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Abstract 

The modeling of infection transmission has taken many forms: The simple 

Susceptible-Infected-Removed (SIR) model yields good epidemiological results, but 

is not well suited to the modeling of the application of interventions. Attention has 

focused in recent years on graph (network) models and especially on those exhibiting 

the small-world properties described by Watts and Strogatz in “Nature” in 1998. This 

thesis examines such graph models, discovering several attributes which may yield 

improved results. In order to quantify the effects of these proposals, a classification 

system was developed together with a Goodness-of-Fit (GoF) measure. Additionally, 

a questionnaire was developed to reveal the operational organisational structure of the 

NHS Trust being examined. The resultant theoretical model was implemented in 

software and seeded with a graph derived from this questionnaire. This model was 

then examined to determine the effectiveness of these proposals, as measured via the 

GoF. The additional features proving beneficial were shown to be: full directionality 

in the graphs; modeling unknown paths via a new concept termed an “external path”; 

the division of the probability of infection transmission into three components; the 

seeding of the model with one derived from an organizational questionnaire. The 

resulting model was shown to yield very good results and be applicable to modeling 

both infection propagation and control. 
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Chapter 1  Introduction 

1.1 

1 Introduction 

This research is concerned with the transmission of an infection within a hospital 

environment. It presents contemporary work in the general fields of graph (or 

network) theory and infection propagation/control alongside work linking the two 

together. Additionally, new work is presented defining new concepts and 

investigations. This chapter of the thesis sets the outline context for the ones that 

follow (a fuller examination is in Chapter 2) and outlines the hypothesis that the 

thesis investigates. 

1.1 Context 

An infection is an invasion of the human body by a parasitic organism
1
 which 

attaches itself to the body, the inside of the body or to another organism present 

within the body and in so doing contaminates the host body and causes disease
2
 

(Smith et al. 1997; Martin 2002). This disease is usually the result of local cellular 

injury and may become systemic if such microorganisms gain access to the 

lymphatic or vascular systems. The idea of infections being caused by such 

parasites (otherwise known as germs theory (Martin 2002)) is relatively recent in 

medical history, having reached acceptance in the late 19
th

 Century
3
 through the 

work of scientists such as Louis Pasteur
4
, Joseph Lister

5
 and Robert Koch

6
. 

Although controversial when first proposed, it is now generally accepted and 

forms a cornerstone of modern medical practice. 

 

                                                 

1
 Whilst this definition does include such parasites as tapeworms and flukes, this thesis is 

concerned more with microorganisms. Such invasion by matzoons (e.g. intestinal worms) are more 

commonly termed an infestation (Macpherson 2002), although Last (2008) reserves this term for a 

surface invasion (e.g. scabies). 

2
 The normal growth of the usual bacterial flora in the intestinal tract meets most of this definition 

but is not usually considered an infection. The same applies to the bacteria that normally inhabit 

the mouth. 

3
 There is a reference in On Agriculture by Varro, published in 36BC, to minute organisms that 

cannot be seen, that enter the body and cause disease, but this was a minority view. 

4
 Pasteur showed that organisms in the air spoil food. 

5
 Lister used antiseptics to prevent germs in the air from causing infection. 

6
 Koch was the first to link a specific organism to a specific disease, in this case Anthrax. 
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Almost all infections that humans can acquire are transmitted from another human 

or from an animal
7
. This transmission may use an intermediate object but the 

beginning and end of the transmission is human/animal. It therefore follows that if 

the routes of transmission can be made safe then an infection will not propagate 

but instead will die out. During the bubonic plague of 1665-1666 villages 

attempted to restrict the spread of the plague by sealing themselves off. In one 

noted case (Eyam in Derbyshire) the village sealed itself off once plague struck, 

thus containing the spread, but at huge cost to the local population as 

approximately 50% of the village contracted the disease and died 

(www.eyamplaguevillage.co.uk, amongst others). 

 

The most successful implementations of tackling the route of transmission have 

been in the development and worldwide availability of vaccines, which render the 

vaccinated individual immune from the infection, thus destroying the transmission 

route. There are varying degrees of success of vaccination programmes, with the 

near-eradication of smallpox
8
 being probably the most successful. Conversely, 

reduction in take-up has seen an increase in infections such as Measles (Jansen et 

al. 2003). 

 

However, not all infections currently have vaccines. Some infections are proving 

very difficult to develop vaccines for (Graham et al. 2009) whilst others (such as 

the common cold) mutate so quickly that a search for a vaccine may forever prove 

fruitless. In the absence of a suitable vaccine, or during an outbreak (if the vaccine 

requires significant time for an individual to develop immunity), an alternative 

and speedier approach is required. 

 

                                                 

7
 The other transmission routes: indirect (soil or surface contamination) and airborne are 

considered, for this research, to have originated with another human and are discussed in Chapter 

6. 

8
 Certified by the WHO in 1977 as being no longer present in the general population, with samples 

only existing in laboratories. 
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As has already been noted, the human-to-human transmission route is the one 

followed by most infections
9
 and is certainly the one that is easiest to understand 

and therefore control. It follows that an alternative method of infection control to 

the vaccine method is to remove or restrict the transmission route (Hawker et al. 

2005). In cases where the infection is not susceptible to vaccine or the effects are 

not especially life-threatening, understanding the transmission routes leads to 

better prediction and therefore improved coping strategies. 

 

Experiments on infection propagation within a population are not generally ethical 

to carry out. Mathematical models (e.g. Ancel Meyers et al. 2003; Carrat et al. 

2006; Dezsö & Barabási 2002; Eames 2008; Moslonka-Lefebvre et al. 2009; 

Pastor-Satorras & Vespignani 2001; Saramaki & Kaski 2004; Small & Tse 2005; 

Toroczkaia & Guclu 2007; Vanderpas et al. 2009; Verdasca et al. 2004; Witten & 

Poulter 2007) do not contain such restrictions and may be run and re-run multiple 

times in order to investigate the effect of randomness as well as differing control 

regimes and methods. 

 

In order to understand the transmission routes, the contact network of all humans 

(but especially those who are infected) must be known and mapped (see Auerbach 

et al. 1984 for a noted attempt at this). This contact network will not be static, but 

dynamic, reflecting the constant shifting in the human population, the movements 

of individuals and the social networking that takes place. 

1.2 Scope 

The total contact tracing approach described above may be a theoretical method 

for understanding and controlling infection, but is certainly not a practical one at 

present. Therefore, in order to be implementable and thereafter usable, the idea 

must be reduced in one or more ways. By so reducing the scope of the theoretical 

model a practical model may be produced. 

 

                                                 

9
 Malaria is one of the most prolific diseases in the world today, killing between 1 and 3 million 

people annually from 350-500 million cases. It is spread by mosquitoes. Such diseases, no matter 

how deadly, are the minority. 
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Firstly, the population is limited to a defined geographical area or structure (e.g. 

Ancel Meyers et al. 2006; Griffith 2003). This eliminates a large part of the 

population who thus do not require modelling. Secondly, a slowly-changing 

population is required. This reduces the dynamic elements of the model and 

means that sufficient structure will always remain. Thirdly, a population where 

most of the contact network is prescribed is envisaged. This enables the contact 

network to be more easily collected, as it is prescribed by the organisational 

structure and procedures. 

 

A hospital environment fulfils these criteria. It is limited in geographical area to a 

few sites, staff turnover is low (and staff and patient movement controllable), and 

the main contact points are function-related. Additionally, hospital-acquired 

infection is an area of considerable interest at present (e.g. Chadwick et al., 2000; 

Ganney 2003; Gleizes et al., 2006; Gould, 2006; Lau et al. 2004; Lynn et al., 

2004; Pittet et al. 2000) and therefore much data exists for testing and validating a 

model with. 

 

The infections that are to be studied are therefore limited to those that, whilst 

occurring outside of the hospital environment, cause major problems when 

contracted and are propagating within it. Infections such as MRSA and Norovirus 

are particularly prevalent in institutions such as hospitals, care homes and cruise 

ships (Barker et al. 2004; CDC 2006; Lynn et al. 2004), mostly due to the 

contained environment but also due to the reduced/suppressed immune systems of 

those that are there (patients and residents respectively – this does not apply to 

cruise ships). 

1.3 Justification of Research 

There has been much interest in recent years in the two main strands of this work: 

in models of hospital-acquired infection (e.g. Noakes et al. 2006; Vanderpas et al. 

2009) and in models of human interaction (most notably work following Milgram 

1967). However, there has not been any published work linking the two together. 

Whilst the work of Ancel Meyers et al. (2003; 2006) has looked at using network 

models to investigate contact networks that may be used to transmit infection, it 
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has concentrated on large municipal models and not investigated specifically 

hospital ones. Therefore such work has lacked the detail that this work brings. 

 

Mathematical models of infection propagation throughout populations 

(particularly when used for epidemic prediction) have normally been of a 

compartmental-deterministic statistical variety (e.g. Vanderpas et al. 2009). These 

give good results in terms of numbers contracting the disease and may show up 

some propagation routes. They are very good when used to model reservoir or 

general proximity-based infections but, by their nature, cannot accurately model 

more contact or close proximity-based ones. A simplistic view of a deterministic 

verses network approach would be to say that both will tell you how many will 

become infected, but the network model is more likely to tell you where (or 

possibly even who) they are likely to be. A network model therefore better lends 

itself to an investigation into control regimes that are liable to be short-term, such 

as confinement, pharmaceuticals or targeted immunisation. 

1.4 Hypothesis 

The hypothesis of this thesis is: 

• That it is possible to produce a network model of a hospital environment 

that incorporates individuals. 

• That such a model can be used to demonstrate the effects of an infection 

within the hospital. 

• That such a model can be used to investigate the efficacy of differing 

infection control regimes, especially those influencing the transmission 

routes. 

• That such a model will be able to inform infection control decisions prior 

to and during an outbreak, thus reducing its duration and overall effect. 

• That a method of categorising and thereby comparing outbreaks can be 

devised. 

• That such a categorisation may be adapted to determine how realistic an 

outbreak on the proposed model is. 

• That such a model may lead to the development of one that is superior to 

existing models. 
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1.5 Aim and Objectives of Research 

The aim of this research is to produce a network model of the social contacts that 

exist within a hospital environment. Once created, this model will then form a tool 

that can be used to investigate the likely effects of an infection outbreak and give 

planners opportunity to investigate differing methods of controlling such an 

outbreak. 

 

In order to achieve this, existing approaches will be examined and any 

shortcomings will be identified. Theoretical concepts will be proposed in order to 

overcome these. These theoretical concepts will then be modelled in software. 

Data will be sourced to test, derive parameter values and validate the model in 

order to produce an effective, reliable tool for studying infection propagation and 

control within a hospital environment. 

 

A classification system will be determined and used to compare real and modelled 

outbreaks in order to determine how realistic the models are. 

1.6 An Overview of the Thesis Content 

This thesis is structured into 7 Chapters and 5 Appendices. A brief description for 

each Chapter or Appendix is given below. 

 

Chapter 2 examines the existing literature in the fields of Infection Propagation 

and Control, Graph Theory and a particular branch of Graph Theory, Small World 

Theory. The study of Infection Propagation and Control is limited to those parts 

that are relevant for this thesis. The section on Graph Theory is similarly limited 

to the study of how properties (such as infections, packages or gossip) move 

within social structures. The Small World Theory section describes and examines 

the two key publications in this field and then goes on to describe other relevant 

work within it. 

 

Chapter 3 describes the problem that is being addressed, examining the hospital 

environment (with particular reference to infection propagation) and describes 

four specific infections that are particular problems within such an environment. 

Finally, other infection propagation and control modelling methods are examined. 
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Chapter 4 presents the mathematical model that has been developed from and in 

response to the information presented in Chapters 2 and 3. It then describes the 

high-level solution that this thesis proposes and the extensions to graph theory that 

this proposal necessitates. It then describes how these elements are used in the 

model, showing the implementation of each and contextualising them. 

 

Chapter 5 describes a categorisation methodology developed for this research. It 

examines the usefulness of this method in describing an outbreak and then 

investigates how this categorisation may be used in validating computer-generated 

models. 

 

Chapter 6 describes the case study undertaken in this thesis. It describes the 

structure of the chosen organisation, the collection of organisational data and the 

construction of a software model of it, based upon the model presented in Chapter 

4. The model (basic and enhanced) is investigated using the categorisation method 

described in Chapter 5. The model is then used to analyse and investigate 

differing outbreaks and infection control methods and the results and discussion 

are presented. Finally, three scenarios of using the model are presented. 

 

Chapter 7 presents some conclusions from the work undertaken so far and 

describes future work and plans. 

 

Appendix A describes the scripting language developed to repeatedly generate the 

models used within this thesis. 

 

Appendix B describes the structure of saved computer files from generated 

models. 

 

Appendix C describes the random models the software produces – their 

generation, visualisation and outputs/metrics. 

 

Appendix D gives a very brief and high-level description of the software created 

to undertake the research presented in this thesis. 
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Appendix E contains large sets of data that have been summarised within the main 

chapters, but are referred to therein. 

 

Finally, the references used within this thesis are given. 
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2 Background and Literature Review  

2.1 Introduction 

The study of the spread of infection by simulation has traditionally been studied 

utilising a compartmental-deterministic model. Whilst giving admirable results in 

numerical terms, they have not modelled the propagation throughout a social 

network and therefore do not lend themselves well to studying that propagation or 

methods of preventing such spread. 

 

In recent years there has been a great deal of interest in the use of graphs to model 

networks, both physical and logical. One such avenue of research has been in the 

spread of information, rumour or infection throughout a population (e.g. Antal & 

Balogh, 2009 on belief systems). It has been reflected that such studies will aid 

the understanding of propagation, as the structure of a network affects the 

operations performed upon it. 

 

Although graphs have been studied since the 1950s, it was the publication of a 

brief paper in 1998 in Nature by Watts & Strogatz (see description in 2.4.2.2) that 

caught the imagination of many researchers and their small-world model formed 

the basis of a further flurry of publications. 

 

The “small-world” effect was itself not a new concept, though, having been the 

subject of a paper in 1967 by Milgram (see description in 2.4.2.1). This paper, 

whilst clearly novel, was regarded as little more than a curious result and was 

largely overshadowed by his work on authority and obedience (especially his 

famous experiment, published in 1963 and repeated several times by others, 

where subjects were instructed to give “electric shocks” to an actor). 

 

Regardless of how old the ideas may be, they have now spawned many avenues of 

investigation, of which the research described in this thesis forms a part. Of 

particular interest here is the spread of infection, and methods of understanding, 

preventing or constraining this. 
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The fight against the spread of infection is of paramount importance. To fight it, 

one has to have an understanding of how it works and how it spreads. Realistic 

models are therefore important tools in gaining this understanding and in allowing 

researchers to investigate different scenarios of spread and different techniques for 

combating it. Additionally, in epidemic research, there is great value in models 

that can predict the signs of infections that will become epidemics, and those 

which will not, from early data. The threat of pandemics of new diseases (or 

variants of existing ones)
1
 give rise to demands for mathematical and computer 

models of infection propagation partly to understand the mechanisms involved, 

but mostly to inform the countermeasure strategies. 

 

Many infectious diseases spread through direct person-to-person contact. 

Respiratory-borne diseases like influenza, tuberculosis, meningococcal meningitis 

and SARS, spread through the exchange of respiratory droplets between people in 

close proximity to each other. Sexually transmitted diseases like HIV, genital 

herpes and syphilis spread through intimate sexual contact, yet some (such as 

HIV) are more easily caught by women than by men during heterosexual 

encounters. (Ancel Meyers et al., 2006, p 401) 

 

As already mentioned, the study of social, technological and biological networks 

of various kinds has been the subject of a large number of recent publications (see 

Strogatz, 2001; Newman, 2003; Witten & Poulter, 2007 for comprehensive 

reviews). One of the principal practical applications of such work is in modelling 

the spread of disease, especially that which may lead to an epidemic. Of particular 

interest are diseases that spread across networks of people by utilising the physical 

contacts between them (“physical” is here taken to include “in close proximity 

(spatial and temporal)” in order to include air-borne infections such as those listed 

above). Such networks may easily be mapped (and hence modelled) utilising a 

simple representation of people as dots and contacts as lines between them. 

 

                                                 

1
 SARS, “Bird Flu” and “Swine Flu” were recent examples.. 
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Mathew has contact with Mark and Luke 

 

Mark has contact with Matthew and John 

 

Luke has contact with Matthew and Mark 

 

John has contact with Mark 

 
Figure 2.1: A simple social network 

 

Such networks are simple to draw (assuming that a robust definition of “social 

contact” can be established
2
) and, once so modelled, it is appropriate to apply 

graph theory techniques to their analysis. In practice, however, such a definition 

appears to have proved to be difficult to establish for large populations and 

therefore “realistic” networks are normally developed and their properties 

investigated
3
. 

 

The class of graphs generally assumed to be “most realistic” are those termed 

“scale-free”, after the observation by Barabási & Albert (1999) that “a common 

property of many large networks is that the vertex connectivities follow a scale-

free power-law distribution”. However, as Li et al. (2005) observe, there is little 

agreement over what really constitutes a scale-free network, a matter their paper 

seeks to resolve. 

 

An alternative starting point to such investigations was proposed by Watts & 

Strogatz (1998). This began from a simple, uncomplicated model and added 

elements of randomness to it by re-wiring the links between vertices. Their work 

is discussed in 2.4.2.2., below. 

 

                                                 

2
 The largest database of people subjected to network analysis is probably the Internet Movie 

Database of screen actors, where a “contact” is defined as “appearing in the same film as”. This is 

clearly robust and therefore makes the database amenable to such analysis. Possibly the most 

famous such analysis is the “Kevin Bacon Game”, the object of which is to link a chosen actor to 

the actor Kevin Bacon in as few contacts as possible (the “Bacon number”). (Smith, 1996) 

3
 One notable exception is the work of Ancel Meyers, who has mapped the social networks of 

Vancouver (Griffith, 2003) – see figure 2.14. 
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There have been many recent publications on the subject of network or graph 

analysis, often characterising and analysing the structure of the graph as much as 

any operations that takes place upon it. Such characterisation of network anatomy 

is important as structure always affects function: “the topology of social networks 

affects the spread of information and disease” (Strogatz 2001, p.268), an assertion 

that appears not to always be appreciated. 

 

The mechanics of infection propagation and control are described in 2.2, moving 

on to a description of the relevant aspects of Graph Theory (2.3), including 

terminology and metrics, before describing small world theory (2.4) paying 

particular attention to the papers by Milgram (2.4.2.1) and Watts & Strogatz 

(2.4.2.2). 

 

Some methods of modelling disease propagation are briefly described in 2.5, with 

a fuller examination of the applications of graphs within an infection propagation 

context (2.6) including some elements of control (2.6.3). 

2.2 Infection Propagation and Control 

Infections propagate through several methods, but may be loosely categorised as: 

• Person-to-person (via no intermediaries – fluid exchange, blood exchange 

etc. Examples include AIDS/HIV and hepatitis B). 

• Person-to-air-to-person (airborne droplets or small particle aerosols. 

Examples include chickenpox and tuberculosis). 

• Person-to-fomite-to-person. (Non-living third party. Examples include 

legionellosis and tetanus). 

• Person-to-lifeform-to-person. (Plant or animal. Examples include malaria 

and encephalitis, which are spread by mosquitoes, and rabies). 

• Person-to-ingestible-to-person (where “ingestible” includes food, fluids 

such as water and pellets such as faecal or aerosol. Examples include 

norovirus and clostridium difficile). 

(Examples from Hawker et al., 2005 and South Australia Department of Health, 

2005). 

 



Chapter 2  Background and Literature Review 

 2.5 

Whilst each has differing characteristics, the overall pattern is of an infection 

passed from one person to another, possibly via a third party. The ability of an 

infection to survive such third-party transmission
4
 will affect the overall progress 

of an outbreak and thereby influence the control methods that may be deployed. 

 

The environment may have an effect on transmission. Influenza transmission, for 

example, is facilitated by overcrowding and enclosed spaces (Hawker et al., 2005, 

p 136) as “anyone within a metre of an infected person who coughs or sneezes is 

at risk of inhaling infected droplets.”
5
 

 

Ignoring the issue of treating the infected (by which point they may well have 

passed the infection on), control methods can be viewed as falling into five main 

groups: 

• Containment – restricting the movement of infected cases. This may be 

individual (e.g. “stay at home”) or group (e.g. the cancellation of mass 

population movements and gatherings, such as football matches). 

• Isolation – remove infected cases and place in a special environment. This 

may also include the erection of barriers, for example in the case of insect-

borne infections. 

• Separation/Segregation – identify and break lines of transmission (e.g. if 

schools are seen as primary reservoirs, closing them will reduce 

transmission rates). This may also include gathering infected cases 

together, thereby separating the infected from the susceptible (see 2.5.1 

below). Other approaches include excluding highly susceptible individuals 

from high-risk environments (in a hospital setting this would apply to 

visitors, not patients). 

                                                 

4
 For example, Influenza A and B survive for 24-48 hours on hard nonporous surfaces such as 

stainless steel but for only five minutes on hands. (Bean et al, 1982, p 47) – although the BMA 

web site 

(www.bma.org.uk/health_promotion_ethics/diseases/viralrespiratorydisorders.jsp?page=3) stated 

this as being ten minutes when accessed in 2009. 

5
 “Administration of Holy Communion during a Flu Pandemic”, Church of England website, 2009. 
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• Information (e.g. influenza transmission is reduced by increased personal 

hygiene (Hawker et al., 2005, p 138). The use of anti-bacterial handwash 

has reduced on-ward infection rates (Pittet et al., 2000, p 1307). Both of 

these measures were heavily supported by public information 

programmes). 

• Immunisation. This requires not just the development of a vaccine (in 

itself not a simple task) but also the identification of the most effective 

deployment of the vaccine. Mass immunisation programmes such as 

mumps and measles, carried out during childhood, are not appropriate to 

the kind of outbreak considered here which requires an immediate 

response – in this case it may be because the vaccine (if it exists) only 

confers short-term immunity (e.g. the influenza vaccine is re-administered 

annually in the UK) or the disease mutates regularly enough for previous 

vaccines to be ineffective (e.g. the delay in the production of a vaccine for 

Swine flu in 2009). The most common approach is to identify the most 

susceptible (e.g. the elderly), although it may include likely carriers (e.g. 

schoolchildren) and those in both groups (e.g. healthcare workers). This 

latter group may also be identified via a “minimisation of disruption” 

identification scheme. 

2.3 Graph Theory 

Graph theory is a large subject area and only those concepts pertinent to this thesis 

are rehearsed here. Likewise, only relational graphs (as opposed to spatial
6
) are 

considered. 

2.3.1 Terminology 

Graph theory is a branch of mathematics devoted to the analysis of networks. A 

graph in this context is a collection of vertices and edges, which interconnect 

them. It has been used to describe and investigate physical concepts such as road 

systems, electrical circuits, atomic bonds and computer networks (especially the 

                                                 

6
 Relational graphs are one where the construction depends upon relationships alone; Spatial 

graphs are ones where the construction depends on distances between vertices. Only relational 

graphs exhibit the small-world effect. 
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Internet); relational concepts such as matches played between football teams; and 

social concepts such as “friend” and “acquaintance”. The graph is therefore an 

abstract representation of the circuit, history or social relationship that is under 

study. 

 

A graph comprises a finite non-empty set V of vertices (alternatively “nodes” or 

“sites” from percolation theory) and a finite set E of edges joining them to one 

another (note that this can be empty). E is mathematically defined as a bag. This is 

Wilson (1985)’s approach and is simpler (and therefore easier to analyse 

mathematically) than the more rigorous requirement that a graph has an end-point 

function  ∂  such that, for each  e ∈ E,  ∂(e)  is the set of vertices which  e  joins. 

Thus, for each e ∈ E, the set ∂(e) contains one or two vertices. (If ∂(e)={v,w} then 

e joins v and w. If ∂(e)={v} then e is a loop). 

 

A path is a route traversed between two vertices along edges where each 

intermediate vertex is distinct (and therefore, by implication, each edge is also 

distinct). A path’s length is the number of edges so traversed. This is a special 

case of a walk (where loops and repeated edges are possible) and a trail (where 

repeated vertices are possible but all edges are distinct). A path is therefore the 

shortest walk or trail. 

 

An adjacency matrix is a mathematical representation of a graph, where the 

elements are 1 or 0 indicating whether or not two vertices are connected by an 

edge. For non-simple graphs (simple is defined on the next page), higher values 

may be used to indicate the number of edges between a vertex pair. 



Chapter 2  Background and Literature Review 

 2.8 

 

 

 

V = {a,b,c,d} 

E = {ab, ad, bc, bd} 

 

Note that order in the sets is unimportant. 

