., the departures from a GI/G/n queue was substituted in 

Marshalls [Z8] 'relation for-. GI/G/1: 

W=a _+2C 

2a(1-u) 

where a was the mean arrival rate, to give. 

W"WM/M/1'Y 

. o' '3where" - 

Y=C3 -0.5(1-Cä )-0.5(1-u)Cs (1-Cä )+0.5(1-Cs ) 

-(1-u)(1-Cs )(1-Cä )(0.25Cs +Ca ]. 

Rosenshine and Chandra [63] hypothesised that a useful 
P fN 

approximation to the average waiting time""in a GI/G/n queue could 

be obtained by the analogy 
My4 

9 .° ßr4 t 
-;, 

WRC=WM/M/n"y; 

WM/M/n being the average wait in an M/M/n'system, given by 

WM/M/n'snn-1[n! (1-u)(E (nu)k+(nu)n]-1. 

� 
k°o 0 
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Sakasegawa 

°"3 -Sakasegawa``ý [64]''' simplified '"the ~ expression :. obtained`ron 

substitution ofý- n=1"-in Page's "approximation; to produce-"the the 

estimate -fr therwaiting'time'in-a GI/G/1,, queue 

, W=su(C 
2-+C 2). 

2(1-u) 

From this he developed the similar expression for the mean wait in 

a GI/G/n system 

WS=su n+1 C ±C'). 
2nu(1-u) 

'Allen=Cunneen 

A11en,, andýCunneený--[1]ldeveloped-an approximation. for GI/G/n 

queues-Involving the Erlang, C formula; this: -is - the-probability: of 

not . having to wait in an M/M/n queue and is given by 

C(n, u)=(nu)n[n! (1-u)(E (nu)k+( nu)n)]-1. 
k`° k! n! (1-u) 

The Allen-Cunneen approximation is then 

:" WAC=sC n 6) (Cä ±C 
2n(1-u) 

6.5=A, -COMPARISON OF=THE-WAITING-TIME APPROXIMATIONS. -: - 

--: iThetapproximations of Kingman and Sakasegawa are of similar 

form and-it can be seen that- 

z°WK= C7 u2C 
Z1 

. ýr> _u2,. >1 ý, for u<1. _ a. s 

WS u n+1 (Ca Cs2ý u 
(n+1 

Thus, under"equilibrium conditions, the estimate of the average wait 

in a GI/G/n queue given by WK will always be greater than that 

given by WS. In a comparison of appoximations obtained using 

J+ý 
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Sakasegawa's formula with exact values for the mean wait in a 

number of `Ej' "/E' /n=queues, 'Page` [57] noted'; thata`, the approximtion k- 

over-estimated the average waiting times except in some instances 

when j was equal to one. Hence, it can be concluded that 

Sakasegawä! s formula will'. "be-, more 'accurate than Kingman's in 

almost'every, case. 

Usingitabulated, values for the mean wait in M/M/n, M/D/n and 

D/M/nt-queues; -Page, [57] showed his approximation 'toicompare well 

with exact ° values for 'the mean , wait in 'Ei/E2/n queues, given by 

Sakasegawa4. [78], 
_ 

and to be accurate whenever some degree of 

queueing-occurred. However, the necessity of resorting to tables 

for values'of the mean wait in M/D/n and D/M/n queues, limits the 

practical value of Page's approximation. 

Cosmetatoes [14] developed simple approximation formulae for 

WM/D/n, and WD/M/n'; 

WM/D/i=0.5[1+(1-u)(n-1)ß(u+5n)-21. WM/M/n 
j-; 16un 

and 

WD%M/n-ý1-(1-u)(n-1)\/(u+5n)-2](0.5-0: 325(2-u)(1-u)): WM/M/n 
4un 

These approximations were shown to be good, with percentage errors 

of less than 1%, when waiting times were above 0.02 units of 

service time. 

Substitution of Cosmetatoes' formulae and the exact 
t.. 

. 
l. e. .yi! ýJ. 

.. P Ltd;. "Y 

expression for WM/M/n in Wp gives the self-contained approximation 

formula 
iz + .R 

WP'-WM/M/n'X 
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where" 

hX=CäZCs +0.5Cä (1=Cs )[1+(1-u)(n=1)�(4+5n)=2]° 
16un 

Yea a..! ýw",? ý`:! , 
`3lß"., ,, ý, ý 

, 
ý#: i usw °s"`v; t "'< ý .. +r. wýPt, d ', 

+CS2(1-Cä )[1-(1-u)(n-1)�(4+5n)-2](0.5-0.325(2-u)(1-u)). 
4un 

It, )', has. "been- observed,,. that`. - ; the -,, Rosenshine and =Chandra 

approximation-can-be-written in the. form'i 

WRC=WM/M/n. Y. 

The. Allen-Cunneen approximation can also be expressed--inýterms'of 

the. -mean-. wait in an, M/M/n system, becoming 

WAC'WM/M/n"Z 

- twhere 

Z=C z+C 2 
, a- d s-- 

In the special case of C2 =1, both the Allen-Cunneen 
a 

approximation and Rosenshine and Chandra's expression reduce to 

Martin's [48] estimate for the average waiting time in an M/G/n 

queue. 

The approximations WP,, WS and WAC were compared to exact 

values of the mean wait, given by Sakasegawa [65] for M/E2/n, 

E2/E2/n and E5/E2/n, and by Hillier and Yu [27] for E2/M/n, with 

various utilisations and numbers of servers. The percentage 

errors obtained are shown in Table 6.1. The errors produced by 

Page's approximation have been included for the E2/E2/n system, 

and it can be seen that the introduction of approximate values for 

the average waits in M/D/n and D/M/n queues, to give the formula 

WP,, has little effect on the accuracy. Except in the case of the 

M/E2/n queue, the approximations are over-estimates of the mean 

waiting time with 

WP1 < WAC < WS 
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throughout. When Ca*2 was equal to one some under-estimation of 

the waiting time was evident, but a consideration of the absolute 

values of the percentage errors, showed. Wpi to provide the most 

accurate results. 

Table 6.2 compares the percentage, errors of Wpjýand WRC with 

the exact values of the waiting times. Both approximations showed 

similar trends, with . 
large errors'arising'when' utilisations were- 

low. However, in most cases the errors exceeding 20% corresponded 

to average waits of less than 0.1 units of service time and the 

values of the actual deviations involved were small. Over the 

tabulated range, the maximum value of the absolute. deviations 

occurred in the estimation of the mean wait in the E5/E2/2 queue, 

with a utilisation of_, 0.95; here the exact value was, 3.1068 units- 

of service time, compared with 3.1574 given by Wp a difference 

of 0.0506 units of -average, service time. The approximations. 

performed best for queues with values of 
�Cä or C-2- equal to one, 

when WP, produced the better results. In the systems with less 

variable arrival and service time, distributions'thererrors of both 

approximations were of similar magnitude. 

The waiting times, in; "Ej/Ek/n`; queues with utilisations: of; 0.5 

or less were low, and the percentage errors of the approximations 

were not a good indication, of "their accuracy, as7. small deviations 

from the exact values produdeed large relative errors. The values 

of the average percentage errors for utilisations greater than 0.5 

were averaged for each value of n and are given in Table 6.3. 
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-4 *'r T .a, -. - is r-" St. .r-Iýn 

Table 6.3x Average Absolute % Errors of the' Approximations (u>0.5) 

n=2 n=5 n=10 

Wpi 2.788 4.355 2.150 

WRY 1.298 4.438 2.919 

The approximations appeared to be 
rof similar. accuracy;, WRC 

being slightly the better for small n, and Wp, for largen.,, 

ý. 6 CONCLUSIONS 

Of the approximation formulae considered, Wp, and, WRC 

produced the best approximations to the mean wait"in, a GI/G/n 

queue, and were of a form that could be, included in the complete 

decomposition algorithm. The accuracy of the two expressions was 

comparable in most cases considered. W, gave better results for 

queues with coefficients of variation of the inter-arrival and 

service time distributions close to one, , and for"queues with large 

numbers of servers. This approximation, . was chosen, for 

substitution in the algorithm for the, analysis of a multiserver 

queueing network. 
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7V AN. APPROXIMATION FOR 2rTHEs. VARIANCE OF' THE ), -WAITING TIME '=IN'"A 

GI/G/n`QUEUE 

7ý1" INTRODUCTION 

In', the complete decompösition algorithm ä queueing rietwörk is 

decomposed -''into its" "service centres'''which"are' assumed to'd form 

GI/G/n'qüeues. 
"°'The standard-deviation of the'throüghput time'in a 

network"is'estimated''ý-by'a`compöäition'ofý the'standärd deviations 

of"the waiting timed-at th6lindividual"que6es. -ýThe-alg6rithm''only 

relies'ön the'first"two-moments"'-of the`tra sition processes and', ä 

formula"wäs''4 required for, ', the - variance 'öf }'the waiting time' in a 

GI/G/n"queüe that could' be'"expressed °in terms"" of-the`ý{mean'and 

variänce-`of-the"inter=arrival'iandi-service'time distributions. '' 

''"`"'No exact results are available for the variance of the 

waiting time in a GI/G/n system, nor are there any good 

approximätiöns. known for queues with' more than one server. The 

conditional waiting time- distribution (given°thatra'- customer-has 

to wait) in'ä*GI/M/n"queue can be shown tobe negative exponential 

and, in"'heavy traffic conditions, '` the°'tdistribution -of` the 

uncondition'al' waiting 'time ` can . "be ' expected I toy approach' the 

exp6nentiäl'"(Kleinrock`'[39]). E This`, observation''led Kingmän'[37] 

to * conjecture that, in heavy traffic; ' the -waiting time `: in `a GI/G/n 

systemacouldý b'-considered to be exponentially distributed with 

the mean approximated by 

WK=s(C Z+C 2) 
nuuT 

-us ui 

where`s'is the mean service'time, 'u the"utilisation, and Ca and Cs 

are the coefficients of variation of the inter-arrival and service 

time distributions respectively. The heavy traffic approximation 

for the standard deviation of the waiting time would also be given 
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by WK. Kingman [38] later suggested that WK formed an upper bound 

forthe-: °`waiting-time -in they general case; this has yet to be 

established. 

Some bounds ; are known for,, the variance ; of the waiting-time in 

a GI/G/1 queue. . Kingman [36] developed=an upper-, bound, and Mori 

[52]-. produced upperýand, lowerr°bounds. Shanthikumar. [68]-suggested 

two approximations:; °for then-: variance of then wait-in> the; singler 

server queue. He used weighted combinations of Ahe'variances of 

the waiting-i times of... systems-sfor which exact, results, ý, or good 

approximations,, were -re known. -,. Corresponding-, results, f" are., -, not 

available: for. -, queues . with . more, Ahan one server,, and -; this. method 

could Mnotwbe applied to :, give , an approximation i for'the, nGI/G/n 

system. ,t 

,. 7.2 OBTAINING THE APPROXIMATION FORMULA 

In order to obtain an approximation formula for the variance 

of the waiting time in a GI/G/n queue, linear regression 

techniques were applied to an extensive range of simulated data. 

The simulation program is listed in Appendix 1.1. This method was 

used to produce an expression for the coefficient of variation of 

the departure process of a GI/G/n system, and has been discussed 

in Chapter 4. The formula 

Var(ta). n "4 {u'(O. 385Cä CS +0.188Cä )+0.266u Cs } 
g _U52 

was reached; this provided a good representation of the data, 

whilst remaining comparatively simple in form. 
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7.3 THE ACCURACY OF, THE APPROXIMATION., 

Values of the.,., standard deviation of the 
, 
waiting times given 

by the approximations were compared with-exact ; results for,, Ei/M/1 

queues, and with simulation . results fr. .a number. _,,, of :E j/Ek/n 

systems. The percentage errorfs, -are given in Tables 7.177.3. 

The approximation appeared . most accurate for E queues 

withlu equal to, 0.6. In most other cases., the errors were less 

then . 10%;, the. approximation showed a tendency"to over-estimate the 

standard deviation when u was equal to 0.6, and under-estimate it 

when u was equal to 0.8. Errors of up to 55% were observed for 

large, values of. n-and j when the utilisation was 0.6;,.. in these 

cases-the- values of, the standard deviation.,, were less, than 0.5 

units öf the meän'service time and'-the äctüäl_deviatiöns involved 

were small. 
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Table 7.1 % Errors of the Approximation to the Standard Deviation 

of 'the Waiting"Time -in"anE -/Ek/1 Queue 

j k 

,r- u=0.6 

Actual Value % Error 

u=0.8', 

Actual Value % Error 

1 1 2.291 0.49 4.899 -6.61 

2 1 1.713.. _0: 40 fi 3.711 -6.23" 
5 1 1.347 -0.40_" 2.990' -5.41 

10 1 1.221 -0.26,, -' 2.746 1 -4.85 ý' " '' 

00 1 1.091 0.16 2.500 -4.04 

1 2 1.720* 1.07 3.606 -5.84 

2 2 1.117x` 3.41 2.321 -1.38 

5 2 0.720', 9.14, ' 1.517' 7.51 

A simulated value 

Table 7.2 % Errors of the Approximation to the Standard Deviation 

of the Waiting time in an EE/5 Queue 

u=0.6 u=0.8 

j k Simulated Value % Error Simulated Value % Error 

1 1 1.590 -2.73 4.633 -14.17 
2 1 1.141 -4.11 3.457 -9.12 

5 1 0.811 -1.43 2.475 0.83 

10 1 0.641 8.19 2.326 -2.51 

1 2 1.185 1.61 3.508 -8.09 
2 2 0.703 9.91 2.143 -0.34 
5 2 0.409 21.53 1.468 0.35 
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Table 7.3 % Errors of the Approximation to the Standard Devaition 

of the Waiting time in an E4/1O Queue 

j k 

u=0.6 

Simulated Value % Error 

u=0.8 

Simulated Value % Error 

1 1 1.187 -8.01 4.090 -6.66 

2 1 0.690 8.94 2.634 -6.02 

5 1 0.434 20.76 2.143 -0.05 

10 1 0.283 54.11 1.908 0.59 

1 2 0.862 0.19 2.791 -7.17 

2 2 0.433 26.15 2.035 -6.20 

5 2 0.218 55.72 1.188 8.29 
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8"APPROXIMATION OF'THE THROUGHPUT "-TIME'IN'A MULTISERVER'QUEUEING 

1 w; -" NETWORK ý,.. 14 7 ý; e; , ., 

8.1 INTRODUCTION'' ' '' 

=° "The approximation formulae forh=the coefficient"'of variation 

of the departure 'process, and the-mean-and standard"deviation of 

the waiting time"Ydistribution, of'a GI/G/n-'"queue, obtained in 

Chapters 4; 6 'and -7, were `substituted into "the* 'complete 

decompositon algorithm for'the analysis of a'multiserver'queueing 

network. `Approximations given by'the`algorithm for-"the mean`"'and 

standard deviation of- the throughput time were compared with 

results' obtained from the simulation of a number of networks. 95% 

confidence intervals were "estimated for : the° mean_ throughput time 

in networks with oneo, orlý two servers, ' at °the centres: ` The 

simulation program is validated in Chapter 3 and listed in 

Appendix 1.2. The approximation algorithm, is described in-Chapter 

u and listed in°`Appendix'°2. A breakdown of the simulation and 

approximation results, for'the individual queues-of`thenetworks°is 

given in Appendix' 3: 

Aýý-ý.. ,.. _, _- _. ", ý ýý. ý. 

8.2 "THE NETWORKS' 

Networks of four and ten service centres were used to assess 

the accuracy of the complete decomposition algorithm. To reduce 

the number` of parämeters needed to specify the networks, it was 

convenient to consider- that all the centres of a network had the 

same service "time distributions, utilisations and numbers of 

servers. External arrivals to the networks were assumed to be 

Poisson distributed. 

Two types of networks were modelled; these were termed flow 
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shops°or. symmetric shops? according to the transitionvprobabilities 

of the', 'jobs'passing'thröugh'them: 'Y. in, -°'a network of M identical 

service centres) numbered 1,2, '. 1..., M, a flow shop can be defined 

as one in` which each job enters the network at centre 1, visits 

each service' centre An turn, and leaves the network after 

completion of service at centre M, in a symmetric shop, jobs 

entering the shop are equally likely to require their first 

service from any of the centres, on completion of a service the 

probabilities of a job leaving the network or approaching any of 

the other service centres, are equal. ' 

Defining 

Pik= the probability"that "a Job proceeds to"centre'" j 

at centre `'i after completiöný pof service' 

'ij=1,2, ý: , M`. 

pM+1 the-probability thät'a job has its first service at 

centre j j_1,2;.: :., M 

pi, M+1- '' the probability'thät-'a job' leaves `the' network after 

-completion of `service at" centre' i'--idi_1; 2,.:..; M, 

then' an'M-centreL' flow ý 'shop' is 'represented e; by the', (M+l)x(M+1) 

transition-probability matrix- 
r0 

1'0;. << 0ä 

0 0;.. 0: 

01 -, --0 Z00 -0 

': """""" 

o OOr". 1 

1- "p p: - ...... _ 0 
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: and-the'! transition probabilities. of"-an M-centre; symmetric shop 

are represented by the (M+1)x(M+1) matrix 

0 1/M 1/M . i. 1/M 

1/M 0 1/M 

1/M 1/M 0.1/M 

.,... ". . 

...... 

1/M 1/M 1/M .. 0 i� 

.3 THE ACCURACY. OF-THE COMPLETE DECOMPOSITION. ALGORITHM. ' 

It can be seen from Tables 8.1-8.7 that, the approximation 

algorithm generally, produced good estimates of the mean throughput 

time in a' network. The algorithm, performed °best when the-, 

coefficients=ofivariation' of, the service times, were equal to ones`. 

and, except for some instances when the coefficients of variation 

were equal to-0.2, , all the approximations. were; 
_within 

the 95% 

confidence intervals estimatedt-forAhe simulation- results. Most 

of the 
_percentage -errors calculated were less,, than,.. 5%. ! The: larger- . -: 

errors arose for flow shops. with E5 service time distributions and 

high utilisations; the maximum error. rof 10.80% was recorded for 

the network of'four. two-server-centres with utilisations'of, -O. 8. 

The approximations to the standard deviation of error of the 

throughput time distribution were close'to the simulated values in~ 

the ten centre networks and, in, the networks with four five-server 

centres The. approximation. was not 'as accurate for networks with*, °°':: 

one or two-server centres; the greatest deviations occurred in the 

single-server. networks, 'and errors of more than '20% were 

calculated for the'flow shop with four single-server centres. 
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Table 8.1 Flow Shop with Four Single-Server Centres 

U C" 

. yY .... YPI 
Mean Throughput _, 

Time 

Simulated Approx. % Error 

11 4' ""ý. .t_a 
Standard` Deviation 

Simulated Approx. % Error 

0.2 2.024j0.105 2.134 5.43 0.618 0.160 22'. 98 

0.4 '0.5 2: 281±00'114 2.325 1.93 0.927 1.057 14.02 

1.0 2.653±0.128 2.667 0.53 1.318 1.484 12.59 

0: 2 3.776±0.181 3.908 3.50 1.313 1.349 2.74 

0.6 4.6ü1±0.232 4.662 0.45 2.063 1.995 
-3.25 

1.0 5.990+0.290 6.000 0.17 3.004 3.012 0.27 

0: 2 7.847±0: 383 '7: 528 -4: 23 3845 2.812 -26: 86 

0.8 0.5 11.029+0: 495 10. '634 -4: 
62 5.434 4.514 -16.93 

1.0 15.765±0.776 16.000 1.49 8.031 7.497 -6.65 

Table 8.2 Symmetric Shop'with'Four Sing le-Server Centres 

Mean Throughput Time Standard Deviation 

u C-2' Simulryated Approx. % Error Simulated Approx. % Error 

0.2 11 2.220±0. "111 2.221 0.05 2.085 2.100 0.72 

0.4 0.5 2.42710: 117 2.386 -1.69 2.349 2.3414 -0: 21 

1.0 2.647±0.132 2.667 0.76 2.743 2.745 0.07 

0.2 4: 502±0.225 4.431 -1.58 
4.450 4.184 -6.36 

0.6 0.5 5: 215±0: 250 5.012 -3: 89 5.408 4.865 -10.04 

1.0 5.848±0.273 6.000 2.60 6.103 6.006 -1.59 

0.2 10.788±0.555 10.131 -6: 09 11.689 $9.630 
-17.61 

0.8 0.5 12,766±0.637 12.312 -3.56 13.844 11.909 -13.98 
1.0 16.015±0.774 16.000 -0.09 17.509 15.755 -10.02 
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Table 8.3 Flow Shop with Four Two-Server Centres 

u C32 

-Mean Throughput, Time: 

Simulated Approx..,, % Error 

Standard Deviation 

Simulated Approx. % Error 

0.2 ; 3.488. t-0.170 ; 3.553. - , 1.86 - T.. 0.852 , 0.9141 7.28 

0.4 0.5 3.588±0.175 
. 

3.647 1.64 1.260 
. 
1.342 -6.51 

1,0 3.791±0.199 3.810 0.56 1; 803 ,,, 1.864 3.38 

0.2 5.929t0.278 6.206 4.67 1.625 1.694 4.25 

0.6 0.5 6.5080.297-, -6.678 2.55 ., 2.431 
. 

2.436 0.21 

1.0 7.50210.347. 
, +x7: 500 

, -0.03 3.511 -, 3.435 
. 

2.16 

0.2 10.625±0.400 11.773 10.80 3.746 3.748 0.05 

0.8 0.5 13: 609±0.549nn 13.986 - 2.77 5.789 5.388 -. l.: 6.93 

, r,. ' 1.0 17.482±0.666 17.778 ? 1.69 7.723 7.962 -, 13.09 

Table 8.4 Symmetric Shop with Four Two-Server Centres 

u C 

;.. Mean Throughput,: Time, - 

SimulatedE- , Approx. ",,: y% Error 

., 
Standard Deviation 

Simulated Approx. % Error 

0.2 -3.590±0: 174 , -3.580 ,; - -0.28 3.220 
, 

3.239-1, r: ' 0.59 

0.4 0.5 3: 708±0.175'"" 3.665 -1.16 3: 511 '3: 451 -1.71 

1.0 3.818±0.184 -3.810 -0.21 ý. ; 13: 827 13.790 . -0.97 

0.2 6.43010.303 
,. 

6.409 -, -0.33 6: 037 1,, "5.842 -3.23 
0.6 0.5 6.806±0.295, 

. 
6.815 0.13 "",. 6.571 -,, 6.414 . -2.39 

1.0 7.582±0.337 7.500 -1.08 7.684 ; -, '7.348 , -4.38 

0.2 13: 540f0.711 
. 
12 . 950 -4.36 136 '803 1,. 12: 036 -12.80 

0.8 0.5 15.22010.862 ,> . 
14.750 - . -3.09 15'712 14: 019 -°'-10-78 

1.0 18.309±1.305- 17.779 -2.89 19.669 "? 17.333 --'-11.88 
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-Table 8.5 Flow Shop with Four Five-Server Centres 
s»� 

Mean Throughput Time Standard Deviation 

.u 
C Simulated Approx. % Error Simulated Approx. % Error 

0.2 8.073 
, 

8.108 0.45 
. 

1.806 1.821 0.83 

0.4 0.5 8.123 8.127 0.04 2.857 2.860 0.04 

1.0 8.157 
., 

8.159 0.02 4.006 4.036 0.02 

0.2 12.647 . 12.858 1.67 2.866 . 2.906 1.10 

0.6 0.5 12.962 13.064 0.79 4.478 4.668 0.22 

1.0 13.334 13.417 0.22 6.297 6.281 -0.25 

0.2 19.. 598 20.986 7.08 5.055 . 
4.986 -3.20 

0.8 0.5 21.930 22.423 2.25 7.788 7.513 -3.66 

1.0 25.084 24.866 -0.87 10.957 10.522 -3.97 

Table 8.6 Symmetric Shop with Four Five-Server Centres 

Mean Th roughput Time Standard Deviation 

u C2 Simulated Approx. % Error Simulated Approx. % Error 

0.2 8.075 8.111 0.44 7.205 7.257 0.72 

0.4 0.5 8.125 8.129 0.05 7.606 7.599 0.09 

1.0 8.183 8.159 0.29 8.170 8.138 0.39 

0.2 12.841 12.903 0.48 11.524 11.551 0.23 

0.6 0.5 13.081 13.095 0.10 12.252 12.193 -0.48 

1.0 13.346 13.417 0.53 13.196 13.208 0.09 

0.2 21.741 21.360 -1.78 20.422 19.274 -5.62 
0.8 0.5 23.104 22.670 -1.88 22.345 21.060 -5.75 

1.0 24.544 23.967 1.49 24.544 23.967 -2.35 
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Mean Throughput - Time'l -' Stända'rd Deviation' 

u"C Simulated Approx. Error Simüläted Approx. ''% Error 

0.2 , '12.616' 12.617 0.01 ' '12.162" 12.115 0.39 

0.4 0. '54. -12. '649 , 1H 0 12.739 `O. 71 '12o'293 " '12. '416 1: 40 

1.0 , 12926 ýý , 12.941 -- , 0.12' 12: 837 ``12: 908 0.55 

10.2 21.231 21.301 0.33 20.642 `209'483 -0.77 

0.6 00'5 o- 21.988 '22: 057' '0; 31 21.558 `21: 441 -00'38 

-1'. 0 `-123.204>ý 23.321 i 0.50 23.191 23: 11 -0.34 

0.2 " "39.684--- '"39.541" ; -0.36 -' : '`39.673 38.25 

0.8 0: 5 ' 44.392 >-'f43., 412, -*' ' °=1.68 °` 44: 392' `" 42937 

1; Or. --148: 699''' 49.888 2. '44 49: 657 'e-=, '" 49.24 , 

-3: 58 

- 
. 5k 

-0.82 
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CORRELATION OF<THE ARRIVAL STREAMS, 

In the= development of the-complete-decomposition-algorithmýit 

was assumed that-all, the transition, -`processes-of ß"aµ queueing 

network. wererenewal. The simulation results listed in-Appendix'!. -, 3 

show, that significant correlations arose in, the-arrival streams=of 

most of the networks. The effect of correlation: -on the-accuracy 

of - the -k -approximation of- the- coefficient of variation--,, of -the 

arrivals'is'-discussed", in°Chapter, 4 (p. 44) and Chapter 5. 

, trThe -greatest "degree of correlation was observed in the 

arrival streams of-flow shops with--high--utilisations and low 

coefficients - ofý variations-.,, of service, times; in- -the , single-server 

networks, correlations' were positive'and the, ), -coefficients 'of 

variation of the--arrival streams, and the-mean-ý'and, standard 

deviation of the throughput, times were under-estimated, -in the 

networks with more: than one server -at-fthe centres, the arrivals 

were44°negativelyý-correlated and the algorithm under-estimated the 

network parameters. In the symmetric shops, the correlations of 

the arrival streams were generally small and positive; the largest 

values being observed in networks with low utilisations and 

numbers of servers. As was noted for flow shops, positive 

correlations coincided with under-estimation of the coefficients 

of variation of the arrivals by the algorithm but, due to the more 

complex nature of the networks, this effect was not always 

reflected in the estimation of the throughput times. 

1.5 CONCLUSIONS 

The approximations given by the complete decomposition 

algorithm for the mean and standard deviation of the throughput 
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times in queueing networks were compared with the values obtained 

from simulations, of the networks. IHThe algorithm wasAmost accurate 

for--the moretcomplexýnetworks; 'theýlowestrerrors, were-observed for 

symmetric shops with large=numbers' of-, service centres; °"or large 

numbers «'of °servers at , the centres: ° The 'approximation zfor '"the mean 

throughput timer- was good-'', in =all -cases" considered ., v The 

approximation ' for-, "the standard*'deviation -Of the throughput time 

was-reasonable in most instances, though:? errörs, of up"to. 25%, were 

evident«in}some of the'single=server'°networks. - -,, 4 `=- 

A significant degree, of", correlation wasý'notedrin the; arrival, 

streams of most of the networks simulated, and its presence in 

flow shops, appeared "to have a direct affect, -on=the accuracy, of t. the 

algorithm: ` The renewal assumption is'therefore questionable"and'a 

further study'of-l'the correlation inora ; '. queueing network` , could 

result',, in "-an.,: improvement -rof"kr: the "accuracy. -of the complete 

decomposition' algorithm. 

1 
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9 AN INVESTIGATION OF BERTHING REQUIREMENTS AT'IMALLAIG HARBOUR, 

9.1 INTRODUCTION 

Developments in the fishing industry including -the 

establishment of Exclusive Economic Zones, the over-fishing- of 

some species such as herring, and the growing demand for others, 

prompted investigations into the adequacy of existing port 

facilities. The port of Mallaig is considered the only safe 

harbour on the west coast north of the Clyde. In view of its 

importance, Crouch and Hogg [20] examined various possible harbour 

developments. In September 1979 the White Fish Authority [74] 

produced a detailed economic evaluation for each development 

option. 

The report included a recording of the port operations on a 

daily basis to appraise existing facilities and to forecast the 

berthing requirements for 1988. 'Approximations given by the 

complete decomposition algorithm for the mean and standard 

deviation of the times spent by ships in the harbour were compared 

with the times observed by the White Fish Authority. --The 

algorithm was used to examine how the harbour would cope with 

increased landings of white fish, and to predict the number of 

berths needed in 1988 to keep mean waiting times below -five 

minutes. ' 

ýý ý; -r ý. 

9.2 BERTHING TIMES IN JUNE 1979 

In 1979 the main activity in Mallaig , Harbour was' the 

unloading of white fish and shellfish. Most vessels landed their 

catch between 2 p. m. and 9 p. m. on Tuesdays and Thursdays in order 

to meet the requirements of the white fish/shellfish auction. 
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Ships'-unloaded and-took'' on, -boxes; fuelY6nd water`=at the working 

berths. The number: -of working! Y berths 'available was`'a, major 

determinant of the port's capacity. Although the port had twelve 

working berths, lack of shelter could mean that as few as six were 

usable in. bad weather. Amore critical factor was"the congestion 

in the harbour which caused some berths to be blocked off by 

parked ships. Even on. 'a quite day,. as ships-arrived the number of 

accessible working: berths`was rapidly' reduced''to: "eight. 

Some vessels needed to take on ice while they were "in the 

harbour: "There was'only one ice" berth, and bad siting meant that 

access was often obstructed and long queues formed. Ships could 

visit'rthe ice berth-before'unloading'at-the""working'berths. 

"'''-The'' White Fish Authority -observed- the operations of rthe 

harbour owa 'quiet' auction day, Tuesday 19 th*June 1979. -and on 

Thursday 21st June-1979, a much busier day. The time ofarrival 

of each-vessel, its'service times at'the berths and its throughput 

time were recorded. ! Estimates- of-the means: --and, standard 

deviations `, of the throughput times -"given by-the--approximation 

algorithm, for the two days, ', were compared, with-those, calculated 

from the 4observations. '-. '" 

The ships were, assumed to have the: use, r-of eight working 

berths:, 'and one ice berth, and "4 the harbour'-, was. modelled as-,,, a 

networkfof'two queues with. theMcorrespondingfr>ynumbersrof--servers: 

On'Tuesday, 19th June, eighteen ships`entered'theýharbour'`in a'two- 

hour{`period; `'Eleven of the shipsz needed-ýice; 'only`oneý=}of"these 

took on ice before unloading at a working berth. This 

information, and the estimated means and standard deviations of 

the inter-arrival and service times, allowed the computer 
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algorithm to', iapproximate the . mean waiting : ": time"'at each set of 

berths, and the mean and standard deviation of the throughput 

time. 3 w., . 

`Table 9.1 Waiting'-Times on Tuesday 19th June . 1979. 

Mean Wait (mins. ) Throughput Time (mans. ) 

" Working Berths"nIce Berth` Mean 

Observed 0.0 ' 5; V, - ., 31.5 ` fi 9.6 

Approximation "0.5 21: 2ýýa "53.9 23: 0 "`r"ý 

ý: ýýý-fý., -i, ý' ýti 
,.. a 

nr, 

'Table, 9.1r shows ' that the ": approximation " =algorithm ! over- 

estimated'the average waiting timeat the ice berth, and, 'thelmean 

and standard deviation'of"the 'throughput times. '- The{inaccuracy 

maybe caused'by -the shortness oP the period-in which=the events 

occurred; the algorithm relies on the assumption , that-'a. --queueing 

system "is=3'allowed to' buildup t'to--steady-state ; 'conditions. The 

figures, given by 'the 'algorithm can be considerd to be an 

indicationtofr the'ways-waiting times', would 'increase 'if'arrivals 

continued at the"same rate- for' a, 'prolongedperiod. ' ý. ' 

On the'afternoonof Thursday'21st 'June, the details of'forty 

ships'arriving-yin ar four hour period were taken. - Twenty three 

ships, required-. ice, -and five, took,: on`ice before approaching a 

working-berth: ''Table-9.2 compares the waiting times approximated 

by the algorithm with those observed by the White Fish Authority. 

". ý" ,. 

ý, ,. e, ýý. ý-F, ý 'i 

.ý., ý ý,. 
- ýz . 
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Table 9.2' Waiting Times on Thursday-, 21st`June 1979° `' -ý ; 

Mean Wait, (rains. ) . Throughput=Time-(minx. ) 

Working Berths Ice-Berth Mean -S: D: 

Observed 3.2 11.1 69.1 29.7 

Approximation '5: 1 50.7- 91.6 62.1 

-. Lack, of steady-state 'conditions could'again, account- for the 

over-estimation of the queueing times by the "algorithm. During 

the four hours in which ships arrived, waiting for a working berth 

was-only observed-in the second half of the period, and the queue 

for-the ice berth , gradually'°increased, this", suggests)"that if the 

arrivals had=' continued at a similar rate-for a long, -period the 

mean waiting times'would", have, increased. °yThe-White Fish Authority 

calculated the utilisation' of the ice berth, on'°°, the . -Thursday 

afternoon- to-be -'1; 125, A if. the ' events had ' reached a state of 

equilibrium with this utilisation 'there-"would have been an 

infinite queue-for the" ice°-berth. 