 

The path (c,d) has one intermediate vertex (b) and its 

length is 2 (edges bc and bd). This is the shortest path as 

another (via b and a) exists with length 3. 

 

The trail (c,b) passes through all vertices (c, b, a, d, b or c, 

b, d, a, b) but uses each edge only once. There also exists 

a shorter trail with length 1. 

 

The walk (c,b) may complete the loop involving a and d 

multiple times. It’s length is therefore one of 1, 4, 7, 10, 

13, … 

 

The adjacency matrix is 

d

c

b

a

dcba



















0011

0010

1101

1010

 

 

Figure 2.2: A simple graph 

 

A simple graph is one in which multiple edges between the same pair of vertices 

or edges connecting a vertex to itself are forbidden. That is, if an edge exists 

between two vertices, then it is unique; loops do not exist. A non-simple graph is 

therefore one in which there may be multiple edges between two vertices and 

loops (edges that start and end at the same vertex) are permitted. Thus Wilson 

(1985)’s approach espoused above is sufficient if only simple graphs are 

considered. 

 

A connected graph is one in which a path exists from every vertex to every other 

vertex in the graph. A fully connected graph is one in which an edge exists 

between every vertex and every other vertex within the graph. Hence the graph in 

Figure 2.2 is connected, but not fully connected. (Fully connected is sometimes 

referred to as complete and the complete graph with n vertices denoted  Kn). 
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A directed graph (or digraph) is one in which the edges exhibit an inherent 

direction, so that an edge from a to b does not imply the existence of an edge from 

b to a. An undirected graph is therefore one in which the edges are directionless, 

implying that any relationship between the vertices at the terminus of the edge is 

symmetric. A strongly connected directed graph (“strongly connected” is 

meaningless for undirected graphs) is one where paths exist from a to b and from 

b to a for all a,b. (Durr, Mhalla & Lei, 2003, p 1). 

 

The Giant Strongly Connected Component (GSCC) is the largest set of vertices 

for which you can move between any two in the set by following edges in the 

correct direction. (A giant component is one containing more than 50% of the 

vertices in a graph). A random graph constructed by placing n nodes on a plane, 

then randomly connecting pairs until m links have been constructed gives an 

expected single giant component when m>n/2 (Strogatz, 2001, p 271). 

 

 

Simple, undirected. If the 

edge bc is removed the 

remaining graph has a GSCC 

comprising {a, b, d} 

Simple, directed. Also 

strongly connected, although 

the removal of any one edge 

(apart from db) would remove 

this property.  

Non-simple (or multigraph), 

undirected 

 

Figure 2.3: Classes of graph 

 

A subgraph is a graph comprised of a subset of vertices and edges from the main 

graph. i.e. a graph  H  is a subgraph of a graph  G   if  V(H) ⊆ V(G)  and every 

edge of  H   is also an edge of  G.  This is written as   H ≤ G. 

 

A cutset of a graph is a set of vertices or edges (depending on the context) that, if 

removed from the graph, disconnects the graph. A cutset is therefore a subgraph. 
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One other term was introduced via SWT (Small World Theory – see section 2.4), 

but is described here for completeness. This term, neighbourhood (Гv), is the 

subgraph that consists of the vertices adjacent to v but does not include v itself. 

 

  

Graph Vertex cutset is b 

 
 

Edge cutset is bc Neighbourhood of a 

Figure 2.4: Subgroups of a graph 

 

This research introduces two new concepts: external path and system, which are 

briefly described here but explored more in chapter 4. 

 

An external path is a path between two vertices in a sub-graph that utilises edges 

that are part of the graph, but not of the sub-graph. Therefore, as the vertices in the 

graph that are not in the sub-graph are unknown to the sub-graph, only the path’s 

length is known. (See 4.2.2.2 for a fuller discussion). 
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Graph Sub-graph External path (bd), length 2 

Figure 2.5: Illustration of an external Path 

 

A system is comprised of a sub-graph together with the set of external paths. The 

adjacency matrix for the system is thus equivalent to that for the original graph, as 

they are equivalent save for the knowledge of the vertices on the external paths. 

2.3.2 Metrics 

The degree of a vertex v, kv, is the number of edges incident with a given vertex v. 

For directed graphs this term is meaningless and is replaced by indegree ( )(vρ
r

) 

and outdegree ( )(vρ
s

), being the number of edges terminating and originating at v, 

respectively. Whilst it is generally agreed that the degree of a graph is the mean of 

the degrees of the graph’s vertices, there is a lack of consistency over the indegree 

and outdegree of a graph. Some literature (such as Sengupta, 1998) refers to the 

maximal in/outdegree, being the largest in/outdegree of the vertex set. Others 

(such as Durr et al., 2003, p 1) take the view that a graph has outdegree k iff each 

vertex has outdegree k, and likewise for indegree. This latter approach would lead 

to a view that the in/outdegree of a graph should be defined as the average 

in/outdegree of the vertices. However, these values are always equal (as it is the 

same set being considered, only in reverse). Therefore three metrics are 

considered here and defined as follows: the in/outdegree is taken to be the average 

of the in (or out) degrees of the vertices. Indegree is taken to be the maximal 

indegree of the vertices and, likewise, outdegree is taken to be the maximal 

outdegree of the vertices. 

 

A graph for which every vertex has the same degree is called a regular graph. The 

graph is k-regular when every vertex is of degree k. In a graph where the vertices 
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have an average of degree z, there are Nz edges in the graph (½Nz if the graph is 

undirected) and z is called the coordination number of the graph (i.e. is the same 

as the degree). 

 

The vertex-connectivity of a graph (κ(G)) is the size of the smallest vertex cutset 

of G and the edge-connectivity of a graph (λ(G)) is the size of the smallest edge 

cutset of G. These may be thought of as measures of the fragility of the graph. 

 

Two other important metrics were introduced through SWT, but are described 

here for completeness. These are characteristic path length and clustering 

coefficient. 

 

The characteristic path length of a graph (L(G)) is the median of the means of the 

shortest path lengths connecting each vertex to all other vertices. It is the “average 

degree of separation” (Comparing Watts and Strogatz, 1998 with Newman, 2000) 

 

The clustering coefficient of a vertex v, γv, is the average fraction of pairs of 

neighbours of a vertex that are also neighbours of each other. It is calculated as 
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γv =1 implies that the corresponding graph consists of 
1+k

n
 disconnected, but 

individually complete, sub-graphs (cliques) and γv =0 implies that no neighbour of 

any vertex v is adjacent with any other neighbour of v. Equivalently, γv is the 

probability that two vertices in Гv will be connected. The clustering coefficient of 

a graph, γ, is the mean of all γv. γ=1 for a fully connected graph. 

 

A community is a group of vertices within which connections are dense. 

Connections between communities are sparser. The problem of dividing a graph 

into communities is often referred to as graph partitioning. 
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Figure 2.6: Communities within a graph 

 

The modularity, Q, of a graph is defined as the difference between the fraction of 

edges that fall within communities and the expected number of edges for a truly 

random graph. As such, nonzero values for Q represent deviations from 

randomness and in practice a value of about 0.3 is a good indicator of significant 

community structure in a network. (Clauset et al., 2004, p 2; Kernighan & Lin, 

1970 quoted in Newman 2004b, p 4). 
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where the graph is divided into communities such that vertex v belongs to 

community cv. 
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Figure 2.7: Metrics for a simple, undirected graph. Qc is the modularity calculated assuming c is 

a separate community. 

2.4 Small World Theory 

2.4.1 Introduction 

Small World Theory (SWT) is essentially a part of Graph Theory, although it was 

not originally perceived as such. SWT was originally observed within social 

science (see Milgram’s work, below) and the networks that were examined were 

therefore social ones. The two most-cited (and, by implication, most influential) 

papers on SWT are by Milgram (1967) and Watts & Strogatz (1998) and are 

discussed below. 

2.4.2 Literature Review 

2.4.2.1 Milgram, 1967 

This paper is the most cited method of investigating whether the small-world 

phenomenon actually exists and is believed to have coined the term to characterise 

social networks. It is the only real experiment ever conducted (although it has 

been repeated, with varying degrees of success). It originates from social science 

and as such was not originally described mathematically. 

 

Milgram introduces the term “small world” as “Almost all of us have had the 

experience of encountering someone far from home, who, to our surprise, turns 
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out to share a mutual acquaintance with us. This kind of experience occurs with 

sufficient frequency so that our language even provides a cliché to be uttered at 

the appropriate moment of recognising mutual acquaintances. We say, “My it’s a 

small world.”” (Milgram, 1967 p.61) 

  

Milgram constructed and undertook an experiment to investigate social 

connectivity. This involved passing letters from initial recipients to one of two 

named yet personally unknown targets, via strong social contacts (known on “first 

name terms”). The heuristic (see 4.4.11.1) is thus “a person known to you who is 

more likely to know the final target than you are”. These chains (and specifically, 

their lengths in terms of numbers of intermediaries) are the focus of the paper. 

 

Milgram noted the “small world effect” whereby two seemingly unconnected 

persons at disparate locations have a mutual acquaintance, thus shortening the 

chain between them. Milgram was interested in whether any two persons, 

anywhere in the world, could be so linked, or whether there existed social 

cleavages that could not be bridged. 

 

Milgram abstracted this experiment to represent people and networks by points 

and lines, restating the small world problem as “Given any two of these points 

chosen at random from this universe of 200 million points, through how many 

intermediate points would we pass before the chosen points could be connected by 

the shortest possible path?” (Milgram, 1967, p.63) 

 

Of the 160 chains started in Nebraska, only 44 completed. Of an unspecified 

number started in Boston, 20 completed. Most of the chains had large initial steps 

(in terms of physical distance) and gradually decreased as they reached their 

targets. Of 145 participants in the study, 114 passed the message to a person of the 

same gender (FF: 56, MM: 58) and 31 cross-gender (FM: 18, MF: 13). Messages 

did not reach the final target through a broad range of acquaintances, but 48% 

came through only three. This led Milgram to surmise that certain channels are 

better transmitters than others and to note that physical distance and social 

distance are not the same thing. 
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Milgram, being a social scientist, never defined his model in mathematical terms. 

Applying these shows the model as being a connected graph where some vertices 

(“superhubs”) are more connected than others. 
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Figure 2.8: An illustration of a superhub and the funnelling effect. From Milgram, 1967, p. 67. 

 

 

Figure 2.9: A simple superhub as a graph. The “P” in 

the centre is a hospital porter. From Ganney, 2003 
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Although Milgram noted that some chains did not complete, the paper did not 

investigate the reasons for this. Despite an interest in social cleavage and 

Milgram’s own theorem that two populations were disparate if no chain could be 

found between any two persons (one from each population), it is therefore 

peculiar to note that his model does assume that the paths exist and that they were 

not traversed for some other, unknown, reason. If he had included them and not 

assumed the paths exist he would have produced a disconnected graph. 

 

There has been some debate over the validity of Milgram’s original experiment 

(Kleinfeld, 2000), its poor control and sources of error (Newman, 1999, p 1) and 

in attempts to repeat it. In particular, most of the letters in the original experiment 

simply never arrived. A repudiation of such doubts appeared in the Sunday 

Telegraph (28/11/04) from Prof. Thomas Blass of the University of Baltimore
7
 

who pointed to a recent Internet replication involving 24,000 people from 166 

countries (Dodds, Muhamad & Watts 2003). However an e-contact is much less 

robust than a social or physical one (although some doubt must exist over how 

robust Milgram’s heuristic was) and certainly has no relevance to a study of 

disease propagation. Certainly the “six degrees of separation” were postulated by 

Milgram to cover the USA but have been extrapolated to cover the entire world, 

without any research justification (Kleinfeld, 2000). 

 

It has been noted that the two most surprising discoveries in Milgram’s work are 

that short chains do exist and that people should be able to find them knowing so 

little about the target individual, leading to speculation that “cues” must exist 

within the social framework (Kleinberg 1999). Certainly it would have helped if 

Milgram specified the occupations of the targets (the paper does not state whether 

this was done and omissions such as this are not unusual) but this is one example 

of such a “cue”. 

 

                                                 

7
 Milgram’s Biographer – although his web site www.stanleymilgram.com, appears to be more 

interested in the obedience experiments and only mentions the small world one in passing 
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Regardless of the failure to “prove” the small world phenomenon in a sociological 

context, the general result that a short chain of acquaintances can connect two 

randomly selected people has been subsequently verified and is widely accepted 

(Korte and Milgram, 1970 - quoted in Newman, 1999, p 1). The concepts, 

however dubiously discovered, do explain a feature that is real: the ability of an 

infection to reach a point far distant to its origin in a far shorter time than might be 

expected. A further point, made by Watts (1999, p 19) that the chain length may 

have been overstated due to a non-optimal contact being selected makes this result 

even more remarkable. 

2.4.2.2 Watts and Strogatz, 1998 

This paper introduces many of the ideas now associated with SWT, in particular 

characteristic path length, L. Watts and Strogatz denote the clustering coefficient 

as C in their paper - this is replaced by γ here (following Watts, 1999) for 

consistency. 

 

This investigation begins with a substrate of a 1-lattice with k connections per 

vertex (i.e. a ring in which every point is connected to one or more immediate 

neighbours on its left and the same number on its right). Individual edges are then 

re-wired at random (probability φ, sometimes referred to as the “short-cut 

probability” (Newman & Watts 1999b, p 3)), allowing some local edges to 

become long-distance edges (or shortcuts), but keeps the same number of edges 

overall. The only restrictions are that the graph should remain simple (i.e. edges 

are unique and no loops exist). 

 

 

Figure 2.10: (a) A one-dimensional lattice with each site connected to its z nearest neighbours, where 

in this case z=6. (b) The same lattice with periodic boundary conditions, so that the system becomes a 

ring. (c) The Watts-Strogatz model is created by rewiring a small fraction of the links (in this case five 

of them) to new sites chosen at random. From Newman, 1999, p 3. 
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Watts and Strogatz discovered that, as a completely ordered graph starts to 

become randomised, there is little change in the characteristic path length. 

However, as the graph becomes more randomised a threshold is quickly reached, 

at which point the average path length plummets and the graph becomes a small 

world. For example, starting from 1,000 nodes in a ring world, each of which had 

ten adjacent edges, the characteristic path length is approximately 38 (a big 

world). Only one percent of random links is required to flip this graph from big 

world to small world (L =3).  

 

This immediate drop in L caused by the introduction of a few long-range edges is 

characteristic of the small world effect in which the lengths of paths are small 

compared with the number of vertices in the graph. “Any network in which the 

lengths of such chains [of acquaintances] are small compared with the number of 

people in the network is said to display the small-world effect” (Newman, 1999, p 

1). 

 

This paper then explores models that can be tuned between the extremes of 

completely regular (p=0) and completely random (p=1), where p is the rewiring 

probability. 

 

The models examined have n >> k >> ln(n) >> 1 (k >> ln(n) guarantees that a 

random graph will be connected (Bollobás, 2001, p 447)). The authors discovered 

that 
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Watts and Strogatz’ paper describes the result that as the regular lattice is a highly 

clustered, large world where L grows linearly with n and the random world is a 

poorly clustered, small world where L grows linearly with n, one may suspect that 

large γ is always associated with large L and small γ with small L. However, there 

is a broad interval of p over which L(p) is almost as small as Lrandom yet  

γ (p) >> γ random. 
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There is an immediate drop in L(p) caused by the introduction of a few long-range 

edges (“short cuts”) and at local level (reflected by γ (p)) the transition to small 

world is almost undetectable. 

 

The “small world effect” is thus quantified as one in which the lengths of paths 

are small compared with the number of vertices within the graph. Large-world 

graphs have the average distance between two nodes increasing linearly with 

system size; small-world graphs increase logarithmically. 

 

The authors present some data on three real-world examples, not hand-picked for 

their results, but chosen because complete wiring diagrams were available. 

 

Network N Lactual Lrandom γactual γ random 

Movie actors 225226 3.65 2.99 0.79 0.00027 

Neural network 282 2.65 12.4 0.28 0.05 

Power grid 4941 18.7 2.25 0.08 0.0005 
Table 2.1: The number of nodes N, characteristic path length L, and clustering coefficient γ, for 

three real-world networks. The last column is the value which γ would take in a random graph with 

the same size and coordination number. (N from Newman 2000) 

 

Table 2.1 shows γ to be very much larger than γrandom, thus the networks are 

clustered. Also, L is similar to Lrandom thus demonstrating the small-world 

phenomenon: randomrandom butLL γγ >>≥  

 

The “rewired” models developed by Watts and Strogatz mirror well the real-world 

networks that the paper investigated, having both a small-world effect and are 

clustered. However, hubs are not considered to be important (as Milgram did), 

unless one is formed by the application of the rewiring algorithm. These models 

therefore mimic only some aspects of the structure of networks of social 

interactions (Newman & Watts 1999b, p 1). 

 

Watts and Strogatz found that their models displayed many of the characteristics 

of true random graphs even for φ<<1, and it seems to be in this regime that the 

model’s properties are most like those of real-world social networks (Newman & 

Watts 1999b, p 3). Watts and Strogatz argue that their random re-wiring model 
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captures two crucial parameters of social networks: there is a simple underlying 

structure that explains the presence of most edges, but a few edges are produced 

by a random process that does not respect this structure. This reflects the 

assertions by Gravovetter (1973 and 1983) that weak ties are more important than 

strong ties as they are the ones that tend to link social groups (within which ties 

are strong, i.e. if A and B are linked and B and C are linked, then A and C are 

very probably also linked). Thus it may be that Milgram’s heuristic, weak as it 

was, was wholly appropriate to the task. 

2.4.2.3 Other Work 

2.4.2.3.1 Random Graphs 

The most difficult part of describing a social network by using graphs is in the 

creation of the edges. It is unclear how well a person needs to be aware of another 

for them to be deemed “connected”. A simple “have met” algorithm is as poor as 

the “handshakes” one of folklore. Even Milgram’s original criterion of “someone 

you know on a first-name basis” (Milgram, 1967, p 64) assumes a social stratum 

of niceties that would not be breached. This may explain why there has been a 

certain reluctance to repeat the experiment, along with more interest being 

expressed in examining the Internet Movie Database (the “Kevin Bacon Game
8
” 

(Smith, 1996)) and Internet topologies where a connection is more easily and 

robustly defined. 

 

Due to these difficulties in acquiring models of the real world, attention has 

migrated to the construction and analysis of “realistic” models, constructed using 

an element of randomness. There is also the issue (as noted by Witten & Poulter 

(2007, p 197)) that a fully connected graph is actually equivalent to the traditional 

stochastic model, therefore randomness is to be desired in constructing the 

                                                 

8
 This gives rise to Bacon numbers (see footnote 2) and likewise the Erdös number (linking those 

who have authored papers with Erdös, then those who have authored papers with those who have 

authored papers with the Hungarian mathematician Paul Erdös and so on) and then Bacon- Erdös 

numbers branching out from the few individuals who appear in both lists, of which the MIT 

mathematician Daniel Kleitman has possibly the lowest (3), having authored with Erdös and 

appeared in the film “Good Will Hunting” with Minnie Driver, who has a Bacon Number of 1. 
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network. As the network model is more difficult to analyse, randomness might be 

better viewed as being essential rather than desirable. 

 

Bollobás (2001) describes random graphs where a simple model of a social 

network is constructed using a pre-determined number of vertices and a pre-

determined number of edges are randomly assigned. Such graphs have been 

studied extensively by the mathematics community, especially by Erdös and 

Rényi (1959). Newman (2000) shows that it is easy to see that a random graph 

shows the small-world effect (see following section), wherein there is a 

logarithmic increase in the number of degrees of separation (the maximum path 

length in order to reach all vertices in the graph) with the size of the network 

(graph). 

 

Random graphs are simple to construct, yet do not represent the real world and 

real social networks. It is intuitively obvious (yet often ignored) that a pair of 

“friends” of a person are very likely to also be friends, leading to the clustering 

described by Watts & Strogatz (1998). A random graph does not show clustering 

(as Table 2.1, above, illustrates). 

 

If pk denotes the fraction of nodes with degree k, then random graphs predict a 

bell-shaped Poisson distribution for pk. However, for real networks, pk is highly 

skewed and decays much more slowly than a Poisson. (Strogatz, 2001, p 274) 

2.4.2.3.2 Variants of Watts-Strogatz 

Most subsequent work on small world models has been performed on a variant of 

the Watts-Strogatz model suggested by Newman and Watts (1999a). This 

preserves the underlying original structure by adding random links and not 

removing any. This prevents sections of the lattice from becoming disconnected 

(with the attendant infinite path length problems that this introduces that render 

the graph difficult to analyse). Although this is not a problem for numerical 

simulations, it is for mathematical analysis, as is the maintenance of a simple 

graph: therefore Newman and Watts (1999b) allow loops and non-unique edges in 

order to have uniform distributions of rewiring probability. Newman and Watts 
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contend that small-world graphs have a high effective dimension even for quite 

moderate values of φ, and thus are in some sense close to being random graphs. 

 

In this revised model, Renormalisation Groups are used to group together sets of 

nodes. However, there appears to be no logical grouping: in one case, nodes are 

simply paired up: in another, triplets are used. It would appear that different 

results might be found by simply using a different starting node to form the 

groups.  

 

In random graph work the problem of infinite path lengths (and therefore infinite 

average path lengths) has been overcome by averaging the reciprocal of the 

vertex-vertex distance, but this approach does not seem to have been tried for the 

Watts-Strogatz model (Newman 2000 p 4). 

 

Newman (1999) demonstrated that the Watts-Strogatz model is based on random 

graphs and does not include superhubs. These have been investigated by 

Kasturirangan (1999) and Dorogovtsev & Mendes (1999) who start from the same 

ring lattice as Watts and Strogatz but, instead of rewiring or adding in new edges, 

add in new vertices which are “superconnected”. These new vertices (or, to be 

specific, the paths through them) provide the shortcuts required to demonstrate the 

small-world effect. 

 

Another method of generating superhubs was proposed by Albert et al. (1999, 

quoted in Newman, 2000 p 825) during their studies of the structure of the World 

Wide Web. The starting point was a number of vertices and a power law spread of 

degrees. Selecting a vertex at random, an edge was created between it and another 

randomly selected vertex if the result would bring the overall distribution of 

degrees closer to the required power law. Despite matching the measured 

properties of the World Wide Web quite closely, this model does not show 

clustering, a property that Adamic (1999, quoted in Newman, 2000 p 825) 

demonstrated exists in the Web. Although this makes it an unrealistic model of the 

structure it was seeking to mimic, it remains an alternative method of creating 

superhub-based graphs which may prove to be of use when the target structure is 

known to include superhubs. 
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Kasturirangan (1999 p 12) has noted that the connection of vertices arbitrarily far 

apart with uniform probability (in order to create shortcuts) is a poor 

representation of at least some real-world situations. Kleinberg (1999) notes that, 

in the real world, people are surprisingly good at finding short paths between 

individuals (as Milgram’s experiment shows) given only local knowledge about 

the structure of the network. Granovetter (2003) noted that there is an important 

question (not so far resolved) of how much people know about their own social 

networks and why this matters, whilst speculating that shorter paths may bring 

rewards (Granovetter, 1995, quoted in Granovetter 2003). Granovetter has 

demonstrated that no algorithm exists which is capable of finding such paths on 

Watts-Strogatz-type graphs, given only local information. Kleinberg (1999) 

therefore proposed another variant on the Watts-Strogatz model, in which the 

distance (in this case measured across the underlying lattice) between the vertices 

is tuned by utilising an inverse power law of distance as the probability of an edge 

forming. On such graphs, there exists a simple algorithm for finding a short path 

between two given vertices, making use only of local information. It should be 

noted, however, that this model therefore mimics well a graph where the “normal” 

social distance is similar to the geographic distance (i.e. is well modelled by an 

underlying lattice) but it is not clear how well this would model a graph where 

“normal” social distance is not similar to the geographic distance (i.e. a small 

world one). 

 

Kasturirangan (1999) also investigated the changes required within a social 

network to make it change from being a “large world” into a “small world”. The 

paper investigates multiple-scale graphs and asserts that multiple-scale is a stable 

property of a graph and that the distribution of length scales within a graph was a 

more useful study than the effect of introducing disorder. 

2.5 Disease Modelling 

The modelling of a disease and of the propagation of it has clear benefits: it 

contains no risk to life and such models are repeatably generatable allowing 

multiple scenarios to be investigated from exactly the same (rather than similar) 

starting conditions. 
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The classical mathematical approach to disease modelling (in particular, disease 

spreading) either ignores the structure of the social network altogether or treats 

populations as spatially distributed in a continuous medium. Typically, the first 

case uses an SIR model (see 2.5.1 below and 3.3.1) and subdivides the population 

into three sub-populations whose number, size and interaction determine the 

transmission of disease. This approach has been utilised effectively in the 

modelling of infection in well-mixed populations (May & Nowak, 1994; Murray, 

1993 – both quoted in Watts, 1999 p 167) with an emphasis on the detailed 

dynamics of disease transmission rather than the relationships between 

subpopulations. 

 

The second classical approach introduces a spatial dependency to the 

subpopulations involved and is typified by reaction-diffusion equations (Murray, 

1993 – quoted in Watts, 1999 p 167). Here questions of the stability of equilibria 

and the analytic tractability of solutions tend to dominate. 

 

A third approach began to appear in the late 1980s that took greater account of the 

fact that populations are often inherently discrete and exhibit high levels of 

structure (see Sattenspiel & Simon, 1988 for one such approach). 

 

None of these approaches, however, treats the spread of an infection within a 

population as a function of the structure of that population, which would seem to 

be a mistake. 

2.5.1 Models 

Mathematical modelling of virus spreading and epidemics has generally utilised 

one of two models, both of which can be utilised on graphs: 

1. a susceptible-infected-susceptible model (SIS), in which vertices are either 

“healthy” or “infected”. At each time step a healthy vertex becomes 

infected with probability ν if it is connected to at least one infected vertex. 

An infected vertex is cured with probability δ, defining an effective 

spreading rate of 
δ

ν
λ ≡ . It is assumed that an infected vertex is capable of 
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passing the infection to a susceptible (healthy) one. The behaviour of the 

SIS model is well understood for vertices in a regular lattice or random 

network (Anderson & May, 1991; Nowak & May, 2000, both quoted in 

Dezsö & Barabási, 2002 p 1). 

2. a three-compartment model, the compartments being those who are 

susceptible to the disease, those who already infected and those who have 

recovered/died (SIR: Susceptible, Infected, Removed). The probabilities of 

movement between the three compartments are fixed, and are the same for 

each individual within a compartment, as is the probability of contact with 

an individual from one of the other compartments. The case where 

movement is possible from Removed to Susceptible (where short-term 

immunity is conveyed, for example) is often termed SIRS. Another variant 

adds an “Exposed” stage, where a vertex is infected but is not (yet) 

capable of passing the infection to a susceptible (SEIR model). 

 

Ng, Turinici & Danchin (2003) demonstrate that the standard SIR model does not 

describe a SARS outbreak well and instead utilise a double SIR model (SEIRP
9
). 

This is unusual, but does show the limitations of the standard SIR model. 

2.6 Application 

2.6.1 Application to Transmissions Between People 

Whilst the concepts of mapping and rewiring social networks are interesting, it is 

the investigation of the communications along them (using the broadest definition 

of “communication”) that makes such studies useful. Most human communication 

takes place directly between individuals and, specifically, the spread of disease 

occurs primarily by person-to-person contact (therefore attempts to replicate 

Milgram’s experiment by e-mails, although strong, is not as useful in this context 

as Milgram’s weak heuristic). The structure of a social network has a huge impact 

on the nature of epidemics (Newman 2000 p 1) – it is intuitively obvious that a 

network with long paths between individuals will be more resistant to epidemic 

                                                 

9
 The additional parameters are Exposed (infected but not contagious) and Protected (a period of 

immunity). 
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than one where the paths are short. Toroczkaia & Guclu (2007) investigated this 

network via independent agents and collision dynamics: the infection having a 

probability of being passed on at each collision. Most models, though (and 

certainly all the ones under consideration here) use links to describe this infection 

probability rather than random interactions, although this work did show that such 

an approach can account for the observed qualitative differences between the 

degree distributions of contact graphs of diseases with short infectivity period 

(such as air-transmitted diseases) or long infectivity periods (such as HIV). 

2.6.2 Application to Infection Propagation 

As all infections under consideration pass from person to person by contact 

(which may also include person-fomite-person spread), the propagation of 

infection through a network is easily modelled by setting a number of vertices in 

the graph to be infected, then allowing the infection to move from vertex to vertex 

along the edges, much as Milgram (1967) modelled the flow of information 

between subjects. Modifications to this simple idea are introduced via the SIR or 

SIS models described above and other techniques described later. 

2.6.2.1 Small World Graphs 

Watts & Strogatz (1998) describe a very simplified model for examining the 

spread of infectious disease, wherein ring graphs represent the social contacts, 

with random re-wiring. At time t=0 a single infective individual is introduced. 

Each infection lasts one unit of time, during which healthy neighbours are 

infected with probability r. The disease therefore either spreads along the graph, 

or it dies out (having infected part of the graph). The critical infectiousness, rhalf 

(half the population infected), decreases rapidly for small p (the rewiring 

probability). The time for total infection, T(p), resembles the L(p) curve, 

illustrating that infectious diseases spread much more quickly in a small world. 

This model illuminates the dynamics of the infection as an explicit function of 

structure. Other models indicate that network structure influences the speed and 

extent of disease transmission. 

 

Newman and Watts (1999b) took this idea further and introduced a fraction, q, of 

the population that is susceptible to the disease, indicated by a two-state variable 



Chapter 2  Background and Literature Review 

 2.28 

associated with each vertex. This work investigated the point at which an 

infection became an epidemic and discovered this to be the percolation point for 

site percolation (see Figure 2.11) with probability q on the small-world graph, the 

position of this point being strongly influenced by the small-world nature of the 

graph. Although the paper does not make this clear, as the disease can only spread 

between susceptible individuals, this paper therefore investigates the subgraph of 

these vertices and, as q increases, the probability of the subgraph being connected 

increases, and thus the probability of epidemic. When q is small, the subgraph is 

less likely to be connected and thus an epidemic is less likely. 

 

Moslonka-Lefebvre, Pautasso and Jeger (2009) showed that the incidence of 

epidemic is not dependant upon the starting point within a network, but is 

negatively related to the correlation coefficient between the in- and out-degree for 

the structures, unless the networks are sparsely connected. If this is so, then 

clustering plays a significant role. For small-size scale-free directed networks to 

have a lower epidemic threshold than other network structures, there needs to be a 

positive correlation between the number of links to and from nodes. When this 

correlation is negative (one-way scale-free networks), the epidemic threshold for 

small-size networks can be higher than in non-scale-free networks. The paper 

shows that clustering does not necessarily have an influence on the epidemic 

threshold if connectance is kept constant. Additionally, Eames (2008) 

demonstrated the importance of random contacts in a clustered system: without 

them, the spread of infection is greatly reduced. With random contacts, parts of 

the network that are otherwise inaccessible may be reached. In a result 

comparative to Watts-Strogatz, Eames also showed that very few random contacts 

are required to increase the spread of infection. 

2.6.2.2 Percolation 

Whilst most work on disease propagation focuses on what is known as “site 

percolation”, there have been studies into bond percolation also, as reported by 

Newman (2003). 
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Figure 2.11: Site and bond percolation on a network. In site percolation, vertices (“sites” in the 

physics parlance) are either occupied (solid circles) or unoccupied (open circles) and studies focus 

on the shape and size of the contiguous clusters of occupied sites, of which there are three in this 

small example. In bond percolation, it is the edges (“bonds” in physics) that are occupied or not 

(black or gray lines) and the vertices that are connected together by occupied edges that form the 

clusters of interest. (From Newman, 2003 p 38) 

 

In the case of infection propagation, site percolation investigates infected 

individuals, whereas bond percolation investigates infection transmission routes. 

Contact rate and infective time translate directly into a bond occupation 

probability (Witten & Poulter 2007 p 198), showing that the two models have 

great similarity. 

2.6.2.3 Competing Pathogens 

Competing pathogens, such as strains of influenza that show cross-immunity, or 

pathogens which kill the host, may also be modelled (Newman, 2005). The 

particular case studied here is the one where the first pathogen has passed through 

a population, causing an epidemic that leaves some fraction immune or dead, 

followed by a second pathogen at a later time. The author notes that the model 

could similarly represent two outbreaks of the same disease. The model uses a 

generalised SIR model, together with a probability of transmission (termed 

transmissibility, T) for the edges. Newman found that co-existence of the 

pathogens is only possible for intermediate values of T. Two phase transitions 

therefore exist: the standard epidemic transition below which the first pathogen is 

unable to spread, and the point at which the first disease removes so large a 

fraction from the population that not enough remain to support the spread of the 

second. There are other experiments that could be performed on such a model by 

varying the cross-effects of the pathogen, although this does not appear to have 

been done. 
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2.6.2.4 Semi-Directed Graphs 

Ancel Meyers et al. (2006) described the use of semi-directed graphs, in which 

some edges are directed and others are undirected, in order to model the fact that 

some diseases transmit better in one direction than another and that infected 

individuals will seek out certain people (especially healthcare workers (HCWs)) 

whereas the converse is not true and is also not true of the same individual when 

uninfected. This paper shows that in semi-directed networks the probability of an 

epidemic and the expected fraction of the population infected during such an 

epidemic may be different, in contrast to the many conventional models that 

assume the equality of these two epidemiological values (although this is true for 

undirected graphs). The model was applied to assess the role of HCWs in disease 

transmission and containment. One useful measure introduced in this work is the 

risk to individuals of infection, expressed as a function of their degree. However, 

this requires the distribution (or generating) function of degrees to be known. 

 

This paper also presents a case study in hospital-based transmission of respiratory 

disease (possibly the only one so published), which is built upon previous work to 

simulate urban contact networks
10

. In this, the undirected-degree distribution is 

roughly exponential and the in- and out-degree distributions solely determined by 

the flow of infected people into health care facilities. Assuming each non-HCW 

individual to have three directed edges pointing to randomly selected HCWs (i.e. 

an out-degree of three and an in-degree of zero) gives HCWs out-degrees of zero 

and in-degrees of 409-530. The paper reports that, for diseases close to the 

epidemic threshold, the probability of epidemic in the semi-directed graph is more 

than double that of the simpler undirected graph. The effect of intervention (in this 

case travel restrictions and isolation) was then examined, by removing appropriate 

edges from the graph. Vaccination prior to an outbreak was modeled by removing 

a vertex and all of its edges from a graph. Other interventions, such as the use of 

facemasks, surgical gowns and hand washing were modeled by lowering the 

                                                 

10
 Based on demographic data from Vancouver, British Columbia. 
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probability of transmission. The levels of infection were shown to increase 

drastically if/once an HCW is infected. Although not noted by the authors, this 

shows these vertices to be the superhubs of Milgram’s work. Having introduced 

some directionality into the graph, it is not clear why full directionality was not 

investigated. 

2.6.2.5 Weighted Graphs 

Newman (2004a) investigated weighted graphs. These have normally been 

avoided or ignored, as they are perceived as being harder to analyze than 

unweighted ones. Whilst it is reasonable to study simpler cases (unweighted) 

before moving onto more complex or complicated ones (weighted), Newman 

shows that weighted graphs can in many cases be analysed using a simple 

mapping from a weighted graph to an unweighted multigraph, allowing standard 

techniques for unweighted graphs to be applied to weighted ones. Weighted 

graphs are often used in sociological studies, with negative weights indicating 

animosity. A multigraph is a graph where non-unique edges are allowed, that is, 

one in which there may be multiple edges between a vertex pair. Thus the 

translation from weighted edge to multigraph is intuitive as they yield the same 

adjacency matrix. Newman shows that the method of Girvan and Newman (2002, 

quoted in Newman 2004b p 4) finds communities within weighted networks. 

Indeed, the weights often expose community structure that a simple unweighted 

one (i.e. created by removing the weights from each edge) does not. It is 

presumed (but not make clear) that the subsequent method of Clauset et al. (2004) 

also does this. 

2.6.2.6 Social Context 

Ganney (2003) considered the context in which the exposure to infection takes 

place. Using three sizes of locations (individual, small and large) the context 

modified the susceptibility of the individuals. When the wards (originally 

classified as “small”) were re-classified as “large”, the clear peaks of the original 

lifespan graph became less pronounced (see Figure 2.12). 
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Figure 2.12: The upper graph shows the mean lifespan against mean path length for four 

relationship models with wards classified as “small” spaces. The lower graph shows similar data 

where wards have been re-classified as “large”. 

 

2.6.3 Infection Control 

Once a disease process has been mapped onto a graph and its spread analysed, it is 

intuitive to experiment with infection control procedures, a topic undertaken by 

Dezsö & Barabási (2002) and Cohen, Havlin & ben-Avraham (2003). Dezsö & 

Barabási quote the result of Pastor-Satorras & Vespignani that for free-scale 

graphs with γ≤3 the epidemic threshold (λc) vanishes; that is all diseases, 

regardless of infectiousness, will spread and prevail. Dezsö & Barabási propose 
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that this effect is due to vertices with a large number of edges (superhubs, 

although not described as such in the paper) as, once infected, they pass on the 

disease to a significant fraction of vertices in the system. Using a simple SIS 

model, this work found that randomly distributing cures throughout such a graph 

(to infected vertices only) had no effect, whereas even a weak biasing of the 

distribution towards infected superhubs re-established the epidemic threshold, 

thus allowing the disease to die out naturally. This is because 
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cλ  where vertices with degree k>k0 are healthy 

(Lloyd & May, quoted in Dezsö & Barabási, 2002, p 2). Therefore, the more 

superhubs cured (the lower k0 is), the larger the value of λc. The practical problem, 

of course, is to identify these superhubs (equivalent to finding the vertex cutset). 

Whilst the approach of identifying and treating/inoculating the superhubs is 

intuitive, and has been implemented (e.g. Esu-Williams, 1995), there appears to 

have been no interaction between modelling and implementation. 

 

Cohen, Havlin & ben-Avraham (2003) studied instead the SIR model and a novel 

immunisation program. In this, a random number of vertices were selected. For 

each vertex, one edge was randomly selected and the vertex at the terminus of this 

edge was immunised. This yields better-connected vertices (Feld, 1991; Newman, 

2003 – both quoted in Cohen, Havlin & ben-Avraham, 2003), although some 

vertices may be selected more than once. This research discovered that this 

immunisation technique was more efficient than a purely random one, 

dramatically reducing the immunisation threshold for all studied cases. A further 

advantage of this technique is that it does not require global knowledge of the 

graph, only local knowledge of the selected vertices. Despite the effectivenes of 

this approach, the social issues surrounding an implementation make it unlikely to 

succeed. 

 

Infection control methods have generally focussed upon reducing the spreading 

rate of the infection, hoping to reduce it to a point at which it will die out 

naturally. However, as scale-free graphs have an epidemic threshold of zero 

(Pastor-Satorras & Vespignani 2001 p 3200), this method will never eradicate a 
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disease within such a model. Techniques such as those described above therefore 

attempt to re-introduce the epidemic threshold by targeting the structure of the 

graph. 

 

An alternative method of infection control might be to discover the “fire breaks” 

(or “fault lines”) within a network – i.e. identify the edge cutset rather than the 

vertex cutset. Although this has not yet been investigated, the detection of 

communities has received some attention. The work of Zachary, for example, 

(1977 - quoted in Newman, 2004a) describes a social network that fragmented 

into two communities that can be seen in the original analysis. Many methods 

have been proposed for discovering such communities, although all seem to 

require foreknowledge of the number of communities to discover. Once this is 

known, methods such as hierarchical clustering (Scott, 2000 quoted in Newman, 

2004a) are very good at detecting the boundaries and membership of the 

communities. The use of modularity in the algorithm described by Clauset et al. 

(2004) would appear to be a reliable method for detecting and determining the 

number of communities where this is unknown a priori. This method implements 

a greedy optimization that seeks for the maximal increase (or, if there is none, the 

minimal decrease) in modularity, Q. The resulting dendogram is cut at the point 

where Q is maximal in order to reveal the communities. 

 

 

Figure 2.13: A dendogram of the community described by Zachary (1977). A cross-section of the 

tree at any level will give the communities at that level. The cross-section indicated by the dotted 

line corresponds to the community division discovered by the hierarchical clustering method. 

Taken from Newman, 2004a p 5. 
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2.7 Discussion 

The problem with the compartment models (SIS, SIR) is that all susceptible 

people do not face the same risk of contracting a disease. Along with natural 

susceptibility, the level of social interaction needs to be taken into account. Ancel 

Meyers (Griffith 2003) has modelled the pattern of interactions in a city
11

 utilising 

municipal contact networks. 

 

 

 

Figure 2.14: A municipal contact network. Diagram from Griffith (2003). 

 

Ancel Meyers’ subsequent work involved modelling a psychiatric institution in 

Indiana in order to understand the spread of walking pneumonia. Ancel Meyers 

discovered that “while the focus is generally on preventing the spread of walking 

pneumonia from patient to patient, caregivers play a much more important role in 

the large-scale spread of respiratory infections across such a facility.” (Griffith 

2003) 

 

Clearly this work is based upon graph theory with the municipal contact network 

centres and caregivers providing superhubs and the long-range links required of 

small world theory, thus giving credence to the models so constructed. 

 

                                                 

11
 In this case Vancouver. 
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Another problem with the two main models studied (SIS and SIR) is that neither 

allow for a vertex to be “temporarily removed” from the set of susceptible 

vertices. Whilst some diseases (e.g. measles) confer a life-long immunity and 

some (such as the common cold) confer none, others (e.g. Respiratory Syncytial 

Virus (RSV)) do confer a period of immunity, as do all vaccines (e.g. 

Chickenpox). Neither model takes account of natural passive immunity, probably 

because it is fairly rare except between mother and child. There is also the 

question of the degree of infectiousness and the level of susceptibility of an 

individual. Some pathogens, such as Chickenpox/Shingles, are highly contagious, 

so will have high transmission probabilities (87% attack rate in susceptible 

exposed children. Hawker et al., 2001 p 72). Others, such as SARS, will have low 

ones (1.2% attack rate in hospital workers overall, with the highest of 2.3% being 

for nonmedical support staff. Lau et al., 2004 p 1399). 

 

Most work on SWT and on the use of graphs to model disease propagation uses 

simple, undirected graphs. The assumption, therefore, is that a disease is as likely 

to pass in one direction between people as the other. This, however, is not true. As 

mentioned above, HIV passes easier from men to women than vice versa and an 

uninfected Healthcare Worker is more likely to be sought out by an infected 

member of the public than an infected Healthcare Worker is to seek out that same 

uninfected member of the public. (Ancel Meyers et al., 2006 p 403 - quotes HIV 

data from Italian Study Group on HIV Heterosexual Transmission). Watts himself 

notes that friendships are not symmetric (Watts, 1999 p 5). 

 

Whilst the mixture of directed and undirected edges in the Ancel Meyers et al. 

(2006) model adds a useful level of complexity, edges cannot exist in both 

directions with different transmission probabilities: edges are either fully two-

way, or fully one-way. Matters were simplified by assigning the same 

transmission probability to all undirected edges (Tu) and the same transmission 

probability to all directed edges (Td), as well as studying the special case where 

Tu=Td. 

 

As mentioned above, it has been identified that the treating of superhubs greatly 

increases the probability of eradicating a disease yet that it remains difficult to 
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identify these superhubs. As also described above, parallel work has taken place 

in attempting to identify structure within a society. There is clearly scope for these 

two approaches to be married together and a new method of infection control to 

be investigated. This may also tie in with recent work on edge percolation. 

 

Despite Milgram’s interest in social cleavages, little, if any, work has been done 

in examining disease propagation on networks so cleaved. Likewise, little, if any, 

work has been done on examining the effects of a graph mutating during the 

lifetime of the disease, except in the case where the disease removes vertices (by 

causing either immunity or death). 

 

As noted above, one surprising discovery of Milgram’s work showed that paths 

often exist which are not visible to first analysis. However, if these paths are 

there, no matter how hidden, then infection can propagate along them. The second 

surprising result, that these paths can be found using only local knowledge, 

increases the likelihood of a disease so propagating as overall structure does not 

need to be known. 

 

The reason most investigation has concentrated on simple undirected graphs is 

that these graphs lend themselves to mathematical analysis. As this research aims 

to develop a more “realistic” model, only computer simulations will be possible. 

2.8 Summary 

In summary, the following shortcomings of current published models are 

identified: 

• SWT has generally been applied to large, even global, populations. Whilst 

this emphasises the effect of a shortcut upon chain length, the theory 

should be equally applicable in the modelling of a semi-closed 

environment such as a hospital. Smaller populations have been examined, 

but have done so in isolation, ignoring any possible effects due to the 

wider system. 

• SWT utilises random connections. In experiments, the reason for a link’s 

revelation has been in finding someone. Other reasons for links’ existence 

are not explored. 
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• The connections are generally two-way. Real-world experience suggests 

that links have different weightings and different transmission 

properties/probabilities in each direction. 

• The strength of the links is not considered: all are viewed as being equal. 

• SWT assumes static connections, i.e. once a model has been formed, its 

properties are investigated but the network does not alter. Real-world 

experience suggests that links form and reform (and the strengths alter) 

with time. However, for swiftly spreading infections, this may not be 

pertinent. Random changes in a graph results in all networks converging 

onto random graphs (Witten & Poulter, 2007 p 204) so the underlying 

initial model may not be relevant. Verdasca et al. (2004) did present a 

dynamic model where the vertices and edges are created afresh at each 

iteration with good results, but that level of “dynamic” is probably 

excessive – certainly the computations were “intensive” (Witten & 

Poulter, 2007 p 204). 

• The infections investigated merely propagate: they do not die out and 

infected individuals do not recover. Whilst this is true (and an appropriate 

statistic) for SARS, HIV/Aids or Foot & Mouth (e.g. Saramaki & Kaski, 

2004; Chen, 2001; Small & Tse, 2005), it is not for Norovirus or MRSA 

(both of which are prevalent within the NHS). 

• The simulation methods run on the connection models are rather basic. It 

assumes an overall probability of infection, rather than implementing 

different factors (for example, the probability of the link being in place at a 

particular time is one factor generally ignored). 

• Some infections, such as Influenza, are cyclic according to season. No 

models so far appear to allow for this “dormant” and “rampant” phases of 

an infection, although Saramaki & Kaski (2004) have partly modelled this 

by using different strains of influenza. 

• All models consider the effect of only a single infection taking place at 

once. For example, Influenza A and Influenza B often co-infect and 

interfere with one another. Immunity from one does not grant immunity 

from the other. Likewise, one infection may suppress the immune system 

leading to an enhanced effect of a secondary one. 



Chapter 2  Background and Literature Review 

 2.39 

• Few models consider the impact of a treatment or vaccine being 

introduced during the outbreak, although post-infection immunity is 

considered. 
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3  Infection in a Hospital Environment 

3.1 Introduction 

It is estimated that “1 in 11 of all in-patients has a hospital acquired infection at 

any one time” (Daily Telegraph, 25/2/2005) with Teaching Hospitals (such as 

Hull Royal Infirmary) having a higher rate (11.2%) to non-teaching (8.4%) (ibid). 

Whilst there is some progress in limiting the propagation through hygiene 

programmes, a suitable, realistic model would allow investigators to conduct 

“what-if” experiments in order to determine additional defences and strategies as 

well as determining the likely effects of uncontrolled outbreaks. 

 

The fight against the spread of infection is of paramount importance. To fight an 

infection within a population, one has to have an understanding of how it is 

transmitted between members of the population and how it then spreads within 

that population. Realistic models are important tools in gaining this understanding 

and in allowing researchers to investigate different scenarios of spread and 

different techniques for combating it. Additionally, in epidemic research, there is 

great value in models that can predict the signs of infections that will become 

epidemics, and those which will not, from early data. The threat of pandemics of 

new diseases
1
 give rise to demands for mathematical and computer models of 

infection propagation partly to understand the mechanisms involved, but mostly to 

inform the countermeasure strategies. 

 

The study of the spread of infection by simulation has traditionally been studied 

using a compartmental-deterministic model. Whilst giving admirable results in 

numerical terms, such studies have not modelled the propagation throughout a 

social network and therefore do not lend themselves well to studying methods of 

preventing such spread. 

 

The problem with the compartment models when studying a host-to-host infection 

is that they presume that all susceptible people face the same risk of contracting a 

                                                 

1
 SARS was a recent case – “Swine Flu” is the current. 
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disease. This assumption holds provided that all susceptible people are given the 

same level of exposure to infected people. Whilst this may be argued as being 

reasonable for a common source infection
2
, this is not a realistic proposition for 

host-to-host
3
, as an infected person will encounter only a subset of the population 

under consideration. If an initial infection is evenly distributed, then it is 

reasonable to infer that the intersection of these subsets evenly covers the whole 

population. However, infections are rarely (if ever) so distributed. Therefore, 

along with natural susceptibility, the level of social interaction needs to be taken 

into account. 

 

There has been much interest in recent years in using graph or network models to 

study connections between individuals and between groups within a population 

(e.g. Milgram 1967, Watts & Strogatz 1998, Ancel Meyers et al. 2006). 