$It'canbe 'concluded'that, -"when a' comparatively-large-, number 

of arrivals occur =in`a short period-of time, steady-state models 

such` as -the complete-decomposition''algorithm do ýnöt" provide 

accurate"estimates"of. " queueing times. A. "model" that cönsiders"the 

transient behaviour of a, queueing'system,, would-be more-, useful for 

this. type of`situation. < °' tý* 

9.3"JBERTHING REQUIREMENTS AS LANDINGS' INCREASE 

-".: The White Fish Authority forecasted that the landing of white 

fish'"and shellfish would have"almost ' doubled by 1988. " The 
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approximation algorithm'. was used, to establish the critical factors 

in determining,, - queueing ' times --. in the ý harbour ,ý as °': the 'number r of 

arrivals per hour were increased, assuming-, that-arrivals continued 

for-along enough period of time for steady-state conditions to 

arise. " :.. o_ . r�- ,- . i, v, - ̀ , ri . .I- 

It was: observed thatcthe', *average service rates at the working 

berths rand the ice s-berth' were P longer on' the Thursday="than 'the 

Tuesday; "the White Fish, -'Authority'-conjectured'that this was'due to 

the"increasedh'congestion in the harbour on the busier day. In the 

investigation- the-estimates-of. -the -mean. and-,: variance- of 'the 

service-z , times, ý . the : -variance? rof, , the- arrival i rates, - and--the 

proportions of-ships requiring4icei were-'"averagedtyover the-two 

days. -Two -types of flow, throught the-harbour were ». considered: -, in 

one-instance. alls, ships requir. ing: icerwere-assumed ao'-take'on=, ice 

after unloading-''at the working berths, 'inrthe°other4 case, -ships 

needing, -ice were, considered equally-likely-to<approacht, the. working 

berths or _ 
the --. ice berth on entering the. harbour. ii -- 4. ý -1: ,: 

--'Me estimates given by the=- approximation-algorithm-for the 

queueing times in the harbour with its 1979 facilities are shown 

in. Table 9.3k for up¬to'ten. ships'arriving an hour. Varying the 

order in which -ships visited the berths had little effect on-the 

average waiting times, -but-. allowing ships to visit the ice berth 

before. "-the" working, berths greatly increased the variance-. - of, the 

throughput time. h On the two days observed by -the White -. -Fish 
Authority,:. a' small proportion of.,, ships, -,:, took on,. -., ice before 

unloading. The average -value -of. the; -, mean throughput:, -times 

recorded-, for- the two days of 51.8 minutes -corresponded to-: the 

steady-state, 
-approximation for an-arrival -rate. of four ships-an 
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hour, and the average' standard deviation . for-the°two'days of-19.7 

minutes lay approximately midway. between- the. values ofx 8.71, 'and 

36.37 given by the algorithm- for - the . two; types- of-: route 

considered. F' s 

If more-than seven ships were= expected, -an hour the'algorithm 

calculated that they were likely to have to wait at least, twenty 

minutes to take on ice, and'an-, arrival rate'of, nine ships-an hour 

would. cause the ice-berth to become overloaded -and veryr long 

queues to-develop. 

-Table. 9.4 gives the approximate-waiting times; under steady- 

state conditions, a if two ice berths were-available". in the", harbour. 

In this case, the-queue for the, working: berth becomes the dominant 

factor in determining, throughput times as the-, number"ofi. arrivals 

is increased. The harbour would be able to deal comfortably with 

an average, of . f-nine' arrivals per hour,,,, -if tenor-more: ships were 

expected an hour; queueing times'for the working berths'would'be 

likely to exceed ten minutes, and 'overloading 'of the working 

berths'would occur "if"twelve ships'were expected every hour. 

9: 4 BERTHING REQUIREMENTS=FOR 1988-';;! ý- '. ̀ t ý ̀ ýý 'F''ý ýý 

The White Fish Authority attempted to predict the numbers of 

ice and working berthsrnecessary, for' Mallaig Harbour°to copetwith 

the seasonal fluctuation"` in the arrivals' of vessels unloading 

white'fish 'and=shellfish' in-"1988e From the data collected on 

Thursday 21st June 1979, they conjectured that the average 

waiting time at the working berths corresponded better to the 

assumption of an M/M/8 queue rather than a GI/G/8 model, and for 

the 1988 forecast they treated the ice berths and working berths 
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as two separate M/M/n queues. The mean service times at the 

berths were consideredito. ibe, those. of: theýbusier of the two, days 

observed so that any error in the estimated waiting times would be 

on the 'safe' side. 70% of the ships were assumed to require ice, 

and the system was-considered to attain steady-state conditions. 

-,, --The , approximation algorithm was used , to estimate, the numbers. 

of working berths and ice berths needed to-, keep the average wait 

at each set of berths below five minutes, under the: _, assumptions 

adopted by the White Fish, -Authority. All. ships were assumed to 

unload before taking onaice; the results of, the previous section 

showed that allowing the. order of the operations to.. vary had 

little effect on the mean throughput time, though it did increase 

the standard deviation. Table 9.5 shows the berthing requirements 

in the harbour for up to seventeen ships arriving per hour. The -w 

figures=for, the working-berths corresponded ;, to-those given by the 

White Fish Authority, the-algorithm-also-included the-ice berths 

in the model, and was able to provide approximations for the mean 

and standard deviation of, the throughput times. 

The peak arrival rate of 15.33 ships per hour was forecast 

for-June 1988. Table 9,5. indicates�that the provision of. seventeen 

working berths and four ice berths would keep the average 

throughput time below seventy minutes throughout the year, but the 

high values of the standard deviations indicate that the 

individual throughput times may vary considerably. 

0 
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Table 9.3 Approximate Waiting-Times Un'-the Harbour with Eight 
Working Berths and'One Ice'Berth 

All ships visiting"the working berths'first (waiting times in minutes) 

Arrivals/hr. 
Working Berths 
u Mean Wait 

Ice 
u; 

Berth 
Mean Wait 

Throughput Time 
Mean S. D. 

2 0.17 0.00 0.22 1.58 49.81 8.53 
3 0.26 0.01 0.33 2.84 50.57 8.67 
4 0.35 0.04 0.44 4.65 51.68 8.71- 
5 0.44 0.14 0.55 7.19 53.28 8.63 
6 0.53 0.40 0.66 11.62 56.18 9.65, 
7 0.62 0.97 0.77 20.39 61.96 14.41 

'8 0.70 2.10 0.88 43.74 76.50 31.32 
"9 0.79 4.77 0.99 447.88 319.69 367.34 
10 0.88 12.34 1.10 - - - 

Ships visiting either berth first (waiting times in minutes) ýy 4-" -- 

Arrivals/hr. 
Working. Berths 
u Mean Wait 

Ice 
u 

Berth 
Mean Wait 

Throughput-Time 
Mean 

-r 2<. 0.17 0.00. 0.22 Y 1.50 49.77 34.86 
3 0.26 0.01 0.33 2.67 50.47 35.46 
4 0.35 0.04 0.44 4.33 51.49 36.37"- 
5 0.44 0.15 0.55 6.65 52.97 37.76 
6 0.53 0.41 0.66 10.97 55.64 40.43 
7 0.62 0.99 0.77 18.63 60.93 46.22 
8 0.70 2.08 0.88 40.02 74.23 62.94 
9 0.79 4.57 0.99 434.63 311.66 432.93 

10 0.88 12.23 1.10 - - -" 
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Table 9.4 Approximate Waiting. Times in the Harbour with Eight 
Working Berths and T wo Ice Berths 

All ships' visiting the working berths f irst (waiting times in minutes) 

tF Working Berths ; 'Ice Berth Throughput Time 
Arrivals/hr.., 

,uM ean Wait U Mean Wait 
, 

Mean S. D. 
, , " e 

2, 
.. 

0.17. - 0.00 0., 11? 
.. 

0.09 48.93 
, 
8.82 

3 0.26 0.01 0.16 0.19 49.00 8.79 

,4 0.35,. 0.04: 0.22.. �0.34, - 
49.12 8.74 

5 0.44 0.14 0.27 0.52 149.32 8.67 
6; 0.53 tiw 0.40, 0.33, 0.78. (, , 49 73- 

.r8.59 7 . 0.62 0.97 0.39 1.11 50.51 8.57 
-, -8- - C, 0.70it , 2., 1,1, 0.144 , 1.51: . ',. -" ,. 

5188_ j,,, , 
8.79 

9 0.79 11.77 0.119 2.05 5+. 87 10.13 
10; 0.88 = , 12.34 . 0.55 2.75. . 

62.85,, 16.77 
11 0.97 60.44 0.60 3.61 111.46 69.89 
12-_ 1.06,, 0.66 x. 

4.84 

Table 9.5 Berthing Requirements to keep Mean Waits below; Five Minutes 

All ships visiting the working berths first (waiting times in minutes) 

Working Berths Ice Berth Throughput Time 
Arrivals/hrý, No.,,, Mean. Wait 

,4 
No.. <, ý, 

Mean. Wait. ,, n,,,, 
Mean, "., y 

S. D. 

2 8 0.001 2 0.57 59.12 48.96 
3 11 8 0.04 2 0.81 , 59.41 48.98 
4. 

,,.. 8, 0.26 2 1.21�- c 60.02 49.02 
5 8 0.95 2 1.97 61.25 49.14 
6. 8, 2.86, 2. 3.04 63.88 49.53 
7 9 G 2.76" 2' ; 4.54' ßf64.86 49.45 
8, 1o, 2.66. 

, . y3 X0.93 ,. $ 
62.23 

, s, ý. ýý 
49.36 

9 11 2.55 '1 1.33' 62.41" 49.27 
10 12. 

�2.44� 
3 1.86 62.67 49.19 

11 13 2'. 33 3 2.33 63.07 49.12 
12 13 4.85 3 3.46 66.19 49.65 
13 14 4.49 3 4.67 66.68 49.50 
14 15 4.15, 

.. 
4 1.22 63.93,,, 49.52 

15 16 3.86' 4 1.60 63.90 49.40 
16 

-17 3.59 4 2.08 6 3.96 49.29 
kß,, _ 



96 

10 AN APPROXIMATE ANALYSIS»OF QUEUEING°TIMES IN°A MANUFACTURING 

JOBrSHOP 

10.1 INTRODUCTION 

The "Fenner"Group of,. Companies , provides"': power-, transmission; - and 

mining equipment, conveyor systems , and oil seals for'°Andustry. 

The Motor Gear- and Engineering CompanyfLtd,. based, in: -Chadwell 

Heath, Essex, "is-a member of, -,, the, Power Transmissionr, Division, and 

manufactures' a wideA°range- of.,, -geared motors, couplings and 

Universal"Joints. '. In-December'1973 a computer operated scheduling 

system known, ', as r °"MOSQUE" -, (Motor a-. Operation 1" Scheduler x and 

Queuetime/Urgency'Evaluator. ): -was, introduced in-,,,, the-. --Essex works; ) 

Theýmain,: aim of, MOSQUE was to'ý-. determine the despatch date of°each 

production batchii by evaluating, s, the"time; neededi;. for. each+. of its 

required, operations. -The queue position, sand '. 
hence queueing time, 

ofea: batch zawaiting, an operation'at a;, work centre was determined 

by. an~algorithm;,, that-considered the relative 4urgency (numbers, of 

days elate): ofkthe batch. 'r.: Standard queueing times'were"calculated 

for the work-centres as a`result ofan -analysis pof -ithe actual 

queueing. times of batches withrvar, ious degrees of urgency. >. i r.. - 

ý,? rMOSQUE produced-regular, print-outs identified: by-TabInumbers. 

Two. of.. the-mostr"important were: -.: 

Tab, ý8: - . "A. weekly. -. -loading summary'was = tabulated . for each work 

. centre .., and- group -of,;, -similar - work °, centres. y-- This 

, presented. an historical , record., for, theýprevious twenty 

'six weeks of, the actual weeklyproduction relative-to 

, 
the- available: load''and planned.,, production, and, r-gave 

average. queueing-, -times'for,, -. 'the operations. The load 

0 
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due for the following twenty six weeks was included and 

compared to the planned production. 

Tab 13 At the end of each month a full progress report was 

printed for each batch in the factory. this included 

the service and queueing times at work centres where 

operations had been completed, and the forward schedule 

of outstanding operations... 

10.2 UNIVERSAL JOINT PRODUCTION 

The manufacturing job shop scheduled by MOSQUE could be 

modelled by a multiserver queueing network. Data provided by Tab 

8 and Tab 13 issued on day 086 of the Motor Gear Calendar allowed 

the approximation algorithm to be tested in a practical situation. 

To reduce the scale of.,, the, analysis, ponly 
those work centres 

needed to produce- Universal Joints were considered. With the 

exception of one 
, 
form of heat treatment, . this group of work 

centres was involved exclusively in Universal Joint production and 

could be regarded in isolation from the other activities of the 

job shop. Tab 13 gave the scheduling details of the 265 batches 

of Universal ' Joints' in the''factory on day 086. Twenty eight-work 

centres were employed in the manufacture of standard Universal 

Joints. Other work centres were occasionally required for non- 

I/ standard batches, these were not included in the analysis. 

The work centres were grouped according to the type of 

service they provided (coded by their first letter and number). 

Table 10.1 records the component work centres of the service 

groups involved, in the production of standard Universal Joints, 

and the type of operation they performed. 
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Table 10.1 The Service Groups Employed in Universal Joint 
Production 

Service Group Component"Work Centre Operation 
., wL., " kit 

PO "POAL2 POAL3 Bar-auto turning 

1P 1PCL1 Centre turning 

2P 2PTL Turret turning 

l4Pý 4PCP1` 4PCP2"'4PCP3 Capstan lathe turning 

P5 P5SH- Shaping 

P6 P6CG1. P6CG3 P6CG6 Centreless grinding 
P P6CG7 P6CG8 
_. P7 � _ P7RMO' P7RM2 P7RM8 Routing 

Q2 Q2BF1 Q2BF2 Fitting-and benchwork 

"Q3 Q3DR1 "Q3DR2 Q3DR3 Drilling 
Q3DR4 

Q4 . Q4LN Linishing 

Q8 Q8HM2 Q8HM3 Milling 

E1 E1HT Heat treatment 

E3 E3HR Induction harden (radyne) 

Y8 Y8SC Sub-contracting 

ý. 

1t 
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10.3 THE;.. INPUT;,, PARAMETERS-FOR THE-ALGORITHM 

. The-production-7. of some . of the work -, centres given; in,, -Tab=8 

bore-little relation ., to either the available load -or. -the planned 

production: -- However, --the -combined planned- production-of rthe 

service: -groups did appear to correspond to the actualr group 

production. -Ihiss-suggested that if one of the work-centres, of. a 

service*group"became overloaded, batches; were transferred=to. one of 

the other, work-centres 'performingGa: --"similar, type-, ofAoperation. 

When: applying the approximation algorithm, it seemed reasonable to 

consider each°R-group-ofi'work centres, "as"4; a! single service centre 

with : an appropriate numberÄ of servers*,, 4'. 

%' Therapproximation'algorithm was developed for service centres 

operating arfirst'. rcome °first'served discipline and'lýwas'unableýto 

model'theöearliest xdue date-queueing-discipline-, usedto; schedule 

the""jobs, -in; the, -factory: However, in manyf, casesh standard> lead 

times meant that work-was performed, on a first rcome-first served 

basis; 

.. The Arrival, and"Service Times, 

rr, *; =.. The E-first4; two moments=of', -. the service time distributions at 

the:; service groups were estimated from Tab 13. Large variations 

were observed=in-the service times : of, batchesof', different sizes 

The±number. 7of items in-, a -, batch, varied =from-1 'tov 4000. ýlt} 

^Fi: r, ', TO rcalculate":. the-, rates of:. -, -the,. - external,. "arrivals totir. the 

service groups, ýall. the. jobs, that,, arrived in-thee period in which 

an°arrival,. with° the-: average. throughput time; r: +"wouldbe recorded 

as cwork,: in progress:. on, day, 086; were' considered. 'On . arrival at the 

factory'°most: ýjobs«spent, -their first five daysrwaiting: for_bars'or, 

other-components''to=be-procured: from, -. the stores. - A further. two 
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days elapsed between the final operation and despatch or delivery 

to the stores. These delays did not vary and were not included in 

estimating the average throughput time for the jobs of 40.001 

days. To be in the factory on day 086, a job of this length must 

have arrived at its first service group by day 044, and not later 

than day 091. Hence, the moments of the distributions of the 

external inter-arrival times were estimated under the assumption 

that Tab 13 included all arrivals that occurred between days 0414 

and 091. 

The estimated means and standard deviations of the inter- 

arrival and service times are listed in Table 10.2. 

The Transition Probabilities 

The transition probabilities given in Table 10.3 were 

calculated as the proportions of the departures from a service 

group that had their next operation at each of the other service 

groups. In most cases a comparatively large proportion of the 

departures from one service group approached a particular group of 

work centres, but a fair amount of variation was evident in the 

routes taken by different batches. 

Number of Servers 

The difficulty in quantifying the capacity of the work 

centres has been stressed in the MOSQUE manual [25]: "At any time 

neither the firm'load nor the capacity at a work centre is known 

with any precision....... Efficiency and overtime working vary;, 

skilled men can transfer between work centres and machine 

breakdowns and operator absence can occur at random. " 

Tab 8 provided details of the planned and actual production 

at each work centre and service group. From the information 
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issued on day 086, it seemed probable that in some instances the 

workrrcegtres --of-a group, pooled-their, capacity,. in order to cope 

(allowing five hours spare capacity) with demand. In the 

application of the approximation algorithm, each group-of work 

centres was consideWd. as a single service, centre, with a number of 

servers representing,. the total number of machines,. or men at the 

service group. 

In anormal week the work centres'were in, operation for 

thirty nine hours. , However, efficiency, and the. ». motivation of a 

bonus scheme meant that a production rate-of fifty>standard hours 

a week was common. " The approximation algorithm was used to 

estimate the waiting times- at the ; service 'groups assuming 

production rates of . forty-five, fifty, and fifty-five standard 

hours per week. The numbers of servers at-the groups were assumed 

to be the minimum number of men or machines, producing at a rate 

of fifty standard hours a week, needed, to cope with the average 

weekly loads estimated by theralgorithm 
. 'these are-given in Table 

4" 

The Y8 service group represented sub-contractors. In theory 

any number of sub-contractors could have been used and there 

should have been no waiting time. In practice, Tab 13 showed an 

average wait of four days for sub-contracting. The heat treatment 

provided by El was also required for batches other than Universal 

Joints. The number of servers assumed for these two service 

groups were not particularly meaningful, but they served to give 

reasonable estimates of the waiting times at the groups. 