Connections link individuals but can also be a conduit for transmission of 

properties such as information, letters or infection. The study of how a property 

propagates within a population can be modelled by creating a graph for the real-

world scenario and imposing upon it the transmission properties of the property 

under consideration. 

 

In order to investigate the properties of infection propagation within a population, 

previous research has utilised regular graphs or ones enhanced by random 

alterations or additions. This has had the advantage that the graphs are 

controllable and limitable whilst providing sufficient complexity to make the 

examination of the process non-trivial. However, there remains the question as to 

how realistic these randomly generated structures are and therefore how relevant 

the results may prove to be. 

 

Firstly four infections of particular interest to this type of research are described, 

especially Norovirus (3.2.1.4) which is modelled in later chapters. The chapter 

concludes with a brief examination of some alternative modelling methods. 

                                                 

2
 A common source infection is one that arises from a contaminated source, such as food or water. 

3
 A host-to-host infection is one that is transmitted from an infected individual to a susceptible one. 
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3.2 The Hospital Environment 

A hospital environment is a highly complex network of interactions between 

hospital departments, individual staff, patients and visitors. It can be viewed as 

several interconnecting compartments, where the connections are formed by 

architecture, patient movement and staff function. As each compartment has a pre-

defined role, the compartments that it connects to are liable to be limited but 

certainly will be known and unlikely to alter significantly. It can therefore be 

viewed as a network of communities. 

3.2.1 Infection Propagation and Control 

Many infectious diseases spread through direct person-to-person contact. 

Respiratory-borne diseases like influenza, tuberculosis, meningococcal meningitis 

and SARS, spread through the exchange of respiratory droplets between people in 

close proximity to each other. Sexually transmitted diseases like HIV, genital 

herpes and syphilis spread through intimate sexual contact, yet some (such as 

HIV) are more easily caught by women than by men during heterosexual 

encounters. (Ancel Meyers et al., 2006) 

 

Four infections are of particular interest in this thesis: Clostridium Difficile, 

Influenza, MRSA and Norovirus. They are all transmitted by close contact or 

proximity, are highly contagious and have been shown to thrive in institutional 

settings, especially hospitals. These are now described
4
. 

3.2.1.1 Clostridium Difficile (C.Diff) 

Clostridium Difficile (CD) causes 25% of cases of antibiotic-associated diarrhoea 

and a greater proportion of more severe disease. Elderly, hospitalised patients are 

at the greatest risk. There is a background rate of CD in most hospitals with 

occasional outbreaks. Typically diarrhoea will start within a few days of 

commencing antibiotics. 

 

CD is asymptomatically carried by 2-3% of adults and (possibly symptomatically) 

50% of neonates (less than 1 year old). 

                                                 

4
 Except where noted, the descriptions are drawn from Hawker et al, 2005. 
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CD is transmitted from symptomatic infected individuals via contact (including 

the hands of uninfected healthcare workers) or through the build-up of spores in 

the environment or on contaminated fomites such as commodes. Spread does not 

occur from an asymptomatic (absence of diarrhoea) infected individual. 

Transmission from infected patients to medical and nursing staff has been 

recorded, but is usually mild and short-lived. 

 

CD-associated disease (CDAD) occurs when the gastrointestinal tract of a 

susceptible individual is colonised by a pathogenic strain of CD. Factors such as 

age, antibiotic treatment, cytotoxic agents, intensive care, naso-gastric intubation, 

concurrent illnesses and alteration in gut motility increase the risk of acquiring 

CDAD. 

 

Infection control advice is that symptomatic patients should be isolated and gloves 

and aprons should be worn by staff, along with adherence to handwashing 

protocols. 

3.2.1.2 Influenza 

Influenza is a virus that is life-threatening in the elderly and chronically unwell. 

During epidemics it is a major cause of morbidity. It causes annual wider 

epidemics of varying sizes and pandemics at other times. It affects all ages with 

the highest incidence in children, although most hospitalisations and deaths are 

among the elderly. 

 

Community outbreaks are common between November and March, lasting 6-10 

weeks, peaking at around 4 weeks and are responsible for between 3,000 and 

30,000 deaths each winter. 

 

The A and B viruses alter gradually resulting in a significant epidemic every few 

years with rapid spread and a 10-20% attack rate. Influenza A may change 

abruptly leading to a subtype for which there is little or no population immunity 

and causing major pandemics. Recent occurrences were in 1918 (20-40 million 

deaths worldwide), 1957 and 1968. Despite the huge numbers affected during a 
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pandemic, more deaths occur due to the steady accumulation of normal influenza 

activity. 

 

Influenza in humans is transmitted via the respiratory secretions of infected 

individuals, via air-borne droplets or small particle aerosols. Transmission is 

enhanced by enclosed and overcrowded spaces. Spread in such cases is rapid and 

attack rates high. 

 

The reservoir for influenza A is primarily aquatic fowl. Influenza B only affects 

humans. 

 

Influenza incubates in 1-3 days (occasionally up to 5), with the infectious period 

lasting for 1 day before the onset of symptoms to 3-5 after this point in adults. 

Children have been observed at 3 days before to 9 days after. The infectious dose 

is low. 

 

Immunity develops and protects for many years against the same strain. Cross 

immunity to other strains does occur. 

 

Immunisation programmes exist and are very effective, reducing the risk of 

hospital admissions and death. 

3.2.1.3 Methicilin-Resistant Staphyloccus Aureus (MRSA) 

Levels of MRSA in UK hospitals have risen since 1995 and have become a major 

public health concern. This increase has been attributed to the appearance of 

strains with epidemic potential, increasingly susceptible patients, failure to 

maintain good hospital hygiene, as well as greater bed usage, throughput of 

patients and inter-ward transfers. 

 

S.aureus is a common cause of infection, ranging from mild skin sepsis to life-

threatening septicaemia. MRSA as a proportion of S.aureus has increased in 

England and Wales from 2% in 1990 to 42% in 2000, but appears to have now 

stabilised. 
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In 2003, MRSA rates per 1000 bed days ranged from 0.04 to 0.33, although it is 

not clear whether these were community- or hospital-acquired. 

 

The reservoir for MRSA is colonised or infected humans (and, rarely, animals). 

Colonisation sites are mainly skin, whilst discharges from wounds and other 

lesions are the main sources in infected individuals. Infection is via contact and 

invasion usually via broken skin. 

 

The incubation period is 4-10 days and an infected individual is contagious until 

the infection/colonisation is eradicated. Risk factors include prolonged hospital 

stay, intensive care and surgical procedures. 

 

Control measures include a reduction in patient movement, isolation, clearance of 

MRSA using topical or systemic antibiotics and adherence to hospital hygiene. 

Contact with infants and other susceptible groups should be avoided and school-

age children should not attend whilst infectious. 

3.2.1.4 Norovirus 

Norwalk-like viruses (NLV) are members of the calicivirus family, first 

discovered in 1972 following an outbreak of gastroenteritis in Norwalk, Ohio 

(Kapikian et al., 1972 p 1075), and more recently renamed Norovirus (Fauquet et 

al., 2005 – approved as official genus for NLVs, CDC, 2006). They may also be 

referred to as small round structured viruses (SRSV). Noroviruses are the most 

common cause of gastroenteritis in Europe. Nearly 50% of all gastroenteritis 

outbreaks reported for England and Wales were due to Noroviruses, a figure that 

is similar to data reported for other European countries including Finland, 

Sweden, the Netherlands and Germany (Lopman, Brown & Koopmans, 2002). 

Spread, especially in institutions, may be rapid, although the illness may be mild.  
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Figure 3.1: Electron micrograph of Norwalk virus. (Fauquet et al. , 2005) 

 

The incidence of norovirus infection is likely to be at least 1% of the population 

per year and all age groups are affected (Caul, 1996 p 959). Incidence is highest in 

young children but the severe infection is more prevalent in the elderly, especially 

the institutionalised. Infection occurs all year round, with a peak in the UK during 

the cooler months. However, in 2002 a summer peak was also recorded (Lopman 

et al., 2002). Immunity appears to be short-lived and only to the specific strain, 

meaning that individuals are likely to be repeatedly infected during their lifetimes. 

There is some evidence that a genetic susceptibility may exist, with people of 

blood group O being at greatest risk of severe infection (CDC, 2006). 
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Figure 3.2: Laboratory reports of confirmed Norovirus infections in England and Wales, 1995 to 

2002. From Lopman et al., 2002. 

 

Norovirus infection lasts 12-60 hours, causing stomach cramps followed by 

vomiting (especially forceful) and/or diarrhoea. The shortness of the symptoms 

means that affected individuals rarely seek medical attention but the effect of an 

outbreak in a hospital environment can have a significant effect on its activities. 

 

The reservoir for Norovirus is humans and transmission is via the faecal-oral 

route, including food contamination. Person-to-person spread is either direct 

(including aerosol transmission) or indirect (via contaminated surfaces). The 

indirect route leads to its high secondary attack rate. 

 

The incubation period is 15-50 hours (Hawker et al., 2005 p 169 – although CDC, 

2006 quotes 24-48 with a median of 33-36 hours) with the infectious period 

commencing prior to symptoms (excretion of the virus in faeces appearing a few 

hours beforehand (Chadwick et al., 2000 p 3)) and lasting until 48 hours after the 

cessation of symptoms, but is highest in the first 48 hours. The attack rate is high 

(around 50%) and post-infection immunity brief (a few months). Norovirus is 

extremely infectious, requiring as little as 10-100 virons to cause infection with 

10
11

 virons per gram being excreted in the stool and 30 million in a vomiting 

incident. (Boone & Gerba, 2007 p 1691). The high attack rate is so high means 

that by the time an outbreak on a ward has been detected, most susceptible 
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individuals will have been exposed to it, especially if vomiting is prominent 

(Chadwick et al., 2000 p 1). There is no evidence to suggest that an infected 

person can become a long-term carrier of norovirus (Bresee et al., 2002 quoted in 

Vanderpas et al., 2009 p 220). Asymptomatic infection (and especially the 

transmission via it) is not well understood, but may occur in as many as 30% of 

infections (CDC, 2006). 

 

There are three points at which SRSVs may be controlled: introduction to the 

hospital; containment at ward level; measures to prevent spread to other wards. 

Infected individuals are usually isolated until 48 hours after cessation of primary 

symptoms. Hygiene controls are also utilised, as are barrier methods (gloves and 

aprons). Infected individuals should restrict (preferably completely removing) 

their movement, especially to uninfected areas, whilst the infection “burns out” in 

the infected area. Staff should avoid moving from infected to non-infected wards 

unless 48 hours elapse beforehand. Where movement between wards is necessary, 

non-infected wards should be visited first. 

3.2.1.5 Summary of Infections 

Whilst each of the four infections described above have their individual 

characteristics, the properties that are used in constructing the model described in 

Chapter 4 may be summarised in Table 3.1 
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Property C.Diff Influenza MRSA Norovirus 

At Risk Elderly, 

hospitalised 

patients. 

All ages, esp. 

children and 

elderly. 

Elderly most at 

risk of fatality. 

All. All ages but 

especially 

young children 

and the elderly. 

Increased 

Risk 

Age, antibiotic 

treatment, cyotoxic 

agents, intensive 

care, naso-gastric 

intubation, 

concurrent 

illnesses, alteration 

in gut motility. 

November to 

March. 

Prolonged 

hospital stay, 

intensive care, 

surgical 

procedures. 

Cooler months. 

Transmission From symptomatic 

individuals via 

contact (including 

via hands of 

uninfected staff) 

OR build-up of 

spores in the 

environment OR 

contaminated 

fomites. 

Respiratory 

secretions of 

infected 

individuals. 

Enhanced by 

enclosed and 

overcrowded 

spaces. 

Contact and 

invasion 

usually via 

broken skin. 

Faecal-oral 

route, including 

food 

contamination. 

Property C.Diff Influenza MRSA Norovirus 

Attack Rate 0.49%-2.25% 10-20% 0.35%-10% 

(54% recorded 

for one burns 

unit study) 

50% 

Incubation From 1-2 months to 

a few days 

1-3 days 4-10 days 15-50 hours 

Infectious 

Period 

Symptoms (esp. 

diarrhoea) present. 

1 day before to 

onset of 

symptoms to 

3-5 days after 

this point. 

Until the 

colonisation is 

eradicated. 

48 hours after 

cessation of 

symptoms. 

Immunity No. Mainly to 

same strain, for 

many years. 

No. Brief – a few 

months. May 

only be to the 

specific strain. 

Immunisation 

Programme 

No. Yes, very 

effective. 

No. No. 

Control 

Advice 

Isolation. Gloves 

and aprons. 

Handwashing. 

 Reduce patient 

movement. 

Isolation. 

Antibiotics. 

Hygiene. 

Isolation. 

Hygiene. 

Barrier 

methods. 

Restricted 

patient and staff 

movement. 
Table 3.1: A summary of the properties of four infections, used to develop the model described in 

Chapter 4. 
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3.2.1.6 Types of Epidemic 

The two main types of epidemic are common source and host-to-host. These are 

compared in Figure 3.3. 

 

 

Figure 3.3: Common source epidemics usually produce more new cases earlier and faster than 

host-to-host epidemics. Once the infected source is closed, sealed, or removed, the common source 

epidemic usually abates rapidly. Host-to-host epidemics are slower to grow and slower to 

diminish. From: uhavax.hartford.edu/bugl/histepi.htm 

3.3 Other Modelling Approaches 

Graph or Network modelling is not the most common method of modelling 

infection propagation and control. The main method is statistical/deterministic 

whilst geographical methods are growing in popularity, especially with increased 

computing power becoming available. Examples of these are now described. 

3.3.1 The Standard SIR Model 

The SIR (susceptible-infected-removed) model divides the population into three 

groups: those that may become infected (S), those that are infected (I) and those 

that have been infected and are either immune or deceased (R). At time t the 

number in each group is S(t), I(t) and R(t). It is worth noting that in practice, only 
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R(t) can truly be known. These three functions are governed by the nonlinear 

differential equations 
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Where r is the infection rate and a the removal rate of infectives. 

 

The SIR model is useful in predicting two figures: the limiting value R∞, the total 

number of infected people at the end of the epidemic, and the basic reproduction 

number Ro, the average number of infections caused when an infected individual 

is introduced into a susceptible population. Thus the SIR model is very good at 

describing the overall life and total effect of an infection, but it cannot describe 

effectively how the infection will spread. As it is a statistical model, it is poor 

when the numbers of cases are low (15-25). It is also, as Ng et al. (2003) point 

out, poor when a double epidemic is taking place. Their SEIRP (Susceptible-

Exposed-Infected-Removed-Protected) model overcomes these limitations, but 

the geographic spread of the infection is still not described. The most common 

extension is to SEIR (Susceptible-Exposed/Latent-Infected/Infectious-

Removed/Recovered) which introduces an extra differential equation to the 

model. 

 

Deterministic models such as these can provide good indicative data but are poor 

at the limits where a few individuals are involved. SEIR can lead to a steady state 

whereas a stochastic model is more likely to see the infection end. (Vanderpas et 

al., 2009 p 220). 

3.3.2 Geographic Information Systems (GIS) 

GIS was initially a visualisation tool rather than a predictive model. As public 

health bodies began to generate larger data sets and store them electronically, so 

the desire to be able to visualise this data grew. 
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GIS in its simplest form maps the infection occurrences onto a geographic map 

(see Figure 3.4) and animates using a time-based measurement, thus showing how 

the infection has spread and how and when it either grew into an epidemic or died 

out. It is therefore predominantly a reflective tool, rather than a predictive one. 

 

The power of a GIS comes from the ability to aggregate and visualise large data 

sets and thereby discover patterns in the data – in this way, GIS can be used to 

spot an epidemic earlier than might be realised using conventional reporting tools. 

For example, a threshold might be set for a certain number of cases in a certain 

sized area within a certain time frame. Traditionally this has been monitored by 

dividing a larger area into set smaller ones and counting the occurrences in each 

smaller area. The GIS can aggregate in many different ways, thus determining 

whether an area that is of the correct size but crosses one of these divisions 

contains sufficient cases to trigger an alert. 

 

 

Figure 3.4: Rift Valley Fever spatial distribution in relation to ground elevation, from Soumare et al., 

2007 p 253 

3.3.3 Summary 

The three forms of model all have their uses. For hospital-based research, a GIS is 

not sufficiently detailed to provide useful information – the plotting of infected 
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areas can also be derived from an SIR and from a graph model, especially as the 

data set is not likely to be that large. An SIR (or variant) model gives good overall 

information on the spread of an infection and the possibility of reaching epidemic 

levels but it does not investigate the routes of transmission as directly as a graph 

model. It is also poor when the number of cases is low (Trust data for Norovirus, 

for example, indicates average cases of less than four per ward – see chapter 5 for 

a fuller description) and therefore may not be as suitable as a graph model for 

investigating interventions. 
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4 Modelling Infection Propagation on a Graph 

4.1 Introduction 

The classical mathematical approach to disease modelling (in particular, disease 

spreading) either ignores the structure of the social network altogether or treats 

populations as spatially distributed in a continuous medium. Typically, the first 

case uses an SIR model (see 3.3.1) and subdivides the population into three sub-

populations whose number, size and interaction determine the transmission of 

disease. This approach has been utilised effectively in the modelling of infection 

in well-mixed populations (May & Nowak, 1994; Murray, 1993 – both quoted in 

Watts, 1999 p 167) with an emphasis on the detailed dynamics of disease 

transmission rather than the relationships between subpopulations. 

 

The second classical approach introduces a spatial dependency to the 

subpopulations involved and is typified by reaction-diffusion equations (Murray, 

1993 – quoted in Watts, 1999 p 167). Here questions of the stability of equilibria 

and the analytic tractability of solutions tend to dominate. 

 

A third approach began to appear in the late 1980s that took greater account of the 

fact that populations are often inherently discrete and exhibit high levels of 

structure (see Sattenspiel & Simon, 1988 for one such approach). 

 

None of these approaches, however, treats the spread of an infection within a 

population as a function of the structure of that population. 

 

Mathematical modelling of virus spreading and epidemics has generally utilised 

one of two models, both of which can be utilised on graphs: 

• a Susceptible-Infected-Susceptible model (SIS), in which vertices are 

either “healthy” or “infected”. At each time step a healthy vertex becomes 

infected with probability ν if it is connected to at least one infected vertex. 

An infected vertex is cured with probability δ, defining an effective 

spreading rate of 
δ

ν
λ ≡ . The behaviour of the SIS model is well 
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understood for vertices in a regular lattice or random network (Anderson 

& May, 1991; Nowak & May, 2000, both quoted in Dezsö & Barabási, 

2002). 

• a three-compartment model, the compartments being those who are 

susceptible to the disease, those who already infected and those who have 

been removed either through immunity or death (SIR: Susceptible-

Infected-Removed). The probabilities of movement between the three 

compartments are fixed, and are the same for each individual within a 

compartment, as is the probability of contact with an individual from one 

of the other compartments. 

 

An enhanced theoretical model (utilising both new and improved concepts) that 

addresses the issues as set out in Chapter 3 is now proposed. 

 

Firstly the high-level model is outlined, in terms of the shortcomings of currently 

published models and then some proposed extensions to graph theory that address 

these. 

 

Secondly the issue of the whether a directed or undirected graph should be used is 

addressed in 4.3.1, with the additional properties the elements require being 

described in 4.3.2. The model is then described using mathematical (set theory) 

terminology in 4.4. 

 

Finally, the application of this model to infection propagation and infection 

control is described in 4.5 and 4.6 respectively. 

4.2 The High-Level Solution 

4.2.1 Introduction 

The following shortcomings of current published models were identified in 

Chapter 2: 

1. SWT has generally been applied to large, even global, populations. Whilst 

this emphasises the effect of a shortcut upon chain length, the theory 

should be equally applicable in the modelling of a semi-closed 
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environment such as a hospital. Smaller populations have been examined, 

but have done so in isolation, ignoring any possible effects due to the 

wider system. 

2. SWT utilises random connections. In experiments, the reason for a link’s 

revelation has been in finding someone. Other reasons for links’ existence 

are not explored. 

3. The connections are generally two-way. Real-world experience suggests 

that links have different weightings and different transmission 

properties/probabilities in each direction. 

4. The strength of the links is not considered: all are viewed as being equal. 

5. SWT assumes static connections, i.e. once a model has been formed, its 

properties are investigated but the network does not alter. Real-world 

experience suggests that links form and reform (and the strengths alter) 

with time. However, for swiftly spreading infections, this may not be 

pertinent. Random changes in a graph results in all networks converging 

onto random graphs (Witten & Poulter, 2007 p 204) so the underlying 

initial model may not be relevant. Verdasca et al. (2004) did present a 

dynamic model where the vertices and edges are created afresh at each 

iteration with good results, but that level of “dynamic” is probably 

excessive – certainly the computations were “intensive” (Witten & 

Poulter, 2007 p 204). 

6. The infections investigated merely propagate: they do not die out and 

infected individuals do not recover. Whilst this is true (and an appropriate 

statistic) for SARS, HIV/Aids or Foot & Mouth (e.g. Saramaki & Kaski, 

2004; Chen, 2001; Small & Tse, 2005), it is not for Norovirus or MRSA 

(both of which are prevalent within the NHS). 

7. The simulation methods run on the connection models are rather basic. 

They assume an overall probability of infection, rather than implementing 

different factors (for example, the probability of the link being in place at a 

particular time is one factor generally ignored). 

8. Some infections, such as Influenza, are cyclic according to season (and 

some are particularly affected by school holidays) (see Figure 4.1, below). 

No models so far appear to allow for these “dormant” and “rampant” 
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phases of an infection, although Saramaki & Kaski (2004) have partly 

modelled this by using different strains of influenza. 

9. All models consider the effect of only a single infection taking place at 

once. For example, Influenza A and Influenza B often co-infect and 

interfere with one another. Immunity from one does not grant immunity 

from the other. Likewise, one infection may suppress the immune system 

leading to an enhanced effect of a secondary one. 

10. Few models consider the impact of a treatment or vaccine being 

introduced during the outbreak, although post-infection immunity is 

considered. 

 

 

Figure 4.1: Seasonal distribution of SRSVs in England and Wales 1990-1995. Data for 1993-1995 

are provisional. Taken from Caul, 1996 p 960. 

4.2.2 Extensions to Graph Theory 

This research introduces two new concepts: external path and system (and 

specifically the semi-closed system). These were originally described in 2.3.1, but 

are expounded upon here. 

 

An external path is a path between two vertices in a sub-graph that utilises edges 

that are part of the graph, but not of the sub-graph. Therefore, as the vertices in the 
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graph that are not in the sub-graph are unknown to the sub-graph, only the path’s 

length is known. 

 

  

Graph Sub-graph External path (bd), length 2 

Figure 4.2: Illustration of an external Path, reproduced from Figure 2.5 

 

A system is comprised of a sub-graph together with the set of external paths. This 

leads also to the concept of the semi-closed system. That is, there exist paths 

between the vertices under consideration that lie outside of the environment which 

utilise non-modelled vertices. Whilst essentially the same concept, the difference 

in terminology comes from the viewpoint. For example, when looking at a 

hospital as a system, it is semi-closed. When  looking at a city as a system, the 

hospital within it is a sub-graph. 

 

 

The semi-closed system, S, comprises the vertices {a, b, 

c}. The full system comprises the vertices {a, b, c, u1, u2, 

u3}. 

 

The path (a,c) utilising the intermediate vertex b is an 

interior path. 

 

The path (a,c) utilising the non-modelled vertices {u1, u2, 

u3} is an exterior path. 

Figure 4.3: A semi-closed system 

 

In order to address the shortcomings of current research outlined in Chapter 2, 

new concepts are required and are now described. 

4.2.2.1 Information 

For the problem of modelling information flow, and especially that of modelling 

how a vertex finds a short path to another vertex, a new concept, information, is 
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required. This is that knowledge of the context of the social networks (subgraphs) 

to which a connected vertex is connected yet the vertex itself is not. In the terms 

of the Milgram experiment (described in 2.4.2.1), this is akin to being asked to 

pass the letter to a lawyer in Boston. If you know someone in Boston - or 

someone who is a lawyer - it would seem reasonable to pass the letter to them, 

expecting that their social network is more likely to encompass the target. 

 

However, for disease modelling this kind of problem does not apply, for diseases 

do not “seek out” certain vertices. This concept, although interesting, will 

therefore not be considered for this research (see Granovetter 2003 for a fuller 

discussion). There is the case where an infected individual will seek out a medical 

practitioner (i.e. the individual seeks another – however the infection has not 

sought that individual), but this is implemented through the strength of an edge 

and the dynamic elements of the model (see 4.2.2.3 and 4.2.2.4). 

4.2.2.2 External Paths 

An external path (see 4.2.2) is a new concept that represents those social 

connections that exist, yet are outside the scope of the analysis. An example might 

be two members of staff who have children in the same class: they may be 

unaware of the path between them, as it is outside of their local knowledge, yet 

nonetheless it exists. An external path is one where the terminating (initial and 

final) vertices are within the model, yet it includes vertices that are not. 

 

This concept assists in understanding how seemingly disparate people can pass 

infections, through an unknown chain of contacts. As these contacts are of 

necessity unknown, the model will have to create them randomly, based upon 

known incidences of remote infection. These known incidences will determine the 

number, as well as the length, of the external path. 

 

The concept of the external path provides two mechanisms. Firstly, it provides the 

ability of an infection to move more rapidly through the population than expected, 

exhibiting an ability to “jump” or take “short cuts”. This is the underlying 

principle of the small-world group of models. Secondly, this concept provides a 

mechanism whereby an infection that has been eradicated from a population re-
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appears without warning, as an instance is actually progressing through an 

external path. The infection has therefore been eradicated from the local 

population, but not from the global (see Appendix C for a visualisation of this). 

With infections such as Norovirus, which appears “spontaneously”, this is the 

case. This concept has been termed a long-cut in keeping with the short-cut of a 

small world model.  

 

In practice, external paths are added to an existing model. This is commensurate 

with the practice of Newman & Watts (1999a) in adding rather than rewiring 

edges, thereby avoiding cleavages and the subsequent infinite path lengths this 

would bring. 

4.2.2.3 Remodelling 

Social contacts come and go. It is therefore reasonable that a model should reflect 

this by adding and removing vertices, edges and external paths during the 

simulation. To date only limited implementations of this have taken place. This 

may be long-term (for example, due to moving employment) or short-term (for 

example, due to sickness caused by the infection under consideration or to non-

working days or changing shift patterns). This feature of the model reflects the 

changing nature of a semi-closed society and, in particular: 

• A person leaving employment or another person joining. 

• A person being temporarily absent through sickness, annual leave or non-

working days (e.g. weekends). 

• A new social contact being established within the organisation, or one 

ceasing (e.g. through specialist committee work). 

• A person changing social group through shift working or internal transfer. 

• A person seeking out another for treatment or advice. 

 

The extent to which a graph will be remodelled will depend upon the speed of 

infection (a fast-moving one will not allow time for the structure to remodel 

significantly, if at all) and the virulence of the infection (an infection with strong 

effects will cause more temporary absence than one with weak or less obvious 

expression). 
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A vertex that is infected yet remains within the model represents one of the 

following cases: 

• An individual who attends despite illness. 

• An individual who is a carrier (i.e. is infected and therefore infectious yet 

displays no symptoms). 

• An infection which has an infectious stage prior to the outbreak of 

symptoms. 

 

Remodelling due to the progress of the disease may be appropriate, to represent an 

intervention where all staff are advised not to attend upon first instance of 

symptoms. 

4.2.2.4 Strength of Edge 

In a graph that will remodel (change) during the lifetime of the simulation, the 

possibility of an edge being removed should not be purely random. For example, a 

link between mother and daughter will be stronger than one between work 

colleagues, even if the chance of infection propagation is stronger between the 

work colleagues, due to frequency of contact. 

 

The strength of an edge is a new property that represents this concept, in that the 

stronger the edge is the less likely it is to be removed. In the mathematical model 

described in 4.4, the strength is a probability value. This can therefore be thought 

of as the probability that an edge will survive the remodelling process. 

4.2.2.5 Probability of Transmission 

Although Newman (2004a) has investigated weighting edges in order to represent 

differences in the probability of transmission, this was only for integer values. In 

this research, this concept is uniquely expressed in two parts: firstly, a resistance 

to change for a vertex (one per infection in the model) and secondly a continuous 

probability value (the modification chance) for the edge or external path in 

question (one per infection in the model). Note that, unlike previous models, the 

probability is of an infection being resisted rather than of being accepted. This is 

felt to be more generalisable, but as both are probability values, they are easily 

linked (i.e. resistance = 1-acceptance). 
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It could be argued that these two values (one for the vertex and one for the edge) 

could be combined into one (the edge only). For a static model this would give the 

same effect and simplify the implementation. However, for the dynamic model 

proposed here, this simplification would make the implementation more complex 

as any new edge that formed would first require the resistance to change for the 

vertex to be determined from the pre-existing edges’ transmission probabilities 

and then to be combined into the transmission probability for the new edge. 

Additionally, the dynamic model allows for vertices to become separated (i.e. the 

graph to become disconnected). If the transmission probabilities were only 

recorded in edges, then such isolated vertices would lose one of their properties, a 

matter that would become important if (or when) the vertex should become re-

connected. 

 

Having determined that the probability of transmission per infection is best 

represented by two values, one for the vertex and one for the edge, it can then be 

seen how these two values represent the reality that they are modelling. 

 

The modification chance of an edge represents the probability of an infection 

being transmitted between two individuals. It is composed of several components: 

1. The type of social contact. This reflects the fact that infections have 

different transmission media: some (such as influenza) require the sharing 

of an air space; others (such as HIV) require bodily contact. 

2. The predisposition of an individual to seek out another. This encompasses 

the effect observed by Ancel Meyers et al. (2006 p 401) that an infected 

member of the public will seek out a healthcare worker, whereas the 

converse is not true. 

3. Gender bias. This encompasses the observation by Milgram (1967 p 65) 

that his messages were three times more likely to be passed to a person of 

the same gender than to someone of the opposite gender, with no 

significant differences between the genders otherwise. 

 

The resistance to change of a vertex represents the fact that not all individuals are 

as susceptible to an infection – one specific instance of this is the different 

transmission rates of HIV to male and female, mentioned above. 



Chapter 4                                             Modelling Infection Propagation on a Graph 

 4.10 

4.2.2.6 Context 

As has been noted above, the environment in which social contact takes place may 

have a bearing upon the modification chance. Whilst a rumour may pass more 

easily via e-mail, HIV will not. The context in which the edge exists is therefore a 

modifier upon the modification chance, thereby breaking down the possibility of 

the transmission of the modifier into three elements: context, modification chance 

and resistance to change. 

4.2.2.7 New Metric – Path Length Matrix 

The Path Length Matrix (PLM) is an extension of the Adjacency Matrix and 

records information about the shortest paths between vertices. 

P=[pij] where pij is the shortest path between vertices i and j.
1
 

It is calculated by first forming the Adjacency matrix, A, from the set of edges E. 

Then each row is examined in turn in order to build up paths of length 2, then 3 

etc. The algorithm is described in both mathematical notation and pseudo-code 

(see 4.4 for notation): 

 

||||

|)||(|||2.

1.1...

2..

1.1...

,,

2..1.1...

,,

qppthen

qprandwelvrand

uvertsPrand

vvelqand

uveqtsPqif

wuvuVuthen

wvelpandvveptsPpif

wvVwv

vu +=

+<=

=∈¬∃

=

=∈∃

≠≠∈∀

==∈∃

≠∈∀

 

 

 

                                                 

1
 This is not the same thing as a transitive closure (TC). A TC is a graph where each edge 

represents a path in the original graph. A PLM is a matrix that describes the lengths of these 

shortest paths – information that is missing from a TC. 
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while(changes made to matrix) 

{ 

  for(i=0;i<no. of vertices;i++) 

  { 

    for(j=0;j<no. of vertices;j++) 

    { 

      if(path exists from i to j) 

      { 

        for(k=0;k<no. of vertices;k++) 

        { 

          if(path from k to i exists  

and a shorter path doesn't exist from k to j) set (k,j)=(k,i)+(i,j) 

        } 

      } 

    } 

  } 

} 

 

The Path Length Matrix is used in the calculation of some statistics, especially the 

Characteristic Path Length. This calculation then involves taking the mean of each 

row (assuming the notation is row:column = from:to, otherwise columns are used) 

and taking the median of these means. 

 

Algorithms already exist for the calculation of shortest paths, in particular those of 

Floyd and Dijkstra (see http://www-unix.mcs.anl.gov/dbpp/text/node35.html for a 

description). However, these algorithms are general-purpose ones for edges of 

varying length. In the model presented here, the edges are considered to be of 

equal length (taken to be unity for simplicity). The methods of Floyd and Dijkstra 

complete in N
3
 and FN

3
 comparisons, respectively (where F is a constant 

empirically shown to be approximately 1.6). They also require additional storage 

for the intermediate matrices and sets, respectively. 

 

The PLM algorithm described above completes in a maximum of N
3
 comparisons 

and requires no additional storage (beside the usual counters and index markers). 

For this particular case, the PLM algorithm is therefore more efficient than either 

the Floyd or Dijkstra ones. 
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Note that the PLM does not compute all walks or trails between all vertices, but 

only the shortest paths between all vertices (where a path exists). Likewise, it does 

not compute a walk or trail from a vertex to itself. (See 2.3.1 for terminology). 

 

This PLM is not the same as a transitive closure, as has been suggested. Although 

both are useful in solving reachability questions (i.e. “Does a path exist between a 

selected pair of vertices?”), they provide different information. A transitive 

closure is a graph with the same vertices as the original graph and edges (i,j) iff a 

path exists between vertices i and j in the original graph. The adjacency matrix of 

this graph is therefore used to answer the reachability questions. A transitive 

closure (or its adjacency matrix) therefore records where paths exist (which, for a 

connected graph, is redundant) whereas a PLM records the lengths of these paths. 

4.2.3 Directed vs. Undirected Graphs 

Most of the published work on the use of graphs to model disease propagation 

uses simple, undirected graphs. The assumption, therefore, is that a disease is as 

likely to pass in one direction between two people as the other. This, however, is 

not true. HIV, for example, passes easier from men to women than vice versa and 

an uninfected Healthcare Worker is more likely to be sought out by an infected 

member of the public than an infected Healthcare Worker is to seek out that same 

uninfected member of the public. (Ancel Meyers et al., 2006 p 401 - quotes HIV 

data from Italian Study Group on HIV Heterosexual Transmission). 

 

The reason most investigations have concentrated on simple undirected graphs is 

that these graphs lend themselves to mathematical analysis. As this research aims 

to develop a more “realistic” model, directed graphs are used meaning that only 

computer simulations are currently possible. 

 

The use of directed graphs allows all four cases of host-to-host infection 

propagation to be modelled, as shown in Figure 4.4. 
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1. An infection has equal probability 

of passing between A and B 

p(AB)=p(BA) 

2. An infection has differing 

probabilities of passing from A to B 

and from B to A 

p(AB)≠p(BA) 

3. An infection has a probability of 

passing from A to B, but will not 

pass from B to A 

 
4. An infection cannot pass from A 

to B nor from B to A 

 
Figure 4.4: The four cases of host-to-host propagation. 

 

Undirected graphs can be used to model cases 1 and 4, but cannot model cases 2 

and 3. Case 3 may be seen as a special case of case 2, with p(BA)=0 (a null edge) 

and case 4 as a case where p(AB)=p(BA)=0. If this approach is utilised, then a 

fully connected graph may be used, whereupon there is no computational 

overhead for the addition or removal of edges (see Dynamic Model Operations, 

below) but there is a large storage overhead. In the case examined in chapter 6 

with 376 vertices and 3347 edges, 137278 additional null edges would have been 

required if this approach had been taken. The computational overhead of edge 

addition and removal was therefore deemed acceptable. 
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4.2.4 Additional Properties 

In order to use a graph to model the progress of an infection through a population, 

the elements of the graph require additional new properties in order to better 

describe the entities that they are modelling. These additional properties are 

described in sections 4.2.4.1 to 4.2.4.3, and in mathematical notation in section 

4.4. 

4.2.4.1 Vertex Properties 

A vertex, representing a person or location, has a current status and a future status 

(together with a time until that status change takes place). A vertex also has a 

probability of a change of status. These properties are linked together (using a 

Susceptible-Infected-Immune-Susceptible model) and shown in Table 4.1. 

 

Current Status Probability of a Change 

of Status 

Future 

Status 

Time to Status Change 

Susceptible Probability of becoming 

infected if exposed to an 

infected host 

Infected Immediate for exposure 

to infected host, delayed 

for exposure via an 

external path 

Infected Probability of infection 

being overcome by the 

host 

Immune Average life of the 

infection – modified by 

the probability of a status 

change 

Immune Probability of the 

immunity ending 

Susceptible Period of Immunity – 

modified by the 

probability of a status 

change 
Table 4.1: The progression between vertex statuses. 

4.2.4.2 Edge Properties 

An edge, representing a possible contact between two hosts, has a probability of a 

change of status being transmitted via this edge and a probability that this route of 

contact will continue to exist. 

4.2.4.3 Modifier Properties 

A modifier is an entity that modifies the status of a vertex and is passed 

throughout the graph via edges and external paths. As such it has a status that it 

will transfer a vertex to, and a statistical lifespan (normally distributed with 

specified mean and standard deviation, plus a tail length). 
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A vertex in a non-normal and non-null status contains a modifier, which may 

therefore be passed on without the vertex relinquishing the modifier. 

4.3 The Theoretical Model 

As all infections under consideration pass from person to person by contact, the 

propagation of infection through a network is easily modelled by introducing an 

infection into the structure (i.e. by setting a number of vertices in the graph to be 

infected), then allowing the infection to move from vertex to vertex along the 

edges, much as Milgram modelled the flow of information between his subjects. 

Modifications to this simple idea are introduced via the SIR or SIS models 

described above and other techniques described later. 

 

A problem with the two main models studied (SIS and SIR) is that neither allow 

for a vertex to be “temporarily removed” from the set of susceptible vertices 

(leading to a SIRS model). Whilst some diseases (e.g. measles) confer a life-long 

immunity and some (such as the common cold) confer none, others (e.g. 

Respiratory Syncytial Virus (RSV)) do confer a period of immunity, as do all 

vaccines (e.g. Chickenpox). Neither model takes account of natural passive 

immunity, probably because it is fairly rare except between mother and child. 

There is also the question of the degree of infectiousness and the level of 

susceptibility of an individual. Some pathogens, such as Smallpox, are highly 

contagious, so will have high transmission probabilities. Others, such as SARS, 

will have low ones. 

 

The enhanced model, as described here, addresses these limitations. 

4.4 Description of Mathematical Model 

The graph model discussed in Chapter 2, together with the extensions described 

above may be described in a mathematical manner, particularly via set theory 

notation. This description now follows. 

 

Firstly some nomenclature in use is described and some basic sets are defined in 

4.4.1. 
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4.4.2 – 4.4.6 defines the major entities of the model: Vertices, Edges, Paths, 

Graphs and Systems. 

 

Three new concepts are defined in 4.4.7 – 4.4.9. 

 

4.4.10 describes the movement of a process across the model in terms of status 

changes to Vertices. 

 

The creation of an initial structure, a synthetic graph, is defined in 4.4.11. 

 

4.4.12 defines the modification of the model and stopping conditions for the 

model are defined in 4.4.13. 

 

Finally, some limitations of this model are described in 4.4.14. 

 

As this is an abstraction of the model, the Figures 4.5 below and 4.2 above may 

prove useful in contextualising the concepts. The model as defined is still very 

abstract, so, in order to enhance the readability of this section, an implementation-

specific description including contextualisation is added to each concept. 
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V = {a,b,c,d} 

E = {ab, ad, bc, bd} 

 

Note that order in the sets is unimportant. 

 

The path (c,d) has one intermediate vertex (b) and its 

length is 2 (edges bc and bd). This is the shortest path as 

another (via b and a) exists with length 3. 

 

The trail (c,b) passes through all vertices (c, b, a, d, b or c, 

b, d, a, b) but uses each edge only once. There also exists 

a shorter trail with length 1. 

 

The walk (c,b) may complete the loop involving a and d 

multiple times. It’s length is therefore one of 1, 4, 7, … 

 

The adjacency matrix is 

d

c

b

a

dcba





















0011

0010

1101

1010

 

 

The path length matrix is 

d

c

b

a

dcba





















0211

2012

1101

1210

 

Figure 4.5: A simple graph 

4.4.1 Preliminary Definitions and Nomenclature 

N is the set of natural numbers (including zero
2
) 

Z is the set of integers 

R is the set of real numbers 

Ф is the empty set 

 

 

 

                                                 

2
 There exists debate over whether zero should be included in the set of natural numbers, 

dependent on which branch of mathematics is being considered. In the context of this work, zero is 

included. 
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Let Q be the set of probability values 

{ }10| ≤≤∈= xRxQ  

Let T be the set of statuses that a vertex may take 

T={Null, Normal, Status 1, Status 2, …, Status n} 

Let X be the set of contexts that an edge may be in 

X={Context 1, Context 2, …} 

 

N(µ,σ) is a random value from a normal distribution with mean µ and standard 

deviation σ. 

 

Except where specifically noted, all sets described herein are unordered. 

Except where specifically noted, all sets described herein are unique, in that all 

elements in a set occur exactly once. 

 

Properties of entities are described using dot notation, in that a.b represents the 

property or instance b of instance a. Similarly, a.b.c represents the property or 

instance c of the instance or property b which is a property or sub-member of 

instance a. Multiplications are therefore represented by *. 

4.4.1.1 Application 

A status is the infection state: Normal (uninfected), Status 1 (infected by infection 

1), etc. This permits multiple different infections to be released into the model 

simultaneously. 

 

A context is an environment in which the social contact takes place: it is the 

setting that the edge may be in. This represents the difference in infection rate in, 

say, a large open space and a small enclosed one. 

4.4.2 Vertices 

Let v be a 7-tuple of the form 

(ordinal o, status s, resistance to change {cnull, cnormal, c1…cn}, reversion {rnull, 

rnormal, r1…rn}, immunity {inull, inormal, i1…in}, status to change to s2, time until 

change t) 
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where 

2||

2

1,

1,

1,

unique,

−=

∈

∈

≤≤∈

≤≤∈

≤≤∈

∈

∈

Tn

Zt

Ts

njZi

njQr

njQc

Ts

oZo

j

j

j

 

Then v is a vertex and V is the set of such vertices. 

4.4.2.1 Application 

A vertex represents a person. This person therefore has a current health status, a 

resistance to each infection, a probability of reverting from the current infection, a 

period of immunity to each infection following infection and a delayed time to 

infection, representing an infection to be transmitted via an external path. cnull, 

cnormal, rnull, rnormal, inull and inormal are meaningless in this implementation as 

resistance to, reversion from and immunity to null and normal is meaningless. 

4.4.3 Edges 

Let e be a 5-tuple of the form 

(vertex v1, vertex v2, modification chance {mnull, mnormal, m1…mn}, strength s, 

context x) 

where 

Xx

Tn

Qs

njQm

Vv

Vv

j

∈

−=

∈

≤≤∈

∈

∈

2||

1

2

1

 

Then e is an edge between vertices v1 and v2 and E is the set of all edges between 

all Vv ∈ . 

e is denoted ea,b where e.v1.o=a and e.v2.o=b. 

 

Note that in the general case abba ee ,, ≠  as these are distinct edges. 



Chapter 4                                             Modelling Infection Propagation on a Graph 

 4.20 

4.4.3.1 Application 

An edge represents a direct social contact between two people. There is a 

probability that an infection may be transmitted via this contact, which may be 

different for each infection within the model. The strength of the edge represents 

the strength of the social contact, i.e. how likely it is to withstand changes in 

circumstance. The context represents the current environment, i.e. a modifier upon 

the modification chance. 

 

The model uses a modified SIRS (Susceptible-Infected-Recovered/Immune-

Susceptible) process. The modification is in the transmission probability 

calculation: in previous models this has been represented as one figure – the 

probability of an infection passing from an infected vertex to an uninfected 

neighbour and thus infecting it. In the model here presented, the probability is 

divided into two components: the probability of the infection being passed via the 

edge, and the probability of the vertex becoming susceptible. These are referred to 

as the modification chance and resistance to change respectively. Whilst these 

figures may be combined into the more usual model, doing so does not allow the 

effect of an increased susceptibility in a location (nor a reduced one via, for 

example, a new infection control protocol being introduced) to be easily 

modelled. This feature will also allow for dynamic structures to be easily 

modelled. 

4.4.4 Paths 

Let p be a 1-tuple of the form 

(edges F={e1,e2,…,el}) 

where 

Eelee ∈,...,2,1  

F is an ordered set as it describes the path in order of the edges traversed. 

 

Then p is a path between vertices e1.v1 and el.v2 and P is the set of such paths 

between all Vv ∈ . 

The length of the path, p.l = |p| 

The modification chance of the path, ∏
∈

=

Fpe

jj memp
.

..  
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When |p|=1, p is denoted p{a,b} where p.e1.v1.o=a and p.e2.v2.o=b 

When |p|=2, p is denoted p{a,b,c} where p.e1.v1.o=a and p.e3.v2.o=c and 

bovtsVv =∈∃ .3..3 and Eee cbba ∈∃ ,, ,  

 

NB when |p|=1, p{a,b}=ea,b 

4.4.4.1 Application 

A path represents an indirect social contact between two people where all the 

intermediate people are known. Paths of length 1 are of no interest in this model 

(consisting, as they do, of a single edge and are therefore a direct social contact) 

and are omitted from the implementation. 

4.4.5 Graph 

A graph, G, is the collection of the set of vertices and the edges that connect them, 

i.e. G={V,E}, V≠Ф. G is viewed as the universe (sometimes termed “world”) 

under consideration. 

 

There exist three special cases: 

• A connected graph, 

{ }||,22..11.1...2,1,|, plvvelpandvveptsPpVvvVEVGc ===∈∃∈∀Φ≠=

 

• A directed graph, { }memetsEeeVEVG abbaabbad ....,,|, ,,,, ≠∈∃Φ≠=  

• Therefore an undirected graph, 

{ }EeememeVEVG abbaabbau ∈∀=Φ≠= ,,,, ,..,|,  

4.4.5.1 Application 

The graph is the limit of the model – the total population under consideration (e.g. 

Hospital, City, Conference). 
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4.4.6 System 

Let S be 5-tuple of the form (Vs, Es, Pe, addition a, removal r)  

where 

 

Qr

Qa

Vs

∈

∈

Φ≠

 

and Pe is the set of external paths as defined in 4.4.7 below. 

 

Then S is a system and is a sub-graph of G, such that 

 

{ }

{ }

sovwovvs

s

s

s

EeVwv

SeEeeE

V

SvVvvV

GS

∈∈∀

∈∈=

Φ≠

∈∈=

⊂

.1.,.1.,),(

,|

,|

 

If S≠G then SvGv ∉∈∃ , . If the system is a connected graph then 

SpGpSeGe ∉∈∃∉∈∃ , and ,  

4.4.6.1 Application 

The vertices in a system are the part of the graph (population) that is known. The 

edges in it are also known. The paths are known to exist, but without the detail of 

the edges. 

4.4.7 Internal and External Paths 

A path p is internal when ||1. piEep si ≤≤∀∈  

A path p is external when EepEeptspii isi ∈∉≤≤∃ .,...||1,  

Pi is the set of internal paths in the graph 

Pe is the set of external paths in the graph 

It follows that |p|>1 for all external paths as p for which |p|=1 is an edge. 
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As not all e are defined for an external path, an external path is defined as follows: 

 

Let p be a 5-tuple of the form (ordinal o, vertex v1, vertex v2, length l, 

modification chance {m1…mn}) where 

2||

1,

1,

2

1

unique,

−=

≤≤∈

>∈

∈

∈

∈

Tn

njQm

lNl

Vv

Vv

oZo

j

 

4.4.7.1 Application 

An external path represents an indirect social contact between two people where 

at least one of the intermediate people is unknown. In practice, this becomes the 

condition that none of the intermediates are known as an external path where only 

one intermediary is unknown can be decomposed into one or two internal paths 

and one external path. 

4.4.8 Connectedness 

The connectedness of a vertex, v = |Ev| where { }vvevveEeEv ==∈= 2.or1.,  

 

For an undirected graph, connectedness is the same as degree. For a directed 

graph, they are different, with degree≤connectedness and 

connectedness=indegree+outdegree. 

4.4.8.1 Application 

The connectedness of a vertex represents the number of direct social contacts that 

that person has. 
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4.4.9 Modifier 

Let m be a 5–tuple of the form (status s, lifespan mean lµ, lifespan deviation lσ, 

lifespan tail lt, seasonal variant {sv1, sv2, sv3, sv4}) where 

50,0,

0,

0,

unique s Normal, Null,,

<<≥∈

∈

≥∈

≥∈

≠≠∈

isvRsv

Nlt

lRl

lRl

ssTs

ii

σσ

µµ

 

Then m is a modifier and M is the set of such modifiers. 

The distribution (lµ,lσ) is only defined for positive values. 