/ 
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Table-10.2 
, The Estimated-Inter-Arrival and Service Times 

-r 

Service-Group Arrival Times(hrs. ) Service Times(hrs. ) 
Mean S. d. Mean S. d. - 

PO 0.84 1.86 21.43 16.90 

1P 1.39 1.66 3.20 3.76 

2P 5.83 4.31 6.96 3.88 

4P 1.57 1.95 11.30 10.15 

P5 2.60 3.61 

P6 4.36 6.53 6.34 7.47 

r P7 0 0 15.22 9.72 

Q2 1.95 2.66 6.61 10.39 

Q3 5.71 5.94 15.67 21.67 

Q4 0 0-ý_ 5.31 8.89 

Q8 0 01 , 18.20 19.93 
\ 

El 0 0 8.77 14076 

E3 0 0 '' 11.07 12.50 

Y8 ", 9 0 '1 58s. 16 45.46 
IN , 

le ' 

G., Ikýtiý 
r, 

ýýýý 

\ýý"- 

-----'-ý 
- 
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,. Tab le 10.3 The i-Transition Probability Matrix - 

TO 

PO 1P 2P -4P P5 P6 P7 Q2 Q3 Q4 Q8 El E3 Y8 

PO 0 0 0 0 0 0.45 0 0.35 0.18 0 0 0 0 0 

1P 0 0.02 0 0.05 0.27 0 0.16' 0.21 0 0 0.06 0 0.03 

2P 0 0 0 0 0 0.90 0 0 0.05 0.05 0 0 0 0 

4P 0 0.04 0 0 0.08 0.50 0 0.12 0.10 0 0 0 0 0 

P5 0 0 0 0 0 0 0 0.78 0.22 0 0 0 0 0 

P6 0 0.03 0 0.03 0 0 0 0,08 0.41' 0 0.01 0.09 0 0.01 

P7 0 0 0 0 ... 0 0.04 -0 0-36 '0 0.24 0 0.28 0 0 
FROM 

F ý Q2 0 0 0 0 0 0.44 0.02 0 a 0.12 0 0 0.13 0 0.03 

Q3 0 0 0 0 0.01 0.11 0 0.18 0 0.14 0.38 0.11 0 0 

Q4 0 0.02 0 0.01 0 0.09 0.12 0.01 0.06 0 0.34 0.35 0 0 

Q8 0 0 0.0 0 0 0 0.11 0 0.89 0 0 0 0 

El 0 0 0 0 0 0.28 0 0.08 0 0.02 0 0 0.41 0 

E3 0 0 0 0 0 0.07 0 0.37 0 0.16 0 0.02 0 0 

Y8 0. 0.18 0 0 0 0 0 00 0 0 0 0 0 

I 



104 

Table'10.4 Machine Requirements for the Average Weekly Loads 

t l' 

Service Group Average Load(hrs. ) 
ys 

Machine Requirements 

PO 127 3 m/cs @ 50hrs/week' 

1P 3 1 m/c @ 50hrs/week 

2P 6 1 We @ 50hrs/week 

4P 43 1 m/c @ 50hrs/week} 

P5 2 1 m/c @ 50hrs/week 

P6 128 3 m/cs @ 50hrs/week 

P7 26 1 m/c @ 50hrs/week 

Q2 97 2 m/cs @ 50hrs/week 

Q3 222 5 m/cs @ 50hrs/week 

Q4 63 2 Was @ 50hrs/week 

Q8 183 4 m/cs @ 50hrs/week 

El 90 2 m/cs @50hrs/week 

E3 46 2 m/cs @50hrs/week 

Y8 46 2 m/cs @ 50hrs/week 
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w10.4'` APPROXIMATION"OF`THE-WAITING, -TIMES"" 

The means i` and standard- deviations of^ the 'waiting , times 

approximated` by Ithe°° algorithm are compared with those estimated 

from Tab, "13 "in Tables-10.5'and 10.6. The waiting times estimated 

from'-Tab '13 are thereafter 'referred-, to%as,, -, the-observed 1 waiting 

times; ,, A"constant`of one-day was added tothe approximations for 

the mean> l wait at "each group; -, -this - was` to account for the time 

spent"moving')'batches between; the service"groups; the'histöricäl 

waiting itimesatgiven" in"-Tab 13-included 'transfer times' and the 

forward schedules allowed a day for the moving of batches between 

departments. ' ' 

' -'The°infiniteN values for, '"ýthe'mean°waits in; Table-"10.5 were 

given for service --groups== where', -the' approximated'. utilisation 

exceeded'one, ', Irand'indicated^, that, unless the number ofmen-I or 

machines'-in operation -were-, inereased, -ýa' production'ratel'of , forty- 

five . hours 'a week (would'=cause" the ; service groups to"become 

overloaded: The; 'differences in 'the nmean +, waits', given by the 

algorithm, with productions rateslof forty-five"and-fifty-five 

standard"hours : per, week,.. show the actual production rate at a 

service group to be a critical factor in determining the waiting 

times. 

The observed mean°waitingrtimes>,; were within the ranges given 

byrtheý algorithm, for-al]. service groups"with°x utilisations"that 

were estimated-to be greater-than' 0.75'whenrthe production rate of 
wz)s assumed, fifty hours per`weekh , At~the service,; groups- withutilisations 

less- than -0: 75,, -'the : observed mean - waits. were above "the higher, end 

of`the`range given-by the algorithm. It is likely that the waiting 

times'Nat, ýwork centres . with «small. loads,. would . exceed - those -, expected 



T06 

a3; 'ln practice;: men or machines would -be, transferred" °to-busier 

centres, 'orr batches-'would be-, -allowed to , accumulate, t'before 

production-was, 'started. r ""°" 

I To-obtain ; more realistic estimates for, the average waiting 

timeszatAhe ; ̀service groups with low utilisations, the algorithm 

was re=applied, with-the mean service,. times -'adjusted-so; that all 

the -.. utilisationsthat- were, estimated, to 
., 

be, -below- 0.75 in the 

original, application were}-, equal to 10.75. "°, . The; results of, the 

second application of the algorithm are-given+inr. '. Tables 10.7 and 

1 0. 
Ui l s. -' ? rfý Sa4 

j-, - Tab1e 10; 7 shows that four. of°. the observed mean; waiting times 

to be outside -the-ranges approximated-by the: -algorithm; two, were 

below and two above the values given. Therefore, if one 

utilisation was to be assumed for all service groups with small 

loads, the balance of under and over-estimations of the observed 

mean waits by the algorithm, under the assumption of a utilisation 

of 0.75, indicate this value to be a reasonable choice. 

Tables 10.6 and 10.8 show that similar results were obtained 

for the standard deviations. 

10.5 CONCLUSIONS 

The results given by the algorithm suggested that most 

service groups operated at production rates between forty-five and 

fifty-five hours a week. The production rate of service groups 

with low utilisations appeared to be slower, and the assumption of 

utilisations of 0. '75 for these groups provided reasonable 

estimates of the waiting times. 

Lack of information on the actual production rates at the 
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service groups prevented any accurate approximation of the waiting 

tim'e' distribütiöns 'at the "-individüal"groups. 'However, the 

algorithm could provide useful estimates of the production rates, 

and numbers of men and machines, necessary to prevent' the' 

development of long queues at the service groups. 

Figures 10.9 and 10.10 show that. a'production 'rate of fifty 

standard hours a week may have been close to the average value for 

the service groups. When this 'production rate was assumed for all 

the service groups, some of the approximations given by the 

algorithm for the mean waiting times at the individual groups were 

inaccurate but 'Table 10.7 shows that the approximation for the 

mean throughput time was a reasonable-, estimate of the observed 

time. 
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Table'-10.5 Approximationsfor the'Mean: Waiting"Times 

Service Utilisation Mean Waiting Time (days) 
Group @50hrs/wk @55hrs/wk @50hrs/wk @45hrs/wk Observed 

PO 0.85 6.42--- `"11; 40 34.42 n12o38 
1P 0.31 1.17 1.22 1.28 4.23 
2P 0.13 1.03 11.04 1.05 '6.05 

4P 0.89 6.09 11.51 208.41 7.79 
P5 0.04 1.01 1.01 1.02 3.11 
P6 0.87 1.80 '2.56 8.52 4.95 
P7 0.54 1.96 2.29 2.85 5.92 
Q2 0.67 1.35 1.55 1.94 5.05 
Q3 0.92 2.49 5.38 00 10.28 
Q4 0.65 1.49 1.74 2.20 3.81 
Q8 0.90 2.63 5.20 00 15.44 
E1 0.93 4.91 12.16 00 5.90 
E3 0.48 1.34 1.49 1.74 2.17 
Y8 0.47 1.96 '2.34 2.95 4.00 

Throughput Time 20.43 33.01 40.00 

Table 10.6 Approximations for the Standard Deviations of Waitin 
Times ... 

Service Utilisation :. S. D.. of Waiting-Time (days) 
Group @50hrs/wk @55hrs/wk @50hrs/wk @45hrs/wk Observed 

'P0 ". 0.85 6.94 11.98 38.00 9.75 
1Pý 0.31 0., 52 0.60 0.70, 5: 48 
2P 0.13 0.36 0.40 0.44 10.19 
4P 0.89 5.55 10.50 186.71 7.01 
P5 0.04 0.38 0.42 0.46 3.35 
P6 0.87 1.00 1.91 8.17 '8.03 
P7 0.54 1.85 2.25 2.86 7.81 
Q2 0.67 0.66 0.93 1.40 7.68 
Q3 0.92 2.27 5.58 o 16.73 
Q4 0.65 0.88 1.19 1.74 3.72 
Q8 0.90 2.29 5.18 cA " 8.00 
El 0.93 4.75 12.40 00 11.14 
E3 0.48 0.86 1.08 1.42 1.43 
Y8 0.47 2.80 3.42 4.33 6.08 

Throughput Time 19.70 36.51 32.69 

ý v, ý .. ý 

4 
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Table 10.7 Approximations for the Mean Waiting Times 

«--(assuming all utilisations >., 0.75) 

Service 
Group 

Utilisation 
050hrs/wk @55hrs/wk 

Mean Waiting 
050hrs/wk 

Time (days) 
@45hrs/wk Observed 

PO 0.85 6.42 11.40 34.42 12.38 
1P 0.75 2.23 2.89 4.57 4.23 

2P 0.75 3.29 4.52 7.47 6.05 
4P 0.89. 6.09 11.51 208.41 7.79 
P5 0.75 6.19 8.98 15.75 3.11 
P6 0.87 1.80 2.56 8.32 4.95 
P7 0.75 3.69 5.17 8.99 5.92 
Q2 0.75 1.51 1.87 2.72 5.05 
Q3 0.92 2.49 5.38 10.28 
Q4 0.75 1.73 2.21 3.41 3.81 
Q8 0.90 2.63 5.20 5.44 
El 0.93 4.91 12.16 5.90 
E3 0.75 2.26 3.12 5.23 2.17 

Y8 0.75 5.74 8.71 16.19 4.00 

Throughput Time 1 22.69 36.31 40.00 

Table 10.8 Approximations for the Standard Deviations of Waiting 
Times 

(assuming all utilisations >,, 0.75) 

Service 
Group 

Utilisation S. D. of Waiting Time (days) 
@50hrs/wk @55hrs/wk @50hrs/wk @45hrs/wk� Observed 

', 

PO 0.85 6.94 11.98 38.00 9.75 
lp 0.75 1.62 2.25 . -, 3. -78 5.48 
2P 0.75 3.08 4.25 16.93 10.19 
4P 0.89 5.55 10.50 186.71 7.01 
P5 0.75 6; 95-J 9.59 15.71 3.35 
P6 0.87 1.00 1.91 8.17 8.03 
P7 0.75 ' 3.56 4.96 8.45 7.81 
Q2 0.75 0.85 1.29 2.27 7.68 
Q3 0.92 2.27 5.58 00- 16.73 
Q4 0.75 1.13 1.68 2.98 3.72 
Q8 0.90 2.29 5.18 00 8.00 
El 0.93 4.75 12.40 00. = 11.14 
E3 0.75 1.91 2.85 5.03 1.43 
Y8 0.75_, 7.28___, 

. _. 11 . 
10.48 18.07 6.08.,. 

Throughput Time 26.80 46.60 32.69 

. ý'. u ýý. 
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Figure 10.9 
The Mean Waiting Times 

assuming 50 standard hrs/week 
and all utilisations ), 0.75 
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Figure 10.10 
Standard Deviations of the Waiting Times 

assuming 50. standard hrs/week 
and all uti l isations )r 0.75 
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Al THE SIMULATION PROGRAMS rl 13 

A1.1 SIMULATION OF A MULTUSERVER QUEUE 

The program listed below I simulates a multiserver queue with 

gamma distributed inter-arrival and service times and first come 

first served queueing discipline. The number of departures to be 

simulated is determined by a sequential stopping rule and an upper 

limit can be imposed. The program was written in FORTRAN77 and 

implemented on the Harris 5135. 

The input data required is: 

N 

UTIL 

ARCSVQ 

SECVSQ 

the number of servers 

the utilisation 

the squared coefficient of variation (SCV) of the 

inter-arrival times 

the SCV of the service times 

AVIN the mean inter-arrival time 

RUNT the maximum number of departures to be simulated. 

The output produced is: 

AV the mean inter-departure time 

DELI half the width of the 95% confidence interval for AV 

VAR- the, variance of; the inter-departure times. - 
NUDEP the number of departures simulated 

AWT the average waiting. time 

VWT the variance of the waiting times 

AUT(K) the lag Ka autocorrelation' of the inter-departure 

times K=1,2,..,., 10. 

AQL the average queue length 

VNSYS the variance of the number in the system 

PNW the probability that an arriving customer does not 

have to wait 

PAB the probability that all the servers are busy. 



DIMENSION AUT(10), TFREE(20), TDEP(100), SUM(10), CORR(10) 
10-CONTINUE 

CALL G05CCF 
READ (15,1)N, UTIL, ARCVSQ, SECVSQ, AVIN 
READ (15,13) RUNT 

1 FORMAT (I4,4F6.3) 
13 FORMAT (F1O. 2) 

WRITE(16,12) N, UTIL, ARCVSQ, SECVSQ 
12 FORMAT(/'N=', I2, ' U=', F4.2, ' ARCV=', F5.3, ' SECV=', F5.3) 

IF(N. LT. O) STOP 

C INITIALISE SYSTEM PARAMETERS 
AVSER=N*UTIL*AVIN 

-TARNEX=O: 0 
DO 2 I-1, N 

'2 TFREE(I)-0.0- 
'WT=0.0 
VWT=0.0 
DO 33 K_1,10 
SUM(K)_0.0 
CORR(K)-0.0 

33 CONTINUE 
NOCC=O 
DEPREV=0.0 
NUDEP=O 
SDEP=0.0 
SSDEP-0.0 
NDEP=O- 
CLOCK=0.0 
TSMALL=0.0 
PNW=O 
TSNSYS=0.0 
TNSYS_0.0 "- ý" 
TQL_0.0 
TAB=O. 
DO 15 I-1,100 

15 TDEP(I)=(AVIN+1)*RUNT 

C INITIALISE PARAMETERS FOR THE ARRIVAL AND SERVICE TIME GENERATOR 
PA=1/ARCVSQ 
PS=1/SECVSQ 
TA_PA-1 
TS=PS-1 
CCA=TA*ALOG(2.0) 
CCS=TS*ALOG(2.0) 
UMA=(SQRT(1+14*TA)-1)/(2*TA) 
UMS=(SQRT(1+4*TS)-1)/(2*TS) 
CA=TA*((1-UMA)**TA)+EXP(-UMA*TA)/UMA 
CS=TS*((1-UMS)**TS)+EXP(-UMS*TS)/UMS 
RA: TA*((1-UMA)**TA)/CA 
RS=TS*((1-UMS)**TS)/CS 



C INITIALISE PARAMETERS FOR THE SEQUENTIAL STOPPING RULE 
`IC=O 
REF1=0.0 
REF2=0.0" 
SUMX=0.0- 
SUMY=0.0 
SUMX2=0.0 
SUMY2=0.0 
SUMXY=0.0 
IK=10 
GAM=0.1 

C SYSTEM EMPTY-SO'NEXT EVENT IS AN ARRIVAL 
35' ITYPE =1 

C THE START OF A REGENERATIVE CYCLE 
C TEST FOR END OF RUN USING SEQUENTIAL STOPPING RULE 

IC=IC+1 
Y=WT-REF1 
X=NUDEP-REF2 
SUMX=SUMX+X 
SUMY=SUMY+Y 
SUMX2=SUMX2+X*X 
SUMY2=SUMY2+Y*Y 
SUMXY=SUMXY+X*Y 

', ' ° REF 1=WT 
REF2=NUDEP 
IF (IC. NE". IK)'GOTO 9 
IKM =IK-1 
XN=SUMX/IK 
YN=SUMY/IK M-' 
RN=YN/XN 
S2YN=(SUMY2-IK*(YN*YN))/IKM 
S2XN='(SUMX2-IK*XN*XN)/IKM 
SXYN=(SUMXY-IK*XN*YN)/IKM 
SN=S2YN-2*RN*SXYN+RN*RN*S2XN 

'' IF (SN. LE. O. 0)'SN=0.0 
SN=SQRT(SN) 
PIK=IK 
DEL=1.64*SN/(XN*SQRT(PIK)) 
IK=IK+10 
TEST=GAM*RN/2.0. 
IF (DEL. LT. TESTY'GOTO 36 

f 

fý 



9 CONTINUE', ̀ 
C FIND THE NEXT-'EVENT' 

TSMALL=RUNT*(AVIN+1) 
IF(NDEP. LE. O) GOTO 

1119 
' 

DO 3 I=1, NDEP ' 
IF(TDEP(I). GT. TSMALL) GOTO 3 
TSMALL=TDEP(I) 
ISTORE=I 

3 CONTINUE 
19 CONTINUE 

ITYPE=2 
IF(ARNEX. LT. TSMALL) ITYPE=1 

C THE TYPE OF EVENT IS DECIDED 
C ITYPE=1 ARRIVAL 
C ITYPE=2'DEPARTURE 

8 IF(ITYPE. EQ. 2) GOTO 4 

C THE NEXT EVENT IS AN ARRIVAL 
ARRIN=PETRE(CCA, UMA, CA, RA, TA)*ARCVSQ*AVIN 
TQL=TQL+(NDEP-NOCC)*(ARNEX-CLOCK) 
TNSYS=TNSYS+NDEP*(ARNEX-CLOCK) 
TSNSYS=TSNSYS+NDEP*NDEP*(ARNEX-CLOCK) 
IF (NDEP. GE. N) TAB=TAB+ARNEX-CLOCK 

C FIND A SERVER' 
MENEX=1 
START=TFREE(1) 
IF (N 

. EQ. 1) GOTO' 6 
D0 5 I=1, N 
IF(TFREE(I). GT. START) GOTO 5 
START=TFREE(I) 
HENEX=I 

"5 CONTINUE 
6 CONTINUE 

C FIND THE TIME THE ARRIVAL WILL LEAVE 
TEMP=AMAX1(START, ARNEX) 
W=TEMP-ARNEX 
IF (W. EQ. 0.0) PNW=PNW+1 
WT=WT+W, 
VWT=VWT+W*W 
TFREE(MENEX)=TEMP+PETRE(CCS, UMS, CS, RS, TS)*AVSER*SECVSQ 
NDEP=NDEP+1 
IF (NDEP. GE. N)k THEN 

NOCC=N 
ELSE,:. 