{svi} is a tuple. 

|M|=|T|-2 

4.4.9.1 Application 

A modifier represents an infection. It has a normally-distributed lifespan, together 

with a lifespan tail representing a period of infectiousness following the cessation 

of symptoms (see 6.2.2.3.9.1 for a fuller description around a specific example). It 

may have different effects according to the season. A modifier’s status is the 

status into which it seeks to place a vertex, i.e. it is the infected state into which a 

person becoming infected will become. 
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4.4.10 Vertex Behaviour 

At each t>0, 

Action Description 

Form { }NormalsvVvvV sn ≠∈= .,|  Find all non-normal vertices 

Form { }nsn VveEeeE ∈∈= 1.,|  Find all vertices connected to non-normal 

vertices via edges 

Form { }neen VvpPppP ∈∈= 1.,|  Find all vertices connected to non-normal 

vertices via external paths 

nEe∈∀ , determine whether e.v2 will 

change status, using the season, e.mj, e.x, 

v2.cj and v2.ij, where e.v1.s=Statusj. 

Find all normal vertices connected via 

edges that will change status 

If so, set e.v2.s2=e.v1.s, e.v2.t=1. Mark these to change status on this 

iteration 

enPp ∈∀ , determine whether p.v2 will 

change status, using p.mj, v2.cj and v2.ij, 

where p.v1.s=Statusj. 

Find all normal vertices connected via 

external paths that will change status 

If so, set p.v2.s2=p.v1.s, p.v2.t=p.l. Mark these to change status on the 

iteration (next+|path|) 

nVv ∈∀ , determine whether v will 

revert, using v.rj where v.s=Statusj. 

Find all non-normal vertices that will 

revert before the pre-allocated time 

If so, set v.s2=Normal, v.t=1 Set these to revert on the next iteration 

Form 

{ }1.,2.,| =≠∈= tvNullsvVvvV sc  

Find all vertices about to change status 

cVv ∈∀ , set v.s=v.s2, v.s2=Null, v.t=0 

if v.s=Normal, randomly determine v.ij, 

where v.s previously=Statusj 

else set v.s2=Normal, v.t using 

N(m.lµ,m.lσ), m.svk, m.lt where 

v.s=Statusj, season=k and m.s=v.s. 

Change the status for these and set the 

appropriate time parameter and immunity 

Form 

{ }1.,2.,|2 >≠∈= tvNullsvVvvV sc  

Find all vertices due to change status on 

a later iteration 

2cVv ∈∀ , set v.t=v.t-1 Reduce the time to change by 1 

Form { }njivVvvV jsji ≤≤>∈= 1,1.,|,  Find all immune vertices 

jiVv ,∈∀ , set v.ij=v.ij-1 Reduce the immunity interval by 1 

If the season is to change, do so.  

Set t=t+1 Increment the time and proceed to the 

next iteration 
Table 4.2: The process for altering the state of vertices in the system on each iteration. 
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4.4.10.1 Application 

Vertex behaviour represents the transmission of an infection (or several 

infections) through the social network under investigation. The description above 

is written in a form that is easy to implement via a computer simulation. 

4.4.11 Creation of Initial Structure 

4.4.11.1 Synthetic Graph 

Definition: A heuristic is “a way of directing your attention fruitfully” 

(Wikipedia). In the Artificial Intelligence problem of maze solving, for example, a 

heuristic is the rule that is applied in order to determine which branch at a junction 

is likely to be the most fruitful. In the context of this research, a heuristic is a set 

of rules that forms the synthetic graph, forming vertices, edges and external paths 

with the intention of making the resultant system “more realistic”. 

4.4.11.1.1 Method 

Determine the number of statuses to be present in the system and form T 

(|T|=number of statuses+2). 

Form Vs where 1Context .,0.Normal,., ===∈∀ xvivsvVv s , v.s2=Null 

Apply a heuristic to form Es. Do this repeatedly until {Vs,Es} is connected. 

Some possible heuristics: 

• Random: sVv ∈∀ randomly select vwVw s ≠∈ ,  and form e such that 

e.v1=v, e.v2=w. Randomly assign e.mj and e.s. Add e to Es, unless ev1v2 

already exists. 

• Superhub: sVv ∈∀  randomly select 

QnVnivwVwww isn ∈≤≤≠∈ |),|.(1,..., 21 . Evaluate the 

connectedness of each wi and select the best connected (if several 

equally connected, all such) and for each form ei such that ei.v1=v, 

ei.v2=wi. Randomly assign ei.mj and ei.s. Add ei to Es. This measure 

may also be viewed as “popularity”, i.e. the more popular vertices 

become better connected, i.e. increase in popularity. Other heuristics 

for “seeking out” a vertex to which the examined vertex wishes to 

connect may be developed as extensions of this basic idea. The 
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opposite heuristic (seeking the least connected vertex to connect to) 

might be termed resilience and has applications in computer networks, 

for example. 

• Grouped: Determine the number of groups, 2, >∈ gNg  and sVv ∈∀  

randomly assign each v to one of the g groups. (Note that some groups 

may be empty – this is definitely true where Vg >  and increasingly 

likely as Vg → ) Connect all v in a group to all other v in the same 

group by creating edges between them (for directed graphs this will be 

two edges: one in each direction). Randomly determine the total 

number of edges between groups and then form them by randomly 

selecting two v in differing groups and form an edge between them. 

This will form communities, as described in 2.3.2. 

• Movement: Form a clustered graph (similar to the ring lattice of Watts 

& Strogatz), for 2, >∈ nNn  neighbours
3
. Then randomly select a 

number of vertices and move each to another position on the graph, 

thus forming new edges in the new neighbourhood whilst preserving 

the (now) long-range edges to the old neighbourhood. Note that the 

clustered graph that forms the starting point is undirected by definition 

(as is the final graph). It is also connected, so the heuristic will only 

ever be applied once. 

Apply a heuristic to form Pe 

A possible heuristic: 

• Random: sVv ∈∀ randomly determine whether v is a terminus (start) 

for an external path. If so, randomly select vwVw s ≠∈ ,  and form p 

such that p.v1=v, p.v2=w. Randomly assign p.l (with a maximum=no. 

of vertices) and p.mj. 

Form S={Vs,Es,Pe}. 

Randomly select TtandVv s ∈∈  and assign v.s=t, v.s2=Normal and randomly 

assign v.t. (This seeds the initial structure with one non-normal vertex). 

                                                 

3
 In the software implementation, six neighbours (three on each side) are used – corresponding to 

the diagram in Figure 2.10. 
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Randomly assign S.a and S.r – for a static model these=0 

Set time, t=0 

Set season randomly, together with length of each season. 

4.4.11.2 Application 

In order to test these concepts and to examine the effect upon the model of 

different conditions, synthetic graphs may be constructed, using the methods here 

described. Varying the elements used to construct the initial structure constructs 

different models – the effects of these variations may then be studied. 

4.4.12 Dynamic Model Operations 

At each t>0, 

Action Description 

sEe∈∀ , randomly determine whether 

e.mi,1≤i≤n  will alter. 

Find all edges that will alter modification 

chance 

If so, randomly alter e.mi  

sEe∈∀ , randomly determine whether e.x 

will alter. 

Find all edges that will alter context 

If so, randomly alter e.x  

sEe∈∀ , randomly determine whether e.s 

will alter. 

Find all edges that will alter strength 

If so, randomly alter e.s  

esPp ∈∀ , randomly determine whether 

p.mi,1≤i≤n  will alter. 

Find all external paths that will alter 

modification chance 

If so, randomly alter p.mi  

esPp ∈∀ , randomly determine whether p.l  

will alter. 

Find all external paths that will alter 

length 

If so, randomly alter p.l  

sVv ∈∀ , randomly determine whether v 

will be removed from the system 

Find all vertices about to be removed 

If so, remove v and Er where 

{ }vvevveeEr === 2.or  1.|  

 

sEe∈∀ , randomly determine whether e 

will be removed from the system, using e.s 

Find all edges about to be removed 

If so, remove e  

esPp ∈∀ , randomly determine whether p 

will be removed from the system 

Find all external paths about to be 

removed 

If so, remove p. If p.v1.t>1 and 

p.v1.s2≠Normal, set p.v1.t=0, p.v1.s2=Null. 

If p.v2.t>1 and p.v2.s2≠Normal, set 

p.v2.t=0, p.v2.s2=Null. 

 

Randomly determine the number of new 

vertices to add to the system, Zvn∈  

Determine whether any new vertices are to 

be added 
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For each new v, use the original heuristic to 

add it to the system via new edges 

 

Randomly determine the number of new 

edges to be added to the system, Zen∈  

Determine whether any new edges are to 

be added 

For each new e, use the original heuristic to 

add it to the system 

 

Randomly determine the number of non-

modelled vertices (currently in external 

paths) that are to become part of the system, 

Zvp ∈  

Determine whether any non-modelled 

vertices are to become modelled and join 

the system 

For each new v, randomly select an external 

path sPp ∈  

 

Randomly determine which of the non-

modelled vertices on the path is to become 

modelled, vj 

 

Set p.l=p.l-j and buffer p.v1 in vb  

If p.l=0, delete p and form an edge from v to 

p.v2 using the original heuristic 

 

Otherwise, set p.v1=v  

If j>1, form an external path from vb to v, 

using the original heuristic 

 

Otherwise, form an edge from vb to v using 

the original heuristic 

 

Table 4.3: The algorithm (in separate steps) for the implementation of dynamic re-modelling. 

4.4.12.1 Application 

The dynamic model operations represent the changes that take place within a 

social network, with people joining and leaving and social contacts changing 

(including new ones forming and old ones breaking). It also represents and 

implements the alteration in the probabilities of an infection being transmitted 

between two individuals as the social contact changes. Without this modification, 

an infection may become quarantined by virtue of reaching a person from which it 

is impossible to progress. With it, an infection may get limited as the network 

cleaves. 

4.4.13 Stopping Conditions 

Four possible stopping conditions exist: 

1. The simulation is run for a fixed time interval, which is reached. 

2. A preset proportion of vertices have a non-normal status (for example, 

100%, 50% or 0%) 

3. The model has reached a steady state where the number of vertices having 

non-normal status varies only slightly about a certain level. 
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4. The model is locked into a cyclic pattern where the same vertices are 

altering status in a repeated pattern. 

4.4.13.1 Application 

The stopping conditions represent an investigation into whether an infection will 

become an epidemic (option 2, 50% or greater), become steady and therefore 

difficult to eradicate (options 3 and 4), dies out (option 2 again, 0%) or will still 

be existent within the population at a future time (option 1). 

4.4.14 Limitations of This Model 

This model allows for only one non-Normal status per vertex (which is 

appropriate for the investigation of competing infections, such as different strains 

of influenza) and if a vertex is in a non-Normal status then it will not allow 

another to be implemented, queued or paralleled. The level of complexity caused 

by the interaction of non-competing disease states is therefore unmodelled. 

 

Only one system is studied – multiple inter-related systems are therefore not 

modelled. (If the systems are joined by common vertices (1 or more), then the 

second system may be regarded as forming many of the external paths. If the 

systems are joined by common vertices (1 or more) on an external path, then this 

system, by nature of being unable to retain a status, is completely unmodelled). 

This is only a significant problem if the second system is, or forms part of, the 

reservoir for the infection under consideration. 

 

Removal of an external path removes the terminating vertex’s impending status 

change (if there is one). This assumes that no other external path caused it. This 

may be solved by adding a flag to the status change in order to note which 

external path the status change is transmitted by, but is not a feature of this model. 

 

Vertices may not change from being modelled to non-modelled, as this reduces 

the specificity of the model. 

 

At present the concept of information has not been modelled. Whilst this is an 

interesting problem in itself, it is not really relevant to the current research: whilst 
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a person may be interested in finding a short path to another person, a pathogen 

has no such desire. Likewise, susceptibles are unlikely to seek out the infected 

(although Granovetter, 2003 p 774 does note that there are exceptions to this – 

children are often socialised with the infected in order to gain immunity for later 

life, for example.). Therefore the ability to find a short path utilising only local 

knowledge is outside the current scope. 

4.5 Application of This Model to Infection Control 

Various infection control methodologies exist. The five most common of these are 

now described, together with their implementation in the model. 

4.5.1 Inoculation/Vaccination/Immunisation 

4.5.1.1 Description 

Although originally three different processes, inoculation, vaccination and 

immunisation are, for the purposes of this research, the same. 

 

The process involves the administering of a live, weakened or dead pathogen to a 

subject with the objective that the immunity that would follow a full infection is 

conferred to the host without undergoing the symptoms that would normally 

accompany it. 

 

Although such a process may take place after a host has become infected (as in the 

case of experimental AIDS, cancer and Alzheimer’s disease vaccines), the 

definition adopted here is of a pre-infection administered immunogen which 

stimulates the immune system. Post-infection administration is included in 

treatment (4.5.2). 

 

Some models (Ancel Meters et al., 2006, for example) have approached this by 

removing the vertex and all connected edges from the model. This works for long-

term immunity, but does not do so for any immunity that is less than the lifespan 

of the outbreak. 
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4.5.1.2 Implementation 

Action Description 

Randomly form 

{ }NormalsvVvvV sv =∈= .,|  

Find all vertices to be vaccinated against 

status j 

vVv ∈∀ , set v.ij=N(µ,σ) Set the immune period from the efficacy 

of the vaccination 
Table 4.4: The implementation in the model of a method of simulating a vaccination programme. 

The random nature of the selection recognises that immunisation cannot be forced, but is elective. 

What this does not model, though, is peer pressure either for or against the inoculation (e.g. the 

MMR vaccine’s perceived and reported yet unproven links to Autism have reduced the uptake of 

it, Jansen et al., 2003). 

4.5.2 Treatment 

4.5.2.1 Description 

A treatment is a course of action that is followed in order to hasten the end of the 

infection. Typically this will be pharmaceutical, but may involve factors such as 

enforced rest. 

4.5.2.2 Implementation 

Action Description 

Randomly form 

{ }},{.,| NormalNullsvVvvV st ∉∈=  

Find all vertices to be treated for current 

non-normal status 

vVv ∈∀ , determine if the treatment is 

effective (randomly determined using 

parameters of the treatment and status). If 

so, set v.s2=Normal, v.t=int(v.t/te) 

Set the future status to Normal. 

te is the efficacy of the treatment, a 

reduction in the length of infection. A 

rapid-acting treatment will therefore have 

a large te. 
Table 4.5: The implementation in the model of simulating a treatment programme. The random 

nature of the selection recognises the differing willingness of patients to seek treatment. This will 

be affected by the severity of the symptoms and the level of publicity surrounding an outbreak 

(e.g. the Flu Pandemic hotline and associated publicity in 2009). 

4.5.3 Firebreaks/Isolation/Containment 

4.5.3.1 Description 

A firebreak is a term originally applied to forestry, where a gap is created in the 

forest which fire is unable to pass across. Thus an uncontrolled fire is contained 

within a region surrounded by firebreaks and thereby isolated. Frequently these 

firebreaks will double as roads or may utilise natural features such as streams. The 

creation of a firebreak in crop farming will sometimes involve the setting of 

controlled fires in order to create gaps across which fire cannot pass, due to the 

combustible material having already been consumed. 
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In animal infection control terms, a firebreak often refers to a cull of healthy 

livestock surrounding an infected area. In the UK the authority for such a cull lies 

with Defra and is contained in the Animal Health Act of 1981. Although only 

designed for a small range of infections, the amendments of 2002 and 2003 (to 

include Foot & Mouth, Avian Influenza and Newcastle Disease) show that its use 

can be extended swiftly if required. 

 

In human infection terms, a firebreak was employed by many areas during 

plagues (particularly the Black Death circa 1350) where communities would shut 

themselves off from outsiders in order to prevent the disease entering (and, in 

some notable cases, leaving). This approach had varying degrees of efficacy, as 

the plague was not exclusively human-borne. Another approach is to immunise all 

potential hosts in a geographical area surrounding the outbreak. 

 

For the purposes of this research, a firebreak is similar to isolation or containment 

approaches, in that an attempt is made to contain the infection within a controlled 

area in which it may be left free to progress unhindered. All new cases are quickly 

placed within it and entry to and from it is subject to stringent regimes. Contact to 

and from those within the infected area (often including staff working there) is 

reduced so that possible routes for the infection to progress to other areas are 

minimised. The firebreak is thus created by breaking contacts along which the 

infection may pass. 

4.5.3.2 Implementation 

Action Description 

Form { } },{.,| NormalNullsvVvvV sfb ∉∈=  

{ } fbfbsfb VsveVsveEeeE ∈∩∈∈= .2..1.,|  

{ } fbfbsfb VsvpVsvpPppP ∈∩∈∈= .2..1.,|  

Find all edges and paths 

attached to a vertex in a non-

normal state. 

sfb EesetEe ∉∈∀ ,  

sfb PpsetPp ∉∈∀ ,  

Remove them from all contact 

with other vertices 

Form 

{ } { }fbiifbi VvevveevveVveeE ∈=∩=∈= 2.,1.|2.,1.|  

Set contacts with the selected 

isolation location (vi) only 

Table 4.6: The implementation in the model of an isolation procedure. 
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4.5.4 Hand Washing/Handrubbing Regimes 

4.5.4.1 Description 

The demonstration of the efficacy of handwashing is usually attributed to Ignaz 

Semmelweis, who is known as “the father of infection control”. During an 

appointment in obstetrics, he observed a discrepancy in the post-delivery 

mortality rates for physicians and medical students (13-18%) compared to that for 

midwife trainees and midwives (2%). He reasoned that the difference was that 

physicians and medical students handled corpses during autopsies, whereas 

midwives and their trainees did not. By instituting a programme of handwashing 

with a chloride of lime solution the mortality rates fell to about 2%. (Best & 

Neuhauser, 2004). 

 

According to the PHLS (www.phls.org), hand-washing by health care staff before 

and after close contact procedures is the single most important measure for 

controlling and preventing the spread of hospital infection. However, compliance 

is very low (8.6% as reported in Tibballs, 1996, Table 2). Alcohol gel dispensers 

have improved compliance considerably, possibly due to the removal of the time-

constraint of handwashing (estimated at 30-60 minutes per hour for 100% 

compliance by Hugonet et al., 2002) and their introduction being paired with a 

publicity campaign, both amongst medical staff and patients. (Hugonnet et al, 

2002 p 1037 reported an increase in compliance in intensive care units from 

38.4% to 54.5%). Ancel Meyers et al. (2006) implemented this by lowering the 

probability of transmissibility of the infection. As this model uses resistance rather 

than conductance, the parameter is increased. 

4.5.4.2 Implementation 

Action Description 

Randomly form 

{ } hwshwshw kVVVvvV *,| =∈=  

Find all vertices to be complying with the 

hand-washing regime. khw is the 

proportion of vertices complying. 

hwVv ∈∀ , set iii Rcvcv *).(. =  where 

{ }{ }modifiersbornecontact −∩∈ Mmi  

Increase their resistance to change for all 

infections that are contact-borne. Ri is the 

increased resistance (i.e. >1) for modifier 

i. 
Table 4.7: The implementation in the model of a handwashing regime. 
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4.5.5 Personal Protection (Barrier Methods) 

4.5.5.1 Description 

As all infections have to enter the host, a barrier to entry is the most effective 

method of preventing infection. The most appropriate barrier method will depend 

upon the infection: air-borne infections may be stopped by breathing masks, 

contact-borne infections by the use of gloves or overalls. 

 

There are many documented examples of success in control of infection spread 

using full contact isolation methods such as gowns (e.g. Harbarth et al., 2000 

reported in Fleming Forum, 2004). Additionally, Boyce et al., 1994 (reported in 

Fleming Forum, 2004) showed the difference between two VRE outbreaks – the 

one where gloves were used was controlled, the other not. Ancel Meyers et al. 

(2006) model this by lowering the probability of transmissibility of the infection. 

As this model uses resistance rather than conductance, the parameter is increased. 

4.5.5.2 Implementation 

Action Description 

Randomly form { } bmsbmsbm kVVVvvV *,| =∈=  Find all vertices to be using a 

barrier method. kbm is the 

proportion of vertices complying. 

bmVv ∈∀ , set iii Rcvcv *).(. =  where 

{ }{ }modifiersborneoximitycontact/pr −∩∈ Mmi  

Increase their resistance to 

change for all infections that are 

contact- or proximity-borne 

(depending upon the barrier 

method used). Ri is the increased 

resistance (i.e. >1) for modifier i. 
Table 4.8: The implementation in the model of a barrier regime. 

4.5.6 Inspiring New Approaches 

One advantage given by simulations and models is the ability to try differing 

scenarios from the same initial conditions and with different (and experimental) 

containment/eradication techniques. This ability is not present in the “real world” 

as the most risk-adverse policies must be followed. In a model it does not matter if 

the entire world becomes infected as the simulation can be rewound and re-run. 

Thus differing methodologies can be investigated (provided a method of 

implementing them within the model can be determined) and evaluated. 
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4.5.6.1 Segregation of Multi-Site Services 

One such possible approach is the segregation of multi-site services, removing 

some links by limiting the movement of staff and samples. By using a simulation, 

each link can be removed/reduced in turn in order to identify the most effective 

ones to modify. Combinations of links may then be investigated, and so on. 

Equally, due to the ease of implementation in a model, services may be duplicated 

on multiple sites in order to reduce movement and thereby connections between 

them. If such duplication were to be shown to provide a major enhancement to the 

reduction of infection propagation then such data could form a part of a business 

case for this service development. This analysis is similar to that of identifying 

communities and superhubs, which (as has already been noted) aids in the 

reduction of infection propagation. 

4.6 Conclusion 

This chapter has set out the proposed model, describing it in both mathematical 

and descriptive terms. The new and enhanced concepts have been described in 

terms of application to an infection transmission model. 

 

The new concepts, and therefore the contribution of this part of the thesis to 

knowledge, are: 

• The use of information to find short paths. 

• The addition of external paths to model the contribution of the full 

population to the semi-closed environment under consideration. 

• The use of remodelling to model the dynamic nature of social 

networks. 

• The strength of an edge to assist in a realistic determination of how the 

model should remodel. 

• The separation of transmission into three parts: resistance to change, 

modification chance and context to produce more realistic models. 

• The new metric: path length matrix used in the calculation of some 

statistics. 

• The implementation of fully directed graphs to produce more realistic 

models. 
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• The concept of a system to describe the known and unknown parts of 

the semi-closed environment. 

 

A key part of this contribution is in producing more realistic models. It is the 

determination of “more realistic” that the next chapter sets out to address. 
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Appendix A – Scripting Language 

Purpose 

A scripting language was added to the research software in order to automate 

simple and repetitive tasks. This improved the research times and allowed such 

things as overnight untended runs, when required. 

 

Three areas of the research were deemed to benefit from this approach: 

• random model construction (due to the dual needs of multiple experiments 

and length of time taken for construction of large models) 

• database model construction (due to the need for multiple experiments) 

• classification (due to the need to repeat the classification during 

development of the systems described in chapter 5). 

 

It is also possible to create a model by writing a text file to describe the structure. 

This is described in Appendix B. 

Syntax 

The script file is a text file (default extension: .txt) with a series of statements (in 

lower case) on separate lines. They are executed sequentially as no flow control 

(aside from the repeat mechanism described below) was deemed necessary. 

 

The first line of the file begins “Small World Script File” and may have a suffix of 

“-Database”, “-Classify” or “-Random” in order to denote the type of script it is. 

No suffix indicates a random model construction script. 

 

A line in the script file that commences with “*” is treated as a comment and is 

ignored. 
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The following syntax applies to this appendix: 

{value 1 | value 2 | etc.} One of these values must be selected 

and used. 

<value> An explicit value must be used in this 

position in the statement. 

[n-m] An explicit numeric value between n 

and m (inclusive) must be used in this 

position in the statement. 

Model Construction 

This version of the script file constructs random models in the form of one per 

line in the file. The format of the line is: 

 

<Heuristic>;<Number of vertices>;<Directed>;<Add Paths>;<Probability>;<Use 

Paths>;<Number of models to Build>;<Calculate Statistics>;<Number of Vertices 

to Select (Heuristics 1 and 3) OR Number of Groups to Make (Heuristic 

2)>;<Edges to Make>;<File Name for results> 

 

and the possible values are: 

 

Heuristic 0 – random until connected 

1 – superhub 

2 - grouped 

Number of vertices Integer number of vertices to place in 

the model 

Directed Y – model is directed 

N – model is not directed 

Add Paths Y – external paths are created for the 

model 

N – external paths are not created 

Probability Integer [0-100] of probability that a 

path exists from a vertex. 
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Use Paths Y – external paths are used in assessing 

connectivity 

N – external paths are not used 

Number of models to Build Integer number of models to build 

Calculate Statistics Y – statistics are calculated for the 

model (and saved in the log file) 

N – statistics are not calculated 

Number of Vertices to Select 

(Heuristics 1 and 3) OR Number of 

Groups to Make (Heuristic 2) 

Integer parameter for the heuristic. 

Number of Vertices to Select is a 

percentage of the total, not an absolute 

number. 

Edges to Make Number of edges to make on each pass 

for heuristic 2. 

File Name for results Name of text file (*.txt) to be created to 

receive the results. If the file already 

exists, it is overwritten. This may be 

blank. 

Database 

This version of the script file creates one model as per the commands within it 

(but see “times”, below). 

 

It should be noted that the default is for the messages to be “full”, there is no 

maximum run time, the stopping criteria is No non-normal vertices, excelCR is 

“on” and pathsinstats is “off”. 

 

classify Runs a full classification list. 

dfr3file <name> The name of the file to receive the 

DFR3 output. If this is the first run, the 

file is opened, truncated and the current 

date and time is written to it. 

edges <%age probability> Adds edges to the model, at the 

specified %age. These paths are only 

between named individuals, not 

wards/departments/services. 

excelCR {on | off} If “on”, carriage returns in the summary 

log file are replaced with tabs. 

file <name> The name of the file (run log) to receive 

the output from this run. The file is 

opened, truncated and the current date 

and time is written to it. 
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handwash <infection number (digit)> 

<%age increase> <%age probability> 

After each time step, each non-ward 

vertex with the status indicated by the 

(single-digit) infection number has this 

probability of being part of a 

handwashing protocol, thereby 

increasing the resistance to change by 

the %age given. 

heading <text> The text is added to the summary log 

file on a separate line, if open. 

infect <infection number (digit)> 

<name of vertex> 

Sets the specified vertex to a status 

indicated by the (single-digit) infection 

number. If either does not exist, the 

operation fails and reports an error. 

Additionally, the status to change to is 

set to Normal and a random time (as 

determined by the infection’s 

parameters) is set. 

isolate <infection number (digit)> 

<%age probability> 

After each time step, each non-ward 

vertex with the status indicated by the 

(single-digit) infection number has this 

probability of being isolated, removing 

all edges from and to it from the model. 

max time <value> Sets the maximum time that the model 

can run for. 

messages {off | full | infected | ward} Specifies the type of messages to place 

into the run log: 

“off” – none. 

“full” – all (whether vertex will change, 

together with parameters showing why), 

plus a list of current non-normal vertices 

at each time step. 

“infected”  - only non-normal vertices 

are listed at each time step. 

“ward” – only non-normal wards are 

listed at each time step. 

paths <%age probability> Adds paths to the model, at the specified 

%age. Sets the “use paths in statistics” 

flag to true. 

pathsinstats {on | off} If “on”, paths are used in the calculation 

of statistics. 

reset Resets the model, clearing all vertex 

flags and setting all Vertices to Normal 

status with no pending status changes. 

The run log file is closed if open and the 

time is set to zero. 

run model Runs the model once. 
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set <infection number (digit)> 

<parameter (digit)> <value> 

Sets the specified parameter of the 

specified infection to the specified 

value. 

Parameter values: 

0 - StatusEdgeModification (int) 

1 - StatusLifespanMean (int) 

2 - StatusLifespanSD (int) 

3 - StatusLifespanTail (int) 

4 - StatusVertexImmunityMean (int) 

5 - StatusVertexImmunitySD (int) 

6 - StatusVertexResistanceMean (float) 

7 - StatusVertexResistanceSD (float) 

8 - StatusVertexReversion (float) 

 

Values calculated from these for edges 

and vertices are re-calculated. 

statistics Calculates the model’s statistics and 

outputs them to the file specified in the 

sumfile command, if open. 

stopping <value> Sets the stopping criteria as: 

0 - No non-normal vertices 

1 - No future changes 

2 - No non-normal vertices or future 

changes 

3 – Specified % of non-normal vertices 

4 - Pre-defined time elapsed 

sumfile <name> The name of the file to receive the 

summary output (summary log). If this 

is the first run, the file is opened, 

truncated and the current date and time 

is written to it. 

timenotclass {on | off} If “on”, the length of the outbreak (time) 

is recorded instead of the classification. 

times <value> The script is run the specified number of 

times 

treat <infection number (digit)> 

<%age probability> 

After each time step, each non-ward 

vertex with the status indicated by the 

(single-digit) infection number has this 

probability of being treated, setting the 

status to Normal. 

vaccinate <infection number (digit)> 

<%age probability> 

After each time step, each non-ward 

vertex has this probability of being 

vaccinated, giving infinite immunity to 

the status indicated by the (single-digit) 

infection number. 
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Classification 

This version of the script classifies all outbreaks in the database, according to the 

parameters set in the script. 

 

It should be noted that the default values are for GoF to be used for Goodness of 

Fit, with p=3. 

 

addfile {on | off} If “on” then an existing log file is added 

to. If “off” then this file is truncated 

first. 

classify {staff | patients} Starts the classification of recorded 

outbreaks for either staff or patients. 

dfr {on | off} If “on”, DFR3 is used to calculate 

Goodness of Fit. 

e1r {on | off} If “off” then E1 and R are excluded 

from the Goodness of Fit measure (GoF 

and MRSSD only). 

gof <text> If the log file is open, the Goodness of 

Fit is calculated and the line 

“Classification <text> Goodness of fit= 

” is added to the log file, followed by 

the Goodness of Fit value. 

heading <text> The text is added to the log file on a 

separate line, if open. 

mrssd {on | off} If “on”, MRSSD is used to calculate 

Goodness of Fit. 

openfile If the log file (run.log) is not open, it is 

opened. 

p [1-6] The p value (for GoF) is set to the 

required integer. 

recurrence {on | off} Determines whether recurrence is 

checked for or not. 

startpoints {on | off} If “on”, the start points of the outbreaks 

(name of initial infected vertex) are 

calculated and output to the log file. 

 

Random 

This version of the script is a hybrid of the model construction and database 

forms. The format is one line for a model to be constructed (always 1 – the 

parameter for number of models to build is ignored), followed by commands from 
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the database set. Once the random model has been built, the infections are loaded 

from the database. 

 

There is one additional command, as below: 

wards <value> This number of vertices are randomly 

assigned to be wards. These are also 

assigned random severity values, in the 

ratio 34:18:6, as observed in the 

database. 
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Appendix B – Saved Model Structure 

Models constructed by the software can be saved for re-loading later. As these are 

saved as text files, these can be manipulated in order to effect minor 

modifications, or even written completely by hand in order to reflect a particular 

structure. The first header is read by the import routine, the other headers are 

ignored (as are the blank lines) so could contain any text that is helpful to the 

author – the only requirement is that a line is present. The text listed here for the 

headers is that which is generated by the software. 

 

The format of these files is as follows: 

 

Header "Small World Model Version ", 

followed by “1” or “2” (Version 2 

includes names for vertices). 

Overall parameters 1 header "Statuses, Vertices, Paths, Edges" 

Statuses <number of statuses>;<first status name 

(usually “Normal”)>;<second 

name>;etc… 

Number of vertices in the model <integer> 

Number of external paths in the model <integer> 

Number of edges in the model <integer> 

Overall parameters 2 header “Normal Status, Heuristic, Connected, 

Directed, Calc Stats, 

VerticesToCheck%/GroupsToMake, 

EdgesToMake” 

Normal Status <integer>, the index of the Normal 

status (usually 0). 

Heuristic <integer>, the heuristic used to 

construct the model (see Appendix A). 

Connected “Yes” – the model is connected 

“No” – the model is not connected 

Directed “Yes” – the model is directed 

“No” – the model is not directed 

Calc Stats “Yes” – the statistics are to be 

calculated on load 

“No” – the statistics are not to be 

calculated 

VerticesToCheck%/GroupsToMake <integer> - additional parameter for 

heuristic (see Appendix A). 

EdgesToMake The maximum number of edges to 

create after loading the model until it is 

connected or this number is reached. 
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Blank line  

Header for vertices “Vertices” 

 

For each vertex: 

Header “Immunity, Context, Ordinal, Status, 

StatusTo, TimeTo, Resistance, 

Reversion, Name” 

Immunity <immunity for first status – [0-100]>; 

<immunity for second status [0-

100]>;etc… 

Context <integer>, the context for this vertex 

Ordinal <long integer>, the unique ordinal for 

this vertex. 

Status <integer>, the current status of this 

vertex. 

StatusTo <integer>, the status this vertex will 

change to. 

TimeTo <integer>, the number of time units in 

the future at which this status change 

will happen. (-1 indicates no future 

change – the case when the vertex is in 

normal status). 

Resistance <resistance to change for first status – 

[0-100]>; <resistance to change for 

second status [0-100]>;etc… 

Reversion <reversion chance for first status – [0-

100]>; <reversion chance for second 

status [0-100]>;etc… 

Name – version 2 only, otherwise not 

present 

<textual name of this vertex> 

 

Blank line  

Header for edges “Edges” 
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For each edge: 

Header “Modification, Ordinal, Strength, 

Vertex1, Vertex2” 

Modification chance <modification chance for first status – 

[0-100]>; <modification chance for 

second status [0-100]>;etc… 

Ordinal <long integer>, the unique ordinal for 

this edge. 

Strength <integer [0-100]>, the strength of this 

edge. 

Vertex1 <long integer>, the ordinal for the 

starting vertex for this edge. 

Vertex2 <long integer>, the ordinal for the 

terminating vertex for this edge. 

 

Blank line  

Header for external paths “Paths” 

 

For each external path: 

Header “Modification, Ordinal, Vertex1, 

Vertex2, Length” 

Modification chance <modification chance for first status – 

[0-100]>; <modification chance for 

second status [0-100]>;etc… 

Ordinal <long integer>, the unique ordinal for 

this external path. 

Vertex1 <long integer>, the ordinal for the 

starting vertex for this external path. 

Vertex2 <long integer>, the ordinal for the 

terminating vertex for this external 

path. 

Length <integer>, the length of this external 

path. 

 

Blank line  
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Appendix C – Random Models 

Creation of Models 

The theoretical models as described in chapter 4 are created in software 

(Microsoft Visual C++ version 6 was used) with classes representing the vertices, 

edges and paths. Additionally there is a database which contains the details and 

parameters for the infections under investigation. For models based upon the 

Trust, these parameters are also contained within the database. 

 

A purely random model is created by specifying: 

• the number of vertices to be used 

• whether the graph is to be directed or undirected 

• the heuristic to use to connect them (together with any additional 

parameters for the selected heuristic) 

• whether the model is to include external paths (and, if so, the percentage 

probability of one being added) 

• whether to use the paths in determining connectivity 

• the number of models to build 

• a file name for the results of the build 

 

Once built, a model may be run by providing some initial conditions, either 

randomly altering a set number of vertices or one specific vertex to a specified 

status. 

 

The model can then be run, after specifying stopping criteria (one of): 

• Run until all vertices are normal 

• Run until no vertices will change 

• Run until all vertices are normal & none will change 

• Run until % of non-normal vertices <= a specified value 

• Run until Time= a specified value 

Additionally, a maximum run time and a file name for results can be specified. 
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A model based upon the Trust is created using the database, which specifies the 

vertices and edges derived from the questionnaire described in chapter 6. It can 

then be run in the same way as a random model. 

Visualisation 

The most obvious visualisation is to represent vertices as points and edges and 

external paths as lines joining them. Due to the number of vertices involved in a 

realistic model, such visualisation is of limited use, as Figure C.1 demonstrates. 

 

 

Figure C.1: Visualisation of all three hospital sites, showing linkages between wards and 

services – 76 vertices and 2663 edges. 

 

However, on a smaller scale, this can be useful in demonstrating the build-up of 

the model (Figures C.2 and C.3) and in following the progress of an outbreak 

(Figure C.4). 
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Figure C.2a: Castle Hill Hospital and services, with the vertices arranged in a circular pattern. 

 

Figure C.2b: The most significant connections (i.e. daily contact) for one ward, with these edges 

overlaid on the circle as lines. The directionality of the edge is indicated by a thicker line 

indicating the origin. For simplicity, shared facilities and other shared staff are omitted. 
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Figure C.2c: Two wards, mapped as above 

 

Figure C.2d: Six wards, as above 
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Figure C.2e: All 13 wards. 

 

Some information may be drawn from Figure C.2e, in that it demonstrates the low 

level of connectivity of services such as Finance and IT, yet the high level of 

connectivity of Cleaners and Cardiology. 
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Figure C.3: The addition of randomly generated external paths onto the model shown in Figure 

C.2e. 

 

 

 

Figure C.4a: An infection is introduced into the model shown in Figure C.3, at the Jubilee Birth 

Centre (marked in brown). 
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Figure C.4b: The infection progresses to HSDU, Haematology and CSSD. 

 

Figure C.4c: The infection dies out 
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Figure C.4d: The infection re-appears due to the action of an external path 

 

Figure C.4e: The infection outbreak continues to progress. 
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Outputs and Metrics 

Statistics and metrics produced by the implementation of the model are (see 

Chapter 4 for descriptions): 

• Heuristic 

• Number of times heuristic applied 

• Number of vertices 

• Number of edges 

• Number of paths 

• % chance of paths 

• Is connected (Y/N) 

• In/OutDegree 

• InDegree 

• OutDegree 

• Characteristic Path Length 

• Clustering Co-efficient (edges only) 

• Vertex Connectivity (<list of vertices removed>) 

• Min InDegree 

• Edge Connectivity (<list of edges removed>) 

 

The files that are produced by the creation/running of models contain (not all in 

the same file): 

• Time run started 

• Time run finished 

• Heading defined by script 

• The eight DFR3 values, plus a sum 

• Classification 

• Goodness of Fit (GoF plus p, MRSSD and DRF3) 

• Run time 

• Future vertex changes (including parameters) 

• Vertices that will not change (including parameters) 

• Vertices with non-normal status 

• Total number of vertices with non-normal status 
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• Peak number of wards infected 

• Number of wards in the system 

• Stopping condition 

• Date outbreak from 

• Date outbreak to 

• Classification system 

• Classification parameter values, with minimum, maximum and mode 

• Outbreak patient days, ward days and average 

• Start points for outbreaks 

• Vertex resistance values 

• Vertex reversion values 

• Edge modification values 
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Appendix D – The Software 

Introduction 

Elements of the software have been described and outputs from it utilised 

throughout the main thesis. This appendix describes elements not covered 

elsewhere. 

Overview 

The model was constructed using C++ under Microsoft Visual Studio version 6 

(together with the Microsoft Foundation Classes and thus implementing a Model-

View-Controller paradigm). Although designed to create and manipulate directed 

graphs, the software can also handle undirected graphs by the simple method of 

placing two edges (one in each direction) for this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1: High level software design showing classes, members and compositions. 
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The software is capable of creating random models and calculating the following 

statistics: 

• Number of vertices 

• Number of edges 

• Number of paths 

• Is connected 

• In/Outdegree 

• InDegree 

• OutDegree 

• Characteristic Path Length 

• Clustering Co-efficient (edges only) 

• Vertex Connectivity 

 

Some of the algorithms for calculating these statistics have come from the 

literature (especially where a true mathematical method exists, e.g. InDegree). 

Others are my own, derived from textual description in the literature (e.g. 

characteristic path length). 
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Outputs 

 

Figure D.2: A graphic representation of a 7-vertex directed graph. Thickened ends of lines show 

the originating vertex for the edges, that is the direction of the edge. For example, the edge 

between vertices 1 and 3 has a thickened end at vertex 3, showing that the direction of the edge is 

from vertex 3 to vertex 1. 
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Figure D.3: The Path Length Matrix for the Graph in Figure D.2. This is read “from <row> to 

<column>”, e.g. The path from vertex 1 to vertex 3 has length 2. The first additional column gives 

the vertex’s outdegree and the additional row gives the indegree. The second additional column 

gives the sum of the lengths of paths originating from the vertex, which is used in calculating the 

average path length, itself used in calculating the characteristic path length. 
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Figure D.4: The Statistics produced for the Graph in Figure D.2 

Software Performance 

The software as currently developed is not optimised. This is because it is a 

research tool rather than an operational one: therefore there exist within the 

software several options which would not be required in the production version. 

For example, the various types of classification comparison (See Chapter 5) are 

all implemented. Each time a classification is compared, the required 

classification type must be checked for, along with any parameters that this 

requires (e.g. p in GoF (5.7.1)). 

 

As the software is a research tool, the algorithms are represented in code in their 

most explicit form. This is so that the code may be easily modified should the 

algorithm be enhanced in some way. Thus each step in the algorithm is coded 

separately and optimisations that may be gained from step combination are 

eschewed. 
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Furthermore, speed of coding was more desirable during development of the 

thesis than speed of execution therefore fully optimised algorithms, for example 

for sorting, were not sought. This was because it was the ideas that were being 

tested, not the code. 

Simplified Complexity Analysis for Production Software 

There are many strands to the software – this analysis examines one only, that of 

the production of a model based upon the questionnaire results, the running of an 

outbreak simulation upon it and the comparison with real results via the DFR3 

method (5.7.4) to determine how realistic the model is. This has been selected as 

the most likely use of a production version of the software. 

 

Notation: 

Ni – Number of infections 

Nw – Number of wards 

Ns – Number of staff 

Nv – Number of services 

Ne – Number of edges 

Nr – Number of real models used for DRF3 

 

The basic model from the questionnaire completes in 

2O(Ni)+O(Nw)+O(Ns)+2O(Nv).O(Ns)+ 6O(Nw). 

The connectedness check is omitted, as once the questionnaire-based model has 

been shown to be connected, the computation time in establishing it again is 

unnecessary. 

 

The outbreak simulation completes in O(Nw)(3+O(Ne))(O(Nw)+O(Nv)+O(Ns)). 

 

The classification completes in 3O(Nw). 

 

The DFR3 comparison completes in O(Nr). 

 

The major factor in this analysis can therefore be seen to be N=Nw+Ns+Nv, in 

other words the number of vertices in the model (as Ne can be viewed as a 
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function of N). The simplified complexity analysis therefore yields the algorithm 

to complete in O(N
3
), with the dominant term being from the outbreak simulation. 
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Appendix E – Data Summarised in Thesis 

Data produced for this thesis is usually presented in summarised form. There are 

some elements that are onerous to read, but are referred to in some detail. This 

data is summarised in the main thesis, but presented in full here. 

Section 5.4.1 Staff data - Recurrence Not Checked For 

Outbreak from 10/9/2004 to 4/10/2004. Classification 26665380 

Outbreak from 6/10/2004 to 11/10/2004. Classification 11124900 

Outbreak from 22/11/2004 to 7/12/2004. Classification 24456500 

Outbreak from 16/12/2004 to 28/12/2004. Classification 23345500 

Outbreak from 23/1/2005 to 1/2/2005. Classification 23344800 

Outbreak from 11/3/2005 to 20/3/2005. Classification 24443620 

Outbreak from 27/3/2005 to 14/4/2005. Classification 11158900 

Outbreak from 3/5/2005 to 7/5/2005. Classification 01120900 

Outbreak from 1/6/2005 to 12/6/2005. Classification 11144900 

Outbreak from 9/7/2005 to 13/7/2005. Classification 11121900 

Outbreak from 27/9/2005 to 1/10/2005. Classification 01120900 

Outbreak from 3/10/2005 to 13/10/2005. Classification 24442500 

Outbreak from 14/10/2005 to 20/10/2005. Classification 11133900 

Outbreak from 26/11/2005 to 5/12/2005. Classification 11143900 

Outbreak from 23/12/2005 to 27/12/2005. Classification 01120900 

Outbreak from 30/12/2005 to 15/1/2006. Classification 23355400 

Outbreak from 24/2/2006 to 21/3/2006. Classification 25466240 

Outbreak from 28/3/2006 to 9/4/2006. Classification 24444700 

Outbreak from 10/4/2006 to 17/4/2006. Classification 11132900 

Outbreak from 19/4/2006 to 5/5/2006. Classification 23356600 

Outbreak from 13/5/2006 to 9/6/2006. Classification 24467320 

Outbreak from 14/6/2006 to 18/6/2006. Classification 01120900 

Outbreak from 20/6/2006 to 24/6/2006. Classification 01120900 

Outbreak from 11/7/2006 to 22/7/2006. Classification 11144900 

Outbreak from 19/9/2006 to 5/10/2006. Classification 23353420 

Outbreak from 12/10/2006 to 17/10/2006. Classification 23321720 

Outbreak from 18/10/2006 to 22/10/2006. Classification 01120920 
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Outbreak from 11/11/2006 to 25/12/2006. Classification 25575160 

Outbreak from 27/12/2006 to 1/1/2007. Classification 11121900 

Outbreak from 3/1/2007 to 22/1/2007. Classification 24464460 

Outbreak from 25/1/2007 to 29/1/2007. Classification 01120900 

Outbreak from 30/1/2007 to 7/3/2007. Classification 25474120 

Outbreak from 17/3/2007 to 29/3/2007. Classification 23342500 

Outbreak from 19/4/2007 to 25/4/2007. Classification 11132900 

Outbreak from 26/7/2007 to 2/8/2007. Classification 11132900 

Outbreak from 12/10/2007 to 21/10/2007. Classification 11143920 

Outbreak from 23/10/2007 to 30/10/2007. Classification 23332560 

Outbreak from 1/11/2007 to 5/11/2007. Classification 01120900 

Section 5.4.2 Staff data - Recurrence Checked For 

Outbreak from 10/9/2004 to 11/10/2004. Classification 26675282 

Outbreak from 22/11/2004 to 28/12/2004. Classification 25476102 

Outbreak from 23/1/2005 to 1/2/2005. Classification 23344801 

Outbreak from 11/3/2005 to 14/4/2005. Classification 24476222 

Outbreak from 3/5/2005 to 7/5/2005. Classification 01120901 

Outbreak from 1/6/2005 to 12/6/2005. Classification 11144901 

Outbreak from 9/7/2005 to 13/7/2005. Classification 11121901 

Outbreak from 27/9/2005 to 20/10/2005. Classification 24463302 

Outbreak from 26/11/2005 to 5/12/2005. Classification 11143901 

Outbreak from 23/12/2005 to 15/1/2006. Classification 24363202 

Outbreak from 24/2/2006 to 24/6/2006. Classification 26497042 

Outbreak from 11/7/2006 to 22/7/2006. Classification 11144901 

Outbreak from 19/9/2006 to 22/10/2006. Classification 24372122 

Outbreak from 11/11/2006 to 29/3/2007. Classification 26597062 

Outbreak from 19/4/2007 to 25/4/2007. Classification 11132901 

Outbreak from 26/7/2007 to 2/8/2007. Classification 11132901 

Outbreak from 12/10/2007 to 5/11/2007. Classification 24363262 

Section 5.4.3 Patient data - Recurrence Not Checked For 

Outbreak from 28/8/2004 to 1/9/2004. Classification 01120900 

Outbreak from 8/9/2004 to 2/10/2004. Classification 26667390 
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Outbreak from 4/10/2004 to 13/10/2004. Classification 11146900 

Outbreak from 18/11/2004 to 30/12/2004. Classification 24476200 

Outbreak from 9/1/2005 to 17/1/2005. Classification 11138900 

Outbreak from 20/1/2005 to 28/1/2005. Classification 23331600 

Outbreak from 7/2/2005 to 16/2/2005. Classification 01140900 

Outbreak from 7/3/2005 to 17/5/2005. Classification 24487220 

Outbreak from 3/6/2005 to 8/6/2005. Classification 11123900 

Outbreak from 15/6/2005 to 21/6/2005. Classification 11137900 

Outbreak from 9/7/2005 to 11/7/2005. Classification 11112900 

Outbreak from 24/9/2005 to 17/10/2005. Classification 24467400 

Outbreak from 29/11/2005 to 3/12/2005. Classification 11122900 

Outbreak from 31/12/2005 to 12/1/2006. Classification 23345500 

Outbreak from 14/2/2006 to 18/2/2006. Classification 01120920 

Outbreak from 20/2/2006 to 11/4/2006. Classification 25587150 

Outbreak from 13/4/2006 to 17/4/2006. Classification 01120900 

Outbreak from 19/4/2006 to 29/4/2006. Classification 23348800 

Outbreak from 9/5/2006 to 7/6/2006. Classification 25478220 

Outbreak from 19/6/2006 to 3/7/2006. Classification 11158900 

Outbreak from 13/7/2006 to 21/7/2006. Classification 11134900 

Outbreak from 23/9/2006 to 3/10/2006. Classification 11148900 

Outbreak from 10/11/2006 to 25/12/2006. Classification 25478160 

Outbreak from 3/1/2007 to 24/1/2007. Classification 25567360 

Outbreak from 27/1/2007 to 5/2/2007. Classification 11148900 

Outbreak from 9/2/2007 to 14/3/2007. Classification 24478320 

Outbreak from 16/3/2007 to 4/4/2007. Classification 24468400 

Outbreak from 7/4/2007 to 21/4/2007. Classification 11158900 

Outbreak from 27/7/2007 to 6/8/2007. Classification 11147900 

Outbreak from 12/10/2007 to 17/10/2007. Classification 11123920 

Outbreak from 25/10/2007 to 1/11/2007. Classification 11136900 

Section 5.4.4 Patient data - Recurrence Checked For 

Outbreak from 28/8/2004 to 13/10/2004. Classification 26677192 

Outbreak from 18/11/2004 to 16/2/2005. Classification 25485002 

Outbreak from 7/3/2005 to 17/5/2005. Classification 24487221 



Appendix E  Data Summarised in Thesis 

 E.4 

Outbreak from 3/6/2005 to 21/6/2005. Classification 23156202 

Outbreak from 9/7/2005 to 11/7/2005. Classification 11112901 

Outbreak from 24/9/2005 to 17/10/2005. Classification 24467401 

Outbreak from 29/11/2005 to 3/12/2005. Classification 11122901 

Outbreak from 31/12/2005 to 12/1/2006. Classification 23345501 

Outbreak from 14/2/2006 to 21/7/2006. Classification 26598052 

Outbreak from 23/9/2006 to 3/10/2006. Classification 11148901 

Outbreak from 10/11/2006 to 21/4/2007. Classification 26598062 

Outbreak from 27/7/2007 to 6/8/2007. Classification 11147901 

Outbreak from 12/10/2007 to 1/11/2007. Classification 23165222 

Section 5.7.4 Measure 4: DFR3 

Staff data, recurrence not checked for: 