NOCC=NDEP 
ENDIF 
TDEP(NDEP)=TFREE(MENEX) 
CLOCKcARNEX 
ARNEX=ARNEX+ARRIN 
GOTO 9 

4 CONTINUE 



C THE, NEXT: -EVENT. IS, A DEPARTUREN, 
DEPINT=TSMALL-DEPREV 
TQL=TQL+(NDEP-NOCC)*(TSMALL-CLOCK) 
TNSYS=TNSYS+NDEP*(TSMALL-CLOCK) 
TSNSYS=TSNSYS+NDEP*NDEP*(TSMALL-CLOCK) 
IF (NDEP. GE. N) 

,, 
TAB=TAB+TSMALL-CLOCK 

IF(ISTORE. EQ. NDEP), GOTO 17 
DO 18 I=ISTORE, NDEP 

18 TDEP(I)=TDEP(I+1) 
17 CONTINUE 

IF(ISTORE. EQ. NDEP) TDEP(ISTORE)=2*RUNT 
NDEP=NDEP-1 
IF (NDEP. LT. N) NOCC_NDEP 
NUDEP=NUDEP+1 

,. r-., 
DO 29 K=1,10 

SUM(K)-SUM(K)+CORR(K)*DEPINT 
29 CONTINUE 

DO 30 K_1,9 
tj J=10-K t ,. s t a� 

M=J+1 
CORR(M)=CORR(J) 

r, 
"> 

Fý }ý y 

JU GUNTINUE 1, i, , CORR(1)=DEPINT 
SDEP=SDEP+DEPINT 
SSDEP=SSDEP+DEPINT*DEPINT 

i r. =ta, CLOCK_TSMALL 
7 DEPREV=TSMALLr- -j IF (NUDEP. GE. RUNT) GOTO. 36 

IF (NDEP. EQ. O) GOTO 35 
GOTO 9 

C END OF RUN , 36 AWT=WT/NUDEP;,, 
C ESTIMATE CONFIDENCE INTERVAL FOR THE MEAN WAITING TIME 

ICM 1-IC-1 
IF (IC. LT. 10) THEN 

DELI=-1 ka 
GOTO. 40 

ENDIF 
XNI=SUMX/IC 
YN1=SUMY/IC 
RN1=YN1/XN1 
S2YN1=(SUMY2-IC*(YN1*YN1))/ICM1 
S2XN1=(SUMX2-IC*(XN1'XN1))/ICM1 
SXYN1=(SUMXY-IC*XN1*YN1)/ICM1 
SN1=S2YN1-2*RN1*SXYN1+(RN1**2)*S2XN1 
SN 1=SQRT (SN 1) 
PIC-IC 
DELI=1.96*SN1/(XN1*SQRT(PIC) ) 



C CALCULATE THE SYSTEM STATISTICS 

{ 
40 VWT=(VWT-AWT*WT)/NUDEP. 

AV=SDEP/NUDEP 
VAR=(SSDEP-AV*SDEP)/NUDEP 

TANSYS=TNSYS/CLOCK 

SNSYS=TSNSYS/CLOCK 
" VNSYS=SNSYS-ANSYS*ANSYS 

PNW=PNW/NUDEP 
PAB=TAB/CLOCK 
AQL=TQL/CLOCK 
DO 31 K=1,10 

AUT(K)=(SUM(K)/NUDEP-AV**2)/VAR 
`31' CONTINUE 

C"PRINT OUT THE SYSTEM-STATISTICS 
WRITE(16,11) AV, VAR, NUDEP, AWT, DELI, VWT 

`WRITE (16,41) AQL, VNSYS, PNW, PAB 
WRITE (16,32) (AUT(K), K=1,10) 

11 FORMAT(' AD=', F8.5, ' VD=', F8.5, ' N=', I8, ' AW=', F8.5, ' +', F8.5, 
*' VW=', F8.5) 

"41 FORMAT(' AQL*', F8.5; '`VNSYS=', F8.5; ' PNW=', F8.5, ' PAB=', F8.5) 
32 FORMAT(' CORR=',, 5F9.4) 

GOTO 10 
END 

C GENERATION OF THE GAMMA DISTRIBUTED INTER-ARRIVAL AND SERVICE TIMES 
FUNCTION'PETRE(CC, UM, C-, R, T)- 
U=G05CAF(XX) 
E=-ALOG(GO5CAF(XX)) 4c" 
IF (U. GT. R) GOTO 3 

2X=UST/R 
IF ((CC-X). GT. E) GOTO 1 
TEMP=T*ALOG(T/X)-T+X 

.. 
IF (TEMP. LE. E) GOTO 4 
GOTO 1: >_... .. c... », ,. 

3 X=-ALOG(C*UM*(1-U))/UM 
`TEMP*T*ALOG(T/((1-UM)*X))+(1=UM)*X-T 

IF (TEMP. LE. E) GOTO 4 
GOTO 1 

4 PETRE=X 
RETURN 
END 
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A1.2' SIMULATION OF -A, METWOMOF MULTISERVER, QUEUES 

`{The program listed' below, simulates a network{ of-multiserver 

queues with gamma 'distributed. inter-arrival and service times and 

first come first served queueing disciplines. Routes through the 

network are determined by a transition probability matrix. The 

number of departures to be simulated is determined by a sequential 

stopping rule and an upper limit can be imposed. The program was 

written in FORTRAN77 and implemented on the Harris S135. 

The input data required was: 

M the number of service centres 

CE the SCV of the external inter-arrival times 

EVE the mean external inter-arrival time 

RUNT the maximum number of departures to be simulated 

N(I) the number of servers at centre I I=1,2...... M 

CS(I) the SCV of the service times at centre I 

I_1, 2,...., M 

RHO(I) the utilisation of centre I I=1,2,...., M 

AVE(I) the arrival rate to centre I I=1,2...... M 

TP the transition probability matrix. 

The ou tput produced was: 

ATT the average throughput time 

DELI half the width of the 95% confidence interval for ATT 

SDT the standard deviation of the throughput times 

TNDEP the number of departures simulated 

UTIL(I) the utilisation of centre I I=1,2,...., M 

CVA(I) the SCV of the arrivals to centre I I=1,2...... M 

AUT(I) the lag one autocorrelation of the arrivals to centre 

I I=1,2...... M 
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AWK(I) the average waiting time at centre I I=1,2,...., M 

SD(I) the standard deviation of' . 
the waiting time. at, centre 

L. I=1,2,...., M. 



I! DIMENSION N(11), CS(11), RHO(11), TP(11,11), TFREE(11; 20) NDEP(11) 
*TDEP(11,100), PS(11), HS(11), CCS(11), BMS(11), GCS(11) 
*AVSER(11), RS(11), W(500), XT(500), IND(11,100), LEFT(500) 
*TAT(11), VTA(11), TNAK(11), OAT(11), CVA(11), TIA(ll) 
*AUT(11), CORR(11, ), AWK(11), TI(11), SD(11), UTIL(11), AVE(11) 

10 CONTINUE 
CALL G05CCF 

C READ INPUT DATA 
READ(15,100) M, CE, EVE, RUNT' 
IF (M. LE. O) STOP 
WRITE (16,101) M, CE 
`DO 1 I=1, M 

READ (15,102) N(I), CS(I), RHO(I), AVE(I) 
WRITE (16,103) N(I), CS(I), RHO(I) 

1 CONTINUE 
MP1=M+1 
DO 2I =1, MP1 

READ (15,104) (TP(I, J), J=1, MP1) 
WRITE (16,104) (TP(I, J), J=1, MP1) 

2 CONTINUE 

C INITIALISE THE SYSTEM PARAMETERS 
DO 27 K=1, M 
AVSER(K)=N(K)*RHO(K)/AVE(K) 
TAT(K)=0.0 
VTA (K) =0.0 "".? ,.,. 
OAT(K)=0.0 
TNAK(K)=0 
AUT(K)=0.0'" 
CORR(K)=0.0 
AWK(K)=0.0 
SD(K)=0.0 
TI(K)_O. 0 
NDEP(K)=O 

27 CONTINUE 
DO 24 I=1,500 

W(I)=0.0 !. " 
XT(I)=0.0 

24 CONTINUE 
DO 40 I=1, MP1 

DO 4 J=1,100 
TDEP(I, J)_2*RUNT 

4 CONTINUE 
DO 5 J=1,20" 

TFREE(I, J)=0.0` ,' 5 CONTINUE 
40 CONTINUE 

3 CONTINUE 
ARNEX=0.0 
CLOCK=0.0 
EVT=0.0 
WT=0.0 
TT=0.0 
VWT=0.0 
NSYS=0.0 
TNSYS=0.0 
TNDEP=0.0 
ICT=O 



C INITIALISE-, PARAMETERS FOR,, THE. ARRIVAL AND SERVICE TIME GENERATOR 
CS(MP1)=CE 
DO 3 I=1, MP1" 

PS(I)=1/CS(I) 
k: r HS(I)=PS(I)-1 

CCS(I)=HS(I)*ALOG(2.0)-BMS(I)=(SQRT(1+4*HS(I))-1)1(2*HS(I)) 

�GCS(I)=HS(I)*((1-BMS(I))**HS(I))+EXP(-BMS(I)*HS(I))/BMS(I) RS(I)=HS(I)*((1-BMS(I))**HS(I))/GCS(I) 
3 CONTINUE 

C INITITIALISE PARAMETERS FOR THE SEQUENTIAL STOPPING RULE 
IC=O 
REF1=0.0 
REF2=0; 0 
SUMX=0.0 
SUMY=0.0 
SUMX2-0.0 
SUMY2=0.0' 
SUMXY=0.0 
IK=10 
GAM=0.1 

C SYSTEM IS EMPTY SO THE NEXT EVENT IS AN ARRIVAL 
C START OF Aý REGENERATIVE CYCLE 

,ý r-, 41 {s. a: r ý.., tP 
C TEST FOR END OF RUN USING SEQUENTIAL STOPPING RULE 

6 IC=IC+1 4. 
Y=TT-REF1 
X=TNDEP-REF2 
SUMX=SUMX+X 
SLIMY=SUMY+Y 
SUMX2=SUMX2+X*X 
SUMY2=SUMY2+Y*Y 
SUMXY=SUMXY+X*Y 
REF 1=TT 
REF2=TNDEP. ;. ", ,,,. IF (IC. NE. IK) GOTO 16 
IKM=IK-1 "'. - 
XN=SUMX/IK- 
YN=SUMY/IK 
RN =YN /XN 

,; y ,",, S2YN=(SUMY2-IK*(YN*YN))/IKM 
S2XN =(SUMX2-IK*XN*XN)/IKM 

SXYN =(SUMXY-IK*XN*YN)/IKM 
SN=S2YN-2*RN*SXYN+RN*RN*S2XN 
IF (SN. LE. O. 0) -SN=0.0 
SN_SQRT(SN) 

. y; 
PIK=IK 
DEL=1.96*SN/(XN*SQRT(PIK)) 
IK=IK +10 
TEST=GAM*RN/2. '0. 
IF (DEL. LT. TEST) GOTO 17 

C TAG ARRIVAL WITH A JOB NUMBER 
JC=O 

25 JC=JC+1 
ID=O 
JN=JC 



C EXTERNAL ARRIVAL TO THE SYSTEM 
7 J=MP1 

TNSYS=TNSYS+NSYS'(ARNEX-CLOCK) 
NSYS=NSYS+1 

C DETERMINE WHERE THE ARRIVAL GOES TO 
CALL ASSIGN(K, J, MPI,, TP, ICT) 
X=PETRE(CCS, BMS, GCS, RS, HS, MP1, ICT) 
ARRIN=X*CE*EVE, 
CLOCK=ARNEX 
EVT=ARNEX 
ARNEX=ARNEX+ARRIN 

C ARRIVAL TO CENTRE'K`. 
C FIND A SERVER 

8 MENEX=1 , START=TFREE(K, 1) 
IF (N(K). EQ. 1): GOTO 9 
DO 11. I=1, N(K) 

IF (TFREE(K, I). GT. START) GOTO 11 
START=TFREE(K, I) 
MENEX=I 

11 CONTINUE 
9 CONTINUE 

C UPDATE-SYSTEM PARAMETERS AND FIND TIME ARRIVAL WILL LEAVE K 
X =EVT-OAT (K ) 
TAT(K)=TAT(K)+X' 
VTA(K)=VTA(K)+X'X 
AUT(K)=AUT(K)+X*CORR(K) 
CORR(K)=X 

"TI(K)=TI(K)+DIM(EVT, START)_,, 
TEMP=AMAX1(START, EVT) 
X=PETRE(CCS, BMS, GCS, RS, HS, K, ICT) 
TFREE(K, MENEX)=TEMP+X*AVSER(K)*CS(K) 
Y =TEMP-EVT 
AWK(K)=AWK(K)+Y 

-SD(K)=SD(K)+Y*Y 
W(JN)=W(JN)+Y 

XT(JN)=XT(JN)+(TFREE(K, MENEX)-TEMP)+Y 
NDEP(K)=NDEP(K)±1, 

.. "4. ,t TDEP(K, NDEP(K))=TFREE(K, MEN' EX)' 
IND(K, NDEP(K))=JNt- ., -. OAT(K)=EVT 
TNAK(K)=TNAK(K)+1 

C FIND THE NEXT : EVENT 
16 EVT=RUNT*(EVE+1) 

-DO 12 K=1, M 
DO 13 I=1, NDEP, (K) 

IF (TDEP(K, I). GT. EVT) GOTO 13 
EVT=TDEP(K, I) 
JN=IND(K, I), 
ISTORE=I 

. KSTORE=K 
13 CONTINUE- 
12 CONTINUE -. 

$. IF (ARNEX; LT. EVTS'THEN: 
IF (ID. EQ. O)' GOTO`-25 , 
JN LEFT(ID)', 
ID=ID-1 
GOTO 7 

ENDIF 



C SERVICE'COMPLETION AT-CENTRE_L 
L=KSTORE 
IF (ISTORE_EO_NDEP(L))'GOTO 14 
DO 15 I=ISTORE, NDEP(L)' 

TDEP(L, I)=TDEP(L, I+1) 
IND(L, I)=IND(L, I+1) 

15 CONTINUE. 
14 IF (ISTORE. EQ. NDEP(L)) TDEP(L, ISTORE)=2*RUNT 

NDEP(L)=NDEP(L)-1 

C DETERMINE WHERE DEPARTURE GOES AND UPDATE THE-SYSTEM PARAMETERS 
CALL ASSIGN(K, L, MPI, TP, ICT) 
IF (K. LT. MP1) GOTO1.8 
TNSYS=TNSYS+NSYS'(EVT-CLOCK) 
WT=WT+W(JN) 

TT=TT+XT(JN) 
VWT=VWT+XT(JN)'XT(JN), ' 
NSYS=NSYS-1 
W(JN)=0.0 
XT(JN)=0.0 
ID=ID+1 
LEFT(ID)=JN 
TNDEP=TNDEP+1 
IF (TNDEP. GT. RUNT)GOTO, 17 
CLOCK=EVT 
IF (NSYS. EQ. 0) `GOTO' 6 
GOTO 16 

C END OF RUN' 
17 ATT=TT/TNDEP 

C ESTIMATE THE CONFIDENCE INTERVAL FOR THE AVERAGE THROUGHPUT TIME 
ICM1_IC-1 
IF (IC. LT. 10) THEN. 

DELI: -1.0 
'GOTO 30 

ENDIF 
XN1=SUMX/IC' 
YN1=SUMP/IC 
RN 1: YN 1 /XN 1 
S2YN1=(SUMY2=IC*(YN1lYN1))/ICM1 
S2XN1=(SUMX2-IC*XN1*XN1)/ICM1 
SXYN1=(SUMXY7IC1XN1*YN1)/ICM1' 
SN1=S2YN1=2*RN1*SXYN1+(RN1**2)*S2XN1 
SN1=SQRT(SN1) 
PIC =IC 
DELI=1.96*SN1/(XN1*SQRT(PIC)) 

C CALCULATE THE, SYSTEM, STATISTICS. 
30 VWT = (VWT-ATT*TT) /. TNDEP ̀` "' 

SDT=SQRT (VWT) 
DO 26-K=1, M, ' 

UTIL(K)-1-TI(K)/(CLOCK*N(K)) 
AWK (K) =AWK (K) /TNAK (K ) 
TIA(K)=TAT(K)/TNAK(K) 
VTA(K)=(VTA(K)-TIA(K)*TAT(K))/TNAK(K) 
CVA(K)_VTA(K)/(TIA(K)*TIA(K)) 
AUT(K)=(AUT(K)/TNAK(K) -TIA(K)*TIA(K))/VTA(K) SD(K)=(SD(K) TNAK(K)*AWK(K)*AWK(K))/TNAK(K) 
SD(K)=SQRT(SD(K)) 

26 CONTINUE 



C PRINT OUT THE SYSTEM STATISTICS 
WRITE (16,105) ATT, D&LI, SDT, TNDEP 
WRITE (16,106) (UTIL(K), `: K=1, M) 
WRITE (16,107) (CVA(K), K=1, M) 
WRITE (16,108)'(AUT(K), K=1; M):. 
WRITE (16,109) (AWK(K), K=1, M) 

'WRITE, *'(16,110) (SD(K), K=1, M)-' 
WRITE (16,111) ICT 

`100 FORMAT (I2,2F6.3, F9.2) t, -`- 
101 FORMAT (I, ' M=', I2, ' CE=', F6.3) 
102 FORMAT (I2,3F6.3) °'' 
103 FORMAT (' N=', 12, ' CS=', F6.3, ' RHO=', F6.3) 
104 FORMAT (11F6.3) 
105 FORMAT (' AT=', F8.5, ' +', F8.5, ' SD=', F8.5, ' TN=', FlO. 1) 
106 FORMAT (' UTIL=: ', 11F7.4)' 
107 FORMAT (' CVA=: ', 11F7.4) 
108 FORMAT (' CORR=: ', 11F7.4) 
109 FORMAT (' AWK=: ', 11F7.14) 
110'FORMAT ('`SDK=: ', 11F7.4) 
111 FORMAT ('NO. OF R. V. S USED=' 110) 

GOTO 10 
END 

C GENERATION OF THE GAMMA DISTRIBUTED INTER-ARRIVAL AND SERVICE TIMES 
FUNCTION PETRE(CC BM, CR-H, K; ICT)t 
DIMENSION CC(10), BM(10), C(10), R(10), H(10) 

18 U=G05CAF(XX) 
ICT=ICT+1 

28 V=G05CAF(XX) 
ICT=ICT+1 
E=-ALOG(V) - 
IF (U. GT. R(K)) GOTO 20 

19 X_U'H(K)/R(K) 
IF ((CC(K)-X). GT. E) GOTO 18 
Y=H(K)/X 
FEMP=H(K)*ALOG(H(K)/X)-H(K)+X 
IF (FEMP. LE. E)'GOTO°21 
GOTO 18 

-20'Y=C(K)*BM(K)*(1-U; 
X. ALOG(Y)/BM(K) 
Y=H(K)/((1-BM(K))*X)'it ... 
FEMP=H(K)*ALOG(H(K)/((1-BM(K))*X))±(1-BM(K))*X-H(K) 
IF (FEMP. LE. E)'GOTO 
GOTO 18 

21 PETRE=X 
RETURN 
END 

C ASSIGN THE NEXT`SERVICEtCENTRE TO BE`VISITED 
SUBROUTINE ASSIGN(K, J, MP1, TP, ICT). 
DIMENSION TP(11; 11) 
U=G05CAF(XX) 
ICT=ICT+1 
DO 22 I=1, MP1 

U=U-TP(J, I) 
IF (U. LE. O. 0) GOTO 23 

22 CONTINUE 
23 K=I 

RETURN 
END 
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A2 THE APPROXIMATION PROGRAM 

The, program listed below performs an approximate analysis of 

a multiserver queueing network. ` The 4program`was written in BASIC 
a .. _ . .ý is .. 

to be used interactively on the Harris S135. 

The input 'data required is: 

H' the number ofservice centres 

CUST(I) the rate Of external arrivals to centre I 

I=1,2 ...... M' 

CE(I) the SCV of external arrival to centre I 

T the'matrixof transition probabilities 

AVST(I) the average service time at"centre'I `; I=1,2, ".:.., M 

SDST(I) the standard deviätiön`of "thelservice times`"at'centre 

I I=1,2...... M 

NS(I) the numberýof se'rvers`at centre I I=1,2...... M. 

The output produced is: 

A(I) the internal's rival rate to°centre'I'}'I-1,2....... M 

RHO(I) the utilisation of centre I I=1,2...... M 

CA(I) the SCV of the arrivals to centre I I=1,2...... M 

AVW(I)ý the average wait at centre I I-1,2...... M 

SDW(I) the standard deviation of the wait at centre I 

1=1.2...... M 

XX the average 'waiting 'time , in the'. - etwork 

THRU the average throughput time 

TSD the standard deviation of the throughput times. 

iI 



flu uriiun UAb =1 
200 DIM P(15,15), W(15,15), A(15,1), CUST(15,1), T(15), NS(15), AVST(15) 
210 DIM SDST(15), AVW(15), U(15), Q(15,15), RHO(15), CA(15,1), CS(15) 
220 DIM B(15.1), SDW(15), EN(15), VAR(15), COV(15,15), ATT(15), PT(15,15) 
230 DIM XSCA(15), CE(15), RCA(15), RCS(15), E(15), F(15), G(15) 
300 A$="####. ###" 
310 B$: "Y" 
320 E$="#/#'º 
330 F$: " ENTER THE FLOWS FROM CENTRE ### AS PROPORTIONS" 
340 G$=" CENTRE ### NEEDS AT LEAST ### SERVERS" 
350 H$=" AVERAGE, OVERALL WAIT = ####. ####" 
351 J$="\, 
360 I$=" AVERAGE THROUGHPUT TIME = ####. ####" 

370 REM READ THE. INPUT, DATA 
400 PRINT " ENTER THE NUMBER OF SERVICE CENTRES IN, YOUR SYSTEM" 
410 INPUT " NUMBER OF CENTRES 

; =", N 
. ,,..,,, . .,,. , _� 600 PRINT " ENTER THE ARRIVAL; RATES OF' EXTERNAL 'CUSTOMERS '-AT EACH CENTRE" 

610 PRINT " PUT EACH NO. ON A SEPERATE LINE " 
620 FOR I: 1 TO N 
621 INPUT CUST(I, 1) 
623 NEXT 

,Ia I'' 630 PRINT " THE ARRIVAL RATES ENTERED ARE : -" 640 FOR I=1 TO N.,., 
641 PRINT USING A$, CUST(I, 1); ' rv m4" b6117MrYTT 

650 INPUT "_. DO YOU WISH TO AMEND THESE'VALUES? ENTER Y/N", C$ 
660 IF C$=B$ GOTO 600 
670 PRINT ". ENTER THE SCV OF EXTERNAL ARRIVALS TO EACH CENTRE" 
680 FOR I=1 TO N 
681 INPUT CE(I) 
682 NEXT 

,It.. 690 PRINT " THE SCVS ENTERED ARE :-" 
700 FOR I=1 

. T0 N 
701 PRINT USING A$, CEI; 
702 NEXT I 
710 INPUT " DO YOU WANT TO CHANGE THESE VALUES? ENTER Y/N", C$ 
720 IF C$=B$ GOTO 670 
730 FOR I=l TO N 
740 PRINT USING F$, I, 

' 750 FOR J_1 TO N 
751 INPUT T(J) 
752 NEXT J 
760 SP=0.0. 
770 FOR J=170 Ný . - . 780 SP=SP+T (J) , 
790 NEXT J. 
OVU lr- SY? 1. U THEN DO: PRINT " THE PROPORTIONS SUM TO MORE THAN ONE" 
810 PRINT, " PLEASE RE-ENTER, THIS LINE OF DATA'!, 
820 GOTO 740 

~. ý, r_..,. d: 4..... xr.., 
830 DOEND 
840 PRINT " YOU HAVE ENTERED THE FLOWS: -" 850 FOR J: 1 TO 
851 PRINT USING A$, T(J); 
852 NEXT J 
860 INPUT-" DO YOU. WISH, TO AMEND THESE VALUES?: ENTER Y/N", C$ 870 IF C$=B$ 

, 
GOTO 7u0 ... ''FW d"U \f a41» 

'b ±' 
.. 

.eäý. 

.' Sw 
evk 



880` FOR -J=1 TO N 
890 P(I, J)=T(J) 
900 NEXT J 
910 NEXT I 
1000 MAT W=IDN 
1010 MAT PT=TRN(P) 
1020 MAT W=W-PT 
1030 MAT W=INV(W) 
1040 HAT A=W*CUST 
1050 PRINT " THE OVERALL FLOW, INTERNAL AND EXTERNAL, THROUGH EACH CENTRE" 

1060 PRINT " OF YOUR SYSTEM IS AS INPUT IN SEQUENCE: -" 
1070 FOR I=j., TO N 
1071 PRINT USING A$, A(I, 1) 
1072 NEXT I1 4'`" , . 11 
1200 PRINT " ENTER THE AVERAGE SERVICE TIME AT EACH CENTRE" 
1210 FOR I=1 TO N 
1211 INPUT AVST(I) 
1212 NEXT I 
1213 FOR I=I TO N 
1214 PRINT USING A$, AVST(I); 
1215 NEXT I 
1230 INPUT " DO YOU WISH TO CHANGE THESE VALUES? ENTER Y/N", C$ 

1240 IF C$=B$ GOTO 1200 
1400 PRINT " ENTER THE S. D. OF SERVICE TIME AT EACH CENTRE" 
1410 FOR I=1 TO N 
1411 INPUT SDST(I) 
1412 NEXT I 
1420 PRINT " THE S. D. 'S ENTERED ARE: -" 
1430 FOR I=170 Ni'., 
1431 PRINT USING A$, SDST(I); 
1432 NEXT I 
1440 INPUT " DO YOU WISH TO ALTER THESE VALUES? ENTER , 

Y/N", C$ 
1450 IF C$=B$ GOTO 1400' 
1600 FOR I=1 TO Nº 
1610 M=INT(A(I, 1)*AVST(I))+1 
1620 PRINT USING 

. 
G$, I, H 

1630 NEXT I 
1640 REM THE MINIMUM NUMBER OF. SERVERS IS CALCULATED AS, A GUIDE 
1800 PRINT 11 ENTER THE NUMBER'OF'SERVERS'IN EACH CENTRE" 
1810 FOR I=1 TO N 
1811 INPUT NS(I) 
1812 NEXT I 
1820 PRINT " THE NUMBER OF SERVERS ENTERED ARE: -" 
1830 FOR I=1 TO N j. f t 1831 PRINT USING E$, NS(I); 
1832 NEXT I 
1840 INPUT " DO YOU WISH TO AMEND. THESE. VALUES? ENTER Y/N"_C. t 
1850 IF C$=B$ GOTO 1800 

� 
ýý 

2000 FOR I=1 TO N 
2010 RHO(I)=A(I, 1)"AVST(I)/NS(I)' 
2020 X_SDST(I)/AVST(I)``' 
2030 CS(I)=X'X 
2040 NEXT I 
2050 PRINT" THE UTILISATIONS OF THE CENTRES ARE: -" 
2060 FOR I=1 TO N 
2061 PRINT USING A$; RHO(I)" 
2062 NEXT I 
2063 INPUT " TYPE"1T0`CONTINUE", I 

1 ... j, t Yas 
.., .. 'a 



2070 REM ITERATION-TO FIND THE` COEFFICIENTS OF VARIATION OF THE ARRIVALS 

2080 EPS=0.0000001 
2090 FOR I=1 TO N 
2100 RCS(I)=SQR(CS(I)) 
2110 E(I)=(0.04*NS(I)-1.37)*(1-RHO(I)) ;y 2120 F(I)=0.65*(1-RHO(I))*RCS(I)`f 
2130 G(I)=1.13*RHO(I)*RHO(I)1(1_CS(I))/NS(I) 
2160 RCA(I)=0.0 
2170 CA(I, 1)=0.0 
2190 NEXT I 
2200 K=O 
3400 K=K+1 
3410 IF K<=1000 GOTO 4250 
3420 PRINT " THE ITERATIONS EXCEED 1000" 
3430 STOP 
4250 FOR I=1 TO N 
4260 SUM=0.0 
4270 FOR J=1 TO N" 
4280 SUM=SUM+P(J, I)*A(J, 1)*(P(J, I)*(E(J)*(1-CA(J, 1))+F(J)*(1-RCA(J))-G(J))+1.0) 
4290 NEXT J 
4300 SUM=SUM+CUST(I, 1)*CE(I) 
4310 XSCA(I)=SUM/A(I, 1) 
4320 NEXT I 
4330 M=O 
4340 FOR I=1 TO N '. R 
4350 IF ABS(XSCA(I)-CA(I, 1))<EPS GOTO 4400 
4360 M=M+1 
4370 CA(I, 1)=XSCA(I)' " 
4380 IF CA(I, 1)<0.0 CA(I, u)=u. u 
4390 RCA(I)=SQR(CA(I, 1)),,,,,:.,, 

-%J 4400 NEXT I 
4410 IF M>0.0 GOTO 3400 
4411 PRINT " THE COEFFICIENT OF VARIATION OF ARRIVAL TO EACH CENTRE IS: -" 
4420 FOR I=1 TO N 
4421 PRINT USING A$, CA(I, 1) 
4422 NEXT I 
4423 INPUT "TYPE 1 

, 
TO CONTINUE", I 

4600 REM ESTIMATION OF THE MEAN WAITNG TIME AT EACH CENTRE 
4620 FOR I: 1 TO"N 
4630 P0: 1.0 -" 
4640 F=1. O 
4650 FOR K=1`TO-NS(I)-1 
4680 F=F*K 
4690 PO=PO+(NS(I)*RHO(I))'*'*K/Fi' "`t { 
4700 NEXT K 
4710 F=F*NS(I) 
4720 PO=PO+(NS(I)IRHO(I))**NS(I)/(F*(1-RHO(I))) 

. __ 4730 X=AVST(I)*RHO(I)*(NS(I)*RHO(I))**(NS(I)=1)/(PO*F*(1-RHO(I))**2) 
4740 Z=(1-RHO(I))*(NS(I)-1)*(SQR(4+5*NS(I))-2)/(16*RHO(I)*NS(I)) 
4750 Y_CS(I)*(1-CA(I, 1))*(0.5-0.325*(2-RHO(I))*(1-RHO(I)))*(1-4*Z) 
4760 Q=0.5(1-CS(I)) 
4770 AVW(I)=X*(CS(I)*CA(I, 1)+Q*CA(I, 1)*(1+Z)+Y) 
4780 IF RHO(I)>=1.0 AVW=10000.0 
4790 NEXT I 
4800 PRINT " THE AVERAGE WAIT AT EACH CENTRE IS: -" 4801 FOR I=1 TO N 
4802 PRINT USING A$, AVW(I) 
4803 NEXT I 
4804 INPUT "TYPE 1 TO CONTINUE", I 



4805 REM ESTIMATION OF THE STANDARD DEVIATIONS OF THE WAITING TIMES 
4813 FOR I=1 TO N 
4814 X: RHO(I)**SQR(3.0*NS(I)),; 
4815 Y=RHO(I)**SQR(7.0*NS(I)) 
4816 Z=0.3850*X*CA(I, 1)*CS(I)+0.1877'X*CA(I, 1)*CA(I, 1)+0.2659*Y*CS(I)*CS(I) 
4817 VAR(I)=(NS(I)**0.25)*Z/((1-RHO(I))*A(I. 1))**2 
4818 SDW(I)=SQR(VAR(I)) 

, _, vx - 4819 NEXT I 
'820 PRINT " THE S. D. OFWAITING, TIME,, ATEACH-CENTRE IS: -" 
4821 FOR I=1 TO N 
4822 PRINT USING A$. SDW(I) 
4823 NEXT I 
4824 INPUT "TYPE 1 TO CONTINUE", I 

4825 REM ESTIMATION OF THE AVERAGE THROUGHPUT TIME 
5000 TW=O. O: TS=O. O: TC=0.0 
5010 FOR I=1 TO N 
5020 TW=TW+A(I, 1)*AVW(I) 
5030 TS=TS+A(I, 1)'AVST(I) 
5040 TC=TC+CUST(I, 1) 
5041 ATT(I)=AVW(I)+AVST(I) 
5050 NEXT I 
5060 XX_TW/TC 
5070 THRU: (TW+TS) /TC 
5080 PRINT USING H$, XX 
5081 PRINT USING I$, THRU 

5082 REM ESTIMATION OF THE STANDARD DEVIATION OF THE THROUGHPUT TIME 
5083 FOR I=1 TO N 
5084 EN(I)=A(I, 1)/TC 
5085 VAR(I)=VAR(I)+CS(I)'(AVST(I))**2 
5093 NEXT I 
5094 OVER=O 
5095 SUMJ=O 
5096 FOR I=1 TO N 
5097 FOR J=1 TO N 
5098 IF J=I THEN DO 
5099 COV(I, J)=EN(J)'(2'W(J, J)-EN(J)-1)*ATT(J) 
5100 ELSE 
5101 COV(I, J)=EN(J)*W(J, I)+EN(I)*W(I, J)-EN(I)*EN(J) 
5102 COV(I, J)_COV(I, J)'ATT(J) 
5103 DOEND 
5104 SUMJ=SUMJ+COV(I, J) 
5105 NEXT J 
5106 OVER=OVER+EN(I)*VAR(I)+SUMJ*ATT(I) 
5107 SUMJ-O 
5108 NEXT I 
5109 TSD=SQR(OVER) 
5113 PRINT USING J$, " S. D. OF THROUGHPUT TIME="; TSD 



5114 REM END OF RUN 
5200 PRINT " IF YOU WISH TO RUN THE PROGRAM-AGAIN MODIFYING ONLY " 
5210 INPUT " PART OF THE DATA ENTER Y", C$ 
5220 IF C$: B$ GOTO 5240 
5230 STOP 
5240 PRINT " IF THE FIRST'DATA TO BE CHANGED'ISTHE FLOW' PROPORTIONS TYPE 
5250 PRINT" IF THE FIRST DATA TO BE CHANGED, IS THE SERVICE TIMES TYPE 2" 
5260 PRINT " IF$THE FIRST DATA TO BE CHANGED IS*THE S. D. "S TYPE 3" 
5270 PRINT " IF THE FIRST DATA TO BE CHANGED, IS, THE, NUMBER OF SERVERS TYPE 
5280 PRINT " IF THE FIRST DATA TO BE CHANGED IS THE RATES OF ARRIVALS TYPE 
5290 INPUT "TYPE YOUR OPTION: -", I M 5300 IF I=1 GOTO 730 
5310 IF I=2 GOTO 1200 
5320 IF I-3'GOTO 1400 
5330 IF I: 4 GOTO 1800 
5340 IF I=5 GOTO 600 
5350 STOP 
5360 END 

In 

411 

5 11 
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A3, SIMULATION AND APPROXIMATION RESULTS 

Tables A3.1-A3.10 give the simulation and approximation 

results for the networks considered in Chapter 8. The value of 

the coefficient of variation of they arrivals (C the 

correlation of the arrival stream, and the mean, and standard 

deviation of the waiting time at the Mth centre is, given for each.. 

of the H-centre networks. Coefficients of variation of, the service 

times, (C of. 0.2, 
-, 
0.5 and 1.0, and utilisations (u) of the,, 

service. 
3 centresgof 0.4,0.6 and, 0.8. are. included. 