Revised: 

Outbreak from 24/2/2006 to 21/3/2006. Classification 25467340 (was 25466240) 

Outbreak from 27/12/2006 to 29/1/2007. Classification 25573160 (was 3 

outbreaks) 

New: 

Outbreak from 20/11/2007 to 23/12/2007. Classification 25476260 

Outbreak from 1/1/2008 to 24/2/2008. Classification 25586120 

Outbreak from 4/3/2008 to 31/3/2008. Classification 25465220 

Outbreak from 19/4/2008 to 4/5/2008. Classification 24456460 

Outbreak from 8/5/2008 to 20/5/2008. Classification 23344500 

Outbreak from 21/5/2008 to 27/5/2008. Classification 23331700 

Outbreak from 28/5/2008 to 2/6/2008. Classification 11122900 

Outbreak from 23/8/2008 to 2/9/2008. Classification 11143900 

Outbreak from 21/10/2008 to 7/11/2008. Classification 24452400 

Staff data, recurrence checked for: 

Revised: 

Outbreak from 11/11/2006 to 29/3/2007. Classification 26596062 (was 26597062) 

New: 

Outbreak from 20/11/2007 to 31/3/2008. Classification 26597062 

Outbreak from 19/4/2008 to 2/6/2008. Classification 25476162 

Outbreak from 23/8/2008 to 2/9/2008. Classification 11143901 
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Outbreak from 21/10/2008 to 7/11/2008. Classification 24452401 

Patient data, recurrence not checked for: 

Revised: 

Outbreak from 31/12/2005 to 10/1/2006. Classification 11148900 (was 23345500) 

Outbreak from 9/5/2006 to 7/6/2006. Classification 25477220 (was 25478220) 

Outbreak from 3/1/2007 to 24/1/2007. Classification 25568360 (was 25567360) 

New: 

Outbreak from 19/11/2007 to 18/12/2007. Classification 25477260 

Outbreak from 27/12/2007 to 25/2/2008. Classification 25588160 

Outbreak from 29/2/2008 to 29/3/2008. Classification 25578330 

Outbreak from 1/4/2008 to 5/4/2008. Classification 11124900 

Outbreak from 17/4/2008 to 3/5/2008. Classification 24457560 

Outbreak from 7/5/2008 to 11/6/2008. Classification 24377220 

Outbreak from 24/8/2008 to 27/8/2008. Classification 11112900 

Outbreak from 19/9/2008 to 23/9/2008. Classification 01120900 

Outbreak from 18/10/2008 to 8/11/2008. Classification 24467410 

Patient data, recurrence checked for: 

Revised: 

Outbreak from 31/12/2005 to 10/1/2006. Classification 11148901 (was 23345501) 

 - same as recurrence not checked for 

New: 

Outbreak from 19/11/2007 to 11/6/2008. Classification 26598062 

Outbreak from 24/8/2008 to 27/8/2008. Classification 11112901 

Outbreak from 19/9/2008 to 23/9/2008. Classification 01120901 

Outbreak from 18/10/2008 to 8/11/2008. Classification 24467411 

Table 6.17 

Combination Realistic FI Unrealistic Mean 

Severity 

H24 76 24 0 1 

H20 74 26 0 1 

H08 74 25 1 1 

H80 80 19 1 1 

C05 69 29 2 1 

H01 68 31 1 2 

C18 71 29 0 2 

H50 37 60 3 3 
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H24,H20 58 42 0 1 

H24,H08 65 35 0 1 

H24,H80 58 41 1 1 

H24,C05 53 46 1 1 

H24,H01 52 43 5 1.5 

H24,C18 55 43 2 1.5 

H24,H50 52 45 3 2 

H20,H08 61 38 1 1 

H20,H80 57 43 0 1 

H20,C05 53 47 0 1 

H20,H01 61 38 1 1.5 

H20,C18 53 46 1 1.5 

H20,H50 47 49 4 2 

H08,H80 60 40 0 1 

H08,C05 52 48 0 1 

H08,H01 62 35 3 1.5 

H08,C18 52 45 3 1.5 

H08,H50 52 45 3 2 

H80,C05 62 37 1 1 

H80,H01 62 37 1 1.5 

H80,C18 63 35 2 1.5 

H80,H50 34 65 1 2 

C05,H01 60 38 2 1.5 

C05,C18 58 41 1 1.5 

C05,H50 51 43 6 2 

H01,C18 48 51 1 2 

H01,H50 39 56 5 2.5 

C18,H50 58 41 1 2.5 

H24,H20,H08 48 52 0 1 

H24,H20,H80 57 42 1 1 

H24,H20,C05 48 52 0 1 

H24,H20,H01 60 40 0 1.333333 

H24,H20,C18 47 51 2 1.333333 

H24,H20,H50 50 46 4 1.666667 

H24,H08,H80 51 49 0 1 

H24,H08,C05 58 42 0 1 

H24,H08,H01 55 45 0 1.333333 

H24,H08,C18 60 39 1 1.333333 

H24,H08,H50 50 47 3 1.666667 

H24,H80,C05 53 47 0 1 

H24,H80,H01 64 36 0 1.333333 

H24,H80,C18 50 47 3 1.333333 

H24,H80,H50 48 48 4 1.666667 

H24,C05,H01 46 54 0 1.333333 

H24,C05,C18 51 49 0 1.333333 

H24,C05,H50 54 44 2 1.666667 

H24,H01,C18 53 46 1 1.666667 

H24,H01,H50 52 46 2 2 

H24,C18,H50 55 44 1 2 

H20,H08,H80 50 50 0 1 

H20,H08,C05 53 47 0 1 

H20,H08,H01 61 39 0 1.333333 

H20,H08,C18 56 43 1 1.333333 
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H20,H08,H50 50 47 3 1.666667 

H20,H80,C05 45 55 0 1 

H20,H80,H01 66 32 2 1.333333 

H20,H80,C18 49 49 2 1.333333 

H20,H80,H50 45 55 0 1.666667 

H20,C05,H01 51 47 2 1.333333 

H20,C05,C18 51 49 0 1.333333 

H20,C05,H50 52 46 2 1.666667 

H20,H01,C18 45 53 2 1.666667 

H20,H01,H50 46 52 2 2 

H20,C18,H50 50 45 5 2 

H08,H80,C05 56 44 0 1 

H08,H80,H01 64 35 1 1.333333 

H08,H80,C18 51 47 2 1.333333 

H08,H80,H50 51 46 3 1.666667 

H08,C05,H01 48 50 2 1.333333 

H08,C05,C18 43 54 3 1.333333 

H08,C05,H50 51 47 2 1.666667 

H08,H01,C18 53 44 3 1.666667 

H08,H01,H50 51 49 0 2 

H08,C18,H50 57 42 1 2 

H80,C05,H01 56 42 2 1.333333 

H80,C05,C18 53 46 1 1.333333 

H80,C05,H50 56 41 3 1.666667 

H80,H01,C18 54 45 1 1.666667 

H80,H01,H50 48 50 2 2 

H80,C18,H50 44 56 0 2 

C05,H01,C18 59 40 1 1.666667 

C05,H01,H50 41 54 5 2 

C05,C18,H50 58 40 2 2 

H01,C18,H50 46 53 1 2.333333 

H24,H20,H08,H80 50 48 2 1 

H24,H20,H08,C05 50 50 0 1 

H24,H20,H08,H01 47 52 1 1.25 

H24,H20,H08,C18 59 41 0 1.25 

H24,H20,H08,H50 46 53 1 1.5 

H24,H20,H80,C05 51 47 2 1 

H24,H20,H80,H01 44 55 1 1.25 

H24,H20,H80,C18 56 40 4 1.25 

H24,H20,H80,H50 45 52 3 1.5 

H24,H20,C05,H01 57 43 0 1.25 

H24,H20,C05,C18 49 51 0 1.25 

H24,H20,C05,H50 48 50 2 1.5 

H24,H20,H01,C18 51 49 0 1.5 

H24,H20,H01,H50 52 48 0 1.75 

H24,H20,C18,H50 49 50 1 1.75 

H24,H08,H80,C05 52 48 0 1 

H24,H08,H80,H01 50 49 1 1.25 

H24,H08,H80,C18 41 59 0 1.25 

H24,H08,H80,H50 35 63 2 1.5 

H24,H08,C05,H01 56 44 0 1.25 

H24,H08,C05,C18 44 55 1 1.25 

H24,H08,C05,H50 47 53 0 1.5 
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H24,H08,H01,C18 51 49 0 1.5 

H24,H08,H01,H50 49 50 1 1.75 

H24,H08,C18,H50 44 53 3 1.75 

H24,H80,C05,H01 39 61 0 1.25 

H24,H80,C05,C18 42 55 3 1.25 

H24,H80,C05,H50 46 53 1 1.5 

H24,H80,H01,C18 45 55 0 1.5 

H24,H80,H01,H50 45 55 0 1.75 

H24,H80,C18,H50 41 57 2 1.75 

H24,C05,H01,C18 58 42 0 1.5 

H24,C05,H01,H50 55 45 0 1.75 

H24,C05,C18,H50 48 52 0 1.75 

H24,H01,C18,H50 48 52 0 2 

H20,H08,H80,C05 41 58 1 1 

H20,H08,H80,H01 50 49 1 1.25 

H20,H08,H80,C18 55 44 1 1.25 

H20,H08,H80,H50 47 53 0 1.5 

H20,H08,C05,H01 52 47 1 1.25 

H20,H08,C05,C18 48 51 1 1.25 

H20,H08,C05,H50 48 51 1 1.5 

H20,H08,H01,C18 46 52 2 1.5 

H20,H08,H01,H50 58 41 1 1.75 

H20,H08,C18,H50 51 48 1 1.75 

H20,H80,C05,H01 52 46 2 1.25 

H20,H80,C05,C18 52 48 0 1.25 

H20,H80,C05,H50 47 53 0 1.5 

H20,H80,H01,C18 51 48 1 1.5 

H20,H80,H01,H50 58 39 3 1.75 

H20,H80,C18,H50 46 53 1 1.75 

H20,C05,H01,C18 49 50 1 1.5 

H20,C05,H01,H50 47 52 1 1.75 

H20,C05,C18,H50 44 55 1 2 

H20,H01,C18,H50 40 58 2 2 

H08,H80,C05,H01 53 47 0 1.25 

H08,H80,C05,C18 56 43 1 1.25 

H08,H80,C05,H50 41 55 4 1.5 

H08,H80,H01,C18 45 55 0 1.5 

H08,H80,H01,H50 56 44 0 1.75 

H08,H80,C18,H50 57 42 1 1.75 

H08,C05,H01,C18 52 47 1 1.5 

H08,C05,H01,H50 45 55 0 1.75 

H08,C05,C18,H50 55 44 1 1.75 

H08,H01,C18,H50 55 45 0 2 

H80,C05,H01,C18 55 42 3 1.5 

H80,C05,H01,H50 41 59 0 1.75 

H80,C05,C18,H50 49 49 2 1.75 

H80,H01,C18,H50 49 48 3 2 

C05,H01,C18,H50 51 49 0 2 

H24,H20,H08,H80,C05 51 49 0 1 

H24,H20,H08,H80,H01 43 56 1 1.2 

H24,H20,H08,H80,C18 48 51 1 1.2 

H24,H20,H08,H80,H50 37 61 2 1.4 

H24,H20,H08,C05,H01 51 47 2 1.2 
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H24,H20,H08,C05,C18 54 45 1 1.2 

H24,H20,H08,C05,H50 48 52 0 1.4 

H24,H20,H08,H01,C18 50 49 1 1.4 

H24,H20,H08,H01,H50 43 55 2 1.6 

H24,H20,H08,C18,H50 51 48 1 1.6 

H24,H20,H80,C05,H01 41 58 1 1.2 

H24,H20,H80,C05,C18 43 56 1 1.2 

H24,H20,H80,C05,H50 41 58 1 1.4 

H24,H20,H80,H01,C18 48 49 3 1.4 

H24,H20,H80,H01,H50 48 51 1 1.6 

H24,H20,H80,C18,H50 38 60 2 1.6 

H24,H20,C05,H01,C18 57 42 1 1.4 

H24,H20,C05,H01,H50 39 58 3 1.6 

H24,H20,C05,C18,H50 42 57 1 1.6 

H24,H20,H01,C18,H50 50 49 1 1.8 

H24,H08,H80,C05,H01 54 46 0 1.2 

H24,H08,H80,C05,C18 52 47 1 1.2 

H24,H08,H80,C05,H50 52 46 2 1.4 

H24,H08,H80,H01,C18 61 39 0 1.4 

H24,H08,H80,H01,H50 45 54 1 1.6 

H24,H08,H80,C18,H50 51 46 3 1.6 

H24,H08,C05,H01,C18 56 43 1 1.4 

H24,H08,C05,H01,H50 48 50 2 1.6 

H24,H08,C05,C18,H50 48 51 1 1.6 

H24,H08,H01,C18,H50 40 60 0 1.8 

H24,H80,C05,H01,C18 48 52 0 1.4 

H24,H80,C05,H01,H50 54 46 0 1.6 

H24,H80,C05,C18,H50 55 44 1 1.8 

H24,H80,H01,C18,H50 45 51 4 1.8 

H24,C05,H01,C18,H50 43 56 1 1.8 

H20,H08,H80,C05,H01 43 55 2 1.2 

H20,H08,H80,C05,C18 45 55 0 1.2 

H20,H08,H80,C05,H50 38 60 2 1.4 

H20,H08,H80,H01,C18 43 57 0 1.4 

H20,H08,H80,H01,H50 42 58 0 1.6 

H20,H08,H80,C18,H50 47 51 2 1.6 

H20,H08,C05,H01,C18 57 43 0 1.4 

H20,H08,C05,H01,H50 44 54 2 1.6 

H20,H08,C05,C18,H50 40 59 1 1.6 

H20,H08,H01,C18,H50 50 50 0 1.8 

H20,H80,C05,H01,C18 44 56 0 1.4 

H20,H80,C05,H01,H50 51 47 2 1.6 

H20,H80,C05,C18,H50 48 52 0 1.6 

H20,H80,H01,C18,H50 50 50 0 1.8 

H20,C05,H01,C18,H50 43 56 1 1.8 

H08,H80,C05,H01,C18 54 46 0 1.4 

H08,H80,C05,H01,H50 44 54 2 1.6 

H08,H80,C05,C18,H50 46 52 2 1.6 

H08,H80,H01,C18,H50 46 53 1 1.8 

H08,C05,H01,C18,H50 54 46 0 1.8 

H80,C05,H01,C18,H50 40 59 1 1.8 

H24,H20,H08,H80,C05,H01 45 55 0 1.166667 

H24,H20,H08,H80,C05,C18 51 49 0 1.166667 
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H24,H20,H08,H80,C05,H50 37 60 3 1.333333 

H24,H20,H08,H80,H01,C18 47 52 1 1.333333 

H24,H20,H08,H80,H01,H50 40 59 1 1.5 

H24,H20,H08,H80,C18,H50 37 62 1 1.5 

H24,H20,H08,C05,H01,C18 48 51 1 1.333333 

H24,H20,H08,C05,H01,H50 49 49 2 1.5 

H24,H20,H08,C05,C18,H50 38 62 0 1.5 

H24,H20,H08,H01,C18,H50 46 53 1 1.666667 

H24,H20,H80,C05,H01,C18 41 57 2 1.333333 

H24,H20,H80,C05,H01,H50 42 58 0 1.5 

H24,H20,H80,C05,C18,H50 46 52 2 1.5 

H24,H20,H80,H01,C18,H50 45 55 0 1.666667 

H24,H20,C05,H01,C18,H50 49 51 0 1.666667 

H24,H08,H80,C05,H01,C18 43 56 1 1.333333 

H24,H08,H80,C05,H01,H50 41 54 5 1.5 

H24,H08,H80,C05,C18,H50 42 57 1 1.5 

H24,H08,H80,H01,C18,H50 52 47 1 1.666667 

H24,H08,C05,H01,C18,H50 44 52 4 1.666667 

H24,H80,C05,H01,C18,H50 45 53 2 1.666667 

H20,H08,H80,C05,H01,C18 39 60 1 1.333333 

H20,H08,H80,C05,H01,H50 42 57 1 1.5 

H20,H08,H80,C05,C18,H50 44 54 2 1.5 

H20,H08,H80,H01,C18,H50 44 54 2 1.666667 

H20,H08,C05,H01,C18,H50 49 51 0 1.666667 

H20,H80,C05,H01,C18,H50 45 53 2 1.666667 

H08,H80,C05,H01,C18,H50 47 49 4 1.666667 

H24,H20,H08,H80,C05,H01,C18 45 55 0 1.285714 

H24,H20,H08,H80,C05,H01,H50 40 60 0 1.428571 

H24,H20,H08,H80,C05,C18,H50 50 49 1 1.428571 

H24,H20,H08,H80,H01,C18,H50 46 52 2 1.571429 

H24,H20,H08,C05,H01,C18,H50 43 55 2 1.571429 

H24,H20,H80,C05,H01,C18,H50 45 54 1 1.571429 

H24,H08,H80,C05,H01,C18,H50 37 60 3 1.571429 

H20,H08,H80,C05,H01,C18,H50 48 50 2 1.571429 

H24,H20,H08,H80,C05,H01,C18,H50 40 58 2 1.5 
Table 6.17: The results for modelled outbreaks with multiple start points. 
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Table 6.18 

%age 

Prob’y of 

Non-

Ward 

Vertex 

Being 

Vacc’d at 

Each 

Time 

Step 

%age 

Prob’y of 

Non-

Ward, 

Non-

Norm 

Vertex 

Being 

Treated 

at Each 

Time 

Step 

%age 

Prob’y of 

Non-Normal 

Vertex 

Being 

Remodelled 

at Each 

Time Step 

%age 

Prob’y of 

Non-Ward 

Vertex  

Increasing 

Resistance 

to Change 

Min 

Time for 

Outb’k 

Max 

Time for 

Outb’k 

Mean 

Time for 

Outb’k 

0 0 0 0 3 101 27 

5 0 0 0 3 101 20.94 

10 0 0 0 3 32 16.87 

20 0 0 0 3 28 14.79 

30 0 0 0 3 25 12.6 

40 0 0 0 3 24 12.72 

50 0 0 0 3 26 11.24 

70 0 0 0 3 24 8.92 

90 0 0 0 3 29 10.01 

100 0 0 0 3 24 8.97 

0 5 0 0 2 47 22.47 

0 10 0 0 2 101 21.64 

0 20 0 0 2 101 19.19 

0 30 0 0 2 51 17.62 

0 40 0 0 2 57 18.85 

0 50 0 0 2 50 17.35 

0 70 0 0 2 40 15.13 

0 90 0 0 2 32 12.14 

0 100 0 0 2 33 13.18 

0 0 5 0 3 101 23.41 

0 0 10 0 3 101 23.34 

0 0 20 0 3 51 16.8 

0 0 30 0 3 44 16.13 

0 0 40 0 3 36 12.36 

0 0 50 0 3 41 12.9 

0 0 70 0 3 28 11.55 

0 0 90 0 3 32 9.4 

0 0 100 0 3 27 9.81 

0 0 0 5 3 101 23.1 

0 0 0 10 3 40 19.87 

0 0 0 20 3 101 18 

0 0 0 30 3 27 15.19 

0 0 0 40 3 23 13.08 

0 0 0 50 3 26 14.28 

0 0 0 70 3 34 12.37 

0 0 0 90 3 23 10.32 

0 0 0 100 3 27 10.86 
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0 0 0 0 3 101 27 

0 0 0 10 3 40 19.87 

0 0 0 30 3 27 15.19 

0 0 10 0 3 101 23.34 

0 0 10 10 3 40 16.33 

0 0 10 30 3 101 14.15 

0 0 30 0 3 44 16.13 

0 0 30 10 3 33 14.05 

0 0 30 30 3 22 10.81 

0 10 0 0 2 101 21.64 

0 10 0 10 2 42 19.5 

0 10 0 30 2 30 13.76 

0 10 10 0 2 47 18.27 

0 10 10 10 2 38 16.01 

0 10 10 30 2 26 14.18 

0 10 30 0 2 101 15.99 

0 10 30 10 2 33 14.25 

0 10 30 30 3 23 11.76 

0 30 0 0 2 51 17.62 

0 30 0 10 2 42 16.69 

0 30 0 30 2 23 13.01 

0 30 10 0 2 57 19.8 

0 30 10 10 2 38 15.54 

0 30 10 30 2 101 14.23 

0 30 30 0 2 47 15.72 

0 30 30 10 2 28 12.89 

0 30 30 30 2 28 12.26 

10 0 0 0 3 32 16.87 

10 0 0 10 2 27 15.01 

10 0 0 30 3 25 12.91 

10 0 10 0 3 32 14.74 

10 0 10 10 3 30 14.11 

10 0 10 30 3 26 11.59 

10 0 30 0 3 101 12.67 

10 0 30 10 3 29 11.67 

10 0 30 30 3 24 10.03 

10 10 0 0 2 34 15.28 

10 10 0 10 2 101 15.09 

10 10 0 30 2 26 13.38 

10 10 10 0 2 28 14.82 

10 10 10 10 3 30 13.97 

10 10 10 30 2 24 12.83 

10 10 30 0 2 30 13.26 

10 10 30 10 2 28 12.82 

10 10 30 30 2 25 11.97 

10 30 0 0 2 33 16.89 

10 30 0 10 2 32 14.2 

10 30 0 30 2 26 12.08 

10 30 10 0 2 36 15.01 

10 30 10 10 2 27 13.42 

10 30 10 30 2 24 12.39 

10 30 30 0 2 30 14.09 

10 30 30 10 2 30 13 
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10 30 30 30 2 27 11.45 

30 0 0 0 3 25 12.6 

30 0 0 10 3 33 11.3 

30 0 0 30 3 26 11.17 

30 0 10 0 3 24 11.43 

30 0 10 10 3 27 11.58 

30 0 10 30 3 29 11.91 

30 0 30 0 3 101 10.88 

30 0 30 10 3 25 11 

30 0 30 30 3 27 9.76 

30 10 0 0 2 25 12.97 

30 10 0 10 2 25 12.19 

30 10 0 30 2 101 12.06 

30 10 10 0 2 27 11.94 

30 10 10 10 2 23 11.54 

30 10 10 30 2 26 10.57 

30 10 30 0 2 29 11.07 

30 10 30 10 3 25 9.79 

30 10 30 30 2 28 10.39 

30 30 0 0 2 21 10.81 

30 30 0 10 2 29 12.42 

30 30 0 30 2 28 10.98 

30 30 10 0 2 25 11.7 

30 30 10 10 2 25 10.22 

30 30 10 30 2 24 10.79 

30 30 30 0 2 24 11.2 

30 30 30 10 2 24 9.53 

30 30 30 30 2 30 10.47 
Table 6.18: The length of outbreaks (minimum, maximum and mean) for varying levels of 

intervention. The upper 37 rows are for single interventions (i.e. down to the blank line). The 

lower 81 are for multiple interventions. As some of these are also for single interventions, these 

rows are repeated for clarity. Note that the probability of a vertex being vaccinated, etc, equates to 

that percentage of vertices being vaccinated. Aside from treatment, the minimum can never be less 

than 3, as this equates to the one day of the infection plus the 48 hours post-asymptomatic (see 

6.2.2.3.9.1). 
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