The approximation algorithm. is based., onthe assumption that, 

all the transition processes in a queueing network are renewal, 

hence- the approximations for,, the correlation of the arrival, y 

streams 
, are ,. shown as zero. Significant correlations F.,, (>1.96/ N,,,,, 

i il 

where N is the number of observations [6])-arose in-many of the;. 

simulated arrival streams, these are indicated, by asterisks. r; E. 
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Table A3.1 Networks of Four Single-Server Centres with u=0.4 

C 

Flow Shop Symmetric Shop 

Simulation Approx. Simulation Approx. 

0.2 C2 0.851 0.681 1.274 0.969 
a 

Correlation 0.045k 0.000 0.086 0.000 

Mean Waiting Time 0.075 0.112 0.157 0.155 

S. D. Waiting Time 0.171 0.286 0.288 0.381, 

Mean Throughput Time 2.024±0.105 2.134 2.220±0.111 2.2211 

S. D. Throughput Time 0.581 0.760 2.085 2.100 

0.5 Ca 0.866 0.812 1.279 0.981. 

Correlation 0.008 0.000 0.075 0.000- 

Mean Waiting Time 0.146 0.167-- 0.210 0.197' 

S. D. Waiting Time 0.312 0.419 0.400. 0.476 

Mean Throughput Time 2.281±0.114 : 2-325 2.427±-0.117 - 2.386' 

S. D. Throughput Time 0.927 1-057 2.349' 2.344 

1.0 t C 0.983 1.000. 1.277 1.000, 
a 

Correlation 0.012 0.000 0.055, -k 0.000, 

Mean Waiting Time 0.248 0.267 0.257: 0.267= 

S. D. Waiting Time 0,488 0.625 0.512.; 0.625 

Mean Throughput Time 2.65330.128 2.677 2.64710.132,2.667 

S. D. Throughput Time 1.318 1.484" 29743. 2.745 
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Table A3.2 Networks of Four Single-Server Centres with uý0.6 

Flow Shop Symmetric Shop 

C1 Si mulation Approx. Simulation Approx. 

0.2 C2 0.594 - 0.453 1: 053 0: 933 

Correlation 0.0661 0.000 0.064-` 0.000 

Mean Waiting Time 0.231 0.276 0.541 0.508 

S. D. Waiting`Time 0.420 0.454 0.771 0.790 

Mean Throughput Time 3.776±0.181 3.908 4.502±0.22 5 ? 4.431 

S. D. Throughput Time 1.313 1.349 A. 450 4.184 

0.5 Ca 0.728 0.671 1.043 0.958 

Correlation 0.029-* 0.000 0.036 0.000 

Mean Waiting Time 0.490 0.500 0.728 0,653 

S. D. Waiting Time 0.799 0.811 1.103 1.014 

Mean Throughput Time ; 4.641±0.232 -. 4.662 : 5.215±0.2 50 15.012 

S. d. Throughput Time 2.062 1.995 '5.408 --4.865 

1.0 Cat- 0.978 1.000 1.086 1.000 

Correlation -0.003 0.000 0.026 k 0.000 

Mean Waiting Time 
4 

0.865 0.900 0.837 0.900 

S. D. Waiting Time 1.303 1.381 1.270 1.381 

Mean Throughput Time 5.990±0.290 '6.000 '5.848+0.273 ! 6.000 

S. D. Throughput Time 3.004 3.012 '6.103 6.006 
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Table A3.3 Networks of Four Single-Server Centres with u=0.8 

CZ 

Flow Shop 

Simulation Approx., S 

Symmetric Shop 

imulation Approx. 

t 0.2 C 0.383 0.259 0.918 0.887 
a 

Corre lation -0.056* 0.000 0.0110E 0.000 

Mean Waiting Time 0.800 0.697 1.913 1.733 

S. d. Waiting Time 1.134 0.837 2.348 1.953 

Mean Throughput Timert 7.847±0.383 7.528 10.788±0.555 10.131 

S. D. Throughput Time 3.815 2.812 11.689 9.630., 

0.5 C 0.598 0.545 0.950 0.929 
a . 

Correlation -0.005 0.000 0.008 0.000 

Mean Waiting Time 1.848 1.615 2.406 2.278 

S. D. Waiting Time 2.473 1.910 2.931 2.591 

Mean Throughput Time 11,. 149±0.495 10.634 12.766tO. 637,12.312 

S. D. Throughput Time 5.434 4.514 13.844 11.909 

1.0 Ca2 

Correlation 

Mean Waiting Time 

S. D. Waiting Time 

Mean Throughput Time 

S. D. Throughput Time 

`0.995 1.000 

-0.002 0.000 

3.118 3.200 

3.118 3.662 

15.675±0,776 16.000- 

8.031 7.497 

1.017 1.000 

0.011''1F 0.000 

3.138 3.200 

3.843 3.662 

-16.01510.77' 16.000 

17,509 15.755 



136 

Table A3.4 Networks of Four Two-Server : Centres ýwith1u-0: 4 

Flow Shop Symmetric Shop 

C Simulation Approx. Simulation Approx. 

0.2 Ca 0.920 0.844 1.140 0.984 

Correlation -0.016' 0.000 0.088* 0.000 

Mean Waiting Time 0.055 0.082 0.095 0.095 

S. D. Waiting Time 0.163 0.266 0.248 0.302 

Mean Throughput Time 3.48810.170 3.553 3.59Rt9.174 3.580 

S. D. Throughput Time 0.852 0.914 3.220 `3: 239 

0.5 Ca 0.926 0.908 1.169 0.990 

Correlation -0.005 0.000 0.087 * 0.000 

Mean Waiting Time 0.093 0.108 0.124 0.116 

S. D. Waiting Time 0.262 0.350 0.330 0.372 

Mean Throughput Time 3.588±0.175 3.647 3.70W. 175 3.665 

S. D. Throughput Time 1.260 1.342 3.511 3.451 

1.0 C 2' 0.981 1.000 1.179 1.000 
a 

Correlation -0.010 0.000 0.078 0.000 

Mean Waiting time 0.149 0.152 0.159 0.152 

S. D. Waiting Time 0.422 0.479 0.442 0.479 

Mean Throughput Time 3.791±0i993.810 -, 3.818t0.184 , 3.810 

S. D. Throughput Time 1.803 10'8641' 3.827 3.790 
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Table A3.5 Network of Four -Two=Server-Centre a with, u-0: 6 

b 
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Flow Shop Symmetric shop 

C Simulation Approx. Simulation- Approx. 

I 

3 
1 

t 

1 
s 

r 
f 

0 

3 

f 

e 
6 

t 

4 
d 
j 

0.2 Ca 

Correlation 

Mean Waiting Time 

S. D. Waiting Time 

Mean Throughput Time 

S. D. Throughput Time 

0.5 C 
a 

Correlation 

Mean Waiting Time 

S. D. Waiting Time 

Mean Throughput Time 

S. D. Throughput Time 

0.758 0.730 0.998 0.967 

-0.082* 0.000 -0.041'. 0.000 

0.214 0.313' 0.395 0.402 

0.441 0.577 0.689 0.737 

5.929±0.278 : 6.206 '6.430t0.303 6.409 

1.625 1.694 "6.037 5.842 

0.861 - , 
0.838 

-0.030 0.000 

0.382 0.444 

0.745 '0.835 

'6.508±0.279 `6.678 

2.431 2.436 

1.006 0.979 

0.034 -0.000 

0.502 0.504 

0.955 0.926 

'6.8060.295 `6.815 

'6.571 '6.414 

0.992 1.000 : 1.062 1.000 

-0.000 0.000 0.035- 0.000 

0.683 . 0.675 0.722 0.675 

1.247 1.229 1.397 1.229 

$7.502±0.347 
, 
1.500 7.58210.337 , 7.500 

3.511 
., 

3.435 '. 7.68' 7.348 

1.0 C v-- 
a 

Correlation 

Mean Waiting Time 

S. D. Waiting Time 

Mean Throughput Time 

S. D. Throughput Time 
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Table A3.6 Networks of Four Two-Server-Centresawithýu=0.8r; 

C52- 

Flow 

Simulation 

Shop Symmetric 

ýr,. Approx. Simulation 

Shop 

?,; Approx. 

= 0.2 C 0.588 ,,., 0; 631 0: 931 0: 943 
a " 

Correlation -0.174 : -,, 0.000 -0.003 r:, 0.000 

Mean Waiting Time 0.807 t; ^1.170 1 1.827; 1 1.637 

S. D. Waiting Time 1.210 , 1.503 2: 431 *, rT 2.964 

Mean Throughput Time 10.625±0. 400 11.773' {13.540±0.862-: 12.950 

S. D. Throughput Time 3.746 _-3.748 13.803&Y 12.036 N 

0.5 Ca 
S 

0.726 ,, . 
0.773 1 0.957 `'. 

z --. 0; 965 
1 

Correlation i -0.063 0.000 ! 0.000 
,: . 

0.000 
,. z a 

Mean Waiting Time 1.603 1.786 2.185 2.087 

S. D. Waiting Time 2.358 2.314 2.873° 2.657 , . 
Mean Throughput Time 13.609+0 . 549,13.986 115.220±0.8 6214.750 

S. D. Throughput Time 5.789 15.388 15.7121: ; 14.019 
4 f` 

1.0 Cä 1.004 1 1.000 1.005z 
, 
1.000 

Correlation 
-0.003 { ,. '0.000 0.006 ., 0.000 

Mean Waiting Time 2.898 2.844 . 2.832: ., 2.844 

S. D. Waiting Time 3.717 -3.645 3.870) ;, 3.645 
, 

Mean Throughput Time 17.482±0.666 17.778 ý18.309.1.305, M. 779 
S. D. Throughput Time 7.723 4, '. ý 7.962 ' : 19.669: ' -: 17.333 

s 

I 
I 

r 

a 
rý 



Table A3.7 Networks of Four Five-Server Centres with u=0.4 

4 

i 

a 

I- 
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Flow Shop Symmetric Shop 

>C Simulation Approx. Simulation Approx. 

0.2 Ca 0.985 0.942 1.013 0.994 

Correlation -0.009, 
* 0.000 0.020' 0.000 

Mean Waiting Time 0.018 0.026 0.028 0.028 

S. D Waiting Time- 0.112 0.170 0.152 0.177 

Mean Throughput Time -8.073 . 
8.108 ; 8.075 ? 8.111 

S. D. Throughput Time 1.806 1.821 }7.205 1.7.257 

0.5 C l' 0.982 0.966 1.026 0.996 
a 

Correlation 0.005 0.000 0.035' '0.000 

Mean Waiting Time 0.029 0.031 '0.033 0.032 

S. D. Waiting Time 0.164 0.211 "0.186 0.215 

Mean Throughput Time `8.123 8.127 8.125 8.127 

S. D. Throughput Time 2.857 2.860 , 7.606 7.599 

1.0 Cap' 0.997 1.000 1.063 ' 1.000 

Correlation -0.001 0.000 0.043'x" 0.000 

Mean Waiting Time 0.042 0.040 0.043 0.046 

S. D. Waiting Time 0.239 0.271 0.238. ' 0.271 

Mean Throughput Time ; 8.157 -'8.159 8.183 8.159 

S. D. Throughput Time 4.006 4.036 8.170 t8.138 

f 
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Table A3.8 Networks of Four Five-Server Centres with u=0.6 

r 

Flow Shop Symmetric Shop 

CS 
Imulation Approx. Simulation Approx. 

0.2 Ca 0.924 0.897 0.986 0.987 

Correlation -0.032 0.000 -0.000 0.000 

Mean Waiting Time 0.134 0.206 0.233 0.226 

S. D. Waiting Time 0.392 0.538 0.611 0.583 

Mean Throughput Time 12.647 12.858 12.841 12.903 

S. D. Throughput Time 2.866 2.906 11.524 11.551 

0.5 C 0.959 0.938 0.997 0.992 
a 

Correlation -0.018*, 0.000 0.000 0.000 

Mean Waiting Time 0.229 0.261 0.274 0.274 

S. D. Waiting Time 0.625 0.691 0.722 0.718 

Mean Throughput Time 12.962 13.064 13.081 13.095 

S. D. Throughput Time 4.478 4.468 12.252 12.193 

1.0 C 1.003 1.000 1.013 1.000 a 
Correlation -0.002 0.000 0.015kk 0.000 

Mean Waiting Time 0.340 0.354 0.349 0.354 

S. D. Waiting Time 0.927 0.928 0.979 0.928 

Mean Throughput Time 13.334 13.417 13.346 13.417 

S. D. Throughput Time "6.297 6.281 13.196 13.208 

i 

I 
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Table A3.9" Networks'of: Four Five-Server I Centres with=u=O. 8 

C 

Flow Shop 

Simulation"Approx. 

Symmetric 

Simulation 

Shop` 

Approx. -"{w 

0.2 C t '. 0.813 ý'"- 0.856 , - 0.970 0.977 
a 

Correlation '-0.097 *. '" 0.000 ', J6 -0.013'*. 0.000 

Mean Waiting Time '. 0.685 l'''1.193' 1.462 1.340 

S. D. Waiting Time t1.160 " -1.819 " >` " 2.375 2.029 

Mean Throughput Time 1-1§. 598' '-`20.986 21.741 ' 21.360 

S. D. Throughput Time 5: 055 5.217' 20.422 19: 274 

0.5 C 2 0.874 013`0.912, ,=$ 0.979 '0.986 a 
Correlation ', ý-0: 040*-, . ̀ `, 0.000 -0.011 0.000 

Mean Waiting Time : "1: 334 ">'Ii1.571 1.608 1.667 

S. D. Waiting Time "2.303 (`- "2.426ý", _'- 2.555 2.555 

Mean Throughput Time M21: 930`22.423 23.104 22.670 

S. D. Throughput Time "7: 788 7.513 22.345 21.060 

1.0 Cam 1: 006 iý , _" 1.000 ' 1.007 1.000 

Corr elation -0.004 "'ý 0.000 0.001 0.000 

Mean Waiting Time "2.330 =L - 2.216 2.058 : 2.216 

S. D. Waiting Time -3.805 ;, '3.417 3.398 3: 417 

Mean Throughput Time "25.084, -, `'. 24.866 24.500 24.866 

S. D. Throughput Time L16.957 ,ý =10.522 24.544 '23.967 

v 
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TABLE A3.10 Symmetric Shops with Ten-Three-Server Centres 

u=0.4 u-0.6 
r 

u=0.8 

C 

1 
tr !' 

}: 
xb 

Sim. ýApprox. 

. a. .R R. 

" Sim. Approx. 

.. 

Sim. Approx. 

0.2 C2 1.010 0.995 1.003 0.990 0.969 0.982 
aw : a; f; -" , 

Correlation fa°ý> 0.030' 0.000 -0.001 0.000 -0.006 0.000 

. Mean'Waiting Time'. 0: 064 ; 0.062 >'. -0: 331 0.330 1.623 1.554 

S. D. Waiting Time: 0.219. -0.249 0.682 0.686 2.306 2.110 

{w Mean Throughput Time 12.616,112.617 21.231 21.301 39.684 39.541 

S. D. Throughput"Time, 12.162,,, 12.115 20.642 20.483 39.673 38.251 

', 

r 

". _' T i'O, 
t Gr3i ii4 rti .. 

In 
b 

"Y 

0.5 Cat ... 1.034 0.997, 1.009 0.994 0.983 0.989 

. Correlation- - 0.039*, '0.000 0.0157, 0.000 -0.006 0.000 
4 

Mean Waiting' Time. "', 
-Si b 

. 0.071 0.074 
i7 dy 

0.416 0.406 2.018 1.941 

S. D. Waiting Time 0.250 :; 0.304 . 0.867- 0.850 -2.857 2.662 

Mean Throughput; Time . r12.649ý,. 12.739 21.988 22.057 44.152 43.412 

S. D. Throughput Time 12.293-a 12.416 21.558 21.477 44.392 42.377 

1.0 C t,, 1.046 1.000 1.021 1.000 1.010 1.000 a . 

. 
Correlation-,:, i, _ 

0.0384-,, 0.000 0.012 0.000 0.009 ', 0.000 
r, 

i "b 
..., 

ýr t' .r 

Mean Waiting Time 
Ia 1" v 

+Ä'n" ra 

X0.096 0.094 
rr 

0.500 
it 

0.532 2.473 2.589 

S. D. WaitingTime. F 0.342 0.385 .: 1.071 1.108 3.549 3.577 

Mean Throughput Time 12.926 12.941 23.204 23.321 48.699 49.888 

^" , 
S. D. 'rThroughput , Time 12.837., 12.908 23.191, 23.112 49.657 49.249 

As 
ýfj 

.ýS ,ý 
'Yi 

u-T 
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Notation 

Equation (1) on page 15 and equation (3) on page 37 should both read 

CIL m Clý + CeL 

A better notation for the decomposition step on page 14 may be 

ca PjLCd-At 

Where Cd a. is the squared coefficient of variation of an arrival stream 

created by choosing jobs with probability. p from an original 

stream with squared coefficient of variation Cd* 

Similarly, the composition step on page 15 can be expressed as 

ýt = 
2. C 

Where Ca is the squared coefficient of variation of the composition of 

M renewal processes, is the squared coefficient of variation 

of the th 
component stream, i is the arrival rate of 

stream j, and 

The equation on page 26 should read 

Z(pýýýý = r&4(a, ý)) - E(06400) r(N(ýcýöý)+- ýCNCoýýs) jai 

-1- 
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AD1.2 Further Comparisons with Simulated Networks 

The tables in Chapter 8 compare approximations given by the 

algorithm for the mean and standard deviations of throughput 

times with those obtained by the simulation of a number of 

queueing networks. 

The networks are either flow or symmetric shops and, in order to 

simplify notation, only networks with identical service centres 

are considered. 

A further set of tables are presented here (Tables AD1.1 - AD1.7) 

to illustrate the performance of the algorithm under less uniform 

circumstances. All the networks consist of four service centres 

and are described by their transition probability matrices (as 

defined in Chapter 8), squared coefficients of variation of 

service time distributions, and the utilisations and numbers of 

servers at the service centres. 

Good approximations are given for the mean throughput times in 

the networks. The largest percentage error (7.1%) occurs for 

the network described in Table AD1.2. As was observed for the 

networks considered in Chapter 8, the approximations to the 

standard deviations of throughput times are not as accurate, 

a 60% error can be calculated for the network in Table AD1.1. 

Inaccuracies in the approximation of the standard deviations of 

throughput times arise in networks when the estimates of the 

standard deviations of the waiting times at individual service 

centres are poor. This appears to be the case at service centres 

with low coefficients of variation of arrival or service time 

distributions and large numbers of servers. 



-3- 

Correlation of the arrival processes in the networks seems 

to affect the accuracy of the approximations in the same 

way as observed in Chapter 8. In general, significantly 

negatively correlated arrival streams coincide with 

overestimations of the perameters of a service centre, and 

large positive correlations correspond to underestimations. 

The overall effect of the correlations on estimated mean 

throughput times is not obvious because of the more diverse 

nature of the service centres of the networks. 
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ADDENDUM 



AD1 Further Discussion on the Accuracy of the Algorithm 

AD1.1 The Application to Networks of G1/G/n Queries 

In this thesis it is asserted that an algorithm is developed 

to approximate queueing times in networks of queues with 

generalised arrival and service time distributions. The 

algorithm estimates the throughput time in a network by a 

composition of the properties of the individual queues of 

the network. The composition process requires that the 

arrival and departure streams of the individual queues form 

renewal processes. The effect of correlated arrival and 

departure processes on the accuracy of the algorithm is 

discussed in Chapter 8 and Addendum 4. 

The mean and standard deviation of the waiting time, and the 

varianceof the departures of the individual queues are estimated 

by approximation formulae. Queues with gamma distributed 

arrival and service time distributions and with coefficients 

of variation less than or equal to one are used both to develop 

and to assess the accuracy of the approximations. The algorithm 

has not been tested for networks of queues with arrival and 

service time distributions that are not readily approximated by 

gamma distributions with coefficients of variation less than 

one. The results of the algorithm should therefore be viewed 

with caution if such networks are to be modelled. However, 

the algorithm proved to be a useful planning tool in the job 

shop application described in Chapter 10 although, as Table 10.2 

shows, the coefficients of variation of the arrival and service 

time distributions at most of the work centres are greater than 

one. 
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AD2 A Re-Estimation of Queueing Times in Mallaig Harbour 

AD2.1 Introduction 

In Chapter 9 the approximation algorithm is used to model the 

queues that arise as ships arrive to unload fish and take on 

ice in Mallaig Harbour. Approximate waiting times given by 

the algorithm are compared with data collected by the White 

Fish Authority on two days with differing traffic conditions. 

On both the days considered most of the ships arrived in the 

harbour between 2.00 p. m. and 9.00 p. m. The first day observed, 

Tuesday 19th June 1979, was a 'quiet' day. Only twenty three 

ships arrived, and eighteen of the arrivals were between 7.00 p. m. 

and 9.00 p. m. The algorithm is used to approximate the queueing times 

in this two hour period and overestimates the average waiting 

times for unloading berths and ice berths (Table 9.2). It is 

suggested that this is because ships arrive over too short a 

period fb'r the queueing system to build up to conditions that 

can be regarded as steady-state. 

The same exercise is undertaken for the 'busy' day, Thursday 

21st June 1979. The algorithm is used to estimate the average 

waiting times in the harbour between 2.00 p. m. and 8.00 p. m. when 

forty of the day's forty three ships arrive. Table 9.2 shows that 

the queueing times are again overestimated because of the time 

taken before congestion begins to build up in the harbour. 

AD2.2 A Further Application of the Algoritum 

Another application,, tof the algorithm to the situation in the 

harbour on Thursday 21st June is considered here. Only the 

peak two hours from 4.00 p. m. to 6.00 p. m. are modelled. In this 

period conditions were fairly steady. Large queues had already 
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begun to develop in the harbour and the arrival rate of ships 

had not started to decline. 

Nine working berths were available for use between 4.00 p. m. 

and 6.00 p. m. The means of the arrival and service times in 

the period implied a 90% utilisation of the berths. An 104% 

utilisation can be estimated for the ice berths. This indicates 

that, if arrivals had continued at the same rate and the 

average loading time remained the same for a longer period of 

time, very long queues would have developed. In fact the data 

collected by the White Fish Authority shows that queueing times 

for the ice berths gradually increased between 4.00 p. m. and 6.00 p. m. 

The White Fish Authority observed that as congestion grew in the 

harbour the time taken for ships to load ice increased. In 

order to get a realistic estimate of the average waiting times 

at the ice berth, an average service time of 11.6 minutes was 

input into the algorithm. This is a weighted average of the 

actual mean service times of 9.54 minutes on the Tuesday and 

12.6 minutes on the Thursday. 

Table AD2.2 compares observed and approximated queueing times 

for the two hour period. 

Table AD2.2 Queueing Times Between 4.00 p. m. and 6.00 p. m. on Thursday 
21st June 

Average Waiting Times Throughput Times 
Working Berths Ice Berth Mean Standard Deviation 

Observed 8.40 22.0 85.9 34.4 

Approx. 9.16 22.4 87.3 24.3 
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The approximation to the mean waiting time at the working 

berths is close to the observed time. As the service time 

at the ice berth was chosen to represent the actual queueing 

times, there, a good approximation is to be expected. An 

accurate estimate of the mean throughput time is now given. 

Although the approximation to the standard deviation of 

throughput times is not as close (29% error),, 11it is of a 

similar order to the value observed. 

AD2.3 Conclusions 

The algorithm provides good approximations to the average 

queueing times in Mallaig Harbour between 4.00 p. m. -and 6.00 p. m. 

on a 'busy' day. Better results are obtained here because a 

short enough period was modelled to exclude most of the build 

up and run down of congestion occurring at the beginning and 

end of the afternoon. 

Hence, by identifying periods when a queueing system remains 

relatively stable, a steady-state queueing model such as the 

algorithm can be useful in the estimation of queueing times. 
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AD3 The Use of the Algorithm to Estimate Due Dates in a Job Shop 

AD3.1 Introduction 

The algorithx developed in this thesis can prove a useful tool 

in estimating the due dates of jobs processed in a manufacturing 

job shop. In this section the typical assumptions that may need 

to be made in order to apply the algoritum are discussed. 

Particular reference is made to Universal Joint production at 

Fenner's Motor Gear and Engineering Company Ltd. - the job 

shop considered in Chapter 10. 

AD3.2 The Application of the Algprithm .oa job SFgp 

In the development of the algorithm a number of assumptions are 

made about the type of queueing network to be modelled. Some 

of these assumptions can be translated into the context of a 

manufacturing job shop as: 

1). All jobs enter the shop in their order of arrival and 

each job has a processing order which can be described 

on arrival by a series of transition probabilities. Jobs 

are not allowed priority - all jobs, are serviced on a first 

come first served basis. 

2) Machine centres are not interchangeable - each operation 

required by a job can only be performed at one machine 

centre. A machine centre consists of a number of machines 

with identical mean processing times. The processing times 

of all jobs are independently identically distributed. 
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3) The production capacity of a machine centre remains 

constant - the same number of machines are always 

available for use. 

It is unlikely that such conditions will prevail in a 

practical job shop situation. It will usually be necessary 

to make some kind of modifications to produce a system that 

can be modelled by the ..: algÖPittlhm. '^t-The -assumption. thab. weere 

made in the Fenner's application are discussed here. 

Service Discipline 

Most orders for Universal Joints arrive at Fenner's job shop 

with standard lead times. In this instance first come first 

served is a sensible scheduling discipline to adopt as in 

general, depending on the number and sequence of operations 

required, jobs will be despatched in the order they arrive. 

However, the queueing discipline assumed may not have a great 

effect on the date that a job is completed. Table AD3.1 shows 

simulated values for the means and standard deviations of 

throughput times in queueing networks with four single-server 

centres under first come first served (FCFS) and shortest 

processing time (SPTý (Shanthikumar (68)) disciplines. It is 

only at high utilisations(U = 0.8) that any appreciable 

differences in throughput times emerge. At utilisations, of 

0.4 and 0.6 both the means and standard deviations take similar 

values for the two queueing disciplines. 



TABLE AD3.1 SIMJLATED THROUGHPUT'TIMES'EUR TWO QUEUING DISCIPLINES 
(In Units of Mean Service Time) 

Flow Shcp with Four Single-Service Centres 

u C$ 
spr 

Mean SD 
FCFS 

Mean SD 

0.2 4.933 1.600 5.060 1.545 
0.4 0.5 5.369 2.240 5.703 2.318 

1.0 6.136 3.191 6.633 3.295 

0.2 5.988 2.784 6.293 2.189 
0.6 0.5 6.740 3.469 7.735 3.438 

1.0 7.774 4.369 9.983 . 
5.007 

0.2 8.436 6.992 9.809 4.806 
0.8 0.5 9.835 9.016 13.786 6.793 

1.0 11.342 10.656 19.706 10.039 

Symmetric Shop with Four Single-Server Centres 

u 
S c 

SPT 
Mean SD Mean 

FACE'S 
SD 

0.2 5.371 5.086 5.550 5.213 
0.4 0.5 5.625 5.600 6.068 5.873 

1.0 6.074 6.254 6.618 6.858 

0.2 6.710 8.184 7.503 7.417 
0.6 0.5 7.107 8.115 8.692 9.013 

1.0 7.850 9.342 9.747 10.172 

0.2 9.965 15.244 13.485 14.611 
0.8 0.5 10.452 16.356 15.958 17.305 

1.0 11.528 16.961 20.019 21.886 
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Processing Times 

It may be the case in a job shop that a required operation 

can be performed by more than one machine centre, or that 

men and/or machines can transfer from one centre to another 

to help work off back logs. Both these situations arise in 

Fenner's job shop. 

In order to apply the algorithm groups of machines that perform 

similar operations and are capable of some degree of 

interchangeability were amalgamated and considered to form 

one work centre. The average processing time of all the 

machines was estimated and this was assumed to be the mean 

service time of each of the machines at the work centre. 

The overall standard deviation of processing times at the work 

centres was also assumed for each machine, so providing some 

measure of the variäbiliYyof the service times. The same 

principle applied to the amount of processing required by different 

jobs. The batch sizes of jobs varied from one to four thousand 

but all jobs were considered to require the same mean processing 

times with the overall standard deviation representing the 

possible variation. These assumptions resulted in hyperexponential 

service time distributions being assigned to many of the work 

centres (Table 10.2) in the application of the algorithm. 

Although not tested for hyperexponential distributions, the 

algorithm 'provides, au good model of, the, que. ues arising in the 

job shop. 
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Production Capacity 

The production capacity of machine centres can be affected by 

machine breakdowns, shift patterns and bonus schemes. The 

best estimate given of available production time in Fenner's 

job shop was between forty five and fifty five hours a week. 

Tables 10.5 and 10.6 show that varying production from forty 

five to fifty five hours per week greatly effects queueing times 

at the machine centres. These results indicated that the 

assumption of fifty hours production capacity would provide 

a realistic model of waiting times at most of the work centres. 

Lower production capacities were assumed for work centres with 

low utilisations. This was to take account of the practice of 

allowing jobs to accumulate before starting production. 

AD3.3 Conclusions 

The algorithrý can provide a useful representation of the queueing 

processes arising in a manufacturing job shop. As it is unlikely 

that conditions in a job shop will be directly amenable to analysis 

by the algorithm, various modifications may need to be'"made. 

In the application of the algorithn to Fenner's job shop, the 

grouping together of similar work centres, and the production 

capacities assumed, allowed the algorithm to estimate the mean 

throughput time of a job to within 10% of the observed mean. 

Once a reasonable model has been established it can be used to 

investigate the effects of changes in the job shop. The algorithm 

can assess how throughput times are altered by different routings 

of jobs through the shop, by varying the number of machines in 

operation at a work centre, or by increasing the available 

production time. 
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AN Further Discussion on the Accuracy of the Algoritum and 
Future Development of the Research 

AD4.1 Introduction 

It was noted in Chapter 8 that the arrival streams in the 

queueing networks considered were often correlated and that 

the presence of correlation appears to affect the accuracy 

of the , algor. tlim. 

Correlation in the arrival processes of a queueing network 

may be attributable to three factors: 

1) The arrivals are made up of the departures from non M/M/N 

queues. In Chapter 5 the correlation of the departures 

from Eý/E'k/n queues are discussed. Only M/M/N queues, 

and M/D/1 and M/Cq/1 queues with restricted waiting room, 

have uncorrelated departure processes. Hence, correlations 

will arise in any networks with arrival or service time 

distributions that are not exponential. 

2) Further correlation may result when the routings through he 

queueing network cauae the arrivals to a service centre to 

consist of decompositions and compositions of departure 

streams from other centres. If all the streams are 

renewal processes then any compositions or decompositions 

will also produce renewal processes (47). On the other 

hand, if the departures from one service centre are-correlated 

then all the arrival processes that the departures contribute 

to may be correlated to some extent. 
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3) Correlations may arise in the flows of a network due 

to its routing patterns. Positively correlated arrival streams 

have been observed in symmetric shops with exponentially 

distributed service times and low utilisations. In queues 

with low utilisations interdeparture times are likely to 

be correlated to the interarrival times. The transition 

probabilities of a symmetric shop allow a component of the 

departures from a queue to revisit the same queue after 

visiting one or more other queues. If the intermediate 

queues also have low utilisations they will only serve to 

introduce a lag effect on the correlation with the original 

arrival process. 

AD4.2 Correlation and the Accuracy of the Algoritum 

It is pointed out in Chapter 4 that the existence of correlated 

arrival streams in a queueing network affects the accuracy of the 

approximations to the squared coefficients of variation of the 

arrival times. Positive correlations coincide with underestimations 

of the coefficient of variation, and negative correlations with 

overestimations. Similarly, the simulation results for the networks 

in Appendix 3 show that in general positive correlations correspond 

to underestimations of mean waiting times and negative correlations 

to overestimates - that this is not always the case may be due to 

other errors involved both in the approximation of the coefficients 

of variation of the arrival time distributions and in the approximation 

of the mean waiting times. The effect of correlation on the estimates 

of network throughput times may be further masked by the method of 

composition of the results from the individual queues. However, 

in the simple example of the flow shop, there does seem to be a 

relationship between the type of correlation in the arrival streams 
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and under and overestimation of mean throughput times 

(Tables A3.3 and A3.6). 

AD4.3 Conclusions 

Correlation is present to some extent in the arrival processes 

of most queueing networks, either because the departures from 

individual queues are correlated or due to the pattern of routings 

through the networks. From the results for networks considered 

in this thesis it seems evident that correlated arrival streams 

effect both the variance of' the interdeparture -times" and. tiheu"umean 

waiting time of a queue. Because of the number of factors 

involved, it is difficult to ascertain the effect of correlation 

on network throughput times, though it does appear to directly 

affect the accuracy of the algorithm for flow shops with highly 

utilised service centres. In networks with more complex patterns 

of flows the effect of correlated arrivals is dampened by the 

other approximations involved and no appreciable difference is 

made to the accuracy of the algorithm. 

AD4.4 Future Developments of the Research 

Shimshak and . 
SphicaS(69) have examined the effect of positively 

correlated arrivals on the mean . wait. ingtimes of single-server 

queues with Erlang service time distributions. They found that 

the assumption that arrivals were independent caused the mean 

waiting times to be underestimated. The comparisons of simulated 

and approximate results for queueing networks in this thesis suggest 

the more general result - the assumption that positively correlated 

arrivals to a multiserver queue are independent causes mean waiting 

times to be underestimated, and assuming negatively correlated 

arrivals to be independent leads to overestimation of mean waiting 

times. As the algorithm approximates both the coefficient of 
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variation of the arrivals to a queue and the mean waiting time 

in a queue, no accurate assessment of the effect of correlation 

can be made without taking into account the errors of these 

approximations. 

A quantitative evaluation of the effect of correlation on the 

mean waiting times of queues will allow better approximations 

to be made both for individual queues and queueing networks. 

When the complete decomposition algorithm is applied to networks 

with complex flow patterns, such as symmetric shops, the composition 

of the results of the individual queues may also be affected by 

correlation. The method of composition is based on independence 

assumptions and no investigations has been made into the influence 

of correlated flows. However, the accuracy of the algorithm for 

symmetric shops with positively correlated arrivals suggests that 

errors in the estimations of waiting times for the individual queues 

may be cancelled out to some extent by the composition process. 

Although it may be desirable to have a better understanding of how 

correlation affects the composition process in networks with variable 

routings, it may not greatly improve the accuracy of the algorithm. 

A more fruitful area for future research may be the development of 

a better approximation for the standard deviation of the waiting 

time distribution of a GI/G/n queue. Errors of up to 60% have been 

observed in the algorithms estimation of standard deviations of 

throughput times. Large errors arise when the approximations for 

the standard deviations of the waiting times at the individual 

service centres are poor. This is most often the case when the 

coefficients of variation of the arrival or service time distributions 

are small. The development of a series of approximation formulase 

applicable over narrower ranges of the coefficients of variation 
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may result in improved accuracy. 

CB 


